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Abstract. This paper provides both theoretical and experimental evi-
dence for the existence of an Energy/Frequency Convexity Rule, which
relates energy consumption and CPU frequency on mobile devices. We
monitored a typical smartphone running a specific computing-intensive
kernel of multiple nested loops written in C using a high-resolution power
gauge. Data gathered during a week-long acquisition campaign suggest
that energy consumed per input element is strongly correlated with CPU
frequency, and, more interestingly, the curve exhibits a clear minimum
over a 0.2 GHz to 1.6 GHz window. We provide and motivate an ana-
lytical model for this behavior, which fits well with the data. Our work
should be of clear interest to researchers focusing on energy usage and
minimization for mobile devices, and provide new insights for optimiza-
tion opportunities.

Keywords: Energy consumption and modeling · DVFS · Power
consumption · Execution time modeling · Smartphone · Bit-reverse algo-
rithm

1 Introduction

The service uptime of battery-powered devices, e.g., smartphones, is a sensitive
issue for nearly any user [9]. Even though battery capacity and performance are
hoped to increase steadily over time, improving the energy efficiency of current
battery-powered systems is essential because users expect right now communica-
tion devices to provide data access every time, everywhere to everyone. Under-
standing the energy consumption of the different features of (battery-powered)
computer systems is thus a key issue. Providing models for energy consumption
can pave the way to energy optimization, by design and at run time.

The power consumption of Central Processing Units (CPUs) and external
memory systems is application and user behavior dependent [2]. Moreover, for
cache-intensive and CPU-bound applications, or for specific Dynamic Voltage
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and Frequency Scaling (DVFS) settings, the CPU energy consumption may dom-
inate the external memory consumption [15]. For example, Aaron and Carroll [2]
showed that, for an embedded system running equake, vpr, and gzip from the
SPEC CPU2000 benchmark suite, the CPU energy consumption exceeds the RAM

memory consumption, whereas crafty and mcf from the same suite showed to
be straining more energy from the device RAM memory.

Providing an accurate model of energy consumption for embedded and, more
generally, energy-limited devices such as mobile phones is of key import to both
users and system designers. To reach that goal, our paper provides both theo-
retical and first experimental evidence for the existence of an Energy/Frequency
Convexity Rule, that relates energy consumption and CPU frequency on mobile
devices. This convexity property seems to ensure the existence of an optimal
frequency where energy usage is minimal.

This existence claim is based on both theoretical and practical evidence. More
specifically, we monitored a Samsung Galaxy SII smartphone running Gold-
Rader’s Bit Reverse algorithm [7], a small kernel based on multiple nested loops
written in C, with a high-resolution power gauge from Monsoon Solutions Inc.
Data gathered during a week-long acquisition campaign suggest that energy
consumed per input element is strongly correlated with CPU frequency and,
more interestingly, that the corresponding curve exhibits a clear minimum over a
0.2 GHz to 1.6 GHz window. We also provide and motivate an analytical model of
this behavior, which fits well with the data. Our work should be of clear interest
to researchers focusing on energy usage and minimization on mobile devices, and
provide new insights for optimization opportunities.

The paper is organized as follows. Section 2 introduces the notions of energy
and power, and how these can be decomposed in different components on elec-
tronic devices. Section 3 describes the power measurement protocol and method-
ology driving our experiments, and the C benchmark we used. Section 4 intro-
duces our CPU energy consumption model, and shows that it fits well with
the data. Section 5 outlines the Energy/Frequency Rule derived from our exper-
iment and modeling. Related work is surveyed in Sect. 6. We conclude and discuss
future work in Sect. 7.

2 Power Usage in Computer Systems

The total power Ptotal consumed by a computer system, including a CPU, may
be separated into two components: Ptotal = Psystem + PCPU, where PCPU is
consumed by the CPU itself and Psystem by the rest of system. In a battery-
powered hand-held computer device Psystem may include the power needed to
light the LCD display, to enable and maintain I/O devices (including memory),
to keep sensors online (GPS, gyro-sensors etc.), and others.

The power consumption PCPU of the CPU we focus on here can be divided
into two parts: PCPU = Pdynamic+Pleak, where Pdynamic is the power consumed by
the CPU during the switching activities of transistors during computation. Pleak

is power originating from leakage effects inherent to silicon-based transistors, and
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is in essence not useful for the CPU’s purposes. Pdynamic may be split into the
power Pshort lost when transistors briefly short-circuit during gate state changes
and Pcharge, needed to charge the gates’ capacitors: Pdynamic = Pshort+Pcharge. In
the literature Pcharge is usually [17] defined as α CfV 2, where α is a proportional
constant indicating the percentage of the system that is active or switching, C
the capacitance of the system, f the frequency at which the system is switching
and V the voltage swing across C.

Pshort originates during the toggling of a logic gate. During this switching,
the transistors inside the gate may conduct simultaneously for a very short
time, creating a direct path between VCC and the ground. Even though this
peak current happens over a very small time interval, given current high clock
frequencies and large amount of logic gates, the short-circuit current may be
non-negligible. Quantifying Pshort is gate specific but it may be approximated
by deeming it proportional to Pcharge. Thus the power Pdynamic stemming from
the switching activities and the short-circuit currents in a CPU is thus Pcharge +
(η−1)Pcharge, i.e., η ·αCLfV 2, where η is a scaling factor representing the effects
of short-circuit power.

Pleak originates from leakage currents that flow between differently doped
parts of a metal-oxide semiconductor field-effect transistor (MOSFET), the basic
building block of CPUs. The energy in these currents are lost and do not con-
tribute to the information that is held by the transistor. Some leakage cur-
rents are induced during the on or off -state of the transistor, or both. Six
distinct sources of leakage are identified [12]. Despite the presence of multiple
sources of leakage in MOSFET transistors, the sub-threshold leakage current,
gate leakage, and band-to-band tunneling (BTBT) dominate the others for sub-
100 nm technologies [1]. Leakage current models, e.g., as incorporated in the
BSIM [12] micro models, are accurate yet complex since they depend on mul-
tiple variables. Moreover, Pleak fluctuates constantly as it also depends on the
temperature of the system. Consequently Pleak cannot be considered a static
part of the system’s power consumption. Given the different sources of power
consumption in a MOSFET based CPU, the portal power can be rewritten as
Ptotal = Psystem + Pleak + Pdynamic.

The relationship between the power P (t) (Watts or Joules/s) and the energy
E(Δt) (Joules) consumed by an electrical system over a time period Δt is
given by

E(Δt) =
∫ Δt

0

P (t) dt =
∫ Δt

0

I(t) · V (t) dt , (1)

where I(t) is the current supplied to the system, and V (t) the voltage drop over
the system. Often V (t) is constant over time, hence dP (t)/dt only depends on
I(t). If both current and voltage are constant over time, the energy integral
becomes the product of voltage, current and time, or alternatively power and
time.
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3 Power Measurement Protocol on Mobile Devices

A Samsung Galaxy S2 is used in our testbed sporting the Samsung Exynos 4
Systems-on-Chip (SoC) 45 nm dual-core. The Galaxy S2 has a 32 KB L1 data
and instruction cache, and a 1 MB L2 cache. The mobile device runs Android
4.0.3 on the Siyah kernel adopting Linux 3.0.31. The frequency scaling governor
in Linux was set to operate in userspace mode to prevent frequency and voltage
scaling on-the-fly. The second CPU core was disabled during measurements. The
smartphone is booted in clockwork recovery mode to minimize noisy side-effects
of the Operating System (OS) and other frameworks.

During the experiments, the phone’s battery was replaced by a power supply
(Monsoon Power Monitor) that measures the power consumption at 5 kHz with
an accuracy of 1 mW. The power of the system and the temperature of the CPU
were simultaneously logged. The kernel was patched to print a temperature
sample to the kernel debug output at a rate of 2 Hz.

The bit-reverse algorithm is used as benchmark kernel. This is an important
operation since it is part of the ubiquitous Fast Fourier Transformation (FFT)
algorithm, and rearranges deterministically elements in an array. The bit-reversal
kernel is CPU intensive, induces cache effects, and is economically pertinent.
The Gold-Rader implementation of the bit-reverse algorithm, often considered
the reference implementation [7], is given below:

void bitreverse_gold_rader (int N, complex *data) {

int n = N, nm1 = n-1; int i = 0, j = 0;

for (; i < nm1; i++) {

int k = n >> 1;

if (i < j) {

complex temp = data[i]; data[i] = data[j]; data[j] = temp;

}

while (k <= j) {j -= k; k >>= 1;}

j += k;

}

}

The input of the bit-reversal algorithm is an array with a size of 2N ; the
elements are pairs of 32 bit integers, representing complex numbers. Note that
array sizes up to 29 fit in the L1 cache, while sizes over 218 are too big to fit in
the L2 cache.

During the measurements, N is set between 6 and 20 in steps of 2, while
varying the CPU frequency from 0.2 GHz to 1.6 GHz in steps of 0.1.

To minimize overhead, 128 copies of the kernel are run sequentially. For time
measurement purposes, this benchmark is repeated 32 times for at least 3 s each
time (this may require multiple runs of the 128 copies). For the power and
temperature measurements, the benchmark is repeated in an infinite loop until
32 samples can be gathered. The benchmark is compiled with GCC 4.6, included
in Google’s NDK, generating ARMv5 thumb code.

Data was fitted using R and the nls() function employing the port algorithm.
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4 Modeling Energy Consumption

Energy is the product of time by power. We look at each of these factors in turn
here.

4.1 Execution Time

Since applications run over an OS, we need to take account for it when estimat-
ing computing time. Indeed, an OS needs a specific amount of time, or clock
cycles, to perform (periodical) tasks, e.g., interrupt handling, process schedul-
ing, processing kernel events, managing memory etc. When the processor is not
spending time in kernel mode, the processor is available for user-space programs,
e.g., our benchmark. From a heuristic point of view, it can be assumed that the
OS kernel needs a fixed amount of clock cycles cck per time unit to complete
its tasks. Thus, we propose to model the amount of clock cycles to complete a
benchmark sequence of instructions ccb as t(fβ −cck), where cck are the number
of clock cycles spent in the OS, t the total time needed to complete the pro-
gram, f the system’s clock frequency and β an architecture-dependent scaling
constant, to be fitted later on with the data. The definition of ccb is rewritten
to isolate the execution time:

t =
ccb

fβ − cck
. (2)

Note that t tends to zero for f → ∞ and there is a vertical asymptote at β
√

cck.
Table 1 shows the fitting errors of Eq. 2 on the execution time measurement

data, averaged over all tested input sizes. The fitting exhibits a vertical asymp-
tote around 115 MHz. This may indicate the minimum amount of clock cycles
required by the OS of the phone to operate. The measurement data for input
sizes 26 up to 216 are well described by Eq. 2. However, sizes 218 and 220, too
large to fit within cache L2, seem to operate under different laws. Therefore,
from now on, the attention is focused on data that fit in the cache of the CPU.

4.2 Power Consumption

If dynamic power modeling is rather easy (see Sect. 2), the case for leakage is
more involved, and warrant a longer presentation. In particular, leakage power is

Table 1. Average absolute execution time (t), power (P ), and energy (E) fitting errors
(%) of Eq. 2, 4 and 5 respectively, on the measured data given different CPU frequencies
(f) at a 37 ◦C core temperature.

f (GHz) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

error t 1.18 2.71 1.55 0.55 0.56 4.21 0.62 1.63 4.71 3.68 1.86 0.44 5.87 0.75 2.61
error P 2.94 1.00 0.20 0.99 1.31 1.46 1.24 0.49 0.02 0.70 0.86 0.82 0.03 7.40 0.58
error E 18.39 0.83 0.92 2.93 3.31 1.34 2.73 2.37 4.69 4.68 3.01 1.46 5.83 8.02 3.27
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heavily temperature-dependent [12]. For example, our CPU at 1.3 GHz shows an
inflated power consumption of around 5 % between a CPU temperature of 36 ◦C
and 46 ◦C. You et al. [18] shows similar results for a 0.1µm processor; a temper-
ature increase from 30 ◦C to 40 ◦C leads to a 3 % power increase. On the other
hand, the power Pcharge required for a given computation does not change with
regards to the CPU temperature. The Berkeley Short-channel IGFET Model
(BSIM) [12] shows that the leakage current micro models depend on a multitude
of variables. The temperature itself appears several times in the sub-threshold
and BTBT leakage models; the gate leakage however is not temperature depen-
dent. Mukhopadhyay et al. [13] showed via simulation that for 25 nm technology
the sub-threshold leakage current is dominant over the BTBT leakage current,
but the latter cannot be neglected. Under normal conditions, the temperature of
the CPU’s silicon varies continuously depending on the load of the CPU and the
system’s ambient temperature. Therefore, to have a fair comparison of energy
consumption between different code pieces one needs to compare the measure-
ments at a reference temperature.

Finding a temperature scaling factor for the leakage current is however not a
straightforward task. Nevertheless, approximative scaling factors have been ana-
lytically obtained or experimentally defined via simulations (mainly SPICE) [5,
11,16]. After analysis on our data, we discovered that none of the cited approxi-
mations would fit well. This is because the rationale on which these approxima-
tions are based assume conditions, which are not entirely realistic, to simplify
the leakage current micro models. Most previous research works focus solely on
the sub-threshold leakage effect, neglecting other leakage effects. This may be
appropriate for technologies larger than the 45 nm technology we use.

Skadron et al. [14] studied the temperature dependence of Ileak as well.
Skadron et al. deducted a relationship between the leakage power Pleak and
dynamic power Pdynamic based on International Technology Roadmap for semi-
conductors (ITRS) measurement traces (variables indexed with 0 are reference
values):

RT =
Pleak

Pdynamic
=

R0

V0T 2
0

e
B
T0 V T 2e

−B
T . (3)

If the temperature T is stable across different operating voltages, then the value
of RT is a function of V multiplied by a constant γ, which includes the temper-
ature dependent variables and other constants. Total power Ptotal is thus:

Ptotal = Psystem + Pleak + Pdynamic

= Psystem + γV Pdynamic + Pdynamic

= Psystem + (1 + γV ) · ηαCfV 2. (4)

This formulation of Ptotal incorporates three parameters: Psystem, γ, and ηαC.
The values of these variables can be obtained via fitting power traces on Eq. 4.
V and f are linked via the DVFS process inherent to the Linux kernel and the
hardware technicalities. Experimental values for our CPU are found inside the
Siyah kernel; they are shown in Table 2. The power fitting errors are shown in
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Table 2. Frequency and voltage relationship for the Dynamic Voltage and Frequency
Scaling (DVFS) process in the default Siyah kernel.

f (MHz) 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

V (mV) 920 950 950 950 975 1000 1025 1075 1125 1175 1225 1250 1275 1325 1350

Table 1 for a 37 ◦C CPU temperature. The fitting errors are on the average not
larger than 3 % except for the measurement point at 1.5 GHz. This measurement
point was obtained at different independent occasions but appears, for obscure
reasons, to disobey persistently the model in Eq. 4.

4.3 Energy Consumption

Typical compute-intensive programs incur approximately a constant load on the
CPU and system, barring user interactions. Moreover, if the time to complete
one program is also much smaller than the sampling rate of the power gauge,
then P (t) in Eq. 1 is constant. Hence, it suffices to sample the power Pbench

of a benchmark at a given CPU temperature and multiply this value by the
execution time of the benchmark tbench to get an energy estimate. As a result
the definition of time in Eq. 2, and power in Eq. 4, can be used to model the
energy of one benchmark kernel. The energy consumed by the CPU ECPU is
given by

ECPU = Eleak + Edynamic

= Pbench · tbench

=
(
(1 + γV ) · ηαCfV 2

) · ccb
fβ − cck

. (5)

Constants γ, ηαC, ccb, and cck in this formulation were evaluated before via
fitting the power and time traces.

5 The Energy/Frequency Convexity Rule

Using the testbed and models described above, Fig. 1 shows the measured and
modeled energy ECPU for our benchmark kernel over the different frequencies;
data have been normalized over the benchmark input size. Table 1 shows the
average absolute energy error between our fitted model and the measured data.
The average fitting error stays below 6 % except for measurement points 1.5 GHz
and 200 MHz. The large fitting error in the 200 MHz case stems from the large
execution time that amplifies the power measurement fitting error (see Table 1).
It can also be seen that, for larger benchmark input sizes, on the average more
energy is required. This is the result of higher level cache utilization.

Figure 1 exhibits a clear convex curve, with a minimum at Frequency fopt,
suggesting the existence of an Energy/Frequency Convexity Rule for compute-
intensive programs. Why is the energy consumption curve convex? The energy
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Fig. 1. Energy required by the CPU at 37 ◦C to complete our benchmark kernel given
an input size. The dashed lines denote the theoretical curve as per Eq. 5.

consumption of the benchmark kernel scales approximately linearly with the
number of instructions. The time Δt it takes to execute an instruction sequence
increases more than linearly with decreasing operating frequency. Pleak is inde-
pendent of the type of computation, and Eleak builds up linearly with time:
Eleak = PleakΔt. Pleak becomes increasingly important in the part where the
CPU frequency f is smaller than fopt. For the part where f > fopt, the inflated
ECPU can be attributed to the increasing supply voltage VCC affecting Pdynamic

quadratically. Furthermore, had Psystem been incorporated in the picture, then
fopt would have moved to a higher frequency because the additional consumed
energy of the system could have been minimized by a faster completion of the
computations on the CPU.

Our proposal for the existence of an Energy/Frequency Convexity Rule can
be further supported using our previous models. Indeed, we can model the rela-
tionship in Table 2 between the frequency (GHz) and voltage (V) in the Linux
kernel with a linear approximation: V = m1f +m2. Now the derivative of ECPU

defined in Eq. 5 over f or V can be computed. The energy curve shows a global
minimum ECPU,min for fopt when its derivative is equal to zero (∂ECPU/∂f = 0)
and its second derivative is positive.

Given that ECPU only shows one minimum, fopt is the global minimum if
the following equality holds:

(1 + γV )V fββ

fβ − cck
= fm1(3γV + 2) + (1 + γV )V. (6)

Four parameters appear in this formulation that affect the optimal frequency
fopt: β and cck, which are related to the execution time of the benchmark, m1
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the slope between V and f , and γ related to the leakage current ratio. Simulations
show that, if β or cck decreases, ECPU,min will shift to a higher frequency, and,
if m1 or γ decreases, fopt will decrease as well. γ is temperature dependent; if
the temperature increases, γ will increase accordingly. Hence, ECPU,min and fopt
increase with temperature as well. For the presented measurements Eq. 5 shows
a minimum on the average around 700 MHz. This holds for all input sizes of the
benchmark between 26 and 216. As a result, this implies that there exists an
operating frequency, which is neither the maximum nor the minimum operating
frequency, at which the CPU would execute a code sequence on the top of the
OS in the most energy efficient way.

6 Related Work

The convex property of the energy consumption curve has been hinted at before
in the literature. A series of papers, approaching the problem from an architec-
tural point of view, have shown a convex energy consumption curve with respect
to DVFS [4,10,15]. The authors put forward some motivation, but do not pro-
vide an analytical framework. Other studies, e.g., Hager et al. [8] and Freeh et
al. [6], discuss what the consequences are of said behavior and how to exploit
them, from a high-level point of view. A detailed explanation or an analytical
derivation, as presented here, is however not highlighted.

7 Conclusion

We provide an analytical model to describe the energy consumption of a code
sequence running on top of the OS of a mobile device. The energy model is para-
meterized over five parameters abstracting the specifics of the Dynamic Voltage
and Frequency Scaling (DVFS) process, the execution time related parameters,
and the power specifications of the CPU. Measurement traces from a mobile
device were used to validate the appropriately fitted model. It is shown that
the model is on the average more than 6 % accurate. The importance of power
samples obtained at a reference temperature is also pointed out.

It is also shown that the analytical energy model is convex (representing what
we call the Energy/Frequency Convexity Rule) and yields a minimum energy
consumption of a code sequence for a given CPU operation frequency. This
minimum is a function of the temperature, execution time related parameters,
and technical parameters related to the hardware. A more in depth analysis of
the Energy/Frequency Convexity Rule can be found in our technical report [3].

Future work includes checking the validity of our model and its parame-
ters over a wide range of compute-intensive benchmarks. Also, extending the
presented model to better handle memory access operations, in particular the
impact of caches, is deserved. Finally a generalization of the model to encom-
pass the impact of other programs running in parallel with benchmarks or system
power effects would be useful.
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