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Abstract. The availability of computing resources and the need for high
quality services are rapidly evolving the vision about the acceleration
of knowledge development, improvement and dissemination. The Inter-
net of Things is growing up. The high performance cloud computing
is behind the scene powering the next big thing. In this paper, using
the GVirtuS, general purpose virtualization service, we demonstrate the
feasibility of accelerate inexpensive ARM based computing nodes with
high-end GPUs hosted on x86 64 machines. We draw the vision of a pos-
sible next generation of low-cost, off the shelf, computing clusters we call
Neowulf characterized by high heterogenic parallelism and expected as
low electric power demanding and head producing.

Keywords: Hyerarchical parallelism · Hybrid algorithms · Adaptive
algorithms · Multidimensional integration

1 Introduction

The Cloud Computing is an internet-based model in which virtualized and stan-
dard resource are provided as a service over the Internet. It provides a minimal
management effort or service provider interaction and users interact with a vir-
tual and dynamically scalable set of resources that can manage depending on
their needs. Cloud Computing providers differ for the service provisioned and
for the kind of the cloud architecture. The main consolidated service models are:
Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure
as a Service (IaaS).

The High Performance Computing (HPC) is one of the leading edge dis-
ciplines in information technology with a wide range of demanding applica-
tions in science [12,13], engineering, economy, medicine [1] and creative arts [7].
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The High Performance Cloud Computing (HPCC) model might offer a solution
applying the elasticity concept of cloud computing to HPC resources, resulting
in an IaaS delivery model. The cloud computing approach promises increased
flexibility and efficiency in terms of cost, energy consumption and environmental
friendliness [11] changing the point of view on performance contract systems [3].

Researchers and developers have become interested in harnessing this power
for general-purpose computing, an effort known collectively as GPGPU (for
General-Purpose computing on the GPU). Especially in the field of parallel
computing applications, virtual clusters instanced on cloud infrastructures suf-
fers from the poorness of message passing performances between virtual machine
instances running on the same real machine and also from the impossibility to
access hardware specific accelerating devices as GPUs. Recently, scientific com-
puting has experienced on general-purpose graphics processing units to accel-
erate data parallel computing tasks. Presently, virtualization allows a transpar-
ent use of accelerators as CUDA based GPUs, as virtual/real machines and
guest/host real machines communication issues rise serious limitations to the
overall potential performance of a cloud computing infrastructure based on elas-
tically allocated resources using split-driver based components as GVirtuS [6].

The Internet of Things (IoT) services are build on the top of other services as
a sort of construction game thanks to well documented public interfaces strongly
leveraging on different web services technologies. IoT generally refers to uniquely
identifiable objects and their virtual representations in an Internet-like structure.
It is interesting consider a large number of this low power, low-performance
processors teamed up to build a data center with similar processing power than
regular CPUs, but smaller energy consumption. ARM processors, designed for
the embedded mobile market, operate at about 1 GHz frequencies and consume
just 0.25 W. There is already a significant trend towards using ARM processors
in data servers and cloud computing environments. Those workloads are lim-
ited by the I/O and memory systems, not by the CPU performance. Recently,
ARM processors are also taking significant steps towards increased double pre-
cision (DP) floating point (FP) performance, making them competitive with
state-of-the-art server performance. The ARM Cortex-A15, targeted as the com-
puting unit in the Barcelona Supercomputing Center Mont Blanc project, will
increase super-scalar issue to two arithmetic instructions per cycle, and has a
fully pipelined FMA unit, delivering 4 GFLOPS at 1 GHz, on potentially the
same 0.25 W budget, achieving 16 GFLOPS/W. The new ARMv8 instruction
set, which will be implemented in future generations of ARM cores, features a
64-bit address space, and adds DP to the NEON SIMD ISA1, allowing for 8
ops/cycle on an A15 pipeline: 8 GFLOPS at 1 GHz, for 32 GFLOPS/W.

In this paper we present our preliminary results in accelerating inexpensive
HPC clusters, known as Beowulf clusters, made by off the shelf computing com-
ponents using of low power ARM based computing nodes grouped in sub-clusters
leveraging on one or more high-end GPGPU devices hosted on accelerator nodes.
We perform some really promising experiments setting up a controlled testing
environment imitating the core of a more complex architecture.
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The rest of this paper is organized as follows: in the section two we draw
out our vision of the next generation of really hybrid HPC clusters accelerated
by Internet of Things based components and high-end GPUs; the third section
deals with design and technical issues of the hybrid GPU/x86 64/ARM software
architecture using GVirtuS as transparent bridge between the ARM living appli-
cations and the GPUs. The section number four is on implementation details,
while in the one number five some tests and preliminary results are described
and discussed. Finally, the last section, the sixth, is about the usual conclusions
and future directions on those promising issues.

2 Vision and Contextualization

In the world of supercomputing the two top charts, Top 500 and Green 500,
show, we have two trends: the number of core increases thanks the use of dedi-
cated accelerators (GPUs, CPU array boards) and the compute/cost efficiency
is increasing its important in the technology development, so, in the future the
two charts will merge in just one considering the environmental (and economical)
footprint of a HPC iron giant as a primary requirement. For many applications
as operational computations [10] or for the cloud hosting providers the energy
saving is no more a freak item but a mandatory issue. In the recent past a
good amount of the world spread computing power has been achieved using
the low/medium costs off the shelf Beowulf commodity clusters. A Beowulf is
a cluster of machines interconnected by a high performance network employing
the message-passing model for parallel computation. The key advantages of this
approach are high performance for low price, system scalability and rapid adjust-
ment to new technological advances. The latter point is the key for the next step
of the Beowulf evolution in the vision described in this paper. As the now days
CPU computing power increases, the need for electric power rises needing more
cooling. The availability of Internet of Things derived ARM CPUs in their high
performance incarnation (64 bit, multicore) lead the HPC world to ARM based
clusters powered with on chip or on board GPUs. The idea we show here is
dedicated to the low-end / middle-end in house solutions designing what could
be defined as Neowulf the next generation of Beowulf clusters (Fig. 1).

The computing nodes of a regular old-style cluster behave as input/output
nodes for ARM based inexpensive sub-clusters. In this way the amount of heat
producers decrease while the high computing power demanding applications have
to be refactored in order to fit this new heterogenic approach. Tanks to the
software component we show in this paper, these devices are seen by each of
the ARM based sub-cluster computing nodes as directly connected to them in
a transparent way. This vision permits to gain more computing power reduc-
ing the expensive, power hungry and heat producer x86 64 based computing
nodes, increase the parallelism at the sub-cluster level and, last but not the
least, unchain the high-end GPGPU power to ARM based computing nodes.
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Fig. 1. The “Neowulf” big picture.

3 Design and Technical Issues

We use the GVirtuS framework model in order to design of our split driver
implementation classically parted in front-end, communicator and back-end.

The front-end is a kernel module that uses the driver APIs supported by the
platform. The interposer library provides the familiar driver API abstraction to
the guest application. It collects the request parameters from the application
and passes them to the back-end driver, converting the driver API call into a
corresponding frontend driver call. When a callback is received from the frontend
driver, it delivers the response messages to the application. In GVirtuS the front-
end runs on the virtual machine instance and its implemented as a stub library.

The communicator maps the request parameters from the shared ring and
converts them into driver calls to the underlying wrapper library. Once the driver
call returns, the backend passes the response on the shared ring and notices the
guest domains. The wrapper library converts the request parameters from the
backend into actual driver API calls to be invoked on the hardware. It also
relays the response messages back to the backend. The driver API is the ven-
dor provided API for the device. The back-end is a component serving frontend
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Fig. 2. The GVirtuS on ARM block diagram.

requests through the direct access to the driver of the physical device. This
component is implemented as a server application waiting for connections and
responding to the requests submitted by frontends. In an environment requir-
ing shared resource the back-end must offer a form of resource multiplexing.
Another source of complexity is the need to manage multithreading at the guest
application level (Fig. 2).

3.1 GVirtuS on ARM

The GVirtuS porting on arm idea raised from different application fields such as
High Performance Internet of Things (IPIoT) and HPC. In HPC infrastructures
the ARM processors are used as computing nodes often provided by tiny GPU
on chip or integrated on the CPU board. We developed the idea to share one or
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more regular high-end GPU devices hosted on a small number of x86 machines
with a good amount of low power/low cost ARM based computing sub-clusters
better fitting into the HPC world.

From the architectural point of view this is a big challenge because involving
word size, endianness and programming models. For our prototype we used the
32 bits ARMV6K processor supporting both big and little endian so we had to
set the little endian mode in order to make data transfer between the ARM and
the x86 full compliant. Due to the prototypal nature of the system all has been
set to work using 32 bits. The solution is the full recompilation of the framework
with a specific reconfiguration of the ARM based system. As we will migrate on
64 bits ARMs this point will be revise.

In a previous work we used GVirtuS as nVidia CUDA virtualization tool
achieving good results in terms of performances and system transparency [5]. In
order to fit the GPGPU/x86 64/ARM application into our generic virtualization
system we mapped the back-end on the x86 64 machine directly connected to
the GPU based accelerator device and the front-end on the ARM board(s) using
the GVirtuS tcp/ip based communicator.

We chose to design and implement a GVirtuS plugin implementing OpenCL.
This have been strongly motivated by several issues:

1. Since the CUDA version 4 the library design appears to be made not fitting
with the split driver approach on which leverages GVirtuS and other similar
products [];

2. The OpenCL is intrinsically open and all interfaces are public and well doc-
umented and, above all, work with nVidia devices, but is not limited to a
particular vendor or architecture as GVirtuS itself;

3. OpenCL applications can be compiled directly on the ARM board without
any installation of ad hoc libraries.

3.2 GVirtuS - OpenCL Plugin

OpenCL (Open Computing Language) is an open standard and royalty-free
allowing to perform multi/single core generale purpose programming on highly
heterogeneous systems. OpenCL allows developers to write their code once and
run on CPUs and GPUs and different accelerator boards as mic based Intel Phi.
In order to access a GPU in a virtual environment has been developed a wrapper
for libOpencl.so. The virtualized library has the same interface of the original
one and the independence from the communicator is guaranteed. The compati-
bility between the virtualized interface and libOpenCL.so allow the users to get
a transparent virtualization system to run OpenCL applications. It is possible
to run any of OpenCL applications without writing or recompile anything. Each
GVirtuS OpenGL plugin components participate as follows:

Front-end side: For each OpenCL routine a stub method has been imple-
mented with the same interface of the original one. All the stubs method have
a common implementation consisting in the next five steps:
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– Create a connection between back-end and front-end and flush all the buffers;
– Each parameters will be sent to the back-end through the input buffer;
– Request the execution of a routine using its name as parameter;
– Get and Use the exit code only if the execution is successful;
– Return the exit code the same one as the OpenCL routine.

Back-end side: Back-end has a stub method for each OpenCL routine in order
to handle the frontend requests. All the handlers method have a common imple-
mentation consisting in the next five steps:

– Deserialize all the parameters from the input buffer;
– Execute the OpenCL routine and store the exit result;
– Insert the output parameters in a new buffer;
– Create an object Result containing the previous created buffer and the exit

code;
– Exit and deliver the result to the frontend.

There are tree main input parameters types available:

– Host Pointer: back-end and front-end have different addressing space so a valid
pointer on the front-end is invalid on the back-end and vice-versa. Aligning
the addressed region makes the address translation.

– Device Pointer: the memory address is sent to the back-end or front-end.
There is no need for translation because both, be and fe, refer to the device
addressing space.

– Variables: It is really simple to add a scalar variable as a parameter.

In order to make the implementation effective and high performance, but
with a good trade off in development straightforwardness we deeply used an
OOP coding approach.

4 Implementation

The implementation, in C++ for all components, on the back-end side is related
to an x86-based multi-core hardware platform with multiple accelerators attached
via PCIe devices, running Linux as both host and guest operating system. In
the font-end we used the same core running in a similar, but ARM based, Linux
environment.

4.1 OpenCLFrontend

The OpenCLFrontend class establishes connections with the back-end and exe-
cutes the OpenCL routine through the compiled library libGvirtus-frontend. The
constructor method creates an object of the class Frontend from the libGvirtus-
frontend library using the method GetFrontend using a factory/instance design
pattern. All the stubs methods have a common schema. Every stub follows the
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same interface of the handled OpenCL routine. The first step is to get the unique
instance of the GVirtus Frontend class. This task is accomplished by the con-
structor method. The Prepare method reset the input buffer that will contain the
parameters to send to the back-end. After that all the parameters are inserted in
to the input buffer. The execute method forward the request for the routine using
the name of the routine as parameter. If the method is successfully executed so
we can get the output parameters. At last the method GetExitCode returns the
exit code of the routine executed by the backend. The clGetDeviceIDs routine
can be used to obtain the list of available devices on a platform. This simple
explicative schema is common to all the stubs coded.

4.2 OpenCLBackend

The main task of GVirtuS back-end is to start a communication in server mode
and waiting then accepting new incoming connections. It handles the loading of
plugins previously installed. GVirtuS back-end invokes the GetHandler method
in order to create a new instance of OpenclHandler class containing all the
methods needed in order to serve the requests of OpenCL routine execution. In
this class its possible to find all the methods to handle the execution of OpenCL
routines. In the OpenclHandler class there is a table, mpsHandlers, associating
function pointers to the name of the routines, so any routine can be handled
in the right way. As in the front-end there is a stub method for each OpenCL
method, in the back-end there is a function managing the execution of each
method.

5 Evaluation

We set a prototypal hardware environment in order to evaluate the performance
on ARM acceleration using external x86 64 GPUs, the GVirtuS overhead and
the result reliability of a software testing suite. That evaluation process has
two specific goals: (1) check the software stack accountability; (2) gather results
on performance test. The OpenCL SDK provides a software suite which each
component performs computations in bot CPU and GPU modes checking the
result coherence and showing the brute performance results. All tests available on
the standard OpenCL SDL have been successfully run using the GVrtuS-OpenCL
SDK. We used a Raspberry Pi Mod.B rev.2 ARM 11 equipped with Wheezy
Raspbian Linux as computing node and a Genensis GE-i940 Tesla powered by
an i7-940 2.93 GHz fsb, Quad Core HT 8 Mb cache with one nVIDIA Qudro
FX5800 4 Gb as GP device and two nVIDIA Tesla C1060 4 Gb as GPGPU device
as accelerator node. For those tests no I/O node has been provided and the setup
is related on a single node sub-cluster. In this context the GVirtuS fron-end was
run on the ARM computing nodes while the back-end has been executed on the
acceleration node. We used the OpenCL version of the testing software known as
MatrixMul, DotProduct and Histogram (Fig. 3). ScalarProd computes k scalar
products of two real vectors of length m. Notice that an OpenCL thread on
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Fig. 3. ARM CPU without (up) and with (down) GPU acceleration.

the GPU executes each product so no synchronization is required. MatrixMul
computes a matrix multiplication. The matrices are m n and n p, respectively. It
partitions the input matrices in blocks and associates a OpenCL thread to each
block. As in the previous case, there is no need of synchronization. Histogram
returns the histogram of a set of m uniformly distributed real random numbers in
64 bins. The set is distributed among the OpenCL threads each computing a local
histogram. The final result is obtained through synchronization and reduction
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Table 1. Performance tests results.

Test Input size (MB) Relative (%)

MatrixMul 8 0.04 %
DotProduct 16 0.27 %
Histogram 64 0.65 %

techniques. The Table 1 is a synthesis of the obtained results considering the
regular ARMV6K as the reference:

During the DotProduct testing process we change the problem dimension
from 220 to 222. The ARM performance are varying with the same problem
dimension trend. The wall clock remains almost constant when is used the GPU
acceleration. This demonstrates that the GVirtuS-OpenCL is fine working and
the performances are not affected by the communication time. In the MatrixMul
test the problem dimension has been varied in this steps 26 × 29, 29 × 212 and
210 × 211. The performance results are pretty similar to the previous case with
the GPU version having wall clock times almost unchanged. The Histogram has
been used varying the problem size to 24, 25 and 26. The results are trivially
the same.

6 Conclusions and Future Directions

In this paper has been presented our preliminary results about the design and the
implementation of an OpenCL wrapper library as GVirtuS framework plugin.
The most challenging result achieved by our work is the implementation of a base
tool unchaining the development of really distributed and heterogenic hardware
architectures and software applications. The experiments we performed validate
our promising vision. The incredible performance results we achieved, the wall
clock using acceleration is less than the 1 % compared with the non-accelerated
ARM board, have been affected by the computing power of the ARM side: they
need for more investigation and developments. The next step will be setup a sub-
cluster made by high performance ARM based boards provided by multicore
ARM 64 bit CPUs and high bandwidth network interfaces. We expect some
improvements from the ARM side, but even a better scalability because a more
performing communication. In this scenario some other actors will get playing
as the use of MPICH [2] for ARM to ARM and ARM to x86 64 message passing,
the OpenMP for intra ARM board parallelism and, above all, one or more GPU
devices hosted on the accelerator node have to be multiplexed by several ARM
processes. As long range future directions we planned a complete reverse of the
point of view has been planned: using GVirtuS components in order to abstract
and virtualize the ARM HPC sub-cluster acting as an accelerator board for
x86 64 machines and applications on instruments shared on the cloud [4,8].
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