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Abstract. In this paper we are interested in computing linear least
squares (LLS) condition numbers to measure the numerical sensitivity
of an LLS solution to perturbations in data. We propose a statistical
estimate for the normwise condition number of an LLS solution where
perturbations on data are mesured using the Frobenius norm for matrices
and the Euclidean norm for vectors. We also explain how condition num-
bers for the components of an LLS solution can be computed. We present
numerical experiments that compare the statistical condition estimates
with their corresponding exact values.
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1 Introduction

We consider the overdetermined linear least squares (LLS) problem

min
x∈Rn

‖Ax − b‖2, (1)

with A ∈ R
m×n,m ≥ n and b ∈ R

m. We assume throughout this paper that A
has full column rank and as a result, Eq. (1) has a unique solution x = A+b where
A+ is the Moore-Penrose pseudoinverse of the matrix A, expressed by A+ =
(AT A)−1AT . We can find for instance in [7,13,19] a comprehensive survey of the
methods that can be used for solving efficiently and accurately LLS problems.

The condition number is a measure of the sensitivity of a mapping to per-
turbations. It was initially defined in [23] as the maximum amplification factor
between a small perturbation in the data and the resulting change in the prob-
lem solution. Namely, if the solution x of a given problem can be expressed as a
function g(y) of a data y, then if g is differentiable (which is the case for many
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linear algebra problems), the absolute condition number of g at y can be defined
as (see e.g. [12])

κ(y) = max
z �=0

‖g′(y).z‖
‖z‖ . (2)

From this definition, κ(y) is a quantity that, for a given perturbation size on
the data y, allows us to predict to first order the perturbation size on the solu-
tion x. Associated with a backward error [26], condition numbers are useful
to assess the numerical quality of a computed solution. Indeed numerical algo-
rithms are always subject to errors although their sensitivity to errors may vary.
These errors can have various origins like for instance data uncertainty due to
instrumental measurements or rounding and truncation errors inherent to finite
precision arithmetic.

LLS can be very sensitive to perturbations in data and it is crucial to be
able to assess the quality of the solution in practical applications [4]. It was
shown in [14] that the 2-norm condition number cond(A) of the matrix A plays
a significant role in LLS sensitivity analysis. It was later proved in [25] that the
sensitivity of LLS problems is proportional to cond(A) when the residual vector
is small and to cond(A)2 otherwise. Then [12] provided a closed formula for the
condition number of LLS problems, using the Frobenius norm to measure the
perturbations of A. Since then many results on normwise LLS condition numbers
have been published (see e.g. [2,7,11,15,16]).

It was observed in [18] that normwise condition numbers can lead to a loss
of information since they consolidate all sensitivity information into a single
number. Indeed in some cases this sensitivity can vary significantly among the
different solution components (some examples for LLS are presented in [2,21]).
To overcome this issue, it was proposed the notion of “componentwise” condition
numbers or condition numbers for the solution components [9]. Note that this
approach must be distinguished from the componentwise metric also applied to
LLS for instance in [5,10]. This approach was generalized by the notion of partial
or subspace condition numbers which corresponds to conditioning of LT x with
L ∈ R

n×k, k ≤ n, proposed for instance in [2,6] for least squares and total least
squares, or [8] for linear systems. The motivation for computing the conditioning
of LT x can be found for instance in [2,3] for normwise LLS condition numbers.

Even though condition numbers provide interesting information about the
quality of the computed solution, they are expected to be calculated in an
acceptable time compared to the cost for the solution itself. Computing the
exact (subspace or not) condition number requires O(n3) flops when the LLS
solution x has been already computed (e.g., using a QR factorization) and can be
reused to compute the conditioning [2,3]. This cost is affordable when compared
to the cost for solving the problem (O(2mn2) flops when m � n). However sta-
tistical estimates can reduce this cost to O(n2) [17,20]. The theoretical quality of
the statistical estimates can be formally measured by the probability to give an
estimate in a certain range around the exact value. In this paper we summarize
closed formulas for the condition numbers of the LLS solution and of its com-
ponents, and we propose practical algorithms to compute statistical estimates
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of these quantities. In particular we derive a new expression for the statistical
estimate of the conditioning of x. We also present numerical experiments to
compare LLS conditioning with the corresponding statistical estimates.

Notations. The notation ‖·‖2 applied to a matrix (resp. a vector) refers to the
spectral norm (resp. the Euclidean norm ) and ‖·‖F denotes the Frobenius norm
of a matrix. The matrix I is the identity matrix and ei is the ith canonical
vector. The uniform continuous distribution between a and b is abbreviated
U(a, b) and the normal distribution of mean μ and variance σ2 is abbreviated
N (μ, σ2). cond(A) denotes the 2-norm condition number of a matrix A, defined
as cond(A) = ‖A‖2‖A+‖2. The notation | · | applied to a matrix or a vector holds
componentwise.

2 Condition Estimation for Linear Least Squares

In Sect. 2.1 we are concerned in calculating the condition number of the LLS
solution x and in Sect. 2.2 we compute or estimate the conditioning of the com-
ponents of x. We suppose that the LLS problem has already been solved using
a QR factorization (the normal equations method is also possible but the con-
dition number is then proportional to cond(A)2 [7, p. 49]). Then the solution x,
the residual r = b − Ax, and the factor R ∈ R

n×n of the QR factorization of A
are readily available (we recall that the Cholesky factor of the normal equations
is, in exact arithmetic, equal to R up to some signs). We also make the assump-
tion that both A and b can be perturbed, these perturbations being measured

using the weighted product norm ‖(ΔA,Δb)‖F =
√

‖ΔA‖2F + ‖Δb‖22 where ΔA

and Δb are absolute perturbations of A and b. In addition to providing us with
simplified formulas, this product norm has the advantage, mentioned in [15], to
be appropriate for estimating the forward error obtained when the LLS problem
is solved via normal equations.

2.1 Conditioning of the Least Squares Solution

Exact formula. We can obtain from [3] a closed formula for the absolute condition
number of the LLS solution as

κLS = ‖R−1‖2
(‖R−1‖22‖r‖22 + ‖x‖22 + 1

) 1
2 , (3)

where x, r and R are exact quantities.
This equation requires mainly to compute the minimum singular value of the

matrix A (or R), which can be done using iterative procedures like the inverse
power iteration on R, or more expensively with the full SVD of R (O(n3) flops).
Note that ‖R−T ‖2 can be approximated by other matrix norms (see [19, p. 293]).

Statistical estimate. Similarly to [8] for linear systems, we can estimate the condi-
tion number of the LLS solution using the method called small-sample theory [20]
that provides statistical condition estimates for matrix functions.
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Let us denote by x(A, b) the expression of x as a function of the data A and
b. Since A has full rank n, x(A, b) is continuously F-differentiable in a neighbor-
hood of (A, b). If x′(A, b) is the derivative of this function, then x′(A, b).(ΔA,Δb)
denotes the image of (ΔA,Δb) by the linear function x′(A, b). By Taylor’s the-
orem, the forward error Δx on the solution x(A, b) can be expressed as

Δx = x′(A, b).(ΔA,Δb) + O(‖(ΔA,Δb)‖2F ). (4)

Following the definition given in Eq. (2), the condition number of x corre-
sponds to the operator norm of x′(A, b), which is a bound to first order on the
sensitivity of x at (A, b) and we have

‖Δx‖2 ≤ κLS ‖(ΔA,Δb)‖F .

We now use [20] to estimate ‖Δx‖2 by

ξ(q) =
ωq

ωn

√
|zT

1 Δx|2 + · · · + |zT
q Δx|2, (5)

where z1, · · · , zq are random orthogonal vectors selected uniformly and randomly
from the unit sphere in n dimensions, and ωq is the Wallis factor defined by

ω1 = 1,

ωq =
1 · 3 · 5 · · · (q − 2)
2 · 4 · 6 · · · (q − 1)

for q odd,

ωq =
2
π

2 · 4 · 6 · · · (q − 2)
1 · 3 · 5 · · · (q − 1)

for q even.

ωq can be approximated by
√

2
π(q− 1

2 )
.

It comes from [20] that if for instance we have q = 2, then the probability
that ξ(q) lies within a factor α of ‖Δx‖2 is

Pr(
‖Δx‖2

α
≤ ξ(q) ≤ α ‖Δx‖2) ≈ 1 − π

4α2
. (6)

For α = 10, we obtain a probability of 99.2%.
For each i ∈ {1, · · · , q}, using Eq. (2) we have the first-order bound

|zT
i Δx| ≤ κi ‖(ΔA,Δb)‖F , (7)

where κi denotes the condition number of the function zT
i x(A, b). Then using (5)

and (7) we get

ξ(q) ≤ ωq

ωn

(
q∑

i=1

κ2
i

) 1
2

‖(ΔA,Δb)‖F .

ξ(q) being an estimate of ‖Δx‖2, we will use the quantity κ̄LS defined by

κ̄LS =
ωq

ωn

(
q∑

i=1

κi
2

) 1
2

(8)

as an estimate for κLS .
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We point out that κ̄LS is a scalar quantity that must be distinguished from
the estimate given in [21] which is a vector. Indeed the small-sample theory is
used here to derive an estimate of the condition number of x whereas it is used
in [21] to derive estimates of the condition numbers of the components of x
(see Sect. 2.2). Now we can derive Algorithm 1 that computes κ̄LS as expressed
in Eq. (8) and using the condition numbers of zT

i x. The vectors z1, · · · , zq are
obtained for instance via a QR factorization of a random matrix Z ∈ R

n×q. The
condition number of zT

i x can be computed using the expression given in [3]) as

κi =
(‖R−1R−T zi‖22‖r‖22 + ‖R−T zi‖22(‖x‖22 + 1)

) 1
2 . (9)

The accuracy of the estimate can be tweaked by modifying the number q of
considered random samples. The computation of κ̄LS requires computing the
QR factorization of an n × q matrix for O(nq2) flops. It also involves solving q
times two n × n triangular linear systems, each triangular system being solved
in O(n2) flops. The resulting computational cost is O(2qn2) flops (if n � q).

Algorithm 1. Statistical condition estimation for linear least squares solution
Require: q ≥ 1, the number of samples

Generate q vectors z1, z2, ..., zq ∈ R
n with entries in U(0, 1)

Orthonormalize the vectors zi using a QR factorization
for j = 1 to q do

Compute κj =
(‖R−1R−T zj‖2

2‖r‖2
2 + ‖R−T zi‖2

2(‖x‖2
2 + 1)

) 1
2

end for
Compute κ̄LS =

ωq

ωn

√∑q
j=1 κ2

j with ωq =
√

2

π(q− 1
2 )

2.2 Componentwise Condition Estimates

In this section, we focus on calculating the condition number for each component
of the LLS solution x. The first one is based on the results from [3] and enables
us to compute the exact value of the condition numbers for the ith component
of x. The other is a statistical estimate from [21].

Exact formula. By considering in Eq. (9) the special case where zi = ei, we can
express in Eq. (10) the condition number of the component xi = eT

i x and then
calculate a vector κCW ∈ R

n with components κi being the exact condition
number for the ith component expressed by

κi =
(‖R−1R−T ei‖22‖r‖22 + ‖R−T ei‖22(‖x‖22 + 1)

) 1
2 . (10)

The computation of one κi requires two triangular solves (RT y = ei and Rz = y)
corresponding to 2n2 flops. When we want to compute all κi, it is more efficient
to solve RY = I and then compute Y Y T , which requires about 2n3/3 flops.
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Statistical condition estimate. We can find in [21] three different algorithms to
compute statistical componentwise condition estimation for LLS problems. Algo-
rithm 2 corresponds to the algorithm that uses unstructured perturbations and
it can be compared with the exact value given in Eq. (10). Algorithm 2 com-
putes a vector κ̄CW = (κ̄1, · · · , κ̄n)T containing the statistical estimate of each
κi. Depending on the needed accuracy for the statistical estimation, the number
of random perturbations q ≥ 1 applied to the input data in Algorithm 2 can be
adjusted. This algorithm involves two n × n triangular solves with q right-hand
sides, which requires about qn2 flops.

Algorithm 2. Componentwise statistical condition estimate for linear least
squares
Require: q ≥ 1, the number of perturbations of input data

for j = 1 to q do
Generate Sj ∈ R

n×n, gj ∈ R
n and hj ∈ R

n with entries in N (0, 1)
Compute uj = R−1(gj − Sjx + ‖Ax − b‖2R

−T hj)
end for
Let p = m(n + 1) and compute vector κ̄CW =

∑q
i=1 |uj |
qωp

√
p

with ωq =
√

2

π(q− 1
2 )

3 Numerical Experiments

In the following experiments, random LLS problems are generated using the
method given in [22] for generating LLS test problems with known solution x
and residual norm. Random problems are obtained using the quantities m, n, ρ,
l such that A ∈ R

m×n, ‖r‖2 = ρ and cond(A) = nl. The matrix A is generated
using

A = Y

(
D
0

)
ZT , Y = I − 2yyT , Z = I − 2zzT

where y ∈ R
m and z ∈ R

n are random unit vectors and D = n−ldiag(nl, (n −
1)l, (n − 2)l, · · · , 1). We have x = (1, 22, ..., n2)T , the residual vector is given by

r = Y

(
0
v

)
where v ∈ R

m−n is a random vector of norm ρ and the right-hand

side is given by b = Y

(
DZx

v

)
. In Sect. 3.1, we will consider LLS problems of

size m × n with m = 9984 and n = 2496. All the experiments were performed
using the library LAPACK 3.2 [1] from Netlib.

3.1 Accuracy of Statistical Estimates

Conditioning of LLS Solution. In this section we compare the statistical
estimate κLS obtained via Algorithm 1 with the exact condition number κLS

computed using Eq. (3). In our experiments, the statistical estimate is computed
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Table 1. Ratio between statistical and exact condition numbers (q = 2)

cond(A) n0 n
1
2 n1 n

3
2 n2 n

5
2 n3

‖r‖2 = 10−10 57.68 3.32 1.46 1.19 1.10 1.03 1.07
‖r‖2 = 10−5 57.68 3.33 1.45 1.18 1.07 1.09 1.05
‖r‖2 = 1 57.68 3.36 1.45 1.19 1.19 1.05 1.15
‖r‖2 = 105 57.68 3.33 1.24 1.04 1.05 1.05 1.02
‖r‖2 = 1010 57.68 1.44 1.07 1.09 1.00 1.01 1.07

using two samples (q = 2). For seven different values for cond(A) = nl (l ranging
from 0 to 3, n = 2496) and several values of ‖r‖2, we report in Table 1 the ratio
κ̄LS/κLS , which is the average of the ratios obtained for 100 random problems.

The results in Table 1 show the relevance of the statistical estimate presented
in Sect. 2.1. For l ≥ 1

2 the averaged estimated values never differ from the exact
value by more than one order of magnitude. We observe that when l tends to
0 (i.e., cond(A) gets close to 1) the estimate becomes less accurate. This can
be explained by the fact that the statistical estimate κLS is based on evaluat-
ing the Frobenius norm of the Jacobian matrix [17]. Actually some additional
experiments showed that κLS/κLS evolves exactly like

∥∥R−1
∥∥2

F
/
∥∥R−1

∥∥2

2
. In this

particular LLS problem we have
∥∥R−1

∥∥2

F
/
∥∥R−1

∥∥2

2
=

(
1 + (n/(n − 1))2l + (n/(n − 2))2l + · · · + n2l

)
/n2l

=
n∑

k=1

1
k2l

.

Then when l tends towards 0,
∥∥R−1

∥∥
F

/
∥∥R−1

∥∥
2

∼ √
n, whereas this ratio gets

closer to 1 when l increases. This is consistent with the well-known inequality
1 ≤ ∥∥R−1

∥∥
F

/
∥∥R−1

∥∥
2

≤ √
n. Note that the accuracy of the statistical estimate

does not vary with the residual norm.

Componentwise Condition Estimation. Figure 1 depicts the conditioning
for all LLS solution components, computed as κi/|xi| where κi is obtained
using Eq. (10). Figure 1(a) and (b) correspond to random LLS problems with
respectively cond(A) = 2.5 · 103 and cond(A) = 2.5 · 109. These figures show
the interest of the componentwise approach since the sensitivity to pertur-
bations of each solution component varies significantly (from 102 to 108 for
cond(A) = 2.5·103, and from 107 to 1016 for cond(A) = 2.5·109). The normalized
condition number of the solution computed using Eq. (3) is κLS/ ‖x‖2 = 2.5 ·103

for cond(A) = 2.5 · 103 and κLS/ ‖x‖2 = 4.5 · 1010 for cond(A) = 2.5 · 109, which
in both cases greatly overestimates or underestimates the conditioning of some
components. Note that the LLS sensitivity is here well measured by cond(A)
since ‖r‖2 is small compared to ‖A‖2 and ‖x‖2, as expected from [25] (otherwise
it would be measured by cond(A)2).
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Fig. 1. Componentwise condition numbers of LLS (problem size 9984 × 2496)

In Fig. 2 we represent for each solution component, the ratio between the
statistical condition estimate computed via Algorithm 2, considering two samples
(q = 2), and the exact value computed using Eq. (10). The ratio is computed
as an average on 100 random problems. We observe that this ratio is lower
than 1.2 for the case cond(A) = 2.5 · 103 (Fig. 2(a)) and close to 1 for the case
cond(A) = 2.5 · 109 (Fig. 2(b)), which also confirms that, similarly to κLS in
Sect. 3.1, the statistical condition estimate is more accurate for larger values of
cond(A).
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Fig. 2. Comparison between componentwise exact and statistical condition numbers

4 Conclusion

We illustrated how condition numbers of a full column rank LLS problem can
be easily computed using exact formulas or statistical estimates at an affordable
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flop count. Numerical experiments on random LLS problems showed that the
statistical estimates provide good accuracy by using only 2 random orthogonal
vectors. Subsequently to this work, new routines will be proposed in the pub-
lic domain libraries LAPACK and MAGMA [24] to compute exact values and
statistical estimates for LLS conditioning.
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