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Abstract. This paper proposes a new scheme for authenticated encryp-
tion (AE) which is typically realized as a blockcipher mode of operation.
The proposed scheme has attractive features for fast and compact oper-
ation. When it is realized with a blockcipher, it requires one blockcipher
call to process one input block (i.e. rate-1), and uses the encryption func-
tion of the blockcipher for both encryption and decryption. Moreover, the
scheme enables one-pass, parallel operation under two-block partition.
The proposed scheme thus attains similar characteristics as the seminal
OCB mode, without using the inverse blockcipher. The key idea of our
proposal is a novel usage of two-round Feistel permutation, where the
round functions are derived from the theory of tweakable blockcipher.
We also provide basic software results, and describe some ideas on using
a non-invertible primitive, such as a keyed hash function.

Keywords: Authenticated Encryption, Blockcipher Mode, Pseudoran-
dom Function, OCB.

1 Introduction

Authenticated Encryption. Authenticated encryption, AE for short, is a
method to simultaneously provide message confidentiality and integrity (authen-
tication) using a symmetric-key cryptographic function. Although a secure AE
function can be basically obtained by an adequate composition of secure encryp-
tion and message authentication [10, 23], this requires at least two independent
keys, and the composition methods in practice (say, AES + HMAC in TLS) fre-
quently deviate from what proved to be secure [31]. Considering this situation,
there have been numerous efforts devoted to efficient, one-key constructions.
Among many approaches to AE, blockcipher mode of operation is one of the
most popular ones. We have CCM [2], GCM [3], EAX [11], OCB [24, 33, 35]
and the predecessors [18, 22], and CCFB [27], to name a few. We have some
standards, such as NIST SP 800-38C (CCM) and 38D (GCM), and ISO/IEC
19772 [4].

This paper presents a new AE mode using a blockcipher, or more generally, a
pseudorandom function (PRF). Our proposal has a number of desirable features
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for fast and compact operations. Specifically, when the underlying n-bit block-
cipher is EK (where K denotes the key), the properties of our proposal can be
summarized as follows.

– The key is one blockcipher key, K.
– Encryption and decryption can be done by the encryption function of EK .
– For s-bit input, the number of EK calls is �s/n�+ 2, i.e., rate-1 processing,

for both encryption and decryption.
– On-line, one-pass, and parallel encryption and decryption, under two-block

partition.
– Provable security up to about 2n/2 input blocks, based on the assumption

that EK is a pseudorandom function (PRF) or a pseudorandom permutation
(PRP).

These features are realized with a novel usage of two-round Feistel permuta-
tion, where internal round functions are PRFs with input masking. From this
we call our proposal OTR, for Offset Two-round. Table 1 provides a summary of
properties of popular AE modes and ours, which shows that OTR attains similar
characteristics as the seminal OCB mode, without using the inverse blockcipher.
The proposed scheme generates input masks to EK using GF(2n) constant mul-
tiplications. This technique is called GF doubling [33], which is a quite popular
tool for mode design. However, our core idea is rather generic and thus allows
other masking methods. We also remark that Liting et al.’s iFeed mode [39] has
similar properties to ours, without introducing 2-block partition. However, its
decryption is inherently serial, and it seems that a formal security proof has
not been presented so far. In return for these attractive features, one potential
drawback of OTR is that it inherently needs two-block partition (though the
message itself can be of any length in bits), which implies more state memories
required than that of OCB. The parallelizability of our scheme is up to the half
of the message blocks, while OCB has full parallelizability, up to the number of
message blocks. On-line processing capability is restrictive as it needs buffering
of consecutive two input blocks.

We also warn that the security is proved for the standard nonce-respecting
adversary [34], i.e. the encryption never processes duplicate nonces (or initial
vectors), see Section 2.2. Some recent proposals have a provable security under
nonce-reusing adversary, or even security without nonce (called on-line encryp-
tion) [5,17]. However we do not claim any security guarantee for such adversaries.

Benefits of Inverse-Freeness. The use of blockcipher inversion, as in OCB,
has mainly two drawbacks, as discussed by Iwata and Yasuda [21]. The first
is efficiency. The integration of encryption and decryption functions increases
size, e.g. footprint of hardware, or memory of software (See Section 6). More-
over, some ciphers have unequal speed for enc/dec. For AES, decryption is slower
than encryption on some, typically constrained, platforms. For example, an AES
implementation on Atmel AVR by Osvik et al. [30] has about 45% slower de-
cryption than encryption. This property is the initial design choice [15], in pref-
erence of encryption-only mode, e.g., CTR, OFB, and CFB. IDEA is another



Parallelizable Rate-1 Authenticated Encryption 277

Table 1. A comparison of AE modes. Calls denotes the number of calls for m-block
message and a-block header and one-block nonce, without constants.

Mode Calls On-line Parallel Primitive

CCM [2] a+ 2m no no E

GCM [3] m [E] and a+m [Mul] yes yes E,Mul†

EAX [11] a+ 2m yes no E
OCB [24,33,35] a+m yes yes E,E−1

CCFB [27] a+ cm for some 1 < c‡ yes no E

OTR a+m yes¶ yes E
† GF(2n) multiplication
‡ Security degrades as c approaches 1
¶ two-block partition

example, where decryption is exceptionally slower than encryption on microcon-
trollers [32]. The uneven performance figures of blockcipher enc/dec functions is
undesirable in practice, when the mode uses both functions.

The second is security. Usually the security of a mode using both enc/dec
functions of a blockcipher, denoted by E and E−1, needs (E,E−1) to be a strong
pseudorandom permutation (Strong PRP or SPRP). This holds true for the
original security proofs of all versions of OCB [24,33, 35], though a recent work
of Aoki and Yasuda [7] showed a relaxation on the security condition for OCB
without tag truncation. In contrast, when the mode uses only E, the security
assumption is relaxed to PRP or PRF.

In addition, the inverse-freeness allows instantiations using non-blockcipher
primitives, such as a hash function. Some basic ideas on this direction are ex-
plained in Section 7.4.

HardwareAssistance.We remark that some software platforms have hardware-
assisted blockcipher, most notably AES instructions called AESNI in Intel and
AMD CPUs. AESNI enables the same performance for AES encryption and de-
cryption. Therefore, when our proposal uses AESNI, the performance would be
roughly similar to that of OCB-AES with AESNI, though the increased number
of states may degrade the result. We have other SW platforms where hardware
AES is available but decryption is slower (e.g., [19]). Basically, the value of our
proposal is not to provide the fastest operation on modern CPUs, instead, to in-
crease the availability of OCB-like performance for various platforms, using single
algorithm.

2 Preliminaries

2.1 Basic Notations

Let N = {1, 2, . . . , }, and let {0, 1}∗ be the set of all finite-length binary strings,
including the empty string ε. The bit length of a binary string X is denoted

by |X |, and let |X |a
def
= max{�|X |/a�, 1}. Here, if X = ε we have |X |a = 1 for
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any a ≥ 1 and |X | = 0. A concatenation of X,Y ∈ {0, 1}∗ is written as X‖Y
or simply XY . A sequence of a zeros is denoted by 0a. For k ≥ 1, we denote⋃k

i=1{0, 1}i by {0, 1}≤k. For X ∈ {0, 1}∗, let (X [1], . . . , X [x])
n← X denote the

n-bit block partitioning of X , i.e., X [1]‖X [2]‖ . . .‖X [x] = X where x = |X |n,
and |X [i]| = n for i < x and |X [x]| ≤ n. If X = ε the parsing with any n ≥ 1
makes x = 1, X [1] = ε. The sequence of first c bits of X ∈ {0, 1}∗ is denoted by
msbc(X). We have msb0(X) = ε for any X .

For a finite set X , if X is uniformly chosen from X we write X
$← X . We

assume X ⊕ Y is ε if X or Y is ε. For a binary string X with 0 ≤ |X | ≤ n, X
denotes the padding written as X‖1‖0n−|X|−1. When |X | = n, X denotes X .

For keyed function F : K × X → Y with key K ∈ K, we may simply write
FK : X → Y if key space is obvious, or even write as F if being keyed with K
is obvious. If EK : X → X is a keyed permutation, or a blockcipher, EK is a
permutation over X for every K ∈ K. Its inverse is denoted by E−1

K . A keyed
function may have an additional parameter called tweak, in the sense of Liskov,
Rivest and Wagner [25]. It is called a tweakable keyed function and written as

F̃ : K × T × X → Y or F̃K : T × X → Y, where T denotes the space of

tweaks. Instead of writing F̃K(T,X), we may write as F̃
〈T 〉
K (X). A tweakable

keyed permutation, or a tweakable blockcipher (TBC), is defined analogously by
requiring that every combination of (T,K) produces a permutation over X .

Galois Field. An n-bit string X may be viewed as an element of GF(2n) by
takingX as a coefficient vector of a polynomial in GF(2n). We write 2X to denote
the multiplication of 2 and X over GF(2n), where 2 denotes the generator of
the field GF(2n). This operation is called doubling. We also write 3X and 4X to
denote 2X ⊕X and 2(2X). The doubling is efficiently implemented by one-bit
shift with conditional XOR of a constant, and frequently used as a tool to build
efficient blockcipher modes, e.g. [11, 20, 33].

2.2 Random Function and Pseudorandom Function

Let Func(n,m) be the set of all functions {0, 1}n → {0, 1}m. In addition, let
Perm(n) be the set of all permutations over {0, 1}n. A uniform random func-
tion (URF) having n-bit input and m-bit output is uniformly distributed over

Func(n,m). It is denoted by R
$← Func(n,m). An n-bit uniform random permu-

tation (URP), denoted by P, is similarly defined as P
$← Perm(n).

We also define tweakable URF and URP. Let T be a set of tweak and
FuncT (n,m) be a set of functions T ×{0, 1}n → {0, 1}m. A tweakable URF with

tweak T ∈ T , and n-bit input,m-bit output is written as R̃
$← FuncT (n,m). Note

that if T = {0, 1}t, FuncT (n,m) has the same cardinality as Func(n+t,m), hence

R̃ is simply realized with URF of (n+ t)-bit input. In addition, let PermT (n) be
a set of functions T × {0, 1}n → {0, 1}n such that, for any f ∈ PermT (n) and
t ∈ T , f(t, ∗) is a permutation. A tweakable n-bit URP with tweak T ∈ T is

defined as P̃
$← PermT (n). We also define a URF having variable input length
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(VIL), denoted by R∞ : {0, 1}∗ → {0, 1}n. This can be realized by stateful lazy
sampling.

PRF. For c oracles, O1, O2, . . . , Oc, we write AO1,O2,...,Oc to represent the adver-
sary A accessing these c oracles in an arbitrarily order. If O and O′ are oracles
having the same input and output domains, we say they are compatible. Let
FK : {0, 1}n → {0, 1}m and GK′ : {0, 1}n → {0, 1}m be two compatible keyed
functions, with K ∈ K and K ′ ∈ K′ (key spaces are not necessarily the same).
Let A be an adversary trying distinguish them using chosen-plaintext queries.
Then the advantage of A is defined as

Adv
cpa
FK ,GK′ (A)

def
= Pr[K

$← K : AFK ⇒ 1]− Pr[K ′ $← K′ : AGK′ ⇒ 1].

The above definition can be naturally extended to the case when GK′ is a

URF, R
$← Func(n,m). We have

Adv
prf
FK

(A)
def
= Adv

cpa
FK ,R(A).

If FK is a VIL function we define Adv
prf
FK

(A) as Adv
cpa
FK ,R∞(A). Similarly, for

tweakable keyed function F̃K : T ×{0, 1}n → {0, 1}m and R̃
$← FuncT (n,m), we

have

Adv
prf

˜FK
(A)

def
= Adv

cpa

˜FK ,˜R
(A).

We stress that A in the above is allowed to choose tweaks, arbitrarily and
adaptively. By convention we say FK is a pseudorandom function (PRF) if
Adv

prf
FK

(A) is small (though the formal definition requires FK to be a func-
tion family). Similarly we say FK is a pseudorandom permutation (PRP) if
Adv

prp
FK

(A) = Adv
cpa
FK ,P(A) is small and FK is invertible. A VIL-PRF is defined in

a similar way.

2.3 Definition of Authenticated Encryption

Following [11,34], we define nonce-based AE, or more formally, AE with assosi-
ated data, called AEAD. We then introduce two security notions, privacy and
authenticity, to model AE security.

Definition. Let AE[τ ] be an AE having τ -bit tag, where the encryption and
decryption algorithms are AE-Eτ and AE-Dτ . They are keyed functions. Besides
the key, the input to AE-Eτ consists of a nonce N ∈ Nae, a header (or associated
data) A ∈ Aae, and a plaintext M ∈ Mae. The output consists of C ∈ Mae

and T ∈ {0, 1}τ , where |C| = |M |. The tuple (N,A,C, T ) will be sent to the
receiver. The decryption function is denoted by AE-Dτ . It takes (N,A,C, T ) ∈
Nae ×Aae ×Mae × {0, 1}τ , and outputs a plaintext M with |M | = |C| if input
is determined as valid, or error symbol ⊥ if determined as invalid.

Security. A PRIV-adversary A against AE[τ ] accesses AE-Eτ , where the i-th
query consists of nonce Ni, header Ai, and plaintext Mi. We define A’s pa-
rameter list to be (q, σA, σM ), where q denotes the number of queries, and



280 K. Minematsu

σA
def
=

∑q
i=1 |Ai|n and σM

def
=

∑q
i=1 |Mi|n. We assume A is nonce-respecting, i.e.,

all Nis are distinct. We also define random-bit oracle, $, which takes (N,A,M) ∈
Nae ×Aae ×Mae and returns (C, T )

$← {0, 1}|M| × {0, 1}τ . The privacy notion
for A is defined as

Adv
priv

AE[τ ](A)
def
= Pr[K

$← K : AAE-Eτ ⇒ 1]− Pr[A$ ⇒ 1]. (1)

An AUTH-adversaryA against AE[τ ] accesses AE-Eτ and AE-Dτ , using q encryp-
tion queries and qv decryption queries. Let (N1, A1,M1), . . . , (Nq, Aq,Mq) and
(N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
qv , A

′
qv , C

′
qv , T

′
qv ) be all the encryption and decryption

queries made by A. We define A’s parameter list to be (q, qv, σA, σM , σA′ , σC′),

where σA′
def
=

∑qv
i=1 |A′

i|n and σC′
def
=

∑qv
i=1 |C′

i|n, in addition to σA and σM . The
authenticity notion for the AUTH-adversary A is defined as

AdvauthAE[τ ](A)
def
= Pr[K

$← K : AAE-Eτ ,AE-Dτ forges ], (2)

whereA forges if AE-Dτ returns a bit string (other than⊥) for a decryption query
(N ′

i , A
′
i, C

′
i, T

′
i ) for some 1 ≤ i ≤ qv such that (N ′

i , A
′
i, C

′
i, T

′
i ) �= (Nj , Aj , Cj , Tj)

for all 1 ≤ j ≤ q. We assume AUTH-adversaryA is always nonce-respecting with
respect to encryption queries; using the same N for encryption and decryption
queries is allowed, and the same N can be repeated within decryption queries,
i.e. Ni is different from Nj for any j �= i but N ′

i may be equal to Nj or N ′
i′ for

some j and i′ �= i.
Moreover, when FK and GK′ are compatible with AE-Eτ , let Adv

cpa-nr
F,G (A)

be the same function as Adv
cpa
F,G(A) but A is restricted to be nonce-respecting.

Note that Adv
priv

AE[τ ](A) = Adv
cpa-nr

AE-Eτ ,$
(A) holds for any nonce-respecting A. Let

F = (F e
K , F d

K) and G = (Ge
K′ , Gd

K′) be the pairs of encryption and decryption
functions that are compatible with (AE-Eτ ,AE-Dτ ). We define

Advcca-nrF,G (A)
def
= Pr[K

$← K : AF e
K ,Fd

K ⇒ 1]− Pr[K ′ $← K′ : AGe
K′ ,Gd

K′ ⇒ 1], (3)

where A is assumed to be nonce-respecting for encryption queries. Then we have

AdvauthAE[τ ](A) ≤ Advcca-nrAE[τ ],AE′[τ ](A) + AdvauthAE′[τ ](A) (4)

for any AE scheme AE′[τ ] and any AUTH-adversary A.

3 Specification of OTR

We present an AE scheme based on an EK : {0, 1}n → {0, 1}n, which is denoted
by OTR[E, τ ], where τ ∈ {1, . . . , n} denotes the length of tag. The encryp-
tion function and decryption function of OTR[E, τ ] are denoted by OTR-EE,τ

and OTR-DE,τ . Here OTR-EE,τ (OTR-DE,τ ) has the same interface as AE-Eτ
(AE-Dτ ) of Section 2.3, with nonce space Nae = {0, 1}≤n−1 \ {ε}, header space
Aae = {0, 1}∗, message space Mae = {0, 1}∗, and tag space {0, 1}τ . The func-
tions OTR-EE,τ and OTR-DE,τ are further decomposed into the encryption and
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decryption cores, EFE , DFE , and the authentication core, AFE . Figs. 1 and
2 depict the scheme. As shown by Fig. 2, OTR consists of two-round Feistel
permutations using a blockcipher taking a distinct input mask in each round.
To authenticate the plaintext a check sum is computed for the right part of
two-round Feistel (namely the even plaintext blocks), and the tag is derived
from encrypting the check sum with an input mask. The overall structure has a
similarity to OCB, and the function AFE is a variant of PMAC [33].

4 Security Bounds

We provide the security bounds of OTR. Here we assume the underlying blockci-
pher is an n-bit URP, P. The bounds when the underlying blockcipher is a PRP
are easily derived from our bounds, using a standard technique, thus omitted.

Theorem 1. Fix τ ∈ {1, . . . , n}. For any PRIV-adversary A with parameter
(q, σA, σM ),

Adv
priv

OTR[P,τ ](A) ≤
6σ2

priv

2n

holds for σpriv = q + σA + σM .

Theorem 2. Fix τ ∈ {1, . . . , n}. For any AUTH-adversary A with parameter
(q, qv, σA, σM , σA′ , σC′),

AdvauthOTR[P,τ ](A) ≤ 6σ2
auth

2n
+

qv
2τ

holds for σauth = q + qv + σA + σM + σA′ + σC′ .

5 Proofs of Theorems 1 and 2

Overview. For the limited space we here explain the basic proof steps of
Theorems 1 and 2, with some intuitions. Full proofs will appear at the full
version of this paper. The proofs consist of two steps, where in the first step
we interpret OTR as a mode of TBC and in the second step we prove the
indistinguishability between the tweakable URF and the TBC used in OTR.
This structure is essentially the same as OCB proofs, as well as many other
schemes based on TBC.

First Step: TBC-Based Design. In the first step, we define an AE scheme
denoted by OTR

′[τ ]. It is compatible with OTR[E, τ ] and uses a tweakable n-bit

URF, R̃ : T × {0, 1}n → {0, 1}n, and an independent VIL-URF, R∞ : {0, 1}∗ →
{0, 1}n, Here, tweak T ∈ T is written as T = (x, i, ω) ∈ Nae × N × Ω, where

Ω
def
= {f, s, a1, a2, b1, b2, h, g1, g2}. The values h, g1, g2 will not be used until the

next step. Here OTR
′[τ ] consists of encryption core OTR

′-Eτ and decryption
core OTR

′-Dτ . The definition of OTR
′ is in Fig. 3. Counterparts to EF and DF

are denoted by EF and DF, also shown in Fig. 3. The bounds of OTR
′ are in the

following theorem. The proof of Theorem 3 will be given in the full version.
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Algorithm OTR-EE,τ (N,A,M)

1. (C, TE) ← EFE(N,M)
2. if A �= ε then TA ← AFE(A)
3. else TA ← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T )

Algorithm OTR-DE,τ (N,A,C, T )

1. (M,TE) ← DFE(N,C)
2. if A �= ε then TA ← AFE(A)
3. else TA ← 0n

4. ̂T ← msbτ (TE ⊕ TA)

5. if ̂T = T return M
6. else return ⊥

Algorithm EFE(N,M)

1. Σ ← 0n

2. δ ← E(N), L ← 4δ
3. (M [1], . . . ,M [m])

n← M
4. for i = 1 to �m/2� − 1 do
5. C[2i−1] ← E(L⊕M [2i−1])⊕M [2i]
6. C[2i]← E(L⊕δ⊕C[2i−1])⊕M [2i−1]
7. Σ ← Σ ⊕M [2i]
8. L ← 2L
9. if m is even

10. L∗ ← L⊕ δ
11. Z ← E(L⊕M [m− 1])
12. C[m] ← msb|M[m]|(Z) ⊕M [m]
13. C[m−1] ← E(L∗⊕C[m])⊕M [m−1]
14. Σ ← Σ ⊕ Z ⊕ C[m]
15. if m is odd
16. L∗ ← L
17. C[m] ← msb|M[m]|(E(L∗))⊕M [m]
18. Σ ← Σ ⊕M [m]
19. if |M [m]| �= n then TE ← E(3L∗⊕Σ)
20. else TE ← E(3L∗ ⊕ δ ⊕Σ)
21. C ← (C[1], . . . , C[m])
22. return (C, TE)

Algorithm DFE(N,C)

1. Σ ← 0n

2. δ ← E(N), L ← 4δ
3. (C[1], . . . , C[m])

n← C
4. for i = 1 to �m/2� − 1 do
5. M [2i−1]← E(L⊕δ⊕C[2i−1])⊕C[2i]
6. M [2i] ← E(L⊕M [2i−1])⊕C[2i−1]
7. Σ ← Σ ⊕M [2i]
8. L ← 2L
9. if m is even

10. L∗ ← L⊕ δ
11. M [m−1] ← E(L∗⊕C[m])⊕C[m−1]
12. Z ← E(L⊕M [m− 1])
13. M [m] ← msb|C[m]|(Z)⊕ C[m]
14. Σ ← Σ ⊕ Z ⊕ C[m]
15. if m is odd
16. L∗ ← L
17. M [m] ← msb|C[m]|(E(L∗))⊕ C[m]
18. Σ ← Σ ⊕M [m]
19. if |C[m]| �= n then TE ← E(3L∗ ⊕Σ)
20. else TE ← E(3L∗ ⊕ δ ⊕Σ)
21. M ← (M [1], . . . ,M [m])
22. return (M,TE)

Algorithm AFE(A)

1. Ξ ← 0n

2. γ ← E(0n), Q ← 4γ
3. (A[1], . . . , A[a])

n← A
4. for i = 1 to a− 1 do
5. Ξ ← Ξ ⊕ E(Q⊕A[i])
6. Q ← 2Q
7. Ξ ← Ξ ⊕A[a]
8. if |A[a]| �= n then TA ← E(Q⊕γ⊕Ξ)
9. else TA ← E(Q⊕ 2γ ⊕ Ξ)

10. return TA

Fig. 1. The encryption and decryption algorithms of OTR with n-bit blockcipher E.
Tag size is 0 < τ ≤ n, and X denotes the 10∗ padding of X (See Section 2.1).
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Fig. 2. Encryption of OTR. The p box denotes the 10∗ padding of input X (X), and
the c box denotes the msbi function.

Theorem 3. Fix τ ∈ {1, . . . , n}. For any PRIV-adversary A,

Adv
priv

OTR′[τ ](A) = 0.

Moreover, for any AUTH-adversary A using q encryption queries and qv decryp-
tion queries,

Advauth
OTR′[τ ](A) ≤ 2qv

2n
+

qv
2τ

.

Proof Intuition. To understand Theorem 3, there are two important properties
of a two-round Feistel permutation, denoted by φf1,f2 : {0, 1}2n → {0, 1}2n.
Here φf1,f2(X [1], X [2]) = (Y [1], Y [2]) where Y [1] = f1(X [1])⊕X [2] and Y [2] =
f2(Y [1]) ⊕X [1] and f1 and f2 are independent n-bit URFs. Then we have the
followings.

Property 1. For any (X [1], X [2]) ∈ {0, 1}2n, φf1,f2(X [1], X [2]) is uniformly
random.

Property 2. Let (Y [1], Y [2]) = φf1,f2(X [1], X [2]), and let (Y ′[1], Y ′[2]) be a
function of (X [1], X [2], Y [1], Y [2]) satisfying (Y ′[1], Y ′[2]) �= (Y [1], Y [2]).
Then X ′[2], where (X ′[1], X ′[2]) = φ−1

f1,f2
(Y ′[1], Y ′[2]), is uniform unless the

event Bad1 : X [1] = X ′[1] occurs, which has the probability at most 1/2n.

Property 1 is simple because f1 and f2 are independent and the output of φ
consists of those of f1 and f2. Property 2 needs some cares. It holds because
if X [1] �= X ′[1] = f2(Y

′[1]) ⊕ Y ′[2], f1(X
′[1]) is distributed uniformly random,
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independent of all other variables, and this makes X ′[2] = f1(X
′[1]) ⊕ Y ′[1]

completely random. The Bad1 event has probability 1/2n when Y ′[1] �= Y ′[1],
and otherwise 0. Note that (X [1], X [2], Y [1], Y [2]) reveals corresponding I/O
pairs of f1 and f2, however this does not help gain the probability of Bad1.

Intuitively, the privacy bound of Theorem 3 is simply obtained by the fact
that all TBC calls in the game has distinct tweaks and all output blocks con-
tain at least one TBC output with unique tweak. Combined with Property
1, this makes all output blocks perfectly random, hence the privacy bound is
0. For the authenticity bound, suppose adversary A performs an encryption
query (N,A,M) and obtains (C, T ), and then performs a decryption query
(N ′, A′, C′, T ′) for some C �= C′ with |C| = |C ′|, with (N ′, A′) = (N,A). This
implies that there exists at least one chunk (2n-bit block) of C′ different from
the corresponding chunk in C, and from Property 2, the right half of the corre-
sponding decrypted plaintext chunk is completely random, unless Bad1 occurs.
There is another chance for the adversary to win, i.e. the checksum collision
Bad2 : Σ′ = Σ, which has probability 1/2n provided Bad1 did not happen.
Hence we have Pr[Bad1 ∪ Bad2] ≤ Pr[Bad1] + Pr[Bad2|Bad1] ≤ 2/2n. When both
events did not happen (i.e. given Bad1 ∪ Bad2), the final chance is to successfully
guess the tag, where the probability is clearly bounded by 1/2τ because different
checksums yield independent tags. Hence the authenticity bound is 2/2n +1/2τ

for any A using qv = 1 decryption query (of course we need to consider the
existence of other encryption queries and many other cases for (N ′, A′, C′, T ′) as
well, however the above bound holds for all cases). Finally we use a well-known
result of Bellare, Goldreich and Mityagin [9] to obtain 2qv/2

n + qv/2
τ for any

qv ≥ 1.

Second Step: Analysis of TBC. In the bottom of Fig. 3 we define a TBC,
G̃[P]〈N,i,ω〉(X), where (N, i, ω) is a tweak. It uses an n-bit URP P. We remark

that G̃[P] slightly abuse N as it allows N = 0n. Hence the tweak space is
T ′ = {Nae ∪ {0n}} × N × Ω. For tweaks that do not appear in Fig. 3, we let

them as undefined. Let R̃ be a tweakable URF compatible with G̃[P]. Then we
have the following proposition and lemma.

Proposition 1. If EF
˜R (DF

˜R) uses G̃[P] instead of R̃, we obtain EFP (DFP).

Lemma 1. For any A with q queries, Advcpa
˜G[P],˜R

(A) ≤ 5q2/2n.

Fig. 3 shows a function AF
˜R : {0, 1}∗ → {0, 1}n. The internal R̃ is a tweakable

URF compatible with G̃[P]. It is again easy to observe that if AF
˜R uses G̃[P]

instead of R̃, we obtain AFP. We provide the security bound for AF
˜R, which is

as follows.

Lemma 2. For any A with σ input blocks, we have Adv
prf
AF

˜R
(A) ≤ σ2/2n+1.

The proofs of Lemmas 1 and 2 are almost the same as XE mode and (a part of)
PMAC proofs [33] and will be given in the full version.
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Algorithm OTR
′-Eτ (N,A,M)

1. (C, TE) ← EF
˜R
(N,M)

2. if A 
= ε then TA ← R∞(A)
3. else TA ← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T )

Algorithm OTR
′-Dτ (N,A,C, T )

1. (M,TE) ← DF
˜R
(N,C)

2. if A 
= ε then TA ← R∞(A)
3. else TA ← 0n

4. ̂T ← msbτ (TE ⊕ TA)

5. if ̂T = T return M
6. else return ⊥

Algorithm OTR-Eτ (N,A,M)

1. (C, TE) ← EF
˜R
(N,M)

2. if A 
= ε then TA ← AF
˜R
(A)

3. else TA ← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T )

Algorithm OTR-Dτ (N,A,C, T )

1. (M,TE) ← DF
˜R
(N,C)

2. if A 
= ε then TA ← AF
˜R
(A)

3. else TA ← 0n

4. ̂T ← msbτ (TE ⊕ TA)

5. if ̂T = T return M
6. else return ⊥

Algorithm EF
˜R
(N,M)

1. Σ ← 0n

2. (M [1], . . . ,M [m])
n← M

3. � ← 
m/2�
4. for i = 1 to � − 1 do

5. C[2i− 1] ← ˜R
〈N,i,f〉

(M [2i − 1]) ⊕ M [2i]

6. C[2i] ← ˜R
〈N,i,s〉

(C[2i− 1]) ⊕ M [2i − 1]
7. Σ ← Σ ⊕ M [2i]
8. if m is even

9. Z ← ˜R
〈N,�,f〉

(M [m − 1])
10. C[m] ← msb|M[m]|(Z) ⊕ M [m]

11. C[m − 1] ← ˜R
〈N,�,s〉

(C[m]) ⊕ M [m − 1]

12. Σ ← Σ ⊕ Z ⊕ C[m]

13. if |M [m]| 
= n

14. then TE ← ˜R
〈N,�,a1〉

(Σ)

15. else TE ← ˜R
〈N,�,a2〉

(Σ)
16. if m is odd

17. C[m]←msb|M[m]|(˜R
〈N,�,f〉

(0n)) ⊕ M [m]
18. Σ ← Σ ⊕ M [m]

19. if |M [m]| 
= n

20. then TE ← ˜R
〈N,�,b1〉

(Σ)

21. else TE ← ˜R
〈N,�,b2〉

(Σ)
22. C ← (C[1], . . . , C[m])
23. return (C, TE)

Algorithm DF
˜R
(N,C)

1. Σ ← 0n

2. (C[1], . . . , C[m])
n← C

3. � ← 
m/2�
4. for i = 1 to � − 1 do

5. M [2i − 1] ← ˜R
〈N,i,s〉

(C[2i− 1]) ⊕ C[2i]

6. M [2i] ← ˜R
〈N,i,f〉

(M [2i − 1]) ⊕ C[2i− 1]
7. Σ ← Σ ⊕ M [2i]
8. if m is even

9. M [m − 1] ← ˜R
〈N,�,s〉

(C[m]) ⊕ C[m− 1]

10. Z ← ˜R
〈N,�,f〉

(M [m − 1])
11. M [m] ← msb|C[m]|(Z) ⊕ C[m]
12. Σ ← Σ ⊕ Z ⊕ C[m]

13. if |M [m]| 
= n

14. then TE ← ˜R
〈N,�,a1〉

(Σ)

15. else TE ← ˜R
〈N,�,a2〉

(Σ)
16. if m is odd

17. M [m] ← msb|C[m]|(˜R
〈N,�,f〉

(0n)) ⊕ C[m]
18. Σ ← Σ ⊕ M [m]

19. if |C[m]| 
= n

20. then TE ← ˜R
〈N,�,b1〉

(Σ)

21. else TE ← ˜R
〈N,�,b2〉

(Σ)
22. M ← (M [1], . . . ,M [m])
23. return (M,TE)

Algorithm AF
˜R
(A)

1. Ξ ← 0n

2. (A[1], . . . , A[a])
n← A

3. for i = 1 to a − 1 do

4. Ξ ← Ξ ⊕ ˜R
〈0n,i,h〉

(A[i])
5. Ξ ← Ξ ⊕ A[a]

6. if |A[a]| 
= n then TA ← ˜R
〈0n,a,g1〉

(Ξ)

7. else TA ← ˜R
〈0n,a,g2〉

(Ξ)
8. return TA

Algorithm ˜G[P]〈N,i,ω〉(X)

1. Preprocessing: γ ← P(0n), Q ← 4γ
2. if N 
= 0n then δ ← P(N), L ← 4δ
3. switch ω
4. Case f : Δ ← 2i−1L
5. Case s : Δ ← 2i−1L ⊕ δ
6. Case a1 : Δ ← 3(2i−1L ⊕ δ)

7. Case a2 : Δ ← 3(2i−1L ⊕ δ) ⊕ δ

8. Case b1 : Δ ← 2i−13L
9. Case b2 : Δ ← 2i−13L ⊕ δ

10. else switch ω
11. Case h : Δ ← 2i−1Q
12. Case g1 : Δ ← 2i−1Q ⊕ γ

13. Case g2 : Δ ← 2i−1Q ⊕ 2γ
14. Y ← P(Δ ⊕ X)
15. return Y

Fig. 3. The components of OTR
′[τ ] and OTR[τ ]. An exception is ˜G[P], which is a

tweakable PRP implicitly used by OTR[P, τ ].
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Deriving Bounds. Let OTR[τ ] be an AE consisting of EF
˜R, DF˜R, and AF

˜R
shown in Fig. 3. For privacy notion, there exist adversaries B against AF

˜R with

σA input blocks, and C against G̃[P] with σpriv queries, satisfying

Adv
priv

OTR[P,τ ](A) ≤ Adv
cpa-nr

OTR[P,τ ],OTR[τ ](A) + Adv
cpa-nr

OTR[τ ],OTR′[τ ](A) + Adv
cpa-nr

OTR′[τ ],$(A)

(5)

≤ Adv
cpa-nr

OTR[P,τ ],OTR[τ ](A) + Adv
cpa
AF

˜R
,R∞(B) + Adv

cpa-nr

OTR′[τ ],$(A) (6)

≤ Adv
cpa

˜G[P],˜R
(C) + σ2

A

2n+1
(7)

≤
5σ2

priv

2n
+

σ2
A

2n+1
(8)

≤
6σ2

priv

2n
. (9)

where the third inequality follows from Proposition 1, Lemma 2, and Theorem
3, and the fourth inequality follows from Lemma 1. Similarly, for authenticity
notion, there exist B against AF

˜R with σA + σA′ input blocks, and C against

G̃[P] with σauth queries, satisfying

AdvauthOTR[P,τ ](A) ≤ Advcca-nrOTR[P,τ ],OTR′[τ ](A) + Advauth
OTR′[τ ](A) (10)

≤ Advcca-nrOTR[P,τ ],OTR[τ ](A) + Advcca-nr
OTR[τ ],OTR′[τ ](A) + Advauth

OTR′[τ ](A)

(11)

≤ Advcca-nrOTR[P,τ ],OTR[τ ](A) + Adv
cpa
AF

˜R
,R∞(B) + Advauth

OTR′[τ ](A) (12)

≤ Adv
cpa

˜G[P],˜R
(C) + (σA + σA′)2

2n+1
+

2qv
2n

+
qv
2τ

(13)

≤ 5σ2
auth

2n
+

(σA + σA′)2

2n+1
+

2σA′

2n
+

qv
2τ

(14)

≤ 6σ2
auth

2n
+

qv
2τ

, (15)

where the fourth inequality follows from Proposition 1, Lemma 2, and Theorem
3, and the fifth inequality follows from Lemma 1. This concludes the proof.

6 Experimental Results on Software

We implemented OTR on software. The purpose of this implementation is not
to provide a fast code, but to see the effect of inverse-freeness in an experimen-
tal environment. We wrote a reference-like AES C code that takes byte arrays
and uses 4Kbyte tables for combined S-box and Mixcolumn lookup, so-called
T-tables. AES decryption of our code is slightly slower than encryption (see
Table 2). We then wrote pure C code of OTR using the above AES code. All
components, e.g. XOR of blocks and GF doubling, are byte-wise codes. For com-
parison we also wrote a C code of OCB2 [33] in the same manner, which is similar
to a reference code by Krovetz [1].



Parallelizable Rate-1 Authenticated Encryption 287

We ran both codes on an x86 PC (Core i7 3770, Ivy bridge, 3.4GHz) with
64-bit Windows 7. We used Visual C++ 2012 (VC12) to obtain 32-bit and 64-bit
executables and used GCC 4.7.1 for 32-bit executables, with option -O2. We
measured speed for 4Kbyte messages and one-block header. We also tested the
same code on an ARM board (Cortex-A8 1GHz) using GCC 4.7.3 with -O2

option. Their speed figures in cycles per byte1 are shown in the upper part
of Table 2. For both OTR and OCB2, we can observe a noticeable slowdown
from raw AES, however, OTR still receives the benefit of faster AES encryption.
Another metric is the size, which is shown in the lower part of Table 2. For OTR
we can remove the inverse T-tables and inverse S-box from AES code, as they
are not needed for AES encryption, resulting in smaller AES objects.

We also measured the performance of these codes when AES is implemented
using AESNI (on the Core i7 machine, using VC12). We simply substituted
T-table AES with single-block AES routine using AESNI. In addition, two com-
mon functions to OCB2 and OTR, namely XOR of two 16-byte blocks and GF
doubling, are substituted with SIMD intrinsic codes. Other byte-wise functions
are unchanged. On our machine single-block AES ran at around 4.5 to 5.5 cy-
cles per byte, for both encryption and decryption. Table 3 shows the results. It
looks interesting, in that, although we did not write a parallel AESNI routine,
we could observe the obvious effect of AESNI parallelism via compiler. Notably,
both OTR and OCB2 achieved about 2 cycles per byte for 4K data, and OCB2
is slight faster as expected. We think further optimization of OTR as well as
OCB2 would be possible if we use parallel AES routine with a careful register
handling.

These experiments, though quite naive, imply OTR’s good performance under
multiple platforms with a simple code. Of course, optimized implementations for
various platforms are interesting future topics.

7 Remarks

7.1 Remove Inverse from OCB

The abstract structure of OTR has a similarity to OCB, however, removing
inverse is not a trivial task. Roughly, in OCB, each plaintext block is given to

the ECB mode of an n-bit TBC ẼK [25], namely C[i] = Ẽ
〈T 〉
K (M [i]), where tweak

T consists of nonce N and other parameters, based on a blockcipher EK . The
OCB decryption uses the inversion of TBC, Ẽ−1

K , and the security proof requires

that ẼK is a tweakable SPRP, i.e. (ẼK , Ẽ−1
K ) and (P̃, P̃

−1
) are hard to distinguish

when P̃
$← PermT (n). Since Ẽ−1

K needs a computation of E−1
K , a natural way to

remove E−1
K from OCB is to compose ẼK from a PRP or a PRF. For example

we can do this by using a 2n-bit 4-round Feistel cipher as ẼK , based on an n-bit
PRF, FK . Then, the resulting mode (of FK) is inverse-free and provably secure,

1 As we were unable to use cycle counter in the ARM device, the measurement of
ARM was based on a timer.
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Table 2. Reference implementation results of OTR and OCB2. (Upper) Speed in cycles
per byte. (Lower) Object size in Kbyte.

x86 ARM

Algorithm VC12(32-bit) VC12(64-bit) gcc 4.7.1(32-bit) gcc 4.7.3

OTR Enc 27.59 18.94 22.02 69.88
OTR Dec 27.56 18.99 22.2 69.78

OCB2 Enc 27.38 19.93 22.69 71.22
OCB2 Dec 30.86 25.43 34.29 76.16
AES Enc 18.29 12.98 15.9 54.38
AES Dec 22.28 18.36 26.64 58.14

x86 ARM

Object VC12(32-bit) VC12(64-bit) gcc 4.7.1(32-bit) gcc 4.7.3

OTR.o 19.9 21.3 5.4 5.9
OCB2.o 20.5 21.7 4.6 5.3

AES Enc.o 20.2 20.7 6.7 7.1
AES EncDec.o 45.4 46.2 17.3 17.9

OTR Total 40.1 42.0 12.1 13.0
OCB2 Total 65.9 67.9 21.9 23.2

Table 3. Performance of codes with single-block AES routine using AES-NI. Data x

denotes the plaintext length in bytes, and a/b denotes a (b) cycles per byte in 32-bit
(64-bit) VC12 compilation.

Data (byte) 128 512 1024 2048 4096

OTR Enc 6.01/5.43 3.32/3.16 2.85/2.74 2.66/2.51 2.49/2.40
OTR Dec 7.22/5.60 3.81/3.15 3.06/2.72 2.79/2.51 2.59/2.39

OCB2 Enc 6.39/5.60 3.26/2.76 2.81/2.26 2.53/2.02 2.37/1.90
OCB2 Dec 6.36/5.86 3.04/2.80 2.59/2.26 2.28/2.03 2.11/1.91

since 4-round Feistel cipher is an SPRP, as shown by Luby and Rackoff [26]
(it is easy to turn a SPRP into a tweakable SPRP). However, we then need
four FK calls per two blocks, i.e. the rate is degraded to two. Considering this,
the two-round Feistel is seemingly a bad choice, since it even fails to provide a
(tweakable) PRP. As explained in Section 5, the crucial observation is that, the
encryption of two-round Feistel in OTR is invoked only once for each tweak, and
that the authenticity needs only an n-bit unpredictable value in the decryption,
rather than 2n bits. Two-round Feistel fulfills these requirements, which makes
OTR provably secure.

7.2 Design Rationale for Masking

We remark that using the same mask for the two round functions, i.e. using
2iL for the first and second rounds of a two-round Feistel, does not work.
This is because Property 2 of Section 5 does not hold anymore since the
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two-round Feistel becomes an involution. Once you query (X [1], X [2]) and re-
ceive (Y [1], Y [2]) = φf1,f2(X [1], X [2]), you know X ′[2] = Y [2] always holds
(where (X ′[1], X ′[2]) = φ−1

f1,f2
(Y ′[1], Y ′[2])), when (Y ′[1], Y ′[2]) = (X [1], X [2]).

This implies that the adversary can control the checksum value in the decryption,
hence breaks authenticity.

We also remark that the masks for EFE depend on N , hence do not allow
precomputation. In contrast the latest OCB3 allows mask precomputation by
using EK(0n) [24]. The reason is that we want our scheme not to generateEK(0n)
for header-less usage (i.e. when A is always empty). As a result our scheme has
a rather similar structure as OCB2 and an AEAD mode based on OCB2, called
AEM [33]. Recent studies reported that the doubling is not too slow [6], hence
we employ on-the-fly doubling as a practical masking option.

7.3 Comparison with Other Inverse-Free Modes

Section 6 only considers a comparison with OCB. Here we provide a basic com-
parison with other modes, in particular those not using the blockcipher inverse.
Table 1 shows examples of such inverse-free modes. Among them, CCM, GCM,
and EAX are rate-2, assuming the speed of field multiplication in GCM is com-
parable with blockcipher encryption. At least in theory, OTR is faster for suf-
ficiently long messages for its rate-1 computation. For CCFB, the rate c is a
variable satisfying 1 < c and c ≈ 1 is impractical for weak security guarantee2.
For memory consumption, all inverse-free modes including OTR have a similar
profile, as long as the blockcipher encryption is the dominant factor. An ex-
ception is GCM since field multiplication usually needs large memories. At the
same time, a potential disadvantage of OTR is the complexity introduced by
the two-round Feistel, such as a limited on-line/parallel capability, and a slight
complex design compared with simple designs reusing existing modes like CTR,
CFB, and CMAC.

7.4 Other Instantiations

As the core idea of our proposal is general, it allows various instantiations, by
seeing OTR or OTR

′ as a prototype. What we need is just to instantiate R̃
accepting n-bit input and tweak (N, i, ω), and producing n-bit output. While
we employ GF doubling, one can use a different masking scheme, such as Gray
code [24,35], or word-oriented LFSR [14,24,38], or bit-rotation of a special prime
length [28]. Moreover, we can use non-invertible cryptographic primitives, typi-
cally a Hash-based PRF such as HMAC, or a permutation of Keccak [12] with
Even-Mansour conversion [16] for implementing a keyed permutation. In the
latter case the resulting scheme does not need an inversion of the permutation,
which is different from the permutation-based OCB described at [29], and there
is no output loss like “capacity” bits of SpongeWrap [13]. In these settings, it is

2 More formally, the security bound is roughly σ2/2n/c for privacy and (σ2/2n/c +
1/2n(1−(1/c))) for authenticity, with single decryption query and σ total blocks.
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possible that the underlying primitive accepts longer input than output. Then
a simple tweaking method by tweak prepending can be an option. For exam-
ple we take SipHash [8], which is a VIL-PRF with 64-bit output. A SipHash-

based scheme would be obtained by replacing R̃
〈N,i,ω〉

(∗) of OTR
′ (Fig. 3) with

SipHashK(N‖i‖ω‖∗), and replacing R∞(∗) with SipHashK(0n‖0‖h‖∗), accompa-
nied with an appropriate input encoding. As SipHash has an iterative structure, a
caching of an internal value allows efficient computation of SipHashK(N‖i‖ω‖X)
from SipHashK(N‖i′‖ω′‖X ′). We remark that this scheme has roughly 64-bit se-
curity. The proof is trivial from Theorem 3, combined with the assumption that
SipHash is a VIL-PRF.

8 Concluding Remarks

We have presented an authenticated encryption scheme using a PRF. This
scheme enables rate-1, on-line, and parallel processing for both encryption and
decryption. The core idea of our proposal is to use two-round Feistel with input
masking, combined with a message check sum. As a concrete instantiation we
provide a blockcipher mode, called OTR, entirely based on a blockcipher en-
cryption function, which may be seen as an “inverse-free” version of OCB. Our
proposal has a higher complexity than OCB outside the blockcipher, hence it
will not outperform OCB when the blockcipher enc/dec functions are natively
supported and equally fast (say CPU with AESNI), despite the relaxed security
assumption. Still, our proposal would be useful for various other environments
where the use of blockcipher inverse imposes a non-negligible cost, or simply
when the available crypto function is not invertible.
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