
Using Intel Xeon Phi Coprocessor to Accelerate
Computations in MPDATA Algorithm

Lukasz Szustak1(B), Krzysztof Rojek1, and Pawel Gepner2

1 Czestochowa University of Technology,
Dabrowskiego 69, 42-201 Czestochowa, Poland

{lszustak,krojek}@icis.pcz.pl
2 Intel Corporation, Swindon, UK

pawel.gepner@intel.com

Abstract. The multidimensional positive definite advection transport
algorithm (MPDATA) belongs to the group of nonoscillatory forward-
in-time algorithms, and performs a sequence of stencil computations.
MPDATA is one of the major parts of the dynamic core of the EULAG
geophysical model.

The Intel Xeon Phi coprocessor is the first product based on the
Intel Many Integrated Core (Intel MIC) architecture. In this work, we
outline an approach to adaptation of the 3D MPDATA algorithm to the
Intel MIC architecture. This approach is based on combination of tem-
poral and space blocking techniques, and allows us to ease memory and
communication bounds and better exploit the theoretical floating point
efficiency of target computing platforms. In order to utilize computing
resources available in Intel Xeon Phi, the proposed approach employs
two main levels of parallelism: (i) task parallelism which allows for uti-
lization of more than 200 logical cores, and (ii) data parallelism to use
efficiently 512-bit vector processing units.

We discuss performance results obtained on two platforms, includ-
ing either two Intel Xeon E5-2643 CPUs and Intel Xeon Phi 3120A, or
two Intel Xeon E5-2697 v2 CPUs and Intel Xeon Phi7120P. The top-of-
the-line Intel Xeon Phi 7120P gives the best performance results for all
tests. Notably, this coprocessor executes the MPDATA algorithm 2 times
faster than two Intel Xeon E5-2697 v2 CPUs, and 2.86 times faster than
two Intel Xeon E5-2643 processors. Both the utilization of Intel Xeon
Phi many cores and vectorization play the leading role in performance
exploitation.

Keywords: EULAG model · Stencil computation · MPDATA · Intel
Xeon Phi · Multi-/manycore programming · OpenMP · Adaptation

1 Introduction

The multidimensional positive definite advection transport algorithm (MPDATA)
[7] is one of the two major parts of the dynamic core of the EULAG geophysical

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 582–592, 2014.
DOI: 10.1007/978-3-642-55224-3 54, c© Springer-Verlag Berlin Heidelberg 2014

Using Intel Xeon Phi Coprocessor to Accelerate Computations 583

model. EULAG (Eulerian/semi-Lagrangian fluid solver) is an established compu-
tational model for simulating thermo-fluid flows across a wide range of scales and
physical scenarios, including the numerical weather prediction (NWP).

The resent research of EULAG parallelization have been carried out using
IBM Blue Gene/Q and CRAY XE6 [4]. Three-dimensional MPI parallelization
has been used for running EULAG on these systems with tens of thousands of
cores, or even with more than 100K cores. When parallelizing EULAG computa-
tion on supercomputers and CPU clusters, the efficiency is declined below 10 %.
In this study, we propose to rewrite the EULAG dynamical core and replace
standard HPC systems by smaller heterogeneous clusters with accelerators such
as GPU [5] and Intel Many Integrated Cores (MIC) [3].

Preliminary studies of porting anelastic numerical models to modern archi-
tectures, including hybrid CPU-GPU architectures, were carried out in works
[5,10,11]. The results achieved for porting selected parts of EULAG to CPU-
GPU architectures revealed potential in running scientific applications on novel
hardware architectures.

In this work, we outline an approach to adaptation of the 3D MPDATA algo-
rithm to the Intel MIC architecture. This approach is based on combination of
temporal and space blocking techniques, and allows us to ease memory and com-
munication bounds, and better exploit the theoretical floating point efficiency of
target computing platforms. We show some of the optimization methods that we
found effective, and demonstrate their impact on the performance of both the
Intel CPU and MIC architectures. The main focus is using MPDATA to mod-
elling geophysical flows on NWP. The size of computational grid in such problems
typically does not exceed 270 thousand grid points (2048 × 1024 × 128). Here,
the starting point is an unoptimized parallel implementation of the MPDATA
algorithm. In our work, we use OpenMP standard for multi- and many-core
programming.

The content of the paper is organized as follow. In Sect. 2, architecture
overview is outlined. The introduction to 3D MPDATA algorithm, including
characterization of computation and communication, is presented in Sect. 3.
Section 4 introduces the proposed approach to adaptation of MPDATA to Intel
MIC Architecture, including block decomposition of 3D MPDATA algorithm,
improving efficiency of block decomposition, and parallelization. Preliminary
performance results are presented in Sect. 5, while Sect. 6 gives conclusions and
future work.

2 Architecture Overview

2.1 Architecture of Intel Many Integrated Cores

The Intel MIC architecture combines many Intel CPU cores onto a single chip
[2,3]. The Intel Xeon Phi coprocessor is the first product based on this archi-
tecture. The main advantage of these accelerators is that it is built to provide
a general-purpose programming environment similar to that provided for Intel

584 L. Szustak et al.

CPUs. This coprocessor is capable of running applications written in industry-
standard programming languages such as Fortran, C, and C++.

The Intel Xeon Phi coprocessor includes processing cores, caches, memory
controllers, PCIe client logic, and a very high bandwidth, bidirectional ring inter-
connect [3]. Each coprocessor contains of more than 50 cores clocked at 1 GHz
or more. These cores support four-way hyper-threading, which gives more than
200 logical cores. The real number of cores depends on the generation and model
of a specific coprocessor. Each core features an in-order, dual-issue x86 pipeline,
32 KB of L1 data cache, and 512 KB of L2 cache that is kept fully coherent by
a global-distributed tag directory. As a result, the aggregate size of L2 caches
can exceeds 25 MB. The memory controllers and the PCIe client logic provide
a direct interface to the GDDR5 memory on the coprocessor and the PCIe
bus, respectively. The coprocessor has over 6 GB of onboard memory (maximum
16 GB). The high-speed bidirectional ring connects together all the cores, caches,
memory controllers and PCIe client logic of Intel Xeon Phi coprocessors.

An important component of each Intel Xeon Phi processing core is its vector
processing unit (VPU) [2], that significantly increases the computing power. Each
VPU supports a new 512-bit SIMD instruction set called Intel Initial Many-Core
Instructions. The new ability to work with 512-bit vectors enables operating on
16 float or 8 double elements per iteration, instead of a single element.

The Intel Phi coprocessor is delivered in form factor of a PCI express device,
and cannot be used as a stand-alone processor. Since the Intel Xeon Phi coproces-
sor runs Linux operating system, any user can access the coprocessor as a net-
work node, and directly run individual applications in the native mode. These
coprocessors also support heterogeneous applications wherein a part of the appli-
cation is executed on the host (CPU), while another part is executed on the
coprocessor (offload mode).

2.2 Target Platforms

A summary of key features of tested platforms is shown in Table 1. In this study,
we use two platforms containing a single Intel Xeon Phi coprocessor. The first
platform is equipped with two newest CPUs, based on the Ivy Bridge architec-
ture, and the Intel Xeon Phi 3120A card. The second one includes two Sandy
Bridge-EP CPUs, and the top-of-the-line Intel Xeon Phi 7120P coprocessor.

It should be noted that values of peak performance shown in Table 1 are
given for the double precision arithmetic, with taking into account the usage of
SIMD vectorization.

3 Introduction to MPDATA Algorithm

The multidimensional positive definite advection transport algorithm (MPDATA)
belongs to the group of nonoscillatory forward-in-time algorithms, and performs
a sequence of stencil computations. The full description of the MPDATA algo-
rithm can be found in [6,7].

Using Intel Xeon Phi Coprocessor to Accelerate Computations 585

Table 1. Specification of tested platforms [1]

Product Code # of cores SIMD Freq. Peak Cache Memory Memory
name (threads) vector DP size size band.

[bits] [GHz] [GFlop/s] [MB] [GB] [GB/s]

Intel Xeon Ivy 2 × 12 256 2.7 518 2 × 30 64 2 × 51.2
E5-2697 v2 Bridge (2 × 24)
Intel Xeon Knights 57 512 1.1 1003 28.5 6 240
Phi 3120A Corner (228)
Intel Xeon Sandy 2 × 4 256 3.3 211 2 × 10 64 2 × 51.2
E5-2643 Bridge-EP (2 × 8)
Intel Xeon Knights 61 512 1.238 1208 30.5 16 352
Phi 7120P Corner (244)

The whole MPDATA computation in each time step are decomposed into
a set of 17 stencil sweeps, called further stages. Each stage is responsible for
calculating elements of a certain matrix, based on the corresponding stencil. The
stages dependent on each other: prior outcomes from stages are usually input
data for the subsequent computations. A part of the MPDATA implementation
is shown in Fig. 1. It corresponds to the linear version of MPDATA [7].

A single MPDATA time step requires 5 input and 1 output matrices. Other 16
matrices are temporary, and do not play role in the further computational steps.
In the basic, unoptimized implementation of the MPDATA algorithm, every
stage uses a required set of matrices from the main memory, and writes results to
the main memory after computation. This scheme is repeated for all the stages.
In consequence, a heavy traffic to the main memory is generated. Moreover,
compute units (cores/threads, and VPUs) have to wait for data transfers from
the main memory to the cache hierarchy. In order to take full advantage of the
novel architecture, the adaptation of MPDATA to the Intel MIC architecture is
considered. The new implementation takes into account the memory-bounded
character of the algorithm.

4 Adaptation of MPDATA to Intel MIC Architecture

4.1 Block Decomposition of 3D MPDATA Algorithm

Since the MPDATA algorithm includes so many intermediate computation, one
of the primary methods for reducing the intensity of memory traffic is to avoid
data transfers associated with these computation. For this aim, all the intermedi-
ate results must be kept in the cache memory. Such treatment increases the cache
reusing. The memory traffic is generated only to transfer the required input and
output data. Such an approach is commonly called the temporal blocking [8,9].

In order to implement this approach efficiently, the loop tiling technique is
applied. The grid is partitioned into blocks. Every block provides computation
for all the 17 stages on the assigned part of the grid. Within a single block,

586 L. Szustak et al.

#define fdim(a, b) ((a>b) ? (a-b):(0.0))

#define donor(y1, y2, a) (fdim(a, 0.0) * (y1) - fdim(0.0, a) * (y2))

//stage 1

for(...) // i - dimension

for(...) // j - dimension

for(...) // k - dimension

f1[i][j][k] = donor(xIn[i-1][j][k],xIn[i][j][k],u1[i][j][k]);

//stage 2

for(...) // i - dimension

for(...) // j - dimension

for(...) // k - dimension

f2[i][j][k] = donor(xIn[i][j-1][k],xIn[i][j][k],u2[i][j][k]);

//stage 2

for(...) // i - dimension

for(...) // j - dimension

for(...) // k - dimension

f3[i][j][k] = donor(xIn[i][j][k-1],xIn[i][j][k],u3[i][j][k]);

//stage 4

for(...) // i - dimension

for(...) // j - dimension

for(...) // k - dimension

x[i][j][k] = xIn[i][j][k]-(f1[i+1][j][k]-f1[i][j][k]+f2[i][j+1][k]-

f2[i][j][k]+f3[i][j][k+1]-f3[i][j][k])/h[i][j][k];

/*...*/

Fig. 1. Part of MPDATA implementation

each stage computes the adequate chunk of the corresponding matrix. Executing
of a sequence of blocks determines the final outcomes for a single MPDATA time
step.

The main requirement for this approach is to keep in the cache hierarchy all
the data required for MPDATA computation within each block. Therefore, the
size nB ×mB × lB of each block has to be selected in an appropriate way. The
idea of block decomposition of the MPDATA algorithm is shown in Fig. 2. This
decomposition determines four dimensions of distribution of MPDATA calcula-
tion across computing resources: i-, j-, and k-dimensions relate to the grid par-
titioning, while s-dimension is associated with the order of executing MPDATA
stages.

Due to data dependencies between subsequent stages additional computation
and communication within each data block are required. These overheads are
needed on the borders between adjacent blocks. In the proposed method, the
computation associated with all the 17 stages, and executed within each block are
extended by adequate halo areas. Adding halo allows to avoid data dependency
between blocks within a single MPDATA time step.

The sizes of halo areas are determined in all the four dimensions (i, j, k and s),
according to data dependencies between MPDATA stages. Thus, each of 5 input,

Using Intel Xeon Phi Coprocessor to Accelerate Computations 587

Fig. 2. Idea of block decomposition of MPDATA computation

Table 2. Sizes of halo areas for MPDATA algorithm

Halo Matrices
areas Input Temporary Output

u1 u2 u3 h x S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17

iL 2 2 2 2 3 2 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0
iR 3 2 2 2 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0
jL 2 2 2 2 3 2 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0
jR 2 3 2 2 3 2 3 2 2 1 2 1 1 1 1 1 1 1 0 1 0 0
kL 2 2 2 2 3 2 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0
kR 2 2 3 2 3 2 2 3 2 1 1 2 1 1 1 1 1 1 0 0 1 0

one output, and 16 temporary matrices, is partitioned into chunks of size nB ×
mB × lB, which further is expanded by adequate halo areas with sizes iL, iR,
and jL, jR as well as kL, kR. Table 2 presents the sizes of halo areas in i-, j-, and
k-dimensions for chunks of all the matrices.

This approach allows us to avoid data transfers for intermediate computation
at the cost of extra computation associated with halo areas in chunks of tem-
porary matrices, as well as extra communication between the main and cache
memories, corresponding to halo areas in chunks of the input matrices. Another
advantage of this approach is reducing the main memory consumption because
all the intermediate results are stored in the cache memory only. In the case
of coprocessors, it plays an important role because the size of main memory is
fixed, and significantly smaller than for traditional CPU solutions.

The requirement of expanding halo areas is one of the major difficulties when
applying the proposed approach, taking into account data dependencies between
MPDATA stages. It requires to develop a dedicated task scheduling for the
MPDATA block decomposition.

4.2 Improving Efficiency of Block Decomposition

Although the block decomposition of MPDATA allows for reducing the mem-
ory traffic, it still does not guarantee a satisfying utilization of used platforms.
The main difficulty here results from extra computation and communication,

588 L. Szustak et al.

which have impact on the performance degradation. In particular, there are
three groups of extra computation and communication, corresponding to i-, j-,
and k-dimensions. Some of them can be reduced or even avoided by applying
the following rules:

1. The additional computation and communication in k-dimension can be
avoided if lB = l, and the size nB × mB × lB of block is small enough
to save in cache all the required data. This rule is especially useful when the
value of l is relatively small, as it is in the case of NWP, where l is in range
[64, 128].

2. The overheads associated with j-dimension is avoided by leaving partial
results in the cache memory. It becomes possible when extra computation
are repeated by adjacent blocks. In this case, some results of intermediate
computation have to reside in cache for executing the next block. This rule
requires to develop a flexible management of computation for all the stages,
as well as an adequate mapping of partial results onto the cache space. In con-
sequence, all the chunks are still expanded by their halo areas (Table 2), but
only some portions of these chunks are computed within the current block. It
means that this approach does not increase the cache consumption. The idea
of improving the efficiency of block decomposition is shown in Fig. 3.

3. In order to reduce additional calculations in i-dimension, the size nB should
be as large as possible to save in the cache hierarchy all the data required to
compute a single block.

Fig. 3. Idea of leaving partial results in cache memory

4.3 Parallelization

In order to utilize computing resources available in the Intel Xeon Phi coproces-
sor, the proposed approach employs two main levels of parallelism:

– task parallelism which allows for utilization of more than 200 logical cores;
– data parallelism to use efficiently 512-bit vector processing units.

Using Intel Xeon Phi Coprocessor to Accelerate Computations 589

Different MPDATA blocks are processed sequentially, following the order
proposed for the CPU block decomposition in the previous subsection (Fig. 3).
For a fixed MPDATA block, a sequence of stages is executed, taking into account
the adequate sizes of halo areas. All computation executed within every stage are
distributed across available threads. Assigned chunk to each stage is partitioned
into sub-chunk of size nB∗ × mB∗ × lB, where partitioning takes place along
i and j dimensions. As a result, a task is assigned to each thread, as a part
of MPDATA block. Due to the data dependencies of MPDATA, appropriate
synchronizations between MPDATA stages are necessary.

Another level of parallelization is vectorization applied within each thread,
so the resulting SIMDification is performed within k-dimension. In consequence,
the value of size lB has to be adjusted to the vector size.

Because of intra-cache communication between tasks, the overall system per-
formance depends strongly on a chosen task placement onto available threads.
Therefore, the physical core affinity plays a significant role in optimizing the sys-
tem performance. In this work, the affinity is adjusted manually, to force com-
munication between tasks placed onto the closest adjacent cores. This increases
the sustained intra-cache bandwidth, as well as reduces cache misses, and the
latency of access to the cache memory.

5 Preliminary Performance Results

In this section we present preliminary performance results obtained for the dou-
ble precision 3D MPDATA algorithm on the platforms introduced in Sect. 2. In
all the tests, we use the ICC compiler as a part of Intel Parallel Studio 2013, with
the same optimization flags. The best configurations for our approach is chosen
in an empirical way, individually for each platform. Moreover, we use Intel Xeon
Phi in the native mode.

Currently, only the first four stages are implemented and tested. These four
stages correspond to the linear version of the MPDATA algorithm. Since all the
input matrices are required to provide the correctness of calculation, the overall
performance for this part of MPDATA is strongly limited by the memory traffic
between the main memory and cache memory.

Figure 4 presents the normalized execution time of the 3D MPDATA algo-
rithm, for 500 time steps and the grid of size 1022 × 512 × 63. The achieved
performance results correspond to the following setups: (a) comparison of the
block and improved block versions; (b) advantages of using vectorization; (c)
performance for different numbers of threads per core; (d) comparison of Intel
Xeon CPU and Intel Xeon Phi (best configurations with SIMD).

Figure 4a presents a performance gain for the improved version of block
decomposition. The proposed method of reducing extra computation allows us
to speedup MPDATA block version from 2 to 4 times, depending on the platform
used and size of the grid.

The advantages of using vectorization is observed for all the platforms. In
particular, for Intel Xeon Phi 7120P, it allows us to accelerate computation more
than 3 times, using all the available threads/cores (Fig. 4b).

590 L. Szustak et al.

Fig. 4. Preliminary performance results: (a) comparison of block and improved block
versions; (b) advantages of using vectorization; (c) performance for different numbers
of threads per core; (d) comparison of Intel Xeon CPU and Intel Xeon Phi (best
configurations with SIMD)

Figure. 4c shows the performance obtained for different numbers of threads
per core, using Intel Xeon Phi 7120P. The best efficiency of computation is
achieved when running 4 threads per each core.

The performance comparison of all the platforms is shown in Fig. 4d. For
each platform, we use all the available cores with vectorization enabled. As
expected, the best performance result is obtained using Intel Xeon Phi 7120P.
This coprocessor executes the MPTADA algorithm 2 times faster than two Intel
Xeon E5-2697 v2 CPU, totally containing 24 cores. The both models of the Intel
Xeon Phi coprocessor give similar performance results.

6 Conclusions and Future Work

Using the Intel Xeon Phi coprocessor to accelerate computations in the 3D
MPDATA algorithm is a promising direction for developing the parallel imple-
mentation of this algorithm. Rewriting the EULAG code, and replacing con-
ventional HPC systems with heterogeneous clusters using accelerators such as
Intel MIC is a perspective way to improve the efficiency of using this model in
practical simulations.

The main challenge of the proposed parallelization is to take advantage of
many- and multi-core, vectorization, and cache reusing. For this aim, we propose
the block version of the 3D MPDATA algorithm, based on combination of tem-
poral and space blocking techniques. Such an approach gives us the possibility
to ease memory bounds by increasing the efficient cache reusing, and reducing
the memory traffic associated with intermediate computations. Furthermore,
the proposed method of reducing extra computation allows us to accelerate the
MPDATA block version up to 4 times, depending on the platform used and size
of the grid.

In all the performed tests, the Intel Xeon Phi 7120P coprocessor gives the
best performance results. This coprocessor executes the MPTADA algorithm
2 times faster than two Intel Xeon E5-2697 v2 CPUs, totally containing 24
cores, and 2.86 times faster than two Intel Xeon E5-2643. Both the manycore

Using Intel Xeon Phi Coprocessor to Accelerate Computations 591

and vectorization features of the Intel MIC architecture play the leading role in
the performance exploitation. The other important features are the number of
threads per core, as well as an adequate thread placement onto physical cores.
All these features have a significant impact on the sustained performance.

At this point of our research, only the first four stages of the MPDATA
algorithm are implemented, and tested. They correspond to the linear part of
MPDATA. The performance achieved for this part of MPDATA is still limited
by memory traffic, mostly because all the input data of the whole MPDATA
algorithm are required to provide the correctness of computation for the linear
part. As a result, the tested part of MPDATA does not extract the full potential
of applying this coprocessor to implement MPDATA computation. Moreover,
since the remaining part is unleashed from the memory-cache communication, it
gives the opportunity for increasing the efficiency of computation. Implementing
and optimizing this part of MPDATA will be studied in future works.

The achieved performance results provide the basis for further research on
optimizing the distribution of MPDATA computation across all the computing
resources of the Intel MIC architecture, taking into consideration features of its
on-board memory, cache hierarchy, computing cores, and vector units. Addition-
ally, the proposed approach requires to develop a flexible data and task sched-
uler, supported by adequate performance models. Another direction of future
work is adaptation to heterogeneous clusters with Intel MICs, with a further
development and optimization of code.

Acknowledgments. This work was supported in part by the Polish National Science
Centre under grant no. UMO-2011/03/B/ST6/03500.

We gratefully acknowledge the help and support provided by Jamie Wilcox from
Intel EMEA Technical Marketing HPC Lab.

References

1. Intel Architectures Comparison. http://ark.intel.com/pl/compare/75799,75797,
64587,75283

2. Intel: Intel Xeon Phi Coprocessor System Software Developers Guide. Intel Cor-
poration (2013)

3. Colfax International: Parallel Programming and Optimization with Intel Xeon Phi
Coprocessors. Handbook on the Development and Optimization of Parallel Appli-
cations for Intel Xeon Processors and Intel Xeon Phi Coprocessors. Colfax Inter-
national (2013)

4. Piotrowski, Z., Wyszogrodzki, A., Smolarkiewicz, P.: Towards petascale simulation
of atmospheric circulations with soundproof equations. Acta Geophys. 59, 1294–
1311 (2011)

5. Rojek, K., Szustak, L.: Parallelization of EULAG model on multicore architec-
tures with GPU accelerators. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 391–400. Springer,
Heidelberg (2012)

http://ark.intel.com/pl/compare/75799,75797,64587,75283
http://ark.intel.com/pl/compare/75799,75797,64587,75283

592 L. Szustak et al.

6. Rojek, K., Szustak, L., Wyrzykowski, R.: Performance analysis for stencil-based
3D MPDATA algorithm on GPU architecture. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp.
145–154. Springer, Heidelberg (2014)

7. Smolarkiewicz, P.: Multidimensional positive definite advection transport algo-
rithm: an overview. Int. J. Numer. Meth. Fluids 50, 1123–1144 (2006)

8. Treibig, J., Wellein, G., Hager, G.: Efficient multicore-aware parallelization strate-
gies for iterative stencil computations. J. Comput. Sci. 2, 130–137 (2011)

9. Wittmann, M., Hager, G., Treibig, J., Wellein, G.: Leveraging shared caches for
parallel temporal blocking of stencil codes on multicore processors and clusters.
Parallel Process. Lett. 20(4), 359–376 (2010)

10. Wyrzykowski, R., Rojek, K., Szustak, L.: Model-driven adaptation of double-
precision matrix multiplication to the cell processor architecture. Parallel Comput.
38, 260–276 (2012)

11. Wyrzykowski, R., Rojek, K., Szustak, L.: Using blue gene/P and GPUs to acceler-
ate computations in the EULAG model. In: Lirkov, I., Margenov, S., Waśniewski,
J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 670–677. Springer, Heidelberg (2012)

	Using Intel Xeon Phi Coprocessor to Accelerate Computations in MPDATA Algorithm
	1 Introduction
	2 Architecture Overview
	2.1 Architecture of Intel Many Integrated Cores
	2.2 Target Platforms

	3 Introduction to MPDATA Algorithm
	4 Adaptation of MPDATA to Intel MIC Architecture
	4.1 Block Decomposition of 3D MPDATA Algorithm
	4.2 Improving Efficiency of Block Decomposition
	4.3 Parallelization

	5 Preliminary Performance Results
	6 Conclusions and Future Work
	References

