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Preface

These are the proceedings of Eurocrypt 2014, the 33rd annual IACR Eurocrypt
conference on the theory and applications of cryptographic techniques. The con-
ference was held May 11–15, 2014, in Copenhagen, Denmark, and sponsored by
the International Association for Cryptologic Research (IACR). Responsible for
the local organization were Lars Knudsen, from the Technical University of Den-
mark, and Gregor Leander, from the Ruhr University Bochum. We are indebted
to them for their support.

The Eurocrypt 2014 Program Committee (PC) consisted of 32 members.
Each paper was reviewed by at least three reviewers. Submissions co-authored
by PC members were reviewed by at least five reviewers. All reviews were con-
ducted double-blind and we excluded PC members from discussing submissions
for which they had a possible conflict of interest.

We received a total of 197 submissions, many were of high-quality. From these,
after in-depth discussions among the PC, we eventually selected 40 papers, four
of which the PC recommended merging. Hence, in total 38 papers were presented
during the conference and the revised versions of these papers are included in
these proceedings. Because revisions were not reviewed again, the authors (and
not the committee) bear full responsibility for the contents of their papers.

The review process would have been impossible without the hard work of the
PC members and 227 external reviewers, whose effort we would like to commend
here. It has been an honor to work with everyone. The process was enabled by
the Web Submission and Review Software written by Shai Halevi and the server
was hosted by IACR. We would like to thank Shai for setting up the service on
the server and helping us whenever needed.

The PC decided to honor two submissions with the Best Paper Award this
year. These were “Unifying Leakage Models: From Probing Attacks to Noisy
Leakage,”authored by Alexandre Duc, Stefan Dziembowski, and Sebastian Faust,
and “A Heuristic Quasi-polynomial Algorithm for Discrete Logarithm in Finite
Fields of Small Characteristic”authored by Razvan Barbulescu, Pierrick Gaudry,
Antoine Joux, and Emmanuel Thomé.

In addition to the contributed talks, there were two invited talks given by Jeff
Hoffstein and Adi Shamir. Jeff Hoffstein talked about “A Mathematical History
of NTRU and Some Related Cryptosystems.” Adi Shamir talked about “The
Security and Privacy of Bitcoin Transactions.” We would like to thank them
both for accepting our invitation and for their contribution to the program of
Eurocrypt 2014.

Last, we dedicated the conference to James L. Massey (former president of
IACR and IACR Fellow 2009, 1934–2013), who lived near the conference venue
at the end of his life, and whose many contributions including cipher design and
analysis were inspiring to many of us. We remembered Scott Vanstone (IACR
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Fellow 2011, 1947–2014), whose contributions to the deployment of Elliptic Curve
Cryptography, as well as sustained educational leadership in applied cryptology,
shaped a whole new generation of cryptographers.

May 2014 Phong Q. Nguyen
Elisabeth Oswald
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Lei Wang NTU, Singapore
Bogdan Warinschi University of Bristol, UK
Stefan Wolf USI Lugano, Switzerland

External Reviewers

Michel Abdalla
Arash Afshar
Martin Albrecht
Jacob Alperin-Sheriff
Paulo Barreto
Carsten Baum
Aemin Baumeler
Aslı Bay
Mihir Bellare
Fabrice Benhamouda
Olivier Billet
Olivier Blazy
Johannes Blomer
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A Heuristic Quasi-Polynomial Algorithm
for Discrete Logarithm in Finite
Fields of Small Characteristic

Razvan Barbulescu1, Pierrick Gaudry1, and Antoine Joux2,3,
and Emmanuel Thomé1

1 Inria, CNRS, University of Lorraine, France
2 CryptoExperts, Paris, France

3 Chaire de Cryptologie de la Fondation UPMC
Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR

7606, LIP 6, France

Abstract. The difficulty of computing discrete logarithms in fields Fqk

depends on the relative sizes of k and q. Until recently all the cases had
a sub-exponential complexity of type L(1/3), similar to the factorization
problem. In 2013, Joux designed a new algorithm with a complexity of
L(1/4 + ε) in small characteristic. In the same spirit, we propose in this
article another heuristic algorithm that provides a quasi-polynomial com-
plexity when q is of size at most comparable with k. By quasi-polynomial,
we mean a runtime of nO(logn) where n is the bit-size of the input. For
larger values of q that stay below the limit Lqk (1/3), our algorithm loses
its quasi-polynomial nature, but still surpasses the Function Field Sieve.
Complexity results in this article rely on heuristics which have been
checked experimentally.

1 Introduction

The discrete logarithm problem (DLP) was first proposed as a hard problem in
cryptography in the seminal article of Diffie and Hellman [7]. Since then, to-
gether with factorization, it has become one of the two major pillars of pub-
lic key cryptography. As a consequence, the problem of computing discrete
logarithms has attracted a lot of attention. From an exponential algorithm
in 1976, the fastest DLP algorithms have been greatly improved during the
past 35 years. A first major progress was the realization that the DLP in fi-
nite fields can be solved in subexponential time, i.e. L(1/2) where LN(α) =
exp
(
O((logN)α(log logN)1−α)

)
. The next step further reduced this to a heuris-

tic L(1/3) running time in the full range of finite fields, from fixed characteristic
finite fields to prime fields [2,6,11,3,17,18].

Recently, practical and theoretical advances have been made [15,10,16] with
an emphasis on small to medium characteristic finite fields and composite degree
extensions. The most general and efficient algorithm [16] gives a complexity of
L(1/4 + o(1)) when the characteristic is smaller than the square root of the ex-
tension degree. Among the ingredients of this approach, we find the use of a very

P.Q. Nguyen and E. Oswald (Eds.): EUROCRYPT 2014, LNCS 8441, pp. 1–16, 2014.
c© International Association for Cryptologic Research 2014



2 R. Barbulescu et al.

particular representation of the finite field; the use of the so-called systematic
equation1; and the use of algebraic resolution of bilinear polynomial systems in
the individual logarithm phase.

In this work, we present a new discrete logarithm algorithm, in the same vein
as in [16] that uses an asymptotically more efficient descent approach. The main
result gives a quasi-polynomial heuristic complexity for the DLP in finite fields of
small characteristic. By quasi-polynomial, we mean a complexity of type nO(log n)

where n is the bit-size of the cardinality of the finite field. Such a complexity is
smaller than any L(ε) for ε > 0. It remains super-polynomial in the size of the
input, but offers a major asymptotic improvement compared to L(1/4 + o(1)).

The key features of our algorithm are the following.

– We keep the field representation and the systematic equations of [16].
– The algorithmic building blocks are elementary. In particular, we avoid the

use of Gröbner basis algorithms.
– The complexity result relies on three key heuristics: the existence of a poly-

nomial representation of the appropriate form; the fact that the smoothness
probabilities of some non-uniformly distributed polynomials are similar to
the probabilities for uniformly random polynomials of the same degree; and
the linear independence of some finite field elements related to the action of
PGL2(Fq).

The heuristics are very close to the ones used in [16]. In addition to the
arguments in favor of these heuristics already given in [16], we performed some
experiments to validate them on practical instances.

Although we insist on the case of finite fields of small characteristic, where
quasi-polynomial complexity is obtained, our new algorithm improves the com-
plexity of discrete logarithm computations in a much larger range of finite fields.

More precisely, in finite fields of the form Fqk , where q grows as Lqk(α), the
complexity becomes Lqk(α + o(1)). As a consequence, our algorithm is asymp-
totically faster than the Function Field Sieve algorithm in almost all the range
previously covered by this algorithm. Whenever α < 1/3, our new algorithm of-
fers the smallest complexity. For the limiting case L(1/3, c), the Function Field
Sieve remains more efficient for small values of c, and the Number Field Sieve is
better for large values of c (see [18]).

This article is organized as follows. In Section 2, we state the main result, and
discuss how it can be used to design a complete discrete logarithm algorithm. In
Section 3, we analyze how this result can be interpreted for various types of finite
fields, including the important case of fields of small characteristic. Section 4 is
devoted to the description of our new algorithm. It relies on heuristics that are
discussed in Section 5, from a theoretical and a practical point of view. Before
getting to the conclusion, in Section 6, we propose a few variants of the algorithm.

1 While the terminology is similar, no parallel is to be made with the systematic
equations as defined in early works related to the computation discrete logarithms
in F2n , as [4].
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2 Main Result

We start by describing the setting in which our algorithm applies. It is basically
the same as in [16]: we need a large enough subfield, and we assume that a sparse
representation can be found. This is formalized in the following definition.

Definition 1. A finite field K admits a sparse medium subfield representation
if

– it has a subfield of q2 elements for a prime power q, i.e. K is isomorphic to
Fq2k with k ≥ 1;

– there exist two polynomials h0 and h1 over Fq2 of small degree, such that
h1X

q − h0 has a degree k irreducible factor.

In what follows, we will assume that all the fields under consideration admit a
sparse medium subfield representation. Furthermore, we assume that the degrees
of the polynomials h0 and h1 are uniformly bounded by a constant δ. Later, we
will provide heuristic arguments for the fact that any finite field of the form Fq2k

with k ≤ q+2 admits a sparse medium subfield representation with polynomials
h0 and h1 of degree at most 2. But in fact, for our result to hold, allowing the
degrees of h0 and h1 to be bounded by any constant δ independent of q and k
or even allowing δ to grow slower than O(log q) would be sufficient.

In a field in sparse medium subfield representation, elements will always be
represented as polynomials of degree less than k with coefficients in Fq2 . When
we talk about the discrete logarithm of such an element, we implicitly assume
that a basis for this discrete logarithm has been chosen, and that we work in
a subgroup whose order has no small irreducible factor (we refer to the Pohlig-
Hellman algorithm [20] to limit ourselves to this case).

Proposition 2. Let K = Fq2k be a finite field that admits a sparse medium
subfield representation. Under the heuristics explained below, there exists an al-
gorithm whose complexity is polynomial in q and k and which can be used for
the following two tasks.

1. Given an element of K represented by a polynomial P ∈ Fq2 [X ] with 2 ≤
degP ≤ k − 1, the algorithm returns an expression of logP (X) as a linear
combination of at most O(kq2) logarithms logPi(X) with degPi ≤ � 12 degP �
and of log h1(X).

2. The algorithm returns the logarithm of h1(X) and the logarithms of all the
elements of K of the form X + a, for a in Fq2 .

Before the presentation of the algorithm, which is made in Section 4, we
explain how to use it as a building block for a complete discrete logarithm
algorithm.

Let P (X) be an element of K for which we want to compute the discrete
logarithm. Here P is a polynomial of degree at most k − 1 and with coefficients
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in Fq2 . We start by applying the algorithm of Proposition 2 to P . We obtain a
relation of the form

logP = e0 log h1 +
∑

ei logPi,

where the sum has at most κq2k terms for a constant κ and the Pi’s have degree
at most � 12 degP �. Then, we apply recursively the algorithm to the Pi’s, thus
creating a descent procedure where at each step, a given element P is expressed
as a product of elements, whose degree is at most half the degree of P (rounded
up) and the arity of the descent tree is in O(q2k).

At the end of the process, the logarithm of P is expressed as a linear com-
bination of the logarithms of h1 and of the linear polynomials, for which the
logarithms are computed with the algorithm in Proposition 2 in its second form.

We are left with the complexity analysis of the descent process. Each internal
node of the descent tree corresponds to one application of the algorithm of
Proposition 2, therefore each internal node has a cost which is bounded by a
polynomial in q and k. The total cost of the descent is therefore bounded by the
number of nodes in the descent tree times a polynomial in q and k. The depth of
the descent tree is in O(log k). The number of nodes of the tree is then less than
or equal to its arity raised to the power of its depth, which is (q2k)O(log k). Since
any polynomial in q and k is absorbed in the O() notation in the exponent, we
obtain the following result.

Theorem 3. Let K = Fq2k be a finite field that admits a sparse medium subfield
representation. Assuming the same heuristics as in Proposition 2, any discrete
logarithm in K can be computed in a time bounded by

max(q, k)O(log k).

3 Consequences for Various Ranges of Parameters

We now discuss the implications of Theorem 3 depending on the properties of
the finite field FQ where we want to compute discrete logarithms in the first
place. The complexities will be expressed in terms of logQ, which is the size of
the input.

Three cases are considered. In the first one, the finite field admits a sparse
medium subfield representation, where q and k are almost equal. This is the
optimal case. Then we consider the case where the finite field has small (maybe
constant) characteristic. And finally, we consider the case where the character-
istic is getting larger so that the only available subfield is a bit too large for the
algorithm to have an optimal complexity.

In the following, we always assume that for any field of the form Fq2k , we can
find a sparse medium subfield representation.

3.1 Case Where the Field is Fq2k, with q ≈ k

The finite fields FQ = Fq2k for which q and k are almost equal are tailored
for our algorithm. In that case, the complexity of Theorem 3 becomes qO(log q).
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Since Q ≈ q2q, we have q = (logQ)O(1). This gives an expression of the form
2O((log logQ)2), which is sometimes called quasi-polynomial in complexity theory.

Corollary 4. For finite fields of cardinality Q = q2k with q+O(1) ≥ k and q =
(logQ)O(1), there exists a heuristic algorithm for computing discrete logarithms
in quasi-polynomial time

2O((log logQ)2).

We mention a few cases which are almost directly covered by Corollary 4. First,
we consider the case where Q = pn with p a prime bounded by (logQ)O(1), and
yet large enough so that n ≤ (p+ δ). In this case FQ, or possibly FQ2 if n is odd,
can be represented in such a way that Corollary 4 applies.

Much the same can be said in the case where n is composite and factors nicely,
so that FQ admits a large enough subfield Fq with q = pm. This can be used
to solve certain discrete logarithms in, say, F2n for adequately chosen n (much
similar to records tackled by [12,8,13,9,14]).

3.2 Case Where the Characteristic is Polynomial in the Input Size

Let now FQ be a finite field whose characteristic p is bounded by (logQ)O(1), and
let n = logQ/ log p, so that Q = pn. While we have seen that Corollary 4 can be
used to treat some cases, its applicability might be hindered by the absence of
an appropriately sized subfield: p might be as small as 2, and n might not factor
adequately. In those cases, we use the same strategy as in [16] and embed the
discrete logarithm problem in FQ into a discrete logarithm problem in a larger
field.

Let k be n if n is odd and n/2 if n is even. Then, we set q = p�logp k�, and we
work in the field Fq2k . By construction this field contains FQ (because p|q and
n|2k) and it is in the range of applicability of Theorem 3. Therefore, one can
solve a discrete logarithm problem in FQ in time max(q, k)O(log k). Rewriting this
complexity in terms of Q, we get logp(Q)O(log logQ). And finally, we get a similar
complexity result as in the previous case. Of course, since we had to embed in a
larger field, the constant hidden in the O() is larger than for Corollary 4.

Corollary 5. For finite fields of cardinality Q and characteristic bounded by
log(Q)O(1), there exists a heuristic algorithm for computing discrete logarithms
in quasi-polynomial time

2O((log logQ)2).

We emphasize that the case F2n for a prime n corresponds to this case. A direct
consequence of Corollary 5 is that discrete logarithms in F2n can be computed
in quasi-polynomial time 2O((logn)2).

3.3 Case Where q = Lq2k(α)

If the characteristic of the base field is not so small compared to the extension
degree, the complexity of our algorithm does not keep its nice quasi-polynomial
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form. However, in almost the whole range of applicability of the Function Field
Sieve algorithm, our algorithm is asymptotically better than FFS.

We consider here finite fields that can be put into the form FQ = Fq2k , where
q grows not faster than an expression of the form LQ(α). In the following, we
assume that there is equality, which is of course the worst case. The condition
can then be rewritten as log q = O((logQ)α(log logQ)1−α) and therefore k =
logQ/ log q = O((logQ/ log logQ)1−α). In particular we have k ≤ q + δ, so that
Theorem 3 can be applied and gives a complexity of qO(log k). This yields the
following result.

Corollary 6. For finite fields of the form FQ = Fq2k where q is bounded by
LQ(α), there exists a heuristic algorithm for computing discrete logarithms in
subexponential time

LQ(α)
O(log logQ).

This complexity is smaller than LQ(α
′) for any α′ > α. Hence, for any α < 1/3,

our algorithm is faster than the best previously known algorithm, namely FFS
and its variants.

4 Main Algorithm: Proof of Proposition 2

The algorithm is essentially the same for proving the two points of Proposition 2.
The strategy is to find relations between the given polynomial P (X) and its
translates by a constant in Fq2 . Let D be the degree of P (X), that we assume
to be at least 1 and at most k − 1.

The key to find relations is the systematic equation, which is valid on any
Fq-algebra:

Xq −X =
∏
a∈Fq

(X − a). (1)

We like to view Equation (1) as involving the projective line P1(Fq). Let
S = {(α, β)} be a set of representatives of the q + 1 points (α : β) ∈ P1(Fq),
chosen adequately so that the following equality holds.

XqY −XY q =
∏

(α,β)∈S
(βX − αY ). (2)

To make translates of P (X) appear, we consider the action of homographies.

Any matrix m =

(
a b
c d

)
acts on P (X) with the following formula:

m · P =
aP + b

cP + d
.

In the following, this action will become trivial if the matrix m has entries that
are defined over Fq. This is also the case if m is non-invertible. Finally, it is clear
that multiplying all the entries of m by a non-zero constant does not change its
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action on P (X). Therefore the matrices of the homographies that we consider
are going to be taken in the following set of cosets:

Pq = PGL(Fq2)/PGL(Fq).

(Note that in general PGL2(Fq) is not a normal subgroup of PGL2(Fq2), so that
Pq is not a quotient group.)

To each element m =

(
a b
c d

)
∈ Pq, we associate the equation (Em) obtained

by substituting aP + b and cP + d in place of X and Y in Equation (2).

(aP + b)q(cP + d)− (aP + b)(cP + d)q =
∏

(α,β)∈S
β(aP + b)− α(cP + d) (Em)

=
∏

(α,β)∈S
(−cα+ aβ)P − (dα− bβ)

= λ
∏

(α,β)∈S
P − x(m−1 · (α : β)).

This sequence of formulae calls for a short comment because of an abuse of
notation in the last expression. First, λ is the constant in Fq2 which makes the
leading terms of the two sides match. Then, the term P − x(m−1 · (α : β))
denotes P −u when m−1 · (α : β) = (u : 1) (whence we have u = dα−bβ

−cα+aβ ), or 1 if
m−1 · (α : β) =∞. The latter may occur since when a/c is in Fq, the expression
−cα+ aβ vanishes for a point (α : β) ∈ P1(Fq) so that one of the factors of the
product contains no term in P (X).

Hence the right-hand side of Equation (Em) is, up to a multiplicative constant,
a product of q + 1 or q translates of the target P (X) by elements of Fq2 . The
equation obtained is actually related to the set of points m−1 ·P1(Fq) ⊂ P1(Fq2).

The polynomial on the left-hand side of (Em) can be rewritten as a smaller
degree equivalent. For this, we use the special form of the defining polynomial:
in K we have Xq ≡ h0(X)

h1(X) . Let us denote by ã the element aq when a is any
element of Fq2 . Furthermore, we write P̃ (X) the polynomial P (X) with all its
coefficients raised to the power q. The left-hand side of (Em) is

(ãP̃ (Xq) + b̃)(cP (X) + d)− (aP (X) + b)(c̃P̃ (Xq) + d̃),

and using the defining equation for the field K, it is congruent to

Lm :=

(
ãP̃

(
h0(X)

h1(X)

)
+ b̃

)
(cP (X) + d)− (aP (X) + b)

(
c̃P̃

(
h0(X)

h1(X)

)
+ d̃

)
.

The denominator of Lm is a power of h1 and its numerator has degree at most
(1+ δ)D where δ = max(deg h0, deg h1). We say that m ∈ Pq yields a relation if
this numerator of Lm is �D/2�-smooth.

To any m ∈ Pq, we associate a row vector v(m) of dimension q2 + 1 in the
following way. Coordinates are indexed by μ ∈ P1(Fq2), and the value associated
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to μ ∈ Fq2 is 1 or 0 depending on whether P − x(μ) appears in the right-hand
side of Equation (Em). Note that exactly q + 1 coordinates are 1 for each m.
Equivalently, we may write

v(m)μ∈P1(Fq2 )
=

{
1 if μ = m−1 · (α : β) with (α : β) ∈ P1(Fq),
0 otherwise. (3)

We associate to the polynomial P a matrix H(P ) whose rows are the vectors
v(m) for which m yields a relation, taking at most one matrix m in each coset
of Pq. The validity of Proposition 2 crucially relies on the following heuristic.

Heuristic 7. For any P (X), the set of rows v(m) for cosets m ∈ Pq that yield
a relation form a matrix which has full rank q2 + 1.

As we will note in Section 5, the matrix H(P ) is heuristically expected to
have Θ(q3) rows, where the implicit constant depends on δ. This means that for
our decomposition procedure to work, we rely on the fact that q is large enough
(otherwise H(P ) may have less than q2+1 rows, which precludes the possibility
that it have rank q2 + 1).

The first point of Proposition 2, where we descend a polynomial P (X) of de-
gree D at least 2, follows by linear algebra on this matrix. Since we assume that
the matrix has full rank, then the vector (. . . , 0, 1, 0, . . .) with 1 corresponding
to P (X) can be written as a linear combination of the rows. When doing this
linear combination on the equations (Em) corresponding to P we write logP (X)
as a linear combination of logPi where Pi(x) are the elements occurring in the
left-hand sides of the equations. Since there are O(q2) columns, the elimina-
tion process involves at most O(q2) rows, and since each row corresponds to an
equation (Em), it involves at most degLm ≤ (1 + δ)D polynomials in the left-
hand-side2. In total, the polynomial D is expressed by a linear combination of at
most O(q2D) polynomials of degree less than �D/2�. The logarithm of h1(X) is
also involved, as a denominator of Lm. We have not made precise the constant
in F∗q2 which occurs to take care of the leading coefficients. Since discrete loga-
rithms in F∗q2 can certainly be computed in polynomial time in q, this is not a
problem.

Since the order of PGL2(Fqi) is q3i − qi, the set of cosets Pq has q3 + q
elements. For each m ∈ Pq, testing whether (Em) yields a relation amounts to
some polynomial manipulations and a smoothness test. All of them can be done
in polynomial time in q and the degree of P (X) which is bounded by k. Finally,
the linear algebra step can be done in O(q2ω) using asymptotically fast matrix
multiplication algorithms, or alternatively O(q5) operations using sparse matrix
techniques. Indeed, we have q + 1 non-zero entries per row and a size of q2 + 1.
Therefore, the overall cost is polynomial in q and k as claimed.

2 This estimate of the number of irreducible factors is a pessimistic upper bound.
In practice, one expects to have only O(logD) factors on average. Since the crude
estimate does not change the overall complexity, we keep it that way to avoid adding
another heuristic.
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For the second part of Proposition 2 we replace P by X during the con-
struction of the matrix. In that case, both sides of the equations (Em) involve
only linear polynomials. Hence we obtain a linear system whose unknowns are
log(X+a) with a ∈ Fq2 . Since Heuristic 7 would give us only the full rank of the
system corresponding to the right-hand sides of the equations (Em), we have to
rely on a specific heuristic for this step:

Heuristic 8. The linear system constructed from all the equations (Em) for
P (X) = X has full rank.

Assuming that this heuristic holds, we can solve the linear system and obtain
the discrete logarithms of the linear polynomials and of h1(X).

5 Supporting the Heuristic Argument in the Proof

We propose two approaches to support Heuristic 7. Both allow to gain some
confidence in its validity, but of course none affect the heuristic nature of the
statement.

For the first line of justification, we denote by H the matrix of all the #Pq =
q3 + q vectors v(m) defined as in Equation (3). Associated to a polynomial P ,
Section 4 defines the matrix H(P ) formed of the rows v(m) such that the nu-
merator of Lm is smooth. We will give heuristics that H(P ) has Θ(q3) rows
and then prove that H has rank q2 + 1, which of course does not prove that its
submatrix H(P ) has full rank.

In order to estimate the number of rows of H(P ) we assume that the numer-
ator of Lm has the same probability to be �D

2 �-smooth as a random polynomial
of same degree. In this paragraph, we assume that the degrees of h0 and h1

are bounded by 2, merely to avoid awkward notations; the result holds for any
constant bound δ. The degree of the numerator of Lm is then bounded by 3D,
so we have to estimate the probability that a polynomial in Fq2 [X ] of degree 3D
is �D

2 �-smooth. For any prime power q and integers 1 ≤ m ≤ n, we denote by
Nq(m,n) the number of m-smooth monic polynomials of degree n. Using ana-
lytic methods, Panario et al. gave a precise estimate of this quantity (Theorem 1
of [19]):

Nq(n,m) = qnρ
( n

m

)(
1 +O

(
logn

m

))
, (4)

where ρ is Dickman’s function defined as the unique continuous function such
that ρ(u) = 1 on [0, 1] and uρ′(u) = ρ(u − 1) for u > 1. We stress that the
constant κ hidden in the O() notation is independent of q. In our case, we are
interested in the value of Nq2(3D, �D

2 �). Let us call D0 the least integer such

that 1 + κ
(

log(3D)
�D/2�

)
is at least 1/2. For D > D0, we will use the formula (4);

and for D ≤ D0, we will use the crude estimate Nq(n,m) ≥ Nq(n, 1) = qn/n!.
Hence the smoothness probability of Lm is at least min

(
1
2ρ(6), 1/(3D0)!

)
.

More generally, if deg h0 and deg h1 are bounded by a constant δ then we have
a smoothness probability of ρ(2δ+2) times an absolute constant. Since we have
q3 + q candidates and a constant probability of success, H(P ) has Θ(q3) rows.
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Now, unless some theoretical obstruction occurs, we expect a matrix over F� to
have full rank with probability at least 1− 1

� . The matrix H is however peculiar,
and does enjoy regularity properties which are worth noticing. For instance, we
have the following proposition.

Proposition 9. Let 
 be a prime not dividing q3 − q. Then the matrix H over
F� has full rank q2 + 1.

Proof. We may obtain this result in two ways. First, H is the incidence matrix
of a 3− (q2+1, q+1, 1) combinatorial design called inversive plane (see e.g. [21,
Theorem 9.27]). As such we obtain the identity

HTH = (q + 1)(Jq2+1 − (1− q)Iq2+1)

(see [21, Theorem 1.13 and Corollary 9.6]), where Jn is the n × n matrix with
all entries equal to one, and In is the n × n identity matrix. This readily gives
the result exactly as announced.

We also provide an elementary proof of the Proposition. We have a bijection
between rows of H and the different possible image sets of the projective line
P1(Fq) within P1(Fq2), under injections of the form (α : β) �→ m−1 · (α : β). All
these q3+q image sets have size q+1, and by symmetry all points of P1(Fq2) are
reached equally often. Therefore, the sum of all rows of H is the vector whose
coordinates are all equal to 1

1+q2 (q
3 + q)(q + 1) = q2 + q.

Let us now consider the sum of the rows in H whose first coordinate is 1 (as
we have just shown, we have q2 + q such rows). Those correspond to image sets
of P1(Fq) which contain one particular point, say (0 : 1). The value of the sum
for any other coordinate indexed by e.g. Q ∈ P1(Fq2) is the number of image
sets m−1 · P1(Fq) which contain both (0 : 1) and Q, which we prove is equal
to q + 1 as follows. Without loss of generality, we may assume Q = ∞ = (1 :
0). We need to count the relevant homographies m−1 ∈ PGL2(Fq2 ), modulo
PGL2(Fq)-equivalence m ≡ hm. By PGL2(Fq)-equivalence, we may without loss

of generality assume that m−1 fixes (0 : 1) and (1 : 0). Letting m−1 =

(
a b
c d

)
, we

obtain (b : d) = (0 : 1) and (a : c) = (1 : 0), whence b = c = 0, and both a, d = 0.
We may normalize to d = 1, and notice that multiplication of a by a scalar in
F∗q is absorbed in PGL2(Fq)-equivalence. Therefore the number of suitable m is
#F∗q2/F

∗
q = q + 1.

These two facts show that the row span of H contains the vectors (q2 +
q, . . . , q2+q) and (q2+q, q+1, . . . , q+1). The vector (q3−q, 0, . . . , 0) is obtained
as a linear combination of these two vectors, which suffices to prove that H has
full rank, since the same reasoning holds for any coordinate. ��

Proposition 9, while encouraging, is clearly not sufficient. We are, at the mo-
ment, unable to provide a proof of a more useful statement. On the experimental
side, it is reasonably easy to sample arbitrary subsets of the rows of H and check
for their rank. To this end, we propose the following experiment. We have con-
sidered small values of q in the range [16, . . . , 64], and made 50 random picks of
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Table 1. Prime factors appearing in determinant of random square submatrices of H
(for one given set of random trials)

q #trials in gcd({δi}) in gcd(δi, δj)
16 50 17 691
17 50 2, 3 431, 691
19 50 2, 5 none above q2

23 50 2, 3 none above q2

25 50 2, 13 none above q2

27 50 2, 7 1327
29 50 2, 3, 5 none above q2

31 50 2 1303, 3209
32 50 3, 11 none above q2

q #trials in gcd({δi}) in gcd(δi, δj)
37 50 2, 19 2879
41 50 2, 3, 7 none above q2

43 50 2, 11 none above q2

47 50 2, 3 none above q2

49 50 2, 5 none above q2

53 50 2, 3 none above q2

59 50 2, 3, 5 none above q2

61 50 2, 31 none above q2

64 50 5, 13 none above q2

subsets Si ⊂ Pq, all of size exactly q2 + 1. For each we considered the matrix of
the corresponding linear system, which is made of selected rows of the matrix
H, and computed its determinant δi. For all values of q considered, we have
observed the following facts.

– First, all square matrices considered had full rank over Z. Furthermore, their
determinants had no common factor apart possibly from those appearing in
the factorization of q3− q as predicted by Proposition 9. In fact, experimen-
tally it seems that only the factors of q + 1 are causing problems.

– We also explored the possibility that modulo some primes, the determinant
could vanish with non-negligible probability. We thus computed the pairwise
GCD of all 50 determinants computed, for each q. Again, the only prime
factors appearing in the GCDs were either originating from the factorization
of q3 − q, or sporadically from the birthday paradox.

These results are summarized in table 1, where the last column omits small
prime factors below q2. Of course, we remark that considering square submatrices
is a more demanding check than what Heuristic 7 suggests, since our algorithm
only needs a slightly larger matrix of size Θ(q3)× (q2 + 1) to have full rank.

A second line of justification is more direct and natural, as it is possible to
implement the algorithm outlined in Section 4, and verify that it does provide
the desired result. A Magma implementation validates this claim, and has been
used to implement descent steps for an example field of degree 53 over F532 . An
example step in this context is given for applying our algorithm to a polynomial
of degree 10, attempting to reduce it to polynomials of degree 6 or less. Among
the 148,930 elements of Pq, it sufficed to consider only 71,944 matrices m, of
which about 3.9% led to relations, for a minimum sufficient number of relations
equal to q2 + 1 = 2810 (as more than half of the elements of Pq had not even
been examined at this point, it is clear that getting more relations was easy—
we did not have to). As the defining polynomial for the finite field considered
was constructed with δ = deg h0,1 = 1, all left-hand sides involved had degree
20. The polynomials appearing in their factorizations had the following degrees
(the number in brackets give the number of distinct polynomials found for each
degree): 1(2098), 2(2652), 3(2552), 4(2463), 5(2546), 6(2683). Of course this tiny
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example size uses no optimization, and is only intended to check the validity of
Proposition 2.

As for Heuristic 8, it is already present in [16] and [10], so this is not a new
heuristic. Just like for Heuristic 7, it is based on the fact that the probability
that a left-hand side is 1-smooth and yields a relation is constant. Therefore, we
have a system with Θ(q3) relations between O(q2) indeterminates, and it seems
reasonable to expect that it has full rank. On the other hand, there is not as
much algebraic structure in the linear system as in Heuristic 7, so that we see no
way to support this heuristic apart from testing it on several inputs. This was
already done (including for record computations) in [16] and [10], so we do not
elaborate on our own experiments that confirm again that Heuristic 8 seems to
be valid except for tiny values of q.

An obstruction to the heuristics. As noted by Cheng, Wan and Zhuang [5], the
irreducible factors of h1X

q − h0 other than the degree k factor that is used
to define Fq2k are problematic. Let P be such a problematic polynomial. The
fact that it divides the defining equation implies that it also divides the Lm

quantity that is involved when trying to build a relation that relates P to other
polynomials. Therefore the first part of Proposition 2 can not hold for this P .
Similarly, if P is linear, its presence will prevent the second part of Proposition 2
to hold since the logarithm of P can not be found with the strategy of Section 4.
We present here a technique to deal with the problematic polynomials. (The
authors of [5] proposed another solution to keep the quasi-polynomial nature of
algorithm.)

Proposition 10. For each problematic polynomial P of degree D, we can find
a linear relation between logP , log h1 and O(D) logarithms of polynomials of
degree at most (δ − 1)D which are not problematic.

Proof. Let P be an irreducible factor of h1X
q − h0 of degree D. Let us consider

P q; by reducing modulo h1X
q − h0 and clearing denominators, there exists a

polynomial A(X) such that

hD
1 P q = hD

1 P̃

(
h0

h1

)
+ (h1X

q − h0)A(X). (5)

Since P divides two of the terms of this equality, it must also divide the third
one, namely the polynomial R = hD

1 P̃ (h0/h1). Let vP ≥ 1 be the valuation
of P in R. In the finite field Fq2k we obtain the following equalities between
logarithms:

(q − vP ) logP = −D log h1 +
∑
i

ei logQi,

where Qi are the irreducible factors of R other than P and ei their valuation
in R. A polynomial Qi can not be problematic. Otherwise, it would divide the
right-hand side of Equation (5), and therefore, also the left-hand side, which is
impossible. Since vP ≤ degR

degP ≤ δ < q, the quantity q − vP is invertible modulo

 (we assume, as usual that 
 is larger than q) and we obtain a relation between
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logP , log h1 and the logarithms of the non-problematic polynomials Qi. The
degree of R/P vP is at most (δ − 1)D, which gives the claimed bound on the
degrees of the Qi. ��

If δ ≤ 2, this proposition solves the issues raised by [5] about problematic
polynomials. Indeed, for each problematic polynomial of degree D > 1, it will
be possible to rewrite its logarithm in terms of logarithms of non-problematic
polynomials of at most the same degree that can be descended in the usual
way. Similarly, each problematic polynomial of degree 1 can have its logarithm
rewritten in terms of the logarithms of other non-problematic linear polynomials.
Adding these relations to the ones obtained in Section 4, we expect to have a
full-rank linear system.

If δ > 2, we need to rely on the additional heuristic. Indeed, when descending
the Qi that have a degree potentially larger than the degree of D, we could
hit again the problematic polynomial we started with, and it could be that the
coefficients in front of logP in the system vanishes. More generally, taking into
account all the problematic polynomials, if when we apply Proposition 10 to
them we get polynomials Qi of higher degrees, it could be that descending those
we creates loops so that the logarithms of some of the problematic polynomials
could not be computed. We expect this event to be very unlikely. Since in all
our experiments it was always possible to obtain δ = 2, we did not investigate
further.

Finding appropriate h0 and h1. One key fact about the algorithm is the ex-
istence of two polynomials h0 and h1 in Fq2 [X ] such that h1(X)Xq − h0(X)
has an irreducible factor of degree k. A partial solution is due to Joux [16] who
showed how to construct such polynomials when k ∈ {q − 1, q, q + 1}. No such
deterministic construction is known in the general case, but experiments show
that one can apparently choose h0 and h1 of degree at most 2. We performed
an experiment for every odd prime power q in [3, . . . , 1000] and every k ≤ q and
found that we could select a ∈ Fq2 such that Xq + X2 + a has an irreducible
factor of degree k. Finally, note that the result is similar to a commonly made
heuristic in discrete logarithm algorithms: for fixed f ∈ Fq2 [X,Y ] and random
g ∈ Fq2 [X,Y ], the polynomial ResY (f, g) behaves as a random polynomial of
same degree with respect to the degrees of its irreducible factors.

6 Some Directions of Improvement

The algorithm can be modified in several ways. On the one hand one can obtain
a better complexity if one proves a stronger result on the smoothness probability.
On the other hand, without changing the complexity, one can obtain a version
which should behave better in practice.

6.1 Complexity Improvement

Heuristic 7 tells that a rectangular matrix with Θ(q) times more rows than
columns has full rank. It seems reasonable to expect that only a constant times
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more rows than columns would be enough to get the full rank properties (as is
suggested by the experiments proposed in Section 5). Then, it means that we
expect to have a lot of choices to select the best relations, in the sense that their
left-hand sides split into irreducible factors of degrees as small as possible.

On average, we expect to be able to try Θ(q) relations for each row of the
matrix. So, assuming that the numerators of Lm behave like random polynomials
of similar degrees, we have to evaluate the expected smoothness that we can
hope for after trying Θ(q) polynomials of degree (1 + δ)D over Fq2 . Set u =
log q/ log log q, so that uu ≈ q. According to [19] it is then possible to replace
�D/2� in Proposition 2 by the value O(D log log q/ log q).

Then, the discussion leading to Theorem 3 can be changed to take this faster
descent into account. We keep the same estimate for the arity of each node in
the tree, but the depth is now only in log k/ log log q. Since this depth ends up
in the exponent, the resulting complexity in Theorem 3 is then

max(q, k)O(log k/ log log q).

6.2 Practical Improvements

Because of the arity of the descent tree, the breadth eventually exceeds the num-
ber of polynomials below some degree bound. It makes no sense, therefore, to use
the descent procedure beyond this point, as the recovery of discrete logarithms
of all these polynomials is better achieved as a pre-computation. Note that this
corresponds to the computations of the L(1/4 + ε) algorithm which starts by
pre-computing the logarithms of polynomials up to degree 2. In our case, we
could in principle go up to degree O(log q) without changing the complexity.

We propose another practical improvement in the case where we would like
to spend more time descending a given polynomial P in order to improve the
quality of the descent tree rooted at P . The set of polynomials appearing in
the right-hand side of Equation (Em) in Section 4 is {P − λ}, because in the
factorization of Xq − X , we substitute X with m · P for homographies m. In
fact, we may apply m to (P : P1) for any polynomial P1 whose degree does
not exceed that of P . In the right-hand sides, we will have only factors of form
P − λP1 for λ in Fq2 . On the left-hand sides, we have polynomials of the same
degree as before, so that the smoothness probability is expected to be the same.
Nevertheless, it is possible to test several P1 polynomials, and to select the one
that leads to the best tree.

This strategy can also be useful in the following context (which will not oc-
cur for large enough q): it can happen that for some triples (q,D,D′) one has
Nq2(3D,D′)/qn ≈ 1/q. In this case we have no certainty that we can descend a
degree-D polynomial to degree D′, but we can hope that at least one of the P1

allows to descend.
Finally, if one decides to use several auxiliary P1 polynomials to descend a

polynomial P , it might be interesting to take a set of polynomials P1 with an
arithmetic structure, so that the smoothness tests on the left-hand sides can
benefit from a sieving technique.
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7 Conclusion

The algorithm presented in this article achieves a significant improvement of the
asymptotic complexity of discrete logarithm in finite fields, in almost the whole
range of parameters where the Function Field Sieve was presently the most
competitive algorithm. Compared to existing approaches, and in particular to
the line of recent works [15,10], the practical relevance of our algorithm is not
clear, and will be explored by further work.

We note that the analysis of the algorithm presented here is heuristic, as
discussed in Section 5. Some of the heuristics we stated, related to the properties
of matrices H(P ) extracted from the matrix H, seem accessible to more solid
justification. It seems plausible to have the validity of algorithm rely on the sole
heuristic of the validity of the smoothness estimates.

The crossing point between the L(1/4) algorithm and our quasi-polynomial
one is not determined yet. One of the key factors which hinders the practical
efficiency of this algorithm is the O(q2D) arity of the descent tree, compared to
the O(q) arity achieved by techniques based on Gröbner bases [15] at the expense
of a L(1/4 + ε) complexity. Adj et al. [1] proposed to mix the two algorithms
and deduced that the new descent technique must be used for cryptographic
sizes. Indeed, by estimating the time required to compute discrete logarithms in
F36·509 , they showed the weakness of some pairing-based cryptosystems.

Acknowledgements. The authors would like to thank Daniel J. Bernstein for
his comments on an earlier version of this work, and for pointing out to us the
possible use of asymptotically fast linear algebra for solving the linear systems
encountered.
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Abstract. We present a polynomial time structural attack against the
McEliece system based on Wild Goppa codes from a quadratic finite field
extension. This attack uses the fact that such codes can be distinguished
from random codes to compute some filtration, that is to say a family of
nested subcodes which will reveal their secret algebraic description.

Keywords: public-key cryptography, wild McEliece cryptosystem,
filtration, cryptanalysis.

1 Introduction

The McEliece Cryptosystem and its Security. The McEliece encryption
scheme [35] which dates backs to the end of the seventies still belongs to the
very few public-key cryptosystems which remain unbroken. It is based on the
famous Goppa codes family. Several proposals which suggested to replace bi-
nary Goppa codes with alternative families did not meet a similar fate. They
all focus on a specific class of codes equipped with a decoding algorithm: gen-
eralized Reed–Solomon codes (GRS for short) [38] or subcodes of them [4],
Reed–Muller codes [43], algebraic geometry codes [22], LDPC and MDPC codes
[2,37] or convolutional codes [28]. Most of them were successfully cryptanalyzed
[44,48,36,19,39,13,24,14]. Each time a description of the underlying code suit-
able for decoding is efficiently obtained. But some of them remain unbroken,
namely those relying on MDPC codes [37] and their cousins [2], the original
binary Goppa codes of [35] and their non-binary variants as proposed in [6,7].

Concerning the security of the McEliece proposal based on Goppa codes,
weak keys were identified in [21,27] but they can be easily avoided. There also
exist generic attacks by exponential decoding algorithms [25,26,45,10,5,34,3].
More recently, it was shown in [18,20] that the secret structure of Goppa codes
can be recovered by an algebraic attack using Gröbner bases. This attack is
of exponential nature and is infeasible for the original McEliece scheme (the
number of unknowns is linear in the length of the code), whereas for variants

P.Q. Nguyen and E. Oswald (Eds.): EUROCRYPT 2014, LNCS 8441, pp. 17–39, 2014.
c© International Association for Cryptologic Research 2014
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using Goppa codes with a quasi-dyadic or quasi-cyclic structure it was feasible
due to the huge reduction of the number of unknowns.

Distinguisher for Goppa and Reed-Solomon Codes. None of the existing
strategies is able to severely dent the security of [35] when appropriate param-
eters are taken. Consequently, it has even been advocated that the generator
matrix of a Goppa code does not disclose any visible structure that an attacker
could exploit. This is strengthened by the fact that Goppa codes share many
characteristics with random codes. However, in [16,17], an algorithm that man-
ages to distinguish between a random code and a high rate Goppa code has been
introduced.

Code Product. [33] showed that the distinguisher given in [16] has an equiva-
lent but simpler description in terms of component-wise product of codes. This
product allows in particular to define the square of a code; This can be used to
distinguish a high rate Goppa code from a random one because the dimension
of the square of the dual is much smaller than the one obtained with a ran-
dom code. The notion of component-wise product of codes was first put forward
to unify many different algebraic decoding algorithms [40,23], then exploited in
cryptology in [48] to break a McEliece variant based on random subcodes of
GRS codes [4] and in [30,32] to study the security of encryption schemes using
algebraic-geometric codes. Component-wise powers of codes are also studied in
the context of secret sharing and secure multi-party computation [11,12].

Distinguisher-Based Key-Recovery Attacks. The works [16,17], without
undermining the security of [35], prompts to wonder whether it would be possible
to devise an attack exploiting the distinguisher. That was indeed the case in [13]
for McEliece-like public-key encryption schemes relying on modified GRS codes
[8,1,47]. Additionnally, [13] has shown that the unusually low dimension of the
square code of a generalized GRS code enables to compute a nested sequence
of subcodes – we call this a filtration – allowing the recovery of its algebraic
structure. This gives a completely different attack from [44] of breaking GRS-
based encryption schemes. In particular, compared to the attack of [44] on GRS
codes and to the attack of [36,19] on binary Reed–Muller codes and low-genus
algebraic geometry codes, this new way of cryptanalyzing does not require as a
first step the computation of minimum weight codewords, which is polynomial
in time only for the very specific case of GRS codes.

Our Contribution. The purpose of this article is to show that the filtration
attack of [13] which gave a new way of attacking a McEliece scheme based on
GRS codes can be generalized to other families of codes. It leads for instance to a
successful attack of McEliece based on high genus algebraic geometry codes [14].
A tantalizing project would be to attack Goppa code based McEliece schemes,
or more generally alternant code based schemes. The latter family of codes are
subfield subcodes defined over some field Fq of GRS codes defined over a field
extension Fqm . Even the smallest field extension, that is m = 2, for which these
subfield subcodes are not GRS codes is a completely open question. Codes of
this kind have indeed been proposed as possible improvements of the original
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McEliece scheme, under the form of wild Goppa codes in [6]. Such codes are
Goppa codes associated to polynomials of the form γq−1 where γ is irreducible.
Notice that all irreducible binary Goppa codes of the original McEliece system
are actually wild Goppa codes. Interestingly enough, it turns out that these wild
Goppa codes for m = 2 can be distinguished from random codes for a very
large range of parameters by observing that the square code of some of their
shortenings have an abnormally small dimension.

We show here that this distinguishing property can be used to compute a
filtration of the public code, that is to say a family of nested subcodes of the
public Goppa code. This filtration can in turn be used to recover the algebraic
description of the Goppa code as an alternant code, which yields an efficient key
recovery attack. This attack has been implemented in Magma [9] and allowed
to break completely all the schemes with a claimed 128 bit security in Table 7.1
of [6] corresponding to m = 2 when the degree of γ is larger than 3. This corre-
sponds precisely to the case where these codes can be distinguished from random
codes by square code considerations. The filtration attack has a polynomial time
complexity and basically boils down to linear algebra. This is the first time in
the 35 years of existence of the McEliece scheme based on Goppa codes that a
polynomial time attack has been found on it. It questions the common belief
that GRS codes are weak for a cryptographic use while Goppa codes are secure
as soon as m � 2 and that for the latter only generic information-set-decoding
attacks apply. It also raises the issue whether this algebraic distinguisher of
Goppa and more generally alternant codes (see [17]) based on square code con-
siderations can be turned into an attack in the other cases where it applies (for
instance for Goppa codes of rate close enough to 1). Finally, it is worth pointing
out that our attack works against codes without external symmetries confirming
that the mere appearance of randomness is far from being enough to defend
codes against algebraic attacks.

Note that due to space constraints, the results are given here without proofs.
For more details we refer to a forthcoming paper.

2 Notation, Definitions and Prerequisites

We introduce in this section notation we will use in the sequel. We assume that
the reader is familiar with notions from coding theory. We refer to [29] for the
terminology.

Star Product. Vectors and matrices are respectively denoted in bold letters
and bold capital letters such as a andA. We always denote the entries of a vector
u ∈ Fn

q by u0, . . . , un−1. Given a subset I ⊂ {0, . . . , n− 1}, we denote by uI the
vector u punctured at I, that is to say, indexes that are in I are removed. When
I = {j} we allow ourselves to write uj instead of u{j}. The component-wise

product u�v of two vectors u,v ∈ Fn
q is defined as: u�v

def
= (u0v0, . . . , un−1vn−1).

The i–th power u� · · ·�u is denoted by ui. When every entry ui of u is nonzero,

we denote by u−1 def
= (u−1

0 , . . . , u−1
n−1), and more generally for all i, we define u−i
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in the same manner. The operation � has an identity element, which is nothing
but the all-ones vector (1, . . . , 1) denoted by 1. To a vector x ∈ Fn

q , we associate

the set Lx
def
= {xi | i ∈ {0, . . . , n− 1}} which is defined as the set of entries of x.

We always have |Lx| � n and equality holds when the entries of x are pair-wise
distinct.

The ring of polynomials with coefficients in Fq is denoted by Fq[z], while the
subspace of Fq[z] of polynomials of degree less than t is denoted by Fq[z]<t. For
every polynomial P ∈ Fq[z], P (u) stands for (P (u0), . . . , P (un−1)). In particular
for all a, b ∈ Fq, au + b is the vector (au0 + b, . . . , aun−1 + b). To each vector
x = (x0, . . . , xn−1) ∈ Fn

q , we associate its locator polynomial denoted as πa

and defined as πx(z)
def
=
∏n−1

i=0 (z − xi). Its first derivative is denoted as π′x
and one shows easily that its evaluation at the entries of x yields the vector

π′x(x) =
(∏

j �=i(xi − xj)
)
0�i<n

.

The norm and trace from Fq2 to Fq when applied to any x ∈ Fn
q2 are re-

spectively N(x) and Tr(x) with by definition N(x)
def
=
(
xq+1
0 , . . . , xq+1

n−1

)
and

Tr(x)
def
=
(
xq
0 + x0, . . . , x

q
n−1 + xn−1

)
.

Shortening and Puncturing Codes. For a given code D ⊂ Fn
q and a subset

I ⊂ {0, . . . , n − 1} the punctured code DI and shortened code DI are defined
as:

DI
def
=
{
(ci)i/∈I | c ∈ D

}
;

DI def
=
{
(ci)i/∈I | ∃c = (ci)i ∈ D such that ∀i ∈ I, ci = 0

}
.

Instead of writing D{j} and D{j} when I = {j} we rather use the notation Dj

and Dj . The following classical results will be used repeatedly.

Lemma 1. Let A ⊂ Fn
q be a code and I ⊂ {0, . . . , n− 1} be a set of positions.

Then, (
A I)⊥ = A ⊥

I and (AI)
⊥ =
(
A ⊥)I .

Diagonal Equivalence of Codes. Two q-ary codes A ,B ⊂ Fn
q are said to be

Fq–diagonally equivalent, and we will write B ∼Fq A , if there exists u ∈
(
F×q
)n

such that:

B = u �A = {u � a | a ∈ A }.

It is equivalent to say that A and B are Fq–equivalent if B is the image of A
by an invertible diagonal matrix whose diagonal is u.

Generalized Reed–Solomon, Alternant and Classical Goppa Codes

Definition 1 (Generalized Reed-Solomon code). Let q be a prime power
and k, n be integers such that 1 � k < n � q. Let x and y be two n-tuples
such that the entries of x are pairwise distinct elements of Fq and those of y
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are nonzero elements in Fq. The generalized Reed-Solomon code GRSk(x,y) of
dimension k associated to (x,y) is the k-dimensional vector space

GRSk(x,y)
def
=
{(

y0p(x0), . . . , yn−1p(xn−1)
)
| p ∈ Fq[z]<k

}
.

Reed-Solomon codes correspond to the case where yi = 1 for all i ∈ {0, . . . , n−1}
and are denoted as RSk(x). The vector x is called the support of the code.

Proposition 1. Let x,y be as in Definition 1. Then,

GRSk(x,y)
⊥ = GRSn−k(x,y

−1 � π′x(x)
−1).

This leads to the definition of alternant codes ([29, Chap. 12, §2]).

Definition 2 (Alternant code). Let x,y ∈ Fn
qm be two vectors such that the

entries of x are pairwise distinct and those of y are all nonzero. The alternant
code Ar(x,y) defined over Fq where x,y ∈ Fn

qm is the subfield subcode over Fq

of the code GRSr(x,y)
⊥ defined over Fqm , that is:

Ar(x,y)
def
= GRSr(x,y)

⊥ ∩ Fn
q .

The integer r is referred to as the degree of the alternant code, the integer m as
its extension degree and the vector x as its support.

From this definition, it is clear that alternant codes inherit the decoding algo-
rithms of the underlying GRS codes. The key feature of an alternant code is the
following fact (see [29, Chap. 12, §9]):

Fact 1. There exists a polynomial time algorithm decoding all errors of Ham-
ming weight at most � r

2� once the vectors x and y are known.

The following description of alternant codes, will be extremely useful in this
article.

Proposition 2

Ar(x,y) =

{(
f(xi)

yiπ′x(xi)

)
0�i<n

∣∣∣∣∣ f ∈ Fqm [z]<n−r

}
∩ Fn

q

=
{
f(x) � y−1 � π′x(x)

−1
∣∣ f ∈ Fqm [z]<n−r

}
∩ Fn

q .

Definition 3 (Classical Goppa code). Let x be an n–tuple of distinct ele-
ments of Fqm , let r be a positive integer and Γ ∈ Fqm [z] be a polynomial of
degree r such that Γ (xi) = 0 for all i ∈ {0, . . . , n− 1}. The classical Goppa code
G (x, Γ ) over Fq associated to Γ and supported by s is defined as

G (x, Γ )
def
= Ar(x, Γ (x)−1).

We call Γ the Goppa polynomial, x the support and m the extension degree of
the Goppa code.
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As for alternant codes, the following description of Goppa codes, which is due
to Proposition 2 will be extremely useful in this article.

Lemma 2

G (x, Γ ) =

{(
Γ (xi)f(xi)

π′x(xi)

)
0�i<n

∣∣∣∣∣ f ∈ Fq2 [z]<n−deg(Γ )

}
∩ Fn

q

=
{
Γ (x) � f(x) � (π′x(x))

−1
∣∣ f ∈ Fq2 [z]<n−deg(Γ )

}
∩ Fn

q

The interesting point about this subfamily of alternant codes is that under
some conditions, Goppa codes can correct more errors than a generic alternant
code.

Proposition 3 ([46]). Let γ be a monic and square free polynomial of degree
r. Let x be an n-tuple of distinct elements of Fqm satisfying γ(xi) = 0 for all i
in {0, . . . , n− 1}, then:

G
(
x, γq−1

)
= G (x, γq) .

From Fact 1, these Goppa codes correct up to � qr
2 � errors in polynomial-time

instead of just � (q−1)r
2 � if seen asA(q−1)r(x, γ

−(q−1)(x)). Notice that when q = 2,
this amounts to double the error correction capacity. It is one of the reasons why
binary Goppa codes have been chosen in the original McEliece scheme or why
Goppa codes with Goppa polynomials of the form γq−1 (called wild Goppa codes)
are proposed in [6,7].

McEliece Encryption Scheme. We recall here the general principle of
McEliece’s public-key scheme [35]. The key generation algorithm picks a ran-
dom k × n generator matrix G of a code C over Fq which is itself randomly
picked in a family of codes for which t errors can be corrected efficiently. The
secret key is the decoding algorithm D associated to C and the public key is G.
To encrypt u ∈ Fk

q , the sender chooses a random vector e in Fn
q of Hamming

weight t and computes the ciphertext c
def
= uG + e. The receiver then recovers

the plaintext by applying D on c.
This describes the general scheme suggested by McEliece. From now on, we

will say that G is the public generator matrix and that the vector space C

spanned by its rows is the public code i.e. C
def
= {uG | u ∈ Fk

q}. McEliece based
his scheme solely on binary Goppa codes. In [6,7], it is advocated to use q-ary
Goppa codes with Goppa polynomials of the form γq−1 because of their better
error correction capability (see Proposition 3). Such codes are then named wild
Goppa codes. In this paper, we precisely focus on these codes but defined over
quadratic extensions (m = 2). We shall see how it is possible to fully recover
their secret structure.

3 A Distinguisher Based on Square Codes

From now on, and until the end of the article, C denotes the public code of

the wild McEliece scheme we want to attack, that is C
def
= G
(
x, γq−1

)
and we
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want to recover the secret support vector x ∈ Fn
q2 and the secret irreducible

polynomial γ ∈ Fq2 [z] that is assumed to be of degree r > 1. Such a Goppa
code has extension degree 2 and we will first show in this section that it displays
some peculiarities which allows to distinguish such codes from random ones. As
in [16,33], the main tool for achieving this purpose is given by square product
considerations. It will turn out later on in Section 4 that the very reason which
allows to distinguish these wild Goppa codes is also the fundamental reason
which enables to compute a nested family of codes and hence used to reveal
their algebraic structure.

3.1 Square Code

One of the keys for the distinguisher presented here and the attack oulined in
Section 4 is a special property of certain alternant codes with respect to the
component-wise product.

Definition 4 (Product of codes, square code). Let A and B be two codes
of length n. The star product code denoted by A �B is the vector space spanned
by all products a � b for all (a, b) ∈ A ×B. When B = A then A �A is called
the square code of A and is denoted by A �2.

The dimension of the star product is easily bounded by:

Proposition 4. Let A and B be two linear codes ⊆ Fn
q , then

dim (A �B) � min

{
n, dimA dimB −

(
dim(A ∩B)

2

)}
(1)

dim
(
A �2
)
� min

{
n,

(
dim(A ) + 1

2

)}
. (2)

Proof. Let (e1, . . . , es) be a basis of A ∩ B. Complete it as two bases BA =
(e1, . . . , es, as+1, . . . , ak) and BB = (e1, . . . , es, bs+1, . . . , b�) of A and B respec-
tively. The star products u � v where u ∈ BA and v ∈ BB span A � B. The
number of such products is k
 = dimA dimB minus the number of products
which are counted twice, namely the products ei �ej with i = j. This proves (1).
The inequality given in (2) is a consequence of (1). ��

Most codes of a given length and dimension reach these bounds while GRS
codes behave completely differently when they have the same support.

Proposition 5. Let x be an n–tuple of pairwise distinct elements of Fq and
y,y′ be two n–tuples of nonzero elements of Fq. Then,

(i) GRSk(x,y) �GRSk′ (x,y′) = GRSk+k′−1(x,y � y′);

(ii) GRSk(x,y)
�2

= GRS2k−1(x,y � y).

Remark 1. This proposition shows that the dimension of GRSk(x,y) �
GRSk′(x,y′) does not scale multiplicatively as kk′ but additively as k+ k′ − 1.
It has been used the first time in cryptanalysis in [48] and appears for instance



24 A. Couvreur, A. Otmani, and J.–P. Tillich

explicitly as Proposition 10 in [31]. We provide the proof here because it is cru-
cial for understanding why the star products of GRS codes and some alternant
codes behave in a non generic way.

Proof. Let c=(y0f(x0), . . . , yn−1f(xn−1)) ∈ GRSk(x,y) and c′ = (y′0g(x0), . . . ,
y′n−1g(xn−1)) ∈ GRSk′(x,y′) where deg(f) � k− 1 and deg(g) � k′ − 1. Then,
c � c′ is of the form:

c � c′ = (y0y
′
0f(x0)g(x0), . . . , yn−1y

′
n−1f(xn−1)g(xn−1)) = (y0y

′
0r(x0), . . . , yn−1y

′
n−1r(xn−1))

where deg(r) � k + k′ − 2. Conversely, any element (y0y
′
0r(x0), . . . , yn−1y

′
n−1

r(xn−1)) where deg(r) � k + k′ − 2, is a linear combination of star products of
two elements of GRSk(x,y). Statement (ii) is a consequence of (i) by putting
y′ = y and k′ = k. ��

Since an alternant code is a subfield subcode of a GRS code, we might suspect
that products of alternant codes have also an abnormal low dimension. This is
is true but in a very attenuated form as shown by:

Theorem 2. Let x be an n–tuple of distinct elements of Fqm , with m � 1. Let
y,y′ be two n–tuples of nonzero elements of Fqm . There exists then y′′ ∈ Fn

qm

such that:
As(x,y) �As′(x,y

′) ⊆ As+s′−n+1(x,y
′′). (3)

Proof. Let c, c′ be respective elements of As(x,y) and As′(x,y
′). From Propo-

sition 2,

c = f(x) � y−1 � π′x(x)
−1 and c′ = g(x) � y′

−1
� π′x(x)

−1

for some polynomials f, g of respective degrees < n−s and < n−s′. This implies
that

c � c′ = h(x) � y−1 � y′
−1

� π′x(x)
−2

where h
def
= fg is a polynomial of degree < 2n− (s+ s′)− 1. Moreover, since c, c′

have their entries in Fq, then, so has c � c′. Consequently,

c � c′ ∈ GRS2n−(s+s′)−1(x,y
−1 � y′

−1
� π′x(x)

−2) ∩ Fn
q

and, from Definition 2, the above code equals As+s′−n+1(x,y
′′) for y′′ = y �y′ �

π′x(x). ��

Remark 2. This theorem generalizes Proposition 5: it corresponds to the partic-
ular case m = 1. However, when m > 1, the right hand term of (3) is in general
the full space Fn

q . Indeed, assume that m > 1 and that the dimension of As(x,y)
is n− sm whereas the dimension of As′(x,y

′) is equal to n− s′m. If we assume
that both codes have non trivial dimension then we should have n− sm > 0 and
n − s′m > 0 which implies that s < n

m � n/2. Therefore we have s � n/2 − 1
and s′ � n/2 − 1. This implies that (s + s′) − n + 2 � 0, which entails that
As+s′−n+1(x,y

′′) is the full space Fn
q .
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However, in the case m = 2 and when either (i) at least one of the codes
As(x,y) and As′(x,y

′) has dimension greater than the designed dimension, or
(ii) when one of these codes is actually an alternant code for a larger degree
i.e. As(x,y) = As′′(x,y) for s′′ > s, then the right-hand term of (3) can be
smaller than the full space (at least for small dimensions). This is precisely what
happens for our wild Goppa codes of extension degree 2 as shown by:

Proposition 6 ([15]). Let G
(
x, γq−1

)
be a wild Goppa code of length n, defined

over Fq with support x ∈ Fn
q2 where γ ∈ Fq2 [z] is assumed to be irreducible of

degree r > 1. Then

(i) G
(
x, γq−1

)
= G
(
x, γq+1

)
;

(ii) dim(G
(
x, γq+1

)
) � n− 2r(q − 1) + r(r − 2);

(iii) G
(
x, γq+1

)
∼Fq Ar(q+1)(x,1).

The results (i) and (ii) are respective straighforward consequences of Theo-
rems 1 and 24 of [15]. Only (iii) which is used later on, requires further details,
see the forthcoming long version of this article.

3.2 A Distinguisher Obtained by Shortening

As explained in Remark 2 the square code of an alternant code of extension
degree 2 may have an unusually low dimension when its dimension is larger
than its designed rate. This is precisely what happens for wild Goppa codes as
explained by Proposition 6.

Taking directly the square of the Goppa code does not work unless the rate
of the code is close to 0. However, one can reduce to this case by the shortening
operation:

Proposition 7. Let x be an n–tuple of pairwise distinct elements in Fqm and
let y be an n–tuple of nonzero elements of Fqm then Ar(x,y)

I = Ar(xI ,yI).

Proof. This proposition follows on the spot from the definition of the alternant
code Ar(x,y): there is a parity-check H for it with entries over Fqm which is
the generating matrix of GRSr(x,y). A parity-check matrix of the shortened
code Ar(x,y)

I is obtained by throwing away the columns of H that belong to
I. That is to say, by puncturing GRSr(x,y) at I. This parity-check matrix
is therefore the generator matrix of GRSr(xI ,yI) and the associated code is
Ar(xI ,yI). ��

This shortening trick, together with Proposition 6 (ii) explain that the square
of a shortened wild Goppa code of extension degree 2 is contained in an alternant
code of non trivial dimension.

Proposition 8. Let I ⊆ {0, . . . n− 1} and r′
def
= 2r(q+1)− (n− |I|) + 1. Then

there exists some y ∈ (F×q2)
n−|I|

such that:

C I � C I ⊆ Ar′(xI ,y) (4)
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Proof. By Proposition 6, we know that C = G
(
x, γq−1

)
= G
(
x, γq+1

)
which

can therefore be viewed as an alternant code Ar(q+1)(x,y) for y = γ(x)−(q+1).
By applying Proposition 7 to it, we know that C I is an alternant code of degree
r(q + 1) and length n− |I|. We then finish the proof by applying Theorem 2 to
it. ��

Let us bring in now the quantities:

k(a)
def
= n− a− 2r(q − 1) + r(r − 2)

kAlt(a)
def
= 3(n− a)− 4r(q + 1)− 2

kRand(a)
def
= min

{
n− a,

(
k(a) + 1

2

)}
a−

def
= n− 2r(q + 1)− 1.

a+
def
= sup

{
a ∈ {0, k(0)− 1} | kAlt(a) � kRand(a)

}
.

Let R be a random code of the same length and dimension as C I . Then
for a = |I|, k(a) and kRand(a) would be the dimensions we expect for C I and
R�2. The quantity k(0) is the dimension we expect for C . In our experiments
we never found a case where the dimensions of C I and A �2 differ from k(a)
and kRand(a) respectively. On the other hand, notice that from Proposition 8,
kAlt(a) can be viewed as an upper bound on the dimension of (C I)�2. In other
words, as soon as kAlt(a) < kRand(a), we expect to distinguish C I from R. It
also turns out in our experiments that the observed dimension of (C I)�2 is equal
to kAlt(a)−1 when kAlt(a) � kRand(a). We can therefore include the a’s for which
kAlt(a) = kRand(a) in the choices for a for which we distinguish C I from R. This
motivates to define the distinguisher interval as the set of a ∈ {0, . . . , k(0)− 1}
such that kAlt(a) � kRand(a). Finally a− corresponds to the critical value of a
for which kAlt(a) = n− a. It turns out that there is a simple characterization of
the distinguisher interval, namely

Proposition 9. The distinguisher interval is empty if
(
r(r+2)+2

2

)
< 2r(q+1)+1.

On the other hand if
(
r(r+2)+2

2

)
� 2r(q+1)+1 and a− � 0, then it is non empty

and is an interval of the form [a−, a+].

We checked that this allows to distinguish all the wild Goppa codes of ex-
tension degree 2 suggested in [6] from random codes when r > 3. For instance,
consider the first entry in Table 7.1 in [6] which is a code of this kind. It has
length 794, dimension 529, is defined over F29 and is associated to a Goppa
polynomial γ(x)29 where γ has degree 5. Table 1 shows that for a in the range
{493, . . . , 506} the dimensions of (C I)�2 differ when C is the aforementioned
wild Goppa code or is a random code with the same parameters. Note that for
this example a− = 493. This is a typical behavior and it is only when the degree
of γ is very small and the field size is large that we cannot distinguish the Goppa
code in this way. More precisely, we have gathered in Table 2 upper bounds on
the field size for which we expect to distinguish G

(
x, γq−1

)
from a random code

in terms of r, the degree of γ.
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Table 1. Dimension of (C I)�2 when C is either the aforementioned wild Goppa code
or a random code of the same length and dimension for various values of the size of
I. We can notice that for all |I| ∈ {493, . . . , 506} the dimension of the square of the
random code and that of the square of the Goppa code differ.

|I| 493 494 495 496 497 498 499 500 501 502 503 504

Goppa 300 297 294 291 288 285 282 279 276 273 270 267
random 301 300 299 298 297 296 295 294 293 292 291 290

|I| 505 506 507 508 509 510 511 512 513 514

Goppa 264 261 253 231 210 190 171 153 136 120
random 289 276 253 231 210 190 171 153 136 120

Table 2. Largest field size q for which we can expect to distinguish G
(
x, γq−1

)
when

γ is an irreducible polynomial in Fq2 [z] of degree r

r 2 3 4 5

q 9 19 37 64

4 The Code Filtration

4.1 Main Tool

We bring in here the crucial ingredient of our attack which is the following family
of nested codes defined for any a in {0, . . . , n− 1}:

C a(0) ⊇ C a(1) ⊇ · · ·C a(i) ⊇ C a(i+ 1) ⊇ · · · ⊇ C a(q + 1).

Roughly speaking, C a(j) (see Definition 5 below) consists in the codewords of
C which correspond to polynomials which have a zero of order j at position a.
Using a common terminology in algebra, we will call this family of nested codes
a filtration. It turns out that the first two elements of this filtration are just
punctured and shortened versions of C and the rest of them can be computed
from C only by computing star products and solving linear systems. The key
point is that this nested family of codes reveals a lot about the algebraic structure
of C . In particular, we will be able to recover the support from it. This is a
consequence of the following proposition:

Proposition 10. For all a ∈ {0, . . . , n− 1}, we have1:

(xa − xa)
−(q+1) � C a(q + 1) ⊆ Ca.

Without loss of generality, one can assume that the first two entries of x are
x0 = 0 and x1 = 1. As explained further, this will in particular make possible

1 Recall that by (xa−xa)
−(q+1) we mean the vector

(
(xi − xa)

−(q+1)
)
i∈{0,...,n−1}\{a}

.
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the computation of the vectors x
−(q+1)
0 and (x1 − 1)q+1 and we prove further

that the knowledge of these two vectors provides that of x up to some Galois
action. Let us now define precisely these codes C a(j). They are defined for any
a ∈ {0, . . . , n− 1} and for any integer j as follows:

Definition 5. For all a ∈ {0, . . . , n − 1} and for all j ∈ Z, we define the code
C a(j) as:

C a(j)
def
=

{(
γq+1(xi)

π′
x(xi)

(xi − xa)
jf(xi)

)
i∈{0,...,n−1}\{a}

∣∣∣∣∣ f ∈ Fq2 [z]<n−r(q+1)−j

}
∩ Fn−1

q .

The link with C becomes clearer if we use Proposition 6, which gives that
C = G

(
x, γq−1

)
= G
(
x, γq+1

)
. Viewing now C as a subfield subcode of a GRS

code, and thanks to Lemma 2, we have:

C =

{(
γq+1(xi)f(xi)

π′x(xi)

)
0�i<n

∣∣∣∣∣ f ∈ Fq2 [z]<n−r(q+1)

}
∩ Fn

q . (5)

From this definition, it is clear that C a(1) is C shortened in a.

4.2 The Computation of the Filtration

This filtration is strongly related to C since, as explained in the following state-
ment, its two first elements are respectively obtained by puncturing and short-
ening C at a.

Theorem 3. For all a ∈ {0, . . . , n− 1}, we have:

(i) C a(0) = Ca;
(ii) C a(1) = C a;
(iii) C a(q − r) = C a(q + 1);
(iv) C a(−r) = C a(0).

After the computation of the two first elements and for the same reason we
need to take shortened versions of the public code to distinguish it from a random
code, the rest of the filtration relies in a crucial way on taking star products of
shortened versions of the codes C 0(s) that we denote by C 0,I(s) which stands
for the code C 0(s) shortened in the positions belonging to I ⊂ {1, . . . , n − 1}.
It is readily checked that such a code can be written as:

C 0,I(s)=

{(
xs
iγ

q+1(xi)f(xi)

π′
xI (xi)

)
i∈{1,...,n−1}\I

∣∣∣∣∣ f ∈ Fq2 [z]<n−r(q+1)−s−|I|

}
∩Fn−1−|I|

q

(6)

where we recall that xI denotes the vector x punctured at I. From this form,
it is clear that by applying the equivalent definition of an alternant code given
in Definition 2, that we have:



Polynomial Time Attack on Wild McEliece over Quadratic Extensions 29

Lemma 3. For some y∈(F×q2)
n−|I|−1

we have C 0,I(s)=Ar(q+1)+s−1(xI∪{0},y).

Since such codes are alternant codes, a simple consequence of Lemma 3 is:

Proposition 11. Let I be a subset of {1, . . . , n− 1} and let us define r(s, t)
def
=

2r(q + 1) + s+ t− n+ |I| then there exists some y ∈ F
n−1−|I|
q2 such that:

C 0,I(s) � C 0,I(t) ⊆ Ar(s,t)(xI∪{0},y) (7)

Proof. This follows at once from Lemma 3 which says that C 0,I(s) and C 0,I(t)
are alternant codes of respective degrees r(q + 1) + s − 1 and r(q + 1) + t − 1.
From Theorem 2, we know that their star product is included in an alternant
code with support xI∪{0} and of degree r′ with:

r′ = r(q + 1) + s− 1 + r(q + 1) + t− 1− (n− |I| − 1) + 1 = r(s, t)

��
This suggests that the product C 0,I(s) �C 0,I(t) might only depend on s+ t. In
order to find C 0,I(t) once C 0,I(0),C 0,I(1), . . . ,C 0,I(t− 1) have been found, we
might be tempted to use the “Equation”:

C 0,I(0) � C 0,I(t) = C 0,I(�t/2�) � C 0,I(�t/2�).

Unfortunately, this equality does not hold in general. However, we have the
following related statement.

Lemma 4. Let I be a subset of {1, . . . , n− 1} such that r′
def
= r(�t/2�, �t/2�) =

−n+ |I|+ 2r(q + 1) + t > 0. We have:

(i) Any codeword s in C 0,I(t − 1) such that s � C 0,I(0) ⊆ C 0,I(�t/2�) �
C 0,I(�t/2�), necessarily belongs to C 0,I(t).

(ii) Conversely, C 0,I(t) is equal to the set of codewords s in C 0,I(t − 1) such
that

s � C 0,I(0) ⊆ Ar′(xI∪{0},y).

for some y ∈ F
n−1−|I|
q .

Thus, one expects to find C 0,I(t) by solving the following problem, which has
already been considered in [13].

Problem 1. Given A , B, and D be three codes in Fn
q , find the subcode S of

elements s in D satisfying s �A ⊆ B.

Such a space can be computed by linear algebra or equivalently by computing
dual codes and code products. More precisely, we have:

Proposition 12. The solution space S of Problem 1 is S =
(
A �B⊥)⊥ ∩D .

Proof. Let s ∈ S , a ∈ A and b⊥ ∈ B⊥. Then s ∈ D and 〈s,a � b⊥〉 =∑n−1
i=0 siaib

⊥
i = 〈s �a, b⊥〉 This last term is zero by definition of S . This proves

S ⊆
(
A �B⊥)⊥ ∩D . The converse inclusion is proved in the same way. ��
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This allows to find several of these C 0,I(t)’s associated to different subsets of
I. It is straightforward to use such sets in order to recover C 0(t). Indeed, from
the characterization of C 0,I(t) given in (6) we clearly expect that:

C 0,I∩J (t) = C 0,J (t) + C 0,I(t) (8)

where with an abuse of notation we mean by C 0,J (t) and C 0,I(t) the code
C 0,J (t) and C 0,J (t) whose set of positions has been completed such as to also
contain the positions belonging to I \ J and J \ I respectively and which
are set to 0. Such an equality does not always hold of course, but apart from
rather pathological cases it typically holds when dim

(
C 0,I(t)

)
+dim

(
C 0,J (t)

)
�

dim
(
C 0,I∩J (t)

)
. These considerations suggest the following Algorithm 1 for

computing the C 0(t)’s.

Algorithm 1. Algorithm for computing C 0(q + 1)

for t = 2 to q + 1 do
C 0(t)← {0}
while dimC 0(t) �= k(t) do

{k(t) is obtained “offline” by computing the true dimension of a C 0(t) for an
arbitrary choice of γ and x.}
I ← rand. subset of {1, . . . , n− 1} of size a(t) {We explain in (11) how a(t) is
obtained.}
A ← C 0,I(0)
B ← C 0,I(

⎧
t
2

⎪
) � C 0,I(

⎨
t
2

⎩
)

D ← C 0,I(t− 1)
C 0,I(t)← D ∩

(
A �B⊥)⊥ {Problem 1.}

C 0(t)← C 0(t) + C 0,I(t)
end while

end for
return C 0(q + 1)

In Algorithm 1 it is essential to choose the sizes a(t) of the set of indices I
used to compute C 0,I(t) appropriately. Let us denote by k the dimension of C
and bring in the quantity:

kAlt(s, t, a)
def
= 3(n− a)− 4r(q + 1)− 2(s+ t)− 1 (9)

kRand(s, t, a)
def
=

1

2
(k − 2s− a+ 1) (k − 4t+ 2s− a+ 2) (10)

then we choose we choose a(t) such that:

a(t) > n− 2r(q + 1)− t (11)

kAlt(�t/2�, �t/2�, a(t)) < kRand(�t/2�, �t/2�, a(t)) (12)

The reasons for this choice are explained in a forthcoming long version of this
paper.
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5 An Efficient Attack Using the Distinguisher

The attack consists in 5 steps which are outlined below.

Step 1. Compute C 0(q+1) and C 1(q+1) using the distinguisher–based methods
developed in Section 4. Thanks to Theorem 3(iii), it is sufficient to compute
C 0(q − r) and C 1(q − r).

Step 2. From C 0(q + 1) and C 1(q + 1) respectively, we compute two sets of
vectors in Fn−1

q which are the respective solution sets of the systems:

(S0) :

⎧⎪⎨⎪⎩
z � C 0(q + 1) ⊆ C0

∀i ∈ {0 . . . n− 2}, zi = 0

z0 = 1

and (S1) :

⎧⎪⎨⎪⎩
z � C 1(q + 1) ⊆ C1

∀i ∈ {0 . . . n− 2}, zi = 0

z0 = 1
(13)

From Proposition 10, x
−(q+1)
0 is a solution of (S0) and (x1−1)−(q+1) is a solution

of (S1). In addition, from Proposition 12, the sets of solutions of the above
systems are the respective full-weight codewords whose first entry is 1 of the
following codes:

D
def
=
(
C 0(q + 1) � (C0)

⊥
)⊥

and D ′ def
=
(
C 1(q + 1) � (C1)

⊥
)⊥

. (14)

Experimentally we found out that D D ′ have dimension 4. A heuristic ex-
plaining this observation is given in the forthcoming full version of this paper.
Therefore an exhaustive search can be performed to find the full-weight code-
words. In addition, we have a complete description of these sets.

Proposition 13. There are at least q2 − n+ 2 solutions for (S0) which are 1,

x
−(q+1)
0 and the following vectors (1−a)−(q+1)

(
(x0 − a)q+1 � x

−(q+1)
0

)
obtained

with a ∈ Fq2 \ Lx. Similarly, there at least q2 − n + 2 solutions for (S1) which

are 1, (x1− 1)−(q+1) and the vectors a−(q+1)
(
(x1 − a)q+1 � (x1 − 1)−(q+1)

)
also

obtained with a ∈ Fq2 \ Lx:

Remark 3. It is possible to give a lower-bound for the probability P that (S0)
(and (S1)) has no other solution:

P � 1− (q3 + q)
(q2 − n)!

(q2 − n− q)!
· (q

2 − q)!

q2!
·

In [6, Table 7.1], the authors propose a code over F32, with m = 2, t = 4 of length
841. For such parameters, the above probability is lower than 3.52 10−21. Table 3
summarizes this probability for other parameters proposed in [6] for m = 2 and
t > 3.
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Table 3. Estimates of 1− P , where P denotes the probability of Remark 3, for some
explicit parameters

q = 29, n = 791 q = 31, n = 892 q = 31, n = 851 q = 31, n = 813 q = 31, n = 795

3.6 10−36 5.5 10−35 3 10−27 1.08 10−22 5.6 10−21

Step 3. First, notice that the vectors x0 and x1 punctured at the first position

are both equal to the vector x01
def
= (x2, . . . , xn−1) ∈ Fn−2

q2 . From the previous
step, one can obtain the two following sets of vectors:

L0
def
=
{
xq+1
01

}
∪
{
(1− a)q+1

(
xq+1
01 � (x01 − a)−(q+1)

) ∣∣∣ a ∈ Fq2 \ Lx

}
L1

def
=
{
(x01 − 1)q+1

}
∪
{
aq+1
(
(x01 − 1)q+1 � (x01 − a)−(q+1)

)∣∣∣ a ∈ Fq2 \ Lx

}
.

(15)
They are computed by puncturing the first entry of each solution vector and
taking the inverse for the star product. Note that the trivial solution 1 is always
removed. The problem now is to identify xq+1

0 and (x1 − 1)q+1 among them.

Proposition 14. If n > 2q+4, then there exists a one-to-one map φ : L0 → L1

such that φ(xq+1
01 ) = (x01 − 1)q+1 and for all s ∈ L0, the vector φ(s) is the

unique element of L1 such that every element of s � L1 is collinear to a unique
element of φ(s) � L0.

The end of the attack works as follows: for s0 ∈ L0, compute s1 = φ(s0), then
apply Steps 4 of the attack. If s0 = xq+1

0 , then the Final Step will fail to find a
nontrivial solution. In such situation, choose another s0 ∈ L0. Therefore, in the
worst case, Step 4 and Final Step will be iterated |L0| = q2 − n+ 1 times.

Step 4. This step is better explained when we have a valid (s0, s1) =
(
xq+1
0 ,

(x1 − 1)q+1
)
. Recall that N(t) = tq+1 is the norm of t over Fq for all t ∈ Fq2 .

The following lemma shows that the minimal polynomial Pxi ∈ Fq[z] of xi can
be computed using: if N(xi) and N(xi − 1) are known:

Lemma 5. Let t be an element of Fq2 and Pt(z)
def
= z2− (N(t)−N(t−1)−1)z+

N(t). Then, either Pt is irreducible and is the minimal polynomial of t over Fq,
or Pt is reducible and in this case Pt(z) = (z − t)2.

Proof. First, notice that N(t − 1) = (t − 1)(tq − 1) = tq+1 − tq − t + 1 =
NFq2/Fq

(t) − TrFq2/Fq
(t) + 1. Therefore, Pt(z) = z2 − Tr(z) + N(z), which is

known to be the minimal polynomial of t whenever t ∈ Fq2 \ Fq. On the other
hand, when t ∈ Fq, then Pt(z) = z2 − 2tz + t2 which factorizes as (z − t)2.

Final Step. For the sake of simplicity we will assume in what follows that x
is full, that is to say that n = q2. Since the support x is known up to Galois
action, after applying some permutation to C , one can assume that
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– the q first entries of x are the elements of Fq;
– in the q2− q remaining entries, two conjugated elements a, aq of Fq2 \Fq are

consecutive entries in x.

Next, we compute a vector x′ ∈ Fq2

q2 such that for all 0 � i < q2, the minimal

polynomial of x′i equals that of xi. Thus, x
′ is the image of x by a product of

transpositions with pairwise disjoint supports. Moreover, the possible supports
for these transpositions are pairs (i, i+ 1) such that xq

i = xi+1. We denote by τ
this permutation. Its matrix is of the form

Rτ
def
=

(
Iq (0)
(0) B

)
, (16)

where B ∈Mq2−q(Fq) is 2× 2–block diagonal with blocks of the form

(
1 0
0 1

)
or(

0 1
1 0

)
.

From Proposition 6(iii), G
(
x′, γq+1

)
= u � Ar(q+1)(x

′,1) for some vector u
with no zero entry. Therefore, if we denote by Du the diagonal matrix whose
diagonal entries are those of u, we see that

CRτDu = Ar(q+1)(x
′,1). (17)

Thus, since x′ is known, we can recover τ and u by solving

Problem 2. Compute the space of matrices M of the form

M =

(
E (0)
(0) F

)
such that E is diagonal, F si 2× 2 blockdiagonal and which satisfy

CM ⊆ Ar(q+1)(x
′,1). (18)

The solution space is computed by solving a linear system whose unknowns are
the entries of M. Since M is block diagonal, the number of unknowns is linear
in n while the number of equations is dim(C )×dim(Ar(q+1)(x

′,1)⊥) = k(n−k)
and hence is quadratic in n. Therefore, the solution space will have a very low
dimension. Experimentally, this dimension is observed to be 2. Therefore, by
exhaustive search in this low-dimensional solution space one finds easily a matrix
M of the form RD, where R is a permutation matrix and D is invertible and
diagonal. This yields u and τ and hence x and the description of C as an
alternant code.

6 Improvement of the Attack

For some parameters, the computation of the filtration up to C a(q+1) or actually
up to C a(q − r) (thanks to Theorem 3 (iii)) is not possible, while it is still
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Algorithm 2. Algorithm of the attack

Compute C 0(q + 1), C 1(q + 1) using Algorithm 1.
L0 ← List of candidates for xq+1

0 (Obtained by solving System (S0) in (13))
L1 ← List of candidates for (x1 − 1)q+1 (Obtained by solving System (S1) in (13))
M0 ← 0
while M0 = 0 and L0 �= ∅ do
Pick a random element a0 in L0.
a1 ← φ(a0){where φ is the map obtained thanks to Proposition 14}
L0 ← L0 \ {a0}
L1 ← L1 \ {a1}
Compute the minimal polynomials Pxi of the positions using Lemma 5.
Compute, an arbitrary vector x′ as explained in Final Step.
V ← Space of solutions of Problem 2.
if dimV > 0 and ∃M ∈ V of the form RD as in Final Step then

M0 ← M
end if

end while
if M0 = 0 then

return “error”
else
Recover x and u from M as described in Final Step.
return x,u

end if

possible to compute the filtration up to C a(q + 1 − s) for some s satisfying
r + 1 < s � (q + 1)/2. This for instance what happens for codes over F32, with
t = 4. In such situation, C a(s) is known since by assumption s � q + 1 − s
and then, we can compute C a(−s) from the knowledge of Ca and C a(s). This
computation consists in solving a problem very similar to Problem 1. Then, as a
generalization of Proposition 10, we have (xa−xa)

−(q+1)�C a(q+1−s) ⊆ C a(−s)
and the rest of the attack runs in a very same manner.

7 Complexity and Implementation

In what follows, by “O(P (n))” for some function P : N→ R, we mean “O(P (n))
operations in Fq”. We clearly have n � q2 and we also assume that q = O(

√
n).

7.1 Computation of a Code Product

Given two codes A ,B of length n and respective dimensions a and b, the com-
putation of A �B consists first in the computation of a generator matrix of size
ab×n whose computation costs O(nab) operations. Then, the Gaussian elimina-
tion costs O(nabmin(n, ab)). Thus, the cost of Gaussian elimination dominates
that of the construction step. In particular, for a code A of dimension k � √n,
the computation of A �2 costs O(n2k2). Thanks to Proposition 12, one shows
that the dominant part of the resolution of Problem 1, consists in computing
A �B⊥ and hence costs O(na(n− b)min(n, a(n− b))).
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7.2 Computation of the Filtration

Let us first evaluate the cost of computing C a,I(s+1) from C a,I(s). Equations
(9) to (12) suggest that the dimension of C a,I(s) used to compute the filtration
is in O(

√
n). From §7.1, the computation of the square of C a,I(s) costs O(n3)

operations in Fq. Then, the resolution of Problem 12 in the context of Lemma 4,
costs O(na(n − b)min(n, a(n − b))), where a = dimC a,I(s) = O(

√
n) and b =

dimAr′(xI∪{0},y). We have n− b = O(n), hence we get a cost of O(n3
√
n).

The heuristic below Proposition 12, suggests that we need to perform this
computation for O(

√
n) choices of I. Since addition of codes is negligible com-

pared to O(n3√n) this leads to a total cost of O(n4) for the computation of
C a(s + 1). This computation should be done q + 1 times (actually q − r times
from Theorem 3 (iii)) and, we assumed that q = O(

√
n). Thus, the computation

of C a(q + 1) costs O(n4√n).

7.3 Other Computations

The resolution of Problems (13) in Step 2, costs O(n4) (see (14)). Since the
solution spaces D and D ′ in (14) have Fq–dimension 4, the exhaustive search
in them costs O(q4) = O(n2) which is negligible. The computation of the map
φ and that of minimal polynomials is also negligible. Finally, the resolution of
Problem 2 costs O(n4) since it is very similar to Problem 1. Since Final step
should be iterated q2−n+1 times in the worst case, we see that the part of the
attack after the computation of the filtration costs at worst O(n5). Thus, the
global complexity of the attack is in O(n5) operations in Fq.

7.4 Implementation

This attack has been implemented with Magma [9] and run over random exam-
ples of codes corresponding to the seven entries [6, Table 1] for which m = 2 and
r > 3. For all these parameters, our attack succeeded. We summarize here the
average running times for at least 50 random keys per 4–tuple of parameters,
obtained with an Intel R© Xeon 2.27GHz.

(q, n, k, r) (29,781, 516,5) (29, 791, 575, 4) (29,794,529,5) (31, 795, 563, 4)

Average time 16min 19.5min 15.5min 31.5min

(q, n, k, r) (31,813, 581,4) (31, 851, 619, 4) (32,841,601,4)

Average time 31.5min 27.2min 49.5min

Remark 4. In the above table the code dimensions are not the ones mentioned in
[6]. What happens here is that the formula for the dimension given [6, p.153,§1]
is wrong for such cases: it understimates the true dimension for wild Goppa
codes over quadratic extensions when the degree r of the irreducible polynomial
γ is larger than 2 as shown by Proposition 6 (ii).
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All these parameters are given in [6] with a 128-bit security that is measured
against information set decoding attack which is described in [6, p.151, Informa-
tion set decoding §1] as the “top threat against the wild McEliece cryptosystem
for F3, F4, etc.”. It should be mentioned that these parameters are marked in
[6] by the biohazard symbol � (together with about two dozens other parame-
ters). This corresponds, as explained in [6], to parameters for which the number
of possible monic Goppa polynomials of the form γq−1 is smaller than 2128.
The authors in [6] choose in this case a support which is significantly smaller
than qm (q2 here) in order to avoid attacks that fix a support of size qm and
then enumerate all possible polynomials. Such attacks exploit the fact that two
Goppa codes of length qm with the same polynomial are permutation equivalent.
We recall that the support-splitting algorithm [42], when applied to permutation
equivalent codes, generally finds in polynomial time a permutation that sends
one code onto the other. The authors of [6] call this requirement on the length
the second defense and write [6, p.152].

“The strength of the second defense is unclear: wemight be the first to ask whether
the support-splitting idea can be generalized to handle many sets {a1, . . . , an} 2 si-
multaneously, and we would not be surprised if the answer turns out to be yes.”
The authors also add in [6, p.154,§1] that “the security of these cases 3 depends on
the strength of the second defense discussed in Section 6”. We emphasize that our
attack has nothing to do with the strength or a potential weakness of the second
defense. Moreover, it does not exploit at all the fact that there are significantly less
than 2128 Goppa polynomials. This is obvious from the way our attack works and
this can also be verified by attacking parameters which were not proposed in [6]
but for which there are more than 2128 monic wild Goppa polynomials to check.
As an illustration, we are also able to recover the secret key in an average time of
24 minutes when the public key is a code over F31, of length 900 and with a Goppa
polynomial of degree 14. In such case, the number of possible Goppa polynomials
is larger than 2134 and according to Proposition 6, the public key has parameters
[n = 900, k � 228, d � 449]31. Note that security of such a key with respect to
information set decoding [41] is also high (about 2125 for such parameters).

8 Conclusion

The McEliece scheme based on Goppa codes has withstood all cryptanalytic at-
tempts up to now, even if a related system based on GRS codes [38] was success-
fully attacked in [44]. Goppa codes are subfield subcodes of GRS codes and it was
advocated that taking the subfield subcode hides a lot about the structure of the
underlying code and also makes these codes more random-like. This is sustained
by the fact that the distance distribution becomes indeed random [29] by this op-
eration whereas GRS codes behave differently from random codes with respect to
this criterion.We provide the first example of a cryptanalysis which questions this
belief by providing an algebraic cryptanalysis which is of polynomial complexity

2 {a1, . . . , an} means here the support of the Goppa code.
3 Meaning here the cases marked with �.
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and which applies to many “reasonable parameters” of a McEliece scheme when
the Goppa code is the Fq-subfield subcode of a GRS code defined over Fq2 .

It could be argued that this attack applies to a rather restricted class of Goppa
codes, namely wild Goppa codes of extension degree two. This class of codes also
presents certain peculiarities as shown by Proposition 6 which were helpful for
mounting an attack. However, it should be pointed out that the crucial ingredient
which made this attack possible is the fact that such codes could be distinguished
from random codes by square code considerations. A certain nested family of sub-
codes was indeed exhibited here and it turns out that shortened versions of these
codes were related together by the star product. This allowed to reconstruct the
nested family and from here the algebraic description of the Goppa code could
be recovered. The crucial point here is really the existence of such a nested fam-
ily whose elements are linked together by the star product. The fact that these
codes were linked together by the star product is really related to the fact that
the square code of certain shortened codes of the public code were of unusually
low dimension which is precisely the fact that yielded the aforementioned distin-
guisher. This raises the issue whether other families of Goppa codes or alternant
codes which can be distinguished from random codes by such square considera-
tions [17] can be attacked by techniques of this kind. This covers high rate Goppa
or alternant codes, but also other Goppa or alternant codes when the degree of
extension is equal to 2. All of them can be distinguished from random codes by
taking square codes of a shortened version of the dual code.
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Abstract. Decomposition-based index calculus methods are currently
efficient only for elliptic curves E defined over non-prime finite fields
of very small extension degree n. This corresponds to the fact that the
Semaev summation polynomials, which encode the relation search (or
“sieving”), grow over-exponentially with n. Actually, even their compu-
tation is a first stumbling block and the largest Semaev polynomial ever
computed is the 6-th. Following ideas from Faugère, Gaudry, Huot and
Renault, our goal is to use the existence of small order torsion points
on E to define new summation polynomials whose symmetrized expres-
sions are much more compact and easier to compute. This setting allows
to consider smaller factor bases, and the high sparsity of the new sum-
mation polynomials provides a very efficient decomposition step. In this
paper the focus is on 2-torsion points, as it is the most important case in
practice. We obtain records of two kinds: we successfully compute up to
the 8-th symmetrized summation polynomial and give new timings for
the computation of relations with degree 5 extension fields.

Keywords: ECDLP, elliptic curves, decomposition method, index cal-
culus, Semaev polynomials, multivariate polynomial systems, invariant
theory.

1 Introduction

In the past decade, the resolution of the discrete logarithm problem (DLP) on
elliptic curves defined over extension fields has made important theoretical ad-
vances. Besides transfer attacks such as GHS [7], a promising approach is the
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decomposition-based index calculus method pioneered by Gaudry and Diem [6,2],
following ideas from Semaev [13]. As in any index calculus, this method is com-
posed of two main steps: the relation search during which relations between
elements of a factor base are collected, and the linear algebra stage during which
the discrete logarithms are extracted using sparse matrix techniques. Since this
second step is not specific to curve-based DLP, this article mainly focuses on the
relation search.

In the standard decomposition method, relations are obtained by solving, for
given points R ∈ E(Fqn) related to the challenge, the equation

R = P1 + · · ·+ Pn, Pi ∈ F (1)

where F ⊂ E(Fqn) is the factor base (this is the so-called point decomposition
problem). The resolution of this problem relies critically on the Weil restriction
structure of E relative to the extension Fqn/Fq. In almost all preceding works
[6,11,4], the usual factor base is defined as F = {P ∈ E(Fqn) : x(P ) ∈ Fq},
where x(P ) stands for the abscissa of P , possibly after a change of equation
of E. Then (1) translates algebraically using the Semaev polynomial Semn+1 ∈
Fqn [X1, . . . , Xn+1] as

Semn+1(x1, . . . , xn, x(R)) = 0 (2)

where the unknowns are xi = x(Pi) ∈ Fq. It is worth noticing that the resolution
of this equation is the keystone of the relation search step. Thus, computing Se-
maev polynomials for larger values of n or finding ways to increase the efficiency
of this resolution will undoubtedly enhance the practical impact of decomposi-
tion attacks and is the main goal of this paper.

Equation (2) is equivalent through a restriction of scalars to a multivariate
polynomial system of n equations and n variables over Fq, see [6]. The resolu-
tion of many instances of the multivariate polynomial systems arising from (2)
(using for example Gröbner bases) is by far the main bottleneck of this index
calculus approach. Recently Faugère et al. [4] have proposed to speed up the
relation search using a 2-torsion point T naturally present on elliptic curves in
the Edwards or Jacobi models. Their approach is based on the observation that
in these models, the translation by T corresponds to a simple symmetry of the
curve. This implies that the corresponding multivariate polynomial systems also
admit an additional symmetry, allowing an easier resolution.

In this work, this approach is taken a step further as we investigate how to take
advantage of the existence of some small order torsion points. To achieve this, we
generalize ideas from Diem [2] who replaces the map x : E → Fqn by morphisms
ϕ : E → P1 of degree two. More precisely, we highlight new morphisms ϕ which
let us take into account the existence of a torsion point T of small order m. The
main idea relies on the construction of morphisms ϕ of degree divisible by m that
satisfy the equivariance property ϕ ◦ τT = fT ◦ ϕ for some homography (i.e. an
automorphism of P1) fT ∈ PGL2(Fq), where τT stands for the translation-by-T
map P �→ P+T . A first important practical consequence of this setting is that the
corresponding summation polynomials admit an additional invariance property,
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besides the classical one under any permutation of the variables: this comes
from the fact that if (P1, . . . , Pn) ∈ Fn is a solution to the point decomposition
problem (1), then (P1 + [k1]T, . . . , Pn + [kn]T ) is also a solution as soon as∑

i ki = 0 [m]. Using invariant theory, it is possible to express the summation
polynomials in term of fundamental invariants. This new representation of the
summation polynomials makes them very sparse and much easier to compute,
and in particular we succeeded in computing new summation polynomials. This
sparsity also leads to a significant simplification of the multivariate systems
arising from the analog of (2). A second consequence is that the associated
factor base F = {P ∈ E : ϕ(P ) ∈ P1(Fq)} becomes invariant under translations
by multiples of T : this allows a division of the size of the factor base by the order
m of T , thus speeding up by a factor m2 the linear algebra step.

We begin in the next section by defining the summation polynomials asso-
ciated to arbitrary morphisms ϕ : E → P1 and explaining their use for index
calculus. In section 3, we investigate the equivariance property satisfied by ϕ
and explain the expected benefit when the small order points are accounted for.
Then we focus in Section 4 on the fundamental case of degree 2 morphisms
and their equivariance property with respect to translations by order 2 points.
We finally give explicit examples of symmetrized summation polynomials and
applications to the point decomposition problem on elliptic curves defined over
degree 5 extension fields.

2 Summation Polynomials and Index Calculus

Let E be a given elliptic curve defined over an extension Fqn of degree n > 2
of Fq, and let ϕ : E → P1 be a morphism defined over Fqn . We recall that in
order to perform a decomposition-based index calculus, we consider the factor
base F = {P ∈ E : ϕ(P ) ∈ P1(Fq)} which has approximately q elements, and
try to find relations (decompositions) of the form R = P1 + · · · + Pn, Pi ∈ F
where R is a given point related to the challenge. Alternatively, it is possible to
consider other types of relations, for instance of the form R = P1 + · · · + Pn−1

(see [11]) or of the form P1 + · · ·+ Pn+2 = O (see [10]). To do so, we introduce
the summation polynomials related to ϕ (which can be seen as a generalization
of those described in [2]):

Definition 1. Let E|K be an elliptic curve defined over a field K and ϕ : E →
P1 be a non constant morphism. A polynomial S ∈ K[X1, . . . , Xn] is called an
n-th summation polynomial associated to ϕ if it satisfies

S(a1, . . . , an) = 0⇔ ∃Pi ∈ E(K̄), ϕ(Pi) = ai and
n∑

i=1

Pi = O . (3)

Note that in the following, we will always explicitly identify P1(K) with K ∪
{∞}, so that it makes sense to consider ϕ(P ) as an element of K (unless P
is a pole of ϕ). Also note that this definition, and in fact a large part of what
follows, is actually independent of the index calculus context. A first result is
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that summation polynomials always exist and are uniquely determined by the
considered morphism.

Proposition 2. For a given non-constant morphism ϕ : E → P1 defined over a
field K, the set of polynomials satisfying (3) is of the form {cP k

ϕ,n : c ∈ K∗, k ∈
N∗} where Pϕ,n ∈ K[X1, . . . , Xn]. The polynomial Pϕ,n is irreducible, unique up
to multiplication by a constant, symmetric when n ≥ 3, and is called the n-th
summation polynomial associated to ϕ.

Proof. Let ψ : En−1 → Kn be the rational map such that ψ(P1, . . . , Pn−1) =
(ϕ(P1), . . . , ϕ(Pn−1), ϕ(−P1 − · · · − Pn−1)). Then clearly ψ(En−1) is irreducible
since En−1 is irreducible, and has dimension n − 1 since ϕ is surjective. This
classically implies the existence of an irreducible polynomial Pϕ,n, unique up to
a multiplicative constant, such that ψ(En−1) = V (Pϕ,n), and it is easy to check
that it satisfies (3).

To prove that Pϕ,n is symmetric, we consider the morphism c from the group
of permutations of n elements Sn to K∗, such that c(σ) is the constant satis-
fying P σ

ϕ,n(X1, . . . , Xn) = c(σ)Pϕ,n(X1, . . . , Xn). This morphism is well-defined
since P σ

ϕ,n(X1, . . . , Xn) = Pϕ,n(Xσ(1), . . . , Xσ(n)) is clearly an irreducible solu-
tion of (3). It is well-known that the only morphisms from Sn to a commutative
group are the identity map or the signature map; this means that Pϕ,n is sym-
metric or alternating. But this last case is incompatible with (3) as soon as n ≥ 3:
indeed, let a, a3 . . . , an−1 ∈ K and B = {P1 + · · · + Pn−1 : ϕ(P1) = ϕ(P2) =
a, ϕ(Pi) = ai for i ≥ 3}. This set is obviously finite, of cardinality bounded
by deg(ϕ)n−1. However if Pϕ,n is alternating, then Pϕ,n(a, a, a3, . . . , an−1, an)
is always zero, and (3) implies that for all an ∈ K̄, there exist P ∈ B and
Pn ∈ E(K̄) such that ϕ(Pn) = an and P + Pn = O; thus B is infinite, which is
a contradiction.

It is always possible to compute summation polynomials inductively as it
is done for the classical Semaev polynomials by using resultants. For ϕ(P ) =
x(P ) (in a Weierstrass model) we recover of course the polynomials introduced
by Semaev [13]. Heuristically, it is possible to estimate the degree of Pϕ,n in
each variable (which is clearly the same for all variables by symmetry). Let
(a1, . . . , an−1) ∈ K̄n−1. The set of solutions of Pϕ,n(a1, . . . , an−1, Xn) = 0
can be obtained as in the following diagram, by considering the preimage A
of {(a1, . . . , an−1)} by ϕn−1 and taking its image by ϕ ◦ (−

∑
).

{(P1, . . . , Pn−1) ∈ E(K̄)n−1 : ϕ(Pi) = ai} {−(P1 + · · ·+ Pn−1) : ϕ(Pi) = ai}

{an : Pϕ,n(a1, . . . , an−1, an) = 0}{(a1, . . . , an−1)}

−
∑

ϕϕ× · · · × ϕ

If ϕ is separable, then for most (n − 1)-tuples (a1, . . . , an−1), the cardinality
of A = {(P1, . . . , Pn−1) ∈ E(K̄)n−1 : ϕ(Pi) = ai} is (degϕ)n−1. The map
−
∑

: En−1 → E is of course not injective, but heuristically, if ϕ is a morphism
with no special property, the restriction of −

∑
to A should be injective in



44 J.-C. Faugère et al.

general and the same holds for ϕ restricted to −
∑

(A). For a random map ϕ,
the expected degree of Pϕ,n in each variable should be (degϕ)n−1. This is in any
case an upper bound on the degree of Pϕ,n. In the applications we need to be
able to solve (4) below easily, and so we want the degree of Pϕ,n to be rather
small; therefore most of this article focuses on the case where degϕ = 2.

We detail two important cases where the degree is actually smaller than the
bound given above.
1. The first case is when ϕ(P ) = ϕ(−P ) and occurs in particular for Semaev

polynomials (i.e. when ϕ(P ) = x(P )). Then it is clear that (P1, . . . , Pn−1) ∈
A if and only if (−P1, . . . ,−Pn−1) ∈ A, thus −

∑
(A) is stable under [−1] ∈

End(E) and ϕ|−
∑

(A) is 2-to-1. An upper bound on the degree Pϕ,n is then
(degϕn−1)/2.

2. The second case is when ϕ factors through an isogeny ψ : E → E′, i.e.
ϕ = ϕ′ ◦ ψ where ϕ′ : E′ → P1. Then it is easy to check that Pϕ,n = Pϕ′,n,
and an upper bound on the degree is given by (degϕ′)n−1.

In this second case, it is actually equivalent to perform the decomposition attack
on E using ϕ or on E′ using ϕ′. For this reason, we will usually only consider
morphisms that do not factor through an isogeny.

For index calculus purposes, in order to compute a decomposition R = P1 +
· · ·+Pn, Pi ∈ F , we use the (n+1)-th summation polynomial Pϕ,n+1 associated
to ϕ and try to find a solution (a1, . . . , an) ∈ (Fq)

n of the equation

Pϕ,n+1(a1, . . . , an, ϕ(−R)) = 0 . (4)

We then look for points P1, . . . , Pn ∈ E(Fqn) such that ϕ(Pi) = ai and P1+ · · ·+
Pn = R. To solve the equation (4), we take the scalar restriction with respect
to a linear basis of the extension Fqn/Fq, leading to a multivariate polynomial
system defined over Fq.

3 Action of Torsion Points

3.1 Equivariant Morphisms

We investigate in this section how the existence of a rational m-torsion point on
an elliptic curve E can speed up the decomposition attack. Let T ∈ E[m]; as
mentioned in the introduction, our goal is to construct equivariant morphisms
ϕ : E → P1, i.e. such that there exists fT ∈ Aut(P1) satisfying ϕ(P + T ) =
fT (ϕ(P )) for all P ∈ E: ϕ ◦ τT = fT ◦ ϕ.

Let d be the order of fT ; clearly d divides m. If d is strictly smaller than m,
then ϕ ◦ τ[d]T = f◦dT ◦ ϕ = ϕ. This implies that ϕ can be factorized through the
quotient isogeny π : E → E/〈[d]T 〉 as ϕ = ϕ′ ◦ π. In particular, the relation
search on E using ϕ and T is equivalent to the relation search on E′ = E/〈[d]T 〉
using ϕ′ and π(T ) ∈ E′[d], which does not fully exploit the property of T being
a m-torsion point. This condition that the homography fT has order m implies
some restriction about the degree of ϕ.
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Proposition 3. Let T ∈ E[m] be an m-torsion point and fT ∈ Aut(P1) a
homography of order m. Suppose there exists ϕ : E → P1 such that ϕ◦τT = fT ◦ϕ.
Then m divides the degree of ϕ.

Proof. Let us denote eψ(P ) the ramification index of a curve morphism ψ :
C1 → C2 at a point P ∈ C1. Then for any point P ∈ E, we have eϕ◦τT (P ) =
eτT (P ) · eϕ(τT (P )) = eϕ(P+T ) and eϕ◦τT (P ) = efT ◦ϕ(P ) = eϕ(P )·efT (ϕ(P )) =
eϕ(P ) since fT and τT are isomorphisms. In particular ϕ has the same ramifi-
cation index at P and its translates P + T, . . . , P + [m− 1]T . We consider now
a fixed point z ∈ P1 of fT (which always exists in an extension of K). Then
ϕ−1({z}) is stable under translation by T , so that for each point P in ϕ−1({z}),
its m translates P, P + T, . . . , P + [m − 1]T also belong to ϕ−1({z}) and have
the same ramification index. Since deg(ϕ) =

∑
P∈ϕ−1(z) eϕ(P ), the degree of ϕ

is necessarily a multiple of m.

More generally, if E(K) has a subgroup G of small order, we would like to
find an equivariant morphism ϕ : E → P1 such that for any T ∈ G, there
exists fT ∈ Aut(P1(K)) � PGL2(K) such that ϕ ◦ τT = fT ◦ ϕ. Then the
map χ : T �→ fT is a group morphism from G to PGL2(K) that we want to
be injective by the above remark (since otherwise ϕ would factorize through
E/ker(χ)). Unfortunately the set of possible subgroups relevant for our purpose
is very restricted.

Proposition 4. Let G be a finite subgroup of E(K) and χ : G→ PGL2(K) an
injective group morphism. Then G is of one of the following forms:

1. G = E[2],
2. G = 〈T 〉 where T ∈ E[m] with m coprime to char(K),
3. G = E[char(K)].

Proof. Since χ is injective, the commutative group G is isomorphic to a subgroup
of PGL2(K). It follows from the list in [14] that the only finite commutative
subgroups of PGL2(K) of order prime to the characteristic are either cyclic or
isomorphic to Z/2Z × Z/2Z; furthermore, it is easy to see that PGL2(K) has
no element whose order is a strict multiple of the characteristic. Thus the only
subgroups of E(K) that are of interest for our construction are either E[2] or
cyclic, generated by a point of order char(K) or prime to char(K).

In what follows, we only deal with the case where the homography fT has order
exactly m. Besides small torsion points, we would also like to take into account
the automorphisms of the curve E; for most curves this only means the involution
[−1] : P �→ −P . The group of permutations of E generated by the translation
by T and [−1] is isomorphic to the dihedral group Dm = Z/mZ � Z/2Z, so an
equivariant morphism ϕ (if it exists) would give rise to an action on P1, i.e. a
group morphism from Dm to PGL2(K). As noted above, this map should be
injective when restricted to the subgroup Z/mZ generated by τT , since otherwise
ϕ can be factorized through an isogeny. For m > 2, it is an easy exercise to show
that such a group morphism is necessarily injective; in contrast, for m = 2 it is
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possible to impose the additional property ϕ(−P ) = ϕ(P ) for all P ∈ E. Note
that in the finite field case, PGL2(Fq) has a subgroup isomorphic to Dm if and
only if m|(q − 1) or m|(q + 1) or m = char(Fq) when m > 2.

3.2 Reducing the Factor Base

We consider an elliptic curve E defined over Fqn with an m-torsion point T and
denote by ∼ the equivalence relation given by P ∼ P ′ if and only if P−P ′ ∈ 〈T 〉.
Assume that there exists an equivariant morphism ϕ : E → P1(Fqn) such that
the associated homography fT is in PGL2(Fq). Then the associated choice of
factor base F = {P ∈ E(Fqn) : ϕ(P ) ∈ P1(Fq)} is invariant with respect to the
translation by T , i.e. if P ∼ P ′ and P ∈ F then P ′ ∈ F . Therefore, it is possible
to divide the size of the factor base by m, by considering a reduced factor base
F ′ that includes only one element for each equivalence class of elements of F .

This modifies slightly the relation search. Each decomposition R = P1 +
· · · + Pn, Pi ∈ F can be rewritten as R = (Q1 + [k1]T ) + · · · + (Qn + [kn]T )
with 0 ≤ ki < m and where Qi ∈ F ′ satisfies Qi ∼ Pi. We then just store
the essentially equivalent relation [m]R = [m]Q1 + · · ·+ [m]Qn. The important
fact is that subsequently we only need about #F/m relations to compute the
discrete logarithms, and that the dimension of the relation matrix used in the
resulting linear algebra step is also divided by m providing a speed-up by a factor
m2. On the other hand, this decreases the probability that a random point R
decomposes by a factor mn−1 (there are more tuples in each preimage of the
map Fn → E, (P1, . . . , Pn) �→

∑
i Pi, so there are less points in the image),

but this is more than compensated by the improved resolution of the associated
polynomial systems as explained below.

Of course, if ϕ is also equivariant with respect to the automorphism [−1] then
it is possible to further reduce the factor base by 2. If m = 2 and E has full
2-torsion it is often possible to construct a morphism ϕ equivariant with respect
to [−1] and translations by any 2-torsion points, thus allowing a division by 8 of
the size of the factor base.

3.3 Symmetries of Summation Polynomials

We have seen in Prop.2 that the summation polynomials are always symmet-
ric for n ≥ 3. In particular, they can be expressed in terms of the elementary
symmetric polynomials e1, . . . , en in the variables X1, . . . , Xn. This allows a re-
duction of the size and the total degree of the summation polynomials, thus
simplifying their computation (for instance, it is possible to compute resultants
of already partially symmetrized polynomials as was done in [11]). More im-
portantly, this reduction has an impact on the resolution of the multivariate
polynomial systems: instead of solving (4), we rather consider the (partially)
symmetrized equation Pϕ,n+1(e1, . . . , en, ϕ(−R)) = 0, e1, . . . , en ∈ Fq. Of course,
this adds a simple desymmetrization step in order to recover the corresponding
solutions of (4) whenever they exist.
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This approach can be extended when ϕ is equivariant with respect to transla-
tions by an m-torsion point T . Let (a1, . . . , an) be a solution of Pϕ,n(a1, . . . , an) =
0, so that there exist points P1, . . . , Pn ∈ E(K̄) such that ϕ(Pi) = ai and

∑
Pi =

O. Then for any k1, . . . , kn such that m|
∑

ki, we have
∑

(Pi+[ki]T ) = O. Thus
Pϕ,n(f

k1

T (a1), . . . , f
kn

T (an)) = 0. In particular Pϕ,n(f
k1

T (X1), . . . , f
kn

T (Xn)) is also
a solution of (3), except that it is a rational function instead of a polynomial
if fT is not an affine homography. We will see that Pϕ,n, or an associated ra-
tional fraction Qϕ,n, is actually often invariant under this transformation; more
formally, and taking into account Prop.2, it is invariant under an action of the
group G = (Z/mZ)n−1�Sn. Then Pϕ,n, resp. Qϕ,n, belongs to the invariant ring
K[X1, . . . , Xn]

G or the invariant field K(X1, . . . , Xn)
G. In particular, it can be

expressed in terms of generators of the invariant ring or field allowing a further
reduction of the size and the total degree of the systems; this will be detailed
in the next section for m = 2. For index calculus purpose when K = Fqn , it is
necessary that these invariant generators lie in Fq(X1, . . . , Xn). This means that
the action of G restricts to an action on Fq(X1, . . . , Xn).

4 Summation Polynomials Associated to Degree Two
Morphisms

We consider the simplest case where ϕ has degree 2 (note that in this case ϕ is
necessarily separable).

Proposition 5. Let E be an elliptic curve defined over a field K with Weier-
strass coordinate functions x, y such that [K(E) : K(x)] = 2, and let ϕ : E → P1

be a morphism of degree 2. Then there exist a homography h ∈ PGL2(K̄) and a
point Q ∈ E(K̄) such that ϕ = h ◦ x ◦ τ−Q, i.e. ϕ(P ) = h(x(P −Q)).

Proof. Let R be the set of ramification points of ϕ, that is the set of points
P ∈ E such that the ramification index eϕ(P ) is strictly greater than 1. We
easily deduce from the Hurwitz formula that the set R is non empty. For a
given ramification point Q ∈ E, we consider a homography ψ ∈ Aut(P1) sending
the point ϕ(Q) to the point at infinity [1 : 0] of P1. Let τQ : E → E denote the
translation by Q, then the morphism ϕ′ = ψ◦ϕ◦τQ is ramified at O = [0 : 1 : 0].
In particular, since ϕ has degree 2, ϕ′ has a unique pole at O of order 2, so that
there exist a, b ∈ K such that ϕ′ = ax + b. This shows that there exists a
homography h ∈ Aut(P1) such that ϕ(P ) = h(x(P −Q)).

To compute the associated summation polynomial, it is easy to check that
the numerator of the rational fraction Semn+1(h

−1(X1), . . . , h
−1(Xn), x([n]Q))

where Semn+1 stands for (n+1)-th Semaev polynomial, satisfies the property (3).
In the case where Q = O or more generally Q ∈ E[n], the above expression can
be simplified by considering the numerator of Semn(h

−1(X1), . . . , h
−1(Xn)). The

degree of Pϕ,n in each variable is then equal to 2n−1 if Q /∈ E[n] and 2n−2

otherwise. For index calculus, it is clear that ϕ should be of the form h ◦ x: not
only is the degree of Pϕ smaller, but we also have ∀P ∈ E,ϕ(−P ) = ϕ(P ). As
mentioned above, this allows to reduce by a further 2 the size of the factor base.



48 J.-C. Faugère et al.

4.1 Speeding Up the Relation Search Using One 2-Torsion Point

It turns out that every degree 2 morphism satisfies an equivariance property
with respect to 2-torsion points; this is specific to the degree 2 case.

Lemma 6. Let E be an elliptic curve defined over K with a 2-torsion point T ,
and let ϕ : E → P1 be a morphism of degree 2. Then there exists fT ∈ PGL2(K)
such that ϕ(P + T ) = fT (ϕ(P )) for all P ∈ E.

Proof. In the special case of ϕ = x where x is a Weierstrass coordinate function
such that [K(E) : K(x)] = 2, the existence is given directly by the addition
formula on E. Let gT ∈ PGL2(K) be this homography such that x(P + T ) =
gT (x(P )) for all P ∈ E. For a more general morphism ϕ = h ◦ x ◦ τ−Q, the
homography fT = h ◦ gT ◦ h−1 satisfies the property.

In the remainder of this section, we denote by T a rational 2-torsion point,
ϕ : E → P1 a degree 2 rational map such that ϕ(P ) = ϕ(−P ), and fT the
involution of P1 such that ϕ(P + T ) = fT (ϕ(P )) for all P ∈ E.

Let W = {(P1, . . . , Pn) :
∑

Pi = O} ⊂ En. This subvariety has many
symmetries besides the action of the symmetric group. As mentioned above,
we consider the group G2 = (Z/2Z)n−1 � Sn, (called dihedral Coxeter group
in [4]). It is an abstract reflexion group, corresponding to the Coxeter diagram
Dn, and its elements will be denoted by ((ε1, . . . , εn), σ) ∈ {0; 1}n ×Sn where
ε1 + · · · + εn = 0 mod 2 (i.e. we explicitly identify G2 with a subgroup of the
group (Z/2Z)n �Sn of isometries of the hypercube). The group G2 acts on En

by ((ε1, . . . , εn), σ) · (P1, . . . , Pn) = ([ε1]T + Pσ(1), . . . , [εn]T + Pσ(n)) and leaves
W globally invariant.

The image of W by ϕn is V = V (Pϕ,n) ⊂ (P1)n, the set of zeroes of the
summation polynomial associated to ϕ. This set is also left globally invariant
by the rational action of G2 on (P1)n given by ((ε1, . . . , εn), σ) · (a1, . . . , an) =
(f ε1

T (aσ(1)), . . . , f
εn
T (aσ(n))). This means that for any g ∈ G2, P g

ϕ,n(X1, . . . , Xn) =
Pϕ,n(f

ε1
T (Xσ(1)), . . . , f

εn
T (Xσ(n))) is still a solution of (3), except that it is a

rational fraction and no longer a polynomial unless fT is affine. In particular,
the summation polynomials associated to ϕ have additional symmetries, that are
simple to handle only when fT is affine, i.e. when we stay within the framework
of polynomials and invariant rings.

Proposition 7. Assume the involution fT ∈ PGL2(K) affine. Then for n ≥ 3
the n-th summation polynomial Pϕ,n is invariant under the action of G2 i.e. for
all g = (ε, σ) ∈ G2, Pϕ,n(X1, . . . , Xn) = Pϕ,n(f

ε1
T (Xσ(1)), . . . , f

εn
T (Xσ(n))).

Proof. A special case of this proposition has already been proved in [4]; for the
sake of completeness, we rephrase the demonstration in our more general setting.
Since P g

ϕ,n is again an irreducible summation polynomial associated to ϕ, there
exist c(g) ∈ K∗ such that P g

ϕ,n = c(g)Pϕ,n. This gives us a morphism c : G2 =
(Z/2Z)n−1 �Sn → K∗ and from Prop.2 c(Sn) = 1. Let u = ((1, 1, 0, . . . , 0), e)
where e ∈ Sn is the neutral element, and v = (0, (1 2 3)). It is clear that G2 is
generated by u together with Sn, so that the image of c is completely determined
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by the value of u. Since u2 = 1, we have c(u) = ±1. Now an easy computation
shows that (uv)3 = 1, so 1 = c(uv)3 = c(u)3c(v)3 = c(u)3 = c(u).

This means that Pϕ,n ∈ K[X1, . . . , Xn]
G2 , the ring of invariants of G2. Since

the action of G2 is generated by pseudo-reflections, the Chevalley-Shephard-
Todd theorem states that K[X1, . . . , Xn]

G2 is itself a polynomial ring when the
characteristic of K is greater than n; we will show later that it is in fact true
in any characteristic. But first, we give a condition on E and T to assure the
existence of a degree 2 morphism ϕ such that the corresponding homography
fT is affine. Moreover when this condition is satisfied, we can take without
loss of generality fT equal to x �→ −x in odd characteristic or x �→ x + 1 in
characteristic 2.

Proposition 8. Let E be an elliptic curve defined over a field K.
(i) If char(K) = 2, then there exist T ∈ E(K)[2] and ϕ : E → P1 a degree 2
morphism such that ϕ(P + T ) = −ϕ(P ) and ϕ(−P ) = ϕ(P ) if and only if there
exist T ′ ∈ E[4] such that x(T ′) ∈ K. In this case T = [2]T ′ and the curve E has
an equation of the form y2 = x3 + ax2 + bx where T = (0, 0) and b is a square
in K; moreover, ϕ is of the form

λ
x(P ) +

√
b

x(P )−
√
b
,

for a choice of the square root of b and λ ∈ K.
(ii) If char(K) = 2 and j(E) = 0, then E admits an equation of the form
y2 + xy = x3 + ax2 + b with a unique non-trivial 2-torsion point T = (0,

√
b).

Then the morphisms ϕ such that ϕ(−P ) = ϕ(P ) and ϕ(P + T ) = ϕ(P ) + 1 are
of the form

b1/4

x(P ) + b1/4
+ λ, where λ ∈ K.

If char(K) = 2 and j(E) = 0, there is no non-trivial 2-torsion point.

Proof. (i) Suppose there exists a 2-torsion point T ∈ E(K)[2], then up to a
translation we can assume that T = (0, 0) and that E has an equation of the form
y2 = x3 + ax2 + bx. From the addition formula, we get x(P + T ) = gT (x(P )) =
b/x(P ). Let ϕ be a degree 2 morphism such that ϕ(−P ) = ϕ(P ). From Prop.5,
there exists h ∈ PGL2(K) such that ϕ = h ◦ x, and ϕ(P + T ) = fT (ϕ(P ))
where fT = h ◦ gT ◦ h−1. Thus we are looking for a homography h ∈ PGL2(K)
conjugating gT to z �→ −z. By considering the associated matrices or the set of
fixed points, it is easy to see that there exists such an h ∈ PGL2(K) if and only

if b is a square, and that all such h are of the form h(x) = λ
(

x−
√

b
x+

√
b

)−1

.

Now, if b is a square in K, then any of the points T ′ ∈ E(K̄) of abscissa ±
√
b

satisfies [2]T ′ = T , and are thus in E[4]. Reciprocally, if there exists T ′ ∈ E[4]
such that x(T ′) ∈ K, then [2]T ′ is in E(K)[2], and up to a translation E has an
equation as above with b square in K.
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(ii) It is already well-known that in characteristic 2 an elliptic curve has a non-
trivial 2-torsion point if and only if j(E) = 0. If E has an equation of the
form y2 + xy = x3 + ax2 + b and T = (0,

√
b), the addition formula gives

x(P + T ) = gT (x(P )) =
√
b/x(P ). Now in characteristic 2, there always exists

h ∈ PGL2(K) that conjugates the homography gT (x) =
√

b
x to x �→ x + 1, and

it is easy to see that all such h are of the form x �→ b1/4

x+b1/4
+ λ, λ ∈ K.

The first part of Prop.8 generalizes the results given in [4], where the morphism
ϕ is obtained as a projection onto a coordinate for curves in twisted Edwards
form. The fact that the morphism ϕ depends of a parameter λ ∈ K is important
for index calculus applications, since it allows to define different factor bases
depending on the choice of λ.

Remark 9. Lemma 6 shows that every degree 2 morphism satisfies an equiv-
ariance property ϕ(P + T ) = fT (ϕ(P )); the above proposition only describes the
cases for which fT is as simple as possible. In odd characteristic, about half of
the curves with a 2-torsion point have a coefficient b that is a square, and thus
satisfies directly the hypotheses of the proposition. However if the curve has full
2-torsion (i.e. a2−4b is a square) then it is 2-isogenous to a curve with a rational
4-torsion point, again satisfying the hypotheses. Overall, this proposition applies
in odd characteristic to about 3/4 of curves with a 2-torsion point.

4.2 Action of the Full 2-Torsion

In this subsection, K is a field of characteristic different from 2. Let E be an
elliptic curve having a complete rational 2-torsion (in the finite field case, this
is equivalent up to a 2-isogeny to the cardinality of E being divisible by 4). Let
T0, T1 and T2 = T0+T1 be the three non-trivial 2-torsion points of E. According
to Lem.6, for any degree 2 morphism ϕ, there exist homographic involutions f0,
f1 and f2 = f0 ◦f1 such that ∀P ∈ E, ∀i ∈ {0; 1; 2}, ϕ(P+Ti) = fi(ϕ(P )). In the
same way as before, we can consider the action on (P1)n of the reflexion group
G4 = (Z/2Z×Z/2Z)n−1�Sn seen as a subgroup of (Z/2Z×Z/2Z)n�Sn which
is given by

((ε1, . . . , εn), (ε
′
1, . . . , ε

′
n), σ)·(a1, . . . , an) = (f ε1

0 ◦f
ε′1
1 (aσ(1)), . . . , f

εn
0 ◦f

ε′n
1 (aσ(n))) .

This means that for any g ∈ G4, the rational fraction

P g
ϕ,n(X1, . . . , Xn) = Pϕ,n(f

ε1
0 ◦ f ε′1

1 (Xσ(1)), . . . , f
εn
0 ◦ f ε′n

1 (Xσ(n)))

satisfies again (3). But it is no longer possible that P g
ϕ,n is a polynomial for all

g ∈ G4. Indeed, f0, f1 and f2 must commute because of the commutativity of
the group law on E, but it is easy to check that two distinct affine involutions
cannot commute. Thus the best we can hope is that one of the three involutions
is affine, without loss of generality equal to z �→ −z; then the two remaining
involutions are necessarily of the form z �→ c/z and z �→ −c/z since they all
commute. We give below a condition for the best case where c = 1.
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Proposition 10. Let E be an elliptic curve in twisted Legendre form y2 =
cx(x − 1)(x − λ). Let Δ0 = λ, Δ1 = (1 − λ) and Δ2 = −λ(1 − λ). Then
there exists a degree 2 morphism ϕ such that ϕ(−P ) = ϕ(P ) and the associated
involutions are {f0; f1; f2} = {z �→ −z; z �→ 1

z ; z �→ − 1
z} if and only if there are

at least two squares among {Δ0;Δ1;Δ2}.

Proof. Let T0 = (0, 0), T1 = (1, 0) and T2 = (λ, 0) be the non-trivial 2-torsion
points of E. Then the abscissa of P + Ti is equal to gi(xP ), where

g0(x) =
λ

x
, g1(x) =

x− λ

x − 1
, g2 = g0 ◦ g1 = g1 ◦ g0 .

To determine if these involutions can be conjugated to z �→ −z, z �→ 1
z and

z �→ − 1
z , we look at their fixed points. Let Fixi be the set of fixed points

of gi for i = 0, 1, 2; then Fixi is non empty if and only Δi is a square. As
{0;∞} and {±1} are the set of fixed points of z �→ −z and z �→ 1

z respectively,
we deduce easily that there must be at least two squares among {Δ0;Δ1;Δ2}.
Reciprocally, if there are two squares among {Δ0;Δ1;Δ2}, then it is possible to
find a homography h ∈ PGL2(K) sending the fixed points of the corresponding
involutions to {0;∞} and {±1}, and we can take ϕ(P ) = h(x(P )).

Remark 11. The condition that Δi is a square in K is equivalent to the exis-
tence of a 4-torsion point T ′

i with a rational x-coordinate such that [2]T ′
i = Ti.

If p ≡ 1 [4] then Δ0Δ1Δ2 is a square so there are exactly one or three squares
among {Δ0;Δ1;Δ2}, and heuristically the latter should occur for about one curve
out of four. Similarly if p ≡ 3 [4] then there are exactly zero or two squares among
the Δi, the latter occurring heuristically for 3/4 of the curves. Overall about half
of the curves in twisted Legendre form will satisfy the hypotheses of the above
proposition. For the remaining curves one has to work with degree 2 morphisms
whose equivariance property has a less simple expression.

Proposition 12. Suppose that the hypotheses of Prop.10 are satisfied. Then the
rational fraction

Qϕ,n(X1, . . . , Xn) =
Pϕ,n(X1, . . . , Xn)

(X1 · · ·Xn)2
n−3

is invariant under the action of G4 for n ≥ 3, i.e. for all g = ((ε, ε′), σ) ∈ G4,

Qϕ,n(X1, . . . , Xn) = Qϕ,n(f
ε1
0 ◦ f ε′1

1 (Xσ(1)), . . . , f
εn
0 ◦ f ε′n

1 (Xσ(n)))

= Qϕ,n((−1)ε1X(−1)ε
′
1

σ(1) , . . . , (−1)εnX(−1)ε
′
n

σ(n) ) .

Proof. From Prop.7 the polynomial Pϕ,n is invariant under the action of G2

(identified with the subgroup of G4 whose elements are of the form (ε, 0, σ)),
and it is also obviously true for the denominator (X1 · · ·Xn)

2n−3

. Since G4 is
generated by G2 and u′ = (0, (1, 1, 0, . . . , 0), e) (where e ∈ Sn is the neutral
element), it is sufficient to check that Qu′

ϕ,n = Qϕ,n. The degree of Pϕ,n is 2n−2 in
each variable, so P ′(X1, . . . , Xn) = (X1X2)

2n−2

Pϕ,n(1/X1, 1/X2, X3, . . . , Xn)is
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an irreducible polynomial of K[X1, . . . , Xn] satisfying (3); in particular, there
exists c ∈ K such that P ′ = c · Pϕ,n and consequently

Qu′
ϕ,n(X1, . . . , Xn) = Qϕ,n(1/X1, 1/X2, X3, . . . , Xn) = c ·Qϕ,n(X1, . . . , Xn) .

Now the same reasoning as in the proof of Prop.7 shows that c = 1.

4.3 Invariant Fields and Invariant Rings

We have seen that when the action of the 2-torsion points is taken into account
in the choice of the morphism ϕ, the associated summation polynomial Pϕ,n and
rational fraction Qϕ,n belong respectively to the invariant ring K[X1, . . . , Xn]

G2

and the invariant field K(X1, . . . , Xn)
G4 . Hilbert’s finiteness theorem implies

that the invariant ring K[X1, . . . , Xn]
G2 is finitely generated, and Galois theory

states that K(X1, . . . , Xn)
G4 is a subfield of K(X1, . . . , Xn) with correspond-

ing extension degree |G4| = 4n−1n!. The goal of this section is to determine
generators for these two structures.

We recall that the action of G2 on K[X1, . . . , Xn] and K(X1, . . . , Xn) is given
by permutations of variables and any even change of signs, while the action of G4

on K(X1, . . . , Xn) also includes taking the inverse of an even number of variables.
As already mentioned, the group G2 is a normal subgroup of G′

2 = (Z/2Z)n�Sn,
as is (Z/2Z)n, and the action of G2 trivially extends to an action on G′

2 by
allowing any number of sign changes. This means that we have the following
diagram of Galois extensions:

K(X1, . . . , Xn)

K(X1, . . . , Xn)
(Z/2Z)n K(X1, . . . , Xn)

G2

K(X1, . . . , Xn)
G′

2

2
n 2n−1

n!

n! 2

It is easy to verify that K(X1, . . . , Xn)
(Z/2Z)n is equal to K(X2

1 , . . . , X
2
n) in

odd or zero characteristic and equal to K(X2
1+X1, . . . , X

2
n+Xn) in characteristic

2, since the latter is clearly invariant and has the correct extension degree. Let
Yi = X2

i + Xi if char(K) = 2 or Yi = X2
i otherwise. Then K(X1, . . . , Xn)

G′
2 =

K(Y1, . . . , Yn)
Sn since G′

2/(Z/2Z)
n � Sn, so this invariant field consists of sym-

metric rational fractions in the Yi, which are known to be generated by the ele-
mentary symmetric polynomials s1 = Y1 + · · ·+ Yn, . . . , sn = Y1 · · ·Yn. Now let
e1 = X1+· · ·+Xn in characteristic 2 and en = X1 · · ·Xn otherwise; we have e21+
e1 = s1, resp. e2n = sn. Then K(e1, s2, . . . , sn), resp. K(s1, . . . , sn−1, en), is in-
variant under G2 and a degree 2 extension of K(s1, . . . , sn) = K(X1, . . . , Xn)

G′
2 ,

hence is equal to the invariant field K(X1, . . . , Xn)
G2 . Finally, since s1, . . . , sn

and e1 (resp. en) belong to K[X1, . . . , Xn], we have the following proposition.

Proposition 13. K[X1, . . . , Xn]
G2 =

{
K[e1, s2, . . . , sn] in characteristic 2,
K[s1, . . . , sn−1, en] otherwise.

We can use the same argument for the action of G4 on K(X1, . . . , Xn), which
extends to an action of G′

4 = (Z/2Z× Z/2Z)n �Sn, by considering the normal
subgroups G4 and (Z/2Z× Z/2Z)n.
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K(X1, . . . , Xn)

K(X1, . . . , Xn)
(Z/2Z×Z/2Z)n K(X1, . . . , Xn)

G4

K(X1, . . . , Xn)
G′

4

4
n 4n−1

n!

n! 4

The leftmost field K(X1, . . . , Xn)
(Z/2Z×Z/2Z)n is easily seen to be equal to

K(Z1, . . . , Zn) where Zi = X2
i + X−2

i , and the bottom field K(X1, . . . , Xn)
G′

4

is then generated by the elementary symmetric polynomials σ1 = Z1 + · · · +
Zn, . . . , σn = Z1 · · ·Zn. Finding generators for the invariant field of G4 is less
obvious. Let si be the i-th elementary symmetric polynomial in X2

1 , . . . , X
2
n

(with the convention that s0 = 1), w0 =
∑�n/2�

i=0 s2n/(X1 · · ·Xn) and w1 =∑�(n−1)/2�
i=1 s2n+1/(X1 · · ·Xn). Then it is only a matter of computation to check

that w0 and w1 are indeed invariant under the action of G4; actually, replacing
an odd number of variables by their inverse exchanges w0 and w1. Moreover,
direct computations show that w0 and w1 are roots of the polynomial

Z4 −

⎛⎝�n/2�∑
i=0

22iσn−2i

⎞⎠Z2 +

⎛⎝�(n−1)/2�∑
i=0

22iσn−(2i+1)

⎞⎠2

∈ K(X1, . . . , Xn)
G′

4 [Z]

so they are algebraic of degree 4 over K(X1, . . . , Xn)
G′

4 . This shows the following
proposition.

Proposition 14. K(X1, . . . , Xn)
G4 = K(σ1, . . . , σn, w0)=K(σ1, . . . , σn, w1) =

K(σ1, . . . , σn, w0, w1).

These families of generators are of course not algebraically independent. We
can in fact choose n generators among them: either removing from the first two
families any generator of the form σn−2i, or removing in the last family any two
generators of the σi’s. From an algorithmic point of view, it is not clear which set
of generators is the most efficient for computations of summation polynomials.

5 Examples and Applications

5.1 Computation of Summation Polynomials

Characteristic 2. Let E : y2 + xy = x3 + ax2 + b be an elliptic curve defined
over a characteristic 2 field and ϕ : P �→ γ

x(P )+γ + λ where γ4 = b, as in Prop.8.
Then the first summations polynomials associated to ϕ, expressed in term of the
generators e1, s2, . . . , sn of the invariant ring K[X1, . . . , Xn]

G2 , are equal to

Pϕ,3 = s3 + Ls2 + L2(e21 + e1) + L3 + γ(e1 + λ)2 ,

Pϕ,4 = e21(s4 + Ls3 + L2s2 + L3(e21 + e1) + L4) + (s3 + (e21 + e1)L
2 + e21γ)

2 ,

where L = λ2+λ. The next polynomials become too large to be reproduced with
λ and γ as formal parameters, so we give them for λ = 0. Note that it is possible
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to recover the general expression for a different value of λ by replacing Xi by
Xi+λ, which corresponds to replacing e1 by e1+nλ and sk by

∑k
j=0

(
n−j
k−j

)
Lk−jsj .

For n = 5, we obtain

Pϕ,5 = e81γ
8 + e61s5γ

5 + e41s
2
4γ

4 + e21s
2
3s5γ

3 + s43γ
4 + e21s

3
5γ + s22s

2
5γ

2 + s45 + s35γ .

Again, the next polynomials become too large to be reproduced in their entirety;
for example, we obtain

Pϕ,6 = s85 + e21s
6
5s6 + s65s6 + · · ·+ e121 s25γ

10 + e141 s6γ
12 + e161 γ16 ,

which has 50 terms in F2(γ)[e1, s2, . . . , s6]. We observe that when λ = 0 or 1,
the polynomials Pϕ,3, Pϕ,4 and Pϕ,5 only involve even exponents of the n − 1
first variables. This fact is true in general: for L = 0, Pϕ,n(e1, s1, . . . , sn) =

P̃ϕ,n(e
2
1, s

2
2, . . . , s

2
n−1, sn), which simplifies the inductive computation of these

polynomials in characteristic 2.
We sum up in Table 1 the number of monomials of Semaev polynomials and

our symmetrized summation polynomials (for λ = 0), as well as the timings
of their computation. For n ≤ 7, we used resultants of partially symmetrized
polynomials followed by a symmetrization at each step. The computation was
intractable in this way for n = 8. Thus, we implemented a dedicated interpolation
algorithm to compute this new record. Here we briefly describe this computation.
The 8-th symmetrized polynomial is the result of the symmetrized version of the
relation

Pϕ,8(X1, . . . , X8) = ResX(Pϕ,6(X1, . . . , X5, X), Pϕ,4(X6, . . . , X8, X) ,

but with Pϕ,4 and especially Pϕ,6 already in partially symmetrized form. We
thus begin by evaluating Pϕ,8(e1, s2, . . . , s8) on a very large sample of points,
which can be done by computing the above resultant with all variables (except
X) instantiated. However, in order to apply fast sparse evaluation-interpolation
techniques [15], we have to precisely control the instantiations of e1, s2, . . . , s8;
thus we cannot simply evaluate the Xi to deduce a sample point, but have to
do the converse instead. Moreover, because of the huge size of the sample, each
of these evaluations has to be done as efficiently as possible. Actually, since we
work with symmetrized polynomials, each instantiation corresponds to the com-
putation of the values of the generators of the invariant ring in X1, . . . , X5 and
X6, . . . , X8 respectively, from an instantiation of e1, s2, . . . , s8. Such a computa-
tion is not at all straightforward; it can be done by solving a polynomial system
but, even by using the most efficient existing implementations, the timings are
too slow to obtain Pϕ,8 in a reasonable time. Thus, we investigated new methods
to solve this problem and finally reduced it, by using the underlying symmetries,
to the almost instantaneous resolution of a univariate polynomial. This efficient
resolution is mainly based on a careful study of the factorization of this poly-
nomial and a clever choice of the sample points, which let us avoid half of the
most time-consuming steps of the algorithm. The sparse-interpolation step is
less tricky but we need also a careful implementation in order to obtain the re-
quired efficiency. The complete computation of the 8-th symmetrized summation
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Table 1. Comparison of the number of terms of symmetrized Semaev polynomials and
summation polynomials using a 2-torsion point in characteristic 2 (λ = 0). The crosses
correspond to computations that stopped unsuccessfully after several weeks.

n 3 4 5 6 7 8
Semaev nb of monomials 3 6 39 638 – –

polynomials timings 0 s 0 s 26 s 725 s × ×

Pϕ,n
nb of monomials 2 3 9 50 2 247 470 369

timings 0 s 0 s 0 s 1 s 383 s 40.5 h

polynomial was achieved in about 40.5 CPU.hours using Magma [1], whereas
previous attempts using the direct approach were all stopped after at least one
month of computations.

Odd Characteristic. Let E : y2 = cx(x − 1)(x − λ) be an elliptic curve in
twisted Legendre form over an odd characteristic field K. As in Prop.10, we
assume that λ and 1 − λ are squares, so that there exists t ∈ K such that√
λ = (1− t2)/(1+ t2) and

√
1− λ = 2t/(1+ t2). Let T0 = (0, 0) and T1 = (1, 0);

then a map ϕ : E → P1 satisfying ϕ(−P ) = ϕ(P ), ϕ(P + T0) = −ϕ(P ) and
ϕ(P + T1) = 1/ϕ(P ) is given by

ϕ(P ) =

√
λ+ 1√
1− λ

x(P )−
√
λ

x(P ) +
√
λ

.

We can compare the summation polynomials Pϕ,n symmetrized with respect
to G2 (corresponding to the action of a single 2-torsion point T0), the associ-
ated rational fractions Qϕ,n symmetrized with respect to G4 (corresponding to
the action of the complete 2-torsion), and the classical Semaev polynomials, ex-
pressed with the elementary symmetric polynomials e1, . . . , en in the variables
X1, . . . , Xn. For n = 3 and 4, we have

Sem3 = e22 − 4e1e3 + 2e2λ− 4e3(λ+ 1) + λ2 ,

Pϕ,3 = t3e23 + 2(1− t4)e3 + t3s1 − ts2 − t ,

Qϕ,3 = t3w1 − tw0 − 2t4 + 2 .

Pϕ,4 = t2(s21 − 2s1s3 − 4s2e
2
4 + 8s2e4 − 4s2 + s23 + 8e34 − 16e24 + 8e4) +

4(t4 + 1)(s1e
2
4 − s1e4 − s3e4 + s3) ,

Qϕ,4 = 4(t4 + 1)σ1 − 4t2σ2 + t2w2
1 − 4(t4 + 1)w1 + 8t2w0 − 32t2 .

Table 2 sums up the number of terms of the computable polynomials for com-
parison.

5.2 Index Calculus on E(Fq5)

IPSEC Oakley Key Determination ’Well Know Group’ 3 Curve An in-
teresting target for the decomposition attack is the IPSEC Oakley key determi-
nation ’Well Know Group’ 3 curve [9] defined over the binary field F2155 = F(231)5 .
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Table 2. Comparison of the number of terms of symmetrized classical Semaev polyno-
mials and summation polynomials in odd characteristic using either a single 2-torsion
point or the complete 2-torsion

n 3 4 5 6
Semaev polynomial 5 36 940 –
Pϕ,n(s1, . . . , sn−1, en) 5 13 182 4125

Qϕ,n(σ1, . . . , σn−2, w0, w1) 3 6 32 396

Since this is a degree 5 extension field, the decomposition-based index calculus
uses a 6-th summation polynomial. The cardinality of the curve is 12 times a
prime number; according to Prop.4, we can only consider the action of the 2-
torsion or the 3-torsion points. With the 2-torsion point and the morphism ϕ of
Prop.8 for λ = 0, the reduced factor base has 536 864 344 elements, which as ex-
pected is very close to 231/4. Using the corresponding 6-th symmetrized summa-
tion polynomial computed above, a decomposition test takes 10.28 sec (3.44 sec
for the Gröbner basis computation for a well-chosen order and 6.84 sec for the
change of order with FGLM [5]) using FGb [3] on a Intel Core i7-4650U CPU
at 1.70 GHz. Alternatively, the same computation with Magma V2.18-3 (on an
AMD Opteron 6176 SE at 2.3 GHz) takes 995 sec for the Gröbner basis and
about 6 hours for the order change1.

To put this in perspective, we can compare to the only other existing method
computing decompositions on this curve, namely the “n − 1” approach of [11]:
the computation of only one relation was estimated in [8] to take about 37 years
on a single core, whereas with our results the expected time to get one relation
is 24× 5!× 10.28 sec ≈ 5.5 hr. Even if it is still too slow to seriously threaten the
DLP on this IPSEC standard, these experiments show that other non-standard
problems like the oracle-assisted static Diffie-Hellman problem [12] are no longer
secure on this curve.

Random Curve in Odd Characteristic with Full 2-Torsion To test the
speed-up provided by the presence of the full 2-torsion subgroup, we considered a
random curve in Legendre form over the optimal extension field F(231+413)5 , with
a near-prime cardinality and satisfying the condition of Prop.10. Using the 6-th
symmetrized summation polynomial as computed above, a decomposition test
takes only 6.66 sec (2.82 sec for the Gröbner basis and 3.84 sec for FGLM) using
FGb on a 3.47 GHz Intel Xeon X5677 CPU, or about 5 hours (55 min for the GB
and 4h25 for FGLM) using Magma. By comparison, in [4] only one 2-torsion
was accounted for (in a twisted Edwards model) and the authors reported a
timing of 2 732 sec for one decomposition test. Once again, this shows the total
weakness of some non-standard problems on such curves.

1 The performance gap between Magma and FGb can be partially explained by the
non-optimized arithmetic operations of Magma when the field size exceeds 25 bits.
Experiments on smaller fields showed a significantly smaller gap.
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6 Conclusion

The introduction of summation polynomials associated to any morphism ϕ from
an elliptic curve E to P1 opens new perspectives for the decomposition-based
index calculus. In particular, we have been able to use equivariant morphisms
to take advantage of 2-torsion points in any characteristic. As demonstrated by
our examples and timings, the speed-up over the classical approach is far from
negligible and allows to seriously threaten more curves. The framework we have
developed also applies to higher order torsion points, which will be more detailed
in an extended version of this article.
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Abstract. Proving security of Hierarchical Identity-Based Encryption
(HIBE) and Attribution Based Encryption scheme is a challenging prob-
lem. There are multiple well-known schemes in the literature where the
best known (adaptive) security proofs degrade exponentially in the maxi-
mum hierarchy depth. However, we do not have a rigorous understanding
of why better proofs are not known. (For ABE, the analog of hierarchy
depth is the maximum number of attributes used in a ciphertext.)
In this work, we define a certain commonly found checkability prop-

erty on ciphertexts and private keys. Roughly the property states that
any two different private keys that are both “supposed to” decrypt a
ciphertext will decrypt it to the same message. We show that any simple
black box reduction to a non-interactive assumption for a HIBE or ABE
system that contains this property will suffer an exponential degradation
of security.

1 Introduction

In recent years, there has been emerging interest in increasing the expressiveness
of encryption systems in terms of targeting ciphertexts to certain groups of users.
First examples included Hierarchical Identity-Based Encryption (HIBE) [HL02]
and Attribute-Based Encryption (ABE) [SW05]. The early difficulty in HIBE
and ABE research was to obtain systems that were provably secure under robust
security definitions. Initial constructions of HIBE [GS02, CHK03, BB04, BBG05]
and ABE [SW05, GPSW06] had the drawback that their security reductions
degraded exponentially in the depth of the hierarchy when encrypting an HIBE
ciphertext or number of attributes used when creating an ABE ciphertext. For
this reason, the first (standard model) security proofs were done in the selective
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model, a term coined by Canetti, Halevi and Katz [CHK03]. In this weaker
model, an attacker (artificially) declared the challenge identity he was attacking
before seeing the public parameters of the system.

At the time, researchers identified achieving standard (sometimes called adap-
tive or full) security for these systems as an important open problem. However, it
was not well understood whether there existed full security reductions for the al-
ready proposed constructions without exponential decay, and if not, why. While
there was general intuition about the limitations of what were called partition-
ing proofs (e.g., see discussion in [Wat09]), there was no rigorous explanation
of these difficulties.

In 2009, Gentry and Halevi [GH09] gave an HIBE construction and proved
it fully secure without an exponential degradation in the depth. Their construc-
tion made use of projective hash techniques from [CS02, Gen06]. One tradeoff
is that it required the use of non-static or q-type assumptions to prove secu-
rity where the size of the assumption grew with the number of key queries.
Later, Waters [Wat09] described a new and more systematic approach to prov-
ing full security called dual system encryption. Using dual system encryption,
he proved an HIBE system fully secure under simple assumptions. Dual system
encryption was subsequently used to prove full security of ABE and other related
systems [LOS+10, OT10, LW12].

While these new proof techniques represent an advance in proving security,
they still leave us with an incomplete picture about the security of the initial
selectively secure constructions. Can these systems only be proven selectively
secure? If so, why? Coming to a better understanding is important for multiple
reasons. First, the earlier systems are typically more practically efficient than the
recent dual system encryption counterparts. If they could be proven fully secure,
they might be more desirable to use. Second, it is valuable to have a more rigorous
characterization of what properties of a construction make it difficult to prove
security, as identifying these properties can potentially inspire new construction
and proof methods for encryption systems.

Understanding Partitioning Proofs. We organize our investigation around the
goal of understanding partitioning proofs. Intuitively, these are proofs where a
reduction algorithm (when creating a set of public parameters) splits ciphertext
descriptors or “identities” into two disjoint sets. Those it can leverage for the
challenge ciphertext (we call this the “challenge set”) and those it cannot. If
a certain identity x is in the challenge set, then the reduction cannot issue a
private key for y if a private key for y should be allowed to decrypt a ciphertext
associated with x.

We begin by asking the following two questions:

1. Are there functionalities where a partitioning proof cannot work? (I.e. No
reduction with a polynomial security loss exists.)

2. Under what circumstances are we stuck with a partitioning proof?

To begin to answer the first question, we try to think of a basic case where
partitioning will fail. To this end, we introduce a prefix encryption functionality.
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In a prefix encryption system, a private key is associated with a binary string y
and a ciphertext with a binary string x. One can decrypt the ciphertext to reveal
a hidden message M if and only if y is a prefix of x. The point of introducing this
primitive is to describe a simple primitive which distills the core features needed
for our impossibility result. HIBE and most expressive ABE systems imply prefix
encryption in a straightforward way.

To be successful, any partitioning reduction algorithm must have the set of
challenge ciphertext descriptors cover at least a non-negligible fraction of the
descriptors, else one would almost never get chosen by an attacker. In addition,
there must be some non-negligible chance that the private keys requested by
the attacker do not violate this partition. Immediately, we see this cannot work
with a prefix encryption system. Consider an attacker A that chooses a random
length n string x (for security parameter n) to be associated with the challenge
ciphertext. In addition, it asks for private keys for strings y1, . . . , yn, where string
yi is the length i string that matches x in the first i−1 bits and is different in the
last bit. This small number of private keys can be used to decrypt a ciphertext
associated with any string except x. Thus, any partitioning reduction that has
more than one string in its challenge set will not be able to answer all the key
queries for this attacker. Consequently, its best strategy is to pick one string for
its challenge set, which will match A’s choice with only 2−n probability.

Next, we want to understand what properties of a construction force us to
be “stuck with” a partitioning proof, in the sense that there is nothing to be
gained from considering different reduction techniques. For prefix encryption,
it was problematic for a partitioning proof that a large number of ciphertexts
types could be covered by a small number of keys. Intuitively, one might be
stuck with a partitioning proof if any authorized key can “equally decrypt” a
ciphertext. We consider prefix encryption constructions that implicitly allow a
pair of efficient algorithms for respectively checking an acceptability condition of
a key and a ciphertext. If a ciphertext associated with a string x is determined
to be acceptable by this check, then all acceptable keys for any prefix y will
decrypt to the same message (or all fail decryption). We refer to constructions
that allow such decisive checks as “checkable” schemes.

Essentially, this says that all keys that should be able to decrypt an acceptable
ciphertext will decrypt it the same way. It is notable that early constructions of
HIBE [GS02, CHK03, BB04, BBG05] and ABE [SW05, GPSW06] which were
only proved selectively secure all have this property when instantiated under
typically used prime order bilinear groups. This matches our intuition that they
are in some sense stuck with partitioning proofs. However, constructions using
the techniques of Gentry [Gen06] and dual system encryption do not meet this
criteria. For example, in dual system encryption proofs, a normal secret key will
decrypt a semi-functional ciphertext differently than a semi-functional secret key
will.

Our Result. In this work, we formalize this intuition by showing that there
are no simple black box reductions from the full security of checkable prefix
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encryption schemes to non-interactive decisional assumptions 1. This result ex-
tends to HIBE and ABE as we show that these both can embed prefix encryption
systems. (For the ABE case, see the full version.)

We capture our result in a somewhat similar manner to Coron [Cor02] and
Hofheinz, Jager, and Knapp [HJK12] who showed that no unique [Cor02] or
rerandomizable [HJK12] signatures can have black box proofs to non-interactive
assumptions. While their focus was on showing the necessity of a polynomial
loss (in the number of signature queries) for a class of signatures, we show the
necessity of a drastic exponential loss of security for HIBE and ABE schemes.

At a high level, we construct an algorithm B that runs the reduction algorithm
R, where B acts as an computationally unbounded attacker. Since B is actually
not a “real” attacker it will need to find a way to look like one.

To do this, B will first wait for the reduction algorithm to commit to a set of
public parameters. Next, it will run R with the same public parameters multiple
times (we specify more precisely the number of times in Section 3), each time
choosing a random string x and collecting private keys y1, . . . , yn for the n strings
that are prefixes of x except in their last bits. After each run, B rewinds R to the
point where it published the system parameters. The point of these runs is to
collect private key information relative to the committed public parameters. If
any of these runs for a particular x value does not abort, then B has the private
key information to decrypt a ciphertext for any string but x.

Finally, B will request a challenge ciphertext for a new random string z. If
x = z for some x used in a prior run where B successfully collected keys, then
B has a private key that allows it to decrypt the challenge ciphertext and act
as an attacker. If R is an efficient reduction, it will then break the assumption
with non-negligible advantage. We can generalize this to reductions that run the
attacker a polynomial number of times in sequence, but like [Cor02, HJK12] we
do not cover reductions that concurrently run executions of the attack algorithm.

Future Directions. Multiple interesting questions arise from this work. Perhaps
the most exciting direction is to see if limitations of our impossibility result can
lead to new proof techniques in the positive direction. For example, in the course
of this work we discovered that one can build prefix encryption from any IBE
scheme. The proof is an easy hybrid reduction. This construction lies outside of
impossibility result since two keys for different prefixes y and y′ of some string
z might decrypt a (malformed) ciphertext to different values. This is different
than dual system encryption techniques, which rely on giving a different key
structure for the same key value. A parallel goal is of course to strengthen our
impossibility results. An natural target is to see if either our impossibility results
can be extended to handle reductions that run attack algorithms concurrently or
alternatively if building reductions that run attack algorithms concurrently can
be leveraged for new positive results. By expanding our knowledge from both

1 The restriction to non-interactive assumptions is natural and arguably necessary.
Any scheme can be proven secure under the (possibly interactive) assumption that
it is secure. The work of [BSW07] essentially does this, but with the mitigating
factor of proving generic group security.
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ends of the spectrum, we can hope to get a more complete understanding of the
space of possible security proofs for functional encryption systems.

Another direction is to examine how recent selectively secure lattice HIBE
[CHKP10, ABB10] constructions fit into this framework. These constructions
allow some form of key rerandomization in that an algorithm can sample a new
short basis, however, the “quality” of this basis is not as good as the original
and in general higher quality private keys are not reachable from lower quality
private keys. One possibility is that this quality of key difference can be leveraged
to prove full security of these existing schemes.

2 Preliminaries

2.1 Prefix Encryption

We present the functionality of prefix encryption as the simplest functionality
that captures the core structure of hierarchical identity-based encryption. Es-
sentially, we strip off the usual trappings of HIBE schemes that are not relevant
to our purposes. In particular, we do not require explicit delegation capabilities,
and we do not use “identity vectors” with large sets of potential values for each
coordinate. Instead, keys and ciphertexts in a prefix encryption scheme will be
associated with binary strings, and a key will be able to decrypt a ciphertext if
and only if the binary string associated to the key is a prefix of the binary string
associated to the ciphertext. We observe that such a functionality can be easily
derived from any HIBE scheme by designating fixed identities in each coordinate
to play the role of “0” and “1”.

We formally define a Prefix Encryption scheme as having the following
algorithms:

Setup(λ) → PP,MSK. The setup algorithm takes in the security parameter λ
and outputs the public parameters PP and a master secret key MSK.

Encrypt(x,M,PP)→ CT. The encryption algorithm takes in a binary string x,
a message M , and the public parameters PP. It outputs a ciphertext CT.

KeyGen(MSK, y) → SK. The key generation algorithm takes in the master
secret key MSK and a binary string y. It outputs a secret key SK.

Decrypt(CT, SK)→M . The decryption algorithm takes in a ciphertext CT and
a secret key SK. If the binary string y of the secret key is a prefix of the binary
string x of the ciphertext, it outputs the message M .

As we will study how security reductions behave as the binary strings involved
grow longer, we will allow public parameters to specify a maximum length, q,
for the indexing strings of the keys and ciphertexts. Our lower bound on the
provable security degradation as an exponential function of the maximum string
length will only apply to schemes that are suitably “checkable.” In order to define
this precisely, we will restrict our consideration to schemes can be augmented
with two additional algorithms:
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CTCheck(PP,CT, x)→ {True,False}. The ciphertext checking algorithm takes
in public parameters PP, a ciphertext CT, and a binary string x. It outputs
either True or False.

KeyCheck(PP, SK, y)→ {True,False}. The key checking algorithm takes in pub-
lic parameters PP, a secret key SK, and a binary string y. It outputs either True
or False.

We note that these additional algorithms are required to be efficient (just like
the more standard algorithms above). We also require them to be deterministic.

For correctness, we require that CTCheck(PP,CT, x) outputs True whenever
PP is honestly generated and CT is an honestly generated ciphertext for x
from PP. Similarly, we require that KeyCheck(PP, SK, y) outputs True whenever
PP,MSK are honestly generated and SK is an honestly generated key for y from
MSK.

Definition 1. We say a prefix encryption scheme is checkable if for
any PP,CT, x, SK1, y1, SK2, y2 such that CTCheck(PP,CT, x) = True,
KeyCheck(PP, SK1, y1) = True, KeyCheck(PP, SK2, y2) = True, and y1, y2 are
both prefixes of x, then Decrypt(CT, SK1) = Decrypt(CT, SK2).

Security Definition. We now define full security for a prefix encryption scheme
in terms of the following game between a challenger and an attacker. This is
essentially the definition of full IND-CPA security for HIBE schemes, but the
case of prefix encryption is a bit simpler as there is no need to track the delegation
of keys. The game proceeds in the following phases:

Setup Phase. The challenger runs Setup(λ) to produce MSK and PP. It gives
PP to the attacker.

Key Query Phase I. The attacker adaptively chooses binary strings y and queries
the challenger for corresponding secret keys. For each queried string y, the chal-
lenger runs KeyGen(MSK, y) to produce a secret key SK, which it gives to the
attacker.

Challenge Phase. The attacker declares to equal length messages M0,M1, and a
binary string x. It is required that for all strings y queried in the previous phase,
y is not a prefix of x. The challenger chooses a uniformly random bit b ∈ {0, 1}
and creates a ciphertext CT by running Encrypt(x,Mb,PP). It gives CT to the
attacker.

Key Query Phase II. This is the same as the first key query phase, except that
any queried y must not be a prefix of the challenge string x.

Guess. The attacker submits a guess b′ for the bit b.

Definition 2. We define the advantage of an attacker in this game to be |Pr[b =
b′] − 1

2 |. We say an algorithm A (t, ε, q)-breaks a prefix encryption scheme if it
runs in time t, achieves advantage ε, and makes at most q total key queries.
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We say a prefix encryption scheme is secure if no algorithm (t, ε, q)-breaks for
parameters t, q, ε where t, q are polynomial in the security parameter and ε is
non-negligible.

The weaker notion of selective security would be obtained by modifying the
security game above by having the attacker declare the binary string x for the
challenge at the very beginning of the game, before seeing the public parameters.

2.2 Hierarchical Identity-Based Encryption

The relevant definitions for HIBE schemes are standard, and can be found in the
full version. As we will study how security reductions behave as the identity vec-
tors involved grow longer, we will allow public parameters to specify a maximum
length, q, for the identity vectors associated with the keys and ciphertexts.

Similarly to our definitions for Prefix Encryption schemes, we consider HIBE
schemes equipped with two additional algorithms:

CTCheck(PP,CT, I )→ {True,False}. The ciphertext checking algorithm takes
in public parameters PP, a ciphertext CT, and an identity vector I. It outputs
either True or False.

KeyCheck(PP, SK, I ) → {True,False}. The key checking algorithm takes in
public parameters PP, a secret key SK, and an identity vector I. It outputs
either True or False.

We note that these additional algorithms are required to be efficient (just like
the more standard algorithms above). We also require them to be deterministic.

For correctness, we require that CTCheck(PP,CT, I) outputs True whenever
PP is honestly generated and CT is an honestly generated ciphertext for I
from PP. Similarly, we require that KeyCheck(PP, SK, I) outputs True whenever
PP,MSK are honestly generated and SK is an honestly generated key for I from
MSK.

Definition 3. We say a HIBE scheme is checkable if for any PP,CT, I∗, SK1,
I1, SK2, I

2 such that CTCheck(PP,CT, I∗) = True, KeyCheck(PP, SK1, I
1) =

True, KeyCheck(PP, SK2, I
2) = True, and I1, I2 are both prefixes of I∗, then

Decrypt(CT, SK1) = Decrypt(CT, SK2).

We note the full security definition for a HIBE scheme can be found in [SW08].

2.3 Non-interactive Decisional Problems and Simple Black Box
Reductions

We now formally define the kinds of decisional problems and reductions we
will consider. We start by describing the non-interactive decisional problems we
allow:
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Definition 4. A non-interactive decisional problem Π = (C,D) is described by
a set C and a distribution D on C. We refer to C as the set of challenges, and
each c ∈ C is associated with a bit b(c) ∈ {0, 1}. We say that an algorithm A
(ε, t)-solves Π if A runs in time t and

Pr[A(c) = b(c) : c
D←− C] ≥ 1

2
+ ε.

Here, c
D←− C denotes that c is chosen randomly from C according to the distri-

bution D.

Decisional problems used as cryptographic hardness assumptions are actually
families of such problems, parameterized by a security parameter λ. Below, we
will abuse notation mildly and write only Π while λ is implicit. We will write
poly(λ) and neg(λ) to denote functions that are polynomial functions of λ and
negligible functions in λ, respectively.

We next define the type of reductions we will address. We do not consider
reductions in full generality - instead we restrict our consideration to black box
reductions that satisfy additional requirements. Namely, we require simple re-
ductions that only run the attacker once in a straight line fashion - meaning that
the reduction simulates the security game exactly once with the attacker, who
it interacts with as a black box. Note that this does not allow the reduction to
rewind the attacker or supply its randomness, etc.

Definition 5. An algorithm R is a simple (t, ε, q, δ, t′)-reduction from a deci-
sional problem Π to breaking the security of a prefix encryption scheme Prefix
if, when given black box access to any attacker A that (t, ε, q)-breaks the scheme
Prefix, the algorithm R (δ, t′)-solves the problem Π after simulating the security
game once for A.

We note that the original selective security reductions given for prior HIBE
and ABE schemes are simple reductions in the sense of Definition 5 (e.g.
[BB04, GPSW06]).

Remark 1. Many security proofs for cryptographic systems also employ a hybrid
technique, where the proof is broken into several smaller steps and the attacker’s
inability to distinguish in each hybrid step is proven from a computational as-
sumption (typically with a simple reduction). At first glance, hybrid arguments
might seem slightly incongruous with our setting where we consider showing that
no single reduction can be performed for an attacker. However, we note that any
fixed attacker (in particular, the hypothetical attacker we simulate in our proof)
will be successful in distinguishing between (at least) one particular hybrid step.
Thus, there will be a single (simple) reduction for such an attacker. Or looked at
another way, a proof of security using the hybrid method is actually a collection
of reductions, where the reduction used will depend on the particular attacker.
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2.4 Obtaining Prefix Encryption from HIBE

Given a HIBE scheme with algorithms SetupHIBE , KeyGenHIBE , EncryptHIBE ,
DelegateHIBE , and DecryptHIBE , we will derive a prefix encryption scheme with
algorithms SetupPre, KeyGenPre, EncryptPre, and DecryptPre. To accomplish
this, we only require that there are at least two possible values for each compo-
nent of the identity vectors allowed in the HIBE scheme.

We let SetupPre := SetupHIBE . We then suppose that {I01 , I11}, {I02 , I12}, . . .,
{I0q , I1q } are sets of values such that taking any combination (Ib1

1 , Ib2
2 , . . . , I

bq
q )

for bits b1, . . . , bq ∈ {0, 1} forms a valid identity vector (and I0j = I1j for all j).
We define KeyGenPre to generate a key for a binary string y = (y1, y2, . . . , yk)
for k ≤ q by running KeyGenHIBE on the identity (Iy1

1 , Iy2

2 , . . . , Iyk

k ). We sim-
ilarly define EncryptPre to encrypt to a binary vector x = (x1, . . . , xj) by run-
ning EncryptHIBE to encrypt to (Ix1

1 , . . . , I
xj

j ). We can then set DecryptPre =
DecryptHIBE .

We now observe that if we start with a checkable HIBE, then the derived
prefix encryption scheme will also be checkable:

Lemma 1. If SetupHIBE , KeyGenHIBE , EncryptHIBE , DelegateHIBE , and
DecryptHIBE is a checkable HIBE scheme, than SetupPre, KeyGenPre,
EncryptPre, and DecryptPre obtained from it as described above is a checkable
prefix encryption scheme.

Finally, we observe that simple security reductions for the initial HIBE scheme
can be translated into simple security reductions for the derived prefix encryption
scheme:

Lemma 2. If RHIBE is a simple (t, ε, q, δ, t′)-reduction from a decisional prob-
lem Π to breaking the security of a HIBE encryption scheme, then we can obtain
from R a new reduction RPre that is a simple (t, ε, q, δ, t′)-reduction from the
same decisional problem Π to breaking the security of the derived prefix encryp-
tion scheme.

The proofs of these lemmas are relatively straightforward and can be found
in the full version.

3 Main Result

We now prove our main result, establishing that any polynomial time simple
black box reduction between the security of a checkable prefix encryption scheme
and a hard, non-interactive decisional problem can only achieve an advantage
that degrades exponentially in q, where q is the maximum string length of the
scheme.

Essentially, we leverage the fact that the reduction can be run to obtain secret
keys and then be rewound to “forget” these keys were produced. We can then
use the secret keys obtained during the first runs of the reduction to simulate
a successful attacker against a different challenge in a final run. The checking
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algorithms play a pivotal role in ensuring that the unorthodox manner in which
these keys are obtained does not compromise their effectiveness. Intuitively, for
keys and ciphertexts that pass the (publicly computable) checks, the result of a
successful decryption is guaranteed to be independent of the origins of the key.

It is interesting to consider what happens if one tries to apply such techniques
to more complicated reductions. A first example would be reductions that se-
quentially run the attacker a bounded number of times. In such a case, our result
should extend easily via an application of the union bound, analogously to the ex-
tensions in [Cor02, HJK12]. However, it is not clear how to extend our argument
to reductions that may run interleaved instances of the attacker, using concur-
rency in an arbitrary way. We observe that the arguments in [Cor02, HJK12]
also do not address this case.

Theorem 1. Let Prefix = (Setup, Encrypt, KeyGen, Decrypt, CTCheck, Key-
Check) denote a checkable prefix encryption scheme, and let Π(λ) denote a de-
cisional problem such that no algorithm running in time t = poly(λ) can obtain
an advantage that is non-negligible in λ. Then any simple (t, ε, q, δ, t′)-reduction
R from Π to the security of Prefix with t = poly(λ), t′ = poly(λ) must have
a value of δ such that δ vanishes exponentially as a function of q (up to terms
that are negligible in λ).

Proof. We let Prefix = (Setup, Encrypt, KeyGen, Decrypt, CTCheck, Key-
Check) denote a checkable prefix encryption scheme. We suppose that R is a
simple (t, ε, q, δ, t′)-reduction from a decisional problem Π to breaking the secu-
rity of this prefix encryption scheme. We now design an algorithm B to solve Π .

A Hypothetical Attacker We first define a hypothetical attacker A that (t, ε, q)-
breaks the security of the prefix encryption scheme for some time t. A proceeds
as follows: it first receives PP as input (we assume this also implicitly includes
λ). It chooses a random binary string x of length q. In the first key query phase,
it requests keys for strings y1, . . . , yq where each yi is the binary string of length
i formed by taking the first i − 1 bits of x and then the opposite of the ith bit
of x. Note that each yi is not a prefix of x. It receives the corresponding keys
SK1, . . . , SKq from the challenger. For each, it runs KeyCheck(PP, SKi, yi). If
any of these checks outputs False, it quits.

Next, the attacker A declares two messages M0,M1 (we suppose these are
fixed, distinct messages) and x as the challenge string. It receives the ciphertext
CT from the challenger. It then runs CTCheck(PP,CT, x). If this outputs False,
it quits. Otherwise, it samples SK∗ uniformly from the set of all values of SK
such that KeyCheck(PP, SK, xi) = True for any prefix xi of x. (Of course, this
step may not be efficient.) After obtaining SK∗, it decrypts CT with SK∗. If the
result is Mb′ for some b′ ∈ {0, 1}, it guesses b′ with probability 1

2 + ε and guesses
the opposite with probability 1

2 − ε. If the result is not M0 or M1, it guesses
randomly.

For ease of analysis we will view the hypothetical attacker’s set of coins as
drawn from a space Z×F . The set Z is the set of possible choices of the challenge
string x, and we let F denote the set of all other random coins used.
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We now verify that attacker A has advantage ε in the real security game.
In this case, since the public parameters and ciphertext are honestly generated,
then SK∗ properly decrypts the challenge ciphertext, and hence the result will
always be Mb. A then guesses b correctly with probability 1

2 + ε.

Using the Reduction. We are assuming that the reduction R runs the attacker
once in a straight-line fashion (e.g. no rewinding). We now create an algorithm
B to solve Π by using R. (Note that B can rewind R: we just do not allow R to
rewind the attacker.)
B first receives a problem instance c, which it gives as input to R. R then

outputs public parameters PP. Now B will simulate the hypothetical attacker
described above as follows. First, it will run R several times in an attempt to
collect secret keys. Then it will use the collected keys to simulate the attacker
on a new run of R.

More precisely, we let τ be a parameter to be specified later (it will be poly-
nomial in the string length q and the security parameter). B will choose τ in-
dependent random binary strings x1, x2, . . . , xτ of length q. It will then query
keys for strings y11 , . . . , y

1
q derived from x1 as described above (note this be-

havior is identical to the hypothetical attacker A). After receiving each key, it
runs the KeyCheck algorithm. If this check ever outputs False, then B considers
this run to be an “aborting run”. In addition, B receives a challenge cipher-
text CT. If the CTCheck algorithm run on CT returns false, then it is is also
considered to be an “aborting run.”2 If the run was not aborting, then B suc-
cessfully received a corresponding key SK1

i for each i from 1 to q such that
KeyCheck(PP, SK1

i , y
1
i ) = True. It then stores these SK1

1, . . . , SK
1
q values.

Next, it rewinds the reduction R to the point just after it output the public
parameters. It will then run R again (using fresh random coins) and querying
keys for strings y21 , . . . , y

2
q derived from x2. It continues in this way until it has

run R exactly τ times on these same PP. If all τ runs were aborting runs, then
B stops and guesses randomly. Otherwise, it continues.

Next, it chooses a new random binary string z of length q. If z = xi for any
i from 1 to τ , then B stops and guesses randomly. Otherwise, it runs R one
more time on these same PP with fresh random coins, querying keys for strings
w1, . . . , wq derived from z. Upon receiving each key for w1, . . . , wq, it runs the
KeyCheck algorithm as before. If any of these checks fail, it stops and guesses
randomly. Otherwise, B submits the fixed, distinct messages M0,M1 and the
challenge string z to the reduction. B receives CT in return. It runs the CTCheck
algorithm. If this check fails, B stops and guesses randomly. If the check passes,
it fixes and index j from 1 to τ such that the jth run was not aborting. Then, it
considers the unique yj

i that is a prefix of z (note that the index i is defined as
the first bit where z and xj differ).

2 We observe that for the purposes of collecting private keys, it is not important for
the reduction algorithm to return a valid challenge ciphertext. However, we choose
to require this to maintain a uniform definition of an “aborting run” in our analysis.
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B now decrypts CT with SKj
i . If the result is Mb′ for some b′ ∈ {0, 1}, it

guesses b′ with probability 1
2 + ε and guesses the opposite with probability 1

2 − ε.
If the result is not M0 or M1, it guesses randomly. It gives b′ to R, and finally
copies the output of R as its own output.

It is crucial to observe here that B is decrypting the challenge ciphertext
with a secret key that may not be equivalently distributed to the key that the
hypothetical attacker A would use. Nonetheless, since decryption only occurs
when the key SKj

i and the challenge ciphertext CT have passed their respective

checks, it must be the case that the decryption of CT by SKj
i produces the

same result as decryption of CT by any other acceptable key, hence B correctly
simulates the decryption output that A would obtain, despite the fact that it is
not simulating the proper key distribution.

Analyzing Algorithm B. We recall that C denotes the set of challenges. We let
R denote the set of possible random coins chosen by R for a single run. We
introduce the following notation for the coins used by B during its final run of
the reduction algorithmR. Recall, that in a single run the hypothetical attacker’s
coins is draw from a space Z × F , Z is the choice of possible challenge strings
and F is the set of other coins used. For the final run, we let z ∈ Z and f ∈ F
denote the simulated choice of these coins.

Fixing c ∈ C, r ∈ R, z ∈ Z, and f ∈ F , we define that the tuple (c, r, z, f)
belongs to the event W if running the reduction once with this c and these coins
r and an attacker using coins z, f results in all the key and ciphertext checks
passing and the reduction correctly solving the challenge. (I.e. W is the set of
coins for the final run where the final run does not abort and it gives the correct
answer.)

We partition the tuples (c, r, z, f) ∈ W into two disjoint sets. For notational
convenience, we split r ∈ R into substrings r1 and r2 such that r1 are the coins
used to determine PP and r2 are the remaining coins used by the reduction.
We let U denote the set of tuples in W such that, fixing c and r1, replacing the
remaining coins for R and the attacker with freshly sampled coins results in a
non-aborting run with probability ≥ ρ (where ρ is a threshold we will specify
later). We let V denote the set of tuples in W such that this results in a non-
aborting run with probability < ρ. Note that by definition, W is a disjoint union
of U and V . Hence P[W ] = P[U ] + P[V ].

Note that any two runs that share the same c and r1 coins also share the same
challenge and public parameters generated by the reduction. This is the point
to which B rewinds when conducting multiple runs. We can think of these are
being “neighboring” sets of runs. Intuitively, we are partitioning the set W into
the set U where a neighbor of u ∈ U is more likely to be non-aborting and the
set V where a neighbor of v ∈ V is less likely to be non-aborting.

Claim. P[V ] < ρ.

The proof of this claim follows in a similar vein to the heavy row lemma [OO98].

Proof. Given c, r1, we can define p(c, r1) to be the probability of a non-aborting
run when independent random values of r2, z, f are chosen and p′(c, r1) to be the
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probability of a non-aborting and correct run when independent random values
of r2, z, f are chosen. Then we observe:

P[V ] =
∑

c,r1 s.t. p′(c,r1)<ρ

P[c, r1]p
′(c, r1) ≤

∑
c,r1 s.t. p(c,r1)<ρ

P[c, r1]p(c, r1)

which is < ρ
∑

c,r1
P[c, r1] < ρ.

We define the event A to be the collection of tuples (c, r, z, f) such that an
aborting run is produced (here, we consider an aborting run to include any key
check or ciphertext check failure). We note that A is disjoint from W . We let S
denote the event that the reduction solves the challenge correctly.

Claim. If Π is computationally hard, then P[A]
∣∣(P[S|A]− 1

2

)∣∣ = negl(λ).

Proof. Suppose that P[A]
(
P[S|A]− 1

2

)
= ε′ > 0. We then define the following

algorithm B′ to solve Π . B′ chooses random coins for the attacker and runs R
once until either an abort occurs or it reaches the end where the attacker should
provide a response. If an abort occurs, then B′ copies the output of the reduction
as its own. Otherwise, it guesses randomly.

The success probability of B′ is 1
2 (1 − P[A]) + P[A]P[S|A] = 1

2 +
P[A]
(
P[S|A]− 1

2

)
= 1

2 + ε′. Thus, we must have ε′ = negl(λ) if Π is compu-

tationally hard. The case when P[A]
(
1
2 − P[S|A]

)
= ε′ > 0 is analogous, except

that B′ should flip the output of the reduction in the case of an abort.

We observe that the success probability of the reduction (with one run of the
hypothetical attacker) is = P[A]P[S|A] + P[W ] = 1

2 + δ. Combining this with
Claim 3 and Claim 3, we see that

1

2
· P[A] + P[U ] ≥ 1

2
+ δ − ρ− negl(λ). (1)

We let Xi, Fi denote the sets of possible coins for the attacker that B will
use during the ith run of R, and we let Ri

2 denote the set of possible coins the
reduction will use for the ith run. For each i, we define Ai to be the event that
(c, r1, r

i
2, xi, fi) produces an aborting run. We define Ei to be the event that

z = xi. We let Ai and Ei denote their complements.
We now consider the probability that B solves the decisional problem Π . We

observe that this is:

≥ 1

2
· P[A] +

∑
(c,r,z,f)∈U

P[c, r, z, f ] · P
[

τ⋃
i=1

Ai ∩ Ei | c, r, z, f
]
. (2)

We consider a tuple (c, r, z, f) ∈ U . We observe

P

[
τ⋃

i=1

Ai ∩ Ei | c, r, z, f
]
≥ 1− P

[
τ⋃

i=1

Ei|c, r, z, f
]
− P

[
τ⋂

i=1

Ai|c, r, z, f
]
.
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By the union bound, P [
⋃τ

i=1 Ei|c, r] ≤ τ2−q. Since the events Ai are independent
once c, r, z, f are fixed, we have P [

⋂τ
i=1 Ai|c, r, z, f ] ≤ (1−ρ)τ (here we have also

used that (c, r, z, f) ∈ U). Thus, P
[⋃τ

i=1 Ai ∩ Ei | c, r, z, f
]
≥ 1−τ2−q−(1−ρ)τ .

Combining this with (2), we see that B solves the decisional problem Π with
probability ≥ 1

2 · P[A] + P[U ](1− τ2−q − (1 − ρ)τ ). Considering (1), we see this

is ≥ 1
2 + δ− ρ−negl(λ)− τ2−q− (1− ρ)τ . Hence, if we set ρ = δ

4 , the advantage
of B is at least

3

4
δ − negl(λ)− τ2−q −

(
1− δ

4

)τ

. (3)

We now set τ = λ
δ . We observe that

(
1− δ

4

) 1
δ is upper bounded by a constant

strictly less than 1, since limn→∞
(
1− 1

n

)n
= 1

e . Hence we see that (3) is =
3
4δ−

λ
δ 2

−q−negl(λ). This shows that δ must be exponentially small as a function
of q when Π is computationally hard.

4 Implications for Existing Constructions

Our result can be applied to explain why the first HIBE schemes that were
proven secure in the standard model relied on the weaker notion of selective
security. Of course, one can easily translate selective security into full security
for the same schemes while incurring a loss that is exponential as a function
of the hierarchy depth, as we have shown to be inherent for checkable schemes
when using a typical class of reductions.

As an illustrative example, we show that the selectively secure HIBE scheme
of Boneh and Boyen [BB04] is checkable. We first review the scheme. Below, λ
denotes the security parameter and q denotes the maximum depth. The scheme
will be constructed in a bilinear group G of prime order p. We will assume that
identities I are vectors of length ≤ q whose components are elements of Zp and
that messagesM are elements of GT . We will also assume that G comes equipped
with group membership tests for G and its target group GT .

4.1 The Boneh-Boyen HIBE Construction

Setup(λ, q)→ MSK,PP The setup algorithm chooses a bilinear group G of suffi-
ciently large prime order p. We let g denote a generator of G and e : G×G→ GT

denote the bilinear map. The algorithm chooses a uniformly random expo-
nent α ∈ Zp and sets g1 = gα. The algorithm also chooses random gener-
ators g2, h1, . . . , hq ∈ G. The MSK is gα

2 , while the public parameters are:
PP := {G, p, e, g, g1, g2, h1, . . . , hq}.

Encrypt(M, I = (I1, . . . , Ik)) → CT. The encryption algorithm chooses a uni-
formly random exponent s ∈ Zp and forms the ciphertext as:

CT :=
{
Me(g1, g2)

s, gs,
(
gI1
1 h1

)s
, . . . ,

(
gIk
1 hk

)s}
.
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KeyGen(I = (I1, . . . , Ik),MSK) → SKI . The key generation algorithm chooses
uniformly random exponents r1, . . . , rk and produces a secret key for identity I

as: SKI :=
{
gα
2

∏K
i=1

(
gIi
1 hi

)ri
, gr1 , . . . , grk

}
.

We note that delegation here is rather natural, as one can add on a new
coordinate Ik+1 to the identity vector by sampling a new exponent rk+1 ∈ Zp,

multiplying
(
g
Ik+1

1 hk+1

)rk+1

into the first group element, and appending the

extra element grk+1 to the current key. However, we will not need to refer to
delegation in order to apply our result.

Decrypt(CT, SKI) → {M,⊥}. The decryption algorithm takes in a ciphertext
encrypted to an identity vector I∗ = (I∗1 , . . . , I

∗
j ) and a secret key for an identity

vector I = (I1, . . . , Ik). If I is not a prefix of I∗, it outputs ⊥. Otherwise, it
computes the message as follows. We let {C,C0, C1, . . . , Cj} denote the elements
of the ciphertext, ordered as in the description above. We let {K,K1, . . . ,Kk}
similarly denote the elements of the secret key. Then the decryption algorithm

computes: M = C ·
∏k

i=1 e(Ci,Ki)

e(C0,K) .

To show this HIBE scheme is checkable, we must specify appropriate efficient
algorithms for ciphertext checking and key checking. Our checking algorithms
will assume that the bilinear group G comes equipped with an efficient member-
ship testThis test is assumed to be perfect (error-free).

CTCheck(PP,CT, I). The ciphertext check algorithm first tests that PP and
CT are comprised of the appropriate number and type of group elements (using
the group membership tests for G and GT ). If any of these tests fail, it outputs
False. Otherwise, we let C,C0, C1, . . . , Cj denote the group elements comprising
the ciphertext (where I has length j) and we let g, g1, g2, h1, . . . , hq denote the
group elements contained in PP. It is checked that none of PP elements are the
identity element. It is then checked that e(Ci, g) = e(C0, g

Ii
1 hi) for each i from

1 to j. If any of these checks fail, output False. Otherwise, output True.

KeyCheck(PP, SKI , I = (I1, . . . , Ik)). The key check algorithm tests that PP
and the secret key each contain the correct number of elements, and that all the
elements of both are in fact elements of the group G by performing membership
tests. If any of these tests fail, the algorithm outputs False. Otherwise, we let
K,K1, . . . ,Kk denote the group elements comprising the secret key, and we let
g, g1, g2, h1, . . . , hq denote the group elements contained in PP. It is checked
that none of PP elements are the identity element. Since each of K1, . . . ,Kk is
an element of the cyclic group G and g is a generator, there must exists values
r1, . . . , rk ∈ Zp such that K1 = gr1 , . . . ,Kk = grk . It remains to check that K is
properly formed with respect to these ri’s. To test this, the algorithm computes
A := e(g,K), B := e(g1, g2)

∏k
i=1 e(Ki, g

Ii
1 hi). If A = B, the algorithm outputs

True. Otherwise, it outputs False.
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Proposition 1. The HIBE scheme in Section 4.1 is checkable.

Proof. We observe that the checking algorithms always output True when pa-
rameters, keys, and ciphertexts are honestly generated. Furthermore, when the
public parameters and a secret key pass all of the checks, it must be the case that
the secret key is correctly formed for some values of r1, . . . , rk ∈ Zp. Thus, the
secret key will correctly decrypt any honestly generated ciphertext. To see this,
note that A = B in the key check if and only if K = gα

2

∏k
i=1(g

Ii
1 hi)

ri for the ri
values defined from K1, . . . ,Kk. This again relies on the fact that G is a cyclic
group generated by g and GT is also a cyclic group, generated by e(g, g). Hence,
A,B ∈ GT can only be equal if there discrete logarithms base e(g, g) modulo p
are equal. Similarly, a ciphertext can only pass the check if it is properly formed
for some value of s ∈ Zp.

Hence, for any PP that pass the checks, the set of possible secret keys that
pass the key check for a given identity vector is indexed precisely by the pk

possible values of r1, . . . , rk, and the possible ciphertexts for a given identity
vector are indexed precisely by the p possible vales of s. As a consequence, we
see that any two acceptable keys for authorized identity vectors decrypt any
acceptable ciphertext to the same message.

Other Schemes. The reasoning employed above to analyze the checking algo-
rithms of the Boneh-Boyen HIBE scheme is also applicable to other schemes
with similar structure. More specifically, we can apply the same kind of analy-
sis to any scheme with perfect correctness where the sets of possible keys and
ciphertexts output by the key generation and encryption algorithms are param-
eterized by discrete log relationships that can be tested by pairing with public
group elements. Other schemes displaying these properties include the Waters
IBE and HIBE schemes in [Wat05], the HIBE construction by Boneh, Boyen,
and Goh in [BBG05] that achieves compact ciphertexts, the HIBE scheme of
Canetti, Halevi, and Katz [CHK03], the HIBE scheme of Gentry and Silverberg
[GS02], and the ABE schemes of Goyal, Pandey, Sahai, and Waters [GPSW06]
and Waters [Wat11]. Thus, all of these schemes are checkable. (A checkable ABE
scheme can be defined analogously to a checkable HIBE scheme, and we show in
the full version that a checkable ABE scheme can be used to build a checkable
prefix encryption scheme.)

The HIBE construction of Gentry and Halevi [GH09] does not conform to
this structure and is not checkable (under some computational assumption) -
this is why it can avoid exponential degradation in security as the hierarchy
depth grows. The later HIBE constructions in [Wat09, LW10] and ABE con-
structions in [LOS+10, OT10, LW12] that are proven fully secure through the
dual system encryption methodology also avoid the basic structure that leads to
checkability, even though they can be viewed as alternate instantiations of the
intuitive mechanisms of the prior Boneh-Boyen, Boneh-Boyen-Goh, and Goyal-
Pandey-Sahai-Waters schemes. More concretely, schemes designed for dual sys-
tem encryption come equipped with additional dimensions that complicate the
landscape of possible keys and ciphertexts. As a consequence of this alteration to



74 A. Lewko and B. Waters

the scheme structure, they fall outside the rubric of simple discrete log relation-
ships between pairs of elements in a prime order cyclic group that can be checked
by pairing with public elements. (Some dual system constructions use compos-
ite order groups for this purpose, and some replace single group elements with
larger tuples of group elements.) The additional dimensions that prevent such
checks are designed to enable a simulator to produce “semi-functional” keys that
still function like honestly generated keys when decrypting honestly generated
ciphertexts, but behave differently when decrypting “semi-functional” cipher-
texts that cannot be efficiently distinguished from honestly generated ones. This
circumvents our lower bound. The situation for the lattice-based HIBE construc-
tions [ABB10, CHKP10] and recent ABE construction [Boy13] is not clear: it
would be interesting to determine if they are checkable or not.

In the full version, we additionally show a result in the positive direction; that
prefix encryption can actually be built from the simpler primitive of IBE. We
prove the reduction secure relative to the IBE scheme with a polynomial loss of
security. Since there are known IBE constructions [BF01, Wat05] that are both
checkable and have polynomial security reductions to decision assumptions, this
might at first seem like a contradiction to our main result. The catch is that
our IBE to prefix encryption will not preserve the checkability property (if it
existed) of the underlying IBE system.

Acknowledgements. We thank the anonymous reviewers for their important
points regarding our analysis.
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Abstract. Security against selective opening attack (SOA) requires that
in a multi-user setting, even if an adversary has access to all ciphertexts
from users, and adaptively corrupts some fraction of the users by expos-
ing not only their messages but also the random coins, the remaining
unopened messages retain their privacy. Recently, Bellare, Waters and
Yilek considered SOA-security in the identity-based setting, and pre-
sented the first identity-based encryption (IBE) schemes that are proven
secure against selective opening chosen plaintext attack (SO-CPA). How-
ever, how to achieve SO-CCA security for IBE is still open.
In this paper, we introduce a new primitive called extractable IBE and

define its IND-ID-CCA security notion. We present a generic construc-
tion of SO-CCA secure IBE from an IND-ID-CCA secure extractable
IBE with “One-Sided Public Openability”(1SPO), a collision-resistant
hash function and a strengthened cross-authentication code. Finally, we
propose two concrete constructions of extractable 1SPO-IBE schemes,
resulting in the first simulation-based SO-CCA secure IBE schemes with-
out random oracles.

Keywords: identity-based encryption, chosen ciphertext security,
selective opening security.

1 Introduction

Security against chosen-plaintext attack (CPA) and security against chosen-
ciphertext attack (CCA) are now well-accepted security notions for encryption.
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However, they may not suffice in some scenarios. For example, in a secure multi-
party computation protocol, the communications among parties are encrypted,
but an adversary may corrupt some parties to obtain not only their messages,
but also the random coins used to encrypt the messages. This is the so-called
“selective opening attack” (SOA). The traditional CPA (CCA) security does not
imply SOA-security [1].

IND-SOA Security vs. SIM-SOA Security. There are two ways to formalize
the SOA-security notion [2,4,18] for encryption, namely IND-SOA and SIM-SOA.
IND-SOA security requires that no probabilistic polynomial-time (PPT) adver-
sary can distinguish an unopened ciphertext from an encryption of a fresh mes-
sage, which is distributed according to the conditional probability distribution
(conditioned on the opened ciphertexts). Such a security notion requires that the
joint plaintext distribution should be “efficiently conditionally re-samplable”,
which restricts SOA security to limited settings. To eliminate this restriction,
the so-called full-IND-SOA security [5] was suggested. Unfortunately, there have
been no known encryption schemes with full-IND-SOA security up to now. On
the other hand, SIM-SOA security requires that anything that can be computed
by a PPT adversary from all the ciphertexts and the opened messages together
with the corresponding randomness can also be computed by a PPT simulator
with only the opened messages. SIM-SOA security imposes no limitation on the
message distribution, and it implies IND-SOA security.

The SOA-security (IND-SOA vs. SIM-SOA) is further classified into two no-
tions, security against selective opening chosen-plaintext attacks (IND-SO-CPA
vs. SIM-SO-CPA) and that against selective opening chosen-ciphertext attacks
(IND-SO-CCA vs. SIM-SO-CCA), depending on whether the adversary has access
to a decryption oracle or not.

SOA for PKE. The initial work about SOA security for encryption was done in
the traditional public-key encryption (PKE) field. In [2], Bellare, Hofheinz and
Yilek showed that any lossy encryption is able to achieve IND-SO-CPA security,
and SIM-SOA security is achievable as well if the lossy encryption is “efficiently
openable”. This result suggests the existence of many IND-SO-CPA secure PKEs
based on number-theoretic assumptions, such as the Decisional Diffie-Hellman
(DDH), Decisional Composite Residuosity (DCR) and Quadratic Residuosity
(QR), and lattices-related assumptions [25,14,16,17,6,26,22]. Later, Hemenway et
al. [15] showed that both re-randomizable public-key encryption and statistically-

hiding

(
2
1

)
-oblivious transfer imply lossy encryption.

In [15], Hemenway et al. also proposed a paradigm of constructing IND-SO-
CCA secure PKE from selective-tag weakly secure and separable tag-based PKE
with the help of chameleon hashing. Hofheinz [19] showed how to get SO-CCA
secure PKE with compact ciphertexts. Fehr et al. [13] proved that sender-
equivocable (NC-CCA) security implies SIM-SO-CCA security, and showed how
to construct PKE schemes with NC-CCA security based on hash proof systems
with explainable domains and L-cross-authentication codes (L-XAC, in short).
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Recently, Huang et al. [20,21] showed that using the method proposed in [13] to
construct SIM-SO-CCA secure PKE, L-XAC needs to be strong.

SOA for IBE. Compared with SOA security for PKE, SOA-secure IBE is lagged
behind. The subtlety of proving security for IBE comes from the fact that a key
generation oracle should be provided to an adversary to answer private key
queries with respect to different identities, and the adversary is free to choose
the target identity. It was not until 2011 that the question how to build SOA-
secure IBE was answered by Bellare et al. in [3]. Bellare et al. [3] proposed
a general paradigm to achieve SIM-SO-CPA security from IND-ID-CPA secure
and “One-Sided Publicly Openable” (1SPO) IBE schemes. They also presented
two 1SPO IND-ID-CPA IBE schemes without random oracles, one based on the
Boyen-Waters anonymous IBE [8] and the other based on Water’s dual-system
approach [27], yielding two SIM-SO-CPA secure IBE schemes. The second SIM-
SO-CPA secure IBE scheme proposed in [3] can be extended to construct the
first SIM-SO-CPA secure hierarchical identity-based encryption (HIBE) scheme
without random oracles. One may hope to obtain SIM-SO-CCA secure IBEs by
applying the BCHK transform [7] to SIM-SO-CPA secure HIBEs. Unfortunately,
as mentioned in [3], the BCHK transform [7] does not work in the SOA setting.
Consequently, how to construct SIM-SO-CCA secure IBEs has been left as an
open question.

Our Contribution. We answer the open question of achieving SIM-SO-CCA
secure IBE with a new primitive called extractable IBE with One-Sided Public
Openability (extractable 1SPO-IBE, in short) and a strengthened cross authen-
tication codes (XAC).

– We define a new primitive named extractable 1SPO-IBE and its IND-ID-CCA
security notion.

– We define a new property of XAC: semi-uniqueness. If an XAC is strong
and semi-unique, we say it is a strengthened XAC. We also show that the
efficient construction of XAC proposed by Fehr et al. [13] is a strengthened
XAC actually.

– We propose a paradigm of building SIM-SO-CCA secure IBE from IND-
ID-CCA secure extractable 1SPO-IBE, collision-resistant hash function and
strengthened XAC. Actually, we can define the notion of extractable 1SPO-
PKE similarly, and use the same method to provide a paradigm of build-
ing SIM-SO-CCA secure PKE from IND-CCA secure extractable 1SPO-PKE,
collision-resistant hash function and strengthened XAC, which is different
from the paradigm proposed by Fehr et al. [13].

– We construct extractable 1SPO-IBE schemes without random oracles by
adapting anonymous IBEs, including the anonymous extension of Lewko-
Waters IBE scheme [23] by De Caro, Iovino and Persiano [11] and the Boyen-
Waters anonymous IBE [8].

Extractable 1SPO-IBE. Extractable IBE combines one-bit IBE and identity-
based key encapsulation mechanism (IB-KEM). The message space of extractable
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IBE is {0, 1}. An encryption of 1 under identity ID also encapsulates a session key
K, behaving like IB-KEM.More precisely, (C,K)← Encryptex(PKex, ID, 1;R) and
C ← Encryptex(PKex, ID, 0;R′), where PKex is the public parameter andR,R′ are
the randomness used in encryption. If C is from the encryption of 1 under ID, the
decryption algorithm, (b,K)← Decryptex(PK, SKID, C), is able to use the private
key SKID to recovermessage b = 1 as well as the encapsulated session keyK.As for
an encryption of 0, say C = Encryptex(PKex, ID, 0;R′), the decryption algorithm
can recover message b = 0 but generate a uniformly random key K as well.

The security of extractable IBE requires that given a challenge ciphertext
C∗ and a challenge key K∗ under some identity ID∗, no PPT adversary can
distinguish, except with negligible advantage, whether C∗ is an encryption of 1
under identity ID∗ and K∗ is the encapsulated key of C∗, or C∗ is an encryption
of 0 under identity ID∗ and K∗ is a uniformly random key, even if the adversary
has access to a key generation oracle for private key SKID with ID = ID∗ and
a decryption oracle to decrypt ciphertexts other than C∗ under ID∗. Obviously,
the security notion of extractable IBE inherits IND-ID-CCA security of one-bit
IBE and IND-ID-CCA security of IB-KEM.

An extractable IBE is called one-sided publicly openable (1SPO), if there exists
a PPT public algorithm POpen as follows: given C = Encryptex (PKex, ID, 0;R),
it outputs random coins R′ which is uniformly distributed subject to C =
Encryptex(PKex, ID, 0;R′). One-sided public openability [3] is an IBE-analogue of
a weak form of deniable PKE [9] (which plays an essential role in the construction
of NC-CPA/CCA secure PKE in [13], consequently achieving SIM-SO-CPA/CCA
secure PKE). In [3], Bellare et al. used one-bit 1SPO-IBE to construct SIM-SO-
CPA secure IBE.

SIM-SO-CCA secure IBE from extractable 1SPO-IBE. We follow the
line of [13], which achieves SIM-SO-CCA secure PKE from sender-equivocable
or weak deniable encryption and XAC. We give a high-level description on how
to construct a SIM-SO-CCA secure IBE scheme from an extractable 1SPO-IBE
scheme characterized by (Encryptex,Decryptex), with the help of a collision-
resistant hash function H and a strengthened 
 + 1-cross-authentication code
XAC.

First, we roughly recall the notion of cross-authentication code XAC, which
was introduced in [13]. In an 
+ 1-cross-authentication code XAC, an authenti-
cation tag T can be computed from a list of random keys K1, . . . ,K�+1 (without
a designated message) using algorithm XAuth. The XVer algorithm is used to
verify the correctness of the tag T with any single key K. If K is from the
list, XVer will output 1. If K is uniformly randomly chosen, XVer will output
1 with negligible probability. If an XAC is strong and semi-unique, we say it is
a strengthened XAC. Strongness of XAC means given (Ki)1≤i≤�+1,i�=j and T , a

new key K̂j which is statistically indistinguishable to Ki, can be efficiently sam-
pled. Semi-uniqueness of XAC requires that K can be parsed to (Ka,Kb) and
for a fixed T and Ka, there is at most one Kb satisfying XVer((Ka,Kb), T ) = 1.

Our cryptosystem has message space {0, 1}�, and encryption of an 
-bit mes-
sageM = m1‖ · · · ‖m� for an identity ID is performed bitwise, with one ciphertext
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element per bit. For each bit mi, the corresponding ciphertext element Ci is an
encryption of mi under ID, which is generated by the encryption algorithm of the
extractable 1SPO-IBE scheme. As shown in [24], a scheme which encrypts long
message bit-by-bit is vulnerable to quoting attacks. Hence, we use a collision-
resistant hash function and a strengthened 
+ 1-cross-authentication code XAC
to bind C1, . . . , C� together to resist quoting attacks.

Specifically, let Ka be a public parameter, in our SIM-SO-CCA secure IBE
scheme, encryption of an 
-bit messageM = m1‖ · · · ‖m� ∈ {0, 1}� for an identity
ID is given by the ciphertext CT = (C1, . . . , C�, T ), where{

(Ci,Ki)← Encryptex(PKex, ID, 1) if mi = 1
Ci ← Encryptex(PKex, ID, 0), Ki ← K if mi = 0

,

Kb = H(ID, C1, . . . , C�), K�+1 = (Ka,Kb), T = XAuth(K1, . . . ,K�+1).

Here Ci is from the extractable 1SPO-IBE encryption of bit mi, and Ki is the
encapsulated key or randomly chosen key depending on mi = 1 or 0. Finally,
XAC tag T glues all the Cis together. Given a ciphertext CT = (C1, . . . , C�, T )
for identity ID, the decryption algorithm first checks whether XVer(K ′

�+1, T ) = 1

or not, where K ′
�+1 = (Ka,H(ID, C1, . . . , C�)). If not, it outputs message

�︷ ︸︸ ︷
0 · · · 0.

Otherwise, it uses Decryptex of the extractable 1SPO-IBE scheme to recover
bit m′

i and a session key K ′
i from each Ci. If m′

i = 0, set m′′
i = 0, otherwise

set m′′
i = XVer(K ′

i, T ). Finally, it outputs M ′′ = m′′
1‖ · · · ‖m′′

� . We assume that
the key space XK of the strengthened XAC and the session key space K of the
extractable 1SPO-IBE are identical (i.e., K=XK), and K is efficiently samplable
and explainable domain.

As for the SIM-SO-CCA security of the IBE scheme, the proving line is to show
that encryptions of 
 ones are “equivocable” ciphertexts, which can be opened
to arbitrary messages, and the “equivocable” ciphertexts are computationally
indistinguishable from real challenge ciphertexts in an SOA setting, i.e., even if
the adversary is given access to a corruption oracle to get the opened messages
and randomness, a decryption oracle to decrypt ciphertexts and a key generation
oracle to obtain private keys. If so, a PPT SOA-simulator can be constructed
to create “equivocable” ciphertexts (i.e., encryptions of 
 ones) as challenge
ciphertexts, then open them accordingly, and SIM-SO-CCA security follows.

To prove a challenge ciphertext CT = (C1, . . . , C�, T ) under ID, which encrypts
m1‖ · · · ‖m�, is indistinguishable from encryption of 
 ones in the SOA setting, we
use hybrid argument. For eachmi = 0, we replace (Ci,Ki) (which is used to create
CT under ID) with an extractable 1SPO-IBE encryption of 1. If this replacement
is distinguishable to an adversaryA, then another PPT algorithm B can simulate
SOA-environment for A by setting (Ci,Ki) to be its own challenge (C∗,K∗) un-
der ID, and useA to break the IND-ID-CCA security of the extractable 1SPO-IBE.
The subtlety lies in how B deals with A’s decryption query C̃T = (C̃1, . . . , C̃l, T̃ )

under ID with C̃j = C∗ for some j ∈ [
]. Recall that B is not allowed to is-
sue a private key query 〈ID〉 or a decryption query 〈ID, C∗〉 to it’s own challenger
in the extractable 1SPO-IBE security game. In this case, B will resort to XAC



82 J. Lai et al.

to set m̃′′
j = XVer(K∗, T̃ ). Observe that, if (C∗,K∗) = Encryptex(PKex, ID, 1),

then m̃′′
j = XVer(K∗, T̃ ) = 1, which is exactly the same as the output of

Decrypt algorithm. If C∗ = Encryptex(PKex, ID, 0) and K∗ is random, then m̃′′
j =

XVer(K∗, T̃ ) = 0 except with negligible probability, due to XAC’s security against
substitution attacks. This is also consistent with the output of the decryption algo-
rithm, except with negligible probability. Hence, with overwhelming probability,
B simulates SOA-environment for A properly. Note that to apply XAC’s security
against substitution attacks, we require:

1. T̃ = T , which is guaranteed by XAC’s semi-unique property and collision
resistance of hash function.

2. K∗ should not be revealed to adversary A. Therefore, in the corruption
phase, if B is asked to open (C∗,K∗), it first resamples a K̂, which is sta-
tistically indistinguishable from K∗. This is guaranteed by the strongness of
XAC. Then, C will be opened to 0 with algorithm POpen, and K̂ (instead of
K∗) is opened with a suitable randomness.

Construction of Extractable 1SPO-IBE. In [3], Bellare et al. proposed
two one-bit 1SPO-IBEs, one based on the anonymous extension of Lewko-Waters
IBE scheme [23] by De Caro, Iovino and Persiano [11] and the other based on the
Boyen-Waters anonymous IBE [8]. Both schemes rely on a pairing e : G×G→
GT . The 1SPO property of the two one-bit IBE schemes is guaranteed by the fact
that G is an efficiently samplable and explainable domain, which is character-
ized by two PPT algorithms Sample and Sample−1 for group G. More precisely,
Sample chooses an element g from G uniformly at random, and Sample−1(G, g)
will output a uniformly distributed R subject to g = Sample(G;R). Details of
algorithms Sample and Sample−1 are given in [3].

Unfortunately, the one-bit 1SPO-IBE schemes in [3] are not extractable IBEs.
No session keys can be extracted from encryptions of 1, and the schemes are
vulnerable to chosen-ciphertext attacks. Therefore, we have to resort to new
techniques for extractable 1SPO-IBE.

We start from anonymous IBE schemes in [11,8]. Recall that an encryption
of a message M for an identity ID in anonymous IBEs [11,8] takes the form
of (c0 = f0(PK, s, s0), c1 = f1(PK, ID, s, s1), c2 = e(g, g)αs · M), where PK
denotes the system’s public parameter, α is the master secret key, s, s0, s1 are the
randomness used in the encryption algorithm, f0, f1 are two efficient functions
and each of c0, c1 denotes one or several elements in G. The private key SKID is
structured such that pairings with group elements of (c1, c2) result in e(g, g)αs,
hence the message M can be recovered from c2.

The idea of constructing extractable 1SPO-IBE is summerized as fol-
lows. Firstly, we generate ciphertexts of the form (c′0 = f ′0(PK, s, s0), c′1 =
f ′1(PK, ID, ID′, s, s1)), where ID′ = H(ID, c′0) and H is a collision-resistant hash
function. The structure of (c′0, c

′
1) is characterized by the shared randomness s

and this structure can be publicly verified. The master secret key is now (α, β).
Correspondingly the private key SKID = (SKID,1, SKID,2), and SKID,i(i = 1, 2) are
generated by the master secret key α and β respectively, in a similar way as that
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in the anonymous IBEs [11,8]. Consequently, SKID,1 and SKID,2 help generate
e(g, g)αs and e(g, g)βs from (c′0, c

′
1).

Next, we use e(g, g)αs to blind (c′0, c
′
1) and obtain (c′′0 = f ′′1 (PK, s, s0), c

′′
1 =

f ′′1 (PK, ID, ID′, s, s1)), which satisfies the following properties:

1. Without the private key SKID = (SKID,1, SKID,2) for ID, the relationship
between c′′0 and c′′1 (that they share the same s) is hidden from any PPT
adversary.

2. With SKID,1 and SKID,2, it is still possible to generate e(g, g)αs and e(g, g)βs

from the blinded ciphertext (c′′0 , c
′′
1).

3. Given the blinded factor e(g, g)αs, (c′′0 , c
′′
1) can be efficiently changed back to

(c′0, c
′
1).

Finally, we obtain the extractable 1SPO-IBE with the following features:

Encryptex(PKex, ID, b) ={
((c′′0 , c

′′
1),K) =

(
(f ′′1 (PK, s, s0), f

′′
1 (PK, ID, ID′, s, s1)), e(g, g)

βs)
)
b = 1

(c′′0 , c
′′
1)← Sample(G) b = 0

.

– Given a ciphertext C = (c′′0 , c
′′
1) for ID, the decryption algorithm first uses

SKID,1 to compute a blinding factor from (c′′0 , c
′′
1 ). Then, it uses the blinding

factor to retrieve (c′0, c
′
1) from (c′′0 , c

′′
1). Next, it checks whether (c

′
0, c

′
1) have a

specific structure. If yes, it outputs message 1 and computes the encapsulated
session key from (c′′0 , c

′′
1) using SKID,2; otherwise, it outputs message 0 and a

uniformly random session key.
– Algorithm POpen for 1SPO can be implemented with Sample−1.

We emphasize that the 2-hierarchical IBE structure (when encrypting 1) helps
to answer decryption queries in the IND-ID-CCA security proof of the above
extractable 1SPO-IBE. In the private key SKID = (SKID,1, SKID,2), SKID,2 is used
to generate the encapsulated key e(g, g)βs when encrypting 1, and SKID,1 is used
to generate a blind factor e(g, g)αs, which helps to convert the publicly verifiable
structure of (c′0, c

′
1) to a privately verifiable structure, resulting in IND-ID-CCA

secure extractable 1SPO-IBE.

Organization. The rest of the paper is organized as follows. Some prelimi-
naries are given in Section 2. We introduce the notion and security model of
extractable 1SPO-IBE in Section 3. The notion of strengthened XAC and its
efficient construction are given in Section 4. We propose a paradigm of build-
ing SIM-SO-CCA secure IBE from IND-ID-CCA secure extractable 1SPO-IBE,
collision-resistant hash function and strengthened XAC in Section 5. We present
two IND-ID-CCA secure extractable 1SPO-IBE schemes in Section 6.

2 Preliminaries

If S is a set, then s1, . . . , st ← S denotes the operation of picking elements
s1, . . . , st uniformly at random from S. If n ∈ N then [n] denotes the set
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{1, . . . , n}. For i ∈ {0, 1}∗, |i| denotes the bit-length of i. If x1, x2, . . . are strings,
then x1‖x2‖ · · · denotes their concatenation. For a probabilistic algorithm A, we
denote y ← A(x;R) the process of running A on input x and with randomness
R, and assigning y the result. Let RA denote the randomness space of A, and
we write y ← A(x) for y ← A(x;R) with R chosen from RA uniformly at ran-
dom. A function f(κ) is negligible, if for every c > 0 there exists a κc such that
f(κ) < 1/κc for all κ > κc.

2.1 Key Derivation Functions

A family of key derivation functions [12] KDF = {KDFi : Xi → Ki}, indexed by
i ∈ {0, 1}∗, is secure if, for all PPT algorithms A and for sufficiently large i, the
distinguishing advantage AdvAKDF (i) is negligible (in |i|), where

AdvAKDF (i) = |Pr[A(KDFi,KDFi(x)) = 1 |KDFi ← KDF , x← Xi ]−
Pr[A(KDFi,K) = 1 |KDFi ← KDF ,K ← Ki ]| .

The above definition is for presentation simplicity. In general, the index i
should be generated by a PPT sampler algorithm on the security parameter κ.
For notational convenience, we ignore the index i of a key derivation function.

2.2 Efficiently Samplable and Explainable Domain

A domain D is efficiently samplable and explainable [13] iff there exist two PPT
algorithms:

– Sample(D;R) : On input random coins R ← RSample and a domain D, it
outputs an element uniformly distributed over D.

– Sample−1(D, x) : On input D and any x ∈ D, this algorithm outputs R that
is uniformly distributed over the set {R ∈ RSample |Sample(D;R) = x}.

3 Extractable IBE with One-Sided Public Openability
(Extractable 1SPO-IBE)

Formally, an extractable identity-based encryption (extractable IBE) scheme
consists of the following four algorithms:

Setupex(1
κ) takes as input a security parameter κ. It generates a public param-

eter PK and a master secret key MSK. The public parameter PK defines an
identity space ID, a ciphertext space C and a session key space K.

KeyGenex(PK,MSK, ID) takes as input the public parameter PK, the master
secret key MSK and an identity ID ∈ ID. It produces a private key SKID for
the identity ID.

Encryptex(PK, ID,m) takes as input the public parameter PK, an identity ID ∈
ID and a message m ∈ {0, 1}. It outputs a ciphertext C if m = 0, and
outputs a ciphertext and a session key (C,K) if m = 1. Here K ∈ K.

Decryptex(PK, SKID, C) takes as input the public parameter PK, a private key
SKID and a ciphertext C ∈ C. It outputs a message m′ ∈ {0, 1} and a session
key K ′ ∈ K.
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Correctness. An extractable IBE scheme has completeness error ε, if for all κ, ID ∈
ID, m ∈ {0, 1}, (PK,MSK) ← Setupex(1

κ), C/(C,K) ← Encryptex(PK, ID,m),
SKID ← KeyGenex(PK,MSK, ID) and (m′,K ′)← Decryptex(PK, SKID, C):

– The probability that m′ = m is at least 1− ε, where the probability is taken
over the coins used in encryption.

– If m = 1 then m′ = m and K ′ = K. If m′ = 0, K ′ is uniformly distributed
in K.

Security. The IND-ID-CCA security of extractable IBE is twisted from IND-
ID-CCA security of one-bit IBE and IND-ID-CCA security of identity-based key
encapsulation mechanism (IB-KEM). The security notion is defined using the
following game between a PPT adversary A and a challenger.

Setup. The challenger runs Setupex(1
κ) to obtain a public parameter PK and a

master secret key MSK. It gives the public parameter PK to the adversary.
Query phase 1. The adversary A adaptively issues the following queries:

– Key generation query 〈ID〉: the challenger runs KeyGenex on ID to gen-
erate the corresponding private key SKID, which is returned to A.

– Decryption query 〈ID, C〉: the challenger runs KeyGenex on ID to get the
private key, then use the key to decrypt C with Decryptex algorithm.
The result is sent back to A.

Challenge. The adversary A submits a challenge identity ID∗. The only re-
striction is that, A did not issue a private key query for ID∗ in Query phase
1. The challenger first selects a random bit δ ∈ {0, 1}. If δ = 1, the chal-
lenger computes (C∗,K∗) ← Encryptex(PK, ID∗, 1). Otherwise (i.e., δ = 0),
the challenger computes C∗ ← Encryptex(PK, ID∗, 0) and chooses K∗ ← K.
Then, the challenge ciphertext and session key (C∗,K∗) are sent to the ad-
versary by the challenger.

Query phase 2. This is identical to Query phase 1, except that the adversary
does not request a private key for ID∗ or the decryption of 〈ID∗, C∗〉.

Guess. The adversary A outputs its guess δ′ ∈ {0, 1} for δ and wins the game
if δ = δ′.

The advantage of the adversary in this game is defined as Advccaex-IBE,A(κ) =
|Pr[δ′ = 1|δ = 1] − Pr[δ′ = 1|δ = 0]|, where the probability is taken over the
random bits used by the challenger and the adversary.

Definition 1. An extractable IBE scheme is IND-ID-CCA secure, if the advan-
tage in the above security game is negligible for all PPT adversaries.

We say that an extractable IBE scheme is IND-sID-CCA secure if we add an Init
stage before setup in the above security game where the adversary commits to
the challenge identity ID∗.

Definition 2. (Extractable 1SPO-IBE) An extractable IBE scheme is One-
Sided Publicly Openable if it is associated with a PPT public algorithm POpen
such that for all PK generated by (PK,MSK)← Setupex(1

κ), for all ID ∈ ID and
any C ← Encryptex(PK, ID, 0), it holds that: the output of POpen(PK, ID, C) dis-
tributes uniformly at random over Coins(PK, ID, C, 0), where Coins(PK, ID, C, 0)
denotes the set of random coins {R̃ | C = Encryptex(PK, ID, 0; R̃)}.
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4 Strengthened Cross-authentication Codes

In this section, we first review the notion and security requirements of cross-
authentication codes introduced in [13]. Then we define a new property of cross-
authentication codes: semi-unique. If a cross-authentication code is strong and
semi-unique, we say it is a strengthened cross-authentication code, which will
play an important role in our construction of SIM-SO-CCA secure IBE. Finally,
we will show that the efficient construction of cross-authentication code proposed
by Fehr et al. [13] is actually a strengthened cross-authentication code.

Definition 3 (L-Cross-authentication code.). For L ∈ N, an L-cross-
authentication code XAC is associated with a key space XK and a tag space XT ,
and consists of three PPT algorithms XGen, XAuth and XVer. XGen(1κ) produces
a uniformly random key K ∈ XK, deterministic algorithm XAuth(K1, . . . ,KL)
outputs a tag T ∈ XT , and deterministic algorithm XVer(K,T ) outputs a deci-
sion bit1. The following is required:

Correctness. For all i ∈ [L], the probability

failXAC(κ) := Pr[XVer(Ki,XAuth(K1, . . . ,KL)) = 1],

is negligible, where K1, . . . ,KL ← XGen(1κ) in the probability.

Security against impersonation and substitution attacks. Advimp
XAC(κ) and

AdvsubXAC(κ) as defined below are both negligible:

Advimp
XAC(κ) := max

T ′
Pr[XVer(K,T ′) = 1|K ← XGen(1κ)],

where the max is over all T ′ ∈ XT , and

AdvsubXAC(κ) := max
i,K �=i,F

Pr

⎡⎢⎣ T ′ = T∧
XVer(Ki, T

′) = 1

∣∣∣∣∣∣∣
Ki ← XGen(1κ),

T = XAuth(K1, . . . ,KL),

T ′ ← F (T )

⎤⎥⎦
where the max is over all i ∈ [L], all K �=i = (Kj)j �=i ∈ XKL−1 and all (possibly
randomized) functions F : XT → XT .

Definition 4 (Strengthened XAC.). An L-cross-authentication code XAC is
a strengthened XAC, if it enjoys the following additional properties.

Strongness [20]: There exists another PPT public algorithm ReSamp, which
takes as input i, (Kj)j �=i and T , with K1, . . . ,KL ← XGen(1κ) and T ←

1 In Fehr et al.’s original definition [13], algorithm XVer includes an additional input
parameter: index i. LetK1, . . . ,KL ← XGen(1κ) and T ← XAuth(K1, . . . ,KL). Since
XVer(Ki, i, T ) = XVer(Ki, j, T ) in their efficient construction, we only take a key and
a tag as input of algorithm XVer for notational convenience.
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XAuth(K1, . . . ,KL), outputs K̂i (i.e., K̂i ← ReSamp(K �=i, T )), such that K̂i

is statistically indistinguishable with Ki, i.e., the statistical distance

Dist(κ) :=
1

2
·
∑

K∈XK

∣∣∣Pr[K̂i = K |(K �=i, T ) ]− Pr[Ki = K |(K �=i, T ) ]
∣∣∣

is negligible.
Semi-uniqueness: The key space XK = Ka × Kb. Given an authentica-

tion tag T and Ka ∈ Ka, there exists at most one Kb ∈ Kb such that
XVer((Ka,Kb), T ) = 1.

Next, we review the efficient construction of L-cross-authentication code se-
cure against impersonation and substitution attacks proposed by Fehr et al. [13],
and show that it is strong and semi-unique as well, i.e. it is a strengthened XAC.

– XK = Ka ×Kb = F2
q and XT = FL

q ∪ {⊥}.
– XGen outputs (a, b), which is chosen from F2

q uniformly at random.

– T ← XAuth((a1, b1), . . . , (aL, bL)). Let A ∈ FL×L
q be a matrix with its i-th

row (1, ai, a
2
i , . . . , a

L−1
i ) for i ∈ [L]. Let b1, . . . , bL ∈ FL

q constitute the column
vector B. If AT = B has no solution or more than one solution, set T =⊥.
Otherwise A is a Vandermonde matrix, and the tag T = (T0, . . . , TL−1) can
be computed efficiently by solving the linear equation system AT = B.

– Define polyT (x) = T0+T1x+· · ·+TL−1x
L−1 ∈ Fq[x] with T = (T0, . . . , TL−1).

XVer((a, b), T ) outputs 1 if and only if T =⊥ and polyT (a) = b.
– (a, b) ← ReSamp((aj , bj)j �=i, T ). Choose a ← Fq such that a = aj

(1 ≤ j ≤ 
, j = i) and compute b = polyT (a). Conditioned on T =
XAuth((a1, b1), . . . , (aL, bL)) (T =⊥) and (aj , bj)j �=i, both of (a, b) and (ai, bi)
are uniformly distributed over the same support.

– Fixing a ∈ Fq results in a unique b = polyT (a) such that XVer((a, b), T ) = 1,
if T =⊥.

5 Proposed SIM-SO-CCA Secure IBE Scheme

Let (Setupex,KeyGenex,Encryptex,Decryptex) be an extractable 1SPO-IBE
scheme with identity space ID, ciphertext space C and session key space K =
Ka ×Kb, and (XGen,XAuth,XVer) be a strengthened 
 + 1-cross-authentication
code XAC with key space XK = K = Ka×Kb and tag space XT . We require that
key space K is also an efficiently samplable and explainable domain2 associated
with algorithms Sample′ and Sample′−1. Our cryptosystem has message space
{0, 1}�.

2 As mentioned in [13], the efficiently samplable and explainable key space K can be
assumed without loss of generality, because K can always be efficiently mapped into
K′ = {0, 1}l by means of a suitable (almost) balanced function, such that uniform
distribution in K induces (almost) uniform distribution in K′, and where l is linear
in log(|K|).
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Our scheme consists of the following algorithms:

Setup(1κ) : The setup algorithm first chooses Ka ← Ka and a collision-

resistant hash function H : ID ×
�︷ ︸︸ ︷

C × · · · × C → Kb, and calls Setupex

to obtain (PKex,MSKex) ← Setupex(1
κ). It sets the public parameter

PK = (PKex,H,Ka) and the master secret key MSK = MSKex.

KeyGen(PK,MSK, ID ∈ ID) : The key generation algorithm takes as in-
put the public parameter PK = (PKex,H,Ka), the master secret key
MSK = MSKex and an identity ID. It calls KeyGenex to get SKID ←
KeyGenex(PKex,MSKex, ID), and outputs the private key SKID.

Encrypt(PK, ID ∈ ID,M) : The encryption algorithm takes as input the pub-
lic parameter PK = (PKex,H,Ka), an identity ID and a message M =
m1‖ · · · ‖m� ∈ {0, 1}�. For i ∈ [
], it computes{

(Ci,Ki)← Encryptex(PKex, ID, 1) if mi = 1
Ci ← Encryptex(PKex, ID, 0), Ki ← Sample′(K;RK

i ) if mi = 0
,

where RK
i ← RSample′ . Then, it sets K�+1 = (Ka,Kb) where Kb =

H(ID, C1, . . . , C�), and computes the tag T = XAuth(K1, . . . ,K�+1). Finally,
it outputs the ciphertext CT = (C1, . . . , C�, T ).

Decrypt(PK, SKID, CT ) : The decryption algorithm takes as input the pub-
lic parameter PK = (PKex,H,Ka), a private key SKID for identity ID
and a ciphertext CT = (C1, . . . , C�, T ). This algorithm first computes
K ′

b = H(ID, C1, . . . , C�) and checks whether XVer(K ′
�+1, T ) = 1 with K ′

�+1 =

(Ka,K
′
b). If not, it outputs M ′′ =

�︷ ︸︸ ︷
0 · · · 0. Otherwise, for i ∈ [
], it computes

(m′
i,K

′
i)← Decryptex(PKex, SKID, Ci) and sets

m′′
i =

{
XVer(K ′

i, T ) if m′
i = 1

0 if m′
i = 0

.

Then, it outputs the message M ′′ = m′′
1‖ · · · ‖m′′

� .

Correctness. If mi = 1, then (m′
i,K

′
i) = (mi,Ki) by correctness of extractable

1SPO-IBE scheme, so XVer(K ′
i, T ) = 1 (hence m′′

i = 1) except with probability
failXAC by correctness of XAC. On the other hand, if mi = 0, the ε-completeness
of the extractable 1SPO-IBE guarantees m′

i = 0 (hence m′′
i = 0) with prob-

ability at least 1 − ε. Consequently, for any CT ← Encrypt(PK, ID,M), we
have Decrypt(PK, SKID, CT ) = M except with probability at most 
 ·
max{failXAC, ε}.
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Theorem 1. If the extractable 1SPO-IBE scheme is IND-ID-CCA secure,
the hash function H is collision-resistant and the strengthened 
 + 1-cross-
authentication code XAC is secure against substitution attacks, then our proposed
IBE scheme is SIM-SO-CCA secure.

Proof. See the full version of this paper.

6 Proposed IND-ID-CCA Secure Extractable 1SPO-IBE
Scheme

In this section, we propose a concrete construction of extractable 1SPO-IBE
from the anonymous IBE [11] in a composite order bilinear group. (In the full
version of this paper, we show how to construct an extractable 1SPO-IBE from
Boyen-Waters anonymous HIBE [8], which is based on a prime order bilinear
group.) The design principle has already been described in the introduction.

The proposed scheme consists of the following algorithms:

Setupex(1
κ): Run an N -order group generator G(κ) to obtain a group descrip-

tion (p1, p2, p3, p4,G, GT , e), where G = Gp1 ×Gp2 ×Gp3×Gp4 , e : G×G→
GT is a non-degenerate bilinear map, G and GT are cyclic groups of order
N = p1p2p3p4. Next choose g, u, v, h ← Gp1 , g3 ← Gp3 , g4,W4 ← Gp4 and
α, β ← ZN . Then choose a collision-resistant hash function H : ZN × G →
ZN , and a key derivation function KDF : GT → ZN . The public parameter
is PK = ((G,GT , e,N), u, v, h,W14 = gW4, g4, e(g, g)α, e(g, g)β, H,KDF).
The master secret key is MSK = (g, g3, α, β). We require the group G be
an efficiently samplable and explainable domain associated with algorithms
Sample and Sample−1. Details on how to instantiate such groups are given
in [3].

KeyGenex(PK,MSK, ID ∈ ZN ): Choose r, r̄ ← ZN and R3, R
′
3, R

′′
3 , R̄3, R̄

′
3, R̄

′′
3 ←

Gp3 (this is done by raising g3 to a random power). Output the private key
SKID = (ID, D0, D1, D2, D̄0, D̄1, D̄2), where D0 = gα(uIDh)rR3, D1 = vrR′

3,
D2 = grR′′

3 , D̄0 = gβ(uIDh)r̄R̄3, D̄1 = vr̄R̄′
3, D̄2 = gr̄R̄′′

3 .
Encryptex(PK, ID ∈ ZN ,m ∈ {0, 1}): If m = 1, choose s, t4 ← ZN and com-

pute c0 = W s
14g

t4
4 , c1 = (uIDvID

′
h)sg

KDF(e(g,g)αs)
4 , K = e(g, g)βs, where

ID′ = H(ID, c0), then output the ciphertext and the session key (C,K) =
((c0, c1),K); otherwise (i.e., m = 0), choose c0, c1 ← Sample(G), and output
the ciphertext C = (c0, c1).

Decryptex(PK, SKID = (ID, D0, D1, D2, D̄0, D̄1, D̄2), C = (c0, c1)): Compute
ID′ = H(ID, c0) and X = e(D0D

ID′
1 , c0)/e(D2, c1). (One can view

(D0D
ID′
1 , D2) as a private key associated to the 2-level identity ĨD =

(ID, ID′).) Then, check whether e(c1/g
KDF(X)
4 ,W14) = e(c0, uIDvID

′
h). If not,

set m = 0 and choose a session key K ← GT . Otherwise, set m = 1 and
compute K = e(D̄0D̄

ID′
1 , c0)/e(D̄2, c1). Output (m,K).

Correctness. Note that, if C = (c0, c1) is an encryption of 1 under identity ID,
then
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X = e(D0D
ID′
1 , c0)/e(D2, c1)

= e(gα(uIDvID
′
h)r, gs)/e(gr, (uIDvID

′
h)s) = e(g, g)αs,

e(c1/g
KDF(X)
4 ,W14) = e((uIDvID

′
h)s,W14)

= e(uIDvID
′
h,W s

14) = e(c0, uIDvID
′
h),

K = e(D̄0D̄
ID′
1 , c0)/e(D̄2, c1)

= e(gβ(uIDvID
′
h)r̄, gs)/e(gr̄, (uIDvID

′
h)s) = e(g, g)βs,

so decryption always succeeds. On the other hand, if C = (c0, c1) is an encryption
of 0 under identity ID, then c0, c1 ∈ G are chosen uniformly at random, thus

Pr[e(c1/g
KDF(X)
4 ,W14) = e(c0, u

IDvID
′
h)] ≤ 1

22κ where κ is the security parameter.
So the completeness error is 1

22κ .

One-Sided Public Openability (1SPO). If C = (c0, c1) is an encryption of 0
under identity ID, then c0 and c1 are both randomly distributed in G. Since
the group G is an efficiently samplable and explainable domain associated
with Sample and Sample−1, POpen(PK, ID, C = (c0, c1)) can employ Sample−1

to open (c0, c1). More precisely, (R0, R1) ← POpen(PK, ID, (c0, c1)), where
R0 ← Sample−1(G, c0) and R1 ← Sample−1(G, c1).

Security. We now state the security theorem of our proposed extractable IBE
scheme.

Theorem 2. The above extractable 1SPO-IBE scheme is IND-ID-CCA secure.

Proof. See the full version of this paper.
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Abstract. We revisit the classical problem of converting an imperfect
source of randomness into a usable cryptographic key. Assume that we
have some cryptographic application P that expects a uniformly random
m-bit key R and ensures that the best attack (in some complexity class)
against P (R) has success probability at most δ. Our goal is to design
a key-derivation function (KDF) h that converts any random source X
of min-entropy k into a sufficiently “good” key h(X), guaranteeing that
P (h(X)) has comparable security δ′ which is ‘close’ to δ.
Seeded randomness extractors provide a generic way to solve this

problem for all applications P , with resulting security δ′ = O(δ), pro-
vided that we start with entropy k ≥ m+2 log (1/δ)−O(1). By a result of
Radhakrishnan and Ta-Shma, this bound on k (called the “RT-bound”)
is also known to be tight in general. Unfortunately, in many situations
the loss of 2 log (1/δ) bits of entropy is unacceptable. This motivates the
study KDFs with less entropy waste by placing some restrictions on the
source X or the application P .

In this work we obtain the following new positive and negative results in
this regard:
– Efficient samplability of the source X does not help beat the RT-
bound for general applications. This resolves the SRT (samplable
RT) conjecture of Dachman-Soled et al. [DGKM12] in the affirma-
tive, and also shows that the existence of computationally-secure
extractors beating the RT-bound implies the existence of one-way
functions.

– We continue in the line of work initiated by Barak et al. [BDK+11]
and construct new information-theoretic KDFs which beat the RT-
bound for large but restricted classes of applications. Specifically, we
design efficient KDFs that work for all unpredictability applications
P (e.g., signatures, MACs, one-way functions, etc.) and can either:
(1) extract all of the entropy k = m with a very modest security
loss δ′ = O(δ · log (1/δ)), or alternatively, (2) achieve essentially
optimal security δ′ = O(δ) with a very modest entropy loss k ≥ m+
loglog (1/δ). In comparison, the best prior results from [BDK+11]
for this class of applications would only guarantee δ′ = O(

√
δ) when

k = m, and would need k ≥ m+ log (1/δ) to get δ′ = O(δ).
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– The weaker bounds of [BDK+11] hold for a larger class of so-called
“square-friendly” applications (which includes all unpredictability,
but also some important indistinguishability, applications). Unfor-
tunately, we show that these weaker bounds are tight for the larger
class of applications.

– We abstract out a clean, information-theoretic notion of (k, δ, δ′)-
unpredictability extractors, which guarantee “induced” security δ′

for any δ-secure unpredictability application P , and characterize the
parameters achievable for such unpredictability extractors. Of inde-
pendent interest, we also relate this notion to the previously-known
notion of (min-entropy) condensers, and improve the state-of-the-art
parameters for such condensers.

1 Introduction

Key Derivation is a fundamental cryptographic task arising in a wide variety
of situations where a given application P was designed to work with a uniform
m-bit key R, but in reality one only has a “weak” n-bit random source X .
Examples of such sources include biometric data [DORS08, BDK+05], physical
sources [BST03, BH05], secrets with partial leakage, and group elements from
Diffie-Hellman key exchange [GKR04, Kra10], to name a few. We’d like to have
a Key Derivation Function (KDF) h : {0, 1}n → {0, 1}m with the property that
the derived key h(X) can be safely used by P , even though the original security
of P was only analyzed under the assumption that its key R is uniformly random.

Of course, good key derivation is generally impossible unless X has some
amount of entropy k to begin with, where the “right” notion of entropy in this
setting is min-entropy: a source X has min-entropy H∞(X) = k if for any
x ∈ {0, 1}n we must have Pr[X = x] ≤ 2−k. We call such a distribution X
over n-bits strings an (n, k)-source, and generally wish to design a KDF h which
“works” for all such (n, k)-sources X . More formally, assuming P was δ-secure
(against some class of attackers) with the uniform key R ≡ Um, we would like to
conclude that P is still δ′-secure (against nearly the same class of attackers) when
using R = h(X) instead. The two most important parameters are: (1) ensuring
that the new security δ′ is “as close as possible” to the original security δ, and
(2) allowing the source entropy k to be “as close as possible” to the application’s
key length m. Minimizing this threshold k is very important in many practical
situations. For example, in the setting of biometrics and physical randomness,
many natural sources are believed to have very limited entropy, while in the
setting of Diffie-Hellman key exchange reducing the size of the Diffie-Hellman
group (which is roughly 2k) results in substantial efficiency improvements. Ad-
ditionally, we prefer to achieve information-theoretic security for our KDFs (we
discuss “computational KDFs” in Section 1.2), so that the derived key can be
used for arbitrary (information-theoretic and computational) applications P .

This discussion leads us to the following central question of our work: Can one
find reasonable application scenarios where one can design a provably-secure,
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information-theoretic KDF achieving “real security” δ′ ≈ δ when k ≈ m?
More precisely, for a given (class of) application(s) P ,

(A) What is the best (provably) achievable security δ′ (call it δ∗) when k = m?
(B) What is the smallest (provable) entropy threshold k (call it k∗) to achieve

security δ′ = O(δ)?

Ideally, we would like to get δ∗ = δ and k∗ = m, and the question is how close one
can come to these “ideal” bounds. In this work we will provide several positive
and negative answers to our main question, including a general way to nearly
achieve the above “ideal” for all unpredictability applications. But first we turn
to what is known in the theory of key derivation.

Randomness Extractors. In theory, the cleanest way to design a general,
information-theoretically secure KDF is by using so called (strong) randomness
extractors [NZ96]. Such a (k, ε)-extractor Ext has the property that the output
distribution Ext(X) is ε-statistically close to the uniform distribution Um, which
means that using Ext(X) as a key will degrade the original security δ of any
application P by at most ε: δ′ ≤ δ + ε. However, the sound use of randomness
extractors comes with two important caveats. The first caveat comes from the
fact that no deterministic extractor Ext can work for all (n, k)-sources [CG89]
when k < n, which means that extractors must be probabilistic, or “seeded”.
This by itself is not a big limitation, since the extracted randomness Ext(X ;S)
is ε-close to Um even conditioned on the seed S, which means that the seed S can
be reused and globally shared across many applications.1 From our perspective,
though, a more important limitation/caveat of randomness extractors comes
from a non-trivial tradeoff between the min-entropy k and the security ε one
can achieve to derive an m-bit key Ext(X ;S). The best randomness extractors,
such as the one given by the famous Leftover Hash Lemma (LHL) [HILL99], can

only achieve security ε =
√
2m−k. This gives the following very general bound

on δ′ for all applications P :

δ′ ≤ δALL
def
= δ +

√
2m−k (1)

Translating this bound to answer our main questions (A) and (B) above, we see
that δ∗ = 1 (no meaningful security is achieved when k = m) and min-entropy
k∗ ≥ m+ 2 log (1/δ)−O(1) is required to get δ′ = O(δ). For example, to derive
a 128-bit key for a CBC-MAC with security δ ≈ δ′ ≈ 2−64, one needs k ≈ 256
bits of min-entropy, and nothing is theoretically guaranteed when k = 128.

Of course, part of the reason why these provable bounds are “not too great”
(compared both with the “ideal” bounds, as well as the “real” bounds we will

1 However, it does come with an important assumption that the source distribution
X must be independent of the seed S. Although this assumption could be prob-
lematic in some situations, such as leakage-resilient cryptography (and has led to
some interesting research [TV00, CDH+00, KZ03, DRV12]), in many situations,
such as the Diffie-Hellman key exchange or biometrics, the independence of the
source and the seed could be naturally enforced/assumed.
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achieve shortly) is their generality: extractors work for all (n, k)-sources X and
all applications P . Unfortunately, Radhakrishnan and Ta-shma [RTS00] showed
that in this level of generality nothing better is possible: any (k, ε)-extractor
must have k ≥ m + 2 log (1/ε) (we will refer to this as the “RT-bound”). This
implies that for any candidate m-bit extractor Ext there exists some application
P , some (possibly inefficiently samplable) source X of min-entropy k and some
(possibly exponential time) attacker A, such that A(S) can break P keyed by

R = Ext(X ;S) with advantage
√
2m−k.

Thus, there is hope that better results are possible if one restricts the type of
applications P (e.g., unpredictability applications), sources X (e.g., efficiently
samplable) or attackers A (e.g., polynomial-time) considered. We discuss such
options below, stating what was known together with our new results.

1.1 Our Main Results

Efficiently Samplable Sources. One natural restriction is to require that
the source X is efficiently sampleable. This restriction is known to be useful
for relaxing the assumption that the source distribution X is independent of
the seed S [TV00, DRV12], which was the first caveat in using randomness
extractors. Unfortunately, it was not clear if efficient samplability of X helps
with reducing the entropy loss L = k −m below 2 log (1/ε). In fact, Dachman-
Soled et al. [DGKM12] conjectured that this is indeed not the case when Ext is
also efficient, naming this conjecture the “SRT assumption” (where SRT stands
for “samplable RT”).

SRT Assumption [DGKM12]: For any efficient extractor Ext with m-bit out-
put there exists an efficiently samplable (polynomial in n) distribution X of min-
entropy k = m+ 2 log (1/ε)−O(1) and a (generally inefficient) distinguisher D
which has at least an ε-advantage in distinguishing (S,R = Ext(X ;S)) from
(S,R = Um).

As our first result, we show that the SRT assumption is indeed (unfortunately)
true, even without restricting the extractor Ext to be efficient.

Theorem 1. (Informal) The SRT assumption is true for any (possibly ineffi-
cient) extractor Ext. Thus, efficiently samplability does not help to reduce the
entropy loss of extractors below 2 log (1/ε).

Square-Friendly Applications. The next natural restriction is to limit the
class of applications P in question. Perhaps, for some such applications, one
can argue that the derived key R = hs(X) is still “good enough” for P despite
not being statistically close to Um (given s). This approach was recently pio-
neered by Barak et al [BDK+11], and then further extended and generalized
by Dodis et al. [DRV12, DY13]. In these works the authors defined a special
class of cryptographic applications, called square-friendly, where the pessimistic
RT-bound can be provably improved. Intuitively, while any traditional applica-
tion P demands that the expectation (over the uniform distribution r ← Um)
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of the attacker’s advantage f(r) on key r is at most δ, square-friendly applica-
tions additionally require that the expected value of f(r)2 is also bounded by δ.
The works of [BDK+11, DY13] then showed that the class of square-friendly ap-
plications includes all unpredictability applications (signatures, MACs, one-way
functions, etc.), and some, but not all, indistinguishability applications (includ-
ing chosen plaintext attack secure encryption, weak pseudorandom functions and
others). 2 Additionally, for all such square-friendly applications P , it was shown
that universal (and thus also the stronger pairwise independent) hash functions
{hs} yield the following improved bound on the security δ′ of the derived key
R = hs(X):

δ′ ≤ δSQF
def
= δ +

√
δ · 2m−k (2)

This provable (and still relatively general!) bound lies somewhere in between
the “ideal” bounds and the fully generic bound (1): in particular, for the first
time we get a meaningful security δ∗ ≈

√
δ when k = m (giving non-trivial

answer to Question (A)), or, alternatively, we get full security δ′ = O(δ) provided
k∗ ≥ m + log (1/δ) (giving much improved answer to Question (B) than the
bound k∗ ≥ k + 2 log (1/δ) derived by using standard extractors). For example,
to derive a 128-bit key for a CBC-MAC having ideal security δ = 2−64, we can
either settle for much lower security δ′ ≈ 2−32 from entropy k = 128, or get full
security δ′ ≈ 2−64 from entropy k = 192.

Given these non-trivial improvements, one can wonder if further improvements
(for square-friendly applications) are still possible. As a simple (negative) result,
we show that the bound in Equation (2) cannot be improved in general for all
square-friendly applications. Interestingly, the proof of this result uses the proof
of Theorem 1 to produce the desired sourceX for the counter-example. For space
reasons, the proof of Theorem 2 below is only given in the full version [DPW13]
of this paper.

Theorem 2. (Informal) There exists a δ-square friendly application P with an
m-bit key such that for any family H = {hs} of m-bit key derivation functions
there exists (even efficiently samplable) (n, k)-source X and a (generally ineffi-

cient) distinguisher D such that D(S) has at least δ′ = Ω(
√
δ · 2m−k) advantage

in breaking P with the derived key R = hS(X) (for random seed S).

Hence, to improve the parameters in Equation (2) and still have information-
theoretic security, we must place more restrictions on the class of applications
P we consider.

Unpredictability Applications. This brings us to our main (positive) re-
sult: we get improved information-theoretic key derivation for all unpredictability
applications (which includes MACs, signatures, one-way functions, identification
schemes, etc.; see Footnote 2).

2 Recall, in indistinguishability applications the goal of the attack is to win a game
with probability noticeably greater than 1/2; in contrast, for unpredictability ap-
plications the goal of the attacker is to win with only non-negligible probability.
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Theorem 3. (Main Result; Informal) Assume P is any unpredictability applica-
tion which is δ-secure with a uniform m-bit key against some class of attackers
C. Then, there is an efficient family of hash functions H = {hs : {0, 1}n →
{0, 1}m}, such that for any (n, k)-source X, the application P with the derived
key R = hS(X) (for random public seed S) is δ′-secure against class C, where:

δ′ = O
(
1 + log (1/δ) · 2m−k

)
δ. (3)

In particular, we get the following nearly optimal answers to Questions (A), (B):

- With entropy k = m, we get security δ∗ = (1+ log (1/δ))δ (answering Ques-
tion (A)).

- To get security δ′ ≤ 3δ, we only need entropy k∗ = m + loglog (1/δ) + 4
(answering Question (B)).

In fact, our basic KDF hash family H is simply a t-wise independent hash
function where t = O(log (1/δ)). Hence, by using higher than pairwise indepen-
dence (which was enough for weaker security given by Equations (1) and (2)),
we get a largely improved entropy loss: loglog (1/δ) instead of log (1/δ).

As we can see, the provable bounds above nearly match the ideal bounds
δ∗ = δ and k∗ = m and provide a vast improvement over what was known
previously. For example, to derive a 128-bit key for a CBC-MAC having ideal
security δ = 2−64 (so that loglog (1/δ) = 6), we can either have excellent security
δ′ ≤ 2−57.9 starting with minimal entropy k = 128, or get essentially full security
δ′ ≤ 2−62.4 with only slightly higher entropy k = 138. Thus, for the first time
we obtained an efficient, theoretically-sound key derivation scheme which nearly
matches “dream” parameters k∗ = m and δ∗ = δ. Alternatively, as we discuss
in Section 1.2, for the first time we can offer a provably-secure alternative to the
existing practice of using cryptographic hash functions modeled as a random
oracle for KDFs, and achieve nearly optimal parameters.

Unpredictability Extractors and Condensers. To better understand
the proof of Theorem 3, it is helpful to abstract the notion of an unpredictability
extractor UExt which we define in this work. Recall, standard (k, ε)-extractors ε-
fool any distinguisher D(R,S) trying to distinguish R = Ext(X ;S) from R being
uniform. In contrast, when dealing with δ-secure unpredictability applications,
we only care about “fooling” so called δ-distinguishers D: these are distinguish-
ers s.t. Pr[D(Um, S) = 1] ≤ δ, which directly corresponds to the emulation of
P ’s security experiment between the “actual attacker” A and the challenger C.
Thus, we define (k, δ, δ′)-unpredictability extractors as having the property that
Pr[D(UExt(X ;S), S) = 1] ≤ δ′ for any δ-distinguisher D.3 With this cleaner
notion in mind, our main Theorem 3 can be equivalently restated as follows:

Theorem 4. (Main Result; Restated) A family H = {hs : {0, 1}n → {0, 1}m}
which is O(log (1/δ))-wise independent defines a (k, δ, O(1+ log (1/δ) · 2m−k)δ)-
unpredictability extractor UExt(x; s) = hs(x).

3 This notion can also be viewed as “one-sided” slice extractors [RTS00]. Unlike this
work, though, the authors of [RTS00] did not use slice extractors as an interesting
primitive by itself, and did not offer any constructions of such extractors.
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In turn, we observe that unpredictability extractors are closely connected to
the related notion of a randomness condenser [RR99, RSW06]: such a (k, 
, ε)-
condenser Cond : {0, 1}n → {0, 1}m has the property that the output distribution
Cond(X ;S) is ε-close (even given the seed S) to some distribution Y s.t. the
conditional min-entropy H∞(Y |S) ≥ m−
 whenever H∞(X) ≥ k. In particular,
instead of requiring the output to be close to uniform, we require it to be close
to having almost full entropy, with some small “gap” 
. While 
 = 0 gives
back the definition of (k, ε)-extractors, permitting a small non-zero “entropy
gap” 
 has recently found important applications for key derivation [BDK+11,
DRV12, DY13]. In particular, it is easy to see that a (k, 
, ε)-condenser is also a
(k, δ, ε + δ · 2�)-unpredictability extractor. Thus, to show Theorem 4 it suffices
to show that O(log (1/δ))-wise independent hashing gives a (k, 
, δ)-condenser,
where 
 ≈ loglog (1/δ).

Theorem 5. (Informal) A family H = {hs : {0, 1}n → {0, 1}m} of O(log (1/δ))-
wise independent hash functions defines a (k, 
, δ)-condenser Cond(x; s) = hs(x)
for either of the following settings:

- No Entropy Loss: min-entropy k = m and entropy gap 
 = loglog (1/δ).
- Constant Entropy Gap: min-entropy k = m+loglog (1/δ)+O(1) and entropy
gap 
 = 1.

It is instructive to compare this result with the RT-bound for (k, δ)-extractors: to
have no entropy gap 
 = 0 requires us to start with entropy k ≥ m+2 log (1/δ).
However, already 1-bit entropy gap 
 = 1 allows us to get away with k =
m + loglog (1/δ), while further increasing the gap to 
 = loglog (1/δ) results
in no entropy loss k = m.

Balls and Bins, Max-Load and Balanced Hashing. Finally, to prove
Theorem 5 (and, thus, Theorem 4 and Theorem 3) we further reduce the problem
of condensers to a very simple balls-and-bins problem. Indeed, we can think of
our (k, 
, δ)-condenser as a way to hash 2k items (out of a universe of size 2n)
into 2m bins, so that the load (number of items per bin) is not too much larger
than the expected 2k−m for “most” of the bins. More concretely, it boils down to
analyzing a version of average-load: if we choose a random item (and a random
hash function from the family) then the probability that the item lands in a
bin with more than 2�(2k−m) items should be at most ε. We use Chernoff-type
bounds for limited independence [Sie89, BR94] to analyze this version of average
load when the hash function is O(log 1/δ)-independent.

Optimizing Seed Length. The description length d of our O(log (1/δ))-wise
independent KDF hs is d = O(n log (1/δ)) bits, which is much larger than that
needed by universal hashing for standard extractors. In the full version of this
paper [DPW13], we show how to adapt the elegant “gradual increase of indepen-
dence” technique of Celis et al. [CRSW11] to reduce the seed length to nearly
linear: d = O(n log k) (e.g., for k = 128 and δ = 2−64 this reduces the seed
length from 128n to roughly 7n bits). It is an interesting open problem if the
seed length can be reduced even further (and we show non-constructively that
the answer is positive).
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1.2 Computational Extractors

So far we considered information-theoretic techniques for designing theoretically-
sound KDFs. Of course, given the importance of the problem, it is also natural to
see if better parameters can be obtained when we assume that the attacker A is
computationally bounded. We restrict our attention to the study of computational
extractors [DGH+04, Kra10, DGKM12] Ext, whose output R = Ext(X ;S) looks
pseudorandom to D (given S) for any efficiently samplable (n, k)-sourceX , which
would suffice for our KDF goals if very strong results were possible for such
extractors.

Unfortunately, while not ruling out the usefulness of computational extractors,
we point out the following three negative results: (1) even “heuristic” computa-
tional computational extractors do not appear to beat the information-theoretic
bound k∗ ≥ m (which we managed to nearly match for all unpredictability appli-
cations); (2) existing “provably-secure” computational extractors do not appear
to offer any improvement to our information-theoretic KDFs, when dealing with
the most challenging “low entropy regime” (when k is roughly equal to the
security parameter); (3) even for “medium-to-high entropy regimes”, computa-
tional extractors beating the RT-bound require one-way functions. We discuss
these points in the full version [DPW13], here only briefly mentioning points (1)
and (3).

Heuristic Extractors. In practice, one would typically use so called “cryp-
tographic hash function” h, such as SHA or MD5, for key derivation (or as a
computational extractor). As discussed in detail by [DGH+04, Kra10, DRV12],
there are several important reasons for this choice. From the perspective of this
work, we will focus on the arguably the most important such reason — the com-
mon belief that cryptographic hash functions achieve excellent security δ′ ≈ δ
already when k ≈ m. This can be easily justified in the random oracle model;
assuming the KDF h is a random oracle which can be evaluated on at most
q points (where q is the upper bound of the attacker’s running time), one can
upper bound δ′ ≤ δ+ q/2k, where q/2k is the probability the attacker evaluates
h(X). In turn, for most natural computationally-secure applications, in time q
the attacker can also test about q out of 2m possible m-bit keys, and hence
achieve advantage q/2m. This means that the ideal security δ of P cannot be
lower than q/2m, implying q ≤ δ · 2m. Plugging this bound on q in the bound of
δ′ ≤ δ+ q/2k above, we get that using a random oracle (RO) as a computational
extractor/KDF achieves real security

δ′ ≤ δRO
def
= δ + δ · 2m−k (4)

Although this heuristic bound is indeed quite amazing (e.g., δ′ ≤ 2δ even when
k = m, meaning that δ∗ = 2δ and k∗ = m), and, unsurprisingly, beats our
provably-secure, information-theoretic bounds, it still requires k∗ ≥ m. So we
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are not that far off, especially given our nearly matching bound for all unpre-
dictability applications.4

Beating RT-bound Implies OWFs. As observed by [Kra10, DGKM12], for
medium-to-high entropy regimes, computational assumptions help in “beating”
the RT-bound k ≥ m + 2 log (1/ε) for any (k, ε)-secure extractor, as applying
the PRG allows one to increase m essentially arbitrarily (while keeping the origi-
nal min-entropy the same). Motivated by this, Dachman-Soled et al. [DGKM12]
asked an interesting theoretical question if the existence of one-way functions
(and, hence, PRGs [HILL99]) is essential for beating the RT-bound for uncon-
ditional extractors. They also managed to give an affirmative answer to this
question under the SRT assumption mentioned earlier. Since we unconditionally
prove the SRT assumption (see Theorem 1), we immediately get the following
Corollary, removing the conditional clause from the result of [DGKM12]:

Theorem 6. (Informal) If Ext is an efficient (k, ε)-computational extractor with
an m-bit output, where m > k−2 log (1/ε)−O(1), then one-way functions (and,
hence, PRGs) exist.

2 Preliminaries

We recap some definitions and results from probability theory. Let X,Y be
random variables with supports SX , SY , respectively. We define their statistical
difference as

Δ(X,Y ) =
1

2

∑
u∈SX∪SY

|Pr[X = u]− Pr[Y = u]| .

We write X ≈ε Y and say that X and Y are ε-statistically close to denote that
Δ(X,Y ) ≤ ε.

The min-entropy of a random variable X is H∞(X)
def
= − log(maxx Pr[X =

x]), and measures the “best guess” for X . The conditional min-entropy is de-

fined by H∞(X |Y = y)
def
= − log(maxx Pr[X = x|Y = y]). Following Dodis et

al. [DORS08], we define the average conditional min-entropy:

H∞(X |Y )
def
= − log

(
E

y←Y

[
max

x
Pr[X = x|Y = y]

])
= − log

(
E

y←Y

[
2−H∞(X|Y =y)

])
.

Above, and throughout the paper, all “log” terms are base 2, unless indicated
otherwise. We say that a random variable X is an (n, k)-source if the support
of X is {0, 1}n and the entropy of X is H∞(X) ≥ k.

4 Also, unlike our bound in Equation (3), one cannot apply the heuristic bound from
Equation (4) to derive a key for an information-theoretically secure MAC.
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Lemma 1 (A Tail Inequality [BR94]). Let q ≥ 4 be an even integer. Suppose
X1, . . . , Xn are q-wise independent random variables taking values in [0, 1]. Let
X := X1 + · · ·+Xn and define μ := E[X ] be the expectation of the sum. Then,

for any A > 0, Pr[|X − μ| ≥ A] ≤ 8
(

qμ+q2

A2

)q/2
. In particular, for any α > 0

and μ > q, we have Pr[X ≥ (1 + α)μ] ≤ 8
(

2q
α2μ

)q/2
.

3 Defining Extractors for Unpredictability

Applications

We start by abstracting out the notion of general unpredictability applications
(e.g., one-way functions, signatures, message authentication codes, soundness of
an argument, etc.) as follows. The security of such all such primitives is abstractly
defined via a security game P which requires that, for all attackers A (in some
complexity class), Pr[PA(U) = 1] ≤ δ where PA(U) denotes the execution of
the game P with the attacker A, where P uses the uniform randomness U .5

For example, in the case of a message-authentication code (MAC), the value
U is used as secret key for the MAC scheme and the game P is the standard
“existential unforgeability against chosen-message attack game” for the given
MAC. Next, we will assume that δ is some small (e.g., negligible) value, and ask
the question if we can still use the primitive P if, instead of a uniformly random
U , we only have some arbitrary (n, k)-source X?

To formally answer this question, we would like a function UExt : {0, 1}n ×
{0, 1}d → {0, 1}m (seeded unpredictability extractor) such that, for all attackers
A (in some complexity class), Pr[PA(S)(UExt(X ;S)) = 1] ≤ ε, where the seed S
is chosen uniformly at random and given to the attacker, and ε is not much larger
than δ. Since we do not wish to assume much about the application P or the
attacker A, we can roll them up into a unified adversarial “distinguisher” defined
by D(R,S) := PA(S)(R). By definition, if R = U is random and independent
of S, then Pr[D(U, S) = 1] = Pr[PA(S)(U) = 1] ≤ δ. On the other hand, we
need to ensure that Pr[PA(S)(UExt(X ;S)) = 1] = Pr[D(UExt(X ;S), S) = 1] ≤
ε for some ε which is not much larger than δ. This motivates the following
definition of unpredictability extractor which ensures that the above holds for
all distinguishers D.

Definition 1 (UExtract). We say that a function D : {0, 1}m × {0, 1}d →
{0, 1} is a δ-distinguisher if Pr[D(U, S) = 1] ≤ δ where (U, S) is uniform
over {0, 1}m × {0, 1}d. A function UExt : {0, 1}n × {0, 1}d → {0, 1}m is a
(k, δ, ε)-unpredictability extractor (UExtract) if for any (n, k)-source X and any
δ-distinguisher D, we have Pr[D(UExt(X ;S), S) = 1] ≤ ε where S is uniform
over {0, 1}d.

5 In contrast, for indistinguishability games we typically require that Pr[PA(U) =
1] ≤ 1

2
+ δ.
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Notice that the above definition is essentially the same as that of standard
extractors except that: (1) we require that the distinguisher has a “small” prob-
ability δ of outputting 1 on the uniform distribution, and (2) we only require a
one-sided error that the probability of outputting 1 does not increase too much.
A similar notion was also proposed by [RTS00] and called a “slice extractor”.

Toward the goal of understanding unpredictability extractors, we show tight
connections between the above definition and two seemingly unrelated notions.
Firstly, we define “condensers for min-entropy” and show that the they yield
“good” unpredictability extractors. Second, we define something called “bal-
anced hash functions” and show that they yield good condensers, and therefore
also good unpredictability extractors. Lastly, we show that unpredictability ex-
tractors also yield balanced hash functions, meaning that all three notions are
essentially equivalent up to a small gap in parameters.

Definition 2 (Condenser). A function Cond : {0, 1}n×{0, 1}d → {0, 1}m is
a (k, 
, ε)-condenser if for all (n, k)-sources X, and a uniformly random and
independent seed S over {0, 1}d, the joint distribution (S,Cond(X ;S)) is ε-
statistically-close to some joint distribution (S, Y ) such that, for all s ∈ {0, 1}d,
H∞(Y |S = s) ≥ m− 
.

First, we show that condensers already give us unpredictability extractors.
This is similar in spirit to a lemma of [DY13] which shows that, if we use a
key with a small entropy gap for an unpredictability application, the security of
the application is only reduced by at most a small amount. One difference that
prevents us from using that lemma directly is that we need to explicitly include
the seed of the condenser and the dependence between the condenser output and
the seed.

Lemma 2 (Condenser ⇒ UExtract). Any (k, 
, ε)-condenser is a (k, δ, ε∗)-
UExtract where ε∗ = ε+ 2�δ.

Proof. Let Cond : {0, 1}n × {0, 1}d → {0, 1}m be a (k, 
, ε)-condenser and let
X be an (n, k)-source. Let S be uniform over {0, 1}d, so that, by definition,
there is a joint distribution (S, Y ) which has statistical distance at most ε from
(S,Cond(X ;S)) such that H∞(Y |S = s) ≥ m − 
 for all s ∈ {0, 1}d. Therefore,
for any δ-distinguisher D, we have

Pr[D(Cond(X ;S), S) = 1] ≤ ε+ Pr[D(Y, S) = 1]

= ε+
∑
y,s

Pr[S = s] Pr[Y = y|S = s] Pr[D(y, s) = 1]

≤ ε+
∑
y,s

2−d2−H∞(Y |S=s) Pr[D(y, s) = 1]

≤ ε+ 2�
∑
y,s

2−(m+d) Pr[D(y, s) = 1] ≤ ε+ 2�δ.

Definition 3 (Balanced Hashing). Let h := {hs : {0, 1}n → {0, 1}m}s∈{0,1}d
be a hash function family. For X ⊆ {0, 1}n, s ∈ {0, 1}d, x ∈ X we define
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LoadX (x, s) := |{x′ ∈ X : hs(x
′) = hs(x)}| .6 We say that the family h is (k, t, ε)-

balanced if for all X ⊆ {0, 1}n of size |X | = 2k, we have

Pr
[
LoadX (X,S) > t2k−m

]
≤ ε

where S,X are uniformly random and independent over {0, 1}d,X respectively.

Lemma 3 (Balanced⇒Condenser).LetH :={hs : {0, 1}n→{0, 1}m}s∈{0,1}d
be a (k, t, ε)-balanced hash function family. Then the function Cond : {0, 1}n ×
{0, 1}d → {0, 1}m defined by Cond(x; s) = hs(x) is a (k, 
, ε)-condenser for 
 =
log(t).

Proof. Without loss of generality, we can restrict ourselves to showing that Cond
satisfies the condenser definition for every flat source X which is uniformly ran-
dom over some subset X ⊆ {0, 1}n, |X | = 2k. Let us take such a source X over
the set X , and define a modified hash family h̃ = {h̃s : X → {0, 1}m}s∈{0,1}d
which depends on X and essentially “re-balances” h on the set X . In particular,
for every pair (s, x) such that Loadh

X (x, s) ≤ t2k−m we set h̃s(x) := hs(x), and

for all other pairs (s, x) we define h̃s(x) in such a way that Loadh̃
X (x, s) ≤ t2k−m

(the super-script is used to denote the hash function with respect to which
we are computing the load). It is easy to see that this “re-balancing” is al-
ways possible. We use the re-balanced hash function h̃ to define a joint dis-
tribution (S, Y ) by choosing S uniformly at random over {0, 1}d, choosing X
uniformly/independently over X and setting Y = h̃S(X). It’s easy to check
that the statistical distance between (S,Cond(X ;S)) and (S, Y ) is at most
Pr[hS(X) = h̃S(X)] ≤ Pr[Loadh

X (X,S) > t2k−m] ≤ ε. Furthermore, for every
s ∈ {0, 1}d, we have:

H∞(Y |S = s) = − log(max
y

Pr[Y = y|S = s])

= − log(max
y

Pr[X ∈ h̃−1
s (y)]) ≥ − log(t2k−m/2k) = m− log t.

Therefore Cond is a (k, 
 = log t, ε)-condenser.

Lemma 4 (UExtract ⇒ Balanced). Let UExt : {0, 1}n×{0, 1}d → {0, 1}m
be a (k, δ, ε)-UExtractor for some, ε > δ > 0. Then the hash family H = {hs :
{0, 1}n → {0, 1}m}s∈{0,1}d defined by hs(x) = UExt(x; s) is (k, ε/δ, ε)-balanced.

Proof. Let t = ε/δ and assume that H is not (k, t, ε)-balanced. Then there exists
some set X ⊆ {0, 1}n, |X | = 2k such that ε̂ := Pr[LoadX (X,S) > t2k−m] > ε
where X is uniform over X and S is uniform over {0, 1}d. Let Xs ⊆ X be defined

by Xs := {x ∈ X : LoadX (x, s) > t2k−m} and let εs
def
= |Xs|/2k. By definition

ε̂ =
∑

s 2
−dεs. Define Ys ⊆ {0, 1}m via Ys := hs(Xs). Now by definition, each

y ∈ Ys has at least t2k−m pre-images in Xs and therefore δs
def
= |Ys|/2m ≤

|Xs|/(t2k−m2m) ≤ εs/t and δ :=
∑

s 2
−dδs ≤ ε̂/t.

Define the distinguisher D via D(y, s) = 1 iff y ∈ Ys. Then D is a δ-
distinguisher for δ ≤ ε̂/t ≤ ε/t but Pr[D(hS(X), S) = 1] = ε̂ ≥ ε. Therefore,
UExt is not a (k, ε/t, ε)-UExtractor.

6 Note that we allow x′ = x and so LoadX (x, s) ≥ 1.
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Summary. Taking all of the above lemmata together, we see that they are
close to tight. In particular, for any ε > δ > 0, we get:

(k, δ, ε)-UExt
Lem.4⇒ (k, ε/δ, ε)-Balanced

Lem.3⇒

(k, log(ε/δ), ε)-Condenser
Lem.2⇒ (k, δ, 2ε)-UExt

4 Constructing Unpredictability Extractors

Given the connections established in the previous section, we have paved the
road for constructing unpredictability extractors via balanced hash functions,
which is a seemingly simpler property to analyze. Indeed, we will give relatively
simple lemmas showing that “sufficiently independent” hash functions are bal-
anced. This will lead to the following parameters (restating Theorem 3 from the
introduction):

Theorem 7. There exists an efficient (k, δ, ε)-unpredictability extractor
UExt : {0, 1}n × {0, 1}d → {0, 1}m for the following parameters:

1. When k = m (no entropy loss), we get ε = (1 + log(1/δ))δ.
2. When k ≥ m+ log log 1/δ + 4, we get ε = 3δ.
3. In general, ε = O(1 + 2m−k log(1/δ))δ.

In all cases, the function UExt is simply a (log(1/δ) + O(1))-wise independent
hash function and the seed length is d = O(n log(1/δ)).

Although these constructions may already be practical, the level of independence
we will need is O(log 1/δ), which will result in a large seed O(n log(1/δ)). We
will show how to achieve similar parameters with a shorter seed O(n log k) in
the full version of this paper [DPW13]. We now proceed to prove all of the parts
of Theorem 7 by constructing “good” balanced hash functions and using our
connections between balanced hashing and unpredictability extractors from the
previous section.

4.1 Sufficient Independence Provides Balance

First we start with a simple case where the output m is equal to the entropy k.

Lemma 5. Let H := {hs : {0, 1}n → {0, 1}k}s∈{0,1}d be (t + 1)-wise indepen-

dent. Then it is (k, t, ε)-balanced where ε ≤
(
e
t

)t
and e is the base of the natural

logarithm.

Proof. Fix any set X ⊆ {0, 1}n of size |X | = 2k. Let X be uniform over X and
S be uniform/independent over {0, 1}d. Then
Pr[LoadX (X,S) > t] ≤ Pr[ ∃C ⊆ X , |C| = t ∀x′ ∈ C : hS(x

′) = hS(X) ∧ x′ = X ]

≤
∑

C⊆X ,|C|=t

Pr[∀x′ ∈ C : hS(x
′) = hS(X) ∧ x′ = X ]

≤
(
2k

t

)
2−tk ≤

(
e2k

t

)t

2−tk ≤
(e
t

)t
.
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Corollary 1. For any 0 < ε < 2−2e, any δ > 0, a (�log(1/ε)� + 1)-wise inde-
pendent hash family H = {hs : {0, 1}n → {0, 1}k}s∈{0,1}d is:

(k, log(1/ε), ε)-balanced, (k, log log(1/ε), ε)-condenser, (k, δ, log(1/ε)δ+
ε)-UExtractor.

In particular, setting δ = ε, it is a (k, δ, (1 + log(1/δ))δ)-UExtractor.

Proof. Set t = �log(1/ε)� in Lemma 5 and notice that
(
e
t

)t ≤ 2−t ≤ ε as long as
t ≥ 2e.

This establishes part (1) of Theorem 7. Next we look at a more general case
where k may be larger than m. This also covers the case k = m but gets a
somewhat weaker bound. It also requires a more complex tail bound for q-wise
independent variables.

Lemma 6. Let H := {hs : {0, 1}n → {0, 1}m}s∈{0,1}d be (q + 1)-wise indepen-
dent for some even q. Then, for any α > 0, it is (k, 1 + α, ε)-balanced where

ε ≤ 8
(

q2k−m+q2

(α2k−m−1)2

)q/2
.

Proof. Let X ⊆ {0, 1}n be a set of size |X | = 2k, X be uniform over X , and
S be uniform/independent over {0, 1}d. Define the indicator random variables
C(x∗, x) to be 1 if hS(x) = hS(x

∗) and 0 otherwise. Then:

Pr[LoadX (X,S) > (1 + α)2k−m]

=
∑

x∗∈X
Pr[X = x∗] Pr[LoadX (x

∗, S) > (1 + α)2k−m]

= 2−k
∑

x∗∈X
Pr

⎡⎣ ∑
x∈X\{x∗}

C(x∗, x) + 1 > (1 + α)2k−m

⎤⎦
≤ 8

(
q2k−m + q2

(α2k−m − 1)2

)q/2

Where the last line follows from the tail inequality Lemma 1 with the random
variables {C(x∗, x)}x∈X\{x∗} which are q-wise independent and have expected

value μ = E[
∑

x∈X\{x∗} C(x∗, x)] = (2k − 1)2−m ≤ 2k−m, and by setting A =

(1+α)2k−m− 1−μ ≥ α2k−m− 1; recall that C(x∗, x∗) is always 1 and C(x∗, x)
for x = x∗ is 1 with probability 2−m.

Corollary 2. For any 0 < ε < 2−5, k ≥ m+log log(1/ε)+4, a (�log(1/ε)�+6)-
wise independent hash function family H = {hs : {0, 1}n → {0, 1}m}s∈{0,1}d
is:

(k, 2, ε)-balanced, (k, 1, ε)-condenser, (k, δ, 2δ + ε)-UExt for any δ > 0.

In particular, setting δ = ε, it is a (k, δ, 3δ)-UExt.
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Proof. Set α := 1 and choose q ∈ (log(1/ε)+3, log(1/ε)+5) to be an even integer.
Notice that 2k−m ≥ 16 log(1/ε) ≥ 8(log(1/ε)+ 5) ≥ 8q since log(1/ε) ≥ 5. Then
we apply Lemma 6

8

(
q2k−m + q2

(α2k−m − 1)2

)q/2

= 8

(
q(1 + q/2k−m)

2k−m(1− 1/2k−m)2

)q/2

≤ 8

(
2q

2k−m

)q/2

≤ ε.

The above corollary establishes part (2) of Theorem 7. The next corollary gives
us a general bound which establishes part (3) of the theorem. Asymptotically it
implies variants of Corollary 2 and Corollary 1, but with worse constants.

Corollary 3. For any ε > 0 and q := �log(1/ε)�+3, a (q+1)-wise independent
hash function family H = {hs : {0, 1}n → {0, 1}m}s∈{0,1}d is (k, 1 + α, ε)-
balanced for

α = 4
√

q2m−k + (q2m−k)2 = O(2m−k log(1/ε) + 1).

By setting δ = ε, a (log 1
δ + 4)−wise independent hash function is a (k, δ, O(1 +

2m−k log 1
δ )δ)-UExtactor.

Proof. The first part follows from Lemma 6 by noting that

8

(
q2k−m + q2

(α2k−m − 1)2

)q/2

≤ 8

(
q2k−m + q2

1
4 (α2

k−m)2

)q/2

≤ 8

(
1

4

)q/2

≤ ε.

For the second part, we can consider two cases. If q2m−k ≤ 1 then α ≤ 4
√
2 and

we are done. Else, α ≤ 4
√
2(q2m−k) = 4

√
2(log(1/ε) + 3)2m−k.

4.2 Minimizing the Seed Length

In both of the above constructions (Corollary 1, Corollary 2), to get an (k, δ, ε)-
UExtractor, we need aO(log(1/ε))-wise independent hash function hs : {0, 1}n →
{0, 1}m, which requires a seed-length d = O(log(1/ε) · n). Since in many appli-
cations, we envision ε ≈ 2−k, this gives a seed d = O(kn). We should contrast
this with standard extractors constructed using universal hash functions (via the
leftover-hash lemma), where the seed-length is d = n. We now show how to op-
timize the seed-length of UExtractors, first to d = O(n log k) and eventually to
d = O(k log k). In the full version [DPW13] of this paper, we adapt the technique
of Celis et al. [CRSW11] which shows how to construct hash functions with a small
seed that achieve essentially optimal “max-load” (e.g., minimize the hash value
with the most items inside it). We show that a lightly modified analysis can also
be used to show that such hash functions are “balanced” with essentially optimal
parameters.

4.3 A Probabilistic Method Bound

In the full version [DPW13] of this paper, we give a probabilistic method argu-
ment showing the existence of unpredictability extractors with very small seed
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length d ≈ log(1/δ) + log(n− k) as stated in Theorem 8 below. In other words,
unpredictability extractors with small entropy loss do not, in principle, require
a larger seed than standard randomness extractors (with much larger entropy
loss).

Theorem 8. There exists a (k, δ, ε)-UExtract UExt : {0, 1}n × {0, 1}d →
{0, 1}m as long as either:

ε ≥ max{ 2eδ , (n− k + 2)2−d + log(e/δ)δ2m−k }

2eδ ≥ ε ≥ δ + 2δ
√
(1/δ)(n− k + 2)2−d + log(e/δ)2m−k

In particular, as long as the seed-length d ≥ log(1/δ)+ log(n− k+2)+3 we get:

– In general: ε = O(1 + log(1/δ)2m−k)δ.
– When k = m and δ < 2−2e: ε = (2 + log(1/δ))δ.
– When k ≥ m+ log log(e/δ) + 3: ε = 2δ.

5 SRT Lower-Bound: Samplability Doesn’t
Improve Entropy Loss

The ‘SRT’ conjecture of Dachman-Soled et al. [DGKM12] states that randomness
extractors need to incur a 2 log 1/ε entropy loss (difference between entropy and
output length) even if we only require them to work for efficiently samplable
sources. In the full version [DPW13] of this paper we prove this conjecture as
stated in Theorem 9 below. In fact, we show that the conjecture holds even if
the extractor itself is not required to be efficient.

The efficient source for which we show a counter-example is sampled via a
4-wise independent hash function. That is, we define the source X = hr(Z)
where Z ← {0, 1}k is chosen uniformly at random and hr : {0, 1}k → {0, 1}n
is chosen from some 4-wise independent hash function family. The choice of the
seed r will need to be fixed non-uniformly; we show that for any “candidate
extractor” Ext : {0, 1}n × {0, 1}d → {0, 1}m there is some seed r such that
the above efficiently sampleable (n, k)-source X makes the statistical distance
between (Ext(X ;S), S) and the uniform distribution at least ≈ 2(m−k)/2.

Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a candidate strong extractor, and
let X be some random variable over {0, 1}n. Define the distinguishability of Ext
on X via:

Dist(X)
def
=

1

2

∑
s∈{0,1}d,y∈{0,1}m

|Pr[S = s,Ext(X ; s) = y]− Pr[S = s, Y = y]|

=
1

2d+1

∑
s∈{0,1}d,y∈{0,1}m

∣∣∣∣Pr[Ext(X, s) = y]− 1

2m

∣∣∣∣ .
where S, Y are uniformly and independently distributed over {0, 1}d,{0, 1}m
respectively. Note that Dist(X) is simply the statistical distance between
(S,Ext(X ;S)) and (S,Um) where Um is uniformly random m bit string.
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Theorem 9. For any (possibly inefficient) function Ext : {0, 1}n × {0, 1}d →
{0, 1}m, any positive integer k ≥ m+2 such that n > 3k−m+14, there exists a
distribution X with H∞(X) ≥ k, which is efficiently samplable by a poly(n)-size
circuit, such that Dist(X) ≥ 2(m−k)/2−8.

Alternatively, for any positive k ≥ m such that n > k + log(k) + 11, there
exists some distribution X with H∞(X) ≥ k, which is efficiently samplable by a
poly(n)-size circuit such that Dist(X) ≥ 2(m−k−log(k))/2−9.

Acknowledgements. We thank Hugo Krawczyk for many enlightening discus-
sions about the topic of this work and for suggesting that we look at the ‘SRT’
conjecture, which lead to the results in Section 5.
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1 Introduction

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs [18].
They provide meaningful guarantees on the integrity of an encoded message in
the presence of tampering, even in settings where error-correction and error-
detection may not be possible. Intuitively, a code (Enc,Dec) is non-malleable
w.r.t. a family of tampering functions F if the message contained in a codeword
modified via a function f ∈ F is either the original message, or a completely
unrelated value. For example, it should not be possible to just flip 1 bit of
the message by tampering the codeword via a function f ∈ F . More formally,
we consider an experiment Tamperfx in which a message x is (probabilistically)
encoded to c ← Enc(x), the codeword is tampered to c′ = f(c) and, if c′ = c,
the experiment outputs the tampered message x′ = Dec(c′), else it outputs a
special value same�. We say that the code is non-malleable w.r.t. some family of
tampering functions F if, for every function f ∈ F and every messages x, the
experiment Tamperfx reveals almost no information about x. More precisely, we
say that the code is ε-non-malleable if for every pair of messages x, x′ and every
f ∈ F , the distributions Tamperfx and Tamperfx′ are statistically ε-close. The
encoding/decoding functions are public and do not contain any secret keys. This
makes the notion of non-malleable codes different from (but conceptually related
to) the well-studied notions of non-malleability in cryptography, introduced by
the seminal work of Dolev, Dwork and Naor [16].

Relation to Error Correction/Detection. Notice that non-malleability is
a weaker guarantee than error correction/detection; the latter ensure that any
change in the codeword can be corrected or at least detected by the decoding
procedure, whereas the former does allow the message to be modified, but only
to an unrelated value. However, when studying error correction/detection we
usually restrict ourselves to limited forms of tampering which preserve some
notion of distance (e.g., usually hamming distance) between the original and
tampered codeword. (One exception is [12], which studies error-detection for
more complex tampering.) For example, it is already impossible to achieve error
correction/detection for the simple family of functions Fconst which, for every
constant c∗, includes a “constant” function fc∗ that maps all inputs to c∗. There
is always some function in Fconst that maps everything to a valid codeword c∗.
In contrast, it is trivial to construct codes that are non-malleable w.r.t Fconst ,
as the output of a constant function is clearly independent of its input. The
prior works on non-malleable codes, together with the results from this work,
show that one can construct non-malleable codes for highly complex tampering-
function families F for which error correctin/detection are unachievable.

Applications to Tamper-Resilience. The fact that non-malleable codes can
be built for large and complex families of functions makes them particularly
attractive as a mechanism for protecting memory against tampering attacks,
known to be a serious threat for the security of cryptographic schemes [7,2,29,11].



Efficient Non-malleable Codes and Key-Derivation 113

As shown in [18], to protect a scheme with some secret state against memory-
tampering, we simply encode the state via a non-malleable code and store the
encoding in the memory instead of the original secret. One can show that if the
code is non-malleable with respect to function family F , the transformed system
is secure against tampering attacks carried out by any function in F . See [18]
for a discussion of the application of non-malleable codes to tamper resilience.

Limitations and Possibility. It is impossible to have codes that are non-
malleable for all possible tampering functions. For any coding scheme (Enc,Dec),
there exists a tampering function fbad(c) that recovers x = Dec(c), creates x′ by
(e.g.,) flipping the first bit of x, and outputs a valid encoding c′ of x′. Notice
that if Enc,Dec are efficient, then the function fbad is efficient as well. Thus,
it is also impossible to have an efficient code which is non-malleable w.r.t all
efficient functions. Prior works [26,10,17,1,9,19] (discussed shortly) constructed
non-malleable codes for several rich and interesting function families. In all cases,
the families are restricted through their granularity rather than their computa-
tional complexity. In particular, these works envision that the codeword is split
into several (possibly just 2) components, each of which can only be tampered
independently of the others. The tampering function therefore only operates on
a “granular” rather than “global” view of the codeword.

1.1 Our Contribution

In this work, we are interested in designing non-malleable codes for large families
of functions which are only restricted by their “computational complexity” rather
than “granularity”. As we saw, we cannot have a single efficient code that is non-
malleable for all efficient tampering functions. However, we show the following
positive result, which we view as the “next best thing”:

Main Result: For any polynomial bound s = s(n) in the codeword size n,
and any tampering family F of size |F| ≤ 2s, there is an efficient code of
complexity poly(s, log(1/ε)) which is ε-non-malleable w.r.t. F . In particular,
F can be the family of all circuits of size at most s.

The code is secure in the information theoretic setting, and achieves optimal
rate (message/codeword size) arbitrarily close to 1. It has a simple construction
relying only on t-wise independent hashing.

The CRS Model. In more detail, if we fix some family F of tampering func-
tions (e.g., circuits of bounded size), our result gives us a family of efficient
codes, such that, with overwhelming probability, a random member of the fam-
ily is non-malleable w.r.t F . Each code in the family is indexed by some hash
function h from a t-wise independent family of hash functions H. This result
already shows the existence of efficient non-malleable codes with some small
non-uniform advice to indicate a “good” hash function h.

However, we can also efficiently sample a random member of the code family
by sampling a random hash function h. Therefore, we find it most appealing
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to think of this result as providing a uniformly efficient construction of non-
malleable code in the “common reference string (CRS)” model, where a random
public string consisting of the hash function h is selected once and fixes the
non-malleable code. We emphasize that, although the family F (e.g., circuits of
bounded size) is fixed prior to the choice of the CRS, the attacker can choose the
tampering function f ∈ F (e.g., a particular small circuit) adaptively depending
on the choice of h.

We argue that it is unlikely that we can completely de-randomize our construc-
tion and come up with a fixed uniformly-efficient code which is non-malleable for
all circuits of size (say) s = O(n2). In particular, this would require a circuit lower
bound, showing that the function fbad (described above) cannot be computed by
a circuit of size O(n2).

Non-malleable Key-Derivation. As an additional contribution, we introduce
a new primitive called non-malleable key derivation. Intuitively, a function h :
{0, 1}n → {0, 1}k is a non-malleable key derivation for tampering-family F if
it guarantees that for any tampering function f ∈ F , if we sample uniform
randomness x ← {0, 1}n, the “derived key” y = h(x) is statistically close to
uniform even given y′ = h(f(x)) derived from “tampered” randomness f(x) = x.
Our positive results for non-malleable key derivation are analogous to those for
non-malleable codes. One difference is that the rate k/n is now at most 1/2
rather than 1, and we show that this is optimal.

While we believe that non-malleable key derivation is an interesting notion on
its own (e.g., it can be viewed as a dual version of non-malleable extractors [15]),
we also show it has useful applications for tamper resilience. For instance, con-
sider some cryptographic scheme G using a uniform key in y ← {0, 1}k. To
protect G against tampering attacks, we can store a bigger key x ← {0, 1}n on
the device and temporarily derive y = h(x) each time we want to execute G.
In the full version of this paper [20], we show that this approach protects any
cryptographic scheme with a uniform key against one-time tampering attacks.
The main advantage of using a non-malleable key-derivation rather than non-
malleable codes is that the key x stored in memory is simply a uniformly random
string with no particular structure (in contrast, the codeword in a non-malleable
code requires structure).

In the full version, we also show how to use non-malleable key derivation to
build a tamper-resilient stream cipher. Our construction is based on a PRG prg :
{0, 1}k → {0, 1}n+v

and a non-malleable key derivation function h : {0, 1}n →
{0, 1}k. For an initial key s0 ← {0, 1}n, sampled uniformly at random, the output
of the stream cipher at each round i ∈ [q] is (si, xi) := prg(h(si−1)).

1.2 Our Techniques

Non-malleable Codes. Our construction of non-malleable codes is incredi-
bly simple and relies on t-wise independent hashing, where t is proportional to
s = log |F|. In particular, if h1, h2 are two such hash functions, we encode a
message x into a codeword c = (r, z, σ) where r is randomness, z = x ⊕ h1(r)
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and σ = h2(r, z). The security analysis, on the other hand, requires two indepen-
dently interesting components. Firstly, we rely on the notion of leakage-resilient
encodings, proposed by Dav̀ı, Dziembowski and Venturi [14]. These provide a
method to encode a secret in such a way that a limited form of leakage on the
encoding does not reveal anything about the secret. One of our contributions is
to significantly improve the parameters of the construction from [14] by using a
fresh and more careful analysis, which gives us such schemes with an essentially
optimal rate. Secondly, we analyze a simpler/weaker notion of bounded non-
malleability, which intuitively guarantees that an adversary seeing the decoding
of a tampered codeword can learn only a bounded amount of information on the
encoded value. This notion of bounded non-malleability is significantly simpler
to analyze than full non-malleability. Finally, we show how to carefully combine
leakage-resilient encodings with bounded non-malleability to get our full con-
struction of non-malleable codes. On a very high (and not entirely precise) level,
we can think of h1 above as providing “leakage resilience” and h2 as providing
“bounded non-malleability”.

We stress that the fact that t has to be proportional to s is not an artefact of
our proof. In fact, one can see that whenever the hash function has seed size s,
there is a family of 2s functions that breaks the construction with probability 1:
For each seed, just have a new function that decodes with that seed and encodes
a related value. This shows that the t has to be proportional to log |F|.

Non-malleable Key-Derivation. Our construction of non-malleable key-
derivation functions is even simpler: a random t-wise independent hash func-
tion h already satisfies the definition with overwhelming probability, where t is
proportional to s = log |F|. The analysis is again subtle and relies on a careful
probabilistic method argument.

Similar to the case of non-malleable codes, the fact that t has to be propor-
tional to s is necessary.

1.3 Related Works

Granular Tampering. Most of the earlier works on non-malleable codes focus
on granular tampering models, where the tampering functions are restricted
to act on individual components of the codeword independently. The original
work of [18] gives an efficient construction for bit-tampering (i.e., the adversary
can tamper with each bit of the codeword independently of every other bit).
Very recently, Cheraghchi and Guruswami [9] gave a construction with improved
rate and better efficiency for the same family. Choi et al. [10] considered an
extended tampering family, where the tampering function can be applied to a
small (logarithmic in the security parameter) number of blocks independently.

Perhaps the least granular and most general such model is the so-called split-
state model, where the encoding consists of two parts L (left) and R (right), and
the adversary can tamper L and R arbitrarily but independently. Starting with
the random oracle construction of [18], a few other constructions of non-malleable
split-state codes have been proposed, both in the computational setting [26,19]
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and in the information theoretic setting [17,1,9]. Notice that the family Fsplit

of all split-state tampering functions (without restricting efficiency), has doubly

exponential size 2O(2n/2) in the codeword size n, and therefore it is not covered by
our results, which can efficiently handle at most singly-exponential-size families
2poly(n). On the other hand, the split-state model doesn’t cover “computationally
simple” functions, such as the function computing the XOR or the bit-wise inner-
product of L,R. Therefore, although the works are technically orthogonal, we
believe that looking at computational complexity may be more natural.

Global Tampering. The work of [18] gives an existential (inefficient) con-
struction of non-malleable codes for doubly-exponential sized function families.
More precisely, for any constant 0 < α < 1 and any family F of functions of
size |F| ≤ 22

αn

in the codeword size n, there exists an inefficient non-malleable
code w.r.t. F ; indeed a completely random function gives such a code with high
probability. The code is clearly not efficient, and this should be expected for such
a broad result: the families F can include all circuits of size (e.g.,) s(n) = 2n/2,
which means that the efficiency of the code must exceed O(2n/2). Unfortunately,
there is no direct way to “scale down” the result in [18] so as to get an effi-
cient construction for singly-exponential-size families. (One can view our work
as providing such “scaled down” result.) Moreover, the analysis only yielded a
rate of at most (1 − α)/3 < 1/3, and it was previously not known if such codes
can achieve a rate close to 1, even for “small” function families. We note that
[18] also showed that the probabilistic method construction can yield efficient
non-malleable codes for large function families in the random-oracle model. How-
ever, this only considers function families that don’t have access to the random-
oracle. For example, one cannot interpret this as giving any meaningful result
for tampering-functions with bounded complexity.

Concurrent and Independent Work. In a concurrent and independent work,
Cheraghchi and Guruswami [8] give two related results. Firstly, they improve the
probabilistic method construction of [18] and show that, for families F of size
|F| ≤ 22

αn

, there exist (inherently inefficient) non-malleable codes with rate
1− α, which they also show to be optimal. This gives the first characterization
of the rate of non-malleable codes. Secondly, similar to our results, they use
limited independence to construct efficient non-malleable codes when restricted
to tampering families F of size |F| ≤ 2s(n) for a polynomial s(n). However,
the construction of [8] is not “efficient” in the usual cryptographic sense: to
get error-probability ε, the encoding and decoding procedures require complex-
ity poly(1/ε). If we set ε to be negligible, as usually desired in cryptography,
then the encoding/decoding procedures would require super-polynomial time. In
contrast, the encoding/decoding procedures in our construction have efficiency
poly(log(1/ε)), and therefore we can set ε to be negligible while maintaining
polynomial-time encoding/decoding.

Other Approaches to Achieve Tamper Resilience. There is a vast body
of literature that considers tampering attacks using other approaches besides
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non-malleable codes. See, e.g., [5,22,24,4,21,25,3,23,27,30,6,13]. The reader is
referred to (e.g.,) [18] for a more detailed comparison between these approaches
and non-malleable codes.

2 Preliminaries

Notation. We denote the set of first n natural numbers, i.e. {1, . . . , n}, by [n].
Let X,Y be random variables with supports S(X), S(Y ), respectively. We define

SD(X,Y )
def
=

1

2

∑
s∈S(X)∪S(Y )

|Pr[X = s]− Pr[Y = s]|

to be their statistical distance. We write X ≈ε Y and say that X and Y are
ε-statistically close to denote that SD(X,Y ) ≤ ε. We let Un denote the uniform
distribution over {0, 1}n. We use the notation x ← X to denote the process
of sampling a value x according to the distribution X . If f is a randomized
algorithm, we write f(x; r) to denote the execution of f on input x with random
coins r. We let f(x) denote a random variable over the random coins.

2.1 Definitions of Non-malleable Codes

Definition 1 (Coding Scheme). A (k, n)-coding scheme consists of two func-

tions: a randomized encoding function Enc : {0, 1}k → {0, 1}n, and deter-

ministic decoding function Dec : {0, 1}n → {0, 1}k ∪ {⊥} such that, for each

x ∈ {0, 1}k, Pr[Dec(Enc(x)) = x] = 1.

We now define non-malleability w.r.t. some family F of tampering functions.
The work of [18] defines a default and a strong version of non-malleability. The
main difference is that, in the default version, the tampered codeword c′ = c
may still encode the original message x whereas the strong version ensures that
any change to the codeword completely destroys the original message. We only
define the strong version below. We then add an additional strengthening which
we call super non-malleability.

Definition 2 (Strong Non-malleability [18]). Let (Enc,Dec) be a (k, n)-
coding scheme and F be a family of functions f : {0, 1}n → {0, 1}n. We

say that the scheme is (F , ε)-non-malleable if for any x0, x1 ∈ {0, 1}k and any
f ∈ F , we have Tamperfx0

≈ε Tamperfx1
where

Tamperfx
def
=

{
c← Enc(x), c′ := f(c), x′ = Dec(c′)

Output same� if c′ = c, and x′ otherwise.

}
. (1)

For super non-malleable security (defined below), if the tampering manages
to modify c to c′ such that c′ = c and Dec(c′) = ⊥, then we will even give the
attacker the tampered codeword c′ in full rather than just giving x′ = Dec(c′).
We do not immediately see a concrete application of this strengthening, but it
seems sufficiently interesting to define explicitly.
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Definition 3 (Super Non-malleability). Let (Enc,Dec) be a (k, n)-coding
scheme and F be a family of functions f : {0, 1}n → {0, 1}n. We say that the

scheme is (F , ε)-super non-malleable if for any x0, x1 ∈ {0, 1}k and any f ∈ F ,
we have Tamperfx0

≈ε Tamperfx1
where:

Tamperfx
def
=

⎧⎨⎩ c← Enc(x), c′ := f(c)
Output same� if c′ = c, output ⊥ if Dec(c′) = ⊥,

and else output c′.

⎫⎬⎭ . (2)

3 Improved Leakage-Resilient Codes

We will rely on leakage-resilience as an important tool in our analysis. The
following notion of leakage-resilient codes was defined by [14]. Informally, a code
is leakage resilience w.r.t some leakage family F if, for any f ∈ F , “leaking” f(c)
for a codeword c does not reveal anything about the encoded value.

Definition 4 (Leakage-Resilient Codes [14]). Let (LREnc, LRDec) be a
(k, n)-coding scheme. For a function family F , we say that (LREnc, LRDec)

is (F , ε)-leakage-resilient, if for any f ∈ F and any x ∈ {0, 1}k we have
SD(f(LREnc(x)), f(Un)) ≤ ε.

The work of [14] gave a probabilistic method construction showing that such
codes exist and can be efficient when the size of the leakage family |F| is singly-
exponential. However, the rate k/n was at most some small constant (< 1

4 ),
even when the family size |F| and the leakage size 
 are small. Here, we take the
construction of [14] and give an improved analysis with improved parameters,
showing that the rate can approach 1. In particular, the additive overhead of
the code is very close to the leakage-amount 
, which is optimal. Our result
and analysis are also related to the “high-moment crooked leftover hash lemma”
of [28], although our construction is somewhat different, relying only on high-
independence hash-functions rather than permutations.

Construction. Let H be a t-wise independent function family consisting of
functions h : {0, 1}v → {0, 1}k. For any h ∈ H we define the (k, n = k + v)-
coding scheme (LREnch, LRDech) where: (1) LREnch(x) := (r, h(r) ⊕ x) for r ←
{0, 1}v; (2) LRDech((r, z)) := z ⊕ h(r).

Theorem 1. Fix any function family F consisting of functions f : {0, 1}n →
{0, 1}�. With probability 1 − ρ over the choice of a random h ← H, the coding
scheme (LREnch, LRDech) is (F , ε)-leakage-resilient as long as:

t ≥ log |F|+ 
+ k + log(1/ρ) + 3 and v ≥ 
+ 2 log(1/ε) + log(t) + 3.

For space reasons, the proof of Theorem 1 is deferred to the full version [20].
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4 Non-malleable Codes

We now construct a non-malleable code for any family F of sufficiently small
size. We will rely on leakage-resilience as an integral part of the analysis.

Construction. Let H1 be a family of hash functions h1 : {0, 1}v1 → {0, 1}k,
and H2 be a family of hash functions h2 : {0, 1}k+v1 → {0, 1}v2 such that
H1 and H2 are both t-wise independent. For any (h1, h2) ∈ H1 × H2, define
Ench1,h2(x) = (r, z, σ) where r ← {0, 1}v1 is random, z := x ⊕ h1(r) and σ :=
h2(r, z). The codewords are of size n := |(r, z, σ)| = k+v1+v2. Correspondingly

define Dec((r, z, σ)) which first checks σ
?
= h2(r, z) and if this fails, outputs ⊥,

else outputs z ⊕ h1(r). Notice that, we can think of (r, z) as being a leakage-
resilient encoding of x; i.e., (r, z) = LREnch1(x; r).

Theorem 2. For any function family F , the above construction (Ench1,h2 ,
Dech1,h2) is an (F , ε)-super non-malleable code with probability 1 − ρ over the
choice of h1, h2 as long as:

t ≥ t∗ for some t∗ = O(log |F|+ n+ log(1/ρ))

v1 > v∗1 for some v∗1 = 3 log(1/ε) + 3 log(t∗) +O(1)

v2 > v1 + 3.

For example, in the above theorem, if we set ρ = ε = 2−λ for “security
parameter” λ, and |F| = 2s(n) for some polynomial s(n) = nO(1) ≥ n ≥ λ,
then we can set t = O(s(n)) and the message length k := n − (v1 + v2) =
n−O(λ+ logn). Therefore the rate of the code k/n is 1−O(λ+ logn)/n which
approaches 1 as n grows relative to λ.

4.1 Proof of Theorem 2

Useful Notions. For a coding scheme (Enc,Dec), we say that c ∈ {0, 1}n is
valid if Dec(c) = ⊥. For any function f : {0, 1}n → {0, 1}n, we say that
c′ ∈ {0, 1}n is δ-heavy for f if Pr[f(Enc(Uk)) = c′] ≥ δ. Define

Hf (δ) = {c′ ∈ {0, 1}n : c′ is δ-heavy for f}.

Notice that |Hf (δ)| ≤ 1/δ.

Definition 5 (Bounded-malleable). We say that a coding scheme (Enc,Dec)

is (F , δ, τ)-bounded-malleable if for all f ∈ F , x ∈ {0, 1}k we have

Pr[c′ = c ∧ c′ is valid ∧ c′ ∈ Hf (δ) | c← Enc(x), c′ = f(c)] ≤ τ,

where the probability is over the randomness of the encoding.
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Intuition. The above definition says the following. Take any message x ∈
{0, 1}k, tampering function f ∈ F and do the following: choose c ← Enc(x),
set c′ = f(c), and output: (1) same� if c′ = c, (2) ⊥ if c′ is not valid, (3) c′ oth-
erwise. Then, with probability 1 − τ the output of the above experiment takes
on one of the values: {same�,⊥} ∪ Hf (δ). Therefore, the output of the above
tampering experiment only leaks a bounded amount of information about c; in
particular it leaks at most 
 = �log(1/δ + 2)� bits. Furthermore the “leakage”
on c is independent of the choice of the code, up to knowing which codewords
are valid and which are δ-heavy. In particular, in our construction, the “leakage”
only depends on the choice of h2 but not on the choice of h1. This will allow us
to then rely on the fact that LREnch1(x; r) = (r, h1(r)⊕ x) is a leakage-resilient
encoding of x to argue that the output of the above experiment is the same for
x as for a uniformly random value. We formalize this intuition below.

From Bounded-Malleable to Non-malleable. For any “tampering func-
tion” family F consisting of functions f : {0, 1}n → {0, 1}n, any δ > 0, and
any h2 ∈ H2 we define the “leakage function” family G = G(F , h2, δ) which

consists of the functions gf : {0, 1}k+v1 → Hf (δ) ∪ {same�,⊥} for each f ∈ F .
The functions are defined as follows:

– gf (c1): Compute σ = h2(c1). Let c := (c1, σ), c
′ = f(c). If c′ is not valid

output ⊥. Else if c′ = c output same�. Else if c′ ∈ Hf (δ) output c′. Lastly, if
none of the above cases holds, output ⊥.

Notice that the notion of “δ-heavy” and the set Hf (δ) are completely specified
by h2 and do not depend on h1. This is because the distribution Ench1,h2(Uk)
is equivalent to (Uk+v1 , h2(Uk+v1)) and therefore c′ is δ-heavy if and only if
Pr[f(Uk+v1 , h2(Uk+v1)) = c′] ≥ δ. Therefore the family G = G(F , h2, δ) is fully
specified by F , h2, δ. Also notice that |G| = |F| and that the output length of
the functions gf is given by 
 = �log(|Hf (δ)| + 2)� ≤ �log(1/δ + 2)�.

Lemma 1. Let F be any function family and let δ > 0. Fix any h1, h2 such that
(Ench1,h2 ,Dech1,h2) is (F , δ, ε/4)-bounded-malleable and (LREnch1 , LRDech1) is
(G(F , h2, δ), ε/4)-leakage-resilient, where the family G = G(F , h2, δ), with size
|G| = |F|, is defined above, and the leakage amount is 
 = �log(1/δ + 2)�. Then
(Ench1,h2 ,Dech1,h2) is (F , ε)-non-malleable.

Proof. For any x0, x1 ∈ {0, 1}k and any f ∈ F :

Tamperfx0
=

⎧⎨⎩ c← Ench1,h2(x0), c
′ := f(c)

Output : same� if c′ = c,⊥ if Dech1,h2(c
′) = ⊥,

c′ otherwise.

⎫⎬⎭
stat≈ ε/4

{
c1 ← LREnch1(x0)
Output : gf (c1)

}
(3)

stat≈ ε/4

{
c1 ← LREnch1(Uk)
Output : gf(c1)

}
(4)
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stat≈ ε/4

{
c1 ← LREnch1(x1)
Output : gf (c1)

}
(5)

stat≈ ε/4

⎧⎨⎩ c← Ench1,h2(x1), c
′ := f(c)

Output : same� if c′ = c,⊥ if Dech1,h2(c
′) = ⊥,

c′ otherwise.

⎫⎬⎭ (6)

= Tamperfx1

Eq. (3) and Eq. (6) follows as (Ench1,h2 ,Dech1,h2) is an (F , δ, ε/4)-bounded-
malleable code, and Eq. (4) and Eq. (5) follow as the code (LREnch1 , LRDech1)
is (G(F , δ), ε/4)-leakage-resilient.

We can use Theorem 1 to show that (LREnch1 , LRDech1) is (G(F , h2, δ), ε/4)-
leakage-resilient with overwhelming probability. Therefore, it remains to show
that our construction is (F , δ, τ)-bounded-malleable, which we do below.

Analysis of Bounded-Malleable Codes. We now show that the code
(Ench1,h2 ,Dech1,h2) is bounded-malleable with overwhelming probability. As a
very high-level intuition, if a tampering function f can often map valid code-
words to other valid codewords (and many different ones), then it must guess
the output of h2 on many different inputs. If the family F is small enough, it
is highly improbable that it would contain some such f . For more detailed in-
tuition, we show that the following two properties hold for any message x and
any function f with overwhelming probability: (1) there is at most some “small”
set of q valid codewords c′ that we can hit by tampering some encoding of x
via f (2) for each such codeword c′ which is not in δ-heavy, the probability of
landing in c′ after tampering an encoding of x cannot be higher than 2δ. This
shows that the total probability of tampering an encoding of x and landing in a
valid codeword which not δ-heavy is at most 2qδ, which is small. Property (1)
roughly follows by showing that f would need to “predict” the output of h2 on
q different inputs, and property (2) follows by using “leakage-resilience” of h1 to
argue that we cannot distinguish an encoding of x from an encoding of a random
message, for which the probability of landing in c′ is at most δ.

Lemma 2. For any function family F , any δ > 0, the code (Ench1,h2 ,Dech1,h2)
is (F , δ, τ)-bounded-malleable with probability 1 − ψ over the choice of h1, h2 as
long as:

τ ≥ 2(log |F|+ k + log(1/ψ) + 2)δ

t ≥ log |F|+ n+ k + log(1/ψ) + 5

v1 ≥ 2 log(1/δ) + log(t) + 4 and v2 ≥ v1 + 3.

Proof. Set q := �log |F| + k + log(1/ψ) + 1�. For any f ∈ F , x ∈ {0, 1}k define

the events Ef,x
1 and Ef,x

2 over the random choice of h1, h2 as follows:

1. Ef,x
1 occurs if there exist at least q distinct values c′1, . . . , c

′
q ∈ {0, 1}

n such
that each c′i is valid and c′i = f(ci) for some ci = c′i which encodes the
message x (i.e., ci = Ench1,h2(x; ri) for some ri).
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2. Ef,x
2 occurs if there exists some c′ ∈ {0, 1}n \Hf (δ) such that

Pr
r←{0,1}v1

[f(Ench1,h2(x; r)) = c′] ≥ 2δ.

Let E1 =
∨

f,x Ef,x
1 , E2 =

∨
f,x Ef,x

2 and Bad = E1 ∨ E2. Assume (h1, h2) are
any hash functions for which the event Bad does not occur. Then, for every
f ∈ F , x ∈ {0, 1}k:

Pr[f(C) = C ∧ f(C) is valid ∧ f(C) ∈ Hf (δ)]

=
∑

c′: c′valid and c′ �∈Hf (δ)

Pr[f(C) = c′ ∧ C = c′] < 2qδ ≤ τ, (7)

where C = Ench1,h2(x;Uv1) is a random variable. Eq. (7) holds since (1) given
that E1 does not occur, there are fewer than q values c′ that are valid and for
which Pr[f(C) = c′ ∧C = c′] > 0, and (2) given that E2 does not occur, for any
c′ ∈ Hf (δ), we also have Pr[f(C) = c′ ∧ C = c′] ≤ Pr[f(C) = c′] < 2δ.

Therefore, if the event Bad does not occur, then the code is (F , δ, τ)-bounded-
malleable. This means:

Pr
h1,h2

[(Ench1,h2 ,Dech1,h2) is not (F , δ, τ)-bounded-malleable]

≤ Pr[Bad] ≤ Pr[E1] + Pr[E2]

So it suffices to show that Pr[E1] and Pr[E2] are both bounded by ψ/2, which
we do next.

Claim. Pr[E1] ≤ ψ/2.

Proof. Fix some message x ∈ {0, 1}k and some function f ∈ F . Assume that the

event Ef,x
1 occurs for some choice of hash functions (h1, h2). Then there must

exist some values {r1, . . . , rq} such that: if we define ci := Enc(x; ri), c
′
i := f(ci)

then c′i = ci, c
′
i is valid, and |{c′1, . . . , c′q}| = q. The last condition also implies

|{c1, . . . , cq}| = q. However, it is possible that ci = c′j for some i = j. We claim
that we can find a subset of at least s := �q/3� of the indices such that the
2s values {ca1 , . . . , cas , c

′
a1
, . . . , c′as

} are all distinct. To do so, notice that if we
want to keep some index i corresponding to values ci, c

′
i, we need to take out at

most two indices j, k if c′j = ci or ck = c′i.
1 To summarize, if Ef,x

1 occurs, then

(by re-indexing) there is some set R = {r1, . . . , rs} ⊆ {0, 1}v1 of size |R| = s
satisfying the following two conditions:

(1) If we define ci := Enc(x; ri), c′i = ci and c′i is valid meaning that c′i =
(r′i, z

′
i, σ

′
i) where σ′ = h2(r

′, z′).
(2) |{c1, . . . , cs, c′1, . . . , c′s}| = 2s.

1 In other words, if we take any set of tuples {(ci, c′i)} such that all the left components
are distinct ci �= cj and all the right components are distinct c

′
i �= c′j , but there may

be common values ci = c′j , then there is a subset of at least 1/3 of the tuples such
that all left and right components in this subset are mutually distinct.



Efficient Non-malleable Codes and Key-Derivation 123

Therefore we have:

Pr[Ef,x
1 ] ≤ Pr

h1,h2

[∃R ⊆ {0, 1}v1 , |R| = s,R satisfies (1) and (2)]

≤
∑
R

Pr
h1,h2

[R satisfies (1) and (2)]

≤
∑

R={r1,...,rs}
max

h1,σ1,...,σs

Pr
h2

⎡⎣∀i , c′i valid

∣∣∣∣∣∣
ci := (ri, zi = h1(ri)⊕ x, σi),

c′i := f(ci), c
′
i �= ci

|{c1, . . . , cs, c′1, . . . , c′s}| = 2s

⎤⎦
≤
(
2v1

s

)
2−sv2 ≤

(
e2v1

s

)s

2−sv2 ≤ 2s(v1−v2) ≤ 2q(v1−v2)/3 ≤ 2−q , (8)

where Eq. (8) follows from the fact that, even if we condition on any choice of
the hash function h1 which fixes zi = h1(ri)⊕ x, and any choice of the s values
σi = h2(ri, zi), which fixes ci := (ri, zi = h1(ri) ⊕ x, σi), c

′
i := f(ci) such that

c′i = ci and |{c1, . . . , cs, c′1, . . . , c′s}| = 2s, then the probability that h2(r
′
i, z

′
i) = σ′i

for all i ∈ [s] is at most 2−sv2 . Here we use the fact that H2 is t-wise independent
where t ≥ q ≥ 2s. Now, we calculate

Pr[E1] ≤
∑
f∈F

∑
x∈{0,1}k

Pr[Ef,x
1 ] ≤ |F|2k−q ≤ ψ/2,

where the last inequality follows from the assumption, q = �log |F| + k +
log(1/ψ) + 1�.

Claim. Pr[E2] ≤ ψ/2.

Proof. For this proof, we will rely on the leakage-resilience property of the code
(LREnch1 , LRDech1) as shown in Theorem 1. First, let us write:

Pr[E2] = Pr
h1,h2

[
∃(f, x, c′) ∈ F × {0, 1}k × {0, 1}n \Hf (δ) :

Pr[f(Ench1,h2(x;Uv1)) = c′] ≥ 2δ
]

≤ Pr
h1,h2

[
∃(f, x, c′) ∈ F × {0, 1}k × {0, 1}n \Hf (δ) : (9)

∣∣∣∣ Pr[f(Ench1,h2(x;Uv1)) = c′]
−Pr[f(Ench1,h2(Uk;Uv1)) = c′]

∣∣∣∣ ≥ δ

]

since, for any c′ ∈ Hf (δ), we have Pr[f(Ench1,h2(Uk;Uv1)) = c′] < δ by definition.
Notice that we can write Ench1,h2(x; r) = (c1, c2) where c1 = LREnch1(x; r),
c2 = h2(c1). We will now rely on the leakage-resilience of the code (LREnch1 ,
LRDech1) to bound the above probability by ψ/2. In fact, we show that the
above holds even if we take the probability over h1 only, for a worst-case choice
of h2.
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Let us fix some choice of h2 and define the family G = G(h2) of leakage-

functions G = {gf,c′ : {0, 1}k+v1 → {0, 1} | f ∈ F , c′ ∈ {0, 1}n} with output
size 
 = 1 bits as follows:

– gf,c′(c1): Set c = (c1, c2 = h2(c1)). If f(c) = c′ output 1, else output 0.

Notice that the size of the family G is 2n|F| and the family does not depend on
the choice of h1. Therefore, continuing from inequality (9), we get:

Pr[E2] ≤ Pr
h1,h2

[
∃(f, x, c′) ∈ F × {0, 1}k × {0, 1}n \Hf (δ) :

∣∣∣∣ Pr[f(Ench1,h2(x;Uv1 )) = c′]
−Pr[f(Ench1,h2(Uk;Uv1)) = c′]

∣∣∣∣ ≥ δ

]

≤ max
h2

Pr
h1

[
∃(gf,c′ , x) ∈ G(h2)× {0, 1}k :

∣∣∣∣ Pr[gf,c′(LREnch1(x;Uv1)) = 1]
−Pr[gf,c′(LREnch1(Uk;Uv1)) = 1]

∣∣∣∣ ≥ δ

]

= max
h2

Pr
h1

[
∃(gf,c′ , x) ∈ G(h2)× {0, 1}k :

∣∣∣∣Pr[gf,c′(LREnch1(x;Uv1)) = 1]
−Pr[gf,c′(Uk+v1) = 1]

∣∣∣∣ ≥ δ

]
≤ max

h2

Pr
h1

[ (LREnch1 , LRDech1) is not (G(h2), δ)-Leakage-Resilient ]

≤ ψ/2,

where the last inequality follows from Theorem 1 by the choice of parameters.

Putting it All Together. Lemma 1 tells us that for any δ > 0 and any function
family F :

Pr[(Ench1,h2 ,Dech1,h2) is not (F , ε)-super-non-malleable]

≤ Pr[(Ench1,h2 ,Dech1,h2) is not (F , δ, ε/4)-bounded-malleable] (10)

+ Pr[(LREnch1 , LRDech1) is not (G(F , h2, δ), ε/4)-leakage-resilient], (11)

where G = G(F , h2, δ) is of size |G| = |F| and consists of function with output
size 
 = �log(1/δ + 2)�.

Let us set δ := (ε/8)(log |F|+ k+ log(1/ρ)+ 3)−1. This ensures that the first
requirement of Lemma 2 is satisfied with τ = ε/4. We choose t∗ = O(log |F| +
n + log(1/ρ)) such that log(1/δ) ≤ log(1/ε) + log(t∗) + O(1). Notice that the
leakage amount of G is 
 = �log(1/δ+2)� ≤ log(1/ε)+log(t∗)+O(1). With v1, v2
as in Theorem 2, we satisfy the remaining requirements of Lemma 2 (bounded-
malleable codes) and Theorem 1 (leakage-resilient codes) to ensure that the
probabilities (10), (11) are both bounded by ρ/2, which proves our theorem.
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Experiment Realh(f) vs. Simh(f)

Experiment Realh(f):
Sample x ← Un.
If f(x) = x:
Output

(
h(x), same�)

)
.

Else
Output

(
h(x), h(f(x))

)
.

Experiment Simh(f):
Sample x ← Un; y ← Uk

If f(x) = x:
Output

(
y, same�

)
.

Else
Output

(
y, h(f(x))

)
.

Fig. 1. Experiments defining a non-malleable key derivation function h

5 Non-malleable Key-Derivation

In this section we introduce a new primitive, which we name non-malleable key
derivation. Intuitively a function h is a non-malleable key derivation function if
h(x) is close to uniform even given the output of h applied to a related input
f(x), as long as f(x) = x.

Definition 6 (Non-malleable Key-Derivation). Let F be any family of

functions f : {0, 1}n → {0, 1}n. We say that a function h : {0, 1}n → {0, 1}k
is an (F , ε)-non-malleable key derivation function if for every f ∈ F we have
SD
(
Realh(f); Simh(f)

)
≤ ε where Realh(f) and Simh(f) denote the output dis-

tributions of the corresponding experiments described in Fig. 1.

Note that the above definition can be interpreted as a dual version of the
definition of non-malleable extractors [15].2 The theorem below states that by
sampling a function h from a set H of t-wise independent hash functions, we
obtain a non-malleable key derivation function with overwhelming probability.

Theorem 3. Let H be a 2t-wise independent function family consisting of func-
tions h : {0, 1}n → {0, 1}k and let F be some function family as above. Then
with probability 1 − ρ over the choice of a random h ← H, the function h is an
(F , ε)-non-malleable key-derivation function as long as:

n ≥ 2k + log(1/ε) + log(t) + 3 and t > log(|F|) + 2k + log(1/ρ) + 5.

Proof. For any h ∈ H and f ∈ F , define a function hf : {0, 1}n → {0, 1}k∪same�

such that if f(x) = x then hf (x) = same� otherwise hf (x) = h(f(x)). Fix a
function family F . Now, taking probabilities (only) over the choice of h, let Bad

be the event that h is not an (F , ε)-non-malleable-key-derivation function. Then:

Pr[Bad] = Pr
h←H

[
∃f ∈ F : SD( Realh(f) , Simh(f) ) > ε

]

2 The duality comes from the fact that the output of a non-malleable extractor is
close to uniform even given a certain number of outputs computed with related
seeds (whereas for non-malleable key derivation the seed is unchanged but the input
can be altered).
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= Pr
h←H

[
∃f ∈ F : SD( (h(X), hf (X)) , (Uk, hf (X)) ) > ε

]

≤
∑
f∈F

Pr
h←H

[ ∑
y∈{0,1}k

∑
y′∈{0,1}k∪same�

∣∣∣∣Pr[h(X) = y ∧ hf (X) = y′]

−Pr[Uk = y ∧ hf (X) = y′]
∣∣∣∣ > 2ε

]

≤
∑
f∈F

Pr
h←H

[
∃ y ∈ {0, 1}k, y′ ∈ {0, 1}k ∪ same� :

∣∣∣∣ Pr[h(X) = y ∧ hf (X) = y′]
−Pr[Uk = y ∧ hf (X) = y′]

∣∣∣∣ > 2−2kε

]

≤
∑
f∈F

∑
y∈{0,1}k

∑
y′∈{0,1}k∪same�

Pr
h←H

[∣∣∣∣Pr[h(X) = y ∧ hf (X) = y′]
−2−k Pr[hf (X) = y′]

∣∣∣∣ > 2−2kε

]
(12)

Fix f, y, y′. For every x ∈ {0, 1}n, define a random variable Cx over the choice
of h← H, such that

Cx =

⎧⎨⎩1− 2−k if h(x) = y ∧ hf (x) = y′

−2−k if h(x) = y ∧ hf (x) = y′

0 otherwise.

Notice that each Cx is 0 on expectation. However, the random variables Cx are
not even pairwise independent.3 In the full version of this paper [20], we prove
the following lemma about the variables Cx.

Lemma 3. There exists a partitioning of {0, 1}n into four disjoint subsets
{Aj}4j=1, such that for any A > 0 and for all j = 1, . . . , 4:

Pr

[∣∣∣∣ ∑
x∈Aj

Cx

∣∣∣∣ > A

]
< Kt

(
t

A

)t

,

where Kt ≤ 8.

Continuing from Eq. (12), we get:

Pr
h←H

[∣∣Pr[h(X) = y ∧ hf (X) = y′]− 2−k Pr[hf (X) = y′]
∣∣ > 2−2kε

]
= Pr

h←H

[∣∣∣∣ ∑
x∈{0,1}n

Cx

∣∣∣∣ > 2n−2kε

]
(13)

≤
4∑

j=1

Pr
h←H

[∣∣∣∣ ∑
x∈Aj

Cx

∣∣∣∣ > 2n−2k−2ε

]
< 4Kt

(
t

2n−2k−2ε

)t

. (14)

Eq. (13) follows from the definitions of the variablesCx and Eq. (14) follows by
applying Lemma 3 to the sum. CombiningEq. (12) andEq. (14), we get Pr[Bad] <

|F|22k
[
4Kt

(
t

2n−2k−2ε

)t]
. In particular, it holds that Pr[Bad] ≤ ρ as long as:

n ≥ 2k + log(1/ε) + log(t) + 3 and t > log(|F|) + 2k + log(1/ρ) + 5.
3 For example if f(x) = f(x′) and Cx = 0 then Cx′ = 0 as well.
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Optimal Rate of Non-Malleable Key-Derivation. We can define the rate
of a key derivation function h : {0, 1}n → {0, 1}k as the ratio k/n. Notice that our
construction achieves rate arbitrary close to 1/2. We claim that this is optimal
for non-malleable key derivation. To see this, consider a tampering function
f : {0, 1}n → {0, 1}n which is a permutation and never identity: f(x) = x. In
this case the joint distribution (h(X), h(f(X))) is ε-close to (Uk, h(f(X))) which
is ε-close to the distribution (Uk, U

′
k) consisting of 2k random bits. Since all of

the randomness in (h(X), h(f(X))) comes from X , this means that X must
contain at least 2k bits of randomness, meaning that n > 2k.

Acknowledgements. We thank Ivan Damg̊ard for useful discussions at the
early stages of this research.
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Abstract. Timed-release encryption is a kind of encryption scheme that
a recipient can decrypt only after a specified amount of time T (assuming
that we have a moderately precise estimate of his computing power). A
revocable timed-release encryption is one where, before the time T is over,
the sender can “give back” the timed-release encryption, provably loosing
all access to the data. We show that revocable timed-release encryption
without trusted parties is possible using quantum cryptography (while
trivially impossible classically).

Along the way, we develop two proof techniques in the quantum ran-
dom oracle model that we believe may have applications also for other
protocols.

Finally, we also develop another new primitive, unknown recipient en-
cryption, which allows us to send a message to an unknown/unspecified
recipient over an insecure network in such a way that at most one
recipient will get the message.

1 Introduction

We present and construct revocable timed-release encryption schemes (based on
quantum cryptography). To explain what revocable timed-release encryption is,
we first recall the notion of timed-release encryption (also known as a time-lock
puzzle); we only consider the setting without trusted parties in this paper. A
timed-release encryption (TRE) for time T is an algorithm that takes a message
m and “encrypts” it in such a way that the message cannot be decrypted in time
T but can be decrypted in time T � � T . (Here T � should be as close as possible
to T , preferably off by only an additive offset.)

The crucial point here is that the recipient can open the encryption without
any interaction with the sender. (E.g., [21] publishes a secret message that is sup-
posed not to be openable before 2034.) Example use cases could be: messages for
posterity [22]; data that should be provided to a recipient at a given time, even if
the sender goes offline; A sells some information to B that should be revealed only
later, but B wants to be sure that A cannot withdraw this information any more;1
exchange of secrets where none of the parties should be able to abort depending
on the data received by the other; fair contract signing [6]; electronic auctions [6];
mortgage payments [22]; concurrent zero-knowledge protocols [6]; etc.

Physically, one can imagine TRE as follows: The message m is put in a strong-
box with a timer that opens automatically after time T �. The recipient cannot
get the message in time T because the strongbox will not be open by then.
1 In this case, zero-knowledge proofs could be used to show that the TRE indeed

contains the right plaintext.
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It turns out, however, that a physical TRE is more powerful than a digital
one. Consider the following example setting: Person P goes to a meeting with a
criminal organization. As a safe guard, he leaves compromising information m
with his friend F , to be released if P does not resurface after one day. (Wik-
iLeaks/Assange seems to have done something similar [19].) As P assumes F to
be curious, P puts m in a physical TRE, to be opened only after one day. If P
returns before the day is over, P asks the TRE back. If F hands the TRE over
to P , P will be sure that F did not and will not read m. (Of course, F may
refuse to hand back the TRE, but F cannot get m without P noticing.)

This works fine with physical TRE, but as soon as P uses a digital TRE, F can
cheat. F just copies the TRE before handing it back and continues decrypting.
After one day, F will have m, without P noticing.

So physical TREs are “revocable”. The recipient can give back the encryption
before the time T has passed. And the sender can check that this revocation was
performed honestly. In the latter case, the sender will be sure that the recipient
does not learn anything. Obviously, a digital TRE can never have that property,
because it can be copied before revocation.

However, if we use quantum information in our TRE, things are different.
Quantum information cannot, in general, be copied. So it is conceivable that a
quantum TRE is revocable.

1.1 Example Applications

We sketch a few more possible applications of revocable TREs. Some of them are
far beyond the reach of current technology (because they need reliable storage
of quantum states for a long time). In some cases, however, TREs with very
short time T are used, this might be within the reach of current technology.
The applications are not worked out in detail (some are just first ideas), and
we do not claim that they are necessarily the best options in their respective
setting, but they illustrate that revocable TREs could be a versatile tool worth
investigating further.

Deposits. A client has to provide a deposit for some service (e.g., car rental).
The dealer should be able to cash in the deposit if the client does not return.
Solution: The client produces a T -revocable TRE containing a signed transaction
that empowers the dealer to withdraw the deposit. When the client returns the
car within time T , the client can make sure the dealer did not keep the deposit.2

2 One challenge: The client needs to convince the dealer that the TRE indeed contains
a signature on a transaction. I.e., we need a way to prove that a TRE V contains a
given value (and the running time of this proof should not depend on T ). At least for
our constructions (see below), this could be achieved as follows: The client produces
a commitment c on the content of the classical inner TRE V0 and proves that c
contains the right content (using a SNARK [4] so that the verification time does not
depend on T ). Then client and dealer perform a quantum two-party computation
[12] with inputs c, V , and opening information for c, and with dealer outputs V and
b where b is a bit indicating whether the message in V satisfies P .
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Such deposits might also be part of a cryptographic protocol where deposits
are revoked or redeemed automatically depending on whether a party is caught
cheating (to produce an incentive against cheating). In this case, the time T
might well be in the range of seconds or minutes, which could be within the
reach of near future quantum memory [15].

Data Retention with Verifiable Deletion. Various countries have laws re-
quiring the retention of telecommunication data, but mandate the deletion of
the data after a certain period (e.g., [14]). Using revocable TREs, clients could
provide their data within revocable TREs (together with a proof of correctness,
cf. footnote 2). At the end of the prescribed period, the TRE is revoked, unless
it is needed for law-enforcement. This way, the clients can verify that their data
is indeed erased from the storage.

Unknown Recipient Encryption. An extension of revocable TREs is “un-
known recipient encryption” (URE) which allows a sender to encrypt a message
m in such a way that any recipient but at most one recipient can decrypt it. That
is, the sender can send a message to an unknown recipient, and that recipient
can, after decrypting, be sure that only he got the message, even if the ciphertext
was transferred over an insecure channel. Think, e.g., of a client connecting to
a server in an anonymous fashion, e.g., through (a quantum variant of) TOR
[11], and receiving some data m. Since the connection is anonymous and the
client has thus no credentials to authenticate with the server, we cannot avoid
that the data gets “stolen” by someone else. However, with unknown recipient
encryption, it is possible to make sure that the client will detect if someone else
got his data. This application shows that revocable TREs can be the basis for
other unexpected cryptographic primitives. Again, the time T may be small in
some applications, thus in the reach of the near future. We stress that URE is
non-interactive, so this works even if no bidirectional communication is possi-
ble. It could be used for a cryptographic dead letter box where a “spy” deposits
secret information, and the recipient can verify that no-one found it. Unknown
recipient encryption is formalized in the full version [27].

A variant of this is “one-shot” quantum key distribution: Only a single message
is sent from Alice to Bob, and as long as Bob receives that message within time T ,
he can be sure no-one else got the key. (This is easily implemented by encrypting
the key with a URE.)

1.2 Our Contribution

Definitions. We give formal definitions of TREs and revocable TREs
(Section 2). These definitions come in two flavors: T -hiding (no information is
leaked before time T ) and T -one-way (before time T , the plaintext cannot be
guessed completely).)

One-Way Revocable TREs. Then we construct one-way revocable TREs
(Section 3). Although one-wayness is too weak a property for almost all pur-
poses, the construction and its proof are useful as a warm-up for the hiding
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construction, and also useful on their own for the random oracle based construc-
tions (see below). The construction itself is very simple: To encrypt a message
m, a quantum state |Ψ� is constructed that encodes m in a random BB84 basis
B.3 Then B is encrypted in a (non-revocable) T -hiding TRE V0. The resulting
TRE �|Ψ�, V0� is sent to the recipient. Revocation is straightforward: the recipi-
ent sends |Ψ� back to the sender, who checks that |Ψ� still encodes m in basis B.
Intuitively, |Ψ� cannot be reliably copied without knowledge of basis B, hence
before time T the recipient cannot copy |Ψ� and thus looses access to |Ψ� and
thus to m upon revocation.

The proof of this fact is not as easy as one might think at the first glance (“use
the fact that B is unknown before time T , and then use that a state |Ψ� cannot
be cloned without knowledge of the basis”) because information-theoretical and
complexity-theoretic reasoning need to be mixed carefully.

The resulting scheme even enjoys everlasting security (cf., e.g., [17,10,1,7,20]):
after successful revocation, the adversary cannot break the TRE even given
unlimited computation.

We hope that the ideas in the proof benefit not only the construction of
revocable TREs, but might also be useful in other contexts where it is neces-
sary to prove uncloneability of quantum-data based on cryptographic and not
information-theoretical secrecy (quantum-money perhaps?).

Revocably Hiding TREs. The next step is to construct revocably hiding
TREs (Section 4). The construction described before is not hiding, because if
the adversary guesses a few bits of B correctly, he will learn some bits of m
while still passing revocation. A natural idea would be to use privacy amplifica-
tion: the sender picks a universal hash function F and includes it in the TRE
V0. The actual plaintext is XORed with F �m� and transmitted. Surprisingly, we
cannot prove this construction secure, see the beginning of Section 4 for a discus-
sion. Instead, we prove a construction that is based on CSS codes. The resulting
scheme uses the same technological assumptions as the one-way revocable one:
sending and measuring of individual qubits, quantum memory. Unfortunately,
the reduction in this case is not very efficient; as a consequence the underlying
non-revocable TRE needs to be exponentially hard, at least if we want to en-
crypt messages of superlogarithmic length. Notice that the random oracle based
solutions described below do not have this drawback.

Like the previous scheme, this scheme enjoys everlasting security.

Random Oracle Transformations. We develop two transformations of TREs
in the quantum random oracle model. The first transformation takes a revocably
one-way TRE and transforms it into a revocably hiding one (by sending m�H�k�
and putting k into the revocably one-way TRE; Section 5.1). This gives a simpler
and more efficient alternative to the complex construction for revocably hiding
TREs described above, though at the cost of using the random-oracle model
and loosing everlasting security. The second transformation allows us to assume

3 I.e., each bit of m is randomly encoded either in the computational or the diagonal
basis.
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without loss of generality that the adversary performs no oracle queries before
receiving the TRE, simplifying other security proof (Section 5.2).

For both transformations we prove general lemmas that allow us to use anal-
ogous transformations also on schemes unrelated to TREs (e.g., to make an
encryption scheme semantically secure). We believe these to be of independent
interest, because the quantum random oracle model is notoriously difficult to
use, and many existing classical constructions are not known to work in the
quantum case.

Classical TREs. Unfortunately, only very few constructions of classical TRE
are known. Rivest, Shamir, and Wagner [22] present a construction based on
RSA; it is obviously not secure in the quantum setting [23]. Other construc-
tions are iterated hashing (to send m, we send H�H�H�. . . �r� . . . ��� �m) and
preimage search (to decrypt, one needs to invert H�k� where k � �1, . . . , T �);
with suitable amplification this becomes a TRE [26]). Preimage search is not a
good TRE because it breaks down if the adversary can compute in parallel. This
leaves iterated hashing.4 We prove that (a slight variation of) iterated hashing is
hiding even against quantum adversaries and thus suitable for plugging into our
constructions of revocable TREs (Section 5.3). (Note, however, that the hard-
ness of iterated hashing could also be used as a very reasonable assumption on
its own. The random oracle model is thus not strictly necessary here, it just
provides additional justification for that assumption.)

We leave it as an open problem to identify more practical candidates for
iterated hashing, perhaps following the ideas of [22] but not based on RSA or
other quantum-easy problems.

For space reasons, details and full proofs are deferred to the full version [27]
of this paper.

1.3 Preliminaries

For the necessary background in quantum computing, see, e.g., [18].
Let ω�x� denote the Hamming weight of x. By 	q 
 n�q we denote the set of

all size-q subsets of �1, . . . , q 
 n�. I.e., S � 	q 
 n�q iff S � �1, . . . , q 
 n� and
|S|  q. By � we mean bitwise XOR (or equivalently, addition in GF�2�n). Given
a linear code C, let C� be the dual code (C� : �x : �y � C. x, y orthogonal�).

Let X,Y, Z denote the Pauli operators. Let |βij� denote the four Bell states,
namely |β00� : 1�

2
|00�
 1�

2
|11� and |βfe�  �ZfXe�I�|β00�  �I�XeZf �|β00�.

In slight abuse of notation, we call |β00� an EPR pair (originally, [13] used

4 Iterated hashing has the downside that producing the TRE takes as long as de-
crypting it. However, this long computation can be moved into a precomputation
phase that is independent of the message m, making this TRE suitable at least
for some applications. [16] present a sophisticated variant of iterated hashing that
circumvents this problem; their construction, however, does not allow the sender to
predict the recipient’s output and is thus not suitable for sending a message into
the future.
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|β11�). And a state consisting of EPR pairs we call an EPR state. H denotes
the Hadamard gate, and In the identity on �2n (short I if n is clear from the
context). Let |m�B denote m � �0, 1�n encoded in basis B � �0, 1�n, where 0
stands for the computational and 1 for the diagonal basis.

Given an operator A and a bitstring x � �0, 1�n, we write Ax for Ax1 � � � � �
Axn . E.g., Xx|y�  |x� y�, and HB|x�  |x�B .

Given f, e � �0, 1�n, we write |�fe� for |βf1e1��� � ��|βfnen�, except for the order
of qubits: the first qubits of all EPR pairs, followed by the last qubits of all EPR
pairs. In other words, |�0n0n� �x��0,1�n|w�|w� and |�fe�  �ZfXe � I�|�0n0n�.

Let ‖�‖ be the Euclidean norm (i.e., ‖|Ψ�‖2  |�Ψ �Ψ�|) and let ��� denote the
corresponding operator norm (i.e., �A� : supx�0‖Ax‖�‖x‖).

By TD�ρ1, ρ2� we denote the trace distance between density operators ρ1, ρ2.
We write short TD�|Ψ1�, |Ψ2�� for TD�|Ψ1��Ψ1|, |Ψ2��Ψ2|�.

Whenever we speak about algorithms, we mean quantum algorithms. (In par-
ticular, adversaries are always assumed to be quantum.)

2 Defining Revocable TREs

A timed-release encryption (TRE) consists of: An encryption algorithm TRE�m�
that returns a (possibly quantum) ciphertext V containing m. A decryption algo-
rithm that computes m from V (without using any key). Possibly: a revocation
algorithm in which the recipient gives back V to the sender and the sender
performs some check on V . We have two basic security properties for TREs:
T -hiding means that within time T , an adversary cannot learn anything about
m, and T -one-way means that within time T , an adversary cannot guess m.
(These basic security properties do not refer to the revocation algorithm.) For
formal definitions of these basic properties, and a discussion on timing-models
and definitions in related work, see the full version [27].

We now define the revocable hiding property. A TRE is revocably T -hiding
if an adversary cannot both successfully pass the revocation protocol within
time T and learn something about the message m contained in the TRE.
When formalizing this, we have to be careful. A definition like: “conditioned
on revocation succeeding, p0 : Pr	adversary outputs 1 given TRE�m0�� and
p1 : Pr	adversary outputs 1 given TRE�m1�� are close (|p0 � p1| is negligi-
ble)” does not work: if Pr	revocation succeeds� is very small, |p0 � p1| can be-
come large even if the adversary rarely succeeds in distinguishing. (Consider,
e.g., an adversary that intentionally fails revocation except in the very rare
case that he guesses an encryption key that allows to decrypt the TRE im-
mediately.) Also, a definition like “ |p0 � p1| � Pr	revocation succeeds�” is prob-
lematic: Does Pr	revocation succeeds� refer to an execution with TRE�m0�
or TRE�m1�?. Instead, we will require “ |p0 � p1| is negligible with pi :
Pr	adversary outputs 1 and revocation succeeds given TRE�mi��”. This defini-
tion avoids the complications of a conditional probability and additionally
implies as side effect that also Pr	revocation succeeds given TRE�m0�� and
Pr	revocation succeeds given TRE�m1�� are close.
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Definition 1 (Revocably hiding timed-release encryption). Given a re-
vocable timed-release encryption TRE with message space M , and an adversary
�A0, A1, A2� (that is assumed to be able to keep state between activations of
A0, A1, A2) consider the following game G�b� for b � �0, 1�:
– �m0,m1� � A0��.
– V � TRE�mb�.
– Run the revocation protocol of TRE, where the sender is honest, and the

recipient is A1�V �. Let ok be the output of the sender (i.e., ok  1 if the
sender accepts).

– b� � A2��.
A timed-release encryption TRE with message space M is T -revocably hiding,
if for any adversary �A0, A1, A2� where A1 is sequential-polynomial-time and T -
time and A0, A2 are sequential-polynomial-time,

∣∣Pr	b�  1 � ok  1 : G�0�� �
Pr	b�  1� ok  1 : G�1��∣∣ is negligible.

Note that although revocably hiding seems to be a stronger property than
hiding, we are not aware of any proof that a T -revocably hiding TRE is also T -
hiding. (It might be that it is possible to extract the message m in time � T , but
only at the cost of making a later revocation impossible. This would contradict
T -hiding but not T -revocably hiding.) Therefore we always need to show that
our revocable TREs are both T -hiding and T -revocably hiding.

Again, we define the weaker property of revocable one-wayness which only
requires the adversary to guess the message m. We need this weaker property
for intermediate constructions. Like for hiding, we stress that revocable one-
wayness does not seem to imply one-wayness.

Definition 2 (Revocably one-way TRE). Given a revocable timed-release
encryption TRE with message space M , and an adversary �A0, A1, A2� (that is
assumed to be able to keep state between activations of A0, A1, A2) consider the
following game G:
– Run A0��.
– Pick m

$�M , run V � TRE�m�.
– Run the revocation protocol of TRE, where the sender is honest, and the

recipient is A1�V �. Let ok be the output of the sender (i.e., ok  1 if the
sender accepts).

– m� � A2��.
A timed-release encryption TRE with message space M is T -revocably one-way,
if for any quantum adversary �A0, A1, A2� where A1 is sequential-polynomial-
time and T -time and A0, A2 are sequential-polynomial-time, we have that
Pr	m  m� � ok  1 : G� is negligible.

3 Constructing Revocably One-Way TREs

In this section, we present our construction RTREow for revocably one-way
TREs. Although one-wayness is too weak a property, this serves as a warm-up
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for our considerably more involved revocably hiding TREs (Section 4), and also
as a building block in our random-oracle based construction (Section 5.1).

The following protocol is like we sketched in the introduction, except that
we added a one-time pad p. That one-time pad has no effect on the revocable
one-wayness, but we introduce because it makes the protocol (non-revocably)
hiding at little extra cost.

Definition 3 (Revocably one-way TRE RTREow)
– Let n be an integer.
– Let TRE0 be a T -hiding TRE with message space �0, 1�2n.

We construct a revocable TRE RTREow with message space �0, 1�n.
Encryption of m � �0, 1�n:
– Pick p,B

$� �0, 1�n.
– Construct the state |Ψ� : |m� p�B. (Recall that |x�B is x encoded in basis

B, see page 134.)
– Compute V0 � TRE0�B, p�.
– Send V0 and |Ψ�.

Decryption:
– Decrypt V0.
– Measure |Ψ� in basis B; call the outcome γ.
– Return m : γ � p.

Revocation:
– The recipient sends |Ψ� back to the sender.
– The sender measures |Ψ� in basis B; call the outcome γ.
– If γ  m� p, revocation succeeds (sender outputs 1).

Naive Proof Approach. (In the following discussions, for clarity we omit all
occurrences of the one-time pad p.) At a first glance, it seems the security of this
protocol should be straightforward to prove: We know that without knowledge
of the basis B, one cannot clone the state |Ψ�, not even approximately.5 We also
know that until time T , the adversary does not know anything about B (since
TRE0 is T -hiding). Hence the adversary cannot reliably clone |Ψ� before time
T . But the adversary would need to do so to pass revocation and still keep a
state that allows him to measure m later (when he learns B).

Unfortunately, this argument is not sound. It would be correct if TRE0 were
implemented using a trusted third party (i.e., if B is sent to the adversary after
time T ).6 However, the adversary has access to V0  TRE0�B� when trying
to clone |Ψ�. From the information-theoretical point of view, this is the same
as having access to B. Thus the no-cloning theorem and its variants cannot be
applied because they rely on the fact that B is information-theoretically hidden.
5 This fact also underlies the security of BB84-style QKD protocols [3].
6 Again, this is implicit in proofs for BB84-style QKD protocols: there the adversary

gets a state |Ψ� � |m�B from Alice (key m encoded in a secret base B), which he
has to give back to Bob unchanged (because otherwise Alice and Bob will detect
tampering). And he wishes to, at the same time, keep information to later be able
to compute the key m when given B.
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One might want to save the argument in the following way: Although V0 
TRE0�B� information-theoretically contains B, it is indistinguishable from V̂0 
TRE0�B̂� which does not contain B but an independently chosen B̂. And if the
adversary is given V̂0 instead of V0, we can use information-theoretical arguments
to show that he cannot learn m. But although this argument would work if
TRE0 were hiding against polynomial-time adversaries (e.g., if TRE0 were a
commitment scheme). But TRE0 is only hiding for T -time adversaries! This
only guarantees that all observable events that happen with V0 before time T
also happen with V̂0 before time T and vice versa. In particular, since with V̂0, the
adversary cannot learn m before time T , he cannot learn m before time T with
V0. But although with V̂0, after successful revocation, the adversary provably
cannot ever learn m, it might be possible that with V0, he can learn m right
after time T has passed.

Indeed, it is not obvious how to exclude that there is some “encrypted-cloning”
procedure that, given |Ψ�  |m�B and TRE0�B�, without disturbing |Ψ�, pro-
duces a state |Ψ �� that for a T -time distinguisher looks like a random state, but
still |Ψ �� can be transformed into |Ψ� in time � T . Such an “encrypted-cloning”
would be sufficient for breaking RTREow . (Of course, it is a direct corollary from
our security proof that such encrypted-cloning is impossible.)7

Proof Idea. As we have seen in the preceding discussion, we can prove that the
property “the adversary cannot learn m ever” holds when sending V̂0  TRE0�B̂�
for an independent B̂ instead of V0  TRE0�B�. But we cannot prove that this
property carries over to the V0-setting because it cannot be tested in time T .
Examples for properties that do carry over would be “the adversary cannot
learn m in time T ” or “revocation succeeds” or “when measured in basis B,
the adversary’s revocation-message does not yield outcome m”. But we would
like to have a property like “the entropy of m is large (or revocation fails)”. That
property cannot be tested in time T , so it does not carry over. Yet, we can use
a trick to still guarantee that this property holds in the V0-setting.

For this, we first modify the protocol in an (information-theoretically) indis-
tinguishable way: Normally, we would pick m at random and send |Ψ� : |m�B
7 To illustrate that “encrypted-cloning” is not a far fetched idea, consider the follow-

ing quite similar revocable TRE: Let EK�|Ψ�� denote the quantum one-time pad
encryption of |Ψ� � �2n using key K � �0, 1�2n, i.e., EK�|Ψ�� � ZK1XK2 |Ψ� with
K � K1�K2 [2]. RTRE�m� :� �EK�|m�B�, B,TRE0�K��. For revocation, the sender
sends EK�|m�B� back, and the recipient checks if it is the right state. Again, if K
is unknown, it is not possible to clone EK�|m�B� as it is effectively a random state
even given B. But we can break RTRE as follows:

The recipient measures |Φ� :� EK�|m�B� in basis B. Using XH � HZ and ZH �

HX, we have |Φ� � ZK1XK2HB |m� � HBXK1�BZK1�B̄ZK2�BXK2�B̄ |m� �
	|m 
 �K2 � B̄� 
 �K1 � B��B where � is the bit-wise product and B̄ the com-
plement of B. Thus the measurement of |Φ� in basis B does not disturb |Φ�, and the
recipient learns m 
 �K1 � B� 
 �K2 � B̄�. He can then send back the undisturbed
state |Φ� and pass revocation. After decrypting TRE0�K�, he can compute m, and
reconstruct the state |Φ� � EK�|m�B� using known K,m,B. Thus he performed an
“encrypted cloning” of |Φ� before decrypting TRE0�K�.
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to the adversary. Instead, we initialize two n-bit quantum registers X,Y with
EPR pairs and send X to the adversary. The value m is computed by mea-
suring Y in basis B. Now we can formulate a new property: “after revocation
but before measuring m, XY are still EPR pairs (up to some errors) or revoca-
tion fails”. This property can be shown to hold in the V̂0-setting using standard
information-theoretical tools. And the property tested in time T , all we have
to do is a measurement in the Bell basis. Thus the property also holds in the
V0-setting. And finally, due to the monogamy of entanglement ([9]; but we need
a custom variant of it) we have that this property implies “the entropy of m is
high (or revocation fails)”.

We have still to be careful in the details, of course. E.g., the revocation check
itself contains a measurement in basis B which would destroy the EPR state
XY ; this can be fixed by only measuring whether the revocation check would
succeeds, without actually measuring m.

Theorem 1 (RTREow is revocably one-way). Let δowT be the time to compute
the following things: a measurement whether two n-qubit registers are equal in a
given basis B, a measurement whether two n-qubit registers are in an EPR state
up to t : �n phase flips and t bit flips, and one NOT- and one AND-gate.

Assume that the protocol parameter n is superlogarithmic.
The protocol RTREow from Definition 3 is �T �δowT �-revocably one-way, even

if adversary A2 is unlimited (i.e., after revocation, security holds information-
theoretically).

A concrete security bound is derived in the full version [27].

Since revocable one-wayness does not imply (non-revocable) one-wayness, we
additionally show the hiding property of RTREow . Due to the presence of the
one-time pad p, the proof is unsurprising.

4 Revocably Hiding TREs

We now turn to the problem of constructing revocably hiding TREs. The con-
struction from the previous section is revocably one-way, but it is certainly not
revocably hiding because the adversary might be lucky enough to guess a few
bits of the basis B, measure the corresponding bits of the message m without
modifying the state, and successfully pass revocation. So some bits of m will
necessarily leak. The most natural approach for dealing with partial leakage (at
least in the case of QKD) is to use privacy amplification. That is, we pick a
function F from a suitable family of functions (say, universal hash functions
with suitable parameters), and then to send m, we encrypt a random x using
the revocably one-way TRE, and additionally transmit F �x� �m. If x has suf-
ficiently high min-entropy, F �x� will look random, and thus F �x� �m will not
leak anything about m. Additionally, we need to transmit F to the recipient, in a
way that the adversary does not have access to it when measuring the quantum
state. Thus, we have to include F in the classical TRE. So, altogether, we would
send �m � F �x�,TRE0�B, f�� and |m�B. In fact, this scheme might be secure,
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we do not have an attack. Yet, when it comes to proving its security, we face
difficulties: In the proof of RTREow , to use the hiding property of TRE0, we
identified a property that can be checked in time T , and that guarantees that m
cannot be guessed. (Namely, we used that the registers XY contain EPR pairs
up to some errors which implies that the adversary cannot predict the outcome
m of measuring Y .) In the present case, we would need more. We need a prop-
erty P that guarantees that F �x� is indistinguishable from random given the
adversary’s state when x is the outcome of measuring Y . Note that here it is not
sufficient to just use that x has high min-entropy and that F is a strong random-
ness extractor; at the point when we test the property P , F is already fixed and
thus not random. Instead, we have to find a measurable property P � that guar-
antees: For the particular value F chosen in the game, F �x� is indistinguishable
from randomness. (And additionally, we need that P � holds with overwhelming
probability when TRE0�B, f� is replaced by a fake TRE not containing B, f .)
We were not able to identify such a property.8

Using CSS Codes. This discussion shows that, when we try to use privacy
amplification, we encounter the challenge how to transmit the hash function F .
Yet, in the context of QKD, there is a second approach for ensuring that the
final key does not leak any information: Instead of first exchanging a raw key
and then applying privacy amplification to it, Shor and Preskill [24] present a
protocol where Alice and Bob first create shared EPR pairs with a low number
of errors. In our language: Alice and Bob share a superposition of states |�fe�
with ω�f�, ω�e� � t. Then they use the fact that, roughly speaking, |�0n0n� is
an encoding of |�0�0�� for some 
 � n using a random CSS code correcting
t bit/phase error. (Calderbank-Shor-Steane codes [8,25].) So if Alice and Bob
apply error correction and decoding to |�fe�, they get the state |�0�0��. Then, if
Alice and Bob measure that state, they get identical and uniformly distributed
keys, and the adversary has no information. Furthermore, the resulting protocol
can be seen to be equivalent to one that does not need quantum codes (and

8 To illustrate the difficulty of identifying such a property: Call a function F s-good
if F �x� is uniformly random if all bits xi with si � 0 are uniformly random (and
independent). In other words, F tolerates leakage of the bits with si � 1. For suitable
families of functions F , and for s with low Hamming weight, a random F will be
s-good with high probability. Furthermore, when using a fake TRE0, XY is in state
|�fe� with s :� �f � e� of low Hamming weight with overwhelming probability after
successful revocation (this we showed in the security proof for RTREow ). In this case,
all bits of Y with si � 0 will be “untampered” and we expect that F �x� is uniformly
random for s-good F (when x is the outcome of measuring Y ). So we are tempted
to choose P � as: “XY is in a superposition of states |�fe� such that the chosen F is
�f � e�-good”. This property holds with overwhelming property using a fake TRE0.
But unfortunately, this fails to guarantee that f�x� is random. E.g., if F �ab� � a
b,
then F is 10-good and 01-good. Thus a superposition of |�10 00� and |�01 00� satisfies
property P � for that F . But 1�

2
|�10 00�  1�

2
|�01 00� � 1�

2
|0000� � 1�

2
|1111�, so x �

�00, 11� with probability 1 and thus F �x� � 0 always. So P � fails to guarantee that
F �x� is random.
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thus quantum computers) but only transmits and measures individual qubits
(BB84-style). It turns out that we can apply the same basic idea to revocably
hiding TREs.

For understanding the following proof sketch, it is not necessary to understand
details of CSS codes. It is only important to know that for any CSS code C, there
is a family of disjoint codes Cu,v such that

�
u,v Cu,v forms an orthonormal basis

of ��0,1�n .
Consider the following protocol (simplified):

Definition 4 (Simplified protocol RTRE�
hid). Let C be a CSS code on �0, 1�n

that encodes plaintexts from a set �0, 1�m and that corrects t phase and bit flips.
Let q be a parameter.
– Encryption: Create q 
 n EPR pairs in registers X,Y . Pick a set Q 
�i1, . . . , iq� � 	q 
 n�q of qubit pair indices and a basis B � �0, 1�q, and
designate the qubit pairs in XY selected by Q as “test bits” in basis B. (The
remaining pairs in XY will be considered as an encoding of EPR pairs using
C.) Send X together with the description of C and a hiding TRE TRE0�Q�
to the recipient.
The plaintext contained in the TRE is x where x results from: Consider the
bits of Y that are not in Q as a codeword from one of the codes Cu,v. Measure
what u, v are (this is possible since the Cu,v are orthogonal). Decode the code
word. Measure the result in the computational basis.

– Decryption: Decrypt TRE0�Q�. Considering the bits of X that are not in
Q as a codeword from Cu,v and decode and measure as in the encryption.

– Revocation: Send back X. The sender measures the bit pairs from XY
selected by Q using bases B, yielding r, r�. If r  r�, revocation succeeds.

Note that this simplified protocol is a “randomized” TRE which does not
allow us to encrypt an arbitrary message, but instead chooses the message x.
The obvious approach to transform it to a normal TRE for encrypting a given
message m is to send m� x in addition to the TRE. This is indeed what we do,
but there are some difficulties that we discuss below.

Entanglement-Free Protocol. The protocol RTRE�
hid requires Alice to pre-

pare EPR pairs and apply the decoding operation of CSS codes. While our pro-
tocol may not be feasible with current technology anyway due to the required
quantum memory, we wish to reduce the technological requirements as much
as possible. Fortunately, CSS codes have the nice property that decoding with
subsequent measurement in the computational basis is equivalent to a sequence
of individual qubit measurements. Using these properties, we can rewrite Alice
so that she only sends and measures individual qubits in BB84 bases, and Bob
stores and measures individual qubits in BB84 bases (i.e., like in RTREow ). See
the final protocol description (Definition 5) below for details. In the full proof,
this change means that we have to add further games in front of the sequence
of games to rewrite the entanglement-free operations into EPR-pair based ones.

Early Key Revelation. One big problem remains: the security definition used
for proving security of Definition 4 gives mb�x to A2, and not to A1 as a natural
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definition of randomized TREs would do. (We call this late key revelation) The
effect of this is that RTRE�hid is only secure if the plaintext x is not used before
time T . This limitation, of course, contradicts the purpose of TREs and needs
to be removed. We need early key revelation where the adversary A1 is given
mb � x. As our proof needs the fact that x is picked only after A1 runs, our
solution is to reduce security with early key revelation to security with late key
revelation. This is done by guessing what x will be when invoking A1. If that
guess turns out incorrect in the end, we abort the game. Unfortunately, this
reduction multiplies the advantage of the adversary by a factor of 2|x|  2�;
the effect is that our final protocol will need an underlying scheme TRE0 with
security exponential in 
.

We can now present the precise protocol and its security:

Definition 5 (The protocol)
– Let C1, C2 be a CSS code with parameters n, k1, k2, t. (n is the bit length of

the codes, k1, k2 refer to the parameters of the codes C1, C2, and t to the
number of corrected errors.)

– Let q be an integer.
– Let TRE0 be a TRE with message space �0, 1�q � 	q
 n�q �C1�C2. (Recall,
	q
n�q refers to q-size subsets of �1, . . . , q
n�, see page 133. C1�C2 denotes
the quotient of codes.)

We construct a revocable TRE RTREhid with message space C1�C2 (isomorphic
to �0, 1�� with 
 : k1 � k2).

We encrypt a message m � C1�C2 as follows:
– Pick uniformly B � �0, 1�q, Q � 	q 
 n�q, p � C1�C2. u � �0, 1�n�C1, r �
�0, 1�q, x � C1�C2, w � C2.

– Construct the state |Ψ� : U �
Q�HB� In��|r�� |x�w�u��. Here UQ denotes

the unitary that permutes the qubits in Q into the first half of the system.
(I.e., UQ|x1 . . . xq	n�  |xa1 . . . xaq xb1 . . . xbn� with Q : �a1, . . . , aq� and
�1, . . . , q 
 n��Q : �b1, . . . , bn�; the relative order of the ai and of the bi
does not matter.)9

– Compute V0 � TRE0�B,Q, r, p�.
– The TRE consists of �V0, u,m� x� p� and |Ψ�.
Decryption is performed as follows:

– Decrypt V0, this gives B,Q, r, p.
– Apply UQ to |Ψ� and measure the last n qubits in the computational basis;

call the outcome γ.10
– Return m : �γ � u� mod C2.

The revocation protocol is the following:
– The recipient sends |Ψ� back to the sender.
9 Notice that, since U�

Q is just a reordering of qubits, and HB is a sequence of
Hadamards applied to a known basis state, the state |Ψ� can also directly be pro-
duced by encoding individual qubits in the computational or diagonal basis, which
is technologically simpler.

10 Since UQ is just a reordering of qubits, this just corresponds to measuring a subset
of the qubits in the computational basis.
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– The sender applies �HB � In�UQ to |Ψ� and measures the first q qubits, call
the outcome r�.11

– If r  r�, revocation succeeds (sender outputs 1).

Notice that in this protocol (and in contrast to the simplified description
above), we have included B, r in the TRE V0, even though they are not needed
by the recipient. In fact, the protocol would still work (and be secure with almost
unmodified proof) if we did not include these values. However, when constructing
unknown recipient encryption, the inclusion of B, r will turn out to be useful.

Theorem 2 (RTREhid is revocably hiding). Let δhidT be the time to com-
pute the following things: q controlled Hadamard gates, applying an already
computed permutation to n 
 q qubits, a q-qubit measurement in the compu-
tational basis (called MR in the proof), a comparison of two q-qubit strings, the
error-correction/decoding operations UEC

uv , Udec
uv of the CSS code, a measurement

whether two n-qubit registers are in the state
�

x�C1
C2
|x�|x� (called PEPR

C1
C2
in

the proof), one AND-gate, and one NOT-gate.
Assume that TRE0 is T -hiding with �2�2�k1�k2�negligible�-security.12 Assume

that tq��q 
 n� � 4�k1 � k2� ln 2 is superlogarithmic.
Then the TRE from Definition 5 is �T � δhidT �-revocably hiding even if A2 is

unlimited (i.e., after revocation, security holds information-theoretically).
A concrete security bound is derived in the full version [27].

Those parameters can always be instantiated [27], leading to a revocable TRE
for logarithmic length messages, and a TRE for arbitrary length messages if
TRE0 has exponential security. Furthermore, RTREhid is also T -hiding.

5 TREs in the Random Oracle Model

We present constructions and transformations of TREs in the random oracle
model. (We use the quantum random oracle that can be accessed in superposi-
tion, cf. [5].)

The results in this section will be formulated with respect to two different
timing models. In the sequential oracle-query timing model, one oracle query
is one time step. I.e., if we say an adversary runs in time T , this means he
performs at most T random oracle queries. In the parallel oracle-query timing
model, an arbitrary number of parallel oracle-queries can be performed in one
time step. However, in time T , at most T oracle queries that depend on each
other may be performed.13 More formally, if the oracle is H , the adversary can
query H�x1�, . . . , H�xq� for arbitrarily large q and arbitrary x1, . . . , xn in each

11 Since UQ is just a reordering of the qubits, this is equivalent to measuring a subset
of the qubits in the bases specified by B.

12 I.e., in Definition 1, we require that the advantage is not only negligible, but actually
� 2�2�k1�k2�μ for some negligible μ.

13 In [16], this is called “T levels of adaptivity”.
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time step. (Of course, if the adversary is additionally sequential-polynomial-time,
then q will be polynomially bounded.)

Security in those timing models implies security in timing models that count
actual (sequential/parallel) computation steps because in each step, at most one
oracle call can be made.

5.1 One-Way to Hiding

In the previous section, we have seen how to construct revocably hiding TREs.
However, the construction was relatively complex and came with an exponential
security loss in the reduction. As an alternative, we present a transformation
takes a TRE that is (revocably) one-way and transforms it into one that is
(revocably) hiding in the random oracle model. The basic idea is straightforward:
we encrypt a key k in a one-way TRE, and use H�k� as a one-time-pad to encrypt
the message:

Theorem 3 (Hiding TREs). Let H be a random oracle and let TRE be a
(revocable or non-revocable) TRE (not using H).

Then the TRE TRE� encrypts m as follows: Run k
$� �0, 1�n, V � � TRE�k�,

and then return V : �V �,m�H�k��. (Decryption is analogous, and revocation
is unchanged from TRE.)

Then, if TRE is T -oneway and T -revocably one-way then TRE� is T -revocably
hiding. And if TRE is T -oneway then TRE� is T -hiding. (The same holds “with-
out offline-queries”; see Section 5.2 below.)

This holds both for the parallel and the sequential oracle-query timing model.14

Notice that we assume that TRE does not access H . Otherwise simple coun-
terexamples can be constructed. (E.g., TRE�k� could include H�k� in the TRE
V �.) However, TRE may access another random oracle, say G, and TRE� then
uses both G and H .

In a classical setting, this theorem would be straightforward to prove (us-
ing lazy sampling of the random oracle). Yet, in the quantum setting, we need
a new technique for dealing with this. We present a generic lemma for reduc-
ing hiding-style properties (semantic security) to a one-wayness-style properties
(unpredictability) from which we can derive Theorem 3.

5.2 Precomputation

We will now develop a second transformation for TREs in the random oracle
model. The security definition for TREs permit the adversary to run an arbi-
trary (sequential-polynomial-time) computation before receiving the TRE. In
particular, we do not have a good upper bound on the number of oracle queries
performed in this precomputation phase (“offline queries”). This can make proofs
harder because even if the adversary runs in time T , this does not allow us to
conclude that only T oracle queries will be performed. Our transformation will
allow us to transform a TRE that is only secure when the adversary makes no
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offline queries (such as the one presented in Section 5.3 below) into a TRE that
is secure without this restriction.

We call a TRE T -hiding without offline-queries if the hiding property holds
for adversaries were A0 makes no random oracle queries. Analogously we define
T -revocably hiding without offline-queries and T -one-way without offline-queries .

To transform a TRE that is secure without offline-queries into a fully secure
one, the idea is to make sure that the offline-queries are useless for the adversary.
We do this by using only a part H�a��� of the random oracle where a is chosen
randomly with the TRE. Intuitively, since during the offline-phase, the adversary
does not know a, none of his offline-queries will be of the form H�a���, thus they
are useless.

Theorem 4 (TREs with offline-queries). Let G and H be random oracles
and 
 superlogarithmic. Let TRE be a revocable TRE using G. Let TRE� be the
result of replacing in TRE all oracle queries G�x� by queries H�a�x�, where a
is chosen by the encryption algorithm of TRE� and is included in the message
send to the recipient.

If TRE is T -revocably hiding without offline-queries then TRE� is T -revocably
hiding (and analogously for T -hiding). This holds both for the parallel and the
sequential oracle-query timing model.14

To prove this, we develop a general lemma for this kind of transformations.
(In the classical setting this is simple using the lazy sampling proof technique,
but that is not available in the quantum setting.)

5.3 Iterated Hashing

In all constructions so far we assumed that we already have a (non-revocable)
TRE. In the classical setting, only two constructions of TREs are known. The
one from [22] can be broken by factoring, this leaves only repeated hashing as a
candidate for the quantum setting. We prove that the following construction to
be one-way without offline queries:

Definition 6 (Iterated hashing). Let n and T be polynomially-bounded in-
tegers (depending on the security parameter), and assume that n is superloga-
rithmic. Let H : �0, 1�n  �0, 1�n denote the random oracle. The timed-release
encryption TREih with message space �0, 1�n encrypts m as V : HT	1�0n��m.

We can prove that TREih is T -one-way without offline queries. TREih is obvi-
ously not one-way with offline queries, the adversary can precompute HT	1�0n�.
Yet, using the random-oracle transformations from Theorems 3 and 4, we can
transform it into a hiding TRE. This is plugged into RTREow , to get a revoca-
bly one-way TRE, and using Theorem 3 again, we get a revocably hiding TRE
in the random oracle model. (The resulting protocol is spelled out in the full
version [27].)
14 For other timing models, the reduction described in the proof may incur a overhead,

leading to a smaller T for TRE�.
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An alternative construction is to plug TREih (after transforming it using
Theorems 3 and 4) into RTREhid . This results in a more complex yet everlast-
ingly secure scheme.

And finally, if we wish to avoid the random oracle model altogether, we can
take as our basic assumption that a suitable variant of iterated hashing15 is a
hiding TRE, and get a revocably hiding, everlastingly secure TRE by plugging
it into RTREhid .
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Abstract. In this article, we study the security of iterative hash-based
MACs, such as HMAC or NMAC, with regards to universal forgery attacks.
Leveraging recent advances in the analysis of functional graphs built from
the iteration of HMAC or NMAC, we exhibit the very first generic universal
forgery attack against hash-based MACs. In particular, our work implies
that the universal forgery resistance of an n-bit output HMAC construction
is not 2n queries as long believed by the community. The techniques we
introduce extend the previous functional graphs-based attacks that only
took in account the cycle structure or the collision probability: we show
that one can extract much more meaningful secret information by also
analyzing the distance of a node from the cycle of its component in the
functional graph.

Keywords: HMAC, NMAC, hash function, universal forgery.

1 Introduction

A message authentication code (MAC) is a crucial symmetric-key cryptographic
primitive, which provides both authenticity and integrity for messages. It takes a
k-bit secret key K and an arbitrary long message M as inputs, and produces an
n-bit tag. In the classical scenario, the sender sends both a message M and a tag
T = MAC(K,M) to the receiver, where the secret key K is shared between the
sender and the receiver prior to the communication. Then, the receiver computes
another tag value T ′ = MAC(K,M) using her own key K, and matches T ′ to the
received T . If a match occurs, the receiver is ensured that M was indeed sent by
the sender and has not been tampered with by a third party.

There are several ways to build a MAC from other symmetric-key cryptographic
primitives, but a very popular approach is to use a hash function. In particular,
a well-known example is HMAC [2], designed by Bellare, Canetti and Krawczyk
in 1996. HMAC has been internationally standardized by ANSI, IETF, ISO and
NIST, and is widely implemented in various worldwide security protocols such
as SSL, TLS, IPSec, etc.

Being cryptographic objects, MACs should satisfy various security requirements
and the classical notions are key recovery resistance and unforgeability:
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• Key recovery resistance: it should be practically infeasible for an adversary
to recover the value of the secret key.

• Unforgeability: it should be practically infeasible for an adversary to generate
a message and tag pair (M,T ) such that T is a valid tag for M and such
that M has not been queried to MAC previously by the adversary.

In the case of an ideal MAC, the attacker should not be able to recover the key in
less than 2k computations, nor to forge a valid MAC in less than 2n computations.
Depending on the control of the attacker over the message, one discriminates
between two types of forgery attacks: existential forgery and universal forgery
attack. In the former case, the attacker can fully choose the message M for
which he will forge a valid tag T , while in the later case he will be challenged
to a certain message M and must find the MAC tag value T for this particular
message. In other words, universal forgery asks the attacker to be able to forge
a valid MAC on any message, and as such is a much more powerful attack than
existential forgery and would lead to much more damaging effects in practice.
Yet, because this security notion is easier to break, most published attacks on
MACs concern existential forgery.

Moreover, cryptographers have also proposed a few extra security notions
with respect to distinguishing games such as distinguishing-R and distinguishing-
H [12]. The goal of a distinguishing-R attack is to distinguish a MAC scheme from
a monolithic random oracle, while the goal of a distinguishing-H attack is to
distinguish hash function-based MACs (resp. block cipher and operating mode-
based MACs) instantiated with either a known dedicated compression function
(resp. a dedicated block cipher) or a random function (resp. a random block
cipher). While these distinguishers provide better understanding of the security
margin, the impact to the practical security of a MAC scheme would be rather
limited.

Given the importance of HMAC in practice, it is only natural that many re-
searchers have analyzed the security of this algorithm and of hash-based MACs
in general. On one hand, cryptographers are devoted to find reduction-based
security proofs to provide lower security bound. Usually a MAC based on a hash
function with a l-bit internal state is proven secure up to the bound O(2l/2).
Examples include security proofs for HMAC, NMAC and Sandwich-MAC [2,1,25].
Namely, it is guaranteed that no generic attack succeeds with a complexity be-
low the security bound O(2l/2) (when l ≤ 2n) in the single-key model.

On the other hand, cryptographers are also continuously searching for generic
attacks to get upper security bound for hash-based MACs, since the gap between
the 2l/2 lower bound and the best known generic attacks is still very large for
several security properties. The cases of existential forgery and distinguishing-
R attacks are tight: in [17], Preneel and van Oorschot proposed generic
distinguishing-R and existential forgery attacks with a complexity of O(2l/2)
computations. Their methods are based on the generation of internal collisions
which are detectable on the MAC output due to the length extension property
of the inner iterated hash function (one can generate an existential forgery by
simply looking for an internal collision in the hash chain and then, given any
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pair of messages using this internal collision as prefix, it is easy to forge the tag
for one message by querying the other message to the tag oracle).

In [16] Peyrin et al. utilized the cycle property of HMAC in the related-key
model to distinguish it from a random mapping and eventually described generic
distinguishing-R attack with a complexity of only O(2n/2) computations (note
that these related-key attacks do not contradict the O(2l/2) security proof which
was provided in the single-key model only). A similar weakness was indepen-
dently pointed out by Dodis et al. in the context of indifferentiabiity of HMAC [5].
One year after, leveraging the ideas of cycle detection in functional graphs
from [16], Leurent et al. [14] showed that, contrary to the community belief,
there exists a generic distinguishing-H attack requiring only O(2l/2) computa-
tions on iterative hash-based MACs in the single-key model. All security bounds
on iterative hash-based MACs are therefore tight, except the case of universal
forgery for which the best generic attack still requires 2n computations and it
remains unknown exactly where the security lies between 2n and min{2l/2, 2n}
computations.

Besides generic attacks, cryptanalysts also evaluated MACs based on (stan-
dardized) dedicated hash functions, mainly by exploiting some weakness of the
compression function [3,12,8,23,19,20,13,24,26,22,9]. The details of such attacks
will be omitted in the rest of this article, since we deal with generic attacks
irrespective to the specifications of the internal compression function.

Our Contribution. In this article, we describe the first generic universal
forgery attack on iterative hash-based MACs, requiring less then 2n computa-
tions. More precisely, our attack complexity is O(max(2l−s, 25l/6, 2s)), where 2s

represents the block length of the challenge message. In other words, for rea-
sonable message sizes, the complexity directly decreases along with an increase
of s, up to a message size of 2l/6 where the complexity hits a plateau at 25l/6

computations. Previously known attacks and proven bounds are summarized in
Table 1 and we emphasize that this is the first generic universal forgery attack
on HMAC in the single key model (except the trivial 2n brute force attack). For
example, a corollary to our work is that HMAC instantiated with the standardized
hash function RIPEMD-160 [4] (or MD5 [21] and RIPEMD-128 [4]), which allows
arbitrarily long input messages (this conditions is needed since even though the
challenge message can have a small length, we will need to be able to query
2l/2-block long messages during the attack), only provides a 2133.3 (resp. 2106.7)
computations security with regards to universal forgery attacks, while it was
long believed that the full 2160 (resp. 2128) was holding for this strong security
property.

Moreover, our techniques are novel as they show that one can extract much
more meaningful secret information than by just analyzing the cycle structure
or the collision probability of the functional graphs of the MAC algorithm, as
was done previously [16,14]. Indeed, the distance of a node from the cycle of
its components in the functional graph is a very valuable information to know
for an attacker, and we expect even more complex types of information to be
exploitable by attackers against iterative hash-based MACs.
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Table 1.We summarize the security state of HMAC (with n ≤ l ≤ 2n) including previous
results and our universal forgery attacks. Notation max() is to choose the largest value.

security notion
single key setting related-key setting

provable security generic attack generic attack

Distinguishing-R O(2l/2) [2,1] O(2l/2) [17] O(2n/2) [16]

Distinguishing-H O(2l/2) [2,1] O(2l/2) [14] O(2n/2 + 2l−n) † [16]

Existential forgery O(2l/2) [2,1] O(2l/2) [17] O(2n/2 + 2l−n) † [16]

Universal forgery O(2l/2) [2,1]
previous: O(2n)

new: O(max(2l−s, 25l/6, 2s)) ‡

†: the attacks have complexity advantage with n < l < 2n;
‡: 2s is the blocks length of the challenge message. The attack has complexity advantage
with n ≤ l < 6n/5.

2 Description of NMAC and HMAC

A Hash Function. H maps arbitrarily long messages to an n-bit digest. It
is usually built by iterating a fixed input length compression function f , which
maps inputs of l+ b bits to outputs of l bits (note that l ≥ n). In details, H first
pads an input message M to be a multiple of b bits, then splits it into blocks
of b bits m0||m1|| · · · ||ms−1, and calls the compression function f iteratively to
process these blocks. Finally, H might use a finalization function g that maps l
bits to n bits in order to produce the hash digest.

x0 = IV xi+1 = f(xi,mi) hashdigest = g(xs)

Each of the chaining variables xi are l bits long, and IV (initial value) is a public
constant.

NMAC algorithm [2] keys a hash function H by replacing the public IV with
a secret key K, which is denoted as HK . It then uses two l-bit secret keys Kin

and Kout referred to as the inner and the outer keys respectively, and makes two
calls to the hash function H . NMAC is simply defined to process an input message
M as:

NMAC(Kout,Kin,M) = HKout(HKin(M)).

The keyed hash functions HKin and HKout are referred to as the inner and the
outer hash functions respectively.

HMAC algorithm [2] is a single-key variant of NMAC, depicted in Figure 1. It
derives Kin and Kout from the single secret key K as:

Kin = f(IV,K ⊕ ipad) Kout = f(IV,K ⊕ opad)
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where ipad and opad are two distinct public constants. HMAC is then simply
defined to process an input message M as:

HMAC(K,M) = H(K ⊕ opad‖H(K ⊕ ipad‖M)))

where ‖ denotes the concatenation operation. It is interesting to note that HMAC
can use any key size. If the key K is shorter than b bits, then it is padded
with 0 bits to reach the size b of an entire message block. Otherwise, if the
key K is longer than b bits, then it is hashed and then padded with 0 bits:
K ← H(K)‖0b−n.

IV

m0 = K ⊕ ipad

fl

m1

x1

fl

m2

x2

fl

m3

x3 x4

lf g

IV

K ⊕ opad

f f g n

T

Fig. 1. HMAC with an iterated hash function with compression function f , and output
function g

For simplicity, in the rest of this article we will describe the attacks based on
the utilization of the HMAC algorithm. However, we emphasize that our methods
apply similarly to hash-based MACs such as NMAC [2], Sandwich-MAC [25], etc.

3 Previous Functional-Graph-Based Attacks for HMAC

Our universal forgery attack is based on recent advances in hash-based MACs
cryptanalysis [16,14] and in this section we quickly recall these methods and
explain how we extend them. First of all, we need to introduce the notion of
functional graph and the various properties that can be observed from it.

The functional graph Gf of a function f : {0, 1}l → {0, 1}l is simply the
directed graph in which the vertices (or nodes) are all the values in {0, 1}l and
where the directed edges are the iterations of f (i.e. a directed edge from a
vertex a to a vertex b exists iff f(a) = b). The functional graph of a function is
composed of one or several components, each having its own internal cycle.

For a random function, the functional graph will possess several statistical
properties that have been extensively studied. For example, it is to be noted
that with high probability the functional graph of a random function will have a
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logarithmic number of components and among them there is one giant compo-
nent that covers most of the nodes. In addition, this giant component will contain
a giant tree in which are present about a third of the nodes of Gf . Theorems 1
and 2 state these remarks in a more formal way.

Theorem 1 ([6, Th. 2]). The expectations of the number of components, num-
ber of cyclic nodes (a node belonging to the cycle of its component), number of
terminal nodes (a node without a preimage), and number of image nodes (a node
with a preimage) in a random mapping of size N have the asymptotic forms, as
N →∞:

(i) #Components: 1
2 logN

(ii) #Cyclic nodes:
√

πN/2

(iii) #Terminal nodes: e−1N

(iv) #Image nodes: (1− e−1)N

Starting from any node x, the iteration structure of f is described by a simple
path that connects to a cycle. The length of the path (measured by the number
of edges) is called the tail length of x (or the height of x) and is denoted by
λ(x). The length of the cycle is called the cycle length of x and is denoted μ(x).
Finally, the rho-length of x is denoted ρ(x) and represents the length of the non
repeating trajectory of x: ρ(x) = λ(x) + μ(x).

Theorem 2 ([6, Th. 3]). Seen from a random node in a random mapping of
size N , the expectations of the tail length, cycle length, rho length, tree size,
component size, and predecessors size have the following asymptotic forms:

(i) Tail length (λ):
√

πN/8

(ii) Cycle length (μ):
√

πN/8

(iii) Rho length (ρ = λ+ μ):
√

πN/2

(iv) Tree size: N/3

(v) Component size: 2N/3

(vi) Predecessors size:
√

πN/8

Moreover, the asymptotic expectations of the giant component and its giant tree
have been provided in [7].

Theorem 3 ([7, VII.14]). In a random mapping of size N , the largest tree
and the largest component have expectations asymptotic, respectively, of 0.48∗N
and 0.7582 ∗N .

Knowing all these statistical properties for the functional graph of a random
function, Peyrin et al. [16] studied the successive iterations of HMAC with a fixed
small message block for two related-keys K and K = K ⊕ ipad⊕ opad. Thanks
to a small weakness of HMAC in the related-key setting, they observed that the
two corresponding functional graphs are exactly the same (while ideally they
should look like the functional graphs of two independent random functions)
and this can be detected on the output of HMAC by measuring the cycle lengths.
They used this property to derive generic distinguishing-R, distinguishing-H and
existential forgery attacks in the related-key setting.

Later, Leurent et al. [14] extended the scope of cycle detection by providing a
single-key utilization of this technique. Namely, they show how to craft two spe-
cial long messages (mainly composed of identical message blocks), both following
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two separate cycle loops in the functional graph of the internal compression func-
tion. This trick allows the two messages to collide after the last processed mes-
sage block, but also to have the same length (and thus the processing of the final
padding block would not reintroduce differences). Such a collision can therefore
be detected on the output of HMAC, and they use this special information leak-
age (information is leaked on the unknown internal compression function used)
to derive a generic distinguishing-H attack in the single-key setting. They also
provide another attack that can trade extra complexity cost for smaller message
size, and in which the property scrutinized is the probability distribution of the
collisions in the functional graph.

From a high-level perspective, these two previous works mainly considered
as distinguishing properties the cycle nodes or the collisions distribution in a
functional graph. In this article, we consider a functional graph property which
seems not trivial to exploit: the height λ of a tail node, i.e. the distance of a
node from the cycle of its component. While not trivial and likely to be costly,
the potential outcome of analyzing such a property is that if one can extract this
information leakage from the HMAC output, he would get direct information on a
particular node of the computation. The attack can therefore be much sharper
(the size of the cycle is not a powerful property as it represents a footprint
equivalent for all the nodes of the component, while the height of a node is much
more discriminating), and that is the reason why it eventually allows us to derive
a generic universal forgery attack in the classical single-key setting.

4 General Description of the Universal Forgery Attack

Let Mt = m1‖m2‖ . . . ‖ms be the target message to forge given by the challenger
to the adversary (we start the counting from m1 since the first message block
m0 to be processed by the inner hash function call is m0 = K ⊕ ipad). In
order to forge the tag value corresponding to this message, we will construct a
different message M ′

t which will collide with Mt in the inner hash function of
HMAC, namely HKin(M

′
t) = HKin(Mt), and this directly leads to colliding tags

on the output of the HMAC: T = HKout(HKin(M
′
t)) = HKout(HKin(Mt)). Then,

by simply querying the HMAC value T of M ′
t , we eventually forge a valid tag

corresponding to Mt by outputting T .
Constructing such a message M ′

t is in fact equivalent to finding a second
preimage of Mt on the keyed hash function HKin . While second preimage attacks
have been published on public iterative hash functions [11], unfortunately they
cannot be applied to a keyed hash function as they depend on the knowledge of
the intermediate hash values when processing Mt. However, in our situation the
intermediate hash values for HKin(Mt) are hidden since only the tag is given as
output and since Kin is unknown to the adversary, and so he will not be able
to guess them. We will overcome this issue by proposing a novel approach to
recover some intermediate hash value xi from the computation of HKin(Mt). We
stress that this is different from and much harder than previous so-called internal
state recovery in [14], which recovers some internal state of a message completely
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chosen by the adversary himself. Note that once xi is recovered, we get to know
all the next intermediate hash values by simply computing xi+1 = f(xi,mi), . . .,
xs+1 = f(xs,ms) since H is an iterative hash function. Once these intermediate
hash values are known, we can apply the previous second preimage attacks [11]
in order to find M ′

t .
In order to recover one value from the set of the intermediate chaining val-

ues X = {x1, x2, . . . , xs+1} of HKin(M), we choose offline 2l/s values Y =
{y1, y2, . . . , y2l/s}, and one can see that with a good probability one element yj

of Y will collide with an element in X . We need to filter out this yj value and this
seems not easy since there is no previously published suitable property on the
intermediate hash values of HMAC that the adversary can detect on the output.

One may consider using internal collisions, which are detectable by searching
for colliding tags due to the length extension property: finding a message pair
(m,m′) for xi such that f(xi,m) = f(xi,m

′) by querying HMAC online and then
using this pair to determine if yj = xi holds by checking offline if f(yj ,m) =
f(yj,m

′) holds. However, note that with this naive method only a single xi can
be tested at a time (since other xi′ with i′ = i are very likely not to collide with
the message pair (m,m′)) and we will therefore have to repeat this procedure
for each value of X independently. Thus, this attack fails as we would end up
testing 2l pairs and reaching a too high complexity.

Overall, it is essential to find a new property on the intermediate hash values
of HMAC such that it can be detected by the adversary and such that it can be
exploited to match a value of Y to all the values in X simultaneously. In our
attack, we will use a novel property, yet unexploited: the height λ(xi) of each
xi of X in the functional graph of fV , where fV stands for the compression
function with the message block fixed to a value V ; fV (·) = f(·, V ). In the rest
of this article, without loss of generality, we will let V be the message block
only composed of zero bits and we denote f[0](·) = f(·, [0]) the corresponding
compression function.

4.1 The Height Property of a Node in a Functional Graph

In the functional graph of a random mapping on a finite set of size N , it is easy
to see that each node x has a unique path connecting it with a cycle node, and we
denoted the length of this path the height λ(x) of x (or tail length). Obviously,
for cycle nodes, we have λ = 0. The set of all nodes with the same height λ is
usually called the λ-th stratum of the functional graph and we denote it as
Sλ. Researchers have carried out extensive studies on the distribution of Sλ as
N →∞. In particular, Harris proved that the mean value of S0 is

√
πN/2 [10],

which is consistent with Theorem 1 as the number of the cycle nodes. After that,
Mutafchiev [15] proved the following theorem as an extension of Harris’s result.

Theorem 4 ([15, Lemma 2]). If N →∞ and λ = o(
√
N), the mean value of

the λ-th stratum Sλ is
√

πN/2.

Note that Mutafchiev’s result is no longer true for λ = O(
√
N) and, for interested

readers, we refer to [18] for the limit distribution of Sλ with λ = O(
√
N).
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Interestingly, if the largest component is removed from the functional graph,
then the remaining components also form a functional graph of a random map-
ping on a finite set of size (1− 0.7582) ∗N = 0.2418 ∗N (since Theorem 3 tells
us that the largest component has an expected number of nodes of 0.7582 ∗N).
Thus we get the following corollary.

Corollary 1. If N → ∞ and λ = o(
√
N), the mean value of the λ-th stratum

Sλ in the largest component is 0.64
√
N =

√
πN/2−

√
πN ∗ 0.2418/2.

Now we move back to discuss about the height distribution in the functional
graph Gf[0] of f[0]. From Corollary 1, we can deduce that if l →∞ and λ = o(2l/2),

the mean value of Sλ in the largest component of f[0] is 0.64 ∗ 2l/2. In order to

illustrate the notion of λ = o(2l/2) more clearly, we rewrite the corollary into
the following equivalent one.

Corollary 2. Let δ(l) be any function such that δ(l) → ∞ as l → ∞. There
exists a positive value l0 such that for any l > l0, the mean value of λ-th stratum
Sλ with 0 ≤ λ ≤ 2l/2/δ(l) in the largest component is 0.64 ∗ 2l/2.

Next, we will utilize Corollary 2 to prove the lower bound on the number of
distinct height values of the intermediate chaining values in X , which we will
use in order to evaluate the attack complexity. Denote the set of all the nodes
with a height λ ∈ [0, 2l/2/δ(l)] as N ′, which covers in total 0.64 ∗ 2l/δ(l) nodes.
Thus, a random node belongs to N ′ with a probability 0.64/δ(l). Moreover,
from Corollary 2, for a random node in N ′, its height is uniformly distributed in
[0, 2l/2/δ(l)]. From these properties of N ′, we get that 0.64∗s/δ(l) elements in X
belong to N ′. Moreover, there is no collision on the height among these elements
with an overwhelming probability if s ' 2l/4 holds. Note that in our forgery
attack, we will set s to be at most 2l/6 (see Section 5.1 for the details). Overall,
the lower bound on the number of distinct height values in X is 0.64 ∗ s/δ(l).
It is important and interesting to note that from Corollary 2, if l becomes very
large, δ(l) will become negligible compared to exponential-order computations
2Ω(l), e.g., δ(l) = log(l).

On the other hand, we performed experiments to evaluate the expected num-
ber of the distinct height values in X . More precisely, we used SHA-256 com-
pression function for small values of l. We prepend 0256−l to a l-bit value x,
then compute y=SHA-256 (0256−l‖x), and finally output the l LSBs of y. With
l ≤ 30, we generated random pairs and checked if their heights collide or not
in the functional graph of l-bit truncated SHA-256 compression function. The
experimental results show that a pair of random values has a colliding height
with a probability of around 2−l/2. Moreover, it is matched with a rough prob-
ability estimation as follows. Let x and x′ be two randomly chosen l-bit values.
Suppose x and x′ have the same height, then it implies that after i iterations
of f[0] (denoted as f i

[0]), either one of the following two cases occurs. One is

f i
[0](x) = f i

[0](x
′), which has a probability of roughly 2−l for each i conditioned

on f i−1
[0] (x) = f i−1

[0] (x′). The other one is that f i
[0](x) = f i

[0](x
′) and both f i

[0](x)
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and f i
[0](x

′) enter the component cycle simultaneously, which has a probability of

roughly (
√

π/2∗2−l/2)2 = π/2∗2−l for each i, since the number of cycle nodes is√
π/2∗2l/2. Note that Theorem 2 proved the expected tail length is

√
π/8∗2l/2.

Thus, if neither of the two cases occurs up to
√

π/8 ∗ 2l/2 iterations, we get that

f i(x) and f i′(x′) enter the component cycle with different i and i′, namely x and
x′ have different heights. So the total probability of randomly chosen x and x′

having the same height is at most 2−l∗
√

π/8∗2l/2+π/2∗2−l∗
√

π/8∗2l/2 ≈ 2−l/2.
Overall, we make a natural, conservative and confident conjecture as follows
(note that s is at most 2l/6 in our attacks. See Section 5.1 for the details).

Conjecture 1. With s ≤ 2l/6, there is only a negligible probability that a collision
exists among the heights of s random values in a functional graph of a l-bit
random mapping.

In the rest of the paper, we will describe our attacks based on the Conjecture 1,
namely the heights of the intermediate hash values in X are distinct. However,
if only taking in account the proven lower bound 0.64 ∗ s/δ(l) of the number of
the distinct heights in X , the number of offline nodes should be increased by
δ(l)/0.64 times, and the attack complexity is increased by a factor of O(δ(l)).
Note that O(δ(l)) is negligible compared to 2O(l), and thus it has very limited
influence to the complexity for large l.

4.2 Deducing Online the Height of a Few Intermediate Hash Values

We now explain how to deduce the height λ(xi) of a node xi in the functional
graph Gf[0] of f[0]. We start by finding the cycle length of the largest component
of Gf[0] , and we denote it by L. This can be done offline with a complexity of

O(2l/2) computations, as explained in [16]. Then, we ask for the MAC computation
of two messages M1 and M2:

M1 = m1‖m2‖ . . . ‖mi−1‖[0]2
l/2+L‖[1]‖[0]2l/2

M2 = m1‖m2‖ . . . ‖mi−1‖[0]2
l/2

‖[1]‖[0]2
l/2+L

where [0]j represents j consecutive zero-bit message blocks, and we check if the
two tags collide. It is important to note that if the intermediate hash value xi is
located in the largest component of Gf[0] and has a height λ(xi) no larger than

2l/2, then the intermediate hash value after processing m1‖m2‖ . . . ‖mi−1‖[0]2
l/2

is in the cycle of the largest component. Also, the intermediate hash values after

processing m1‖m2‖ . . . ‖mi−1‖[0]2
l/2‖[1] and m1‖m2‖ . . . ‖mi−1‖[0]2

l/2+L‖[1] will
be equal (and we denote it by x) since in the latter we just make an extra cycle
walk before processing the message block [1]. Under a similar reasoning, if x is
also in the largest component1 and has a height λ(x) no larger than 2l/2, we get

1 Since we processed a message block [1], different from [0], the last computation will
not follow the functional graph Gf[0] and we will be mapped to a random point
in Gf[0] .
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that the intermediate hash values after processing m1‖m2‖ . . . ‖mi−1‖[0]2
l/2+L‖

[1]‖[0]2l/2 and m1‖m2‖ . . . ‖mi−1‖[0]2
l/2‖[1]‖[0]2l/2+L are equal. Moreover, since

M1 and M2 have the same block length, we get a collision on the inner hash func-
tion, which directly extends to a collision on the output tag. From the functional
graph properties of a random function given in Sections 3 and 4.1, a randomly
chosen node will be located in the largest component of Gf[0] with a probability of

about 0.7582 and will have a height no larger than 2l/2 with a probability roughly
0.5. Thus, M1 and M2 will collide with a probability (0.7582 ∗ 0.5)2 = 0.14.

In order to recover the height λ(xi) of one node xi in the functional graph Gf[0]

of f[0], we will test log(l) message pairs obtained from (M1,M2) by changing the
block [1] to other values. If (at least) one of these pairs collides, we can deduce
that with overwhelming probability2 xi is in the largest component, and has
a height λ(xi) of at most 2l/2. Otherwise, we give up on recovering the height
λ(xi) of xi, and move to find the height λ(xi+1) of the next intermediate hash
value xi+1.

In the former situation, we can start to search for the exact node height λ(xi)
of xi in Gf[0] , and we will accomplish this task thanks to a binary search.
Namely, we first check whether the intermediate hash value after processing

m1‖m2‖ . . . ‖mi−1‖[0]2
l/2−1

is in the cycle or not (note that we now have 2l/2−1

[0] blocks in the middle, instead of 2l/2 originally), and this can be done by
asking for the MAC computation of two messages M∗

1 and M∗
2

M∗
1 = m1‖m2‖ . . . ‖mi−1‖[0]2

l/2−1

‖[1]‖[0]2
l/2+L

M∗
2 = m1‖m2‖ . . . ‖mi−1‖[0]2

l/2−1+L‖[1]‖[0]2l/2

and by checking if their respective tags collide. After testing log(l) such pairs
obtained from (M∗

1 ,M
∗
2 ) by modifying the block [1] to other values, if (at least)

one pair collides, we can deduce that with overwhelming probability the inter-

mediate hash value after processing m1‖m2‖ . . . ‖mi−1 ‖[0]2
l/2−1

is in the cycle,
and the height λ(xi) of xi is no larger than 2l/2−1. Otherwise, we deduce that
λ(xi) lies between 2l/2−1 and 2l/2. Thus, the amount of possible height values
for xi are reduced by one half. We continue iterating this binary search proce-
dure log2(2

l/2) = l/2 times, and we will eventually obtain the exact height value
λ(xi) of xi. By applying such a height recovery procedure, we get to know the
height value for 0.38 ∗ s values in X on average (one intermediate hash value xi

has probability 0.7582 to be located in the biggest component, and probability
about 1/2 to have a height not greater than 2l/2).

4.3 Deducing Offline the Height of Many Chosen Values

Before we start to retrieve a value xi of X , we need to handle the set Y offline.
When we choose values to build the set Y = {y1, y2, . . . , y2l/s}, we also have

2 Since the probability that xi is in the largest component and has a height λ(xi) ≤ 2l/2
is constant, choosing log(l) messages will ensure that the success probability of this
step is very close to one, see [14].
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to compute their respective height in the functional graph of f[0]. One may
consider to use a trivial and random sampling, i.e. choosing random nodes first
and then computing their height. Note that such a procedure is very expensive,
since computing height for a random value requires around 2l/2 computations on
average, which renders the total complexity of building Y beyond 2l. We propose
instead to use an offline sampling procedure as follows.

We first initialize Y as an empty set and we start by choosing a new and
random value y1, namely y1 /∈ Y . Then, we apply f[0] to update it successively;
yi+1 = f(yi, [0]), and memorize all the yi’s in the computation chain. The itera-
tion terminates if yi+1 collides with a previous stored value y ∈ Y whose height
is already known (we denote it as λ), or if it collides with a previous node yj

(1 ≤ j ≤ i) in the current chain, namely a new cycle is generated. In the former
case, we naturally compute the height of nodes yp (1 ≤ p ≤ i) in the chain as
λ + i + 1 − p, and store all of them in Y . For the latter case, we set the height
of all the nodes from yj to yi as 0 (since they belong to the cycle of their own
component), and we then compute the height of tail nodes yp (0 ≤ p < j) as
j − p and store all of them in Y .

Using this procedure, we can select 2l/s values and obtain their height with
a complexity of only 2l/s computations. Moreover, from the functional graph
properties of a random function given in Sections 3 and 4.1, we know that on
average 38% values in Y are located in the largest components and have a height
no larger than 2l/2.

Note that Y is not a set of random values. We do not know the distribution
of height values of the elements in Y , which essentially makes Conjecture 1 be
necessary for our attack. The detailed discussion follows in next section.

4.4 Exploiting the Height Information Leakage

At this point, the attacker built the sets X and Y and knows the height of almost
all their elements (for X , only the heights of 0.38 ∗ s elements are known). The
next step is to recover one value in X (which are still unknown to the attacker)
by matching between the elements in set X and the elements in set Y . However,
for each xi in X , we do not have to try to match every value in Y . Indeed, we
just need to pay attention to a smaller subset of Y in which the elements have
the same height value as xi. Moreover, since the elements in the set X have
distinct heights (see details in Section 4.1), these subsets of Y are all disjoint.
Thus in total we need to match at most 2l/s pairs, namely the size of Y . This
point is precisely where the adversary will get a complexity advantage during
his attack.

4.5 Attack Summary

Finally, let us wrap everything up and describe the universal forgery attack from
the very beginning. The adversary is given a targetmessageMt = m1‖m2‖ . . . ‖ms
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by the challenger, for which he has to forge a valid tag. He splits Mt into two
parts Mt1‖Mt2:

Mt1 = m1‖m2‖ . . . ‖ms1 will be used for the intermediate hash value recovery,

Mt2 = ms1+1‖ms1+2‖ . . . ‖ms will be used in the second preimage attack.

During the online phase, the adversary applies the height recovery procedure
from Section 4.2 for each xi (1 ≤ i ≤ s1+1), and stores them in X . Moreover, he
produces a filter (m,m′) for each xi such that f(xi,m) = f(xi,m

′) holds. Dur-
ing the offline phase, the adversary chooses 2l/s1 values following the sampling
procedure from Section 4.3 and stores them in Y .

Then, he recovers the value of one of the xi’s by matching the sets X and Y :
for each xi, he checks if f(y,m) = f(y,m′) holds or not for all y’s that have the
same height as xi in Y . If a collision is found, then y is equal to xi with a good
probability. Once one xi (1 ≤ i ≤ s1+1) is recovered, the adversary gets to know
the value of xs1+1 by computing the iteration xi+1 = f(xi,mi+1), . . . , xs1+1 =
f(xs1 ,ms1), which induces that the latter half of the inner hash function when
processing Mt is equivalent to a public hash function by regarding xs1+1 as the
public IV . Thus, the adversary is able to apply previous second preimage attacks
on public hash functions [11] to find a second preimage M ′

t2 for Mt2 . In the end,
the adversary queries Mt1‖M ′

t2 to the MAC oracle and receives a tag value T . This
tag T is also a valid tag for the challenge Mt and the universal forgery attack
succeeds.

5 Full Procedure of the Universal Forgery Attack

In this section, we provide the entire procedure of this complex attack and we first
recall the notations used. Let Mt = m1‖m2‖ . . . ‖ms be the challenge message
(we start the counting fromm1, sincem0 = K⊕ipad during the first compression
function call of the inner hash call of HMAC) and we denote by x1, x2, . . . , xs+1 the
successive intermediate hash values of HKin(Mt) when processing Mt. During
the attack, Mt is divided into Mt1‖Mt2 , where Mt1 is m1‖m2‖ . . . ‖ms1 and Mt2

is ms1+1‖ms1+2‖ . . . ‖ms. As an example, we will use the functional graph Gf[0]

of the hash compression function f when iterated with a fixed message block [0]
and we denote by L the cycle length of the largest component of Gf[0] .

Phase 1 (online). Recover the height of x1, x2, . . ., and xs1+1 in Gf[0] and
store them in a set X . The procedure is detailed as below.

1. Initialize an index counter c as 1, and the set X as empty.
2. Query to the MAC oracle and receive the corresponding tag pairs of log(l) dis-

tinct message pairs m1‖ . . . ‖ mc−1‖ [0]2
l/2+L‖[i]‖[0]2l/2 and m1‖ . . . ‖ mc−1‖

[0]2
l/2‖[i]‖[0]2l/2+L , where [i] = [0] and [i]s are distinct among pairs.

3. If there is no tag pair that collides, increment the index counter c ← c + 1
and if c ≤ s1 + 1 then go to step 2, otherwise terminate this phase. If there
is (at least) one tag pair that collides, then just execute the following steps.
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(a) Set two integer variables z1 = 0 and z2 = 2l/2.
(b) Set z = (z1 + z2)/2. Query to the MAC oracle and receive the cor-

responding tag pairs of log(l) distinct message pairs m1‖ . . . ‖ mc−1‖
[0]2

z+L‖[i]‖[0]2l/2 and m1‖ . . . ‖ mc−1‖ [0]2
z‖[i]‖[0]2l/2+L , where [i] = [0]

and [i]s are distinct among pairs.
(c) If (at least) one tag pair collides, set z2 = z. Otherwise, set z1 = z.
(d) If z2 = z1 + 1 holds, go to step 3-b. Otherwise, set the height of xc as

λ(xc) = z2, store z2 in position c in X and increment the index counter
c← c+1. If c ≤ s1+1 then go to step 2, otherwise terminate this phase.

Phase 2 (online). Generate a pair of one-block messages (m,m′) for each
xi ∈ X , which is used as a filter in Phase 4. The procedure is detailed as below.

1. For all xi ∈ X do the following steps.
(a) Select 2l/2 distinct one-block messages, append them to m1‖ . . . ‖mi−1,

and send these newly formatted messages to the MAC oracle. Find the
pairs m1‖ . . . ‖mi−1‖m and m1‖ . . . ‖mi−1‖m′ that collides on the output
of the MAC.

(b) For all the found pairs (m,m′), choose another random one-block mes-
sage m′′, and query m1‖ . . . ‖mi−1‖m‖m′′ and m1‖ . . . ‖mi−1‖m′‖m′′ to
the MAC oracle in order to check if their corresponding tags collide again
or not. If none collide, go to step 1-a. Otherwise, store a colliding pair
(m,m′) as the filter for xi in X and go to the next xi in step 1.

Phase 3 (offline). Choose 2l/s1 values with their height in Gf[0] , and store them
in a set Y (sorted according to the height values). The procedure is detailed as
below.

1. Initialize a counter c as 0 and the set Y as empty.
2. Choose a new random value y1 such that y1 /∈ Y , and set the chain counter

cc to 1.
3. Compute ycc+1 = f[0](ycc)
4. Check if ycc+1 matches a value y stored in Y . If it does, then set the height

λ(yi) of yi (with 1 ≤ i ≤ cc) as λ(y) + cc + 1 − i and store the (yi, λ(yi))
pairs (with 1 ≤ i ≤ cc) in Y .

5. Check if ycc+1 matches a previously computed chain value yi (with 1 ≤ i ≤
cc). If it does, then set the height λ(yj) of all values yj (with i ≤ j ≤ cc)
as 0, and the height λ(yj) of yj (with 1 ≤ j < i − 1) as i − j. Store the
(yj , λ(yj)) pairs (with 1 ≤ j ≤ cc) in Y .

6. If no match was found in step 4 or 5, then increment the chain counter
cc← cc+1 and go to step 3. Otherwise, update the counter c by c← c+ cc
and if c < 2l/s1 then go to step 2, otherwise terminate this phase.
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Phase 4 (offline). Recover one intermediate hash value xi in set X . The pro-
cedure is detailed as below.

1. For all xi ∈ X do the following steps.
(a) Get the height λ(xi) of xi and its filter pair (m,m′) from the set X . Get

all the (y, λ(y)) pairs in set Y such that λ(y) = λ(xi).
(b) For each y, we check if f(y,m) = f(y,m′) holds or not. If it holds for a

yj , then output yj as the value of xi and terminate this phase. If there
is no such a yj , then go to the next xi in step 1.

Phase 5 (offline). Find a second preimage for the processing of Mt2 as the
second message part ofHKin(Mt). The block length ofMt2 is denoted s2 = s−s1.
The procedure is briefly described below. For the complete algorithm please refer
to [11].

1. Compute the intermediate hash values xs1 , xs1+1, . . ., xs from the value xi

recovered at Phase 4, i.e. xi+1 = f(xi,mi), . . ., xs = f(xs−1,ms−1). Note
that it is not necessary to compute until xs.

2. Build a [log(s2), s2]-expandable message starting from xs1 to a value denoted
as x. More precisely, for any integer i between log(s2) and s2, there is a
message m′

s1‖m′
s1+1‖ · · · ‖m′

s1+i from the expandable message such that it
has i blocks and links from xs1 to x:

x = f(. . . f(f(xs1 ,m
′
s1),m

′
s1+1), . . . ,m

′
s1+i).

3. Choose 2l/(s2 − log(s2)) random one-block messages m, compute f(x,m),
and check if this matches to an element of the intermediate hash values set
{xs1+log(s2), xs1+1+log(s2), . . . , xs}.

4. If a match to xi (with s1 + log(s2) ≤ i ≤ s) is found, derive the (i −
s1)-block long message m′

s1+1‖m′
s1+2‖ · · · ‖m′

i from the expandable message,
append the blocks mi+1‖mi+2‖ · · · ‖ms to it to produce M ′

t2 , namely M ′
t2 =

m′
s1+1‖m′

s1+2‖ · · · ‖m′
i‖mi+1‖mi+2‖ · · · ‖ms.

Phase 6 (online). Forge a valid tag for the challenge Mt.

1. Query message M ′
t = Mt1‖M ′

t2 to the MAC oracle, and receive its tag T .
2. Output (Mt, T ) where T is a valid tag for Mt.

5.1 Complexity and Success Probability Analysis

Complexity Analysis. We use a single compression function call as complexity
unit. We evaluated the complexity of each phase as below.

Phase 1: O(s1 · l · log(l) · 2l/2) Phase 2: s21 · 2l/2 Phase 3: 2l/s1

Phase 4: 2l/s1 Phase 5: 2l/s2 Phase 6: s
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The overall complexity of our generic universal forgery attack therefore de-
pends on the block length s of the target message Mt:

• For the case s ≤ 2l/6, the overall complexity is dominated by Phase 3 and
Phase 5. So we set s1 = s2 = s/2, and get the overall complexity of O(2l/s)
computations.

• For the case 2l/6 < s ≤ 25l/6, the overall complexity is dominated by Phase 2.
So we set s1 = 2l/6, and get the overall complexity of O(25l/6) computations.

• For the case s > 25l/6, the overall complexity is dominated by Phase 6. So we
set s1 = 2l/6, and get the overall complexity of O(s) = 25l/6 computations.

Success Probability Analysis. First, note that we only need to pay attention
to the phases that dominate the complexity, since the other phases can be re-
peated enough times to approach a success probability of 1. For the case s ≤ 2l/6,
we note that Phase 3 always succeeds with probability 1 and the success prob-
ability of Phase 5 is 0.63. For the case 2l/6 < s ≤ 25l/6, the success probability
of Phase 2 is approximately 1. For the case s > 25l/6, the success probability of
Phase 6 is approximately 1 after previous phases were repeated enough times.
Therefore, the overall success probability of our attack tends to 1 when repeating
a constant time the corresponding complexity dominating phases.

5.2 Experimental Verification

For verification purposes, we have implemented the attack by using HMAC-SHA-256
on a desktop computer. Due to computational and memory limitations, we short-
ened the input/output bits of the SHA-256 compression function to 32 bits. In
more details, we input a 32-bit value x to the compression function, and the com-
pression function expands it to 256 bits by prepending 0 bits: 0224‖x. Then, the
compression function also shortens its outputs by only outputting the 32 LSBs.
Particularly for Phase 4, we paid attentions to the average number of pairs left af-
ter matching the heights between the elements in X and the elements in Y , since
it is essential for the complexity advantages. The experiments results confirmed
that the universal forgery attack works with the claimed complexity.

6 Conclusion

In this article, we presented the very first generic universal forgery attack against
hash-based MACs, and we reduced the gap between the HMAC security proof and the
best known attack for this crucial security property. We leave as an open problem
if better attacks can be found to further reduce this gap. Our cryptanalysis
method is new and uses the information leaked by the distance of a node from
the cycle (its height) in the functional graph of the compression function with
a fixed message block. We believe other graph properties, even more complex,
might be exploitable and could perhaps further improve the generic complexity
of universal forgery attacks against hash-based MACs.
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Abstract. The mere number of various apparently different statistical
attacks on block ciphers has raised the question about their relationships
which would allow to classify them and determine those that give essen-
tially complementary information about the security of block ciphers.
While mathematical links between some statistical attacks have been de-
rived in the last couple of years, the important link between general trun-
cated differential and multidimensional linear attacks has been missing.
In this work we close this gap. The new link is then exploited to relate the
complexities of chosen-plaintext and known-plaintext distinguishing at-
tacks of differential and linear types, and further, to explore the relations
between the key-recovery attacks. Our analysis shows that a statistical
saturation attack is the same as a truncated differential attack, which al-
lows us, for the first time, to provide a justifiable analysis of the complexity
of the statistical saturation attack and discuss its validity on 24 rounds of
the PRESENTblock cipher. By studying the data, time andmemory com-
plexities of a multidimensional linear key-recovery attack and its relation
with a truncated differential one, we also show that in most cases a known-
plaintext attack can be transformed into a less costly chosen-plaintext
attack. In particular, we show that there is a differential attack in the
chosen-plaintextmodel on 26 rounds of PRESENTwith less memory com-
plexity than the best previous attack, which assumes known plaintext.
The links between the statistical attacks discussed in this paper give fur-
ther examples of attacks where the method used to sample the data re-
quired by the statistical test is more differentiating than the method used
for finding the distinguishing property.

Keywords: statistical cryptanalysis, block cipher, chosen plaintext,
known plaintext, differential cryptanalysis, truncated differential crypt-
analysis, linear cryptanalysis, multidimensional linear cryptanalysis, sta-
tistical saturation, integral, zero-correlation, impossible differential.

1 Introduction

After the invention of the differential and linear cryptanalyses several extensions
and related statistical cryptanalysismethods for block ciphers have been presented.
The need for a common framework for statistical attacks that would facilitate their
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comparison has been raised in the literature at least by Vaudenay [1] and Wag-
ner [2], who also put forward such frameworks. While the former aims at provid-
ing provable security against all statistical attacks, the latter takes a high level
view on the iterated Markov ciphers. In this paper, we propose a more pragmatic
approach to show that, no matter whether we use a linear or differential charac-
teristic to identify some non-random behavior, it can be exploited for a known-
plaintext (KP) attack and a chosen-plaintext (CP) attack.

Previously, many mathematical relationships between statistical cryptanaly-
sis methods have been established. They concern the computation of the main
statistic of the cryptanalysis method under consideration. In [3], Leander studied
relations between the statistical saturation (SS) attack [4] and the multidimen-
sional linear (ML) cryptanalysis using the χ2 statistical test [5]. In the former
the strength of the distinguishing property is measured by the non-uniformity of
the distribution of partial ciphertext values when part of the plaintext is fixed. In
the latter, the non-uniformity of the joint distribution of plaintext parts and ci-
phertext parts is under consideration. Leander showed that the non-uniformities
computed in the SS attack are on average equal to the non-uniformity of the
distribution considered in the ML attack.

Later more links were established in [6] and also applied in practice. For ex-
ample, an efficient zero-correlation (ZC) property was found on a variant of
Skipjack. Using the mathematical link it was then transformed to an integral
property to launch an efficient CP attack on 31 rounds of this cipher. The ques-
tion arises, whether it would have been possible to use the ZC property directly.
Or would it have consumed essentially more data, time, or memory to exploit
the ZC property directly in this attack? The purpose of this paper is to give
an exhaustive answer to such questions in the more general setting of truncated
differential (TD) [7] and ML attacks.

Building on the link proposed by Chabaud and Vaudenay [8] and applied by
Blondeau and Nyberg [9], we establish now a more general mathematical link
between differential and linear statistical properties of block ciphers. This link
provides a unified view on statistical distinguishers of block ciphers that measure
the uniformity of a distribution of pairs of partial plaintext and ciphertext values
and covers any TD and ML distinguishers. It allows for examination and com-
parison of the corresponding KP and CP distinguishing attacks and the related
statistical models. In this paper, we will make a detailed comparison between the
data, time and memory complexities of the CP TD and KP ML distinguishing
attacks. Also the SS distinguisher will be considered and shown to be essentially
identical to a TD distinguisher.

One of the main results given in this paper is that for any KP ML distinguish-
ing attack there is a stronger CP TD distinguishing attack, where the strength
is measured in terms of the data, time and memory complexities of the distin-
guishers. We will see that the main advantage of the CP TD distinguishers over
the KP ML distinguishers is due to the better organisation of the chosen data
and allows some data, time and memory savings. Overall, the results obtained
in this paper show that the method used for finding the distinguishing property,
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differential or linear, may be quite irrelevant when performing the attack. We
show cases where, for the same distinguisher, the data, time and memory com-
plexities of the attack are essentially different depending on what kind of data
sampling methods are used for the statistical test.

The knowledge of the relationships between the different distinguishers and
their complexities will then be applied to the outstanding key-recovery attacks.
In particular, we will compare the KP and CP scenarios and their effects on the
complexities of the key-recovery attacks based on different but mathematically
equivalent distinguishing properties of the cipher. The cost difference of using
KP instead of CP can be quite small. When such a case occurs in practice,
the cryptanalyst can choose whether to use KP data with small additional cost
instead of CP data to perform the key-recovery attack.

The resistance of PRESENT [6] against TD attacks has been a longstanding
open problem. Since the strong differentials of the Sbox diffuse faster than the
strong linear approximations as the number of rounds increases, it has been
very difficult to achieve accurate estimates of differential probabilities directly.
In [9], linear approximations were used to evaluate some differential probabilities.
While the obtained estimates were accurate, no differentials were found that
would essentially improve the best known differential attack, which can break
19 rounds of PRESENT [9]. Using the results obtained in this paper, we convert
the 24-round ML distinguisher of [10] to a TD distinguisher and use it to present
a TD key-recovery attack on a 26-round reduced version of PRESENT. This
attack which reach the same number of rounds than the KP ML attack of [10]
illustrates than one can make use of linear properties to conduct a differential
attack.

The rest of the paper is organized as follows. In Sect. 2, we present a general
link between the TD and ML properties. In Sect. 3, we study the data, time
and memory complexities of the CP TD, CP SS and KP ML distinguishing
attacks, which depending on the parameters of the underlying properties suggest
different time-memory tradeoffs. By showing that the SS attacks correspond to
TD attacks, in Sect. 4, we provide improved complexity estimates of the SS
attacks. Sect. 5 is dedicated to the link between the TD and ML key-recovery
attack. We show how to convert a CP attack to a KP attack and analyze the
cost of this conversion. On the other hand, we show the existence of a TD attack
on 26 rounds of PRESENT, which requires less memory than the best known
ML attack on PRESENT. In Sect. 6, we analyze other known statistical attacks
on block cipher and discuss their relations. Sect. 7 summarizes the results on
these different links.

2 Preliminaries

2.1 ML and TD Setting and Notation

In differential cryptanalysis [11], the attacker is interested in finding and ex-
ploiting non-uniformity in occurrences of plaintext and ciphertext differences.



168 C. Blondeau and K. Nyberg

Given a vectorial Boolean function F : Fn
2 → Fn

2 , a differential is a pair (δ,Δ)
where δ ∈ Fn

2 and Δ ∈ Fn
2 and its probability is defined as

P[δ
F→ Δ] = 2−n#{x ∈ Fn

2 |F (x)⊕ F (x⊕ δ) = Δ}.
Linear cryptanalysis [12] uses a linear relation between bits from plaintexts,
corresponding ciphertexts and encryption key. The strength of the linear relation
is measured by its correlation. The correlation of a Boolean function f : Fn

2 → F2

is defined as

cor(f) = cor(f(x)) = 2−n
[
# {x ∈ Fn

2 |f(x) = 0} −# {x ∈ Fn
2 |f(x) = 1}

]
,

where the quantity within brackets can be computed as the Walsh transform of
f evaluated at zero, see e.g. [13].

In block ciphers, the data is usually represented as vectors in some basis over
F2. For the purposes of our analysis, we also present the input and output data
as vectors over F2. The selection of the basis we use is determined by the linear
or differential properties of the cipher. Hence the basis we use may or may not
be the same as used for the description of the cipher. The input and output
spaces are divided into two orthogonal spaces as follows

F : Fs
2×Ft

2 → Fq
2×Fr

2 : (xs, xt) �→ (yq, yr) = F (xs, xt),where s+ t = q + r = n.

In this study, we focus on ML approximations composed of 2s input masks
(as, 0) ∈ Fs

2×{0}, and 2q output masks (bq, 0) ∈ Fq
2×{0}, which makes in total

2s+q linear approximations over F . The correlation of a linear approximation
determined by a mask pair (as, 0), (bq, 0) is then cor (as · xs + bq · yq), where
x = (xs, xt) ∈ Fs

2 × Ft
2 and F (xs, xt) = (yq, yr) ∈ Fq

2 × Fr
2.

The strength of the ML approximation [(as, 0), (bq, 0)]as∈Fs
2, bq∈Fq

2
is measured

by its capacity C defined as follows

C =
∑

(as,bq) �=(0,0)

cor2 (as · xs ⊕ bq · yq) . (1)

The capacity can also be computed as an L2-distance between the probability
distribution of the pairs (xs, yq) of partial plaintext and ciphertext values and
the uniform distribution over Fs

2 × Fq
2. As we will show in this paper, this ML

approximation is related to a certain TD. This TD is composed of 2t input
differences (0, δt) ∈ {0} × Ft

2, and 2r output differences (0, Δr) ∈ {0} × Fr
2,

which makes in total 2t+r differentials over the cipher F . The probability of a
differential determined by the input and output differences (0, δt) and (0, Δr) is

then P[(0, δt)
F→ (0, Δr)] = 2−n#{x ∈ Fn

2 |F (x) ⊕ F (x⊕ (0, δt)) = (0, Δr)}.
Then the probability p of the TD [(0, δt), (0, Δr)]δt∈Ft

2,Δr∈Fr
2
is defined as the

average probability that the output difference is in the set {(0, Δr) |Δr ∈ Fr
2}

taken over the input differences (0, δt), δt ∈ Ft
2, which are assumed to be equally

likely. Hence

p = 2−t
∑

δt∈Ft
2,Δr∈Fr

2

P [(0, δt)
F→ (0, Δr)]. (2)

Note that this definition of TD probability includes the zero input difference.
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2.2 Mathematical Link

Chabaud and Vaudenay [8] provide a link between the differential probabili-
ties and the squared correlations of linear approximations of vectorial Boolean
functions. In the context of this paper, this one can be written as

P[δ
F→ Δ] = 2−n

∑
a∈Fn

2

∑
b∈Fn

2

(−1)a·δ⊕b·Δcor2 (a · x⊕ b · F (x)) ,

where F : Fn
2 → Fn

2 is a vectorial Boolean function. By applying this link to the
splitted spaces defined above and summing up over all δt ∈ Ft

2 and Δr ∈ Fr
2, the

following expression for the probability of a TD is given in [9].

Theorem 1 ([9]). For all δs ∈ Fs
2 and Δq ∈ Fq

2 it holds that

2−t
∑

δt∈Ft
2,Δr∈Fr

2

P[(δs, δt)
F→ (Δq, Δr)] =

2−q
∑

as∈Fs
2,bq∈F

q
2

(−1)as·δs⊕bq·Δqcor2 ((as, 0) · x⊕ (bq, 0) · F (x)) .

In [9] this result was used in the case when q = t and all the nontrivial correla-
tions and differential probabilities are equal to zero, to provide a link between
zero-correlation linear (ZC) cryptanalysis [14,6] and impossible differential (ID)
cryptanalysis [15]. In this paper, we focus on the case where δs = 0 and Δq = 0,
but no other assumptions are made about the correlations and differential prob-
abilities. If δs = 0 and Δq = 0, then as · δs ⊕ bq ·Δq = 0, as ∈ Fs

2 and bq ∈ Fq
2.

By using the notations of (1) and (2) we get the following corollary of Th. 1.

Corollary 1. Let the TD probability p be defined as in (2) and the ML capacity
C as in (1). Then

p = 2−q(C + 1). (3)

In the ML context, we evaluate the non-uniformity of the distribution of partial
plaintext and ciphertext pairs (xs, yq) in terms of the L2-distance. By Cor. 1
this non-uniformity can be measured in terms of probability of coincidences in
the observed values (xs, yq). As a special case of Cor. 1, we get the method of
Index of Coincidence [16] over some binary alphabet by taking s = 0 and q = n.
Notice that the link given in (3) holds for a block cipher with a fixed-key as well
as on average over the keys.

Next we examine the different statistical models developed for ML and TD
types of distinguishers and derive relationships between their data, time and
memory complexities.

2.3 Complexity of an Attack

While the most powerful statistical attacks aim at recovering some information
on the secret key, they are often derived from a distinguishing attack consisting
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of identifying if a cipher is drawn at random or not. Given some statistical
distribution, the data complexity of an attack corresponds to the number of
plaintexts necessary to successfully perform this distinguishing operation.

When the distinguishing attack is turned to a key-recovery attack, it is com-
mon to separate the process into a distillation phase consisting of the extraction
of some statistics for all subkey candidates from the available data, an analysis
phase consisting of the computation of the likelihood of each of the key candi-
dates and a search phase for the exhaustive search of the corresponding master
key from the list of kept candidates. In the following, we denote by K the set of
key candidates.

Throughout this paper, to facilitate the comparison of attacks, we assume that
the success probability of finding the key is fixed to 50%. For a key-recovery at-
tack the probability of false positives determines the time complexity of the
search phase. The notion of advantage a defined in [17] corresponds to a proba-
bility of false positives of 2−a. For simplicity, in the statistical derivations of this
paper, we denote by ϕa the quantity Φ−1(1 − 2−a) where Φ is the cumulative
function of the standard normal distribution N (0, 1).

3 Complexity of a Distinguishing Attack

Having established the link (3) between the ML and TD properties of a vector-
valued Boolean function, we now examine the distinguishers derived from these
properties for block ciphers and their complexities. We use the most commonly
accepted statistical models for the distinguishing attacks. The major difference
between the distinguishing attacks based on ML and TD is that the former is a
KP attack and the latter a CP attack. In this section we analyze this difference
in more detail and discuss how it affects the complexities of the distinguishing
attacks.

3.1 ML Distinguishing Attacks

For ML attacks both LLR and χ2 statistical tests have been used in the litera-
ture. In this paper, we restrict our analysis to the χ2 test, which first, according
to the results discussed in the following of this section seems to be in good ac-
cordance with the common statistical test for a TD distinguishing attack, and
secondly, is more applied in practice since it does not require having accurate
prediction of the distributions derived from the cipher data.

The data complexity of an ML attack has been studied in [5], and can be
computed similarly than for a classical linear attack modelled in [17].

Proposition 1. For a success probability of 50% and an advantage of a bits,
the data complexity NML of an ML distinguishing attack using 2s+q linear ap-
proximations with capacity C as defined in (1) is

NML =
2(s+q+1)/2

C
ϕa. (4)
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Given a set of 2s+q linear approximations, the general algorithm presented in
Alg. 1, for an ML distinguisher using the χ2 statistical test requiringN plaintexts
can be performed using 2q+s simple operations1.

Alg. 1. Multidimensional linear distinguisher

Set a counter D to 0
Create a table T of size 2q+s

for N plaintexts do
(yq, yr) = E((xs, xt))
T [(xs, yq)]+ = 1

for all (xs, yq) do
D+ = (T [(xs, yq)]−N/2q+s)2

ML distinguishing attacks typically require 2s+q counters, either for evaluating
the correlations of the 2s+q linear approximations or evaluating the distributions
over the 2s+q values. We observe that in the general ML setting it is possible
that 2s+q is larger than the data complexity NML, in which case the memory
requirement can be reduced to NML. Then it is enough for such an algorithm
to deal with a sorted list of maximum size NML. Using a binary search the time
complexity of this KP ML distinguisher is NML log(NML).

3.2 TD and SS Distinguishing Attacks

The probability of a TD as given in (2) is computed as an average probability over
the input differences. By ordering the plaintexts into structures we can efficiently
handle an evaluation of the TD probability for multiple input differences.

In the following, let us assume that all structures are of equal size, and let
us denote by S the size of the structures and by M the number of structures
used in the attack. Then the total amount of data NTD used for the TD attack
is equal to M · S. For a further comparison with the complexity derived for
the ML attack, we express the relation between the data complexity and the
advantage of the TD attack using the framework of [17]. In the context where
p = 2−q +2−qC is close to the uniform probability 2−q (C ' 1) this model is in
accordance with the more general model presented in [18].

Proposition 2. For a success probability of 50% and an advantage of a bits,
the data complexity of a TD distinguishing attack using 2t input differences and
2r output differences with probability p as defined in (2) is

NTD =
2−q+1

S · (p− 2−q)2
· ϕ2

a, where S ≤ 2t. (5)

Proof. According to the framework of [17], the number of pairs NS required

for such a TD distinguisher is NS = 2−q

(p−2−q)2ϕ
2
a. By using M structures of S

1 In some cases this complexity can be reduced using a FFT.
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plaintexts, we can generate NS = M · (S − 1)S/2 pairs, which we obtain if the
amount of available CP data is NTD = M · S ≈ 2NS/S.

Alg. 2. TD and SS distinguishers

Set a counter D to 0
for M values of xs ∈ Fs

2 do
Create a table T of size S
for S values of xt ∈ Ft

2 do
(yq, yr) = E((xs, xt))
T [xt] = yq

for all pairs (xt, x
′
t) do

if T [xt] = T [x′
t] then

D+ = 1

(2a) Generic TD distinguisher

Set a counter D (D′) to 0
for M values of xs ∈ Fs

2 do
Initialize to 0 a table T of size 2q

for S values of xt ∈ Ft
2 do

(yq, yr) = E((xs, xt))
T [yq]+ = 1

for all yq ∈ Fq
2 do

D+ = T [yq] · (T [yq]− 1)/2
(D′+ = T [yq]

2)

(2b) Improved TD distinguisher (SS distinguisher)

When in the context of TD cryptanalysis, the number of considered input dif-
ferences t is relatively small, the cryptanalyst usually runs a distinguisher of
the type given in Alg. 2a. Each structure is handled separately. To minimize
the number of encryptions, the partial ciphertexts yq are stored. The time com-
plexity of the CP TD distinguisher represented in Alg. 2a corresponds to NTD

encryptions and M · S2/2 simple operations. The time taken by the compari-
son between all ciphertext pairs is then often considered as the limiting factor
for the attack. We observe that by using the memory differently meaning that
instead of storing all partial ciphertexts yq, storing only their distribution, we
can also reduce the time complexity. Indeed, if 
 partial ciphertexts yq are equal,
then 
(
 − 1)/2 ciphertext pairs have difference zero in these q bits. The TD
distinguishing algorithm modified in this manner is presented in Alg. 2b. At a
memory cost of 2q counters, its time complexity is M · 2q simple operations and
NTD encryptions.

The SS attack has been proposed by Collard and Standaert [4] and applied on
the cipher PRESENT [19]. It exploits the non-uniformity of the distribution of
the partial ciphertexts yq ∈ Fq

2 obtained by encryption of plaintexts (xs, xt) by
keeping xs fixed. The non-uniformity is measured using the L2-distance. This is
exactly what Alg. 2b computes using the scoreD′. By noticing that the scoreD of
the TD distinguisher satisfies D =

∑
M

∑
yqF

q
2
T [yq]·(T [yq]−1)/2 = D′−M ·S/2,

we conclude that the CP TD distinguisher as described in Alg. 2b is identical to
the CP SS distinguisher of [4].

In 2011, Leander [3] observed a mathematical relation between the expected
values of the SS score D′ computed in Alg. 2b and the ML score D in Alg. 1.
But this link has not been used for developing a statistical model for SS attacks.
The statistical model developed in this paper, allows for the first time to derive
accurate estimates of the data complexity for the last-rounds SS key-recovery
attack on PRESENT proposed in [4]. This key recovery attack will be explained
and analyzed in Sect. 4.
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3.3 Comparison between ML and TD Distinguishers

Recalling Cor. 1 we can summarize the results from (4) and (5) and get the
following relationship between the data complexities NML and NTD of the ML
distinguisher and the TD distinguisher.

Corollary 2. Consider an ML distinguisher and a TD distinguisher based on
the ML and TD properties defined in Sect. 2.1. Then

NTD =
(NML)2

S · 2s
=

2q+1

S · C2
· ϕ2

a.

In Table 1, we summarize the complexities of the KP ML and CP TD distin-
guishers presented in this section. Given the splitted input and output spaces,

Table 1. Complexities of the ML and TD distinguishing algorithms

Alg. Data Time Memory Condition

ML, Alg. 1 NML NML 2s+q 2s+q < NML

TD, Alg. 2a NTD NTD +NTDS S(≤ 2t) NTDS < 2n

TD, Alg. 2b NTD NTD +M · 2q min(S, 2q) -

Fn
2 = Fs

2 × Ft
2 = Fq

2 × Fr
2, a TD distinguisher as presented in Alg. 2b is less

memory demanding than a ML distinguisher as presented in Alg. 1. According
to a commonly adopted practice in differential cryptanalysis, the structure size
is maximized to minimize the time complexity. If S = 2t we obtain by Cor. 2
that

NTD = 2−n(NML)2.

This means that also the data and the time complexities of the TD distinguisher
is smaller than the ones of the corresponding ML distinguisher.

In the remaining sections of this paper, we focus on the TD and ML key-
recovery attacks. In particular, we investigate whether a CP attack is always
less costly than a KP attack, and extract links with other statistical key-recovery
attacks on block ciphers.

4 TD and SS Key-Recovery Attacks

4.1 Last-Rounds TD and SS Key-Recovery Attack

For the results described in this section, we use the notation of Alg. 3. The
s bits of the TD distinguisher on which the input difference is fixed to 0 is
called a fixation. As suggested by [4], if the size of the fixation is small, we
can increase the number of rounds of the distinguisher. Given the fixation on
s bits, we denote by Ws the larger fixation after adding some rounds at the
beginning of the distinguisher. By choosing structures such that the part ws
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of the plaintext w = (ws, wt) ∈ Ws ×Wt is fixed we remain certain that the
s-bits part xs of x = (xs, xt) is fixed and ensures zero difference in these bits
between two plaintexts in a same structure. The space Zq, described in Alg. 3
corresponds to the minimal space needed for checking the distribution of the q
bits yq after partial decryption of the ciphertexts z = (zq, zr). The resulting CP
TD last-rounds key-recovery attack is depicted in Alg. 3.

Alg. 3. Last-rounds CP TD and SS key-recovery attack

�
�

�
�

Ws Wt

000· · · · · · 000
︷ ︸︸ ︷ ︷ ︸︸ ︷
00· · · 00 **· · · · · · · · · **︸ ︷︷ ︸ ︸ ︷︷ ︸
s bits t bits

q bits r bits︷ ︸︸ ︷ ︷ ︸︸ ︷
00· · · · · · 00 **· · · · · · **

︸ ︷︷ ︸
Zq

distinguisher

larger
fixation

Key-recovery

w = (ws, wt)

x = (xs, xt)

y = (yq, yr)

z = (zq, zr)

For all |K| key candidates k, set a counter Dk to 0
for M values of ws ∈ Ws do
Initialize a vector V of size |Zq | to 0
for S values of wt ∈ Wt do
(zq, zr) = E((ws, wt))
V [zq ]+ = 1

for all key candidates k do
Initialize a vector T of size 2q to 0
for all zq ∈ Zq do
Partially decrypt to obtain yq from zq
T [yq]+ = V [zq]

for all yq ∈ Fq
2 do

Dk+ = T [yq] · (T [yq]− 1)/2
Sort the counters Dk to obtain the most likely keys.

Implementing Alg. 3 requires storing |K|+|Zq| counters. This algorithm which
runs in a time corresponding to M · S encryptions and M · |K| · |Zq| partial
inversions requires M · S chosen plaintexts. Note that by increasing the size of
the fixation, the size S of a structure is limited to S ≤ |Wt| ≤ 2t. Then according
to (5) the increasing data complexity constitutes a major limiting factor to this
process which consists of adding rounds at the beginning of the distinguisher
without guessing any key-bits on these rounds.

4.2 Using the Link between TD and SS Attacks to Analyze the SS
Attack on 24 Rounds of PRESENT

From the complexity of the last-rounds TD key-recovery attack given in Alg. 3
and the relation between TD and SS described in Sect. 3.2 , we analyze in this
section the SS key-recovery attack of [4] on 24 rounds of PRESENT.

When linking the statistic computed in the SS attack with the capacity of
a ML approximation, Leander [3] also confirms that the capacity of the ML
distinguisher can be estimated as suggested in [4] by multiplying by a factor
close to 2−3 when adding a round to the distinguisher (see Fig. 1). In ML attacks
the data complexity is inversely proportional to the capacity, and the same was
assumed to hold for the SS distinguisher used in [4]. While the experiments of [20]
confirm this hypothesis when the attack is limited to one structure, a gap was
observed in [20] starting from rounds 18 (or 19). Next we present an explanation
of this behavior based on the statistical model of the SS distinguisher we derived
using the TD model.
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From Cor. 2 we know that the number of samples of a TD attack so also
of a SS attack is a multiple of 2q

C2 . As long as only one structure is used, with
N plaintexts we can generate N2/2 plaintext pairs and the data complexity is

N = 2(q+1)/2

C ϕa. But when more than one structure is used the data complexity

is proportional to the square of the inverse of the capacity: N = 2q+1

|Wt|·C2ϕ
2
a. This

phenomenon is illustrated in Fig. 1. Given a distinguisher on r rounds, the data
complexity computed from Cor. 2 of the SS attack on r+3 rounds, meaning with
a fixation of log(|Ws|) = 16 bits, and on r + 4 rounds, meaning with a fixation
of log(|Ws|) = 32 bits, is given in Fig. 1. In particular, the computed values on
the right figure are, for the first time, in accordance with the experiments done
in [20]. From Fig. 1, one can see that by fixing 32 bits only 21 rounds can be
attacked. By fixing 16 bits, one can compute that an attack on 24 rounds will
require more than the full codebook. From these observations, we conclude that
the SS attack described in [4] only works for 23 rounds of PRESENT instead of
24 rounds as originally claimed.
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Fig. 1. Capacity C of the r-round ML of [4] as computed in [3] and data complexity
N (computed using Cor. 2) of the underlined attacks on r + r′-rounds for a = 8

5 Comparison of TD and ML Key-Recovery Attacks

5.1 Partial Key-Recovery Attack on the First Rounds

In the previous section, we discussed the limitation of adding rounds at the
beginning of the distinguisher without guessing any key-bits on these rounds. In
this section, we develop a TD key-recovery attack which allow to find the key
of the first rounds. For more generality and to illustrate some data, time and
memory trade-offs, we assume that the aim is to guess only part of the possible
key bits in the first rounds. In Alg. 4, we describe this TD key-recovery attack.
From the fixation of s bits, we want to keep a fixation on s0 bits, and we define
a space Ws0 such that given a fixation on Ws0 after partial encryption we have a
fixation on these s0 bits. We then take advantage of the non-fixed s1 + t bits to
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Alg. 4. First-rounds and last-rounds TD key-recovery attack

�
�

�
�

�
�

Ws0 Ws1 Wt

0 · · · · · · 0 ∗ · · · ∗
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
0·0 0· · · · · · 0 **· · · · · · **︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
s0 s1 t bits︸ ︷︷ ︸
s bits

q bits r bits︷ ︸︸ ︷ ︷ ︸︸ ︷
00· · · · · · 00 **· · · · · · **

︸ ︷︷ ︸
Zq

distinguisher

partial
key-recovery

key-recovery

w = (ws0 , ws1 , wt)

x = (xs0 , xs1 , xt)

y = (yq, yr)

z = (zq, zr)

For all |K| key candidates k, set a counter Dk to 0
for M values of ws0 ∈ Ws0 do
Initialize a vector V of size |Ws1 | · |Zq | to 0
for S values of (ws1 , wt) ∈ Ws1 ∪Wt do
(zq, zr) = E((ws0 , ws1 , wt))
V [(ws1 , zq)]+ = 1

for all key candidates k do
Initialize a vector T of size 2s1+q to 0
for all (ws1 , zq) do
Partially decrypt to obtain yq from zq
Partially encrypt to obtain xs1 from ws1

T [(xs1 , yq)]+ = V [(ws1 , zq)]

for all (xs1 , yq) ∈ 2s1+q do
Dk+ = T [(xs1 , yq)] · (T [(xs1 , zq)]− 1)/2

Sort the countersDk to obtain the most likely keys.

find some information on the first rounds subkey. In Alg. 4, the space Ws1 ×Wt

corresponds to the non-fixed bits of w = (ws0 , ws1 , wt).
The partial first rounds TD key-recovery attack of Alg. 4 can be done in a time

corresponding to N encryptions and |M |·|K|·|Ws1 |·|Zq| partial encryptions using
|Ws1 | · |Zq|+ |K| counters. The data complexity of the attack can be computed
as follows. Here, as we need to check if the difference in the s1 input bits of the
distinguishers are equal to 0, the probability of the TD is p = 2−(s1+q)(C + 1)
and need to be compared to the uniform probability 2−(s1+q). In this case the

number of required samples is NS = 2q+s1

C2 ϕ2
a. As with M · S plaintexts we can

generate M · S2/2 pairs, the data complexity is N = 2q+s1+1

S·C2 ϕ2
a, where the size

S of a structure can be up to |Ws1 ∪Wt|.

5.2 Chosen-Plaintext Versus Known-Plaintext Attack

When setting s1 = s and s0 = 0 in Alg. 4, we transform a CP TD attack to a KP
TD attack. In this case with N plaintexts we can generate N(N − 1)/2 ≈ N2/2
pairs. As in the TD setting the uniform probability is equal to 2−q−s, the number

of required samples is NS = 2q+s

C2 · ϕ2
a. The data complexity of a CP TD attack

is then equal to the one of a KP ML key-recovery attack: NTD = NML =
2(s+q+1)/2

C ϕa. The time and memory complexities are then also similar. While
all KP attacks can be converted to a CP attack, by this result we show, that in
some cases, we can also, with small data, time and memory complexity overhead,
convert a CP key-recovery attack to a KP one.

5.3 A Differential Attack on 26 Rounds of PRESENT

In [10], Cho proposed a KP ML attack on 26 rounds of PRESENT. This attack
which is based on a combination of 9 ML approximations can be converted
to a TD attack in the KP model as presented in the previous section. In this

particular case the data complexity is NTD = NML =
√
9·28+1

C ϕa. The time and
memory complexities of the TD key-recovery attack are similar to the ones of
the ML key-recovery attack.
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Fig. 2. Partial key recovery on the first round of PRESENT

More importantly, inspired by the KP attack of Cho [10] on PRESENT, we
illustrate that, in many cases, when changing from the KP model to the CP
model with only a partial key recovery on the first rounds data, time and memory
complexities can be reduced.

In the KP ML attack of Cho, 16 bits of keys corresponding to the ones at
the input of S4, S5, S6, S7 (see Fig. 2) are guessed for partial encryption on
the first round. If we are in the CP model and we want to only guess part
of these 16 key bits, we can specify that the input differences of some Sboxes
are equal to 0. We assume that out of the 4 Sboxes S4, S5, S6, S7, the input
of b of them are fixed (see Fig. 2). In this case, |Ws0 | = 24b and we can use
structure of size |Ws1 | · |Wt| = 264−4b. The data complexity of the attack is then

N = 9·24+(4−b)+1

264−4bC2 ϕ2
a. In Fig. 3, we illustrate that depending of the size |Ws0 | of

the fixation, the data complexity of the key-recovery attack in the CP model
can be smaller than in the KP model.
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Fig. 3. Evolution of the data complexity of a CP key-recovery attack depending of the
size of the fixation and comparison with a KP attack for different number of rounds of
PRESENT

Given the same advantage, if the data complexity of the KP model is smaller
than the one in the CP model, it is the same for the time complexity of the
distillation phase. By storing only a vector of size |Zq|·|Ws1 | instead of |Zq|·|Ws|,
the memory complexity of the CP attack is always smaller than the one of the
KP attack. Assuming a fixation of 4b bits and independent keys in the first and
last rounds the time complexity of the distillation phase (Time1 in Table 2)
corresponds to N ·2−4b partial encryptions and N encryptions. In the CP model
233−4b counters are necessary for the attack. The time complexity to recover the
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80 bit master key (Time2 in Table 2) is 280−a. For illustration, we compare in
Table 2 the complexities of some KP attacks and CP attacks with b = 1 on
PRESENT.

Out of the proposed attacks on 24 rounds of PRESENT, with complexities
summarized in Table 2a we illustrate a case where data, time and memory com-
plexities of the CP are smaller than the ones of the KP attacks. Out of the
26-round attacks summarized in Table 2b, we show that even when close to the
full codebook, the proposed CP attack required less memory than the KP attack.

Table 2. Complexity of attacks on PRESENT for a success probability of 50%. Time1:
Complexity of the distillation phase. Time2: Complexity of the search phase.

(a) Attacks on 24 rounds of PRESENT,
with different complexities

Model a Data Memory Time1 Time2

CP 10 254.75 229 254.75 270

KP 5 257.14 233 257.14 275

(b) Attacks on 26 rounds of PRESENT,
with same advantage

Model a Data Memory Time1 Time2

CP 4 263.16 229 263.16 276

KP 4 262.08 233 262.08 276

While it has always been assumed that the security of PRESENT in regards
to differential cryptanalysis was always better than the one in regards to linear
cryptanalysis, these examples illustrate the fact that we can build a CP TD
attack on 26 rounds of PRESENT with less memory complexity than the best
KP ML attack of [10] done with 264 KP and in time 272.

6 Links between Other Statistical Attacks

6.1 Integral, Zero-Correlation and Uniform TD Attacks

Integral cryptanalysis was introduced in [21], and has been used in the literature
under the names square, integral or saturation attack. Integral distinguishers
mainly make use of the observation that it is possible to fix some parts of the
plaintext such that specific parts of the ciphertext are balanced, i.e. each possible
partial value occurs the exact same number of times in the output. In practice,
the condition of balancedness is typically verified by summing up all partial
ciphertexts. In [6], however, in the attack called as zero-correlation integral at-
tack, the authors suggest to store the partial ciphertexts and to verify the proper
balancedness condition.

ZC distinguishers [14,6] are built out of linear approximations with zero bias.
In that case the expected capacity of the ML approximation is C = 0, and it has
been shown in [6] that distinguishing from random can be successful only if no
repetition of the plaintexts is allowed. In [6], the authors present a mathematical
link between integral and ZC distinguishers. Using this link, the authors of [6]
convert a ZC distinguisher on 30 rounds of Skipjack-BABABABA to an integral
attack on 31 rounds.

By observing that the output distribution is balanced exactly when the coun-
ters T [yq] of Alg. 3 are all equal, we show that the integral attack is a TD attack
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where the TD probability of having zero difference in the q bits corresponds to
the uniform probability p = 2−q. If q = t = n − s, a ZC distinguisher gives a
uniform truncated differential distinguisher where the attacker takes advantage
of differences which occur uniformly for the cipher.

While the CP integral attack of [6] requires 248 plaintexts and a memory of
232 counters, the same attack on 31 rounds of Skipjack-BABABABA in the KP
(without repetition) ZC model would have required roughly the same data and
time complexities but a memory of 248 counters. Indeed, the use of structures
as in the TD case allows to reduce the memory complexity of the attack as
described in Sect. 4.

6.2 Impossible Differential and ML Attacks

Impossible differential (ID) cryptanalysis [15] takes advantage of differentials
that never occur. From (2), in the ID case we have p = 2−t and from the formula
p = 2−q(C+1), we deduce that C = 2q−t−1. This formula was used directly in [9]
to show the equivalence between the ID distinguisher and the ZC distinguisher
in the case where t = q. Nevertheless, in many concrete applications [15,22,23],
t is small in comparison to n and q is close to n.

It is often assumed that the data complexity N ID of an ID is of order of
magnitude N ID = O(2q−t). As the corresponding KP ML distinguisher will

require a data complexity of NML = O(2(q+s)/2

2q−t−1 ), we discuss in this section the
limitations of converting a CP ID distinguisher to a KP ML one.

In practice, ID distinguisher are defined for small r = n−q and t = n−s. From
C = 2q−t − 1, one can note that the ID property occurs only if q ≥ t. In that
case an ID distinguishing attack can be performed using 2q−t plaintexts, in time
2q+t by storing 2t counters. On the other hand, a KP ML distinguishing attack
would require to analyse a distribution of size 2(n+q−t) using 2(n−q+t)/2 known
plaintexts. Nevertheless, when the size of the ML distribution is much larger than
the data requirement given by the statistical model, the data complexity needs
to be adjusted to approximately to 2(n+q−t)/2 for the χ2 test to give meaningful
results.

While it is possible to find practical ID distinguishers [24] where the data
complexity of the ML and ID distinguishers are similar, the time and memory
complexity of the ML distinguisher constitutes a limiting factor for this transfor-
mation. Nevertheless as the data complexity of a TD or an ID attack is modified
when it comes to a key-recovery on the first rounds, it remains an open question
to see if we can transform a CP ID key-recovery attack to a KP ML one.

6.3 Classical Differential and Linear Cryptanalysis

As a special case, we see that any classical KP linear distinguishing attack (s =
q = 1) can be seen as a CP TD distinguishing attack described in Alg. 2b. As
summarized in Table 1, both distinguishing attacks have similar complexities.
While a last-rounds key-recovery attack remain similar for the CP TD and the
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KP ML attacks, due to the small fixation s = 1, a CP TD key-recovery attack on
the first rounds will be equivalent to a KP one. This link has been used previously,
although in an implicit manner, for the attack on Salsa and ChaCha [25], where
a TD distinguisher with probability 1/2 + ε was extracted.

A transformation from the CP classical differential (s = q = n − 1) to a KP
ML does not work in a similar way. While the classical differential distinguisher
is memoryless, the ML one required huge memory as shown in Table 1. As in
practical security considerations the data complexity typically is close to the
full codebook, this KP ML distinguisher has also too high time complexity. A
far comparison of the data complexity between these attacks will require more
investigation since in that case this one can not be computed from (5).

7 Conclusion

In this paper, we have been investigating many statistical single-key key-recovery
attacks on block ciphers both in the KP and CP models. We have shown that
many of them are equivalent or that a data-time-memory tradeoffs allow for
conversion from a CP to a KP attack. While as shown in Table 3, it is always
possible to convert a last-round KP attack of linear type to a CP attack that
requires less data, time and/or memory complexity, converting a CP attack to
a KP attack is often less profitable. As illustrated by the key-recovery attacks
on PRESENT in Sect. 5 on the first rounds, it is not always straightforward to
make comparison between KP and CP key-recovery cryptanalysis methods.

The results and links presented in this paper allow to achieve a better under-
standing of the statistical models of a large number of statistical attacks. For
instance, by showing the equivalence between the SS and TD attack, we have
been able to compute the data requirement of the SS key-recovery attack.

The attacks are usually called after the method used to derive the distin-
guisher. For instance, the distinguishers for the differential-linear cryptanalysis
are found by combining a truncated differential and a linear approximation. Nev-
ertheless, the attack itself can be treated as a TD attack, see e.g. [26]. In this
paper we also presented a concrete example of a distinguisher originally found
as a linear property but now used to launch a CP differential attack. It has
been a common belief that PRESENT was more secure against differential than
linear cryptanalysis, since it is easy to derive linear properties, but practically
impossible to compute the probabilities of differential trails. In this paper, we
have shown how to derive from the known ML distinguisher a CP differential
key-recovery attack on 26 rounds of PRESENT that uses less memory than the
previously known KP attack.

We have focused on the most basic ML and TD attacks on block ciphers. We
do not claim to have covered them all and many variants and refinements remain
to be studied. More generally, it would be interesting to analyze our approach
in more detail in the context of decorrelation theory [1] which provides a unified
framework for all statistical attacks on block ciphers in the single-key model.
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Table 3. Links between last-rounds key-recovery attacks

Linear context Differential context

ML
2s+q<2n−→ TD = Statistical Saturation

ML
q>t and C=2−t+q−1−→ ID (TD with p∗ = 0)

ZC (ML with C = 0)
t>q−→ Integral (TD with p = 2−q)

ZC (ML with C = 0)
q=t−→ ID (TD with p∗ = 0)

Linear (ML with s = q = 1) −→ TD
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Abstract. We describe an implementation of fast elliptic curve scalar
multiplication, optimized for Diffie–Hellman Key Exchange at the 128-
bit security level. The algorithms are compact (using only x-coordinates),
run in constant time with uniform execution patterns, and do not
distinguish between the curve and its quadratic twist; they thus have
a built-in measure of side-channel resistance. (For comparison, we also
implement two faster but non-constant-time algorithms.) The core of
our construction is a suite of two-dimensional differential addition
chains driven by efficient endomorphism decompositions, built on curves
selected from a family of Q-curve reductions over Fp2 with p = 2127 −
1. We include state-of-the-art experimental results for twist-secure,
constant-time, x-coordinate-only scalar multiplication.

Keywords: Elliptic curve cryptography, scalar multiplication, twist-
secure, side channel attacks, endomorphism, Kummer variety, addition
chains, Montgomery curve.

1 Introduction

In this paper, we discuss the design and implementation of state-of-the-art
Elliptic Curve Diffie–Hellman key exchange (ECDH) primitives for security level
of approximately 128 bits. The major priorities for our implementation are

1. Compactness: We target x-coordinate-only systems. These systems offer
the advantages of shorter keys, simple and fast algorithms, and (when
properly designed) the use of arbitrary x-values, not just legitimate x-
coordinates of points on a curve (the “illegitimate” values are x-coordinates
on the quadratic twist). For x-coordinate ECDH, the elliptic curve exists
only to supply formulæ for scalar multiplications, and a hard elliptic curve
discrete logarithm problem (ECDLP) to underwrite a hard computational
Diffie–Hellman problem (CDHP) on x-coordinates. The users should not
have to verify whether given values correspond to points on a curve, nor
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should they have to compute any quantity that cannot be derived simply
from x-coordinates alone. In particular, neither a user nor an algorithm
should have to distinguish between the curve and its quadratic twist—and
the curve must be chosen to be twist-secure.

2. Fast, constant-time execution: Every Diffie–Hellman key exchange is
essentially comprised of four scalar multiplications,1 so optimizing scalar
multiplication P �→ [m]P for varying P and m is a very high priority.
At the same time, a minimum requirement for protecting against side-
channel timing attacks is that every scalar multiplication P �→ [m]P must be
computed in constant time (and ideally with the same execution pattern),
regardless of the values of m and P .

Our implementation targets a security level of approximately 128 bits
(comparable with Curve25519 [3], secp256r1 [12], and brainpoolP256t1 [11]).
The reference system with respect to our desired properties is Bernstein’s
Curve25519, which is based on an efficient, uniform differential addition chain
applied to a well-chosen pair of curve and twist presented as Montgomery models.
These models not only provide highly efficient group operations, but they are
optimized for x-coordinate-only operations, which (crucially) do not distinguish
between the curve and its twist. Essentially, well-chosen Montgomery curves offer
compactness straight out of the box.

Having chosen Montgomery curves as our platform, we must implement a
fast, uniform, and constant-time scalar multiplication on their x-coordinates.
To turbocharge our scalar multiplication, we apply a combination of efficiently
computable pseudo-endomorphisms and two-dimensional differential addition
chains. The use of efficient endomorphisms follows in the tradition of [21], [33],
[16], and [15], but to the best of our knowledge, this work represents the first use
of endomorphism scalar decompositions in the pure x-coordinate setting (that
is, without additional input to the addition chain).

Our implementation is built on a curve-twist pair (E , E ′) equipped with
efficiently computable endomorphisms (ψ, ψ′). The family of Q-curve reductions
in [32] offer a combination of fast endomorphisms and compatibility with
fast underlying field arithmetic. Crucially (and unlike earlier endomorphism
constructions such as [16] and [15]), they also offer the possibility of twist-secure
group orders over fast fields. One of these curves, with almost-prime order over a
254-bit field, forms the foundation of our construction (see §2). Any other curve
from the same family over the same field could be used with only very minor
modifications to the formulæ below and the source code for our implementations;
we explain our specific curve choice in Appendix A. The endomorphisms ψ and
ψ′ induce efficient pseudo-endomorphisms ψx and ψ′

x on the x-line; we explain
their construction and use in §3.
1 We do not count the cost of authenticating keys, etc., here. In the static Diffie–
Hellman protocol, two of the scalar multiplications can be computed in advance;
in this fixed-base scenario (where P is constant but m varies) one can profit
from extensive precomputations. For simplicity, in this work we concentrate on the
dynamic case (where P and m are variable).
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The key idea of this work is to replace conventional scalar multiplications
(m,x(P )) �→ x([m]P ) with multiscalar multiexponentiations

((a, b), x(P )) �−→ x([a]P ⊕ [b]ψ(P )) or x([a]P ⊕ [b]ψ′(P )) ,

where (a, b) is either a short multiscalar decomposition of a random full-length
scalar m (that is, such that [m]P = [a]P ⊕ [b]ψ(P ) or [a]P ⊕ [b]ψ′(P )), or a
random short multiscalar. The choice of ψ or ψ′ formally depends on whether
P is on E or E ′, but there is no difference between ψ and ψ′ on the level of x-
coordinates: they are implemented using exactly the same formulæ. Since every
element of the base field is the x-coordinate of a point on E or E ′, we may view
the transformation above as acting purely on field elements and not curve points.

From a practical point of view, the two crucial differences compared with
conventional ECDH over a 254-bit field are

1. The use of 128-bit multiscalars (a, b) in Z2 in place of the 254-bit scalar
m in Z. We treat the geometry of multiscalars, the distribution of their
corresponding scalar values, and the derivation of constant-bitlength scalar
decompositions in §4.

2. The use of two-dimensional differential addition chains to compute
x([a]P ⊕ [b]ψ(P )) given only (a, b) and x(P ). We detail this process in §5.

We have implemented three different two-dimensional differential addition
chains: one due to Montgomery [24] via Stam [34], one due to Bernstein [4], and
one due to Azarderakhsh and Karabina [1]. We provide implementation details
and timings for scalar multiplications based on each of our chains in §6. Each
offers a different combination of speed, uniformity, and constant-time execution.
The differential nature of these chains is essential in the x-coordinate setting,
which prevents the effective use of the vector chains traditionally used in the
endomorphism literature (such as [35]).

A Magma implementation is publicly available at

http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/

and a complete mixed-assembly-and-C implementation is publicly available (in
eBATS [8] format) at

http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz .

2 The Curve

We begin by defining our curve-twist pair (E , E ′). We work over

Fp2 := Fp(i) , where p := 2127 − 1 and i2 = −1 .

We chose this Mersenne prime for its compatibility with a range of fast techniques
for modular arithmetic, including Montgomery- and NIST-style approaches. We
build efficient Fp2-arithmetic on top of the fast Fp-arithmetic described in [10].

In what follows, it will be convenient to define the constants

u := 1466100457131508421 , v := 1
2 (p−1) = 2126−1 , w := 1

4 (p+1) = 2125 .

http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/
http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz
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The Curve E and its Twist E′. We define E to be the elliptic curve over Fp2

with affine Montgomery model

E : y2 = x(x2 +Ax+ 1) ,

where

A = A0 +A1 · i with

{
A0 = 45116554344555875085017627593321485421 ,
A1 = 2415910908 .

The element 12/A is not a square in Fp2 , so the curve over Fp2 defined by

E ′ : (12/A)y2 = x(x2 +Ax+ 1)

is a model of the quadratic twist of E . The twisting Fp4 -isomorphism δ : E → E ′
is defined by δ : (x, y) �→ (x, (A/12)1/2y). The map δ1 : (x, y) �→ (xW , yW ) =

(12A x+4, 122

A2 y) defines an Fp2-isomorphism between E ′ and the Weierstrass model

E2,−1,s : y
2
W = x3

W + 2(9(1 + si)− 24)xW − 8(9(1 + si)− 16)

of [32, Theorem 1] with

s = i(1− 8/A2) = 86878915556079486902897638486322141403 ,

so E is a Montgomery model of the quadratic twist of E2,−1,s. (In the notation
of [32, §5] we have E ∼= E ′2,−1,s and E ′ ∼= E2,−1,s.) These curves all have j-invariant

j(E) = j(E ′) = j(E2,−1,s) = 28
(A2 − 3)3

A2 − 4
= 26

(5− 3si)3(1− si)

(1 + s2)2
.

Group Structures. Using the SEA algorithm [28], we find that

#E(Fp2) = 4N and #E ′(Fp2) = 8N ′

where

N = v2 + 2u2 and N ′ = 2w2 − u2

are 252-bit and 251-bit primes, respectively. Looking closer, we see that

E(Fp2) ∼= (Z/2Z)
2 × Z/NZ and E ′(Fp2) ∼= Z/2Z× Z/4Z× Z/N ′Z .

Recall that every element of Fp2 is either the x-coordinate of two points in E(Fp2),
the x-coordinate of two points in E ′(Fp2), or the x-coordinate of one point of
order two in both E(Fp2) and E ′(Fp2). The x-coordinates of the points of exact

order 2 in E(Fp2) (and in E ′(Fp2)) are 0 and − 1
2A±

1
2

√
A2 − 4; the points of exact

order 4 in E ′(Fp2) have x-coordinates ±1. Either of the points with x-coordinate
2 will serve as a generator for the cryptographic subgroup E(Fp2)[N ]; either of
the points with x-coordinate 2− i generate E ′(Fp2)[N ′].
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Curve Points, x-Coordinates, and Random Bitstrings. Being Mont-
gomery curves, both E and E ′ are compatible with the Elligator 2 construction [5,
§5]. For our curves, [5, Theorem 5] defines efficiently invertible injective maps
Fp2 → E(Fp2) and Fp2 → E ′(Fp2). This allows points on E and/or E ′ to be
encoded in such a way that they are indistinguishable from uniformly random
254-bit strings. Since we work with x-coordinates only in this article, a square
root is saved when computing the injection (see [5, §5.5] for more details).

The ECDLP on E and E′. Suppose we want to solve an instance of the DLP in
E(Fp2) or E ′(Fp2). Applying the Pohlig–Hellman–Silver reduction [25], we almost
instantly reduce to the case of solving a DLP instance in either E(Fp2)[N ] or
E ′(Fp2)[N ′]. The best known approach to solving such a DLP instance is Pollard’s
rho algorithm [26], which (properly implemented) can solve DLP instances in
E(Fp2)[N ] (resp. E ′(Fp2)[N ′]) in around 1

2

√
πN ∼ 2125.8 (resp. 1

2

√
πN ′ ∼ 2125.3)

group operations on average [9]. One might expect that working over Fp2 would

imply a
√
2-factor speedup in the rho method by using Frobenius classes; but

this seems not to be the case, since neither E nor E ′ is a subfield curve [36, §6].
The embedding degrees of E and E ′ with respect to N and N ′ are 1

50 (N − 1)
and 1

2 (N
′ − 1), respectively, so ECDLP instances in E(Fp2)[N ] and E(Fp2)[N ′]

are not vulnerable to the Menezes–Okamoto–Vanstone [22] or Frey–Rück [14]
attacks. The trace of E is p2 + 1 − 4N = ±1, so neither E nor E ′ are amenable
to the Smart–Satoh–Araki–Semaev attack [27], [29], [30].

While our curves are defined over a quadratic extension field, this does not
seem to reduce the expected difficulty of the ECDLP when compared with elliptic
curves over similar-sized prime fields. Taking the Weil restriction of E (or E ′)
to Fp as in the Gaudry–Hess–Smart attack [18], for example, produces a simple
abelian surface over Fp; and the best known attacks on DLP instances on simple
abelian surfaces over Fp offer no advantage over simply attacking the ECDLP
on the original curve (see [31], [17], and [15, §9] for further discussion).

Superficially, E is what we would normally call twist-secure (in the sense of
Bernstein [3] and Fouque–Réal–Lercier–Valette [13]), since its twist E ′ has a
similar security level. Indeed, E (and the whole class of curves from which it
was drawn) was designed with this notion of twist-security in mind. However,
twist-security is more subtle in the context of endomorphism-based scalar
decompositions; we will return to this subject in §4 below.

The Endomorphism Ring. Let πE denote the Frobenius endomorphism of E .
The curve E is ordinary (its trace tE is prime to p), so its endomorphism ring
is an order in the quadratic field K := Q(πE). (The endomorphism ring of an
ordinary curve and its twist are always isomorphic, so what holds below for E
also holds for E ′.) We will see below that E has an endomorphism ψ such that
ψ2 = −[2]πE . The discriminant of Z[ψ] is the fundamental discriminant

DK = −8 · 5 · 397 · 10528961 · 6898209116497 · 1150304667927101

of K, so Z[ψ] is the maximal order in K; hence, End(E) = Z[ψ].
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The safecurves specification [7] suggests that the discriminant of the CM
field should have at least 100 bits; our E easily meets this requirement, since DK

has 130 bits. We note that well-chosen GLS curves can also have large CM field
discriminants, but GLV curves have tiny CM field discriminants by construction:
for example, the endomorphism ring of the curve secp256k1 [12] (at the heart
of the Bitcoin system) has discriminant −3.

Brainpool [11] requires the ideal class number of K to be larger than 106;
this property is never satisfied by GLV curves, which have tiny class numbers
(typically ≤ 2) by construction. But E easily meets this requirement: the class
number of End(E) is

h(End(E)) = h(DK) = 27 · 31 · 37517 · 146099 · 505117 ∼ 1019 .

3 Efficient Endomorphisms on E, E ′, and the x-line

Theorem 1 of [32] defines an efficient endomorphism

ψ2,−1,s : (xW , yW ) �−→
(
−xp

W

2
− 9(1− si)

xp
W − 4

,
yp
W√
−2

(
−1
2

+
9(1− si)

(xp
W − 4)2

))
of degree 2p on the Weierstrass model E2,−1,s, with kernel 〈(4, 0)〉. To avoid an
ambiguity in the sign of the endomorphism, we must fix a choice of

√
−2 in Fp2 .

We choose the “small” root:

√
−2 := 264 · i . (1)

Applying the isomorphisms δ and δ1, we define efficient Fp2 -endomorphisms

ψ := (δ1δ)
−1ψ2,−1,sδ1δ and ψ′ := δψδ−1 = δ−1

1 ψ2,−1,sδ1

of degree 2p on E and E ′, respectively, each with kernel 〈(0, 0)〉. More explicitly:
if we let

n(x) := Ap

A

(
x2 +Ax + 1

)
, d(x) := −2x , s(x) := n(x)p/d(x)p ,

r(x) := Ap

A (x2 − 1) , and m(x) := n′(x)d(x) − n(x)d′(x) ,

then ψ and ψ′ are defined (using the same value of
√
−2 fixed in Eq. (1)) by

ψ : (x, y) �−→
(
s(x) ,

−12v

Av
√
−2

ypm(x)p

d(x)2p

)
and

ψ′ : (x, y) �−→
(
s(x) ,

−122v
√
−2

A2v

ypr(x)p

d(x)2p

)
.
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Actions of the Endomorphisms on Points. Theorem 1 of [32] tells us that

ψ2 = −[2]πE and (ψ′)2 = [2]πE′ , (2)

where πE and πE′ are the p2-power Frobenius endomorphisms of E and E ′,
respectively, and

P (ψ) = P (ψ′) = 0 , where P (T ) = T 2 − 4uT + 2p .

If we restrict to the cryptographic subgroup E(Fp2)[N ], then ψ must act as
multiplication by an integer eigenvalue λ, which is one of the two roots of P (T )
modulo N . Similarly, ψ′ acts on E ′(Fp2)[N ′] as multiplication by one of the roots
λ′ of P (T ) modulo N ′. The correct eigenvalues are

λ ≡ − v

u
(mod N) and λ′ ≡ −2w

u
(mod N ′) .

Equation (2) implies that λ2 ≡ −2 (mod N) and λ′2 ≡ 2 (mod N ′). (Note that
choosing the other square root of −2 in Eq. (1) negates ψ, ψ′, λ, λ′, and u.)

To complete our picture of the action of ψ on E(Fp2) and ψ′ on E ′(Fp2), we
describe its action on the points of order 2 and 4 listed above:

(0, 0) �−→ 0 under ψ and ψ′ ,(
− 1

2A±
1
2

√
A2 − 4, 0

)
�−→ (0, 0) under ψ and ψ′ ,(

1,± 1
2

√
A(A+ 2)/3

)
�−→

(
− 1

2A−
1
2

√
A2 − 4, 0

)
under ψ′ ,(

−1,± 1
2

√
−A(A+ 2)/3

)
�−→

(
− 1

2A+ 1
2

√
A2 − 4, 0

)
under ψ′ .

Pseudo-endomorphisms on the x-line. One advantage of the Montgomery
model is that it allows a particularly efficient arithmetic using only the x-
coordinate. Technically speaking, this corresponds to viewing the x-line P1 as
the Kummer variety of E : that is, P1 ∼= E/〈±1〉.

The x-line is not a group: if P and Q are points on E , then x(P ) and
x(Q) determine the pair {x(P ⊕Q), x(P (Q)}, but not the individual elements
x(P ⊕Q) and x(P (Q). However, the x-line inherits part of the endomorphism
structure of E : every endomorphism φ of E induces a pseudo-endomorphism2

φx : x �→ φx(x) of P
1, which determines φ up to sign; and if φ1 and φ2 are two

endomorphisms of E , then

(φ1)x(φ2)x = (φ2)x(φ1)x = (φ1φ2)x = (φ2φ1)x .

Montgomery’s explicit formulæ for pseudo-doubling (DBL), pseudo-addition
(ADD), combined pseudo-doubling and pseudo-addition (DBLADD) on P1 are
available in [6]. In addition to these, we need expressions for both ψx and (ψ±1)x
to initialise the addition chains in §5. Moving to projective coordinates: write

2 “Pseudo-endomorphisms” are true endomorphisms of P1. We use the term pseudo-
endomorphism to avoid confusion with endomorphisms of elliptic curves, and to
reflect the use of terms like “pseudo-addition” for basic operations on the x-line.
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x = X/Z and y = Y/Z. Then the negation map on E is [−1] : (X : Y : Z) �→ (X :
−Y : Z), and the double cover E → E/〈[±1]〉 ∼= P1 is (X : Y : Z) �→ (X : Z).
The pseudo-doubling on P1 is

[2]x((X : Z)) =
(
(X + Z)2(X − Z)2 : (4XZ)

(
(X − Z)2 + A+2

4 · 4XZ
))

. (3)

Our endomorphism ψ induces the pseudo-endomorphism

ψx((X : Z)) =
(
Ap
(
(X − Z)2 − A+2

2 (−2XZ)
)p

: A(−2XZ)p
)

.

Composing ψx with itself, we confirm that ψxψx = −[2]x(πE)x.

Proposition 1. With the notation above, and with
√
−2 chosen as in Eq. (1),

(ψ ± 1)x(x) = (ψ′ ± 1)x(x)

=
2s2nd4p − x(xn)pm2pAp−1

2s(x− s)2d4pAp−1
∓ mp(xn)(p+1)/2

√
−2

A(p−1)/2(x − s)2d2p
. (4)

Proof. If P and Q are points on a Montgomery curve By2 = x(x2 + Ax + 1),
then

x(P ±Q) =
B (x(P )y(Q)∓ x(Q)y(P ))2

x(P )x(Q) (x(P ) − x(Q))2
.

Taking P = (x, y) to be a generic point on E (where B = 1), setting Q = ψ(P ),
and eliminating y using y2 = −Ap

2Adn yields the expression for (ψ ± 1)x above.

The same process for E ′ (with B = 12
A ), eliminating y with 12

A y2 = −Ap

2Adn,
yields the same expression for (ψ′ ± 1)x. ��

Deriving explicit formulæ to compute the pseudo-endomorphism images in
Eq. (4) is straightforward. We omit these formulæ here for space considerations,
but they can be found in our code online. If P ∈ E , then on input of x(P ),
the combined computation of the three projective elements (Xλ−1 : Zλ−1),
(Xλ : Zλ), (Xλ+1 : Zλ+1), which respectively correspond to the three affine
elements x([λ−1]P ), x([λ]P ), x([λ+1]P ), incurs 15 multiplications, 129 squarings
and 10 additions in Fp2 . The bottleneck of this computation is raising dn to the
power of (p + 1)/2 = 2126, which incurs 126 squarings. We note that squarings
are significantly faster than multiplications in Fp2 .

4 Scalar Decompositions

We want to evaluate scalar multiplications [m]P as [a]P ⊕ [b]ψ(P ), where

m ≡ a+ bλ (mod N)

and the multiscalar (a, b) has a significantly shorter bitlength3 than m. For our
applications we impose two extra requirements on multiscalars (a, b), so as to
add a measure of side-channel resistance:
3 The bitlength of a scalar m is �log2 |m|�; the bitlength of a multiscalar (a, b) is
�log2 ‖(a, b)‖∞�.
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1. both a and b must be positive, to avoid branching and to simplify our
algorithms; and

2. the multiscalar (a, b) must have constant bitlength (independent of m as
m varies over Z), so that multiexponentiation can run in constant time.

In some protocols—notably Diffie–Hellman—we are not interested in the
particular values of our random scalars, as long as those values remain secret. In
this case, rather than starting with m in Z/NZ (or Z/N ′Z) and finding a short,
positive, constant-bitlength decomposition of m, it would be easier to randomly
sample some short, positive, constant-bitlength multiscalar (a, b) from scratch.
The sample space must be chosen to ensure that the corresponding distribution
of values a+bλ in Z/NZ does not make the discrete logarithm problem of finding
a+ bλ appreciably easier than if we started with a random m.

Zero Decomposition Lattices. The problems of finding good decompositions
and sampling good multiscalars are best addressed using the geometric structure
of the spaces of decompositions for E and E ′. The multiscalars (a, b) such that
a+ bλ ≡ 0 (mod N) or a+ bλ′ ≡ 0 (mod N ′) form lattices

L = 〈(N, 0), (−λ, 1)〉 and L′ = 〈(N ′, 0), (−λ′, 1)〉 ,

respectively, with a + bλ ≡ c + dλ (mod N) if and only if (a, b) − (c, d) is in L
(similarly, a+ bλ′ ≡ c+ dλ′ (mod N ′) if and only if (a, b)− (c, d) is in L′).

The sets of decompositions of m for E(Fp)[N ] and E(Fp2)[N ′] therefore form
lattice cosets

(m, 0) + L and (m, 0) + L′ ,

respectively, so we can compute short decompositions of m for E(Fp)[N ]
(resp. E(Fp2)[N ′]) by subtracting vectors near (m, 0) in L (resp. L′) from (m, 0).
To find these vectors, we need ‖ · ‖∞-reduced4 bases for L and L′.

Proposition 2 (Definition of e1, e2, e
′
1, e

′
2). Up to order and sign, the shortest

possible bases for L and L′ (with respect to ‖ · ‖∞) are given by

L = 〈 e1 := (v, u) , e2 := (−2u, v) 〉 and

L′ = 〈 e′1 := (u,w) , e′2 := (2u− 2w, 2w − u) 〉 .

Proof. The proof of [32, Prop. 2] constructs sublattices

〈ẽ1 := −2(v, u), ẽ2 := −2(2u, v)〉 ⊂ L
and

〈ẽ′1 := 2(2w,−u), ẽ′2 := 4(u,w)〉 ⊂ L′

with [L : 〈ẽ1, ẽ2〉] = 4 and [L′ : 〈ẽ′1, ẽ′2〉] = 8. We easily verify that e1 = − 1
2 ẽ2

and e2 = − 1
2 ẽ1 are both in L; then, since 〈ẽ1, ẽ2〉 has index 4 in 〈e1, e2〉, we

4 Reduced with respect to Kaib’s generalized Gauss reduction algorithm [20] for ‖·‖∞.
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must have L = 〈e1, e2〉. Similarly, both e′1 = 1
4 ẽ

′
2 and e′2 = 1

2 (ẽ
′
2 − ẽ′1) are in L′,

and thus form a basis for L′. According to [20, Definition 3], an ordered lattice
basis [b1,b2] is ‖ · ‖∞-reduced if

‖b1‖∞ ≤ ‖b2‖∞ ≤ ‖b1 − b2‖∞ ≤ ‖b1 + b2‖∞ .

This holds for [b1,b2] = [e2,−e1] and [e′1, e
′
2], so ‖e2‖∞ and ‖e1‖∞ (resp. ‖e′1‖∞

and ‖e′2‖∞) are the successive minima of L (resp. L′) by [20, Theorem 5].5 ��

In view of Proposition 2, the fundamental parallelograms of L and L′ are the
regions of the (a, b)-plane defined by

A :=
{
(a, b) ∈ R2 : 0 ≤ vb− ua < N, 0 ≤ 2ub+ va < N

}
and

A′ :=
{
(a, b) ∈ R2 : 0 ≤ ub− wa < N ′, 0 ≤ (2u− 2w)b − (2w − u)a < N ′} ,

respectively. Every integer m has precisely one decomposition for E(Fp2)[N ]
(resp. E ′(Fp2)[N ′]) in any translate of A by L (resp. A′ by L′).

Short, Constant-Bitlength Scalar Decompositions. Returning to the
problem of finding short decompositions of m: let (α, β) be the (unique) solution
in Q2 to the system αe1 + βe2 = (m, 0). Since e1, e2 is reduced, the closest
vector to (m, 0) in L is one of the four vectors �α�e1 + �β�e2, �α�e1 + �β�e2,
�α�e1 + �β�e2, or �α�e1 + �β�e2 by [20, Theorem 19]. Following Babai [2], we
subtract �α�e1 + �β�e2 from (m, 0) to get a decomposition (ã, b̃) of m; by
the triangle inequality, ‖(ã, b̃)‖∞ ≤ 1

2 (‖e1‖∞ + ‖e2‖∞). This decomposition
is approximately the shortest possible, in the sense that the true shortest
decomposition is at most±e1±e2 away. Observe that ‖e1‖∞ = ‖e2‖∞ = 2126−1,
so (ã, b̃) has bitlength at most 126.

However, ã or b̃ may be negative (violating the positivity requirement), or
have fewer than 126 bits (violating the constant bitlength requirement). Indeed,
m �→ (ã, b̃) maps Z onto (A − 1

2 (e1 + e2)) ∩ Z2. This region of the (a, b)-plane,
“centred” on (0, 0), contains multiscalars of every bitlength between 0 and 126—
and the majority of them have at least one negative component. We can achieve
positivity and constant bitlength by adding a carefully chosen offset vector from
L, translating (A− 1

2 (e1 + e2))∩Z2 into a region of the (a, b)-plane where every
multiscalar is positive and has the same bitlength. Adding 3e1 or 3e2 ensures
that the first or second component always has precisely 128 bits, respectively;
but adding 3(e1+e2) gives us a constant bitlength of 128 bits in both. Theorem 1
makes this all completely explicit.

Theorem 1. Given an integer m, let (a, b) be the multiscalar defined by

a := m+ (3− �α�) v − 2 (3− �β�)u and b := (3− �α�)u+ (3− �β�) v ,

5 For the Euclidean norm, the bases [e1, e2] and [e
′
1, 2e

′
1 − e′

2] are ‖ · ‖2-reduced, but
[e′

1, e
′
2] is not.
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where α and β are the rational numbers

α := (v/N)m and β := −(u/N)m .

Then 2127 < a, b < 2128, and m ≡ a + bλ (mod N). In particular, (a, b) is a
positive decomposition of m, of bitlength exactly 128, for any m.

Proof. We have m ≡ a + bλ (mod N) because (a, b) = (ã, b̃) + 3(e1 + e2) ≡
(m, 0) (mod L), where (ã, b̃) is the translate of (m, 0) by the Babai roundoff
�α�e1 + �β�e2 described above. Now (ã, b̃) lies in A − 1

2 (e1 + e2), so (a, b) lies
in A + 5

2 (e1, e2); our claim on the bitlength of (a, b) follows because the four
“corners” of this domain all have 128-bit components. ��

Random Multiscalars. As we remarked above, in a pure Diffie–Hellman
implementation it is more convenient to simply sample random multiscalars
than to decompose randomly sampled scalars. Proposition 3 shows that random
multiscalars of at most 127 bits correspond to reasonably well-distributed values
in Z/NZ and in Z/N ′Z, in the sense that none of the values occur more than
one more or one fewer times than the average, and the exceptional values are
in O(

√
N). Such multiscalars can be trivially turned into constant-bitlength

positive 128-bit multiscalars—compatible with our implementation—by (for
example) completing a pair of 127-bit strings with a 1 in the 128-th bit position
of each component.

Proposition 3. Let B = [0, p]2; we identify B with the set of all pairs of strings
of 127 bits.

1. The map B → Z/NZ defined by (a, b) �→ a + bλ (mod N) is 4-to-1, except
for 4(p − 6u + 4) ≈ 4

√
2N values in Z/NZ with 5 preimages in B, and

8(u2 − 3u+ 2) ≈ 1
5

√
N values in Z/NZ with only 3 preimages in B.

2. The map B → Z/N ′Z defined by (a, b) �→ a+ bλ′ (mod N ′) is 8-to-1, except
for 8u2 ≈ 2

7

√
N ′ values with 9 preimages in B.

Proof (Sketch). For (1): the map (a, b) �→ a + bλ (mod N) defines a bijection
between each translate of A∩Z2 by L and Z/NZ. Hence, every m in Z/NZ has
a unique preimage (a0, b0) in A∩Z2, so it suffices to count ((a0, b0)+L)∩B for
each (a0, b0) in A ∩ Z2. Cover Z2 with translates of A by L; the only points in
Z2 that are on the boundaries of tiles are the points in L. Dissecting B along the
edges of translates of A and reassembling the pieces, we see that 8v−24u+20 <
4p multiscalars in B occur with multiplicity five, 8u2 − 24u + 16 < p/9 with
multiplicity three, and every other multiscalar occurs with multiplicity four.
There are therefore 4N+(8v−24u+20)−(8u2−24u+16) = (p+1)2 preimages in
total, as expected. The proof of (2) is similar to (1), but counting ((a, b)+L′)∩B
as (a, b) ranges over A′. ��
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Twist-Security with Endomorphisms. We saw in §2 that DLPs on E
and its twist E ′ have essentially the same difficulty, while Proposition 3 shows
that the real DLP instances presented to an adversary by 127-bit multiscalar
multiplications are not biased into a significantly more attackable range. But
there is an additional subtlety when we consider the fault attacks considered in [3]
and [13]: If we try to compute [m]P for P on E , but an adversary sneaks in a point
P ′ on the twist E ′ instead, then in the classical context the adversary can derive
m after solving the discrete logarithm [m mod N ′]P ′ in E ′(Fp2). But in the
endomorphism context, we compute [m]P as [a]P⊕[b]ψ(P ), and the attacker sees
[a+bλ′]P ′, which is not [m mod N ′]P ′ (or even [a+bλ mod N ′]P ′); we should
ensure that the values (a+ bλ′ mod N ′) are not concentrated in a small subset
of Z/N ′Z when (a, b) is a decomposition for E(Fp2)[N ]. This can be achieved by
a similar argument to that of Proposition 3: the map Z/NZ → Z/N ′Z defined
by m �→ (a, b) �→ a+bλ′ (mod N ′) is a good approximation of a 2-to-1 mapping.

5 Two-Dimensional Differential Addition Chains

Addition chains are used to compute scalar multiplications using a sequence
of group operations (or pseudo-group operations). A one-dimensional addition
chain computes [m]P for a given integer m and point P ; a two-dimensional
addition chain computes [a]P ⊕ [b]Q for a given multiscalar (a, b) and points
P and Q. In a differential addition chain, the computation of any ADD, P ⊕
Q, is always preceded (at some earlier stage in the chain) by the computation
of its associated difference P ( Q. The simplest differential addition chain is
the original one-dimensional “Montgomery ladder” [23], which computes scalar
multiplications [m]P for a single exponent m and point P . Every ADD in the
Montgomery ladder is in the form [i]P ⊕ [i+ 1]P , so every associated difference
is equal to P . Several two-dimensional differential addition chains have been
proposed, targeting multiexponentiations in elliptic curves and other primitives;
we suggest [4] and [34] for overviews.

In any two-dimensional differential chain computing [a]P ⊕ [b]Q for general P
and Q, the input consists of the multiscalar (a, b) and the three points P , Q, and
P ( Q. The initial difference P ( Q (or equivalently, the initial sum P ⊕ Q) is
essential to kickstart the chain on P and Q, since otherwise (by definition) P⊕Q
cannot appear in the chain. As we noted in §1, computing this initial difference
is an inconvenient obstruction to pure x-coordinate multiexponentiations on
general input: the pseudo-group operations ADD, DBL, and DBLADD can all be
made to work on x-coordinates (the ADD and DBLADD operations make use of
the associated differences available in a differential chain), but in general it is
impossible to compute the initial difference x(P (Q) in terms of x(P ) and x(Q).

For our application, we want to compute x([a]P ⊕ [b]ψ(P )) given inputs (a, b)
and x(P ). Crucially, we can compute x(P ( ψ(P )) as (ψ − 1)x(x(P )) using
Proposition 1; this allows us to compute x([a]P⊕[b]ψ(P )) using two-dimensional
differential addition chains with input (a, b), x(P ), ψx(x(P )), and (ψ−1)x(x(P )).
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We implemented one one-dimensional differential addition chain (Ladder)
and three two-dimensional differential addition chains (Prac, Ak, and Djb).
We briefly describe each chain, with its relative benefits and drawbacks, below.

(Montgomery) Ladder Chains. We implemented the full-length one-
dimensional Montgomery ladder as a reference, to assess the speedup that
our techniques offer over conventional scalar multiplication (It is also used as
a subroutine within our two-dimensional Prac chain). Ladder can be made
constant-time by adding a suitable multiple of N to the input scalar.

(Two-dimensional) Prac Chains. Montgomery [24] proposed a number of
algorithms for generating differential addition chains that are often much shorter
than his eponymous ladder. His one-dimensional “PRAC” routine contains an
easily-implemented two-dimensional subroutine, which computes the double-
exponentiation [a]P ⊕ [b]Q very efficiently. The downside for our purposes
is that the chain is not uniform: different inputs (a, b) give rise to different
execution patterns, rendering the routine vulnerable to a number of side-channel
attacks. Our implementation of this chain follows Algorithm 3.25 of [34]6: given
a multiscalar (a, b) and points P , Q, and P − Q, this algorithm computes
d = gcd(a, b) and R = [ad ]P ⊕ [ bd ]Q. To finish computing [a]P ⊕ [b]Q, we write
d = 2ie with i ≥ q and e odd, then compute S = [2i]R with i consecutive DBLs,
before finally computing [e]S with a one-dimensional Ladder chain7.

Ak Chains. Azarderakhsh and Karabina [1] recently constructed a two-
dimensional differential addition chain which offers some middle ground in the
trade-off between uniform execution and efficiency. While it is less efficient than
Prac, their chain has the advantage that all but one of the iterations consist of a
single DBLADD; this uniformity may be enough to thwart some simple side-channel
attacks. The single iteration which does not use a DBLADD requires a separate
DBL and ADD, and this slightly slower step can appear at different stages of the
algorithm. The location of this longer step could leak some information to a
side-channel adversary under some circumstances, but we can protect against
this by replacing all of the DBLADDs with separate DBL and ADDs, incurring a
very minor performance penalty. A more serious drawback for this chain is its
variable length: the total number of iterations depends on the input multiscalar.
This destroys any hope of achieving a runtime that is independent of the input.
Nevertheless, depending on the physical threat model, this chain may still be a
suitable alternative. Our implementation of this chain follows Algorithm 1 in [1].

Djb Chains. Bernstein gives the fastest known two-dimensional differential
chain that is both fixed length and uniform [4, §4]. This chain is slightly slower

6 We implemented the binary version of Montgomery’s two-dimensional Prac chain,
neglecting the ternary steps in [24, Table 4] (see also [34, Table 3.1]). Including these
ternary steps could be significantly faster than our implementation, though it would
require fast explicit formulæ for tripling on Montgomery curves.

7 In practice d is very small, so there is little benefit in using a more complicated chain
for this final step.
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than the Prac and Ak chains, but it offers stronger resistance against many
side-channel attacks.8 If the multiscalar (a, b) has bitlength 
, then this chain
requires precisely 
 − 1 iterations, each of which computes one ADD and one
DBLADD. In our context, Theorem 1 allows us to fix the number of iterations at
127. The execution pattern of the multiexponentiation is therefore independent
of the input, and will run in constant time.

Operation Counts. Table 1 profiles the number of high-level operations
required by each of our addition chain implementations on E . We used
the decomposition in Theorem 1 to guarantee positive constant-bitlength
multiscalars. In situations where side-channel resistance is not a priority, and the
Ak or Prac chain is preferable, variable-length decompositions could be used:
these would give lower operation counts and slightly faster average timings.

Table 1. Pseudo-group operation counts per scalar multiplication on the x-line for
the 2-dimensional Djb, Ak and Prac chains (using endomorphism decompositions)
and the 1-dimensional Ladder. The counts for Ladder and Djb are exact; those for
Prac and Ak are averages, with corresponding standard deviations, over 106 random
trials (random scalars and points). In addition to the operations listed here, each chain
requires a final Fp2 -inversion to convert the result into affine form.

chain dim. endomorphisms #DBL #ADD #DBLADD

ψx, (ψ ± 1)x av. std. dev. av. std. dev. av. std. dev.

Ladder 1 — 1 — — — 253 —
Djb 2 affine 1 — 128 — 127 —
Ak 2 affine 1 — 1 — 179.6 6.7

Prac 2 projective 0.2 0.4 113.8 11.6 73.4 11.1

The Ladder and Djb chains offer some slightly faster high-level operations.
In these chains, the “difference elements” fed into the ADDs are fixed; if these
points are affine, then this saves one Fp2-multiplication for each ADD. In Ladder,
the difference is always the affine x(P ), so these savings come for free. InDjb, the
difference is always one of the four values x(P ), ψx(x(P )), or (ψ ± 1)x(x(P )),
so a shared inversion is used to convert ψx(x(P )) and (ψ ± 1)x(x(P )) from
projective to affine coordinates. While this costs one Fp2 -inversion and six-Fp2

multiplications, it saves 253 Fp2 -inversions inside the loop.

6 Timings

Table 2 lists cycle counts for our implementations run on an Intel Core i7-3520M
(Ivy Bridge) processor at 2893.484 MHz with hyper-threading turned off, over-
clocking (“turbo-boost”) disabled, and all-but-one of the cores switched off in

8 It would be interesting to implement our techniques with Bernstein’s non-uniform
two-dimensional extended-gcd differential addition chain [4], which can outperform
Prac (though it “takes more time to compute and is not easy to analyse”).
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Table 2. Performance timings for four different implementations of compact, x-
coordinate-only scalar multiplications targeting the 128-bit security level. Timings are
given for the one-dimensional Montgomery Ladder, as well as the two-dimensional
chains (Djb, Ak and Prac) that benefit from the application of an endomorphism
and subsequent short scalar decompositions.

addition chain dimension uniform? constant time? cycles

Ladder 1 ✓ ✓ 159,000

Djb 2 ✓ ✓ 148,000

Ak 2 ✓ ✗ 133,000

Prac 2 ✗ ✗ 109,000

BIOS. The implementations were compiled with gcc 4.6.3 with the -O2 flag
set and tested on a 64-bit Linux environment. Cycles were counted using the
SUPERCOP toolkit [8].

The most meaningful comparison that we can draw is with Bernstein’s
Curve25519 software. Like our software, Curve25519 works entirely on the x-
line, from start to finish; using the uniform one-dimensional Montgomery ladder,
it runs in constant time. Thus, fair performance comparisons can only be made
between his implementation and the two of ours that are also both uniform
and constant-time: Ladder and Djb. Benchmarked on our hardware with all
settings as above, Curve25519 scalar multiplications ran in 182,000 cycles on
average. Looking at Table 2, we see that using the one-dimensional Ladder on
the x-line of E gives a factor 1.14 speed up over Curve25519, while combining
an endomorphism with the two-dimensional Djb chain on the x-line of E gives
a factor 1.23 speed up over Curve25519.

While there are several other implementations targeting the 128-bit security
level that give faster performance numbers than ours, we reiterate that our aim
was to push the boundary in the arena of x-coordinate-only implementations.

Hamburg [19] has also documented a fast software implementation employing
x-coordinate-only Montgomery arithmetic. However, it is difficult to compare
Hamburg’s software with ours: his is not available to be benchmarked, and his
figures were obtained on the Sandy Bridge architecture (and manually scaled
back to compensate for turbo-boost being enabled). Nevertheless, Hamburg’s
own comparison with Curve25519 suggests that a fair comparison between our
constant-time implementations and his would be close.

Acknowledgements. We thank Joppe W. Bos for independently bench-
marking our code on his computer and for discussions on arithmetic modulo
p = 2127 − 1.
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13. Fouque, P.A., Lercier, R., Réal, D., Valette, F.: Fault attack on elliptic curve
Montgomery ladder implementation. In: Breveglieri, L., Gueron, S., Koren, I.,
Naccache, D., Seifert, J.P. (eds.) FDTC, pp. 92–98. IEEE Computer Society (2008)

14. Frey, G., Müller, M., Rück, H.G.: The Tate pairing and the discrete logarithm
applied to elliptic curve cryptosystems. IEEE Trans. Inform. Theory 45(5),
1717–1719 (1999)

15. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve
cryptography on a large class of curves. J. Cryptology 24(3), 446–469 (2011)

16. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

17. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic
curve discrete logarithm problem. J. Symb. Comp. 44(12), 1690–1702 (2009)

18. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil
descent on elliptic curves. J. Cryptology 15(1), 19–46 (2002)

19. Hamburg, M.: Fast and compact elliptic-curve cryptography. Cryptology ePrint
Archive, Report 2012/309 (2012), http://eprint.iacr.org/

20. Kaib, M.: The Gauß lattice basis reduction algorithm succeeds with any norm.
In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 275–286. Springer, Heidelberg
(1991)

21. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

22. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. Inform. Theory 39(5), 1639–1646 (1993)

http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://www.hyperelliptic.org/EFD/
http://safecurves.cr.yp.to
http://bench.cr.yp.to
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.secg.org/collateral/sec2_final.pdf
http://eprint.iacr.org/


Faster Compact Diffie–Hellman: Endomorphisms on the x-line 199

23. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comp. 48(177), 243–264 (1987)

24. Montgomery, P.L.: Evaluating recurrences of form Xm+n = f(Xm, Xn, Xm−n) via
Lucas chains (1992), ftp.cwi.nl/pub/pmontgom/lucas.ps.gz

25. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Trans. Inform. Theory 24(1),
106–110 (1978)

26. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math.
Comp. 32(143), 918–924 (1978)

27. Satoh, T., Araki, K.: Fermat quotients and the polynomial time discrete log
algorithm for anomalous elliptic curves. Comment. Math. Univ. St. Pauli 47(1),
81–92 (1998)

28. Schoof, R.: Counting points on elliptic curves over finite fields. J. Théor. Nombres
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A How Was This Curve Chosen?

The curve-twist pair implemented in this paper was chosen from the family of
degree-2 Q-curve reductions with efficient endomorphisms (over Fp2) described
in [32]. These curves are equipped with efficient endomorphisms, and the
arithmetic properties of the family are not incompatible with twist-security.

We fixed p = 2127 − 1, a Mersenne prime; this p facilitates very fast modular
arithmetic. Next, we chose a tiny nonsquare to define Fp2 = Fp(i) with i2 = −1;
this makes for slightly faster Fp2-arithmetic, and much simpler formulæ. The
most secure group orders for a Montgomery curve-twist pair (E , E ′) over Fp2

have the form (#E ,#E ′) = (4N, 8N ′) (or (8N, 4N ′)) with N and N ′ prime. The
cofactor of 4 is forced by the existence of a Montgomery model, and then p2 ≡ 1
(mod 8) forces a cofactor of 8 on the twist.

ftp.cwi.nl/pub/pmontgom/lucas.ps.gz
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The family in [32, §5] is parametrised by a free parameter s; each choice of s in
Fp yields a curve over Fp2 , each in a distinct Fp-isomorphism class. If the curve
corresponding to s in Fp has a Montgomery model E : BY 2 = X(X2 +AX + 1)
over Fp2 , then 8/A2 = 1 + si. If we write A = A0 + A1i with A0 and A1 in Fp,
then

A4
0 + 2A2

0A
2
1 +A4

1 + 8(A2
1 −A2

0) = 0 . (5)

To optimise performance, we searched for parameter values s in Fp yielding
Montgomery representations with “small” coefficients: that is, where A0 and A1

could be represented as small integers. But in view of Eq. (5), for any small
value of A1 there are at most four corresponding possibilities for A0, none of
which have any reason to be small (and vice versa). Given the number of curves
to be searched to find a twist-secure pair, we could not expect to find a twist-
secure curve with both A0 and A1 small. Our Fp2-arithmetic placed no preference
on which of these two coefficients should be small, so we flipped a coin and
restricted our search to s yielding A1 with integer representations less than 232

(occupying only one word on 32- and 64-bit platforms). The constant appearing
in Montgomery’s formulæ [23, p. 261] is (A+2)/4, so we also required the integer
representation of A1 to be congruent to 2 modulo 4.

Our search prioritised A1 values whose integer representations had low signed
Hamming weight, in the hope that multiplication by A1 might be faster when
computed via sequence of additions and shifts. We did not find any curve-twist
pairs with optimal cofactors and A1 of weight 1, 2, or 3, but we found ten such
pairs with A1 of weight 4. Three of these pairs had an A1 of precisely 32 bits;
the curve-twist pair in §2 corresponds to the smallest such A1. Although the low
signed Hamming weight of A1 did not end up improving our implementation,
the small size of A1 yielded a minor but noticeable speedup.

The takeaway message is that the construction in [32, §5] is flexible enough
to find a vast number of twist-secure curves over any quadratic extension field,
to which all of the techniques in this paper can be directly applied (or easily
adapted), regardless of how the parameter search is designed. Such curve-twist
pairs can be readily found in a verifiably random manner, following, for instance,
the method described in [11, §5].
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Abstract. Our main result gives a way to instantiate the random ora-
cle with a concrete hash function in “full domain hash” applications.
The term full domain hash was first proposed by Bellare and Rog-
away [BR93, BR96] and referred to a signature scheme from any trapdoor
permutation that was part of their seminal work introducing the random
oracle heuristic. Over time the term full domain hash has (informally)
encompassed a broader range of notable cryptographic schemes includ-
ing the Boneh-Franklin [BF01] IBE scheme and Boneh-Lynn-Shacham
(BLS) [BLS01] signatures. All of the above described schemes required
a hash function that had to be modeled as a random oracle to prove
security. Our work utilizes recent advances in indistinguishability obfus-
cation to construct specific hash functions for use in these schemes. We
then prove security of the original cryptosystems when instantiated with
our specific hash function.
Of particular interest, our work evades the impossibility results of
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Signatures to be based on trapdoor permutations, and its extension by
Dodis, Haitner, and Tentes [DHT12] to the RSA Full-Domain Hash Sig-
natures. This indicates our techniques applying indistinguishability ob-
fuscation may be useful for circumventing other black-box impossibility
proofs.

1 Introduction

Since Bellare and Rogaway [BR93] introduced the Random Oracle Model, a ma-
jor effort in cryptography has been to understand when and if random oracles can
be instantiated with families of actual hash functions while maintaining security.
Over the years, we have seen real progress in this effort: Firstly we have seen the
discovery of alternative schemes that do not require random oracles but achieve
the same security properties as earlier schemes that do require random oracles.
For example, Cramer and Shoup [CS98] achieved efficient chosen ciphertext se-
curity from DDH hard groups. As another example Canetti, Halevi, and Katz
[CHK07] achieved secure IBE without random oracles, following the seminal
work of [BF01] giving IBE in the Random Oracle Model. More recently, we have
seen the discovery of schemes that not only work in the standard model with-
out random oracles, but work in a manner very similar to the original schemes
that used random oracles (e.g. [HSW13, FHPS13] following schemes in the ran-
dom oracle model [BF01, BLS01]). However, all of these schemes proven secure
without random oracles required changing the underlying cryptographic scheme
in addition to instantiating the random oracle with a concrete hash function.
Thus, despite these advances, the following basic question has remained open:

Can we instantiate the random oracle with an actual family of hash functions
for existing cryptographic schemes in the random oracle model, such as Full

Domain Hash signatures?

In other words, can we achieve security without changing the underlying cryp-
tographic scheme at all, but only by replacing the random oracle with a specific
family of hash functions? In this work, we give the first positive answer to this
question. We do this by leveraging the notion of indistinguishability obfusca-
tion [BGI+01, BGI+12] that was recently achieved in the work of [GGH+13].

Our result is particularly interesting in light of negative results on the Ran-
dom Oracle Model [CGH98, GK03, BBP04] which have called into question the
secure applicability of the Random Oracle Model. Our work is the first to show
natural examples of schemes that were originally invented with the Random Or-
acle Model in mind, that nevertheless remain secure when the random oracle is
specifically instantiated.

In particular, our work evades the impossibility result of Dodis, Oliveira, and
Pietrzak [DOP05], who showed that there can be no black-box construction of
hash functions that allow Full-Domain Hash Signatures to be based on trapdoor
permutations. Because we make use of obfuscation, our constructions are inher-
ently non-black-box, and thus are not ruled out by this type of black-box impos-
sibility result. This indicates that our techniques applying indistinguishability
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obfuscation may be useful in the future for circumventing other such black-box
impossibility proofs.

Our Result. Our main result gives a way to instantiate the random oracle with
a concrete hash function in “full domain hash” (FDH) signatures. The FDH
signature scheme was first proposed1 in the original Bellare-Rogaway [BR93]
paper as a way to build a signature scheme from any trapdoor permutation
using the introduced random oracle heuristic. This work was very influential
and formed the foundation for part of the PKCS#1 standard [KS98]. While the
terminology of “full-domain hash” originally applied to the trapdoor permu-
tation signature scheme of Bellare and Rogaway, over time it has (informally)
encompassed a broader range of notable cryptographic schemes including the
Boneh-Franklin [BF01] IBE scheme, the Cock’s IBE scheme [Coc01], and Boneh-
Lynn-Shacham (BLS) [BLS01] signatures. Although these schemes exist in differ-
ent algebraic domains and have different aims, they share common construction
and proof structures that uses random oracle programming in very similar ways.

Our work develops a methodology for replacing the programming of a ran-
dom oracle in these construction using indistinguishable obfuscation in a novel
manner. We begin by describing a scheme that replaces the RO hash function
in the original Bellare-Rogaway trapdoor permutation (TDP) signature scheme.
Our newly instantiated scheme is then proven to be selectively secure.

Let’s begin by informally recalling the Bellare-Rogaway TDP-based FDH
scheme. The signature setup algorithm generates a trapdoor permutation pair of
functions gPK, g−1

SK. It chooses a hash function H(·) that maps from the message
space to the domain (and co-domain) of the permutation. The permutation gPK

and hash function are published as the verification key and the inverse g−1
SK is

kept secret. To sign a message m, the signer computes g−1
SK(H(m)). To verify a

signature σ on message m, the verifier simply checks whether gPK(σ)
?
= H(m).

The proof of the Bellare-Rogaway FDH system uses the random oracle heuris-
tic to model H(·) as a programmable random oracle. Suppose a poly-time at-
tacker makes at most QH oracle queries. One can create a reduction algorithm
to the security of the trapdoor permutation as follows. For all but one of the
(unique) queries of a message m to the oracle, the reduction algorithm chooses a
random value t from the domain and outputs gPK(t) as the result of the query.
For any of these messages, the reduction algorithm can easily generate a signa-
ture by outputting t. However, at one query point m∗ it programs the output of
the random oracle to be z∗ = gPK(t

∗) where z∗ was given from the trapdoor per-
mutation challenger. If the attacker forges at this message, then the forgery will
be t∗ which is immediately the solution for the trapdoor permutation inversion.

Our first result is creating a replacement hash function for the oracle H(·)
and developing a security proof without relying on the random oracle heuristic.
To keep with our original goals, our only modifications will be to H(·) and we

1 The terminology “full-domain hash” was actually introduced by Bellare-Rogaway in
1996 [BR96]. They applied this label to the noted signature scheme of their earlier
work.
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will use the signature system construction as is, with no changes to the under-
lying trapdoor permutation family. The two main tools we use to build H(·)
are an indistinguishability obfuscator [BGI+01, GGH+13] and a recently intro-
duced primitive called constrained PRFs [BW13, BGI14, KPTZ13]. In short, a
constrained PRF key is a secret key K that allows the evaluator to evaluate the
a PRF at a limited set of points, while the rest will appear pseudorandom to
him. For our results, we only need a simple form of constrained PRFs called
“punctured PRFs” [SW13]. In this setting a private key will be associated with
a polynomial set S, where a key K(S) can evaluate the PRF F (K,x) at all x
except when x ∈ S. For our proofs we only ever need S to be a singleton set.

We now overview the hash function construction and how we prove it to be
selectively secure. (One could use the usual complexity leveraging arguments to
claim adaptive security, but we will address adaptive security in a direct way
shortly.) To create the hash function the reduction algorithm first chooses a
puncturable PRF key K (note this “master key” can evaluate the PRF at all
points). Next, the hash function itself will be an obfuscation of the programwhich
on input m computes gPK(F (K,m)). That is the program simply computes the
PRF at pointm and then applies the trapdoor permutation. We call this program
Full Domain Hash. To prove security we will apply the “punctured programs”
method of Sahai and Waters [SW13], where we surgically remove a key element
of a program, but in a way that does not alter input/output functionality.

Our security proof is formed from a sequence of hybrids. In the first hybrid, we
replace the obfuscation of the program Full Domain Hash with an obfuscation
of an equivalent program called Full Domain Hash*. This program operates the
same as the original except on input m∗, where m∗ is the message the attacker
selectively chose to attack (before seeing the verification key). At this point
instead of computing F (K,m∗) the program is simply hardwired to output a
constant z∗ to output where z∗ is set to be F (K,m∗). Since z∗ = F (K,m∗), the
input/output behavior is identical. In addition, the program is not given the full
PRF key K, but instead is given a punctured PRF key K({m∗}). By the security
of indistinguishable obfuscation the advantage of any poly-time attacker must be
negligibly close between these hybrids. In the next hybrid experiment we replace
z∗ with a random value chosen from the domain/range of the permutation. The
advantage between of this hybrid must also be close due to the constrained PRF
security. Now we are finally in a position where we can reduce to the security
of the trapdoor permutation. The reduction algorithm receives a TDP challenge
z∗ and hardcodes that in as the output of H(m∗). It can use a signature on
this to invert the challenge. At all other points it knows the punctured PRF key
and can therefore compute valid signatures without knowing the inverse of the
trapdoor permutation.

Our reduction actually shares some of the spirit of the original random oracle
reduction, where a challenge is programmed in at one point and signatures are
made by knowing the pre images at all others. A key aspect is that the obfusca-
tion hides the fact that at a certain hybrid m∗ is treated differently. If an attacker
were able to see inside the obfuscation it could actually see the preimages and
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break the scheme. Another interesting aspect is that our proof does not leverage
the fact that the function gPK(·) is a permutation. It would go through equally
well if we only assumed that it was an injective trapdoor function.

In our construction and proof, there is a hash function created as part of
each public key. Taking things further, we might want to have one hash function
built as a common reference string that could serve as part of many public keys.
Creating similar results in this setting will require further work.

There is also a connection between the proof techniques we use and the proof
technique for the selectively secure signature scheme of Sahai andWaters [SW13].
In the Sahai-Waters work, the verification key is an obfuscated program that
evaluates the punctured PRF on a message and then outputs the evaluation of
a one-way function on that. A signer signs by evaluating the punctured PRF
on the message. In comparison, in our case, the hash function is the obfuscated
program that evaluates the punctured PRF on a message and then outputs the
evaluation of a trapdoor permutation on that. Here in contrast, the signing is
done by applying the inverse permutation and the signer isn’t necessarily “aware”
of the punctured PRF.

Overcoming the Black-Box Impossibility. We now see more precisely why our
work evades the impossibility result of Dodis, Oliveira, and Pietrzak [DOP05]
and Dodis, Haitner, and Tentes [DHT12]. Our hash function is obfuscation of
code that runs the underlying permutation. The obfuscation will intuitively hide
the evaluation of this code. In particular, no attacker can tell if the trapdoor
permutation was actually computed on an input or whether it was a special point
where the output was hardcoded in. In the DOP negative result, they build an
attack oracle that specifically leverages the black box access to the TDP to
watch whenever it is called. It is interesting to see this very strong correlation
between the negative result and how non-black box access to a primitive and
indistinguishability obfuscation can combine to circumvent it.

Getting Adaptive Security. For our next result we show how to get adaptive (or
standard) signature security without complexity leveraging for the case where
the trapdoor permutation is the RSA function. The use of RSA as a trapdoor
permutation candidate was suggested in Bellare-Rogaway’93 [BR93] and explic-
itly given in Bellare-Rogaway’96 [BR96]. The public parameters in their scheme
are an RSA modulus N = pq for hidden primes p, q and an RSA exponent e
chosen such that gcd(φ(N), e) = 1. The secret key is the integer d where d ·e = 1
mod φ(N). A signature on message m is of the form H(m)d mod N and one

verifies a signature σ by checking if H(m)
?
= σe mod N .

We develop a different set of techniques that can leverage the particular struc-
ture of the RSA function. The first new ingredient is use of admissible hash
functions first introduced in the context of Identity-Based Encryption by Boneh-
Boyen [BB04a]. We use a simplification due to Freire et. al. [FHPS13]. At a high
level the system is a pair of a hash function h : {0, 1}�(λ) → {0, 1}n(λ) that hashes
from the message space to n bit strings and an efficient randomized algorithm
AdmSample. The sampling algorithm takes in the security parameter as well as
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second parameter Q which intuitively corresponds to the number of signature
queries an attacker makes. It outputs a string u ∈ {0, 1,⊥}n. Informally, we
say that the system is admissible if the following conditions hold. Consider any
sequence of Q values x1, . . . , xQ and x∗ = xi. The event we consider is where the
string h(xi) has a bit in common with u in at least one position, but h(x∗) is
different from u at all positions. (Note, if uj = ⊥ then it is different at position
j from all bit strings.) If this event occurs with non-negligible probability, we
say it is an admissible system. Intuitively, when used in a proof of a signature
scheme, the admissible hash function is utilized to partition the message space
into messages that can be signed in the query phase and those that can be used
in the challenge phase. A sampled string u corresponds to a particular partition.
When running a reduction, one hopes that the actual signature oracle queries
and forgery message align with a partition, and the reduction aborts otherwise.

To build the hash function candidate, the setup first chooses a random v ∈ Z∗N
as well as exponents ai,b chosen randomly in [0, φ(N)], for all i ∈ [1, n], b ∈ {0, 1}.
Next, it builds the hash function as an obfuscation of the program RSA Hash.
The program will first compute m′ = h(m). Then, it computes and outputs

v
∏

i∈[n] ai,m′
i .

Our proof proceeds in a few hybrid steps. In the first hybrid experiment the
challenger creates a partition internally by calling AdmSample(1λ, Q) → u for
an attacker that makes at most Q = Q(λ) queries. The game aborts and declares
the attacker unsuccessful if any of the query messages or forgery message violates
the partition. The property of admissible hashes states any attacker with non-
negligible advantage in the real game will also have non-negligible advantage
here. In the next hybrid, we change the way we sample the exponents ai,b. One
first chooses random yi,b ∈ [1, N ]. Then for when ui = b we set ci,b = e · yi,b.
If ui = b we set ci,b = e · yi,b + 1. Note in the first case ci,b is a multiple of e
and in the second case e � ci,b. The values ai,b = ci,b mod φ(N). We show that
this way of choosing a values is statistically close to the previous uniform way,
because gcd(φ(N), e) = 1.

Next, we use an alternative program where we directly use the ci,b values
in place of the ai,b values. Since the group Z∗N is of order φ(N) we have that

v
∏

i∈[n] ai,m′
i = v

∏
i∈[n] ci,m′

i for all m′. Therefore the input/output behavior is the
same between the two programs and we can argue the advantage in the hybrids
for poly-time attackers must be close by indistinguishability obfuscation. This
is the critical hybrid experiment in that it most radically departs from previous
such proofs, by leveraging indistinguishability obfuscation. Observe that this
hybrid experiment eliminates the need for the reduction to know φ(N), which is
crucial to the reduction, since it uses ci,b values instead of ai,b values. However,
if the values ci,b were completely visible to an attacker, they would be trivially
distinguishable from the “true” uniform ai,b values. However, indistinguishability
obfuscation guarantees that these values are hidden from the attacker, and that
indeed the attacker cannot distinguish this hybrid from the previous one.

Finally, we show that any attacker that is successful in the last hybrid can
be used to break the RSA assumption. For any signature query message m that
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respects the partition, the reduction will view H(m) as v raised to some integer
that is a multiple of e and taking the e-th root is then easy. Any forgery on
m∗ that respects the partition, the reduction will view H(m∗) as vz for some z
where gcd(e, z) = 1 and from this can derive v1/e.

BLS Signatures and More. We extend our techniques to replacing the random
oracle in the BLS [BLS01] signature scheme. In Section 5 we give a candidate that
has a selective proof of security based on the computational Diffie-Hellman prob-
lem (along with indistinguishability obfuscation). In the full version [HSW14],
we give an adaptive proof of security based on an assumption equivalent to the
n-Diffie-Hellman inversion assumption. The high level structures of these are
similar to the respective selective and adaptive construction and proof methods
above. The lower level mechanisms are adapted to the context of bilinear groups.
In Section 7, we sketch how the BLS ideas extend to the Boneh-Franklin IBE
scheme.

1.1 Other Related Work

Early work on replacing random oracles for the problem of obfuscating point
functions under entropy conditions began with the work of Canetti [Can97].

Recently, the work of Bellare, Hoang and Keelveedhi [BHK13] looked at a
complementary question of identifying a definitional abstraction to replace the
random oracle heuristic in several random oracle-based constructions. The ab-
straction is a notion of security called UCE (Universal Computational Extrac-
tor). The authors emphasize that a random oracle is known not to exist and
“behaves like a random oracle” is not a rigorously defined property, whereas
UCE is a well defined property of a hash function. They then show how several
previous constructions proven secure in the random schemes can be proven se-
cure if we assume the hash functions are UCE secure. One can then conjecture
that standard cryptographic hash functions like SHA-256 may satisfy the UCE
security notion. In contrast, our work is focused on providing new candidate
constructions for hash functions, that allow for a security proof to work with
the original constructions in the random oracle model. Interestingly, the work
of [BHK13] does not encompass the case of Full Domain Hash signatures, ar-
guably one of the most natural and well-studied constructions in the Random
Oracle Model, that we address here.

Dodis, Haitner, and Tentes [DHT12] show how to give an FDH signature that
is secure for at most q queries when the hash function grows with q.

2 Preliminaries

We define indistinguishability obfuscation, and variants of pseudo-random func-
tions (PRFs) that we will make use of. All the variants of PRFs that we consider
will be constructed from one-way functions.
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2.1 Indistinguishability Obfuscation

The definition below is from [GGH+13]; there it is called a “family-
indistinguishable obfuscator”. They show that this notion follows immediately
from their standard definition of indistinguishability obfuscator using a non-
uniform argument.

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT ma-
chine iO is called an indistinguishability obfuscator for a circuit class {Cλ} if
the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that

Pr[C′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– For any (not necessarily uniform) PPT adversaries Samp, D, there exists a
negligible function α such that the following holds: if Pr[∀x,C0(x) = C1(x) :
(C0, C1, τ)← Samp(1λ)] > 1− α(λ), then we have:

∣∣∣Pr [D(τ, iO(λ,C0)) = 1 : (C0, C1, τ)← Samp(1λ)
]

−Pr
[
D(τ, iO(λ,C1)) = 1 : (C0, C1, τ)← Samp(1λ)

]∣∣∣ ≤ α(λ)

In this paper, we will make use of such indistinguishability obfuscators for all
polynomial-size circuits:

Definition 2 (IndistinguishabilityObfuscator for P/poly).A uniform PPT
machine iO is called an indistinguishability obfuscator for P/poly if the following
holds: Let Cλ be the class of circuits of size at most λ. Then iO is an indistinguisha-
bility obfuscator for the class {Cλ}.

Such indistinguishability obfuscators for all polynomial-size circuits were con-
structed under novel algebraic hardness assumptions in [GGH+13].

2.2 Constrained PRFs

Wefirst consider some simple types of constrainedPRFs [BW13, BGI14, KPTZ13],
where a PRF is only defined on a subset of the usual input space.We focus on punc-
turable PRFs, which are PRFs that can be defined on all bit strings of a certain
length, except for any polynomial-size set of inputs:

Definition 3. A puncturable family of PRFs F mapping is given by a triple
of Turing Machines KeyF , PunctureF , and EvalF , and a pair of computable
functions n(·) and m(·), satisfying the following conditions:

– [Functionality preserved under puncturing] For every PPT adversary
A such that A(1λ) outputs a polynomial-size set S ⊆ {0, 1}n(λ), then for all
x ∈ {0, 1}n(λ) where x /∈ S, we have that:

Pr
[
EvalF (K,x)=EvalF (KS , x) : K←KeyF (1

λ),KS=PunctureF (K,S)
]
=1
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– [Pseudorandom at punctured points] For every PPT adversary (A1, A2)
such that A1(1

λ) outputs a polynomial-size set S ⊆ {0, 1}n(λ) and state τ ,
consider an experiment where K ← KeyF (1

λ) and KS = PunctureF (K,S).
Then we have∣∣∣Pr [A2(τ,KS, S,EvalF (K,S)) = 1

]
− Pr

[
A2(τ,KS, S, Um(λ)·|S|) = 1

]∣∣∣ = negl(λ)

where EvalF (K,S) denotes the concatenation of EvalF (K,x1)), . . . ,EvalF
(K,xk)) where S = {x1, . . . , xk} is the enumeration of the elements of S
in lexicographic order, negl(·) is a negligible function, and U� denotes the
uniform distribution over 
 bits.

For ease of notation, we write F (K,x) to represent EvalF (K,x). We also
represent the punctured key PunctureF (K,S) by K(S).

The GGM tree-based construction of PRFs [GGM84] from one-way functions
are easily seen to yield puncturablePRFs, as observedby [BW13,BGI14,KPTZ13].
Thus we have:

Theorem 1. [GGM84, BW13, BGI14, KPTZ13] If one-way functions exist,
then for all efficiently computable functions n(λ) and m(λ), there exists a punc-
turable PRF family that maps n(λ) bits to m(λ) bits.

2.3 RSA Assumption and Shamir’s Lemma

We begin by recalling (one of the) standard versions of the RSA assumption
[RSA78].

Assumption 1 (RSA). Let λ be the security parameter. Let positive integer N
be the product of two λ-bit, distinct odd primes p, q. Let e be a randomly chosen
positive integer less than and relatively prime to φ(N) = (p − 1)(q − 1). Given
(N, e) and a random y ∈ Z∗N , it is hard to compute x such that xe ≡ y mod N .

We also make use of the following lemma due to Shamir.

Lemma 1 (Shamir [Sha83]). Given x, y ∈ ZN together with a, b ∈ Z such
that xa = yb (mod N) and gcd(a, b) = 1, there is an efficient algorithm for
computing z ∈ ZN such that za = y (mod N).

2.4 Bilinear Groups and the CDH Assumption

Let G and GT be groups of prime order p. A bilinear map is an efficient mapping
e : G×G→ GT which is both: (bilinear) for all g ∈ G and a, b← Zp, e(g

a, gb) =
e(g, g)ab; and (non-degenerate) if g generates G, then e(g, g) = 1.

Assumption 2 (Computational Diffie-Hellman). Let g generate a group G
of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, the following probability
is negligible in λ:

Pr[a, b← Zp; z ← A(g, ga, gb) : z = gab].
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2.5 The n-Diffie-Hellman Inversion Assumption

Our full version [HSW14] contains a construction of adaptively secure BLS sig-
natures that makes use of the n-Diffie-Hellman Inversion assumption [BB04b].
This is a parameterized family of assumptions, where the number of group ele-
ments involved increases with n. (For our application, n will be dependent only
on the security parameter.)

Assumption 3 (n-Diffie-Hellman Inversion). Let h generate a group G of
prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, the following probability is
negligible in λ:

Pr[b← Zp; z ← A(h, hb, hb2 , . . . , hbn) : z = g1/b].

3 Full-Domain Hash Signatures (Selectively Secure)

In this section, we revisit the Bellare-Rogaway Full-Domain Hash (FDH) signa-
ture scheme [BR93, BR96], and show how to make it selectively secure in the
standard model by instantiating the random oracle in a specific way. We stress
that we do not modify the Bellare-Rogaway FDH signature scheme in any way;
the only new aspect of our construction is our instantiation of the random oracle
with a specific function whose description becomes part of the public key.

Recall that the Bellare-Rogaway FDH signature scheme required a trapdoor
permutation family. Our method, in fact, not only applies to trapdoor permu-
tation families, but indeed to any injective trapdoor function family. We prove
the selective security of the FDH signature scheme based on the security of the
indistinguishability obfusctor, the security of a puncturable PRF family, and the
security of an injective trapdoor function family.

For simplicity of exposition, we assume that there is a polynomial 
(λ) which
denotes the length of messages to be signed; we denote this message space by
M = {0, 1}�(λ). More generally, a collision-resistant hash function may be used
to hash messages to this size.

- Setup(1λ) : The setup algorithm first runs TDFSetup(1λ) and that produces a
public index PK along with a trapdoor SK, yielding the map gPK : {0, 1}n →
{0, 1}w together with its inverse. Next, the setup algorithm chooses a punc-
turable PRF key K for F where F (K, ·) : {0, 1}�(λ) → {0, 1}n. Then, it
creates an obfuscation of the of the program Full Domain Hash Figure 1.
The size of the program is padded to be the maximum of itself and the pro-
gram Full Domain Hash* of Figure 2. We refer to the obfuscated program as
the function H : {0, 1}�(λ) → {0, 1}w, which acts as the random oracle type
hash function in the Bellare-Rogaway scheme.
The verification key VK consists of the trapdoor index PK as well as the
hash function H(·). The secret key is the trapdoor SK as well as H(·).

- Sign(SK,m ∈ M) : The signature algorithm outputs σ = g−1
SK(H(m)) ∈

{0, 1}n.
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Full Domain Hash

Constants: PRF key K, trapdoor function index PK.
Input: Message m.

1. Output gPK(F (K,m)).

Fig. 1. Full Domain Hash

Full Domain Hash*

Constants: Punctured PRF key K({m∗}), m∗ ∈ M, z∗ ∈ {0, 1}w ,
trapdoor function index PK.
Input: Message m.

1. If m = m∗ output z∗ and exit.
2. Else output gPK(F (K,m)).

Fig. 2. Full Domain Hash*

- Verify(VK,m, σ) The verification algorithm tests if gPK(σ)
?
= H(m) and

outputs accept if and only if this holds.

Theorem 2. If our obfuscation scheme is indistingishuably secure, F is a secure
punctured PRF, and the injective trapdoor function is secure, then the above
signature scheme is selectively secure.

We describe a proof as a sequence of hybrid experiments where the first hybrid
corresponds to the original signature security game. We prove that a poly-time
attacker’s advantage must be negligibly close between each successive one. Then,
we show that any poly-time attacker in the final experiment that succeeds in forg-
ing with non-negligible probability can be used to invert the injective trapdoor
function.

– Hyb0 : In the first hybrid the following game is played:
1. The attacker selectively gives the challenger the message m∗.
2. The TDF index is chosen by the challenger running TDFSetup(1λ).
3. K is chosen as a key for the puncturable PRF.
4. The hash function H(·) is created as an obfuscation of the program Full

Domain Hash.
5. The attacker queries the sign oracle a polynomial number of times on

messages m = m∗. It receives back g−1
SK(H(m)) = F (K,m). (Note the

equality holds since the function gPK is injective.)
6. The attacker sends a forgery σ∗ and wins if Verify(VK,m∗, σ∗) = 1.

– Hyb1 : Is the same as Hyb0 except we let z∗ = gPK(F (K,m∗)) and let VK
be the obfuscation of the program Verify Signature* of Figure 2.

– Hyb2 : Is the same as Hyb1 except z∗ = gPK(t) for t chosen uniformly at
random in {0, 1}n.
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The following three lemmas together yield our result in Theorem 2 that the
full domain hash signature scheme in Section 3 is selectively secure.

Lemma 2. If our obfuscation scheme is indistinguishability secure, then the
advantage of a poly-time attacker in Hyb0 is negligibly close to the advantage
in Hyb1.

Proof. We prove this lemma by giving a reduction to the indistinguishability
security of the obfuscator. To do so, we must build the two algorithms Samp
and D.

Samp(1λ) behaves as follows: It invokes the adversary to obtain m∗ and the
adversary’s state τ ′. It runs TDFSetup(1λ) to obtain PK and SK. It then chooses
K as a key for the puncturable PRF. It sets z∗ = gPK(F (K,m∗)). It sets τ =
(m∗,PK, SK,K, τ ′) and builds C1 as the program for Full Domain Hash, and C2

as the program for Full Domain Hash*.
Before describing D, we observe that by construction and the functionality

preservation property of puncturable PRFs, the circuits C1 and C2 always be-
have identically on every input. Because of padding, both C1 and C2 have the
same size. Thus, Samp satisfies the conditions needed for invoking the indistin-
guishability property of the obfuscator.

Now, we can describe the algorithm D, which takes as input τ as given above,
and either the obfuscation of C1, which is the program Full Domain Hash, or
C2, which is the program Full Domain Hash*. D creates the verification key for
the signature scheme by combining PK with the obfuscated program as the hash
function description. It then invokes the adversary on this verification key, and
the adversary then makes requests for signatures on messages m = m∗. For each
such message, D constructs the signatures g−1

SK(H(m)) = F (K,m), through its
knowledge of K within τ . Finally, the attacker sends a forgery σ∗ and wins if
Verify(m∗, σ∗) = 1. If the attacker wins, D outputs 1.

By construction, if D receives an obfuscation of C1, then the probability that
D outputs 1 is exactly the probability of the adversary winning in hybrid Hyb0.
On the other hand, if D receives an obfuscation of C2, then the probability that
D outputs 1 is the probability of the adversary winning in hybrid Hyb1.

The lemma follows.

Lemma 3. If our confined PRF is secure, then the advantage of a poly-time
attacker in Hyb1 is negligibly close to the advantage in Hyb2.

Proof. We prove this lemma by giving a reduction to the pseudorandomness
property at punctured points for punctured PRFs. To do so, we must build the
algorithms A1 and A2.

A1(1
λ) simply invokes the adversary to obtain the challenge message m∗ and

state τ ′, and outputs the singleton set S = {m∗} and τ = (1λ, τ ′).
A2 obtains as input τ , the punctured key KS, the singleton set S = {m∗},

and either a value t∗ = F (K,m∗) or a uniformly random value t∗. Then, A2

invokes TDFSetup(1λ) to obtain PK and SK. Now given t∗, it can compute
z∗ = gPK(t

∗). Note that this yields either the z∗ value computed in hybrid Hyb1
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or in hybrid Hyb2. Since it knows KS , now A2 can obfuscate the program Full
Domain Hash*, and then execute the adversary and answer its signature queries
using the punctured key KS. Finally, A2 outputs 1 if the adversary succeeds.

By construction, the pseudorandomness property for punctured PRFs implies
the lemma.

Lemma 4. If our injective trapdoor function is hard to invert, then the advan-
tage of a poly-time attacker in Hyb2 is negligible.

Proof. We prove this lemma by giving a reduction to the one-wayness of the
injective trapdoor function. To do so, we build an inverting algorithm Inv.

Inv takes as input a public index PK for an injective trapdoor function, and a
target z∗ = gPK(t

∗) for some (as yet unknown) random value t∗. The algorithm
Inv then invokes the adversary to obtain m∗, and chooses a PRF key K and
builds the punctured key K(S) where S = {m∗}. It uses this key, together with
PK and z∗, to obfuscate the program Full Domain Hash*. It can then execute
the adversary, and use its knowledge of K(S) to answer all adversary signing
queries. The adversary then terminates with an attempted forgery σ∗ on message
m∗. By the definition of the program Full Domain Hash*, this forgery can only
be valid if gPK(σ

∗) = z∗, and because gPK is injective, this can only happen
if σ∗ = t∗. Thus if the adversary is successful, Inv can output σ∗ as a valid
pre-image of z∗.

We observe that by construction of Inv, the probability of success of Inv is
exactly the probability that the attacker succeeds in hybrid Hyb2. The lemma
follows.

4 Adaptively Secure RSA Full Domain Hash Signatures

We first overview what advantage indistinguishability obfuscation gives us in this
situation: In several previous constructions of adaptively secure schemes in the
plain model starting with the adaptively secure IBE scheme of [BB04a], a special
hash function was chosen that allowed for a “partitioning” proof of security. In
essence, for this to work, the hash function should have two “modes”:

– In the “normal” mode, the hash function’s parameters are typically just
chosen at random, and it behaves like an ordinary hash function.

– In the “partitioning” mode, the hash function parameters are chosen accord-
ing to a special distribution. This special distribution allows for the efficient
computation of the inverse of the hash value for a large fraction of points,
but it has the property that computing the inverse of the hash value at any
other point is computationally hard.

It is crucial that the input/output functionality of the hash function should
be identical in the two modes, and we will also use this property. However, in
previous proofs (like [BB04a]), it was also critical that the hash function pa-
rameters in “partitioning” mode be information theoretically indistinguishable



214 S. Hohenberger, A. Sahai, and B. Waters

from the parameters in “normal” mode, and thus the partition should be hid-
den from the adversary even when given the hash function parameters. This
restriction significantly limited the applicability of this technique, as it could
only be applied with algebraic structures that allowed for such “pseudorandom”
hash parameters. Thanks to indistinguishability obfuscation, however, we can
avoid this restriction by obfuscating the hash function description. Thus, even
if the natural hash function parameters in “partitioning” mode clearly reveal
the partition and thus are distinguishable from normal parameters, because the
resulting hash function is functionally identical to a hash function in “normal”
mode, the obfuscated hash function must hide the partition, and this allows the
proof of adaptive security to go through.

In describing our signature scheme, For simplicity of exposition, we assume
that there is a polynomial 
(λ) which denotes the length of messages to be signed;
we denote this message space by M = {0, 1}�(λ). More generally, a collision-
resistant hash function may be used to hash messages to this size. Below, for
any polynomial in λ, after the first mention of this polynomial, we will often
suppress the dependence on λ for ease of notation. Thus, below often we will
simply refer to the size of messages to be signed by 
.

Before describing our construction, we first recall a (simplified) description of
the notion of admissible hash functions due to [BB04a]. Our definition is a slight
variation of the simplified definition due to [FHPS13].

Definition 4. Let 
, n and θ be efficiently computable univariate polynomials.
We say that an efficiently computable function h : {0, 1}�(λ) → {0, 1}n(λ), and
an efficient randomized algorithm AdmSample, is θ-admissible if the following
condition holds:

For any u ∈ ({0, 1}∪{⊥})n, define Pu : {0, 1}� → {0, 1} as follows: Pu(x) = 0
iff ∀i : h(x)i = ui, and otherwise (if ∃i : h(x)i = ui) we have Pu(x) = 1.

Then we require that for any efficiently computable polynomial Q(λ), for all
x1, . . . , xQ, z ∈ {0, 1}�, where z /∈ {xi}, we have that

Pr
[
Pu(x1) = Pu(x2) = · · · = Pu(xQ) = 1 ∧ Pu(z) = 0

]
≥ 1/θ(Q)

where the probability is taken only over u← AdmSample(1λ, Q).

Theorem 3 (Admissible Function Families [BB04a], see also [FHPS13]
for a simple proof). For any efficiently computable polynomials 
, n, there
exists an efficiently computable polynomial θ such that there exist θ−admissible
function families mapping 
 bits to n bits.

We leverage the structure of the RSA trapdoor permutation to prove adaptive
security. The use of RSA as a candidate for a trapdoor permutation was first dis-
cussed in the original Bellare-Rogaway [BR93] paper, however, it was in [BR96]
that Bellare and Rogaway gave an explicit full domain hash RSA construction.
This construction formed the basis for part of the standard PKCS#1 [KS98].

- Setup(1λ) : The setup algorithm first runs an RSA type setup. It chooses
random primes p, q of λ bits each. We define N = p · q and φ(N) =
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(p−1)(q−1). We let e be a random chosen integer between 1 and φ(N) such
that gcd(φ(N), e) = 1. Next, it chooses integers (a1,0, a1,1), . . . , (an,0, an,1)
each uniformly at random from the range [1, φ(N)−1]. In addition, it chooses
a group element v ∈ Z∗N . It then creates an obfuscation of the of the pro-
gram RSA Hash of Figure 3. The size of the program is padded to be the
maximum of itself and the program RSA Hash* of Figure 4. We refer to the
obfuscated program as the function H(·). This function H(·) will replace the
random oracle in the RSA FDH scheme, but no other part of the scheme
is modified. The verification key VK is the integers N, e and the hash func-
tion H : {0, 1}�(λ) → Z∗N . The secret key is the integer d where e · d ≡ 1
mod φ(N).

- Sign(SK,m ∈ M) : The signature algorithm outputs σ = H(M)d mod N .
- Verify(VK,m, σ) The verification algorithm tests if σe ≡ H(m) mod N and
outputs accept if and only if this holds.

RSA Hash

Constants: RSA modulus N , integers (a1,0, a1,1), . . . , (an,0, an,1)
each in [1, φ(N)− 1], and v ∈ Z∗

N .
Input: Message m.

1. Compute m′ = h(m).
2. Compute the integer π(m′) =

∏
i∈[n] ai,m′

i
.

3. Output vπ(m′) (mod N).

Fig. 3. RSA Hash

RSA Hash*

Constants: RSA modulus N , integers (c1,0, c1,1), . . . , (cn,0, cn,1) each
chosen as in Hyb2, and v ∈ Z∗

N .
Input: Message m.

1. Compute m′ = h(m).
2. Compute the integer π(m′) =

∏
i∈[n] ci,m′

i
.

3. Output vπ(m′) (mod N).

Fig. 4. RSA Hash*

Remark 1. For simplicity of exposition we describe computing the programs
output by first computing a integer π(m′) as a product of n integers and then
raising v to this mod N . In practice, it might be more efficient to incrementally
raise an accumulated value to each ai,m′

i
.

Theorem 4. If our obfuscation scheme is indistingishuably secure and the RSA
assumption holds, the above signature scheme is existentially unforgeable against
chosen message attacks.
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In the full version [HSW14], we describe a proof as a sequence of hybrid ex-
periments where the first hybrid corresponds to the original signature security
game. In the first hybrid step we do a “partitioning” of the message space. Con-
sider a poly-time attacker that makes Q = Q(λ) signature queries m1, . . . ,mQ

and attempts to forge on message m∗ = mi for all i. Roughly, at the beginning
of Hyb1 the challenger will now (behind the scenes) partition the message space
such that a large fraction of messages will fall into a “query” space and a much
smaller, but still non-negligible fraction of messages will fall into the “challenge”
space. Furthermore, in this new game the attacker is only considered to have won
if he both forged a signature and all his signature queries m1, . . . ,mn fall into
the query space and m∗ falls into the challenge space. We can show that if an at-
tacker succeeds in the original security game (that does not have these additional
restrictions on winning) with non-negligible advantage, then if will succeed in
Hyb1 with non-negligible advantage. Our system uses the Boneh-Boyen [BB04a]
admissible hash function defined above, where if an attacker has advantage ε
in Hyb0, he will have advantage ε/θ(Q) in Hyb1. After the first proof step we
prove that a poly-time attacker’s advantage must be negligibly close between
each successive hybrid experiment. We finally show that any poly-time attacker
in the final experiment that succeeds with non-negligible probability can be used
to break the RSA assumption.

5 Selectively Secure BLS Signatures

We now give a concrete construction for the hash function modeled as a random
oracle in the Boneh-Lynn-Shacham (BLS) signature scheme. BLS signatures fall
into a broad interpretation (see e.g., [Boy08]) of the full domain hash paradigm
of Bellare and Rogaway. Below we give the BLS signature scheme with a con-
crete hash function built from an indistinguishability obfuscator. We prove the
signature scheme selectively secure based on the computational Diffie-Hellman
problem in bilinear groups and a indistinguishability obfuscator.

On a technical level this selective proof of security follows a very similar
structure to that of our selectively secure scheme from trapdoor functions from
Section 3. The main difference is that here we deal with the mechanics of an
algebraic bilinear group instead of a trapdoor function. We present the scheme
for simplicity in terms of a symmetric bilinear group, however, moving to asym-
metric groups is straightforward. As in Section 3, we assume that there is a
polynomial 
(λ) which denotes the length of messages to be signed; we denote
this message space by M = {0, 1}�(λ). More generally, a collision-resistant hash
function may be used to hash messages to this size.

- Setup(1λ) : The setup algorithm first runs the group generator on input 1λ to
produce a description of groups G,GT of prime order p along with generator
g ∈ G. These groups are related by a bilinear map e : G × G → GT . Next,
it chooses a random exponent a ∈ Zp. Then, the setup algorithm chooses a
puncturable PRF key K for F where F (K, ·) : {0, 1}�(λ) → Zp. Finally, it
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creates an obfuscation of the program BLS Selective Hash of Figure 5. The
size of the program is padded to be the maximum of itself and the program
BLS Selective Hash* of Figure 6. We refer to the obfuscated program as
the function H : {0, 1}� → G, which acts as the random oracle type hash
function in the BLS scheme.
The verification key VK consists of the group descriptions G,GT , the order
p, the generator g and A = ga as well as the hash function H(·). The secret
key is a ∈ Zp as well as H(·).

- Sign(SK,m ∈ M) : The signature algorithm outputs σ = H(M)a ∈ G.

- Verify(VK,m, σ) The verification algorithm tests if e(σ, g)
?
= e(A,H(m)) and

outputs accept if and only if this holds.

BLS Selective Hash

Constants: PRF key K, group generator g ∈ G.
Input: Message m.

1. Output gF (K,m).

Fig. 5. BLS Selective Hash

BLS Selective Hash*

Constants: Punctured PRF key K({m∗}), m∗ ∈ M, z∗ ∈ G and
group generator g ∈ G.
Input: Message m.

1. If m = m∗ output z∗ and exit.
2. Output gF (K,m).

Fig. 6. BLS Selective Hash*

Remark 2. The confined PRFs from [BW13] use the GGM tree and get PRFs
in range {0, 1}n for some n, whereas our PRFs need to hash to Zp. One can
achieve a punctured PRF for the proper range by simply setting n > 2 lg(p) and
taking interpreting the GGM output as an integer that is then mod by p. This
is sufficient since sampling an integer in [0, 2n − 1] and then reducing it mod p
is statistically close to choosing an integer in [0, p− 1].

Theorem 5. If our obfuscation scheme is indistingishability secure, F is a se-
cure punctured PRF, and the computational Diffie-Hellman problem holds in
bilinear groups, then the above signature scheme is selectively secure.
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In the full version [HSW14], we describe a proof as a sequence of hybrid
experiments where the first hybrid corresponds to the original signature security
game. We prove that a poly-time attacker’s advantage must be negligibly close
between each successive one. Then, we show that any poly-time attacker in the
final experiment that succeeds in forging with non-negligible probability can be
used to break the computational Diffie-Hellman assumption in bilinear groups.

6 Adaptively Secure BLS Signatures

In the full version [HSW14], we give a hash function for BLS signatures that can
be used to prove adaptive (or standard) security. Our construction is identical
to that given in Section 5 with the exception of how the setup creates the hash
function. Our proof structure will follow in a similar path to that of our adaptively
secure RSA full domain hash signatures in Section 4. In particular, we will again
apply an admissible hash function to partition the message space in our proof.
At the same time, there are important distinctions and corresponding challenges
that arise in this setting as discussed in [HSW14]. Our proof of security relies on
indistinguishability obfuscation and the Diffie-Hellman Inversion Assumption.

7 Extensions to Boneh-Franklin IBE and Aggregate
Signatures

Boneh-Franklin IBE. We can adapt our techniques for proving security of BLS
signatures to the Boneh-Franklin [BF01] Identity-Based Encryption system. BLS
signatures directly correspond to IBE private keys in the BF scheme. The proof
for the BF adapts with a few minor changes:

– For proving BF selectively secure we can use the Decisional Bilinear Diffie-
Hellman assumption.

– The second random oracle in the BF IBE can be replaced with an extractor.
– For proving adaptive security we use the following assumption. Namely that

given g, gs, ga, ga2

, . . . , gan

it is hard to distinguish e(g, g)a
n+1s from a ran-

dom group element in GT . We note this assumption is weaker than the
decision Bilinear Diffie-Hellman Exponent assumption [BGW05].

BGLS Aggregate Signatures. Boneh, Gentry, Lynn and Shacham [BGLS03]
showed that the BLS signatures are aggregateable by reduction to the BDH as-
sumption. Later Bellare, Namprempre and Neven [BNN07] showed how an aggre-
gate signature scheme could built directly from and reduced to the security of BLS
signatures. Using their results we immediately get an aggregate signature scheme.
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Abstract. Recently, Garg, Gentry, Halevi, Raykova, Sahai, and Wa-
ters (FOCS 2013) constructed a general-purpose obfuscating compiler
for NC1 circuits. We describe a simplified variant of this compiler, and
prove that it is a virtual black box obfuscator in a generic multilinear
map model. This improves on Brakerski and Rothblum (eprint 2013) who
gave such a result under a strengthening of the Exponential Time Hy-
pothesis. We remove this assumption, and thus resolve an open question
of Garg et al. As shown by Garg et al., a compiler for NC1 circuits can
be bootstrapped to a compiler for all polynomial-sized circuits under the
learning with errors (LWE) hardness assumption.

Our result shows that there is a candidate obfuscator that cannot be
broken by algebraic attacks, hence reducing the task of creating secure
obfuscators in the plain model to obtaining sufficiently strong security
guarantees on candidate instantiations of multilinear maps.

1 Introduction

The goal of general-purpose program obfuscation is to make an arbitrary com-
puter program “unintelligible” while preserving its functionality. At least as
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far back as the work of Diffie and Hellman in 1976 [7]1, researchers have con-
templated applications of general-purpose obfuscation. The first mathematical
definitions of obfuscation were given by Hada [11] and Barak, Goldreich, Im-
pagliazzo, Rudich, Sahai, Vadhan, and Yang [2].2 Barak et al. also enumerated
several additional applications of general-purpose obfuscation, ranging from soft-
ware intellectual property protection and removing random oracles, to eliminat-
ing software watermarks. However, until 2013, even heuristic constructions for
general-purpose obfuscation were not known.

This changed with the work of Garg, Gentry, Halevi, Raykova, Sahai, and
Waters in 2013 [9], which gave the first candidate construction for a general-
purpose obfuscator. At the heart of their construction is an obfuscator for log-
depth (NC1) circuits, building upon a simplified subset of the Approximate
Multilinear Maps framework of Garg, Gentry, and Halevi [8] that they call Mul-
tilinear Jigsaw Puzzles. They proved that their construction achieves a notion
called indistinguishability obfuscation (see below for further explanation), under
a complex new intractability assumption. They then used fully homomorphic
encryption to bootstrap this construction to work for all circuits, proving their
transformation secure under the Learning with Error (LWE) assumption, a well-
studied intractability assumption.

Our result—protecting against algebraic attacks. Given the importance of general-
purpose obfuscation, it is imperative that we gain as much confidence as possible
in candidates for general-purpose obfuscation. Potential attacks on the [9] obfus-
cator can be classified into two types— attacks on the underlying Multilinear Jig-
saw Puzzle construction, and attacks on the obfuscation construction that treat
the Multilinear Jigsaw Puzzle as an ideal black box. [8] gave some cryptanalytic
evidence for the security of their Approximate Multilinear Maps candidate (this
evidence immediately extends toMathematical JigsawPuzzles, since it is a weaker
primitive), and there is also an alternative candidate [6] for such maps. Our focus
in this paper is to find out whether there exists a purely algebraic attack against the
candidate obfuscation schemes, or whether any attack against the scheme must
rely on some weakness of the underlying Multilinear Jigsaw Puzzle (i.e., some de-
viation of the implementation from the ideal model). Indeed, [9] pose the problem
of proving that there exist no generic multilinear attacks against their core NC1

scheme as a major open problem in their work.3

1 Diffie and Hellman suggested the use of general-purpose obfuscation to convert
private-key cryptosystems to public-key cryptosystems.

2 The work of [2] is best known for their constructions of “unobfuscatable” classes of
functions {fs} that roughly have the property that given any circuit evaluating fs,
one can extract the secret s, yet given only black-box access to fs, the secret s is
hidden. We will discuss the implications of this for our setting below.

3 [9] did rule out a certain subset of algebraic attacks which fall under a model they
called the “generic colored matrix model”. However, this model assumes that an ad-
versary can only attack the schemes by performing a limited subset of matrix opera-
tions, and does not prove any security against an adversary that can perform algebraic
operations on the individual entries of the matrices.
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This problem was first addressed in the recent work of Brakerski and Roth-
blum [4], who constructed a variant of the [9] candidate obfuscator, and proved
that it is an indistinguishability obfuscation against all generic multilinear at-
tacks. They also proved that their obfuscator achieves the strongest definition
of security for general-purpose obfuscation — Virtual Black Box (VBB) security
— against all generic multilinear attacks, albeit under an unproven assump-
tion they introduce as the Bounded Speedup Hypothesis, which strengthens the
Exponential Time Hypothesis from computational complexity.4

In this work, we resolve the open problem of [9] completely, by removing the
need for this additional assumption. More specifically, we describe a different
(and arguably simpler) variant of the construction of [9], for which we can prove
that it achieves Virtual Black Box security against all generic multilinear attacks,
with no further assumptions. Our result gives evidence for the soundness of [9]’s
approach for building obfuscators based on Multilinear Jigsaw Puzzles.

Notions of Security and attacks. In this work, we focus on arguing security
against a large class of natural algebraic attacks, captured in the generic mul-
tilinear model. Intuitively speaking, the generic multilinear model imagines an
exponential-size collection of “groups” {GS}, where the subscript S denotes a
subset S ⊆ {1, 2, . . . , k}. Each of these groups is a separate copy of Zp, under
addition, for some fixed large random prime p. The adversary is initially given
some collection of elements from various groups. However, the only way that the
adversary can process elements of these groups is through access to an oracleM
that performs the following three operations5:

– Addition: GS × GS → GS , defined in the natural way over Zp, for all
S ⊂ {1, 2, . . . , k}.

– Negation: GS → GS , defined in the natural way over Zp, for all S ⊂
{1, 2, . . . , k}.

– Multiplication: GS × GT → GS∪T , defined in the natural way over Zp,
for all S, T ⊂ {1, 2, . . . , k}, where S ∩ T = ∅. Note that the constraint that
S ∩ T = ∅ intuitively captures why we call this a multilinear model.

These operations capture precisely the algebraic operations supported by the
Multilinear Jigsaw Puzzles of [9].

With the algebraic attack model defined, the next step is to consider what
security property we would like to achieve with respect to this attack model. We
first recall two security notions for obfuscation – indistinguishability obfuscation

4 Roughly speaking, the Bounded Speedup Hyptothesis says that there is some ε > 0
such that for every subset X of {0, 1}n, any circuit C that solves SAT on all inputs
in X must have size at least |X |ε. The Exponential Time Hypothesis is recovered
by considering X = {0, 1}n. The exponent of the polynomial slowdown of the [4]
simulator is a function of ε.

5 In the technical exposition, we discuss how it is enforced that the adversary can
only access the elements of the group via the oracles. For this intuitive exposition,
we ask the reader to simply imagine that an algebraic adversary is defined to be
limited in this way.
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(iO) security and Virtual Black-Box (VBB) security – and state them both in
comparable language, in the generic multilinear model. Below, we write “generic
adversary” or “generic distinguisher” to refer to an algorithm that has access to
the oracleM described above.

Indistinguishability obfuscation6 requires that for every polynomial-time
generic adversary, there exists an computationally unbounded simulator, such
that for every circuit C, no polynomial-time generic distinguisher can distin-
guish the output of the adversary given the obfuscation of C as input, from the
output of the simulator given oracle access to C, where the simulator can make
an unbounded number of queries to C. Virtual Black-Box obfuscation7 requires
that for every polynomial-time generic adversary, there exists a polynomial-time
simulator, such that for every circuit C, no polynomial-time generic distinguisher
can distinguish the output of the adversary given the obfuscation of C as input,
from the output of the simulator given oracle access to C, where the simulator
can make a polynomial number of queries to C.

In our work, we focus on proving the Virtual Black-Box definition of security
against generic attacks. We do so for several reasons:

– Our first, and most basic, reason is that Virtual Black-Box security is the
strongest security notion of obfuscation we are aware of, and so proving VBB
security against generic multilinear attacks is, mathematically speaking, the
strongest result we could hope to prove. As we can see from the definitions
above, the definition of security provided by the VBB definition is signifi-
cantly stronger than the indistinguishability obfuscation definition. As such,
it represents the natural end-goal for research on proving resilience to such
algebraic attacks.
This may seem surprising in light of the negative results of [2], who showed
that there exist (contrived) families of “unobfuscatable” functions for which
the VBB definition is impossible to achieve in the plain model. However, we
stress that this result does not apply to security against generic multilinear
attacks. Thus it does not present a barrier to the goal of proving VBB
security against generic multilinear attacks.

– Given the existence of “unobfuscatable” function families, how can we inter-
pret a result showing VBB security against generic attacks, in terms of the
real-world applicability of obfuscation? One plausible interpretation is that
it offers heuristic evidence that our obfuscation mechanism will offer strong
security for “natural” functions, that do not have the self-referential prop-
erties of the [2] counter-examples. This is similar to the heuristic evidence

6 The formulation of indistinguishability obfuscation sketched here was used, for ex-
ample, in [9].

7 We note that we are referring to a stronger definition of VBB obfuscation than
the one given in [2], which limits the adversary to only outputting one bit. In our
definition, the adversary can output arbitrary length strings. This stronger formu-
lation of VBB security implies all other known meaningful security definitions for
obfuscation, including natural definitions that are not known to be implied by the
one-bit-output formulation of VBB security.
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given by a proof in the Random Oracle Model. We stress, however, that
our result cannot offer any specific theoretical guidance on which function
families can be VBB-obfuscated in the plain model, and which cannot.

– Finally, our VBB result against generic attacks suggests that there is a signif-
icant gap between what security is actually achieved by our candidate in the
plain model, and the best security definitions for obfuscation that we have in
the plain model. This suggests a research program for studying relaxations
of VBB obfuscation that could plausibly be achievable in the plain model.
Indistinguishability Obfuscation is one such example, but other notions have
been suggested in the literature, and it’s quite possible we haven’t yet found
the “right” notion. For every such definition of obfuscation X, one can of
course make the assumption that our candidate is “X secure” in the plain
model, but in fact our VBB proof in the generic multilinear model shows that
“X security” of our candidate will follow from a concrete intractability as-
sumption on the Multilinear Jigsaw Puzzle implementation that is unrelated
to our specific obfuscation candidate (see below for more details).

Remark 1.1 (Capturing a Generic Model by Meta-Assumptions). While a
generic model allows us to precisely define and argue about large classes of
algebraic attacks, it is unsatisfying because any such oracle model, by definition,
cannot be achieved in the plain model. Thus, we would like to capture as much as
we can of a generic model by means of what we would call a “Meta-Assumption.”
Intuitively, a Meta-Assumption specifies conditions under which the only attacks
that are possible in the plain model with a specific instantiation of the oracle, are
those that are possible in the oracle model itself – where the conditions that the
Meta-Assumption imposes allow the assumption to be plausible. For example,
one can consider the Decisional Diffie Hellman (DDH) assumption as a meta
assumption on the instantiation of the group Zq as a multiplicative subgroup of
Z∗p=kq+1, stipulating that certain attacks that would be infeasible in the ideal
setting, are also infeasible when working with the actual encoding of the group
elements.

1.1 Our Techniques

The starting point for our construction is a simplified form of the construction
of [9]. That work used the fact that one can express an NC1 computation as a
Branching Program, which is a sequence of 2n permutations (or more generally,
functions) {Bi,σ}i∈[n],σ∈{0,1}. The program is evaluated on an input x ∈ {0, 1}�
by applying for i = 1, . . . , n the permutation Bi,xinp(i)

where inp is some map from

[n] to [
] that says which input bit the branching program looks at the ith step.
The output of the program is obtained based on the composition of all these per-
mutations; that is, we have some permutation Paccept (without loss of generality,
the identity) and say that the output is 1 if the composition is equal to Paccept and
the output is 0 otherwise.8 We can identify these permutations with matrices,

8 Barrington’s Theorem [3] shows that these permutations can be taken to have a
finite domain (in fact, 5) but for our construction, a domain of poly(�) size is fine.
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and so evaluating the program amounts to matrix multiplication. Matrix multi-
plication is an algebraic (and in fact multilinear) operation, that can be done in
a group supporting multilinear maps. Thus a naive first attempt at obfuscation
of an NC1 computation would be to encode all the elements of the matrices
{Bi,σ}i∈[n],σ∈{0,1} in the multilinear maps setting (using disjoint subsets to en-
code elements of matrices that would be multiplied together, e.g., by encoding
the elements of Bi,σ in the groupG{i}). This would allow to run the computation

on every x ∈ {0, 1}�. However, as an obfuscation it would be completely insecure,
since it will also allow an adversary to perform tricks such as “mixing inputs” by
starting the computation on a particular input x and then at some step switching
to a different input x′. Even if it fixes some particular input x ∈ {0, 1}�, the ad-
versary might learn not just the product of the n matrices B1,xinp(1)

, . . . , Bn,xinp(n)

but also information about partial products. To protect against this latter attack,
[9] used a trick of Kilian [12] where instead of the matrices {Bi,σ}i∈[n],σ∈{0,1}
they published the matrices {B′

i,σ = R−1
i−1Bi,σRi}i∈[n],σ∈{0,1} where R0, Rn are

the identity and R1, . . . , Rn−1 are random permutation matrices.9 We follow the
same approach. The crucial obstacle is that in our setting, because we need to
supply a single program that works on all inputs x ∈ {0, 1}�, we need to reveal
both the matrix Bi,0 and the matrix Bi,1, and will need to multiply them both
with the same random matrix. Unfortunately, Kilian’s trick does not guarantee
security in such a setting. It also does not protect against the “mixed input”
attack described above.

We deviate from the works [9, 4] in the way we handle the above issues.
Specifically, the most important difference is that we employ specially designed
set systems in our use of the generic multilinear model. Roughly speaking, in
the original work of [9], the encoding of the elements of matrix B′

i,σ was in the
group G{i}. In contrast, in our obfuscation, while the actual elements from Zp

that we use are very similar to those used in [9], these elements will live in groups
GS where the sets S will come from specially designed set systems. To illustrate
this idea, consider the toy example where 
 = 1 and n = 2. That is, we have
a single input bit x ∈ {0, 1} and 4 matrices B′

1,0, B
′
1,1, B

′
2,0, B

′
2,1. We want to

supply encodings that will allow computing the products B′
1,0B

′
2,0 and B′

1,1B
′
2,1,

but not any of the “mixed products” such as B′
1,0B

′
2,1 which corresponds to

pretending the input bit is equal to 0 in the first step of the branching program,
and equal to 1 in the second step. The idea is that our groups will be of the form
{GS} where S is a subset of the universe {1, 2, 3}. We will encode the elements
of B1,0 in G{1,2}, the elements of B1,1 in G{1}, the elements of B2,0 in G{3},
and the elements of B2,1 in G{2,3}. One can see that one can use our oracle to
obtain an encoding of the two matrices corresponding to the “proper” products
in G{1,2,3}, but it is not possible to compute the “mixed product” since it would
involved multiplying elements in GS and GT for non-disjoint S and T . This idea

9 Instead of using R0, Rn+1 as the identity, [9] and us added some additional encoding
of elements they called “bookends”. We ignore this detail in this section’s high
level description. We also defer discussion of an additional trick of multiplying each
element in B′

i,σ by a scalar αi,σ.
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can be easily extended to the case of larger 
 and n, and can be used to rule out
the mixed product attack.

However, the idea above still does not rule out “partial evaluation attacks”,
where the adversary might try to learn, for example, whether the first k steps of
the branching program evaluate to the same permutation regardless of the value
of the first bit of x. To do that we enhance our set system by creating interlock-
ing sets that combine several copies of the straddling set systems above. Roughly
speaking, these interlocking sets ensure that the adversary cannot create “inter-
esting” combinations of the encoded elements, without in effect committing to a
particular input x ∈ {0, 1}�. This prevents the adversary from creating polyno-
mials that combine terms corresponding to a super-polynomial set of different
inputs. In contrast, in the recent work of [4], this was accomplished by means of
a reduction to the Bounded Speedup Hypothesis. In contrast, our generic proof
does not use any assumptions except the properties of our set systems.

The second deviation in our construction from that of [9] is in our usage
of the random scalar values {αi,σ}i∈[n],σ∈{0,1} that are used to multiply every
element in the encoding of B′

i,σ. In [9] these random scalars αi,b were used for two
purposes: First, they were chosen with specific multiplicative constraints in order
to prevent “input mixing” attacks as described above (a similar multiplicative
bundling method was used by [4] as well). As noted above, we no longer need this
use of the αi,b values as this is handled by our set systems. The second purpose
these values served was to provide a “per-input” randomization in polynomial
terms created by the adversary. We continue the use of this role of the αi,b values,
leveraging this “per-input” randomization using a method of explicitly invoking
Kilian’s randomization technique. This is similar to (but arguably simpler than)
the beautiful use of Kilian’s randomization technique in the recent work of [4].

Additional Related Work. Our work deals with analyzing candidate general-
purpose obfuscators in an idealized mathematical model (the generic multilinear
model). There has also been recent work suggesting general-purpose obfusca-
tors in idealized mathematical models which currently do not have candidate
instantiations in the standard model: the work of [5] describes a general-purpose
obfuscator for NC1 in a generic group setting with a groupG = G1×G2×G3×G4,
where G1 is a pseudo-free Abelian group,G2 and G3 are pseudo-free non-Abelian
groups, and G4 is a group supporting Barrington’s theorem, such as S5. In this
generic setting, obfuscator described by [5] achieves Virtual Black-Box security.
However, no candidate methods for heuristically implementing such a group G
are known, and therefore, the work of [5] does not describe a candidate general-
purpose obfuscator at this time, though this may change with future work10.

We note that question of whether there exists any oracle with respect to
which virtual black-box obfuscation for general circuits is possible is a trivial
question: one can consider a universal oracle that (1) provides secure encryp-
tions eC for any circuit C to be obfuscated, and (2) given an encrypted circuit

10 Indeed, one way to obtain a heuristic generic group G is by building it using a
general-purpose obfuscator, but this would not be useful for the work of [5], since
their goal is a general-purpose obfuscator.
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eC and an input x outputs C(x). The only way we can see this “solution” as
being interesting is if one considers implementing this oracle with trusted hard-
ware. The work of Goyal et al. [10] shows that there exists an oracle that can
be implemented with trusted hardware of size that is only a fixed polynomial
in the security parameter, with respect to which virtual black-box obfuscation
is possible. However, once again, the focus of our paper is to consider oracles
that abstract the natural algebraic functionality underlying actual plain-model
candidates for general-purpose obfuscation.

2 Preliminaries

In this section we define the notion of “virtual black-box” obfuscation in an
idealized model, we recall the definition of branching programs and describe a
“dual-input” variant of branching programs used in our construction.

2.1 “Virtual Black-Box” Obfuscation in an Idealized Model

Let M be some oracle. We define obfuscation in the M-idealized model. In
this model, both the obfuscator and the evaluator have access to the oracle M.
However, the function family that is being obfuscated does not have access toM

Definition 2.1 (“Virtual Black-Box” Obfuscation in an M-idealized
model). For a (possibly randomized) oracle M, and a circuit class {C�}�∈N, we
say that a uniform PPT oracle machine O is a “Virtual Black-Box” Obfuscator
for {C�}�∈N in the M-idealized model, if the following conditions are satisfied:

– Functionality: For every 
 ∈ N, every C ∈ C�, every input x to C, and for
every possible coins for M:

Pr[(OM(C))(x) = C(x)] ≤ negl(|C|) ,

where the probability is over the coins of O.
– Polynomial Slowdown: there exist a polynomial p such that for every 
 ∈ N

and every C ∈ C�, we have that |OM(C)| ≤ p(|C|).
– Virtual Black-Box: for every PPT adversary A there exist a PPT simulator
S, and a negligible function μ such that for all PPT distinguishers D, for
every 
 ∈ N and every C ∈ C�:∣∣∣Pr[D(AM(OM(C))) = 1]− Pr[D(SC(1|C|)) = 1]

∣∣∣ ≤ μ(|C|) ,

where the probabilities are over the coins of D,A,S,O and M

Remark 2.1. We note that the definition above is stronger than the definition
of VBB obfuscation given in [2], in that it allows adversaries to output an
unbounded number of bits.
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Definition 2.2 (“Virtual Black-Box” Obfuscation for NC1 in an M-
idealized model). We say that O is a “Virtual Black-Box” Obfuscator for
NC1 in the M-idealized model, if for every circuit class C = {C�}�∈N such that
every circuit in C� is of size poly(
) and of depth O(log(
)), O is a “Virtual
Black-Box” Obfuscator for C in the M-idealized model.

2.2 Branching Programs

The focus of this paper is on obfuscating branching programs, which are known
to be powerful enough to simulate NC1 circuits.

A branching program consists of a sequence of steps, where each step is defined
by a pair of permutations. In each step the the program examines one input bit,
and depending on its value the program chooses one of the permutations. The
program outputs 1 if and only if the multiplications of the permutations chosen
in all steps is the identity permutation.

Definition 2.3 (Oblivious Matrix Branching Program). A branching pro-
gram of width w and length n for 
-bit inputs is given by a permutation matrix
Preject ∈ {0, 1}w×w such that Preject = Iw×w, and by a sequence:

BP =
(
inp(i), Bi,0, Bi,1

)n
i=1

,

where each Bi,b is a permutation matrix in {0, 1}w×w, and inp(i) ∈ [
] is the
input bit position examined in step i. The output of the branching program on
input x ∈ {0, 1}� is as follows:

BP (x)
def
=

⎧⎪⎨⎪⎩
1 if

∏n
i=1 Bi,xinp(i)

= Iw×w

0 if
∏n

i=1 Bi,xinp(i)
= Preject

⊥ otherwise

The branching program is said to be oblivious if inp : [n]→ [
] is a fixed function,
independent of the function being evaluated.

Theorem 2.1 ([3]). For any depth-d fan-in-2 boolean circuit C, there exists an
oblivious branching program of width 5 and length at most 4d that computes the
same function as the circuit C.

Remark 2.2. In our obfuscation construction we do not require that the branch-
ing program is of constant width. In particular we can use any reductions that
result in a polynomial size branching program.

In our construction we will obfuscate a variant of branching programs that
we call dual-input branching programs. Instead of reading one input bit in every
step, a dual-input branching program inspects a pair of input bits and chooses
a permutation based on the values of both bits.
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Definition 2.4 (Dual-Input Branching Program) . A Oblivious dual-input
branching program of width w and length n for 
-bit inputs is given by a permu-
tation matrix Preject ∈ {0, 1}w×w such that Preject = Iw×w, and by a sequence

BP =
(
inp1(i), inp2(i), {Bi,b1,b2}b1,b2∈{0,1}

)n
i=1

,

where each Bi,b1,b2 is a permutation matrix in {0, 1}w×w, and inp1(i), inp2(i) ∈ [
]
are the positions of the input bits inspected in step i. The output of the branching
program on input x ∈ {0, 1}� is as follows:

BP(x)
def
=

⎧⎪⎨⎪⎩
1 if

∏n
i=1 Bi,xinp1(i),xinp2(i)

= Iw×w

0 if
∏n

i=1 Bi,xinp1(i),xinp2(i)
= Preject

⊥ otherwise

As before, the dual-input branching program is said to be oblivious if both inp1 :
[n] → [
] and inp2 : [n] → [
] are fixed functions, independent of the function
being evaluated.

Note that any branching program can be simulated by a dual-input branch-
ing program with the same width and length, since the dual-input branching
program can always “ignore” one input bit in each pair. Moreover, note that
any dual-input branching program can be simulated by a branching program
with the same width and with length that is twice the length of the dual-input
branching program.

3 Straddling Set System

In this section, we define the notion of a straddling set system, and prove combi-
natorial properties regarding this set system. This set system will be an ingredi-
ent in our construction, and the combinatorial properties that we establish will
be used in our generic proof of security.

Definition 3.1. A straddling set system with n entries is a collection of sets
Sn = {Si,b, : i ∈ [n], b ∈ {0, 1}} over a universe U , such that

∪i∈[n]Si,0 = ∪i∈[n]Si,1 = U

and for every distinct non-empty sets C,D ⊆ Sn we have that if:

1. (Disjoint Sets:) C contains only disjoint sets. D contains only disjoint sets.
2. (Collision:) ∪S∈CS = ∪S∈DS

Then, it must be that ∃ b ∈ {0, 1}:

C = {Sj,b}j∈[n] , D = {Sj,(1−b)}j∈[n] .

Therefore, in a straddling set system, the only exact covers of the universe U
are {Sj,0}j∈[n] and {Sj,1}j∈[n].
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Construction 3.1. Let Sn = {Si,b, : i ∈ [n], b ∈ {0, 1}}, over the universe
U = {1, 2, . . . , 2n− 1}, where:

S1,0 = {1}, S2,0 = {2, 3}, S3,0 = {4, 5}, . . . , Si,0 = {2i − 2, 2i − 1}, . . . ,
Sn,0 = {2n− 2, 2n− 1}; and,

S1,1 = {1, 2}, S2,1 = {3, 4}, . . . , Si,1 = {2i − 1, 2i}, . . . , Sn−1,1 = {2n −
3, 2n− 2}, Sn,1 = {2n− 1}.

The proof that Construction 3.1 satisfies the definition of a straddling set
system is straightforward and is given in the full version of this work [1].

4 The Ideal Graded Encoding Model

In this section describe the ideal graded encoding model where all parties have
access to an oracle M, implementing an ideal graded encoding. The oracle M
implements an idealized and simplified version of the graded encoding schemes
from [8]. Roughly, M will maintain a list of elements and will allow a user to
perform valid arithmetic operations over these elements. We start by defining
the an algebra over elements.

Definition 4.1. Given a ring R and a universe set U , an element is a pair
(α, S) where α ∈ R is the value of the element and S ⊆ U is the index of the
element. Given an element e we denote by α(e) the value of the element, and
we denote by S(e) the index of the element. We also define the following binary
operations over elements:

– For two elements e1, e2 such that S(e1) = S(e2), we define e1 + e2 to be
the element (α(e1) + α(e2), S(e1)), and e1 − e2 to be the element (α(e1) −
α(e2), S(e1)).

– For two elements e1, e2 such that S(e1) ∩ S(e2) = ∅, we define e1 · e2 to be
the element (α(e1) · α(e2), S(e1) ∪ S(e2)).

Next we describe the oracle M. M is a stateful oracle mapping elements to
“generic” representations called handles. Given handles to elements, M allows
the user to perform operations on the elements.M will implement the following
interfaces:

Initialization. M will be initialized with a ring R, a universe set U , and a list L
of initial elements. For every element e ∈ L, M generates a handle. We do not
specify how the handles are generated, but only require that the value of the
handles are independent of the elements being encoded, and that the handles are
distinct (even if L contains the same element twice).M maintains a handle table
where it saves the mapping from elements to handles. M outputs the handles
generated for all the element in L. After M has been initialize, all subsequent
calls to the initialization interfaces fail.
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Algebraic operations. Given two input handles h1, h2 and an operation ◦ ∈
{+,−, ·}, M first locates the relevant elements e1, e2 in the handle table. If any
of the input handles does not appear in the handle table (that is, if the handle
was not previously generated byM) the call toM fails. If the expression e1 ◦ e2
is undefined (i.e., S(e1) = S(e2) for ◦ ∈ {+,−}, or S(e1)∩S(e2) = ∅ for ◦ ∈ {·})
the call fails. Otherwise,M generates a new handle for e1◦e2, saves this element
and the new handle in the handle table, and returns the new handle.

Zero testing. Given an input handle h, M first locates the relevant element e
in the handle table. If h does not appear in the handle table (that is, if h was
not previously generated by M) the call to M fails. If S(e) = U the call fails.
Otherwise, M returns 1 if α(e) = 0, and returns 0 if α(e) = 0.

5 Obfuscation in the Ideal Graded Encoding Model

In this section we describe our “virtual black-box” obfuscator O for NC1 in the
ideal graded encoding model.

Input. The obfuscator O takes as input a circuit and transforms it into an
oblivious dual-input branching program BP of width w and length n for 
-bit
inputs:

BP =
(
inp1(i), inp2(i), {Bi,b1,b2}b1,b2∈{0,1}

)n
i=1

.

Recall that each Bi,b1,b2 is a permutation matrix in {0, 1}w×w, and inp1(i),
inp2(i) ∈ [
] are the positions of the input bits inspected in step i. Without
loss of generality, we make the following assumptions on the structure of the
brunching program BP:

– In every step BP inspects two different input bits; that is, for every step
i ∈ [n], we have inp1(i) = inp2(i).

– Every pair of different input bits are inspected in some step of BP; that is,
for every j1, j2 ∈ [
] such that j1 = j2 there exists a step i ∈ [n] such that
(inp1(i), inp2(i)) = (j1, j2).

– Every bit of the input is inspected by BP exactly 
′ times. More precisely,
for input bit j ∈ [
], we denote by ind(j) the set of steps that inspect the
j’th bit:

ind(j) = {i ∈ [n] : inp1(i) = j} ∪ {i ∈ [n] : inp2(i) = j} .

We assume that for every input bit j ∈ [
], |ind(j)| = 
′. Note that in every
step, the j’th input bit can be inspected at most once.

Randomizing. Next, the Obfuscator O “randomizes” the branching program BP
as follows. First, O samples a prime p of length Θ(n). Then, O samples random
and independent elements as follows:
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– Non-zero scalars {αi,b1,b2 ∈ Zp : i ∈ [n], b1, b2 ∈ {0, 1}}.
– Pair of vectors s, t ∈ Zw

p .
– n+ 1 random full-rank matrices R0, R1, . . . , Rn ∈ Zw×w

p .

Finally, O computes the pair of vectors:

s̃ = st ·R−1
0 , t̃ = Rn · t ,

and for every i ∈ [n] and b1, b2 ∈ {0, 1}, O computes the matrix:

B̃i,b1,b2 = Ri−1 ·Bi,b1,b2 ·R−1
i .

Initialization. For every j ∈ [
], let Sj be a straddling set system with 
′ entries
over a set Uj, such that the sets U1, . . . , U� are disjoint. Let U =

⋃
j∈[�] Uj ,

and let Bs and Bt be sets such that U,Bs, Bt are disjoint. We associate the set
system Sj with the j’th input bit. We index the elements of Sj by the steps of
the branching program BP that inspect the j’th input. Namely,

Sj =
{
Sj

k,b : k ∈ ind(j), b ∈ {0, 1}
}
.

For every step i ∈ [n] and bits b1, b2 ∈ {0, 1} we denote by S(i, b1, b2) the union
of pairs of sets that are indexed by i:

S(i, b1, b2) = S
inp1(i)
i,b1

∪ S
inp2(i)
i,b2

.

Note that by the way we defined the set ind(j) for input bit j ∈ [
], and by the way

the elements of Sj are indexed, indeed, S
inp1(i)
i,b1

∈ Sinp1(i) and S
inp2(i)
i,b2

∈ Sinp2(i).
O initializes the oracleM with the ring Zp, the universe set U ∪Bs ∪Bt and

with the following initial elements:

(s · t, Bs ∪Bt),{
(s̃[j], Bs), (t̃[j], Bt)

}
j∈[w]

{(αi,b1,b2 , S(i, b1, b2))}i∈[n],b1,b2∈{0,1}{
(αi,b1,b2 · B̃i,b1,b2 [j, k], S(i, b1, b2))

}
i∈[n],b1,b2∈{0,1},j,k∈[w]

O receives back a list of handles. We denote the handle to the element (α, S)
by [α]S . For a matrix M , [M ]S denotes a matrix of handles such that [M ]S [j, k]
is the handle to the element (M [j, k], S). Using this notation, O receives back
the following handles:

[s̃]Bs
,
[
t̃
]
Bt

, [s · t]Bs∪Bt
,{

[αi,b1,b2 ]S(i,b1,b2)
,
[
αi,b1,b2 · B̃i,b1,b2

]
S(i,b1,b2)

}
i∈[n],b1,b2∈{0,1}

.
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Output. The obfuscator O outputs a circuit O(BP) that has all the handles
received from the Initialization stage hardcoded into it. Given access to the
oracleM, O(BP) can add and multiply handles.

Notation. Given two handles [α]S and [β]S , we let [α]S + [β]S denote the handle
obtained fromM upon sending an addition query with [α]S and [β]S . Similarly,
given two handles [α1]S1 and [α2]S2 such that S1 ∩S2 = ∅, we denote by [α1]S1 ·
[α2]S2 the handle obtained from M upon sending a multiplication query with
[α1]S1 and [α2]S2 . Given two matrices of handles [M1]S1

, [M2]S2
, we define their

matrix multiplication in the natural way, and denote it by [M1]S1
· [M2]S2

.

For input x ∈ {0, 1}� to O(BP), and for every i ∈ [n] let
(bi1, b

i
2) = (xinp1(i)

, xinp2(i)
). On input x, O(BP) obtains the following handles:

h = [s̃]Bs
·

n∏
i=1

[
αi,bi1,b

i
2
· B̃i,bi1,b

i
2

]
S(i,bi1,b

i
2)
·
[
t̃
]
Bt

,

h′ = [s · t]Bs∪Bt
·

n∏
i=1

[
αi,bi1,b

i
2

]
S(i,bi1,b

i
2)

O(BP) uses the oracleM to subtract the handle h′ from h and performs a zero
test on the result. If the zero test outputs 1 then O(BP) outputs 1, and otherwise
O(BP) outputs 0.

Correctness. By construction we have that as long as none of the calls to the
oracle M fail, subtracting the handle h′ from h results in a handle to 0 if and
only if:

0 = s̃ ·
n∏

i=1

αi,bi1,b
i
2
· B̃i,bi1,b

i
2
· t̃− s · t ·

n∏
i=1

αi,bi1,b
i
2

=

(
s̃ ·

n∏
i=1

B̃i,bi1,b
i
2
· t̃− s · t

)
·

n∏
i=1

αi,bi1,b
i
2

=

(
st · R−1

0 ·
n∏

i=1

(
Ri−1 · Bi,b1,b2 ·R−1

i

)
· R−1

n · t− s · t
)
·

n∏
i=1

αi,bi1,b
i
2

= st ·
(

n∏
i=1

Bi,b1,b2 − Iw×w

)
· t ·

n∏
i=1

αi,bi1,b
i
2

From the definition of the branching program we have:

BP(x) = 1⇔
n∏

i=1

Bi,bi1,b
i
2
= Iw×w

Thus, if BP(x) = 1 then O(BP) outputs 1 with probability 1. If BP(x) = 0
then O(BP) outputs 1 with probability at most 1/p = negl(n) over the choice of
s and t.
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It is left to show that none of the calls to the oracle M fail. Note that when
multiplying two matrices of handles [M1]S1

· [M2]S2
, none of the addition or

multiplication calls fail as long as S1 ∩ S2 = ∅. Therefore, to show that none of
the addition or multiplication calls toM fail, it is enough to show that following
sets are disjoint:

Bs, Bt, S(1, b
1
1, b

1
2), . . . , S(n, b

n
1 , b

n
2 ) .

Their disjointness follows from the fact that U1, . . . , U�, Bs, Bt are disjoint, to-
gether with definition of S(i, bi1, b

i
2) and with the fact that for every set sys-

tem Sj , for every distinct i, i′ ∈ ind(j), and for every b ∈ {0, 1}, we have that
Sj

i,b ∩ Sj
i′,b = ∅.

To show that the zero testing call to the oracle M does not fail we need to
show that the index set of the elements corresponding to h and h′ is the entire
universe. Namely, we need to show that(

n⋃
i=1

S(i, bi1, b
i
2)

)
∪Bs ∪Bt = U ∪Bs ∪Bt ,

which follows from the following equalities:

n⋃
i=1

S(i, bi1, b
i
2) =

n⋃
i=1

S
inp1(i)

i,bi1
∪ S

inp2(i)

i,bi2
=

�⋃
j=1

⋃
k∈ind(j)

Sj
k,xi

=
�⋃

j=1

Uj = U .

6 Proof of VBB in the the Ideal Graded Encoding Model

In this section we prove that the obfuscator O described in Section 5 is a good
VBB obfuscator for NC1 in the ideal graded encoding model.

Let C = {C�}�∈N be a circuit class such that every circuit in C� is of size poly(
)
and of depth O(log 
). We assume WLOG that all circuits in C� are of the same
depth (otherwise the circuit can be padded). It follows from Theorem 2.1 that
there exist polynomial functions n and w such that on input circuit C ∈ C�,
the branching program BP computed by O is of size n(|C|), width w(|C|), and
computes on 
(|C|)-bit inputs.

In Section 5 we showed that O satisfies the functionality requirement where
the probability of O computing the wrong output is negligible in n. Since n is a
polynomial function of |C| we get that the functionality error is negligible in |C|,
as required. It is straightforward to verify that O also satisfies the polynomial
slowdown property. In the rest of this section we prove that O satisfies the virtual
black-box property.

The simulator. To prove that O satisfies the virtual black-box property, we
construct a simulator Sim that is given 1|C|, the description of an adversary
A, and oracle access to the circuit C. Sim starts by emulating the obfuscation
algorithm O. Recall that O converts the circuit C into a branching program BP.
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However, since Sim is not given C it cannot compute the matrices Bi,b1,b2 in
the description of BP (note that Sim can compute the input mapping functions
inp1, inp2 since the branching program is oblivious). Without knowing the B
matrices, Sim cannot simulate the list of initial elements to the oracleM. Instead
Sim initializes M with formal variables.

Concretely, we extend the definition of an element to allow for values that are
formal variables, as opposed to ring elements. When performing an operation ◦
on elements e1, e2 that contain formal variables, the value of the resulting ele-
ment e1 ◦ e2 is just the formal arithmetic expression α(e1) ◦α(e2) (assuming the
indexes of the elements are such that the operation is defined). We represent
formal expressions as arithmetic circuits, thereby guaranteeing that the repre-
sentation size remains polynomial. We say that an element is basic if its value
is an expression that contains no gates (i.e., its just a formal variable). We say
that an element e′ is a sub-element of an element e if e was generated from e′

through a sequence of operations.
To emulate O, Sim must also emulate the oracle M that O accesses. Sim

can efficiently emulate all the interfaces of M except for the zero testing. The
problem with simulating zero tests is that Sim cannot test if the value of a
formal expression is 0. Note however that the emulation of O does not make any
zero-test queries to M (zero-test queries are made only by the evaluator).

When Sim completes the emulation of O it obtains a simulated obfuscation
Õ(C). Sim proceeds to emulate the execution of the adversary A on input Õ(C).
When A makes an oracle call that is not a zero test, Sim emulates M’s answer
(note that emulation of the oracleM is stateful and will therefore use the same
handle table to emulate both O and A). Since the distribution of handles gen-
erated during the simulation and during the real execution are identical, and
since the simulated obfuscation Õ(C) consists only of handles (as opposed to el-
ements), we have that the simulation of the obfuscation Õ(C) and the simulation
of M’s answers to all the queries, except for zero-test queries, is perfect.

Simulating zero testing queries. In the rest of the proof we describe how the
simulator correctly simulates zero-test queries made by A. Simulating the zero-
test queries is non-trivial since the handle being tested may correspond to a
formal expression whose value is unknown to Sim. (The “real” value of the formal
variables depend on the circuit C). Instead we show how Sim can efficiently
simulate the zero-test queries given oracle access to the circuit C.

The high-level strategy for simulating zero-test queries is as follows. Given a
handle to some element, Sim tests if the value of the element is zero in two parts.
In the first part, Sim decomposes the element into a sum of polynomial number of
“simpler” elements that we call single-input elements. Each single-input element
has a value that depends on a subset of the formal variables that correspond to a
specific input to the branching program. Namely, for every single-input element
there exists x ∈ {0, 1}� such that the value of the element only depends on the
formal variables in the matrices B̃i,bi1,b

i
2
, where bi1 = xinp1(i)

and bi2 = xinp2(i)
.

The main difficulty in the first step is to prove that the number of single-input
elements in the decomposition is polynomial.
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In the second part, Sim simulates the value of every single-input element
separately. The main idea in this step is to show that the value of a single-
input element for input x can be simulated only given C(x). To this end, we use
Kilian’s proof on randomized encoding of branching programs. Unfortunately,
we cannot simulate all the single-input elements at once (given oracle access
to C), since their values may not be independent; in particular, they all depend
on the obfuscator’s randomness. Instead, we show that it is enough to zero test
every single-input element individually. More concretely, we show that from every
single input element that the adversary can construct, it is possible to factor
out a product of the αi,bi1,b

i
2
variables. We also show that every single-input

element depends on a different set of the αi,bi1,b
i
2
variables. Since the values of

the α variables are chosen at random by the obfuscation, it is unlikely that the
adversary makes a query where the value of two single-input elements “cancel
each other” and result in a zero. Therefore, with high probability an element is
zero iff it decomposes into single-input element’s that are all zero individually.

Decomposition to single-input elements. Next we show that every element can
be decomposed into polynomial number of single-input elements. We start by
introducing some notation.

For every element e we assign an input-profile prof(e) ∈ {0, 1, ∗}� ∪ {⊥}.
Intuitively, if we think of e as an intermediate element in the evaluation of the
branching program on some input x, the input-profile prof(e) represents the
partial information that can be inferred about x based on the formal variables
that appear in the value of e. Formally, for every element e and for every j ∈ [
],
we say that the j’th bit of e’s input-profile is consistent with the value b ∈ {0, 1}
if e has a basic sub-element e′ such that S(e′) = S(i, b1, b2) and either j = inp1(i)
and b1 = b, or j = inp2(i) and b2 = b.

For every j ∈ [
] and for b ∈ {0, 1} we set prof(e)j = b if the j’th bit of e’s
input-profile is consistent with b but not with 1− b. If the j’th bit of e’s input-
profile is not consistent with either 0 or 1 then prof(e)j = ∗. If there exist j ∈ [
]
such that the j’th bit of e’s input-profile is consistent with both 0 and 1, then
prof(e) = ⊥. In this case we say that e is not a single-input element and that it’s
profile is invalid. If prof(e) = ⊥ then we say that e is a single-input element. We
say that an input-profile is complete if it is in {0, 1}�.

Next we describe an algorithm D used by Sim to decompose elements into
single-input elements. Given an input element e, D outputs a set of single-input
elements with distinct input-profiles such that e =

∑
s∈D(e) s, where the equality

between the elements means that their values compute the same function (it does
not mean that the arithmetic circuits that represent these values are identical).
Note that the above requirement implies that for every s ∈ D(e), S(s) = S(e).

The decomposition algorithm D is defined recursively, as follows:

– If the input element e is basic, D outputs the singleton set {e}.
– If the input element e is of the form e1+e2,D executes recursively and obtains

the set L = D(e1) ∪ D(e2). If there exist elements s1, s2 ∈ L with the same
input-profile, D replaces the two elements with a single element s1 + s2. D
repeats this process until all the input-profiles in L are distinct and outputs L.
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– If the input element e is of the form e1 · e2, D executes recursively and
obtains the sets L1 = D(e1), L2 = D(e2). For every s1 ∈ L1 and s2 ∈ L2, D
adds the expression s1 · s2 to the output set L. D then eliminates repeating
input-profiles from L as described above, and outputs L.

The fact that in the above decomposition algorithm indeed e =
∑

s∈D(e) s,
and that the input profiles are distinct follows from a straightforward induction.
The usefulness of the above decomposition algorithm is captured by the following
two claims:

Claim 6.1. If U ⊆ S(e) then all the elements in D(e) are single-input elements.
Namely, for every s ∈ D(e) we have that prof(s) = ⊥.
Claim 6.2. D runs in polynomial time, and in particular, the number of ele-
ments in the output decomposition is polynomial.

The proofs of Claims 6.1,6.2 and the formal description of how to simulate
zero tests appear in the full version of this work [1].
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Abstract. The GGH Graded Encoding Scheme [9], based on ideal lat-
tices, is the first plausible approximation to a cryptographic multilin-
ear map. Unfortunately, using the security analysis in [9], the scheme
requires very large parameters to provide security for its underlying
“encoding re-randomization” process. Our main contributions are to for-
malize, simplify and improve the efficiency and the security analysis of
the re-randomization process in the GGH construction. This results in a
new construction that we call GGHLite. In particular, we first lower the
size of a standard deviation parameter of the re-randomization process
of [9] from exponential to polynomial in the security parameter. This first
improvement is obtained via a finer security analysis of the “drowning”
step of re-randomization, in which we apply the Rényi divergence instead
of the conventional statistical distance as a measure of distance between
distributions. Our second improvement is to reduce the number of ran-
domizers needed from Ω(n log n) to 2, where n is the dimension of the
underlying ideal lattices. These two contributions allow us to decrease
the bit size of the public parameters from O(λ5 log λ) for the GGH scheme
to O(λ log2 λ) in GGHLite, with respect to the security parameter λ (for
a constant multilinearity parameter κ).

1 Introduction

Boneh and Silverberg [6] defined a cryptographic κ-multilinear map e as a map
from G1 × . . . × Gκ to GT , all cyclic groups of order p, which enjoys three
main properties: first, for any elements gi ∈ Gi for i ≤ κ, j ≤ κ and α ∈
Zp, we have e(g1, . . . , α · gj, . . . , gκ) = α · e(g1, . . . , gκ); second, the map e
is non-degenerate, i.e., if the gi’s are generators of their respective Gi’s then
e(g1, . . . , gκ) generates GT ; and third, there is no efficient algorithm to compute
discrete logarithms in any of the Gi’s. Bilinear maps (κ = 2) and multilinear
maps have a lot of cryptographic applications, see [11,21,5] and [6,20,16,19], re-
spectively. But unlike bilinear maps, built with pairings on elliptic curves, the
construction of cryptographic multilinear maps was an open problem for several
years. In [6], Boneh and Silverberg studied the interest of such maps, and gave
two applications: multipartite Diffie-Hellman key exchange and very efficient
broadcast encryption. But they conjectured that multilinear maps will proba-
bly “come from outside the realm of algebraic geometry.” In 2013, Garg, Gentry

P.Q. Nguyen and E. Oswald (Eds.): EUROCRYPT 2014, LNCS 8441, pp. 239–256, 2014.
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and Halevi [9] introduced the first “approximate” multilinear maps contruction,
based on ideal lattices, and the powerful notion of graded encoding scheme. Based
on their work, Coron, Lepoint and Tibouchi [7] recently described an alternative
construction of graded encoding scheme.

We first give a high level description of the GGH graded encoding scheme
[9]. If we come back to the definition of cryptographic multilinear maps, the
authors of [9] notice that α ·gi can be viewed as an “encoding” of the “plaintext”
α ∈ Zq. They consider the polynomial rings R = Z[x]/〈xn + 1〉 and Rq = R/qR
(replacing the exponent space Zp). They generate a small secret g ∈ R and let
I = 〈g〉 be the principal ideal over R generated by g. They also sample a uniform
z ∈ Rq which stays secret. The “plaintext” is an element of R/I, and is encoded
via a division by z in Rq: to encode a coset of R/I, return [c/z]q, where c is
an arbitrary small coset representative. In practice, as g is hidden, they give
another public parameter y, which is an encoding of 1, and the encoding of the
coset is computed as [e · y]q, where e is a small coset representative (possibly
different from c). But, as opposed to multilinear maps, their graded encoding
scheme uses the notion of encoding level: the plaintext e is a level-0 encoding, the
encoding [c/z]q is a level-1 encoding, and at level i, an encoding of e + I is given
by [c/zi]q = [e · yi]q. These encodings are both additively and multiplicatively
homomorphic, up to a limited number of operations. More precisely, a product
of i level-1 encodings is a level-i encoding. One can multiply any number of
encodings up to κ, instead of exactly κ in multilinear maps (the parameter κ is
called the multilinearity parameter).

The authors of [9] introduced new hardness assumptions: the Graded Deci-
sional Diffie-Hellman (GDDH) and its computational variant (GCDH). These
are natural analogues of the Diffie-Hellman problems from group-based cryp-
tography. To ensure their hardness, and hence the security of the cryptographic
constructions, the second main difference with multilinear maps is the random-
ization of the encodings. The principle is as follows: first some level-1 encodings of
0, called {xj = [bj/z]q}j≤mr , are given as part of the public parameters; then, to
randomize a level-1 encoding u′ = [e·y]q, one outputs u = [u′+

∑
j ρjxj ]q = [c/z]q

with c = c′+
∑

j ρjbj , where the ρj ’s are sampled from a discrete Gaussian distri-
bution over Z with deviation parameter σ∗. Without this re-randomization, the
encoding u′ of e allows e to be efficiently recovered using u = [u′y−1]q. Adding
the re-randomization step prevents this division attack, but the statistical prop-
erties of the distribution of the re-randomized encoding u remain correlated to
some extent with the original encoding u′ (for instance, the center of the dis-
tribution of c is c′, since the distribution of

∑
j ρjbj is known to be centered

at 0). This property may allow other attacks that exploit this correlation. The
question arises as to how to set the re-randomization parameter σ∗ in order to
guarantee security against such potential “statistical correlation” attacks – the
larger the re-randomization parameters the smaller the correlation, and heuristi-
cally the more resistant the scheme is to such attacks. But increasing σ∗ impacts
the efficiency of the scheme.
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In [9], the authors use a “drowning step” to solve this problem. This tech-
nique, also called “smudging,”was previously used in other applications [3,10,2,4].
Generally, “drowning” consists in hiding a secret vector s ∈ Zn by adding a suffi-
ciently large random noise e ∈ Zn to it, so that the distribution of s+e becomes
“almost independent” of s. In all of the above applications, to achieve a security
level 2λ (where λ denotes the security parameter), the security analysis requires
“almost independent” to be interpreted as “within statistical distance 2−λ from a
distribution that is independent of s.” In turn, this requirement implies the need
for “exponential drowning,” i.e., the ratio γ = ‖e‖/‖s‖ between the magnitude
of the noise and the magnitude of secret needs to be 2Ω(λ). Exponential drown-
ing imposes a severe penalty on the efficiency of these schemes, as their security
is related to γ-approximation lattice problems, whose complexity decreases ex-
ponentially with log γ. As a result, the schemes require a lattice dimension n at
least quadratic in λ and key length at least cubic in λ. In summary, the GGH
re-randomization step, necessary for its security, is also a primary factor in its
inefficiency.

Our contributions. First, we formalize the re-randomization security goal in
the GGH construction, that is implicit in the work of [9]. A primary security
goal of re-randomization is to guarantee security of the GDDH problem against
statistical correlation attacks. Accordingly, we formulate a security goal that
captures this security guarantee, by introducing a canonical variant of GDDH,
called cGDDH. In this variant, the encodings of some elements are sampled
from a canonical distribution whose statistical properties are independent of the
encoded elements. Consequently, the canonical problems are by construction not
subject to “statistical correlation” attacks. Our re-randomization security goal
is formulated as the existence of an efficient computational reduction from the
canonical problems to their corresponding non-canonical variants.

Our first main improvement to the GGH scheme relies on a new security anal-
ysis of the drowning step in the GGH re-randomization algorithm. We show
that our re-randomization security goal can be satisfied without “exponential
drowning,” thus removing the main efficiency bottleneck. Namely, our analy-
sis provides a re-randomization at security level 2λ while allowing the use of
a re-randomization deviation parameter σ∗ that only drowns the norm of the
randomness offset r′ ∈ I (from the original encoding to be re-randomized) by a
polynomial (or even constant) drowning ratio γ = λO(1) (rather than γ = 2Ω(λ),
as needed in the analysis of [9]). However, our analysis only works for the search
variant of the Graded Diffie-Hellman problem. Fortunately, we show that the
two flagship applications of the GGH scheme – the N -party Key Agreement and
the Attribute Based Encryption – can be modified to rely on this computational
assumption (in the random oracle model).

Our second main improvement of the re-randomization process is to decrease
mr, the number of encodings of 0 needed, from Ω(n log n) to 2. We achieve this
result by presenting a new discrete Gaussian Leftover Hash Lemma (LHL) over
algebraic rings. In [9], the authors apply the discrete Gaussian LHL from [1] to
show that the distribution of the sum

∑
j≤mr

ρjrj is close to a discrete Gaussian
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on the ideal I. Our improvement consists in sampling the randomizers ρj as
elements of the full n-dimensional ring R, rather than just from Z. Since each
randomizer now has n times more entropy than before, one may hope to obtain
a similar LHL result as in [1] while reducing mr by a factor ≈ n. However, as the
designers of the GGH scheme notice in [9, Se. 6.4], the proof techniques from [1]
do not seem to immediately carry over to our “algebraic ring” LHL setting. Our
new LHL over rings resolves this problem.

These contributions allow us to decrease the bit size of the public parameters
from O(κ3λ5 log(κλ)) for the GGH scheme to O(κ2λ log2(κλ)) for GGHLite, for
security level 2λ for the graded Diffie-Hellman problem.

Technical overview. Our first main result is to reduce the size of the param-
eter σ∗ in the re-randomization process. Technically, our improved analysis of
drowning is obtained by using the Rényi divergence (RD) to replace the conven-
tional statistical distance (SD) as a measure of distribution closeness. The RD
was already exploited in a different context in [13, Claim 5.11], to show the hard-
ness of Ring-LWE. Here, we use the RD to decrease the amount of drowning, by
bounding the RD between a discrete Gaussian distribution and its offset.This
suffices for relating the hardness of the search problems using these encoding
distributions, even though the SD between the distributions is non-negligible.
The technique does not seem to easily extend to the decision problems, as RD
induces a multiplicative relationship between success probabilities, rather than
an additive relationship as SD does.

Our second main result is a new LHL over the ring R. We now briefly explain
this result and its proof. For a fixed X = [x1, x2] ∈ R2, with each xi sampled
from DR,s, our goal is to study the distribution ẼX,s = x1 · DR,s + x2 · DR,s.
In particular, we prove that ẼX,s is statistically close to DZn,sXT . For this, we
adapt the proof of the LHL in [1]: we follow a similar series of steps, but the
proofs of these steps differ technically, as we exploit the ring structure.

We first show that X ·R2 = R, except with some constant probability < 1. For
this, we adapt a result from [23] on the probability that two Gaussian samples
of R are coprime. Note that in contrast to the LHL over Z in [1], in our setting
the probability that X · R2 �= R is non-negligible. This is unavoidable with the
ring R = Z[x]/〈xn + 1〉, since each random element of R falls in the ideal 〈x + 1〉
with probability ≈ 1/2, both x1 and x2 (and hence the ideal they generate) get
“stuck” in 〈x + 1〉 with probability ≈ 1/4. However, the probability of this bad
event is bounded away from 1 by a constant and thus we only need a constant
number of trials on average with random X ’s to obtain a good X by rejection.

Then, we define the orthogonal R-module AX = {v ∈ R2 : X · v = 0}, and
apply a directly adapted variant of [1, Le. 10] to show that if the parameter s
is larger than the smoothing parameter ηε(AX) (with AX viewed as an inte-
gral lattice), then the SD between ẼX,s and the ellipsoidal Gaussian DZn,sXT is
bounded by 2ε. We finally show that this condition on the smoothing parameter
of AX holds. For this, we observe that the Minkowski minima of the lattice AX

are equal, due to the R-module structure of AX . This allows us to bound the
last minimum from above using Minkowski’s second theorem. A similar approach
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was previously used (e.g., in [12]) to bound the smoothing parameter of ideal
lattices.
Notation. A function f(λ) is said negligible if it is λ−ω(1). For an integer q, we
let Zq denote the ring of integers modulo q. The notation [·]q means that all oper-
ations within the square brackets are performed modulo q. We choose n ≥ 4 as a
power of 2, and let K and R respectively denote the polynomial ring Q[X ]/〈xn +
1〉 and Z[X ]/〈xn+1〉. The rings K and R are isomorphic to the cyclotomic field of
order 2n and its ring of integers, respectively. For an integer q, we let Rq denote
the ring Zq[x]/〈xn +1〉 
 R/qR. For z ∈ R we denote by MSB�(z) ∈ {0, 1}�·n the
� most-significant bits of each of the n coefficients of z. Vectors are denoted in
bold. For b ∈ Rd (resp. g ∈ K), we let ‖b‖ (resp. ‖g‖) denote its Euclidean norm
(resp. norm of its coefficient vector). The uniform distribution on finite set E is
denoted by U(E). The statistical distance (SD) between distributions D1 and D2
over a countable domain E is 1

2
∑

x∈E |D1(x) − D2(x)|. For a function f over a
countable domain E, we let f(E) =

∑
x∈E f(x). Let X ∈ Rm×n be a rank-n ma-

trix and UX = {‖Xu‖ : u ∈ Rn, ‖u‖ = 1}. The smallest (resp. largest) singular
value of X is denoted by σn(X) = inf(UX) (resp. σ1(X) = sup(UX)).
Remark. Due to lack of space, some contents have been postponed to the full
version of this paper, available from the webpages of the authors.

2 Preliminaries

Lattices. We refer to [14,17] for introductions to the computational aspects of
lattices. A d-dimensional lattice Λ ⊆ Rn is the set of all integer linear combi-
nations

∑d
i=1 xibi of some linearly independent vectors bi ∈ Rn. The determi-

nant det(Λ) is defined as
√

det(BT B), where B = (bi)i is any such basis of Λ.
For i ≤ d, the ith minimum λi(Λ) is the smallest r such that Λ contains i linearly
independent vectors of norms ≤ r.

Gaussian Distributions. For a rank-n matrix S ∈ Rm×n and a vector c ∈ Rn,
the ellipsoid Gaussian distribution with parameter S and center c is defined
as: ∀x ∈ Rn, ρS,c(x) = exp(−π(x − c)T (ST S)−1(x − c)). Note that ρS,c(x) =
exp(−π‖(ST )†(x−c)‖), where X† denotes the pseudo-inverse of X . The ellipsoid
discrete Gaussian distribution over a coset Λ+z of a lattice Λ, with parameter S
and center c is defined as: ∀x ∈ Λ + z, DΛ+z,S,c = ρS,c(x)/ρS,c(Λ).

Smoothing Parameter. Introduced by [15], the smoothing parameter ηε(Λ) of
an n-dimensional lattice Λ and a real ε > 0 is defined as the smallest s such that
ρ1/s(Λ∗ \ {0}) ≤ ε. We use the following properties.

Lemma 2.1 ([15, Le. 3.3]). Let Λ be an n-dimensional lattice and ε > 0. Then
ηε(Λ) ≤ √

ln(2n(1 + 1/ε))/π · λn(Λ).

Lemma 2.2 ([1, Le. 3]). For a rank-n lattice Λ, constant 0 < ε < 1, vector
c and matrix S with σn(S) ≥ ηε(Λ), if x is sampled from DΛ,S,c then ‖x‖ ≤
σ1(S)

√
n, except with probability ≤ 1+ε

1−ε · 2−n.
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Algebraic Number Rings and Ideal Lattices. For g, x ∈ R, we let [x]g
denote the reduction of x modulo the principal ideal I = 〈g〉 with respect to
the Z-basis (g, x · g, . . . , xn−1 · g), i.e., [x]g is the unique element of R in Pg =
{∑n−1

i=0 cix
ig : ci ∈ [−1/2, 1/2) ∩ R} such that x − [x]g ∈ 〈g〉. The set Pg ∩ R

is a set of unique representatives of the cosets of I in R, that make up the
quotient ring R/I. To use our improved drowning lemma in Section 4, we need
a lower bound on the last singular value σn(rot(b)) of the matrix rot(b) ∈ Zn×n

corresponding to the map x �→ b ·x over R, for a Gaussian distributed b ←↩ DI,σ.
In the following, and in the rest of the paper, we abuse notation and write b for
this matrix.

Lemma 2.3 (Adapted from [23, Le. 4.1]). Let R = Zn[x]/(xn + 1) for n a
power of 2. For any ideal I ⊆ R, δ ∈ (0, 1), t ≥ √

2π and σ ≥ t√
2π

· ηδ(I), we
have:

Prb←↩DI,σ

[
‖b−1‖ ≥ t

σ
√

n/2

]
≤ Prb←↩DI,σ

[
σn(b) ≤ σ

√
n/2
t

]
≤ 1+δ

1−δ
n

√
2πe
t .

3 GGH and Its Re-randomization Procedure

In this section, we recall the Garg et al. scheme from [9], and its related hard
problems. We then discuss the re-randomization step of the scheme and explain
what should be expected from it, in terms of security. This security require-
ment is unclear in [9] and [1]. We formulate it precisely. This will drive our
re-randomization design in the following sections.

3.1 The GGH Scheme

We recall the GGH scheme in Figure 1. We present it here in a slightly more
general form than [9]: we leave as a parameter the distribution χk of the re-
randomization coefficients ρj for a level-k encoding (for any k ≤ κ). In the
original GGH scheme, we have χk = DZ,σ∗

k
for some σ∗

k’s, i.e., the ρj ’s are integers
sampled from a discrete Gaussian distribution. Looking ahead, in Section 5, we
analyze a more efficient variant, in which χk = DR,σ∗

k
, so that the ρj’s belong

to R.
The aim of isZero is to test whether the input u = [c/zκ]q is a level-κ encoding

of 0 or not, i.e., whether c = g · r for some r ∈ R. The following conditions
ensure correctness of isZero, when χk = DZ,σ∗

k
(for all k ≤ κ): the first one

implies that false negatives do not exist (if u is level-κ encoding of 0, then
isZero(u) returns 1), whereas the second one implies that false positives occur
with negligible probability.

q > max((n�g−1)8, ((mr + 1) · nσ∗
1σ′)8κ) (1)

q > (2nσ)4. (2)

The aim of ext is to extract a quantity from its input u = [c/zκ]q that depends
only on the encoded value [c]g, but not on the randomizers. To avoid trivial solu-
tions, one requires that this extracted value has min-entropy ≥ 2λ (if that is the
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• Instance generation InstGen(1λ, 1κ): Given security parameter λ and multilin-
earity parameter κ, determine scheme parameters n, q, mr, σ, σ′, �g−1 , �, based
on the scheme analysis. Then proceed as follows:

• Sample g ←↩ DR,σ until ‖g−1‖ ≤ �g−1 and I = 〈g〉 is a prime ideal. Define
encoding domain Rg = R/〈g〉.

• Sample z ←↩ U(Rq).
• Sample a level-1 encoding of 1: set y = [a · z−1]q with a ←↩ D1+I,σ′ .
• For k ≤ κ, sample mr level-k encodings of 0: set x

(k)
j = [b(k)

j · z−k]q with
b
(k)
j ←↩ DI,σ′ for all j ≤ mr.
(Note that a = 1 + gry and b

(k)
j = gr

(k)
j for some ry , r

(k)
j ∈ R.)

• Sample h ←↩ DR,
√

q and define the zero-testing parameter pzt = [ h
g

zκ]q ∈ Rq.
• Return public parameters par = (n, q, y, {x

(k)
j }j≤mr ,k≤κ) and pzt.

• Level-0 sampler samp(par): Sample e ←↩ DR,σ′ and return e.
(Note that e = eL + geH for some unique coset representative eL ∈ Pg, and some
eH ∈ R.)

• Level-k encoding enck(par, e): Given level-0 encoding e ∈ R and parameters par:
• Encode e at level k: Compute u′ = [e · yk]q.
• Re-randomize: Sample ρj ←↩ χk for j ≤ mr and return u = [u′ +

∑mr

j=1 ρjx
(k)
j ]q.

(Note that u′ = [c′/zk]q with c′ ∈ eL + I and u = [(c′ +
∑

j
ρjb

(k)
j )/zk]q.)

• Adding encodings add: Given level-k encodings u1 = [c1/zk]q and u2 = [c2/zk]q:
• Return u = [u1 + u2]q , a level-k encoding of [c1 + c2]g .

• Multiplying encodings mult: Given level-k1 encoding u1 = [c1/zk1 ]q and a level-
k2 encoding u2 = [c2/zk2 ]q :

• Return u = [u1 · u2]q , a level-(k1 + k2) encoding of [c1 · c2]g .
• Zero testing at level κ isZero(par, pzt, u): Given a level-κ encoding u = [c/zκ]q,

return 1 if ‖[pztu]q‖∞ < q3/4 and 0 else.
(Note that [pzt · u]q = [hc/g]q .)

• Extraction at level κ ext(par, pzt, u): Given a level-κ encoding u = [c/zκ]q,
return v = MSB�([pzt · u]q).
(Note that if c = [c]g + gr for some r ∈ R, then v = MSB�( h

g
([c]g + gr)) =

MSB�( h
g

[c]g + hr), which is equal to MSB�( h
g

[c]g), with probability 1 − λ−ω(1).)

Fig. 1. The GGH graded encoding scheme

case, then one can obtain a uniform distribution on {0, 1}λ, using a strong ran-
domness extractor). The following two inequalities guarantee these properties,
when χk = DZ,σ∗

k
(for all k). The first one implies that εext = Pr[ext(u) �= ext(u′)]

is negligible, when u and u′ encode the same value [c]g, whereas the second one
provides large min-entropy.

1/4 log q − log( 2n

εext
) ≥ � ≥ log(nσ

8
). (3)
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3.2 The GDDH, GCDH and Ext-GCDH Problems

The computational problems that are required to be hard for the GGH scheme
depend on the application. Here we recall the definitions of the Graded Decisional
and Computational Diffie-Hellman (GDDH and GCDH) problems from [9]. We
introduce another natural variant that we call the Extraction Graded Computa-
tional Diffie-Hellman (Ext-GCDH), in which the goal is to compute the extracted
string of a Diffie-Hellman encoding.

Definition 3.1 (GCDH/Ext-GCDH/GDDH). The problems GCDH, Ext-
GCDH and GDDH are defined as follows with respect to experiment of Figure 2:1

– κ-graded CDH problem (GCDH): On inputs par, pzt and the ui’s of
Step 2, output a level-κ encoding of

∏
i≥0 ei + I, i.e., w ∈ Rq such that

‖[pzt(vC − w)]q‖ ≤ q3/4.
– Extraction κ-graded CDH problem (Ext-GCDH): On inputs par, pzt

and the ui’s of Step 2, output the extracted string for a level-κ encoding of∏
i≥0 ei + I, i.e., w = ext(par, pzt, vC) = MSB�([pzt · vC ]q).

– κ-graded DDH problem (GDDH): Distinguish between vD and vR,
i.e., between the distributions DDDH = {par, pzt, (ui)0≤i≤κ, vD} and DR =
{par, pzt, (ui)0≤i≤κ, vR}.

Given parameters λ, n, q, mr, κ, σ′,
proceed as follows:

1. Run InstGen(1n, 1κ) to get
par = (n, q, y, {x

(k)
j }j,k) and pzt.

2. For i = 0, . . . , κ:
-Sample ei ←↩ DR,σ′ , fi ←↩ DR,σ′ ,
-Set ui = [ei · y +

∑
j

ρijxj ]q
with ρij ←↩ χ1 for all j.

3. Set u∗ =
[∏κ

i=1 ui

]
q
.

4. Set vC = [e0u∗]q.
5. Sample ρj ←↩ χκ for all j,

set vD = [e0u∗ +
∑

j
ρjx

(κ)
j ]q .

6. Set vR = [f0u∗ +
∑

j
ρjx

(κ)
j ]q.

Fig. 2. The GGH security experiment

Given parameters λ, n, q, mr, κ, (σ∗
k)k≤κ,

proceed as follows:

1. Run InstGen(1n, 1κ) to get
par = (n, q, y, {x

(k)
j }j,k) and pzt.

Write x
(k)
j = [b(k)

j z−k]q and
B(k) = [b(k)

1 , · · · , b
(k)
mr ] ∈ Imr .

2. For i = 0, . . . , κ:
-Sample ei ←↩ U(Rg), fi ←↩ U(Rg),
-Set ui = [ciz

−1]q ←↩ D
(1)
can(ei)

with ci ←↩ DI+ei,σ∗
1 (B(1))T .

3. Set u∗ =
[∏κ

i=1 ui

]
q
.

4. Set vC = [e0u∗]q.
5. Set vD = [cD · z−κ]q ←↩ D

(κ)
can(

∏κ

i=0ei),
with cD ←↩ DI+

∏
κ

i=0
ei,σ∗

κ(B(κ))T .

6. Set vR =[cR ·z−κ]q ←↩ D
(κ)
can(f0

∏κ

i=1ei),
with cR ←↩ DI+f0

∏κ

i=1
ei,σ∗

κ(B(κ))T .

Fig. 3. The canonical security experiment

1 Note that we use a slightly different process from [9], by adding a re-randomization
to the element vD. Without it, there exists a “division attack” against GDDH.
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Ext-GCDH is at least as hard as GDDH: given vx with x ∈ {DDH, R}, use
the Ext-GCDH oracle to compute w = ext(par, pzt, vC). Nevertheless, we show
(see full version) that it suffices for instantiating, in the random oracle model,
at least some of the interesting applications of graded encoding schemes, at a
higher efficiency than the instantiations of [9] based on GDDH.

3.3 The GGH Re-randomization Security Requirement

The encoding re-randomization step in the GGH scheme is necessary for the hard-
ness of the problems above. In [9], Garg et al. imposed the informal requirement
that the re-randomization process “erases” the structure of the input encoding,
while preserving the encoded coset. In setting parameters, they interpreted this
requirement in the following natural way.

Definition 3.2 (Strong re-randomization security requirement). Let u′ =
[c′/zk]q, with c′ = eL + gr′ be a fixed level-k encoding of eL ∈ Rg, and let
u = [u′ +

∑
j ρjx

(j)
k ]q = [c/zk]q with c = eL + gr and r = r′ +

∑
j ρjr

(k)
j be

the re-randomized encoding, with ρj ←↩ χk for j ≤ mr. Let D
(k)
u (eL, r′) denote

the distribution of u (over the randomness of ρj’s), parameterized by (eL, r′)
and let D

(k)
can(eL) denote some canonical distribution, parameterized by eL, that

is independent of r′. Then we say that the strong re-randomization security re-
quirement is satisfied at level k with respect to D

(k)
can(eL) and encoding norm γ(k)

if Δ(D(k)
u (eL, r′), D

(k)
can(eL)) ≤ 2−λ for any u′ = [c′/zk]q with ‖c′‖ ≤ γ(k).

The authors of [9] argued that with χk = DZ,σ∗
k

(for k ≤ κ) and a “drowning
ratio” σ∗

k/‖r′‖ exponential in security parameter λ, the distribution D
(k)
u (eL, r′)

is within negligible statistical distance to the canonical distribution D
(k)
can(eL) =

[DI+eL,σ∗
k
(B(k))T ·z−k]q. This requirement may be stronger than needed. Accord-

ingly, we now clarify the desired goal.

3.4 Our Security Goal: Canonical Assumptions

We formalize a re-randomization security goal to capture a security guar-
antee against “statistical correlation” attacks on GCDH/Ext-GCDH/GDDH.
We define canonical variants cGCDH/Ext-cGCDH/cGDDH of GCDH/Ext-
GCDH/GDDH, using Figure 3. The main difference with Figure 2 is that the
encodings ui = [ci/z]q of the hidden elements ei, are sampled from a canoni-
cal distribution D

(1)
can(ei), parameterized by ei, whose statistical parameters are

independent of the encoded coset ei, so that it is “by construction” immune
against statistical correlation attacks. In particular, in the canonical distribu-
tion D

(1)
can(ei) that we use, ci is sampled from a discrete Gaussian distribution

DI+ei,σ∗
1 (B(1))T (over the choice of the randomization, for a fixed ei), whose sta-

tistical parameters such as center (namely 0) and deviation matrix σ∗
1(B(1))T

are independent of ei. The only dependence this distribution has on the encoded
element ei is via its support I + ei.
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We believe the canonical problems are cleaner and more natural than the
non-canonical variants, since they decouple the re-randomization aspect from
the rest of the computational problem. As a further simplification, the canonical
variants also have their level-0 elements ei distributed uniformly on Rg (rather
than as reductions mod I of Gaussian samples).

Definition 3.3 (cGCDH/Ext-cGCDH/cGDDH). The canonical problems
cGCDH, Ext-cGCDH and cGDDH are defined as follows with respect to the ex-
periment of Figure 3 and canonical encoding distribution D

(k)
can(e) (parameterized

by encoding level k and encoded element e):

– cGCDH: On inputs par, pzt and the ui’s, output w ∈ Rq such that
‖[pzt(vC − w)]q‖ ≤ q3/4.

– Ext-cGCDH: On inputs par, pzt and the ui’s, output:
w = ext(par, pzt, vC) = MSB�([pzt · vC ]q).

– cGDDH: Distinguish between DDDH = {par, pzt, (ui)0≤i≤κ, vD} and DR =
{par, pzt, (ui)0≤i≤κ, vR}.

Remark. One could consider alternative definitions of natural canonical encod-
ing distributions besides the one we adopt here (see full paper for examples for
which our results also apply).

Given the canonical problems on whose hardness we wish to rely, our security
goal for re-randomization with respect to the GCDH (resp. Ext-GCDH/GDDH)
problems can now be easily formulated: hardness of the latter should be implied
by hardness of the former.

Definition 3.4 (Re-randomization security goal). We say that the re-
randomization security goal is satisfied with respect to GCDH (resp. Ext-
GCDH/GDDH) if any adversary against GCDH (resp. Ext-GCDH/ GDDH)
with run-time T = O(2λ) and advantage ε = Ω(2−λ) can be used to con-
struct an adversary against cGCDH (resp. Ext-cGCDH/cGDDH) with run-time
T ′ = poly(T, λ) and advantage ε′ = Ω(poly(ε, λ)).

4 Polynomial Drowning via Rényi Divergence

In this section, we present our first result towards our improvement of the GGH
scheme re-randomization. It shows that one may reduce the re-randomization
“drowning” ratio σ∗

k/‖r′‖ from exponential to polynomial in the security param-
eter λ. Although the SD between the re-randomized encoding distribution D1
(essentially a discrete Gaussian with an added offset vector r′) and the desired
canonical encoding distribution D2 (a discrete Gaussian without an added off-
set vector) is then non-negligible, we show that these encoding distributions are
still sufficiently close with respect to an alternative closeness measure to the SD,
in the sense that switching between them preserves the success probability of
any search problem adversary receiving these encodings as input, up to a small
multiplicative constant. This allows us to show that our re-randomization goal
is satisfied for the search problems GCDH and Ext-GCDH.
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Technically, the closeness measure we study is the Rényi divergence R(D1‖D2)
between the distributions D1 and D2, defined as the expected value of D1(r)/D2(r)
over the randomness of r sampled from D1 (for brevity we will call R(D1‖D2) the
RD between D1 and D2). Intuitively, the RD is an alternative to SD as measure of
distribution closeness, where we replace the difference between the distributions
in SD, by the ratio of the distributions in RD. Accordingly, one may hope RD to
have analogous properties to SD, where addition in the property of SD is replaced
by multiplication in the analogous property of RD. Remarkably, this holds true
in some sense, and we explore some of this below. In particular, a very important
property of the SD is that for any two distributions D1, D2 on space X , and any
event E ⊆ X , we have D1(E) ≥ D2(E) − Δ(D1, D2). Lyubashevsky et al. [13]
observed an analogous property of the RD that follows roughly the above intu-
ition: D1(E) ≥ D2(E)2/R(D1‖D2). The latter property implies that as long as
R(D1‖D2) is bounded as poly(λ), any event of non-negligible probability D2(E)
under D2 will also have non-negligible probability D1(E) under D1. We show that
for our offset discrete Gaussian distributions D1, D2 above, we have R(D1‖D2) =
O(poly(λ)), if σ∗

k/‖r′‖ = Ω(poly(λ)), as required for our re-randomization secu-
rity goal.

The Rényi divergence (RD) and its properties. We review the RD [18,8] and
some of its properties. For convenience, our definition of the RD is the expo-
nential of the usual definition used in information theory [8], and coincides with
a discrete version of the quantity R defined for continuous density functions in
[13, Claim 5.11].

For any two discrete probability distributions P and Q such that Supp(P ) ⊆
Supp(Q) over a domain X and α > 1, we define the Rényi Divergence of orders
α and ∞ by

Rα(P ‖Q) =
(∑

x∈X
P (x)α

Q(x)α−1

) 1
α−1 and R∞(P ‖Q) = maxx∈X

P (x)
Q(x) ,

with the convention that the fraction is zero when both numerator and denomina-
tor are zero. A convenient choice for computations (as also used in [13]) is α = 2,
in which case we omit α. Note that Rα(P ‖Q)α−1 =

∑
x P (x)·(P (x)/Q(x))α−1 ≤

R∞(P ‖Q)α−1. We list several properties of the RD that can be considered the
multiplicative analogues of those of the SD. The following lemma is proven in
the full version.

Lemma 4.1. Let P1, P2, P3 and Q1, Q2, Q3 denote discrete distributions on a
domain X and let α ∈ (1, ∞]. Then the following properties hold:

– Log. Positivity: Rα(P1‖Q1) ≥ Rα(P1‖P1) = 1.
– Data Processing Inequality: Rα(P f

1 ‖Qf
1) ≤ Rα(P1‖Q1) for any function

f , where P f
1 (resp. Qf

1) denotes the distribution of f(y) induced by sampling
y ←↩ P1 (resp. y ←↩ Q1).

– Multiplicativity: Let P and Q denote any two distributions of a pair of
random variables (Y1, Y2) on X × X. For i ∈ {1, 2}, assume Pi (resp. Qi) is
the marginal distribution of Yi under P (resp. Q), and let P2|1(·|y1) (resp.
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Q2|1(·|y1)) denote the conditional distribution of Y2 given that Y1 = y1. Then
we have:

• Rα(P ‖Q) = Rα(P1‖Q1) · Rα(P2‖Q2) if Y1 and Y2 are independent.
• Rα(P ‖Q) ≤ R∞(P1‖Q1) · maxy1∈X Rα(P2|1(·|y1)‖Q2|1(·|y1)).

– Weak Triangle Inequality: We have:

Rα(P1‖P3) ≤
{

Rα(P1‖P2) · R∞(P2‖P3),
R∞(P1‖P2)

α
α−1 · Rα(P2‖P3).

– R∞ Triangle Inequality: If R∞(P1‖P2) and R∞(P2‖P3) are defined, then
R∞(P1‖P3) ≤ R∞(P1‖P2) · R∞(P2‖P3).

– Probability Preservation: Let A ⊆ X be an arbitrary event. Then Q1(A) ≥
P1(A)

α
α−1 /Rα(P1‖Q1).

We note that the RD does not satisfy the (multiplicative) triangle inequality
R(P1‖P3) ≤ R(P1‖P2) · R(P2‖P3) in general (see [8]), but a weaker inequality
holds if one of the pairs of distributions has a bounded R∞ divergence, as shown
above. We also observe that R∞ does satisfy the triangle inequality.

For our re-randomization application, we are interested in the RD between
two discrete Gaussians with the same deviation matrix S, that differ by some
fixed offset vector d. The following result (proved in the full version) shows that
their RD is O(1) if σn(S)/‖d‖ = Ω(1).

Lemma 4.2. For any n-dimensional lattice Λ in Rn and matrix S, let P be the
distribution DΛ,S,w and Q be the distribution DΛ,S,z for some fixed w, z ∈ Rn.
If w, z ∈ Λ, let ε = 0. Otherwise, fix ε ∈ (0, 1) and assume that σn(S) ≥ ηε(Λ).

Then R(P ‖Q) ≤
(

1+ε
1−ε

)2
· exp

(
2π‖w − z‖2/σn(S)2

)
.

5 A Discrete Gaussian Leftover Hash Lemma over R

In this section, we present our second main result for improving the GGH scheme
re-randomization algorithm. Recall that the GGH algorithm re-randomizes a
level-k encoding u′ into u = [u′ +

∑mr

j=1 ρjx
(k)
j ]q, where the ρj ’s are sampled

from χ1 = DZ,σ∗
1

and x
(k)
j = [b(k)j /zk]q = [gr

(k)
j /zk]q. To show that the distribu-

tion of
∑mr

j=1 ρjb
(k)
j is close to a discrete Gaussian over I, they then apply the

discrete Gaussian LHL from [1, Th. 3], using mr = Ω(n log n) fixed elements
b
(k)
j ∈ I that are published obliviously as randomizers “inside” the public zero-

encodings x
(k)
j . We show that it suffices to sample 2 randomizers as elements of

the full n-dimensional ring R, rather than just from Z, i.e., we set χ1 = DR,σ∗
1
.

Our proof follows the same high-level steps as the proof of [1, Th. 3], but differs
technically, as explained in the introduction.

For a fixed X = (x1, x2) ∈ R2, we define the distribution ẼX,s = x1DR,s +
x2DR,s as the distribution induced by sampling u = (u1, u2) ∈ R2 from a discrete
spherical Gaussian with parameter s, and outputting y = x1u1+x2u2. We prove
the following result on ẼX,s.
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Theorem 5.1. Let R = Z[x]/〈xn + 1〉 with n a power of 2 and I = 〈g〉 ⊆ R,
for some g ∈ R. Fix ε ∈ (0, 1/3), X = (x1, x2) ∈ I2 and s > 0 satisfying the
conditions

– Column span: X · R2 = I.
– Smoothing: s ≥ max(‖g−1x1‖∞, ‖g−1x2‖∞) · n ·

√
2
π log(2n(1 + 1/ε)).

Then, for all x ∈ I we have ẼX,s(x) ∈ [ 1−ε
1+ε , 1]·DI,sXT (x). In particular, we have

Δ(ẼX,s, DI,sXT ) ≤ 2ε. Finally, if s · σn(g−1) ≥ 7n1.5 ln1.5(n),2 x1, x2 ←↩ DI,s

and n grows to infinity, then the first condition holds with probability Ω(1).

We prove this result for g = 1, and then we generalize to general g. First, we
consider the column span condition.

Lemma 5.2 (Adapted from [23, Le. 4.2 and Le. 4.4]). Let S ∈ Rn×n, and
σn(S) ≥ 7n1.5 ln1.5(n). For n going to infinity, we have Prx1,x2←↩DR,S [X · R2 =
R] ≥ Ω(1).

Let AX ⊆ {(v1, v2) ∈ R2 : x1v1 + x2v2 = 0} be the 1-dimensional R-module
of vectors orthogonal to X . We view AX as an n-dimensional lattice in Z2n, via
the polynomial-to-coefficient-vector mapping.

Lemma 5.3 (Adapted from [1, Le. 10]). Fix X such that X · R2 = R and
AX as above. If s ≥ ηε(AX), then ẼX,s(z) ∈ [ 1−ε

1+ε , 1
] ·DZn,sXT (z) for any z ∈ R.

We now study the quantity ηε(AX). First, we show that all successive
Minkowski minima of AX are equal. This property is inherited from the “equal
minima property” of ideal lattices in R.

Lemma 5.4. Let X and AX be as above. Then λ1(AX) = · · · = λn(AX).

Lemma 5.5. Let X and AX be as above. Let s ≥ max(‖x1‖∞, ‖x2‖∞). Then
we have: ηε(AX) ≤ sn ·

√
2
π log(2n(1 + 1/ε)).

Combining the above lemmas, we get Theorem 5.1 for g = 1. The general case
is proved as follows. The injective map y �→ g ·y on R takes the distribution ẼX,s

with X = g−1 · X to the distribution ẼX,s, while it takes D
R,sX

T to DI,sXT ,
with I = 〈g〉. The conditions X · R2 = I and X · R2 = R are equivalent. The
smoothing condition is satisfied for X by the choice of s. Thus we can apply
Theorem 5.1 with g = 1 to ẼX,s, and conclude by applying the mapping Mg to
get the general case of Theorem 5.1. For the very last statement of Theorem 5.1,
it suffices to observe that DI,s = g · DR,s(g−1)T .3 ��
2 By abuse of notation, we identify g−1 ∈ K with the linear map over Qn obtained by

applying the polynomial-to-coefficient-vector mapping to the map r �→ g−1r.
3 With the same abuse of notation as in the previous footnote, for the term (g−1)T .
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6 Our Improved GGH Grading Scheme: GGHLite

We are now ready to describe our simpler and more efficient variant of the GGH
grading scheme, that we call GGHLite. The scheme is summarized in Figure 4.
The modifications from the original GGH scheme consist in:

– Using mr = 2 re-randomization elements x1, x2 in the public key, sampling
the randomizers ρ1, ρ2 from a discrete Gaussian DR,σ∗

1
over the whole ring

R (rather than from Z), applying our algebraic ring variant of the LHL from
Section 5.

– Saving an exponential factor ≈ 2λ in the re-randomization parameter σ∗
1 by

applying the RD bounds from Section 4.

In terms of re-randomization security requirement, we relax the strong SD-
based requirement on the original GGH scheme to the following weaker RD-based
requirement on GGHLite.

Definition 6.1 (Weak re-randomization security requirement). Using
the notations of Definition 3.2, we say that the weak re-randomization security
requirement is satisfied at level k with respect to D

(k)
can(eL) and encoding norm

γ(k) if R(D(k)
u (eL, r′)‖D

(k)
can(eL)) = O(poly(λ)) for any u′ = [c′/zk]q such that

‖c′‖ ≤ γ(k).

We summarize GGHLite in Figure 4, which only shows the algorithms differing
from those in the GGH scheme of Figure 1.

• Instance generation InstGen(1λ, 1κ): Given security parameter λ and multilin-
earity parameter κ, determine scheme parameters n, q, mr = 2, σ, σ′, �g−1 , �b, �,
based on the scheme analysis. Then proceed as follows:

• Sample g ←↩ DR,σ until ‖g−1‖ ≤ �g−1 and I = 〈g〉 is a prime ideal.
• Sample z ←↩ U(Rq).
• Sample a level-1 encoding of 1: y = [a · z−1]q with a ←↩ D1+I,σ′ .
• For k ≤ κ:

∗ Sample B(k) = (b(k)
1 , b

(k)
2 ) from (DI,σ′ )2. If 〈b(k)

1 , b
(k)
2 〉 �= I, or

σn(rot(B(k))) < �b, then re-sample.
∗ Define level-k encodings of 0: x

(k)
1 = [b(k)

1 · z−k]q , x
(k)
2 = [b(k)

2 · z−k]q .
• Sample h ←↩ DR,

√
q and define the zero-testing parameter pzt = [ h

g
zκ]q ∈ Rq.

• Return public parameters par = (n, q, y, {(x(k)
1 , x

(k)
2 )}k≤κ) and pzt.

• Level-k encoding enck(par, e): Given level-0 encoding e ∈ R and parameters par:
• Encode e at level k: Compute u′ = [e · yk]q.
• Return u = [(u′ + ρ1 · x

(k)
1 + ρ2 · x

(k)
2 )]q , with ρ1, ρ2 ←↩ DR,σ∗

k
.

Fig. 4. The new algorithms of our GGHLite scheme
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Choice of σ, �g−1 and σ′, �b. The upper bound �g−1 on ‖g−1‖ in the rejection
test of InstGen can be chosen as small as possible while keeping the rejection
probability pg bounded from 1. According to Lemma 2.3 with t = 2

√
2πenp−1

g

and δ = 1/3, one can choose

�g−1 = 4
√

πen/(pgσ) and σ ≥ 2n
√

e ln(8n)/π/pg, (4)

to achieve pg < 1. Note that the same choices apply to the GGH scheme: here we
have a rigorous bound on pg instead of the heuristic arguments for estimating
in ‖g−1‖ in [9]; however, as in [9], we do not have a rigorous bound on the
probability that I is prime conditioned on this choice.

Let pb be the rejection probability for the lower bound �b on σn(B(k)) in
the rejection test of InstGen. To keep pb away from 1, we use that σn(B(k))2 =
minu∈K,‖u‖=1

∑
i=1,2 ‖u · b

(k)
i ‖2 ≥ ∑

i=1,2 σn(b(k)i )2. Applying Lemma 2.3 with
t = 2

√
2πenp−1

b and δ = 1/3, we get that σn(b(k)i ) > pb

8
√

πen
· σ′, except with

probability ≤ pb for i ∈ {1, 2} if σ′ ≥ t√
2π

η1/3(I), where η1/3(I) ≤ √
ln(8n)/π ·

‖g‖ by Lemma 2.1. Therefore, we can choose

�b = pb

2
√

πen
· σ′ and σ′ ≥ 2n1.5σ

√
e ln(8n)/π/pb. (5)

Zero-testing and extraction correctness. The correctness conditions for zero-
testing and correctness remain the same as conditions (2), (3) for the origi-
nal GGH scheme. The only modification needed is for condition (1), because in
GGHLite, mr = 2 and ρj ∈ R so ‖ρjb

(1)
j ‖ ≤ √

n‖ρj‖‖b
(1)
j ‖. Accordingly, condition

(1) is replaced by:

q > max
(
(n�g−1)8, (3 · n1.5σ∗σ′)8κ

)
. (6)

Security. We state our improved re-randomization security reduction forGGHLite,
that works with much smaller parameters than GGH. To our knowledge, it is the
first security proof in which the RD is used to replace the SD in a sequence of
games, using the RD properties from Section 4 to combine the bounds on changes
between games. This allows us to gain the benefits of RD over SD, for both the
drowning and smoothing aspects. Namely, with εd, ερ, εe in Theorem 6.2 set as
large as O(log λ/κ), our weak security requirement of Definition 6.1 is satisfied
(the RD between real and canonical encoding distributions is bounded by the
quantity R = poly(λ) in Theorem 6.2), and our re-randomization goal for Ext-
GCDH is achieved (whereas the strong requirement of Definition 3.2 is not
satisfied).

Theorem 6.2 (Security of GGHLite). Let εd, ερ, εe ∈ (0, 1/2) and κ ≤ 2n.
Suppose that the following conditions are satisfied for GGHLite:
– LHL Smoothing:

σ∗
1 ≥ n1.5 · �g−1 · σ ·

√

2 log(4n · ε−1
ρ )/π. (7)
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– Offset “Drowning:”

σ∗
1 ≥ n1.5 · (σ′)2 ·

√
2πε−1

d /�b. (8)

– samp Uniformity Smoothing:

σ′ ≥ σ ·
√

n ln(4n · ε−1
e )/π. (9)

Then, if A is an adversary against the (non-canonical) Ext-GCDH problem for
GGHLite with run-time T and advantage ε, then A is also an adversary against
the canonical problem Ext-cGCDH for GGHLite with T ′ = T and advantage

ε′ ≥ (ε − O(κ · 2−n))2/R with R = 2O(κ·(εd+ερ+εe+2−n)). (10)

In particular, there exist εd, εe, ερ bounded as O(log λ/κ) such that the re-
randomization security goal in Definition 3.4 is satisfied by GGHLite with respect
to problem Ext-GCDH.

7 Parameter Settings

In Table 1, we summarize asymptotic parameters for GGHLite to achieve 2λ

security for the underlying Ext-GCDH problem, assuming the hardness of the
canonical Ext-cGCDH problem, and to satisfy the zero-testing/extraction cor-
rectness conditions with error probability λ−ω(1). For simplicity, we assume that
κ = ω(1). For comparison, we also show the corresponding parameters for GGH.
The “Condition” column lists the conditions that determine the corresponding
parameter in the case of GGHLite. For security of the canonical Ext-cGCDH
problem, we assume (as in [9]) that the best attack is the one described in
[9, Se. 6.3.3], whose complexity is dominated by the cost of solving γ-SVP (the

Table 1. Asymptotic parameters

Parameter GGHLite GGH[9] Condition
mr 2 Ω(n log n) LHL: Th. 5.1
σ O(n log n) O(n log n) Eq. (4)

�g−1 O(1/
√

n log n) O(1/
√

n log n) Eq. (4)
εd, εe, ερ O(κ−1) O(2−λκ−1) Eq. (10)

σ′ Õ(n2.5) Õ(n1.5√
λ) Eq. (5)

σ∗
1 Õ(n4.5√

log κ) Õ(2λn4.5(λ + log κ)) Drown: Eq. (8)
εext O(λ−ω(1)) O(λ−ω(1))

q Õ((n8.5√
log κ)8κ) Õ((2λn8λ1.5)8κ) Corr.: Eq. (6)

n O(κλ log λ) O(κλ2) SVP: Eq. (11)
|enc| O(κ2λ log2(κλ)) O(κ2λ3) O(n log q)
|par| O(κ3λ log2(κλ)) O(κ3λ5 log(κλ)) O(mrκn log q)
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Shortest lattice Vector Problem with approximation factor γ) for the lattice I,
with γ set at ≈ q3/8 to get a sufficiently short multiple of g. By the lattice
reduction “rule of thumb,” to make this cost 2λ, we need to set

n = Ω(λ log q). (11)

When κ = poly(log λ), the dimension n, encoding length |enc| and public
parameters length |par| in our scheme GGHLite are all asymptotically close to
optimal, namely quasi-linear in the security parameter λ, versus quadratic (resp.
cubic and quintic) in λ for GGH [9]. Thus we expect GGHLite’s public parameters
and encodings to be orders of magnitudes shorter than GGH for typical λ ≈ 100.
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Abstract. In the context of authenticated encryption (AE), generic
composition has referred to the construction of an AE scheme by gluing
together a conventional (privacy-only) encryption scheme and a MAC.
Since the work of Bellare and Namprempre (2000) and then Krawczyk
(2001), the conventional wisdom has become that there are three forms of
generic composition, with Encrypt-then-MAC the only one that gener-
ically works. However, many caveats to this understanding have sur-
faced over the years. Here we explore this issue further, showing how
this understanding oversimplifies the situation because it ignores the re-
sults’ sensitivity to definitional choices. When encryption is formalized
differently, making it either IV-based or nonce-based, rather than prob-
abilistic, and when the AE goal is likewise changed to take in a nonce,
qualitatively different results emerge. We explore these alternatives ver-
sions of the generic-composition story. We also evidence the overreaching
understanding of prior generic-composition results by pointing out that
the Encrypt-then-MAC mechanism of ISO 19772 is completely wrong.

Keywords: authenticated encryption, generic composition, IV-based
encryption, nonce-based encryption.

1 Introduction

Specificity of GC results. We revisit the problem of creating an authen-
ticated encryption (AE) scheme by generic composition (GC). This well-known
problem was first articulated and studied in a paper by Bellare and Namprempre
[4, 5] (henceforth BN). A review of discourse surrounding BN makes clear that,
to its readers, the paper’s message was that

1. there are three ways to glue together a (privacy-only) encryption scheme
and a MAC, well summarized by the names Encrypt-and-MAC, Encrypt-
then-MAC, and MAC-then-Encrypt;

2. but of these three ways, only Encrypt-then-MAC works well: it alone will
always be secure when the underlying primitives are sound.

While BN does of course contain such results, we claim that the understanding
articulated above is nonetheless off-base, for it makes no reference to the type of
schemes from which one starts, nor the type of scheme one aims to build.

P.Q. Nguyen and E. Oswald (Eds.): EUROCRYPT 2014, LNCS 8441, pp. 257–274, 2014.
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type E takes D takes summary of basic security requirement

pE K,M K,C privacy: ind = (ciphertexts ≈ EK(rand-bits))

pAE K,M K,C privacy + auth: ind, plus adv can’t forge ciphertexts

ivE K, IV ,M K, IV , C privacy: (IV i ‖Ci) ≈ rand-bits

nE K,N,M K,N,C privacy: ind$ = (ciphertexts ≈ rand-bits)

nAE K,N,A,M K,N,A,C privacy + auth: ind$ + adv can’t forge ciphertexts

Fig. 1. Types of AE schemes. The first column gives the name we will use for this type
of symmetric encryption scheme. The second and third columns specify the inputs to
encryption E and decryptionD: the keyK, plaintextM , ciphertext C, initialization vec-
tor IV , nonce N , and associated data A. The final column gives a brief description of
the main security definition we will use.

The omission is untenable because GC results turn out to depend crucially on
these choices—andmultiple alternatives are as reasonable as those selected byBN.

Types of encryption schemes. What are these definitional choices allegedly
so important for GC? See Fig. 1. To begin, in schemes for probabilistic en-
cryption (pE), the encryption algorithm is provided a key and plaintext, and,
by a process that employs internal coins, it generates a ciphertext [3, 13]. The
plaintext must be recoverable from (just) the ciphertext and key. Syntactically,
a probabilistic authenticated-encryption (pAE) scheme is the same as a
pE scheme. But a pAE scheme should also detect forged ciphertexts [4–6].

BN focuses on turning a pE scheme and a MAC into a pAE scheme. But con-
ventional, standardized encryption schemes—modes like CBC or CTR [12, 9]—
are not really pE schemes, for in lieu of internally generated random coins they
use an externally provided IV (initialization vector). Let us call such schemes
IV-based encryption (ivE). When security is proven for such schemes [3, 1]
the IV is selected uniformly at random, and then, for definitional purposes,
prepended to the ciphertext. But the standards do not insist that the IV be uni-
form, nor do they consider it to be part of the ciphertext [12, 9, 14]. In practice,
IVs are frequently non-random or communicated out-of-band. In effect, theorists
have considered the pE scheme canonically induced by an ivE scheme—but the
two objects are not the same thing.

A scheme for nonce-based encryption (nE) is syntactically similar to an
ivE scheme. Again there is an externally provided value, like the IV, but now
referred to as a nonce (“number used once”). Security for nE is expected to
hold as long as the nonce is not repeated [20]. One expects ease-of-correct-use
advantages over ivE, insofar as it should be easier for a user to successfully
provide a non-repeating value than a random IV. Standard ivE schemes that are
secure when the IV is random (eg, CBC or CTR) are not secure in the nE sense:
they are easily attacked if the IV is merely a nonce.

Finally, a scheme for nonce-based authenticated-encryption (nAE) is
like an nE scheme but the decrypting party should reject illegitimate ciphertexts.
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Standardized AE methods—modes like CCM, GCM, and OCB [10, 11, 15]—are
secure as nAE schemes. Following standard practice, nAE schemes are further
assumed to include associated data (AD). This string, provided to the encryption
and decryption algorithms, is authenticated but not encrypted [19]. For practical
utility of AE, the AD turns out to be crucial.

Contributions. This paper explores how GC results turn on the basic defini-
tional distinctions named above. Consider the GC scheme of ISO 19772 [15]. The
scheme is in the Encrypt-then-MAC tradition, and the standard appeals to BN
to support this choice [15, p. 15]. Yet the ISO scheme is wrong. (It is currently
being revised in response to our critique [17].) The root problem, we maintain,
is that the standard attends to none of the distinctions just described. To apply
BN’s Encrypt-then-MAC result to a scheme like CBC one would need to select
its IV uniformly at random, prepend this to the ciphertext, then take the MAC
over this string. But the ISO standard does none of this; the IV is not required
to be random, and the scope of the MAC doesn’t include it. This makes the
scheme trivial to break. A discussion of the ISO scheme appears in Section 6.

One might view the ISO problem as just a document’s failure to make clear
that which cryptographers know quite well. We see it differently—as symp-
tomatic of an overreaching understanding of BN. For years we have observed, in
papers and talks, that people say, and believe, that “Encrypt-then-MAC works
well, while MAC-then-Encrypt does not.” But this claim should be understood
as a specific fact about pE + MAC → pAE conversion. Viewed as a general,
definitionally-robust statement about AE, the claim is without foundation.

A modern view of AE should entail a multiplicity of starting points and ending
points. Yet not all starting points, or ending points, are equal. The ISO 19772
attack suggests that ivE makes a good starting point for GC; after all, the aim
of GC is to support generic use of off-the-shelf primitives, and ivE nicely formal-
izes what is found on that shelf. Similarly, the nAE goal has proven to be the
desired-in-practice ending point. We thus explore ivE+MAC→ nAE conversion.
We start off by assuming that the MAC can authenticate tuples of strings (a
vecMAC). We then consider a universe of 160 candidate schemes, the A-schemes.
Eight of these are favored : they are always secure when their underlying primi-
tives are sound, and with good bounds. See Fig. 2. One A-scheme is transitional :
it has an inferior established bound. Three A-schemes are elusive: for them, we
have been unable to generically establish security or insecurity. The remaining
148 A-schemes are meaningless or wrong. Next we show how to realize any of
the favored A-scheme using a conventional string-input MAC (a strMAC). The
resulting B-schemes are shown in Fig. 3.

Two of the schemes given are already known. Scheme A4 is SIV [21] (apart
from the fact that the latter permits vector-valued AD, a natural extension that
we ignore), while B1 is EAX [7] (or the generalization of it called EAX2). Our
treatment places these modes within a generic-composition framework. In the
process, the correctness proof of each mode is actually simplified.

To ensure that we did not overlook any correct schemes, we initially used a
computer to identify those with trivial attacks. We were left to deal with the
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Fig. 2. The eight “favored” A-schemes. These convert an ivE scheme E and a
vecMAC F into an nAE scheme. The IV is FL(N [, A] [,M ]) and the tag T is either
T =FL(N,A,M) or T =FL(N,A,C). For this diagram we assume F iv=F tag=F .

more modest number of remaining schemes. The computer-assisted work was
eventually rendered unnecessary by conventional proofs.

We also look at the construction of nAE schemes from an nE scheme and a
MAC [19, 20]. While nE schemes are not what practice directly provides—no
more than pE schemes are—they are trivial to construct from an ivE scheme,
and they mesh well with the nAE target. For this nE +MAC → nAE problem
we identify 20 candidate schemes, which we call N-schemes. Three of them turn
out to be secure, all with tight bounds. The security of one scheme we cannot
resolve. The other 16 N-schemes are insecure.

Tidy encryption. Our formalization of ivE, nE, and nAE schemes includes
a syntactic requirement, tidiness, that, when combined with the usual correct-
ness requirement, demands that encryption and decryption be inverses of each
other. (For an ivE scheme, correctness says that EK(IV ,M) = C = ⊥ implies
that DK(IV , C) = M , while tidiness says that DK(IV , C) = M = ⊥ implies
that EK(IV ,M) = C.) In the context of deterministic symmetric encryption,
we regard sloppy schemes—those that are not tidy—as perilous in practice, and
needlessly degenerate. Tidiness, we feel, is what one should expect from deter-
ministic encryption.

Were sloppy nE and ivE schemes allowed, the generic composition story would
shift again: only schemes A5 and A6, B5 and B6, and N2 would be generically
secure. The sensitivity of GC to the sloppy/tidy distinction is another manifes-
tation of the sensitivity of GC results to definitional choices. The conventional
wisdom, that Encrypt-then-MAC is the only safe GC method, is arguably an
artifact of having considered only pE+MAC→ pAE conversions and admitting
sloppy schemes.
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A preemptive warning against misinterpretation. A body of results
(eg, [22, 8]) have shown traditional MAC-then-Encrypt (MtE) schemes to be
difficult to use properly in practice. Although some of our secure schemes can
be viewed as being in the style of MtE, the results of this paper should not
be interpreted as providing blanket support for MtE schemes. We urge extreme
caution when applying any generic composition result from the literature, as
implementers and standardizing bodies must insure that the underlying encryp-
tion and MAC primitives are of the type assumed by the result, and that they
are composed in exactly the way the security result demands. Experience has
demonstrated this area to be fraught with instantiation and usage difficulties.

Relatedly, we point out that our AE notions of security follow tradition in as-
suming that decryption failures return a single kind of error message, regardless
of the cause. Hence implementations of our GC methods should insure, to the
maximum extent possible, that this requirement is met.

Final introductory remarks. Nothing in this paper should be understood
as suggesting that there is anything wrong with BN. If that paper has been
misconstrued, it was not for a lack of clarity. Our definitions and results are
complementary.

We recently received a note from Bellare and Tackmann [2] pointing out that
for the original nE definition of Rogaway [19], neither Encrypt-and-MAC nor
MAC-then-Encrypt work for nE + MAC → nAE conversion, contradicting a
(therefore buggy) theorem statement [19, Th. 7]. We had previously noticed the
need to outlaw sloppy or length-increasing nE schemes to get these results to go
through.

A full version of the present paper is available [18]. It contains the proofs we
have had to omit.

2 Definitions

This section provides key definitions. Some aspects are standard, but others
(particularly tidiness, schemes recognizing their own domains, and identifying
encryption schemes by their encryption algorithms) are not.

Kinds of encryption scheme. A scheme for nonce-based AE (nAE) is a
triple Π = (K, E ,D). The key space K is a finite nonempty set. Sampling from
it is denoted K �K. Encryption algorithm E is deterministic and takes a four-
tuple of strings K,N,A,M to a value C ← EN,A

K (M) that is either a string or
the symbol ⊥ (“invalid”). We require the existence of sets N , A, and M, the
nonce space, associated-data space (AD space), and message space, such that

EN,A
K (M) = ⊥ iff (K,N,A,M) ∈ K×N×A×M. We require thatM contains two

or more strings; that ifM contains a string of length m it contains all strings of
length m, and the same for A; and that when EK(N,A,M) is a string its length

(|N |, |A|, |M |) depends only on |N |, |A|, and |M |. Decryption algorithm D is
deterministic and takes a four-tuple of strings K,N,A,C to a value M that is
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Fig. 3. The eight B-schemes corresponding to the favored A-schemes. Each converts
an ivE scheme E and a strMAC f to an nAE scheme. The methods instantiate the
vecMAC with a strMAC using the “XOR3” construction.

either a string in M or the symbol ⊥. We require that E and D be inverses of
one another, implying:

(Correctness) if EN,A
K (M) = C = ⊥ then DN,A

K (C) = M , and

(Tidiness) if DN,A
K (C) = M = ⊥ then EN,A

K (M) = C.

Algorithm D is said to reject ciphertext C if DN,A
K (C) = ⊥ and to accept it

otherwise. Our security notion for a nAE scheme is given in Fig. 4. The defi-
nition measures how well an adversary can distinguish an encryption-oracle /
decryption-oracle pair from a corresponding pair of oracles that return random
bits and ⊥. Here and later, queries that would allow trivial wins are disallowed.

The syntax changes little when we are not expecting authenticity: schemes
for IV-based encryption (ivE) and nonce-based encryption (nE) have the
syntax above except for omitting all mention of AD. Security is specified in Fig. 4.
For ivE, the nonce N and nonce space N are renamed IV and IV . With each
query M the oracle selects a random IV and returns it alongside the ciphertext.
For nE, the adversary provides a plaintext and a non-repeating nonce with each
encryption query.

A scheme for probabilistic encryption (pE) or probabilistic AE (pAE)
is a triple Π = (K, E ,D). Key space K is a finite nonempty set. Encryption algo-
rithm E is probabilistic and maps a pair of strings K,M to a value C � EK(M)
that is either a string or the symbol ⊥ (“invalid”). We require the existence of a
setM, the message space, such that EK(M) = ⊥ iff (K,M) ∈ K×M. We assume
thatM contains two or more strings and ifM contains a string of length m then
it contains all strings of length m. We demand that when EK(M) is a string,
its length 
(|M |) depends only on |M |. Decryption function D is deterministic
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and maps a pair of strings K,C to a value M ← DK(C) that is either a string
or the symbol ⊥. We require correctness : if EK(M) = C then DK(C) = M .
Algorithm D rejects ciphertext C if DK(C) = ⊥ and accepts it otherwise. Rep-
resentative security definitions for pE and pAE schemes are given in Fig. 4. For
pE the adversary aims to distinguish an encryption oracle from an oracle that
returns an appropriate number of random bits. For pAE the adversary also gets
a decryption oracle or an oracle that always returns ⊥.

Tidiness. In a pE or pAE scheme, what happens if the decryption algorithm
DK is fed an illegitimate ciphertext—a string C that is not the encryption of
any string M under the key K? We didn’t require D to reject, and perhaps it
wouldn’t make sense to, as a party has no realistic way to know, in general, if
an alleged plaintext M for C would encrypt to it. But the situation is different
for an ivE, nE, or nAE, as the decrypting party can easily check if a candidate
plaintext M really does encrypt to a provided ciphertext C. And, in practice,
this re-encryption never needs to be done: for real-world schemes, the natural
decryption algorithm rejects illegitimate ciphertexts. Philosophically, once en-
cryption and decryption become deterministic, one would expect them to be
inverses of one another, as with a blockcipher.

An nE scheme is sloppy if it satisfies everything but the tidiness condition.
Might a “real world” nE scheme be sloppy? The only case we know is when
removal of padding is done wrong. Define E IVK (M) = CBCIV

K (M10p), meaning
CBC encryption over some n-bit blockcipher, with p ≥ 0 the least number such
that n divides |M10p|. Let DIV

K (C) = ⊥ if |C| is not a positive multiple of n,
and, otherwise, CBC-decrypt C to get M ′, strip away all trailing 0-bits, then
strip any trailing 1-bit, then return what remains. Then any ciphertexts that
CBC-decrypts to a string of zero-bits will give a plaintext of ε, which never
encrypts to what we started from. So the method is sloppy. But it should be
considered wrong: the intermediate plaintext M ′ was supposed to end in 10p,
for some p ∈ [0..n − 1], and if it did not, then ⊥ should be returned. One is
asking for trouble by silently accepting an improperly padded string.

Compact nomenclature. We formalized encryption schemes—all kinds—as
tuples Π = (K, E ,D). But tidiness means we don’t need to specify decryption:
given E one must have DK(IV , C) = M if there is a (necessarily unique) M ∈
{0, 1}∗ such that EK(IV ,M) = C, and DK(IV , C) = ⊥ otherwise. While there
may still be reasons for writing down a decryption algorithm (eg, to demonstrate
efficient computability), its not needed for well-definedness. We thus identify
an ivE/nE/nAE scheme Π = (K, E ,D) by its encryption algorithm, writing
E : K × IV ×M→ {0, 1}∗ for an ivE scheme, E : K ×N ×M→ {0, 1}∗ for an
nE scheme, and E : K ×N ×A×M→ {0, 1}∗ for an nAE scheme.

MACs. A message authentication code (MAC) is a deterministic algorithm F
that takes in a key K and a value X and outputs either an n-bit string T or the
symbol ⊥. The domain of F is the set X such that FK(X) = ⊥ (we forbid this
to depend on K). We write F : K × X → {0, 1}n for a MAC with domain X .
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AdvpE
Π (A) = Pr[AE(·) ⇒ 1]−Pr[A$(·) ⇒ 1] where Π = (K, E,D) is a pE scheme; K �K at the

beginning of each game; E(M) returns C � EK(M); and $(M) computes C � EK(M), returns ⊥
if C = ⊥, and otherwise returns |C| random bits.

AdvpAE
Π (A) = Pr[AE(·), D(·) ⇒ 1] − Pr[A$(·), ⊥(·) ⇒ 1] where Π = (K, E,D) is a pAE scheme;

K �K at the beginning of each game; E(M) returns C � EK(M) and D(C) returns DK(M);
$(M) computes C � EK(M) and returns ⊥ if C = ⊥ and |C| random bits otherwise; ⊥(M)
returns ⊥; and A may not make a decryption (=right) query C if C was returned by a prior
encryption (=left) query.

AdvivE
Π (A) = Pr[AE(·) ⇒ 1] − Pr[A$(·) ⇒ 1] where Π = (K, E,D) is an ivE scheme; K �K

at the beginning of each game; E(M) selects IV �IV and returns IV ‖ EK(IV ,M); and $(M)
selects IV � IV, computes C = EK(IV ,M), returns ⊥ if C = ⊥, and otherwise returns

∣∣IV ‖C
∣∣

random bits.

AdvnE
Π (A) = Pr[AE(·,·) ⇒ 1]− Pr[A$(·,·) ⇒ 1] where Π = (K, E,D) is a nE scheme; K �K at

the beginning of each game; E(N,M) returns EK(N,M); $(N,M) computes C ← EK(N,M),
returns ⊥ if C = ⊥, and otherwise returns |C| random bits; and A may not repeat the first
component of an oracle query.

AdvnAE
Π (A) = Pr[AE(·,·,·), D(·,·,·) ⇒ 1] − Pr[A$(·,·,·), ⊥(·,·,·) ⇒ 1] where Π = (K, E,D) is

an nAE scheme; K �K at the beginning of each game; E(N,A,M) returns EK(N,A,M) and
D(N,A,C) returns DK(N,A,C); and $(N,A,M) computes C ← EK(N,A,M), returns ⊥ if
C = ⊥, and |C| random bits otherwise, and ⊥(N,A,M) returns ⊥; and A may not repeat the
first component of an encryption (=left) query, nor make a decryption (=right) query (N,A,C)
after C was obtained from a prior encryption (=left) query (N,A,M).

Fig. 4. Definitions for encryption: probabilistic encryption (pE), probabilistic authen-
ticated encryption (pAE), iv-based encryption (ivE), nonce-based encryption (nE), and
nonce-based AE (nAE). For consistency, we give ind$-style notions throughout.

Security of F is defined by Advprf
F (A) = Pr[AF ⇒ 1]− Pr[Aρ ⇒ 1]. The game

on the left selects K �K and then provides the adversary an oracle for FK(·).
The game on the right selects a uniformly random function ρ from X to {0, 1}n
and provides the adversary an oracle for it. With either oracle, queries outside X
return ⊥. A string-input MAC (strMAC) (the conventional setting) has domain
X ⊆ {0, 1}∗. A vector-input MAC (vecMAC) has a domain X with one or more
component, and not necessarily strings.

Infectiousness of ⊥. Encryption schemes and MACs return ⊥ when applied
to a point outside their domain. To specify algorithms without having tedious
checks for this, we establish the convention that all functions return ⊥ if any
input is ⊥. For example, if T = ⊥ then C = C ‖T is ⊥; and if IV = ⊥ then
C = EK(IV ,M) is ⊥.

3 AE from IV-Based Encryption and a vecMAC

We study a family of nAE constructions that combine an ivE encryption scheme
and a MAC. The former is assumed to provide ind$-style privacy when the
IV is chosen uniformly and prepended to the ciphertext (ivE-security). The
latter comes in two varieties, a vector-input MAC (vecMAC) and a string-input
MAC (strMAC). This section assumes a vecMAC; the next section extends the
treatment to a strMAC. Using a vecMAC provides a clean starting point for
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situations where one would like to authenticate a collection of typed values,
like a nonce, AD, and plaintext. It is also a convenient waypoint for getting to
ivE + strMAC→ nAE.

Candidate schemes. We define a set of candidate schemes, the A-schemes,
to make an nAE scheme out of an ivE scheme E : K × {0, 1}η ×M → {0, 1}∗,
a vecMAC F iv : L × X iv → {0, 1}η, and a vecMAC F tag : L × X tag → {0, 1}τ .
Our constructions come in three types.

– Type A1 schemes. The nAE scheme E = A1.bbbbbb[E , F iv, F tag] defines

EN,A
K L (M) = C ‖ T where IV = F iv

L (N | �, A | �, M | �), C =

EK(IV , M), and T = F tag
L (N | �, A | �, M | �). The notation X | � means

that the value is either the binary string X (the value is present) or the
distinguished symbol � (it is absent). The binary string bbbbbb ∈ {0, 1}6
specifies the chosen inputs to F iv and F tag, with 1 for present and 0 for
absent, and ordered as above. For example, scheme A1.100111[E , F iv, F tag]
sets IV = F iv

L (N,�,�) and T = F tag
L (N,A,M).

– Type A2 schemes. The nAE scheme E = A2.bbbbbb[E , F iv, F tag] defines

EN,A
K L (M) = C ‖ T where IV = F iv

L (N | �, A | �, M | �), C =

EK(IV , M), and T = F tag
L ( N | �, A | �, C). Notation is as above.

In particular, bbbbbb remains a 6-bit string, but its final bit is fixed: it’s
always 1. (Nothing new would be included by allowing � in place of C, since
that’s covered as a type A1 scheme.)

– Type A3 schemes. The nAE scheme E = A3.bbbbbb[E , F iv, F tag] de-

fines EN,A
K L (M) = C where IV = F iv

L (N | �, A | �, M | �), T =

F tag
L (N | �, A | �, M | �), and C = EK(IV ,M ‖ T ).

According to our conventions, the formulas above return EN,A
K L (M) = ⊥ if the

calculation of IV , C, or T returns ⊥. This happens when points are outside of
the domain E , F iv, or F tag.

Many of the “schemes” named above are not valid schemes: while there are
a total of 26 + 25 + 26 = 160 candidates, many will fail to satisfy the syntax
of an nAE schemes. A candidate scheme might be invalid for all (E , F iv, F tag),
or it might be valid for some (E , F iv, F tag) but not for others. We are only
interested in candidate schemes E with parameters (E , F iv, F tag) that are com-
patible—ones where the specified composition does indeed satisfy the syntax of
an nAE scheme. For example, with A1.001111 (where IV = F iv

L (�,�,M) and
T = F tag

L (N,A,M)) there will never be a way to decrypt. And even for a scheme

like A1.100111 (where IV = F iv
L (N,�,�) and T = F tag

L (N,A,M)), still we need
for the domains to properly mesh. If they do not, the (non-)scheme is excluded
from study.

Type A1 and type A2 schemes are outer-tag schemes, as T falls outside of
what’s encrypted by E . Type A3 schemes are inner-tag schemes, as T lies in-
side the scope of what’s encrypted by E . This distinction seems as compelling
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as the A1, A2, A3 distinction that corresponds to E&M, EtM, and MtE style
composition.

It is a thesis that our enumeration of A-schemes includes all natural ways to
make an nAE scheme from an ivE scheme and a vecMAC. More specifically, the
schemes are designed to exhaust all possibilities that employ one call to the ivE,
two calls to the MAC, and one concatenation involving a MAC-produced tag.

Underlying PRF. It is unintuitive why, in the context of GC, we should use
a common key L for components F iv and F tag. The choice enhances generality
and uniformity of treatment: the two MACs have the option of employing non-
overlapping portions of the key L (supporting key separation), but they are not
obliged to do so (enabling a significant, additional scheme).

Yet common keying has drawbacks. When MACs F 0
L, F

1
L are queried on dis-

joint sets X0,X1 the pair need not resemble random functions ρ0, ρ1. To overcome
this, retaining the generality and potential key-concision we seek, we assume that
any (F iv, F tag) used to instantiate an A-scheme E = Ai.bbbbbb[E , F iv, F tag] can
be derived from an underlying PRF F : L × X → {0, 1}n by either

F iv
L (x) = FL(x)[1 .. η] and F tag

L (x) = FL(x)[1 .. τ ], or (1)

F iv
L (x) = FL(iv,x)[1 .. η] and F tag

L (x) = FL(tag,x)[1 .. τ ],

for distinct constants iv and tag, (2)

where n ≥ max{η, τ}. In words, F iv and F tag must spring from an underlying
PRF F , either with or without domain separation. The approach encompass all
schemes that would arise by assuming independent keys for F iv and F tag, plus
all schemes that arise by using a singly-keyed PRF for both of these MACs.

Summary of security results. We identify nine provably secure A-schemes,
nicknamed A1–A9. See Fig. 5. When one selects an ivE-scheme E and a MAC
F that induces F iv and F tag so as to get a valid nAE scheme (which can always
be done in these cases), these nine compositional methods are secure, assum-
ing E is ivE-secure and F is PRF secure. The concrete bounds proven for A1–A8
are tight. The bound for A9 is inferior, due to the (somewhat curious) pres-
ence of ivE-advantage (i.e., privacy) term appearing in the authenticity bound.
Additionally, the absence of the nonce N in the computation of F tag prohibits
its generic realization (by the construction we will give) from a conventional,
string-input MAC. For these reasons we consider A1–A8 “better” than A9 and
call them favored ; A9 is termed transitional. The favored schemes are exactly
those A-schemes for which the IV depends on (at least) the nonce N , while the
tag T depends on everything: T = F tag

L (N,A,M) or T = FL(N,A,C).
Also shown in Fig. 5 are three elusive schemes, A10, A11 and A12, whose sta-

tus remains open. That they provide privacy (in the nE-sense) follows from the
ivE-security of the underlying encryption scheme. But we have been unable to
prove that these schemes provide authenticity under the same assumptions used
for A1–A9. Nor have we been able to construct a counterexample to demonstrate
that those assumptions do not suffice. (We have spent a considerable effort on
both possibilities.) It may seem surprising that the security status of schemes
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A10, A11, and A12 remains open. Indeed we initially thought that these schemes
would admit (more-or-less) straightforward proofs or counterexamples, like other
GC schemes. In the full version [18], we discuss the technical challenges encoun-
tered, and also prove that A10, A11, and A12 do provide authenticity under an
additional security assumption, what we call the knowledge-of-tags assumption.

All A-schemes other than A1–A12 are insecure. In the full version of this
paper we exhibit an attack on each of them [18]. We must do so in a systematic
manner, of course, there being 148 such schemes.

For-free domain-separation. It’s important to notice that for all secure
and potentially secure A-schemes except A4, the pattern of arguments fed to F iv

and F tag (ie, which arguments are present and which are absent) are distinct. In
particular, the domain-of-application for these MACs are intrinsically separated:
no vector x that might be fed to one MAC could ever be fed to the other. So,
in all of these cases, there is no loss of generality to drop the domain-separation
constants of equation (2). As for A4, the only natural way to achieve validity—for
plaintexts to be recoverable from ciphertexts—is for F iv

K (x) = F tag
K (x) = FK(x).

Our subsequent analysis assumes this for A4. In short, our security analysis
establishes that there is no loss of generality to assume no domain separation,
equation (1), for all secure A-schemes.

Theorems. We are now ready to state our results about the security of the
A-schemes. For the proofs of Theorems 1 and 2, see the full version [18]. The
characterization leaves a small “hole” (schemes A10, A11, and A12); see the full
version [18] for discussion and results about those three schemes. For compact-
ness, our theorem statements are somewhat qualitative. But the proofs give a
quantitative analysis of the reductions and concrete bounds.

Theorem 1 (Security of A1–A9). Fix a compositional method An ∈ {A1, . . . ,
A9} and let E : K × {0, 1}η × M → {0, 1}∗ be an ivE-scheme. Fix integers
1 ≤ η, τ ≤ r and let F : L×X → {0, 1}r be a vecMAC fromwhich F iv : L×X iv →
{0, 1}η and F tag : L × X tag → {0, 1}τ are derived. Let the resulting nAE-scheme
be denoted E = An[E , F iv, F tag]. Then there are blackbox reductions, explic-
itly given and analyzed in the proof of this theorem, that transform an adversary
breaking the nAE-security of E into adversaries breaking the ivE-security of E ,
the PRF-security of F iv, and the PRF-security of F tag. For schemes A1–A8, the
reductions are tight.

Theorem 2 (Insecurity of A-schemes other than A1–A12). Fix an A-
compositional method other than A1–A12 and integers 1 ≤ η, τ ≤ r. Then there
is an ivE-secure encryption scheme E : K×{0, 1}η×M→ {0, 1}∗ and a vecMAC
F iv : L × X iv → {0, 1}η and F tag : L × X tag → {0, 1}τ , derived from a a PRF-
secure F : L × X → {0, 1}r, such that the resulting nAE-scheme is completely
insecure. The claim holds under standard, scheme-dependent cryptographic as-
sumptions stated in the proof.
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An Scheme IV Tag Sec Comments

A1 A1.100111 F iv
L (N,�,�) F tag

L (N,A,M) yes (Favored) C and T computable in parallel.

A2 A1.110111 F iv
L (N,A,�) F tag

L (N,A,M) yes (Favored) C and T computable in parallel.

A3 A1.101111 F iv
L (N,�,M) F tag

L (N,A,M) yes (Favored) Assume IV recoverable.
Untruncatable.

A4 A1.111111 F iv
L (N,A,M) F tag

L (N,A,M) yes (Favored) Assume F iv=F tag.
Untruncatable. Nonce-reuse secure.

A5 A2.100111 F iv
L (N,�,�) F tag

L (N,A,C) yes (Favored) Decrypt can validate T first,
compute M and T in parallel.

A6 A2.110111 F iv
L (N,A,�) F tag

L (N,A,C) yes (Favored) Decrypt can validate T first,
compute M and T in parallel.

A7 A3.100111 F iv
L (N,�,�) F tag

L (N,A,M) yes (Favored) Untruncatable.

A8 A3.110111 F iv
L (N,A,�) F tag

L (N,A,M) yes (Favored) Untruncatable.

A9 A3.110101 F iv
L (N,A,�) F tag

L (N,�,M) yes (Transitional)Weaker bound.Untruncatable.

A10 A3.110011 F iv
L (N,A,�) F tag

L (�,A,M) ?? (Elusive) Security unresolved.

A11 A3.110001 F iv
L (N,A,�) F tag

L (�,�,M) ?? (Elusive) Security unresolved.

A12 A3.100011 F iv
L (N,�,�) F tag

L (�,A,M) ?? (Elusive) Security unresolved.

— all others — — no Counterexamples given.

Fig. 5. Security of A-schemes: ivE+vecMAC→nAE. The first column gives a nickname
for the scheme. The next column gives the full name. The next two columns (formally
redundant) serve as a reminder for how IV and T are determined. A “yes” in the “Sec”
column means that we give a proof of security assuming ivE and PRF security for the
primitives. A “no” means that we give a counterexample to such a proof existing. A
“??” means that we have been unable to find a proof or counterexample. Comments
include notes on security and efficiency. “Untruncatable” means that the tag T cannot
be truncated. Favored schemes were earlier pictured in Fig. 2.

4 AE from IV-Based Encryption and a strMAC

We turn our attention to achieving nAE from an ivE scheme and a conventional,
string-input MAC. In place of our vector-input MAC we will call a string-input
MAC multiple times, xoring the results.

There are two basic approaches to this enterprise. The first is to mimic the
process already carried out in Section 3. One begins by identifying all candidate
“B-schemes” de novo: methods that combine one call to an ivE scheme and
three calls to a MAC algorithm, one for each of N , A, and either M or C =
EK(IV ,M). The generated ciphertext is either C ‖T (outer-MAC schemes) or
C = EK(IV ,M ‖T ) (inner-MAC schemes), where T is the xor of computed MAC
values. Each MAC is computed using a different key, one of L1, L2, or L3. For
each candidate scheme, one seeks either a proof of security (under the ivE and
PRF assumptions) or a counter-example. Carrying out this treatment leads to
a taxonomy paralleling that discovered for A-schemes.

A second approach is to leverage our ivE + vecMAC results, instantiating
the secure schemes using a strMAC. On the downside, this does not give rise
to a secure/insecure classification of all schemes cut from a common cloth. On the
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upside, it is simpler, and with it we identify a set of schemes desirable for a
high-level reason: an abstraction boundary that lets us cleanly understand why
security holds. Namely, it holds because the subject scheme is an instantiation
of a scheme already known to be secure.

In the rest of this section, we follow the second approach, identifying nine
secure ivE + strMAC → nAE schemes corresponding to A1–A9 (eight of them
preferred, owing to the better bound). Scheme A10, by nature of its structure,
does not admit the same generic strMAC instantiation that suffices for A1–A9.
We drop it from consideration.

From strMAC to vecMAC. We recall that schemes A1–A9 can be regarded
as depending on an ivE scheme E and a vecMAC F : L × (N × (A ∪ {�}) ×
(M ∪ {�})) → {0, 1}r from which functions F iv and F tag are defined. Here,
we give a method to transform a strMAC f : L × X → {0, 1}r into a vecMAC
F : L3 × (X × (X ∪{�})× (X ∪{�}))→ {0, 1}r, in order to instantiate A1–A9.
We do this via the three-xor construction, defined by

FL1,L2,L3(N,A,M) = f ′L1(N)⊕ f ′L2(A)⊕ f ′L3(M) where

f ′L(X) =

{
fL(X) if X ∈ {0, 1}∗, and
0n if X = � (3)

We write the construction F = XOR3[f ]. Now the three-xor construction cer-
tainly does not work, in general, to transform a PRF with domain X to one
with domain X × (X ∪ {�}) × (X ∪ {�}); for example, an adversary that ob-
tains, by queries, Y0 = FL1,L2,L3(N,�,�) and Y1 = FL1,L2,L3(N,�,M) and Y2 =
FL1,L2,L3(N,A,�) and Y3 = FL1,L2,L3(N,A,M) can trivially distinguish if F is
given by the xor-construction or is uniform: in the former case, Y3 = Y0⊕Y1⊕Y2.
All the same, that the xor construction works well in the context of realizing
any of schemes A1–A9.

For k ≥ 1 a number, define a sequence of queries (N1, · · · ), . . . , (Nq, · · · ) as
at-most-k-repeating if no value N occurs as a first query coordinate more than k
times. An adversary at-most-k-repeats if the sequence of queries it asks is at-
most-k-repeating, regardless of query responses.

Our observation is that, if f is a good PRF, then XOR3[f ] is a good PRF
when restricted to at-most-2-repeats adversaries. We omit the proof.

Lemma 1 (XOR3 construction). Fix r ≥ 1, let f : L × X → {0, 1}r, and
let F = XOR3[f ]. There is an explicitly given blackbox reduction B with the
following property: for any at-most-2-repeats adversaryAF there is an adversary
Af = B(AF ) such that Advprf

f (Af ) ≥ Advprf
F (AF ). Adversary Af makes at

most three times the number of queries as AF , the total length μ of those queries
is unchanged, and the running time of Af is essentially unchanged as well.

To apply Lemma 1 we use the characterization of nAE security that allows the
adversary only a single decryption query [21]. This notion is equivalent to our
nAE notion of security (which gives the adversary an arbitrary number of decryp-
tion queries) apart from a multiplicative degradation in the security bound by a
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Fig. 6. Three correct N-schemes (left) and an elusive one (right). The methods achieve
nE + vecMAC → nAE conversion. Application of the XOR3 construction to N1, N2,
and N3 will result in three corresponding schemes that achieve nE + strMAC→ nAE
conversion. A second application of the XOR3 construction will recover the ivE +
strMAC→ nAE constructions B1, B5, and B7.

factor of qd, the number of decryption queries. But for the 1-decryption game,
the sequence of adversarial queries is at-most-2-repeating (no repetitions among
encryption queries; then a single nonce-repetition for the decryption query). As
a result, there is no significant loss in using XOR3[f ] to instantiate a vecMAC F

We conclude that the underlying MAC F of all favored A-scheme, and also
A9, can be realized by the XOR3 construction. There is a quantitative loss of qd,
which is due to the “weaker” definition for nAE security; we have not determined
if this loss is artifactual or necessary. In Fig. 3 we draw the eight B schemes
obtained by applying the XOR3 construction to the corresponding A-schemes.
Methods B1 and B4 essentially coincide with EAX and SIV [7, 21], neither of
which was viewed as an instance of a framework like that described here.

Collapsing the PRF keys. For simplicity, we defined the XOR3 construction
as using three different keys. But of course we can realize fL1, fL2, fL3 by, for
example, fL1(X) = fL(c1 ‖X), fL2(X) = fL(c2 ‖X), and fL3(X) = fL(c3 ‖X),
for distinct, equal-length constants c1, c2, c3.

5 AE from Nonce-Based Encryption and a MAC

We study nAE constructions obtained by generically combining an nE encryption
scheme and a MAC. The nE scheme from which we start is assumed to provide
ind$-style privacy when the nonce is never repeated (nE-security), while the
MAC can be either a strMAC or a vecMAC. We focus on the latter, as the
XOR3 construction can again be used to convert to to a secure nE + strMAC
scheme. Our treatment follows, but abbreviates, that of Section 3, as the current
setting is substantially simpler.

Candidate schemes. We define schemes, the N-schemes, to make an nAE
scheme from an nE scheme E : K × {0, 1}η × M → {0, 1}∗ and a vecMAC
F : L× X → {0, 1}τ . Our constructions come in three types.
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Nn Scheme Tag Sec Comments

N1 N1.111 FL(N,A,M) yes (Favored) Encrypt can compute C, T in parallel

N2 N2.111 FL(N,A,M) yes (Favored) Decrypt can validate T first, compute M , T in parallel

N3 N3.111 FL(N,A,M) yes (Favored) Untruncatable.

N4 N3.011 FL(�,A,M) ?? (Elusive) Security unresolved. Tag untruncatable.

— others — no Counterexamples given.

Fig. 7. Security of N-schemes: nE+vecMAC →nAE

– Type N1 schemes. The nAE scheme E = N1.bbb[E , F ] defines EN,A
K L (M) =

C ‖ T where C = EK(N, M) and T = FL(N | �, A | �, M | �).
– Type N2 schemes. The nAE scheme E = N2.bbb[E , F ] defines EN,A

K L (M) =
C ‖ T where C = EK(N, M) and T = FL( N | �, A | �, C). We again
take bbb ∈ {0, 1}3, but the third bit must be one.

– Type N3 schemes. The nAE scheme E = N3.bbb[E , F ] defines EN,A
K L (M) =

C where T = FL(N | �, A | �, M | �) and C = EK(N,M ‖ T ).

As before, the formulas return EN,A
K L (M) = ⊥ if the calculation of C or T re-

turns ⊥.
There are a total of 23 + 22 + 23 = 20 candidate schemes, but many fail

to satisfy the syntax of an nAE scheme. We are only interested in candidate
methods that are valid nAE schemes.

Security results. We identify three provably secure schemes, nicknamed N1,
N2, and N3. See Fig. 6 and 7. The methods are secure when E is nE-secure and F
is PRF-secure. For all three schemes, the concrete bounds are tight. Also shown
in Fig. 5 is a scheme N4 whose status remains open. Similar to the elusive A-
schemes, N4 provides privacy (in the nE-sense), as follows from the nE-security
of the underlying encryption scheme. But we have been unable to prove that N4
provides authenticity (under the same assumptions used for N1–N3); nor have
we been able to construct a counterexample to demonstrate that the nE and
PRF assumptions do not suffice. The technical difficulties are similar to those
encountered in the attempts to deal with A11 and A12. As for N-schemes other
than N1–N4, all 16 are insecure; we exhibit attacks in [18].

Theorems. We now state our results about the security of the N-schemes. For
proofs, see the full version. These proofs leave a small “hole,” which is scheme N4.
For compactness, our theorem statements are again somewhat qualitative. But
the proofs are not. They provide explicit reductions and quantitative analyses.

Theorem 3 (Security of N1–N3). Fix a compositional method Nn ∈ {N1,N2,
N3} and integer τ ≥ 1. Fix an nE-scheme E : K × {0, 1}η ×M → {0, 1}∗ and a
vecMAC F : L × X → {0, 1}τ that results in a valid nAE scheme E = Nn[E , F ].
Then there are blackbox reductions, explicitly given and analyzed in the proof of
this theorem, that transform an adversary breaking the nAE-security of E to ad-
versaries breaking the nE-security of E and the PRF-security of F . The reductions
are tight.
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A claim that N2 and N3 correctly accomplish nE + vecMAC→ nAE conver-
sion appears in earlier work by Rogaway [19, 20]. As pointed out by Bellare and
Tackmann [2], the claim there was wrong for N3, as Rogaway’s definitions had
permitted sloppy schemes. This would make a counterexample for N3 (and also
for N1) straightforward.

6 The ISO-Standard for Generic Composition

In this section we consider the Encrypt-then-MAC (EtM) mechanism of the
ISO 19772 standard [15, Section 10]. We explore what went wrong, and why.

The problem. The EtM method of ISO 19772 (mechanism 5; henceforth
isoEtM) combines a conventional encryption mode E and a MAC f .1For the for-
mer the standard allows CBC, CFB, OFB, or CTR—any ISO 10116 [14] scheme
except ECB. For the MAC, f , the standard permits any of the algorithms of
ISO 9797 [16]. These are variants of the CBC MAC. The latest edition of the
standard names six CBC MAC variants, but the actual number is greater, as
there are multiple possibilities for padding and key-separation.

The standard describes isoEtM encryption in just nine lines of text. After
choosing an appropriate “starting variable” (SV) S for encryption mode E , we’re
told to encrypt plaintext D to ciphertext C=C′ ‖T by setting C′=EK1(D) and
T =fK2(C

′). In describing what “appropriate” means for S, the standard asserts
that [t]his variable shall be distinct for every message to be protected during the
lifetime of a key, and must be made available to the recipient of the message
[15, p. 14]. It continues: Further possible requirements for S are described in
the appropriate clauses of ISO 10116. The document levies no requirements
on SV, but an annex says that a randomly chosen statistically unique SV is
recommended [14, Annex B].

We aren’t certain what this last phrase means, but suppose it to urge the use
of uniformly random bits. But that possibility runs contrary to the requirement
that SV not repeat. One is left to wonder if the SV is a nonce, a random value,
or something else. But even if one insists that SV be uniformly random, still we
have the biggest problem: ISO 10116 makes clear that the SV it is not a part
of the ciphertext C′ one gets from applying the encryption mode E . The SV
is separate from the ciphertext, communicated out-of-band. The result is that
isoEtM never provides authenticity for SV, which leads to trivial attacks. See
Fig. 8. For example, let the adversary ask for the encryption of any message,
obtaining a ciphertext C = C′ ‖T and its associated SV S. Then a valid forgery
is C itself, along with any SV S′ other than S. Attacks like this break not only
the AE property, but also weaker aims, like nonmalleability.

Overall, it is unclear if isoEtM aims to provide pAE, nAE (without AD),
or something else. But the omission of the SV from the scope of the MAC
renders the method incorrect no matter what. There is no clear message space
for the scheme, as padding is implicit and out of scope. It is unclear what one is

1 This section mostly follows naming conventions of the ISO standard, rather than
the names used elsewhere in this paper.
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Fig. 8. Possible provenance of the ISO 19772 error. Left : The EtM method of BN,
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scheme. With each encryption a random S is generated and embedded in C. The final
ciphertext is C = C ‖T . Right : Mechanism 5 of ISO 19772. We can consider the final
ciphertext as C = S ‖C ‖T , but the string S is never MACed.

supposed to do, on decryption, when padding problems arise. As for the MACs
themselves, some ISO 9797 schemes are insecure when message lengths vary, a
problem inherited by the enclosing AE scheme.

Diagnosis. ISO 19772 standardized five additional AE schemes, and we no-
tice no problems with any of them. (A minor bug in the definition of GCM
was pointed out by others, and is currently being corrected[17].) Why did the
committee have bigger problems with (the conceptually simpler) GC?

When Bellare and Namprempre formalized Encrypt-then-MAC they assumed
probabilistic encryption as the starting point. This is what any theory-trained
cryptographer would have done at that time. But pE has remained a theorists’
conceptualization: it is not an abstraction boundary widely understood by practi-
tioners, realized by standards, embodied in APIs, or explained in popular books.
Using this starting point within a standard is unlike building a scheme from a
blockcipher, a primitive that is widely understood by practitioners, realized by
standards, embodied in APIs, and explained in popular books. Given the differ-
ence between pE and actual, standardized encryption schemes, and given GC’s
sensitivity to definitional and algorithmic adjustments, it seems, in retrospect,
a setting for which people are likely to err.
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Abstract. This paper proposes a new scheme for authenticated encryp-
tion (AE) which is typically realized as a blockcipher mode of operation.
The proposed scheme has attractive features for fast and compact oper-
ation. When it is realized with a blockcipher, it requires one blockcipher
call to process one input block (i.e. rate-1), and uses the encryption func-
tion of the blockcipher for both encryption and decryption. Moreover, the
scheme enables one-pass, parallel operation under two-block partition.
The proposed scheme thus attains similar characteristics as the seminal
OCB mode, without using the inverse blockcipher. The key idea of our
proposal is a novel usage of two-round Feistel permutation, where the
round functions are derived from the theory of tweakable blockcipher.
We also provide basic software results, and describe some ideas on using
a non-invertible primitive, such as a keyed hash function.

Keywords: Authenticated Encryption, Blockcipher Mode, Pseudoran-
dom Function, OCB.

1 Introduction

Authenticated Encryption. Authenticated encryption, AE for short, is a
method to simultaneously provide message confidentiality and integrity (authen-
tication) using a symmetric-key cryptographic function. Although a secure AE
function can be basically obtained by an adequate composition of secure encryp-
tion and message authentication [10, 23], this requires at least two independent
keys, and the composition methods in practice (say, AES + HMAC in TLS) fre-
quently deviate from what proved to be secure [31]. Considering this situation,
there have been numerous efforts devoted to efficient, one-key constructions.
Among many approaches to AE, blockcipher mode of operation is one of the
most popular ones. We have CCM [2], GCM [3], EAX [11], OCB [24, 33, 35]
and the predecessors [18, 22], and CCFB [27], to name a few. We have some
standards, such as NIST SP 800-38C (CCM) and 38D (GCM), and ISO/IEC
19772 [4].

This paper presents a new AE mode using a blockcipher, or more generally, a
pseudorandom function (PRF). Our proposal has a number of desirable features
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for fast and compact operations. Specifically, when the underlying n-bit block-
cipher is EK (where K denotes the key), the properties of our proposal can be
summarized as follows.

– The key is one blockcipher key, K.
– Encryption and decryption can be done by the encryption function of EK .
– For s-bit input, the number of EK calls is �s/n�+ 2, i.e., rate-1 processing,

for both encryption and decryption.
– On-line, one-pass, and parallel encryption and decryption, under two-block

partition.
– Provable security up to about 2n/2 input blocks, based on the assumption

that EK is a pseudorandom function (PRF) or a pseudorandom permutation
(PRP).

These features are realized with a novel usage of two-round Feistel permuta-
tion, where internal round functions are PRFs with input masking. From this
we call our proposal OTR, for Offset Two-round. Table 1 provides a summary of
properties of popular AE modes and ours, which shows that OTR attains similar
characteristics as the seminal OCB mode, without using the inverse blockcipher.
The proposed scheme generates input masks to EK using GF(2n) constant mul-
tiplications. This technique is called GF doubling [33], which is a quite popular
tool for mode design. However, our core idea is rather generic and thus allows
other masking methods. We also remark that Liting et al.’s iFeed mode [39] has
similar properties to ours, without introducing 2-block partition. However, its
decryption is inherently serial, and it seems that a formal security proof has
not been presented so far. In return for these attractive features, one potential
drawback of OTR is that it inherently needs two-block partition (though the
message itself can be of any length in bits), which implies more state memories
required than that of OCB. The parallelizability of our scheme is up to the half
of the message blocks, while OCB has full parallelizability, up to the number of
message blocks. On-line processing capability is restrictive as it needs buffering
of consecutive two input blocks.

We also warn that the security is proved for the standard nonce-respecting
adversary [34], i.e. the encryption never processes duplicate nonces (or initial
vectors), see Section 2.2. Some recent proposals have a provable security under
nonce-reusing adversary, or even security without nonce (called on-line encryp-
tion) [5,17]. However we do not claim any security guarantee for such adversaries.

Benefits of Inverse-Freeness. The use of blockcipher inversion, as in OCB,
has mainly two drawbacks, as discussed by Iwata and Yasuda [21]. The first
is efficiency. The integration of encryption and decryption functions increases
size, e.g. footprint of hardware, or memory of software (See Section 6). More-
over, some ciphers have unequal speed for enc/dec. For AES, decryption is slower
than encryption on some, typically constrained, platforms. For example, an AES
implementation on Atmel AVR by Osvik et al. [30] has about 45% slower de-
cryption than encryption. This property is the initial design choice [15], in pref-
erence of encryption-only mode, e.g., CTR, OFB, and CFB. IDEA is another
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Table 1. A comparison of AE modes. Calls denotes the number of calls for m-block
message and a-block header and one-block nonce, without constants.

Mode Calls On-line Parallel Primitive

CCM [2] a+ 2m no no E

GCM [3] m [E] and a+m [Mul] yes yes E,Mul†

EAX [11] a+ 2m yes no E
OCB [24,33,35] a+m yes yes E,E−1

CCFB [27] a+ cm for some 1 < c‡ yes no E

OTR a+m yes¶ yes E
† GF(2n) multiplication
‡ Security degrades as c approaches 1
¶ two-block partition

example, where decryption is exceptionally slower than encryption on microcon-
trollers [32]. The uneven performance figures of blockcipher enc/dec functions is
undesirable in practice, when the mode uses both functions.

The second is security. Usually the security of a mode using both enc/dec
functions of a blockcipher, denoted by E and E−1, needs (E,E−1) to be a strong
pseudorandom permutation (Strong PRP or SPRP). This holds true for the
original security proofs of all versions of OCB [24,33, 35], though a recent work
of Aoki and Yasuda [7] showed a relaxation on the security condition for OCB
without tag truncation. In contrast, when the mode uses only E, the security
assumption is relaxed to PRP or PRF.

In addition, the inverse-freeness allows instantiations using non-blockcipher
primitives, such as a hash function. Some basic ideas on this direction are ex-
plained in Section 7.4.

HardwareAssistance.We remark that some software platforms have hardware-
assisted blockcipher, most notably AES instructions called AESNI in Intel and
AMD CPUs. AESNI enables the same performance for AES encryption and de-
cryption. Therefore, when our proposal uses AESNI, the performance would be
roughly similar to that of OCB-AES with AESNI, though the increased number
of states may degrade the result. We have other SW platforms where hardware
AES is available but decryption is slower (e.g., [19]). Basically, the value of our
proposal is not to provide the fastest operation on modern CPUs, instead, to in-
crease the availability of OCB-like performance for various platforms, using single
algorithm.

2 Preliminaries

2.1 Basic Notations

Let N = {1, 2, . . . , }, and let {0, 1}∗ be the set of all finite-length binary strings,
including the empty string ε. The bit length of a binary string X is denoted

by |X |, and let |X |a
def
= max{�|X |/a�, 1}. Here, if X = ε we have |X |a = 1 for
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any a ≥ 1 and |X | = 0. A concatenation of X,Y ∈ {0, 1}∗ is written as X‖Y
or simply XY . A sequence of a zeros is denoted by 0a. For k ≥ 1, we denote⋃k

i=1{0, 1}i by {0, 1}≤k. For X ∈ {0, 1}∗, let (X [1], . . . , X [x])
n← X denote the

n-bit block partitioning of X , i.e., X [1]‖X [2]‖ . . .‖X [x] = X where x = |X |n,
and |X [i]| = n for i < x and |X [x]| ≤ n. If X = ε the parsing with any n ≥ 1
makes x = 1, X [1] = ε. The sequence of first c bits of X ∈ {0, 1}∗ is denoted by
msbc(X). We have msb0(X) = ε for any X .

For a finite set X , if X is uniformly chosen from X we write X
$← X . We

assume X ⊕ Y is ε if X or Y is ε. For a binary string X with 0 ≤ |X | ≤ n, X
denotes the padding written as X‖1‖0n−|X|−1. When |X | = n, X denotes X .

For keyed function F : K × X → Y with key K ∈ K, we may simply write
FK : X → Y if key space is obvious, or even write as F if being keyed with K
is obvious. If EK : X → X is a keyed permutation, or a blockcipher, EK is a
permutation over X for every K ∈ K. Its inverse is denoted by E−1

K . A keyed
function may have an additional parameter called tweak, in the sense of Liskov,
Rivest and Wagner [25]. It is called a tweakable keyed function and written as

F̃ : K × T × X → Y or F̃K : T × X → Y, where T denotes the space of

tweaks. Instead of writing F̃K(T,X), we may write as F̃
〈T 〉
K (X). A tweakable

keyed permutation, or a tweakable blockcipher (TBC), is defined analogously by
requiring that every combination of (T,K) produces a permutation over X .

Galois Field. An n-bit string X may be viewed as an element of GF(2n) by
takingX as a coefficient vector of a polynomial in GF(2n). We write 2X to denote
the multiplication of 2 and X over GF(2n), where 2 denotes the generator of
the field GF(2n). This operation is called doubling. We also write 3X and 4X to
denote 2X ⊕X and 2(2X). The doubling is efficiently implemented by one-bit
shift with conditional XOR of a constant, and frequently used as a tool to build
efficient blockcipher modes, e.g. [11, 20, 33].

2.2 Random Function and Pseudorandom Function

Let Func(n,m) be the set of all functions {0, 1}n → {0, 1}m. In addition, let
Perm(n) be the set of all permutations over {0, 1}n. A uniform random func-
tion (URF) having n-bit input and m-bit output is uniformly distributed over

Func(n,m). It is denoted by R
$← Func(n,m). An n-bit uniform random permu-

tation (URP), denoted by P, is similarly defined as P
$← Perm(n).

We also define tweakable URF and URP. Let T be a set of tweak and
FuncT (n,m) be a set of functions T ×{0, 1}n → {0, 1}m. A tweakable URF with

tweak T ∈ T , and n-bit input, m-bit output is written as R̃
$← FuncT (n,m). Note

that if T = {0, 1}t, FuncT (n,m) has the same cardinality as Func(n+t,m), hence

R̃ is simply realized with URF of (n+ t)-bit input. In addition, let PermT (n) be
a set of functions T × {0, 1}n → {0, 1}n such that, for any f ∈ PermT (n) and
t ∈ T , f(t, ∗) is a permutation. A tweakable n-bit URP with tweak T ∈ T is

defined as P̃
$← PermT (n). We also define a URF having variable input length
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(VIL), denoted by R∞ : {0, 1}∗ → {0, 1}n. This can be realized by stateful lazy
sampling.

PRF. For c oracles, O1, O2, . . . , Oc, we write AO1,O2,...,Oc to represent the adver-
sary A accessing these c oracles in an arbitrarily order. If O and O′ are oracles
having the same input and output domains, we say they are compatible. Let
FK : {0, 1}n → {0, 1}m and GK′ : {0, 1}n → {0, 1}m be two compatible keyed
functions, with K ∈ K and K ′ ∈ K′ (key spaces are not necessarily the same).
Let A be an adversary trying distinguish them using chosen-plaintext queries.
Then the advantage of A is defined as

Adv
cpa
FK ,GK′ (A)

def
= Pr[K

$← K : AFK ⇒ 1]− Pr[K ′ $← K′ : AGK′ ⇒ 1].

The above definition can be naturally extended to the case when GK′ is a

URF, R
$← Func(n,m). We have

Adv
prf
FK

(A) def
= Adv

cpa
FK ,R(A).

If FK is a VIL function we define Adv
prf
FK

(A) as Adv
cpa
FK ,R∞(A). Similarly, for

tweakable keyed function F̃K : T ×{0, 1}n → {0, 1}m and R̃
$← FuncT (n,m), we

have

Adv
prf

F̃K
(A) def

= Adv
cpa

F̃K ,R̃
(A).

We stress that A in the above is allowed to choose tweaks, arbitrarily and
adaptively. By convention we say FK is a pseudorandom function (PRF) if
Adv

prf
FK

(A) is small (though the formal definition requires FK to be a func-
tion family). Similarly we say FK is a pseudorandom permutation (PRP) if
Adv

prp
FK

(A) = Adv
cpa
FK ,P(A) is small and FK is invertible. A VIL-PRF is defined in

a similar way.

2.3 Definition of Authenticated Encryption

Following [11,34], we define nonce-based AE, or more formally, AE with assosi-
ated data, called AEAD. We then introduce two security notions, privacy and
authenticity, to model AE security.

Definition. Let AE[τ ] be an AE having τ -bit tag, where the encryption and
decryption algorithms are AE-Eτ and AE-Dτ . They are keyed functions. Besides
the key, the input to AE-Eτ consists of a nonce N ∈ Nae, a header (or associated
data) A ∈ Aae, and a plaintext M ∈ Mae. The output consists of C ∈ Mae

and T ∈ {0, 1}τ , where |C| = |M |. The tuple (N,A,C, T ) will be sent to the
receiver. The decryption function is denoted by AE-Dτ . It takes (N,A,C, T ) ∈
Nae ×Aae ×Mae × {0, 1}τ , and outputs a plaintext M with |M | = |C| if input
is determined as valid, or error symbol ⊥ if determined as invalid.

Security. A PRIV-adversary A against AE[τ ] accesses AE-Eτ , where the i-th
query consists of nonce Ni, header Ai, and plaintext Mi. We define A’s pa-
rameter list to be (q, σA, σM ), where q denotes the number of queries, and
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σA
def
=
∑q

i=1 |Ai|n and σM
def
=
∑q

i=1 |Mi|n. We assume A is nonce-respecting, i.e.,
all Nis are distinct. We also define random-bit oracle, $, which takes (N,A,M) ∈
Nae ×Aae ×Mae and returns (C, T )

$← {0, 1}|M| × {0, 1}τ . The privacy notion
for A is defined as

Adv
priv

AE[τ ](A)
def
= Pr[K

$← K : AAE-Eτ ⇒ 1]− Pr[A$ ⇒ 1]. (1)

An AUTH-adversaryA against AE[τ ] accesses AE-Eτ and AE-Dτ , using q encryp-
tion queries and qv decryption queries. Let (N1, A1,M1), . . . , (Nq, Aq,Mq) and
(N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
qv , A

′
qv , C

′
qv , T

′
qv ) be all the encryption and decryption

queries made by A. We define A’s parameter list to be (q, qv, σA, σM , σA′ , σC′),

where σA′
def
=
∑qv

i=1 |A′
i|n and σC′

def
=
∑qv

i=1 |C′
i|n, in addition to σA and σM . The

authenticity notion for the AUTH-adversary A is defined as

AdvauthAE[τ ](A)
def
= Pr[K

$← K : AAE-Eτ ,AE-Dτ forges ], (2)

whereA forges if AE-Dτ returns a bit string (other than⊥) for a decryption query
(N ′

i , A
′
i, C

′
i, T

′
i ) for some 1 ≤ i ≤ qv such that (N ′

i , A
′
i, C

′
i, T

′
i ) = (Nj , Aj , Cj , Tj)

for all 1 ≤ j ≤ q. We assume AUTH-adversaryA is always nonce-respecting with
respect to encryption queries; using the same N for encryption and decryption
queries is allowed, and the same N can be repeated within decryption queries,
i.e. Ni is different from Nj for any j = i but N ′

i may be equal to Nj or N ′
i′ for

some j and i′ = i.
Moreover, when FK and GK′ are compatible with AE-Eτ , let Adv

cpa-nr
F,G (A)

be the same function as Adv
cpa
F,G(A) but A is restricted to be nonce-respecting.

Note that Adv
priv

AE[τ ](A) = Adv
cpa-nr

AE-Eτ ,$(A) holds for any nonce-respecting A. Let
F = (F e

K , F d
K) and G = (Ge

K′ , Gd
K′) be the pairs of encryption and decryption

functions that are compatible with (AE-Eτ ,AE-Dτ ). We define

Advcca-nrF,G (A) def
= Pr[K

$← K : AF e
K ,Fd

K ⇒ 1]− Pr[K ′ $← K′ : AGe
K′ ,Gd

K′ ⇒ 1], (3)

where A is assumed to be nonce-respecting for encryption queries. Then we have

AdvauthAE[τ ](A) ≤ Advcca-nrAE[τ ],AE′[τ ](A) + AdvauthAE′[τ ](A) (4)

for any AE scheme AE′[τ ] and any AUTH-adversary A.

3 Specification of OTR

We present an AE scheme based on an EK : {0, 1}n → {0, 1}n, which is denoted
by OTR[E, τ ], where τ ∈ {1, . . . , n} denotes the length of tag. The encryp-
tion function and decryption function of OTR[E, τ ] are denoted by OTR-EE,τ

and OTR-DE,τ . Here OTR-EE,τ (OTR-DE,τ ) has the same interface as AE-Eτ
(AE-Dτ ) of Section 2.3, with nonce space Nae = {0, 1}≤n−1 \ {ε}, header space
Aae = {0, 1}∗, message space Mae = {0, 1}∗, and tag space {0, 1}τ . The func-
tions OTR-EE,τ and OTR-DE,τ are further decomposed into the encryption and
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decryption cores, EFE , DFE , and the authentication core, AFE . Figs. 1 and
2 depict the scheme. As shown by Fig. 2, OTR consists of two-round Feistel
permutations using a blockcipher taking a distinct input mask in each round.
To authenticate the plaintext a check sum is computed for the right part of
two-round Feistel (namely the even plaintext blocks), and the tag is derived
from encrypting the check sum with an input mask. The overall structure has a
similarity to OCB, and the function AFE is a variant of PMAC [33].

4 Security Bounds

We provide the security bounds of OTR. Here we assume the underlying blockci-
pher is an n-bit URP, P. The bounds when the underlying blockcipher is a PRP
are easily derived from our bounds, using a standard technique, thus omitted.

Theorem 1. Fix τ ∈ {1, . . . , n}. For any PRIV-adversary A with parameter
(q, σA, σM ),

Adv
priv

OTR[P,τ ](A) ≤
6σ2

priv

2n

holds for σpriv = q + σA + σM .

Theorem 2. Fix τ ∈ {1, . . . , n}. For any AUTH-adversary A with parameter
(q, qv, σA, σM , σA′ , σC′),

AdvauthOTR[P,τ ](A) ≤
6σ2

auth

2n
+

qv
2τ

holds for σauth = q + qv + σA + σM + σA′ + σC′ .

5 Proofs of Theorems 1 and 2

Overview. For the limited space we here explain the basic proof steps of
Theorems 1 and 2, with some intuitions. Full proofs will appear at the full
version of this paper. The proofs consist of two steps, where in the first step
we interpret OTR as a mode of TBC and in the second step we prove the
indistinguishability between the tweakable URF and the TBC used in OTR.
This structure is essentially the same as OCB proofs, as well as many other
schemes based on TBC.

First Step: TBC-Based Design. In the first step, we define an AE scheme
denoted by OTR′[τ ]. It is compatible with OTR[E, τ ] and uses a tweakable n-bit

URF, R̃ : T × {0, 1}n → {0, 1}n, and an independent VIL-URF, R∞ : {0, 1}∗ →
{0, 1}n, Here, tweak T ∈ T is written as T = (x, i, ω) ∈ Nae × N × Ω, where

Ω
def
= {f, s, a1, a2, b1, b2, h, g1, g2}. The values h, g1, g2 will not be used until the

next step. Here OTR′[τ ] consists of encryption core OTR′-Eτ and decryption
core OTR′-Dτ . The definition of OTR′ is in Fig. 3. Counterparts to EF and DF
are denoted by EF and DF, also shown in Fig. 3. The bounds of OTR′ are in the
following theorem. The proof of Theorem 3 will be given in the full version.
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Algorithm OTR-EE,τ (N,A,M)

1. (C, TE)← EFE(N,M)
2. if A �= ε then TA ← AFE(A)
3. else TA ← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T )

Algorithm OTR-DE,τ (N,A,C, T )

1. (M,TE)← DFE(N,C)
2. if A �= ε then TA ← AFE(A)
3. else TA ← 0n

4. T̂ ← msbτ (TE ⊕ TA)

5. if T̂ = T return M
6. else return ⊥

Algorithm EFE(N,M)

1. Σ ← 0n

2. δ ← E(N), L ← 4δ
3. (M [1], . . . ,M [m])

n← M
4. for i = 1 to �m/2� − 1 do
5. C[2i−1]← E(L⊕M [2i−1])⊕M [2i]
6. C[2i]← E(L⊕δ⊕C[2i−1])⊕M [2i−1]
7. Σ ← Σ ⊕M [2i]
8. L ← 2L
9. if m is even
10. L∗ ← L⊕ δ
11. Z ← E(L⊕M [m− 1])
12. C[m]← msb|M[m]|(Z) ⊕M [m]
13. C[m−1]← E(L∗⊕C[m])⊕M [m−1]
14. Σ ← Σ ⊕ Z ⊕ C[m]
15. if m is odd
16. L∗ ← L
17. C[m]← msb|M[m]|(E(L∗))⊕M [m]
18. Σ ← Σ ⊕M [m]
19. if |M [m]| �= n then TE ← E(3L∗⊕Σ)
20. else TE ← E(3L∗ ⊕ δ ⊕Σ)
21. C ← (C[1], . . . , C[m])
22. return (C, TE)

Algorithm DFE(N,C)

1. Σ ← 0n

2. δ ← E(N), L ← 4δ
3. (C[1], . . . , C[m])

n← C
4. for i = 1 to �m/2� − 1 do
5. M [2i−1]← E(L⊕δ⊕C[2i−1])⊕C[2i]
6. M [2i]← E(L⊕M [2i−1])⊕C[2i−1]
7. Σ ← Σ ⊕M [2i]
8. L ← 2L
9. if m is even
10. L∗ ← L⊕ δ
11. M [m−1]← E(L∗⊕C[m])⊕C[m−1]
12. Z ← E(L⊕M [m− 1])
13. M [m]← msb|C[m]|(Z)⊕ C[m]
14. Σ ← Σ ⊕ Z ⊕ C[m]
15. if m is odd
16. L∗ ← L
17. M [m]← msb|C[m]|(E(L∗))⊕ C[m]
18. Σ ← Σ ⊕M [m]
19. if |C[m]| �= n then TE ← E(3L∗ ⊕Σ)
20. else TE ← E(3L∗ ⊕ δ ⊕Σ)
21. M ← (M [1], . . . ,M [m])
22. return (M,TE)

Algorithm AFE(A)

1. Ξ ← 0n

2. γ ← E(0n), Q ← 4γ
3. (A[1], . . . , A[a])

n← A
4. for i = 1 to a− 1 do
5. Ξ ← Ξ ⊕ E(Q⊕A[i])
6. Q ← 2Q
7. Ξ ← Ξ ⊕A[a]
8. if |A[a]| �= n then TA ← E(Q⊕γ⊕Ξ)
9. else TA ← E(Q⊕ 2γ ⊕ Ξ)
10. return TA

Fig. 1. The encryption and decryption algorithms of OTR with n-bit blockcipher E.
Tag size is 0 < τ ≤ n, and X denotes the 10∗ padding of X (See Section 2.1).
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Fig. 2. Encryption of OTR. The p box denotes the 10∗ padding of input X (X), and
the c box denotes the msbi function.

Theorem 3. Fix τ ∈ {1, . . . , n}. For any PRIV-adversary A,

Adv
priv

OTR′[τ ](A) = 0.

Moreover, for any AUTH-adversary A using q encryption queries and qv decryp-
tion queries,

Advauth
OTR′[τ ](A) ≤

2qv
2n

+
qv
2τ

.

Proof Intuition. To understand Theorem 3, there are two important properties
of a two-round Feistel permutation, denoted by φf1,f2 : {0, 1}2n → {0, 1}2n.
Here φf1,f2(X [1], X [2]) = (Y [1], Y [2]) where Y [1] = f1(X [1])⊕X [2] and Y [2] =
f2(Y [1]) ⊕X [1] and f1 and f2 are independent n-bit URFs. Then we have the
followings.

Property 1. For any (X [1], X [2]) ∈ {0, 1}2n, φf1,f2(X [1], X [2]) is uniformly
random.

Property 2. Let (Y [1], Y [2]) = φf1,f2(X [1], X [2]), and let (Y ′[1], Y ′[2]) be a
function of (X [1], X [2], Y [1], Y [2]) satisfying (Y ′[1], Y ′[2]) = (Y [1], Y [2]).
Then X ′[2], where (X ′[1], X ′[2]) = φ−1

f1,f2
(Y ′[1], Y ′[2]), is uniform unless the

event Bad1 : X [1] = X ′[1] occurs, which has the probability at most 1/2n.

Property 1 is simple because f1 and f2 are independent and the output of φ
consists of those of f1 and f2. Property 2 needs some cares. It holds because
if X [1] = X ′[1] = f2(Y

′[1]) ⊕ Y ′[2], f1(X
′[1]) is distributed uniformly random,
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independent of all other variables, and this makes X ′[2] = f1(X
′[1]) ⊕ Y ′[1]

completely random. The Bad1 event has probability 1/2n when Y ′[1] = Y ′[1],
and otherwise 0. Note that (X [1], X [2], Y [1], Y [2]) reveals corresponding I/O
pairs of f1 and f2, however this does not help gain the probability of Bad1.

Intuitively, the privacy bound of Theorem 3 is simply obtained by the fact
that all TBC calls in the game has distinct tweaks and all output blocks con-
tain at least one TBC output with unique tweak. Combined with Property
1, this makes all output blocks perfectly random, hence the privacy bound is
0. For the authenticity bound, suppose adversary A performs an encryption
query (N,A,M) and obtains (C, T ), and then performs a decryption query
(N ′, A′, C′, T ′) for some C = C′ with |C| = |C ′|, with (N ′, A′) = (N,A). This
implies that there exists at least one chunk (2n-bit block) of C′ different from
the corresponding chunk in C, and from Property 2, the right half of the corre-
sponding decrypted plaintext chunk is completely random, unless Bad1 occurs.
There is another chance for the adversary to win, i.e. the checksum collision
Bad2 : Σ′ = Σ, which has probability 1/2n provided Bad1 did not happen.
Hence we have Pr[Bad1 ∪ Bad2] ≤ Pr[Bad1] + Pr[Bad2|Bad1] ≤ 2/2n. When both
events did not happen (i.e. given Bad1 ∪ Bad2), the final chance is to successfully
guess the tag, where the probability is clearly bounded by 1/2τ because different
checksums yield independent tags. Hence the authenticity bound is 2/2n +1/2τ

for any A using qv = 1 decryption query (of course we need to consider the
existence of other encryption queries and many other cases for (N ′, A′, C′, T ′) as
well, however the above bound holds for all cases). Finally we use a well-known
result of Bellare, Goldreich and Mityagin [9] to obtain 2qv/2

n + qv/2
τ for any

qv ≥ 1.

Second Step: Analysis of TBC. In the bottom of Fig. 3 we define a TBC,
G̃[P]〈N,i,ω〉(X), where (N, i, ω) is a tweak. It uses an n-bit URP P. We remark

that G̃[P] slightly abuse N as it allows N = 0n. Hence the tweak space is
T ′ = {Nae ∪ {0n}} × N × Ω. For tweaks that do not appear in Fig. 3, we let

them as undefined. Let R̃ be a tweakable URF compatible with G̃[P]. Then we
have the following proposition and lemma.

Proposition 1. If EFR̃ (DFR̃) uses G̃[P] instead of R̃, we obtain EFP (DFP).

Lemma 1. For any A with q queries, Advcpa
G̃[P],R̃

(A) ≤ 5q2/2n.

Fig. 3 shows a function AFR̃ : {0, 1}∗ → {0, 1}n. The internal R̃ is a tweakable

URF compatible with G̃[P]. It is again easy to observe that if AFR̃ uses G̃[P]

instead of R̃, we obtain AFP. We provide the security bound for AFR̃, which is
as follows.

Lemma 2. For any A with σ input blocks, we have Adv
prf
AF

R̃
(A) ≤ σ2/2n+1.

The proofs of Lemmas 1 and 2 are almost the same as XE mode and (a part of)
PMAC proofs [33] and will be given in the full version.
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Algorithm OTR
′-Eτ (N,A,M)

1. (C, TE) ← EF
R̃
(N,M)

2. if A �= ε then TA ← R∞(A)
3. else TA ← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T )

Algorithm OTR
′-Dτ (N,A,C, T )

1. (M,TE) ← DF
R̃
(N,C)

2. if A �= ε then TA ← R∞(A)
3. else TA ← 0n

4. T̂ ← msbτ (TE ⊕ TA)

5. if T̂ = T return M
6. else return ⊥

Algorithm OTR-Eτ (N,A,M)

1. (C, TE) ← EF
R̃
(N,M)

2. if A �= ε then TA ← AF
R̃
(A)

3. else TA ← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T )

Algorithm OTR-Dτ (N,A,C, T )

1. (M,TE) ← DF
R̃
(N,C)

2. if A �= ε then TA ← AF
R̃
(A)

3. else TA ← 0n

4. T̂ ← msbτ (TE ⊕ TA)

5. if T̂ = T return M
6. else return ⊥

Algorithm EF
R̃
(N,M)

1. Σ ← 0n

2. (M [1], . . . ,M [m])
n← M

3. � ← �m/2�
4. for i = 1 to �− 1 do

5. C[2i− 1] ← R̃
〈N,i,f〉

(M [2i − 1])⊕M [2i]

6. C[2i] ← R̃
〈N,i,s〉

(C[2i− 1])⊕M [2i − 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even

9. Z ← R̃
〈N,	,f〉

(M [m − 1])
10. C[m] ← msb|M[m]|(Z) ⊕M [m]

11. C[m− 1] ← R̃
〈N,	,s〉

(C[m])⊕M [m− 1]

12. Σ ← Σ ⊕ Z ⊕ C[m]

13. if |M [m]| �= n

14. then TE ← R̃
〈N,	,a1〉

(Σ)

15. else TE ← R̃
〈N,	,a2〉

(Σ)
16. if m is odd

17. C[m]←msb|M[m]|(R̃
〈N,	,f〉

(0n))⊕M [m]
18. Σ ← Σ ⊕M [m]

19. if |M [m]| �= n

20. then TE ← R̃
〈N,	,b1〉

(Σ)

21. else TE ← R̃
〈N,	,b2〉

(Σ)
22. C ← (C[1], . . . , C[m])
23. return (C, TE)

Algorithm DF
R̃
(N,C)

1. Σ ← 0n

2. (C[1], . . . , C[m])
n← C

3. � ← �m/2�
4. for i = 1 to �− 1 do

5. M [2i − 1] ← R̃
〈N,i,s〉

(C[2i− 1])⊕ C[2i]

6. M [2i] ← R̃
〈N,i,f〉

(M [2i − 1])⊕ C[2i− 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even

9. M [m − 1] ← R̃
〈N,	,s〉

(C[m])⊕ C[m− 1]

10. Z ← R̃
〈N,	,f〉

(M [m− 1])
11. M [m] ← msb|C[m]|(Z)⊕ C[m]
12. Σ ← Σ ⊕ Z ⊕ C[m]

13. if |M [m]| �= n

14. then TE ← R̃
〈N,	,a1〉

(Σ)

15. else TE ← R̃
〈N,	,a2〉

(Σ)
16. if m is odd

17. M [m] ← msb|C[m]|(R̃
〈N,	,f〉

(0n))⊕ C[m]
18. Σ ← Σ ⊕M [m]

19. if |C[m]| �= n

20. then TE ← R̃
〈N,	,b1〉

(Σ)

21. else TE ← R̃
〈N,	,b2〉

(Σ)
22. M ← (M [1], . . . ,M [m])
23. return (M,TE)

Algorithm AF
R̃
(A)

1. Ξ ← 0n

2. (A[1], . . . , A[a])
n← A

3. for i = 1 to a− 1 do

4. Ξ ← Ξ ⊕ R̃
〈0n,i,h〉

(A[i])
5. Ξ ← Ξ ⊕ A[a]

6. if |A[a]| �= n then TA ← R̃
〈0n,a,g1〉

(Ξ)

7. else TA ← R̃
〈0n,a,g2〉

(Ξ)
8. return TA

Algorithm G̃[P]〈N,i,ω〉(X)

1. Preprocessing: γ ← P(0n), Q ← 4γ
2. if N �= 0n then δ ← P(N), L ← 4δ
3. switch ω
4. Case f : Δ ← 2i−1L
5. Case s : Δ ← 2i−1L⊕ δ
6. Case a1 : Δ ← 3(2i−1L⊕ δ)

7. Case a2 : Δ ← 3(2i−1L⊕ δ)⊕ δ

8. Case b1 : Δ ← 2i−13L
9. Case b2 : Δ ← 2i−13L⊕ δ

10. else switch ω
11. Case h : Δ ← 2i−1Q
12. Case g1 : Δ ← 2i−1Q ⊕ γ

13. Case g2 : Δ ← 2i−1Q ⊕ 2γ
14. Y ← P(Δ⊕X)
15. return Y

Fig. 3. The components of OTR′[τ ] and OTR[τ ]. An exception is G̃[P], which is a
tweakable PRP implicitly used by OTR[P, τ ].
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Deriving Bounds. Let OTR[τ ] be an AE consisting of EFR̃, DFR̃, and AFR̃
shown in Fig. 3. For privacy notion, there exist adversaries B against AFR̃ with

σA input blocks, and C against G̃[P] with σpriv queries, satisfying

Adv
priv

OTR[P,τ ](A) ≤ Adv
cpa-nr

OTR[P,τ ],OTR[τ ](A) + Adv
cpa-nr

OTR[τ ],OTR′[τ ](A) + Adv
cpa-nr

OTR′[τ ],$(A)
(5)

≤ Adv
cpa-nr

OTR[P,τ ],OTR[τ ](A) + Adv
cpa
AF

R̃
,R∞(B) + Adv

cpa-nr

OTR′[τ ],$(A) (6)

≤ Adv
cpa

G̃[P],R̃
(C) + σ2

A

2n+1
(7)

≤
5σ2

priv

2n
+

σ2
A

2n+1
(8)

≤
6σ2

priv

2n
. (9)

where the third inequality follows from Proposition 1, Lemma 2, and Theorem
3, and the fourth inequality follows from Lemma 1. Similarly, for authenticity
notion, there exist B against AFR̃ with σA + σA′ input blocks, and C against

G̃[P] with σauth queries, satisfying

AdvauthOTR[P,τ ](A) ≤ Advcca-nrOTR[P,τ ],OTR′[τ ](A) + Advauth
OTR′[τ ](A) (10)

≤ Advcca-nrOTR[P,τ ],OTR[τ ](A) + Advcca-nr
OTR[τ ],OTR′[τ ](A) + Advauth

OTR′[τ ](A)
(11)

≤ Advcca-nrOTR[P,τ ],OTR[τ ](A) + Adv
cpa
AF

R̃
,R∞(B) + Advauth

OTR′[τ ](A) (12)

≤ Adv
cpa

G̃[P],R̃
(C) + (σA + σA′)2

2n+1
+

2qv
2n

+
qv
2τ

(13)

≤ 5σ2
auth

2n
+

(σA + σA′)2

2n+1
+

2σA′

2n
+

qv
2τ

(14)

≤ 6σ2
auth

2n
+

qv
2τ

, (15)

where the fourth inequality follows from Proposition 1, Lemma 2, and Theorem
3, and the fifth inequality follows from Lemma 1. This concludes the proof.

6 Experimental Results on Software

We implemented OTR on software. The purpose of this implementation is not
to provide a fast code, but to see the effect of inverse-freeness in an experimen-
tal environment. We wrote a reference-like AES C code that takes byte arrays
and uses 4Kbyte tables for combined S-box and Mixcolumn lookup, so-called
T-tables. AES decryption of our code is slightly slower than encryption (see
Table 2). We then wrote pure C code of OTR using the above AES code. All
components, e.g. XOR of blocks and GF doubling, are byte-wise codes. For com-
parison we also wrote a C code of OCB2 [33] in the same manner, which is similar
to a reference code by Krovetz [1].
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We ran both codes on an x86 PC (Core i7 3770, Ivy bridge, 3.4GHz) with
64-bit Windows 7. We used Visual C++ 2012 (VC12) to obtain 32-bit and 64-bit
executables and used GCC 4.7.1 for 32-bit executables, with option -O2. We
measured speed for 4Kbyte messages and one-block header. We also tested the
same code on an ARM board (Cortex-A8 1GHz) using GCC 4.7.3 with -O2

option. Their speed figures in cycles per byte1 are shown in the upper part
of Table 2. For both OTR and OCB2, we can observe a noticeable slowdown
from raw AES, however, OTR still receives the benefit of faster AES encryption.
Another metric is the size, which is shown in the lower part of Table 2. For OTR
we can remove the inverse T-tables and inverse S-box from AES code, as they
are not needed for AES encryption, resulting in smaller AES objects.

We also measured the performance of these codes when AES is implemented
using AESNI (on the Core i7 machine, using VC12). We simply substituted
T-table AES with single-block AES routine using AESNI. In addition, two com-
mon functions to OCB2 and OTR, namely XOR of two 16-byte blocks and GF
doubling, are substituted with SIMD intrinsic codes. Other byte-wise functions
are unchanged. On our machine single-block AES ran at around 4.5 to 5.5 cy-
cles per byte, for both encryption and decryption. Table 3 shows the results. It
looks interesting, in that, although we did not write a parallel AESNI routine,
we could observe the obvious effect of AESNI parallelism via compiler. Notably,
both OTR and OCB2 achieved about 2 cycles per byte for 4K data, and OCB2
is slight faster as expected. We think further optimization of OTR as well as
OCB2 would be possible if we use parallel AES routine with a careful register
handling.

These experiments, though quite naive, imply OTR’s good performance under
multiple platforms with a simple code. Of course, optimized implementations for
various platforms are interesting future topics.

7 Remarks

7.1 Remove Inverse from OCB

The abstract structure of OTR has a similarity to OCB, however, removing
inverse is not a trivial task. Roughly, in OCB, each plaintext block is given to

the ECB mode of an n-bit TBC ẼK [25], namely C[i] = Ẽ
〈T 〉
K (M [i]), where tweak

T consists of nonce N and other parameters, based on a blockcipher EK . The
OCB decryption uses the inversion of TBC, Ẽ−1

K , and the security proof requires

that ẼK is a tweakable SPRP, i.e. (ẼK , Ẽ−1
K ) and (P̃, P̃

−1
) are hard to distinguish

when P̃
$← PermT (n). Since Ẽ−1

K needs a computation of E−1
K , a natural way to

remove E−1
K from OCB is to compose ẼK from a PRP or a PRF. For example

we can do this by using a 2n-bit 4-round Feistel cipher as ẼK , based on an n-bit
PRF, FK . Then, the resulting mode (of FK) is inverse-free and provably secure,

1 As we were unable to use cycle counter in the ARM device, the measurement of
ARM was based on a timer.
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Table 2. Reference implementation results of OTR and OCB2. (Upper) Speed in cycles
per byte. (Lower) Object size in Kbyte.

x86 ARM

Algorithm VC12(32-bit) VC12(64-bit) gcc 4.7.1(32-bit) gcc 4.7.3

OTR Enc 27.59 18.94 22.02 69.88
OTR Dec 27.56 18.99 22.2 69.78
OCB2 Enc 27.38 19.93 22.69 71.22
OCB2 Dec 30.86 25.43 34.29 76.16
AES Enc 18.29 12.98 15.9 54.38
AES Dec 22.28 18.36 26.64 58.14

x86 ARM

Object VC12(32-bit) VC12(64-bit) gcc 4.7.1(32-bit) gcc 4.7.3

OTR.o 19.9 21.3 5.4 5.9
OCB2.o 20.5 21.7 4.6 5.3

AES Enc.o 20.2 20.7 6.7 7.1
AES EncDec.o 45.4 46.2 17.3 17.9

OTR Total 40.1 42.0 12.1 13.0
OCB2 Total 65.9 67.9 21.9 23.2

Table 3. Performance of codes with single-block AES routine using AES-NI. Data x

denotes the plaintext length in bytes, and a/b denotes a (b) cycles per byte in 32-bit
(64-bit) VC12 compilation.

Data (byte) 128 512 1024 2048 4096

OTR Enc 6.01/5.43 3.32/3.16 2.85/2.74 2.66/2.51 2.49/2.40
OTR Dec 7.22/5.60 3.81/3.15 3.06/2.72 2.79/2.51 2.59/2.39
OCB2 Enc 6.39/5.60 3.26/2.76 2.81/2.26 2.53/2.02 2.37/1.90
OCB2 Dec 6.36/5.86 3.04/2.80 2.59/2.26 2.28/2.03 2.11/1.91

since 4-round Feistel cipher is an SPRP, as shown by Luby and Rackoff [26]
(it is easy to turn a SPRP into a tweakable SPRP). However, we then need
four FK calls per two blocks, i.e. the rate is degraded to two. Considering this,
the two-round Feistel is seemingly a bad choice, since it even fails to provide a
(tweakable) PRP. As explained in Section 5, the crucial observation is that, the
encryption of two-round Feistel in OTR is invoked only once for each tweak, and
that the authenticity needs only an n-bit unpredictable value in the decryption,
rather than 2n bits. Two-round Feistel fulfills these requirements, which makes
OTR provably secure.

7.2 Design Rationale for Masking

We remark that using the same mask for the two round functions, i.e. using
2iL for the first and second rounds of a two-round Feistel, does not work.
This is because Property 2 of Section 5 does not hold anymore since the
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two-round Feistel becomes an involution. Once you query (X [1], X [2]) and re-
ceive (Y [1], Y [2]) = φf1,f2(X [1], X [2]), you know X ′[2] = Y [2] always holds
(where (X ′[1], X ′[2]) = φ−1

f1,f2
(Y ′[1], Y ′[2])), when (Y ′[1], Y ′[2]) = (X [1], X [2]).

This implies that the adversary can control the checksum value in the decryption,
hence breaks authenticity.

We also remark that the masks for EFE depend on N , hence do not allow
precomputation. In contrast the latest OCB3 allows mask precomputation by
using EK(0n) [24]. The reason is that we want our scheme not to generateEK(0n)
for header-less usage (i.e. when A is always empty). As a result our scheme has
a rather similar structure as OCB2 and an AEAD mode based on OCB2, called
AEM [33]. Recent studies reported that the doubling is not too slow [6], hence
we employ on-the-fly doubling as a practical masking option.

7.3 Comparison with Other Inverse-Free Modes

Section 6 only considers a comparison with OCB. Here we provide a basic com-
parison with other modes, in particular those not using the blockcipher inverse.
Table 1 shows examples of such inverse-free modes. Among them, CCM, GCM,
and EAX are rate-2, assuming the speed of field multiplication in GCM is com-
parable with blockcipher encryption. At least in theory, OTR is faster for suf-
ficiently long messages for its rate-1 computation. For CCFB, the rate c is a
variable satisfying 1 < c and c ≈ 1 is impractical for weak security guarantee2.
For memory consumption, all inverse-free modes including OTR have a similar
profile, as long as the blockcipher encryption is the dominant factor. An ex-
ception is GCM since field multiplication usually needs large memories. At the
same time, a potential disadvantage of OTR is the complexity introduced by
the two-round Feistel, such as a limited on-line/parallel capability, and a slight
complex design compared with simple designs reusing existing modes like CTR,
CFB, and CMAC.

7.4 Other Instantiations

As the core idea of our proposal is general, it allows various instantiations, by
seeing OTR or OTR′ as a prototype. What we need is just to instantiate R̃
accepting n-bit input and tweak (N, i, ω), and producing n-bit output. While
we employ GF doubling, one can use a different masking scheme, such as Gray
code [24,35], or word-oriented LFSR [14,24,38], or bit-rotation of a special prime
length [28]. Moreover, we can use non-invertible cryptographic primitives, typi-
cally a Hash-based PRF such as HMAC, or a permutation of Keccak [12] with
Even-Mansour conversion [16] for implementing a keyed permutation. In the
latter case the resulting scheme does not need an inversion of the permutation,
which is different from the permutation-based OCB described at [29], and there
is no output loss like “capacity” bits of SpongeWrap [13]. In these settings, it is

2 More formally, the security bound is roughly σ2/2n/c for privacy and (σ2/2n/c +
1/2n(1−(1/c))) for authenticity, with single decryption query and σ total blocks.
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possible that the underlying primitive accepts longer input than output. Then
a simple tweaking method by tweak prepending can be an option. For exam-
ple we take SipHash [8], which is a VIL-PRF with 64-bit output. A SipHash-

based scheme would be obtained by replacing R̃
〈N,i,ω〉

(∗) of OTR′ (Fig. 3) with
SipHashK(N‖i‖ω‖∗), and replacing R∞(∗) with SipHashK(0n‖0‖h‖∗), accompa-
nied with an appropriate input encoding. As SipHash has an iterative structure, a
caching of an internal value allows efficient computation of SipHashK(N‖i‖ω‖X)
from SipHashK(N‖i′‖ω′‖X ′). We remark that this scheme has roughly 64-bit se-
curity. The proof is trivial from Theorem 3, combined with the assumption that
SipHash is a VIL-PRF.

8 Concluding Remarks

We have presented an authenticated encryption scheme using a PRF. This
scheme enables rate-1, on-line, and parallel processing for both encryption and
decryption. The core idea of our proposal is to use two-round Feistel with input
masking, combined with a message check sum. As a concrete instantiation we
provide a blockcipher mode, called OTR, entirely based on a blockcipher en-
cryption function, which may be seen as an “inverse-free” version of OCB. Our
proposal has a higher complexity than OCB outside the blockcipher, hence it
will not outperform OCB when the blockcipher enc/dec functions are natively
supported and equally fast (say CPU with AESNI), despite the relaxed security
assumption. Still, our proposal would be useful for various other environments
where the use of blockcipher inverse imposes a non-negligible cost, or simply
when the available crypto function is not invertible.
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Abstract. We introduce honey encryption (HE), a simple, general approach to
encrypting messages using low min-entropy keys such as passwords. HE is de-
signed to produce a ciphertext which, when decrypted with any of a number of
incorrect keys, yields plausible-looking but bogus plaintexts called honey mes-
sages. A key benefit of HE is that it provides security in cases where too little
entropy is available to withstand brute-force attacks that try every key; in this
sense, HE provides security beyond conventional brute-force bounds. HE can
also provide a hedge against partial disclosure of high min-entropy keys.

HE significantly improves security in a number of practical settings. To show-
case this improvement, we build concrete HE schemes for password-based en-
cryption of RSA secret keys and credit card numbers. The key challenges are
development of appropriate instances of a new type of randomized message en-
coding scheme called a distribution-transforming encoder (DTE), and analyses of
the expected maximum loading of bins in various kinds of balls-and-bins games.

1 Introduction

Many real-world systems rely for encryption on low-entropy or weak secrets, most
commonly user-chosen passwords. Password-based encryption (PBE), however, has a
fundamental limitation: users routinely pick poor passwords. Existing PBE mechanisms
attempt to strengthen bad passwords via salting, which slows attacks against multiple
users, and iterated application of one-way functions, which slows decryption and thus
attacks by a constant factor c (e.g., c = 10,000). Recent results [6] prove that for con-
ventional PBE schemes (e.g., [32]), work q suffices to crack a single ciphertext with
probability q/c2μ for passwords selected from a distribution with min-entropy μ. This
brute-force bound is the best possible for in-use schemes.

Unfortunately empirical studies show this level of security to frequently be insuffi-
cient. A recent study [12] reports μ < 7 for passwords observed in a real-world popula-
tion of 69+ million users. (1.08% of users chose the same password.) For any slowdown
c small enough to support timely decryption in normal use, the security offered by con-
ventional PBE is clearly too small to prevent message-recovery (MR) attacks.

We explore a new approach to PBE that provides security beyond the brute-force
bound. The idea is to build schemes for which attackers are unable to succeed in mes-
sage recovery even after trying every possible password / key. We formalize this ap-
proach by way of a new cryptographic primitive called honey encryption (HE).
� Independent researcher.
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We provide a framework for realizing HE schemes and show scenarios useful in prac-
tice in which even computationally unbounded attackers can provably recover an HE-
encrypted plaintext with probability at most 2−μ + ε for negligible ε. Since there exists
a trivial, fast attack that succeeds with probability 2−μ (guess the most probable pass-
word), we thus demonstrate that HE can yield optimal security.

While HE is particularly useful for password-based encryption (PBE), we emphasize
that “password” here is meant very loosely. HE is applicable to any distribution of low
min-entropy keys, including passwords, PINs, biometrically extracted keys, etc. It can
also serve usefully as a hedge against partial compromise of high min-entropy keys.

Background. Stepping back, let us review briefly how brute-force message-recovery
attacks work. Given an encryption C = enc(K,M) of message M , where K and M
are drawn from known distributions, an attacker’s goal is to recover M . The attacker
decrypts C under as many candidate keys as she can, yielding messages M1, . . . ,Mq.
Should one of the candidate keys be correct (i.e., K is from a low-entropy distribution),
M is guaranteed to appear in this list, and at this stage the attacker wins with probability
equal to her ability to pick out M from the q candidates. Conventional PBE schemes
make this easy in almost all settings. For example, if M is a 16-digit credit card number
encoded via ASCII and the PBE scheme acts like an ideal cipher, the probability that any
Mi = M is a valid ASCII encoding of a 16-digit string is negligible, at (10/256)16 <
2−74. An attacker can thus reject incorrect messages and recover M with overwhelming
probability. In fact, cryptographers generally ignore the problem of identifying valid
plaintexts and assume conservatively that if M appears in the list, the attacker wins.

Prior theoretical frameworks for analyzing PBE schemes have focused on showing
strong security bounds for sufficiently unpredictable keys. Bellare, Ristenpart, and Tes-
saro [6] prove of PKCS#5 PBE schemes that no attacker can break semantic security
(learn partial information about plaintexts) with probability greater than q/(c2μ); here,
c is the time to perform a single decryption, μ is the min-entropy of the distribution of
the keys, and negligible terms are ignored. As mentioned above, though, when μ = 7,
such a result provides unsatisfying security guarantees, and the formalisms and proof
techniques of [6] cannot offer better results. It may seem that this is the best one can do
and that providing security beyond this “brute-force barrier” remains out of reach.

Perhaps unintuitively (at least to the authors of the present paper), the bounds above
are actually not tight for all settings, as they do not take into account the distribution of
the challenge message M . Should M be a uniformly chosen bit-string of length longer
than μ, for instance, then the best possible message recovery attack would appear to
work with probability at most 1/2μ. This is because for typical PBE schemes an attacker
will have a hard time, in practice, distinguishing the result of dec(K,C) for any K from
a uniform bit string. Said another way, the candidate messages M1, . . . ,Mq would all
appear to be equally valid as plaintexts. Thus an adversary would seem to maximize her
probability of message recovery simply by decrypting C using the key with the highest
probability, which is at most 1/2μ.

Previously proposed security tools have exploited exactly this intuition for special
cases. Hoover and Kausik [26] consider the problem of encrypting a (uniformly-chosen)
RSA or DSA secret exponent for authenticating a user to a remote system. Only the re-
mote system holds the associated public key. To hedge against compromise of the user’s
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machine, they suggest encrypting the secret exponent under a PIN (a short decimal-
string password). They informally argue that brute-force decryption yields valid-looking
exponents, and that an attacker can at best use each candidate exponent in a brute-force
online attack against the remote system. Their work led to a commercially deployed sys-
tem [29]. Other systems similarly seek to foil offline brute-force attacks, but mainly by
means of hiding valid authentication credentials in an explicitly stored list of plausible-
looking fake ones (often called “decoys” or “honeywords”) [10,28]. Similarly, detection
of system breaches using “honeytokens,” such as fake credit-card numbers, is a common
industry practice [38].

Honey Encryption (HE). Inspired by such decoy systems, we set out to build HE
schemes that provide security beyond the brute-force barrier. These schemes yield can-
didate messages during brute-force attacks that are indistinguishable from valid ones.
We refer to the incorrect plaintext candidates in HE as honey messages, following the
long established role of this sweet substance in computer security terminology.

We provide a formal treatment of HE. Functionally, an HE scheme is exactly like
a PBE scheme: it takes arbitrary strings as passwords and uses them to perform ran-
domized encryption of a message. We ask that HE schemes simultaneously target two
security goals: message recovery (MR) security, as parameterized by a distribution over
messages, and the more (multi-instance) semantic-security style goals of [6]. As we
noted, the latter can only be achieved up to the brute-force barrier, and is thus mean-
ingful only for high min-entropy keys; our HR schemes achieve the goals of [6] using
standard techniques. The bulk of our efforts in this paper will be on MR security, where
we target security better than q/c2μ. Our schemes will, in fact, achieve security bounds
close to 1/2μ for unbounded attackers when messages are sufficiently unpredictable.

HE schemes can also produce compact ciphertexts (unlike explicitly stored decoys).
While lengths vary by construction and message distribution, we are able to give schemes
for which the HE ciphertext for M can be as small as a constant multiple (e.g., 2) of the
length of a conventional PBE ciphertext on M .

Framework for HE Schemes. We provide a general methodology for building HE
schemes. Its cornerstone is a new kind of (randomized) message encoding that we call
a distribution-transforming encoder (DTE). A DTE is designed with an estimate of the
message distribution pm in mind, making it conceptually similar to arithmetic/Huffman
coding [19]. The message space for a DTE is exactly the support of pm (messages with
non-zero probability). Encoding a message sampled from pm yields a “seed” value dis-
tributed (approximately) uniformly. It is often convenient for seeds to be binary strings.
A DTE must have an efficient decoder that, given a seed, obtains the corresponding mes-
sage. Applying the decoder to a uniformly sampled seed produces a message distributed
(approximately) under pm. A good (secure) DTE is such that no attacker can distinguish
with significant probability between these two distributions: (1) a pair (M,S) generated
by selecting M from pm and encoding it to obtain seed S, and (2) a pair (M,S) gener-
ated by selecting a seed S uniformly at random and decoding it to obtain message M .
Building DTEs is non-trivial in many cases, for example when pm is non-uniform.

Encrypting a message M under HE involves a two-step procedure that we call DTE-
then-encrypt. First, the DTE is applied to M to obtain a seed S. Second, the seed S is
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encrypted under a conventional encryption scheme enc using the key K , yielding an
HE ciphertext C. This conventional encryption scheme enc must have message space
equal to the seed space and all ciphertexts must decrypt under any key to a valid seed.
Typical PBE schemes operating on bitstrings provide all of this (but authenticated en-
cryption schemes do not). Appropriate care must be taken, however, to craft a DTE
whose outputs require no padding (e.g., for CBC-mode encryption).

We prove a general theorem (Theorem 2) that upper bounds the MR security of any
DTE-then-encrypt scheme by the DTE’s security and a scheme-specific value that we
call the expected maximum load. Informally, the expected maximum load measures the
worst-case ability of an unbounded attacker to output the right message; we relate it
to the expected maximum load of a bin in a kind of balls-and-bins game. Analyzing
an HE scheme built with our approach (and a good DTE) therefore reduces to analyz-
ing the balls-and-bins game that arises for the particular key and message distribution.
Assuming the random oracle model or ideal cipher model for the underlying conven-
tional encryption scheme enables us to assume balls are thrown independently in these
games. (We conjecture that k-wise independent hashing, and thus k-wise independent
ball placement, may achieve strong security in many cases as well.)

A DTE is designed using an estimate of the target message distribution pm. If the
DTE is only approximately right, we can nevertheless prove message-recovery security
far beyond the brute-force-barrier. If the DTE is bad, i.e., based on a poor estimate of
pm, we fall back to normal security (up to the brute-force barrier), at least provably
achieving the semantic security goals in [6]. This means we never do worse than prior
PBE schemes, and, in particular, attackers must always first perform the work of offline
brute-force attacks before HE security becomes relevant.

HE Instantiations. We offer as examples several concrete instantiations of our general
DTE-then-encrypt construction. We build HE schemes that work for RSA secret keys
by crafting a DTE for uniformly chosen pairs of prime numbers. This enables us to ap-
ply HE to RSA secret keys as used by common tools such as OpenSSL, and improves
on the non-standard selection of RSA secret exponents in Hoover and Kausik [26]. In-
terestingly, simple encoding strategies here fail. For example, encoding the secret keys
directly as binary integers (in the appropriate range) would enable an attacker to rule
out candidate messages resulting from decryption by running primality tests. Indeed,
the DTE we design has decode (essentially) implement a prime number generation al-
gorithm. (This approach slows down decryption significantly, but as noted above, in
PBE settings slow decryption can be advantageous.)

We also build HE schemes for password-based encryption of credit card numbers,
their associated Card Verification Values (CVVs), and (user-selected) PINs. Encryp-
tion of PINs requires a DTE that handles a non-uniform distribution over messages,
as empirical studies show a heavy user bias in PIN selection [8]. The resulting anal-
ysis consequently involves a balls-and-bins game with non-uniform bin capacities, a
somewhat unusual setup in the literature.

In each of the cases above we are able to prove close to optimal MR security.

Limitations of HE. The security guarantees offered by HE come with some strings at-
tached. First, HE security does not hold when the adversary has side information about
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the target message. As a concrete example, the RSA secret key HE scheme provides
strong MR guarantees only when the attacker does not know the public key associated
with the encrypted secret key. Thus the HE cannot effectively protect normal HTTPS
certificate keys. (The intended application for this HE scheme is client authorization,
where the public key is stored only at the remote server, a typical setting for SSH users.
See, e.g., [26].) Second, because decryption of an HE ciphertext under a wrong key
produces fake but valid-looking messages, typos in passwords might confuse legitimate
users in some settings. We address this issue of “typo-safety” in Section 7. Third and
finally, we assume in our HE analyses that the key and message distributions are inde-
pendent. If they are correlated, an attacker may be able to identify a correct message by
comparing it with the decryption key that produced it. Similarly, encrypting two cor-
related messages under the same key may enable an adversary to identify correct mes-
sages. (Encrypting independent messages under the same key is fine.) We emphasize,
however, that should any of these assumptions fail, HE security falls back to normal
PBE security: there is never any harm in using HE.

Full Version. Due to page constraints, this abstract omits proofs and some other con-
tent. Refer to the full version of the paper for the omitted material [27].

2 Related Work

Our HE schemes provide a form of information-theoretic encryption, as their MR secu-
rity does not rely on any computational hardness assumption. Information-theoretic en-
cryption schemes, starting with the one-time pad [36], have seen extensive study. Most
closely related is entropic security [21, 35], where the idea is to exploit high-entropy
messages to perform encryption that leaks no predicate on the plaintext even against
unbounded attackers (and hence beyond the brute-force bound). Their goal was to en-
able use of uniform, smaller (than one-time pads) keys yet achieve information-theoretic
security. HE similarly exploits the entropy of messages, but also provides useful bounds
(by targeting MR security) even when the combined entropy of messages and keys is
insufficient to achieve entropic security. See also the discussion in the full version.

Deterministic [2, 4, 11] and hedged [3, 34] public-key encryption rely on entropy in
messages to offset having no or only poor randomness during encryption. HE similarly
exploits adversarial uncertainty about messages in the case that keys are poor; HE can
be viewed as “hedging” against poor keys (passwords) as opposed to poor randomness.

In natural applications of HE, the message space M must encompass messages
of special format, rather than just bitstrings. In this sense, HE is related to format-
preserving encryption (FPE) [5], although HE is randomized and has no preservation
requirement (our ciphertexts are unstructured bit strings). An implication of our ap-
proach, however, is that some FPE constructions (e.g., for credit-card encryption) can
be shown to achieve HE-like security guarantees when message distributions are uni-
form. HE is also conceptually related to collisionful hashing [9], the idea of creating
password hashes for which it is relatively easy to find inverses and thus hard to identify
the original, correct password (as opposed to identifying a correct message).

Under (non-interactive) non-committing encryption [17, 31], a ciphertext can be
“opened” to an arbitrary message under a suitably selected key. (For example, a one-time
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pad is non-committing.) HE has a different requirement, namely that decrypting a fixed
ciphertext under different keys yields independent-looking samples of the message
space. Note that unlike non-committing encryption [31], HE is achievable in the non-
programmable random oracle model. Deniable encryption [16] also allows ciphertexts
to be opened to chosen messages; HE schemes do not in general offer deniability.

Canetti, Halevi, and Steiner [18] propose a protocol in which a password specifies a
subset of CAPTCHAs that must be solved to decrypt a credential store. Their scheme
creates ambiguity around where human effort can be most effectively invested, rather
than around the correctness of the contents of the credential store, as HE would.

Perhaps most closely related to HE is a rich literature on deception and decoys in
computer security. Honeypots, fake computer systems intended to attract and study at-
tacks, are a stock-in-trade of computer security research [37]. Researchers have pro-
posed honeytokens [20, 38], which are data objects whose use signals a compromise,
and honeywords [28], a system that uses passwords as honeytokens. Additional propos-
als include false documents [14], false network traffic [13], and many variants.

The Kamouflage system [10] is particularly relevant. It conceals a true password
vault encrypted under a true master password among N bogus vaults encrypted under
bogus master passwords. Kamouflage requires O(N) storage. With a suitable DTE, HE
can in principle achieve similar functionality and security with O(1) storage. Kamou-
flage and related systems require the construction of plausible decoys. This problem has
seen study specifically for password protection in, e.g., [10, 28], but to the best of our
knowledge, we are the first to formalize it with the concept of DTEs.

3 HE Overview

HE Schemes. An HE scheme has syntax and semantics equivalent to that of a sym-
metric encryption scheme. Encryption maps a key and message to a ciphertext and, in
our schemes, is randomized. Decryption recovers messages from ciphertexts. The de-
parture from conventional symmetric encryption schemes will be in how HE decryption
behaves when one uses the wrong key in attempting to decrypt a ciphertext. Instead of
giving rise to some error, decryption will emit a plaintext that “looks” plausible.

Formally, let K andM be sets, the key space and message space. For generality, we
assume thatK consists of variable-length bit strings. (This supports, in particular, vary-
ing length passwords.) An HE scheme HE = (HEnc,HDec) is a a pair of algorithms.
Encryption HEnc takes input a key K ∈ K, message M ∈ M, some uniform ran-
dom bits, and outputs a ciphertext C. We write this as C←$ HEncK(M), where ←$

denotes that HEnc may use some number of uniform random bits. Decryption HDec
takes as input a key K ∈ K, ciphertext C, and outputs a message M ∈ M. Decryption,
always deterministic, is written as M ← HDecK(C).

We require that decryption succeeds: Formally, Pr[HDecK(HEncK(M)) = M ] =
1 for all K ∈ K and M ∈M, where the event is defined over the randomness in HEnc.

We will write SE = (enc, dec) to denote a conventional symmetric encryption
scheme, but note that the syntax and semantics match those of an HE scheme.

Message and Key Distributions. We denote a distribution on set S by a map p : S →
[0, 1] and require that

∑
s∈S p(s) = 1. The min-entropy of a distribution is defined to be
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− logmaxs∈S p(s). Sampling according to such a distribution is written s←p S, and
we assume all sampling is efficient. We use pm to denote a message distribution over
M and pk for a key distribution overK. Thus sampling according to these distributions
is denoted M ←pm M and K←pk

K. Note that we assume that draws from pm and pk

are independent, which is not always the case but will be in our example applications;
see Section 7. Whether HE schemes can provide security for any kind of dependent
distributions is an interesting question for future work.

Message Recovery Security. To formalize our security goals, we use the notion of se-
curity against message recovery attacks. Normally, one aims that, given the encryption
of a message, the probability of any adversary recovering the correct message is negligi-
ble. But this is only possible when both messages and keys have high entropy, and here
we may have neither. Nevertheless, we can measure the message recovery advantage
of any adversary concretely, and will do so to show (say) that attackers cannot achieve
advantage better than 1/2μ where μ is the min-entropy of the key distribution pk.

MRA
HE,pm,pk

K∗ ←pk K
M∗ ←pm M
C∗ ←$ HEnc(K∗,M∗)
M ←$ A(C∗)
return M =M∗

Fig. 1. Game defining MR
security

Formally, we define the MR security game as
shown in Figure 1 and define advantage for an adver-
sary A against a scheme HE by Advmr

HE,pm,pk
(A) =

Pr[MRA
HE,pm,pk

⇒ true]. When working in the ran-
dom oracle (RO) model, the MR game additionally
has a procedure implementing a random function that
A may query. For our schemes, we allow A to run
for an unbounded amount of time and make an un-
bounded number of queries to the RO. For simplicity
we assume pm and pk are independent of the RO.

Semantic Security. In the case that keys are suffi-
ciently unpredictable and adversaries are computationally bounded, our HE schemes
will achieve semantic security [24]. Our schemes will therefore never provide worse
confidentiality than conventional encryption, and in particular the MR advantage in
this case equals the min-entropy of the message distribution pm plus the (assumed)
negligible semantic security term. When combined with a suitable password-based key-
derivation function [32], our schemes will also achieve the multi-instance security guar-
antees often desired for password-based encryption [6]. Note that the results in [6] still
hold only for attackers that cannot exhaust the min-entropy of the key space.

In the full version we discuss why existing or naı̈ve approaches, e.g., conventional en-
cryption or hiding a true plaintext in a list of fake ones, aren’t satisfactory HE schemes.

4 Distribution-Transforming Encoders

We introduce a new type of message encoding scheme that we refer to as a distribution-
transforming encoder (DTE). Formally, it is a pair DTE = (encode, decode) of algo-
rithms. The usually randomized algorithm encode takes as input a message M ∈ M
and outputs a value in a set S. We call the range S the seed space for reasons that will
become clear in a moment. The deterministic algorithm decode takes as input a value
S ∈ S and outputs a message M ∈ M. We call a DTE scheme correct if for any
M ∈M, Pr[decode(encode(M)) = M ] = 1.
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A DTE encodes a priori knowledge of the message distribution pm. One goal in
constructing a DTE is that decode applied to uniform points provides sampling close
to that of a target distribution pm. For a given DTE (that will later always be clear from
context), we define pd to be the distribution overM defined by

pd(M) = Pr [M ′ = M : U ←$ S ; M ′ ← decode(S) ] .

We will often refer to pd as the DTE distribution. Intuitively, in a good or secure DTE,
the distributions pm and pd are “close.”

Formally, we define this notion of DTE security or goodness, as follows. Let A be
an adversary attempting to distinguish between the two games shown in Figure 2. We
define advantage of an adversaryA for a message distribution pm and encoding scheme
DTE = (encode, decode) by

Advdte
DTE,pm

(A) =
∣∣Pr [SAMP1ADTE,pm

⇒ 1
]
− Pr

[
SAMP0ADTE ⇒ 1

]∣∣ .
While we focus mostly on adversaries with unbounded running times, we note that these
measures can capture computationally-good DTEs as well. A perfectly secure DTE
is a scheme for which the indistinguishability advantage is zero for even unbounded
adversaries. In the full version we explore another way of measuring DTE goodness
that, while more complex, sometimes provides slightly better bounds.

SAMP1BDTE,pm

M∗ ←pm M
S∗ ←$ encode(M∗)
b←$ B(S∗,M∗)
return b

SAMP0BDTE

S∗ ←$ S
M∗ ← decode(S∗)
b←$ B(S∗,M∗)
return b

Fig. 2. Games defining DTE goodness

Inverse Sampling DTE. We
first build a general purpose
DTE using inverse sampling, a
common technique for convert-
ing uniform random variables
into ones from some other dis-
tribution. Let Fm be the cumula-
tive distribution function (CDF)
associated with a known mes-
sage distribution pm according
to some ordering of M =
{M1, . . . ,M|M|}. Define Fm(M0) = 0. Let the seed space be S = [0, 1). In-
verse sampling picks a value according to pm by selecting S←$ [0, 1); it outputs
Mi such that Fm(Mi−1) ≤ S < Fm(Mi). This amounts to computing the in-
verse CDF M = F−1

m (S) = mini{Fm(Mi) > S}. The associated DTE scheme
IS-DTE = (is-encode, is-decode) encodes by picking uniformly from the range
[Fm(Mi−1), Fm(Mi)) for input message Mi, and decodes by computing F−1

m (S).
All that remains is to fix a suitably granular representation of the reals between [0, 1).

The representation error gives an upper bound on the DTE security of the scheme. We
defer the details and analysis to the full version. Encoding and decoding each work in
time O(log |M|) using a tables of size O(|M|), though its performance can easily be
improved for many special cases (e.g., uniform distributions).

DTEs for RSA Secret Keys. We turn to building a DTE for RSA secret keys. A popular
key generation algorithm generates an RSA key of bit-length 2
 via rejection sampling
of random values p, q ∈ [2�−1, 2�). The rejection criterion for either p or q is failure of a
Miller-Rabin primality test [30, 33]; the resulting distribution of primes is (essentially)
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uniform over the range. The private exponent is computed as d = e−1 mod (p−1)(q−
1) for some fixed e (typically 65537), yielding secret key (N, d) and public key (N, e).
Usually, the key p, q is stored with some ancillary values (not efficiently recoverable
from d) to speed up exponentiation via the Chinese Remainder Theorem. Since for fixed
e, the pair p, q fully defines the secret key, we now focus on building DTEs that take as
input primes p, q ∈ [2�−1, 2�) for some 
 and aim to match the message distribution pm

that is uniformly distributed over the primes in [2�−1, 2�).
One strawman approach is just to encode the input p, q as a pair of (
− 2)-bit strings

(the leading ‘1’ bit left implicit), but this gives a poor DTE. The prime number theorem
indicates that an 
-bit integer will be prime with probability about 1/
; thus an adversary
A that applies primality tests to a candidate plaintext has a (very high) DTE advantage
of about 1− 1/
2.

We can instead adapt the rejection-sampling approach to prime generation itself as
a DTE, RSA-REJ-DTE = (rsa-rej-encode, rsa-rej-decode), which works as fol-
lows. Encoding (rsa-rej-encode) takes a pair of primes (p, q), constructs a vector of
t bitstrings selected uniformly at random from the range [2�−1, 2�), replaces the first
(resp. second) prime integer in the list by p (resp. q), and outputs the modified vector
of t integers (each encoded using 
 − 2 bits). (If there’s one prime and it’s not the last
integer in the vector, then that prime is replaced by p and the last integer is replaced
by q. Should there be no primes in the vector, or one prime in the last position, then the
last two integers in the vector are replaced by (p, q).) Decoding (rsa-rej-decode) takes
as input a vector of the t integers, and outputs its first two primes. If there do not exist
two primes, then it outputs some (hard-coded) fixed primes.1 For simplicity, we assume
a perfect primality testing algorithm; it is not hard to generalize to probabilistic ones.2

We obtain the following security bound.

Theorem 1. Let pm be uniform over primes in [2�−1, 2�) for some 
 ≥ 2 and let
RSA-REJ-DTE be the scheme described above. Then Advdte

RSA-REJ-DTE,pm
(A) ≤ (1−

1/(3
))t−1 for any adversary A.

This scheme is simple, but a small adversarial advantage does translate into a large
encoding. For example with 
 = 1024 (2048-bit RSA), in order to achieve a bound of
Advdte

RSA-REJ-DTE,pm
(A) < 10−5 requires t ≥ 35,361, resulting in an encoding of about

4.5 megabytes. (Assuming keys of low entropy, 10−5 is small enough to contribute
insignificantly to security bounds on the order of those in Section 7.) It may be tempting
to try to save on space by treating S as a seed for a pseudorandom generator (PRG) that
is then used to generate the t values during decoding. Encoding, though, would then
need to identify seed values that map to particular messages (prime pairs), effectively
inverting the PRG, which is infeasible.

Some RSA key generators do not use rejection-sampling, but instead use the classic
algorithm that picks a random integer in [2�−1, 2�) and increments it by two until a
prime is found (c.f., [15,25]). In this case, a DTE can be constructed (see the full version
for details) that requires only 2(
 − 2)-bit seeds, and so is space-optimal. Other, more

1 We could also output bottom, but would then need to permit errors in decoding and HE
decryption.

2 Doing so would also require our definition of DTE correctness to allow errors.
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HEncH(K,M)

S ←$ encode(M)

R←$ {0, 1}n
C2 ←$ H(R,K)⊕ S

return (R,C2)

HDecH(K, (R,C2))

S ← C2 ⊕H(R,K)

M ← decode(S)
return M

Fig. 3. A particularly simple instantiation of DTE-then-Encrypt using a hash-function H to im-
plement the symmetric encryption

randomness-efficient rejection-sampling techniques [23] may also be used to obtain
smaller encodings.

In some special settings it may be possible to hook existing key-generation software,
extract the PRG key / seed κ used for the initial generation of an RSA key pair, and
apply HE directly to κ. A good DTE (and thus HE scheme) can then be constructed
trivially, as κ is just a short (e.g., 256-bit) uniformly random bitstring.

5 DTE-Then-Encrypt Constructions

We now present a general construction for HE schemes for a target distribution pm.
Intuitively, the goal of any HE scheme is to ensure that the plaintext resulting from
decrypting a ciphertext string under a key is indistinguishable from freshly sampling a
plaintext according to pm. Let DTE = (encode, decode) be a DTE scheme whose
outputs are in the space S = {0, 1}s. Let SE = (enc, dec) be a conventional symmet-
ric encryption scheme with message space S and some ciphertext space C.

Then DTE-then-Encrypt HE[DTE,SE] = (HEnc,HDec) applies the DTE encod-
ing first, and then performs encryption under the key. Decryption works in the natural
way. It is easy to see that the resulting scheme is secure in the sense of semantic security
(when keys are drawn from a large enough space) should SE enjoy the same property.

We fix a simple instantiation using a hash function H : {0, 1}n × K → S to per-
form symmetric encryption, see Figure 3. It is denoted as HE[DTE, H ]. Of course, one
should apply a password-based key-derivation function to K first, as per [32]; we omit
this for simplicity.

To analyze security, we use the following approach. First we establish a general
theorem (Theorem 2) that uses the goodness of the DTE scheme to move to a setting
where, intuitively, the attacker’s best bet is to output the message M that maximizes the
probability (over choice of key) of M being the result of decrypting a random challenge
ciphertext. The attacker wins, then, with exactly the sum of the probabilities of the
keys that map the ciphertext to that message. Second, we define a weighted balls-and-
bins game with non-uniform bin sizes in a way that makes the expected load of the
maximally loaded bin at the end of the game exactly the winning probability of the
attacker. We can then analyze these balls-and-bins games for various message and key
distributions combinations (in the random oracle model). We put all of this together
to derive bounds for some concrete applications in Section 7, but emphasize that the
results here provide a general framework for analyzing HE constructions.
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Applying DTE Goodness. Let KM,C = {K : K ∈ K ∧M = HDec(K,C)} be
the set of keys that decrypt a specific ciphertext to a specific message and (overloading
notation slightly) let pk(KM,C) =

∑
K∈KM,C

pk(K) be the aggregate probability of
selecting a key that falls in any such set. Then for any C ∈ C we define LHE,pk

(C) =
maxM pk(KM,C). Let LHE,pk

represent the random variable LHE,pk
(C) defined over

C uniformly chosen from C and any coins used to define HDec. (For example in the
hash-based scheme, we take this over the coins used to define H when modeled as a
random oracle.) We will later show, for specific message/key distributions and using
balls-and-bins-style arguments, bounds on E [LHE,pk

]. We call this value the expected
maximum load, following the terminology from the balls-and-bins literature.

For the following theorem we require from SE only that encrypting uniform mes-
sages gives uniform ciphertexts. More precisely, that S←$ S ; C←$ enc(K,S) and
C←$ C ; S ← dec(K,C) define identical distributions for any key K ∈ K. This is
true for many conventional schemes, including the hash-based scheme used in Figure 3,
CTR mode over a block-cipher, and CBC-mode over a block cipher (assuming the DTE
is designed so that S includes only bit strings of length a multiple of the block size).
The proof of the following theorem is given in the full version.

Theorem 2. Fix distributions pm, pk, an encoding scheme DTE for pm, and a symmet-
ric encryption scheme SE = (enc, dec). Let A be an MR adversary. Then we give a
specific adversary B in the proof such that Advmr

HE,pm,pk
(A) ≤ Advdte

DTE,pm
(B) +

E [LHE,pk
]. Adversary B runs in time that of A plus the time of one enc operation.

The Balls-and-Bins Interpretation. What remains is to bound E [LHE,pk
]. To do so,

we use the following equivalent description of the probability space as a type of balls-
and-bins game. Uniformly pick a ciphertext C←$ C. Each ball represents one key K
and has weight equal to pk(K). We let a = |K| be the number of balls. Each bin
represents a message M and b = |M| is the number of bins.3 A ball is placed in a
particular bin should C decrypt under K to the message labeling that bin. Then LHE,pk

as defined above is exactly the random variable defined as the maximum, over bins,
sum of weights of all balls thrown into that bin. In this balls-and-bins game the balls
are weighted, the bins have varying capacities, and the (in)dependence of ball throws
depends on the details of the symmetric encryption scheme used.

To derive bounds, then, we must analyze the expected maximum load for various
balls-and-bins games. For brevity in the following sections we focus on the hash-based
HE scheme shown in Figure 3. By modeling H as a random oracle,4 we get that all
the ball throws are independent. At this stage we can also abstract away the details of
the DTE, instead focusing on the distribution pd defined over M. The balls-and-bins
game is now completely characterized by pk and pd, and we define the random variable
Lpk,pd

as the load of the maximally loaded bin at the end of the balls-and-bins game that
throws |K| balls with weights described by pk independently into |M| bins, choosing a
bin according to pd. The following lemma formalizes this transition.

3 Convention is to have m balls and n bins, but we use a balls and b bins to avoid confusion
since m connotes messages.

4 Technically speaking we only require the non-programmable random oracle [22, 31].
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Lemma 1. Consider HE[DTE, H ] for H modeled as a RO and DTE having distribu-
tion pd. For any key distribution pk, E[LHE,pk

] ≤ E[Lpk,pd
].

We give similar lemmas for block-cipher based modes (in the ideal cipher model) in
the full version. Thus we can interchange the hash-based symmetric encryption scheme
for other ones in the final results of Section 7 with essentially the same security bounds.

6 Balls-and-Bins Analyses

In this section we derive bounds for various types of balls-and-bins games, as motivated
and used for the example applications of HE in the next section. These cases are by
no means exhaustive; they illustrate the power of our general HE analysis framework.
Treating pk and pd as vectors, we can write their dimension as |pk| = a and |pd| = b.

In the special case of a = b and both pk and pd uniform, the balls-and-bins game
becomes the standard one. One can use the classic proof to show that E [Lpk,pd

] ≤
1
b + 3 ln b

b ln ln b . HE schemes for real applications, however, are unlikely to coincide with
this special case, and so we seek other bounds.

Majorization. To analyze more general settings, we exploit a result due to Berenrink,
Friedetzky, Hu, and Martin [7] that builds on a technique called “majorization” earlier
used for the balls-and-bins setting by Azar, Broder, Karlin, and Upfal [1].

Distributions such as pk and pd can be viewed as vectors of appropriate dimension
over R. We assume below that vector components are in decreasing order, e.g. that
pk(i) ≥ pk(j) for i < j. Let m be a number and pk, p

′
k ∈ Ra. Then p′k majorizes pk,

denoted p′k + pk, if
∑a

i=1 p
′
k[i] =

∑a
i=1 pk[i] and

∑j
i=1 p

′
k[i] ≥

∑j
i=1 pk[i] for all

1 ≤ j ≤ a.
Majorization intuitively states that p′k is more “concentrated” than pk: a prefix of

any length of p′k has cumulative weight at least as large as the cumulative weight of the
same-length prefix of pk. We have the following theorem from [7, Cor. 3.5], slightly
recast to use our terminology. We also extend our definition of load to include the i
highest loaded bins: let Li

pk,pd
be the random variable which is the total weight in the i

highest-loaded bins at the end of the balls-and-bins game.

Theorem 3 (BFHM08). Let pk, p
′
k, pd be distributions. If p′k + pk, then E[Li

p′
k,pd

] ≥
E[Li

pk,pd
] for all i ∈ [1, b].

Consider the case i = 1, which corresponds to the expected maximum bin loads
for the two key distributions. As a concrete example, let pk = (1/2, 1/4, 1/4), p′k =
(1/2, 1/2, 0). Then p′k + pk and thus E [L(p′k, pd) ] ≥ E [L(pk, pd) ] because “fusion”
of the two 1/4-weight balls into one ball biases the expected maximum load upwards.

Our results will use majorization to shift from a setting with non-uniform key distri-
bution pk having max-weight w to a setting with uniform key distribution with weight
�1/w�.

Non-uniform Key Distributions. We turn now to giving a bound for the case that pk

has maximum weight w (meaning pk(M) ≤ w for all M ) and pd is uniform. In our
examples in the next section we have that a ' b, and so we focus on results for this
case. We start with the following lemma (whose proof is given in the full version).
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Lemma 2. Suppose pk has maximum weight w and pd is such that b = ca for some
positive integer c. Then for any positive integer s > 2e/c, where e is Euler’s constant,
it holds that

E [Lpk,pd
] ≤ w

(
(s− 1) + 2

(
a2

cs−1

)(e
s

)s)
.

For cases in which b = O(a2), a convenient, somewhat tighter bound on E [Lpk,pd
] is

possible. We observe that in many cases of interest, the term r(c, b) in the bound below
will be negligible. Proof of this next lemma is given in the full version.

Lemma 3. Suppose pk has maximum weight w and pd is such that b = ca2 for some
positive integer c. Then E [Lpk,pd

] ≤ w
[
1 + 1

2c + r(c, b)
]
, where e is Euler’s constant

and r(c, b) =
(

e
27c2

) (
1− e

cb

)−1
.

Non-uniform Balls-and-Bins. To support our examples in the next section, we also
consider the case of non-uniform pd . Proof of this lemma is given in the full version.

Lemma 4. Let LB denote the maximum load yielded by throwing a balls (of weight 1)
into a set B of b bins of non-uniform capacity at most 0 ≤ γ ≤ 3−

√
5. Let LB∗ denote

the maximum load yielded by throwing a∗ = 3a balls (of weight 1) into a set B∗ of
b∗ = �2/γ� bins of uniform capacity. Then E[LB] ≤ E[LB∗ ].

7 Example Applications, Bounds, and Deployment Considerations

We now draw together the results of the previous sections into some concrete examples
involving honey encryption of RSA secret keys and credit card data. For concreteness,
we assume password-based encryption of these secrets, although our proven results are
much more general. Appealing again to Bonneau’s Yahoo! study [12] in which the most
common password was selected by 1.08% ≈ 1/100 of users, we assume for simplicity
that the maximum-weight password / key is selected with probability w = 1/100. (At
this level of entropy, prior security results for PBE schemes are not very useful.)

7.1 HE for Credit Card Numbers, PINs, and CVVs

We first consider application of HE to credit card numbers. For convenience, we evalu-
ate HE as applied to a single value, e.g., one credit-card number. Recall, though, that HE
security is unaffected by simultaneous encryption of multiple, independent messages
drawn from the same distribution. So our security bounds in principle apply equally
well to encryption of a vault or repository of multiple credit-card numbers.

A (Mastercard or Visa) credit card number, known technically as a Primary Account
Number (PAN), consists of sixteen decimal digits. Although structures vary somewhat,
commonly nine digits constitute the cardholder’s account number, and may be regarded
as selected uniformly at random upon issuance. One digit is a (mod 10) checksum
(known as the Luhn formula). A useful result then is the following theorem, whose
proof is given in the full version.
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Theorem 4. Consider HE[IS-DTE, H ] with H modeled as a RO and IS-DTE using
an 
-bit representation. Let pm be a uniform distribution over b messages and pk be a
key-distribution with maximum weight w. Let α = �1/w�. Then for any adversary A,

Advmr
HE,pm,pk

(A) ≤ w(1 + δ) +
1 + α

2�
where δ = α2

2b + eα4

27b2

(
1− eα2

b2

)−1

.

For many cases of interest, b , α2, and thus δ will be small. We can also set 
 ap-
propriately to make (1 + α)/2� negligible. Theorem 4 then yields a simple and useful
bound, as for our next two examples.

As cardholder account numbers are uniformly selected nine-digit values, they induce
a uniform distribution over a space of b = 109 messages. Given w = 1/100, then,
α2/b = 10−5 and so δ ≈ 0. The upper bound on MR advantage is w = 1/100. This
bound is essentially tight, as there exists an adversaryA achieving advantage w = 1

100 .
Namely, the adversary that decrypts the challenge ciphertext with the most probable
key and then outputs the resulting message. This adversary has advantage at least w.

Finally, consider encrypting both 5-digits of the credit-card / debit-card account num-
ber (the last 4 digits still considered public) along with the user’s PIN number. (Credit
card PINs are used for cash withdrawals and to authorize debit-card transactions.) A
detailed examination of a corpus of 3.4 million user-selected PINs is given in [8], and
gives in particular a CDF that can be used to define an inverse sampling DTE. The most
common user-selected PIN is ‘1234’; it has an observed frequency of 10.713%. Thus,
PINs have very little minimum entropy (roughly 3 bits). Combining a PIN with a five-
digit effective account number induces a non-uniform message space, with maximum
message probability γ = 1.0713× 10−6. Consequently, Theorem 4 is not applicable to
this example.

A variant of the proof of Theorem 4, however, that makes use of Lemma 4 for non-
uniform bin sizes, establishes the following corollary.

Corollary 1. Consider HE[IS-DTE, H ] with H modeled as a RO and IS-DTE using
an 
-bit representation. Let pm be a non-uniform distribution with maximum message
probability γ ≤ 3 −

√
5, and pk be a key-distribution with maximum weight w. Let

α = �1/w�. Then for any adversary A, Advmr
HE,pm,pk

(A) ≤ w(1 + δ) +
(1 + α)

2�

where δ = α2

2b
+ eα4

27b
2

(
1− eα2

b
2

)−1

and α = �3/w� and b = �2/γ�.

Corollary 1 yields a bound defined by the expected maximum load of a balls-and-bins
experiment with 300 balls (of weight w = 1/100) and �2/γ� = 1,866,890 uniform-
capacity bins, with c = α2/b = 1/20.74. The final MR bound is therefore about 1.02%.
This is slightly better than the bound of the previous example (at 1.05%). It shows,
significantly, that Corollary 1 is tight enough to give improved bounds despite the scant
minimum entropy in a PIN.

Credit cards often have an associated three- or four-digit card verification value,
a secret used to conduct transactions. In the full version, we investigate the case of
applying HE to such small messages.
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7.2 HE for RSA Secret Keys

We now show how to apply HE to RSA secret keys using the DTE introduced for this
purpose in Section 4.

In some settings, RSA is used without making a user’s public key readily available
to attackers. A common example is RSA-based client authentication to authorize access
to a remote service using HTTPS or SSH. The client stores an RSA secret / private key
and registers the corresponding public key with the remote service.

Practitioners recommend encrypting the client’s secret key under a password to
provide defense-in-depth should the client’s system be passively compromised.5 With
password-based encryption, though, an attacker can mount an offline brute-force at-
tack against the encrypted secret key. Use of straightforward unauthenticated encryp-
tion wouldn’t help here: as the secret key is usually stored as a pair of primes p and q (to
facilitate use of the Chinese Remainder Theorem), an attacker can quickly test the cor-
rectness of a candidate secret key by applying a primality test to its factors. Similarly,
given the passwords used in practice (e.g., for w = 1/100), key-hardening mechanisms
(e.g., iterative hashing) do not provide an effective slowdown against brute-force attack.
Cracking a password-encrypted RSA secret key remains fairly easy.

HE is an attractive option in this setting. To build an HE scheme for 2
-bit RSA
secret keys we can use the DTE from Section 4. We have the following theorem.

Theorem 5. Consider HE[RSA-REJ-DTE, H ] with RSA-REJ-DTE the 2
-bit RSA
DTE using seed space vectors of size t and H modeled as a RO. Let pm be uniform
over primes in [2−�−1, 2�) and let pk be a key-distribution with maximum weight w. Let
α = �1/w�. Then for any adversary A it holds that

Advmr
HE,pm,pk

(A) ≤ w(1 + δ) + (1 + α)

(
1− 1

3


)t−1

where δ = α2

2�2	−1/�� +
(

eα4

27�2	−1/��2

)
·
(
1− eα2

�2	−1/��2

)−1

.

The proof is much like that of Theorem 4 (the full version): apply Theorem 2; plug
in the advantage upper bound for the RSA rejection sampling DTE (Theorem 1); ap-
ply Lemma 1 to get independent ball tosses; majorize to get uniform-weighted balls
(Theorem 3); apply a union bound to move from pd back to uniform bin selection; and
then finally apply the balls-and-bins analysis for uniform bins (Lemma 3).

The term δ is small when − logw ' 
. For example, with 
 = 1024 and w =
1/100 and setting t = 35,393, we have that δ ≈ 0 and the overall MR advantage is
upper bounded by 1.1%. The ciphertext size will still be somewhat large, at about 4.5
megabytes; one might use instead the DTEs discussed in the full version for which
similar MR bounds can be derived yet ciphertext size ends up short.

5 Obviously an active attacker can sniff the keyboard or otherwise capture the secret key. We also
are ignoring the role of network attackers that may also gain access to transcripts dependent
on the true secret key. See [26] for discussion.
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7.3 Deployment Considerations

A number of considerations and design options arise in the implementation and use of
HE. Here we briefly mention a couple involving the use of checksums.

Typo-Safety. Decryption of an HE ciphertext C∗ under an incorrect password / key K
yields a fake but valid-looking message M . This is good for security, but can be bad for
usability if a fake plaintext appears valid to a legitimate user.

One possible remedy, proposed in [28], is the use of error-detecting codes or check-
sums, such as those for ISBN book codes. For example, a checksum on the password
/ key K∗ might be stored with the ciphertext C∗. Such checksums would reduce the
size of the key space K and cause some security degradation, and thus require care-
ful construction and application. Another option in some cases is online verification of
plaintexts. For example, if a credit-card number is rejected by an online service after
decryption, the user might be prompted to re-enter her password.

Honeytokens without Explicit Sharing. In [10], it is suggested that fake passwords
/ honeytokens be shared explicitly between password vault applications and service
providers. Application of error-correcting codes to plaintexts in HE can create honey-
tokens without explicit sharing. As a naı̈ve example (and crude error-correcting code),
an HE scheme for credit-card numbers might explicitly store the first two digits of the
credit-card account number. If a service provider then receives an invalid credit-card
number in which these digits are correct, it gains evidence of a decryption attempt on
the HE ciphertext by an adversary. This approach degrades security slightly by reducing
the message space, and must be applied with care. But it offers an interesting way of
coupling HE security with online security checks.

8 Conclusion

Low-entropy secrets such as passwords are likely to persist in computer systems for
many years. Their use in encryption leaves resources vulnerable to offline attack. Honey
encryption can offer valuable additional protection in such scenarios. HE yields plau-
sible looking plaintexts under decryption with invalid keys (passwords), so that offline
decryption attempts alone are insufficient to discover the correct plaintext. HE also of-
fers a gracefully degrading hedge against partial disclosure of high min-entropy keys,
and, by simultaneously meeting standard PBE security notions should keys be high
entropy, HE never provides worse security than existing PBE schemes.

We showed applications in which HE security upper bounds are equal to an adver-
sary’s conditional knowledge of the key distribution, i.e., they min-entropy of keys.
These settings have message space entropy greater than the entropy of keys, but our
framework can also be used to analyze other settings.

A key challenge for HE—as with all schemes involving decoys—is the generation
of plausible honey messages through good DTE construction. We have described good
DTEs for several natural problems. For the case where plaintexts consist of passwords,
e.g., password vaults, the relationship between password-cracking and DTE construc-
tion mentioned above deserves further exploration. DTEs offer an intriguing way of
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potentially repurposing improvements in cracking technology to achieve improvements
in encryption security by way of HE.

More generally, for human-generated messages (password vaults, e-mail, etc.), esti-
mation of message distributions via DTEs is interesting as a natural language processing
problem. Similarly, the reduction of security bounds in HE to the expected maximum
load for balls-and-bins problems offers an interesting connection with combinatorics.
The concrete bounds we present can undoubtedly be tightened for a variety of cases.
Finally, a natural question to pursue is what kinds of HE bounds can be realized in the
standard model via, e.g., k-wise independent hashing.

Acknowledgements. The authors thank the anonymous reviewers, as well as Daniel
Wichs and Mihir Bellare, for their insightful comments.
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Abstract. We describe a security-preserving construction of a random
permutation of domain size N from a random function, the construction
tolerating adversaries asking all N plaintexts, yet employing just Θ(lgN)
calls, on average, to the one-bit-output random function. The approach
is based on card shuffling. The basic idea is to use the sometimes-recurse
transformation: lightly shuffle the deck (with some other shuffle), cut the
deck, and then recursively shuffle one of the two halves. Our work builds
on a recent paper of Ristenpart and Yilek.

Keywords: Card shuffling, format-preserving encryption, PRF-to-PRP
conversion, mix-and-cut shuffle, pseudorandom permutations, sometimes-
recurse shuffle, swap-or-not shuffle.

1 Introduction

Format-preserving encryption. Suppose you are given a blockcipher, say
AES, and want to use it to efficiently construct a cipher on a smaller domain, say
the set ofN = 1016 sixteen-digit credit card numbers. You could, for example, use
AES as the round function for several rounds of a Feistel network, the approach
taken by emerging standards [1, 7]. But information-theoretic security will vanish
by the time the adversary asks

√
N queries, which is a problem on small-sized

domains. (It is a problem from the point of view of having a satisfying provable-
security claim; likely it is not a problem with respect to their being a feasible
attack.) Alternatively, you could precompute a random permutation onN points,
but spending Ω(N) time in computation will become undesirable before

√
N

adversarial queries becomes infeasible.
This paper provides a new solution to this problem of format-preserving

encryption, where we aim to build ciphers with an arbitrary finite domain
[3, 4, 8, 5], frequently [N ] = {0, 1, . . . , N−1} for some N . Our solution lets you
encipher a sixteen-digit credit card with about 1000 expected AES calls, getting
an essentially ideal provable-security claim. (One thousand AES calls comes to
about 80K clock cycles, or 25 μsec, on a recent Intel processor.) In particular,
the adversary can ask any number of queries—including all N of them—and its
advantage in distinguishing the constructed cipher from a random permutation
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will be insignificantly more than its ability to break the underlying primitive (in
our example, AES) with a like number of queries.

Cast in more general language, this paper is about constructing ciphers—
meaning information theoretic or complexity theoretic PRPs—on an arbitrary
domain [N ], starting from a PRF. (If starting from AES, only a single bit of
each 128-bit output will be used. A random permutation on 128 bits that gets
truncated to a single bit is extremely close to a random function [2].) As in
other recent work [14, 11, 9], our ideas are motivated by card shuffling and its
cryptographic interpretation. This connection was first observed by Naor [15,
p. 62], [17, p. 17], who explained that when a card shuffle is oblivious—meaning
that you can trace the trajectory of a card without attending to the trajectories of
other cards in the deck—then it determines a computationally plausible cipher.
We will move back and forth between the language of encryption and that of
card shuffling: a PRP/cipher is a shuffle; a plaintext x encrypts to ciphertext y
if the card initially at position x ends up at position y; the PRP’s key is the
randomness underlying the shuffle.

The swap-or-not and mix-and-cut shuffles. Hoang, Morris, and Rogaway
describe an oblivious shuffle well-suited for enciphering on a small domain [11]. In
the binary-string setting (N = 2n), round i of their swap-or-not shuffle employs
a random string Ki ∈ {0, 1}n and replaces X by Ki⊕X if F (i, X̂) = 1, where F
is a random function to bits and X̂ = max(X,X⊕Ki). If F (i, X̂) = 0, then X is
left alone. After all rounds are complete, the final value of input X is the result
of the shuffle. The authors show that O(lgN) rounds suffice to get a cipher that
will look uniform to an adversary that makes q < (1 − ε)N queries. But as q
approaches N , one would need more and more rounds and, eventually, one gets
a non-result.

Ristenpart and Yilek were looking for practical ways to tolerate adversaries
asking all q = N queries, a goal they called full security. Assume again that we
want to shuffle N = 2n cards. Then Ristenpart and Yilek’s Icicle construction
first mixes the cards using some given (we’ll call it the inner) shuffle. Then they
cut the deck into two piles and recursively shuffle each. The authors explain that
if the inner shuffle is a good pseudorandom separator (PRS), then the constructed
shuffle will achieve full security. A shuffle is a good PRS if, after shuffling, the
(unordered) set of cards ending up in each of the two piles is indistinguishable
from a uniform partitioning of the cards into two equal-sized sets.

Ristenpart and Yilek apply the Icicle construction to the swap-or-not shuffle,
a combination they call mix-and-cut. The combination achieves full security in
Θ(lg2 N) rounds. When the underlying round function is realized by an AES
call, mix-and-cut constructs a cipher on N points, achieving full security, with
Θ(lg2 N) AES calls. While full security is directly achieved by other oblivious
shuffles [9, 13, 18], mix-and-cut would seem to be much faster.

Contributions. We reconceptualize what is going on in Ristenpart and Yilek’s
mix-and-cut. Instead of thinking of the underlying transformation as turning a
PRS into a PRP, we think of it as turning a mediocre PRP into a better one.
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If the inner shuffle is good enough to mix half the cards—in the inverse shuffle,
any N/2 cards end up in almost uniform positions—then the constructed shuffle
will achieve full security.

After this shift in viewpoint, we make a simple change to mix-and-cut that
dramatically improves its speed. As before, one begins by applying the inner
shuffle to the N cards. Then one splits the deck and recursively shuffles one
(rather than both) of the two halves. Using swap-or-not (SN) for the inner shuffle
we now get a PRP over [N ] enjoying full security and computable in Θ(lgN)
expected time. We call the SN-based construction SR, for sometimes-recurse.
The underlying transformation we call SR (in bold font).

Our definitions and results apply to an arbitrary domain size N (it need not
be a power of two). We emphasize that the adversary may query all points
in the domain. We give numerical examples to illustrate that the improvement
over mix-and-cut is large. We also explain why, with SR, having the running
time depend on the key and plaintext does not give rise to side-channel attacks.
Finally, we explain how to cheaply tweak [12] the construction, degrading neither
the run-time nor the security bound compared to the untweaked counterpart.
(Ristenpart and Yilek likewise support tweaks [16], but their quantitative bounds
give up more, and each round key needs to depend on the tweak.)

Additional related work. Granboulan and Pornin [9] also give a shuffle
achieving full security, and Ristenpart and Yilek’s paper [16] can likewise be
seen as building on it, reconceptualizing their work as the application of the
Icicle construction to a particular PRS. But the chosen PRS is computationally
expensive to realize, involving extensive use of arbitrary-precision floating-point
arithmetic to do approximate sampling from a hypergeometric distribution. The
mix-and-cut and sometimes-recurse shuffles are much more practical.

For realistic domain sizes N , both mix-and-cut and sometimes-recurse are also
much faster than the method of Stefanov and Shi [18], which spends Θ̃(N) time
to preprocess the key into a table of size Θ̃(

√
N) that supports Θ̃(

√
N)-time

evaluation of the constructed cipher.

2 Preliminaries

Shuffles as formal objects. A shuffle SHN on N ≥ 1 cards is a distribution
on permutations of [N ]. We are only interested in distributions that can be
described by efficient probabilistic algorithms, so one can alternatively consider
a shuffle SHN on N cards to be a probabilistic algorithm that bijectively maps
each x ∈ [N ] to a value SHN (x) ∈ [N ]. The algorithm may be thought of as
keyed, the key coinciding with the algorithm’s coins. A shuffle SH (now on an
arbitrary number of cards) is a family of shuffles on N cards, one for each number
N ≥ 1. One can regard SH as taking two arguments, with SHN (x) ∈ [N ] being
the image of x ∈ [N ] under the random permutation on [N ]. If we write SH(x)
for some shuffle SH we mean SHN (x) for some understood N .

As suggested already, we may refer to points x ∈ [N ] as cards. We then
think of SHN (x) as the location that card x landed at following the shuffle of
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these N cards. Locations are indexed 0 to N − 1. We think of 0 as the leftmost
position and N − 1 as the rightmost position. If we shuffle a deck with an even
number N of cards, the lefthand pile would be positions {0, . . . , N/2 − 1} and
the righthand pile would be positions {N/2, . . . , N − 1}. The card that landed
at position y ∈ [N ] is card SH−1

N (y).
We are interested in operators that transform one shuffle into another. Such

an operator OP takes a shuffle SH and produces a shuffle SH′ = OP[SH]. The
definition of SH′

N (x) may depend on SHN ′(x′) values with N ′ = N .

Probability. For distributions μ and ν on a finite set V , define the total
variation distance

||μ− ν|| = 1
2

∑
x∈V

|μ(x) − ν(x)|.

If V1, . . . , Vk are finite sets and τ is a probability distribution on V1 × · · · × Vk,
then for l with 0 ≤ l ≤ k − 1 define

τ( · | x1, . . . , xl) = P(Xl+1 = · | X1 = x1, . . . , Xl = xl),

where (X1, . . . , Xk) ∼ τ .

Lemma 1. Let V1, . . . , Vn be finite sets and let μ and ν be probability distribu-
tions on V1 × · · · × Vn. Suppose that (Z1, . . . , Zn) ∼ μ. Then

‖μ− ν‖ ≤
n−1∑
l=0

E (‖μ( · | Z1, . . . , Zl)− ν( · | Z1, . . . , Zl)‖) .

We defer the proof of Lemma 1 to Appendix A. The lemma immediately gives
us the following.

Corollary 2. Suppose that for every l with 1 ≤ l ≤ n there is an εl > 0 such
that for any z1, z2, . . . , zl we have ‖μ( · | z1, . . . , zl)− ν( · | z1, . . . , zl)‖ ≤ εl. Then
‖μ− ν‖ ≤ ε1 + · · ·+ εn.

Let us explain part of the utility of this fact. Consider a random permutation π on
{0, 1, . . . , N−1}, which we view as a random ordering of cards arranged from left
to right. Suppose N1, . . . , Nn are positive integers with N1+N2+ · · ·+Nn = N .
Let Z1 be the configuration of cards in the rightmost N1 positions, let Z2 be
the configuration of cards in the N2 positions to the immediate left of these,
and so on. Applying Corollary 2 to (Z1, . . . , Zn) shows that if the distribution
of the rightmost N1 cards is within ε1 of uniform, and regardless of the values
of these cards the conditional distribution of the N2 cards to their immediate
left is within ε2 of uniform, and so on, then the whole deck is within distance
ε = ε1 + ε2 + · · ·+ εn of a uniform random permutation.
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3 Mix-and-Cut Shuffle

This section reviews and reframes the prior work of Ristenpart and Yilek [16].
The mix-and-cut transformation can be described recursively as follows. As-

sume we want to shuffle N = 2n cards. If N = 1 then we are done; a single card
is already shuffled. Otherwise, to mix-and-cut shuffle N ≥ 2 cards,

1. shuffle the N cards using some other, inner shuffle; and then
2. cut the deck into two halves (that is, the cards in positions 0, . . . , N

2 − 1 and

the cards in positions N
2 , . . . , N − 1) and, recursively, shuffle each half.

The method can be seen as an operator,MC, that maps a shuffle SH on a power-
of-two number of cards to a shuffle SH′ = MC[SH] on the same number of cards.
A sufficient condition for SH′ to achieve full security is for SH to lightly shuffle
the deck. Informally, to lightly shuffle the deck means that if one identifies some
N/2 positions of the deck, then the cards that land in these positions should
be nearly uniform, that is, like N/2 samples without replacement from the N
cards. More formally, we say that SH ε-lightly shuffles if for anyN/2 positions the
distribution of the unordered set of cards in those positions is within distance ε
of a uniform random subset of cards of size N/2. Note that if the shuffle SH
is swap-or-not (SN) then it is equivalent to ask that SH itself send N/2 cards
to something ε-close to uniform, as SN is identical in its forward and backward
direction, up to the naming of keys.

Let’s consider the speed of MC with SN as the underlying shuffle, a com-
bination we’ll write as MC = MC[SN]. First some preliminaries. For a round-
parameterized shuffle SH that approaches the uniform distribution, let τr

q (N) be
the induced distribution after r rounds on some q distinct cards (x1, . . . , xq) ∈
[N ]q from a deck of size N , and let πq(N) be the distribution of q samples, with-
out replacement, from [N ]. Let ΔSH(N, q, r) = ‖τr

q (N) − πq(N)‖ be the total
variation distance between these two distributions. Hoang, Morris, and Rogaway
show that, for the swap-or-not shuffle, SN,

ΔSN(N, q, r) ≤ 2N3/2

r + 2

(
q +N

2N

)r/2+1

= Δub
SN(N, q, r) . (1)

Assuming even N , setting q = N/2 in this equation gives

ΔSN(N,N/2, r) ≤ N3/2

(
3

4

)r/2

and so ΔSN(N,N/2, r) ≤ ε if

3

2
lgN +

r

2
lg(3/4) ≤ lg ε,

which occurs if

r ≥ lg ε− (3/2) lgN

(1/2) lg(3/4)

≥ 7.23 lgN − 4.82 lg ε (2)

∈ Θ(lgN − lg ε) .
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Let SH be a round-based shuffle approaching the uniform distribution and
let TSH(N, q, ε) be the minimum number r such that ΔSH(N, q, r) ≤ ε. Let
TSH(N, ε) = TSH(N,N, ε) be the time to mix all the cards to within ε. For
MC = MC[SN] to mix all N = 2n cards to within ε it will suffice if we arrange
that each invocation of SN mixes half the cards to within ε/n. Assuming this
strategy, the total number of needed rounds will be

TMC(2
n, ε) ≤

n∑
�=1

TSN(2
�, 2�−1, ε/n)

≤
n∑

�=1

(
7.23 
− 4.82 lg(ε/n)

)
(from (2))

≤ 14.46n2 + 4.82n lgn− 4.82n lg ε

∈ Θ(lg2 N − lgN lg ε)

Interpreting, the MC construction can encipher n-bit strings, getting to within
any fixed total variation distance ε of uniform, by using Θ(n) stages of Θ(n)
rounds, so Θ(n2) total rounds. The round functions here are assumed uniform
and independent. Replacing them by a complexity-theoretic PRF, we are con-
verting a PRF into a PRP on domain {0, 1}n with Θ(n2) calls, achieving tight
provable security and no limit on the number of adversarial queries.

4 Sometimes-Recurse Shuffle

The SN shuffle has a stronger mixing property than light shuffling: namely, the
SN shuffle randomizes the sequence of cards in any N/2 positions of the deck (as
made precise by equation (1)). Therefore, after shuffling the deck with SN and
cutting it in half, there is no need to recurse on one of the two halves. Either
pile can be declared finished and in the next stage we recursively shuffle only the
other pile. Assuming that the first stage brings the distribution of the cards in
the rightmost N/2 positions to within distance ε1 of uniform, and the next stage
brings the conditional distribution of the cards in the prior N/4 positions to
within distance ε2 of uniform, and so on, the final permutation is with distance
ε1+ · · ·+ εn of a uniform random permutation, where n is the number of stages.
This follows by the remark that immediately followed Corollary 2.

Power-of-two domains. The sometimes-recurse (SR) transform can thus
be described as follows. Assume for now that want to shuffle N = 2n cards. (We
will generalize afterward.) If N = 1 then we are done; a single card is already
shuffled. Otherwise, to SR shuffle N ≥ 2 cards,

1. shuffle the N cards using some other, inner shuffle; and then
2. cut the deck into two halves and, recursively, shuffle the first half.

The method can be seen as an operator, SR, that maps a shuffle SH on any
power-of-two cards to a shuffle SH′ = SR[SH] on any power-of-two cards.
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Recasting the method into more cryptographic language, suppose you are
given a variable-input-length PRP E : K × {0, 1}∗ → {0, 1}∗. Write EK(·) for
E(K, ·). Each EK(·) is a length-preserving permutation. We construct from E a
PRP E′ = SR[E] as follows. First, assert that E′

K(ε) = ε, where ε is the empty
string. Otherwise, let E′

K(X) = Y if Y = EK(X) = 1 ‖ Y ′ begins with a 1-bit,
and let E′

K(X) = 0 ‖ EK(Y ′) if Y = EK(X) = 0 ‖ Y ′ begins with a 0-bit.

The SR transformation. The description above assumes a power-of-two
number of cards and an even cut of the deck. The first assumption runs contrary
to our intended applications, and dropping this assumption necessitates dropping
the second assumption as well. Here then is the SR transform stated more
broadly. Assume an inner shuffle, SH, that can mix an arbitrary number of cards.
Let p : N → N, the split, be a function with 1 ≤ p(N) < N . We’ll sometimes
write pN for p(N). We construct a shuffle SH′ = SRp[SH]. Namely, if N = 1, we
are done; a single card is shuffled. Otherwise,

1. shuffle the N cards using the inner shuffle, SH; and then
2. cut the deck into a first pile having pN cards and a second pile having

qN = N − pN cards. Recursively, shuffle the first pile.

Initial and generated N-values. A potential point of confusion is that,
above, the name “N” effectively has two different meanings: it is used for both
the initial N , call it N0, that specifies the domain [N0] on which we seek to
encipher; and it is used as a generic name for any of the N -values that can
arise in recursive calls that begin with the initial N . These are the generated
N -values, a set of numbers Gp(N0) = G(N0). Note that we count the ini-
tial N among the generated N -values Gg(N0). As an example, if the initial N is
N0 = 1016 and pN = �N/2�, then there are 54 generated N -values, which are
Gp(10

16) = {1016, 1016/2, 1016/4, . . . , 71, 35, 17, 8, 4, 2, 1}. In general, Gp(N0) is
the set {N0, N1, . . . , Nn} where Ni = p(Ni−1) and Nn = 1. We call n the number
of stages.

The transformation works. Let q : N → N and let ε : N → [0, 1] be
functions, 1 ≤ q(N) ≤ N . We may write q(N) and εN for q(N) and ε(N). Let
SH be a shuffle that can mix any number of cards. We say that SH is (q, ε)-
good if for all N ∈ N, for any distinct y1, . . . , yq(N) ∈ [N ], the total-variation

distance between (SH−1(y1), . . . , SH
−1(yq(N)) and the uniform distribution on

q(N) distinct points from [N ] is at most ε(N). A shuffle is ε-good if it is (q, ε)-
good for q(N) = N . We have the following:

Theorem 3. Let p, q : N→ N and ε : N→ [0, 1] be functions, p(N)+q(N) = N ,
and fix N0 ∈ N. Suppose that SH is a (q, ε)-good shuffle. Then SRp[SH] is a
δ-good shuffle where δ =

∑
N∈Gg(N0)

εN .

Proof. Consider the indicated shuffle π on domain [N0]. Enumerate the elements
of Gp(N0) as {N0, N1, . . . , Nn} where N0 > N1 > · · · > Nn. The first stage of the
shuffle brings the distribution of the rightmost qN0 cards to within a distance
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10 procedure EN
KF (X) //invariant: X ∈ [N ]

11 if N = 1 then return X //a single card is already shuffled

20 for i ← 1 to tN do //SN, for tN -rounds
21 X ′ ← Ki −X (mod N) //X ′ is the “partner” of X
22 X̂ ← max(X,X ′) //canonical name for {X,X ′}
23 if F (i, X̂) = 1 then X ← X ′ //maybe swap X and X ′

30 if X < pN then return EpN
KF

(
X
)

//recursively shuffle the first pile
31 if X ≥ pN then return X //but second pile is done

Fig. 1. Construction SR = SR[SN]. The method enciphers on [N0] (the initial value
of N), each stage (recursive invocation) employing tN -rounds of SN (lines 20–23). The
split values, pN , are a second parameter on which SR depends. The randomness for
SN is determined by F : N× N → {0, 1} and K : N → N.

εN0 of uniform. Regardless of the values of these cards the second stage brings
the conditional distribution of the preceding qN1 cards to within distance εN1

of uniform, and so on. Therefore, applying Corollary 2 (as explained in the
argument immediately following the statement of Corollary 2) shows that the
final permutation is within δ of a uniform random permutation, where δ =
εN0 + εN1 + · · ·+ εNn . ��

Using SN as the inner shuffle. We’ll write SR (no bold) for SR[SN],
the sometimes-recurse transformation applied to the swap-or-not shuffle. The
algorithm is shown in Fig. 1, now written out in the manner of a cipher, where
the trajectory of a single card X is followed. Of course SN = SNt depends on
the round count and SR = SRp depends on the split, so SR = SRt,p depends
on both. The canonical choice for the split pN is pN = �N/2�; when no mention
of pN is made, this is assumed. There is no default for the round counts tN ; we
must select these values with care.

We proceed to analyze SR, for the canonical split, with the help of Proposi-
tion 3 and equation (2). We aim to shuffle N cards to within a target distance ε.
Assume we run each stage (that is, each SN shuffle) with tN adequate to achieve
error ε/n for any half, rounded up, of the cards. When N is a power of 2, the
expected total number of rounds to encipher a point will then be

E[TSR(N, ε)] ≤ TSN(N, N
2 , ε

lgN ) +
TSN(

N
2 , N

4 , ε
lgN )

2
+

TSN(
N
4 , N

8 , ε
lgN )

4
+ · · ·

≤ 2(7.23 lgN + 4.82 lg lgN − 4.82 log ε) from (2)

For arbitrary N (not necessarily a power of two), simply replace N by 2N in the
equation just given to get an upper bound. This is valid because the sequence
of generated N -values for N0 are bounded above by the sequence of generated
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N -values for N ′
0 the next higher power of two, and, additionally, the bound

Δub
SN(N,N/2, r) is increasing in N . Thus, for any N ,

E[TSR(N, ε)] ≤ 14.46 lgN + 4.82 lg lg 2N − 4.82 lg ε+ 14.46 (3)

∈ Θ(lgN − lg ε)

The worst-case number of rounds is similarly bounded. We summarize the result
as follows.

Theorem 4. For any N ≥ 1 and ε ∈ (0, 1), the SR construction enciphers
points on [N ] in Θ(lgN − lg ε) expected rounds and Θ(lg2− lgN lg ε) rounds in
the worst case. No adversary can distinguish the construction from a uniform
permutation on [N ] with advantage exceeding ε. This assumes uniformly random
round keys and round functions for SN, appropriate round counts tN , and the
canonical split.

As a numerical example, equation (3) gives E[TSR(10
16, 10−10)] ≤ 1159. In the

next section we will do better than this—but not by much—by doing calculations
directly from equation (1) and by partitioning the error ε so as to give a larger
portion to earlier (that is, larger) generated N .

5 Parameter Optimization

Round counts. Let us continue to assume the canonical split of pN = �N/2�
and look at the optimization of round counts tN under this assumption.

In speaking below of the number p of nontrivial stages of SR, we only count
generated N -values with N ≥ 3. This is because we will always select t2 = 1, as
this choice already contributes zero error, and the degenerate SR stage with N =
1 contributes no error and needs no t1 value (let t1 = 0). Corresponding to this
convention for counting the number of nontrivial stages, we let G′(N0) = G(N0)\
{1, 2} be the generated N -values when starting with N0 but excluding N = 1
and N = 2.

Given an initial N0 and a target ε, we consider two strategies for computing
the round counts tN for N ∈ G′(N0). Both use the upper bound Δub

SN(N, q, r) =
(2N3/2/(r + 2)) · ((q +N)/(2N))r/2+1 on ΔSN(N, q, r) given by equation (1).

1. Split the error equally. Let n = |G′(N0)| ≈ lgN0 be the number of non-
trivial stages. For each N ∈ G′(N0) let tN be smallest number r for which
Δub

SN(N, �N/2�, r) ≤ ε/n. This will result in rounds counts tN that diminish
with diminishing N , each stage contributing about the same portion to the
error.

2. Constant round count. Let r0 be the smallest number r for which the sum∑
N∈G′(N0)

Δub
SN(N, �N/2�, r) < ε, and let tN = r0 for all N ∈ G′(N0). This

will result in stages that contribute a diminishing amount to the error.

The table of Fig. 2 illustrates the expected and worst-case number of rounds
that result from these two strategies if we encipher on a domain of N0 = 10d
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d 2 4 6 8 10 12 14 15 16 18 20 30

min-1 187 239 289 337 386 435 483 507 531 580 628 869

mean-1 359 464 563 660 758 856 952 1000 1048 1145 1242 1723

max-1 1110 2442 4411 6402 8885 11842 14790 16639 18239 22158 26069 51453

min-2 218 225 272 318 365 413 460 484 507 555 602 840

mean-2 427 450 544 636 730 826 920 968 1014 1110 1204 1680

max-2 1308 2701 5168 7951 11681 16107 20701 23716 26365 32745 39131 83160

Fig. 2. Speed of SR shuffle. Minimum, mean (rounded to nearest integer), and
maximum number of rounds to SR-encipher a d-digit decimal string with error ε ≤
10−10 and round counts tN selected by strategy 1 or strategy 2, as marked. The split
is pN = �N/2�. Round-counts for MC always coincide with the max-labeled rows.

points and cap the error at ε = 10−10. The pronounced differences between mean
and max round counts (a factor exceeding 17 when n = 16) coincides with the
saving of SR over MC. In contrast, there is only a modest difference in mean
round-counts between the two round-count selection strategies.

In numerical experiments, more complex strategies for determining the round
counts did not work better.

Non-equal splits. Besides the split of pN = �N/2�, we considered splits of
pN = �αN� for α ∈ (0, 1). For example, if the input is a decimal string then a
selection of α = 0.1 corresponds to using SN until a 90% fraction of the cards
are (almost) properly distributed, at which point there would be only a 10%
chance of needing to recurse. When a recursive call is made, it would be on a
string of length one digit less than before. But splits this uneven turn out to
be inefficient; see Fig. 3. On the other hand, when the split pN = �αN� has α
close to 1/2, the expected number of rounds is not very sensitive to α; again see
the figure. Small α make each SN stage slower, but there will be fewer of them;
large α make each SN stage faster, but there will be more.

Given the similar mean round counts for strategies 1 and 2, the similar mean
round counts all α near 1/2, the implementation simplicity of dividing by 2, and
the better maximum rounds counts of strategy 1, the choice of strategy 1 and
α = 1/2 seems best.

6 Incorporating Tweaks

The possibly-small domain for FPE makes it important, in applications, to have
the constructed cipher be tweaked : an additional argument T , the tweak, names
the desired permutation in a family of keyed permutations [12]. In the reference
experiment that defines security one asks for indistinguishability (complexity
theoretic or information theoretic) from a family of tweak-indexed, uniformly
random permutations, each tweak naming an independent permutation from
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Fig. 3. Selecting the split. Expected number of rounds (the y-coordinate) to encipher
N = 1016 points using SR and a split of pN = �αN� for various α (the x-axis). The
total variation distance is capped at ε = 10−10. The top (blue) curve is with round
counts tN determined by for strategy 1; the bottom (red) curve for strategy 2. In both
cases the smallest expected number of rounds occurs with a non-canonical split: 1048
rounds (α = 0.5) reduced to 1043 rounds (α = 0.53) for strategy 1; and 1014 rounds
(α = 0.5) reduced to 1010 rounds (α = 0.52) for strategy 2.

the collection. As an example of a tweak’s use, in the context of enciphering a
credit card number, one might encipher only the middle six digits, using the first
six and last four digits as the tweak.

The obvious way to incorporate a tweak in SR is to make the round constants
Ki (line 21 of Fig. 1) depend on it, and to make the round functions F (i, X̂)
(line 23 of Fig. 1) depend on it. Note, however, that an inefficiency emerges when
the former is done: if there is a large space of possible tweaks, it will no longer
be possible to precompute the round constants Ki. In addition, we do not want
to get a security bound that gives up a factor corresponding to the number of
tweaks used, which would be a potentially major loss in quantitative security.

As it turns out, neither price need be paid. In particular, it is fine to leave
the round constants independent of the tweak T , and, even when doing so, there
need be no quantitative security loss in the bound from making this change.
What we call tweaked-SR, then, is identical to Fig. 1 except that the tweak T
is added to the scope of F at line 23.

To establish security for this scheme, obtaining the same bounds as before, we
go back to the swap-or-not shuffle and show that, in that context, if the round
constants are left untweaked but the round function is tweaked, then equation (1)
continues to hold. The result is as follows.

Theorem 5. Fix q1, . . . , ql with
∑l

i=1 qi = q. Let X1
t , X

2
t , . . . , X

l
t be SN shuf-

fles on G driven by the same round constants K1, . . . ,Kr, but independent
round functions. Let Xt = (X1

t , . . . , X
l
t). For i with 1 ≤ i ≤ l, let πi be

the uniform distribution on qi samples without replacement from G, and let
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π = π1× π2 · · ·× πl. That is, π is the distribution of l independent samples, one
each from π1, π2, . . . , πl. Let τ be the distribution of Xr. Then

‖τ − π‖ ≤ 2N3/2

r + 2

(
q +N

2N

)r/2+1

. (4)

Proof. Let

Δ(j) =

j−1∑
m=0

√
N

2

(
m+N

2N

)r/2

.

We show that

‖τ − π‖ ≤ Δ(q)

from which (4) follows by way of

‖τ − π‖ ≤
q−1∑
m=0

√
N

2

(
m+N

2N

)r/2

≤ N3/2

∫ q/2N

0

(1/2 + x)r/2 dx

≤ 2N3/2

r + 2

(
q +N

2N

)r/2+1

.

For random variables W1,W2, . . . ,Wj , we write τ i( · | W1,W2, . . . ,Wj) for the
conditional distribution of X i

r given W1,W2, . . . ,Wj . Then Lemma 1 implies
that

‖τ − π‖ ≤
l∑

i=1

E
(
‖τ i( · | X1

r , . . . , X
i−1
r )− πi‖

)
. (5)

We claim that

E
(
‖τ i( · | X1

r , . . . , X
i−1
r )− πi‖

)
≤ Δ(qi). (6)

For distributions μ and ν the total variation distance ‖μ−ν‖ is half the L1-norm
of μ − ν. Since the L1-norm is convex, to verify the claim it is enough to show
that

E
(
‖τ i( · | X1

r , . . . , X
i−1
r ,K1, . . . ,Kr)− πi‖

)
≤ Δ(qi).

But the X i
r are conditionally independent given K1,K2, . . . ,Kr, so

τ i( · | X1
r , . . . , X

i−1
r ,K1, . . . ,Kr) = τ i( · | K1, . . . ,Kr).

Thus it remains to show that

E
(
‖τ i( · | K1, . . . ,Kr)− πi‖

)
≤ Δ(qi) =

qi−1∑
m=0

√
N

2

(
m+N

2N

)r/2

,
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but this inequality is shown on page 8 of [11]. This verifies (6), and combining
this with (5) gives

‖τ − π‖ ≤
l∑

i=1

Δ(qi)

≤ Δ(q),

where the second inequality holds because the summands in the definition of
Δ(j) are increasing. This completes the proof. ��

Theorem 5 plays the same role in establishing the security for tweaked-SR as
equation (1) played for establishing the security of the basic version. The values
in the table of Fig. 2, for example, apply equally well to the tweakable-SR.

We comment that in the the tweakable version of SR, the round constants do
depend on the generated N -values. This dependency can also be eliminated, but
we do not pursue this for now.

7 Absence of Timing Attacks

With SR (and, more generally, with SR), the total number of rounds t∗ used to
encipher a plaintext X ∈ [N0] to a ciphertext Y ∈ [N0] will depend on X and
the key K = KF . This suggests that an adversary’s acquiring t∗, perhaps by
measuring the running time of the algorithm, could be damaging. But this is not
the case—not in the typical setting, where the adversary knows the ciphertext—
for, knowing Y , one can determine the corresponding t∗ value.

It is easiest to describe this when N0 = 2n is a power of two, whence the
generated N -values are 2n, 2n−1, . . . , 4, 2, 1. Let t′0, t

′
1, . . . , t

′
n−2, t

′
n−1, t

′
n be the

corresponding round counts (the last two values are 1 and 0, respectively). Let
t∗j =
∑

i≤j t
′
i be the cumulative round counts: the total number of SN rounds if

we run for j +1 stages. Then t∗ is simply t∗� where 
 is the number of leading 0-
bits in the n-bit binary representation of Y . The adversary holding a ciphertext
of Y = 0z1Z, knows that it was produced using t∗ = t∗z rounds of SN. Ciphertext
0n is the slowest to produce, needing t∗n rounds.

The observation generalizes when N0 is not a power of 2: the set [N0] is
partitioned into easily-calculated intervals and the number of SN rounds that a
ciphertext Y was subjected to is determined by the interval containing it.

8 Discussion

Alternative description. It is easy to eliminate the tail recursion of Fig. 1;
no stack is needed. This and other changes are made to the alternative descrip-
tion of tweaked-SR given in Fig. 4. While the algorithm looks rather different
from before, it is equivalent.

Which pile to recurse on? The convention that SR recurses on the first
(left) pile of cards, rather than on the second (right) pile of cards, simplifies
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50 procedure ET,N0
KF (X) //Encipher X ∈ [N0] with tweak T , key KF

51 N ← N0 //initial-N
52 for j ← 0 to ∞ do //for each stage, until we return
53 for i ← 1 to tN do //SN, for as many rounds as needed for this stage
54 X ′ ← Ki −X (mod N) //X ′ is the partner of X
55 X̂ ← max(X,X ′) //canonical name for {X,X ′}
56 if F (i, X̂, T ) = 1 then X ← X ′ //maybe swap X and X ′

57 if X ≥ �N/2� then return X //right pile is done
58 N ← �N/2� //left pile is new domain to shuffle

Fig. 4. Alternative description of the tweaked construction. We eliminate the
recursion and assume the canonical split. The values tN again parameterize the algo-
rithm, influencing the mechanism’s speed and the quality of enciphering.

bookkeeping: in this way, we will always be following a card X ∈ [N ] for de-
creasing values of N . Had we recursed on the second pile we would be following
a card X ∈ [N0−N+1 ..N0−1] for decreasing values of N . Concretely, the code in
Figures 1 and 4 would become more complex with the recurse-right convention.

Multiple concurrent domains. Our assumption has been that the domain
for the constructed cipher is [N0] for some N0. As with variable-input-length
(VIL) PRFs, it makes sense to seek security against adversaries that can simul-
taneously encipher points from any number of domains {[N0] : N0 ∈ N}, as
previously formalized [3]. This can be handled by having the round-function and
round-keys depend on the description of the domain N0. Once again it seems
unnecessary to reflect the N0 dependency in the round-keys. To prove the con-
jecture will take a generalization of Theorem 5.

Open question. The outstanding open question in this domain is whether
there is an oblivious shuffle on N cards where a card can be tracked through the
shuffle in worst-case Θ(lgN)-time. Equivalently, can we do information-theoretic
PRF to PRP conversion with Θ(lgN) calls, always, to a constant-output-length
PRF?
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A Proof of Lemma 1

We follow the approach outlined in [6] for bounding the total variation distance
between two product measures. Define V = V1 × V2 × · · · × Vn. Note that

2 ‖μ− ν‖ =
∑
x∈V

|μ(x) − ν(x)| (7)

=
∑
x∈V

|μ1(x)μ2(x) · · ·μn(x)− ν1(x)ν2(x) · · · νn(x)|, (8)

where, for j with 1 ≤ j ≤ n, we define μj(x) to be μ(xj | x1, . . . , xj−1), with a
similar definition for νj(x). For x ∈ V , define sj(x) as

μ1(x)μ2(x) · · ·μj(x)νj+1(x) · · · νn(x).

Then

s0(x) = ν1(x)ν2(x) · · · νn(x) and

sn(x) = μ1(x)μ2(x) · · ·μn(x),

and hence by the triangle inequality the quantity (8) is at most

∑
x∈V

n−1∑
j=0

∣∣∣ sj+1(x)− sj(x)
∣∣∣ (9)

=
n−1∑
l=0

∑
x∈V

∣∣∣μl+1(x) − νl+1(x)
∣∣∣μ1(x)μ2(x) · · ·μl(x)νl+2(x) · · · νn(x). (10)

If we sum the terms over all x ∈ V whose first l components are x1, x2, . . . , xl

we get

μ(x1, x2, . . . , xl)
∑

v∈Vl+1

∣∣∣μ(v | x1, x2, . . . , xl)− νl(v | x1, x2, . . . , xl)
∣∣∣

= 2μ(x1, x2, . . . , xl) ‖μ( · | x1, . . . , xl)− ν( · | x1, . . . , xl)‖ .

Summing this over x1, . . . , xl gives

2E
(
‖μ( · | Z1, . . . , Zl)− ν( · | Z1, . . . , Zl)‖

)
where (Z1, . . . , Zn) ∼ μ, and now summing this over l proves the lemma.
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Abstract. A t-round key-alternating cipher (also called iterated Even-
Mansour cipher) can be viewed as an abstraction of AES. It defines a
cipher E from t fixed public permutations P1, . . . , Pt : {0, 1}n → {0, 1}n
and a key k = k0‖ · · · ‖kt ∈ {0, 1}n(t+1) by setting Ek(x) = kt⊕Pt(kt−1⊕
Pt−1(· · · k1⊕P1(k0⊕x) · · · )). The indistinguishability of Ek from a truly
random permutation by an adversary who also has oracle access to the
(public) random permutations P1, . . . , Pt was investigated in 1997 by
Even and Mansour for t = 1 and for higher values of t in a series of recent
papers. For t = 1, Even and Mansour proved indistinguishability security
up to 2n/2 queries, which is tight. Much later Bogdanov et al. (2011)

conjectured that security should be 2
t

t+1
n queries for general t, which

matches an easy distinguishing attack (so security cannot be more). A
number of partial results have been obtained supporting this conjecture,
besides Even and Mansour’s original result for t = 1: Bogdanov et al.

proved security of 2
2
3
n for t ≥ 2, Steinberger (2012) proved security of

2
3
4
n for t ≥ 3, and Lampe, Patarin and Seurin (2012) proved security of

2
t

t+2
n for all even values of t, thus “barely” falling short of the desired

2
t

t+1
n.

Our contribution in this work is to prove the long-sought-for secu-

rity bound of 2
t

t+1
n, up to a constant multiplicative factor depending

on t. Our method is essentially an application of Patarin’s H-coefficient
technique.

1 Introduction

Given t permutations P1, . . ., Pt : {0, 1}n → {0, 1}n the t-round key-alternating
cipher based on P1, . . . , Pt is a blockcipher E : {0, 1}(t+1)n×{0, 1}n → {0, 1}n of
keyspace {0, 1}(t+1)n and message space {0, 1}n, where for a key k=k0‖k1‖ · · · ‖kt

∈ {0, 1}(t+1)n and a message x ∈ {0, 1}n we set

E(k, x) = kt ⊕ Pt(kt−1 ⊕ Pt−1(· · ·P1(k0 ⊕ x) · · · )). (1)

(See Figure 1.) Plainly, E(k, ·) is a permutation of {0, 1}n for each fixed k ∈
{0, 1}(t+1)n; we let E−1(k, ·) denote the inverse permutation. The Pi’s are called
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P.Q. Nguyen and E. Oswald (Eds.): EUROCRYPT 2014, LNCS 8441, pp. 327–350, 2014.
c© International Association for Cryptologic Research 2014



328 S. Chen and J. Steinberger

k0

P1

k1

P2

k2

P3
� � � Pt

kt

Fig. 1. A t-round key alternating cipher

the round permutations of E and t is the number of rounds of E. Thus t and
the permutations P1, . . . , Pt are parameters determining E.

Key-alternating ciphers were first proposed (for values of t greater than 1) by
the designers of AES [5,6], the Advanced Encryption Standard. Indeed, AES-128
itself can be viewed as a particular instantiation of the key-alternating cipher
paradigm in which the round permutations P1, . . . , Pt equal a single permutation
P (the Rijndael round function, in this case), in which t = 10, and in which only
a subset of the {0, 1}(t+1)n = {0, 1}11n possible keys are used (more precisely,
the 11n bits of key are derived pseudorandomly from a seed of n bits, making the
key space {0, 1}n = {0, 1}128). However, for t = 1 the design was proposed much
earlier by Even and Mansour as a means of constructing a blockcipher from a
fixed permutation [7]. Indeed, key-alternating ciphers also go by the name of
iterated Even-Mansour ciphers.

Even and Mansour accompanied their proposal with “provable security” guar-
antees by showing that, for t = 1, an adversary needs roughly 2n/2 queries to
distinguish E(k, ·) for a random key k (k being hidden from the adversary) from
a true random permutation, in a model where the adversary is given oracle ac-
cess to E(k, ·), E−1(k, ·) as well as to P1, P

−1
1 , where P1 is modeled as a random

permutation (in the dummy world, the adversary is given oracle access to two in-
dependent random permutations and their inverses). Their bound was matched
by Daemen [4], who showed a 2n/2-query distinguishing attack for t = 1.

For t > 1, we can generalize the Even-Mansour indistinguishability exper-
iment by giving the adversary oracle access to P1, . . . , Pt and their inverses
and to E(k, ·), E−1(k, ·) in the real world (for a randomly chosen, hidden k ∈
{0, 1}(t+1)n), and to a tuple of t + 1 independent random permutations and
their inverses in the “ideal” or “dummy” world (see Figure 2). In this case, Dae-

men’s attack can be easily generalized to an attack of query complexity 2
t

t+1n,
as pointed out by Bogdanov et al. [2], but the security analysis of Even and
Mansour could not be easily generalized to match this bound.

Bogdanov et al. did show, though, security of 2
2
3n for t ≥ 2 (modulo lower-

order terms), which is tight for t = 2 as it matches the 2
t

t+1n-query attack. Later

Steinberger [19] improved this bound to 2
3
4n queries for t ≥ 3 by modifying tech-

nical aspects of Bogdanov et al.’s analysis. Orthogonally and simultaneously,
Lampe, Patarin and Seurin [13] used coupling-based techniques to show secu-

rity of 2
t

t+1n queries for nonadaptive adversaries and security 2
t

t+2n for adaptive
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adversaries (and even values of t). While the bound 2
t

t+2n might seem “almost”
sharp, we note that

2
t

t+2n = 2
(t/2)

(t/2)+1
n

is actually the conjectured adaptive security for t/2 rounds. Indeed, Lampe et
al. basically show that an adaptive adversary attacking the t-round construction
has no more advantage than a nonadapative adversary attacking t/2 rounds (this
reduction follows upon work of Maurer et al. [16, 17]). Seen this way, Lampe et
al.’s result appears less sharp. The issue is not only qualitative since their bound
only improves on Steinberger’s for t ≥ 8.

Our results. In this paper we finally prove security of 2
t

t+1n queries for key-
alternating ciphers, which has been the conjectured security since the paper of
Bogdanov et al., and which is provably tight by the attack in the same paper.
More precisely, we show that an adaptive adversary making at most q queries to
each of its oracles has distinguishing advantage bounded by O(1)qt+1/N t+O(1),
where N = 2n and the two O(1) terms depend on t. (See Section 2 for a formal
statement.)

Our techniques are (maybe disappointingly) not as conceptually novel as those
of [19] or [13], as we simply apply Patarin’s H-coefficient technique. The crucial
step is lower bounding the probability of a certain event, namely of the event
that q input-output values become linked when t partially defined composed
permutations (whose composition so far poses no contradiction to the linking of
said q input-output pairs) are randomly extended. The surprising aspect of these
computations is that various “second-order” factors (that one might otherwise
expect to not matter) actually need to be taken into account. Informally, this can
be ascribed to the fact that the values of q under consideration are far beyond
birthday.

Besides shedding some light on the structural and probabilistic aspects of key-
alternating ciphers in the ideal permutation model, we also hope this paper will
serve as a useful additional tutorial on (or introduction to) Patarin’s H-coefficient
technique, which still seems to suffer from a lack of exposure.

We note that [13] also uses H-coefficient-based techniques and, indeed, our
approach is much more closely inspired by that of [13] than by [2, 19].

Paper organization. Definitions relating to key-alternating ciphers as well as
a formal statement of our main result are given in Section 2. An overview of the
H-coefficient technique is given in Section 3. The proof of the main theorem is
given in Section 4, while a key lemma is proved in the paper’s full version [3].

Extensions. As we note in the proof, our main result holds even if the subkeys
k0, . . . , kt are only t-wise independent instead of (t+ 1)-wise independent. This
is particularly interesting for t = 1. Along different lines, and as pointed out to
us by Jooyoung Lee, our result also implies tight security bounds for the “XOR-
cascade” cipher introduced by Gaži and Tessaro [9,10] via a reduction by Peter
Gaži [10, 11].
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2 Definitions and Main Result

A t-round key-alternating cipher E has keyspace {0, 1}(t+1)n and message space
{0, 1}n. We refer back to equation (1) for the definition of E(k, x) (which im-
plicitly depends on the choice of round permutations P1, . . . , Pt). We note that
E−1(k, y) has an analoguous formula in which P−1

t , . . . , P−1
1 are called. We write

Ek for the permutation E(k, ·).
We work in the ideal permutation model. For our purposes, the PRP security

of a t-round key-alternating cipher E against a distinguisher (or “adversary”) D
is defined as

AdvPRP
E,t (D) = Pr[k = k0 · · · kt ←− {0, 1}(t+1)n ;DEk,P1,...,Pt = 1]− Pr[DQ,P1,...,Pt = 1]

(2)

where in each experiment Q, P1, . . . , Pt are independent uniform random per-
mutations, where DA denotes that D has oracle access to A and A−1 (since
all oracles are permutations), and where k = k0 · · · kt is selected uniformly at
random (and hidden from D). See Figure 2. We further define

AdvPRP
E,t (qe, q) = max

D
AdvPRP

E,t (D)

where the maximum is taken over all distinguishers D that make at most qe
queries to their first oracle and at most q queries to each of their other oracles.
(The notation AdvPRP

E,t (·) is thus overloaded.) Accounting for cipher queries and
permutation queries separately has the main advantage of clarifying “which q is
which” in the security bound. We also note that, besides t, n is a parameter on
which E (and hence AdvPRP

E,t (q)) depends.
(As an aside, we note the above indistinguishability experiment differs from

the recently popular framework of indifferentiability by, among others, the pres-
ence of a secret key and the absence of a simulator; the similarity, on the other

Ek P1
� � � � Pt

World 1

Q P1
� � � � Pt

World 2

D

Fig. 2. The two worlds for the Even-Mansour security experiment. In World 1 the
distinguisher D has oracle access to random permutations P1, . . . , Pt and the key-
alternating cipher Ek (cf. Eq. (1)) for a random key k. In World 2, D has oracle access
to t+1 independent random permutations. In either world D also has oracle access to
the inverse of each permutation.
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hand, is that the adversary can query the internal components of the structure.
The end goal of the security proof is also different, since we simply prove PRP-
security (with tight bounds) whereas indifferentiability aims to prove something
much stronger, but, typically, with much inferior bounds. See [1,14] for indiffer-
entiability results on key-alternating ciphers.)

Our main result is the following:

Theorem 1. Let N = 2n and let q ≤ N/3, t ≥ 1. Then for any constant C > 0,

AdvPRP
E,t (qe, q) ≤

qeq
t

N t
· Ct2(6C)t + (t+ 1)2

1

C
.

The presence of the adjustable constant C in Theorem 1 is typical of security
proofs that involve a threshold-based “bad event”. The constant corresponds to
the bad event’s (adjustable) threshold. Some terms in the security bound grow
with C, others decrease with C, and for every qe, q, t and N there is an optimal
C. Choosing

C =

(
(t+ 1)N t

6tt2qeqt

)1/(t+2)

(which happens to be the analytical optimum) and using a little algebra yields
the following, more readable corollary for the case q = qe:

Corollary 1. Let N = 2n, q ≤ N/3, t ≥ 1. Then

AdvPRP
E,t (q, q) ≤ (t+ 1)2(t+ 2)

(
6tq

N t/(t+1)

)(t+1)/(t+2)

. (3)

Security therefore holds up to about q ≈ N
t

t+1 /6t4, with “security exponent”
(t+1)/(t+2). Since t is typically viewed as a constant the polynomial factor 6t4 is
not bothersome from the asymptotic point of view even though, obviously, such
a factor considerably waters down the security bound for concrete parameters
like t = 10, n = 128. We also note that if we fix q and N and let t → ∞ then
(3) becomes worse and worse (i.e., closer to 1 and eventually greater than 1) for
sufficiently large t. This apparent security degradation is obviously an artefact
of our bound, since a straightforward reduction shows that security can only
increase with t.

3 The H-Coefficient Technique in a Nutshell

In this section we give a quick high-level outline of Patarin’s H-coefficient tech-
nique. This tutorial takes a broader view than Patarin’s own [18], but [18] men-
tions refinements for nonadaptive adversaries and “plaintext only” attacks that
we don’t touch upon here. We emphasize that the material in this section is
“informal by design”.

The general setting is that of a q-query information-theoretic distinguisher D
interacting with one of two oracles, the “real world” oracle or the “ideal world”
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oracle. (Each oracle might consist of several interfaces for D to query.) By such
interaction, D creates a transcript, which is a list of queries made and answers
returned. We can assume without loss of generality1 that D is deterministic, and
makes its final decision as a (deterministic) function of the transcript obtained.

Denoting X the probability distribution on transcripts induced by the real
world and denoting Y the probability distribution on transcripts induced by the
ideal world (for some fixed deterministic distinguisher D) then D’s distinguishing
advantage (cf. (2)) is easily seen to be upper bounded by

Δ(X,Y ) :=
1

2

∑
τ∈T

|Pr[X = τ ] − Pr[Y = τ ]|

(the so-called statistical distance or total variation distance between X and Y )
where T denotes the set of possible transcripts.

The technique’s central idea is to use the fact that

Δ(X,Y ) = 1− Eτ∼Y

[
min(1,Pr[X = τ ]/Pr[Y = τ ])

]
(4)

in order to upper bound Δ(X,Y ). Here Eτ∼Y [Z(τ)] is the expectation of the
random variable Z(τ) when τ is sampled according to Y , and one assumes
min(1,Pr[X = τ ]/Pr[Y = τ ]) = 1 if Pr[Y = τ ] = 0. For completeness we
record the easy proof of (4):

Δ(X,Y ) =
∑

τ∈T :Pr[Y =τ ]>Pr[X=τ ]

(Pr[Y = τ ]− Pr[X = τ ])

=
∑

τ∈T :Pr[Y =τ ]>Pr[X=τ ]

Pr[Y = τ ](1 − Pr[X = τ ]/Pr[Y = τ ])

=
∑
τ∈T

Pr[Y = τ ](1 −min(1,Pr[X = τ ]/Pr[Y = τ ]))

= 1− Eτ∼Y

[
min(1,Pr[X = τ ]/Pr[Y = τ ])

]
.

Thus, by (4), upper bounding the distinguisher’s advantage reduces to lower
bounding the expectation

Eτ∼Y

[
min(1,Pr[X = τ ]/Pr[Y = τ ])

]
. (5)

Typically, some transcripts are better than others, in the sense that for some
transcripts τ the ratio

Pr[X = τ ]/Pr[Y = τ ]

might be quite small (when we would rather the ratio be near 1), but these
“bad” transcripts occur with small probability. A typical proof classifies the set
T of possible transcripts into a finite number of combinatorially distinct classes
T1, . . . , Tk and exhibits values ε1, . . . , εk ≥ 0 such that

τ ∈ Ti =⇒ Pr[X = τ ]/Pr[Y = τ ] ≥ 1− εi. (6)

1 See Appendix A.
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Then

Eτ∼Y

[
min(1,Pr[X = τ ]/Pr[Y = τ ])

]
≥

k∑
i=1

Pr[Y ∈ Ti](1 − εi)

and, by (4),

Δ(X,Y ) ≤
k∑

i=1

Pr[Y ∈ Ti]εi.

The “ideal world” random variable Y often has a very simple distribution, mak-
ing the probabilities Pr[Y ∈ Ti] easy to compute. On the other hand, proving
the lower bounds (6) for i = 1 . . . k can be difficult, and we rediscuss this issue
below.

Many proofs (including ours) have k = 2, with T1 consisting of the set of
“good” transcripts and T2 consisting of the set of “bad” transcripts (i.e., those
with small value of Pr[X = τ ]/Pr[Y = τ ]); then ε1 is small and ε2 is large, while
(hopefully) Pr[Y ∈ T1] is large and Pr[Y ∈ T2] is small, and

Δ(X,Y ) ≤ Pr[Y ∈ T1]ε1 + Pr[Y ∈ T2]ε2 ≤ ε1 + Pr[Y ∈ T2].

The final upper bound on Δ(X,Y ), in this case, can thus be verbalized as “one
minus the probability ratio of good transcripts [i.e., ε1], plus the probability of
a transcript being bad” (the latter probability being computed with respect to
the distribution Y ). This is the form taken by our own bound.

Lower bounding the ratio Pr[X = τ ]/Pr[Y = τ ]. The random variables
X and Y are, formally, defined on underlying probability spaces that contain
respectively all the coins needed for the real and ideal world experiments. To
be more illustrative, in the case of the key-alternating cipher distinguishability
experiment X ’s underlying probability space consists of all possible (t + 1)-
tuples of the form (k, P1, . . . , Pt) where k ∈ {0, 1}(t+1)n and where each Pi is
a permutation of {0, 1}n, while Y ’s underlying probability space is all (t + 1)-
tuples of the form (Q,P1, . . . , Pt) where Q as well as each Pi is a permutation of
{0, 1}n. (In either case the measure is uniform, and for simplicity we also assume
uniform—and hence finite—probability spaces in our discussion here.) For the
following, we write ΩX , ΩY for the probability spaces on which respectively X
and Y are defined. We note that each ω in ΩX or ΩY can be viewed as an oracle
for D to interact with, thus we may use phrases such as “D runs with oracle ω”,
etc. To summarize, X and Y are, formally, functions X : ΩX → T , Y : ΩY → T ,
where X(ω) is the transcript obtained by running D with oracle ω ∈ ΩX , and
where Y (ω) is the transcript obtained by running D oracle ω ∈ ΩY .

There is usually an obvious notion of “compatibility” between a transcript τ
and an element ω ∈ ΩX or ω ∈ ΩY . For example, in the case of key-alternating
ciphers, if τ contains a query to P1 and nothing else, the ω’s in ΩX that are
compatible with τ will be exactly those where the P1-coordinate of ω agrees
with the query in τ ; there are 2(t+1)n · (2n − 1)! · (2n!)t−1 such “compatible” ω’s
in ΩX . For the same transcript, there would be (2n − 1)! · (2n!)t compatible ω’s



334 S. Chen and J. Steinberger

in ΩY . We write compX(τ) for the set of ω’s in ΩX compatible with a transcript
τ , and we define compY (τ) likewise with respect to ΩY .

We note that the statement “ω is compatible with τ” is actually not equivalent
to the statement “running D with oracle ω produces τ”. Indeed, some τ ’s may
never be produced by D at all; e.g., if a transcript τ contains more than q queries,
or if it contains queries to P1 when D is a distinguisher that never queries P1,
etc, then τ is never produced by D (i.e., Pr[X = τ ] = Pr[Y = τ ] = 0), but this
does not prevent compX(τ), compY (τ) from being well-defined.

A central insight of the H-coefficient technique (but which is usually taken for
granted and used without mention) is that when τ is a possible transcript of D
at all (i.e., if either Pr[X = τ ] > 0 or Pr[Y = τ ] > 0) then

Pr[X = τ ] =
|compX(τ)|
|ΩX |

and Pr[Y = τ ] =
|compY (τ)|
|ΩY |

. (7)

These equalities, argued below, might seem obvious (or not) but one should note
they carry some counterintuitive consequences. Firstly:

(c1) The order in which queries appear in a transcript τ does not affect the
probability of τ

occuring; only the set of queries appearing in τ matters.

(This because the sets compX(τ), compY (τ) are unaffected by the order with
which queries appear in τ .) Along the same lines, one has:

(c2) If two different (deterministic) distinguishers can obtain a transcript τ
each with nonzero

probability, these distinguishers will obtain τ with equal probability. Moreover,
by (c1), this

holds even if the transcript carries no information about the order in which
queries are made.

(This because the right-hand sides in (7) are distinguisher-independent.) Thus,
if D1 and D2 are two adaptive, deterministic distinguishers that can arrive (by
a potentially completely different query order) at transcripts τ1 and τ2 that
contain the same set of queries, then D1 has the same probability of obtaining
τ1 asD2 has of obtaining τ2, with this equality holding separately both in the real
and ideal worlds. While very basic, the order-independence property (c1) and
distinguisher-independence property (c2) of deterministic distinguishers seem
not to have been highlighted anywhere before2.

We now informally argue (7), focusing on the first equality (the X-world)
for concreteness. Firstly, executing D with an ω ∈ ΩX , ω /∈ compX(τ) can
obviously not produce τ as a transcript, since ω is not compatible with τ . It
therefore suffices to show that running D on an oracle ω ∈ compX(τ) produces

2 A bit of thought reveals that (c1), (c2) hold for any experiment involving stateless
oracles. More precisely, the oracle’s answer is a deterministic function of a random
tape sampled at the beginning of the experiment.
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the transcript τ . For this, we know by assumption that there exists3 an ω′ ∈
ΩX ∪ΩY such that running D on oracle ω′ produces τ . However, one can show
by induction on the number of queries made by D that the computations Dω

and Dω′
will not “diverge”, since every time D makes a query to ω′ this query

appears in τ and, hence, because ω ∈ compX(τ), will be answered the same by ω
(also recall that D is deterministic). Hence Dω will produce the same transcript
as Dω′

, i.e., τ .
By (7), the ratio Pr[X = τ ]/Pr[Y = τ ] is equal to

PrΩX [ω ∈ compX(τ)]

PrΩY [ω ∈ compY (τ)]
. (8)

Here PrΩX [ω ∈ compX(τ)] = |compX(τ)|/|ΩX |, PrΩY [ω ∈ compY (τ)] =
|compY (τ)|/|ΩY | are different notations4 for the ratios appearing in (7).

Looking at (8) it is possible to wonder whether anything substantial has been
gained so far, or whether notations are simply being shuffled around; after all,
Pr[X = τ ] and PrΩX [ω ∈ compX(τ)] are “obviously the same thing”5 (and the
same for Y ). However the probability PrΩX [ω ∈ compX(τ)] offers a considerable
conceptual advantage over the probability Pr[X = τ ], as PrΩX [ω ∈ compX(τ)]
refers to an experiment with a non-adaptive flavor (a transcript τ is fixed, and
a uniform random element of ΩX is drawn—what is the probability of compat-
ibility?) while the probability Pr[X = τ ] refers, by definition, to the adaptive
interaction of D with its oracle, which is much messier to think about. Indeed,
(c1) and (c2) already show that adaptivity is in a sense “thrown out” when (7)
is applied.

4 Proof of Theorem 1

We make the standard simplifying assumption that the distinguisher D is deter-
ministic. For simplicity, moreover, we assume that D makes exactly qe queries to
its first oracle and exactly q queries to each of its other oracles. This is without
loss of generality.

We refer to the case where D has an oracle tuple of the type (Ek, P1, . . . , Pt)
as the “real world” and to the case when D has an oracle tuple of the type
(Q,P1, . . . , Pt) as the “ideal world”. For convenience, we will be generous with
the distinguisher in the following way: at the end of the experiment (when the
distinguisher has made its (t+1)q queries, but before the distinguisher outputs its

3 Here ω′ could also lie outside ΩX ∪ΩY ; the argument goes through as long as there
exists some oracle leading to the transcript τ .

4 In fact, replacing |compX(τ )|/|ΩX | and |compX(τ )|/|ΩX | by respectively PrΩX [ω ∈
compX(τ )] and PrΩY [ω ∈ compY (τ )] in (7) gives a more general formulation of
these identities, for cases where the probability distributions on ΩX , ΩY are not
uniform. We prefer the fractions |compX(τ )|/|ΩX |, |compX(τ )|/|ΩX | because these
expressions seem more concrete.

5 In fact, as already pointed out, Pr[X = τ ] and PrΩX [ω ∈ compX(τ )] are not the
same thing for τ ’s outside the range of D.
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decision) we reveal the key k = k0k1 · · · kt to the distinguisher in the real world,
while in the ideal world we sample a dummy key k′ = k′0k

′
1 · · · k′t and reveal this

dummy key to the distinguisher. A distinguisher playing this “enhanced” game
is obviously at no disadvantage, since it can disregard the key if it wants.

For the remainder of the proof we consider a fixed distinguisher D conforming
to the conventions above. We can summarize D’s interaction with its oracles
by a transcript consisting of a sequence of tuples of the form (i, σ, x, y) where
i ∈ {0, . . . , t}, σ ∈ {+,−} and x, y ∈ {0, 1}n, plus the key value k at the end
of the transcript. If σ = + such a tuple denotes that D made the query Pi(x)
obtaining answer y, or if σ = − that D made the query P−1

i (y) obtaining answer
x, and D’s interaction with its oracles (as well as D’s final output bit) can be
uniquely reconstructed from such a sequence of tuples. In fact, we can (and
shall) encode the transcript as an unordered set of directionless tuples of the
form (i, x, y) (plus the key value k). Indeed, given that D is deterministic, D’s
interaction can still be reconstructed from such a transcript. (Consider that D
always makes the same first query, since it is deterministic; we can look up the
answer to this query in the transcript, deduce the second query made by D again
since D is deterministic, and so on.) All in all, therefore, the transcript can be
encoded as a tuple (k, p0, p1, . . . , pt) where k ∈ {0, 1}(t+1)n is the key (real or
dummy) and where pi, i ≥ 1, is a table containing q pairs (x, y), where each
such pair either indicates a query Pi(x) = y or a query P−1

i (y) = x (which it
is can be deduced from the transcript), and where p0 similarly contains the qe
input-output pairs queried to the cipher. One can also view pi as a bipartite
graph with shores {0, 1}n and containing q (resp. qe, in the case of p0) disjoint
edges.

We let T denote the set of all possible transcripts, i.e., the set of all tuples of
the form (k, p0, . . . , pt) as described above. We note that some elements of T—
in fact, most elements—may never be obtained by D. For example, if D’s first
query is P1(0

n) then (this first query never varies and) any transcript obtained
by D contains a pair of the form (0n, y) in the table p1, for some y ∈ {0, 1}n.

Let P be the set of all permutations of {0, 1}n; thus |P| = (2n)!. Let Pt =
P × · · · × P be the t-fold direct product of P . Let ΩX = {0, 1}(t+1)n × Pt and
let ΩY = {0, 1}(t+1)n×Pt+1. In the obvious way, elements of ΩX can be viewed
as real world oracles for D while elements of ΩY can be viewed as “ideal world”
oracles for D. (We note that ΩY is slightly different from the ΩY appearing in
the discussion of Section 3, due to our convention of giving away the key as part
of the transcript.) We write X(ω) for the transcript obtained by running D with
oracle ω ∈ ΩX , and Y (ω) for the transcript obtained by running D with oracle
ω ∈ ΩY . By endowing ΩX , ΩY with the uniform probability distribution, X and
Y become random variables of range T , whose distributions are exactly those
obtained by running D in the real and ideal worlds respectively.

Since D’s output is a deterministic function of the transcript, D’s distinguish-
ing advantage is upper bounded by Δ(X,Y ). In order to upper bound Δ(X,Y )
we make use of the equality

Δ(X,Y ) = 1− Eτ∼Y

[
min(1,Pr[X = τ ]/Pr[Y = τ ])

]
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mentioned in Section 3. More precisely, we will identify a set T1 ⊆ T of “good”
query transcripts, and a set T2 ⊆ T of “bad” transcripts, such that T is the
disjoint union of T1 and T2. Then, as shown in Section 3,

Δ(X,Y ) ≤ ε1 + Pr[Y ∈ T2] (9)

where ε1 is a number such that

Pr[X = τ ]

Pr[Y = τ ]
≥ 1− ε1

for all τ ∈ T1 such that Pr[Y = τ ] > 0. Theorem 1 will follow by showing that

Pr[Y ∈ T2] ≤ (t+ 1)2
1

C
and τ ∈ T1 =⇒ Pr[X = τ ]

Pr[Y = τ ]
≥ 1− ε1 (10)

where C is a constant appearing in the definition of a “bad” transcript, and where

ε1 = qe
(

q
N

)t
Ct2(6C)t is the first term appearing in the bound of Theorem 1.

For the remainder of the proof we assume that Cqeq
t < N t. This is without loss

of generality since Theorem 1 is vacuous otherwise.

Bad Transcripts. Let τ = (k, p0, p1, . . . , pt) ∈ T be a transcript. We associate
to τ a graph G(τ), dubbed the round graph, that encodes the information con-
tained in k as well as in p1, . . . , pt (but that ignores p0). G(τ) has 2(t+ 1) · 2n

vertices, grouped into “shores” of size 2n each, with each shore being identified
with a copy {0, 1}n. We index the 2(t+ 1) shores as 0−, 0+, 1−, 1+, . . ., t−, t+.
Vertex y in shore i− is connected to vertex y ⊕ ki in shore i+ by an edge, and
these are the only edges between shores i− and i+. Moreover, for each (x, y) ∈ pi,
1 ≤ i ≤ t, we connect vertex x in shore (i − 1)+ to vertex y in shore i−. Thus
G(τ) consists of (t + 1) full bipartite matchings (one per subkey) alternately
glued with q-edge partial matchings (one for each pi, 1 ≤ i ≤ t). Since G(τ)
encodes all the information in k, p1, . . . , pt, we can also write a transcript τ in
the form τ = (p0, G) where G = G(τ).

Obviously, the presence of the full bipartite graphs corresponding to the sub-
keys k0, . . . , kt within G(τ) is not topologically interesting. Call an edge of G(τ)
a “key edge” if the edge joins the shores i−, i+ for some i ∈ {0, . . . , t}. We then
define the contracted round graph G̃(τ) obtained from G(τ) by contracting all
key edges; thus G̃(τ) has only t + 1 shores; moreover, when an edge (y, y ⊕ ki)
between shores i−, i+ of G(τ) is contracted, the resulting vertex of G̃(τ) is given
label y if 0 ≤ i ≤ t− 1, and is given label y⊕ ki if i = t. (The labeling of vertices
of G̃(τ) is somewhat unimportant and arbitrary, but we adopt the above con-
vention so that vertices in shores 0− and t+ of G(τ) keep their original labels in
G̃(τ). The latter ensures compatibility between these vertex labels and triples in
p0.) We note that a transcript τ is not determined by the pair (p0, G̃(τ)) (the key
material being unrecoverable from the latter pair) but, as we will see, Pr[X = τ ]
is determined by (p0, G̃(τ)).

An edge between shores (i− 1) and i of G̃(τ) is called an i-edge. (Each i-edge
arises from an entry in pi.) We write Zij(G̃(τ)) for the set of (necessarily edge-

disjoint) paths that exists between shores i and j of G̃(τ). We write Z−
ij (G̃(τ)),
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Z+
ij (G̃(τ)) for vertices of paths in Zij(G̃(τ)) that are respectively in shores i and

j of G̃(τ). We write p−0 = {x : (x, y) ∈ p0} and p+0 = {y : (x, y) ∈ p0} be the
projection of p0 to its first and second coordinates respectively.

We say a transcript τ is bad if there exist 0 ≤ i < j ≤ t such that

|Zij(G̃(τ))| > Cqj−i

N j−i−1
(11)

or if there exists 0 ≤ i ≤ j ≤ t such that

|{(x, y) ∈ p0 : x ∈ Z−
0,i(G̃(τ)) ∧ y ∈ Z+

j,t(G̃(τ))}| > Cqeq
i+t−j

N i+t−j
. (12)

To motivate this definition we note that qj−i/N j−i−1 is exactly the expected
number of paths from shore i to shore j in the ideal world, whereas, likewise,
qeq

i+t−j/N i+t−j is the expected number of paths from shore j to shore i that
“wrap around” through an edge in p0 (though such edges are not encoded in
G̃(τ) and, hence, such “wrap around” paths don’t physically exist in G̃(τ)). The
set of bad transcripts is denoted T2 and we let T1 = T \T2. Transcripts in T1 are
called good.

The easy, Markov-inequality-based proof that Pr[Y ∈ T2] ≤ (t+ 1)2 1
C can be

found in this paper’s full version [3].

Lower bounding Pr[X = τ ]/Pr[Y = τ ] for τ ∈ T1. An element ω =
(k, P1, . . . , Pt) ∈ Ωx is compatible with a transcript τ = (k∗, p0, . . . , pt) if k = k∗,
if Pi(x) = y for every (x, y) ∈ pi, 1 ≤ i ≤ t, and if Ek(x) = y for every (x, y) ∈ p0,
where Ek stands for the Even-Mansour cipher instantiated with permutations
P1, . . . , Pt (and key k). We write compX(τ) for the set of w’s in ΩX that are
compatible with τ .

Analogously, an w = (k, P0, P1, . . . , Pt) ∈ ΩY is compatible with τ if the same
conditions as above are respected, but replacing the constraint Ek(x) = y with
P0(x) = y for (x, y) ∈ p0. We write compY (τ) for the set of ω’s in ΩY that are
compatible with τ .

We also say ω = (k, P1, . . . , Pt) is partially compatible with τ =
(k∗, p0, p1, . . . , pt) if k = k∗ and if Pi(x) = y for all (x, y) ∈ pi, 1 ≤ i ≤ t.
(Thus, the requirement that p0 agrees with Ek is dropped for partial compat-
ibility.) Likewise ω ∈ ΩY is partially compatible with τ if (exactly as above)
k = k∗ and Pi(x) = y for all (x, y) ∈ pi, 1 ≤ i ≤ t. (Thus, the requirement that
p0 agrees with P0 is dropped.) We write comp′X(τ), comp′Y (τ) for the set of ω’s
in, respectively, ΩX or ΩY that are partially compatible with τ . Note that

|comp′X(τ)|
|ΩX |

=
|comp′Y (τ)|
|ΩY |

=
1

N t+1
·

t∏
i=1

(N − |pi|)!
N !

(13)

for any transcript τ = (k, p0, p1, . . . , pt), where |pi| denotes the number of pairs
in pi.
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We say that a transcript τ ∈ T is attainable if Pr[Y = τ ] > 0. (Note that
Pr[X = τ ] > 0 =⇒ Pr[Y = τ ] > 0.) In other words, a transcript is attainable
if there exists an ω ∈ ΩY such that Dω produces the transcript τ .

It is necessary and sufficient to lower bound Pr[X = τ ]/Pr[Y = τ ] for attain-
able transcripts τ ∈ T1. By (7) and (13),

Pr[X = τ ]

Pr[Y = τ ]
=
|compX(τ)|
|comp′X(τ)|

/
|compY (τ)|
|comp′Y (τ)|

(14)

for τ such that Pr[Y = τ ] > 0. (We emphasize that both equalities in (7) hold
as long as D produces τ as a transcript on some oracle in ΩX ∪ ΩY .) For the
remainder of the argument we fix an arbitrary transcript τ = (k, p0, p1, . . . , pt) ∈
T1. We aim to lower bound the right-hand side fraction in (14).

For random permutations P1, . . . , Pt and partial permutations p1, . . . , pt, let
Pi ↓ pi denote the event that Pi extends pi, i.e., that Pi(x) = y for all (x, y) ∈ pi;
then it is easy to see that

|compX(τ)|
|comp′X(τ)| = Pr

[
Ek ↓ p0

∣∣ k, P1 ↓ p1, . . . , Pt ↓ pk

]
(15)

where the underlying probability space is the choice of the uniform random
permutations P1, . . . , Pt (the notation conditions on τ ’s key k only to emphasize
that k is not randomly chosen) and where Ek ↓ p0 is the event that Ek(x) = y for
all (x, y) ∈ p0, whereEk is the Even-Mansour cipher with key k and permutations
P1, . . . , Pt. Similarly,

|compY (τ)|
|comp′Y (τ)|

= Pr
[
P0 ↓ p0

∣∣ k, P1 ↓ p1, . . . , Pt ↓ pk

]
where the underlying probability space is the uniform random choice ofP0, P1, . . . ,
Pt. In the latter conditional probability, however, the event P0 ↓ p0 is independent
of the conditioned premise, so

|compY (τ)|
|comp′Y (τ)|

= Pr
[
P0 ↓ p0

]
=

qe−1∏
�=0

1

N − 

. (16)

To facilitate the computation of the conditional probability that appears in
(15), let (in accordance with the definition of the graph G̃(τ) above) p̃i be defined
by

(x, y) ∈ p̃i ⇐⇒ (x ⊕ ki−1, y) ∈ pi

for 1 ≤ i ≤ t− 1, and by

(x, y) ∈ p̃i ⇐⇒ (x⊕ ki−1, y ⊕ ki) ∈ pi

for i = t. Thus p̃1, . . . , p̃t are the t edge sets of the graph G̃(τ), i.e., p̃i is the set
of edges between shores i − 1 and i of G̃(τ). By elementary considerations, one
has

Pr
[
Ek ↓ p0

∣∣ k, P1 ↓ p1, . . . , Pt ↓ pk

]
= Pr

[
E0 ↓ p0

∣∣P1 ↓ p̃1, . . . , Pt ↓ p̃k

]
(17)



340 S. Chen and J. Steinberger

where E0 denotes the Even-Mansour cipher instantiated with key 0(t+1)n, and
where the probability is taken (on either side) over the choice of the uniform
random permutations P1, . . . , Pt. We will therefore focus on the right-hand side
probability in (17).

We say shore i of G̃(τ) is “to the left” of shore j if i < j. We also view paths
in G̃(τ) as oriented from left to right: the path “starts” at the leftmost vertex
and “ends” at the rightmost vertex.

Let (x1, y1), . . . , (xqe , yqe) be the qe edges in p0. We write R(x�) for the right-

most vertex in the path of G̃(τ) starting at x�, and L(y�) for the leftmost vertex
in the path of G̃(τ) ending at y�. (More often than not, x� and y� are not adjacent
to any edges of G̃(τ), in which case R(x�) = x�, L(y�) = y�.) We write the index
of the shore containing vertex v as Sh(v). (Thus Sh(v) ∈ {0, 1, . . . , t}.) Because
τ is good, and because we are assuming Cqe(q/N)t < 1, Sh(R(x�)) < Sh(L(y�))
for 1 ≤ 
 ≤ qe.

A vertex in shore i ≥ 1 is left-free if it is not adjacent to a vertex in shore
i− 1. A vertex in shore i ≤ t− 1 is right-free if it is not adjacent to a vertex in
shore i+ 1.

To compute the conditional probability

Pr
[
E0 ↓ p0

∣∣P1 ↓ p̃1, . . . , Pt ↓ p̃t

]
we imagine the following experiment in qe stages. Let G0 = G̃(τ). At the 
-th
stage, G� is inductively defined from G�−1. Let p̃�

i be the edges between shore
i− 1 and i of G�. Initially, G� = G�−1. Then, as long as R(x�) is not in shore t, a
value y is chosen uniformly at random from the set of left-free vertices in shore
Sh(R(x�)) + 1, and the edge (R(x�), y) is added to p̃�

Sh(R(x	))+1. G� is the result

obtained when R(x�) reaches shore t. Thus, G� has at most t more edges than
G�−1.

Since the permutations P1, . . . , Pt are uniformly random and independently
chosen, it is easy to see that

Pr
[
E0 ↓ p0

∣∣P1 ↓ p̃1, . . . , Pt ↓ p̃t

]
= Pr

[
Gqe ↓ p0]

for the random graph Gqe defined in the process above, where the notation
Gqe ↓ p0 is a shorthand to indicate that vertices x� and y� are connected by a
path in Gqe for 1 ≤ 
 ≤ qe. Moreover, writing x� → y� for the event that x� and
y� are connected by a path in G� (and thus in Gqe), and writing G� ↓ p0 for the
event xj → yj for 1 ≤ j ≤ 
, we finally find

|compX(τ)|
|comp′X(τ)| =

qe−1∏
�=0

Pr[x�+1 → y�+1 |G� ↓ p0]. (18)

This formula should be compared with (16). Indeed, (16) and (18) imply that

|compX(τ)|
|comp′X(τ)|

/
|compY (τ)|
|comp′Y (τ)|

=

qe−1∏
�=0

Pr[x�+1 → y�+1 |G� ↓ p0]

1/(N − 
)
(19)
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which suggests that to lower bound Pr[X = τ ]/Pr[Y = τ ] one should compare
Pr[x�+1 → y�+1 |G� ↓ p0] and 1/(N − 
). (More specifically, give a lower bound
for the former that is not much less than the latter.)

Some preliminaryquantitative intuition for (19).At this stagewe “pause”
the proof to give some quantitative intuition about the product that appears in
(19). The lower bounding of this product, indeed, is the heart of our proof. While
discussing intuition we will make the simplifying assumption that Sh(R(x�)) = 0,
Sh(L(y�)) = t for all 1 ≤ 
 ≤ qe (which, as it turns out, still captures the most
interesting features of the problem).

As a warm-up we can consider the case t = 1. In this case, firstly, the “simpli-
fying assumption” Sh(R(x�)) = 0, Sh(L(y�)) = 1 actually holds with probability
1 for all τ ∈ T1, by the second bad event in the definition of a bad transcript
(i.e., (12)), and by our wlog assumption that

1 > Cqe(q/N)t = Cqeq/N. (20)

(In more detail, the right-hand side of (12) is Cqeq/N for i = j = 0 or i = j = 1.
Thus, if there exists an (x�, y�) ∈ p0 such that either R(x�) = 1 or L(y�) = 0,
then τ ∈ T2.) Next (still for t = 1) it can be directly observed that

Pr
[
x�+1 → y�+1|G� ↓ p0

]
=

1

N − q − 


since p̃1 = p̃01 contains q edges and since 
 additional edges have been drawn by
the time G�+1 is constructed. In fact, the ratio 1/(N − q − 
) is greater than
1/(N − 
), which means that in this case the product (19) is also greater than
1, and one can therefore use ε1 = 0. I.e., for t = 1 the distinguisher’s advantage
is upper bounded by

ε1 + Pr[Y ∈ T2] ≤ 0 + Pr[Y ∈ T2] ≤
2qeq

N

where the last inequality is obtained by direct inspection of the event τ ∈ T2
for t = 1. (For t = 1, the only thing that can cause a transcript to be bad is if
p−0 ⊕k0∩p−1 = ∅ or if p+0 ⊕k1∩p+1 = ∅.) Note that even while Pr[X = τ ]/Pr[Y =
τ ] ≥ 1 for all τ ∈ T1 such that Pr[Y = τ ] > 0, one has Pr[X = τ ]/Pr[Y ∈ τ ] = 0
for most τ ∈ T2 such that Pr[Y = τ ] > 0. This is why ε1 can attain zero.

In passing, note we have proved the (2qeq/N)-security of the key-alternating
cipher for t = 1, which exactly recovers Even and Mansour’s original result for
t = 1. The difference is that the H-coefficient technique “mechanizes” the bound-
proving, to a certain extent. (Even and Mansour’s proof [7] is more complicated,
though it pursues the same basic idea. See also Kilian and Rogaway’s paper on
DESX [12] for a nice game-based take on this argument.)

Given these auspicious beginnings for t = 1 one might feel inclined to optimism
and to conjecture, say, that the product (19) is always greater than 1 for good
transcripts. However, these hopes are quickly dashed by the case t = 2. We do
an example. For this example, assume that p̃1 and p̃2 are disjoint, i.e., no edge



342 S. Chen and J. Steinberger

in p̃1 touches an edge in p̃2. (Thus G0 = G̃(τ) contains no paths of length 2.)
The example will be clearer if we start by examining the case p̃1 = ∅ (i.e., when
there are no edges between shore 0 and shore 1). Then one can compute that6

Pr[x1 → y1] =

(
1− |p̃2|

N

)
1

N − |p̃2|
=

(
N − |p̃2|

N

)
1

N − |p̃2|
=

1

N

and more generally, one similarly computes

Pr[x�+1 → y�+1|G� ↓ p0] =

(
1− |p̃2|

N − 


)
1

N − 
− |p̃2|
=

1

N − 

. (21)

for all 0 ≤ 
 ≤ qe − 1, since the vertex sampled in shore 1 to which x�+1 is
connected is sampled uniformly from a set of size N − 
, and similarly the new
vertex sampled in shore 2 (if such vertex is sampled) comes uniformly from a
set of size N − 
 − |p̃2|. So far, so good: (21) is exactly the same probability as
in the ideal case.

Now we remove the assumption p̃1 = ∅, but keep the assumption that p̃1 and
p̃2 are disjoint. In this case, one has

Pr[x1 → y1] =

(
1− |p̃2|

N − |p̃1|

)
1

N − |p̃2|
=

(
N − 2q

N − q

)
1

N − q
=

N − 2q

(N − q)2
.

As our interest is to compare this quantity to 1/N , we further massage this
expression by writing

N − 2q
(N − q)2

=
1

N
− 1

N
+

N − 2q
(N − q)2

=
1

N
− (N − q)2

N(N − q)2
+

N(N − 2q)
N(N − q)2

=
1

N
− q2

N(N − q)2
.

More generally, one finds that

Pr[x�+1 → y�+1|G� ↓ p0] =

(
1−

|p̃2|

N − �− |p̃1|

)
1

N − �− |p̃2|
=

1

N − �
−

q2

(N − �)(N − �− q)2 (22)

as can be seen by substituting N by N − 
 everywhere in the first computation.
Thus the probability Pr[x�+1 → y�+1|G� ↓ p0] is now slightly lower than 1/(N−

), which rules out the optimistic conjecture above. As for the value of the
product (19) one finds, by (22),

qe−1∏
�=0

(
1− q2

(N − 
− q)2

)
≥
(
1− q2

(N − 2q)2

)qe

≥ 1− qeq
2

(N − 2q)2
.

6 In more detail: when we travel from x1 to y1, the sampling process first chooses a
random endpoint in shore 1 to attach x1 to, and this endpoint has probability |p̃2|/N
of “hitting” an edge in p̃2 (in which case we have no hope of reaching y1). If we don’t
hit an edge in p̃2, there is further chance 1/(N − |p̃2|) that we reach y1, since the
vertex in shore 2 is sampled uniformly at random from a set of size N − |p̃2|.
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This is acceptably close to 1 (i.e., taking ε1 = qeq
2/(N − 2q)2 is acceptably

close to zero) as long as qeq
2 ' N2. We are (coincidentally or not, since the

assumption qeq
2 ' N2 has already been used to upper bound Pr[τ ∈ T2])

“bumping into” the security bound for t = 2. Thus, the approach still works for
t = 2, but this time the approach “barely” works!

In fact, the simplifying assumption that p̃1 and p̃2 are disjoint can easily be
removed since, as is not hard to see, having p̃1 and p̃2 disjoint is actually the
worst case possible7 for t = 2.

Moreover, the initial simplifying assumption that R(x�) = 0, L(y�) = 2 for
all 
 is also easy to remove for t = 2, because Pr[x�+1 → y�+1|G� ↓ p0] actually
increases to 1/(N−q−
) (cf. the case t = 1) when either8 R(x�) = 1 or L(y�) = 1.
Thus, the above computations essentially prove security of qeq

2/N2 for t ≥ 2
(indeed, security is easily seen to “transfer upwards” from smaller to larger values
of t), which is the main result of Bogdanov et al. [2]. The proof sketched above
is arguably simpler than Bogdanov et al.’s, though. (Also, Bogdanov et al. seem
to forget that if the only goal is to prove security of qeq

2/N2 for t ≥ 2 it suffices
to restrict oneself to the case t = 2. Their general approach, however, can be
pushed slightly further to cover the case t = 3, as shown by Steinberger [19].)

We now consider the case t = 3. Already, doing an exact probability com-
putation for the conditional probability Pr[x�+1 → y�+1|G� ↓ p0] (as done in
(22) for t = 2) promises to be quite tedious for t = 3, so we can look at doing
back-of-the-envelope estimates instead. The simplest estimate is to lower bound
the probability of x�+1 reaching y�+1 by upper bounding the probability that
the path being constructed meets a pre-existing edge in either shore 1 or shore
2, viz.,

Pr[x�+1 → y�+1|G� ↓ p0] ≥
(
1− 2q

N − 
− q

)
1

N − 
− q
(23)

where 2q/(N − 
− q) is a (crude) upper bound on the probability that the path
touches a pre-existing edge in either shore 1 or shore 2, and where 1/(N − 
− q)
is the probability of reaching y�+1 if the path reaches a right-free vertex in shore
2. However, (23) is worse than (22), so we are heading at best for security of
ε1 ≈ qeq

2/N2 if we use this estimate. One can argue that 2q/(N − 
− q) can be
replaced by q/(N − 
 − q) in (23) (because: if we hit an edge in p̃2 that is not
adjacent to an edge in p̃3 this only helps us, and if we hit an edge in p̃2 that is
adjacent to an edge in p̃3 this can be “billed” to the corresponding edge in p̃3)
but even so we are headed towards a security of qeq

2/N2, by comparison with

7 On the other hand, we cannot count on p̃1 and p̃2 having some small intersection
in order to possibly repair our optimistic conjecture. Indeed, the distinguisher could
make sure that p̃1 and p̃2 are almost certainly disjoint. For example, the distinguisher
could make q P2-queries with values that start with n/3 0’s, and also make q P−1

1 -
queries with values that start with n/3 0’s. Then p̃1 and p̃2 are disjoint unless the
first n/3 bits of the key are 0, which occurs with negligible probability.

8 Note that one always has R(x�) < L(y�) by the definition of T2 and by the wlog
assumption Cqeq

t < N t.
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(22). In fact, we can reflect that any approach that doesn’t somehow seriously
take into account the presence of three rounds is doomed to fail, because the
computation for t = 2 is actually tight (cf. footnote 7), and thus cannot be
tweaked to give security better than qeq

2/N2.
As it turns out, the “exact but tedious” probability computation that we shied

from above does deliver a bound that implies the desired security of qeq
3/N3,

even while back-of-the-envelope estimates indicate a security bound of qeq
2/N2.

Intuitively, the gain that occurs is due to the fact that when the path hits an
edge of p̃2 not connected to an edge of p̃3—and at most Cq2/N ' q edges in
p̃2 are adjacent to edges in p̃3, by definition of T2—this is actually better than
not hitting any edge at all in shore 1, because it guarantees we won’t hit an
edge in p̃3. While this intuition is easy to see, it is somewhat harder to believe
such a small “second-order” effect would make a crucial difference in the final
security bound. Yet, this is exactly so. In fact, given the “completeness” of the
H-coefficient method it makes sense to have faith that the exact probability
computation (if doable) will deliver security qeq

3/N3. (Though in reality even
this is not a given: by giving away the key at the end of each transcript we
have been more generous to the adversary than those who devised the security
conjecture of qeq

t/N t, so it’s possible to conceive that it’s the “key’s fault” if the
security is (apparently) topping off at qeq

2/N2 (as opposed to the fault of our
lossy estimates). Note that even if we have the correct intuition, and we believe
it isn’t the “key’s fault” and that the approach is theoretically sound, we are still
up against the problem of actually doing the computations in a such way that
the desired security gain becomes apparent, and isn’t lost in a sea of fractions.)

Before proceeding with the exact-but-tedious computation for t = 3 it will
be useful if we first estimate what kind of lower bound is actually needed for
Pr[x�+1 → y�+1|G� ↓ p0] in order to reach overall security ≈ qeq

t/N t. Writing

Pr[x�+1 → y�+1|G� ↓ p0] =
1

N − 

+ zt

where zt is an “error term” whose magnitude will determine ε1, we find that

qe−1∏
�=0

Pr[x�+1 → y�+1|G� ↓ p0]

1/(N − 
)
=

qe−1∏
�=0

(1−(N−
)zt) ≥ (1−N |zt|)qe ≥ 1−Nqe|zt|.

Thus we will have ε1 ≈ Nqe|zt| and so we need need Nqe|zt| ' 1 in order for ε1
to be small. Having

|zt| = qt/N t+1 (24)

gives us precisely this under the assumption qeq
t/N t ' 1.

Details on the case t = 3. Let Uij be the set of paths from shore i to
shore j in G(τ), 0 ≤ i < j ≤ 3, such that the vertex of the path in shore
i is left-free (i.e., is the head of the path), but where the vertex in shore j
may or may not be right-free. The Uij ’s are therefore “half-open” paths. Note
|Uij | ≤ |Zij | ≤ Cqj−1/N j−i−1 by definition of T2. For notational consistency
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with Lemma 1 below we rename p̃i as Ei for i = 1, 2, 3. Thus |Ei| = q and Ei

is the set of edges between shores (i− 1) and i of G̃(τ). Moreover, one can note
that Ei =

⋃
0≤j<i Uji for all i, with the latter being a disjoint union.

We start by computing Pr[x1 → y1], from which the general case Pr[x�+1 →
y�+1|G� ↓ p0] will be easy to deduce. We view the underlying probability space
as the selection of three vertices u1, u2 and u3 from shores 1, 2 and 3 of G̃(τ)
respectively, such that ui is selected independently and uniformly at random
from the set of left-free vertices in shore i. This defines a path w0 := x1, w1 := u1,
w2, w3 where w2 equals u2 if u1 is right-free and equals the other endpoint of
the edge adjacent to u1 otherwise, and where w3 equals u3 if w2 is right-free,
otherwise equals the vertex in shore 3 adjacent to w2. Then Pr[x1 → y1] is equal
to the probability that w3 = y1.

Since y1 is left-free we have

w3 = y1 ⇐⇒ (u3 = y1) ∧ ¬(w1 ∈ U13 ∨ w2 ∈ U23).

(The event ¬(w1 ∈ U13∨w2 ∈ U23) coincides with the event that w2 is right-free.)
Note the event u3 = y1 is independent from the event ¬(w1 ∈ U13 ∨ w2 ∈ U23),
and also that the events w1 ∈ U13 and w2 ∈ U23 are disjoint. Moreover,

w2 ∈ U23 ⇐⇒ (u2 ∈ U23) ∧ ¬(w1 ∈ U12)

since the vertices in shore 2 of U23 are left-free. By independence of u1 and u2,
thus,

Pr[w2 ∈ U23] = Pr[u2 ∈ U23] · (1 − Pr[w1 ∈ U12])

=
|U23|

N − |E2|

(
1− |U12|

N − |E1|

)
=

|U23|
N − |E2|

− |U12||U23|
(N − |E1|)(N − |E2|)

.

Thus

Pr[w3 = y1] = Pr[u3 = y1](1− Pr[w1 ∈ U13]− Pr[w2 ∈ U23])

=
1

N − |E3|

(
1− |U13|

N − |E1|
− |U23|

N − |E2|
+

|U12||U23|
(N − |E1|)(N − |E2|)

)
=

1

N − |E3|
− |U13|

(N − |E1|)(N − |E3|)
− |U23|

(N − |E2|)(N − |E3|)

+
|U12||U23|

(N − |E1|)(N − |E2|)(N − |E3|)
.

(Note that none of the terms above are as small as ≈ q3/N4 (cf. (24)), even
with the approximation 1

N−|Ei| ≈
1
N , so none of the terms above can (yet) be

folded into the error term.) Adding and subtracting the “ideal” probability 1
N

to 1
N−|E3| gives

1

N
− 1

N
+

1

N − |E3|
=

1

N
+

|E3|
N(N − |E3|)

=
1

N
+
|U03|+ |U13|+ |U23|

N(N − |E3|)
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(Here |U03|
N(N−|E3|) is basically the same order of magnitude as q3/N4, given that

|U03| ≤ |Z03| ≤ Cq3/N2. So we can leave this term alone.) Next,

|U13|
N(N − |E3|)

−
|U13|

(N − |E1|)(N − |E3|)
= −

|E1||U13|
N(N − |E1|)(N − |E3|)

= −
|U01||U13|

N(N − |E1|)(N − |E3|)

(same order of magnitude as q3/N4, given that |U13| ≤ Cq2/N), and

|U23|
N(N − |E3|)

−
|U23|

(N − |E2|)(N − |E3|)
= −

|E2||U13|
N(N − |E2|)(N − |E3|)

= −
|U02||U13|

N(N − |E2|)(N − |E3|)
−

|U12||U23|
N(N − |E2|)(N − |E3|)

where only |U02||U13|
N(N−|E2|)(N−|E3|) is small enough to fit inside the error term. But

then, of course, we lastly compute that

− |U12||U23|
N(N − |E2|)(N − |E3|)

+
|U12||U23|

(N − |E1|)(N − |E2|)(N − |E3|)

=
|E1||U12||U23|

N(N − |E1|)(N − |E2|)(N − |E3|)

=
|U01||U12||U23|

N(N − |E1|)(N − |E2|)(N − |E3|)

which is small enough to fit inside the error term. Collecting the leftovers after
the various cancellations above, thus, we find

Pr[w3 = y1] =
1

N
+

|U03|

N(N − |E3|)
−

|U01||U13|

N(N − |E1|)(N − |E3|)

−
|U02||U13|

N(N − |E1|)(N − |E3|)
+

|U01||U12||U23|

N(N − |E1|)(N − |E2|)(N − |E3|) (25)

where all the terms except 1
N are “error-term small”. Moreover, when we com-

pute Pr[x�+1 → y�+1|G� ↓ p0] for 
 ≥ 1 we can discard the 
 completed paths
from shore 0 to shore 3 linking the vertex pairs (x1, y1), . . . , (x�, y�), and thus
reduce to the case 
 + 1 = 1 with N replaced by N − 
. I.e., the expression for
Pr[x�+1 → y�+1|G� ↓ p0] will be identical to (25) except with N replaced by
N − 
 throughout.

From here the proof for t = 3 can be finished without many suprises. The crux
of the proof is indeed the very simple idea of adding and subtracting 1

N from the
probability, and of letting cancellations occur. This approach is purely algebraic.
When we carry out the same process for an arbitrary value of t (see the proof
of Lemma 1 in the full version of this paper [3]) we adopt a more combinatorial
approach that recasts the algebraic manipulations as manipulations of events,
which seems more satisfying because it gives the algebraic cancellations a con-
crete probabilistic interpretation. We note that doing so requires enlarging the
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probability space beyond its original confines. Indeed, for example, the original
probability space for t = 3 has no event that occurs with probability 1

N even
while factors of 1

N are ubiquitous in the final expression.

Upshot. The lemma below essentially generalizes the computation for t = 3 to
arbitrary t. In this lemma Uij stands for the set of paths from shore i to shore j
of G� such that the vertex in shore i is left-free but where, as before, the vertex
in shore j may or may not be right-free.

Lemma 1. We have, under the notations described above,

Pr[x�+1 → y�+1 |G� ↓ p0] =
1

N − 

− 1

N − 


∑
σ∈S	

(−1)|σ|
|σ|∏
j=1

|Uijij−1 |
N − |Eij |

for each 
, 0 ≤ 
 ≤ qe − 1, where S� is the set of all sequences σ = (i0, . . . , is)
with R(x�+1) = i0 < . . . < is = L(y�+1), and where |σ| = s.

The proof of this lemma is given in the paper’s full version [3].

Finishing the proof of Theorem 1.We now apply Lemma 1 to lower bound-
ing the product (19). For 1 ≤ r ≤ t, let

Lr = {
 : L(y�)− R(x�) = r} ⊆ {1, . . . , qe}

where (we recall) the elements of p0 are (x1, y1), . . . , (xqe , yqe). By the definition
of T2, L1, . . . ,Lt cover {1, . . . , qe} (i.e., there is no 
 with R(x�) ≥ L(y�)). Note
that |Uij | ≤ Cqj−i/N j−i−1 (by the definition of T2) for 0 ≤ i < j ≤ t, and
|Ei| ≤ q for 1 ≤ i ≤ r. Thus for 
+ 1 ∈ Lr we obtain, by Lemma 1,

Pr[x�+1 → y�+1|G� ↓ p0] =
1

N − 

− 1

N − 


∑
σ∈S	

(−1)|σ|
|σ|∏
h=1

|Uih−1ih |
N − 
− |Eih |

≥ 1

N − 

− 1

N − 


∑
σ∈S	

|σ|∏
h=1

Cqih−ih−1/N ih−ih−1−1

N − 
− q

=
1

N − 

− 1

N − 

2r−1
( q

N

)r ( CN

N − 
− q

)|σ|
≥ 1

N − 

− 1

N − 


(
2q

N

)r (
CN

N − 2q

)r

≥ 1

N − 

− 1

N − 


(
6Cq

N

)r

.
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Moreover |Lr| ≤ t · Cqeq
t−r

Nt−r by the definition of T2, so∏
�+1∈Lr

Pr[x�+1 → y�+1|G� ↓ p0]

1/(N − 
)
≥
∏

�+1∈Lr

(
1−
(
6Cq

N

)r)

≥ 1− Ctqeq
t−r

N t−r

(
6Cq

N

)r

= 1− Ctqeq
t

N t
(6C)r

Thus

qe−1∏
�=0

Pr[x�+1 → y�+1|G� ↓ p0]

1/(N − 
)
≥ 1−

t∑
r=1

Ctqeq
t

N t
(6C)r

≥ 1− qeq
t

N t
Ct2(6C)t.

This means
Pr[X = τ ]

Pr[Y = τ ]
≥ 1− ε1

for ε1 = qeq
t

Nt Ct2(6C)t, for all τ ∈ T1 such that Pr[Y = τ ] > 0. Together with the
fact that Pr[Y ∈ T2] ≤ (t+ 1)2 1

C this concludes the proof of Theorem 1 by (9).
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A Derandomizing an Information-Theoretic Distinguisher

The fact that an information-theoretic distinguisher can be derandomized is
seldom proved, though admittedly simple. For a change and for the sake of
completeness we include a proof here.

Let D be an information-theoretic distinguisher, which we view as a deter-
ministic function taking an oracle input ω and a random string input r, and
producing one bit of output. Formally D is a function

D : Ω ×R → {0, 1}

where Ω is the set of possible oracles and where R is the set of possible ran-
dom strings. The fact that an “oracle” is an object for D to “interact” with
according to certain rules doesn’t matter here. All that matters that D defines
a deterministic function from Ω ×R to {0, 1}.

http://eprint.iacr.org/2013/019.pdf
http://eprint.iacr.org/2012/481.pdf
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Let r be an arbitrary random variable of range R and let ωX , ωY be two
random variables of range Ω, where ωX is distributed according to the distribu-
tion of real-world oracles and ωY is distributed according to the distribution of
ideal-world oracles, and where r is independent from ωX , ωY . By definition D’s
advantage (with respect to source of randomness r) is

ΔD := Pr
ωX ,r

[D(ωX , r) = 1]− Pr
ωY ,r

[D(ωY , r) = 1] (26)

which can also be written

ΔD = Δ(D(ωX , r), D(ωY , r)) (27)

where, on the right, we have the statistical distance of the random variables
D(ωX , r), D(ωY , r) of range {0, 1}. Note that the right-hand side of (26) can be
written

Er [EωX [D(ωX , r)]]− Er[EωY [D(ωY , r)]]

since D is {0, 1}-valued, and where E denotes expectation. By linearity of ex-
pectation, then,

ΔD = Er[EωX [D(ωX , r)]− EωY [D(ωY , r)]]

and so there must exist some r0 ∈ R such that

ΔD ≤ EωX [D(ωX , r0)]− EωY [D(ωY , r0)]

= Pr
ωX

[D(ωX , r0) = 1]− Pr
ωY

[D(ωY , r0) = 1]

so that D’s random string can be fixed to r0 without harming D’s advantage.
(The fact that r is independent from ωX , ωY is used to condition on r = r0
without affecting the distribution of ωX , ωY .) Alternatively, one can use (27)
together with the more general fact that

Δ(f(X,Z), f(Y,Z)) ≤ EZ [Δ(f(X,Z), f(Y,Z))] :=
∑
z

Pr[Z = z]Δ(f(X, z), f(Y, z))

(28)

for any random variables X , Y , Z such that Z is independent from X and Y ,
for any function f . But to be complete (28) would require its own proof.
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Abstract. This paper proves a lower bound on the trade-off between
server storage size and the locality of memory accesses in searchable
symmetric encryption (SSE). Namely, when encrypting an index of N
identifier/keyword pairs, the encrypted index must have size ω(N) or
the scheme must perform searching with ω(1) non-contiguous reads to
memory or the scheme must read many more bits than is necessary
to compute the results. Recent implementations have shown that non-
locality of server memory accesses create a throughput-bottleneck on
very large databases. Our lower bound shows that this is due to the
security notion and not a defect of the constructions. An upper bound
is also given in the form of a new SSE construction with an O(N logN)
size encrypted index that performs O(logN) reads during a search.

Keywords: Symmetric Encryption, Lower Bound.

1 Introduction

Searchable symmetric encryption (SSE) [24,15,13] enables a client to encrypt an
index of record/keyword pairs and later issue tokens allowing an untrusted server
to retrieve the (identifiers of) all records matching a keyword. SSE aims to hide
statistics about the index to the greatest extent possible while maintaining prac-
tical efficiency for large indexes like email repositories or United States census
data. These schemes employ only fast symmetric primitives and recent imple-
mentations [10] have shown that, in contrast to most applications of advanced
cryptography, cryptographic processing like encryption is not the bottleneck for
scaling. Instead, lower-level issues dealing with memory layouts required by the
schemes are the limiting factor for large indexes.

This work studies how the security definitions for SSE inherently hamper
scaling for large indexes. It proves an unconditional lower bound on the trade-
off between server storage space and the spatial locality of its accesses to the
encrypted index during a search. At a high level, the bound says that, for an
index with N pairs, any secure SSE must either pad the encrypted index to
an impractical (super-linear, ω(N)) size or perform searching in a very non-
local way (with ω(1) contiguous accesses or by reading far more bits than is
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necessary). Either of these options is likely to incur a large slow-down over a
properly designed plaintext searching system with an O(N)-size index that can
search with O(1) contiguous accesses.

The issue of locality in SSE surfaced in recent works [13,10] where implemen-
tations showed that the non-local use of external storage was a main bottleneck
preventing scaling to large indexes. The only works with a highly local access
pattern generated very large (roughly O(N2)) encrypted databases that also
prevented scaling. This paper explains this dichotomy of padding versus spatial
locality by proving it is an unavoidable consequence of the SSE security defini-
tion. As more cryptographic applications are developed for securely outsourcing
large amounts of data (while maintaining either authenticity or secrecy), lower-
level issues like locality may become more relevant. While in some contexts (like
secure multiparty computation) it is clear that the entire input must be touched
during computation, this work appears to be the first to study of the effect of
security on locality in detail.

The lower bound suggests the question of a matching upper bound. We give
a new scheme with an O(N logN) size encrypted index and O(logN) locality
via a different padding strategy, which compares to a scheme with a O(N2)
size encrypted index and O(1) locality.1 This scheme may not be competitive
with prior highly-optimized implementations, but it serves as intermediate point
in the trade-off curve implied by the lower bound. The interesting question of
closing the gap is left open.

Scheme Leakage EDB Size Locality Read Efficiency

CGKO’06-1 [13] m,N O(N +m) O(tw) O(1)
CGKO’06-2 [13] M · n O(Mn) O(tw) O(1)
CK’10 [12] m,n,M O(Mn) O(1) O(1)

LSDHJ’10 [25] m,n O(mn) O(tw) O(1)
KO’12 [20] n,M O(Mn) O(tw) O(1)
KPR’12 [19] m,N O(N +m) O(tw) O(1)
KP’13 [18] m,n O(mn) O(tw log n) O(n log n)

CJJKRS’13 [10] N O(N) O(tw) O(1)

This paper: Scheme N O(N logN) O(logN) O(1)
This paper: Lower Bound Any from above ω(N) O(1) O(1)

Fig. 1. Comparison of some SSE schemes. Legend: Leakage is leakage from EDB only,
and all schemes also leak search results and access pattern. n = total # of unique
identifiers, N =

∑
w |DB(w)|, m = total # of unique keywords, M = maxw |DB(w)|,

tw = |DB(w)| for the query w. For [12] we mean the scheme in Section 5.2 of the
full version there. The lower bound is achieved with α = 0 in Theorem 8. If a scheme
support updates or more advanced searches then we consider a simplified static version
for keyword searching as formalized in Section 2. Differences in security (simulation
versus indistinguishability, adaptivity) are ignored here but explain why some schemes
appear to be strictly worse than others.

1 There are various ways to achieve a smaller index (see Figure 1), but these will
achieve a slightly different notion of security.
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SSE and locality. Let us describe the issue in more detail, starting with
SSE and its security goals. An input to an SSE scheme, denoted DB, is essen-
tially an index associating with each keyword w a set of identifiers (bit strings)
DB(w) = {id1, · · · , idtw}, where the number tw can vary. “Searching” means
retrieving those identifiers, given w. An SSE scheme is a system for storing and
retrieving these sets while hiding statistics about the identifier sets matching
un-searched keywords such as their number, size, the size of their intersections,
and so on. Security is formally parameterized with a leakage function L that
describes an upper bound on what a server learns. One example of good leakage
is N =

∑
w |DB(w)|, along with the identifier sets DB(w) for each keyword that

is searched for. Other statistics like maxw |DB(w)| and the number of unique
keywords are also usually considered acceptable leakage. In any case, the de-
fined leakage is all the server should learn, so plaintext keywords, identifiers,
and anything else other than the output of L must be hidden.

A scheme of Curtmola et al. [13] forms the basis for most subsequent SSE
schemes. This scheme leaks only N and the number of unique keywords by
placing all N of the identifier/keyword pairs in random order into a large array
(along with some auxiliary tables) and enabling retrieval with encrypted linked
lists that could be opened for the server. Searching for w requires walking through
|DB(w)| pseudorandom locations in this large array. When the array is stored on
disk, it means that each retrieved pair requires a disk read at a random location.
Since each identifier is on the order of several bytes but the disk block size is
now often 4KB, this searching will sacrifice throughput and latency compared
to a plaintext search system which can store the identifiers together in sectors,
and moreover in contiguous sectors which can be read together more efficiently
without additional seeking. Naive modifications, like packing several identifiers
from a single DB(w) set into one sector, render the scheme insecure for the
leakage function they consider.

One work [12] addressed locality by enlarging the index to ω(N) size. This
scheme pads every set DB(w) to size maxw |DB(w)| and then store these padded
sets in the own contiguous rows. For very large indexes (with billions of pairs as
in [10]), even doubling the plaintext size may be unreasonable, so these works
do not appear to scale for realistic datasets where the padding will be large.

Results. In the sections that follow a precise model is given for measuring and
comparing the memory usage of SSE schemes. The parameters of locality, read-
efficiency, and read disjointness are defined and discussed in relation to lower
bounds. Briefly, locality is the number of non-contiguous memory accesses made
by the server, read-efficiency is the number of bits read beyond the minimum
necessary, and a scheme has α-overlapping reads if reads for different searches
overlap in at most α bits. In Figure 1 we compare the leakage, locality, and read
efficiency of prior SSE constructions. (For read efficiency, the number listed is
a multiplicative factor over the binary encoding of the identifiers matching the
query.)

This paper’s primary results are summarized below. For the following two
theorems, let L be any of the leakage functions in Figure 1 (or any function
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efficiently computable from them). Below we write BinEnc(DB) to mean an en-
coding on DB as a binary string formed by concatening the lists of identifiers
matching each keyword. See Sections 2 and 3 for definitions.

Theorem 1. If Π is an L-IND-secure SSE scheme with locality r as well as

α-overlapping reads, then Π has ω
(
|BinEnc(DB)|

r·(α+2)

)
server storage.

We remark that a very weak read efficiency requirement is implicit in the condi-
tion on overlapping reads, and all existing schemes have highly non-overlapping
reads.

Theorem 2. Assuming one-way functions exist, there exists an L-IND-secure
SSE scheme with locality O(logN), O(1) read efficiency and O(N logN) storage.

The bulk of the paper is spent proving the first theorem. We now start with
an intuitive sketch of how one might prove a weak lower bound. See Section 4
for a detailed sketch of the actual proof, which is more complicated.

Lower bound approach. Intuitively, if a scheme is very local, then after some
searching the server can look at what is not read after several searches and
infer statistics about what has not been opened. In particular, if one of the sets
DB(w) is very large, then good locality means there is a very large region of the
encrypted index that will not be touched by other searches, and the server will
notice that this happens after several searches with small number of results.

The lower bound develops this intuition, but requires further ideas to achieve
a lower bound of ω(N) on the server storage. For now let us sketch how one
shows the server must approximately double the size of a plaintext index if it is
to be perfectly local and read-efficient, meaning it processes a search by reading
exactly the required number of bits from a single contiguous section of EDB, and
moreover that the reads for all searches are disjoint. This seems highly restrictive,
but later will we be able to weaken all of these assumptions to realistic versions.

Now suppose we have a perfectly local SSE scheme. Consider two index in-
puts, DB0 and DB1, where DB0 consists of N keywords each matching a single
unique document and DB1 consists of 2 keywords matching a single unique doc-
ument and a third keyword matching N−2 documents. If two random keywords
matching single documents are searched for then the server learns which loca-
tions of the encrypted index are read in order to respond. If DB0 was encrypted,
then pigeon-hole argument shows that with constant probability, there is no re-
maining contiguous interval large enough to contain the bits that would be read
for the third keyword (it is here that we use an assumed bound on the server
storage). This is diagrammed in the top part of Figure 2, where when the red
regions are read there is no longer space between them for a larger interval. This
is in contrast to the case when DB1 is encrypted, because after observing the two
small reads, a perfectly local scheme there will always be a contiguous unread
region large enough to hold the N − 2 identifiers for the third keyword.

The full lower bound is an extension of this idea to consider a family of indexes
with result sets of several sizes. Later it is argued that the technique above is
limited to showing a factor 2 overhead in server storage, and that the complexity
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of the main attack seems necessary. We also address several extensions, such as
when the server does not perform a single contiguous read but up to O(1) reads,
the leakage function parameter varies, and the reads are allowed to partially
overlap.

Related work on secure searching. Following the initial work of [24] that
suggested searchable encryption, Curtmola et al. [13] formalized the version of
SSE that we consider in this paper. Subsequently SSE schemes were given with
different efficiency properties [15,11,12], support for data updates [19,18], au-
thenticity [20] and support more advanced searches [10]. These improvements
are rthogonal to the lower bound, which applies to these schemes when used for
basic (non-dynamic, non-authenticated) SSE.

The problem of searching on encrypted data can be addressed in several ways
using generic multiparty computation protocols, oblivious RAM schemes [16] or
fully homomorphic encryption [14]. These approaches achieve slightly levels of
functionality and different notions of security, meaning that the lower bound does
not seem to apply. Order-preserving encryption [6,7] takes a different approach to
searching that achieves high efficiency for rich queries but is less secure than SSE.
Implementations that use order-preserving encryption, notably CryptDB [22],
inherit these properties. Our lower bound does not apply to them.

There is also a line of work on searching on public-key ciphertexts. Public-key
encryption with keyword search [9,17,1,2] In these schemes and subsequent work,
the server performing the search by testing each encrypted record individually,
resulting in a scheme that is trivial from the point of view of the lower bound. The
line of work on deterministic public-key encryption [4,8,5] enables fast searching
but achieves different, weaker security meaning our lower bound does not apply.

Related work on locality. Algorithmic performance with data stored on
disk has been studied extensively in external memory models (c.f. [26,23,3]).
These models usually consider block-oriented devices with varying degrees of
precision (e.g., including modeling parallelism, drive geometry, memory hier-
archies, caching, locality of blocks, etc.). Typically one measures the external
memory efficiency of an algorithm by counting the number of blocks it accesses,
and a wide array of techniques have been developed to optimize disk utilization
at the algorithmic level.

Interestingly, matching lower and upper bounds are known for many natu-
ral problems like, e.g., dictionary retrieval, sorting, range searching – see, e.g.,
Chapter 6 of [26]. Our lower bound is fundamentally different from these results.
There, one can give an information theoretic argument that a certain number of
disk accesses are necessary in the worst case, with a flavor similar to the classic
O(n log n) comparison-based sorting lower bound. Our lower bound, however,
will proceed by showing that any SSE scheme that meets a certain level of effi-
ciency will be insecure (rather than incorrect as in traditional external memory
lower bounds). That is, our lower bound comes in the form of an attack. Due to
the nature of our lower bound we opt for an extremely simplified version of lo-
cality and leave its adaptation to fine-grained external memory models to future
work.
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We are not aware of any prior similar lower bounds on cryptographic prim-
itives, other than the folklore observation that security forces many primitives
to touch every bit their inputs (e.g., homomorphic encryption [14], multiparty
computation).

Organization. Preliminaries and definitions are recalled in Section 2. New
definitions relating to locality are given and discussed in Section 3. The lower
bound is stated and proved in Section 4, and the upper bound is in Section 5.

too small too small too small

large enough

Fig. 2. Intuition for a basic lower bound

2 Preliminaries

Throughout this paper the security parameter is denoted λ and all algorithms
(and adversaries) are assumed to run in time polynomial in λ. We write [n] for
the set {1, . . . , n}. For a vector v we write |v| for the dimension (length) of v
and for i ∈ [|v|] we write v[i] for the i-th component of v. For a bitstring s, we
write s[a, b] for the substring starting with the bit in position a and ending in
position b.

Databases and SSE schemes. An index (or database) DB = (idi,Wi)
n
i=1 is

a list of identifier/keyword-set pairs, where each idi ∈ {0, 1}λ and each Wi is
a set of bitstrings. When the DB under consideration is clear, we will write
W =

⋃n
i=1 Wi. For a keyword w ∈ W, we write DB(w) for {idi : w ∈ Wi}. We

will always use N =
∑

w∈W |DB(w)| =
∑n

i=1 |Wi| to mean the total number of
keyword/identifier pairs in DB, n to mean the number of unique identifiers, and
m = |W| to mean the number of unique keywords.

A searchable symmetric encryption (SSE) scheme Π consists of algorithms
(KeyGen,EDBSetup,TokGen, Search) that satisfy the following syntax. The key
generation algorithm KeyGen takes as input the security parameter and outputs
a key K. The algorithm EDBSetup takes as input a key K and a database DB
and outputs an encrypted database EDB. The token generation protocol takes
as input a string w and key K and outputs a token τ . Finally, the searching
algorithm Search takes as input τ and EDB and outputs as set L of results.

We note that formalization of an SSE scheme does not model the storage of
actual document payloads, but only of metadata encoded in a keyword index.
This simplifies the definition and makes it modular, but some care must be taken
when combining an SSE scheme with a document storage scheme (see e.g. [13]
for an example of how to store the payloads).
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An SSE scheme is correct if the natural usage returns the correct results for
the keyword being searched (i.e., DB(w)), except with negligible probability. For-

mally, for every database DB, consider an experiment where K
$← KeyGen(1λ)

and EDB
$← EDBSetup(K,DB) are initially sampled. Then, an attacker learns

EDB and can issue adaptive queries wi, which are answered by first generat-
ing a token τi ← TokGen(K,wi) and then returning it together with Si ←
Search(τi,EDB) to the attacker. The scheme is correct if for all polynomial-time
attackers, Si = DB(wi) for all i, except with negligible probability.

We say that the scheme Π has server storage s(N, λ) if on input a database

DB with N keyword/identifier pairs and a key K
$← KeyGen(1λ), EDBSetup

outputs EDB such that |EDB| = s(N, λ), where |EDB| is the bit-length of EDB.

Security. We recall the non-adaptive indistinguishability-based version of se-
curity from [13] which will be considered in the lower bound.

Definition 3. Let Π = (KeyGen,EDBSetup,TokGen, Search) be an SSE scheme
and let L be a leakage function and A be an adversary. For b ∈ {0, 1} we de-
fine the game IND-SSEb

Π,L,A(λ) as follows: The adversary chooses DB0,DB1,w.

The game runs K
$← KeyGen(1λ), EDB

$← EDBSetup(K,DBb) and t[i] ←
TokGen(K,w[i]) for each i ∈ [|w|]. It gives (EDB, t) to A, which outputs a

bit b̂. Finally, if L(DB0,w) = L(DB1,w), the game outputs ⊥ and otherwise it

outputs b̂.
We define the L-IND advantage of A to be

Advind-sse
Π,L,A (λ) = |Pr[IND-SSE0

Π,L,A(λ) = 1]− Pr[IND-SSE1
Π,L,A(λ) = 1]| ,

and we say that Π is L-IND-secure if Advind-sse
Π,L,A (λ) is negligible for every A.

Our construction will achieve the stronger (adaptive, simulation-based) defini-
tion from [13], which we recall here. (A non-adaptive version is such that in both
games A must choose all of its queries beforehand.)

Definition 4. Let Π = (KeyGen,EDBSetup,TokGen, Search) be an SSE scheme
and let L be a leakage function. For algorithms A and S, we define the two games
SIM-SSE0

Π,L,A(λ) and SIM-SSE1
Π,L,A,S(λ) as follows:

SIM-SSE0
Π,L,A(λ): A(1λ) chooses DB,w. The game then runs (K,EDB) ←

EDBSetup(DB) and t[i]← TokGen(K,w[i]) for each i ∈ [|w|]. It gives EDB, t to
A, which eventually returns a bit that the game uses as its own output.

SIM-SSE1
Π,L,A,S(λ): A(1λ) chooses DB,w. The game then runs (EDB, t) ←

S(L(DB,w)) and gives EDB, t to A, which eventually returns a bit that the
game uses as its own output.

We define the L-SIM-advantage of A and S to be

Advsim-sse
Π,L,A,S(λ) = |Pr[SIM-SSE0

Π,L,A(λ) = 1]− Pr[SIM-SSE1
Π,L,A,S(λ) = 1]|,

and we say that Π is L-SIM-secure if for all adversaries A there exists an
algorithm S such that Advsim-sse

Π,L,A,S(λ) is negligible.
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Leakage functions. Below we will consider two leakage functions Lmin and
Lmax. The first is called the size minimal leakage function,2 which is defined as
follows: Lmin(DB,w) outputs N =

∑
w∈W |DB(w)| and the sets (DB(w[1]), . . . ,

DB(w[|w|])). The second is called the maximal leakage function which outputs
(N,n,m,M) as well as (DB(w[1]), . . . ,DB(w[|w|])), whereN is defined as before,
n is the number of unique identifiers in DB, m = |W| (the number of unique
keywords), and M = maxw |DB(w)|. It is of course possible to consider “more”
leakage, but this is more than any existing scheme leaks, meaning out lower
bound will apply to all of them.

3 Read Efficiency and Locality Metrics for SSE Schemes

This section introduces the notions of locality and read efficiency of SSE schemes.

Read patterns. First, we observe that the searching procedure of any SSE
scheme can be decomposed into a sequence of contiguous reads from the en-
crypted database. To formalize this point of view, fix an SSE scheme Π , an
EDB output by EDBSetup and a token τ output by TokGen. Viewing EDB as
a bitstring of length M , we may express the computation of Search(τ,EDB) as
follows: It starts by computing an interval [a1, b1] that depends only on τ . It
then computes another interval [a2, b2] that depends only on τ and EDB[a1, b1],
and continues computing intervals to read based on τ and all previously read
intervals from EDB. We write RdPat(τ,EDB) for these intervals. In the following,
denote as BinEnc(DB(w)) the binary representation of DB(w), i.e., the concate-
nation of all identifiers represented as bit strings, and BinEnc(DB) to be the
concatenation of all the BinEnc(DB(w)) for each w in the database. Under our
assumption that all identifiers are in {0, 1}λ, we have |BinEnc(DB)| = λ|DB(w)|
and BinEnc(DB) = λN .

Locality of an SSE scheme. We put forward the notion of locality of an
SSE scheme, capturing the fact that every read pattern consists of at most a
bounded number of intervals.

Definition 5 (Locality). An SSE scheme Π is r-local (or has locality r) if
for any λ, DB, and w ∈ W, we have that RdPat(τ,EDB) consists of at most

r intervals with probability 1 when EDB, τ are computed as K
$← KeyGen(1λ),

EDB
$← EDBSetup(K,DB), τ ← TokGen(K,w). If r = 1, we say Π has perfect

locality.

In particular, the value r can depend both on the security parameter λ and the
index size |DB|.
Read efficiency. The notion of locality alone is not very meaningful. Of
course, we can just make every scheme perfectly local by reading the whole EDB.
This is why the notion of locality is directly tied to the notion of read efficiency,
which measures the overall size of the portion read by a search operation.

2 It appears to be impossible to define a true “minimal” amount of leakage, as we
could consider a leakage function that leaks only some upper bound on N .
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Definition 6 (Read Efficiency). An SSE scheme Π is c-read efficient (or
has read efficiency c) if for any λ, DB and w ∈W, we have that RdPat(τ,EDB)
consists of intervals of total length at most c · |BinEnc(DB(w))| bits.

We allow c to depend on the security parameter here.

Read disjointness. The above definition of read efficiency is very general. In
particular, for sufficiently large c, it allows multiple queries to read exactly the
same bits. Our lower bound below will apply to a more restricted class of r-local
schemes which read sufficiently many new bits. We feel this class is natural, and
moreover it contains all prior constructions.

Definition 7 (Overlapping reads). An SSE scheme Π has α-overlapping
reads if for all λ and all DB, the read pattern induced by the search of each
keyword in DB has an overlap of at most α with the read patterns induced by
the searches of all previous keywords (with probability 1 over the computation
of K ← KeyGen(1λ), EDB ← EDBSetup(K,DB), and the computation of the
tokens). When α = 0 we say Π has disjoint reads.

In general, the value α is independent of N , but may additionally depend
on λ or possibly on the number of words |W| in order for example to take into
account a common portion of EDB which can be read at every search operation.
Typically, a scheme will read some metadata like hash table entries and then
perform reads to retrieve the actual results. (Of course we make no assumption
on what computation the scheme actually does, beyond being of the form above.)

4 Lower Bound

In this section we sketch our proof that a secure SSE scheme cannot simultane-
ously achieve O(1) locality and O(|BinEnc(DB)|) server storage. Concretely, we
are going to prove the following theorem, where Lmax was defined at the end of
Section 2 and the locality metrics were defined in the previous section.

Theorem 8. If Π is an Lmax-IND-secure SSE scheme with locality r as well as

α-overlapping reads, then Π has ω
(
|BinEnc(DB)|

r·(α+2)

)
server storage.

We note that we consider Lmax for the lower bound as this strengthens the
result by considering schemes that are “very leaky.” In the theorem statement,
we assume that α does not depend on N , but may additionally depend on λ or
possibly on the number of words |W|.

The proof is rather long and will not fit in this version of the paper (a full
proof was submitted and will appear in the full version). Instead, we provide a
sketch of the proof approach and its implementation.

Proof approach. We will first sketch our lower bound with a few simplifica-
tions. First, we assume the SSE scheme is has perfect locality and read efficiency,
meaning the server always performs exactly one contiguous read for exactly
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|BinEnc(DB(w))| = λ · |DB(w)| bits from EDB when searching for a word w, the
minimum required for the response. Second, we assume all reads are perfectly
disjoint. Third, we consider the lower bound leakage against SSE schemes achiev-
ing security with leakage function Lmin instead of Lmax (thus making the result
easier). It turns out that this case encompasses most of the technical difficulties
for the general result, which we derive afterwards.

The principle behind the attack extends the idea sketched in Section 1. The
adversary will choose two indexes DB0,DB1 of the same size in a careful way
so that DB1 has keywords that match a large number of documents while DB0

does not. Then it will query for tokens for several keywords matching relatively
small numbers of documents. Using the tokens, it will compute the read pattern
of the server when searching for those keywords, and then look at the unread
portions of EDB. Since we are assuming perfect locality, if DB1 was encrypted,
there must be large regions that go untouched by any query. On the other hand,
we will show that this is sometimes not the case if DB0 is encrypted, allowing
the adversary to distinguish.

To describe the proof it will be useful to introduce a compact notation for the
shape of a DB input.

Definition 9. We write

DB← (n1 × s1; n2 × s2; . . . ; nt × st)

when DB = (idi,Wi) has shape (n1 × s1; n2 × s2; . . . ; nt × st), which means
that it satisfies the following:

• DB has a keyword set W of size
∑t

j=1 nj comprised of λ-bit strings.

• For each j ∈ [t], there are nj keywords w ∈W such that |DB(w)| = sj.

• For all w = w′, the sets DB(w) and DB(w′) are disjoint.

Our attack sketched in the introduction corresponded to picking indexes
DB0,DB1 with shapes DB0 ← (N × 1) and DB1 ← (1× 1 ; 1×N − 2), meaning
that DB0 consists of N “singletons” and DB1 consists of two singletons and one
large set of results. It is possible to formalize that attack and show that a secure
perfectly local SSE scheme must produce an EDB that is at least twice as large
as the bit representation of DB, but as we observe at the end of this section,
any attack that uses indexes with such simple shapes will not be able to prove
a better lower bound.

We now proceed to extend that attack. Let Π be perfectly local scheme with
server storage kλN for some constant k ≥ 1. Our attack against the security Π
will select two random inputs DB0,DB1 with shapes

DB0 ← (n1 × ε1N ; n2 × ε2N ; . . . ; nk−1 × εk−1N ; n̂k × εkN) (1)

DB1 ← (n1 × ε1N ; n2 × ε2N ; . . . ; nk−1 × εk−1N ; nk × εkN ; n̂k+1 × εk+1N)
(2)

where n1 > n2 > · · · > nk > 1 and ε1 < ε2 < . . . < εk < εk+1 < 1 are appropri-
ately chosen constants. Intuitively, DB0 consists only of many small result sets
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DB0(w) while DB1 consists of many small result sets and some relatively large
sets of εk+1N keywords.

The attack will query for tokens for all
∑k

i=1 ni keywords matching εiN doc-
uments with i ∈ [k]. It then calculates the read patterns of the server. Since Π
is perfectly local, the reads are for εiλN bit intervals respectively, and moreover
they are all disjoint. Thus if DB1 is encrypted, then the perfect locality of Π
means there must exist an interval of εk+1λN bits in EDB that was not touched
by the observed reads (actually, there will be at least n̂k+1 such intervals) –
These are where the large result sets are stored (note that the adversary does
not query for the keyword corresponding to any of large sets, but only notices the
presence of a suspiciously large untouched interval). However, as we will show,
if DB0 was encrypted then the security of Π will mean there is a noticeable
probability that there is no such interval remaining untouched. We stress that
this will be due to the (forced) distribution of the reads, and not simply because
there is no room, as the same number of bits is read when either DB0 or DB1 in
encrypted.

Proving the latter claim on DB0 is the main technical part of the proof.
Intuitively, it holds because security forces the small intervals (say of size εiλN)
to be located in random-looking locations which do not leave large gaps (say of
size εi+1λN) between them too often, which implies that large intervals cannot
fit between them while remaining disjoint, effectively “killing” that space for
large intervals.

We will show that, for a specific choice of the constants, that for each i =
1, . . . , k, the queried sets of size εiλN will each kill at least λN bits of the EDB
from storing any larger intervals (in particular, intervals of size εjλN for j > i)
with constant probability. Since we have k different read pattern sets each killing
λN bits from storing anything larger with constant probability, we get that kλN
bits are killed with constant probability. But this means the entire EDB has been
killed with constant probability (here we use that k is a constant), and when
that happens the adversary can conclude that DB0 was encrypted – If DB1 had
been encrypted this would happen with probability 0.

We now discuss how to show that queries for a constant number of sets of size
εiN will kill λN bits (which is much larger than the actual number of bits read
by the server during its perfectly-local searching). To prove this we will consider
a sequence of adversaries A1,A2, . . . ,Ak - the purpose of Ai is to show that
the sets of size εiN kill enough space with constant probability, assuming that
the smaller sets each do so. The first adversary A1 is the simplest to describe,
and resembles our original attack from the Introduction. Adversary A1 draws
DB0,DB1 of size N with shapes

DB0 ← (n̂1 × ε1N) (3)

DB1 ← (n1 × ε1N ; n̂2 × ε2N), (4)

where n1 < n̂1 = ε−1
1 and ε1 < ε2 are constants. It populates the two databases

with a consistent set of keywords, meaning that the n1 keywords matching
ε1N documents DB1 are a random subset of the n̂1 such keywords in DB0.
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Intuitively, DB0 has a large number of keywords matching ε1N documents each,
and searching for each keyword induces a read by the server for a disjoint interval
λε1N bits. Thus searching for a random subset of n1 < n̂1 of those keywords will
reveal the location of a random subset of the disjoint intervals. In DB1, however,
there are only n1 of these keywords, but we can show that security forces their
distributions to be as they are in DB0.

Specifically, we haveA1 query for the n1 keywords matching ε1N documents in
either database, and then it computes their read patterns. If DB0 was encrypted,
then the intervals read by the server are chosen randomly from amongst n̂1

intervals of that size. We show (unconditionally) with good probability there is
a lot of space (about λN bits) in EDB where intervals of size ε2N or larger cannot
fit after the n1 intervals have been read. This happens because, for randomly
chosen intervals, the gap between them cannot be larger than ε2N too often.
Thus the larger intervals must go elsewhere in EDB. And since the scheme is
secure, DB1 must also exhibit this behavior (despite the read intervals not being
chosen from a larger set of intervals). In fact, this shows that when any database
contains n1 keywords with εN results each, then the resulting reads for those
keywords must be laid out in a way that eliminates a large amount of space for
larger intervals even though the actual bits read for them is very small, namely
n1ε1λN ' n̂1ε1λN .

We then iterate this approach; The next adversary A2 queries DB0,DB1 with
shapes

DB0 ← (n1 × ε1N ; n̂2 × ε2N) (5)

DB1 ← (n1 × ε1N ; n2 × ε2N ; n̂3 × ε3N). (6)

(So DB0 now has the shape that A1 chose for DB1.) The adversary A2 then
queries for tokens for all n1 keywords matching ε1N documents, and then a
random subset of the n̂2 keywords matching ε2N documents in DB1. (As before
these databases are made with consistent keywords and identifiers.) We show
that when DB0 is encrypted, conditioned on the read intervals of size ε1λN
disallowing λN bits for larger intervals, a random subset of intervals of size ε2λN
will disallow about another λN bits for larger intervals. Security again forces this
is to be true when DB1 is encrypted despite not being forced statistically. The
result is that with constant probability about 2λN bits of EDB can no longer
accommodate larger intervals.

By considering the sequence of A1, . . . ,Ak of adversaries and applying this
reasoning k times, we have that the entire database has been disallowed by a
relatively small number of small reads intervals with good probability, and then
we can finish the proof as sketched above.

Extensions to more general locality. The argument above worked for
perfect locality, meaning the server search algorithm for keyword w worked with
a single, contiguous read from EDB for exactly λ · |DB(w)| bits that is disjoint
from the read for any other search. It is easy to extend the lower bound to when
the server works with r = O(1) contiguous reads that total exactly λ · |DB(w)|
bits and are disjoint from all other reads by observing that one of the r reads



The Locality of Searchable Symmetric Encryption 363

must have size at least λ · |DB(w)|/r contiguous bits, and then adjusting the
parameters of the above argument to ensure that intervals of that size can be be
disallowed with good probability by the final adversary.

Other relaxations will be given. For instance, to adaptive the attack to work
with leakage function Lmax, we need to additionally arrange for the submitted
databases to always have the same number of documents, keywords, maximum
size result set DB(w). This only introduces minor technicalities.

Would a simpler attack work? It is fair to ask if the complexity of this
attack is necessary, and specifically if an attack like A1, which only queries for
keyword with |DB(w)| equal to two possible sizes (either ε1N or ε2N) could give
the lower bound and avoid the iterative argument.

While it is always possible in principle to simplify proofs, we can argue that
no such simple adversary could prove a lower bound better than M ≥ 2λN by
observing read patterns alone. This is because an SSE scheme, knowing that it
will only be queried for keywords with two different sizes |DB(w)|, could have
EDB reserve λN bits for the first size, and another λN bits for the second size.
Then it could simply store sets DB(w) of the first size in random order first half
of EDB with padding, then the sets DB(w) with the second size in the second
half.

This reasoning generalizes to show that any attack proving M ≥ kλN must
query keywords with |DB(w)| having at least k + 1 different sizes, as our attack
does.

5 A Positive Result: SSE with Logarithmic Locality

In the previous section, we have seen that any scheme with constant locality
produces encrypted index of size ω(N). To complement this result, we provide
a new scheme with logarithmic locality, at the cost of an asymptotically larger
encrypted index of size roughly N logN . At the same time, our scheme is going
to only leak the database size N , i.e., it is going to be Lmin-secure. None of the
previous SSE schemes achieved such locality level without additional leakage or
a larger worst-case blow-up of the encrypted database.

Hash tables. The scheme below relies on hash tables. Concretely, a hash table
implementation consists of a pair of algorithms (HTCreate,HTGet). The function
HTCreate takes as input a list L = {(li, di)}1≤i≤k of pairs (li, di) of strings, where
li ∈ {0, 1}� is the label and di ∈ {0, 1}r is the data, and outputs the hash table
HT. After running HT ← HTCreate(L), we have that HTGet(HT, l) returns d if
and only if (l, d) ∈ L, and returns ⊥ otherwise.

There exist hash-table implementations (for example, via variants of cuckoo
hashing [21]) with the following properties: The overall size of HT is O(k(r +

) + log2 k), and the algorithm HTGet needs to read from the hash table HT a
constant number (e.g. two) of blocks of 
 contiguous bits, as well as one r-bit
block, when searching for a label l = li. Moreover, HT does not depend on the
ordering of the list L.
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Description of the scheme. We now proceed to specify our new SSE scheme
Π = (KeyGen,EDBSetup,TokGen, Search) with logarithmic locality. It relies on
two keyed functions F and F ′, where F : K × {0, 1}∗ → K × K′ and F ′ :
K×N→ {0, 1}� (both later to be assumed as pseudorandom). Moreover, it uses a
symmetric encryption scheme (E ,D) with key space K′ and m-bit ciphertexts. In
particular, we are going to use the latter scheme to encrypt document identifiers
and we are going to assume that all identifiers are in the message space of the
scheme (E ,D) and their encryption results in ciphertext of exactly length s.

The four algorithms of Π now operate as follows:

Key Generation. Algorithm KeyGen simply generates a key K
$← K for F .

Setup. Assume that we are given DB with size N = 2t for some t ≥ 1, and for
every word w ∈ W, we use the notation DB(w) = {id1, . . . , idnw} to denote
its nw associated identifiers. We also need to consider the binary expansion
nw =

∑t−1
i=0 nw,i · 2i. (If N is not a power of two, we need to pad DB to

satisfy this by adding some dummy keyword-identifier pairs.)
Algorithm EDBSetup, on input DB andK, proceeds as follows: It initially sets
up t empty lists L0, L1, . . . , Lt−1. For every word w ∈ W, it then computes
two derived keys FK(w) = (Kw,0,Kw,1) and sets c = 0. Subsequently, for all
i = 0, . . . , t − 1, if nw,i = 1, we define the 
-bit label l = F ′

Kw,0
(i) and the

(2i · s)-bit data

d = E(Kw,1, idc) ‖ . . . ‖ E(Kw,1, idc+2i) ,

increase c by 2i, and add (l, d) to Li. Once done with the iteration, for all
i = 0, . . . , t − 1, we first add pairs (l, d) to Li until it contains exactly 2t−i

elements, where l is a random label and d is a random (2i · s)-bit string, and
then compute HTi ← HTCreate(Li). The final output is

EDB = HT0 ‖HT1 ‖ . . . ‖HTt−1 .

Token Generation. Algorithm TokGen, on inputs K and w, computes and
outputs the two derived keys (Kw,0,Kw,1)← FK(w).

Search. The search algorithm Search, on input EDB = HT0 ‖HT1 ‖ . . . ‖HTt−1

and (K0,K1), initially defines an empty response set R = ∅. Then, for all
i = 0, . . . , t − 1, it computes l ← F ′

K0
(i) and d ← HTGet(HTi, l). If d =

C1 ‖ . . . ‖C2i = ⊥, it adds D(K1, C1), . . . ,D(K1, C2i) to the response set R.
At the end, it outputs R.

Correctness, complexity and locality. Correctness of the SSE scheme
Π holds with high probability assuming pseudorandomness of F and F ′ – we
dispense with a formal analysis.

Assume now that we use the space- and lookup-efficient hash-table implemen-
tation mentioned above. Note first that every Li is going to always contain 2t−i

elements consisting of a pair (l, d) where |l| = 
 and |d| = 2i ·s. Indeed, we cannot
add more than 2t−i pairs (before possibly filling up Li) because each such pair
is associated with 2i keyword-identifier pairs, and overall there are N = 2t such
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pairs. For this reason, the size of HTi is going to be O(N(
+ s) + log(N)2), and
thus the overall size of EDB is

|EDB| = O(N logN · (
+ s) + log(N)3) .

As for locality, by the property of the hash tables, we are going to read O(1)
blocks of consecutive values for every i = 0, . . . , t − 1, thus obtaining locality
O(logN). Also, read efficiency is constant.

Security. We turn to the security of the SSE scheme Π . We start with non-
adaptive security, and below discuss the changes necessary in order to prove
adaptive security in the random-oracle model. Here, we are going to prove that
the scheme achieves the strong notion Lmin-SIM-security. Recall that we say that
(E ,D) has pseudorandom ciphertexts if no polynomial-time attacker can decide
whether a given oracle is behaving as EK(·) for random secret key K or whether
it is returning a fresh random string upon each invocation, except with negligible
advantage.

Theorem 10 (Non-adaptive Security of Π.). The above SSE-scheme Π is
Lmin-SIM-secure against non-adaptive attacks if F and F ′ are pseudorandom
functions and (E ,D) has pseudorandom ciphertexts.

Proof. Recall that in a non-adaptive attack, the attacker A first commits to key-
word queries w and a database DB. We also recall that in the real experiment
SIM-SSE0

Π,Lmin,A(λ), KeyGen is run, resulting in a key K, and then EDBSetup
is run, producing the encrypted database EDB. The attacker A is then given
EDB, together with the search tokens (Kw[i],0,Kw[i],1) = FK(w[i]) for i ∈ [|w|].
In contrast, in the ideal experiment SIM-SSE1

Π,Lmin,A,S(λ), the simulator S
initially only obtains N = |DB| and DB(w[i]) for i ∈ [|w|], and needs to output
EDB′ as well as search tokens (K ′

w[i],0,K
′
w[i],1) such that

Pr[SIM-SSE0
Π,Lmin,A(λ)⇒ 1]− Pr[SIM-SSE1

Π,Lmin,A,S(λ)⇒ 1] = negl(λ) .

Concretely, the simulator S operates as follows, assumingN = 2t. First, it creates
random and independent tokens (Kw[i],0,Kw[i],1) for i ∈ [|w|] and initializes
empty sets L0, . . . , Lt−1. For every i ∈ [|w|], it then does the following, with

DB(w[i]) = {id1, . . . , idnw} and nw[i] =
∑t−1

j=0 nw[i],j · 2j . It sets c = 0, and for
every j = 0, . . . t− 1, if nw[i],j = 1, it computes

d = E(Kw[i],1, idc) ‖ . . . ‖ E(Kw[i],1, idc+2j ) ,

adds (FKw[i],0
(j), d) to Lj , and increases c by 2j. Once done with the iteration,

for all j = 0, . . . , t − 1, the simulator adds pairs (l, d) to Lj until it contains
exactly 2t−j elements (where l is a random 
-bit label and d is a random (2j · s)-
bit string) and computes HTj ← HTCreate(Lj). The final output is EDB′ =
HT0 ‖HT1 ‖ . . . ‖HTt−1, together with the tokens (Kw[i],0,Kw[i],1) for i ∈ [|w|].

The proof now proceeds via a hybrid argument. The first hybrid experiment
H0 behaves the real-world experiment, in particular returning the distribution
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[EDB, {(Kw[i],0,Kw[i],1)}i∈[|w|]] to A. In the second hybrid, the function FK is re-
placed by a truly random function when running EDBSetup and when producing
the tokens (Kw[i],0,Kw[i],1) given to A, i.e., every search token is replaced with a
truly-random key pair. It is easy to see that Pr[H0 ⇒ 0]−Pr[H1 ⇒ 1] = negl(λ)
by the pseudorandomness of F .

For the next hybrid H2, when running EDBSetup, we are going to replace
F ′

Kw[i],0
with an independent random function for every i ∈ [|w|]. In particular,

this means that every label l of a pair (l, d) added to Lj when processing the
key-word w in EDBSetup is independent and uniform. Similarly to the above,
Pr[H1 ⇒ 0]− Pr[H2 ⇒ 1] = negl(λ) by the pseudorandomness of F ′.

Finally, in H3, for all i ∈ [|w|], we replace every data-block d containing
encryptions of identifiers in DB(w[i]) produced in EDBSetup with a randomly
chosen string of the appropriate length. It is not hard to see that H3 behaves
exactly as SIM-SSE1

Π,Lmin,A,S , and moreover, Pr[H2 ⇒ 0] − Pr[H3 ⇒ 1] =
negl(λ) by the pseudorandomness of (E ,D). ��

Adaptive security. We additionally propose an efficient instantiation of the
above scheme which is actively secure in the random oracle model. Note that, in
this case, the security notion allows the simulator to program the random oracle.

Concretely, we instantiate (E ,D) with the scheme encrypting M under secret
key K as EK(M) = R ‖ (H(K ‖R)⊕M), where R is a random λ-bit string, and
H is a hash function with output length equal the message length, to be modeled
as a random oracle in the proof. (As above, the total ciphertext length is denoted
as s.) Moreover, we also instantiate F ′ using the same hash function H , letting
F ′(Kw,0, i) = H(Kw,0‖〈i〉), where 〈i〉 is a binary encoding of the integer i ∈ N.

In the proof, the simulator S handles the random oracle queries, setting H(x)
to a random value whenever handling a query on input x ∈ {0, 1}∗. Moreover,
when the attacker chooses an index DB, S is given N = 2t and for all i =
0, 1, . . . , t− 1, adds 2t−i pairs (l, d) to the set Li, where l is a random 
-bit label
and d is a random (2i · s)-bit string. It then generates EDB as the concatenation
of the hash table created from L0, . . . , Lt−1, and hands EDB over to the attacker.
(Still, S keeps L0, L1, . . . , Lt−1 as its state.)

Later, upon each query w from the attacker, the simulator learns DB(w) =

{id1, . . . , idnw}, where nw =
∑t−1

i=0 nw,i · 2i. In this case, it generates random
Kw,0 and Kw,1 as the corresponding token. Moreover, it sets c = 0, and for
every i = 0, 1, . . . , t−1, if nw,i = 1, the simulator picks a random pair (l, d) ∈ Li

where d = R1 ‖C1 ‖ . . . ‖R2i ‖C2i , removes (l, d) from Li, and programs the
random oracle so that

H(Kw,0‖〈i〉) = l , H(Kw,1‖Rj)⊕ Cj = idc+j for all j = 1, . . . , 2i ,

and adds 2i to c. If the programming cannot succeed (because the corresponding
values are already set for H), the simulator aborts.

We omit a formal analysis that the above is a good simulation strategy, as it
follows from standard techniques. Overall, we obtain the following theorem.
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Theorem 11 (Adaptive Security of Π.). The above hash-based instantiation
of the SSE-scheme Π is Lmin-SIM-secure in the random oracle model if F is a
pseudorandom function.
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Abstract. We consider secret key agreement by multiple parties observ-
ing correlated data and communicating interactively over an insecure
communication channel. Our main contribution is a single-shot upper
bound on the length of the secret keys that can be generated, with-
out making any assumptions on the distribution of the underlying data.
Heuristically, we bound the secret key length in terms of “how far” is the
joint distribution of the initial observations of the parties and the eaves-
dropper from a distribution that renders the observations of the parties
conditionally independent across some partition, when conditioned on
the eavesdropper’s side information. The closeness of the two distribu-
tions is measured in terms of the exponent of the probability of error
of type II for a binary hypothesis testing problem, thus bringing out a
structural connection between secret key agreement and binary hypoth-
esis testing. When the underlying data consists of an independent and
identically distributed sequence, an application of our bound recovers
several known upper bounds for the asymptotic rate of a secret key that
can be generated, without requiring the agreement error probability or
the security index to vanish to 0 asymptotically.

Also, we consider the following problem of secure function computa-
tion with trusted parties: Multiple parties observing correlated data seek
to compute a function of their collective data. To this end, they communi-
cate interactively over an insecure communication channel. It is required
that the value of the function be concealed from an eavesdropper with
access to the communication. When is such a secure computation of a
given function feasible? Using the aforementioned upper bound, we de-
rive a necessary condition for the existence of a communication protocol
that allows the parties to reliably recover the value of a given function,
while keeping this value concealed from an eavesdropper with access to
(only) the communication.
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1 Introduction

A uniformly distributed random string that is shared by legitimate parties and
remains concealed from eavesdroppers is a cherished resource in cryptography.
It can be used to authenticate or secure the communication between the parties,
or as a password granting access to one or more members of a group. It was
pointed out first by Bennett, Brassard, and Robert [3] that parties observing
correlated data and with access to an authenticated, error-free, albeit insecure,
communication channel can harness the correlation in their observations to share
a (almost) uniform random string that is concealed from an eavesdropper ob-
serving the communication as well as some correlated side information. Such a
shared random string, termed a secret key (SK), is secure in the sense of infor-
mation theoretic security, without making any assumptions on the computation
capabilities of the eavesdropper.1

For two parties, the problem of SK agreement from correlated observations
is well-studied. The problem was introduced by Maurer [20] and Ahlswede and
Csiszár [1], who considered the case where the correlated observations of the
two parties are long sequences, generated by an independent and identically dis-
tributed (IID) random process. However, in certain applications it is of interest
to consider observations arising from a single realization of correlated random
variables (RVs).2 For instance, in applications such as biometric and hardware
authentication (cf. [23,14]), the correlated observations consist of different ver-
sions of the biometric and hardware signatures, respectively, recorded at the
registration and the authentication stages. To this end, Renner and Wolf [27]
derived bounds on the length of a SK that can be generated by two parties
observing a single realization of correlated RVs, using one-side communication.

The problem of SK agreement with multiple parties, for the IID setup, was
introduced in [13] (also, see [7] for an early formulation). In this work, we consider
the SK agreement problem for multiple parties observing a single realization of
correlated RVs.

Our main contributions are summarized below.

1.1 Main Contributions

We derive a single-shot upper bound on the length of SKs that can be gen-
erated by multiple parties observing correlated data, using interactive public
communication. Unlike the single-shot upper bound in [27], which is restricted
to two parties with one-way communication, we allow arbitrary interactive com-
munication between multiple parties.3 Asymptotically our bound is tight – its

1 While the SK is information theoretically secure, the security of the cryptographic
protocols using it might be based on computation complexity.

2 This model is sometimes referred to as the single-shot model to distinguish it from
the IID case.

3 A comparison between a restriction of our bound to one-way communication and the
bound in [27] is unavailable, since the latter involves auxiliary RVs and therefore, is
difficult to evaluate.
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application to the IID case recovers some previously known (tight) bounds on
the asymptotic SK rates. In fact, we strengthen the previously known asymp-
totic results since we do not require the probability of error in SK agreement or
the security index to be asymptotically 0.4

For the heuristic idea underlying our upper bound, consider the two party case
when the eavesdropper observes only the communication between the legitimate
parties (no side-information). Clearly, if the observations of the legitimate parties
are independent, a SK cannot be generated. We upper bound the length of SKs
that can be generated in terms of “how far” is the joint distribution of the
observations of the parties and from a distribution that renders their observations
independent. Specifically, for this special case, we show

Sε (X1, X2) ≤ − logβε+η

(
PX1X2 ,PX1 × PX2

)
+ 2 log(1/η),

where Sε (X1, X2) is the maximum length of a SK (for a given security index ε).
Here the distance between PX1X2 and PX1×PX2 is measured by βε, which is the
optimal probability of error of type II for testing the null hypothesis PX1X2 with
the alternative PX1×PX2 , given that the probability of error of type I is smaller
than ε. Similarly, in the general case, our main result in Theorem 1 bounds the
secret key length in terms of the distance between the joint distribution of the
observations of the parties and the eavesdropper and a distribution that renders
the observations of the parties conditionally independent across some partition,
when conditioned on the eavesdropper’s side information.

Our approach brings out a structural connection between SK agreement and
binary hypothesis testing. This is in the spirit of [24], where a connection be-
tween channel coding and binary hypothesis testing was used to establish an
upper bound on the rate of good channel codes (see, also, [35,16]). Also, our
upper bound is reminiscent of the measure of entanglement for a quantum state
proposed in [34], namely the minimum distance between the density matrix of
the state and that of a disentangled state. This measure of entanglement was
shown to be an upper bound on the entanglement of distillation in [34], where
the latter is the largest proportion of maximally entangled states that can be
distilled using a purification process [4].

As an application, we relate our result to the following problem of secure func-
tion computation with trusted parties introduced in [33] (for an early version of
the problem, see [22]): Multiple parties observing correlated data seek to compute
a function of their collective data. To this end, they communicate interactively
over a public communication channel, which is assumed to be authenticated and
error-free. It is required that the value of the function be concealed from an eaves-
dropper with access to the communication. When is such a secure computation
of a given function feasible?5 Using our aforementioned upper bound, we derive
a necessary condition for the existence of a communication protocol that allows

4 Such bounds that do not require the probability of error to vanish to 0 are called
strong converse bounds [12].

5 In contrast to the traditional definition of secure computing [37], the legitimate
parties are trusted and allowed to get any information about each other’s data.
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the parties to reliably recover the value of a given function, while keeping this
value concealed from an eavesdropper with access to (only) the communication.

1.2 Outline of Paper

The next section contains formal descriptions of our model, the allowed interac-
tive communication, and a SK, along with a definition of the SK capacity. Also,
we review some basic notions in binary hypothesis testing that will be used in
this paper. Our main result is Theorem 1 in Section 3; implications of this main
result are presented as corollaries. In Section 4, we show that our new upper
bound is asymptotically tight and leads to a strong converse for the SK capac-
ity. Implications for the secure computing problem with trusted parties, along
with illustrative examples, are given in Section 5. The final section contains a
discussion of our results.

1.3 Notations

For brevity, we use abbreviations SK, RV, and IID for secret key, random vari-
able, and independent and identically distributed, respectively; a plural form will
be indicated by appending an ‘s’ to the abbreviation. The RVs are denoted by
capital letters and the corresponding range sets are denoted by calligraphic let-
ters. The distribution of a RV U is given by PU . The set of all parties {1, ...,m}
is denoted by M. For a collection of RVs {U1, .., Um} and a subset A of M,
UA denotes the RVs {Ui, i ∈ A}. For a RV U , Un denotes n IID repetitions
of the RV U . Similarly, Pn denotes the distribution corresponding to the n IID
repetitions generated from P. All logarithms in this paper are to the base 2.

2 Preliminaries

We consider the problem of SK agreement using interactive public communi-
cation by m (trusted) parties. The ith party observes a discrete RV Xi taking
values in a finite set Xi, 1 ≤ i ≤ m.6 Upon making these observations, the
parties communicate interactively over a public communication channel that is
accessible by an eavesdropper, who additionally observes a RV Z such that the
RVs (XM, Z) have a distribution PXMZ . We assume that the communication
is error-free and each party receives the communication from every other party.
Furthermore, we assume that the public communication is authenticated and
the eavesdropper cannot tamper with it. Specifically, the communication is sent
over r rounds of interaction. In the jth round of communication, 1 ≤ j ≤ r, the
ith party sends Fij , which is a function of its observation Xi, a locally generated
randomness7 Ui and the previously observed communication

F11, ..., Fm1, F12, ..., Fm2, ..., F1j , ..., F(i−1)j .

6 Our main theorem remains valid for RVs taking countably many values.
7 The RVs U1, ..., Um are mutually independent and independent jointly of (XM, Z).



Bound for Multiparty Secret Key Agreement 373

The overall interactive communication F11, ..., Fm1, ..., F1r , ..., Fmr is denoted
by F.

Using the interactive communication F and their local observations, the
parties agree on a SK. In the next section, we formally explain this notion.

2.1 Secret Keys

A SK is a collection of RVs K1, ...,Km, where the ith party gets Ki, that agree
with probability close to 1 and are concealed, in effect, from an eavesdropper.
Formally, the ith party computes a function Ki of (Ui, Xi,F). Traditionally, the
RVs K1, ...,Km with a common range K constitute an (ε, δ)-SK if the following
two conditions are satisfied (for alternative definitions of secrecy, see [20,11,13])

P (K1 = · · · = Km) ≥ 1− ε, (1)

1

2
‖PK1FZ − Punif × PFZ‖ ≤ δ, (2)

where ‖ · ‖ is the variational distance and Punif is the uniform distribution on
K. The first condition above represents the reliable recovery of the SK and the
second condition guarantees security. In this work, we use the following alterna-
tive definition of a SK, which conveniently combines the recoverability and the
security conditions (cf. [25]): The RVs K1, ...,Km above constitute an ε-SK with
common range K if

1

2

∥∥∥PKMFZ − P
(M)
unif × PFZ

∥∥∥ ≤ ε, (3)

where

P
(M)
unif (kM) =

�(k1 = · · · = km)

|K| .

In fact, the two definitions above are closely related.

Proposition 1. Given 0 ≤ ε, δ ≤ 1, if KM constitute an (ε, δ)-SK under (1)
and (2), then they constitute an (ε+ δ)-SK under (3).

Conversely, if KM constitute an ε-SK under (3), then they constitute an (ε, ε)-
SK under (1) and (2).

Note that a SK generation protocol that satisfies (3) universally composable-
emulates an ideal SK generation protocol (see [6] for a definition).8 Therefore,
by the composition theorem in [6], the complex cryptographic protocols using
such SKs instead of perfect SKs are secure.9

We are interested in characterizing the maximum length log |K| of an ε-SK.

8 The emulation is with emulation slack ε, for an environment of unbounded compu-
tational complexity.

9 A perfect SK refers to unbiased shared bits that are independent of eavesdropper’s
observations.
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Definition 1. Given 0 ≤ ε < 1, denote by Sε (X1, ..., Xm | Z) the maximum
length log |K| of an ε-SK KM with common range K.

Next, we define the concept of SK capacity [20,1,13].

Definition 2. Given 0 < ε < 1, the ε-SK capacity C(ε) is defined as follows:

C(ε) := lim inf
n→∞

1

n
Sε(X

n
1 , ..., X

n
m | Zn),

where the RVs {XMt, Zt} are IID for 1 ≤ t ≤ n, with a common distribution
PXMZ .

The SK capacity C is defined as the limit

C := lim
ε→0

C(ε).

For the case when the eavesdropper does not observe any side information, i.e.,
Z = constant, the SK capacity for two parties was characterized by Maurer [20]
and Ahlswede and Csiszár [1]. Later, the SK capacity for a multiterminal model,
with Z =constant was characterized by Csiszár and Narayan [13]. The general
problem of characterizing the SK capacity for arbitrary Z remains open. Several
upper bounds for SK capacity are known [20,1,21,26,13,15], which are tight for
special cases.

In this paper, we present a single-shot upper bound on Sε (X1, ..., Xm | Z).
As a consequence, we obtain an upper bound on C(ε). In fact, for the case Z=
constant, this upper bound coincides with C, thus establishing that

C = C(ε), ∀ 0 < ε < 1.

This is a strengthening of the result in [32], where a strong converse was estab-
lished for (ε, δn)-SKs under (1) and (2), with δn → 0 as n→ 0.

Our upper bound is based on relating the SK agreement problem to a binary
hypothesis testing problem; in the next section we review some basic concepts
in hypothesis testing that will be used.

2.2 Hypothesis Testing

Consider a binary hypothesis testing problem with null hypothesis P and alter-
native hypothesis Q, where P and Q are distributions on the same alphabet X .
Upon observing a value x ∈ X , the observer needs to decide if the value was
generated by the distribution P or the distribution Q. To this end, the observer
applies a stochastic test T, which is a conditional distribution on {0, 1} given
an observation x ∈ X . When x ∈ X is observed, the test T chooses the null
hypothesis with probability T(0|x) and the alternative hypothesis with proba-
bility T (1|x) = 1−T (0|x). For 0 ≤ ε < 1, denote by βε(P,Q) the infimum of the
probability of error of type II given that the probability of error of type I is less
than ε, i.e.,
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βε(P,Q) := inf
T :P[T]≥1−ε

Q[T], (4)

where
P[T] =

∑
x

P(x)T(0|x),

Q[T] =
∑
x

Q(x)T(0|x).

We close this section by noting two important properties of the quantity βε(P,Q).

1. Data Processing Inequality. Let W be a stochastic mapping from X
to Y, i.e., for each x ∈ X , W(· | x) is a distribution on Y. Then, with
PW(y) =

∑
x P(x)W(y|x) and QW(y) =

∑
x Q(x)W(y|x) , we have

βε(P,Q) ≤ βε(PW,QW). (5)

In other words, if we add extra noise to the observations, then βε can only
increase.

2. Stein’s Lemma. (cf. [19, Theorem 3.3]) For every 0 < ε < 1, we have

lim
n→∞

− 1

n
log βε(P

n,Qn) = D(P‖Q), (6)

where D(P‖Q) is the Kullback-Leibler divergence given by

D(P‖Q) =
∑
x∈X

P(x) log
P(x)

Q(x)
,

with the convention 0 log(0/0) = 0.

3 Main Result: Upper Bound on the Length of a
Multiparty Secret Key

In this section, we present a new methodology for proving converse results for
the multiparty SK agreement problem. Our main result is an upper bound on
the length log |K| of a SK generated by multiple parties, using interactive public
communication.

Consider a (nontrivial) partition π = {π1, ..., πl} of the set M. Heuristically,
if the underlying distribution of the observations PXMZ is such that XM are
conditionally independent across the partition π given Z, the length of a SK
that can be generated is 0. Our approach is to bound the length of a generated
SK in terms of “how far” is the distribution PXMZ from another distribution
Qπ

XMZ that renders XM conditionally independent across the partition π given

Z – the closeness of the two distributions is measured by βε

(
PXMZ ,Qπ

XMZ

)
.

Specifically, for a partition π with |π| ≥ 2 parts, let Q(π) be the set of all
distributions Qπ

XMZ that factorize as follows:

Qπ
XM|Z(x1, . . . , xm|z) =

|π|∏
i=1

Qπ
Xπi

|Z(xπi |z). (7)

Our main result is given below.
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Theorem 1 (Single-Shot Converse). Given 0 ≤ ε < 1, 0 < η < 1− ε, and a
partition π of M. It holds that

Sε (X1, ..., Xm | Z) ≤ 1

|π| − 1

[
− log βε+η

(
PXMZ ,Qπ

XMZ

)
+ |π| log(1/η)

]
(8)

for all Qπ
XMZ ∈ Q(π).

To prove Theorem 1, we first relate the SK length to the exponent of the probabil-
ity of error of type II in a binary hypothesis testing problem where an observer of
(KM,F, Z) seeks to find out if the underlying distribution was PXMZ or Qπ

XMZ .
This result is stated next.

Lemma 1. For an ε-SK KM with a common range K generated using an in-
teractive communication F, let WKMF|XMZ be the resulting conditional distri-
bution on (KM,F) given (XM, Z). Then, for every 0 < η < 1 − ε and every
Qπ

XMZ ∈ Q(π), we have

log |K| ≤ 1

|π| − 1

[
− log βε+η

(
PKMFZ ,Qπ

KMFZ

)
+ |π| log(1/η)

]
, (9)

where PKMFZ is the marginal of (KM,F, Z) for the joint distribution

PKMFXMZ = WKMF|XMZ PXMZ ,

and Qπ
KMFZ is the corresponding marginal for the joint distribution

Qπ
KMFXMZ = WKMF|XMZ Qπ

XMZ .

Also, we need the following basic property of interactive communication which
was pointed out in [32].

Lemma 2. Given Qπ
XMZ ∈ Q(π) and an interactive communication F, the fol-

lowing holds:

Qπ
XM|FZ(xM|f , z) =

|π|∏
i=1

Qπ
Xπi

|FZ(xπi |f , z),

i.e., conditionally independent observations remain so when conditioned addi-
tionally on an interactive communication.

Proof of Lemma 1. We establish (9) by constructing a test for the hypothesis
testing problem with null hypothesis P = PKMFZ and alternative hypothesis
Q = Qπ

KMFZ . Specifically, we use a deterministic test10 with the following ac-
ceptance region (for the null hypothesis)11:

A :=

{
(kM, f , z) : log

P
(M)
unif (kM)

Qπ
KM|FZ(kM|f , z)

≥ λπ

}
,

10 In fact, we use a simple threshold test on the log-likelihood ratio but with P
(M)
unif ×PFZ

in place of PKMFZ , since the two distributions are close to each other by the security
condition (3).

11 The values (kM, f , z) with Qπ
KM|FZ(kM|f , z) = 0 are included in A.
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where
λπ = (|π| − 1) log |K| − |π| log(1/η).

For this test, the probability of error of type II is bounded above as

Qπ
KMFZ(A) =

∑
f ,z

Qπ
FZ(f , z)

∑
kM:

(kM,f ,z)∈A

Qπ
KM|FZ(kM|f , z)

≤ 2−λπ

∑
f ,z

Qπ
FZ(f , z)

∑
kM

P
(M)
unif (kM)

= |K|1−|π|η−|π|. (10)

On the other hand, the probability of error of type I is bounded above as

PKMFZ (Ac) ≤ 1

2

∥∥∥PKMFZ − P
(M)
unif × PFZ

∥∥∥+ P
(M)
unif × PZF (Ac)

≤ ε+ P
(M)
unif × PFZ(Ac), (11)

where the first inequality follows from the definition of variational distance, and
the second is a consequence of the security condition (3) satisfied by the ε-SK
KM. The second term above can be expressed as follows:

P
(M)
unif × PFZ (Ac) =

∑
f ,z

PFZ (f , z)
1

|K|
∑
k

� ((k, f , z) ∈ Ac)

=
∑
f ,z

PFZ(f , z)
1

|K|
∑
k

�

(
Qπ

KM|FZ(k|f , z)|K||π|η|π| > 1
)
,

(12)

where k = (k, . . . , k). The inner sum can be further upper bounded as∑
k

�

(
Qπ

KM|FZ(k|f , z)|K||π|η|π| > 1
)
≤
∑
k

(
Qπ

KM|FZ(k|f , z)|K||π|η|π|
) 1

|π|

= |K|η
∑
k

Qπ
KM|FZ(k|f , z)

1
|π|

= |K|η
∑
k

|π|∏
i=1

Qπ
Kπi

|FZ(k|f , z)
1

|π| , (13)

where the previous equality uses Lemma 2 and the fact that given F, Kπi is a
function of (Xπi , Uπi). Next, an application of Hölder’s inequality to the sum on
the right-side of (13) yields

∑
k

|π|∏
i=1

Qπ
Kπi

|FZ(k|f , z)
1

|π| ≤
|π|∏
i=1

(∑
k

Qπ
Kπi

|FZ(k|f , z)
) 1

|π|

≤
|π|∏
i=1

(∑
kπ

Qπ
Kπi

|FZ(kπi |f , z)
) 1

|π|

= 1. (14)
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Upon combining (12)-(14) we obtain

P
(M)
unif × PFZ(Ac) ≤ η,

which along with (11) gives

PKMFZ (Ac) ≤ ε+ η. (15)

It follows from (15) and (10) that

βε+η

(
PKMFZ ,Qπ

KMFZ

)
≤ |K|1−|π|η−|π|,

which completes the proof. ��

Proof of Theorem 1. Using the data processing inequality (5) with P = PXMZ ,
Q = Qπ

XMZ , and W = WKMF|XMZ , we get

βε+η

(
PXMZ ,Qπ

XMZ

)
≤ βε+η

(
PKMFZ ,Qπ

KMFZ

)
,

which along with Lemma 1 gives Theorem 1. ��

We close this section with a simple extension of the bound of Theorem 1. Con-
sider a RVZ such thatXM — Z — Z is aMarkov chain. Then,Sε (X1, ..., Xm | Z)
cannot decrease if the eavesdropper observes Z instead of Z, i.e.,

Sε (X1, ..., Xm | Z) ≤ Sε

(
X1, ..., Xm | Z

)
.

This observation and Theorem 1 give the following result.

Corollary 1. Given 0 ≤ ε < 1, 0 < η < 1− ε, a partition π of M and a RV Z
such that XM — Z — Z is a Markov chain. It holds that

Sε (X1, ..., Xm | Z) ≤ 1

|π| − 1

[
− log βε+η

(
PXMZ ,Qπ

XMZ

)
+ |π| log(1/η)

]
,

for all Qπ
XMZ

satisfying Qπ
XM|Z =

|π|∏
i=1

Qπ
Xπi

|Z .

4 Asymptotic Tightness of the Upper Bound

In this section, we show that our upper bound on Sε (X1, ..., Xm | Z) in Theorem
1 is asymptotically tight. Moreover, it extends some previously known upper
bounds on C to upper bounds on C(ε), for all 0 < ε < 1.

First, consider the case where the eavesdropper gets no side information, i.e.,
Z = constant. With this simplification, the SK capacity C for multiple parties
was characterized by Csiszár and Narayan [13]. Furthermore, they introduced
the remarkable expression on the right-side of (16) below as an upper bound
for C, and showed its tightness for m = 2, 3. Later, the tightness of the upper
bound for arbitrary m was shown in [9]; we summarize these developments in
the result below.
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Theorem 2. [13,9] The SK capacity C for the case when eavesdropper’s side
information Z = constant is given by

C = min
π

1

|π| − 1
D

(
PXM

∥∥∥∥ |π|∏
i=1

PXπi

)
, (16)

where the min is over all partitions π of M.

This generalized the classic result of Maurer [20] and Ahlswede and Csiszár [1],
which established that for two parties, C = D (PX1X2‖PX1 × PX2), which is the
same as Shannon’s mutual information between X1 and X2.

The converse part of Theorem 2 relied critically on the fact that ε → 0 as
n → 0. Below we strengthen the converse and show that the upper bound for
SK rates implied by Theorem 2 holds even when ε is fixed. Specifically, for
0 < ε < 1 and Z = constant, an application of Theorem 1 to the IID rvs Xn

M,

with Qπ
Xn

M
=
∏|π|

i=1 P
n
Xπi

, yields

Sε (X
n
1 , ..., X

n
m) ≤ 1

|π| − 1

⎡⎣− log βε+η

⎛⎝Pn
XM ,

|π|∏
i=1

Pn
Xπi

⎞⎠+ |π| log(1/η)

⎤⎦ ,

where η < 1− ε. Therefore, using Stein’s Lemma (see (6)) we get

C(ε) ≤ 1

|π| − 1
lim inf
n→∞

− 1

n
log βε+η

⎛⎝Pn
XM ,

|π|∏
i=1

Pn
Xπi

⎞⎠
=

1

|π| − 1
D

(
PXM

∥∥∥∥ |π|∏
i=1

PXπi

)
.

Thus, we have established the following strong converse for the SK capacity
when Z = constant.

Corollary 2 (Strong Converse). For every 0 < ε < 1, the ε-SK capacity
when Z = constant is given by

C(ε) = C = min
π

1

|π| − 1
D

(
PXM

∥∥∥∥ |π|∏
i=1

PXπi

)
.

Next, we consider the general case for two parties, where the eavesdropper’s
side information Z may not be constant. Applying Corollary 1 with

Qπ
Xn

1 Xn
2 Z

n = Pn
X1|Z Pn

X2|Z Pn
Z

and following the steps above, we get the intrinsic conditional information bound
of [21], without requiring the ε to vanish to 0.12

12 This bound is a stepping stone for other, often tighter, bounds [26,15].
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Corollary 3. For every 0 < ε < 1, the ε-SK capacity for two parties (m = 2)
is bounded above as13

C(ε) ≤ min
PZ̄|Z

I(X1 ∧X2|Z̄).

5 Implications for Secure Computing with Trusted
Parties

In this section, we present a connection of our result to a problem of secure
function computation with trusted parties, where the parties seek to compute
a function of their observations using a communication that does not reveal
the value of the function by itself (without the observations at the terminals).
This is in contrast to the traditional definition of secure computing [37] where
the communication is secure but the parties are required not to get any more
information than the computed function value. This problem was introduced
in [33] where a matching necessary and sufficient condition was given for the
feasibility of secure computing in the asymptotic case with IID observations.
Here, using Theorem 1, we derive a necessary condition for the feasibility of
such secure computing for general observations (not necessarily IID).

5.1 Problem Formulation

Consider m ≥ 2 parties observing RVs X1, ..., Xm taking values in finite sets
X1, ...,Xm, respectively. Upon making these observations, the parties communi-
cate interactively in order to securely compute a function g : X1× ...×Xm → G in
the following sense: The ith party forms an estimate G(i) of the function based
on its observation Xi, local randomization Ui and interactive communication
F, i.e., G(i) = G(i)(Ui, Xi,F). For 0 ≤ ε, δ < 1, a function g is (ε, δ)-securely
computable if there exists a protocol satisfying

P
(
G = G(1) = ... = G(m)

)
≥ 1− ε, (17)

1

2
‖PGF − PG × PF‖ ≤ δ, (18)

where G = g (XM). The first condition captures the reliability of computa-
tion and the second condition ensures the security of the protocol. Heuristically,
for security we require that an observer of (only) F must not get to know the
computed value of the function. We seek to characterize the (ε, δ)-securely com-
putable functions g.

In [33], an asymptotic version of this problem was addressed. The parties
observe Xn

1 , ..., X
n
m and seek to compute Gt = g (X1t, ..., Xmt) for each t ∈

{1, ..., n}; consequently, the RVs {Gt, 1 ≤ t ≤ n} are IID. A function g is securely

computable if the parties can form estimates G
(n)
(1) , ..., G

(n)
(m) such that

P
(
Gn = G

(n)
(1) = ... = G

(n)
(m)

)
≥ 1− εn,

1
2 ‖PGnF − PGn × PFZ‖ ≤ εn,

13 The min instead of inf is justified by the support lemma [12] (see also [10]).
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where lim
n→∞

εn = 0. The following characterization of securely computable func-

tions g is known.

Theorem 3. [33] For the asymptotic case described above, a function g is se-
curely computable if H(G) < C, where H(G) is the entropy of the RV G =
g(X1, ..., Xm) and C is the SK capacity.

Conversely, if a function g is securely computable, then H(G) ≤ C.

Heuristically, the necessary condition above follows upon observing that if the
parties can securely compute the function g, then they can extract a SK of rate
H(G) from RVsGn. Therefore,H(G) must be necessarily less than the maximum
rate of a SK that can be generated, namely the SK capacity C.

In the next section, this heuristic is applied to obtain a necessary condition
for a function g to be (ε, δ)-securely computable for general observations.

5.2 A Necessary Condition for Functions to Be Securely
Computable

We present a necessary condition for a function g to be (ε, δ)-securely com-
putable. The following definition is required.

Definition 3. Denote by P(X ) the set {P : P (x) ≥ 0 ∀x, and
∑

x P (x) ≤ 1} .
For PX ∈ P(X ), the min-entropy of PX is given by

Hmin (PX) = − logmax
x

PX (x) .

The ε-smooth min-entropy of PX (cf. [5,25,27]) is defined as

Hε
min(PX) := max

P∈P(X):
1
2 ‖PX−P‖≤ε

Hmin(P).

Corollary 4. For 0 ≤ ε, δ < 1 with ε + δ < 1, if a function g is (ε, δ)-securely
computable, then

Hξ
min(PG) ≤

1

|π| − 1

[
− log βμ

(
PXMZ ,Qπ

XMZ

)
+ |π| log(1/η)

]
+ 2 log(1/2ζ) + 1,

∀Qπ
XMZ ∈ Q(π), (19)

for every μ := ε+ δ + 2ξ + ζ + η with ξ, ζ, η > 0 such that μ < 1, and for every
partition π of M.

The proof of Corollary 4 is based on extracting an ε-SK from the RV G that the
parties share. We need the following version of the Leftover-Hash Lemma, which
is a significant extension of the original result of Impagliazzo-Levin-Luby in [17]
(see, also, [2]).
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Lemma 3. (cf. [25,27]) For 0 ≤ ε < 1 and a RV X taking values in X , there
exists14 K : X → K such that the RV K = K(X) satisfies

1

2
‖PK − Punif‖ ≤ 2ε+

1

2

√
|K|2−Hε

min(PX), (20)

where Punif is the uniform distribution on K.

Proof of Corollary 4. Lemma 3 with X = G and condition (18) imply that
there exists K = K(G) with

1

2

∥∥PK(G)F − Punif × PF

∥∥
≤ 1

2

∥∥PK(G)F − PK(G) × PF

∥∥+ 1

2

∥∥PK(G) × PF − Punif × PF

∥∥
≤ 1

2
‖PGF − PG × PF‖+

1

2

∥∥PK(G) − Punif

∥∥
≤ δ + 2ξ +

1

2

√
|K|2−Hξ

min(PG).

Thus, in the view of Proposition 1, for |K| = �2Hξ
min(PG)4ζ2�, the RV K consti-

tutes15 an (ε+ δ + 2ξ + ζ)-SK. An application of Theorem 1 gives (19). ��

5.3 Illustrative Examples

Example 1. (Computing functions of independent observations using a
perfect SK). Suppose the ith party observes Ui, where the RVs U1, ..., Um are
mutually independent. Furthermore, all parties share a κ-bit perfect SK K which
is independent of UM. How many bits κ are required to (ε, δ)-securely compute
a function g (U1, ..., Um)?

Note that the data observed by the ith party is given by Xi = (Ui,K). A
simple calculation shows that for every partition π of M,

βε

⎛⎝PXM ,

|π|∏
i=1

PXπi

⎞⎠ ≥ (1 − ε)κ1−|π|,

and therefore, by Corollary 4 a necessary condition for g to be (ε, δ)-securely
computable is

Hξ
min(PG) ≤ κ+

1

|π| − 1
(|π| log(1/η) + log(1/(1− μ))) + 2 log(1/2ζ) + 1,(21)

for every ξ, ζ, η > 0 satisfying μ = ε+ δ + 2ξ + ζ + η < 1.

14 A randomly chosen function from a 2-universal hash family suffices.
15 Strictly speaking, the estimates K1, ..., Km of K formed by different parties
constitute the (ε + δ + 2ξ + ζ)-SK in the sense of (3).
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For the special case when Ui = Bn
i , a sequence of independent, unbiased bits,

and
g (Bn

1 , ..., B
n
m) = B11 ⊕ ...⊕Bm1, ..., B1n ⊕ ...⊕Bmn,

i.e., the parties seek to compute the (element-wise) parities of the bit sequences,

it holds that Hξ
min(PG) ≥ n. Therefore, (ε, δ)-secure computing is feasible only if

n ≤ κ+O(1). We remark that this necessary condition is also (almost) sufficient.
Indeed, if n ≤ κ, all but the mth party can reveal all their bits Bn

1 , . . . , B
n
m−1

and the mth party can send back Bn
1 ⊕ . . .⊕ Bn

m ⊕Kn, where Kn denotes any
n out of κ bits of K. Clearly, this results in a secure computation of g.

Example 2. (Secure transmission). Two parties sharing a κ-bit perfect SK
K seek to exchange a message M securely.16 To this end, they communicate
interactively using a communication F, and based on this communication the
second party forms an estimate M̂ of the first party’s message M . This protocol
accomplishes (ε, δ)-secure transmission if

P
(
M = M̂

)
≥ 1− ε, 1

2 ‖PMF − PM × PF‖ ≤ δ.

The classic result of Shannon [30] implies that (0, 0)-secure transmission is fea-
sible only if κ is at least log ‖M‖, where ‖M‖ denotes the size of the message
space.17 But, can we relax this constraint for ε, δ > 0? In this example, we
will give a necessary condition for the feasibility of (ε, δ)-secure transmission by
relating it to the previous example.

Specifically, let the observations of the two parties consist of X1 = (M,K),
X2 = K. Then, (ε, δ)-secure transmission of M is tantamount to securely com-
puting the function g(X1, X2) = M . Therefore, using (21), (ε, δ)-secure trans-
mission of M is feasible only if

Hξ
min(PM ) ≤ κ+ 2 log(1/η) + log(1/(1− μ)) + 2 log(1/2ζ) + 1, (22)

for every ξ, ζ, η > 0 satisfying μ = ε+ δ + 2ξ + ζ + η < 1.
Condition (22) brings out a trade-off between κ and ε + δ (cf. [18, Problems

2.12 and 2.13]). For an illustration, consider a message M consisting of a RV Y
taking values in a set Y = {0, 1}n∪{0, 1}2n and with the following distribution:

PY (y) =

{
1
2 ·

1
2n y ∈ {0, 1}n

1
2 ·

1
22n y ∈ {0, 1}2n .

For ε + δ = 0, we know that secure transmission will require κ to be more
than the worst-case message length 2n. But perhaps by allowing ε + δ to be
greater than 0, we can make do with fewer SK bits; for instance, perhaps κ
equal to H(M) = (3/2)n+ 1 will suffice (note that the average message length
equals (3/2)n). The necessary condition above says that this is not possible if

16 A message M is a RV with known distribution PM .
17 This is a slight generalization of Shannon’s original result; see [18, Theorem 2.7] for
a proof.
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ε+ δ < 1/2. Indeed, since Hξ
min(PY ) ≥ 2n for ξ = 1/4, we get from (22) that the

message M = Y can be (ε, δ)-securely transmitted only if 2n ≤ κ+O(1), where
the constant depends on ε and δ.

6 Discussion

The evaluation of the upper bound in Theorem 1 relies on the computation of
βε(P,Q). The latter is given by a linear program (see (4)), solving which has a
polynomial complexity in the size of the observation space. Also, weaker bounds
than (8) can be obtained by using upper bounds on − logβε(P,Q); the following
is easy to show:

− log βε(P,Q) ≤ inf
γ

γ − log

(
P

(
log

P(X)

Q(X)
≤ γ

)
− ε

)
.

In particular, using γ = Dα(P,Q) + 1
1−α log(1 − ε − ε′), where Dα(P,Q) is the

Rényi’s divergence of order α > 1 [29] given by

Dα(P,Q) =
1

α− 1
log
∑
x∈X

P(x)αQ(x)1−α,

it can be shown that

− logβε(P,Q) ≤ Dα(P,Q) +
1

1− α
log(1− ε− ε′)− log (ε′) .

In general, this bound is not tight, but it can lead to an upper bound on SK
length that is easier to evaluate than the original bound (8) and can also be used
to prove Stein’s lemma (see (6)). Tighter bounds are available when P and Q
correspond to IID RVs or a Markov chain [36].

Finally, we remark that we did not present any general protocols for multi-
party SK agreement or for secure function computation with trusted parties. For
the SK agreement problem, it is possible to mimic the approach in [20,1,13,27]
to obtain protocols that first use communication for information reconciliation
and then extract SKs using privacy amplification. The challenge in the multi-
party setup is to identify the appropriate information to be reconciled. The task
is perhaps even more daunting for the secure function computation with trusted
parties where, at the outset, the communication must be selected to be almost
independent of the computed function value. A sufficient condition for the ex-
istence of such communication can be derived based on the approach in [8] (cf.
[28]). Specifically, the sufficient condition will guarantee the existence of ran-
dom (noninteractive) communication that is almost independent of the function
value and at the same time allows each party to recover the collective data of
all the parties. But it is unclear if the resulting sufficient condition matches the
necessary condition in Corollary 4. In particular, we cannot verify or contra-
dict the following intriguing observations made in [13] and [33] (see, also, [31]),
respectively:
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1. A largest rate SK can be generated by recovering the collective data of all
the parties Xn

M, locally, at each party.18

2. Every securely computable function can be computed by first recovering the
entire data at each terminal, using a communication that does not give away
the value of g.

Examining if these asymptotic principles hold in the general single-shot setting
is an interesting future research direction.
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5. Cachin, C.: Smooth entropy and Rényi entropy. In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 193–208. Springer, Heidelberg (1997)

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Proc. Annual Symposium on Foundations of Computer Science (also,
see Cryptology ePrint Archive, Report 2000/067), 136–145 (2001)

7. Cerf, N., Massar, S., Schneider, S.: Multipartite classical and quantum secrecy
monotones. Physical Review A 66(4), 042309 (2002)

8. Chan, C.: Agreement of a restricted secret key. In: Proc. IEEE International
Symposium on Information Theory, pp. 1782–1786 (July 2012)

9. Chan, C., Zheng, L.: Mutual dependence for secret key agreement. In: Proc.
Annual Conference on Information Sciences and Systems (CISS) (2010)

10. Christandl, M., Renner, R., Wolf, S.: A property of the intrinsic mutual
information. In: Proc. IEEE International Symposium on Information Theory,
p. 258 (June 2003)

11. Csiszár, I.: Almost independence and secrecy capacity. Prob. Pered. Inform. 32(1),
48–57 (1996)

12. Csiszár, I., Körner, J.: Information theory: Coding theorems for discrete memo-
ryless channels, 2nd edn. Cambridge University Press (2011)

13. Csiszár, I., Narayan, P.: Secrecy capacities for multiple terminals. IEEE Trans.
Inf. Theory 50(12), 3047–3061 (2004)

14. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM Journal on
Computing 38(1), 97–139 (2008)

18 Recovering Xn
M at a party is referred to as the party attaining omniscience [13].



386 H. Tyagi and S. Watanabe

15. Gohari, A.A., Anantharam, V.: Information-theoretic key agreement of multiple
terminals part i. IEEE Trans. Inf. Theory 56(8), 3973–3996 (2010)

16. Hayashi, M., Nagaoka, H.: General formulas for capacity of classical-quantum
channels. IEEE Trans. Inf. Theory 49(7), 1753–1768 (2003)

17. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-
way functions. In: Proc. Annual Symposium on Theory of Computing, pp. 12–24
(1989)

18. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman &
Hall/CRC (2007)

19. Kullback, S.: Information Theory and Statistics. Dover Publications (1968)
20. Maurer, U.M.: Secret key agreement by public discussion from common informa-

tion. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)
21. Maurer, U.M., Wolf, S.: Unconditionally secure key agreement and the intrinsic

conditional information. IEEE Trans. Inf. Theory 45(2), 499–514 (1999)
22. Orlitsky, A., Gamal, A.E.: Communication with secrecy constraints. In: STOC,

pp. 217–224 (1984)
23. Pappu, R.S.: Physical one-way functions. Ph. D. Dissertation, Massachussetts

Institute of Technology (2001)
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Abstract. In recent years, secure two-party computation (2PC) has
been demonstrated to be feasible in practice. However, all efficient
general-computation 2PC protocols require multiple rounds of interac-
tion between the two players. This property restricts 2PC to be only
relevant to scenarios where both players can be simultaneously online,
and where communication latency is not an issue.
This work considers the model of 2PC with a single round of inter-

action, called Non-Interactive Secure Computation (NISC). In addition
to the non-interaction property, we also consider a flavor of NISC that
allows reusing the first message for many different 2PC invocations, pos-
sibly with different players acting as the player who sends the second
message, similar to a public-key encryption where a single public-key
can be used to encrypt many different messages.
We present a NISC protocol that is based on the cut-and-choose

paradigm of Lindell and Pinkas (Eurocrypt 2007). This protocol achieves
concrete efficiency similar to that of best multi-round 2PC protocols
based on the cut-and-choose paradigm. The protocol requires only t gar-
bled circuits for achieving cheating probability of 2−t, similar to the
recent result of Lindell (Crypto 2013), but only needs a single round of
interaction.
To validate the efficiency of our protocol, we provide a prototype im-

plementation of it and show experiments that confirm its competitiveness
with that of the best multi-round 2PC protocols. This is the first proto-
type implementation of an efficient NISC protocol.
In addition to our NISC protocol, we introduce a new encoding tech-

nique that significantly reduces communication in the NISC setting. We
further show how our NISC protocol can be improved in the multi-round
setting, resulting in a highly efficient constant-round 2PC that is also
suitable for pipelined implementation.

1 Introduction

Secure two-party computation (2PC) is a very powerful tool that allows two
participants to compute any function of their private inputs without revealing
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any information about the inputs except for the value of the function. Further-
more, if the execution of the 2PC protocol is completed, it is guaranteed that its
output is the correct output. In this work, unless said otherwise, we only discuss
2PC protocols that are secure even against malicious (aka active) participants,
who might arbitrarily deviate from the protocol that they should be executing.
The investigation of secure two-party protocols began with the seminal work
of Yao [Yao86] that showed the feasibility of this concept. In recent years it
was shown that the theoretical framework of secure two-party computation can
be efficiently implemented and can be run in reasonable time, even under the
strongest security guarantees (see, e.g. [PSSW09, SS11, NNOB12, KSS12]).

Non-Interactive Secure Computation (NISC). A major drawback of many
2PC protocols is that they require several rounds of interaction (e.g., [LP07,
LP11] with a constant number of rounds, or [NNOB12] with a number of rounds
that depends on the function). This paper focuses on efficient constructions of
protocols for non-interactive secure computation (NISC) that run in a single
round of interaction.

We consider three flavors of NISC. In the first, which we refer to by One-
Sender NISC (OS-NISC), there are only two parties, a receiver and a sender. The
receiver sends the first message, the sender replies with the second message, and
then the receiver outputs the result of the computation. This is essentially a 2PC
protocol with the additional restriction of having only one round of interaction.
(Following [IKO+11], throughout this work we refer to the party that sends the
first message and receives the final output as the receiver or as P1, and refer to
the party that sends the second message as the sender or P2.)

The second flavor of NISC, which we call Multi-Sender NISC (MS-NISC), is
an extension of OS-NISC where the first message can be used for running secure
computation with many different senders. I.e., the receiver broadcasts its first
(single) message; each party that wants to participate in a secure computation
with the receiver sends a message back to the receiver; then, after receiving
second messages from several (possibly different) senders, the receiver outputs
the results of its computation with all thee senders (or uses these output values
in other protocols). We stress that each sender does not trust other senders, nor
the receiver, and wishes to maintain privacy of its input even if everyone else
colludes.

A limitation of MS-NISC is that the receiver has to aggregate and output
all the secure computation results together. The last flavor of NISC, which we
call Adaptive MS-NISC, does not have this limitation. Adaptive MS-NISC is
essentially like MS-NISC, except that the receiver outputs each of the secure
computation results as soon as it gets it (thus, allowing the adversary, who
might control some senders, to pick its next inputs based on those results).

In this work we focus on the first two flavors, and only briefly discuss the
third flavor where relevant.

Why NISC? Let us begin with a motivating example. Suppose that there is
a known algorithm that receives the DNA data of two individuals and decides
whether they are related. People would like to use this algorithm to find family
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relatives, but on the other hand they are not willing to publish their DNA data
(which can, e.g., predict their chances of being affected by different diseases). A
possible solution is to use a secure computation that implements the algorithm
and is run between any pair of people who suspect that they might be related. A
multi-round protocol for secure computation requires the participants to coor-
dinate a time where they can both participate in the protocol, and run a secure
computation application that exchanges multiple rounds of communication with
the application run by the other party. A solution using NISC is much simpler
and eliminates the synchronization problem: each interested person can publish,
say on his Facebook wall, his first message in the protocol, secretly encoding
his DNA data. Those who are interested in finding out whether they are related
to that person can send back the second message of the protocol. This message
can be sent using Facebook or similar services, or even by email. Then, once in
a while, the first person can run the computation with all those who answered
him, and find out with whom he is related.

In the previous example, NISC was preferable since a multi-round protocol
would have required the parties to synchronize the times in which they partic-
ipate in the protocol (or incur long delays until the other party is online and
sends the next message of the protocol). In general, requiring multiple rounds
of interaction is also very limiting in scenarios in which each round of commu-
nication is very expensive and/or is slow. E.g., if the communication is done
using physical means, for example encoded as a QR code on a brochure sent by
snail-mail, or if the other party is a satellite that passes for only a short period
above the receiver.

Previous NISC Protocols. A NISC protocol (for all three flavors) for general
computation can be constructed from Yao’s garbled circuit, non-interactive zero-
knowledge proofs (NIZK), and fully-secure one-round oblivious transfer (OT):
P1, who is the evaluator of the circuit, sends the first message of the OT protocol.
P2, who is the circuit constructor, returns a garbled circuit, the second message
of the OT protocol, and a NIZK proof that its message is correct. (See, for
example, [CCKM00, HK07] for such protocols.) Unfortunately, the NIZK proof
in this case requires a non black-box use of cryptographic primitives (namely, it
must prove the correctness of each encryption in each gate of the circuit).

Efficient NISC protocols that do not require such non black-box constructions
are presented in [IKO+11] based on the MPC-in-the-head technique of [IPS08].
The complexity of theOS-NISC protocol of [IKO+11] is |C|·poly(log(|C|), log(t))+
depth(C) · poly(log(|C|), t) invocations of a Pseudo-Random Generator (PRG),
where C is a boolean circuit that computes the function of interest, and t is a sta-
tistical security parameter. (Another protocol presented in that work uses only
O(|C|) PRG invocations, but is based on a relaxed security notion.) [IKO+11] also
shows an adaptive MS-NISC protocol for a bounded number of corrupted senders.
The complexity of that protocol isO((t+Q)|C|) PRG invocations, whereQ is the
bound on the number of corrupted senders.

Although the protocols in [IKO+11] are very efficient asymptotically, their
practicality is unclear and left as an open question in [IKO+11]. For instance,
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the protocols combine several techniques that are very efficient asymptotically,
such as scalable MPC and using expanders in a non black-box way, each of which
contributes large constant factors to the concrete complexity.

Cut and Choose Based 2PC. A very efficient approach for constructing 2PC
with security against malicious parties is based on the cut-and-choose paradigm.
(We refer here to protocols that use cut-and-choose for checking garbled circuits,
as in [LP07], and not to protocols that use cut-and-choose in a different way, such
as the protocols in [IKO+11].) [MF06, LP07, LP11, SS11, MR13, Lin13, SS13]
give constructions that use this paradigm and require O(t|C|) PRG invocations,
and some additional overhead that does not depend on |C|. Indeed, for a fixed
circuit, this asymptotic overhead is larger than that of [IKO+11], which requires
only a poly-logarithmic number of PRG calls per gate of the circuit. However,
the concrete constants in the cut-and-choose based protocols are rather small
(whereas for [IKO+11] the constants seem fairly large, e.g., the poly(log(|C|))
factor) making the cut and choose approach of high practical interest as shown
in several implementations (e.g., [PSSW09, SS11, KSS12]). However, all cur-
rent cut-and-choose based 2PC constructions require more than one round of
interaction.

1.1 Our Contributions

In this paper, we take a major step beyond feasibility results for NISC. Our
main contribution is a new OS-NISC/MS-NISC protocol that we believe to be
conceptually simpler than previous NISC protocols, and extremely practical. The
complexity of this protocol is similar or better than those of the best multi-round
2PC protocols based on cut-and-choose. We also describe an implementation and
evaluation of our NISC protocol, that demonstrate its practicality.

We now discuss our contributions in more detail.

Revisiting the NISC Setting. In Section 3 we formalize the informal descrip-
tion of the MS-NISC model by using the ideal/real-model paradigm, defining an
ideal functionality that receives an input from the receiver and inputs from many
other senders, and returns to the receiver the outputs of the different evaluations.

Intuitively, one would expect that any OS-NISC protocol can also be a MS-
NISC protocol with soundness that decreases at most polynomially in the num-
ber of senders. In the full version of this paper we show that this intuition is
false by describing an attack on the technique of [LP07] for protecting against
selective-OT attacks, which results in an exponential (in the number of senders)
decrease in the soundness of the protocol.1

Our Protocols. As discussed earlier, the cut-and-choose technique requires
several rounds of interaction since the player who generates the garbled circuits
must first send them, and only then see the “cut” and send the circuit openings.

1 We note that in the OS-NISC protocol of [IKO+11], a variant of the [LP07] technique
is used for protecting against the selective-OT attack. As far as we can tell, our
“attack” can be applied to that construction as well, if used for MS-NISC.



Non-Interactive Secure Computation Based on Cut-and-Choose 391

We introduce techniques that allow us to squash this interaction to a single round
in the common random string model (CRS). Until recently, all cut-and-choose
based 2PC protocols (e.g., [LP07, LP11, SS11] required at least ∼ 3t garbled cir-
cuits for achieving soundness of 2−t (ignoring computational soundness). These
techniques are sufficient to turn such protocols into NISCs that also use roughly
3t garbled circuits.

Reducing the Number of Circuits. Lindell [Lin13] recently introduced a
cut-and-choose based 2PC that requires only t garbled circuits for the same
soundness, reducing the number of garbled circuits by (at least) a factor of
three. However, this protocol is inherently interactive since it executes two 2PC
protocols, one after the other, where the second 2PC is used to recover from
potential cheating, with no obvious way of making the protocol non-interactive.
We show a new approach that allows working non-interactively with only t gar-
bled circuits (for soundness 2−t). We believe that our approach has significance
also in the multi-round setting with several advantages over the techniques of
[Lin13] such as (1) suitability for pipelining; and (2) an (arguably) conceptually
simpler description.

Section 1.2 provides a high-level description of the protocol. This protocol is
secure under the DDH assumption in the CRS model. We believe that this pro-
tocol is easier to understand than previous NISC protocols, and because of that,
more approachable for people from outside the crypto community. Hopefully,
NISC could gain interest as a model for practical protocols and applications.

We remark that we achieve only the OS-NISC/MS-NISC security notions.
The same first message can be used for many executions of secure computation
with many different senders. The only restriction to achieve adaptive MS-NISC
is that once the receiver’s outputs are revealed to the other parties, the receiver
must refresh its first message, which requires computing only t OT queries.

In the full version of this paper we describe how the efficiency of the protocol
can be improved if one permits more than one round of interaction. The resulting
2PC protocol requires only t garbled circuits (for statistical security of 2−t),
O(tn1) symmetric-key operations, and O(tn2 + t2) exponentiations, where ni is
Pi’s input length (and ignoring a small number of seed-OTs).

Reducing Communication. In addition to the main protocol, we show how
to reduce communication significantly using a new non-interactive adaptation
of the method of Goyal et al. [GMS08] to the NISC environment (Section 5).
This method, based on the usage of erasure codes (specifically, of polynomials),
reduces the communication size to be only slightly higher than the communica-
tion required for sending the garbled circuits that are evaluated (as opposed to
sending also the garbled circuits that are checked). For example, for soundness
2−40, this protocol requires using 44 garbled circuits, and communicating only
19 garbled circuits.

Implementation and Experiments.We describe a prototype implementation
of our main protocol, implemented in C for a Linux environment. It is the first
working implementation (that we are aware of) of a NISC protocol, and it allows
using our protocol in all the scenarios described above. Additionally, this is also
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the first working implementation (that we are aware of) of a 2PC protocol that
uses only t garbled circuits for security of 2−t.

We evaluate the prototype with a circuit that computes an AES encryption
and a circuit that computes SHA256. The resulting performance is significantly
better than that of previous cut-and-choose based protocols. For example, a
maliciously secure computation of AES circuit requires about 7 seconds , where
the time needed for generating the first message is very small (e.g., much less
than a second).

1.2 High Level Description of the Protocol

Step One: Squashing Cut-and-Choose 2PC to One Round. The starting
point for the protocol is the most straightforward approach based on the cut-and-
choose method with 3t garbled circuits. (The constant 3 is chosen for simplifying
the description. The exact constants are analysed in [LP11, SS11].) The receiver’s
first message in this case is an OT query of its input using a two-message OT
protocol (e.g., [PVW08]). Namely, if the receiver has n1 input bits it sends the
corresponding n1 OT queries. The sender garbles 3t circuits gc1, . . . , gc3t and
sends back a message that includes: (1) The 3t garbled circuits; (2) The OT
answers for the receiver’s query, using the input-wire labels that were used for
garbling the receiver’s inputs; (3) The input-wire labels that correspond to the
sender’s own input. The receiver is now able to retrieve the labels of its input-
wires and evaluate the 3t garbled circuits by itself. It then takes the majority
result to be its output. This protocol is obviously insufficient. There are three
issues that need to be verified: (1) Were the garbled circuits garbled correctly?
(2) Did the sender use the right input-wire labels in the OT? (i.e., consistent
with the garbled circuits) (3) Was the sender’s input consistent in all 3t circuits?
The goal of our work is to present non-interactive and efficient solutions for these
issues.

The standard solution for the first issue, of verifying the garbled circuits,
is the cut-and-choose method [LP07] where the sender proves that a random
subset of c · 3t circuits (where c is fixed and publicly known, e.g. c = 1/2, or
c = 3/5 to optimize the success probability) were garbled correctly by revealing
the randomness that was used to garble them. Normally, the cut-and-choose
method requires more than one round of interaction. We solve this problem by
using OT in the following way (similar to the technique used in [KSS12, KMR12]
for the different purpose of reducing latency). The protocol includes additional 3t
OTs, denoted as the circuit-OTs. In each of these OTs the receiver can choose
to either check or evaluate the corresponding circuit: The receiver chooses a
random subset of circuits of size c · 3t that it wants to check, and for each of
these circuit it sends an OT query for the 1-bit. For the rest of the circuits
it sends an OT query for the 0-bit. The sender picks 3t keys seed1, . . . , seed3t
for a pseudo-random function (PRF) and uses key seedi to generate all the
randomness needed for garbling gci. The sender also picks additional 3t keys
k1, . . . , k3t, and encrypts, under the key ki, the labels of the sender’s input-wires
for circuit gci. Now, the sender answers the circuit-OT queries using the 3t pairs
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(ki, seedi) as inputs. Observe that if the receiver wants to check gci it learns the
PRF key seedi that allows to reconstruct that circuit (using the same circuit
construction algorithm used by the sender), but it is not able to decrypt the
sender’s input-wires labels. If the receiver wishes to evaluate circuit gci it learns
the key ki that enables to decrypt the input-wires labels of that circuit, but not
the seed seedi. In that case the receiver is able to evaluate the circuit but not
to check it. Of course, the sender does not know which circuits are chosen to be
checked, due to the security of the OT protocol.

As for the second issue, how to check that the sender uses consistent labels in
the OTs for the receiver’s input wires, we modify a technique of [KS06, SS11] to
work in the NISC setting. Instead of using a regular OT protocol, we work with
an OT in which the second OT message commits the sender to specific inputs.
(I.e., given the second OT message, the sender cannot later claim that it used
different inputs than the ones it actually used.) In practice, the highly efficient
OT of [PVW08] is sufficient for our purpose. Since we have only one round of
interaction, we require that all the randomness used for the second message of
the OT queries for circuit gci, is also derived from the PRF key seedi. In case the
receiver does not ask to check gci, this OT is as secure as a regular OT by the
security of the PRF. If the receiver chose to check gci, it learns seedi, and since it
knows both the input labels of the circuit and the randomness that should have
been used in the OT it is able to recompute the second OT message by itself
and compare it with the message sent by the receiver. If there is a difference,
the receiver aborts, since this means that the sender tried to cheat in the OT
for gci.

For the third issue, i.e. the consistency of the sender’s inputs, we modify a
technique of [MF06] for the NISC setting. We use a commitment scheme that
allows proving, very efficiently, that two commitments are commitments to the
same value. (Pedersen’s commitment [Ped92] or an ElGamal based commitment
suffice.) Instead of using random labels for the sender’s input-wires, the sender
uses commitments to zero as labels for the 0-bit inputs and commitments to one
as labels for 1-bit inputs. In an interactive setting the sender decommits all input-
wire labels of the checked circuits and proves that it used correct commitments.

In order to execute the protocol in a single round of interaction, we require
that the randomness used for the commitments for the input wires of circuit
gci is also generated using the seed seedi. This allows the receiver to regenerate
the commitments by itself in case it chose to check gci. In addition, the sender
sends what we call input commitments, which are a set of commitments of its
actual input bits that is not part of any garbled circuit. The protocol includes
commitment equality proofs which prove that each input value in an evaluated
circuit is equal to the value committed in the corresponding input commitment.
(These proofs are secure since the input commitments are never decommitted,
as opposed to the other commitments which are opened in checked circuits).
The sender encrypts the commitment equality proofs using ki in order to hide
them from the receiver in the checked circuits. (Otherwise, the receiver could
determine the sender’s input.)
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Note that so far our protocol requires 3t garbled circuits and relies on the
cut-and-choose guarantee that the majority of the evaluated garbled circuits are
correct.

Before we discuss how to reduce the number of garbled circuits, we note that
although our protocol is not vulnerable to selective-OT attacks, namely attacks
where the sender sets incorrect inputs in the OTs used by the receiver to learn
its input labels, we still require the receiver to refresh its first message in case
its outputs are revealed to the sender (or are used in other protocols, which can
potentially leak them). Technically, this happens since a corrupted sender can
use an invalid seed for garbled circuit gc1, and valid circuits otherwise. This
sender could then learn the receiver’s first input bit in the circuit-OTs, based on
whether the receiver aborted its execution with this sender. In the adaptive MS-
NISC setting, this attack could be repeated by several corrupted senders, letting
the adversary learn secret information about other bits of the cut-and-choose
challenge. As a result, soundness is gone, since the adversary could set the input
of the last sender based on the bits of the cut-and-choose challenge. In order to
mitigate this attack, we require the receiver to refresh its first message once its
outputs are revealed. Note, however, that some information about the receiver’s
choices in the circuit-OTs is indeed revealed even if the receiver does refresh its
first message. However, these bits are revealed only after the execution of the
protocol, thus do not undermine security. (In fact, in most cut-and-choose 2PC
protocols the challenge is always public. E.g., [LP11, SS11].)

Step Two: Reducing the Number of Garbled Circuits. Assume for sim-
plicity that the circuit the players use has only one output wire, and that the
sender has only one input bit. We use the protocol from the previous section,
but with only t garbled circuits, and let P1 pick a random subset of them for
verification (instead of a constant fraction c, as described above). Obviously, if
all evaluated circuits output the same bit, then this bit is the correct output
with probability 1− 2−t (since in order to cheat, the sender must guess all the
checked circuits and all the evaluated ones). However, if some of the evaluated
circuits output different bits, then the receiver knows that the sender is trying to
cheat and needs to determine the right output. Following [Lin13], we would like
to provide the receiver in this case with a “trapdoor” that allows it to recover
the sender’s input in case the sender behaves maliciously (but, of course, not in
case it behaves honestly). Then, the receiver can simply use the sender’s input
in order to compute the function by itself, and output the correct result.

As described earlier, the sender’s input-wire labels are commitments to their
actual values. Let EGCommit(h; b, r) = (gr, hrgb) be an ElGamal based com-
mitment for a bit b, given a group G in which DDH is hard, and a generator g.
This is a perfectly-binding commitment, even if the party that commits knows
logg(h). However, knowing logg(h) allows “decrypting” gb, which otherwise is
hidden because of the DDH assumption.

In the protocol, the sender picks w, sends h = gw to the receiver, and sets the
labels of its input wire in gci to be EGCommit(h; 0, ri,0) and EGCommit(h; 1, ri,1).
Next, the sender picks at random w0, w1 such that w = w0 + w1, and sends
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h0 = gw0 and h1 = gw1 . (P1 verifies that h = h0 · h1.) For gci, the sender sends
output recovery commitments h0g

li,0 and h1g
li,1 , where li,0, li,1 are chosen at

random.2 Then, it sets the output wire labels of this circuit to be li,0 and li,1,
corresponding to 0 and 1, respectively.

As part of the cut-and-choose stage, if the receiver chooses to check gci, then it
learns seedi and can recover the output wire labels and verify both the input-wire
labels and the output recovery commitments. However, if the receiver chooses to
evaluate gci, then the sender also sends it the values w0+li,0 and w1+li,1. (These
values are sent encrypted under ki, so the receiver only gets them in case it chose
to evaluate gci.) The receiver verifies that these values are consistent with the
output recovery commitments by computing g to the power of these two values
(if this verification fails then the receiver aborts). In addition, the receiver checks
that the li,b it received from the evaluation of gci is a valid decommitment of
h0g

li,b . If this check pass, the receiver marks gci as a semi-trusted circuit. (Note
that the probability of marking no circuit as semi-trusted is 2−t, as it requires
the sender to guess the set of evaluated circuits.)

After the receiver evaluates all the circuits chosen for evaluation, it is left
with either a single output from all semi-trusted circuits, or with two outputs
from at least two semi-trusted circuits. In the first case, since with probability
2−t there is at least one good evaluated garbled circuit, that single output is
the correct one. In case there are two different outputs, the receiver initiates
the cheating recovery process : Say that gci’s output is 0 and gci′ ’s output is 1
(and both are semi-trusted). From evaluating gci, the receiver learns li,0, and
from the sender’s message, it learns w0 + li,0. Thus, it can recover w0. Similarly,
from gci′ it recovers w1. Having w = w0 +w1 allows the receiver to decrypt the
input-commitments, and recover the sender’s input as needed. Note that in case
the sender is honest, the receiver would get the same output from all evaluated
circuits, and thus would learn only one of w0 and w1.

When there are more than one output wire, different w0, w1 are chosen for
each output wire, thus the receiver learns one value from each pair. See Section 4
for a detailed description of the protocol.

2 Preliminaries: Notations and Primitives

LetHash(·) be a collision resistant hash function,REHash(·) be a collision-resistant
hash function that is a suitable randomness extractor (e.g., see [DGH+04]),
Commit(·) be a commitment scheme, and let Enc(k,m) be the symmetric encryp-
tion of message m under key k.

Garbled Circuits. Our protocol is based on the garbled circuit protocol of
Yao [Yao86] and can work with any garbling scheme (see [LP09, BHR12] and
the full version of this paper more details). We only require that the labels of
the output-wires reveal the actual outputs of the circuit (but still consist of

2 Clearly, since P2 knows w0, w1, h0g
li,0 does not bind P2 to h0. Rather, it binds P2

to w0 + li,0.
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random strings). We use the notation label(gc, j, b) to denote the label of wire j
corresponding to bit value b in the garbled circuit

Commitments with Efficient Proof-of-Equality and Trapdoor. We use a
commitment scheme that allows one to efficiently prove that two commitments
are for the same bit, without revealing any information about the committed
bit. Also, we require the commitment scheme to have a “trapdoor” that allows
extracting the committed value.

A commitment that satisfies our requirement can be based on ElGamal.
Given finite group G and a generator g, the committer picks a random el-
ement h ∈ G, and sends EGCommit(h,m, r) = (gr, hrgm). This commitment
is computationally-hiding (under the DDH assumption) and perfectly-binding.
Given EGCommit(h,m, r) and EGCommit(h,m, r′), the commiter can prove equal-
ity by giving r − r′. Last, given the “trapdoor” logg(h), one can decrypt the
commitment, EGCommit(h,m, r), and recover m.

Batch Committing-OT. Batch committing-OT protocol is an OT protocol
where the sender has two tuples of inputs [K0

1 ,K
0
2 , . . . ,K

0
t ], [K

1
1 ,K

1
2 , . . . ,K

1
t ].

The receiver has a bit b and wishes to learn the tuple [Kb
1,K

b
2, . . . ,K

b
t ].

We use a variant of the batch committing-OT protocol of [SS11] (which is
based on the highly efficient one-round, UC-secure OT of [PVW08]). The pro-
tocol is secure under the DDH assumption. Let G be a group of prime order p in
which the DDH assumption is assumed to hold, and let (g0, g1, h0, h1) be a com-
mon reference string (CRS) where g0, g1, h0, h1 are random elements in G. The
receiver picks r ∈ Zp at random and sends g = (gb)

r, h = (hb)
r to the sender.

For i = 1 . . . t and b′ ∈ {0, 1}, the sender picks at random ri,b′ , si,b′ ∈ Zp and

sends Xi,b′ = g
ri,b′
b′ h

si,b′
b′ and Yi,b′ = gri,b′hsi,b′Kb′

i . For i = 1 . . . t, the receiver
retrieves Kb

i = Yi,b/X
r
i,b.

After executing the above protocol, if the receiver asks the sender to reveal
both its inputs K0

i ,K
1
i for some i, the sender returns the values K0

i ,K
1
i , ri,0, si,0,

ri,1, si,1 and the receiver verifies that the values Xi,0, Yi,0, Xi,1, Yi,1 that it re-
ceived were properly constructed using these values.

For simplicity and generality, in our NISC protocols we denote by COT1(b)
the first message that is sent (from the receiver to the sender) in an invoca-
tion of the committing-OT protocol for the receiver’s input bit b, and similarly
denote the second message (that is sent from the sender to the receiver) by
COT2([K

0
1 ,K

0
2 , . . . ,K

0
t ] , [K

1
1 ,K

1
2 , . . . ,K

1
t ], COT1(b)).

In the full version of this paper we give further details about the security
of this protocol, and discuss the CRS in case there are many invocations of
MS-NISC with different senders.

3 The NISC Model

The OS-NISC notion is essentially like 2PC with one round of interaction, thus
the security definition is exactly as for multi-round 2PC (e.g., [Gol04]), with the
additional restriction on the number of rounds in the real execution.
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For defining MS-NISC, we use the ideal/real paradigm (in the standalone
setting), and use the ideal functionality from Figure 1. See the full version of
this paper for a formal definition. Throughout this work we assume that senders
cannot see or tamper with other senders’ messages to avoid malleability con-
cerns. In the full version of this paper we discuss how to correctly encrypt those
messages if this is not the case. (Note that in many applications there is only
one sender and then malleability is not an issue. E.g., if the sender is a satellite
that sends messages periodically. In this case there is only one sender that sends
many messages, and no malleability issues occur.)

Assume that f(⊥, ·) = f(·,⊥) = ⊥.

– Initialize a list L of pairs of strings.
– Upon receiving a message (input, x) from P1, store x and continue as
following:
• Upon receiving a message (input, y) from Pi, insert the pair (Pi, y)
to L. If P1 is corrupted, send (Pi, f(x, y)) to the adversary. Else,
send (messageReceived, Pi) to P1.

• Upon receiving a message (getOutputs) from P1, send
(
{
(Pi, f(x, y))

}
(Pi,y)∈L

) to P1, and halt.

Fig. 1. MS-NISC functionality F

4 An OS-NISC/MS-NISC Protocol

The protocol is in the CRS (common reference string) model, which is a necessary
requirement for the one-round OT protocol that we use [PVW08]. (Unlike other
results that are presented in the OT-hybrid model, we use this specific OT
protocol which is currently the most efficient fully-secure, simulation-proven OT.
We preferred to use a concrete instantiation of OT in order to be able to use
a committing variant of OT, in which the OT sender is committed to its OT
inputs after it sends its OT message. Still, our techniques can be used with any
committing-OT protocol that is proved secure using simulation and that can
be executed concurrently without sacrificing security.) Since the nature of NISC
is mostly for indirect communication (e.g, using a Facebook wall), we favor a
solution that has a minimal communication overhead.

For high level description of the protocol, we refer the reader to Section 1.2.
The detailed protocol is described in Figures 2-4. Its concrete efficiency analysis
and proof of the following theorem are in the full version of this paper.

Theorem 1. Assume that the Decisional Diffie-Hellman problem is hard in the
group G and that PRF, REHash, Commit and Enc are secure. Then, the protocol of
Figures 2-4 is a multi-sender non-interactive secure computation for any function
f : {0, 1}n1×{0, 1}n2 → {0, 1}m computable in polynomial time. The complexity
of the protocol is O(t(n1+n2+m)) expensive operations and O(t(n1+n2+m+
|C|)) inexpensive operations.
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The protocol is described for a single sender. When there are more senders (or one
with several inputs), each sender executes the steps that are described below for P2.

Preliminaries: As defined in Section 2, we denote by COT1() the first message sent
in an invocation of the committing-OT protocol, and denote the second message
of that protocol as COT2(). Also, denote by EGCommit(h; b, r) the ElGamal
commitment (which supports an efficient proof-of-equality) to bit b. Let G be a
group of size p with generator g.

Inputs: P1 has input x and P2 has input y. Let f : {0, 1}n1 ×{0, 1}n2 → {0, 1}m be
the function of interest and let C(x, y) be a circuit that computes f . The input
wires of P1 and P2 are denoted by the sets INc(1) and INc(2), respectively. The
output wires are denoted by the set OUTc.

P1’s message:

– Picks a random t-bit string where ti denotes the i-th bit of this string. We
define T such that i ∈ T if and only if ti = 1.

– For all circuits i ∈ [t] publishes COT1(ti). Denote these as the circuit-OT
queries.

– For all inputs j ∈ INc(1) publishes COT1(xj), where xj is P1’s input bit for
the j-th input wire. Denote these as the input-OT queries.

Fig. 2. The OS-NISC/MS-NISC Protocol: Preliminaries and P1’s message

5 Reducing the Communication Overhead

Goyal et al. [GMS08] suggest a method that significantly reduces the commu-
nication overhead of 2PC protocols based on cut-and-choose. In their protocol,
as in ours, P2 picks a different seed for each garbled circuit and uses a pseudo-
random function, keyed with that seed, to generate all the randomness needed
for garbling that circuit. P2 does not send the circuits to P1 but only “commits”
to them by sending the hash of each circuit. Then, when P2 is asked to open
a subset of the circuits, it sends to P1 the seeds used for constructing these
circuits, as well as the actual garbled tables of the evaluated circuits. P1 uses
the seeds to reconstruct the checked circuits and verify that they agree with
the desired functionality and with the hashes that were sent in the initial step
(the hashes are computed with a collision resistant hash function Hash(·) and
therefore prevent a circuit from being changed after its hash is received).

Trying to apply this modification in the NISC setting encounters a major
obstacle: In order for P2 to send only the gates of the evaluated circuits, it must
learn, based on P1’s first message, which circuits are evaluated. Since P2 learns
this information before it sends any message to P1, it is able to set its evaluated
and checked circuits in a way that fools P1’s checks.

When Communication Is through a Third-Party Service. A simple so-
lution can be based on the observation that in many applications of NISC the
communication channel is actually implemented through a third-party service,
e.g., a Facebook wall. In those cases, P2 could upload all circuits to the service,
along with their hash values. Then, P1 downloads only the circuits for evaluation
and the hashes of all circuits. Assuming that the service hides from P2 which
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– Picks w ∈R Zp and sends h = gw. Here, w would be the “trapdoor” to P2’s
inputs.

– Sends EGCommit(h; yj , rj), for all j ∈ INc(2), where yj is its input bit for input-
wire j, and rj is chosen randomly. We call these the input-commitments.

– Sends hj,0 = gwj,0 and hj,1 = gwj,1 , where wj,0 ∈R Zp and wj,1 = w − wj,0, for
all output wires j ∈ OUTc. We call these the output-commitments.
For all i ∈ [t],

Generate garbled circuit:
• Picks a random value seedi.
• Computes ui,j,b = EGCommit(h; b, ri,j,b) for all j ∈ INc(2) and b ∈ {0, 1},
where ri,j,b = PRFseedi(“EGCommitment” ◦ j ◦ b).

• Sends the garbled circuit gci, which is generated using a pseudo-random
function PRFseedi in the following way:
∗ For all j ∈ INc(2) and b ∈ {0, 1}, let label(gci, j, b) = REHash(ui,j,b).
Namely, the label for bit b of the jth wire is associated with the value
of EGCommit(h; b, ·) computed with randomness that is the output
of a PRF keyed by seedi. Note that given ui,j,b, P1 can compute
REHash(ui,j,b) by itself and get the corresponding label.

∗ The garbled circuit is constructed in a standard way, where all other
labels in the circuit are generated by a PRF keyed by seedi. (E.g.,
the 0-label of wire j is PRFseedi(“label” ◦ j ◦ 0).)

• Sends the set of commitments
{
[Commit(ui,j,πi,j ),Commit(ui,j,1−πi,j )] |

πi,j ∈R {0, 1}
}
j∈INc(2)

. The randomness of the commitments is derived

from a PRF keyed by seedi as well. Denote by dui,j,b the decommitment
of ui,j,b.

Preparing and sending the cheating recovery box:
Sends the cheating recovery box, for all output wires j ∈ OUTc, which
includes:
• Two output recovery commitments hj,0g

Ki,j,0 , hj,1g
Ki,j,1 , where

Ki,j,0,Ki,j,1 ∈R Zp.
• Two encryptions Enc(label(gci, j, 0),Ki,j,0),Enc(label(gci, j, 1),Ki,j,1).
(Note that given label(gci, j, b), one can recompute hj,0g

Ki,j,b .)
Preparing and sending proofs of consistency:

• Let inputsi be the set
{
ui,j,yj , dui,j,yj

}
j∈INc(2)

, and let inputsEqualityi be

the set
{
rj − ri,j,yj

}
j∈INc(2)

(namely, P2’s input labels and their proof

of equality with the input-commitments).
• Let outputDecomi be the set

{
([wj,0 + Ki,j,0], [wj,1 + Ki,j,1])

}
j∈OUTc

(namely, the discrete logarithms of hj,0g
Ki,j,0 and hj,0g

Ki,j,1).
• Picks a random key ki and sends the encryption Enc(ki, inputsi ◦

inputsEqualityi ◦ outputDecomi).
Sending the garbled values of P1’s inputs:

Let inp-qj be the input-OT query for input-wire j of P1. P2 sends the OT an-
swer, which includes the garbled values of either the 0 or 1 labels for the cor-
responding input wire. Namely, it sends the value COT2([label(gc1, j, 0), . . . ,
label(gct, j, 0)], [label(gc1, j, 1), . . . , label(gct, j, 1)], inp-qj). Moreover, we re-
quire that all the randomness used in the OT for the answers of the i-th
circuit is generated from PRFseedi . (E.g., set ri,1 of the j-th wire of the i-th
circuit to be PRFseedi(“OT” ◦ 1 ◦ “r” ◦ i ◦ j).)

Circuits cut-and-choose:
Let circ-qi be the circuit-OT query for circuit i, P2 sends
COT2([ki], [seedi], circ-qi). Namely P1 receives seedi if it asked to open this
circuit, and ki if it is about to evaluate the circuit.

Fig. 3. The OS-NISC/MS-NISC Protocol: P2’s response
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After receiving responses from all senders, P1 processes all of them together and
outputs a vector of outputs. For each response it does the following:

– Decrypts all OT answers.
– Verifies that hj,0 · hj,1 = h for all j ∈ OUTc.
– For all opened circuits i ∈ T , checks that seedi indeed correctly generates gci
(with its commitments), and the answers of the input-OT queries. (Otherwise,
it aborts processing this response.) It also checks the cheating recovery boxes
and aborts if there is a problem.

– For all circuits i ∈ [t] \ T , decrypts inputsi, inputsEqualityi, outputDecomi.
• Checks that inputsi and inputsEqualityi are consistent with the input-
commitments. (I.e., checks that ui,j,yj · (gri−ri,j,yj , h

ri−ri,j,yj ) =
EGCommit(h; yj , rj)). Also, verifies the decommitments dui,j,yj . (Otherwise,
it aborts.)

• Checks that outputDecomi are correct discrete-logs of the elements of the
set

{
hj,bg

Ki,j,b
}
j∈OUTc,b∈{0,1}. (Otherwise, it aborts.)

• Evaluates circuit gci. Say that it learns the labels {li,j}j∈OUTc . P1

tries to use these labels to decrypt the corresponding encryptions
Enc(label(gci, j, b),Ki,j,b) from the cheating recovery box. Then, it checks if
the result is a correct “decommitment” of the output recovery commitment
hj,bg

Ki,j,b (where the b values are the actual output bits it received from
gci). If all these steps pass correctly for all output wires, we say that circuit
gci is semi-trusted.

– If the outputs of all semi-trusted circuits are the same, P1 outputs that output.
Otherwise,
• Let gci, gci′ be two semi-trusted circuits that have different output in the

jth output wire, and let li,j and li′,j be their output labels. From one of li,j
and li′,j , P1 learns wj,0 and from the other value it learns wj,1 (since it learns
Ki,j,b,Ki′,j,1−b from the cheating recovery boxes, and wj,b+Ki,j,b, wj,1−b+
Ki′,j,1−b from outputDecomi, outputDecomi′).

• P1 computes w = wj,0 + wj,1 and decrypts P2’s input-commitments. Let y
be the decrypted value of P2’s input.

• P1 outputs f(x, y).

Fig. 4. The OS-NISC/MS-NISC Protocol: P1’s computation

circuits were actually downloaded by P1, the result is secure, and the communi-
cation of P1 and of the service (but not of P2) depends only on the number of
evaluated circuits.

A More General Solution. We describe a solution that does not depend on
any third party. The solution requires that the number of evaluated circuits is
known to P2 (e.g., for soundness 2

−40 the players can use 44 circuits and evaluate
19 of them. Communication would roughly be the size of 19 garbled circuits.)

The protocol is based on the usage of erasure codes, and in particular of
polynomials. Say that P2 garbles t circuits and that P1 evaluates ct of them
for some known constant c < 1. Also, let b be some convenient block length
and denote the number of blocks in the description of a garbled circuit by l.
P2 garbles the t circuits, and then computes l polynomials p1(·), p2(·), . . . , pl(·)
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such that pj(i) equals to the j-th block of garbled circuit gci. The degree of
each polynomial is t− 1. Then, for each polynomial pi, P2 sends to P1 ct values,
〈pi(t+1), pi(t+2), . . . , pi(t+ct)〉. It also sends to P1 hashes of all garbled circuits.
P1 then picks the (1−c)t circuits that it wishes to check, and receives from P2 the
PRF seeds that were used for generating them. Using these seeds, P1 reconstructs
the checked garbled circuits, checks that they agree with the hash values and
validates their structure. Afterwards, P1 uses polynomial interpolation to recover
the polynomials p1(·), p2(·), . . . , pl(·). Using these polynomials it retrieves the
garbled circuits that it chose to evaluate, verifies that they agree with the hash
values that P1 has sent, and continues with the protocol.

The main advantage of this technique is that it enables to reduce communica-
tion even without knowing P1’s challenge. The overall communication overhead
of this method is as the size of the ct evaluated circuits, which matches the
communication overhead of [GMS08], but allows us to use this technique in the
NISC setting. The proof of security of the resulting protocol is almost identical
to the proof of Theorem 1 (except that the hash is also checked by the simulator)
and therefore omitted.

6 Evaluation

Prototype Implementation. Our prototype consists of several modules which
communicate through files (for making the protocol suitable for asynchronous
communication mechanisms like e-mail). It does not use the communication re-
duction techniques of Section 5. The prototype makes use of several libraries,
namely RELIC-Toolkit [AG], JustGarble [BHKR13], and OpenSSL [OPE]. Relic-
toolkit is chosen for its fast and efficient implementation of elliptic curve opera-
tions and is used to implement our OT and ElGamal based commitments. We use
the binary curve B-251, which (roughly) provides 124-bit security. (Computing a
single elliptic curve multiplication, which corresponds to a single exponentiation
in our protocol, costs about 120,103 CPU cycles for a fixed base and 217,378
cycles for a general base.) JustGarble is chosen for its fast implementation of
garbling and evaluating circuits. ([BHKR13] advocates using fixed-key AES as
a cryptographic permutation, and its implementation takes advantage of the
AES-NI instruction set.) We modified JustGarble to read the circuit format of
[TS], and read/write garbled circuits from/to a file (and not only the circuit
structure). Lastly, we use the AES implementation from OpenSSL, to realize a
PRF.

The Setup. To evaluate our prototype we used two circuits, one for AES with
non-expanded key (with 8,492 non-XOR gates and 25,124 XOR gates) and one
for SHA256 (with 194,083 non-XOR gates and 42,029 XOR gates). The circuits
were taken from [TS] (and slightly modified). In both circuits, each party has a
128 bit input value. The output of the AES circuit is 128 bit long, while SHA256
has a 256 bit output.

The experiments were run on a virtual Linux machine with a 64bit, i7-4650U
CPU @ 1.70GHz and 5.4GB of RAM. (For a more accurate comparison, our code
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utilizes only a single core of the CPU. The average CPU frequency during the
experiments was about 2.3GHz.) We measured clock cycles of each module of
the system using the RDTSC instruction, and used the clock_gettime() system
function to calculate the running time. Each experiment was run 10 times and
the average run time was calculated in both cycles and seconds.

Performance. The experiments were done with statistical security parameter
t = 40 and label length of 128 bits. Garbling was performed with the Free-XOR
[KS08] and Garbled Row Reduction [PSSW09] techniques. (We also tested the
protocol without those techniques. The results were slower by at most 10%.)

See Figure 5 for the running times of the main parts of our prototype. (Recall
that when interacting with more than one sender, the receiver P1 has to generate
the first message only once. Then, for each sender, its running time will be similar
to the time it takes it to process the sender’s response in the single sender scenario
that we examined.) The values represented in Figure 5 contain all operations,
including I/O handling.

Observe that as the circuit size grows, the I/O portion becomes significant.
For example, for the AES circuit, where every garbled circuit was stored in a
3 MB file, the total I/O time for the protocol is 0.53 seconds, whereas for the
SHA256 circuit, where each circuit is stored in a 31 MB file, the total I/O time
is 4.89 seconds. (For AES the I/O time was about 8% of the total time, whereas
for SHA256 it was around 38% of the total time. This is expected since both
functions have inputs of the same size, while the SHA256 circuit is much bigger.)
The costs of garbling and evaluation of a garbled circuit are quite small (e.g.,
garbling takes less than 100 million cycles for the SHA256 circuit). The more
significant overhead comes from I/O operations and the exponentiations done in
the protocol.

In addition, we ran the experiment for AES with t=80 and got, as expected,
that the costs are roughly twice those of the experiment with t=40. (Specifically,
with t=80, it takes P1 78 million cycles to compute its message, 16,518 million
cycles for P2 to compute its response, and 12,870 million cycles for P1 to compute
the output).

Module or part name #Cycles Time #Cycles Time

AES circuit SHA256 circuit

Init 42 0.02 44 0.02
P1’s message 71 0.03 73 0.03
P2’s response 8216 3.55 17651 7.59
P1’s computation 6452 2.79 11771 5.10
Cheating recovery 0.7 < 0.01 0.7 < 0.01

Total time - 6.39 - 12.74
I/O time - 0.53 - 4.89

Fig. 5. Running times for the prototype with statistical security parameter t = 40 and
label length = 128. Time is in seconds and cycles are measured in millions of cycles.
Running times include file operations.
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Due to lack of space, a comparison with previous multi-round 2PC implemen-
tations appears in the full version of this paper. We note here that although
there is no standard benchmark for comparing 2PC implementations, it is clear
that our NISC implementation is competitive with the best known interactive
implementations.
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Abstract. The notion of garbled random-access machines (garbled
RAMs) was introduced by Lu and Ostrovsky (Eurocrypt 2013). It can be
seen as an analogue of Yao’s garbled circuits, that allows a user to gar-
ble a RAM program directly, without performing the expensive step of
converting it into a circuit. In particular, the size of the garbled program
and the time it takes to create and evaluate it are only proportional to
its running time on a RAM rather than its circuit size. Lu and Ostrovsky
gave a candidate construction of this primitive based on pseudo-random
functions (PRFs).
The starting point of this work is pointing out a subtle circularity

hardness assumption in the Lu-Ostrovsky construction. Specifically, the
construction requires a complex “circular” security assumption on the
underlying Yao garbled circuits and PRFs. We then proceed to abstract,
simplify and generalize the main ideas behind the Lu-Ostrovsky con-
struction, and show two alternatives constructions that overcome the
circularity of assumptions. Our first construction breaks the circularity
by replacing the PRF-based encryption in the Lu-Ostrovsky construc-
tion by identity-based encryption (IBE). The result retains the same
asymptotic performance characteristics of the original Lu-Ostrovsky con-
struction, namely overhead of O(poly(κ)polylog(n)) (with κ the security
parameter and n the data size). Our second construction breaks the cir-
cularity assuming only the existence of one way functions, but with over-
head O(poly(κ)nε) for any constant ε > 0. This construction works by
adaptively “revoking” the PRFs at selected points, and using a delicate
recursion argument to get successively better performance characteris-
tics. It remains as an interesting open problem to achieve an overhead
of poly(κ)polylog(n) assuming only the existence of one-way functions.

1 Introduction

Garbled Circuits. Since their introduction by Yao [19], garbled circuits have
found countless applications in cryptography, most notably for secure computa-
tion. On a basic level, garbled circuits allow a user to convert a circuit C into
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a garbled version C̃ and an input x into a garbled version x̃, so that C̃ can be
evaluated on x̃ to reveal the output C(x), but nothing else is revealed. As with
most secure computation protocols, this technique crucially works at the level
of “circuits” and the first step toward using it is to convert a desired program
into a circuit representation.

Circuits vs. RAMs. Converting a program into a circuit often presents a major
source of inefficiency. We naturally think of programs in the the random-access
machine (RAM) model of computation. It is known that a RAM with run-time
T can be converted into a Turing Machine with run-time O(T 3) which can in
turn be converted into the circuit of size O(T 3 logT ) [8,16]. This is a significant
amount of overhead. Perhaps an even more striking efficiency loss occurs in the
setting of “big data”, where the data is given in random-access memory. In this
case, efficient programs can run in time which is sub-linear in the size of the
data (e.g., binary search), but converting any such a program into a circuit
representation incurs a cost which is (at the very least) linear in the size of the
data. This exponential gap can mean the difference between an efficient Internet
search and having to read the entire Internet!

Garbled RAMs. Motivated by the above considerations, Lu and Ostrovsky [14]
proposed the notion of a garbled RAM, whose goal is to garble a RAM program
directly without first converting it into a circuit. In particular, the size of the
garbled program as well as the evaluation time should only be proportional to
the running-time of the program on a RAM (up to poly-logarithmic factors),
rather than the size of its circuit representation.

In more detail, we will use the notation PD(x) to denote the execution of
some program P with random-access memory initially containing some data
D and a “short” input x (e.g., P could be some complex query over a database D
with search-terms x). A garbled RAM scheme can be used to garble the data D
into D̃, the program P into P̃ , and the input x into x̃ in such a way that P̃ , D̃, x̃
reveals PD(x), but nothing else is revealed. Furthermore, the size of the garbled
data D̃ is only proportional to that of D, the size of x̃ is only proportional to
that of x, and the size and evaluation-time of the garbled program P̃ are only
proportional to the run-time of PD(x) on a RAM.

Lu and Ostrovsky proposed a construction of garbled RAMs, relying on a
clever use of Yao garbled circuits and oblivious RAM (ORAM), and using for
security only pseudo-random functions (PRFs) (which can be constructed from
any one-way function).

A Circularity Problem. It turns out that the Lu-Ostrovsky construction has a
subtle yet difficult-to-overcome issue that prevents a proof of security from go-
ing through, in that it requires a complex “circular” use of Yao garbled circuits
and PRF-based encryption. To understand the issue, recall that Yao garbled
circuits assign two labels for each wire, corresponding to bits 0, 1, and security
relies heavily on the evaluator only learning one of these two labels. The Lu-
Ostrovsky construction provides encryptions of both labels of an input wire w,
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under some secret-key K, and this secret key K is also hard-coded into the de-
scription of the circuit itself. This introduces the following circularity: to use the
security of the encryption scheme we must rely on the security of the garbled
circuit to hide the key K, but to use the security of the garbled circuit we must
rely on the security of the encryption scheme so that the attacker cannot learn
both wire labels. We emphasize that we do not have a concrete attack on the
construction of Lu and Ostrovsky, and it may even seem reasonable to conjecture
its security when instantiated with real-world primitives (e.g., AES). Unfortu-
nately, we don’t see much hope for proving the security of the scheme under
standard assumptions. One could draw an analogy to other “subtle” difficulties
in cryptography such as circular security [5,17], selective-opening security [4,2],
or adaptively-chosen inputs of garbled circuits [3], where it may be reasonable to
assume that standard constructions are secure (and it’s a challenge to come up
with insecure counterexamples), but it doesn’t seem that one can prove security
of standard constructions under standard assumptions.

Our Results. In this work we abstracts, simplifies, and generalizes the main ideas
behind the Lu-Ostrovsky construction, and give two solutions to the circularity
problem. Our first construction essentially replaces the PRF-based encryption in
the construction from [14] by identity-based encryption (IBE). This breaks the
circularity since we only need to embed in the circuit the public key of the IBE,
not the secret key. This scheme can be proved secure under the security of the
underlying IBE (and garbled circuits), and its overhead is only poly(κ)polylog(n),
where κ is the security parameter and n is the size of the data. (The overhead is
measured as the evaluation time of a garbled programs vs. the original program.)
This construction is described in detail in [9].

In the second construction, we break the circularity using revocable PRFs that
enables adaptive revocation of the ability to compute the PRF on certain values.1

Namely, from a PRF key K and a subset X of the domain, we can construct a
weaker key KX that enables the computation of FK(·) on all the domain except
for X , and the values FK(x) for x ∈ X are pseudo-random even given KX .
Importantly for our application, we also need successive revocation, i.e. from KX

and some X ′ we should be able to to generate KX∪X′ . Such revocable PRFs can
be constructed based on the Goldreich-Goldwasser-Micali [10] PRF, where the
size of the key KX is at most κ · |X | logN (with κ the security parameter and
N the domain size).

We use revocable PRFs to break the circularity as follows: whenever we use
some FK(x) in the encryption of the label values on the input wire w, we make
sure to embed in the circuit itself not the original key K but rather the weaker
key KX (with x ∈ X), so the encryption remain secure even if KX is known.
A naive use of this technique yields a trivial scheme with overhead poly(κ) · n,
which is no better than using circuits. However we show how to periodically
refresh the keys to reduce the overhead to roughly poly(κ)

√
n, and then use a

1 This notion is similar to punctured PRFs [18], delegatable PRFs [13], functional
PRFs [7], and constrained PRFs [6], see more details in Definition 3.
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recursive strategy to reduce it further to poly(κ) · min(t, nε) for any constant
ε > 0 (where n is the data size and t is the running time). This construction is
described in detail in [15].

Reusable/Persistent Data. We also carefully define and prove the security of an
important use-case of garbled RAMs, where the garbled memory data can be
reused across multiple program executions. If a program updates some location
in memory, these changes will persist for future program executions and cannot
be “rolled back” by the adversarial evaluator. For example, consider a client that
garbles some huge database D and outsources the garbled version D̃ to a remote
server. Later, the client can sequentially garble arbitrary database queries so as
to allow the server to execute exactly the garbled query on the garbled database
but not learn anything else. If the query updates some values in the database,
these changes will persist for the future. The running time of the client and server
per database query is only proportional to the RAM run-time of the query.2 Prior
to garbled RAMs, this could be done using oblivious RAM (ORAM) but would
have required numerous rounds of interaction between the client and the server
per database query. With garbled RAMs, the solution becomes non-interactive.
This use-case was already envisioned by Lu and Ostrovsky [14], but we proceed
to define and analyze it formally.

Worst-Case versus Per-Instance Running Time, Universal Programs, and Out-
put Privacy. As was noted in the CRYPTO 2013 work of Goldwasser et al. [11],
the power of secure computation on Turing Machines and RAM programs over
that of circuits is that for algorithms with very different worst-case and average-
case running times, the circuit must be of worst-case size. Randomized algo-
rithms such as Las Vegas algorithms or even heuristically good-on-average pro-
grams would benefit greatly if the online running time of the secure computation
ran in time proportional to that particular instance. In our solution, though we
have an upper bound T on the number of execution steps of the algorithm which
affects the offline time and space, the online evaluation can have a CPU step
output “halt” in the clear when the program has halted and the evaluator will
then only run in time depending on this particular input.

In order to further mask the program, one can consider a T time-bounded
universal program uT , which takes as input the code of a program π and an
input for that program. One can also provide an auxiliary mask so that the
output of P is blinded by this value (such a modification has appeared in the
literature, see, e.g. [1]).

Organization. We describe our notations for RAM computation and define gar-
bled RAM in Section 2. We then give a high-level description of the Lu-Ostrovsky

2 In contrast to schemes for outsourcing computation, the client here does not save on
work, but only saves on storage. In particular, only the garbled data D̃ is reusable,
but the garbled program P̃ can still only be evaluated on a single garbled input
x̃; the client must garble a fresh program for each execution, which requires time
proportional to that of the execution.
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construction in Section 3, along with an explanation of the “circularity” issue.
In Section 4 we present our IBE-based solution, and in Section 5 we describe
our solution based on one-way functions.

2 RAM Computation and Garbled RAM

Notation for RAM Computation. Consider a program P that has random-access
to a memory of size n, which may initially contain some data D ∈ {0, 1}n,
and a “short” input x. 3 We use the notation PD(x) to denote the execution
of such program. The program can read/write to various locations in memory
throughout the execution. We will also consider the case where several different
programs are executed sequentially and the memory persists between executions.
We denote this process as (y1, . . . , y�) = (P1(x1), . . . , P�(x�))

D to indicate that
first PD

1 (x1) is executed, resulting in some memory contents D1 and output y1,
then PD1

2 (x2) is executed resulting in some memory contents D2 and output y2
etc. As a useful example to keep in mind throughout this work, imagine that D
is a huge database and the programs Pi are database queries that can read and
possibly write to the database and are parameterized by some values xi.

CPU-Step Circuit. A useful representation of a RAM program P is through a
small CPU-Step Circuit which executes a single CPU step:

CP
CPU(state, b

read) = (state′, iread, iwrite, bwrite)

This circuit takes as input the current CPU state and a bit bread residing in the
the last read memory location. It outputs an updated state′, the next location
to read iread ∈ [n], a location to write to iwrite ∈ [n] ∪ {⊥} (where ⊥ values are
ignored), a bit bwrite to write into that location.

The computation PD(x) starts in the initial state state1 = x, corresponding
to the “short input” and by convention we will set the initial read bit to bread1 :=
0. In each step j, the computation proceeds by running CP

CPU(statej , b
read
j ) =

(statej+1, i
read, iwrite, bwrite). We first read the requested location iread by setting

breadj+1 := D[iread] and, if iwrite = ⊥, we write to the location by setting D[iwrite] :=

bwrite. The value y = state output by the last CPU step serves as the output of
the computation.

We say that a program P has read-only memory access, if it never overwrites
any values in memory. In particular, using the above notation, the outputs of
CP

CPU always set iwrite = ⊥.

2.1 Defining Garbled RAM

We consider a setting where the memory data D is garbled once, and then
many different garbled programs can be executed sequentially with the memory

3 In general, the distinction between what to include in the program P , the memory
data D and the short input x can be somewhat arbitrary.
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changes persisting from one execution to the next. We stress that each garbled
program P̃i can only be executed on a single garbled input x̃i. In other words,
although the garbled data is reusable and allows for the execution of many
programs, the garbled programs are not reusable. The programs can only be
executed in the specified order and are not “interchangeable”. Therefore, they
cannot be garbled completely independently. In our case, we will assume that
the garbling procedure of each program Pi gets tinit which is the total number
of CPU steps executed so far by P1, . . . , Pi−1 and tcur which is the number of
CPU steps to be executed by Pi.

Syntax and Efficiency. A garbled RAM scheme consists of four procedures:
(GData, GProg, GInput, GEval) with the following syntax:

– D̃ ← GData(D, k) : Takes memory data D ∈ {0, 1}n and a key k. Outputs
the garbled data D̃.

– (P̃ , kin) ← GProg(P, k, n, tinit, tcur) : Takes a key k and a description of a
RAM program P with memory-size n and run-time consisting of tcur CPU
steps. In the case of garbling multiple programs, we also provide tinit indi-
cating the cumulative number of CPU steps executed by all of the previous
programs. Outputs a garbled program P̃ and an input-garbling-key kin.

– x̃← GInput(x, kin): Takes an input x and input-garbling-key kin and outputs
a garbled-input x̃.

– y = GEvalD̃(P̃ , x̃): Takes a garbled program P̃ , garbled input x̃ and garbled
memory data D̃ and computes the output y = PD(x). We model GEval itself
as a RAM program that can read and write to arbitrary locations of its
memory initially containing D̃.

We require that the run-time of GData be O(n · poly(κ)), which also serves as an
upper bound on the size of D̃, and also require that the run-time of GInput should
be |x|·poly(κ). We also wish to minimize the run-time of GProg and GEval, prefer-
ably as low as poly(κ)polylog(n)·(|P |+tcur) for GProg and poly(κ)polylog(n)·tcur

for GEval (but not all our constructions achieve polylogarithmic overhead in n).

Correctness and Security. To define the correctness and security requirements of
garbled RAMs, let P1, . . . , P� be any sequence of programs with polynomially-
bounded run-times t1, . . . , t�. Let D ∈ {0, 1}n be any initial memory data, let
x1, . . . , x� be inputs and (y1, . . . , y�) = (P1(x1), . . . , P�(x�))

D be the outputs
given by the sequential execution of the programs. Consider the following exper-
iment: choose a key k ← {0, 1}κ, D̃ ← GData(D, k) and for i = 1, . . . , 
:

(P̃i, k
in
i )← GProg

(
Pi, n, t

init
i , ti, k

)
, x̃i ← GInput(xi, k

in
i )

where tinit
i :=

∑i−1
j=1 ti denotes the run-time of all programs prior to Pi. Let

(y′1, . . . , y
′
�) = (GEval(P̃1, x̃1), . . . ,GEval(P̃�, x̃�))

D̃,
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denotes the output of evaluating the garbled programs sequentially over the
garbled memory. We require that the following properties hold:

– Correctness: We require that Pr[y′1 = y1, . . . , y
′
� = y�] = 1 in the above

experiment.
– Security: we require that there exists a universal simulator Sim such that:

(D̃, P̃1, . . . , P̃�, x̃1, . . . , x̃�)
comp
≈ Sim(1κ, {Pi, ti, yi}�i=1, n).

Our security definition is non-adaptive: the data/programs/inputs are all chosen
ahead of time. This makes our definitions/analysis simpler and also matches the
standard definitions for our building blocks such as ORAM. However, there does
not seem to be any inherent hurdle to allowing each subsequent program/input
(Pi, xi) to be chosen adaptively after seeing D̃, (P̃1, x̃1), . . . , (P̃i−1, x̃i−1).

Security with Unprotected Memory Access (UMA). We also consider a weaker
security notion, which we call security with unprotected memory access (UMA).
In this variant, the attacker may learn the initial contents of the memory D,
as well as the complete memory-access pattern throughout the computation in-
cluding the locations being read/written and their contents. In particular, we let
MemAccess = {(ireadj , iwritej , bwritej ) : j = 1, . . . , t} correspond to the outputs of the

CPU-step circuits during the execution of PD(x). For security with unprotected
memory access, we give the simulator the additional values (D,MemAccess).
Using the notation from above, we require:

(D̃, P̃1, . . . , P̃�, x̃1, . . . , x̃�)
comp
≈ Sim(1κ, {Pi, ti, yi}�i=1, D,MemAccess, n).

In the long version [9], we show a general transformation that converts any gar-
bled RAM scheme with UMA security into one with full security by encrypting
the memory contents and applying oblivious RAM to hide the access pattern.
Therefore, it is useful to focus on achieving just UMA security.

3 The Original Lu-Ostrovsky Construction

We now describe the main ideas behind the Lu-Ostrovsky construction from
Eurocrypt 2013 [14] (but we use a substantially different exposition). In this
extended abstract we only consider security with unprotected memory access
(UMA), which completely abstracts out the use of oblivious RAM. Moreover,
for ease of exposition, we begin by describing a solution for the case of “read-
only” computation, which never writes to memory. Many of the main ideas, as
well as the circularity problem, are already present in this simple case.

3.1 Garbling Read-Only Programs

Garbled Data. The garbled data D̃ consists of n secret keys for some symmetric-
key encryption scheme. For each bit i ∈ [n] of the original data D, the garbled
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data D̃ contains a secret key ski. The secret keys are chosen pseudo-randomly
using a pseudo-random function (PRF) family Fk via ski = Fk(i,D[i]). Note
that, given k, there are two possible values sk(i,0) = Fk(i, 0) and sk(i,1) = Fk(i, 1)

that can reside in D̃[i] depending on the bit D[i] of the original data, and we set
D̃[i] = sk(i,D[i]).

Garbled Program (Overview). The garbled program P consists of t garbled copies
of an “augmented” CPU-step circuit CP

CPU+ , which we describe shortly. Recall
that the basic CPU-step circuit takes as input the current CPU state and the
last read bit (state, bread) and outputs (state′, iread) containing the updated
state and the next read location – we can ignore the other outputs iwrite, bwrite

since we are considering read-only computation.
We can garble copy j of the CPU-step circuit so that the labels for the output

wires corresponding to the output state′ match the labels of the input wires
corresponding to the input state in the next copy j + 1 of the circuit. This
allows the garbled state to securely travel from one garbled CPU-step circuit
to the next. Each garbled copy j of the CPU-step circuit can also output the
read location i = iread in the clear. The question becomes, how can the evalua-
tor incorporate the data from memory into the computation? In particular, let

lbl
(read,j+1)
0 , lbl

(read,j+1)
1 be the labels of the input wires corresponding to the bit

bread in garbled copy j + 1 of the circuit. We need to ensure that the evaluator

who knows sk(i,b) = Fk(i, b) can learn lbl
(read,j+1)
b but learns nothing about the

other label. Unfortunately, the labels lbl
(read,j+1)
b need to be created at “compile

time” when the garbled program is created, and therefore cannot depend on the
location i = iread which is only known at “run time” when the garbled program

is being evaluated. Therefore the labels lbl
(read,j+1)
b cannot depend on the keys

sk(i,b) since i is not known.
Lu and Ostrovsky propose a clever solution to the above problem. We augment

the CPU-step circuit so that the jth copy of the circuit outputs a translation
mapping translate which allows the evaluator to translate between the keys sk(i,b)

contained in the garbled memory and the labels lbl
(read,j+1)
b of the read-bit in

the next circuit. The translation mapping is computed by the jth CPU circuit
at run-time and therefore can depend on the memory location i = iread being
requested in that step. The translation mapping computed by circuit j consists
of two ciphertexts translate = (ct0, ct1) where ctb is an encryption of the label

lbl
(read,j+1)
b under the secret key sk(i,b) = Fk(i, b).

4 In order to compute this
encryption, the augmented CPU-step circuits contain the PRF key k as a hard-
coded value.

Garbled Program (Technical). In more detail, we define an augmented CPU-step
circuit CP

CPU+ which gets as input (state, bread) and outputs (state′, iread,

4 Since we are only aiming for UMA security, we can reveal the bit b and therefore do
not need to permute the ciphertexts.
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translate). It contains some hard-coded parameters (k, r0, r1, lbl
(read)
0 , lbl

(read)
1 ) and

performs the following computation:

– (state′, iread) = CP
CPU(state, b

read) are the outputs of the basic CPU-step
circuit.

– translate = (ct0, ct1) consists of two ciphertexts, computed as follows. For
b ∈ {0, 1}, first compute sk(i,b) := Fk(i, b) for i = iread. Then set cb =

Encsk(i,b)(lbl
(read)
b ; rb) where Enc is a symmetric key encryption and rb is the

encryption randomness.

The garbled program P̃ consists of t garbled copies of this augmented CPU-
step circuit C̃P

CPU+(j). We start garbling from the end j = t. Each garbled cir-

cuit C̃P
CPU+(j) outputs the values iread, translate in the clear and the updated

state′ is garbled with the same labels as the input state in the next cir-
cuit C̃P

CPU+(j + 1); the last circuit outputs state′ in the clear as the output

of the computation. Each garbled circuit C̃P
CPU+(j) contains hard-coded values

(k, r
(j)
0 , r

(j)
1 , lbl

(read,j+1)
0 , lbl

(read,j+1)
1 ) which are used to compute the translation

mapping translate as described above. The key k is the PRF key which was used

to garbled the memory data. The values r
(j)
0 , r

(j)
1 are fresh encryption random

coins, and lbl
(read,j+1)
0 , lbl

(read,j+1)
1 are the labels of the input-wire for the bit bread

in the garbled circuit C̃P
CPU+(j + 1).

Garbled Input and Evaluation. The garbled input x̃ consists of the wire-labels
for the value state1 = x for the garbled circuit C̃P

CPU+(j = 1). The evaluator
simply evaluates the garbled augmented CPU-step circuits one by one starting
from j = 1. It can evaluate the first circuit using only x̃, and gets out a garbled
output state2 along with the values (iread, translate = (c0, c1)) in the clear. The
evaluator looks up the secret key sk := D̃[iread] and attempts to use it to decrypt

c0 and c1 to recover a label lbl(read,j=2). The evaluator then evaluates the second
garbled circuit C̃P

CPU+(j = 2) using the garbled input state2 and the wire-label

lbl(read,j=2) for the wire corresponding to the bit bread. This process continues
until the last circuit j = t which outputs state′ in the clear as the output of
the computation.

3.2 Circularity in the Security Analysis

There is good intuition that the above construction should be secure. In par-
ticular, the evaluator only gets one label per wire of the first garbled circuit
C̃P

CPU+(j = 1) and therefore does not learn anything beyond its outputs i =

iread, translate (in the clear) and the garbled value state2 which can be used as
an input to the second circuit. Now, assume that the memory-data contains (say)

the bit D[i] = 0 and so the evaluator can get sk(i,0) from the garbled memory
D̃. Using the translation map translate = (ct0, ct1), the evaluator can use this to
recover the label lblread0 corresponding to the read-bit bread = 0 of the next circuit
j = 2. We need to argue that the evaluator does not learn anything about the
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“other” label: lblread1 . Intuitively, the above should hold since the evaluator does
not have the secret key sk(i,1) = Fk(i, 1) needed to decrypt ct1. Unfortunately, in
attempting to make the above intuition formal, we uncover a complex circularity:

1. In order to argue that the evaluator does not learn anything about the
“other” label lblread1 , we need to rely on the security of the ciphertext ct1.

2. In order to rely on the security of the ciphertext ct1 we need to argue that the
attacker does not learn the decryption key sk(i,1) = Fk(i, 1), which requires
us to argue that the attacker does not learn the PRF key k. However, the
PRF key k is contained as a hard-coded value of the second garbled circuit
C̃P

CPU+(j = 2) and all future circuits as well. Therefore, to argue that the
attacker does not learn k we need to (at the very least) rely on the security
of the second garbled circuit.

3. In order to use the security of the second garbled circuit C̃P
CPU+(j = 2),

we need to argue that the evaluator only gets one label per wire, and in
particular, we need to argue the the evaluator does not have the “other”
label lblread1 . But this is what we wanted to prove in the first place!

We note that the above can be seen as a complex circularity problem involving
the PRF, the encryption scheme and the garbled circuit. In particular, the PRF
key k is used to encrypt both labels for some input-wire in the garbled circuit,
but k is also a hard-coded in the garbled circuit. Therefore we cannot rely on
the security of the garbled circuit unless we argue that k stays hidden, but we
cannot argue that k stays hidden without relying on the security of the garbled
circuit. Notice that this circularity problem comes up even if the evaluator didn’t
get the garbled data D̃ at all.

The problem is even more complex than described above since the key k
is hard-coded in many other garbled circuits and the outputs of these circuits
depend on k but do not reveal k directly. Therefore, the circularity problem is
not “contained” to a single circuit. We do not know of any “simple” circular-
security assumption that one could make on the circuit-garbling scheme, the
PRF, and/or the encryption scheme that would allow us to prove security, other
than simply assuming that the full construction is secure.

3.3 Writing to Memory

We now describe the main ideas behind how to handle “writes” in the Lu-
Ostrovsky construction. Although the circularity problem remains in this solu-
tion, it will be useful to see the ideas as they will guide us in our fixes. We again
note that our exposition here is substantially different from [14].

Predictably Timed Writes. Below we describe how to incorporate a limited form
of writing to memory, which we call predictably timed writes (ptWrites). On a
high level, this means that whenever we want to read some location i in memory,
it is easy to figure out the time (i.e., CPU step) j in which that location was last
written to, given only the current state of the computation and without reading
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any other values in memory. In the long version [9] we describe how to upgrade
a solution for ptWrites to one that allows arbitrary writes. We give a formal
definition of ptWrites below:

Definition 1 (Predictably Timed Writes (ptWrites)). A program exe-
cution PD(x) has predictably timed writes (ptWrites) if there exists a poly-
size circuit WriteTime such that the following holds for every CPU step j =
1, . . . , t. Let the inputs/outputs of the jth CPU step be CP

CPU(statej , b
read
j ) =

(statej+1, i
read
j , iwritej , bwritej ). Then, u = WriteTime(j, statej , i

read
j ) is the largest

value of u < j such that the CPU step u wrote to location ireadj ; i.e., iwriteu =

ireadj . We also define a ptWrites property for a sequence of program executions

(P1(x1), . . . , P�(x�))
D if the above property holds for each CPU step in the

sequence.

Garbling programs with ptWrites. At any point in time, the garbled memory
data D̃ maintained by the honest evaluator should consist of secret keys of the
form sk(j,i,b) = Fk(j, i, b) for each location i ∈ [n], where the additional value
j will denote a “time step” in which the location i was last written to, and b
denotes the current bit in that location. Initially, for each location i ∈ [n], we
set D̃[i] = sk(0,i,D[i]) using the time period j = 0. Then, to read from a location
i with last-write-time u, the CPU circuit encrypts the wire-label for bit b under
some key which depends on (u, i, b), and to write a bit b to location i in time-step
j the CPU circuit gives out some key which depends on (j, i, b).

In more detail, to write a bit b to memory location iwrite in time step u, the
augmented CPU circuit now simply computes a secret key sk(u,i,b) = Fk(u, i, b),
using the hard-coded PRF key k, and outputs sk(u,i,b) in the clear. The honest

evaluator will place this new key in to garbled memory by setting D̃[i] := sk(u,i,b),
and can “forget” the previous key in location i.

To read from location iread, in time step j we now need to make sure that the
evaluator can only use latest key (corresponding to the most recently written
bit), and cannot use some outdated key (corresponding to an old value in that
location). To do so, the augmented CPU circuit computes the last write time
for the location iread by calling u = WriteTime(j, statej , i

read) and then prepares
the translation mapping translate = (c0, c1) as before, but with respect to the
keys for time step u by encrypting the ciphertext c0, c1 under the secret key
sk(u,i,0) = Fk(u, i, 0), sk(u,i,1) = Fk(u, i, 1) respectively.

4 Our Solution Using IBE

We now outline our modifications to the Lu-Ostrovsky solution so as to remove
the circular use of garbled circuits, using identity-based encryption. See the long
version [9] for a full description. As above, we begin by describing our fix for
read-only computation and then describe how to handle ptWrites.



416 C. Gentry et al.

4.1 A Read-Only Construction

The initial idea is to simply replace the symmetric-key encryption scheme with
a public-key one. Each garbled circuit will have a hard-coded public-key which
allows it to create ciphertexts translate = (ct0, ct1), but does not provide enough
information to “break” the security of these ciphertexts. Unfortunately, standard
public-key encryption does not suffice and we will need to rely on identity-based
encryption (IBE). Indeed, we can already think of the Lu-Ostrovsky construction
outlined above as implicitly using a “symmetric-key” IBE where the master
secret key k is needed to encrypt. In particular, we can think of the garbled
memory data as consisting of “identity secret keys” sk(i,b) for identities of the
form (i, b) ∈ [n] × {0, 1} depending on the data bit b = D[i]. The translation
information consists of an encryption of the label lblread0 for identity (i, 0) and
an encryption of lblread1 for identity (i, 1). We can view the Lu-Ostrovsky scheme
as using a symmetric-key IBE scheme constructed from a PRF Fk(·) and a
standard encryption scheme, where the encryption of a message msg for identity
id is computed as EncFk(id)(msg). We now simply replace this with a public-key
IBE. In particular, we modify the augmented CPU-step circuit so that it now
contains a hard-coded master public key MPK for an IBE scheme (instead of a
PRF key k) and it now creates the translation map translate = (c0, c1) by setting

cb = EncMPK(id = (i, b),msg = lbl
(read)
b ) to be an encryption of the message lblreadb

for identity (i, b).

Overview of Security Proof. The above scheme already removes the circularity
problem and yields a secure construction for read-only computation with un-
protected memory-access (UMA) security. In particular, we can now rely on the
semantic-security of the IBE ciphertexts created by a garbled circuit j without
needing to argue about the security of future garbled circuits j + 1, j + 2, . . .
since they do not contain any secret information about the IBE scheme.

4.2 Writing to Memory

We present the solution for a predictably timed writes (ptWrites), cf. Defini-
tion 1. To handle writes, we now want the garbled data to consist of secret keys
for identities of the form id = (j, i, b) where i ∈ [n] is the location in the data, j
is a time step when that location was last written to, and b ∈ {0, 1} is the bit
that was written to location i in time j. The honest evaluator only needs to keep
the the most recent secret key for each location i. When the computation needs
to read from location i, it computes the last time step j when this location was
written to, then creates the translation mapping by encrypting ciphertexts for
the two identities (j, i, b) for b = 0, 1.

When the computation needs to write a bit b to location i in time period
j, the corresponding garbled circuit should output a secret key for the identity
(j, i, b). Unfortunately, a naive implementation would require the garbled circuits
to include the master secret key MSK of the IBE in order to compute these secret
keys, and this would re-introduce the same circularity problem that we are trying
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to avoid! Instead we use a solution similar to hierarchical IBE (HIBE), as we
describe next.

Timed IBE. To avoid circularity, we introduce a primitive that we call a timed
IBE (TIBE) scheme. Such a scheme roughly lets us create “time-period keys”
TSKj for arbitrary time periods j ≥ 0 such that TSKj can be used to create
identity-secret-keys sk(j,v) for arbitrary v, but cannot break the security of any
other identities with j′ = j.5 TIBEs as described above can be easily constructed
from 2-level HIBE by thinking of the identities (j, v) as being of the form j.v
where the time-period j is the top level of the hierarchy and v is the lower level;
the time-period key TSKj would just be a secret key for the identity j. We note,
however, that for our purposes we can use a slightly weaker version of TIBEs
where we only give out limited number of keys, and these can be constructed
from any selectively-secure IBE scheme.

Definition 2 (Timed IBE (TIBE)). A TIBE scheme Consists of 5 PPT
algorithms MasterGen, TimeGen, KeyGen, Enc, Dec with the syntax:

– (MPK,MSK) ← MasterGen(1κ): generates master public/secret keys MPK,
MSK.

– TSKj ← TimeGen(MSK, j): Generates a key for time-period j ∈ N.

– sk(j,v) ← KeyGen(TSKj , (j, v)): creates a secret key for the identity (j, v).

– ct← EncMPK((j, v),msg) encrypts msg for the identity (j, v).

– msg = Decsk(j,v)(ct): decrypts ct for identity (j, v) using the secret key sk(j,v).

The scheme should satisfy the following properties:
Correctness: For any id = (j, v), and any msg ∈ {0, 1}∗ it holds that:

Pr

[
Decsk(ct) = msg

∣∣∣∣ (MPK,MSK) ← MasterGen(1κ),TSKj ← TimeGen(MSK, j),

sk ← KeyGen(TSKj , (j, v)), ct ← EncMPK((j, v),msg)

]
= 1.

Security: Consider the following game between an attacker A and a challenger.

– The attacker A(1κ) chooses target identity id∗ = (j∗, v∗) and bound t ≥ j∗

(given in unary). The attacker also chooses a set of identities S = S0 ∪ S>0

with id∗ ∈ S such that: (I) S0 contains arbitrary identities of the form (0, v),
(II) S>0 contains exactly one identity (j, v) for each period j ∈ {1, . . . , j∗}.
Lastly, the adversary chooses messages msg0,msg1 ∈ {0, 1}

∗
of equal size

|msg0| = |msg1|.
– The challenger chooses (MPK,MSK) ← MasterGen(1κ), and TSKj ←

TimeGen(MSK, j) for j = 0, . . . , t. For each id = (j, v) ∈ S it chooses
skid ← KeyGen(TSKj , id). Lastly, the challenger chooses a challenge bit
b ← {0, 1} and sets ct ← EncMPK(id

∗,msgb). The challenger gives the at-
tacker:

MPK , TSK = {TSKj}j∗<j≤t , sk = {(id, skid)}id∈S , ct.

– The attacker outputs a bit b̂ ∈ {0, 1}.
5 In our use of TIBE, we will always set v = (i, b) for some i ∈ [n], b ∈ {0, 1}.



418 C. Gentry et al.

The scheme is secure if, for all PPT A, we have |Pr[b = b̂]− 1
2 | ≤ negl(κ) in the

above game.

In the full version [9], we show how to construct a TIBE scheme from any secure
IBE scheme.

Solution Using TIBE. Using a TIBE scheme, we can solve the problem of writes.
For each location i ∈ [n] the honest evaluator will always have a secret key for
identity id = (j, i, b) where j is the last-write-time for location i and b ∈ {0, 1}
is its value. Initially, the garbled data consists of secret keys for the time period
j = 0. Each augmented-CPU-step-circuit in time period j > 0 will contain a
hard-coded time-period key TSKj and the master-public-key MPK. This allows
each CPU step j to read an arbitrary location i ∈ [n] with last-write time u < j
by encrypting the translation ciphertexts translate = (ct0, ct1) under MPK to the
identities (u, i, b) for b = 0, 1. Each such CPU step j can also write a bit b to
an arbitrary location i by creating a secret key skid for the identity id = (j, i, b)
using TSKj . Notice that we create at most one such secret-key for each time
period j > 0. This solution does not suffer from a circularity problem, since
the ciphertexts created by CPU step j for an identity (u, i, b) must have u < j,
and therefore we can rely on semantic security even given the hard-coded values
TSKj+1, . . . ,TSKt in all future garbled circuits.

5 Our Solution Using One-Way Functions

The main problem that arises in the circularity is that there is only one PRF
key, and that this key when embedded in any future time step is able to decode
anything the circuit does in the current time step. The intuitive way to circum-
vent this is to iteratively weaken the PRF key. In order to do so, we introduce
the following notion of revocable PRFs.

5.1 Revocable PRFs

We define the notion of (adaptively) revocable PRFs and we explain how it
differs from existing notions such as [6,7,13,18]. The idea is that we can revoke
values from the key so that the PRF cannot be evaluated on these values, and
given an already-revoked key, one can further revoke new values.

Definition 3. A revocable PRF is a PRF F equipped with an additional revoke
algorithm Rev. The keys for this PRF are of the form kX where X is a subset of
the domain (which is the revoked values), and we identify “fresh keys” with k∅.
The revoke algorithm takes as input a key kX and another subset Y , and output
kX∪Y , satisfying the following properties:

Correctness: FkX∪Y (x) = FkX (x) if x /∈ X ∪ Y , and FkX∪Y (x) = ⊥ otherwise.
Pseudorandomness: Given any set of keys {kY1 , . . . , kYm}, Fk(x) is pseudo-

random for all x /∈
⋂

i Yi.
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Note that this definition appears similar to constrained PRFs [6]; however,
we do not require that the revoked set to be hidden in any way, and we allow
successive revocation of more and more values starting from an initial fresh key.

Revocable PRFs can be constructed based on the GGM construction [10], as
we now sketch. Recall that GGM PRF is built out of a length-doubling PRG G.
It can be thought of as filling the nodes of a complete binary tree with pseudo-
random values: The PRF key is placed in the root, and then the values in all
other nodes are computed by taking any node with value s and putting in its two
children the two halves of the pseudo-random value G(s). An input to the PRF
specifies a leaf in the tree, and the corresponding output is the pseudo-random
value in that leaf. To revoke a single leaf x, we simply replace the root value with
the values of all the siblings of nods on the path to the revoked leaf. Clearly we
can still compute the PRF on every input y = x, but the value of x is now pseudo-
random even given the weaker key. More generally, let X = {x1, x2, . . . , xs} be a
set of s leaves that we want to revoke, the key kX will contain siblings of nodes
on the paths to all these xi’s, except these nodes that are themselves ancestors
of some xi. This key consists of at most s logN values, where N is the number
of leaves in the tree.

5.2 Overview of the Second Construction

Step 1, read-once programs. We begin by describing a naive construction that
solves the circularity issue by using revocable PRFs. Starting from a RAM pro-
gram with ptWrites, we convert it to a “read-once” program (i.e. no location
is read more than once before it is overwritten) by introducing a local cache
in which the CPU keeps every value that it gets from memory. Of course this
transformation comes with a steep performance price, as the CPU state after t
steps grows to size roughly min(n, t).

Once we have a read-once program, we can use revocable PRFs to break
the circularity in the original Lu-Ostrovsky construction as follows: instead of
having the PRF key hard-wired in the augmented CPU-step circuit, we now let
it be part of the input. In particular the circuit will get some key KX as part of
the input, compute the next address i to read from memory (if any), and will
prepare the translation mapping table translate by evaluating FKX (u, i, 0) and
FKX (u, i, 1), then revoke the two points (u, i, 0) and (u, i, 1), and pass to the next
CPU-step function the PRF key KX′ for X ′ = X ∪ {(i, 0), (i, 1)}. Since this is a
read-once program, then no future CPU step ever needs to evaluate the PRF at
these points. Writing remains unchanged, and does not interfere with the PRF
because all revocations only happened to CPU-steps in the past, and in the proof
we can still plant the PRF challenge in the un-written bit FKX (u, i, 1− b).

This solves the circularity problem since the encryption in translate is secure
even given all future keys K ′

x. Moreover, the size of the augmented CPU step is
not much larger than that of the original CPU step since the keys KX only grow
to size roughly κ ·min(n, t) · log n. The naive construction would just garble all of
these enhanced CPU steps, which entails time complexity of poly(κ) ·min(n, t) ·
t logn for both GProg and GEval. This solution, although secure, is not much
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better than just converting the original RAM program to a circuit and garbling
that circuit (i.e. the generic t3 transformation). We do obtain some amortized
savings in the case of running multiple programs on persistent memory (e.g.
repeated binary search).

We mention that instead of “read-once”, we can consider a weakened version
that allows for some bounded number of reads before a location is overwritten.
In such a case, there exists a transformation (via ORAM, see [15]) from an arbi-
trary RAM program to one that satisfies ptWrites and poly-logarithmic bounded
reads, without a cache. In order for GRAM to handle multiple reads to the same
location, we can simply apply repetition and have multiple, independent PRFs.
Unfortunately, even though this removes the cache, the bottleneck remains in
the growth of the keys KX . Only when combined with a more efficient revocable
PRF scheme will this result in lower overhead. Instead, we propose the following
approach.

Step 2, refreshing the memory. To reduce the complexity, we introduce a pe-
riodic memory-refresh operation which is designed to rein-in the growth in the
(augmented) CPU-step functions: Namely, we refresh the entire memory and its
representation every f steps, for some parameter f < n to be determined later.
In more detail, after every f CPU steps we introduce an special refresh circuit
that (a) empties the cache, and (b) re-garbles the memory using a freshly chosen
PRF key. The complexity of each such refresh step is poly(k) ·n, and there is no
need to hard-wire in it any PRF keys (since we can instead just hard-wire all
the O(n) PRF values that it needs, rather than computing them.)

The advantage of using these refresh steps is that now the augmented CPU
steps only grow up to size at most O(κ · f logn), and although each refresh
step is expensive we only have t/f such steps. Hence the overall complexity is
bounded by poly(κ)·(t/f ·n+t·f logn). Setting f =

√
n/ logn thus yields overall

complexity of poly(κ) · t ·
√
n logn for performing t steps, so we get overhead of

poly(κ)
√
n logn.

Step 3, a recursive construction. To further reduce the overhead, we notice that
instead of garbling the augmented CPU steps as circuits (which incurs complex-
ity s·poly(κ) for a size-s step), we can instead view these steps as RAM programs
and apply the same RAM-garbling procedure recursively to these programs. Each
augmented CPU state grows to O(κ·f logn), and can be implemented as a RAM
program of that size, but running in time Õ(κ log f logn) by using appropriate
data structures. This allows us to balance the refresh time with the cost of exe-
cuting each of the t emulated steps as a recurrence relation. There are additional
details required when applying this recursion. Since every level of the recursion
induces a factor of κ, we must choose f so that the savings overcome this factor
and while preserving polynomial complexity. Also, if we treat each step as an
independent GRAM, the cost of running GData on the size-f cache would negate
all savings. We must amortize this cost by treating the steps as running on the
same persistent “mini-GRAM” memory. This requires a careful formalization of
our recursion in terms of a composition theorem that states that a small, secure
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GRAM can be bootstrapped into a larger one via treating CPU internals as
persistent memory. In the long version [15] we give the details and show that for
any constant ε > 0 we can choose the parameter f and the number of recursion
levels to get overhead of poly(κ)nε.

6 Conclusions

We conclude with two important open problems. Firstly, it would be interesting
to give a garbled RAM scheme based only on the existence of one-way functions
with poly-logarithmic overhead. Secondly, the work of Goldwasser et al. recently
constructed the first reusable garbling schemes for circuits and Turing machines
[12,11] where the garbled circuit/TM can be executed on multiple inputs. It
would be interesting to analogously construct a reusable garbled RAM where
the garbled program can be evaluated on many different “short” inputs.
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Abstract. A recent trend in cryptography is to formally show the leak-
age resilience of cryptographic implementations in a given leakage model.
A realistic model is to assume that leakages are sufficiently noisy, follow-
ing real-world observations. While the noisy leakage assumption has first
been studied in the seminal work of Chari et al. (CRYPTO 99), the re-
cent work of Prouff and Rivain (Eurocrypt 2013) provides the first anal-
ysis of a full masking scheme under a physically motivated noise model.
Unfortunately, the security analysis of Prouff and Rivain has three im-
portant shortcomings: (1) it requires leak-free gates, (2) it considers a
restricted adversarial model (random message attacks), and (3) the se-
curity proof has limited application for cryptographic settings. In this
work, we provide an alternative security proof in the same noisy model
that overcomes these three challenges. We achieve this goal by a new re-
duction from noisy leakage to the important theoretical model of probing
adversaries (Ishai et al – CRYPTO 2003). Our work can be viewed as
a next step of closing the gap between theory and practice in leakage
resilient cryptography: while our security proofs heavily rely on concepts
of theoretical cryptography, we solve problems in practically motivated
leakage models.

1 Introduction

Physical side-channel attacks that exploit leakage emitting from devices are an
important threat for cryptographic implementations. Prominent sources of such
physical leakages include the running time of an implementation [17], its power
consumption [18] or electromagnetic radiation emitting from it [26]. A large body
of recent applied and theoretical research attempts to incorporate the informa-
tion an adversary obtains from the leakage into the security analysis and devel-
ops countermeasures to defeat common side-channel attacks [4,14,20,1,9,31,30].
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While there is still a large gap between what theoretical models can achieve and
what side-channel information is measured in practice, some recent important
works propose models that better go align with the perspective of cryptographic
engineering [29,24,30]. Our work follows this line of research by analyzing the
security of a common countermeasure – the so-called masking countermeasure –
in the model of Prouff and Rivain [24]. Our analysis works by showing that se-
curity in certain theoretical leakage models implies security in the model of [24],
and hence may be seen as a first attempt to unify the large class of different
leakage models used in recent results.

The masking countermeasure. A large body of work on cryptographic engineer-
ing has developed countermeasures to defeat side-channel attacks (see, e.g., [19]
for an overview). While many countermeasures are specifically tailored to pro-
tect particular cryptographic implementations (e.g., key updates or shielded
hardware), a method that generically works for most cryptographic schemes
is masking [13,2,23,31]. The basic idea of a masking scheme is to secret share all
sensitive information, including the secret key and all intermediate values that
depend on it, thereby making the leakage independent of the secret data. The
most prominent masking scheme is the Boolean masking: a bit b is encoded by
a random bit string (b1, . . . , bn) such that b = b1 ⊕ . . .⊕ bn. The main difficulty
in designing masking schemes is to develop masked operations, which securely
compute on encoded data and ensure that all intermediate values are protected.

Masking against noisy leakages. Besides the fact that masking can be used to
protect arbitrary computation, it has the advantage that it can be analyzed
in formal security models. The first work that formally studies the soundness
of masking in the presence of leakage is the seminal work of Chari et al. [4].
The authors consider a model where each share bi of an encoding is perturbed
by Gaussian noise and show that the number of noisy samples needed to re-
cover the encoded secret bit b grows exponential with the number of shares. As
stated in [4], this model matches real-world physical leakages that inherently are
noisy. Moreover, many practical solutions exist to amplify leakage noise (see for
instance the works of [6,5,19]).

One limitation of the security analysis given in [4] is the fact that it does not
consider leakage emitting from masked computation. This shortcoming has been
addressed in the recent important work of Prouff and Rivain [24], who extend
at Eurocrypt 2013 the noisy leakage model of Chari et al. [4] to also include
leakage from the masked operations. Specifically, they show that a variant of
the construction of Ishai et al. [14] is secure even when there is noisy leakage
from all the intermediate values that are produced during the computation.
The authors of [24] also generalize the noisy leakage model of Chari et al. [4]
to a wider range of leakage functions instead of considering only the Gaussian
one. While clearly noisy leakage is closer to physical leakage occurring in real
world, the security analysis of [24] has a number of shortcomings which puts
strong limitations in which settings the masking countermeasure can be used
and achieves the proved security statements. In particular, like earlier works on
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leakage resilient cryptography [8,10] the security analysis of Prouff and Rivain
relies on so-called leak-free gates. Moreover, security is shown in a restricted
adversarial model that assumes that plaintexts are chosen uniformly during an
attack and the adversary does not exploit joint information from the leakages
and, e.g., the ciphertext. We discuss these shortcomings in more detail in the
next section.

1.1 The Work of Prouff and Rivain [25]

Prouff and Rivain [25] analyze the security of a block-cipher implementation that
is masked with an additive masking scheme working over a finite field F. More
precisely, let t be the security parameter then a secret s ∈ F is represented by
an encoding (X1, . . . , Xt) such that each Xi ← F is uniformly random subject
to s = X1 ⊕ . . .⊕Xt. As discussed above the main difficulty in designing secure
masking schemes is to devise masked operations that work on masked values. To
this end, Prouff and Rivain use the original scheme of Ishai et al. [14] augmented
with some techniques from [3,27] to work over larger fields and to obtain a
more efficient implementation. The masked operations are built out of several
smaller components. First, a leak-free operation that refreshes encodings, i.e.,
it takes as input an encoding (X1, . . . , Xt) of a secret s and outputs a freshly
and independently chosen encoding of the same value. Second, a number of leaky
elementary operations that work on a constant number of field elements. For each
of these elementary operations the adversary is given leakage f(X), where X are
the inputs of the operation and f is a noisy function. Clearly, the noise-level has
to be high enough so that given f(X) the values of X is not completely revealed.
To this end, the authors introduce the notion of a bias, which informally says
that the statistical distance between the distribution of X and the conditional
distribution X |f(X) is bounded by some parameter.

While noisy leakages are certainly a step in the right direction to model phys-
ical leakage, we detail below some of the limitations of the security analysis of
Prouff and Rivain [24]:

1. Leak-free components: The assumption of leak-free computation has been
used in earlier works on leakage resilient computation [10,8]. It is a strong
assumption on the physical hardware and, as stated in [24], an important
limitation of the current proof approach. The leak-free component of [24] is a
simple operation that takes as input an encoding and refreshes it. While the
computation of this operation is supposed to be completely shielded against
leakage, the inputs and the outputs of this computation may leak. Notice
that the leak-free component of [24] depends on the computation that is
carried out in the circuit by takeing inputs. In particular, this means that
the computation of the leak-free component depends on secret information,
which makes it harder to protect in practice and is different from earlier
works that use leak-free components [10,8].

2. Random message attacks: The security analysis is given only for random
message attacks. In particular, it is assumed that every masked secret is a
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uniformly random value. This is in contrast to most works in cryptography,
which usually consider at least a chosen message attack. When applied to a
block-cipher, their proof implies that the adversary has only access to the
leakage of the system without knowing which plaintext was used nor which
ciphertext was obtained. Hence, the proof does not cover chosen plaintext or
chosen ciphertext attacks. However, it is true that it is not clear how chosen
message attacks change the picture in standard DPA attacks [32].

3. Mutual-information-based security statement: The final statement of Theo-
rem 4 in [24] only gives a bound on the mutual information of the key and
the leakages from the cipher. In particular, this does not include informa-
tion that an adversary may learn from exploiting joint information from the
leakages and plaintext/ciphertext pairs. Notice that the use of mutual infor-
mation gets particularly problematic under continuous leakage attacks, since
multiple plaintext/ciphertext pairs information theoretically completely re-
veal the secret key. The standard security notion used, e.g., in Ishai et al. is
simulation-based and covers such subtleties when dealing with Shannon in-
formation theory.

4. Strong noise requirements: The amount of noise that is needed depends on
the number of shares and on the size of the field which might be a bit
unnatural. Moreover, the noise is independently sampled for each of the
elementary operation that have constant size.

1.2 Our Contribution

We show in this work how to eliminate limitations 1-3 by a simple and elegant
simulation-based argument and a reduction to the so-called t-probing adversarial
setting [14] (that in this paper we call the t-threshold-probing model to empha-
size the difference between this model and the random-probing model defined
later.). The t-threshold-probing model considers an adversary that can learn the
value of t intermediate values that are produced during the computation and
is often considered as a good approximation for modelling higher-order attacks.
We notice that limitation 4 from above is what enables our security analysis.
The fact that the noise is independent for each elementary operation allows us
to formally prove security under an identical noise model as [24], but using a
simpler and improved analysis. In particular, we are able to show that the orig-
inal construction of Ishai et al. satisfies the standard simulation-based security
notion under noisy leakages without relying on any leak-free components. We
emphasize that our techniques are very different (and much simpler) than the
recent breakthrough result of Goldwasser and Rothblum [12] who show how to
eliminate leak-free gates in the bounded leakage model. We will further discuss
related works in Section 1.3.

Our proof considers three different leakage models and shows connections be-
tween them. One may view our work as a first attempt to “reduce” the number
of different leakage models, which is in contrast to many earlier works that in-
troduced new leakage settings. Eventually, we are able to reduce the security
in the noisy leakage model to the security in the t -threshold-probing model.
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This shows that, for the particular choice of parameters given in [24], security in
the t-threshold-probing model implies security in the noisy leakage model. This
goes align with the common approach of showing security against t-order attacks,
which usually requires to prove security in the t–threshold-probing model. More-
over, it shows that the original construction of Ishai et al. that has been used in
many works on masking (including the work of Prouff and Rivain) is indeed a
sound approach for protecting against side-channel leakages when assuming that
they are sufficiently noisy. We give some more details on our techniques below.

From noisy leakages to random probes. As a first step in our security proof we
show that we can simulate any adversary in the noisy leakage model of Prouff
and Rivain with an adversary in a simpler noise model that we name a random
probing adversary and is similar to a model introduced in [14]. In this model, an
adversary recovers an intermediate value with probability ε and obtains a special
symbol ⊥ with probability 1− ε. This reduction shows that this model is worth
studiying, although from the engineering perspective it may seem unnatural.

From random probes to the t-threshold-probing model. We show how to go from
the random probing adversary setting to the more standard t-threshold-probing
adversary of Ishai et al. in [14]. This step is rather easy as due to the inde-
pendency of the noise we can apply Chernoff’s bound almost immediately. One
technical difficulty is that the work of Prouff and Rivain considers joint noisy
leakage from elementary operations, while the standard t-threshold-probing set-
ting only talks about leakage from wires. Notice, however, that the elementary
operations of [24] only depend on two inputs and, hence, it is not hard to extend
the result of Ishai et al. to consider “gate probing adversary” by tolerating a
loss in the parameters. Finally, our analysis enables us to show security of the
masking based countermeasure without the limitations 1-3 discussed above.

Leakage resilient circuits with simulation-based security. In our security analysis
we use the the framework of leakage resilient circuits introduced in the seminal
work of Ishai et al. [14]. A circuit compiler takes as input the description of a
cryptographic scheme C with secret key K, e.g., a circuit that describes a block
cipher, and outputs a transformed circuit C′ and corresponding key K ′. The
circuit C′[K ′] shall implement the same functionality as C running with key
K, but additionally is resilient to certain well-defined classes of leakage. Notice
that while the framework of [14] talks about circuits the same approach applies
to software implementations, and we only follow this notation to abstract our
description.

Moreover, our work uses the well-established simulation paradigm to state
the security guarantees we achieve. Intuitively, simulation-based security says
that whatever attack an adversary can carry out when knowing the leakage, he
can also run (with similar success probability) by just having black-box access
to C. In contrast to the approach based on Shannon information theory our
analysis includes attacks that exploit joint information from the leakage and
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plaintext/ciphertext pairs. It seems impossible to us to incorporate the plain-
text/ciphertext pairs into an analysis based on Shannon information theory. To
see this, consider a block-cipher execution, where, clearly, when given a couple of
plaintext/ciphertext pairs, the secret key is information theoretically revealed.1

The authors of [24] are well aware of this problem and explicitly exclude such
joint information. A consequence of the simulation-based security analysis is
that we require an additional mild assumption on the noise – namely, that it is
efficiently computable (see Section 3.1 for more details). While this is a standard
assumption made in most works on leakage resilient cryptography, we empha-
size that we can easily drop the assumption of efficiently computable noise (and
hence considering the same noise model as [24]), when we only want to achieve
the weaker security notion considered in [24]. Notice that in this case we are still
able to eliminate the limitations 1 & 2 mentioned above.

1.3 Related Work

Masking & leakage resilient circuits. A large body of work has proposed various
masking schemes and studies their security in different security models (see,
e.g., [13,2,23,31,27]). The already mentioned t-threshold-probing model has been
considered in the work of Rivain and Prouff [27], who show how to extend the
work of Ishai et al. to larger fields and propose efficiency improvements. In [25]
it was shown that techniques from multiparty computation can be used to show
security in the t-threshold-probing model. The work of Standaert et al. [31]
studies masking schemes using the information theoretic framework of [29] by
considering the Hamming weight model. Many other works analyze the security
of the masking countermeasure and we refer the reader for further details to [24].

With the emerge of leakage resilient cryptography [20,1,9] several works have
proposed new security models and alternative masking schemes. The main dif-
ference between these new security models and the t-threshold-probing model
is that they consider joint leakages from large parts of the computation. The
work of Faust et al. [10] extends the security analysis of Ishai et al. beyond the
t-threshold-probing model by considering leakages that can be described by low-
depth circuits (so-called AC0 leakages). Faust et al. use leak-free component that
have been eliminated by Rohtblum in [28] using computational assumptions. The
recent work of Miles and Viola [21] proposes a new circuit transformation using
alternating groups and shows security with respect to AC0 and TC0 leakages.

Another line of work considers circuits that are provably secure in the so-called
continuous bounded leakage model [15,11,8,12]. In this model, the adversary is
allowed to learn arbitrary information from the computation of the circuit as

1 More concretely: imagine an adversary that attacks a block-cipher implementation
EK , where K is the secret key. Then just by launching a known-plaintext attack
he can obtain several pairs V = (M0, EK(M0)), (M1, EK(M1)), . . .. Clearly a small
number of such pairs is usually enough to determine K information-theoretically.
Hence it makes no sense to require that “K is information-theoretically hidden given
V and the side-channel leakage.”
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long as the amount of information is bounded. The proposed schemes rely ad-
ditionally on the assumption of “only computation leaks information” of Micali
and Reyzin [20].

Noisy leakage models. The work of Faust et al. [10] also considers circuit com-
pilers for noisy models. Specifically, they propose a construction with security in
the binomial noise model, where each value on a wire is flipped independently
with probability p ∈ (0, 1/2). In contrast to the work of [24] and our work the
noise model is restricted to binomial noise, but the noise rate is significantly
better (constant instead of linear noise). Similar to [24] the work of Faust et al.
also uses leak-free components. Besides these works on masking schemes, several
works consider noisy leakages for concrete cryptographic schemes [9,22,16]. Typ-
ically, the noise model considered in these works is significantly stronger than
the noise model that is considered for masking schemes. In particular, no strong
assumption about the independency of the noise is made.

2 Preliminaries

We start with some standard definitions and lemmas about the statistical dis-
tance. If A is a set then U ← A denotes a random variable sampled uniformly
from A. Recall that if A and B are random variables over the same set A
then the statistical distance between A and B is denoted as Δ(A;B), and de-
fined as Δ(A;B) = 1

2

∑
a∈A |P (A = a)−P (B = a) | =

∑
a∈Amax{0,P (A = a)−

P (B = a)}. If X ,Y are some events then by Δ((A|X ) ; (B|Y)) we will mean the
distance between variables A′ and B′, distributed according to the conditional
distributions PA|X and PB|Y . If X is an event of probability 1 then we also write
Δ(A ; (B|Y)) instead of Δ((A|X ) ; (B|Y)). If C is a random variable then by
Δ(A ; (B|C)) we mean

∑
P (C = c) ·Δ(A ; (B|(C = c))).

IfA,B, andC are randomvariables thenΔ((B;C) |A) denotesΔ((BA); (CA)).
It is easy to see that it is equal to

∑
a P (A = a) · Δ((B|A = a) ; (C|A = a)). If

Δ(A;B) ≤ ε then we say that A and B are ε-close. The “
d
=” symbol denotes the

equality of distributions, i.e., A
d
=B if and only if Δ(A;B) = 0. We also have the

following lemma, whose proof appears in the full version.

Lemma 1. Let A,B be two random variables. Let B′ be a variable distributed
identically to B but independent from A. We have Δ(A; (A|B)) = Δ((B;B′) | A).

3 Noise from Set Elements

We start with describing the basic framework for reasoning about the noise
from elements of a finite set X . Later, in Section 4, we will consider the leakage
from the vectors over X , and then, in Section 5, from the entire computation.
The reason why we can smoothly use the analysis from Section 3.1 in the later
sections is that, as in the work of Prouff and Rivain, we require that the noise
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is independent for all elementary operations. By elementary operations, [24]
considers the basic underlying operations over the underlying field X used in a
masked implementation. In this work, we consider the same setting and type of
underlying operations (in fact, notice that our construction is identical to theirs
– except that we eliminate the leak-free gates and prove a stronger statement).
Notice that instead of talking about elementary operations, we consider the more
standard term of “gates” that was used in the work of Ishai et al. [14].

3.1 Modeling Noise

Let us start with a discussion defining what it means that a randomized function
Noise : X → Y is “noisy”. We will assume that X is finite and rather small:
typical choices for X would be GF(2) (the “Boolean case”), or GF(28), if we
want to deal with the AES circuit. The set Y corresponds to the set of all
possible noise measurements and may be infinite, except when we require the
“efficient simulation” (we discuss it further at the end of this section). As already
informally described in Section 1.1 our basic definition is as follows: we say that
the function Noise is δ-noisy if

δ = Δ(X ; (X |Noise(X))). (1)

Of course for (1) to be well-defined we need to specify the distribution of X .
The idea to define noisy functions by comparing the distributions of X and
“X conditioned on Noise(X)” comes from [24], where it is argued that the
most natural choice for X is a random variable distributed uniformly over X .
We also adopt this convention and assume that X ← X . We would like to
stress, however, that in our proofs we will apply Noise to inputs X̂ that are
not necessarily uniform and in this case the value of Δ(X̂ ; (X̂ |Noise(X̂)) may
obviously be some non-trivial function of δ. Of course if X ← X and X ′ ← X
then Noise(X ′) is distributed identically to Noise(X), and hence, by Lemma 1,
Eq. (1) is equivalent to:

δ = Δ((Noise(X);Noise(X ′)) | X), (2)

where X and X ′ are uniform over X . Note that at the beginning this definition
may be a bit counter-intuitive, as smaller δ means more noise: in particular
we achieve “full noise” if δ = 0, and “no noise” if δ ≈ 1. Let us compare
this definition with the definition of [24]. In a nutshell: the definition of [24] is
similar to ours, the only difference being that instead of the statistical distance Δ
in [24] the authors use a distance based on the Euclidean norm. More precisely,
they start with defining d as: d(X ;Y ) :=

√∑
x∈X (P (X = x) − P (Y = y))2, and

using this notion they define β as:

β(X |Noise(X)) :=
∑
y∈Y

P (Noise(X) = y) · d(X ; (X |Noise(X) = y))

(where X is uniform). In the terminology of [24] a function Noise is “δ-noisy”
if δ = β(X |Noise(X)). Observe that the right hand side of our noise definition
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in Eq. (1) can be rewritten as:
∑

b∈Y P (Noise(X) = y) ·Δ(X ; (X |Noise(X) =
y)),hence the only difference between their approach and ours is that we use Δ
where they use the distance d. The authors do not explain why they choose this
particular measure. We believe that our choice to use the standard definition
of statistical distance Δ is more natural in this setting, since, unlike the “d”
distance, it has been used in hundreds of cryptographic papers in the past.
The popularity of the Δ distance comes from the fact that it corresponds to
an intuitive concept of the “indistinguishability of distributions” — it is well-
known, and simple to verify, that Δ(X ;Y ) ≤ δ if and only if no adversary can
distinguish between X and Y with advantage better than δ.2 Hence, e.g., (2)
can be interpreted as:

δ is the maximum probability, over all adversariesA, thatA distinguishes
between the noise from a uniform X that is known to him, and a uniform
X ′ that is unknown to him.

It is unclear to us if a d distance has a similar interpretation. We emphasize,
however, that the choice whether to use Δ or β is not too important, as the
following inequality hold (c.f. [24]):

1

2
· β(X |Noise(X)) ≤ Δ(X ; (X |Noise(X)) ≤

√
|X |
2

· β(X |Noise(X)). (3)

Hence, we decide to stick to the “Δ distance” in this paper. However, to allow
for comparison between our work and the one of [24] we will at the end of the
paper present our results also in terms of the β measure (this translation will
be straightforward, thanks to the inequalities in (3)).In [24] (cf. Theorem 4)
the result is stated in form of Shannon information theory. While such an in-
formation theoretic approach may be useful in certain settings [29], we follow
the more “traditional” approach and provide an efficient simulation argument.
As discussed in the introduction, this also covers a setting where the adver-
sary exploits joint information of the leakage and, e.g., the plaintext/ciphertext
pairs. We emphasize, however, that our results can easily be expressed in the
information theoretic language as shown in the full version of the paper.

The Issue of “Efficient Simulation”. To achieve the strong simulation-based
security notion, we need an additional requirement on the leakage, namely, that
the leakage can efficiently be “simulated” – which typically requires that the
noise function is efficiently computable. In fact, for our proofs to go through we
actually need something slightly stronger, namely that Noise is efficiently decid-
able by which we mean that (a) there exists a randomized poly-time algorithm
that computes it, and (b) the set Y is finite and for every x and y the value of
P (Noise(x) = y) is computable in polynomial time. While (b) may look like a
strong assumption we note that in practice for most “natural” noise functions
(like the Gaussian noise with a known parameter, measured with a very good,
but finite, precision) it is easily satisfiable.

2 This formally means that for every A we have |P (A(X) = 1)− P (A(Y ) = 1)| ≤ δ.



432 A. Duc, S. Dziembowski, and S. Faust

Recall that the results of [24] are stated without taking into consideration the
issue of the “efficient simulation”. Hence, if one wants to compare our results
with [24] then one can simply drop the efficient decidability assumption on the
noise. To keep our presentation concise and clean, also in this case the results will
be presented in a form “for every adversary A there exists an (inefficient) simu-
lator S”. Here the “inefficient simulator” can be an arbitrary machine, capable,
e.g., of sampling elements from any probability distributions.

3.2 Simulating Noise by ε-Identity Functions

Lemma 2 below is our main technical tool. Informally, it states that every δ-
noisy function Noise : X → Y can be represented as a composition Noise ′ ◦ϕ of
efficiently computable randomized functions Noise ′ and ϕ, where ϕ is a “δ · |X |-
identity function”, defined in Definition 1 below.

Definition 1. A randomized function ϕ : X → X ∪ {⊥} is an ε-identity if for
every x we have that either ϕ(x) = x or ϕ(x) = ⊥ and P (ϕ(x) = ⊥) = ε.

This will allow us to reduce the “noisy attacks” to the “random probing attacks”,
where the adversary learns each wire (or a gate, see Section 5.5) of the circuit
with probability ε. Observe also, that thanks to the assumed independence of
noise, the events that the adversary learns each element are independent, which,
in turn, will allow us to use the Chernoff bound to prove that with a good
probability the number of wires that the adversary learns is small.

Lemma 2. Let Noise : X → Y be a δ-noisy function. Then there exist ε ≤ δ ·|X |
and a randomized function Noise ′ : X ∪ {⊥} → X such that for every x ∈ X we
have

Noise(x)
d
=Noise ′(ϕ(x)), (4)

where ϕ : X → X∪{⊥} is the ε-identity function. Moreover, if Noise is efficiently
decidable then Noise ′(ϕ(x)) is computable in time that is expected polynomial in
|X |.

The proof appears in the full version of the paper.

4 Leakage from Vectors

In this section we describe the leakage models relevant to this paper. We start
with describing the models abstractly, by considering leakage from an arbitrary
sequence (x1, . . . , x�) ∈ X �, where X is some finite set and 
 is a parameter. The
adversaryA will be able to obtain some partial information about (x1, . . . , x�) via
the games described below. Note that we do not specify the computational power
of A, as the definitions below make sense for both computationally-bounded or
infinitely powerful A.
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Noisy Model. For δ ≥ 0 a δ-noisy adversary on X � is a machine A that plays
the following game against an oracle that knows (x1, . . . , x�) ∈ X �:

1. A specifies a sequence {Noisei : X → Y}�i=1 of noisy functions such that
every Noisei is δ′i-noisy, for some δ′i ≤ δ and mutually independent noises.

2. A receives Noise1(x1), . . . ,Noise�(x�) and outputs some value outA
(x1, . . . , x�).

If A works in polynomial time and the noise functions specified by A are effi-
ciently decidable then we say that A is poly-time-noisy.

Random Probing Model. For ε ≤ 0 a ε-random-probing adversary on X �

is a machine A that plays the following game against an oracle that knows
(x1, . . . , x�) ∈ X �:

1. A specifies a sequence (ε1, . . . , ε�) such that each εi ≤ ε.
2. A receivesϕ1(x1), . . . , ϕ�(x�) and outputs some value outA(x1, . . . , x�), where

each ϕi is the εi-identity function with mutually independent randomness.

A similar model was introduced in the work of Ishai, Sahai and Wagner [14] to
obtain circuit compilers with linear blow-up in the size.

Threshold Probing Model. For t = 0, . . . , 
 a t-treshold-probing adversary on
X � is a machine A that plays the following game against an oracle that knows
(x1, . . . , x�) ∈ X �:

1. A specifies a set I = {i1, . . . , i|I|} ⊆ {1, . . . , 
} of cardinality at most t,
2. A receives (xi1 , . . . , xi|I|) and outputs some value outA(x1, . . . , x�).

4.1 Simulating the Noisy Adversary by a Random-Probing
Adversary

The following lemma shows that every δ-noisy adversary can be simulated by a
δ · |X |-random probing adversary.

Lemma 3. Let A be a δ-noisy adversary on X �. Then there exists a δ · |X |-
random-probing adversary S on X � such that for every (x1, . . . , x�) we have

outA(x1, . . . , x�)
d
= outS(x1, . . . , x�). (5)

Moreover, if A is poly-time-noisy, then S works in time polynomial in |X |.

Intuitively, this lemma easily follows from Lemma 2 applied independently to
each element of (x1, . . . , x�). The formal proof appears in the full version.

4.2 Simulating the Random-Probing Adversary

In this section we show how to simulate every δ-random probing adversary by
a threshold adversary. This simulation, unlike the one in Section 4 will not be
perfect in the sense that the distribution output by the simulator will be identical
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to the distribution of the original adversary only when conditioned on some event
that happens with a large probability. We start with the following lemma, whose
proof, which is a straightforward application of the Chernoff bound, appears in
the full version.

Lemma 4. Let A be an ε-random-probing adversary on X �. Then there exists
a (2ε
− 1)-threshold-probing adversary S on X � operating in time linear in the
working time of A such that for every (x1, . . . , x�) we have

Δ(outA(x1, . . . , x�) ; outS(x1, . . . , x�) | outS(x1, . . . , x�) = ⊥) = 0, (6)

where

P (outS(x1, . . . , x�) = ⊥) ≤ exp

(
− ε


3

)
. (7)

The following corollary, whose proof is given in the full version, combines Lemma
3 and 4 together, and will be useful in the sequel.

Corollary 1. Let d, 
 ∈ N with 
 > d and let A be a d/(4
 · |X |)-noisy adversary
on X �. Then there exists an (d/2− 1)-threshold-probing adversary S such that

Δ(outA(x1, . . . , x�) ; outS(x1, . . . , x�) | outS(x1, . . . , x�) = ⊥) = 0 (8)

and P (outS(x1, . . . , x�) = ⊥) ≤ exp(−d/12). Moreover, if A is poly-time-noisy
then S works in time polynomial 
 · |X |.

5 Leakage from Computation

In this section we address the main topic of this paper, which is the noise-resilience
of cryptographic computations. Our main model will be the model of arithmetic
circuits over a finite field. First, in Section 5.1 we present our security definitions,
and then, in Section 5.2 we describe a secure “compiler” that transforms any cryp-
tographic scheme secure in the “black-box” model into one secure against the
noisy leakage (it is essentially identical to the transformation of [14] later extended
in [27]). Finally, in the last section we present our security results.

5.1 Definitions

A (stateful arithmetic) circuit Γ over a field F is a directed graph whose nodes
are called gates. Each gate γ can be of one of the following types: an input gate
γinp of fan-in zero, an output gate γout of fan-out zero, a random gate γrand of
fan-in zero, a multiplication gate γ× of fan-in 2, an addition gate γ+ of fan-in 2,
a subtraction gate γ− of fan-in 2, a constant gate γconst , and a memory gate
γmem of fan-in 1. Following [14] we assume that the fan-out of every gate is at
most 3. The only cycles that are allowed in Γ must contain exactly 1 memory
gate. The size |Γ | of the circuit Γ is defined to be the total number of its gates.
The numbers of input gates, output gates and memory gates will be denoted
|Γ.inp| , |Γ.out |, and |Γ.mem |, respectively.
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The computation of Γ is performed in several “rounds” numbered 1, 2, . . .. In
each of them the circuit will take some input, produce an output and update
the memory state. Initially, the memory gates of Γ are preloaded with some
initial “state” k0 ∈ F|Γ.mem|. At the beginning of the ith round the input gates
are loaded with elements of some vector ai ∈ F|Γ.inp| called the input for the ith
round. The computation of Γ in the ith round depends on ai and on the memory
state ki−1. It proceeds in a straightforward way: if all the input wires of a given
gate are known then the value on its output wire can be computed naturally: if γ
is a multiplication gate with input wires carrying values a and b, then its output
wire will carry the value a ·b (where “·” is the multiplication operation in F), and
the addition and the subtraction gates are handled analogously. We assume that
the random gates produce a fresh random field element in each round. The output
of the ith round is read-off from the output gates and denoted bi ∈ F|Γ.out|. The
state after the ith round is contained in the memory gates and denoted ki. For
k ∈ F|Γ.mem| and a sequence of inputs (a1, . . . , am) (where each ai ∈ F|Γ.inp|) let
Γ (k, a1, . . . , am) denote the sequence (B1, . . . , Bm) where each Bi is the output
of Γ with k0 = k and inputs a1, . . . , am in rounds 1, 2, . . .. Observe that, since Γ
is randomized, hence Γ (k, a1, . . . , am) is a random variable.

A black-box circuit adversary A is a machine that adaptively interacts with

a circuit Γ via the input and output interface. Then out

(
A

bb

�Γ (k)

)
denotes

the output of A after interacting with Γ whose initial memory state is k0 = k.
A δ-noisy circuit adversary A is an adversary that has the following additional
ability: after each ith round A gets some partial information about the internal
state of the computation via the noisy leakage functions. More precisely: let
(X1, . . . , X�) be the random variable denoting the values on the wires of Γ (k) in
the ith round. Then A plays the role of a δ-noisy adversary in a game against
(X1, . . . , X�) (c.f. Section 4), namely: he choses a sequence {Noisei : F→ Y}�i=1

of functions such that every Noisei is δi-noisy for some δi ≤ δ and he receives

Noise1(X1), . . . ,Noise�(X�). Let out

(
A

noisy

� Γ (k)

)
denote the output of such

an A after interacting with Γ whose initial memory state is k0 = k.
We can also replace, in the above definition, the “δ-noisy adversary” with

the “ε-random probing adversary”. In this case, after each ith round A choses
a sequence (ε1, . . . , ε�) such that each εi ≤ ε and he learns ϕ1(X1), . . . , ϕ�(X�),

where each ϕi is the εi-identity function. Let out

(
A

rnd
� Γ (k)

)
denote the output

of such A after interacting with Γ whose initial memory state is k0 = k.
Analogously we can replace the “δ-noisy adversary” with the “t-threshold

probing adversary” obtaining an adversary that after each ith round A learns

t elements of (X1), . . . , ϕ�(X�). Let out

(
A

thr

� Γ (k)

)
denote the output of such

A after interacting with Γ whose initial memory state is k0 = k.

Definition 2. Consider two stateful circuits Γ and Γ ′ (over some field F) and
a randomized encoding function Enc. We say that Γ ′ is a (δ, ξ)-noise resilient
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implementation of a circuit Γ w.r.t. Enc if the following holds for every k ∈
F|Γ.inp|:

1. the input-output behavior of Γ (k) and Γ ′(Enc(k)) is identical, i.e.: for every
sequence of inputs a1, . . . , am and outputs b1, . . . , bm we have

P (Γ (k, a1, . . . , am) = (b1, . . . , bm)) = P
(
Γ ′(Enc(k), a1, . . . , am) = (b1, . . . , bm)

)
and

2. for every δ-noisy circuit adversary A there exists a black-box circuit adver-
sary S such that

Δ

(
out

(
S

bb

�Γ (k)

)
; out

(
A

noisy

� Γ ′(Enc(k))

))
≤ ξ. (9)

The definition of Γ ′ being a (ε, ξ)-random-probing resilient implementation of a
circuit Γ is identical to the one above, except that Point 2 is replaced with:

2’. for every ε-random-probing circuit adversary A there exists a black-box cir-
cuit adversary S such that

Δ

(
out

(
S

bb
�Γ (k)

)
; out

(
A

rnd
� Γ ′(Enc(k))

))
≤ ξ.

The definition of Γ ′ being a (t, ξ)-threshold-probing resilient implementation of
a circuit Γ is identical to the one above, except that Point 2 is replaced with:

2”. for every t-threshold-probing circuit adversary A there exists a black-box cir-
cuit adversary S such that

Δ

(
out

(
S

bb

�Γ (k)

)
; out

(
A

thr

� Γ ′(Enc(k))

))
≤ ξ.

In all cases above we will say that Γ ′ is a an implementation Γ with efficient
simulation if the simulator S works in time polynomial in Γ ′ · |F| as long as A
is poly-time and the noise functions specified by A are efficiently decidable.

5.2 The Implementation

In the full version of the paper, we describe in details the circuit compiler of [14]
which was generalized to larger fields in [27]. Due to space constraints, we just
recall it here in few sentences. The encoding function is defined as: Enc+(x) :=
(X1, . . . , Xd), where X1, . . . , Xd are uniform such that X1 + · · · + Xd = x.
At a high level, each wire w in the original circuit Γ is represented by a wire
bundle in Γ ′, consisting of d wires −→w = (w1, . . . , wd), that carry an encoding of
w. The gates in C are replaced gate-by-gate with so-called gadgets, computing
on encoded values. Addition and subtraction are performed wire-wise. For mul-

tiplication, for input −→a and
−→
b , the circuit Γ ′ generates, for every 1 ≤ i < j ≤ d,

a random field element zi,j (this is done using the random gates in Γ ′). Then,
for every 1 ≤ j < i ≤ d it computes zi,j := aibj + ajbi − zj,i, and finally he
computes each output ci (for i = 1, . . . , d) as ci := aibi +

∑
i�=j zi,j .

This multiplication gadget turns out to a be useful as a building block for
“refreshing” of the encoding.
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5.3 Security in the Probing Model [14]

In [14] it is shown that the compiler from the pervious section is secure against
probing attacks in which the adversary can probe at most �(d − 1)/2� wires
in each round.3 This parameter may be a bit disappointing as the number of
probes that the adversary needs to break the security does not grow with the
size of the circuit. This assumption may seem particularity unrealistic for large
circuits Γ . Fortunately, [14] also shows a small modification of the construction
from Section 5.2 that is resilient to a larger number of probes, provided that the
number of probes from each gadget is bounded. Before we present it let us argue
why the original construction is not secure against such attacks. To this end,
assume that our circuit Γ has a long sequence of wires a1, . . . , am, where each ai

(for i > 1) is the result of adding to ai−1 (using an addition gate) a 0 constant
(that was generated using a γconst

0 gate). It is easy to see that in the circuit Γ ′ all
the wire bundles −→a1, . . . ,−→am (where each −→ai corresponds to ai) will be identical.
Hence, the adversary that probes even a single wire in each addition gadget in Γ ′

will learn the encoding of a1 completely as long as m ≥ d. Fortunately one can
deal with this problem by “refreshing” the encoding after each subtraction and
addition gate exactly in the same way as done before, i.e. by using the Refresh
sub-gadget.

Lemma 5 ([14]). Let Γ be an arbitrary stateful arithmetic circuit over some
field F.Let Γ ′ be the circuit that results from the procedure described above. Then
Γ ′ is a (�(d−1)/2�·|Γ | , 0)-threshold-probing resilient implementation of a circuit
Γ (with efficient simulation), provided that the adversary does not probe each
gadget more than �(d− 1)/2� times in each round.

Wenotice that [14] also contains a second transformationwith blow-up Õ(d |Γ |). It
may be possible that this transformation can provide better noise parameters as is
achieved by Theorem 2. However, due to the hidden parameters in the Õ-notation
we do not get a straightforward improvement of our result. In particular, using this
transformation the size of the transformed circuit depends also on an additional
statistical security parameter, which will affect the tolerated noise level.

5.4 Resilience to Noisy Leakage from the Wires

We now show that the construction from Section 5.3 is secure against the noisy
leakage. More precisely, we show the following.

Theorem 1. Let Γ be an arbitrary stateful arithmetic circuit over some field F.
Let Γ ′ be the circuit that results from the procedure described in Section 5.3. Then
Γ ′ is a (δ, |Γ | · exp(−d/12))-noise-resilient implementation of Γ (with efficient

simulation), where δ := ((28d+ 16) |F|)−1
= O(1/(d · |F|)).

This lemma is proven by combining Corollary 1 that reduces the noisy adversary
to the probing adversary, with Lemma 5 that shows that the construction from
Section 5.3 is secure against probing. The full proof appears in the full version.

3 Strictly speaking the proof of [14] considers only the case when F = GF(2). It was
observed in [27] that it can be extended to any finite field, as the only properties of
GF(2) that are used in the proof are the field axioms.
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5.5 Resilience to Noisy Leakage from the Gates

The model of Prouff and Rivain is actually slightly different than the one con-
sidered in the previous section. The difference is that they assume that the noise
is generated by the gates, not by the wires. This can be formalized by assuming
that each noise function Noise is applied to the “contents of a gate”. We do not
need to specify exactly what we mean by this. It is enough to observe that the
contents of each gate γ can be described by at most 2 field elements: obviously if
γ is a random gate, output gate, or memory gate then its entire state in a given
round can be described by one field element, and if γ is an operation gate then
it can be described by two field elements that correspond to γ’s input. Hence,
without loss of generality we can assume that the noise function is defined over
the domain F× F.

Formally, we define a δ-gate-noisy circuit adversary A as a machine that,
besides of having black box access to a circuit Γ (k), can, after each ith round,
get some partial information about the internal state of the computation via the
δ-noisy leakage functions applied to the gates (in a model described above). Let

out

(
A

g-noisy

� Γ (k)

)
denote the output of such A after interacting with Γ whose

initial memory state is k0 = k.
We can accordingly modify the definition of noise-resilient circuit implemen-

tations (cf. Definition 2). We say that Γ ′ is a (δ, ξ)-input-gate-noise resilient
implementation of a circuit Γ w.r.t. Enc if for every k and every δ-noisy cir-
cuit adversary A described above there exists a black-box circuit adversary S
working in time polynomial in Γ ′ · |F| such that

Δ

(
out

(
S

bb

�Γ (k)

)
; out

(
A

g-noisy

� Γ ′(Enc(k))

))
≤ ξ. (10)

It turns out that the transformation from Section 5.3 also works in this model, al-
though with different parameters. More precisely we have the following theorem,
whose proof is given in the full version.4

Theorem 2. Let Γ be an arbitrary stateful arithmetic circuit over some field F.
Let Γ ′ be the circuit that results from the procedure described in Section 5.3. Then
Γ ′ is a (δ, |Γ | · exp(−d/24))-noise-resilient implementation of Γ (with efficient

simulation), where δ :=
(
(28d+ 16) · |F|2

)−1

= O(1/(d · |F|2)).

In the full version of the paper, we compare our noise parameters with the
parameters of [24] and we show that they are roughly identical.

4 Note that our result holds only when the number of shares is large. For small values
of d (e.g., d = 2, 3, 4) like those considered in [31], our result does not give meaningful
bounds. This is similar to the work of Prouff and Rivain [24] and it is an interest-
ing open research question to develop security models that work for small security
parameters.
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Abstract. We describe a new algorithm for masking look-up tables of
block-ciphers at any order, as a countermeasure against side-channel at-
tacks. Our technique is a generalization of the classical randomized table
countermeasure against first-order attacks. We prove the security of our
new algorithm against t-th order attacks in the usual Ishai-Sahai-Wagner
model from Crypto 2003; we also improve the bound on the number of
shares from n ≥ 4t+1 to n ≥ 2t+1 for an adversary who can adaptively
move its probes between successive executions.
Our algorithm has the same time complexityO(n2) as theRivain-Prouff

algorithm for AES, and its extension by Carlet et al. to any look-up table.
In practice for AES our algorithm is less efficient thanRivain-Prouff,which
can take advantage of the special algebraic structure of theAES Sbox; how-
ever for DES our algorithm performs slightly better.

1 Introduction

Side-Channel Attacks. An implementation of a cryptographic algorithm on
some concrete device, such as a PC or a smart-card, can leak additional informa-
tion to an attacker through the device power consumption or electro-magnetic
emanations, enabling efficient key-recovery attacks. One of the most powerful
attack is the Differential Power Analysis (DPA) [KJJ99]; it consists in recover-
ing the secret-key by performing a statistical analysis of the power consumption
of the electronic device, for several executions of a cryptographic algorithm. An-
other powerful class of attack are template attacks [CRR02]; a template is a
precise model for the noise and expected signal for all possible values of part of
the key; the attack is then carried out iteratively to recover successive parts of
the key.

Random Masking. A well-known countermeasure against side-channel attacks
consists in masking all internal variables with a random r, as first suggested
in [CJRR99]. Any internal variable x is first masked by computing x′ = x ⊕
r, and the masked variable x′ and the mask r are then processed separately.
An attacker trying to analyze the power consumption at a single point will
obtain only random values; therefore, the implementation will be secure against
first-order DPA. However, a first-order masking can be broken in practice by a
second-order side channel attack, in which the attacker combines information
from two leakage points [Mes00]; however such attack usually requires a larger

P.Q. Nguyen and E. Oswald (Eds.): EUROCRYPT 2014, LNCS 8441, pp. 441–458, 2014.
c© International Association for Cryptologic Research 2014



442 J.-S. Coron

number of power consumption curves, which can be unfeasible in practice if the
number of executions is limited (for example, by using a counter). For AES many
countermeasures based on random masking have been described, see for example
[HOM06].

More generally, one can split any variable x into n boolean shares by letting
x = x1⊕· · ·⊕xn as in a secret-sharing scheme [Sha79]. The shares xi must then
be processed separately without leaking information about the original variable
x. Most block-ciphers (such as AES or DES) alternate several rounds, each
containing one linear transformation (or more), and a non-linear transformation.
A linear function y = f(x) is easy to compute when x is shared as x = x1⊕· · ·⊕
xn, as it suffices to compute yi = f(xi) separately for every i. However securely
computing a non-linear function y = S(x) with shares is more difficult and is
the subject of this paper.

The Ishai-Sahai-Wagner Private Circuit. The theoretical study of securing
circuits against an adversary who can probe its wires was initiated by Ishai, Sahai
and Wagner in [ISW03]. The goal is to protect a cryptographic implementation
against side-channel attacks in a provable way. The authors consider an adversary
who can probe at most t wires of the circuit. They showed how to transform any
boolean circuit C of size |C| into a circuit of size O(|C| · t2) that is perfectly
secure against such adversary.

The Ishai-Sahai-Wagner (ISW) model is relevant even in the context of power
attacks. Namely the number of probes in the circuit corresponds to the attack
order in a high-order DPA. More precisely, if a circuit is perfectly secure against
t probes, then combining t power consumption points as in a t-th order DPA
will reveal no information to the adversary. To obtain useful information about
the key the adversary will have to perform an attack of order at least t + 1.
The soundness of higher-order masking in the context of power attacks was first
demonstrated by Chari et al. in [CJRR99], who showed that in a realistic leakage
model the number of acquisitions to recover the key grows exponentially with
the number of shares. Their analysis was recently extended by Prouff and Rivain
in [PR13]. The authors proved that the information obtained by observing the
entire leakage of an execution (instead of the leakage of the n shares of a given
variable) can be made negligible in the masking order. This shows that the num-
ber of shares n is a sound security parameter for protecting an implementation
against side-channel attacks.

To protect against an adversary with at most t probes, the ISW approach
consists in secret-sharing every variable x into n shares xi where n = 2t + 1,
that is x = x1⊕ x2⊕ · · · ⊕xn where x2, . . . , xn are uniformly and independently
distributed bits. An adversary probing at most n− 1 variables clearly does not
learn any information about x. Processing a NOT gate is straightforward since
x̄ = x̄1⊕x2⊕· · ·⊕xn; therefore it suffices to invert the first share x1. To process
an AND gate z = xy, one writes:

z = xy =

(
n

⊕
i=1

xi

)
·
(

n

⊕
i=1

yi

)
= ⊕

1≤i,j≤n
xiyj (1)
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and the cross-products xiyj are processed and recombined without leaking infor-
mation about the original inputs x and y. More precisely for each 1 ≤ i < j ≤ n
one generates random bits ri,j and computes rj,i = (ri,j ⊕ xiyj) ⊕ xjyi; the n
shares zi of z = xy are then computed as zi = xiyi⊕⊕j �=i ri,j . Since there are n2

such cross-products, every AND gate of the circuit is expanded to O(n2) = O(t2)
new gates in the circuit.

The authors also describe a very convenient framework for proving the secu-
rity against any set of t probes. Namely proving the security of a countermeasure
against first-order attacks (t = 1) is usually straightforward, as it suffices to check
that every internal variable has the uniform distribution (or at least a distribu-
tion independent from the secret-key). Such approach can be extended to second-
order attacks by considering pairs of internal variables (as in [RDP08]); however
it becomes clearly unfeasible for larger values of t, as the number of t-uples to
consider would grow exponentially with t. Alternatively the ISW framework is
simulation based: the authors prove the security of their construction against a
adversary with at most t probes by showing that any set of t probes can be per-
fectly simulated without the knowledge of the original input variables (such as x,
y in the AND gate z = xy). In [ISW03] this is done by iteratively generating a
subset I of indices of the input shares that are sufficient to simulate the t probes;
then if |I| < n the corresponding input shares can be perfectly simulated with-
out knowing the original input variable, simply by generating independently and
uniformly distributed bits. In the ISW construction every probe adds at most
two indices in I, so we get |I| ≤ 2t and therefore n ≥ 2t+1 is sufficient to achieve
perfect secrecy against a t-limited adversary. A nice property of the ISW frame-
work is that the technique easily extends from a single gate to the full circuit:
it suffices to maintain a global subset of indices I that is iteratively constructed
from the t probes as in a single gate.

The Rivain-Prouff Countermeasure. The Rivain-Prouff countermeasure
[RP10] was the first provably secure higher-order masking scheme for the AES
block-cipher. Namely, all previous masking schemes were secure against first-
order or second-order attacks only. The classical randomized table countermea-
sure [CJRR99] is secure against first-order attacks only. The Schramm and Paar
countermeasure [SP06] was designed to be secure at any order n, but an attack
of order 3 was shown in [CPR07]. An alternative countermeasure based on table
recomputation and provably secure against second-order attacks was described
in [RDP08], but no extension to any order is known. The Rivain-Prouff coun-
termeasure was therefore the first masking scheme for AES secure for any order
t ≥ 3.

The Rivain-Prouff countermeasure is an adaptation of the previous ISW con-
struction to software implementations, working in the AES finite field F28 instead
of F2. Namely the non-linear part of the AES Sbox can be written as S(x) = x254

over F28 , and as shown in [RP10] such monomial can be evaluated with only 4
non-linear multiplications (and a few linear squarings). These 4 multiplications
can be evaluated with n-shared input using the previous technique based on
Equation (1), by working over the field F28 instead of F2. In order to achieve
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resistance against an attack of order t, the Rivain-Prouff algorithm also requires
n ≥ 2t+ 1 shares.

The Rivain-Prouff countermeasure was later extended by Carlet et al. to any
look-up table [CGP+12]. Namely using Lagrange interpolation any Sbox with
k-bit input can be written as a polynomial

S(x) =

2k−1∑
i=0

αi · xi

over F2k , for constant coefficients αi ∈ F2k . The polynomial can then be evalu-
ated with n-shared multiplications as in the Rivain-Prouff countermeasure. The
authors of [CGP+12] describe two techniques for optimizing the evaluation of
S(x) by minimizing the number of non-linear multiplications: the cyclotomic
method and the parity-split method; the later method is asymptotically faster
and requires O(2k/2) multiplications. Therefore the Carlet et al. countermea-
sure with n shares has time complexity O(2k/2 · n2), where n ≥ 2t+ 1 to ensure
resistance against t-th order attacks.

Extending the Randomized Table Countermeasure. Our new counter-
measure is completely different from the Rivain-Prouff countermeasure and its
extension by Carlet et al.. Namely it is essentially based on table recomputations
and does not use multiplications over F2k . To illustrate our technique we start
with the classical randomized table countermeasure, secure against first order
attacks only, as first suggested in [CJRR99]. The Sbox table S(u) with k-bit
input is first randomized in RAM by letting

T (u) = S(u⊕ r)⊕ s

for all u ∈ {0, 1}k, where r ∈ {0, 1}k is the input mask and s ∈ {0, 1}k is the
output mask.1 To evaluate S(x) from the masked value x′ = x⊕ r, it suffices to
compute y′ = T (x′), as we get y′ = T (x′) = S(x′⊕ r)⊕ s = S(x)⊕ s; this shows
that y′ is indeed a masked value for S(x). In other words the randomized table
countermeasure consists in first re-computing in RAM a temporary table with
inputs shifted by r and with masked outputs, so that later it can be evaluated
on a masked value x′ = x⊕ r to obtain a masked output.

A natural generalization at any order n would be as follows: given as input
x = x1⊕ · · ·⊕xn we would start with a randomized table with inputs shifted by
x1 only, and with n−1 output masks; then we would incrementally shift the full
table by x2 and so on until xn−1, at which point the table could be evaluated at
xn. More precisely one would initially define the randomized table

T (u) = S(u⊕ x1)⊕ s2 ⊕ · · · ⊕ sn

where s2, . . . , sn are the output masks, and then progressively shift the random-
ized table by letting T (u)← T (u⊕ xi) for all u, iteratively from x2 until xn−1.

1 One can also take s = r. For simplicity we first assume that the Sbox has both k-bit
input and k-bit output.
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Eventually the table would have all its inputs shifted by x1 ⊕ · · · ⊕ xn−1, so as
previously one could evaluate y′ = T (xn) and obtain S(x) masked by s2, . . . , sn.

What we have described above is essentially the Schramm and Paar counter-
measure [SP06]. However as shown in [CPR07] this is insecure. Namely consider
the table T (u) after the last shift by xn−1; at this point we have T (u) = S(u⊕x1⊕
· · ·⊕xn−1)⊕s2⊕· · ·⊕sn for all u. Now assume that we can probe T (0) and T (1);
we can then compute T (0)⊕T (1) = S(x1⊕ · · ·⊕xn−1)⊕S(1⊕x1⊕ · · ·⊕xn−1),
which only depends on x1⊕· · ·⊕xn−1; therefore it suffices to additionally probe
xn to leak information about x = x1 ⊕ · · · ⊕ xn−1 ⊕ xn; this gives an attack of
order 3 only for any value of n; therefore the countermeasure can only be secure
against second-order attacks.

The main issue with the previous countermeasure is that the same masks
s2, . . . , sn were used to mask all the S(u) entries, so one can exclusive-or any
two lines of the randomized table and remove all the output masks. A natural
fix is to use different masks for every line S(u) of the table, so one would write
initially:

T (u) = S(u⊕ x1)⊕ su,2 ⊕ · · · ⊕ su,n

for all u ∈ {0, 1}k, and as previously one would iteratively shift the table by
x2, . . . , xn−1, and also the masks su,i separately for each i. The previous at-
tack is thwarted because the lines of S(u) are now masked with different set
of masks. Eventually one would read T (xn), which would give S(x) masked by
sxn,2, . . . , sxn,n.

Our Table-Recomputation Countermeasure. Our new countermeasure is
based on using independent masks as above, with additionally a refresh of the
masks between every successive shifts of the input. Since the above output masks
su,j are now different for all lines u of the table, we actually have a set of
n randomized tables, as opposed to a single randomized table in the original
Schramm and Paar countermeasure. Perhaps more conveniently one can view
every line u of our randomized table as a n-dimensional vector of elements in
{0, 1}k, and write for all inputs u ∈ {0, 1}k:

T (u) = (su,1, su,2, . . . , su,n)

where initially each vector T (u) is a n-boolean sharing of the value S(u ⊕ x1).
The vectors T (u) of our randomized table are then progressively shifted for all
u ∈ {0, 1}k, first by x2 and so on until xn−1, as in the original Schramm and
Paar countermeasure. Eventually the evaluation of T (xn) gives a vector of n
output shares that corresponds to S(x).

To refresh the masks between successive shifts we can generate a random
n-sharing of 0, that is a1, . . . , an ∈ {0, 1}k such that a1 ⊕ · · · ⊕ an = 0 and
we xor the vector T (u) with (a1, . . . , an), independently for every u. More con-
cretely one can use the RefreshMasks procedure from [RP10], which consists given
y = y1 ⊕ y2 ⊕ · · · ⊕ yn in xoring both y1 and yi with tmp ← {0, 1}k, iteratively
from i = 2 to n. In summary our new countermeasure is essentially the Schramm
and Paar countermeasure with independent output masks for every line of the
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Sbox table, and with mask refreshing after every shift of the table; we provide a
full description in Section 3.1.2

We show that our new countermeasure is secure against any attack of order
t in the ISW model, with at least n = 2t+ 1 shares. The proof works as follows.
Assume that there are at most n − 3 probes; then it must be the case that at
least one of the n− 2 shifts of the table by xi and subsequent mask refreshings
are not probed at all. Since the corresponding mask refreshings are not probed,
we can perfectly simulate any subset of n− 1 shares at the output of those mask
refreshings. Therefore we can perfectly simulate all the internal variables up to
the xi−1 shift by knowing x1, . . . , xi−1, and any subset of n− 1 shares after the
xi shift by knowing xi+1, . . . , xn. Since the knowledge of xi is not needed in the
simulation, the full simulation can be performed without knowing the original
input x, which proves the security of our countermeasure.3

Note that it does not matter how the mask refreshing is performed; the only
required property is that after a (non-probed) mask refreshing any subset of
n − 1 shares among the n shares have independent and uniform distribution;
such property is clearly satisfied by the RefreshMasks procedure from [RP10]
recalled above. We stress that in the argument above only the mask refreshings
corresponding to one of the xi shift are assumed to be non-probed (which must
be the case because of the limited number of probes), and that all the remaining
mask refreshings can be freely probed by the adversary, and correctly simulated.

The previous argument only applies when the Sbox evaluation is considered
in isolation. When combined with other operations (in particular Xor gates),
we must actually apply the same technique (with the I subset) as in [ISW03],
and we obtain the same bound n ≥ 2t + 1 for the number of shares, as in the
Rivain-Prouff countermeasure.

Asymptotic Complexities. With respect to the number n of shares, our new
countermeasure has the same time complexity O(n2) as the Rivain-Prouff and
Carlet et al. countermeasures. However for a k-bit input table, our basic coun-
termeasure has complexity O(2k · n2) whereas the Carlet et al. countermeasure
has complexity O(2k/2 · n2), which is better for large k.

In Section 3.3 we describe a variant of our countermeasure for processors with
large register size, with the same time complexity O(2k/2 ·n2) as the Carlet et al.
countermeasure, using a similar approach as in [RDP08]. Our variant consists in
packing multiple Sbox outputs into a single register, and performing the table

2 The mask refreshing is necessary to prevent a different attack. Assume that we probe
the first component of T (0) for the initial configuration of the table T (u), and we
again probe the first component of T (0) when the table T (u) has eventually been
shifted by x2⊕· · ·⊕xn−1. If x2⊕· · ·⊕xn−1 = 0 then without mask refreshing those
two probed values must be the same; this leaks information about x2 ⊕ · · · ⊕ xn−1,
and therefore it suffices to additionally probe x1 and xn to have an attack of order
4 for any n.

3 The previous argument could be extended to the optimal number of probes n − 1
by considering the initial sharing of S(u⊕x1) and by adding a final mask refreshing
after the evaluation of T (xn), as actually done in Section 3.1.
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recomputations at the register level first. For example for DES we can pack 8
output 4-bit nibbles into a single 32-bit register; in that case the running time
is divided by a factor 8. We stress that our variant does not consist in putting
multiple shares of the same variable into a single register, as reading such register
would reveal many shares at once, and thereby decrease the number of probes t
required to break the countermeasure.

Note that our countermeasure has memory complexity O(n), instead of O(n2)
for the Rivain-Prouff countermeasure as described in [RP10]. However we show
in the full version of this paper [Cor13a] that the memory complexity of the
Rivain-Prouff countermeasure can be reduced to O(n), simply by computing the
variables in a different order; this extends to the Carlet et al. countermeasure.
We summarize in Table 1 the complexity of the two countermeasures.

Table 1. Time, memory, and number of random bits used, for a k-bit input table
masked with n shares and secure against any attack at order t, with 2t+ 1 ≤ n

Countermeasure Time Memory Randomness

Carlet et al. [CGP+12] O(2k/2 · n2) O(2k/2 · n) O(k2k/2 · n2)

Table Recomputation O(2k · n2) O(2k · n) O(k2k · n2)

Table Recomputation (large register) O(2k/2 · n2) O(2k · n) O(k2k · n2)

Protecting a Full Block-Cipher. We show how to integrate our countermea-
sure into the protection of a full block-cipher against t-th order attacks. We
consider two models of security. In the restricted model, the adversary always
probes the same t intermediate variables for different executions of the block-
cipher. In the full model the adversary can change the position of its probes
adaptively between successive executions; this is essentially the ISW model for
stateful circuits.

The restricted model is relevant in practice because in a t-th order DPA attack,
the statistical analysis is performed on a fixed set of t intermediate variables for
all executions. In both models the key is initially provided in shared form as input,
with n shares. In the full model it is necessary to re-randomize the shares of the
key between executions, since otherwise the adversary could recover the key by
moving its probes between successive executions; obviously this re-randomization
of shares must also be secure against a t-th order attack.

We show that n ≥ 2t + 1 is sufficient to achieve security against t-th order
attacks in both models. In particular, this improves the bound n ≥ 4t+ 1 from
[ISW03] for stateful circuits.4 We get an improved bound because for every
execution we use both an initial re-randomization of the key shares (before they
are used to evaluate the block-cipher) and a final re-randomization of the key
shares (before they are given as input to the next execution), whereas in [ISW03]
only a final re-randomization was used. With the same technique we can obtain

4 In [ISW03] the bounds are n ≥ 2t+1 for stateless circuits and n ≥ 4t+1 for stateful
circuits.
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the same improved bound in the full model for the Rivain-Prouff countermeasure
and its extension by Carlet et al..

Note that in the full model the bound n ≥ 2t+1 is actually optimal. Namely
as noted in [ISW03] the adversary can probe t of the key shares at the end of
one execution and then another t of the key shares at the beginning of the next
execution, hence a total of 2t key shares of the same n-sharing of the secret-key.
Hence n ≥ 2t+ 1 shares are necessary.5

Practical Implementation. Finally we have performed a practical implemen-
tation of our new countermeasure for both AES and DES, using a 32-bit archi-
tecture so that we could apply our large register variant. For comparison we have
also implemented the Rivain-Prouff countermeasure for AES and the Carlet et al.
countermeasure for DES; for the latter we have used the technique from [RV13],
in which the evaluation of a DES Sbox requires only 7 non-linear multiplications.
We summarize the result of our practical implementations in Section 5. We ob-
tain that in practice for AES our algorithm is less efficient than Rivain-Prouff,
which can take advantage of the special algebraic structure of the AES Sbox;
however for DES our algorithm performs slightly better. Our implementation is
publicly available [Cor13b].

2 Definitions

In this section we first recall the Ishai-Sahai-Wagner (ISW) framework [ISW03]
for proving the resistance of circuits against probing attacks. In [RP10] Rivain
and Prouff describe an adaptation of the ISW model for software implementa-
tions. We follow the same approach and describe two security models: a restricted
model in which the adversary always probes the same t intermediate variables
(which is essentially the model considered in [RP10]), and a full model in which
the t probes can be changed adaptively between executions (which is essentially
the ISW model for stateful circuits).

2.1 The Ishai-Sahai-Wagner Framework

Privacy for Stateless Circuits. A stateless circuit over F2 is a directed acyclic
graph whose sources are labeled with the input variables, sinks are labeled with
output variables, and internal vertices stand for function gates. A stateless circuit
can be randomized, if it additionally contains random gates ; every such gate has
no input, and its only output at each invocation of the circuit is a uniform
random bit.

A t-limited adversary can probe up to t wires in the circuit, and has unlimited
computational power. A stateless circuit C is called (perfectly) secure against
such adversary, if the distribution of the probes can be efficiently and perfectly
simulated, without access to the internal wires of C. For stateless circuits one

5 At least this holds for the shares of the secret-key. It could be that n = t+ 1 shares
are sufficient for the other variables.
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assumes that the inputs and outputs of the circuit must remain private. For
example in a block-cipher the input key must remain private. To prevent the
adversary for learning the inputs and outputs one uses an input encoder I and
an output decoder O, whose internal wires cannot be probed. Additionally, the
inputs of I and the outputs of O are also assumed to be protected against
probing. However, the outputs of I and the inputs to O can be probed. Finally
the t-private stateless transformer (T, I, O) maps a stateless circuit C into a
(randomized) stateless circuit C′, such that C′ is secure against the t-limited
adversary, and O ◦ C′ ◦ I has the same input-output functionality as C.

The ISW Construction. As recalled in introduction in [ISW03] the authors
showed how to transform any boolean circuit C of size |C| into a circuit of size
O(|C| · t2) that is perfectly secure against a t-limited adversary. The approach in
[ISW03] consists in secret-sharing every variable x into n shares xi where n = 2t+
1, that is x = x1⊕x2⊕· · ·⊕xn where x2, . . . , xn are uniformly and independently
distributed bits. The authors prove the security of their construction against a t-
limited adversary by showing that any set of t probes can be perfectly simulated
without knowing the internal wires of the circuit, for n ≥ 2t+ 1.

Extension to Stateful Circuits. The ISW model and construction can be
extended to stateful circuits, that is a circuit containing memory cells. In the
stateful model the inputs and outputs are known to the attacker and one does not
use the input encoder I and output decoder O. For a block-cipher the secret key
sk would be originally incorporated in a shared form ski inside the memory cells
of the circuit; the key shares ski would be re-randomized after each invocation
of the circuit. The authors show that for stateful circuits n ≥ 4t+ 1 shares are
sufficient for security against a t-limited adversary; we refer to [ISW03] for more
details.

2.2 Security Model for Software Implementations

In [RP10] Rivain and Prouff describe an adaptation of the ISW model for soft-
ware implementations of encryption algorithms. They consider a randomized
encryption algorithm E taking as input a plaintext m and a randomly shared
secret-key sk and outputting a ciphertext c, with additional access to a random
number generator. More precisely the secret-key sk is assumed to be split into
n shares sk1, . . . , skn such that sk = sk1 ⊕ · · · ⊕ skn and any (n − 1)-uple of
ski’s is uniformly and independently distributed. Instead of considering the in-
ternal wires of a circuit, they consider the intermediate variables of the software
implementation. This approach seems well suited for proving the security of our
countermeasure; in principle one could write our countermeasure with random-
ized table as a stateful circuit and work in the ISW model for stateful circuits,
but that would be less convenient.

In the following we describe two different models of security. In the restricted
model the adversary provides a message m as input and receives c = Esk(m) as
output. The adversary can run Esk several times, but she always obtain the same
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set of t intermediate variables that she can freely choose before the first execution.
In the full model, the adversary can adaptively change the set of t intermediate
variables between executions. In both models the shares ski of the secret-key sk
are initially incorporated in the memory cells of the block-cipher implementation.
We say that a randomized encryption algorithm is secure against t-th order
attack (in the restricted or full model) if the distribution of any t intermediate
variables can be perfectly simulated without the knowledge of the secret-key
sk. This implies that anything an adversary A can do from the knowledge of
t intermediate variables, another adversary A′ can do the same without the
knowledge of those t intermediate variables. Note that since A initially provides
the message m and receives the ciphertext c, we can consider that both m and
c are public and given to the simulator.

Note that in the full model it is necessary to re-randomize in memory the
shares ski of the key, since otherwise the adversary could recover sk by moving its
probes between successive executions; obviously this re-randomization of shares
must also be secure against a t-th order attack.

3 Our New Algorithm

3.1 Description

In this section we describe our new algorithm for computing y = S(x) where

S : {0, 1}k → {0, 1}k′

is a look-up table with k-bit input and k′-bit output. Our new algorithm takes
as input x1, . . . , xn such that x = x1 ⊕ · · · ⊕ xn and must output y1, . . . , yn

such that y = S(x) = y1 ⊕ · · · ⊕ yn, without leaking information about x. Our
algorithm uses two temporary tables T and T ′ in RAM; both have k-bit input
and a vector of n elements of k′-bit as output, namely

T, T ′ : {0, 1}k → ({0, 1}k
′
)n

Given a vector v = (v1, . . . , vn) of n elements, we write ⊕(v) = v1 ⊕ · · · ⊕ vn.
We denote by T (u)[j] and T ′(u)[j] the j-th component of the vectors T (u) and
T ′(u) respectively, for 1 ≤ j ≤ n. In practice the two tables can be implemented
as 2-dimensional arrays of elements in {0, 1}k′

. We use the same RefreshMasks
procedure as in [RP10].

Correctness. It is easy to verify the correctness of Algorithm 1. We proceed by
induction. Assume that at Line 4 for index i we have for all inputs u ∈ {0, 1}k:

⊕
(
T (u)
)
= S(u⊕ x1 ⊕ · · · ⊕ xi−1) (2)

The assumption clearly holds for i = 0, since initially we have ⊕
(
T (u)
)
= S(u)

for all inputs u ∈ {0, 1}k. Assuming that (2) holds for index i at Line 4, after
the shifts performed at Line 6 we have for all inputs u ∈ {0, 1}k,

⊕
(
T ′(u)

)
= ⊕
(
T (u⊕ xi)

)
= S
(
(u⊕ xi)⊕ x1⊕ · · · ⊕ xi−1

)
= S(u⊕ x1⊕ · · · ⊕xi)
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Algorithm 1. Masked computation of y = S(x)

Input: x1, . . . , xn such that x = x1 ⊕ · · · ⊕ xn

Output: y1, . . . , yn such that y = S(x) = y1 ⊕ · · · ⊕ yn
1: for all u ∈ {0, 1}k do

2: T (u)←
(
S(u), 0, . . . , 0) ∈ ({0, 1}k′

)n � ⊕
(
T (u)

)
= S(u)

3: end for
4: for i = 1 to n− 1 do
5: for all u ∈ {0, 1}k do
6: for j = 1 to n do T ′(u)[j]← T (u⊕ xi)[j] � T ′(u)← T (u⊕ xi)
7: end for
8: for all u ∈ {0, 1}k do
9: T (u)← RefreshMasks

(
T ′(u)

)
� ⊕

(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xi)

10: end for
11: end for � ⊕

(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xn−1) for all u ∈ {0, 1}k.

12: (y1, . . . , yn)← RefreshMasks
(
T (xn)

)
� ⊕

(
T (xn)

)
= S(x)

13: return y1, . . . , yn

Algorithm 2. RefreshMasks

Input: z1, . . . , zn such that z = z1 ⊕ · · · ⊕ zn
Output: z1, . . . , zn such that z = z1 ⊕ · · · ⊕ zn
1: for j = 2 to n do
2: tmp ← {0, 1}k′

3: z1 ← z1 ⊕ tmp
4: zj ← zj ⊕ tmp
5: end for
6: return z1, . . . , zn

and therefore the assumption holds at Step i+1. At the end of the loop we have
therefore

⊕
(
T (u)
)
= S(u⊕ x1 ⊕ · · · ⊕ xn−1)

for all u ∈ {0, 1}k, and then ⊕
(
T (xn)

)
= S(xn ⊕ x1 ⊕ · · · ⊕ xn−1) = S(x) which

gives y1⊕· · ·⊕ yn = S(x) as required. This proves the correctness of Algorithm 1.

Remark 1. A NAND gate can be implemented as a 2-bit input, 1-bit output
look-up table; therefore Algorithm 1 can be used to protect any circuit, with the
same complexity O(n2) in the number of shares n as the ISW construction.

3.2 Security Proof

The following Lemma proves the security of our countermeasure against t-th
order attacks, for any t such that 2t + 1 ≤ n. The proof is done in the ISW
model [ISW03]. Namely we show that from any given set of t probed intermediate
variables, one can define a set I ⊂ [1, n] with |I| < n such that the knowledge
of the input indices x|I := (xi)i∈I is sufficient to perfectly simulate those t
intermediate variables. Then since |I| < n those input shares can be perfectly
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simulated without knowing the original input variable, simply by generating
independently and uniformly distributed variables.

Lemma 1. Let (xi)1≤i≤n be the input shares of Algorithm 1 and let t be such
that 2t < n. For any set of t intermediate variables, there exists a subset I ⊂ [1, n]
of indices such that |I| ≤ 2t < n and the distribution of those t variables can
be perfectly simulated from the shares x|I . The output shares y|I can also be
perfectly simulated from x|I .

Proof. Given a set of t intermediate variables v1, . . . , vt probed by the adversary,
we construct a subset I ⊂ [1, n] of indices such that the distribution of those t
variables can be perfectly simulated from x|I . We call Part i the computation
performed within the main for loop for index i for 1 ≤ i ≤ n−1, that is from Line
5 to Line 10 of Algorithm 1; similarly we call Part n the computation performed
at Line 12. We do not consider the intermediate variables from Line 2, as they
can be perfectly simulated without the knowledge of x.

The proof intuition is as follows. Every intermediate variable vh is identified by
its “line” index i corresponding to the Part in which it appears, with 1 ≤ i ≤ n,
and by its “column” index j corresponding to the j-th component of the vector
in which it appears; for any such intermediate variable vh both indices i and j are
added to the subset I (except for xi and the tmp variables within RefreshMasks
for which only i is added). The crucial observation is the following: if i /∈ I, then
no intermediate variable was probed within Part i of Algorithm 1; in particu-
lar the tmp variables within the corresponding RefreshMasks were not probed.
Therefore we can perfectly simulate the outputs of the RefreshMasks function
which have “column” index j ∈ I, by generating uniform and independent ele-
ments in {0, 1}k′

, as long as |I| < n. This means that for i /∈ I we can perfectly
simulate all variables T (u)[j] for j ∈ I in Line 9. Considering now Part i for
which i ∈ I, since we know xi we can still perfectly simulate all intermediate
variables with “column” index j ∈ I (including also the tmp variables within
RefreshMasks), which includes by definition of I all the intermediates variables
vh. Therefore all intermediate variables vh can be perfectly simulated as long as
|I| < n, which gives the condition 2t < n.

Formally the procedure for constructing the set I is as follows:

1. We start with I = ∅.
2. For any intermediate variable vh:

(a) If vh = xi or vh = u⊕ xi at Line 6, then add i to I.
(b) If vh = T (u⊕ xi)[j] or vh = T ′(u)[j] at Line 6 in Part i, then add both

i and j to I.
(c) If vh = T ′(u)[j] or vh = T (u)[j] at Line 9 in Part i, then add both i and

j to I.
(d) If vh = tmp for any tmp within RefreshMasks in Part i (either at Line 9

or 12), then add i to I.
(e) If vh = xn at Line 12, then add n to I.
(f) If vh = T (xn)[j] or vh = yj at Line 12, then add both n and j to I.
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This terminates the description of the procedure for constructing the set I. Since
any intermediate variable vh adds at most two indices in I, we must have |I| ≤
2t < n.

We now show how to complete a perfect simulation of all intermediate vari-
ables vh using only the values x|I . We proceed by induction. Assume that at the
beginning of Part i we can perfectly simulate all variables T (u)[j] for all j ∈ I and
all u ∈ {0, 1}k. This holds for i = 1 since initially we have T (u) = (S(u), 0, . . . , 0)
which does not depend on x.

We distinguish two cases. If i /∈ I then no tmp variable within the RefreshMasks
in Part i has been probed. Therefore we can perfectly simulate all intermediate
variables T (u)[j] for j ∈ I at the output of RefreshMasks at Line 9, or similarly
all yj for j ∈ I at the output of RefreshMasks at Line 12 when i = n, as long
as |I| < n. Formally this can be proven as follows. Let j∗ be such that j∗ /∈ I.
Since the internal variables of the RefreshMasks are not probed, we can redefine
RefreshMasks where the randoms tmp are accumulated inside zj∗ instead of z1.
Since j∗ /∈ I we have that zj∗ is never used in the computation of any variable
vh, and therefore every variables zj for j ∈ I is masked by a random tmp which
is used only once. Therefore at the output of RefreshMasks the variables T (u)[j]
for j ∈ I can be perfectly simulated for all u ∈ {0, 1}k, simply by generating
uniform and independent values.

If i ∈ I then knowing xi we can perfectly simulate all intermediate variables
with column index j ∈ I in Part i. Namely our induction hypothesis states that
at the beginning of Part i the variables T (u)[j] for all j ∈ J can already be
perfectly simulated. Knowing xi we can therefore propagate the simulation for
all variables with column index j and perfectly simulate T (u ⊕ xi)[j], T

′(u)[j]
and the resulting T (u)[j] at Line 9, and similarly the variables yj at Line 12 if
i = n; in particular the tmp variables within RefreshMasks are simulated exactly
as in the RefreshMasks procedure.

Since in both cases we can perfectly simulate all intermediate variables T (u)[j]
for j ∈ I at the end of Part i, the induction hypothesis holds for i+1; therefore
it holds for all 1 ≤ i ≤ n. From the reasoning above we can therefore simulate
all intermediate variables in Part i with column index j such that i, j ∈ I; by
definition of I this includes all intermediate variables vh, and all output shares
y|I ; this proves Lemma 1. ��
Remark 2. Although n ≥ 2t + 1 shares are required for the security proof, our
countermeasure seems heuristically secure with n ≥ t + 1 shares only in the
restricted model.

3.3 A Variant for Processors with Large Registers

With respect to the number n of shares, our new countermeasure has the same
time complexity O(n2) as the Rivain-Prouff and Carlet et al. countermeasures.
However for a k-bit input table, our algorithm has complexity O(2k ·n2) whereas
the Carlet et al. countermeasure has complexity O(2k/2 · n2) only.

In this section we describe a variant of our countermeasure with the same
complexity as Carlet et al., but for processors with large enough register size
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ω bits, using a similar approach as in [RDP08, Section 3.3]. We assume that a
read/write operation on such register takes unit time. As previously the goal is
to compute y = S(x) where

S : {0, 1}k → {0, 1}k′

is a look-up table with k-bit input and k′-bit output.
Under the variant the k′-bit outputs of S are first packed into register words

of ω = 
 · k′ bits, where 
 is assumed to be a power of two. For example, for
a DES Sbox with k = 6 input bits and k′ = 4 output bits, on a ω = 32 bits
architecture we can pack 
 = 8 output 4-bit nibbles into a 32-bit word. Formally,
we define a new Sbox S′ with k1-bit input and ω = 
 · k′ bits output with

S′(a) = S(a ‖ 0k2) ‖ · · · ‖ S(a ‖ 1k2)

for all a ∈ {0, 1}k1, where k = k1 + k2 and k2 = log2 
. To compute S(x) for
x ∈ {0, 1}k, we proceed in two steps:

1. Write x = a‖b for a ∈ {0, 1}k1 and b ∈ {0, 1}k2, and compute z = S′(a) =
S(a‖0k2)‖ · · · ‖S(a‖1k2)

2. Viewing z as a k2-bit input and k′-bit output table, compute y = z(b) =
S(x).

We must show how to compute y = S(x) with the two steps above when the
input x is shared with n shares xi. In the first step we proceed as in Algorithm
1, except that the new table S′ has a k1-bit input instead of a k-bit input, and
ω = 
 · k′-bit output instead of k′-bit output. Note that the table S′ contains
2k1 = 2k−k2 = 2k/
 elements instead of 2k for the original S. Since we assume
that a read/write operation on a ω-bit register takes unit time, the complexity
of the first step is now O(2k/
 · n2). Note that S and S′ take the same amount
of memory in RAM; in the first step of our countermeasure we can achieve a
speed-up by a factor 
 because we are moving 
 blocks of k′ bits at a time inside
registers of size ω = 
 · k′ bits.

The second step requires a slight modification of Algorithm 1. Namely we
must view the output z from Step 1 as a look-up table with k2-bit input and
k′-bit output. However this output z is now obtained in shared form, namely we
get shares z1, . . . , zn such that z = z1 ⊕ · · · ⊕ zn, whereas in Algorithm 1 the
look-up table S(x) is a public table. This is not a problem, as we can simply keep
this table in shared form when initializing the T (u) table at Line 2 of Algorithm
1. More precisely in the second step we can initialize the table T (u) with:

T (u) = (z1(u), . . . , zn(u)) ∈ ({0, 1}k′
)n

for all u ∈ {0, 1}k2, and we still have ⊕
(
T (u)
)
= z(u) for all u as required. The

rest of Algorithm 1 is the same. Since the second step uses a table of size 2k2 = 

elements, its complexity is O(
 · n2).

The full complexity of our variant countermeasure is thereforeO((2k/
+
)·n2).
This is minimized for 
 = 2k/2. If we have large enough register size ω so that
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we can take 
 = ω/k′ = 2k/2, then the complexity of our variant countermeasure
becomes O(2k/2 ·n2), the same complexity as the Carlet et al. countermeasure.6

The following Lemma shows that our variant countermeasure achieves the
same level of security as Algorithm 1; the proof is essentially the same as the
proof of Lemma 1 and is therefore omitted.

Lemma 2. Let (xi)1≤i≤n be the input shares of the above countermeasure for
large register size, and let t be such that 2t < n. For any set of t intermediate
variables, there exists a subset I ⊂ [1, n] of indices such that |I| ≤ 2t < n and
the distribution of those t variables can be perfectly simulated from the xi’s with
i ∈ I. The output shares y|I can also be perfectly simulated from x|I .

4 Higher Order Masking of a Full Block-Cipher

In this section we show how to integrate our countermeasure into a full block-
cipher. We consider a block-cipher with the following operations: Xor operation
z = x ⊕ y, linear (or affine) transform y = f(x), and look-up table y = S(x).
This covers both AES and DES block-ciphers. We show how to apply high-order
masking to these operations, in order to protect a full block-cipher against t-th
order attacks.7

Xor Operation. We consider a Xor operation z = x ⊕ y. Taking as input the
shares xi and yi such that x = x1 ⊕ · · · ⊕ xn and y = y1 ⊕ · · · ⊕ yn, it suffices to
compute the shares zi = xi ⊕ yi.

Linear Operation. We consider a linear operation y = f(x). Taking as input
the shares xi such that x = x1 ⊕ · · · ⊕ xn, it suffices to compute the shares
yi = f(xi) separately.

Table Look-Up. A table look-up y = S(x) is computed using our previous
Algorithm 1.

Input Encoding. Given x as input, we first encode x as x1 = x and xi = 0 for
2 ≤ i ≤ n. Secondly we let (x1, . . . , xn)← RefreshMasks(x1, . . . , xn).

Output Decoding. Given y1, . . . , yn as input, we compute y = y1 ⊕ · · · ⊕ yn

using Algorithm 3 below.

Key Shares Refreshing. As mentioned in Section 2.2 we must re-randomize
the key shares between successive executions of the block-cipher in order to
achieve security in the full model. Using Algorithm 4 below we perform both
an initial Key Shares Refreshing (before the shares ski are used to evaluate the
block-cipher), and a final Key Shares Refreshing (before the key shares ski are
stored for the next execution).8

6 Note that for DES with 32-bit registers we can take the optimum � = 26/2 = 8.
However for AES the optimum � = 28/2 = 16 would require 128-bit registers.

7 Xor is a linear operation, so one could consider the linear operation y = f(x) only,
but it seems more convenient to consider the Xor operation separately.

8 Note that for both algorithms 3 and 4 the RefreshMasks procedure must be applied
with the tmp randoms generated with the appropriate bit-size (instead of k′).
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Algorithm 3. Shares recombination

Input: y1, . . . , yn
Output: y such that y = y1 ⊕ · · · ⊕ yn
1: for i = 1 to n do (y1, . . . , yn)← RefreshMasks(y1, . . . , yn)
2: c ← y1
3: for i = 2 to n do c ← c⊕ yi
4: return c

Algorithm 4. Key Shares Refreshing

Input: sk1, . . . , skn such that sk = sk1 ⊕ · · · ⊕ skn
Output: sk1, . . . , skn such that sk = sk1 ⊕ · · · ⊕ skn
1: for i = 1 to n do (sk1, . . . , skn)← RefreshMasks(sk1, . . . , skn)
2: return sk1, . . . , skn

This terminates the description of our randomized encryption algorithm. The
following theorem proves the security of the randomized encryption scheme de-
fined above in the full model, under the condition n ≥ 2t+ 1; we give the proof
in the full version of this paper [Cor13a]. This improves the bound n ≥ 4t + 1
from [ISW03] for stateful circuits. We stress that any set of t intermediate vari-
ables can be probed by the adversary, including variables in the input encoding,
output decoding, and key shares refreshing; that is, no operation is assumed to
be leak-free.

Theorem 1. The randomized encryption scheme defined above achieves t-th or-
der security in the full model for n ≥ 2t+ 1.

Remark 3. The input encoding operation need not be randomized by Refresh-
Masks; this is because the input x is public and given to the simulator, who
can therefore perfectly simulate the initial shares x|I for any subset I ⊂ [1, n].
Moreover in the restricted model the key shares refreshing is not necessary. In
practice we can keep both operations as their time complexity is only O(n) and
O(n2) respectively.

Remark 4. We stress that the secret key sk must be initially provided with
randomized shares, since sk is secret and not given to the simulator; in other
words it would be insecure for the randomized block-cipher to receive sk as input
and perform the initial input encoding on sk by himself.

Remark 5. In the output decoding operation we perform a series of n mask
refreshing before computing y. This is to enable a correct simulation of the
intermediate variables c at Line 3 in case they are probed by the adversary.

5 Practical Implementation

We have performed a practical implementation of our new countermeasure for
both AES and DES, using a 32-bit architecture so that we could apply our
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large register variant. More precisely we could pack 
 = 4 output bytes for
AES, and 
 = 8 output 4-bit nibbles for DES. For comparison we have also
implemented the Rivain-Prouff countermeasure [RP10] for AES and the Carlet et
al. countermeasure [CGP+12] for DES; for the latter we have used the technique
from [RV13], in which the evaluation of a DES Sbox requires only 7 non-linear
multiplications. The performances of our implementations are summarized in
Table 2. We use the bound n = 2t + 1 for the full model of security (which
implies security in the restricted model).

Table 2. Comparison of secure AES and DES implementations, for the Rivain-Prouff
(RP) countermeasure, and our Table Recomputation (TR) countermeasure. The imple-
mentation was done in C on a MacBook Air running on a 1.86 GHz Intel processor. We
denote the number of calls to the random number generator (times 103), the required
memory in bytes (only for the Sbox computation part), the total running time in ms,
and the Penalty Factor (PF) compared the the unmasked implementation.

t n Rand Mem Time PF

AES 0.0018 1

AES, RP 1 3 2.1 20 0.092 50

AES, TR 1 3 44 1579 0.80 439

AES, RP 2 5 6.8 30 0.18 96

AES, TR 2 5 176 2615 2.2 1205

AES, RP 3 7 14 40 0.31 171

AES, TR 3 7 394 3651 4.4 2411

AES, RP 4 9 24 50 0.51 276

AES, TR 4 9 700 4687 7.3 4003

t n Rand Mem Time PF

DES 0.010 1

DES, RP 1 3 2.8 72 0.47 47

DES, TR 1 3 8.5 423 0.31 31

DES, RP 2 5 9.2 118 0.78 79

DES, TR 2 5 33 691 0.59 59

DES, RP 3 7 19 164 1.3 129

DES, TR 3 7 75 959 0.90 91

DES, RP 4 9 33 210 1.9 189

DES, TR 4 9 133 1227 1.4 142

We obtain that in practice for AES our algorithm is an order of magnitude less
efficient than Rivain-Prouff, which can take advantage of the special algebraic
structure of the AES Sbox; however for DES our algorithm performs slightly
better than the Carlet et al. countermeasure. Note that this holds for a 32-bit
architecture; on a 8-bit architecture the comparison could be less favorable. The
source code of our implementations is publicly available [Cor13b].

One could think that because of the large penalty factors the countermeasures
above are unpractical. However in some applications the block-cipher evaluation
can be only a small fraction of the full protocol (for example in a challenge-
response authentication protocol), and in that case a penalty factor of say 100
for a single block-cipher evaluation may be acceptable.

Acknowledgments. We would like to thank the Eurocrypt 2014 referees for
their helpful comments.
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Abstract. Evaluating side-channel attacks and countermeasures requires
determining the amount of information leaked by a target device. For this
purpose, information extraction procedures published so far essentially
combine a “leakage model” with a “distinguisher”. Fair evaluations ide-
ally require exploiting a perfect leakage model (i.e. exactly corresponding
to the true leakage distribution) with a Bayesian distinguisher. But since
such perfect models are generally unknown, density estimation techniques
have to be used to approximate the leakage distribution. This raises the
fundamental problem that all security evaluations are potentially biased
by both estimation and assumption errors. Hence, the best that we can
hope is to be aware of these errors. In this paper, we provide and imple-
ment methodological tools to solve this issue. Namely, we show how sound
statistical techniques allow both quantifying the leakage of a chip, and cer-
tifying that the amount of information extracted is close to the maximum
value that would be obtained with a perfect model.

1 Introduction

Side-channel attacks aim to extract secret information from cryptographic im-
plementations. For this purpose, they essentially compare key-dependent leakage
models with actual measurements. As a result, models that accurately describe
the target implementation are beneficial to the attack’s efficiency.

In practice, this problem of model accuracy is directly reflected in the various
distinguishers that have been published in the literature. Taking prominent ex-
amples, non-profiled Correlation Power Analysis (CPA) usually takes advantage
of an a-priori (e.g. Hamming weight) leakage model [3]. By contrast, profiled
Template Attacks (TA) take advantage of an offline learning phase in order to
estimate the leakage model [5]. But even in the latter case, the profiling method
is frequently based on some assumptions on the leakage distribution (e.g. that
the noise is Gaussian). Furthermore, the model estimation can also be bounded
by practical constraints (e.g. in terms of number of measurements available in
the learning phase). Following these observations, the question “how good is my
leakage model?” has become a central one in the analysis of side-channel attacks.
In other words, whenever trying to quantify the security of an implementation,
the goal is to reflect the actual target - not the evaluators’ assumptions. There-
fore, the main challenge for the evaluator is to avoid being biased by an incorrect

P.Q. Nguyen and E. Oswald (Eds.): EUROCRYPT 2014, LNCS 8441, pp. 459–476, 2014.
c© International Association for Cryptologic Research 2014
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model, possibly leading to a false sense of security (i.e. an insecure cryptographic
implementation that would look secure in front of one particular adversary).

More formally, the relation between accurate leakage models and fair security
analyses is also central in evaluation frameworks such as proposed at Eurocrypt
2009 [18]. In particular, this previous work established that the leakage of an
implementation (or the quality of a measurement setup) can be quantified by
measuring the Mutual Information (MI) between the secret cryptographic keys
manipulated by a device and the actual leakage produced by this device. Un-
fortunately, the design of unbiased and non-parametric estimators for the MI
is a notoriously hard problem. Yet, since the goal of side-channel attacks is to
use the “best available” models in order to recover information, a solution is to
estimate the MI based on these models. This idea has been precised by Renauld
et al. with the notion of Perceived Information (PI) - that is nothing else than
an estimation of the MI biased by the side-channel adversary’s model [15]. Intu-
itively, the MI captures the worst-case security level of an implementation, as it
corresponds to an (hypothetical) adversary who can perfectly profile the leakage
Probability Density Function (PDF). By contrast, the PI captures its practical
counterpart, where actual estimation procedures are used to profile the PDF.

Our Contribution. The previous formal tools provide a sound basis for dis-
cussing the evaluation question “how good is my leakage model?”. The answer
to this question actually corresponds to the difference between the MI and the
PI. Nevertheless, we remain with the problem that the MI is generally unknown
(just as the actual leakage PDF), which makes it impossible to compute this dif-
ference directly. Interestingly, we show in this paper that it is possible to perform
sound(er) security analyses, where the approximations used by the side-channel
evaluators are quantified, and their impact on security is kept under control.

In this context, we start with the preliminary observation that understanding
these fair evaluation issues requires to clearly distinguish between estimation er-
rors and assumption errors, leading to three main contributions. First, we show
how cross–validation can be used in order to precisely gauge the convergence of
an estimated model. Doing so, we put forward that certain evaluation metrics
(e.g. Pearson’s correlation or PI) are better suited for this purpose. Second, we
propose a method for measuring assumption errors in side-channel attacks, tak-
ing advantage of the distance sampling technique introduced in [20]. We argue
that it allows detecting imperfect hypotheses without any knowledge of the true
leakage distribution1! Third, we combine these tools in order to determine the
probability that a model error is due to estimation or assumption issues. We
then discuss the (im)possibility to precisely (and generally) bound the resulting
information loss. We also provide pragmatic guidelines for physical security eval-
uators. For illustration, we apply these contributions to actual measurements
obtained from an AES implementation in an embedded microcontroller. As a

1 By contrast, the direct solution for quantifying the PI/MI distance would be to
compute a statistical (e.g. Kullback-Leibler) distance between the adversary’s model
and the actual leakages. But it requires knowing the true leakage distribution.
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result and for the first time, we are able to certify that the leakage of a chip (i.e.
its worst-case security level) is close to the one we are able to extract.

These results have implications for the certification of any cryptographic prod-
uct against side-channel attacks - as they provide solutions to guarantee that the
evaluation made by laboratories is based in sound assumptions. They could also
be used to improve the comparison of measurement setups such as envisioned by
the DPA contest v3 [6]. Namely, this contest suggests comparing the quality of
side-channel measurements with a CPA based on an a-priori leakage model. But
this implies that the best traces are those that best comply with this a-priori,
independent of their true informativeness. Using the PI to compare the setups
would already allow each participant to choose his leakage assumptions. And
using the cross–validation and distance sampling techniques described in this
work would allow determining how relevant these assumptions are.

Notations. We use capital letters for random variables, small caps for their
realizations, sans serif fonts for functions and calligraphic letters for sets.

2 Background

2.1 Measurement Setups

Our experiments are based on measurements of an AES Furious implementation2

run by an 8-bit Atmel AVR (AtMega 644p) microcontroller at a 20 MHz clock
frequency. Since the goal of this paper is to analyze leakage informativeness and
model imperfections, we compared traces from three different setups. First, we
considered two types of “power-like” measurements. For this purpose, we moni-
tored the voltage variations across both a 22 Ω resistor and a 2 μH inductance
introduced in the supply circuit of our target chip. Second, we captured the elec-
tromagnetic radiation of our target implementation, using a Rohde & Schwarz
(RS H 400-1) probe - with up to 3 GHz bandwidth - and a 20 dB low-noise am-
plifier. Measurements were taken without depackaging the chip, hence providing
no localization capabilities. Acquisitions were performed using a Tektronix TDS
7104 oscilloscope running at 625 MHz and providing 8-bit samples. In practice,
our evaluations focused on the leakage of the first AES master key byte (but
would apply identically to any other enumerable target). Leakage traces were
produced according to the following procedure. Let x and s be our target input
plaintext byte and subkey, and y = x ⊕ s. For each of the 256 values of y, we
generated 1000 encryption traces, where the rest of the plaintext and key was
random (i.e. we generated 256 000 traces in total, with plaintexts of the shape
p = x||r1|| . . . ||r15, keys of the shape k = s||r16|| . . . ||r30, and the ri’s denoting
uniformly random bytes). In order to reduce the memory cost of our evalua-
tions, we only stored the leakage corresponding to the 2 first AES rounds (as
the dependencies in our target byte y = x ⊕ s typically vanish after the first
round, because of the strong diffusion properties of the AES). In the following,

2 Available at http://point-at-infinity.org/avraes/

http://point-at-infinity.org/avraes/
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we will denote the 1000 encryption traces obtained from a plaintext p including
the target byte x under a key k including the subkey s as: AESks(px) � liy (with
i ∈ [1; 1000]). Furthermore, we will refer to the traces produced with the resistor,
inductance and EM probe as lr,iy , ll,iy and lem,iy . Eventually, whenever accessing

the points of these traces, we will use the notation liy(j) (with j ∈ [1; 10 000],
typically). These subscripts and superscripts will omitted when not necessary.

2.2 Evaluation Metrics

In this subsection, we recall a few evaluation metrics that have been introduced
in previous works on side-channel attacks and countermeasures.

Correlation Coefficient (non-profiled). In view of the popularity of the CPA
distinguisher in the literature, a natural candidate evaluation metric is Pear-
son’s correlation coefficient. In a non-profiled setting, an a-priori (e.g. Hamming
weight) model is used for computing the metric. The evaluator then estimates
the correlation between his measured leakages and the modeled leakages of a
target intermediate value. In our AES example and targeting an S-box output,
it would lead to ρ̂(LY ,model(Sbox(Y ))), where the “hat” notation is used to
denote the estimation of a statistic. In practice, this estimation is performed by
sampling (i.e. measuring) Nt “test” traces from the leakage distribution LY . In
the following, we will denote the set of these Nt test traces as Lt

Y .

Correlation Coefficient (profiled). In order to avoid possible biases due to an
incorrect a-priori choice of leakage model, a natural solution is to extend the pre-
vious proposal to a profiled setting. In this case, the evaluator will start by build-
ing a model from Np “profiling” traces. We denoted this step as ˆmodelρ ← Lp

Y

(with Lp
Y ⊥⊥ Lt

Y ). In practice, it is easily obtained by computing the sample mean
values of the leakage points corresponding to the target intermediate values.

Signal-to-Noise Ratio (SNR). Yet another solution put forward by Mangard
is to compute the SNR of the measurements [13], defined as:

ˆSNR =
v̂ary(Êi(L

i
y))

Êy( ˆvari(Li
y))

,

where Ê and v̂ar denote the sample mean and variance of the leakage variable,
that are estimated from the Nt traces in Lt

Y (like the correlation coefficient).

Perceived Information. Eventually, as mentioned in introduction the PI can
be used for evaluating the leakage of a cryptographic implementation. Its sample
definition (that is most useful in evaluations of actual devices) is given by:

P̂I(S;X,L) = H[S]−
∑
s∈S

Pr[s]
∑
x∈X

Pr[x]
∑

liy∈Lt
Y

Prchip[l
i
y|s, x]. log2 P̂rmodel[s|x, liy],

where P̂rmodel ← Lp
Y . As already observed in several works, the sum over s is

redundant whenever the target operations used in the attack follows a group
operation (which is typically the case of a block cipher key addition).
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Under the assumption that the model is properly estimated, it is shown in [12]
that the three latter metrics are essentially equivalent in the context of standard
univariate side-channel attacks (i.e. exploiting a single leakage point liy(j) at a
time). By contrast, only the PI naturally extends to multivariate attacks [19]. It
can be interpreted as the amount of information leakage that will be exploited
by an adversary using an estimated model. So just as the MI is a good predictor
for the success rate of an ideal TA exploiting the perfect model Prchip, the PI
is a good predictor for the success rate of an actual TA exploiting the “best
available” model P̂rmodel obtained through the profiling of a target device.

2.3 PDF Estimation Methods

Computing metrics such as the PI defined in the previous section requires one
to build a probabilistic leakage model P̂rmodel for the leakage behavior of the
device. We now describe a few techniques that can be applied for this purpose.

Gaussian Templates. The seminal TA in [5] relies on an approximation of the
leakages using a set of normal distributions. That is, it assumes that each inter-
mediate computation generates samples according to a Gaussian distribution. In
our typical scenario where the targets follow a key addition, we consequently use:
P̂rmodel[ly|s, x] ≈ P̂rmodel[ly|s ⊕ x] ∼ N (μy, σ

2
y). This approach simply requires

estimating the sample means and variances for each value of y = x ⊕ s (and
mean vectors / covariance matrices in case of multivariate attacks).

Regression-Based Models. To reduce the data complexity of the profiling,
an alternative approach proposed by Schindler et al. is to exploit Linear Re-
gression (LR) [16]. In this case, a stochastic model θ̂(y) is used to approximate
the leakage function and built from a linear basis g(y) = {g0(y), ..., gB−1(y)}
chosen by the adversary/evaluator (usually gi(y) are monomials in the bits of

y). Evaluating ˆθ(y) boils down to estimating the coefficients αi such that the

vector θ̂(y) =
∑

j αjgj(y) is a least-square approximation of the measured leak-
ages Ly. In general, an interesting feature of such models is that they allow
trading profiling efforts for online attack complexity, by adapting the basis g(y).
That is, a simpler model with fewer parameters will converge for smaller values
of Np, but a more complex model can potentially approximate the real leakage
function more accurately. Compared to Gaussian templates, another feature of
this approach is that only a single variance (or covariance matrix) is estimated
for capturing the noise (i.e. it relies on an assumption of homoscedastic errors).

Histograms and Kernels. See appendix A.

3 Estimation Errors and Cross–Validation

Estimating the PI from a leaking implementation essentially holds in two steps.
First, a model has to be estimated from a set of profiling traces Lp

Y : P̂rmodel ←
Lp

Y . Second, a set of test traces Lt
Y is used to estimate the perceived informa-

tion, corresponding to actual leakage samples of the device (i.e. following the
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true distribution Prchip[l
i
y|s, x]). As a result, two main model errors can arise.

First, the number of traces in the profiling set may be too low to estimate the
model properly. This corresponds to the estimation errors that we analyze in this
section. Second, the model P̂rmodel may not be able to predict the distribution
of samples in the test set, even after intensive profiling. This corresponds to the
assumption errors that will be analyzed in the next section. In both cases, such
model errors will be reflected by a divergence between the PI and MI.

In order to verify that estimations in a security evaluation are sufficiently
accurate, the standard solution is to exploit cross–validation. In general, this
technique allows gauging how well a predictive (here leakage) model performs in
practice [10]. In the rest of the paper, we use 10-fold cross–validations for illus-
tration (which is commonly used in the literature [9]). What this means is that

the set of acquired traces LY is first split into ten (non overlapping) sets L(i)
Y of

approximately the same size. Let us define the profiling sets Lp,(j)
Y =

⋃
i�=j L

(i)
Y

and the test sets Lt,(j)
Y = LY \ Lp,(j)

Y . The sample PI is then repeatedly com-
puted ten times for 1 ≤ j ≤ 10 as follows. First, we build a model from a profiling

set: P̂r
(j)

model ← Lp,(j)
Y . Then we estimate P̂I

(j)
(S;X,L) with the associated test

set Lt,(j)
Y . Cross–validation protects us from obtaining too large PI values due

to over-fitting, since the test computations are always performed with an inde-
pendent data set. Finally, the 10 outputs can be averaged to get an unbiased
estimate, and their spread characterizes the accuracy of the result3.

3.1 Experimental Results

As a starting point, we represented illustrative traces corresponding to our three
measurement setups in Appendix B, Figure 8, 9, 10. The figures further contain
the SNRs and correlation coefficients of a CPA using Hamming weight leakage
model and targeting the S-box output. While insufficient for fair security evalua-
tions as stated below, these metrics are interesting preliminary steps, since they
indicate the parts of the traces where useful information lies. In the following,
we extract a number of illustrative figures from meaningful samples.

From a methodological point of view, the impact of cross–validation is best
represented with the box plot of Figure 1: it contains the PI of point 2605 in
the resistor-based traces, estimated with Gaussian templates and a stochastic
model using a 17-element linear basis for the bits of the S-box input and output.
This point is the most informative one in our experiments (across all measure-
ments and estimation procedures we tried). Results show that the PI estimated
with Gaussian templates is higher - hence suggesting that the basis used in our
regression-based profiling was not fully reflective of the chip activity for this
sample. More importantly, we observe that the estimation converges quickly (as

3 Cross–validation can also apply to profiled CPA, by building models ˆmodelρ ← Lp,(j)
Y ,

and testing them with the remaining Lt,(j)
Y traces. By contrast, it does not apply to

the SNR for which the computation does not include an a posteriori testing phase.
We focus on the PI because of its possible extension to multivariate statistics.
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Fig. 1. Perceived information estimated from Gaussian templates and LR-based mod-
els, with cross–validation (target point 2605 from the resistor-based measurements)

the spread of our 10 PI estimates decreases quickly with the number of traces).
As expected, this convergence is faster for regression-based profiling, reflecting
the smaller number of parameters to estimate in this case. Note that we also per-
formed this cross–validation for the Kernel-based PDF estimation described in
Appendix A (see Appendix B, Figure 11 for the results). Both the expected value
of the PI and its spread suggest that these two density estimation techniques
provide equally satisfying results in our implementation context.

A natural next step is to analyze the quantity of information given by alter-
native leakage points. An example is given in Figure 2 (where we only plot the
expected value of the PI). The left part of the figure corresponds exactly to the
most informative point of Figure 1. The right part of the figure is computed with
a later sample (time 4978) that (we assumed) corresponds to the computation
of the S-box output. Interestingly, we observe that while this second point is
less informative, it is more accurately explained by a stochastic model using the
S-box output bits as a basis, hence confirming our expectations. Eventually, we
also investigated the additional information gathered when performing multi-
variate attacks in Appendix B, Figure 12. For this purpose, we considered both
a couple of points (2605 and 4978) coming from the same setup in the left part
of the figure, and a single point (2605) coming from two different setups in the
right part of the figure. This experiment clearly suggests that combining infor-
mation from different operations leads to more PI than combining information
from different setups. It naturally fits with the intuition that two different block
cipher operations (corresponding to different intermediate values) lead to more
information leakage (i.e. less correlation) than the same operation measured with
two different (yet similar) measurement setups. Many variations of such evalua-
tions are possible (for more samples, estimation procedures, . . . ). For simplicity,
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Fig. 2. PI for different PDF estimation techniques and two leakage (resistor-based)
points. Left: most informative one (2605), right: other point of interest (4978).

we will limit our discussion to the previous examples, and use them to further
discuss the critical question of assumption errors in the next section.

4 Assumption Errors and Distance Sampling

Looking at Figures 1 and 2, we can conclude that our estimation of the PI is
reasonably accurate and that Gaussian templates are able to extract a given
amount of information from the measurements. Nevertheless, such pictures still
do not provide any clue about the closeness between our estimated PI and the
(true, unknown) MI. As previously mentioned in introduction, evaluating the
deviation between the PI and MI is generally hard. In theory, the standard
approach for evaluating such a deviation would be to compute a statistical (e.g.

Kullback-Leibler) distance D̂KL(P̂rmodel,Prchip). But this requires knowing the
(unknown) distribution Prchip, leading to an obvious chicken and egg problem.

Since standard probabilistic distances cannot be computed, an alternative so-
lution that we will apply is to confront the test samples output by the device
with estimated samples produced with the evaluator’s model. In order to check
their coherence, we essentially need a goodness-of-fit test. While several such
tests exist in the literature for unidimensional distributions (e.g. Kolmogorov–
Smirnov [4] or Cramér–von–Mises [1]), much fewer solutions exist that gener-
alize to multivariate statistics. Since we additionally need a test that applies
to any distribution, possibly dealing with correlated leakage points, a natural
proposal is to exploit statistics based on spacings (or interpoint distance) [14].
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The basic idea of such a test is to reduce the dimensionality of the problem by
comparing the distributions of distances between pairs of points, consequently
simplifying it into a one-dimensional goodness-of-fit test again. It exploits the
fact that two multidimensional distributions F and G are equal if and only if the
variables X ∼ F and Y ∼ G generate identical distributions for the distances
D(X1,X2), D(Y1,Y2) and D(X3,Y3) [2,11]. In our evaluation context, we can
simply check if the distance between pairs of simulated samples (generated with
a profiled model) and the distance between simulated and actual samples behave
differently. If the model estimated during the profiling phase of a side-channel
attack is accurate, then the distance distributions should be close. Otherwise,
there will be a discrepancy that the test will be able to detect, as we now detail.

The first step of our test for the detection of incorrect assumptions is to
compute the simulated distance cumulative distribution as follows:

fsim(d, s, x) = Pr
[
L1

y − L2
y ≤ d

∣∣∣L1
y, L

2
y ∼ P̂rmodel[Ly|s, x]

]
.

Since the evaluator has an analytical expression for P̂rmodel, this cumulative dis-
tribution is easily obtained. Next, we compute the sampled distance cumulative
distribution from the test sample set Lt

Y as follows:

ĝNt(d, s, x) = Pr
[
liy − ljy ≤ d

∣∣∣{liy}1≤i≤Nt
∼ P̂rmodel[Ly|s, x],

{
ljy
}
1≤j≤Nt

=Lt
Y

]
.

Eventually, we need to detect how similar fsim and gNt are, which is made easy
since these cumulative distributions are now univariate. Hence, we can compute
the distance between them by estimating the Cramér–von–Mises divergence:

ˆCvM(fsim, ĝNt) =

∫ ∞

−∞
[fsim(x) − ĝNt(x)]

2
dx.

As the number of samples in the estimation increases, this divergence should
gradually tend towards zero provided the model assumptions are correct.

4.1 Experimental Results

As in the previous section, we applied cross–validation in order to compute the
Cramér–von–Mises divergence between the distance distributions. That is, for
each of the 256 target intermediate values, we generated 10 different estimates

ĝ
(j)
Nt

(d, s, x) and computed ˆCvM
(j)

(fsim, ĝNt) from them. An exemplary evalua-
tion is given in Figure 3 for the same leakage point and estimation methods
as in Figure 1. For simplicity, we plotted a picture containing the 256 (av-
erage) estimates at once4. It shows that Gaussian templates better converge
towards a small divergence of the distance distributions. It is also noticeable
that regression-based models lead to more outliers, corresponding to values y for
which the leakage Ly is better approximated. Figure 4 additionally provides the

4 It is also possible to investigate the quality of the model for any given y = x⊕ s.
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Fig. 3. Cramér–von–Mises divergence between simulated and sampled distributions,
with cross–validation (target point 2605 from the resistor-based measurements). Left:
Gaussian templates, right: LR-based estimation (S-box input and output bits).

quantiles of the Cramér–von–Mises divergence for both univariate and bivariate
distributions (i.e. corresponding to the PIs in Appendix B, Figure 12). Interest-
ingly, we observe that the better accuracy of Gaussian templates compared to
regression-based models decreases when considering the second leakage point.
This perfectly fits the intuition that we add a dimension that is better explained
by a linear basis (as it corresponds to the right point in Figure 2). Note that any
incorrect assumption would eventually lead the CvM divergence to saturate.

5 Estimation vs. Assumption Errors

From an evaluator’s point of view, assumption errors are naturally the most
damaging (since estimation errors can be made arbitrarily small by measuring
more). In this respect, an important problem that we answer in this section is to
determine whether a model error comes from estimation or assumption issues.
For this purpose, the first statistic we need to evaluate is the sampled simulated
distance cumulative distribution (for a given number of test traces Nt). This is
the estimated counterpart of the distribution fsim defined in Section 4:

f̂Nt

sim(d, s, x) = Pr
[
liy − ljy ≤ d

∣∣∣{liy, ljy}1≤i�=j≤Nt
∼ P̂rmodel[Ly|s, x]

]
.

From this definition, our main interest is to know, for a given divergence
between fsim and f̂Nt

sim, what is the probability that this divergence would be
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Fig. 4. Median, min and max of the CvM divergence btw. simulated and sampled dis-
tributions for Gaussian templates and LR-based models (resistor-based measurements).
Left: univariate attack (sample 2605), right: bivariate attack (samples 2605 and 4978).

observed for the chosen amount of test traces Nt. This probability is directly
given by the following cumulative divergence distribution:

D̂ivNt(x) = Pr
[

ˆCvM(fsim, f̂Nt

sim) ≤ x
]
.

How to exploit this distribution is then illustrated in Figure 5. For each model

P̂r
(j)

model estimated during cross–validation, we build the corresponding D̂iv
(j)

Nt
’s

(i.e. the cumulative distributions in the figure). The cross–validation addition-

ally provides (for each cumulative distribution) a value for ˆCvM
(j)

(fsim, ĝNt)
estimated from the actual leakage samples in the test set: they correspond to
the small circles below the X axis in the figure. Eventually, we just derive:

D̂iv
(j)

Nt

(
ˆCvM

(j)
(fsim, ĝNt)

)
.

Computing this statistic is simply obtained by projecting the circles towards the
Y axis in the figure. Large values indicate that there is a small probability that
the observed samples follow the simulated distributions. More precisely, they
correspond to large p-values when testing the hypothesis that the estimated
model is incorrect. Thanks to cross–validation, we can obtain 10 such values,
leading to answers laid on a [0; 1] interval, indicating the accuracy of each esti-
mated model. Values grouped towards the top of the interval indicate that the
assumptions used to estimate these models are likely incorrect.
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D̂ivNt(x)

ˆCvM(fsim, ĝNt)
0

1

Fig. 5. Model divergence estimation

An illustration of this method is given in Figure 6 for different Gaussian tem-
plates and regression-based profiling efforts, in function of the number of traces
in the cross–validation set. It clearly exhibits that as this number of traces in-
creases (hence, the estimation errors decrease), the regression approach suffers
from assumption errors with high probability. Actually, the intermediate values
for which these errors occur first are the ones already detected in the previ-
ous section, for which the leakage variable Ly cannot be precisely approximated
given our choice of basis. By contrast, no such errors are detected for the Gaus-
sian templates (up to the amount of traces measured in our experiments). This
process can be further systematized to all intermediate values, as in Figure 7. It
allows an evaluator to determine the number of measurements necessary for the
assumption errors to become significant in front of estimation ones.

0 1

GT1000(y = 0)

0 1

LR100(y = 0)

0 1

LR1000(y = 0)

0 1

GT1000(y = 4)

0 1

LR100(y = 4)

0 1

LR1000(y = 4)

0 1

GT1000(y = 215)

0 1

LR100(y = 215)

0 1

LR1000(y = 215)

Fig. 6. Probability of assumption errors (p-values) for Gaussian templates (GT) and
regression-based models (LR) corresponding to different target intermediate values y,
in function of Nt (in subscript). Resistor-based measurements, sample 2605.
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Fig. 7. Probability of assumption errors for Gaussian templates (left) and regression-
based models with a 17-element basis (right) corresponding to all the target interme-
diate values y, in function of Nt. Resistor-based measurements, sample 2605.

6 Pragmatic Evaluation Guidelines and Conclusions

Interestingly, most assumptions will eventually be detected as incorrect when
the number of traces in a side-channel evaluation increases5. As detailed in in-
troduction, it directly raises the question whether the information loss due to
such assumption errors can be bounded? Intuitively, the “threshold” value for
which they are detected by our test provides a measure of their “amplitude”
(since errors that are detected earlier should be larger in some sense). In the
long version of this paper [7], we discuss whether this intuition can be exploited
quantitatively and answer negatively. In this section, we conclude by arguing
that our results still lead to qualitatively interesting outcomes, and describe
how they can be exploited in the fair evaluation of side-channel attacks.

In this respect, first note that the maximum number of measurements in an
evaluation is usually determined by practical constraints (i.e. how much time is
allowed for the evaluation). Given this limit, estimation and assumption errors
can be analyzed separately, leading to quantified results such as in Figures 1
and 3. These steps allow ensuring that the statistical evaluation has converged.
Next, one should always test the hypothesis that the leakage model is incorrect,
as described in Section 5. Depending on whether assumption errors are detected
“early” or “late”, the evaluator should be able to decide whether more refined
PDF estimation techniques should be incorporated in his analyses. As discussed
in [7], Section 6, the precise definition of “early” and “late” is hard to formalize
in terms of information loss. Yet, later is always better and such a process will
at least guarantee that if no such errors are detected given some measurement
capabilities, an improved model will not lead to significantly improved attacks

5 Non-parametric PDF estimation methods (e.g. as described in Appendix A) could
be viewed as an exception to this fact, assuming that the sets of profiling traces
Lp

Y and test traces Lt
Y come from the same distribution. Yet, this assumption may

turn out to be contradicted in practice because of technological mismatches [8,15], in
which case the detection of assumption errors remains critical even with such tools.
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(since the evaluator will essentially not be able to distinguish the models with this
amount of measurements). That is, the proposed methodology can provide an
answer to the pragmatic question: “for an amount of measurements performed by
a laboratory, is it worth spending time to refine the leakage model exploited in the
evaluation?”. In other words, it can be used to guarantee that the security level
suggested by a side-channel analysis is close to the worst-case, and this guarantee
is indeed conditional to number of measurement available for this purpose.
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A Histograms and Kernels

The estimation methods of Section 2.3 make the assumption that the non-
deterministic part of the leakage behaves according to a normal distribution.
This may not always be correct, in which case one needs to use other tech-
niques. For illustration, we considered two non-parametric solutions for density
estimation, namely histograms and kernels. These allow one to finely characterize
the non-deterministic part of the leakage. First, histogram estimation performs
a partition of the samples by grouping them into bins. More precisely, each bin
contains the samples of which the value falls into a certain range. The respective
ranges of the bins have equal width and form a partition of the range between
the extreme values of the samples. Using this method, one approximates a prob-
ability by dividing the number of samples that fall within a bin by the total
number of samples. The optimal choice for the bin width h is an issue in statis-
tical theory, as different bin sizes can have great impact on the estimation. In
our case, we were able to tune this bin width according to the sensitivity of the
oscilloscope. Second, kernel density estimation is a generalization of histograms.
Instead of bundling samples together in bins, it adds (for each observed sample)
a small kernel centered on the value of the leakage to the estimated PDF. The
resulting estimation is a sum of small “bumps” that is much smoother than the
corresponding histogram, which can be desirable when estimating a continuous
distribution. In such cases it usually provides faster convergence towards the
true distribution. Similarly to histograms, the most important parameter is the
bandwidth h. In our case, we used the modified rule of thumb estimator in [17].
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B Additional Figures

Fig. 8. Resistor-based measurements

Fig. 9. Inductance-based measurements
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Fig. 10. Electromagnetic measurements

Fig. 11. Perceived information quantiles estimated from Gaussian templates and Ker-
nels, with cross–validation (target point 2605 from the resistor-based measurements)
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Fig. 12. PI for univariate and multivariate leakage models. Left: two points (2605,
4978) coming from the resistor-based measurements. Right: multi-channel attack ex-
ploiting the same point (2605) from resistor- and inductance-based measurements.

Fig. 13. Resistor-based measurements, sample 2605. Quantiles for the PI estimates
obtained from the LR-based profiling (left) and Gaussian templates in Figure 1.
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Abstract. Known constructions of blind signature schemes suffer from
at least one of the following limitations: (1) rely on parties having access
to a common reference string or a random oracle, (2) are not round-
optimal, or (3) are prohibitively expensive.

In this work, we construct the first blind-signature scheme that does
not suffer from any of these limitations. In other words, besides being
round optimal and having a standard model proof of security, our scheme
is very efficient. Specifically, in our scheme, one signature is of size 6.5 KB
and the communication complexity of the signing protocol is roughly 100
KB. An amortized variant of our scheme has communication complexity
less that 1 KB.

1 Introduction

Blind signatures, introduced by Chaum [10], allow users to obtain signatures
on messages of their choice without revealing the messages itself to the signer.
Additionally, the blind signature scheme should satisfy unforgeability, i.e. no
user can produce additional signatures on messages without interacting with the
signer. Blind signatures have widespread applications such as e-cash, e-voting,
and anonymous credentials.

Even after 30 years of research, and with 50+ candidate schemes in the litera-
ture, the state of the art is not completely satisfactory. Essentially, all schemes in
the literature can be partitioned into two categories – (1) the schemes that rely
on a random oracle or a setup, or (2) the schemes which are round inefficient.
Examples of constructions argued to be secure using the random oracle method-
ology [7] include [26,27,25,1,5,8] and using a setup such as a shared random
string include [4,3,11,13,21,23,22]. On the other hand, essentially all schemes
that avoid the use of the random oracle methodology or a setup [20,9,23,19] are
not round optimal.

The only scheme that does not fall in the above two categories is the re-
cent construction of Garg et al. [16]. Unfortunately, this scheme is prohibitively
expensive. For example, the communication complexity of this protocol is a
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No.1017660.

P.Q. Nguyen and E. Oswald (Eds.): EUROCRYPT 2014, LNCS 8441, pp. 477–495, 2014.
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Table 1. Comparing the Efficiency of Different Round Optimal Blind Signature
Schemes. κ is the security parameter of the scheme. ε > 1 is an appropriate constant.
The concrete parameters above correspond to the setting for 80 bits of security.

Scheme Communication Complexity Signature Size
Asymptotic Concrete Asymptotic Concrete

Garg et al. [16] poly(κ) small2

DLIN (This work) O(κ1+ε) 100.6KB O(κε) 6.5KB
Amortized (This work) O(κε) 836 Bytes O(κε) 6.5KB

q-SFP (This work) O(κ1+ε) 100.2KB O(κε) 3.2KB
Amortized (This work) O(κε) 472 bytes O(κε) 3.2KB

large polynomial in the security parameter1. In this work, we ask the following
question:

Can we construct a very efficient round optimal blind signature scheme without
relying on a random oracle or a setup?

1.1 Our Results

We construct the first blind signature scheme that avoids all of the above limi-
tations, namely it is very efficient, round optimal and does not rely on a random
oracle or a setup. We obtain parameters for our scheme by using the concept of
work factors from [14,6]. A summary of the results is highlighted in Table 1.

- Standard Setting: We assume the sub-exponential hardness of Decisional
Linear (DLIN) Assumption and a variant of the discrete-log assumption.
Then our signature scheme has one signature of size 6.5 KB and the com-
munication complexity of signing protocol roughly 100 KB.

- Amortized Setting: A number of applications require a user to obtain
multiple signatures from the same signer. In such a setting, for our scheme
almost all of the communication costs can be avoided. More specifically an
amortized variant of our scheme has communication cost roughly 100 KB
when obtaining the first signature. However, for every subsequent signature
obtained the communication cost is less that 1 KB.

- Stronger assumption:Assuming a stronger assumption, sub-exponentially
hard q-Simultaneous Flexible Pairing Assumption (SFP) from [3], we can
improve the size of a signature and the amortized communication complexity
of our signing protocol by roughly a factor of 2.

1 To give an estimate on how big this polynomial is, we instantiate the proofs being
given in their construction with Dwork-Naor Zaps using Kilian-Petrank NIZKs and
get communication complexity of at least O(κ9) bits. One can also use asymptoti-
cally more efficient ZAPs instantiated with PCP based Groth NIZKs with ultimate
proof size being O(κ5poly log(κ)). Note that polylog(κ) factor is quite large and for
reasonable security parameters proof size would be comparable to O(κ7).

2 This scheme uses general MPC techniques and can be instantiated using arbitrary
signature scheme and thus has small signatures.
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Qualitative Improvements. [16] uses complexity leveraging to obtain standard
model round optimal blind signature scheme, and it is the use of these techniques
which makes this scheme so inefficient. However, unfortunately, impossibility
results of Fischlin et al. [12] and Pass [24] roughly indicate that the use of these
techniques is essential for getting round optimal scheme in the standard model.
Nonetheless, in this work, we introduce new techniques to reduce and optimize
the use of complex leveraging, and thereby obtain a significantly more efficient
scheme.

– Reducing the use of complexity leveraging. The technique of complex-
ity leveraging works by creating a gap between the power of an adversarial
entity and the reduction proving security. However, many a times this gap
needs to be created multiple times in a layered fashion leading to larger pa-
rameters. The previous scheme of Garg et al. [16] needed to create this gap
twice. However, in our scheme, we only need to create this gap once and this
allows us to get smaller parameters.

– Optimizing the use of complexity leveraging. Complexity leveraging
techniques (particularly for our application) inherently make non-black-box
use of the underlying primitives. [16] in their construction end up rolling
out the cryptographic primitive and viewing it as circuit. This leads to pro-
hibitively inefficient schemes. We also make non-black-box use of the under-
lying primitive but avoid viewing it as a circuit. Instead, we cast it directly
as a set of very structured equations which fit the framework of Groth-Sahai
proofs, drastically improving the communication complexity of our protocol.

The techniques developed here are very general and we believe that they should
be applicable to other settings. We leave this exploration for future work.

1.2 Technical Difficulties and New Ideas

Now we will describe the key ideas behind our scheme. We assume some famil-
iarity with Groth-Sahai proofs. Lets us start by reminding the reader that GS
proofs come in two modes – the hiding mode and the binding mode. In hiding
mode, proofs reveal nothing about the witness used in the generation of a proof,
and in binding mode, no fake proof exists.

Starting Point. The starting point for our construction is to use a blind sig-
nature scheme in the common reference string (CRS) model and remove the
need for the CRS by letting the signer generate it. Of course this is problematic
because a malicious signer can generate the CRS dishonestly (e.g. in a way such
that it knows the trapdoors associated with the CRS) and use that to break the
blindness property of the scheme. We solve this problem by using a special blind
signature scheme for which blindness is statistical as long as the CRS is sampled
from a certain “honest” distribution. In this setting, it is enough for the signer to
prove that the CRS is sampled from the “honest” distribution. Looking ahead,
this “honest” distribution is actually the CRS distribution for GS proofs in the
hiding mode. However, we are faced with the following three issues.
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Issue 1) First, in order to ensure blindness, the signer needs to prove to the
user that the CRS was indeed sampled from the “honest” distribution.

Issue 2) Secondly, for proving unforgeability we will need that the reduction
playing as the signer can “simulate” this proof. In other words, we need that
the proof does not leak anything to the user.

Issue 3) The third issue is more subtle and arises as an interleaving of the first
two issues. Specifically, the reduction for arguing unforgeability should be
able to “extract” the messages on which the signatures are being issued and
simulate the view of the attacking user. In other words, this extraction and
simulation process should go unnoticed in the view of the attacking user.
However, if a cheating signer could replicate the same behavior then this
would go unnoticed as well. Hence, we certainly need to rule this out.

Before we describe our attempts to solve these issues, we note that for [16],
this proof is the main reason for inefficiency.

Attempt at Using Range Proofs. As mentioned before, complexity leverag-
ing makes non-black-box use of primitives essential making schemes prohibitively
inefficient. In order to solve this issue we need to identify a problem such that:
(1) the problem can be algebraically stated in groups of prime order p and has
an efficient Groth-Sahai proof, (2) but solving the problem should be much eas-
ier than solving discrete log in the group of order p. The first property of the
problem ensures efficiency of the proof. The second property as we will see later
will be essential in making the complexity leveraging argument. We start by
using a simple problem of solving discrete-log when the domain is restricted to
some subspace. In particular, the problem we consider is: Given C = gc such
that c < q (where q << p), one needs to find c. We then show that it satisfies
both the above properties. In particular, we will show that this problem can
be cast in the language of efficient Groth-Sahai proofs thus satisfying the first
requirement. Secondly, improvement in the brute-force attack when the sample
space is restricted to c < q is easy to see.

For the protocol, our idea is that user sends the value gc for c < q to the
signer. Further instead of having the signer prove that the CRS was sampled
honestly we have him prove that either the CRS was honestly generated or that
it is aware of c. This immediately solves our problems 1 and 2 from above. We
know that a cheating signer will not be able to recover c and hence will not be
able to cheat. At the same time we can have the reduction for unforgeability
extract c and thereby generate simulated proofs.

However our solution to issues 1 and 2 has created a 4th issue. A cheating
user may cheat by generating gc such that c ≥ q. Next, we will show how issues
3 and 4 can be solved.

Solving Issue 3. Very interestingly we can resolve issue 3 by requiring that the
signer generates the proof above under the CRS he had sampled for the underling
blind signature scheme. This is very counter-intuitive as we are requiring the
signer to generate a proof under a CRS that it generates on its own. The key
idea is based on the observation that all we need is that the signer generates the
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CRS from the hiding distribution for Groth-Sahai proofs. If this CRS is indeed
hiding then the whole exercise of having a proof is redundant. On the other hand,
if this CRS is actually generated dishonestly from the binding distribution then
the signer is only hurting itself as it will not be able to generate his proof. 3

Solving Issue 4. Recall that the 4th issue was that the user might generate gc

in a way such that c > q. We solve this problem by having the user provide a
Groth-Sahai proof that the value c used is less that q. A question is under what
CRS should this proof be give such that this proof does not leak c to the signer?
Of course, we can not use the CRS that the signer generated for the underlying
scheme. Our key observation here again is that we need to worry about this
proof only if the original CRS has been generated maliciously, or in other words,
if this CRS is binding. Recall that a binding CRS for Groth-Sahai proofs is a
DLIN tuple. Our key idea here is that if (g, g1, g2, h1, h2, h) is a DLIN tuple then
its shift (g, g1, g2, h1, h2, h · g) can not be a DLIN tuple and hence the user can
give his proof under this shifted CRS.4

2 Blind Signatures and Their Security

In this section we will recall the notion of blind signatures and define their
security. Parts of this section have been taken verbatim from [16].

Definition 1. A blind signature scheme BS consists of PPT algorithms Gen,Vrfy
along with interactive PPT algorithms S,U such that for any λ ∈ N:

– Gen(1λ) generates a key pair (sk, vk).
– The joint execution of S(sk) and U(vk,m), where m ∈ {0, 1}λ, generates

an output σ for the user and no output for the signer. We write this as
(⊥, σ)← 〈S(sk),U(vk,m)〉.

– Algorithm Vrfy(vk,m, σ) outputs a bit b.

We require completeness i.e., for any m ∈ {0, 1}λ, and for (sk, vk) ← Gen(1λ),
and σ output by U in the joint execution of S(sk) and U(vk,m), it holds that
Vrfy(vk,m, σ) = 1 with overwhelming probability in λ ∈ N.

Blind signatures must satisfy unforgeability and blindness [20,28].

Definition 2. A blind signature scheme BS = (Gen, S, U , Vrfy) is unforgeable if
for any PPT algorithm U∗ the probability that experiment UnforgeBSU∗(λ) defined
in Figure 1 evaluates to 1 is negligible in λ.

Blindness says that it should be infeasible for any malicious signer S∗ to decide
which of two messages m0 and m1 has been signed first in two executions with

3 In the final construction (Figure 2), the signer will prove under the CRS he had
sampled that it is aware of c. An honest signer who generates a hiding CRS will be
able to simulate this proof successfully.

4 A similar idea was also used by [17] to get perfectly sound NIWI in the standard
model using statistically sound NIZKs.
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Experiment UnforgeBSU∗(λ)

(sk, vk)← Gen(1λ)

((m∗
1, σ

∗
1), . . . , (m

∗
k+1, σ

∗
k+1))← U∗〈S(sk),·〉∞(vk)

Return 1 iff
m∗

i �= m∗
j for all i, j with i �= j, and

Vrfy(vk,m∗
i , σ

∗
i ) = 1 for all i ∈ [k + 1], and

at most k interactions with S(sk)
were completed.

Experiment UnblindBSS∗(λ)

(vk,m0,m1, stfind)← S∗(find, 1λ)
b ← {0, 1}
stissue ← S∗〈·,U(vk,mb)〉1,〈·,U(vk,mb̄)〉1(issue, stfind)
and let σb, σb̄ denote the
(possibly undefined) local outputs

of U(vk,mb) and U(vk,mb̄) resp..
set (σ0, σ1) = (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← S∗(guess, σ0, σ1, stissue)
return 1 iff b = b∗.

Fig. 1. Security games of blind signatures

an honest user U . We define the advantage of S∗ in blindness game with respect
to the experiment UnblindBSS∗(λ) as

AdvUnblindS∗,BS (λ) =
∣∣∣2 · Pr[UnblindBSS∗(λ) = 1]− 1

∣∣∣
Definition 3. A blind signature scheme BS = (Gen,S,U ,Vrfy) satisfies blind-
ness if the advantage function AdvUnblindS∗,BS is negligible for any S∗ (working in
modes find, issue, and guess) running in time poly(λ).

A blind signature scheme is secure if it is unforgeable and blind.

3 Preliminaries

In this section, we recall and define basic notation and primitives used briefly. For
a detailed description of primitives, see full version [15]. Let λ denote the security
parameter. We call a function negligible in λ if it is asymptotically smaller than
any inverse polynomial.

Commitment Scheme on Groups. We describe a perfectly binding commit-
ment scheme based on the decisional linear (DLIN) assumption with the spe-
cial property that both the message space and the commitment comprise only
of group elements. Let (p,G,GT , g, e) be a prime order bilinear pairing group.
Then the function ComG(·) generates a commitment to an element m ∈ G by first

sampling g1, g2
$←− G, x, y

$←− Zp and then outputting (g, g1, g2, g
x
1 , g

y
2 ,m · gx+y).

Structure-Preserving Signatures. A signature scheme (SPGen, SPSign,
SPVerify) is said to be a structure preserving signature scheme over a prime
order bilinear group (p,G,GT , g, e), if public keys, signatures and messages to
be signed are vectors of group elements and verification only evaluates pairing
product equations. Structure preserving signature schemes that sign a vector of
group elements are known under different assumptions [17,3,2]. The first feasibil-
ity result was given by Groth [17]. This scheme is inefficient as the signature size
grows linearly with the number of group elements in the message to be signed
and the constants are quite big. In our scheme, we will use constant size struc-
ture preserving signatures [3,2]. Both of these results have been summarized in
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Table 2. Efficiency of Structure Preserving Schemes

Scheme |msg| |gk |+ |vk | |σ| #(PPE) Assumption
AHO10 k 2k + 12 7 2 q-SFP

ACDKNO12 k 2k + 25 17 9 DLIN

the table given below. The size of different parameters are in terms of number
of group elements.

When k is a constant, a public key as well as a signature generated consist of a
constant number of group elements only. Hence, these schemes are highly efficient
for constant size messages. From the security of these schemes, it follows that
under assumptions which are hard to break in time T·poly(λ), these schemes are
secure against existential forgery under chosen message attack for adversaries
running in time T·poly(λ). More precisely, these schemes are T-eu-cma-secure
under hardness of T-q-SFP and T-DLIN, respectively.

3.1 Two-CRS Non-interactive Zero-Knowledge Proofs

In this section, we will define a special notion of NIZK proofs that work in the
setting with two common reference strings.

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R
we call x the statement and w the witness. Let L be the language consisting
of statements in R. A Two-CRS non-interactive proof system for a relation R
consists of three common reference string (CRS) generation algorithms KB, Shift
and Shift−1, a prover algorithm P and a verification algorithm V . We require
that all these algorithms be efficient, i.e. polynomial time. The CRS generation
algorithm KB takes the security parameter 1λ as input and produces a common
reference string crs along with an extraction key τ . Both Shift and Shift−1 are
deterministic algorithms. They take as input a string crs and output another
string crs′. The prover algorithm P takes as input (crs, x, w) and produces a
proof π. The verification algorithm V takes as input (crs, x, π) and outputs 1 or
0. We require that:

CRS Indistinguishability. For all PPT adversaries A,

AdvCRS−distinguish
A (1λ) =

2 · Pr

⎡⎢⎢⎣b = b′

∣∣∣∣∣∣∣∣
(crs, τ)← KB(1

λ); crs′ ← Shift(crs); crs′′ ← Shift−1(crs)

b
$←− {0, 1}; if b = 0, (crs1, crs2) := (crs, crs′)

else (crs1, crs2) := (crs′′, crs)
b′ ← A(crs1, crs2)

⎤⎥⎥⎦− 1 .

We say that a Two-CRS NIZK system has CRS indistinguishability if for all
PPT adversaries A, AdvCRS−distinguish

A is negligible in λ.



484 S. Garg and D. Gupta

Perfect Completeness. Completeness requires that an honest prover with
a valid witness can always make an honest verifier output 1. For K ∈
{KB, Shift ◦KB, Shift−1 ◦KB}, where ◦ is the the composition of functions,
we require that for all x,w such that (x,w) ∈ R:

Pr
[
V(crs, x, π) = 1

∣∣∣ crs← K(1λ);π ← P(crs, x, w)
]
= 1.

Perfect Knowledge Extraction. We require that there exists a probabilis-
tic polynomial time knowledge extractor E such that for every (crs, τ) ←
KB(1

λ), x and purported proof π such that V(crs, x, π) = 1 then we have

Pr
[
(x,w) ∈ R

∣∣∣ w := E(crs, τ, x, π)
]
= 1.

Note that since perfect knowledge extraction implies the existence of a wit-
ness for the statement being proven, it implies perfect soundness.

Perfect Zero-Knowledge. A proof system is zero-knowledge if the proofs do
not reveal any information about the witnesses. We require that there exists
a polynomial time simulator S such that for all (crs, τ) ← KB(1

λ), crs′ :=
Shift(crs) (or, crs′ := Shift−1(crs)) we have that for all x ∈ L the distributions
P(crs′, x, w) and S(crs′, τ, x) are identical.

Efficient Realization of Two-CRSNIZKs Based on Groth-Sahai Proofs.
Groth-Sahai proofs [18] can be used to give efficient Two-CRS NIZKs (under
the DLIN assumption) for special languages, namely pairing product equations,
multi-scalar multiplication equations, and quadratic equations (described be-
low) in the setting of symmetric bilinear groups. We also show that the range
equations also fit this framework. For details, refer to the full version [15].

- Pairing Product Equation. A pairing product equation (PPE) over the
variables X1, . . . Xn ∈ G is an equation of the form5

n∏
i=1

e(Ai, Xi) ·
n,n∏

i=1,j≥i

e(Xi, Xj)
γi,j = 1,

determined by constants Ai ∈ G and γi,j ∈ Zp.
- MultiscalarMultiplicationEquation.Amultiscalar multiplication equa-
tion over the variables X1, . . . Xn ∈ G and y1, y2, . . . , ym ∈ {0, 1} is of the
form

m∏
j=1

Ayj

j ·
n∏

i=1

Xbi
i ·

n∏
i=1

m∏
j=1

X
γi,jyj

i = T ,

determined by constants Aj ∈ G, bi, γi,j ∈ Zp, and T ∈ G.

5 General form of PPE can have any T ∈ GT on the R.H.S. Since GS NIZKs are
only known for PPE having 1 on the R.H.S., we use only such equations in our
construction.
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- Quadratic Equation. A quadratic equation in Zp over variables y1, y2, . . . ,
yn ∈ {0, 1} is of the form

n∑
i=1

aiyi +

n,n∑
i=1,j≥i

γi,jyiyj = t,

determined by constants ai ∈ Zp, γi,j ∈ Zp, and t ∈ Zp.
- Range Equation. The range equation over the variable c ∈ Zp is of the
form.

∃c : gc = C
∧

c < q,

determined by constants C ∈ G and q < p. We note that the range equation
is not explicitly a part of the Groth-Sahai framework but is implied by it.

Remark 1. We note that for the first three kinds of equations, under the above
mentioned realization of Two-CRS NIZKs, the proof size grows only linearly
with the number of variables and the number of equations. This follows directly
from the GS proofs as explained in the full version [15].

Remark 2. As shown in the full version [15], a range equation can be expressed
as one multiscalar multiplication equation and log2 q quadratic equations over
log2 q variables in Zp.

4 Blind Signature Scheme: Construction

We begin by giving an informal description of the scheme. In our scheme, we will
use a bilinear group G of prime order p, a structure preserving signature scheme
for signing vectors of elements in this group, Two-CRS NIZKs, and commitment
scheme ComG.

During the key generation phase, the signer generates the verification key vk
and the secret key sk for the blind signature scheme as follows. vk consists of a
verification key vkSP for the structure preserving signature scheme, two CRSes,
crs1 and crs2 under Two-CRS NIZK proof system, and a parameter q = pε for
some constant ε ∈ (0, 1). crs1 is sampled from KB and crs2 is set to be the shifted
crs1, i.e. crs2 ← Shift(crs1). sk consists of the signing key skSP corresponding to
vkSP and the extraction key τ for crs1.

Next, the two round blind signature scheme proceeds as follows: In the first
round, the user generates its message as follows: It begins by checking whether
crs2 equals Shift(crs1). It aborts, if this is not the case. Next, it blinds its message
m by generating a commitment mblind using ComG under randomness r. Then,
it samples a random c < q and sets C = gc. Finally, it generates a proof π under
crs1 for the NP-statement Φ: ∃ c | gc = C

∧
c < q. It sends (mblind, C, π) as

the first round message to the signer.
In the second round, the signer generates its message as follows: It begins

by checking if the proof π is valid under crs1. It aborts, if this is not the case.
Next, it extracts the witness c from the proof π using extraction key τ . Then it
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Recalling from Section 3, let (SPGen,SPSign, SPVerify) be an existentially
unforgeable structure preserving signature scheme, (KB,Shift,Shift

−1,P ,V)
be a Two-CRS NIZK proof system and ComG be a group based commitment
scheme. And let 0 < ε < 1 be an appropriate (specified later) constant
parameter.

Key Generation Gen: On input 1λ, choose an appropriate bilinear group
(p,G,GT , g, e)

a and proceed as follows:
– Sample a key pair for the structure preserving signature scheme
(skSP, vkSP)← SPGen(1λ).

– Sample a CRS (crs1, τ ) ← KB(1
λ) and generate its shift crs2 ←

Shift(crs1).
– Output the verification-key for the blind signature scheme as vk =
(vkSP, crs1, crs2, q = pε) and the secret-key as sk = (skSP, τ ).

Signing Protocol: The user U with input m ∈ G, vkSP and the signer S
with input skSP proceed as follows.
– Round 1: The user U generates its first message as follows:

• Abort if crs2 �= Shift(crs1).
• Sample mblind ← ComG(m; r).
• Samples a uniformly random c such that c < q and sets C :=

gc. Next sample a proof π ← P(crs1, Φ, c) where Φ is the NP-
statement:

∃ c | gc = C
∧

c < q. (1)

• Send (mblind, C, π) to the signer.
– Round 2: S generates the second round message as:

• If V(crs1, Φ, π) �= 1 then abort, otherwise obtain c :=
E(crs1, τ, Φ, π) and sample a proof π′ ← P(crs2, Φ, c).

• Sample a signature σSP := SPSign(skSP,mblind).
• Send (π′, σSP) to the user U .

– Signature Generation: U aborts if V(crs2, Φ, π′) �= 1. U also
aborts if SPVerify(vkSP,mblind, σSP) �= 1 and otherwise outputs σ ←
P(crs2, Ψ, (mblind, r, σSP)) where Ψ is the NP-statement:

∃ (mblind, r, σSP) | mblind = ComG(m; r)
∧

SPVerify(vkSP,mblind, σSP) = 1

(2)
Signature Verification Vrfy: For input a claimed signature σ on message

m, output V(crs2, Ψ, σ).
a All algorithms take this bilinear group as an implicit input.

Fig. 2. Blind Signature Scheme

generates a fresh proof π′ for the statement Φ under crs2. Finally, it generates a
signature σSP on mblind using signing key skSP. It sends (π′, σSP) as the second
round message to the user.

On receiving the above message from the user, it computes the signature on
m as follows: User aborts if π′ is not a valid proof under crs2. It then checks
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if σSP is a valid signature on mblind under vkSP. It aborts if this is not the
case. Otherwise, it outputs σ as the proof under crs2 of the NP-statement Ψ :
∃ (mblind, r, σSP) | mblind = ComG(m; r)

∧
SPVerify(vkSP,mblind, σSP) = 1. In

other words, the user proves that there exists (mblind, r, σSP) such that mblind is
the commitment of m using randomness r under commitment scheme ComG and
σSP is a valid signature on mblind.

To verify a signature σ on message m, check whether σ is a valid proof for
the statement Ψ under crs2.

Formal Description. Let SPSig = (SPGen, SPSign, SPVerify) be any structure
preserving signature schemewhich is existentially unforgeable, (KB, Shift, Shift−1,
P ,V) be a Two-CRS NIZK proof system, ComG be the DLIN based commitment
scheme for elements in G (Section 3). Formal description of the blind signature
scheme (Gen,S,U ,Vrfy) is given in Figure 2.

5 Proof of Unforgeability

Let Tdlog
G,q be the time it takes to break the discrete log problem in G when

exponents are chosen from Zq.

Theorem 1. For any PPT malicious user U∗ for the unforgeability game against
the blind signature scheme given in Section 4 the following holds:

AdvUnforgeU∗,BS (λ) ≤ AdvCRS−distinguish
B (λ) + AdvUnforge

Û∗,SPSig
(λ),

where B is an adversary against the CRS indistinguishability property of the two-
CRS NIZK proof system such that T(B) = k · Tdlog

G,q + T(U∗) + poly(λ) and Û∗
is the adversary against the unforgeability of the underlying structure preserving
signature scheme SPSig such that T(Û∗) = k ·Tdlog

G,q +T(U∗)+ poly (λ). Also, U∗

and Û∗ make at most k signing queries.

If we use GS proof system based Two-CRS NIZKs in our construction, the above
theorem immediately implies the following corollary:

Corollary 1. For any PPT malicious user U∗ for the unforgeability game against
the blind signature scheme given in Section 4 the following holds:

AdvUnforgeU∗,BS (λ) ≤ 2 · AdvdlinB,G(λ) + AdvUnforge
Û∗,SPSig

(λ),

where B is an adversary against the DLIN assumption in G such that T(B) =
k ·Tdlog

G,q +T(U∗) + poly(λ) and Û∗ is the adversary against the unforgeability of

the underlying structure preserving signature scheme SPSig such that T(Û∗) =
k ·Tdlog

G,q +T(U∗) + poly(λ). Also, U∗ and Û∗ make at most k signing queries.

Following is a corollary of the above theorem:

Theorem 2. Assume that Tdlog
G,q -DLIN holds in G and SPSig is Tdlog

G,q -eu-cma-
unforgeable. Then the blind signature scheme in Section 4 is unforgeable.
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Proof. (of Theorem 1) Let U∗ be any PPT malicious user then we will prove
our theorem by considering a sequence of games starting with the unforgeabilty
game from Definition 2 (see Section 2).

– Game0: This is the challenger-adversary game between the challenger follow-
ing the honest signer S specification and the malicious user U∗. More specif-
ically, the game starts with the challenger generating a key pair (sk, vk). The
challenger then sends vk to U∗. At this point the challenger (playing as the
honest signer) and U∗ proceed by interacting in k executions of the signing
protocol. Note that the challenger knows the secret key sk and uses it to
participate as the signer in the executions of the signing protocol. Finally
U∗ outputs k + 1 message/signature pairs (mi, σi). U∗ is said to win if all
the messages are distinct and all signatures verify under vk.

– Game1: Recall that in the second round of the signing protocol the chal-
lenger (acting as the signer) obtains the secret value c using the extraction
algorithm E . Game1 is same as the Game0 except that in each of the k in-
stances of the signing protocol, instead of extracting the secret c using the
extraction algorithm, the challenger obtains c by evaluating the discrete log
of C assuming that it is less than q. (The challenger aborts if no values less
than q is a valid dlog of C.)
Note that since crs1 is sampled from KB, proofs under crs1 are perfectly
sound. This implies that the value c that challenger extracts by solving dis-
crete log is exactly the same as the one that challenger would have extracted
using the extraction algorithm in Game0.
Note that the views of the malicious user U∗ in games Game0 and Game1 are
identical.
It also follows from the perfect soundness of the two-CRS NIZK proof system
that the challenger in Game1 runs in time k ·Tdlog

G,q + poly(λ), where Tdlog
G,q is

the time it takes to break discrete log problem in G when the exponent is
chosen from Zq.

– Game2: Game2 is same as Game1 except that the challenger generates
the CRSes differently. Instead of generating the CRSes by first sampling
(crs1, τ) ← KB(1

λ) and then generating its shift crs2 ← Shift(crs1), it re-
verses the order in which the CRSes are generated. This reverses the security
properties of proofs under the two CRSes. More specifically the challenger
first samples (crs2, τ) ← KB(1

λ) and then sets crs1 := Shift−1(crs2). Note
that now we get perfect zero-knowledge for crs1 and perfect soundness for
crs2.
Indistinguishability of Game1 and Game2 follows from the CRS-Indistinguish-
ability property of the two-CRS NIZK proof system. More precisely, the
success probability of U∗ can change by at most AdvCRS−distinguish

B , where B is
an adversary against the CRS indistinguishability property of the two-CRS
NIZK proof system such that T(B) = k ·Tdlog

G,q +T(U∗) + poly(λ).

Now we will show how U∗ who wins in Game2 can be used to construct a mali-
cious user Û∗ that winning the existential unforgeability game of the underlying
structure preserving signature scheme.
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Û∗ starts by obtaining the verification key vkSP from the challenger of the
structure preserving signature scheme (SPGen, SPSign, SPVerify). Furthermore,
it samples (crs2, τ) ← KB(1

λ), sets crs1 := Shift−1(crs2) and invokes U∗ with
(vkSP, crs1, crs2, q) as input. At this point, the user U∗ expects to interact in k
instances of the signing protocol. In each of these executions, it provides its chal-
lenger (the adversary Û∗ in our case) with its first round message (mblind, C, π).

Our adversary Û∗ obtains c by solving the discrete log problem (aborting if
c ≥ q) and uses the extracted value to generate the response proof π′. Addition-
ally, it obtains the signature σSP on mblind from the signing oracle and passes
(π′, σSP) to U∗. After k such executions, U∗ returns k + 1 pairs (mj , σj). Note
that each σj given by U∗ is a proof of knowledge of (mblind,j , rj , σSP,j) under crs2.

Furthermore, since Û∗ generates crs2 in the binding setting, therefore τ can be
used to extract (mblind,j , rj , σSP,j) for each j by invoking E(crs2, τ, Ψ, σj). Since
all messages mj are distinct and ComG is perfectly binding, all mblind,j will also
be distinct. Since all mblind,j are distinct there exists at least one mblind,j∗ among

these that Û∗ never queried its challenger. Û∗ outputs (mblind,j∗ , σSP,j∗) as its
output.

Hence, the advantage of U∗ in producing a valid forgery in Game3 is at most
the advantage of Û∗ in producing a valid forgery against the underlying structure
preserving signature scheme, i.e. AdvUnforgeU∗,BS,Game3

≤ AdvUnforge
Û∗,SPSig

(λ), where Û∗ runs
in time k ·Tdlog

G,q +T(U∗) + poly(λ).

6 Proof of Blindness

Theorem 3. For any PPT malicious signer S∗ for the blindness game against
the blind signature scheme given in Section 4, which successfully completes the
blindness game, the following holds

AdvUnblindS∗,BS (λ) < 2 · AdvhidA,ComG
+ AdvdlogB,G,q

where A is an adversary against the non-uniform hiding property of ComG such
that T(A) = T(S∗) + poly(λ) and B is an adversary against the non-uniform
discrete log problem in G when exponents are chosen uniformly randomly in Zq

such that T(B) = T(S∗) + poly(λ).

Since the hiding property of the ComG holds under the DLIN assumption in G,
the above theorem immediately implies the following corollary.

Corollary 2. For any PPT malicious signer S∗ for the blindness game against
the blind signature scheme given in Section 4, which successfully completes the
blindness game, the following holds

AdvUnblindS∗,BS (λ) < 4 · AdvDLIN
C,G + AdvdlogB,G,q

where C is an adversary against the non-uniform DLIN assumption in G such
that T(C) = T(S∗) + poly(λ) and B is an adversary against the non-uniform
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discrete log problem in G when exponents are chosen uniformly randomly in Zq

such that T(B) = T(S∗) + poly(λ).

Following is a corollary of the above.

Theorem 4. Assume that non-uniform DLIN assumption holds in G and the
non-uniform discrete log assumption holds in G even when the exponents are
chosen uniformly randomly from Zq. Then the blind signature scheme from Sec-
tion 4 is blind.

Proof. (of Theorem 3) Let S∗ be any PPT malicious signer then we will prove
our theorem by considering a sequence of games starting with the blindness game
from Definition 3 (see Section 2).

– Game0: This is a challenger-adversary game between the challenger following
the honest user strategy and the malicious signer S∗. The malicious signer
S∗ has full control over the scheduling of instances of the user in an arbitrary
order. Since our scheme is only two round, we can fix it to be the worst case
ordering. Since S∗ does not receive any response to the message it sends to
the user, we can assume that S∗ first gathers all the incoming messages from
the user and then sends its responses. Thus, without loss of generality, the
Game0 proceeds as follows: S∗ first outputs the public key vk and the chal-
lenge messages m0,m1. S∗ then expects the two incoming blinded messages
mblind,0 and mblind,1 from the user corresponding to mb,m1−b for a random
bit b. After receiving both the messages, S∗ outputs its responses to the
challenger. Our challenger at this point outputs the signature on (m0,m1)
generated in the two protocol executions. Finally the malicious signer S∗
outputs a bit b′ and its advantage AdvUnblindS∗,BS is equal to |2 · Pr[b = b′]− 1|.

– Game1: Same as Game0 except the following: The challenger after receiving
the public key vk, figures out whether crs2 is in the range of KB or not. The
challenger may execute in unbounded time when figuring this out; storing
the extraction key τ for later use. Now it proceeds as follows:
- crs2 is in the range of KB: In this case, our challenger proceeds just as in
Game0, except that if the first instance of the signing protocol completes
successfully then our challenger outputs DL-Abort.

- crs2 is not in the range of KB: Proceed as in Game0.
Note that conditioned on the fact that DL-Abort does not happen, we have
that Game0 and Game1 are identical. Next we will show that the probability
of DL-Abort happening is bounded by AdvdlogB,G,q.

Lemma 1. The probability of DL-Abort happening is bounded by AdvdlogB,G,q,
with T(B) = T(S∗) + poly(λ), B is an adversary against the non-uniform dis-
crete log problem in G when exponents are chosen uniformly randomly in Zq.

Proof. We will show that an S∗ that can make our challenger output
DL-Abort can be used to construct an adversary B that breaks the non-
uniform discrete log problem in G when the exponent is restricted to < q.
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Constructing the adversary B. Given this cheating signer S∗, there exists
random coins for S∗ such that our challenger in Game-1 outputs DL-Abort.
We will hard-code the random coins of S∗ such that our challenger outputs
DL-Abort with maximum probability. Note that we are in the case when crs2
is binding and hence crs1 is hiding. Next, our adversary B or the challenger
of the blindness game on receiving this public key vk will run in unbounded
time to compute the extraction key τ for crs2. Thus, the adversary B we
constructed is a non-uniform adversary with auxiliary input as the random
coins of S∗ (specified above) and the extraction key τ corresponding to vk.
Our adversary B obtains as input D (such that D = gd with d < q) and
it wins if it outputs d. On receiving D, B proceeds as the challenger does
in Game1 except that it sets C := D instead of choosing a fresh value for
C. Also, invoking perfect zero-knowledge property of crs1, B generates π as
S(crs1, τ, Φ), where S is the zero-knowledge simulator. At this point S∗ must
output a proof π′ such that V(crs2, Φ, π′) = 1 for the challenger in Game1 to
output DL-Abort. On obtaining the proof π′, B outputs E(crs2, τ, Φ, π′) as
the discrete log of D. By perfect extraction under crs2, the extracted value
will be the discrete log of D.

Note that after receiving the challenge D, B runs in polynomial time.
Thus, the probability of DL-Abort when we fix the worst case random coins
of S∗ (as described above) is bounded by AdvdlogB,G,q. Hence, it holds that the

probability of DL-Abort in Game1 is bounded by AdvdlogB,G,q.

– Game2: Game2 is identical to Game1 except for the following modifications.
Instead of generating the final signatures honestly, the challenger simulates
them. More specifically, instead of generating the signatures as P(crs2, Ψ,
(mblind, r, σSP)), in Game2 the challenger generates signatures as S(crs2, τ, Ψ).
Game2 and Game1 are perfectly indistinguishable based on the non-uniform
perfect zero-knowledge property of the two-CRS NIZK proof system.

– Game3: Now, we modify Game2 and remove all dependencies on the input
messages m0 and m1. That is, we let the user algorithm compute the blinded
message mblind,0 as ComG(0) instead of ComG(mb). We proceed similarly for
m1−b.
The indistinguishability between Game3 and Game2 follows from the non-
uniform computational hiding property of the commitment scheme ComG.

In Game3 the entire transcript is independent of the message: AdvUnblindS∗,BS,Game3 = 0.

7 Concrete Efficiency

In this section we will compute the communication complexity and the size of
the final blind signature for our scheme. First we need to compute the group size
p and number q which will give us the desired level of security. For this we will
calculate the work factors for different adversaries as discussed below.

Work Factors. These have been used in [14,6] to calculate concrete param-
eters. This text has been taken verbatim from [6]. For any adversary running
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in time T(A) and gaining advantage ε, we define the work factor of A to be
WF(A) ≤ T(A)/ε. The ratio of A’s running time to its advantage provides a
measure of efficiency of the adversary. Generally speaking, to resist an adversary
with work factor WF(A), a scheme should have its security parameter (bits of
security) be κ ≥ logWF(A). Note that for a particular ε, this means a run time
of T(A) ≤ ε2κ.

Similar to [14,6], in the discussion that follows we will assume that Pollard
Rho’s algorithm for finding discrete logs in G is the best known attack6 against
DLIN in group G of prime order p. The work factor of Pollard’s algorithm is

WF(P) = T (P)
εp

=
0.88

e

√
p
log2(p)

103

For security we require that the work factor of any adversary A against DLIN
is at most the work factor of Pollard’s algorithm, i.e. WF(A) ≤WF(P).

Parameters. In the full version [15], we calculate the values of p and q using
the work factors for adversaries against the blindness game and unforgeability
game. We summarize the parameters obtained in Table 3.

Table 3. Suggested parameters, where k is the number of signature queries and the
adversary is allowed to run in time t · TR where TR is the time taken by the reduction.

k t log q log |G|
220 230 155 291

220 240 155 311

230 230 155 331

230 240 155 351

7.1 Efficiency

Verification Key Size. In our blind signature scheme, the verification key is
vk = (vkSP, crs1, crs2, q = pε), where vkSP is the verification key of the structure
preserving signature scheme in G and crs1 and crs2 are two CRSes for Two-CRS
NIZK. Furthermore, as can be seen in Table 2, to sign k group elements, vkSP
has 2k+25 group elements. Since in our case k = 6, there are 37 group elements
in vkSP. In GS proof system, we need 6 group elements in G to represent crs1 and
crs2. Hence, the size of the verification key for our scheme is 43 group elements.
Taking the number of bits to represent a group element as 291 bits, we get the
key size to be 1.6KB.

Signature Size. The final signature is a Groth-Sahai [18] proof of knowledge in
G using crs2 as the common reference string. Under the DLIN assumption, the
proof size is three group elements for each variable and nine group elements for
each pairing product equation (see Figure 2 in [18]) that is proved. The variables

6 If there is a faster attack against discrete log or DLIN problem for prime order
groups, it can be used to obtain the parameters for our blind signature scheme.
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are mblind, σSP, r. By ComG, mblind has six group elements and in order to prove
mblind = ComG(m; r), we will have two additional variables (which capture the
randomness r used in commitment) and three pairing product equations in total.
Furthermore, as can be seen in Table 2, σSP has 17 group elements and nine
pairing product equations in verification algorithm. Hence, the size of the final
blind signature will be 183 group elements in G. Taking the number of bits to
represent a group element as 291 bits, we get the signature size to be 6.5KB.

Communication Complexity. We begin by computing the communication
complexity of the user step by step as follows:

– U computes a commitment mblind in G which consists of six group elements.
– It computes a range proof π for an NP-statement which consists of log2 q

quadratic equations and one multiscalar multiplication equation over log2 q
variables in Zp (Remark 2). In GS proof system, each quadratic equations
adds six group elements, multiscalar multiplication equation adds nine group
elements and each variable in Zp adds three group elements to the proof ([18],
Figure 2). Using this, π consists of 9 log2 q + 9 group elements of G.

Now we compute the communication complexity of signer as follows:

– It computes σSP consisting of 17 elements in G as explained above.
– It also computes a range proof π′ for the same NP-statement as the user. As

above, π′ consists of 9 log2 q + 9 group elements of G.

Hence, the overall communication complexity of our blind signature proto-
col is 18 log2 q + 41 elements in G. Taking log2 q as 155 and log2 p as 291, the
communication complexity is 100.56KB.

Acknowledgements. We thank Jens Groth for useful discussions relating to
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12. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (2010)

13. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application to
round-optimal blind signatures. IACR ePrint 2009/320 (2009)

14. Galindo, D.: The exact security of pairing based encryption and signature schemes.
In: Based on a talk at Workshop on Provable Security, INRIA, Paris (2004),
http://www.dgalindo.es/galindoEcrypt.pdf

15. Garg, S., Gupta, D.: Efficient round optimal blind signatures. Cryptology ePrint
Archive, Report 2014/081 (2014), http://eprint.iacr.org/
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Abstract. This paper introduces key-versatile signatures. Key-versatile
signatures allow us to sign with keys already in use for another purpose,
without changing the keys and without impacting the security of the
original purpose. This allows us to obtain advances across a collection of
challenging domains including joint Enc/Sig, security against related-key
attack (RKA) and security for key-dependent messages (KDM). Specifi-
cally we can (1) Add signing capability to existing encryption capability
with zero overhead in the size of the public key (2) Obtain RKA-secure
signatures from any RKA-secure one-way function, yielding new RKA-
secure signature schemes (3) Add integrity to encryption while maintain-
ing KDM-security.

1 Introduction

One of the recommended principles of sound cryptographic design is key sepa-
ration, meaning that keys used for one purpose (e.g. encryption) should not be
used for another purpose (e.g. signing). The reason is that, even if the individ-
ual uses are secure, the joint usage could be insecure [39]. This paper shows, to
the contrary, that there are important applications where key reuse is not only
desirable but crucial to maintain security, and that when done “right” it works.
We offer key-versatile signatures as a general tool to enable signing with existing
keys already in use for another purpose, without adding key material and while
maintaining security of both the new and the old usage of the keys. Our appli-
cations include: (1) adding signing capability to existing encryption capability
with zero overhead in the size of the public key (2) obtaining RKA-secure sig-
natures from RKA-secure one-way functions (3) adding integrity to encryption
while preserving KDM security.

Closer look. Key-versatility refers to the ability to take an arbitrary one-
way function F and return a signature scheme where the secret signing key is
a random domain point x for F and the public verification key is its image

P.Q. Nguyen and E. Oswald (Eds.): EUROCRYPT 2014, LNCS 8441, pp. 496–513, 2014.
c© International Association for Cryptologic Research 2014
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y = F (x). By requiring strong simulatability and key-extractability security
conditions [33] from these “F -keyed” signatures, and then defining F based
on keys already existing for another purpose, we will be able to add signing
capability while maintaining existing keys and security.

The most compelling motivation comes from security against related-key at-
tack (RKA) and security for key-dependent messages (KDM), technically chal-
lenging areas where solutions create, and depend on, very specific key structures.
We would like to expand the set of primitives for which we can provide these
forms of security. Rather than start from scratch, we would like to leverage the
existing, hard-won advances in these areas by modular design, transforming a
primitive X into a primitive Y while preserving RKA or KDM security. Since
security is relative to a set of functions (either key or message deriving) on the
space of keys, the transform must preserve the existing keys. Key-versatile sig-
natures will thus allow us to create new RKA and KDM secure primitives in a
modular way.

We warn that our results are theoretical feasibility ones. They demonstrate
that certain practical goals can in principle be reached, but the solutions are
not efficient. Below we begin with a more direct application of key versatile
signatures to Joint Enc/Sig and then go on to our RKA and KDM results.

Joining signatures to encryption with zero public-key overhead.

Suppose Alice has keys (ske, pke) for a public-key encryption scheme and wants
to also have signing capability. Certainly, she could pick new and separate keys
(sks, pks) enabling her to use her favorite signature scheme. However, it means
that Alice’s public key, now pk = (pke, pks), has doubled in size. Practition-
ers ask if one can do better. We want a joint encryption and signature (JES)
scheme [49,57], where there is a single key-pair (sk , pk) used for both encryption
and signing. We aim to minimize the public-key overhead, (loosely) defined as
the size of pk minus the size of the public key pk e of the underlying encryption
scheme.

Haber and Pinkas [49] initiated an investigation of JES. They note that the
key re-use requires defining and achieving new notions of security particular to
JES: signatures should remain unforgeable even in the presence of a decryption
oracle, and encryption should retain IND-CCA privacy even in the presence of a
signing oracle. In the random oracle model [17], specific IND-CCA-secure public-
key encryption schemes have been presented where signing can be added with no
public-key overhead [49,34,53]. In the standard model, encryption schemes have
been presented that allow signing with a public-key overhead lower than that of
the “Cartesian product” solution of just adding a separate signing key [49,57],
with the best results, from [57], using IBE or combining encryption and signature
schemes of [27,23].

All these results, however, pertain to specific encryption schemes. We step
back to ask a general theoretical question. Namely, suppose we are given an
arbitrary IND-CCA-secure public-key encryption scheme. We wish to add sign-
ing capability to form a JES scheme. How low can the public-key overhead go?
The (perhaps surprising) answer we provide is that we can achieve a public-key
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overhead of zero. The public key for our JES scheme remains exactly that of the
given encryption scheme, meaning we add signing capability without changing
the public key. (Zero public-key overhead has a particular advantage besides
space savings, namely that, in adding signing, no new certificates are needed.
This makes key management significantly easier for the potentially large num-
ber of entities already using Alice’s public key. This advantage is absent if the
public key is at all modified.) We emphasize again that this is for any starting
encryption scheme.

To do this, we let F be the function that maps the secret key of the given
encryption scheme to the public key. (Not all encryption schemes will directly
derive the public key as a deterministic function of the secret key, although
many, including Cramer-Shoup [35], do. However, we can modify any encryption
scheme to have this property, without changing the public key, by using the coins
of the key-generation algorithm as the secret key.) The assumed security of the
encryption scheme means this function is one-way. Now, we simply use an F -
keyed signature scheme, with the keys remaining those of the encryption scheme.
No new keys are introduced. We need however to ensure that the joint use of the
keys does not result in bad interactions that make either the encryption or the
signature insecure. This amounts to showing that the JES security conditions,
namely that encryption remains secure even given a signing oracle and signing
remains secure even given a decryption oracle, are met. This will follow from the
simulatability and key-extractability requirements we impose on our F -keyed
signatures. See Section 4.

New RKA-secure signatures. In a related-key attack (RKA) [52,18,13,9] an
adversary can modify a stored secret key and observe outcomes of the crypto-
graphic primitive under the modified key. Such attacks may be mounted by tam-
pering [25,19,44], so RKA security improves resistance to side-channel attacks.
Achieving proven security against RKAs, however, is broadly recognized as very
challenging. This has lead several authors [45,9] to suggest that we “bootstrap,”
building higher-level Φ-RKA-secure primitives from lower-level Φ-RKA-secure
primitives. (As per the framework of [13,9], security is parameterized by the
class of functions Φ that the adversary is allowed to apply to the key. Secu-
rity is never possible for the class of all functions [13], so we seek results for
specific Φ.) In this vein, [9] show how to build Φ-RKA signatures from Φ-RKA
PRFs. Building Φ-RKA PRFs remains difficult, however, and we really have only
one construction [8]. This has lead to direct (non-bootstrapping) constructions
of Φ-RKA signatures for classes Φ of polynomials over certain specific pairing
groups [16].

We return to bootstrapping and provide a much stronger result, building Φ-
RKA signatures from Φ-RKA one-way functions rather than from Φ-RKA PRFs.
(For a one-way function, the input is the “key.” In attempting to recover x from
F (x), the adversary may also obtain F (x′) where x′ is created by applying to x
some modification function from Φ. The definition is from [45].) The difference is
significant because building Φ-RKA one-way functions under standard assump-
tions is easy. Adapting the key-malleability technique of [8], we show that many
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natural one-way functions are Φ-RKA secure assuming nothing more than their
standard one-wayness. In particular this is true for discrete exponentiation over
an arbitrary group and for the one-way functions underlying the LWE and LPN
problems. In this way we obtain Φ-RKA signatures for many new and natural
classes Φ.

The central challenge in our bootstrapping is to preserve the keyspace, mean-
ing that the space of secret keys of the constructed signature scheme must be
the domain of the given Φ-RKA one-way function F . (Without this, it is not
even meaningful to talk of preserving Φ-RKA security, let alone to show that
it happens.) This is exactly what an F -keyed signature scheme allows us to do.
The proof that Φ-RKA security is preserved exploits strong features built into
our definitions of simulatability and key-extractability for F -keyed signatures,
in particular that these conditions hold even under secret keys selected by the
adversary. See Section 5.

KDM-secure storage. Over the last few years we have seen a large number
of sophisticated schemes to address the (challenging) problem of encryption of
key-dependent data (e.g., [21,26,5,4,30,31,20,7,55,3,28,29,12,42,51]). The most
touted application is secure outsourced storage, where Alice’s decryption key, or
some function thereof, is in a file she is encrypting and uploading to the cloud.
But in this setting integrity is just as important as privacy. To this end, we would
like to add signatures, thus enabling the server, based on Alice’s public key, to
validate her uploads, and enabling Alice herself to validate her downloads, all
while preserving KDM security.

What emerges is a new goal that we call KDM-secure (encrypted and authen-
ticated) storage. In Section 6 we formalize the corresponding primitive, providing
both syntax and notions of security for key-dependent messages. Briefly, Alice
uses a secret key sk to turn her message M into an encrypted and authenti-
cated “data” object that she stores on the server. The server is able to check
integrity based on Alice’s public key. When Alice retrieves data, she can check
integrity and decrypt based on her secret key. Security requires both privacy and
integrity even when M depends on sk . (As we explain in more depth below, this
goal is different from signcryption [62], authenticated public-key encryption [2]
and authenticated symmetric encryption [15,58], even in the absence of KDM
considerations.)

A natural approach to achieve our goal is for Alice to encrypt under a symmet-
ric, KDM-secure scheme and sign the ciphertexts under a conventional signature
scheme. But it is not clear how to prove the resulting storage scheme is KDM-
secure. The difficulty is that sk would include the signing key in addition to the
encryption (and decryption) key K, so that messages depend on both these keys
while the KDM security of the encryption only covers messages depending on
K. We could attempt to start from scratch and design a secure storage scheme
meeting our notions. But key-versatile signatures offer a simpler and more mod-
ular solution. Briefly, we take a KDM-secure public-key encryption scheme and
let F be the one-way function that maps a secret key to a public key. Alice holds
(only) a secret key sk and the server holds pk = F (sk). To upload M , Alice
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re-computes pk from sk , encrypts M under it using the KDM scheme, and signs
the ciphertext with an F -keyed signature scheme using the same key sk . The
server verifies signatures under pk .

In Section 6 we present in full the construction outlined above, and prove
that it meets our notion of KDM security. The crux, as for our RKA-secure
constructions, is that adding signing capability without changing the keys puts
us in a position to exploit the assumed KDM security of the underlying encryp-
tion scheme. The strong simulatability and key-extractability properties of our
signatures do the rest. We note that as an added bonus, we assume only CPA
KDM security of the base encryption scheme, yet our storage scheme achieves
CCA KDM security.

Getting F -keyed signatures. In Section 3 we define F -keyed signature
schemes and show how to construct them for arbitrary one-way F . This enables
us to realize the above applications.

Our simulatability condition, adapting [33,1,32], asks for a trapdoor allowing
the creation of simulated signatures given only the message and public key, even
when the secret key underlying this public key is adversarially chosen. Our key-
extractability condition, adapting [33], asks that, using the same trapdoor, one
can extract from a valid signature the corresponding secret key, even when the
public key is adversarially chosen. Theorem 1, showing these conditions imply
not just standard but strong unforgeability, functions not just as a sanity check
but as a way to introduce, in a simple form, a proof template that we will extend
for our applications.

Our construction of an F -keyed signature scheme is a minor adaptation of
a NIZK-based signature scheme of Dodis, Haralambiev, López-Alt and Wichs
(DHLW) [40]. While DHLW [40] prove leakage-resilience of their scheme, we
prove simulatability and key-extractability. The underlying SE NIZKs are a vari-
ant of simulation-sound extractable NIZKs [36,47,48] introduced by [40] under
the name tSE NIZKs and shown by [40,50] to be achievable for all of NP under
standard assumptions.

Discussion and related work. F -keyed signatures can be viewed as a special
case of signatures of knowledge as introduced by Chase and Lysyanskaya [33].
The main novelty of our work is in the notion of key-versatility, namely that
F -keyed signatures can add signing capability without changing keys, and the
ensuing applications to Joint Enc/Sig, RKA and KDM. In particular our work
shows that signatures of knowledge have applications beyond those envisaged
in [33].

The first NIZK-based signature scheme was that of [10]. It achieved only un-
forgeability. Simulatability and extractability were achieved in [33] using dense
cryptosystems [38,37] and simulation-sound NIZKs [60,36]. The DHLW construc-
tion we use can be viewed as a simplification and strengthening made possible
by the significant advances in NIZK technology since then.

F -keyed signatures, and, more generally, signatures of knowledge [33] can
be seen as a signing analogue of Witness encryption [43,11], and we might
have named them Witness Signatures. GGSW [43] show how witness encryption
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allows encryption with a flexible choice of keys, just as we show that F -keyed
signatures allow signing with a flexible choice of keys.

Signcryption [62], authenticated public-key encryption [2], JES [49,57] and
our secure storage goal all have in common that both encryption and signature
are involved. However, in signcryption and authenticated public-key encryption,
there are two parties and thus two sets of keys, Alice encrypting under Bob’s
public key and signing under her own secret key. In JES and secure storage,
there is one set of keys, namely Alice’s. Thus for signcryption and authenti-
cated public-key encryption, the question of using the same keys for the two
purposes, which is at the core of our goals and methods, does not arise. Self-
signcryption [41] is however similar to secure storage, minus the key-dependent
message aspect. Authenticated symmetric encryption [15,58] also involves both
encryption and authentication, but under a shared key, while JES and secure
storage involve public keys. KDM-secure authenticated symmetric encryption
was studied in [12,6].

KDM-secure signatures were studied in [56], who show limitations on the secu-
rity achievable. Our secure storage scheme bypasses these limitations by signing
ciphertexts rather than plaintexts and by avoiding KDM-secure signatures al-
together: we use F -keyed signatures and are making no standalone claims or
assumptions regarding their KDM security. Combining KDM encryption and
KDM signatures would not give us KDM-secure storage because the keys for the
two primitives would be different and we want joint KDM security.

Secure storage is an amalgam of symmetric and asymmetric cryptography,
encryption being of the former kind and authentication of the latter. With secure
storage, we are directly modeling a goal of practical interest rather than trying
to create a general-purpose tool like many of the other works just mentioned.
The difference between JES and secure storage is that in the former, arbitrary
messages may be signed, while in the latter only ciphertexts may be signed.
The difference is crucial for KDM security, which for JES would inherit the
limitations of KDM-secure signatures just mentioned, but is not so limited for
secure storage.

2 Notation

The empty string is denoted by ε. If x is a (binary) string then |x| is its length.
If S is a finite set then |S| denotes its size and s←$ S denotes picking an element
uniformly from S and assigning it to s. We denote by λ ∈ N the security pa-
rameter and by 1λ its unary representation. Algorithms are randomized unless
otherwise indicated. “PT” stands for “polynomial time,” whether for random-
ized algorithms or deterministic. By y ← A(x1, . . . ;R), we denote the operation
of running algorithm A on inputs x1, . . . and coins R and letting y denote the
output. By y←$ A(x1, . . .), we denote the operation of letting y ← A(x1, . . . ;R)
for random R. We denote by [A(x1, . . .)] the set of points that have positive
probability of being output by A on inputs x1, . . .. Adversaries are algorithms.

We use games in definitions of security and in proofs. A game G (e.g. Fig. 1)
has a main procedure whose output (what it returns) is the output of the game.
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We let Pr[G] denote the probability that this output is the boolean true. The
boolean flag bad, if used in a game, is assumed initialized to false.

3 Key-Versatile Signatures

We define F-keyed signature schemes, for F a family of functions rather than
the single function F used for simplicity in Section 1. The requirement is that
the secret key sk is an input for an instance fp of the family and the public key
pk = F.Ev(1λ, fp, sk) is the corresponding image under this instance, the instance
fp itself specified in public parameters. We intend to use these schemes to add
authenticity in a setting where keys (sk , pk) may already be in use for another
purpose (such as encryption). We need to ensure that signing will neither lessen
the security of the existing usage of the keys nor have its own security be lessened
by it. To ensure this strong form of composability, we define simulatability and
key-extractability requirements for our F-keyed schemes. The fact that the keys
will already be in use for another purpose also means that we do not have
the luxury of picking the family F, but must work with an arbitrary family
emerging from another setting. The only assumption we will make on F is thus
that it is one-way. (This is necessary, else security is clearly impossible.) With
the definitions in place, we go on to indicate how to build F-keyed signature
schemes for arbitrary, one-way F.

We clarify that being F-keyed under an F assumed to be one-way does not mean
that security (simulatability and key-extractability) of the signature scheme is
based solely on the assumption that F is one-way. The additional assumption is
a SE-secure NIZK. (But this itself can be built under standard assumptions.) It
is possible to build a signature scheme that is unforgeable assuming only that a
given F is one-way [59], but this scheme will not be F-keyed relative to the same
F underlying its security, and it will not be simulatable or key-extractable.

Signature schemes. A signature scheme DS specifies the following PT algo-
rithms: via pp←$ DS.Pg(1λ) one generates public parameters pp common to
all users; via (sk , pk )←$ DS.Kg(1λ, pp) a user can generate a secret signing key
sk and corresponding public verification key pk ; via σ←$ DS.Sig(1λ, pp, sk ,M)
the signer can generate a signature σ on a message M ∈ {0, 1}∗; via d ←
DS.Ver(1λ, pp, pk ,M, σ) a verifier can deterministically produce a decision d ∈
{true, false} regarding whether σ is a valid signature of M under pk . Correctness
requires that DS.Ver(1λ, pp, pk ,M,DS.Sig(1λ, pp, sk ,M)) = true for all λ ∈ N,
all pp ∈ [DS.Pg(1λ)], all (sk , pk) ∈ [DS.Kg(1λ, pp)], and all M .

Function families. A function family F specifies the following. Via fp←$

F.Pg(1λ) one can in PT generate a description fp of a function F.Ev(1λ, fp, ·):
F.Dom(1λ, fp) → F.Rng(1λ, fp). We assume that membership of x in the non-
empty domain F.Dom(1λ, fp) can be tested in time polynomial in 1λ, fp, x and
one can in time polynomial in 1λ, fp sample a point x←$ F.Dom(1λ, fp) from
the domain F.Dom(1λ, fp). The deterministic evaluation algorithm F.Ev is PT.
The range is defined by F.Rng(1λ, fp) = { F.Ev(1λ, fp, x) : x ∈ F.Dom(1λ, fp) }.
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main SIMA
DS,F(λ)

b←$ {0, 1}
(fp, ap1)←$ DS.Pg(1λ)

pp1 ← (fp, ap1)

(ap0, std , xtd)←$ DS.SimPg(1λ)

pp0 ← (fp, ap0)

b′ ←$ ASign(1λ, ppb) ; Ret (b = b′)

Sign(sk ,M)

If sk �∈ F.Dom(1λ, fp) then Ret ⊥
pk ← F.Ev(1λ, fp, sk)

If b = 1 then σ ←$ DS.Sig(1λ, pp1, sk ,M)

Else σ ←$ DS.SimSig(1λ, pp0, std , pk ,M)

Ret σ

main EXTA
DS,F(λ)

fp ←$ F.Pg(1λ)

Q ← ∅ ; (ap, std , xtd)←$ DS.SimPg(1λ)

pp ← (fp, ap)

(pk ,M, σ)←$ ASign(1λ, pp)

If pk �∈ F.Rng(1λ, fp) then Ret false

If not DS.Ver(1λ, pp, pk ,M, σ) then

Ret false

If (pk ,M, σ) ∈ Q then Ret false

sk ←$ DS.Ext(1λ, pp, xtd , pk ,M, σ)

Ret (F.Ev(1λ, fp, sk) �= pk)

Sign(sk ,M)

If sk �∈ F.Dom(1λ, fp) then Ret ⊥
pk ← F.Ev(1λ, fp, sk)

σ ←$ DS.SimSig(1λ, pp, std , pk ,M)

Q ← Q ∪ {(pk ,M, σ)} ; Ret σ

Fig. 1. Games defining security of F-keyed signature scheme DS. Left: Game defining
simulatability. Right: Game defining key-extractability.

Testing membership in the range is not required to be PT. (But is in many
examples.) We say that F is one-way or F is a OWF if Advow

F,I(·) is negligible

for all PT I, where Advow
F,I(λ) = Pr[F.Ev(1λ, fp, x′) = y] under the experiment

fp←$ F.Pg(1λ) ; x←$ F.Dom(1λ, fp) ; y ← F.Ev(1λ, fp, x) ; x′←$ I(1λ, fp, y).

F-keyed signature schemes. Let F be a function family. We say that a sig-
nature scheme DS is F-keyed if the following are true:

• Parameter compatibility: Parameters pp for DS are a pair pp = (fp, ap) con-
sisting of parameters fp for F and auxiliary parameters ap, these indepen-
dently generated. Formally, there is a PT auxiliary parameter generation
algorithm APg such that DS.Pg(1λ) picks fp←$ F.Pg(1λ) ; ap←$ APg(1λ)
and returns (fp, ap).

• Key compatibility: The signing key sk is a random point in the domain of F.Ev

and the verifying key pk its image under F.Ev. Formally, DS.Kg(1λ, (fp, ap))
picks sk ←$ F.Dom(1λ, fp), lets pk ← F.Ev(1λ, fp, sk) and returns (sk , pk).
(DS.Kg ignores the auxiliary parameters ap, meaning the keys do not depend
on it.)

Security of F-keyed signature schemes. We require two (strong) security
properties of an F-keyed signature scheme DS:

• Simulatable: Under simulated auxiliary parameters and an associated sim-
ulation trapdoor std , a simulator, given pk = F.Ev(1λ, fp, sk) and M , can
produce a signature σ indistinguishable from the real one produced under
sk , when not just M , but even the secret key sk , is adaptively chosen by the
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adversary. Formally, DS is simulatable if it specifies additional PT algorithms
DS.SimPg (the auxiliary parameter simulator) and DS.SimSig (the signature
simulator) such that Advsim

DS,F,A(·) is negligible for every PT adversary A,

where Advsim
DS,F,A(λ) = 2Pr[SIMA

DS,F(λ)] − 1 and game SIM is specified on
the left-hand side of Fig. 1.

• Key-extractable: Under the same simulated auxiliary parameters and an as-
sociated extraction trapdoor xtd , an extractor can extract from any valid
forgery relative to pk an underlying secret key sk , even when pk is chosen by
the adversary and the adversary can adaptively obtain simulated signatures
under secret keys of its choice. Formally, DS is key-extractable if it speci-
fies another PT algorithm DS.Ext (the extractor) such that Advext

DS,F,A(·) is
negligible for every PT adversary A, where Advext

DS,F,A(λ) = Pr[EXTA
DS,F(λ)]

and game EXT is specified on the right-hand side of Fig. 1.

The EXT game includes a possibly non-PT test of membership in the range
of the family, but we will ensure that adversaries (who must remain PT) do
not perform this test. Our definition of simulatability follows [33,1,32]. Those
definitions were for general signatures, not F-keyed ones, and one difference is
that our simulator can set only the auxiliary parameters, not the full parameters,
meaning it does not set fp.

Sim+Ext implies unforgeability. The simulatability and key-extractability
notions we have defined may seem quite unrelated to the standard unforge-
ability requirement for signature schemes [46]. As a warm-up towards applying
these new conditions, we show that in fact they imply not just the standard
unforgeability but strong unforgeability, under the minimal assumption that F
is one-way. In [14] we recall the definition of strong unforgeability and formally
prove the following:

Theorem 1. Let DS be an F-keyed signature scheme that is simulatable and
key-extractable. If F is one-way then DS is strongly unforgeable.

Construction. A key-versatile signing schema is a transform KvS that given
an arbitrary family of functions F returns an F-keyed signature scheme DS =
KvS[F]. We want the constructed signature scheme to be simulatable and key-
extractable. We now show that this is possible with the aid of appropriate NIZK
systems which are themselves known to be possible under standard assumptions.

Theorem 2. Assume there exist SE NIZK systems for all of NP. Then there
is a key-versatile signing schema KvS such that if F is any family of functions
then the signature scheme DS = KvS[F] is simulatable and key-extractable.

In [14] we recall the definition of a SE (Simulation Extractable) NIZK system. SE
was called tSE in [40] and is a variant of NIZK-security notions from [47,36,60].
We then specify the construction and prove it has the claimed properties. Here
we sketch the construction and its history.
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The scheme is simple. We define the relation R((1λ, fp, pk ,M), sk) to return
true iff F.Ev(1λ, fp, sk) = pk . A signature of M under sk is then a SE-secure
NIZK proof for this relation in which the witness is sk and the instance (input)
is (1λ, fp, pk ,M). The interesting aspect of this construction is that it at first
sounds blatantly insecure, since the relation R ignores the message M . Does
this not mean that a signature is independent of the message, in which case an
adversary could violate unforgeability by requesting a signature σ of a message
M under pk and then outputting (M ′, σ) as a forgery for some M ′ = M? What
prevents this is the strength of the SE notion of NIZKs. The message M is
present in the instance (1λ, fp, pk ,M), even if it is ignored by the relation; the
proof in turn depends on the instance, making the signature depend on M .

A similar construction of signatures was given in [40] starting from a leakage-
resilient hard relation rather than (as in our case) a relation arising from a one-
way function. Our construction could be considered a special case of theirs, with
the added difference that they use labeled NIZKs with the message as the label
while we avoid labels and put the message in the input. The claims established
about the construction are however different, with [40] establishing leakage re-
silience and unforgeability of the signature and our work showing simulatability
and key-extractability.

4 JES with No Public-Key Overhead

Let PKE be an arbitrary IND-CCA-secure public-key encryption scheme. Alice
has already established a key-pair (sk e, pk e) for this scheme, allowing anyone to
send her ciphertexts computed under pk e that she can decrypt under ske. She
wants now to add signature capability. This is easily done. She can create a key-
pair (sks, pks) for her favorite signature scheme and sign an arbitrary message
M under sks, verification being possible given pk s. The difficulty is that her
public key is now pk = (pk e, pk s). It is not just larger but will require a new
certificate. The question we ask is whether we can add signing capability in a
way that is more parsimonious with regard to public key size. Technically, we
seek a joint encryption and signature (JES) scheme where Alice has a single
key-pair (sk , pk), with sk used to decrypt and sign, and pk used to encrypt and
verify, each usage secure in the face of the other, and we want pk smaller than
that of the trivial solution pk = (pk e, pks). Perhaps surprisingly, we show how
to construct a JES scheme with pk-overhead zero, meaning pk is unchanged,
remaining pke. Previous standard model JES schemes had been able to reduce
the pk-overhead only for specific starting encryption schemes [49,57] while our
result says the overhead can be zero regardless of the starting encryption scheme.

JES schemes. A joint encryption and signature (JES) scheme JES specifies
the following PT algorithms: via jp←$ JES.Pg(1λ) one generates public param-
eters jp common to all users; via (sk , pk )←$ JES.Kg(1λ, jp) a user can generate
a secret (signing and decryption) key sk and corresponding public (verification
and encryption) key pk ; via σ←$ JES.Sig(1λ, jp, sk ,M) the user can generate
a signature σ on a message M ∈ {0, 1}∗; via d ← JES.Ver(1λ, jp, pk ,M, σ)
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main INDA
JES(λ)

b←$ {0, 1} ; C∗ ←⊥ ; jp ←$ JES.Pg(1λ)

(pk , sk)←$ JES.Kg(1λ, jp)

b′ ←$ ADec,Sign,LR(1λ, jp, pk)

Ret (b = b′)

proc Dec(C)

If (C = C∗) then Ret ⊥
Else Ret M ← JES.Dec(1λ, jp, sk , C)

proc Sign(M)

Ret σ ←$ JES.Sig(1λ, jp, sk ,M)

proc LR(M0,M1)

If (|M0| �= |M1|) then Ret ⊥
Else Ret C∗ ←$ JES.Enc(1λ, jp, pk ,Mb)

main SUFA
JES(λ)

Q ← ∅
jp ←$ JES.Pg(1λ)

(pk , sk)←$ JES.Kg(1λ, jp)

(M,σ)←$ ASign,Dec(1λ, jp, pk)

Ret (JES.Ver(1λ, jp, pk ,M, σ)∧(M,σ) �∈ Q)

proc Sign(M)

σ ←$ JES.Sig(1λ, jp, sk ,M)

Q ← Q ∪ {(M,σ)} ; Ret σ

proc Dec(C)

Ret M ← JES.Dec(1λ, jp, sk , C)

Fig. 2. Games defining security of joint encryption and signature scheme JES. Left:
Game IND defining privacy against chosen-ciphertext attack in the presence of a signing
oracle. Right: Game SUF defining strong unforgeability in the presence of a decryption
oracle.

a verifier can deterministically produce a decision d ∈ {true, false} regarding
whether σ is a valid signature of M under pk ; via C←$ JES.Enc(1λ, jp, pk ,M)
anyone can generate a ciphertext C encrypting message M under pk ; via M ←
JES.Dec(1λ, jp, sk , C) the user can deterministically decrypt ciphertext C to
get a value M ∈ {0, 1}∗ ∪ {⊥}. Correctness requires that JES.Ver(1λ, jp, pk ,
M, JES.Sig(1λ, jp, sk ,M)) = true and that JES.Dec(1λ, jp, sk , JES.Enc(1λ, jp, pk ,
M)) = M for all λ ∈ N, all jp ∈ [JES.Pg(1λ)], all (sk , pk) ∈ [JES.Kg(1λ, jp)], and
all M ∈ {0, 1}∗. We say that JES is IND-secure if Advind

JES,A(·) is negligible for

all PT adversaries A, where Advind
JES,A(λ) = 2Pr[INDA

JES(λ)] − 1 and game IND
is on the left-hand side of Fig. 2. Here the adversary is allowed only one query to
LR. This represents privacy under chosen-ciphertext attack in the presence of a
signing oracle. We say that JES is SUF-secure if Advsuf

JES,A(·) is negligible for all
PT adversaries A, where Advsuf

JES,A(λ) = Pr[SUFA
JES(λ)] and game SUF is on the

right-hand side of Fig. 2. This represents (strong) unforgeability of the signature
in the presence of a decryption oracle. These definitions are from [49,57].

The base PKE scheme. We are given a public-key encryption scheme PKE,
specifying the following PT algorithms: via fp←$ PKE.Pg(1λ) one generates
public parameters; via (sk , pk)←$ PKE.Kg(1λ, fp) a user generates a decryp-
tion key sk and encryption key pk ; via C←$ PKE.Enc(1λ, fp, pk ,M) anyone can
generate a ciphertext C encrypting a message M under pk ; and via M ←
PKE.Dec(1λ, fp, sk , C) a user can deterministically decrypt a ciphertext C to
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get a value M ∈ {0, 1}∗ ∪ {⊥}. Correctness requires that PKE.Dec(1λ, fp, sk ,
PKE.Enc(1λ, fp, pk ,M)) = M for all λ ∈ N, all fp ∈ [PKE.Pg(1λ)], all (sk , pk) ∈
[PKE.Kg(1λ, fp)], and all M ∈ {0, 1}∗. We assume that PKE meets the usual
notion of IND-CCA security.

Let us say that PKE is canonical if the operation (sk , pk )←$ PKE.Kg(1λ, fp)
picks sk at random from a finite, non-empty set we denote PKE.SK(1λ, fp), and
then applies to (1λ, fp, sk) a PT deterministic public-key derivation function we
denote PKE.PK to get pk . Canonicity may seem like an extra assumption, but
isn’t. First, many (most) schemes are already canonical. This is true for the
Cramer-Shoup scheme [35], the Kurosawa-Desmedt scheme [54] and for schemes
obtained via the BCHK transform [24] applied to the identity-based encryption
schemes of Boneh-Boyen [22] or Waters [61]. Second, if by chance a scheme is not
canonical, we can modify it be so. Crucially (for our purposes), the modification
does not change the public key. (But it might change the secret key.) Briefly, the
modification, which is standard, is to use the random coins of the key generation
algorithm as the secret key.

Construction. Given canonical PKE as above, we construct a JES scheme
JES. The first step is to construct from PKE a function family F as follows:
let F.Pg = PKE.Pg, so the parameters of F are the same those of PKE; let
F.Dom = PKE.SK, so the domain of F is the space of secret keys of PKE; and let
F.Ev = PKE.PK, so the function defined by fp maps a secret key to a correspond-
ing public key. Now let DS be an F-keyed signature scheme that is simulatable
and key-extractable. (We can obtain DS via Theorem 2.) Now we define our
JES scheme JES. Let JES.Pg = DS.Pg, so parameters for JES have the form
jp = (fp, ap), where fp are parameters for F, which by definition of F are also
parameters for PKE. Let JES.Kg = DS.Kg. (Keys are those of PKE which are
also those of DS.) Let JES.Sig = DS.Sig and JES.Ver = DS.Ver, so the signing
and verifying algorithms of the joint scheme JES are inherited from the signature
scheme DS. Let JES.Enc(1λ, (fp, ap), pk ,M) return PKE.Enc(1λ, fp, pk ,M) and
let JES.Dec(1λ, (fp, ap), sk , C) return PKE.Dec(1λ, fp, sk , C), so the encryption
and decryption algorithms of the joint scheme JES are inherited from the PKE
scheme PKE. Note that the public key of the joint scheme JES is exactly that of
PKE, so there is zero public-key overhead. The following says that JES is both
IND and SUF secure. The proof is in [14].

Theorem 3. Let PKE be a canonical public-key encryption scheme. Let F be
defined from it as above. Let DS be an F-keyed signature scheme, and let JES
be the corresponding joint encryption and signature scheme constructed above.
Assume PKE is IND-CCA secure. Assume DS is simulatable and key-extractable.
Then (1) JES is IND secure, and (2) JES is SUF secure.
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main RKAOWFA
F,Φ(λ)

fp ←$ F.Pg(1λ)

x←$ F.Dom(1λ, fp)

y ← F.Ev(1λ, fp, x)

x′ ←$ AEval(1λ, fp, y)

Ret (F.Ev(1λ, fp, x′) = y)

Eval(φ)

x′ ← Φ(1λ, fp, φ, x)

y′ ← F.Ev(1λ, fp, x′)

Ret y′

main RKASIGA
DS,F,Φ(λ)

Q ← ∅ ; (fp, ap)←$ DS.Pg(1λ) ; pp ← (fp, ap)

(sk , pk)←$ DS.Kg(1λ, pp)

(M,σ)←$ ASign(1λ, pp, pk)

Ret (DS.Ver(1λ, pp, pk ,M, σ) ∧ (pk ,M, σ) �∈ Q)

Sign(φ,M)

sk ′ ← Φ(1λ, fp, φ, sk) ; pk ′ ← F.Ev(1λ, fp, sk ′)

σ ←$ DS.Sig(1λ, pp, sk ′,M) ; Q ← Q ∪ {(pk ′,M, σ)}
Ret σ′

Fig. 3. Games defining Φ-RKA security of a function family F (left) and an F-keyed
signature scheme DS (right)

5 RKA-Secure Signatures from RKA-Secure OWFs

RKA security is notoriously hard to provably achieve. Recognizing this, several
authors [45,9] have suggested a bootstrapping approach in which we build higher-
level RKA-secure primitives from lower-level RKA-secure primitives. In this vein,
a construction of RKA-secure signatures from RKA-secure PRFs was given in [9].
We improve on this via a construction of RKA-secure signatures fromRKA-secure
one-way functions. The benefit is that (as we will show) many popular OWFs are
already RKA secure and we immediately get new RKA-secure signatures.

RKA security. Let F be a function family. A class of RKD (related-key de-
riving) functions Φ for F is a PT-computable function that specifies for each
λ ∈ N, each fp ∈ [F.Pg(1λ)] and each φ ∈ {0, 1}∗ a map Φ(1λ, fp, φ, ·) :
F.Dom(1λ, fp) → F.Dom(1λ, fp) called the RKD function described by φ. We
say that F is Φ-RKA secure if Advrka

F,A,Φ(·) is negligible for every PT adversary

A, where Advrka
F,A,Φ(λ) = Pr[RKAOWFA

F,Φ(λ)] and game RKAOWF is on the
left-hand side of Fig. 3. The definition is from [45].

Let DS be an F-keyed signature scheme and let Φ be as above. We say that
DS is Φ-RKA secure if Advrka

DS,F,A,Φ(·) is negligible for every PT adversary A,

where Advrka
DS,F,A,Φ(λ) = Pr[RKASIGA

DS,F,Φ(λ)] and game RKASIG is on the
right-hand side of Fig. 3. The definition is from [9].

Construction. Suppose we are given a Φ-RKA-secure OWF F and want to
build a Φ-RKA-secure signature scheme. For the question to even make sense,
RKD functions specified by Φ must apply to the secret signing key. Thus, the
secret key needs to be an input for the OWF and the public key needs to be the
image of the secret key under the OWF. The main technical difficulty is, given
F, finding a signature scheme with this property. But this is exactly what a key-
versatile signing schema gives us. The following says that if the signature scheme
produced by this schema is simulatable and key-extractable then it inherits the
Φ-RKA security of the OWF. The proof is in [14].
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Theorem 4. Let DS be an F-keyed signature scheme that is simulatable and
key-extractable. Let Φ be a class of RKD functions. If F is Φ-RKA secure then
DS is also Φ-RKA secure.

Finding Φ-RKA OWFs. Theorem 4 motivates finding Φ-RKA-secure function
families F. The merit of our approach is that there are many such families. To
enable systematically identifying them, we adapt the definition of key-malleable
PRFs of [8] to OWFs. We say that a function family F is Φ-key-malleable if
there is a PT algorithm M , called a Φ-key-simulator, such that M(1λ, fp, φ,
F.Ev(1λ, fp, x)) = F.Ev(1λ, fp, Φ(1λ, fp, φ, x)) for all λ ∈ N, all fp ∈ [F.Pg(1λ)],
all φ ∈ {0, 1}∗ and all x ∈ F.Dom(1λ, fp). The proof of the following is in [14].

Proposition 5. Let F be a function family and Φ a class of RKD functions. If
F is Φ-key-malleable and one-way then F is Φ-RKA secure.

Previous uses of key-malleability [8,16] for RKA security required additional
conditions on the primitives, such as key-fingerprints in the first case and some
form of collision-resistance in the second. For OWFs, it is considerably easier,
key-malleability alone sufficing. In [14] we show how to leverage Proposition 5
to show Φ-RKA-security for three popular one-way functions, namely discrete
exponentiation in a cyclic group, RSA, and the LWE one-way function, thence
obtaining, via Theorem 4, Φ-RKA-secure signature schemes.

6 KDM-Secure Storage

Services like Dropbox, Google Drive and Amazon S3 offer outsourced storage.
Users see obvious benefits but equally obvious security concerns. We would like
to secure this storage, even when messages (files needing to be stored) depend
on the keys securing them. If privacy is the only concern, existing KDM-secure
encryption schemes (e.g., [21,26,5,4,30,31,20,7,55,3,28,29,12,42,51]) will do the
job. However, integrity is just as much of a concern, and adding it without
losing KDM security is challenging. This is because conventional ways of adding
integrity introduce new keys and create new ways for messages to depend on keys.
Key-versatile signing, by leaving the keys unchanged, will provide a solution.

In [14], we begin by formalizing our goal of encrypted and authenticated
outsourced storage secure for key-dependent messages. In our syntax, the user
encrypts and authenticates under her secret key, and then verifies and decrypts
under the same secret key, with the public key utilized by the server for verifica-
tion. Our requirement for KDM security has two components: IND for privacy
and SUF for integrity. With the definitions in hand, we take a base KDM-secure
encryption scheme and show how, via a key-versatile signature, to obtain stor-
age schemes meeting our goal. Our resulting storage schemes will achieve KDM
security with respect to the same class of message-deriving functions Φ as the
underlying encryption scheme. Also, we will assume only CPA KDM security
of the base scheme, yet achieve CCA KDM privacy for the constructed storage
scheme. Interestingly, our solution uses a public-key base encryption scheme,
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even though the privacy component of the goal is symmetric and nobody but
the user will encrypt. This allows us to start with KDM privacy under keys
permitting signatures through key-versatile signing. This represents a novel ap-
plication for public-key KDM-secure encryption. We refer the reader to [14] for
details.
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Abstract. Verifiability is central to building protocols and systems
with integrity. Initially, efficient methods employed the Fiat-Shamir
heuristics. Since 2008, the Groth-Sahai techniques have been the most ef-
ficient in constructing non-interactive witness indistinguishable and zero-
knowledge proofs for algebraic relations in the standard model. For the
important task of proving membership in linear subspaces, Jutla and
Roy (Asiacrypt 2013) gave significantly more efficient proofs in the quasi-
adaptive setting (QA-NIZK). For membership of the row space of a t×n
matrix, their QA-NIZK proofs save Ω(t) group elements compared to
Groth-Sahai. Here, we give QA-NIZK proofs made of a constant number
group elements – regardless of the number of equations or the number of
variables – and additionally prove them unbounded simulation-sound. Un-
like previous unbounded simulation-sound Groth-Sahai-based proofs, our
construction does not involve quadratic pairing product equations and
does not rely on a chosen-ciphertext-secure encryption scheme. Instead,
we build on structure-preserving signatures with homomorphic proper-
ties. We apply our methods to design new and improved CCA2-secure
encryption schemes. In particular, we build the first efficient threshold
CCA-secure keyed-homomorphic encryption scheme (i.e., where homo-
morphic operations can only be carried out using a dedicated evaluation
key) with publicly verifiable ciphertexts.

1 Introduction

Non-interactive zero-knowledge proofs [6] play a fundamental role in the design
of numerous cryptographic protocols. Unfortunately, until breakthrough results
in the last decade [19–21], it was not known how to construct them efficiently
without appealing to the random oracle methodology [5]. Groth and Sahai [21]
described very efficient non-interactive witness indistinguishable (NIWI) and
zero-knowledge (NIZK) proof systems for algebraic relations in groups equipped
with a bilinear map. For these specific languages, the methodology of [21] does
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not require any proof of circuit satisfiability but rather leverages the properties
of homomorphic commitments in bilinear groups. As a result, the length of each
proof only depends on the number of equations and the number of variables.

While dramatically more efficient than general NIZK proofs, the GS tech-
niques remain significantly more expensive than non-interactive proofs obtained
from the Fiat-Shamir heuristic [18] in the random oracle model [5]: for example,
proving that t variables satisfy a system of n linear equations demands O(t+n)
group elements where Σ-protocols allow for O(t)-size proofs. In addition, GS
proofs are known to be malleable which, although useful in certain applica-
tions [3, 11], is undesirable when NIZK proofs serve as building blocks for non-
malleable protocols. To construct chosen-ciphertext-secure encryption schemes
[35], for example, the Naor-Yung/Sahai [31, 36] paradigm requires NIZK proofs
satisfying a property called simulation-soundness [36]: informally, this property
captures the inability of the adversary to prove false statements, even after hav-
ing observed simulated proofs for possibly false statements of its choice.

Groth-Sahai proofs can be made simulation-sound using ideas suggested in
[20, 9, 22]. However, even when starting from a linear equation, these techniques
involve proofs for quadratic equations, which results in longer proofs. One-time
simulation-soundness (i.e., where the adversary only sees one simulated proof)
is more economical to achieve as shown in [25, 26]. Jutla and Roy suggested a
more efficient way to achieve a form of one-time simulation-soundness [23].

Quasi-Adaptive NIZK Proofs. For languages consisting of linear subspaces of a
vector space, Jutla and Roy [24] recently showed how to significantly improve
upon the efficiency of the GS paradigm in the quasi-adaptive setting. In quasi-
adaptive NIZK proofs (QA-NIZK) for a class of languages {Lρ} parametrized
by ρ, the common reference string (CRS) is allowed to depend on the particular
language Lρ of which membership must be proved. At the same time, a single
simulator should be effective for the whole class of languages {Lρ}. As pointed
out in [24], QA-NIZK proofs are sufficient for many applications of Groth-Sahai
proofs. In this setting, Jutla and Roy [24] gave very efficient QA-NIZK proofs of
membership in linear subspaces. If A ∈ Zt×n

p is a matrix or rank t < n, in order

to prove membership of the language L = {v ∈ Gn | ∃x ∈ Zt
p s.t. v = gx·A},

the Jutla-Roy proofs only take O(n − t) group elements – instead of O(n + t)
in [21] – at the expense of settling for computational soundness. While highly
efficient in the case t ≈ n, these proofs remain of linear size in n and may result
in long proofs when t ' n, as is the case in, e.g., certain applications of the
Naor-Yung paradigm [9]. In the general case, we are still lacking a method for
building proofs of size O(t) – at least without relying on non-falsifiable assump-
tions [30] – which contrasts with the situation in the random oracle model.

The problem is even harder if we aim for simulation-soundness. While the
Jutla-Roy solutions [24] nicely interact with their one-time simulation-sound
proofs [23], they do not seem to readily extend into unbounded simulation-
sound (USS) proofs (where the adversary can see an arbitrary number of sim-
ulated proofs before outputting a proof of its own) while retaining the same
efficiency. For this reason, although they can be applied in specific cases like [9],
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we cannot always use them in a modular way to build IND-CCA2-secure en-
cryption schemes when security definitions involve many challenge ciphertexts.

Our Contributions. Recently [27], it was observed that structure-preserving sig-
natures (SPS) [2, 1] with homomorphic properties have unexpected applica-
tions in the design of non-malleable structure-preserving commitments. Here, we
greatly extend their range of applications and demonstrate that they can sur-
prisingly be used (albeit non-generically) in the design of strongly non-malleable
primitives like simulation-sound proofs and CCA2-secure cryptosystems.

Concretely, we describe unbounded simulation-sound QA-NIZK proofs of
constant-size for linear subspaces. The length of a proof does not depend on
the number of equations or the number of variables, but only on the underlying
assumption. Like those of [24], our proofs are computationally sound under stan-
dard assumptions. Somewhat surprisingly, they are even asymptotically shorter
than random-oracle-based proofs derived from Σ-protocols.

Moreover, our construction provides unbounded simulation-soundness. Under
the Decision Linear assumption [7], we obtain QA-NIZK arguments consisting
of 15 group elements and a one-time signature with its verification key. As it
turns out, it is also the first unbounded simulation-sound proof system that
does not involve quadratic pairing product equations or a CCA2-secure encryp-
tion scheme. Efficiency comparisons show that we only need 20 group elements
per proof where the best USS extension [9] of Groth-Sahai costs 6t + 2n + 52
group elements. Under the k-linear assumption, the proof length becomes O(k2)
and thus avoids any dependency on the subspace dimension. Our proof system
builds on the linearly homomorphic structure-preserving signatures of Libert,
Peters, Joye and Yung [27], which allow signing vectors of group elements with-
out knowing their discrete logarithms.

For applications, like CCA2 security [31, 36], where only one-time simulation-
soundness is needed, we further optimize our proof system and obtain a relatively
simulation-sound QA-NIZK proof system, as defined in [23], with constant-size
proofs. Under the DLIN assumption (resp. the k-linear assumption), we achieve
relative simulation-soundness with only 4 (resp. k + 2) group elements!

As a first application of our USS proofs, we build a chosen-ciphertext-secure
keyed-homomorphic system with threshold decryption. Keyed-homomorphic en-
cryption is a primitive, suggested by Emura et al. [16], where homomorphic
ciphertext manipulations are only possible to a party holding a devoted evalu-
ation key SKh which, by itself, does not enable decryption. The scheme should
provide IND-CCA2 security when the evaluation key is unavailable to the adver-
sary and remain IND-CCA1 secure when SKh is exposed. Other approaches to
reconcile homomorphism and non-malleability were taken in [32–34, 8, 11] but
they inevitably satisfy weaker security notions than adaptive chosen-ciphertext
security [35]. The results of [16] showed that CCA2-security does not rule out ho-
momorphicity when the capability to compute over encrypted data is restricted.

Emura et al. [16] gave chosen-ciphertext-secure keyed-homomorphic schemes
based on hash proof systems [13]. However, these do not readily enable threshold
decryption – as would be desirable in voting protocols – since valid ciphertexts
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are not publicly recognizable, which makes it harder to prove CCA security in
the threshold setting. Moreover, these solutions are not known to satisfy the
strongest security definition of [16]. The reason is that this definition seem-
ingly requires a form of unbounded simulation-soundness. Our QA-NIZK proofs
fulfill this requirement and provide an efficient CCA2-secure threshold keyed-
homomorphic system where ciphertexts are 65% shorter than in instantiations
of the same high-level idea using previous simulation-sound proofs.

Using our relatively simulation-sound QA-NIZK proofs, we build new adap-
tively secure non-interactive threshold cryptosystems [14, 15] with CCA2 secu-
rity and improved efficiency. The constructions of [26] were improved by Escala et
al. [17]. So far, the most efficient solution is obtained from the Jutla-Roy results
[23, 24] via relatively sound proofs [23]. Using our relatively sound QA-NIZK
proofs, we shorten ciphertexts by Θ(k) elements under the k-linear assumption.

Our Techniques. In our unbounded simulation-sound proofs, each QA-NIZK
proof can be seen as a Groth-Sahai NIWI proof of knowledge of a one-time
linearly homomorphic signature on the vector that allegedly belongs to the linear
subspace. Here, the NIWI proof is generated for a Groth-Sahai CRS that depends
on the verification key of a one-time signature (following an idea of Malkin
et al. [29] which extends Waters’ techniques [38]), the private key of which is
used to sign the entire proof so as to prevent re-randomizations. The reason
why it provides unbounded simulation-soundness is that, with non-negligible
probability, the CRS is perfectly hiding on all simulated proofs and extractable
in the adversarially-generated fake proof. Hence, if the adversary manages to
prove membership of a vector outside the linear subspace, the reduction is able
to extract a homomorphic signature that it would not have been able to compute
itself, thereby breaking the DLIN assumption. At a high level, the system can
be seen as a two-tier proof system made of a non-malleable proof of knowledge
of a malleable proof of membership.

In our optimized relatively-sound proofs, we adapt ideas of Jutla and Roy
[23] and combine the one-time linearly homomorphic signature of [27] with a
smooth-projective hash function [13].

Our threshold keyed-homomorphic scheme combines a hash proof system and
a publicly verifiable USS proof that the ciphertext is well-formed. The keyed-
homomorphic property is achieved by using the simulation trapdoor of the proof
system as an evaluation key SKh, allowing the evaluator to generate proofs
without the witnesses. As implicitly done in [16] using hash proof systems, the
simulation trapdoor is used in the scheme and not only in the security proof.

2 Background and Definitions

2.1 Quasi-Adaptive NIZK Proofs

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the CRS is
allowed to depend on the specific language for which proofs have to be generated.
The CRS is divided into a fixed part Γ , produced by an algorithm K0, and a
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language-dependent part ψ. However, there should be a single simulator for the
entire class of languages.

Let λ be a security parameter. For public parameters Γ produced by K0, let
DΓ be a probability distribution over a set of relations R = {Rρ} parametrized
by a string ρ with an associated language Lρ = {x | ∃w : Rρ(x,w) = 1}.

We consider proof systems where the prover and the verifier both take a label
lbl as additional input. For example, this label can be the message-carrying part
of an Elgamal-like encryption. Formally, a tuple of algorithms (K0,K1,P,V) is a
QA-NIZK proof system for R if there exists a PPT simulator (S1, S2) such that,
for any PPT adversaries A1,A2 and A3, we have the following properties:

Quasi-Adaptive Completeness:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ); (x,w, lbl)← A1(Γ, ψ, ρ);

π ← P(ψ, x, w, lbl) : V(ψ, x, π, lbl) = 1 if Rρ(x,w) = 1] = 1.

Quasi-Adaptive Soundness:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ); (x, π, lbl)← A2(Γ, ψ, ρ) :

V(ψ, x, π, lbl) = 1 ∧ ¬(∃w : Rρ(x,w) = 1)] ∈ negl(λ).

Quasi-Adaptive Zero-Knowledge:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ) : AP(ψ,.,.)
3 (Γ, ψ, ρ) = 1] ≈

Pr[Γ ← K0(λ); ρ← DΓ ; (ψ, τsim)← S1(Γ, ρ) : AS(ψ,τsim,.,.,.)
3 (Γ, ψ, ρ) = 1],

where
- P(ψ, ., ., .) emulates the actual prover. It takes as input (x,w) and lbl and
outputs a proof π if (x,w) ∈ Rρ. Otherwise, it outputs ⊥.

- S(ψ, τsim, ., ., .) is an oracle that takes as input (x,w) and lbl. It outputs
a simulated proof S2(ψ, τsim, x, lbl) if (x,w) ∈ Rρ and ⊥ if (x,w) ∈ Rρ.

We assume that the CRS ψ contains an encoding of ρ, which is thus available to
V. The definition of Quasi-Adaptive Zero-Knowledge requires a single simulator
for the entire family of relations R.

2.2 Simulation-Soundness and Relative Soundness

It is often useful to have a property called simulation-soundness, which requires
that the adversary be unable to prove false statements even after having seen
simulated proofs for possibly false statements.

Unbounded Simulation-Soundness: For any PPT adversary A4,

Pr[ Γ ← K0(λ); ρ← DΓ ; (ψ, τsim)← S1(Γ, ρ);

(x, π, lbl)← AS2(ψ,τsim,.,.)
4 (Γ, ψ, ρ) : V(ψ, x, π, lbl) = 1

∧ ¬(∃w : Rρ(x,w) = 1) ∧ (x, π, lbl) ∈ Q] ∈ negl(λ),
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where the adversary is allowed unbounded access to an oracle S2(ψ, τ, ., .)
that takes as input statement-label pairs (x, lbl) (where x may be outside
Lρ) and outputs simulated proofs π ← S2(ψ, τsim, x, lbl) before updating the
set Q = Q ∪ {(x, π, lbl)}, which is initially empty.

In the weaker notion of one-time simulation-soundness, only one query to the S2
oracle is allowed.

In some applications, one may settle for a weaker notion, called relative sound-
ness by Jutla and Roy [23], which allows for more efficient proofs, especially in
the single-theorem case. Informally, relatively sound proof systems involve both
a public verifier and a private verification algorithm, which has access to a trap-
door. For hard languages, the two verifiers should almost always agree on any
adversarially-created proof. Moreover, the private verifier should not accept a
non-trivial proof for a false statement, even if the adversary has already seen
proofs for false statements.

A labeled single-theorem relatively sound QA-NIZK proof system is comprised
of a quasi-adaptive labeled proof system (K0,K1,P,V) along with an efficient
private verifier W and an efficient simulator (S1, S2). Moreover, the following
properties should hold for any PPT adversaries (A1,A2,A3,A4).

Quasi Adaptive Relative Single-Theorem Zero-Knowledge:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ); (x,w, lbl, s)←

AV(ψ,.,.)
1 (Γ, ψ, ρ);π ← P(ψ, ρ, x, w, lbl) : AV(ψ,.,.)

2 (π, s) = 1]

≈ Pr[Γ ← K0(λ); ρ← DΓ ; (ψ, τ)← S1(Γ, ρ); (x,w, lbl, s)←

AW(ψ,τ,.,.)
1 (Γ, ψ, ρ);π ← S2(ψ, ρ, τ, x, lbl) : AW(ψ,τ,.,.)

2 (π, s) = 1],

Here, A1 is restricted to choosing (x,w) such that Rρ(x,w) = 1.

Quasi Adaptive Relative Single-Theorem Simulation-Soundness:

Pr[Γ ← K0(λ); ρ ← DΓ ; (ψ, τ )← S1(Γ, ρ); (x, lbl, s)← AW(ψ,τ,.,.)
3 (Γ, ψ, ρ);

π ← S2(ψ, ρ, τ, x, lbl) : (x
′, lbl′, π′)← AW(ψ,τ,.,.)

4 (s, π) : (x, π, lbl) �= (x′, π′, lbl′)

∧ � ∃w′ s.t. Rρ(x
′, w′) = 1 ∧ W(ψ, τ, x′, lbl′, π′) = 1] ∈ negl(λ)

2.3 Definitions for Threshold Keyed-Homomorphic Encryption

A (t, N)-threshold keyed-homomorphic encryption scheme consists of the follow-
ing algorithms.

Keygen(λ, t,N): inputs a security parameter λ and integers t, N ∈ poly(λ)
(with 1 ≤ t ≤ N), where N is the number of decryption servers and t ≤ N is
the decryption threshold. It outputs a public key PK, a homomorphic eval-
uation key SKh, a vector of private key shares SKd = (SKd,1, . . . , SKd,N)
and a vector of verification keys VK = (V K1, . . . , V KN ). For each i, the
decryption server i is given the share (i, SKd,i). The verification key V Ki

will be used to check the validity of decryption shares generated using SKd,i.
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Encrypt(PK,M): takes a input a public key PK and a plaintext M . It outputs
a ciphertext C.

Ciphertext-Verify(PK,C): takes as input a public key PK and a ciphertext
C. It outputs 1 if C is deemed valid w.r.t. PK and 0 otherwise.

Share-Decrypt(PK, i, SKd,i, C): on input of a public key PK, a ciphertext C
and a private-key share (i, SKd,i), this (possibly randomized) algorithm out-
puts a special symbol (i,⊥) if Ciphertext-Verify(PK,C) = 0. Otherwise,
it outputs a decryption share μi = (i, μ̂i).

Share-Verify(PK, V Ki, C, μi): takes in PK, the verification key V Ki, a ci-
phertext C and a purported decryption share μi = (i, μ̂i). It outputs either
1 or 0. In the former case, μi is said to be a valid decryption share. We adopt
the convention that (i,⊥) is an invalid decryption share.

Combine(PK,VK, C, {μi}i∈S): takes as input (PK,VK, C) and a t-subset
S ⊂ {1, . . . , N} with decryption shares {μi}i∈S . It outputs either a plaintext
M or ⊥ if {μi}i∈S contains invalid shares.

Eval(PK, SKh, C
(1), C(2)): takes as input PK, the evaluation key SKh and

ciphertexts C(1), C(2). If Ciphertext-Verify(PK,C(j)) = 0 for some j ∈
{1, 2}, the algorithm returns ⊥. Otherwise, it conducts a binary homomor-
phic operation over C(1) and C(2) and outputs a ciphertext C.

The above syntax assumes a trusted dealer. It generalizes that of ordinary thresh-
old cryptosystems. By setting SKh = ε and discarding the evaluation algorithm,
we obtain a classical threshold system.

Definition 1. A threshold keyed-homomorphic public-key cryptosystem is se-
cure against chosen-ciphertext attacks (or KH-CCA secure) if no PPT adversary
has noticeable advantage in this game:

1. The challenger runs Keygen(λ) to obtain a public key PK, vectors SKd

and VK and a homomorphic evaluation key SKh. It gives PK and VK to
the adversary A and keeps (SKh,SKd) to itself. In addition, the challenge
initializes a set D ← ∅, which is initially empty.

2 On multiple occasions, A adaptively invokes the following oracles:
- Corruption query: at any time, A may decide to corrupt a decryption
server. To this end, it specifies an index i ∈ {1, . . . , N} and obtains the
private key share SKd,i.

- Evaluation query: A can invoke the evaluation oracle Eval(SKh, .) on a
pair (C(1), C(2)) of ciphertexts of its choice. If there exists j ∈ {1, 2}
such that Ciphertext-Verify(PK,C(j)) = 0, return ⊥. Otherwise, the
oracle Eval(SKh, .) computes C ← Eval(SKh, C

(1), C(2)) and returns C.
In addition, if C(1) ∈ D or C(2) ∈ D, it sets D ← D ∪ {C}.

- Reveal query: at any time, A may also decide to corrupt the evaluator
by invoking the RevHK oracle on a unique occasion. The oracle responds
by returning SKh.

- Partial decryption query: A can also choose arbitrary ciphertexts C and
indexes i ∈ {1, . . . , n}. If Ciphertext-Verify(PK,C) = 0 or if C ∈ D,
the oracle returns ⊥. Otherwise, the oracle returns the decryption share
μi ← Share-Decrypt(PK, i, SKd,i, C).
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3. The adversary A chooses two equal-length messages M0,M1 and obtains
C� = Encrypt(PK,Mβ) for some random bit β R← {0, 1}. In addition,
the challenger sets D ← D ∪ {C�}.

4. A makes further queries as in step 2 with some restrictions. Namely, A
cannot corrupt more than t−1 servers throughout the entire game. Moreover,
if A chooses to obtain SKh (via the RevHK oracle) at some point, no more
post-challenge decryption query is allowed beyond that point.

5. A outputs a bit β′ and is deemed successful if β′ = β. As usual, A’s advantage
is measured as the distance Adv(A) = |Pr[β′ = β]− 1

2 |.

Note that, even if A chooses to obtain SKh immediately after having seen the
public key PK, it still has access to the decryption oracle before the challenge
phase. In other words, the scheme should remain IND-CCA1 if A is given PK
and SKh at the outset of the game. After the challenge phase, decryption queries
are allowed until the moment when the adversary obtains SKh.

In [16], Emura et al. suggested a weaker definition where the adversary is not
allowed to query the evaluation oracle on derivatives of the challenge ciphertext.
As a consequence, the set D is always the singleton {C�} after step 3. In this
paper, we will stick to the stronger definition.

2.4 Hardness Assumptions

We will use symmetric bilinear maps e : G×G→ GT over groups of prime order
p, but extensions to the asymmetric setting e : G× Ĝ→ GT are possible.

Definition 2 ([7]). The Decision Linear Problem (DLIN) in G, is to dis-
tinguish the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz), where
a, b, c, d R← Zp, z

R← Zp.

We sometimes use the Simultaneous Double Pairing (SDP) assumption, which
is weaker than DLIN. As noted in [10], any algorithm solving SDP immediately
yields a DLIN distinguisher.

Definition 3. TheSimultaneousDoublePairing problem (SDP) in (G,GT )
is, given group elements (gz, gr, hz, hu) ∈ G4, to find a non-trivial triple (z, r, u) ∈
G3\{(1G, 1G, 1G)} such that e(gz, z) · e(gr, r) = 1GT and e(hz, z) · e(hu, u) = 1GT .

2.5 Linearly Homomorphic Structure-Preserving Signatures

Linearly homomorphic SPS schemes are homomorphic signatures where mes-
sages and signatures live in the domain group G (see [27] for syntactic defi-
nitions) of a bilinear map. Libert et al. [27] described the following one-time
construction and proved its security under the SDP assumption. By “one-time”,
we mean that only one linear subspace can be signed using a given key pair.
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Keygen(λ, n): given a security parameter λ and the dimension n ∈ N of vectors
to be signed, choose bilinear group (G,GT ) of prime order p > 2λ. Choose
gz, gr, hz, hu

R← G. Then, for i = 1 to n, pick χi, γi, δi
R← Zp and compute

gi = gz
χigr

γi and hi = hz
χihu

δi . The private key is sk = {(χi, γi, δi)}ni=1

while the public key is pk =
(
gz, gr, hz, hu, {(gi, hi)}ni=1

)
.

Sign(sk, (M1, . . . ,Mn)): to sign (M1, . . . ,Mn) ∈ Gn using sk={(χi, γi, δi)}ni=1,
return (z, r, u) =

(∏n
i=1 M

−χi

i ,
∏n

i=1 M
−γi

i ,
∏n

i=1 M
−δi
i

)
∈ G3.

SignDerive(pk, {(ωi, σ
(i))}�

i=1): given a public key pk and 
 tuples (ωi, σ
(i)),

where ωi ∈ Zp for each i, parse σ(i) as σ(i) =
(
zi, ri, ui

)
∈ G3 for i = 1 to 
.

Then, compute and return σ = (z, r, u) = (
∏�

i=1 z
ωi

i ,
∏�

i=1 r
ωi

i ,
∏�

i=1 u
ωi

i ).
Verify(pk, σ, (M1, . . . ,Mn)): given a signature σ = (z, r, u) ∈ G3 and a vec-

tor (M1, . . . ,Mn), return 1 if and only if (M1, . . . ,Mn) = (1G, . . . , 1G) and
(z, r, u) satisfy the equalities 1GT = e(gz, z) · e(gr, r) ·

∏n
i=1 e(gi,Mi) and

1GT = e(hz, z) · e(hu, u) ·
∏n

i=1 e(hi,Mi).

One particularity of this scheme is that, even if the private key is available,
it is difficult to find two distinct signatures on the same vector if the SDP as-
sumption holds: by dividing out the two signatures, one obtains the solution of
an SDP instance (gz, gr, hz, hu) contained in the public key.

Two constructions of full-fledged (as opposed to one-time) linearly homomor-
phic SPS were given in [27]. One of these will serve as a basis for our proof system.
In these constructions, all algorithms additionally input a tag which identifies
the dataset that vectors belongs to. Importantly, only vectors associated with
the same tag can be homomorphically combined.

3 Unbounded Simulation-Sound Quasi-Adaptive NIZK
Arguments

In the following, vectors are always considered as row vectors unless stated oth-
erwise. If A ∈ Zt×n

p is a matrix, we denote by gA ∈ Gt×n the matrix obtained
by exponentiating g using the entries of A.

We consider public parameters Γ = (G,GT , g) consisting of bilinear groups
(G,GT ) with a generator g ∈ G. Like [24], we will consider languages Lρ =
{gx·A ∈ Gn | x ∈ Zt

p} that are parametrized by ρ = gA ∈ Gt×n, where A ∈ Zt×n
q

is a t× n matrix of rank t < n.
As in [24], we assume that the distribution DΓ is efficiently samplable: there

exists a PPT algorithm which outputs a pair (ρ,A) describing a relation Rρ and
its associated language Lρ according to DΓ . One example of such a distribution

is obtained by picking a uniform matrix A R← Zt×n
p – which has full rank with

overwhelming probability – and setting ρ = gA.
Our construction builds on the homomorphic signature recalled in Section 2.5.

Specifically, the language-dependent CRS ψ contains one-time linearly homomor-
phic signatures on the rows of the matrix ρ ∈ Gt×n. For each vector v ∈ Lρ,
the prover can use the witness x ∈ Zt

p to derive and prove knowledge of a one-
time homomorphic signature (z, r, u) on v. This signature (z, r, u) is already a
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QA-NIZK proof of membership but it is not simulation-sound. To acquire this
property, we follow [29] and generate a NIWI proof of knowledge of (z, r, u) for a
Groth-Sahai CRS that depends on the verification key of an ordinary one-time
signature. The latter’s private key is used to sign the NIWI proof so as to pre-
vent unwanted proof manipulations. Using the private key of the homomorphic
one-time signature as a trapdoor, the simulator is also able to create proofs for
vectors v ∈ Lρ. Due to the use of perfectly NIWI proofs, these fake proofs do
not leak any more information about the simulation key than the CRS does. At
the same time, the CRS can be prepared in such a way that, with non-negligible
probability, it becomes perfectly binding on an adversarially-generated proof,
which allows extracting a non-trivial signature on a vector v ∈ Lρ.

Like [24], our quasi-adaptive NIZK proof system (K0,K1,P,V) is a split CRS
construction in that K1 can be divided into two algorithms (K10,K11). The first
one K10 outputs some state information s and a first CRS CRS2 which is only
used by the verifier and does not depend on the language Lρ. The second part
K11 of K1 inputs the state information s and the output of Γ of K0 and outputs
CRS1 which is only used by the prover. The construction goes as follows.

K0(λ): choose groups (G,GT ) of prime order p > 2λ with g R← G. Then, output
Γ = (G,GT , g)

The dimensions (t, n) of the matrix A ∈ Zt×n
p can be either fixed or part of the

language, so that t, n can be given as input to the CRS generation algorithm K1.

K1(Γ, ρ): parse Γ as (G,GT , g) and ρ as a matrix ρ =
(
Gi,j

)
1≤i≤t, 1≤j≤n

∈ Gt×n.

1. Generate a key pair (pkots, skots) for the homomorphic signature of Sec-
tion 2.5 in order to sign vectors of Gn and incorporate a set of Groth-
Sahai common reference strings in the public key pkots. In details:

a. Choose gz, gr, hz, hu
R← G. For i = 1 to n, pick χi, γi, δi

R← Zp and

compute gi = gz
χigr

γi and hi = hz
χihu

δi .
b. Generate L + 1 Groth-Sahai CRSes, for some L ∈ poly(λ). To this

end, choose f1, f2
R← G and define vectors f1 = (f1, 1, g) ∈ G3,

f2 = (1, f2, g) ∈ G3. Then, pick f3,i
R← G3 for i = 0 to L.

Let skots = {(χi, γi, δi)}ni=1 be the private key and the public key is

pkots =
(

gz, gr, hz, hu, {(gi, hi)}ni=1, f =
(
f1,f2, {f3,i}Li=0

) )
.

2. Use skots to generate one-time homomorphic signatures {(zi, ri, ui)}ti=1

on the rows ρi = (Gi1, . . . , Gin) ∈ Gn of ρ. These are obtained as

(zi, ri, ui) =
(∏n

j=1 G
−χj

i,j ,
∏n

j=1 G
−γj

i,j ,
∏n

j=1 G
−δj
i,j

)
for all i ∈ {1, . . . , t}.

3. Choose a strongly unforgeable one-time signature Σ = (G,S,V) with
verification keys consisting of L-bit strings.

4. The CRS ψ = (CRS1,CRS2) consists of two parts which are defined as

CRS1 =
(
ρ, pkots, {(zi, ri, ui)}ti=1, Σ

)
, CRS2 =

(
pkots, Σ

)
,

while the simulation trapdoor τsim is skots = {(χi, γi, δi)}ni=1.
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P(Γ, ψ,v, x, lbl): given v ∈ Gn and a witness x = (x1, . . . , xt) ∈ Zt
p such that

v = gx·A, generate a one-time signature key pair (SVK, SSK)← G(λ).
1. Using {(zj, rj , uj)}tj=1, derive a one-time linearly homomorphic signature

(z, r, u) on v. Namely, set z =
∏t

i=1 z
xi

i , r =
∏t

i=1 r
xi

i and u =
∏t

i=1 u
xi

i .

2. Using SVK ∈ {0, 1}L, define the vector fSVK = f3,0 ·
∏L

i=1 f
SVK[i]
3,i and

assemble a Groth-Sahai CRS fSVK = (f1,f2,fSVK). Using fSVK, generate
commitmentsCz ,Cr,Cu to the components of (z, r, u) along with NIWI
proofs (π1,π2) that (z, r, u) is a valid homomorphic signature for v.
Let (Cz,Cr,Cu,π1,π2) ∈ G15 be the resulting commitments and proofs.

3. Generate σ = S(SSK, (v,Cz,Cr,Cu,π1,π2, lbl)) and output

π = (SVK,Cz,Cr,Cu,π1,π2, σ) (1)

V(Γ, ψ,v, π, lbl): parse π as per (1). Return 1 if (i) (Cz,Cr,Cu,π1,π2) forms
a valid NIWI proof for the Groth-Sahai CRS fSVK = (f1,f2,fSVK); (ii)
V(SVK, (v,Cz,Cr,Cu,π1,π2, lbl), σ) = 1. If either condition fails to hold,
return 0.

In order to simulate a proof for a given vector v ∈ Gn, the simulator uses
τsim = skots to generate a fresh one-time homomorphic signature on v ∈ Gn and
proceeds as in steps 2-3 of algorithm P.

The proof π only consists of 15 group elements and a one-time pair (SVK, σ).
Remarkably, its length does not depend on the number of equations n or the
number of variables t. In comparison, Groth-Sahai proofs already require 3t+2n
group elements in their basic form and become even more expensive when it
comes to achieve unbounded simulation-soundness. The Jutla-Roy techniques
[24] reduce the proof length to 2(n− t) elements – which only competes with our
proofs when t ≈ n – but it is unclear how to extend them to get unbounded
simulation-soundness without affecting their efficiency. Our CRS consists of
O(t+ n+ L) group elements against O(t(n − t)) in [24].

Interestingly, the above scheme even outperforms Fiat-Shamir-like proofs de-
rived from Σ-protocols which would give O(t)-size proofs here. The construction
readily extends to rely on the k-linear assumption for k > 2. In this case, the
proof comprises (k + 1)(2k + 1) elements and its size thus only depends on k.

The verification algorithm only involves linear pairing product equations
whereas all known unbounded simulation-sound extensions of GS proofs require
either quadratic equations or a linearization step involving extra variables.

We finally remark that, if we give up the simulation-soundness property, the
proof length drops to k + 1 group elements under the k-linear assumption.

Theorem 1. The scheme is an unbounded simulation-sound QA-NIZK proof
system if the DLIN assumption holds in G and Σ is strongly unforgeable. (The
proof is given in the full version of the paper [28]).

We note that the above construction is not tightly secure as the gap between
the simulation-soundness adversary’s advantage and the probability to break
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the DLIN assumption depends on the number of simulated proofs obtained by
the adversary. For applications like tightly secure public-key encryption [22], it
would be interesting to modify the proof system to obtain tight security.

4 Single-Theorem Relatively Sound Quasi-Adaptive
NIZK Arguments

In applications where single-theorem relatively sound NIZK proofs suffice, we can
further improve the efficiency. Under the k-linear assumption, the proof length
reduces from O(k2) elements to O(k) elements. Under the DLIN assumption,
each proof fits within 4 elements and only costs 2n + 6 pairings to verify. In
comparison, the verifier needs 2(n− t)(t+ 2) pairing evaluations in [24].

As in [23], we achieve relative soundness using smooth projective hash func-
tions [13]. To this end, we encode the matrix ρ ∈ Gt×n as a 2t× (2n+1) matrix.

K0(λ): choose groups (G,GT ) of prime order p > 2λ with g R← G. Then, output
Γ = (G,GT , g).

Again, the dimensions of A ∈ Zt×n
p can be either fixed or part of Lρ, so that t, n

can be given as input to the CRS generation algorithm K1.

K1(Γ, ρ): parse Γ as (G,GT , g) and ρ as ρ =
(
Gij

)
1≤i≤t, 1≤j≤n

∈ Gt×n.

1. Choose vectors d = (d1, . . . , dn)
R← Zn

p and e = (e1, . . . , en)
R← Zn

p . Define

W = (W1, . . . ,Wt) = gA·d� ∈ Gt and Y = (Y1, . . . , Yt) = gA·e� ∈ Gt,
which will be used to define a projective hash function.

2. Generate a key pair for the one-time homomorphic signature of Section
2.5 in order to sign vectors in G2n+1. Let skots = {(χi, γi, δi)}2n+1

i=1 be
the private key and let pkots =

(
(G,GT ), gz, gr, hz, hu, {(gi, hi)}2n+1

i=1

)
be

the corresponding public key.
3. Use skots to generate one-time homomorphic signatures {(zi, ri, ui)}2ti=1

on the independent vectors below, which are obtained from the rows of
the matrix ρ =

(
Gi,j

)
1≤i≤t, 1≤j≤n

.

H2i−1 = (Gi,1, . . . , Gi,n, Yi, 1 , . . . , 1 ) ∈ G2n+1 i ∈ {1, . . . , t}
H2i = (1 , . . . , 1 ,Wi, Gi,1, . . . , Gi,n) ∈ G2n+1

4. Choose a collision-resistant hash function H : {0, 1}∗ → Zp.
5. The CRS ψ = (CRS1,CRS2) consists of a first part CRS1 that is only

used by the prover and a second part CRS2 which is only used by the
verifier. These are defined as CRS2 =

(
pkots,W ,Y , H

)
and

CRS1 =
(
ρ, pkots,W ,Y , {(zi, ri, ui)}2ti=1, H

)
.

The simulation trapdoor τsim is skots and the private verification trap-
door is τv = {d, e}.
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P(Γ, ψ,v, x, lbl): given v ∈ Gn, a witness x = (x1, . . . , xt) ∈ Zt
p such that

v = gx·A and a label lbl, compute α = H(ρ,v, lbl) ∈ Zp. Then, using
{(zi, ri, ui)}2ti=1, derive a one-time homomorphic signature (z, r, u) on the
vector ṽ =

(
v1, . . . , vn, π0, v

α
1 , . . . , v

α
n

)
∈ G2n+1, where π0 =

∏t
i=1(W

α
i Yi)

xi .

Namely, output π = (z, r, u, π0) ∈ G4, where z =
∏t

i=1(z2i−1 · zα
2i)

xi ,

r =
∏t

i=1(r2i−1 · rα2i)xi , u =
∏t

i=1(u2i−1 · uα
2i)

xi and π0 =
∏t

i=1(W
α
i Yi)

xi .

V(Γ, ψ,v, π, lbl): parse v as (v1, . . . , vn) ∈ Gn and π as (z, r, u, π0) ∈ G4. Com-
pute α = H(ρ,v, lbl) and return 1 if and only if (z, r, u) is a valid signature
on ṽ = (v1, . . . , vn, π0, v

α
1 , . . . , v

α
n ) ∈ G2n+1. Namely, it should satisfy the

equalities 1GT = e(gz, z) · e(gr, r) ·
∏n

i=1 e(gi · gα
i+n+1, vi) · e(gn+1, π0) and

1GT = e(hz, z) · e(hu, u) ·
∏n

i=1 e(hi · hα
i+n+1, vi) · e(hn+1, π0).

W(Γ, ψ, τv ,v, π, lbl): given v = (v1, . . . , vn) ∈ Gn, parse π as (z, r, u, π0) ∈ G4

and τv as {d, e}, with d = (d1, . . . , dn) ∈ Zn
p and e = (e1, . . . , en) ∈ Zn

p .
Compute α = H(ρ,v, lbl) ∈ Zp and return 0 if the public verification test V

fails. Otherwise, return 1 if π0 =
∏n

j=1 v
ej+αdj

j and 0 otherwise.

We note that, while the proving algorithm is deterministic, each statement has
many valid proofs. However, finding two valid proofs for the same statement is
computationally hard, as will be shown in the proof of Theorem 2.

The scheme readily extends to rest on the k-linear assumption with k > 2.
In this case, the proof requires k + 2 group elements – whereas combining the
techniques of [23, 24] demands k(n+ 1 − t) elements per proof – and a CRS of
size O(k(n+ t)). We prove the following result in the full version of the paper.

Theorem 2. The above proof system is a relatively sound QA-NIZK proof sys-
tem if the SDP assumption holds in (G,GT ) and if H is a collision-resistant
hash function.

As an application, we describe a new adaptively secure CCA2-secure non-
interactive threshold cryptosystem based on the DLIN assumption in the full
version of the paper. Under the k-linear assumption, the scheme provides cipher-
texts that are Θ(k) group elements shorter than in previous such constructions.
Under the DLIN assumption, ciphertexts consist of 8 elements of G, which spares
one group element w.r.t. the best previous variants [23, 24] of Cramer-Shoup with
publicly verifiable ciphertexts.

5 An Efficient Threshold Keyed-Homomorphic
KH-CCA-Secure Encryption Scheme from the DLIN
Assumption

The use of linearly homomorphic signatures as publicly verifiable proofs of ci-
phertext validity in the Cramer-Shoup paradigm [12, 13] was suggested in [27].
However, the latter work only discusses non-adaptive (i.e., CCA1) attacks. In
the CCA2 case, a natural idea is to proceed as in our unbounded simulation-
sound proof system and use the verification key of a on-time signature as the
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tag of a homomorphic signature: since cross-tag homomorphic operations are
disallowed, the one-time signature will prevent illegal ciphertext manipulations
after the challenge phase. To obtain the desired keyed-homomorphic property,
we use the simulation trapdoor of a simulation-sound proof system as the ho-
momorphic evaluation key. This approach was already used by Emura et al. [16]
in the context of designated verifier proofs. Here, publicly verifiable proofs are
obtained from a homomorphic signature scheme of which the private key serves
as an evaluation key: anyone equipped with this key can multiply two cipher-
texts (or, more precisely, their built-in homomorphic components), generate a
new tag and sign the resulting ciphertext using the private key of the homomor-
phic signature. Moreover, we can leverage the fact that the latter private key
is always available to the reduction in the security proof of the homomorphic
signature [27]. In the game of Definition 1, the simulator can thus hand over the
evaluation key SKh to the adversary upon request.

Emura et al. [16] gave constructions of KH-CCA secure schemes based on
hash proof systems [13]. However, these constructions are only known to provide
a relaxed flavor of KH-CCA security where evaluation queries should not in-
volve derivatives of the challenge ciphertext. The reason is that 2-universal hash
proof systems [13] only provide a form of one-time simulation soundness whereas
the model of Definition 1 seemingly requires unbounded simulation-soundness.
Indeed, when the evaluation oracle is queried on input of a derivative of the chal-
lenge ciphertext in the security proof, the homomorphic operation may result in
a ciphertext containing a vector outside the language Lρ. Since the oracle has to
simulate a proof for this vector, each homomorphic evaluation can carry a proof
for a potentially false statement. In some sense, each output of the evaluation
oracle can be seen as yet another challenge ciphertext. In this setting, our effi-
cient unbounded simulation-sound QA-NIZK proof system comes in handy.

It remains to make sure that CCA1 security is always preserved, should the
adversary obtain the evaluation key SKh at the outset of the game. To this end,
we include a second derived one-time homomorphic signature (Z,R,U) in the
ciphertext without including its private key in SKh.

Keygen(λ, t,N): Choose bilinear groups (G,GT ) of prime order p > 2λ.

1. Pick f, g, h R← G, x0, x1, x2
R← Zp and set X1 = fx1gx0 , X2 = hx2gx0 .

Then, define f = (f, 1, g) ∈ G3 and h = (1, h, g) ∈ G3.

2. Pick random polynomials P1[Z], P2[Z], P [Z] ∈ Zp[Z] of degree t−1 such
that P1(0) = x1, P2(0) = x2 and P (0) = x0. For each i ∈ {1, . . . , N},
compute V Ki = (Yi,1, Yi,2) where Yi,1=fP1(i)gP (i) and Yi,2=hP2(i)gP (i).

3. Choose fr,1, fr,2
R← G and define f r,1 = (fr,1, 1, g), f r,2 = (1, fr,2, g) and

fr,3 = fφ1

r,1 · f
φ2

r,2 · (1, 1, g)−1, where φ1, φ2
R← Zp. These vectors will be

used as a Groth-Sahai CRS for the generation of NIZK proofs showing
the validity of decryption shares.

4. Choose a strongly unforgeable one-time signature Σ = (G,S,V) with
verification keys consisting of L-bit strings, for some L ∈ poly(λ).
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5. Generate a key pair for the one-time homomorphic signature of Section
2.5 with n = 3. Let pkot =

(
Gz, Gr, Hz , Hu, {(Gi, Hi)}3i=1

)
be the public

key and let skot = {(ϕi, ϑi, #i)}3i=1 be the corresponding private key.
6. Generate one-time homomorphic signatures {(Zj, Rj , Uj)}j=1,2 on the

vectors f = (f, 1, g) and h = (1, h, g) and erase skot.
7. Generate another linearly homomorphic key pair (pk, sk) with n = 3. The

public key pk is augmented so as to contain a set of Groth-Sahai CRSes
as in step 1 of the proof system in Section 3. Let sk = {(χi, γi, δi)}3i=1

be the private key for which the corresponding public key is

pk =
(

gz, gr, hz, hu, {(gi, hi)}3i=1, f =
(
f1,f2, {f3,i}Li=0

) )
.

8. Use sk to generate one-time homomorphic signatures {(zj, rj , uj)}j=1,2

on the independent vectors f = (f, 1, g) ∈ G3 and h = (1, h, g) ∈ G3.
9. The public key is defined to be

PK =
(
g, f , h, f r,1, f r,2, fr,3, X1, X2,

pkot, pk, {(Zj , Rj, Uj)}2j=1, {(zj , rj , uj)}2j=1

)
.

The evaluation key is SKh = sk = {(χi, γi, δi)}3i=1 while the i-th de-
cryption key share is defined to be SKd,i = (P1(i), P2(i), P (i)). The
vector of verification keys is defined as VK = (V K1, . . . , V KN ), where
V Ki = (Yi,1, Yi,2) for i = 1 to N .

Encrypt(M,PK): to encrypt M ∈ G, generate a one-time signature key pair
(SVK, SSK)← G(λ).
1. Set (C0, C1, C2, C3) = (M ·Xθ1

1 ·Xθ2
2 , fθ1 , hθ2 , gθ1+θ2), with θ1, θ2

R← Zp.
2. Compute a first homomorphic signature (Z,R,U) on (C1, C2, C3) ∈ G3.

Namely, compute Z = Zθ1
1 · Zθ2

2 , R = Rθ1
1 ·Rθ2

2 and U = Uθ1
1 · Uθ2

2 .
3. Using {(zj , rj , uj)}j=1,2, derive another homomorphic signature (z, r, u)

on (C1, C2, C3). Namely, compute (z, r, u) = (zθ1
1 · zθ2

2 , rθ11 · rθ22 , uθ1
1 ·uθ2

2 ).

4. Using SVK ∈ {0, 1}L, define the vector fSVK = f3,0 ·
∏L

i=1 f
SVK[i]
3,i and

assemble a Groth-Sahai CRS fSVK = (f1,f2,fSVK). Using fSVK, generate
commitments Cz, Cr, Cu to the components of (z, r, u) ∈ G3 along with
proofs (π1,π2) as in step 2 of the proving algorithm of Section 3. Let
(Cz,Cr,Cu,π1,π2) ∈ G15 be the resulting NIWI proof.

5. Generate σ = S(SSK, (C0, C1, C2, C3, Z,R, U,Cz,Cr,Cu,π1,π2)) and
output

C = (SVK, C0, C1, C2, C3, Z,R, U,Cz,Cr,Cu,π1,π2, σ) (2)

Ciphertext-Verify
(
PK,C

)
: parse C as in (2). Return 1 if and only if: (i)

V(SVK, (C0, C1, C2, C3, Z,R, U,Cz,Cr,Cu,π1,π2), σ) = 1; (ii) (Z,R,U) is
a valid homomorphic signature on (C1, C2, C3); (iii) (Cz,Cr,Cu,π1,π2) ∈
G15 is a valid proof w.r.t. the CRS (f1,f2,fSVK) that committed (z, r, u)
form a valid homomorphic signature for the vector (C1, C2, C3) ∈ G3. Here,

we define fSVK = f3,0 ·
∏L

i=1 f
SVK[i]
3,i .
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Share-Decrypt(PK, i, SKd,i, C): on inputs SKd,i = (P1(i), P2(i), P (i)) ∈ Z3
p

and C, return (i,⊥) if Ciphertext-Verify
(
PK,C

)
= 0. Otherwise, com-

pute μ̂i =
(
νi,CP1 ,CP2 ,CP , πμi

)
which consists of a partial decryption

νi = C
P1(i)
1 · CP2(i)

2 · CP (i)
3 as well as commitments CP1 ,CP2 ,CP to expo-

nents P1(i), P2(i), P (i) ∈ Zp and a proof πνi that these satisfy the equations

νi = C
P1(i)
1 · CP2(i)

2 · CP (i)
3 , Yi,1 = fP1(i)gP (i), Yi,2 = hP2(i)gP (i).

The commitments CP1 ,CP2 ,CP and the proof πνi are generated using the
CRS (fr,1,f r,2,fr,3). Then, return μi = (i, μ̂i).

Share-Verify
(
PK, V Ki, C, (i, μ̂i)

)
: parse C as in (2) and VKi as (Yi,1, Yi,2). If

μ̂i = ⊥ or μ̂i cannot be parsed as
(
νi,CP1 ,CP2 ,CP , πμi

)
, return 0. Other-

wise, return 1 if and only if πμi is valid.

Combine(PK,VK, C, {(i, μ̂i)}i∈S): for each index i ∈ S, parse the share μ̂i as(
νi,CP1 ,CP2 ,CP , πμi

)
and return ⊥ if Share-Verify

(
PK,C, (i, μ̂i)

)
= 0.

Otherwise, compute ν =
∏

i∈S ν
Δi,S(0)
i = Cx1

1 · Cx2
2 · Cx0

3 = Xθ1
1 · Xθ2

2 and
output M = C0/ν.

Eval(PK, SKh, C
(1), C(2)): parse SKh as {(χi, γi, δi)}3i=1. For each j ∈ {1, 2},

parse C(j) as

(SVK(j), C
(j)
0 , C

(j)
1 , C

(j)
2 , C

(j)
3 , Z(j), R(j), U (j),C(j)

z ,C(j)
r ,C(j)

u ,π
(j)
1 ,π

(j)
2 , σ(j))

and return ⊥ if either C(1) or C(2) is invalid. Otherwise,

1. Compute C0 =
∏2

j=1 C
(j)
0 , C1 =

∏2
j=1 C

(j)
1 , C2 =

∏2
j=1 C

(j)
2 and C3 =∏2

j=1 C
(j)
3 as well as Z =

∏2
j=1 Z

(j), R =
∏2

j=1 R
(j) and U =

∏2
j=1 U

(j).
2. Generate a new one-time signature key pair (SVK, SSK) ← G(λ). Using

SKh = {(χi, γi, δi)}3i=1, generate proof elements Cz,Cr,Cu,π1,π2 on
the vector (C1, C2, C3) using the simulator of the proof system in Section
3 with the one-time verification key SVK.

3. Return C = (SVK, C0, C1, C2, C3, Z,R, U,Cz,Cr,Cu,π1,π2, σ) where
σ = S(SSK, (C0, C1, C2, C3, Z,R, U,Cz,Cr,Cu,π1,π2)).

In the full version of the paper [28], we prove the KH-CCA security of the scheme
assuming that Σ is a strongly unforgeable one-time signature and that the DLIN
assumption holds in G.

In some applications, it may be desirable to add an extra randomization step
to the evaluation algorithm in order to make sure that derived ciphertexts will
be indistinguishable from freshly generated encryption (similarly to [33]). It is
straightforward to modify the scheme to obtain this property.

If the scheme is instantiated using Groth’s one-time signature [20], the ci-
phertext consists of 25 elements of G and two elements of Zp. It is interesting
to compare the above system with an instantiation of the same design princi-
ple using the best known Groth-Sahai-based unbounded simulation-sound proof
[9][Appendix A.2], which requires 65 group elements in this specific case. With
this proof system, we end up with 77 group elements per ciphertexts under the



530 B. Libert et al.

DLIN assumption (assuming that an element of Zp has the same length as the
representation of a group element). The above realization thus saves 50 group
elements and compresses ciphertexts to 35% of their original length.
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1 Introduction

(Key-policy) attribute-based encryption [SW05, GPSW06] is a public-key en-
cryption mechanism where every secret key skf is associated with some function
f : X → Y and an encryption of a message μ is labeled with a public at-
tribute vector x ∈ X . The encryption of μ can be decrypted using skf only if
f(x) = 0 ∈ Y. Intuitively, the security requirement is collusion resistance: a
coalition of users learns nothing about the plaintext message μ if none of their
individual keys are authorized to decrypt the ciphertext.

Attribute-based encryption (ABE) is a powerful generalization of identity-
based encryption [Sha84, BF03, Coc01] and fuzzy IBE [SW05, ABV+12] and is
a special case of functional encryption [BSW11]. It is used as a building-block in
applications that demand complex access control to encrypted data [PTMW06],
in designing protocols for verifiably outsourcing computations [PRV12], and for
single-use functional encryption [GKP+13b]. Here we focus on key-policy ABE
where the access policy is embedded in the secret key. The dual notion called
ciphertext-policy ABE can be realized from this using universal circuits, as ex-
plained in [GPSW06, GGH+13c].

The past few years have seen much progress in constructing secure and ef-
ficient ABE schemes from different assumptions and for different settings. The
first constructions [GPSW06, LOS+10, OT10, LW12, Wat12, Boy13, HW13] ap-
ply to predicates computable by Boolean formulas which are a subclass of log-
space computations. More recently, important progress has been made on con-
structions for the set of all polynomial-size circuits: Gorbunov, Vaikuntanathan,
and Wee [GVW13] gave a construction from the Learning With Errors (LWE)
problem and Garg, Gentry, Halevi, Sahai, and Waters [GGH+13c] gave a con-
struction using multilinear maps. In both constructions the policy functions are
represented as Boolean circuits composed of fan-in 2 gates and the secret key
size is proportional to the size of the circuit.

Our Results. We present two new key-policy ABE systems. Our first system,
which is the centerpiece of this paper, is an ABE based on the learning with errors
problem [Reg05] that supports functions f represented as arithmetic circuits with
large fan-in gates. It has secret keys whose size is proportional to depth of the
circuit for f , not its size. Secret keys in previous ABE constructions contained
an element (such as a matrix) for every gate or wire in the circuit. In our scheme
the secret key is a single matrix corresponding only to the final output wire
from the circuit. We prove selective security of the system and observe that by
a standard complexity leveraging argument (as in [BB11]) the system can be
made adaptively secure.

Theorem 1.1 (Informal). Let λ be the security parameter. Assuming subex-
ponential LWE, there is an ABE scheme for the class of functions with depth-d
circuits where the size of the secret key for a circuit C is poly(λ, d).

Our second ABE system, based on multilinear maps ([BS02],[GGH13a]), op-
timizes the ciphertext size rather than the secret key size. The construction here
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relies on a generalization of broadcast encryption [FN93, BGW05, BW13] and the
attribute-based encryption scheme of [GGH+13c]. Previously, ABE schemes with
short ciphertexts were known only for the class of Boolean formulas [ALdP11].

Theorem 1.2 (Informal). Let λ be the security parameter. Assuming that d-
level multilinear maps exist, there is an ABE scheme for the class of functions
with depth-d circuits where the size of the encryption of an attribute vector x is
|x|+ poly(λ, d).

Our ABE schemes result in a number of applications and have many desirable
features, which we describe next.

Applications to reusable garbled circuits. Over the years, garbled circuits and
variants have found many uses: in two party [Yao86] and multi-party secure pro-
tocols [BMR90], one-time programs [GKR08], verifiable computation [GGP10],
homomorphic computations [GHV10] and many others. Classical circuit garbling
schemes produced single-use garbled circuits which could only be used in con-
junction with one garbled input. Goldwasser et al. [GKP+13b] recently showed
the first fully reusable circuit garbling schemes and used them to construct token-
based program obfuscation schemes and k-time programs [GKP+13b].

Most known constructions of both single-use and reusable garbled circuits
proceed by garbling each gate to produce a garbled truth table, resulting in a
multiplicative size blowup of poly(λ). A fundamental question regarding garbling
schemes is: How small can the garbled circuit be?

There are three exceptions to the gate-by-gate garbling method that we are
aware of. The first is the “free XOR” optimization for single-use garbling schemes
introduced by Kolesnikov and Schneider [KS08] where one produces garbled ta-
bles only for the AND gates in the circuit C. This still results in a multiplicative
poly(λ) overhead but proportional to the number of AND gates (as opposed to
the total number of gates). Secondly, Lu and Ostrovsky [LO13] recently showed
a single-use garbling scheme for RAM programs, where the size of the gar-
bled program grows as poly(λ) times its running time. Finally, Goldwasser et
al. [GKP+13a] show how to (reusably) garble non-uniform Turing machines un-
der a non-standard and non-falsifiable assumption and incurring a multiplicative
poly(λ) overhead in the size of the non-uniformity of the machine. In short, all
known garbling schemes (even in the single-use setting) suffer from a multiplica-
tive overhead of poly(λ) in the circuit size or the running time.

Using our first ABE scheme (based on LWE) in conjunction with the tech-
niques of Goldwasser et al. [GKP+13b], we obtain the first reusable garbled
circuits whose size is |C| + poly(λ, d). For large and shallow circuits, such as
those that arise from database lookup, search and some machine learning appli-
cations, this gives significant bandwidth savings over previous methods (even in
the single use setting).

Theorem 1.3 (Informal). Assuming subexponential LWE, there is a reusable
circuit garbling scheme that garbles a depth-d circuit C into a circuit Ĉ such
that |Ĉ| = |C|+ poly(λ, d), and garbles an input x into an encoded input x̂ such
that |x̂| = |x| · poly(λ, d).
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We next ask if we can obtain short garbled inputs of size |x̂| = |x|+poly(λ, d),
analogous to what we achieved for the garbled circuit. In a beautiful recent work,
Applebaum, Ishai, Kushilevitz and Waters [AIKW13] showed constructions of
single-use garbled circuits with short garbled inputs of size |x̂| = |x| + poly(λ).
We remark that while their garbled inputs are short, their garbled circuits still
incur a multiplicative poly(λ) overhead.

Using our second ABE scheme (based on multilinear maps) in conjunction
with the techniques of Goldwasser et al. [GKP+13b], we obtain the first reusable
garbling scheme with garbled inputs of size |x|+ poly(λ, d).

Theorem 1.4 (Informal). Assuming subexponential LWE and the existence of
d-level multilinear maps, there is a reusable circuit garbling scheme that garbles
a depth-d circuit C into a circuit Ĉ such that |Ĉ| = |C| · poly(λ, d), and garbles
an input x into an encoded input x̂ such that |x̂| = |x|+ poly(λ, d).

A natural open question is to construct a scheme which produces both short
garbled circuits and short garbled inputs. We focus on describing the ABE
schemes in the rest of the paper and postpone the details of the garbling scheme
to the full version.

ABE for arithmetic circuits. For a prime q, our first ABE system (based on
LWE) directly handles arithmetic circuits with weighted addition and multipli-
cation gates over Zq, namely gates of the form

g+(x1, . . . , xk) = α1x1 + . . .+ αkxk and g×(x1, . . . , xk) = α · x1 · · ·xk

where the weights αi can be arbitrary elements in Zq. Previous ABE construc-
tions worked with Boolean circuits.

Addition gates g+ take arbitrary inputs x1, . . . , xk ∈ Zq. However, for mul-
tiplication gates g×, we require that the inputs are somewhat smaller than q,
namely in the range [−p, p] for some p < q. (In fact, our construction allows for
one of the inputs to g× to be arbitrarily large in Zq). Hence, while f : Z�

q → Zq

can be an arbitrary polynomial-size arithmetic circuit, decryption will succeed
only for attribute vectors x for which f(x) = 0 and the inputs to all multiplica-
tion gates in the circuit are in [−p, p]. We discuss the relation between p and q
at the end of the section.

We can in turn apply our arithmetic ABE construction to Boolean circuits
with large fan-in resulting in potentially large savings over constructions re-
stricted to fan-in two gates. An AND gate can be implemented as ∧(x1, . . . , xk) =
x1 · · ·xk and an OR gate as ∨(x1, . . . , xk) = 1−(1−x1) · · · (1−xk). In this setting,
the inputs to the gates g+ and g× are naturally small, namely in {0, 1}. Thus,
unbounded fan-in allows us to consider circuits with smaller size and depth, and
results in smaller overall parameters.

ABE with key delegation. Our first ABE system also supports key delegation.
That is, using the master secret key, user Alice can be given a secret key skf
for a function f that lets her decrypt whenever the attribute vector x satisfies
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f(x) = 0. In our system, for any function g, Alice can then issue a delegated
secret key skf∧g to Bob that lets Bob decrypt if and only if the attribute vector
x satisfies f(x) = g(x) = 0. Bob can further delegate to Charlie, and so on. The
size of the secret key increases quadratically with the number of delegations.

We note that Gorbunov et al. [GVW13] showed that their ABE system for
Boolean circuits supports a somewhat restricted form of delegation. Specifically,
they demonstrated that using a secret key skf for a function f , and a secret key
skg for a function g, it is possible to issue a secret key skf∧g for the function f∧g.
In this light, our work resolves the naturally arising open problem of providing
full delegation capabilities (i.e., issuing skf∧g using only skf ). We postpone a
detailed description of the key delegation capabilities to the full version.

Other Features. In the full version, we state several other extensions of our con-
structions, namely an Attribute-Based Fully Homomorphic Encryption scheme
as well as a method of outsourcing decryption in our ABE scheme.

1.1 Building an ABE for Arithmetic Circuits with Short Keys

Key-homomorphic public-key encryption. We obtain our ABE by constructing a
public-key encryption scheme that supports computations on public keys. Basic
public keys in our system are vectors x in Z�

q for some 
. Now, let x be a tuple in

Z�
q and let f : Z�

q → Zq be a function represented as a polynomial-size arithmetic
circuit. Key-homomorphism means that:

anyone can transform an encryption under key x into an encryption
under key f(x).

More precisely, suppose c is an encryption of message μ under public-key x ∈ Z�
q.

There is a public algorithm Evalct(f,x, c) −→ cf that outputs a ciphertext cf

that is an encryption of μ under the public-key f(x) ∈ Zq. In our constructions
Evalct is deterministic and its running time is proportional to the size of the
arithmetic circuit for f .

If we give user Alice the secret-key for the public-key 0 ∈ Zq then Alice can
use Evalct to decrypt c whenever f(x) = 0, as required for ABE. Unfortunately,
this ABE is completely insecure! This is because the secret key is not bound to
the function f : Alice could decrypt any ciphertext encrypted under x by simply
finding some function g such that g(x) = 0.

To construct a secure ABE we slightly extend the basic key-homomorphism
idea. A base encryption public-key is a tuple x ∈ Z�

q as before, however Evalct
produces ciphertexts encrypted under the public key (f(x), 〈f〉) where f(x) ∈ Zq

and 〈f〉 is an encoding of the circuit computing f . Transforming a ciphertext c
from the public key x to (f(x), 〈f〉) is done using algorithm Evalct(f,x, c) −→ cf

as before. To simplify the notation we write a public-key (y, 〈f〉) as simply (y, f).
The precise syntax and security requirements for key-homomorphic public-key
encryption are provided in Section 3.

To build an ABE we simply publish the parameters of the key-homomorphic
PKE system. A message μ is encrypted with attribute vector x = (x1, . . . , x�) ∈
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Z�
q that serves as the public key. Let c be the resulting ciphertext. Given an

arithmetic circuit f , the key-homomorphic property lets anyone transform c into
an encryption of μ under key (f(x), f). The point is that now the secret key for
the function f can simply be the decryption key for the public-key (0, f). This
key enables the decryption of c when f(x) = 0 as follows: the decryptor first uses
Evalct(f,x, c) −→ cf to transform the ciphertext to the public key (f(x), f). It
can then decrypt cf using the decryption key it was given whenever f(x) = 0.
We show that this results in a secure ABE.

A construction from learning with errors. Fix some n ∈ Z+, prime q, and m =
Θ(n log q). Let A, G and B1, . . . ,B� be matrices in Zn×m

q that will be part
of the system parameters. To encrypt a message μ under the public key x =
(x1, . . . , x�) ∈ Z�

q we use a variant of dual Regev encryption [Reg05, GPV08]
using the following matrix as the public key:(

A | x1G+B1 | · · · | x�G+B�

)
∈ Zn×(�+1)m

q (1)

We obtain a ciphertext cx. We note that this encryption algorithm is the same
as encryption in the hierarchical IBE system of [ABB10] and encryption in the
predicate encryption for inner-products of [AFV11].

We show that, remarkably, this system is key-homomorphic: given a function
f : Z�

q → Zq computed by a poly-size arithmetic circuit, anyone can transform
the ciphertext cx into a dual Regev encryption for the public-key matrix(

A | f(x) ·G+Bf

)
∈ Zn×2m

q

where the matrix Bf ∈ Zn×m
q serves as the encoding of the circuit for the

function f . This Bf is uniquely determined by f and B1, . . . ,B�. The work
needed to compute Bf is proportional to the size of the arithmetic circuit for f .

To illustrate the idea, assume that we have the ciphertext under the public
key (x, y): cx = (c0 | cx | cy). Here c0 = AT s + e, cx = (xG + B1)

T s + e1
and cy = (yG + B2)

T s + e2. To compute the ciphertext under the public key
(x + y, B+) one takes the sum of the ciphertexts cx and cy. The result is the
encryption under the matrix

(x + y)G+ (B1 +B2) ∈ Zn×m
q

where B+ = B1 + B2. One of the main contributions of this work is a novel
method of multiplying the public keys. Together with addition, described above,
this gives full key-homomorphism. To construct the ciphertext under the public
key (xy, B×), we first compute a small-norm matrix R ∈ Zm×m

q , s.t. GR =
−B1. With this in mind we compute

RT cy = RT ·
[
(yG+B2)

T s+ e2
]
≈ (−yB1 +B2R)T s, and

y · cx = y
[
(xG+B1)

T s+ e1
]
≈ (xyG+ yB1)

T s

Adding the two expressions above gives us

(xyG+B2R)T s+ noise
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which is a ciphertext under the public key (xy, B×) where B× = B2R. Note
that performing this operation requires that we know y. This is reason why
this method gives an ABE and not (private index) predicate encryption. In
Section 4.1 we show how to generalize this mechanism to arithmetic circuits
with arbitrary fan-in gates.

As explained above, this key-homomorphism gives us an ABE for arithmetic
circuits: the public parameters contain random matrices B1, . . . ,B� ∈ Zn×m

q and

encryption to an attribute vector x in Z�
q is done using dual Regev encryption

to the matrix (1). A decryption key skf for an arithmetic circuit f : Z�
q → Zq

is a decryption key for the public-key matrix (A | 0 ·G +Bf ) = (A|Bf ). This
key enables decryption whenever f(x) = 0. The key skf can be easily generated
using a short basis for the lattice Λ⊥

q (A) which serves as the master secret key.
We prove selective security from the learning with errors problem (LWE) by

using another homomorphic property of the system implemented in an algorithm
called Evalsim. Using Evalsim the simulator responds to the adversary’s private
key queries and then solves the given LWE challenge.

Parameters and performance. Applying algorithm Evalct(f,x, c) to a ciphertext
c increases the magnitude of the noise in the ciphertext by a factor that depends
on the depth of the circuit for f . A k-way addition gate (g+) increases the norm
of the noise by a factor of O(km). A k-way multiplication gate (g×) where all
(but one) of the inputs are in [−p, p] increases the norm of the noise by a factor
of O(pk−1m). Therefore, if the circuit for f has depth d, the noise in c grows in
the worst case by a factor of O((pk−1m)d). Note that the weights αi used in the
gates g+ and g× have no effect on the amount of noise added.

For decryption to work correctly the modulus q should be slightly larger than
the noise in the ciphertext. Hence, we need q on the order of Ω(B · (pk−1m)d)
where B is the maximum magnitude of the noise added to the ciphertext during
encryption. For security we rely on the hardness of the learning with errors
(LWE) problem, which requires that the ratio q/B is not too large. In particular,
the underlying problem is believed to be hard even when q/B is 2(n

ε) for some
fixed 0 < ε < 1/2. In our settings q/B = Ω

(
(pk−1m)d

)
. Then to support circuits

of depth t(λ) for some polynomial t(·) we choose n such that n ≥ t(λ)(1/ε) ·
(2 log2 n + k log p)1/ε, set q = 2(n

ε), m = Θ(n log q), and the LWE noise bound
to B = O(n). This ensures correctness of decryption and hardness of LWE since
we have Ω((pkm)t(λ)) < q ≤ 2(n

ε), as required. The ABE system of [GVW13]
uses similar parameters due to a similar growth in noise as a function of circuit
depth.

Secret key size. A decryption key in our system is a single 2m ×m low-norm
matrix, namely the trapdoor for the matrix (A|Bf ). Since m = Θ(n log q) and
log2 q grows linearly with the circuit depth d, the overall secret key size grows as
O(d2) with the depth. In previous ABE systems for circuits [GVW13, GGH+13c]
secret keys grew as O(d2s) where s is the number of boolean gates or wires in
the circuit.
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Other related work. Predicate encryption [BW07, KSW08] provides a stronger
privacy guarantee than ABE by additionally hiding the attribute vector x. Pred-
icate encryption systems for inner product functionalities can be built from bi-
linear maps [KSW08] and LWE [AFV11]. More recently, Garg et al. [GGH+13b]
constructed functional encryption (which implies predicate encryption) for all
polynomial-size functionalities using indistinguishability obfuscation.

The encryption algorithm in our system is similar to that in the hierarchical-
IBE of Agrawal, Boneh, and Boyen [ABB10]. We show that this system is key-
homomorphic for polynomial-size arithmetic circuits which gives us an ABE for
such circuits. The first hint of the key homomorphic properties of the [ABB10]
system was presented by Agrawal, Freeman, and Vaikuntanathan [AFV11] who
showed that the system is key-homomorphic with respect to low-weight lin-
ear transformations and used this fact to construct a (private index) predicate
encryption system for inner-products. To handle high-weight linear transforma-
tions [AFV11] used bit decomposition to represent the large weights as bits. This
expands the ciphertext by a factor of log2 q, but adds more functionality to the
system. Our ABE, when presented with a circuit containing only linear gates
(i.e. only g+ gates), also provides a predicate encryption system for inner prod-
ucts in the same security model as [AFV11], but can handle high-weight linear
transformations directly, without bit decomposition, thereby obtaining shorter
ciphertexts and public-keys.

A completely different approach to building circuit ABE was presented by
Garg, Gentry, Sahai, and Waters [GGSW13] who showed that a general primitive
they named witness encryption implies circuit ABE when combined with witness
indistinguishable proofs.

2 Preliminaries

2.1 Attribute-Based Encryption

An attribute-based encryption (ABE) scheme for a class of functions Fλ =
{f : Xλ → Yλ} is a quadruple Π = (Setup,Keygen,Enc,Dec) of probabilistic
polynomial-time algorithms. Setup takes a unary representation of the security
parameter λ and outputs public parameters mpk and a master secret key msk;
Keygen(msk, f ∈ Fλ) output a decryption key skf ; Enc(mpk, x ∈ Xλ, μ) out-
puts a ciphertext c, the encryption of message μ labeled with attribute vector
x; Dec(skf , c) outputs a message μ or the special symbol ⊥. (When clear from
the context, we drop the subscript λ from Xλ, Yλ and Fλ.)

Correctness. We require that for every circuit f ∈ F , attribute vector x ∈ X
where f(x) = 0, and message μ, it holds that Dec(skf , c) = μ with an overwhelm-
ing probability over the choice of (mpk,msk) ← Setup(λ), c ← Enc(mpk, x, μ),
and skf ← Keygen(msk, f).

Security. We refer the reader to the full version of this paper or [GPSW06] for
the definition of selective and full security of the ABE scheme.
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2.2 Background on Lattices

Lattices. Let q, n,m be positive integers. For a matrix A ∈ Zn×m
q we let Λ⊥

q (A)
denote the lattice {x ∈ Zm : Ax = 0 in Zq}. More generally, for u ∈ Zn

q we let
Λu

q (A) denote the coset {x ∈ Zm : Ax = u in Zq}.
We note the following elementary fact: if the columns of TA ∈ Zm×m are a

basis of the lattice Λ⊥
q (A), then they are also a basis for the lattice Λ⊥

q (xA) for
any nonzero x ∈ Zq.

Learning with errors (LWE) [Reg05]. Fix integers n,m, a prime integer q and a
noise distribution χ over Z. The (n,m, q, χ)-LWE problem is to distinguish the
following two distributions:

(A, ATs+ e) and (A,u)

where A ← Zn×m
q , s ← Zn

q , e ← χm, u ← Zm
q are independently sampled.

Throughout the paper we always set m = Θ(n log q) and simply refer to the
(n, q, χ)-LWE problem.

We say that a noise distribution χ is B-bounded if its support is in [−B,B].
For any fixed d > 0 and sufficiently large q, Regev [Reg05] (through a quantum
reduction) and Peikert [Pei09] (through a classical reduction) show that taking χ
as a certain q/nd-bounded distribution, the (n, q, χ)-LWE problem is as hard as
approximating the worst-case GapSVP to nO(d) factors, which is believed to be
intractable. More generally, let χmax < q be the bound on the noise distribution.
The difficulty of the LWE problem is measured by the ratio q/χmax. This ratio is
always bigger than 1 and the smaller it is the harder the problem. The problem
appears to remain hard even when q/χmax < 2nε

for some fixed ε ∈ (0, 1/2).

Matrix norms. For a vector u we let ‖u‖ denote its 
2 norm. For a matrix
R ∈ Zk×m, let R̃ be the result of applying Gram-Schmidt (GS) orthogonalization
to the columns of R. We define three matrix norms:

– ‖R‖ denotes the 
2 length of the longest column of R.
– ‖R‖GS = ‖R̃‖ where R̃ is the GS orthogonalization of R.
– ‖R‖2 is the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

Note that ‖R‖GS ≤ ‖R‖ ≤ ‖R‖2 ≤
√
k‖R‖ and that ‖R · S‖2 ≤ ‖R‖2 · ‖S‖2.

Trapdoor generators. The following lemma states properties of algorithms for
generating short basis of lattices.

Lemma 2.1. Let n,m, q > 0 be integers with q prime. There are polynomial
time algorithms with the properties below:

– TrapGen(1n, 1m, q) −→ (A,TA) ([Ajt99, AP09, MP12]): a randomized algo-
rithm that, when m = Θ(n log q), outputs a full-rank matrix A ∈ Zn×m

q and

basis TA ∈ Zm×m for Λ⊥
q (A) such that A is negl(n)-close to uniform and

‖T‖GS = O(
√
n log q), with all but negligible probability in n.
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– ExtendRight(A,TA,B) −→ T(A|B) ([CHKP10]): a deterministic algorithm

that given full-rank matrices A,B ∈ Zn×m
q and a basis TA of Λ⊥

q (A) outputs

a basis T(A|B) of Λ⊥
q (A|B) such that ‖TA‖GS = ‖T(A|B)‖GS.

– ExtendLeft(A,G,TG,S) −→ TH where H = (A | G+AS) ([ABB10]):
a deterministic algorithm that given full-rank matrices A,G ∈ Zn×m

q and

a basis TG of Λ⊥
q (G) outputs a basis TH of Λ⊥

q (H) such that ‖TH‖GS ≤
‖TG‖GS · (1 + ‖S‖2).

– BD(A) −→ R where m = n�log q�: a deterministic algorithm that takes in
a matrix A ∈ Zn×m

q and outputs a matrix R ∈ Zm×m
q , where each element

a ∈ Zq that belongs to the matrix A gets transformed into a column vector

r ∈ Z
�log q�
q , r = [a0, ..., a�log q�−1]

T . Here ai is the i-th bit of the binary
decomposition of a ordered from LSB to MSB. For any matrix A ∈ Zn×m

q ,

matrix R = BD(A) has the norm ‖R‖2 ≤ m and ‖RT ‖2 ≤ m.
– For m = n�log q� there is a fixed full-rank matrix G ∈ Zn×m

q s.t. the lattice

Λ⊥
q (G) has a publicly known basis TG ∈ Zm×m with ‖TG‖GS ≤

√
5. The

matrix G is such that for any matrix A ∈ Zn×m
q , G · BD(A) = A.

To simplify the notation we will always assume that the matrix R from part 4
and matrix G from part 5 of Lemma 2.1 has the same width m as the matrix
A output by algorithm TrapGen from part 1 of the lemma. We do so without
loss of generality since R (and G) can always be extended to the size of A by
adding zero columns on the right of R (and G).

Discrete Gaussians. Regev [Reg05] defined a natural distribution on Λu
q (A)

called a discrete Gaussian parameterized by a scalar σ > 0. We use Dσ(Λ
u
q (A))

to denote this distribution. For a random matrix A ∈ Zn×m
q and σ = Ω̃(

√
n), a

vector x sampled from Dσ(Λ
u
q (A)) has 
2 norm less than σ

√
m with probability

at least 1− negl(m).

For a matrix U = (u1| · · · |uk) ∈ Zn×k
q we let Dσ(Λ

U
q (A)) be a distribution on

matrices in Zm×k where the i-th column is sampled from Dσ(Λ
ui
q (A)) indepen-

dently for i = 1, . . . , k. Clearly if R is sampled from Dσ(Λ
U
q (A)) then AR = U

in Zq.

Solving AX = U. We review algorithms for finding a low-norm matrix X ∈
Zm×k such that AX = U.

Lemma 2.2. Let A ∈ Zn×m
q and TA ∈ Zm×m be a basis for Λ⊥

q (A). Let U ∈
Zn×k

q . There are polynomial time algorithms that output X ∈ Zm×k satisfying
AX = U with the properties below:

– SampleD(A,TA,U, σ) −→ X ([GPV08]): a randomized algorithm that, when
σ = ‖TA‖GS ·ω(

√
logm), outputs a random sample X from a distribution that

is statistically close to Dσ(Λ
U
q (A)).

– RandBasis(A,TA, σ) −→ T′
A ([CHKP10]): a randomized algorithm that,

when σ = ‖TA‖GS ·ω(
√
logm), outputs a basis T′

A of Λ⊥
q (A) sampled from a

distribution that is statistically close to (Dσ(Λ
⊥
q (A)))m. Note that ‖T′

A‖GS <
σ
√
m with all but negligible probability.
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3 Fully Key-Homomorphic PKE (FKHE)

Our new ABE constructions are a direct application of fully key-homomorphic
public-key encryption (FKHE), a notion that we introduce. Such systems are
public-key encryption schemes that are homomorphic with respect to the public
encryption key. We begin by precisely defining FKHE and then show that a
key-policy ABE with short keys arises naturally from such a system.

Let {Xλ}λ∈N and {Yλ}λ∈N be sequences of finite sets. Let {Fλ}λ∈N be a
sequence of sets of functions, namely Fλ = {f : X �

λ → Yλ} for some 
 > 0.
Public keys in an FKHE scheme are pairs (x, f) ∈ Yλ × Fλ. We call x the
“value” and f the associated function. All such pairs are valid public keys. We
also allow tuples x ∈ X �

λ to function as public keys. To simplify the notation we
often drop the subscript λ and simply refer to sets X , Y and F .

In our constructions we set X = Zq for some q and let F be the set of 
-variate
functions on Zq computable by polynomial size arithmetic circuits.

Now, an FKHE scheme for the family of functions F consists of five PPT
algorithms:

– SetupFKHE(1
λ)→ (mpkFKHE,mskFKHE) : outputs a master secret key mskFKHE

and public parameters mpkFKHE.
– KeyGenFKHE

(
mskFKHE, (y, f)

)
→ sky,f : outputs a decryption key for the

public key (y, f) ∈ Y × F .
– EFKHE

(
mpkFKHE, x ∈ X �, μ

)
−→ cx : encrypts message μ under the public

key x.
– Eval : a deterministic algorithm that implements key-homomorphism. Let c

be an encryption of message μ under public key x ∈ X �. For a function
f : X � → Y ∈ F the algorithm does:

Eval
(
f, x, c

)
−→ cf

where if y = f(x1, . . . , x�) then cf is an encryption of message μ under
public-key (y, f).

– DFKHE(sky,f , c) : decrypts a ciphertext c with key sky,f . If c is an encryption
of μ under public key (x, g) then decryption succeeds only when x = y and
f and g are identical arithmetic circuits.

Algorithm Eval captures the key-homomorphic property of the system: ciphertext
c encrypted with key x = (x1, . . . , x�) is transformed to a ciphertext cf encrypted
under key

(
f(x1, . . . , x�), f

)
.

Correctness. The key-homomorphic property is stated formally in the following
requirement: For all (mpk

FKHE
,mskFKHE) output by Setup, all messages μ, all

f ∈ F , and x = (x1, . . . , x�) ∈ X �:

If c← EFKHE

(
mpkFKHE, x ∈ X �, μ

)
, y = f(x1, . . . , x�),

cf = Eval
(
f, x, c

)
, sk← KeyGenFKHE(mskFKHE, (y, f))

Then DFKHE(sk, cf ) = μ.
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An ABE from a FKHE. A FKHE for a family of functions F = {f : X � → Y}
immediately gives a key-policy ABE. Attribute vectors for the ABE are 
-tuples
over X and the supported key-policies are functions in F . The ABE system
works as follows:

– Setup(1λ, 
) : Run SetupFKHE(1
λ) to get public parameters mpk and master

secret msk. These function as the ABE public parameters and master secret.
– Keygen(msk, f) : Output skf ← KeyGenFKHE

(
mskFKHE, (0, f)

)
.

Jumping ahead, we remark that in our FKHE instantiation (in Section 4),
the number of bits needed to encode the function f in skf depends only on
the depth of the circuit computing f , not its size. Therefore, the size of skf
depends only on the depth complexity of f .

– Enc(mpk, x ∈ X �, μ) : output (x, c) where c← EFKHE(mpkFKHE, x, μ
)
.

– Dec
(
skf , (x, c)

)
: if f(x) = 0 set cf = Eval

(
f, x, c

)
and output the de-

crypted answer DFKHE(skf , cf ).
Note that cf is the encryption of the plaintext under the public key (f(x), f).
Since skf is the decryption key for the public key (0, f), decryption will suc-
ceed whenever f(x) = 0 as required.

The security of FKHE systems. Security for a fully key-homomorphic encryption
system is defined so as to make the ABE system above secure. More precisely,
we define security as follows.

Definition 3.1 (Selectively-secure FKHE). A fully key homomorphic en-
cryption scheme Π = (SetupFKHE,KeyGenFKHE,EFKHE,Eval) for a class of func-

tions Fλ = {f : X �(λ)
λ → Yλ} is selectively secure if for all p.p.t. adversaries A

where A = (A1,A2,A3), there is a negligible function ν(λ) such that

AdvFKHE

Π,A(λ)
def
=
∣∣∣Pr[EXP(0)

FKHE,Π,A(λ) = 1
]
− Pr
[
EXP(1)

FKHE,Π,A(λ) = 1
]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment EXP(b)
FKHE,Π,A(λ) is defined as:

1.
(
x∗ ∈ X �(λ)

λ , state1
)
← A1(λ)

2. (mpkFKHE,mskFKHE)← SetupFKHE(λ)

3. (μ0, μ1, state2)← AKGKH(mskFKHE,x∗,·,·)
2 (mpkFKHE, state1)

4. c∗ ← EFKHE(mpkFKHE, x∗, μb)

5. b′ ← AKGKH(mskFKHE,x∗,·,·)
3 (c∗, state2) // A outputs a guess b′ for b

6. output b′ ∈ {0, 1}

where KGKH(mskFKHE, x
∗, y, f) is an oracle that on input f ∈ F and y ∈ Yλ, re-

turns⊥ whenever f(x∗) = y, and otherwise returnsKeyGenFKHE

(
mskFKHE, (y, f)

)
.

With Definition 3.1 the following theorem is now immediate.

Theorem 3.2. The ABE system above is selectively secure provided the under-
lying FKHE is selectively secure.
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4 An FKHE for Arithmetic Circuits from LWE

We now turn to building an FKHE for arithmetic circuits from the learning
with errors (LWE) problem. Our construction follows the key-homomorphism
paradigm outlined in the introduction.

For integers n and q = q(n) let m = Θ(n log q). Let G ∈ Zn×m
q be the fixed

matrix from Lemma 2.1 (part 5). For x ∈ Zq, B ∈ Zn×m
q , s ∈ Zn

q , and δ > 0
define the set

Es,δ(x,B) =
{
(xG+B)Ts+ e ∈ Zm

q where ‖e‖ < δ
}

For now we will assume the existence of three efficient deterministic algo-
rithms Evalpk,Evalct,Evalsim that implement the key-homomorphic features of
the scheme and are at the heart of the construction. We present them in the
next section. These three algorithms must satisfy the following properties with
respect to some family of functions F = {f : (Zq)

� → Zq} and a function
αF : Z→ Z.

– Evalpk( f ∈ F , %B ∈ (Zn×m
q )� ) −→ Bf ∈ Zn×m

q .

– Evalct( f ∈ F ,
(
(xi,Bi, ci)

)�
i=1

) −→ cf ∈ Zm
q . Here xi ∈ Zq, Bi ∈

Zn×m
q and ci ∈ Es,δ(xi,Bi) for some s ∈ Zn

q and δ > 0. Note that the same
s is used for all ci. The output cf must satisfy

cf ∈ Es,Δ(f(x),Bf ) where Bf = Evalpk(f, (B1, . . . ,B�))

and x = (x1, . . . , x�). We further require that Δ < δ ·αF(n) for some function
αF(n) that measures the increase in the noise magnitude in cf compared to
the input ciphertexts.
This algorithm captures the key-homomorphic property: it translates cipher-
texts encrypted under public-keys {xi}�i=1 into a ciphertext cf encrypted
under public-key (f(x), f).

– Evalsim( f ∈ F ,
(
(x∗i ,Si)

)�
i=1

, A) −→ Sf ∈ Zm×m
q . Here x∗i ∈ Zq and

Si ∈ Zm×m
q . With x∗ = (x∗1, . . . , x

∗
n), the output Sf satisfies

ASf−f(x∗)G=Bf where Bf =Evalpk
(
f, (AS1−x∗1G, . . . ,AS�−x∗�G)

)
.

We further require that for all f ∈ F , if S1, . . . ,S� are random matrices in
{±1}m×m then ‖Sf‖2 < αF(n) with all but negligible probability.

Definition 4.1. The deterministic algorithms (Evalpk,Evalct,Evalsim) are αF-
FKHE enabling for some family of functions F = {f : (Zq)

� → Zq} if there are
functions q = q(n) and αF = αF(n) for which the properties above are satisfied.

We want αF-FKHE enabling algorithms for a large function family F and
the smallest possible αF . In the next section we build these algorithms for
polynomial-size arithmetic circuits. The function αF(n) will depend on the depth
of circuits in the family.
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The FKHE system. Given FKHE-enabling algorithms (Evalpk,Evalct,Evalsim)
for a family of functions F = {f : (Zq)

� → Zq} we build an FKHE for the same
family of functions F . We prove selective security based on the learning with
errors problem.

– Parameters : Choose n and q = q(n) as needed for (Evalpk,Evalct,Evalsim)
to be αF -FKHE enabling for the function family F . In addition, let χ be a
χmax-bounded noise distribution for which the (n, q, χ)-LWE problem is hard
as discussed in Appendix 2.2. As usual, we set m = Θ(n log q).

Set σ = ω(αF ·
√
logm). We instantiate these parameters concretely in the

next section.
For correctness of the scheme we require that α2

F · m < 1
12 · (q/χmax) and

αF >
√
n logm .

– SetupFKHE(1
λ) → (mpkFKHE,mskFKHE) : Run algorithm TrapGen(1n, 1m, q)

from Lemma 2.1 (part 1) to generate (A,TA) where A is a uniform full-
rank matrix in Zn×m

q .
Choose random matrices D,B1, . . . ,B� ∈ Zn×m

q and output a master secret
key mskFKHE and public parameters mpkFKHE:

mpkFKHE = (A,D,B1, . . . ,B�) ; mskFKHE = (TA)

– KeyGenFKHE

(
mskFKHE, (y, f)

)
→ sky,f : Let Bf = Evalpk(f, (B1, . . . ,B�)).

Output sky,f := Rf where Rf is a low-norm matrix in Z2m×m sampled from
the discrete Gaussian distribution Dσ(Λ

D
q (A|yG+Bf )) so that (A|yG +

Bf ) ·Rf = D.
To construct Rf build the basis TF for F = (A|yG + Bf ) ∈ Zn×2m

q as
TF ← ExtendRight(A,TA, yG+Bf ) from Lemma 2.1 (part 2).
Then run Rf ← SampleD( F, TF, D, σ). Here σ is sufficiently large for
algorithm SampleD (Lemma 2.2 part 2) since σ = ‖TF‖GS ·ω(

√
logm). where

‖TF‖GS = ‖TA‖GS = O(
√
n log q).

Note that the secret key sky,f is always in Z2m×m independent of the com-
plexity of the function f . We assume sky,f also implicitly includes mpkFKHE.

– EFKHE

(
mpkFKHE, x ∈ X �, μ

)
−→ cx : Choose a random n dimensional

vector s ← Zn
q and error vectors e0, e1 ← χm. Choose 
 uniformly random

matrices Si ← {±1}m×m for i ∈ [
].

Set H ∈ Z
n×(�+1)m
q and e ∈ Z

(�+1)m
q as

H = (A | x1G+B1 | · · · | x�G+B�) ∈ Zn×(�+1)m
q

e = (Im|S1| . . . |S�)
T · e0 ∈ Z(�+1)m

q

Let cx = (HT s+ e, DT s+ e1 + �q/2�μ) ∈ Z
(�+2)m
q . Output the ciphertext

cx.
– DFKHE(sky,f , c) : Let c be the encryption of μ under public key (x, g). If x = y

or f and g are not identical arithmetic circuits, output ⊥. Otherwise, let

c = (cin, c1, . . . , c�, cout) ∈ Z
(�+2)m
q .
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Set cf = Evalct
(
f, {(xi,Bi, ci)}�i=1

)
∈ Zm

q .

Let c′f = (cin|cf ) ∈ Z2m
q and output Round(cout −RT

f c
′
f ) ∈ {0, 1}m.

Correctness. The correctness of the scheme follows from our choice of parameters
and, in particular, from the requirement α2

F ·m < 1
12 · (q/χmax). Specifically, to

show correctness, first note that when f(x) = y we know by the requirement on
Evalct that cf is in Es,Δ(y,Bf ) so that cf = yG+BT

f s + e with ‖e‖ < Δ. We
show in the full version of this paper that in this case the secret key Rf correctly
decrypts in algorithm DFKHE.

Security. Next we prove that our FKHE is selectively secure for the family of
functions F for which algorithms (Evalpk,Evalct,Evalsim) are FKHE-enabling.

Theorem 4.2. Given the three algorithms (Evalpk,Evalct,Evalsim) for the family
of functions F , the FKHE system above is selectively secure with respect to F ,
assuming the (n, q, χ)-LWE assumption holds where n, q, χ are the parameters
for the FKHE.

We provide the complete proof in the full version of the paper. Here we sketch
the main idea which hinges on algorithms (Evalpk,Evalct,Evalsim) and also em-
ploys ideas from [CHKP10, ABB10]. We build an LWE algorithm B that uses a
selective FKHE attacker A to solve LWE. B is given an LWE challenge matrix
(A|D) ∈ Zn×2m

q and two vectors cin, cout ∈ Zm
q that are either random or their

concatenation equals (A|D)Ts + e for some small noise vector e.
A starts by committing to the target attribute vector x = (x∗1, . . . , x

∗
� ) ∈ Z�

q. In
response B constructs the FKHE public parameters by choosing randommatrices
S∗1, . . . ,S

∗
� in {±1}m×m and setting Bi = AS∗i − x∗iG. It gives A the public

parameters mpk
FKHE

= (A,D,B1, . . . ,B�). A standard argument shows that
each of AS∗i is uniformly distributed in Zn×m

q so that all Bi are uniform as
required for the public parameters.

Now, consider a private key query from A for a function f ∈ F and attribute
y ∈ Zq. Only functions f and attributes y for which y∗ = f(x∗1, . . . , x

∗
� ) = y are

allowed. Let Bf = Evalpk
(
f, (B1, . . . ,B�)

)
. Then B needs to produce a matrix

Rf in Z2m×m satisfying (A|Bf ) ·Rf = D. To do so B needs a short basis for
the lattice Λ⊥

q (F) where F = (A|Bf ). In the real key generation algorithm this

short basis is derived from a short basis for Λ⊥
q (A) using algorithm ExtendRight.

Unfortunately, B has no short basis for Λ⊥
q (A).

Instead, as explained below, B builds a low-norm matrix Sf ∈ Zm×m
q such

that Bf = ASf − y∗G. Then F = (A | ASf − y∗G + yG). Because y∗ =
y, algorithm B can construct the short basis TF for Λ⊥

q (F) using algorithm
ExtendLeft((y − y∗)G,TG,A,Sf ) from Lemma 2.1 part 3. Using TF algorithm
B can now generate the required key as Rf ← SampleD(F,TF,D, σ).

The remaining question is how does algorithm B build a low-norm matrix
Sf ∈ Zm×m

q such that Bf = ASf − y∗G. To do so B uses Evalsim giving it

the secret matrices S∗i . More precisely, B runs Evalsim(f,
(
(x∗i ,S

∗
i )
)�
i=1

, A) and
obtains the required Sf . This lets B answer all private key queries.
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To complete the proof it is not difficult to show that B can build a challenge
ciphertext c∗ for the attribute vector x ∈ Z�

q that lets it solve the given LWE
instance using adversary A. An important point is that B cannot construct a
key that decrypts c∗. The reason is that it cannot build a secret key sky,f for
functions where f(x∗) = y and these are the only keys that will decrypt c∗.

Remark 4.3. We note that the matrix Rf in KeyGenFKHE can alternatively be
generated using a sampling method from [MP12]. To do so we choose FKHE
public parameters as we do in the security proof by choosing random matrices
Si, . . . ,S� in {±1}m×m and setting Bi = ASi. We then define the matrix Bf

as Bf := ASf where Sf = Evalsim(f, ((0,Si))
�
i=1, A). We could then build the

secret key matrix sky,f = Rf satisfying (A|yG + Bf ) · Rf = D directly from
the bit decomposition of D/y. Adding suitable low-norm noise to the result will
ensure that sky,f is distributed as in the simulation in the security proof. Note
that this approach can only be used to build secret keys sky,f when y = 0 where
as the method in KeyGenFKHE works for all y.

4.1 Evaluation Algorithms for Arithmetic Circuits

In this section we build the FKHE-enabling algorithms (Evalpk,Evalct,Evalsim)
that are at the heart of the FKHE construction in Section 4. We do so for the
family of polynomial depth, unbounded fan-in arithmetic circuits.

4.2 Evaluation Algorithms for Gates

We first describe Eval algorithms for single gates, i.e. when G is the set of
functions that each takes k inputs and computes either weighted addition or
multiplication:

G =
⋃

α,α1,...,αk∈Zq

⎧⎨⎩g | g : Zk
q → Zq,

g(x1, . . . , xk) = α1x1 + α2x2 + . . .+ αkxk

or
g(x1, . . . , xk) = α · x1 · x2 · . . . · xk

⎫⎬⎭
(2)

We assume that all the inputs to a multiplication gate (except possibly one
input) are integers in the interval [−p, p] for some bound p < q.

We present all three deterministic Eval algorithms at once:

Evalpk(g ∈ G, %B ∈ (Zn×m
q )k ) −→ Bg ∈ Zn×m

q

Evalct(g ∈ G,
(
(xi,Bi, ci)

)k
i=1

) −→ cg ∈ Zm
q

Evalsim(g ∈ G,
(
(x∗i ,Si)

)k
i=1

, A) −→ Sg ∈ Zm×m
q

– For a weighted addition gate g(x1, . . . , xk) = α1x1 + · · ·+ αkxk do:
For i ∈ [k] generate matrix Ri ∈ Zm×m

q such that

GRi = αiG : Ri = BD(αiG) (as in Lemma 2.1 part 4). (3)
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Output the following matrices and the ciphertext:

Bg =

k∑
i=1

BiRi, Sg =

k∑
i=1

SiRi, cg =

k∑
i=1

RT
i ci (4)

– For a weighted multiplication gate g(x1, . . . , xk) = αx1 · . . . · xk do:
For i ∈ [k] generate matrices Ri ∈ Zm×m

q such that

GR1 = αG : R1 = BD(αG) (5)

GRi = −Bi−1Ri−1 : Ri = BD(−Bi−1Ri−1) for all i ∈ {2, 3, . . . , k}
(6)

Output the following matrices and the ciphertext:

Bg = BkRk, Sg =
k∑

j=1

⎛⎝ k∏
i=j+1

x∗i

⎞⎠SjRj, cg =
k∑

j=1

⎛⎝ k∏
i=j+1

xi

⎞⎠RT
j cj

(7)

For example, for k = 2, Bg = B2R2, Sg = x∗2S1R1 + S2R2, cg =
x∗2R

T
1 c1 +RT

2 c2.

For multiplication gates, the reason we need an upper bound p on all but one of
the inputs xi is that these xi values are used in (7) and we need the norm of Sg

and the norm of the noise in the ciphertext cg to be bounded from above. The
next two lemmas show that these algorithms satisfy the required properties and
are proved in the full version of the paper.

Lemma 4.4. Let βg(m) = km. For a weighted addition gate g(x) = α1x1 +
. . .+ αkxk we have:

1. If ci ∈ Es,δ(xi,Bi) for some s ∈ Zn
q and δ > 0, then cg ∈ Es,Δ(g(x),Bg) where

Δ ≤ βg(m) · δ and Bg = Evalpk(g, (B1, . . . ,Bk)).
2. The output Sg satisfies ASg − g(x∗)G = Bg where ‖Sg‖2 ≤ βg(m) ·

maxi∈[k] ‖Si‖2
and Bg = Evalpk

(
g, (AS1 − x∗1G, . . . ,ASk − x∗kG)

)
.

Lemma 4.5. For a multiplication gate g(x) = α
∏k

i=1 xi we have the same

bounds on cg and Sg as in Lemma 4.4 with βg(m) = pk−1
p−1 m.

4.3 Evaluation Algorithms for Circuits

We will now show how using the algorithms for single gates, that compute
weighted additions and multiplications as described above, to build algorithms
for the depth d, unbounded fan-in circuits.

Let {Cλ}λ∈N be a family of polynomial-size arithmetic circuits. For each C ∈ Cλ
we index the wires of C following the notation in [GVW13]. The input wires are
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indexed 1 to 
, the internal wires have indices 
 + 1, 
 + 2, . . . , |C| − 1 and the
output wire has index |C|, which also denotes the size of the circuit. Every gate
gw : Zkw

q → Zq (in G as per 2) is indexed as a tuple (w1, . . . , wkw , w) where
kw is the fan-in of the gate. We assume that all (but possibly one) of the input
values to the multiplication gates are bounded by p which is smaller than scheme
modulus q. The “fan-out wires” in the circuit are given a single number. That
is, if the outgoing wire of a gate feeds into the input of multiple gates, then all
these wires are indexed the same. For some λ ∈ N, define the family of functions
F = {f : f can be computed by some C ∈ Cλ}.

We construct the required matrices inductively input to output gate-by-gate.
Consider an arbitrary gate of fan-in kw (we will omit the subscript w where it is
clear from the context): (w1, . . . , wk, w) that computes the function gw : Zk

q →
Zq. Each wire wi caries a value xwi . Suppose we already computedBw1 , . . . ,Bwk

,
Sw1 , . . . ,Swk

and cw1 , . . . , cwk
, note that if w1, . . . , wk are all in {1, 2, . . . , 
} then

these matrices and vectors are the inputs of the corresponding Eval functions.
Using Eval algorithms described in Section 4.2, compute

Bw = Evalpk(gw, (Bw1 , . . . , Bwk
))

cw = Evalct(gw,
(
(xwi ,Bwi , cwi)

)k
i=1

)

Sw = Evalsim(gw,
(
(x∗wi

,Swi)
)k
i=1

, A)

Output Bf := B|C|, cf := c|C|, Sf := S|C|. Correctness follows inductively for
the appropriate choice of parameters (see the full version and paragraph 1.1).

5 ABE with Short Secret Keys for Arithmetic Circuits
from LWE

The FKHE for a family of functions F = {f : (Zq)
� → Zq} constructed in

Section 4 immediately gives a key-policy ABE as discussed in Section 3. In
this section we give a self-contained construction of the ABE system. Given
FKHE-enabling algorithms (Evalpk,Evalct,Evalsim) for a family of functions F
from Section 4.1, the ABE system works as follows:

– Setup(1λ, 
): Choose n, q, χ,m and σ as in “Parameters” in Section 4.
Run algorithm TrapGen(1n, 1m, q) (Lemma 2.1, part 1) to generate (A,TA).
Choose random matrices D,B1, . . . ,B� ∈ Zn×m

q and output the keys:

mpk = (A,D,B1, . . . ,B�) ; msk = (TA,D,B1, . . . ,B�)

– Keygen(msk, f): Let Bf = Evalpk(f, (B1, . . . ,B�)).
Output skf := Rf where Rf is a low-norm matrix in Z2m×m sampled from
the discrete Gaussian distribution Dσ(Λ

D
q (A|Bf )) so that (A|Bf ) ·Rf = D.

To construct Rf build the basis TF for F = (A|Bf ) ∈ Zn×2m
q as TF ←

ExtendRight(A,TA,B) from Lemma 2.1 (part 2).
Then run Rf ← SampleD( F, TF, D, σ).
Note that the secret key skf is always in Z2m×m independent of the com-
plexity of the function f .
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– Enc(mpk, x ∈ Z�
q, μ ∈ {0, 1}m): Choose a random vector s← Zn

q and error
vectors e0, e1 ← χm. Choose 
 uniformly random matrices Si ← {±1}m×m

for i ∈ [
]. Set

H = (A | x1G+B1 | · · · | x�G+B�) ∈ Zn×(�+1)m
q

e = (Im|S1| . . . |S�)
T · e0 ∈ Z(�+1)m

q

Output c = (HT s+ e, DT s+ e1 + �q/2�μ) ∈ Z
(�+2)m
q .

– Dec
(
skf , (x, c)

)
: If f(x) = 0 output ⊥. Otherwise, let the ciphertext c =

(cin, c1, . . . , c�, cout) ∈ Z
(�+2)m
q , set cf = Evalct

(
f, {(xi,Bi, ci)}�i=1

)
∈

Zm
q .

Let c′f = (cin|cf ) ∈ Z2m
q and output Round(cout −RT

f c
′
f ) ∈ {0, 1}m.

The proof of the following theorem is analogous to that of the FKHE system
which is sketched in Section 4 and given in details in the full version of the paper.

Theorem 5.1. For FKHE-enabling algorithms (Evalpk,Evalct,Evalsim) for a fam-
ily of functions F the ABE system above is correct and selectively-secure.

6 ABE with Short Ciphertexts from Multi-linear Maps

We assume familiarity with multi-linear maps [BS02, GGH13a] and refer the
reader to the full version for definitions.

Intuition. We assume that the circuits consist of and and or gates. To handle
general circuits (with negations), we can apply De Morgan’s rule to transform
it into a monotone circuit, doubling the number of input attributes (similar to
[GGH+13c]).

The inspiration of our construction comes from the beautiful work of Apple-
baum, Ishai, Kushilevitz and Waters [AIKW13] who show a way to compress
the garbled input in a (single use) garbling scheme all the way down to size
|x|+ poly(λ). This is useful to us in the context of ABE schemes due to a simple
connection between ABE and reusable garbled circuits with authenticity ob-
served in [GVW13]. In essence, they observe that the secret key for a function f
in an ABE scheme corresponds to the garbled circuit for f , and the ciphertext
encrypting an attribute vector x corresponds to the garbled input for x in the
reusable garbling scheme. Thus, the problem of compressing ciphertexts down
to size |x|+ poly(λ) boils down to the question of generalizing [AIKW13] to the
setting of reusable garbling schemes. We are able to achieve this using multilinear
maps.

Security of the scheme relies on a generalization of the bilinear Diffie-Hellman
Exponent Assumption to the multi-linear setting (see the full version of our paper
for the precise description of the assumption.) 1 The bilinear Diffie-Hellman Ex-
ponent Assumption was recently used to prove the security of the first broadcast

1 Our construction can be converted to multi-linear graded-encodings, recently
instantiated by Garg et al. [GGH13a] and Coron et al. [CLT13].
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encryption with constant size ciphertexts [BGW05] (which in turn can be thought
of as a special case of ABE with short ciphertexts.)

Theorem 6.1 (Selective security). For all polynomials dmax = dmax(λ),
there exists a selectively-secure attribute-based encryption with ciphertext size
poly(dmax) for any family of polynomial-size circuits with depth at most dmax

and input size 
, assuming hardness of (d + 1, 
)−Multilinear Diffie-Hellman
Exponent Assumption.

6.1 Our Construction

We describe the construction here, and refer the reader to the full version for
correctness and security proofs.

– Params(1λ, dmax): The parameters generation algorithm takes the security
parameter and the maximum circuit depth. It generates a multi-linear map
G(1λ, k = d + 1) that produces groups (G1, . . . , Gk) along with a set of
generators g1, . . . , gk and map descriptors {eij}. It outputs the public pa-
rameters pp =

(
{Gi, gi}i∈[k], {eij}i,j∈[k]

)
, which are implicitly known to all

of the algorithms below.
– Setup(1�): For each input bit i ∈ {1, 2, . . . , 
}, choose a random element qi

in Zp. Let g = g1 be the generator of the first group. Define hi = gqi . Also,
choose α at random from Zp and let t = gα

k . Set the master public key

mpk := (h1, . . . , h�, t)

and the master secret key as msk := α.
– Keygen(msk, C): The key-generation algorithm takes a circuit C with 
 input

bits and a master secret key msk and outputs a secret key skC defined as
follows.
1. Choose randomly

(
(r1, z1), . . . , (r�, z�)

)
from Z2

q for each input wire of the

circuit C. In addition, choose
(
(r�+1, a�+1, b�+1), . . . , (rn, an, bn)

)
from Z3

q

randomly for all internal wires of C.
2. Compute an 
×
matrix M̃ , where all diagonal entries (i, i) are of the form

(hi)
zigri and all non-diagonal entries (i, j) are of the form (hi)

zj . Append
g−zi as the last row of the matrix and call the resulting matrix M .

3. Consider a gate Γ = (u, v, w) where wires u, v are at depth j − 1 and w
is at depth j. If Γ is an or gate, compute

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awru
j ,K4

Γ = grw−bwrv
j

)
Else if Γ is an and gate, compute

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awru−bwrv
j

)
4. Set σ = gα−rn

k−1
5. Define and output the secret key as

skC :=
(
C, {KΓ }Γ∈C ,M, σ

)
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– Enc(mpk,x, μ): The encryption algorithm takes the master public key mpk,
an index x ∈ {0, 1}� and a message μ ∈ {0, 1}, and outputs a ciphertext
cx defined as follows. Choose a random element s in Zq. Let X be the set
of indices i such that xi = 1. Let γ0 = ts if μ = 1, otherwise let γ0 be a
randomly chosen element from Gk. Output ciphertext as

cx :=

(
x, γ0, gs, γ1 =

( ∏
i∈X

hi

)s)
– Dec(skC , cx): The decryption algorithm takes the ciphertext cx, and secret

key skC and proceeds as follows. If C(x) = 0, it outputs ⊥. Otherwise,
1. Let X be the set of indices i such that xi = 1. For each input wire i ∈ X ,

using the matrix M compute gri
(∏

j∈X hj

)zi
and then

gris
2 = e

(
gs, gri

( ∏
j∈X

hj

)zi) · e(γ1, g−zi

)

= e

(
gs, gri

( ∏
j∈X

hj

)zi) · e(( ∏
j∈X

hj

)s
, g−zi

)

2. Now, for each gate Γ = (u, v, w) where w is a wire at level j, (recursively
going from the input to the output) compute grws

j+1 as follows:

- If Γ is an or gate, and C(x)u = 1, compute grws
j+1 = e

(
K1

Γ , grus
j

)
·

e
(
gs,K3

Γ

)
.

- Else if C(x)v = 1, compute grws
j+1 = e

(
K2

Γ , grvs
j

)
· e
(
gs,K4

Γ

)
.

- Else if Γ is an and gate, compute grws
j+1 = e

(
K1

Γ , grus
j

)
· e
(
K2

Γ , grvs
j

)
·

e
(
gs,K3

Γ

)
.

3. If C(x) = 1, then the user computes grns
k for the output wire. Finally,

compute
ψ = e

(
gs, σ
)
· grns

k = e
(
gs, gα−rn

k−1

)
· grns

k

4. Output μ = 1 if ψ = γ0, otherwise output 0.
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Abstract. Dual system encryption techniques introduced by Waters in
Crypto’09 are powerful approaches for constructing fully secure func-
tional encryption (FE) for many predicates. However, there are still some
FE for certain predicates to which dual system encryption techniques
seem inapplicable, and hence their fully-secure realization remains an
important problem. A notable example is FE for regular languages, in-
troduced by Waters in Crypto’12.
We propose a generic framework that abstracts the concept of dual

system encryption techniques. We introduce a new primitive called pair
encoding scheme for predicates and show that it implies fully secure
functional encryption (for the same predicates) via a generic construc-
tion. Using the framework, we obtain the first fully secure schemes for
functional encryption primitives of which only selectively secure schemes
were known so far. Our three main instantiations include FE for reg-
ular languages, unbounded attribute-based encryption (ABE) for large
universes, and ABE with constant-size ciphertexts.
Our main ingredient for overcoming the barrier of inapplicability for

the dual system techniques to certain predicates is a computational se-
curity notion of the pair encoding scheme which we call doubly selective
security. This is in contrast with most of the previous dual system based
schemes, where information-theoretic security are implicitly utilized. The
doubly selective security notion resembles that of selective security and
its complementary notion, co-selective security, and hence its name. Our
framework can be regarded as a method for boosting doubly selectively
security (of encoding) to full security (of functional encryption).
Besides generality of our framework, we remark that improved secu-

rity is also obtained, as our security proof enjoys tighter reduction than
previous schemes, notably the reduction cost does not depend on the
number of all queries, but only that of pre-challenged queries.

1 Introduction

Dual system encryption techniques introduced byWaters [33] have been successful
approaches for proving adaptive security (or called full security) for functional en-
cryption (FE) schemes that are based on bilinear groups. These include adaptively-
secure schemes for (hierarchical) id-based encryption (HIBE) [33,20,22,19],

P.Q. Nguyen and E. Oswald (Eds.): EUROCRYPT 2014, LNCS 8441, pp. 557–577, 2014.
c© International Association for Cryptologic Research 2014
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attribute-based encryption (ABE) for Boolean formulae [24,28,23], inner-product
encryption [24,28,1,29,30], and spatial encryption [1,17].

Due to structural similarities between these fully secure schemes obtained via
the dual system encryption paradigm and their selectively secure counterparts
previously proposed for the same primitive1, it is perhaps a folklore that the
dual system encryption approach can somewhat elevate the latter to achieve
the former. This is unfortunately not so, or perhaps not so clear, as there are
some functional encryption schemes that are only proved selectively secure at
the present time and seem to essentially encounter problems when applying dual
system proof techniques. A notable example is FE for regular languages proposed
by Waters [34], for which fully secure realization remains an open problem.

In this paper, we affirmatively solve this by proposing the first fully secure
functional encryption for regular languages. Towards solving it, we provide a
generic framework that captures the core concept of the dual system encryption
techniques. This gives us an insight as to why it was not clear in the first place
that dual system encryption techniques can be successfully applied to certain
primitives, but not others. Such an insight leads us not only to identify the
obstacle when applying the techniques and then to find a solution that overcomes
it, but also to improve the performance of security proofs in a generic way.
Namely, our framework allows tighter security reduction.

We summarize our contributions below. We first recall the notion of functional
encryption, formulated in [7]. Well-known examples of functional encryption such
as ABE and the more recent one for regular languages can be considered as
“public-index” predicate encryption, which is a class of functional encryption.
We focus on this class in this paper.2 A primitive in this class is defined by
a predicate R. In such a scheme, a sender can associate a ciphertext with a
ciphertext attribute Y while a secret key is associated with a key attribute X .
Such a ciphertext can then be decrypted by such a key if R(X,Y ) holds.

1.1 Summary of Our Main Contributions

In this paper, we propose a generic framework that captures the concept of
dual system encryption techniques. It is generic in the sense that it can be ap-
plied to arbitrary predicate R. The main component in our framework is a new
notion called pair encoding scheme defined for predicate R. We formalize its
security properties into two notions called perfectly master-key hiding, which is
an information-theoretic notion, and doubly selectively master-key hiding, which
is a computational notion. The latter consists of two notions which are selec-
tive master-key hiding and its complementary one called co-selective master-key
hiding (and hence is named doubly). Our main results are summarized as follows.

Generic Construction. We construct a generic construction of fully secure
functional encryption for predicate R from any pair encoding scheme for R which

1One explicit example is the fully secure HIBE of Lewko and Waters [20], which has the
structure almost identical to the selectively secure HIBE by Boneh, Boyen, Goh [5].

2In this paper, the term “functional encryption” refers to this class.
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is either perfectly master-key hiding or doubly selectively master-key hiding. Our
construction is based on composite-order bilinear groups.

Instantiations. We give concrete constructions of pair encoding schemes for
notable three predicates of which there is no known fully-secure functional en-
cryption realization. By using the generic construction, we obtain fully secure
schemes. These include the following.

− The first fully-secure functional encryption for regular languages. Only a
selectively-secure scheme was known [34]. We indeed improve not only se-
curity but also efficiency: ours will work on unbounded alphabet universe, as
opposed to small universe as in the original construction.

− The first fully-secure unbounded key-policy ABE with large universes. Such
a system requires that no bound should be posed on the sizes of attribute
set and policies. The available schemes are either selectively-secure [22,26] or
small-universe [23] or restricted for multi-use of attributes [30].

− The first fully-secure key-policy ABE with constant-size ciphertexts. The
available schemes are either only selectively-secure scheme [2], or restricted
to small classes of policies [9].

Our three underlying pair encoding schemes are proved doubly selectively secure
under new static assumptions, each of which is parameterized by the sizes of
attributes in one ciphertext or one key, but not by the number of queries. These
can be considered comparable to those assumptions for the respective selectively
secure counterparts ([34,26,2], resp.).

Improved Security Reduction. By starting from a pair encoding scheme
which is doubly selectively master-key hiding, the resulting functional encryption
can be proved fully secure with tighter security reduction to subgroup decision
assumptions (and the doubly selective security). More precisely, it enjoys reduc-
tion cost of O(q1), where q1 is the number of pre-challenged key queries. This
improves all the previous works based on dual system encryption (except only
one recent work on IBE by [8]) of which reduction encumbers O(qall) security
loss, where qall is the number of all key queries. As an instantiation, we propose
an IBE scheme with O(q1) reduction, while enjoys similar efficiency to [20].

More Results. We also obtain some more results, which could not fit in the
space here. These include a generic conversion for dual primitives (i.e., key-
policy to ciphertext-policy and vice-versa) for perfectly secure encoding, the
first dual FE for regular languages, a unified treatment for existing FE schemes
and improvements for ABE scheme of [24] (reducing key sizes to half for free, and
a large-universe variant), a new primitive called key-policy over doubly spatial
encryption, which unifies KP-ABE and (doubly) spatial encryption [17].

1.2 Related Work

Chen and Wee [8] recently proposed the notion of dual system groups. It can be
seen as a complementary work to ours: their construction unifies group struc-
tures where dual system techniques are applicable (namely, composite-order and
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prime-order groups) but for specific primitives (namely, IBE and HIBE), while
our construction unifies schemes for arbitrary predicate but over specific groups
(namely, composite-order bilinear groups). It is also worth mentioning that the
topic of functional encryption stems from many research papers: we list some
more here [3,6,16,18,27,32]. Recent results give very general FE primitives such
as ABE or FE for circuits [15,11,13,12], and for Turing Machines [14], but most
of them might still be considered as proofs of concept, since underlying crypto-
graphic tools such as multilinear maps [10] seem still inefficient. Constructing
fully secure ABE for circuits without complexity leveraging is an open problem.

2 An Intuitive Overview of Our Framework

In this section, we provide an intuition for our formalization of the dual system
techniques and describe how we define pair encoding schemes. In our framework,
we view a ciphertext (C, C0) (encrypting M), and a key K as

C = g
c(s,h)
1 , C0 = Me(g1, g1)

αs; K = g
k(α,r,h)
1

where c and k are encoding functions of attributes Y,X associated to ciphertext
and key, respectively. The bold font represents vectors. Our aim is to formal-
ize such functions by providing sufficient conditions so that the scheme can be
proved fully-secure in a generic way. We call such functions pair encoding for
predicate R, since they encode a pair of attributes which are inputs to predicate
R. They can be viewed as (multi-variate) polynomials in variables from s (which
includes s), h, r, and α. Intuitively, α corresponds to a master key, h corresponds
to parameter that will define public key gh1 , and s, r correspond to randomness
in ciphertexts and keys, respectively. We would require the following: (1) cor-
rectness, stating that if R(X,Y ) = 1 then both encoding functions can be paired
to obtain αs; and (2) security, which is the property when R(X,Y ) = 0, and we
show how to define it below. The key novelty of our abstraction stems from the
way we define the security of encoding. Along the discussion, for a better under-
standing, a reader may think of the equality predicate and the Boneh-Boyen [4]
IBE as a concrete example. Their encoding would be: c(s,h) = (s, s(h1 + h2Y ))
and k(α, r,h) = (α+ r(h1 + h2X), r), where h = (h1, h2).

We first recall how dual system encryption techniques can be used to achieve
adaptive security. The idea is to mimic the functionality of the encryption scheme
in the semi-functional space, and to define the corresponding parameter ĥ in the
semi-functional space to be independent from that of normal space, h. Adaptive
security is then obtained by observing that ĥ will not appear anywhere until the
first query, which means that the reduction algorithm in the proof can adaptively
deal with the adversary since it does not have to fix ĥ in advance. This is in
contrast with h, which is fixed in the public key gh1 . In the case of composite-
order groups, the semi-functional space is implemented in a subgroup Gp2 of a
group G of composite order p1p2p3 (and the normal space is in Gp1).

Our purpose of abstraction is to capture the above mechanism in a generic
way, while at the same time, to incorporate the security of encoding. Our main
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Table 1. Summary for properties used in each transition for C,K

Transition Changes in Gp2 Indistinguishability Other properties of
under pair encoding

C : 0→ 1 g
c(0,0)
2 → g

c(ŝ,ĥ)
2 subgroup decision linearity, param-vanishing

K : 0→ 1 g
k(0,0,0)
2 → g

k(0,r̂,ĥ)
2 subgroup decision linearity, param-vanishing

K : 1→ 2 g
k(0,r̂,ĥ)
2 → g

k(α̂,r̂,ĥ)
2 security of encoding none

K : 2→ 3 g
k(α̂,r̂,ĥ)
2 → g

k(α̂,0,0)
2 subgroup decision linearity, param-vanishing

idea for doing this is to define semi-functional types of ciphertexts and keys
explicitly in terms of pair encoding functions, so that the scheme structure would
be copied to the semi-functional space. More precisely, we define semi-functional
ciphertexts and keys as follows: C0 is unmodified, and let

C =

{
g
c(s,h)
1 · gc(0,0)

2 (normal)

g
c(s,h)
1 · gc(ŝ,ĥ)

2 (semi)
, K =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g
k(α,r,h)
1 · gk(0,0,0)

2 (normal)

g
k(α,r,h)
1 · gk(0,r̂,ĥ)

2 (semi type 1)

g
k(α,r,h)
1 · gk(α̂,r̂,ĥ)

2 (semi type 2)

g
k(α,r,h)
1 · gk(α̂,0,0)

2 (semi type 3)

where ‘·’ denotes the component-wise group operation. The “semi-functional
variables” (those with the hat notation) are defined to be independent from the
normal part. (We neglect mask elements from Gp3 now for simplicity).

We then recall that the proof strategy for the dual system techniques uses
hybrid games that modifies ciphertexts and keys from normal to semi-functional
ones, and proves indistinguishability between each transition. By defining semi-
functional types as above, we can identify which transition uses security of en-
coding and which one uses security provided by composite-order groups (namely,
subgroup decision assumptions). We provide these in Table 1. In particular, we
identify that the security of encoding is used in the transition from type 1 to
type 2 semi-functional keys. We note that how to identify this transition was
unclear in the first place, since in all the previous dual system based schemes
(to the best of our knowledge), the indistinguishability of this form is implicitly
employed inside another transition (cf. nominally semi-functional keys in [24]).

We explore both types of transitions and define properties needed, as follows.

Transition Based on the Security of Encoding. We simply define the
security of encoding to be just as what we need for the transition definition.
More precisely, the security of encoding (in the “basic” form) requires that, if
R(X,Y ) = 0, then the following distributions are indistinguishable:{

g
c(ŝ,ĥ)
2 , g

k(0,r̂,ĥ)
2

}
and

{
g
c(ŝ,ĥ)
2 , g

k(α̂,r̂,ĥ)
2

}
,

where the probability taken over random ĥ (and others). We remark a crucial
point that the fact that we define keys of normal types and semi-functional type 3
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Table 2. Summary of approaches for defining the security of encoding

Indistinguishability between Security Implicit in{
c(ŝ, ĥ),k(0, r̂, ĥ)

}
,
{
c(ŝ, ĥ),k(α̂, r̂, ĥ)

}
info-theoretic all but [23,8]{

g
c(ŝ,ĥ)
2 , g

k(0,r̂,ĥ)
2

}
,
{
g
c(ŝ,ĥ)
2 , g

k(α̂,r̂,ĥ)
2

}
computational [23]{

g
c(ŝ,ĥ)
2 , {gki(0,r̂i,ĥ)

2 }i∈Q

}
,
{
g
c(ŝ,ĥ)
2 , {gki(α̂,r̂i,ĥ)

2 }i∈Q

}
computational new

to not depend on ĥ allows us to focus on the distribution corresponding to only
one key at a time, while “isolating” other keys. (This is called key isolation
feature in [23]). We provide more flavors of the definition below. Indeed, the
computational variant is what makes our framework powerful.

Transitions Based on Subgroup Decision Assumptions. We require all
pair encoding schemes to satisfy some properties in order to use subgroup deci-
sion assumptions. We identify the following two properties: parameter-vanishing
and linearity.

(Param-Vanishing) k(α,0,h) = k(α,0,0).

(Linearity) k(α1, r1,h) + k(α2, r2,h) = k(α1 + α2, r1 + r2,h),

c(s1,h) + c(s2,h) = c(s1 + s2,h).

Linearity makes it possible to indistinguishably change the randomness between
0 and r̂ (in the case of k), and between 0 and ŝ (in the case of c) under sub-
group decision assumptions, but without changing the other variables (i.e., α̂, ĥ).
Parameter-vanishing can then “delete” ĥ when r̂ = 0. The latter makes it pos-
sible to obtain the key isolation, required for the previous type of transition. A
subgroup decision assumption states that it is hard to distinguish if t2 = 0 or
t2

$← Zp2 in T = gt1
1 gt2

2 . The intuition of how to use this assumption in con-

junction with linearity is, for example, to simulate a key as g
k(α,0,h′)
1 T k(0,r′,h′),

for known α, r′,h′ chosen randomly. This is a normal key if t2 = 0 and semi-
functional type-1 if t2

$← Zp2 . In doing so, we implicitly set h = h′ mod p1 and

ĥ =h′ mod p2, but these are independent exactly due to the Chinese Remain-
der Theorem. (The last property is referred as parameter-hiding in prior work).
We also note that linearity implies homogeneity: c(0,0) = 0,k(0,0,0) = 0, and
hence we can write the normal ciphertext and key as above.

Perfect Security of Pair Encoding. We identify three flavors for the security
of encoding that imply the basic form of security defined above. We list them
in Table 2. We refer the first notion as the perfectly master-key hiding security,
which is an information-theoretic notion. All the previous dual system based
schemes (except [23,8]) implicitly employed this approach. For some esoteric
predicates (e.g., the regular language functionality), the amount of information
from ĥ needed for hiding α̂ is not sufficient. This is exactly the reason why the
“classical” dual system approach is inapplicable to FE for regular languages.



Dual System Encryption via Doubly Selective Security 563

Computational Security of Pair Encoding. The second flavor (the second
line of Table 2, which is exactly the same as the aforementioned basic form) em-
ploys computational security argument to hide α̂, and can overcome the obstacle
of insufficient entropy, suffered in the first approach. This approach was intro-
duced by Lewko and Waters [23] to overcome the obstacle of multi-use restriction
in KP-ABE. We generalize their approach to work for any predicate.

When considering computational approaches, the ordering of queries from the
adversary becomes important since the challenger is required to fix the value of
ĥ after receiving the first query. This is reminiscent of the notion of selective
security for FE, where the challenger would fix public parameters after seeing
the challenge ciphertext attribute. To this end, we refer this notion as selective
master-key hiding, if a query for Y (corresponding to the encoding c) comes
before that of X (for the encoding k), and analogously, co-selective master-key
hiding if a query for X comes before that of Y , where we recall that co-selective
security [1] is a complementary notion of selective security.3

Tighter Reduction. The classical dual system paradigm requires O(qall) tran-
sition steps, hence results in O(qall) loss for security reduction, where qall is the
number of all key queries. This is since each step is reduced to its underlying
security: subgroup indistinguishability or the security of encoding. This is the
case for all the previous works except the IBE scheme of [8].4 To overcome this
obstacle, we propose the third flavor for security of encoding, shown in the third
line of Table 2. This new approach is unique to our framework (no implicit use in
the literature before). The idea is to observe that, for the selective security proof,
the reduction can program the parameter once by using the information of the
ciphertext attribute Y , and after that, any keys for X such that R(X,Y ) = 0
can be produced. Therefore, we can organize all the post-challenged keys into
the correlated distribution (hence, in Table 2, we set Q to be this set of queries).
This has a great benefit since we can define a new type of transition where
all these post-challenged keys are simultaneously modified from semi-functional
type-1 to type-2 all at once, which results in tighter reduction, O(q1), where q1 is
the number of pre-challenged queries. On the other hand, one could try to do the
same by grouping also all the pre-challenged queries and mimicking co-selective
security, so as to obtain tight reduction (with O(1) cost). However, this will not
work since the parameter must be fixed already after only the first query.

3 Preliminaries

3.1 Functional Encryption

Predicate Family. We consider a predicate family R = {Rκ}κ∈Nc , for some
constant c ∈ N, where a relation Rκ : Xκ × Yκ → {0, 1} is a predicate function

3As a result, this also clarifies why [23] uses selective security techniques of KP-ABE
and CP-ABE to prove the full security of KP-ABE. This is since selective security of
an FE (CP-ABE, in their case) resembles co-selective security of its dual (KP-ABE).

4The IBE of [8] used a technique from Naor and Reingold [25] PRFs for their compu-
tational argument, which is different from ours.
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that maps a pair of key attribute in a space Xκ and ciphertext attribute in a
space Yκ to {0, 1}. The family index κ = (n1, n2, . . .) specifies the description of
a predicate from the family.

Predicate in Different Domains. We mandate the first entry n1 in κ to
specify some domain; for example, the domain ZN of IBE (the equality predi-
cate), where we let n1 = N . In what follows, we will implement our scheme in
composite-order groups and some relations among different domains in the same
family will be used. We formalize them here. We omit κ and write simply RN .
We say that R is domain-transferable if for p that divides N , we have projection
maps f1 : XN → Xp, f2 : YN → Yp such that for all X ∈ XN , Y ∈ YN :

• Completeness. If RN (X,Y ) = 1 then Rp(f1(X), f2(Y )) = 1.
• Soundness. (1) If RN (X,Y ) = 0 then Rp(f1(X), f2(Y )) = 0, or (2) there
exists an algorithm that takes (X,Y ) where (1) does not hold, and outputs a
non-trivial factor F , where p|F, F |N .

The completeness will be used for correctness of the scheme, while the sound-
ness will used in the security proof. All the predicates in this paper are domain-
transferable. As an example, in the equality predicate (for IBE), RN and Rp

are defined on ZN and Zp respectively. The projective maps are simply mod-
ulo p. Completeness holds straightforwardly. Soundness holds since for X = Y
(mod N) but X = Y (mod p), we set F = X − Y . The other predicates in this
paper can be proved similarly and we omit them here.

Functional Encryption Syntax. A functional encryption (FE) scheme for
predicate family R consists of the following algorithms.

• Setup(1λ, κ) → (PK,MSK): takes as input a security parameter 1λ and a
family index κ of predicate family R, and outputs a master public key PK and
a master secret key MSK.

• Encrypt(Y,M,PK) → CT: takes as input a ciphertext attribute Y ∈ Yκ, a
message M ∈M, and public key PK. It outputs a ciphertext CT.

• KeyGen(X,MSK,PK) → SK: takes as input a key attribute X ∈ Xκ and the
master key MSK. It outputs a secret key SK.

• Decrypt(CT, SK) → M : given a ciphertext CT with its attribute Y and the
decryption key SK with its attribute X , it outputs a message M or ⊥.

Correctness. Consider all indexes κ, all M ∈ M, X ∈ Xκ, Y ∈ Yκ such that
Rκ(X,Y ) = 1. If Encrypt(Y,M,PK) → CT and KeyGen(X,MSK,PK) → SK
where (PK,MSK) is generated from Setup(1λ, κ), then Decrypt(CT, SK)→M .

Security Notion. A functional encryption scheme for predicate family R is
fully secure if no probabilistic polynomial time (PPT) adversary A has non-
negligible advantage in the following game between A and the challenger C. For
our purpose of modifying games in next sections, we write some in the boxes.
Let q1, q2 be the numbers of queries in Phase 1,2, respectively.
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1 Setup: C runs (1) Setup(1λ, κ)→ (PK,MSK) and hands PK to A.
2 Phase 1: A makes a j-th private key query for Xj ∈ Xκ. C returns SKj by

computing (2) SKj ← KeyGen(Xj ,MSK,PK) .

3 Challenge: A submits equal-length messages M0,M1 and a target cipher-
text attribute Y � ∈ Yκ with the restriction that Rκ(Xj , Y

�) = 0 for all

j ∈ [1, q1]. C flips a bit b
$← {0, 1} and returns the challenge ciphertext

(3) CT� ← Encrypt(Y �,Mb,PK) .

4 Phase 2: A continues to make a j-th private key query for Xj ∈ Xκ under

the restriction Rκ(Xj , Y
�) = 0. C returns (4) SKj ← KeyGen(Xj ,MSK,PK) .

5 Guess: The adversary A outputs a guess b′ ∈ {0, 1} and wins if b′ = b. The
advantage ofA against the scheme FE is defined as AdvFEA (λ) := |Pr[b = b′]− 1

2 |.

3.2 Definitions for Some Concrete Functional Encryption

FE for Regular Languages (DFA-based FE). In this primitive, we have a
key associated to the description of a deterministic finite automata (DFA) M ,
while a ciphertext is associated to a string w, and R(M,w) = 1 if the automata
M accepts the string w. A DFA M is a 5-tuple (Q,Λ, T , q0, F ) in which Q is
the set of states Q = {q0, q1, . . . , qn−1}, Λ is the alphabet set, T is the set of
transitions, in which each transition is of the form (qx, qy, σ) ∈ Q × Q × Λ,
q0 ∈ Q is the start state, and F ⊆ Q is the set of accepted states. We say that
M accepts a string w = (w1, w2, . . . , w�) ∈ Λ∗ if there exists a sequence of states
ρ0, ρ1, · · · , ρn ∈ Q such that ρ0 = q0, for i = 1 to 
 we have (ρi−1, ρi, wi) ∈ T ,
and ρ� ∈ F . This primitive is important since it has a unique unbounded feature
that one key for machine M can operate on input string w of arbitrary sizes.
We note that it is wlog if we consider machines such that |F | = 1 (see the full
version), and we will construct our scheme with this wlog condition.

Attribute Based Encryption for Boolean Formulae. Let U be a universe of
attributes. In Key-Policy ABE, a key is associated to a policy, which is described
by a boolean formulae Ψ over U , while a ciphertext is associated to an attribute
set S ⊆ U . We have R(Ψ, S) = 1 if the evaluation of Ψ returns true when setting
attributes in S as true and the others (in Ψ) as false.

ABE with large-universe is a variant where U is of super-polynomial size.
Unbounded ABE is a variant where there is no restriction on any sizes of policies
Ψ , attribute sets S, or the maximum number of attribute repetition in a policy.
In a bounded ABE scheme, the corresponding bounds (e.g., the maximum size
of S) will be described as indexes inside κ for the predicate family.

A boolean formulae can be equivalently described by a linear secret sharing
(LSS) scheme (A, π) over ZN , where A is a matrix in Zm×k

N and π : [1,m] →
U , for some m, k. We briefly review the definition of LSS. It consists of two
algorithms. First, Share takes as input s ∈ ZN (a secret to be shared), and

chooses v2, . . . , vk
$← ZN , sets v = (s, v2 . . . , vk), and outputs Aiv

� as the i-th
share, where Ai is the i-th row of A, for i ∈ [1,m]. Second, Reconstruct takes as
input S such that (A, π) accepts S, and outputs a set of constants {μi}i∈I , where
I := { i | π(i) ∈ S }, which has a reconstruction property:

∑
i∈I μi(Aiv

�) = s.
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3.3 Bilinear Groups of Composite Order

In our framework, we consider bilinear groups (G,GT ) of composite order N =
p1p2p3, where p1, p2, p3 are distinct primes, with an efficiently computable bilin-
ear map e : G×G→ GT . For our purpose, we define a bilinear group generator
G(λ) that takes as input a security parameter λ and outputs (G,GT , e,N, p1, p2,
p3). For each d|N , G has a subgroup of order d denoted by Gd. We let gi denote a
generator of Gpi . Any h ∈ G can be expressed as ga1

1 ga2
2 ga3

3 , where ai is uniquely
determined modulo pi. We call gai

i the Gpi component of h. We recall that e has
the bilinear property: e(ga, gb) = e(g, g)ab for any g ∈ G, a, b ∈ Z and the non-
degeneration property: e(g, h) = 1 ∈ GT whenever g, h = 1 ∈ G. In a bilinear
group of composite order, we also have orthogonality: for g ∈ Gpi , h ∈ Gpj where
pi = pj we have that e(g, h) = 1 ∈ GT . The Subgroup Decision Assumptions
1,2,3 [33,20] and the 3DH assumption in a subgroup [23] are given below.

Definition 1 (Subgroup Decision Assumptions ). Subgroup Decision Prob-

lem 1,2,3 are defined as follows. Each starts with (G,GT , e,N, p1, p2, p3)
$← G(λ).

1. Given g1
$← Gp1 , Z3

$← Gp3 , and T ∈ G, decide if T = T1
$← Gp1p2 or

T = T2
$← Gp1 .

2. Let g1, Z1
$← Gp1 , Z2,W2

$← Gp2 , Z3,W3
$← Gp3 . Given g1, Z1Z2, Z3,W2W3,

and T ∈ G, decide if T = T1
$← Gp1p2p3 or T = T2

$← Gp1p3 .

3. Let g1
$← Gp1 , g2,W2, Y2

$← Gp2 , Z3
$← Gp3 and α, s

$← ZN . Given g1, g2, Z3,

gα
1 Y2, g

s
1W2, and T ∈ GT , decide if T = T1 = e(g1, g1)

αs or T = T2
$← GT .

We define the advantage of an adversary A against Problem i for G as the
distance AdvSDi

A (λ) := |Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]|, where D denotes
the given elements in each assumption excluding T . We say that the Assumption
i holds for G if AdvSDi

A (λ) is negligible in λ for any poly-time algorithm A.

Definition 2 (3-Party Diffie Hellman Assumption, 3DH). The 3DH As-
sumption in a subgroup assumes the hardness of the following problem: let
(G,GT , e,N, p1, p2, p3)

$← G(λ), g1 $← Gp1 , g2
$← Gp2 , g3

$← Gp3 , a, b, z
$← ZN ,

given D = (g2, g
a
2 , g

b
2, g

z
2 , g1, g3) and T , decide whether T = gabz

2 or T
$← Gp2 .

Notation. In general, we treat a vector as a horizontal vector. For g ∈ G and
c = (c1, . . . , cn) ∈ Zn, we denote gc = (gc1 , . . . , gcn). Denote ‘·’ as the pairwise
group operation on vectors. Consider M ∈ Zd×n

N . We denote its transpose as
M�. We denote by gM the matrix in Gd×n of which its (i, j) entry is gMi,j . For
Q ∈ Z�×d

N , we denote (gQ)M = gQM . Note that from M and gQ ∈ G�×d, we can

compute gQM without knowing Q, since its (i, j) entry is
∏d

k=1(g
Qi,k)Mk,j . (This

will be used in §4.3). For gc, gv ∈ Gn, we denote e(gc, gv) = e(g, g)cv
� ∈ GT .

4 Our Generic Framework for Dual-System Encryption

4.1 Pair Encoding Scheme: Syntax

In this section we formalize our main component: pair encoding scheme. It follows
the intuition from the overview in §2. We could abstractly define it purely by
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the described properties; however, we opted to make a more concrete definition,
which seems not to lose much generality (we discuss this below).

Syntax. A pair encoding scheme for predicate family R consists of four deter-
ministic algorithms given by P = (Param,Enc1,Enc2,Pair):

• Param(κ) → n. It takes as input an index κ and outputs an integer n, which
specifies the number of common variables in Enc1, Enc2. For the default no-
tation, let h = (h1, . . . , hn) denote the the list of common variables.

• Enc1(X,N)→ k = (k1, . . . , km1) and m2. It takes as inputs X ∈ Xκ, N ∈ N,
and outputs a sequence of polynomials (kz)z∈[1,m1] with coefficients in ZN ,
and m2 ∈ N. We require that each polynomial kz is a linear combination of
monomials α, ri, rihj , where α, r1, . . . , rm2 , h1, . . . , hn are variables.

• Enc2(Y,N) → c = (c1, . . . , cw1) and w2. It takes as inputs Y ∈ Yκ, N ∈ N,
and outputs a sequence of polynomials (cz)z∈[1,w1] with coefficients in ZN ,
and w2 ∈ N. We require that each polynomial cz is a linear combination of
monomials s, si, shj , sihj , where s, s1, . . . , sw2 , h1, . . . , hn are variables.

• Pair(X,Y,N)→ E. It takes as inputs X,Y,N , and output E ∈ Zm1×w1

N .

Correctness. The correctness requirement is defined as follows.
1. For any N ∈ N, let (k;m2) ← Enc1(X,N), (c;w2) ← Enc2(Y,N), and

E ← Pair(X,Y,N), we have that if RN (X,Y ) = 1, then kEc� = αs, where
the equality holds symbolically.

2. For p|N , we have Enci(X,N)1 mod p = Enci(X, p)1, for i = 1, 2.

Note that since kEc� =
∑

i∈[1,m1],j∈[1,w1]
Ei,jkicj , the first correctness amounts

to check if there is a linear combination of kicj terms summed up to αs.

Remark 1. We mandate that the variables used in Enc1 and those in Enc2 are
different except only those common variables in h. We remark that in the syntax,
all variables are only symbolic: no probability distributions have been assigned to
them yet. (We will eventually assign these in the security notion and the generic
construction). Note that m1,m2 can depend on X and w1, w2 can depend on Y .
We also remark that each polynomial in k, c has no constant terms.

Terminology. In what follows, we often omit N as input if the context is clear.
We denote k = k(α, r,h) or kX(α, r,h), and c = c(s,h) or cY (s,h), where we
let h = (h1, . . . , hn), r = (r1, . . . , rm2), s = (s, s1, . . . , sw2). We remark that s in s
is treat as a special symbol among the others in s, since it defines the correctness.
We always write s as the first entry of s. In describing concrete schemes in §5,
we often use symbols that deviate from the default notation (hi, ri, si in h, r, s,
respectively). In such a case, we will write h, r, s explicitly and omit writing the
output m2, w2 since they merely indicate the sizes m2 = |r|, w2 = |s| − 1.

Remark 2. It is straightforward to prove that the syntax of pair encoding implies
linearity and parameter-vanishing, symbolically. We opted to define the syntax
this way (concrete, instead of abstract based on properties only) since for the
generic construction (cf. §4.3) to work, we need one more property stating that c
can be computed from h by a linear (or affine) transformation. This is for ensur-
ing computability of ciphertext from the public key, since the public key will be
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of the form gh1 and we can only do linear transformations in the exponent. This,
together with linearity in s, prompts to define linear-form monomials in Enc2 as
above. Contrastingly, there is no similar requirement for Enc1; however, we de-
fine linear-form monomials similarly so that the roles of both encoding functions
can be exchangeable in the dual scheme conversion (see the full version).

4.2 Pair Encoding Scheme: Security Definitions

Security. We define the security notions of pair encoding schemes as follows.

(Perfect Security). The pair encoding scheme P is perfectly master-key hiding
if the following holds. For N ∈ N, if RN (X,Y ) = 0, let (k;m2) ← Enc1(X,N),
(c;w2)← Enc2(Y,N), then the following two distributions are identical:

{c(s,h), k(0, r,h)} and {c(s,h), k(α, r,h)},

where the probability is taken over h
$← Zn

N , α
$← ZN , r

$← Zm2

N , s
$← Z

(w2+1)
N .

(Computational Security). We define two flavors: selectively secure and co-
selectively secure master-key hiding (SMH,CMH) in a bilinear group generator G.
We first define the game template, ExpG,G,b,A(λ), for the flavor G ∈ {CMH, SMH},
b ∈ {0, 1}. It takes as input the security parameter λ and does the experiment
with the adversary A = (A1,A2), and outputs b′. The game is defined as:

ExpG,G,b,A(λ) : (G,GT , e,N, p1, p2, p3)← G(λ); g1
$← Gp1 , g2

$← Gp2 , g3
$← Gp3 ,

α
$← ZN ,h

$← Zn
N ; st← AO1

G,b,α,h(·)
1 (g1, g2, g3); b′ ← AO2

G,b,α,h(·)
2 (st),

where st denotes the state information and the oracles O1,O2 in each state are
defined below. The subscripts α,h for each oracle are omitted for simplicity.

• Selective Security (SMH). O1 can be queried once while O2 can be queried
polynomially many times.

O1
SMH,b(Y

�): (c;w2)← Enc2(Y �, p2); s
$← Z

(w2+1)
p2 ; return C ← g

c(s,h)
2 .

O2
SMH,b(X) : If Rp2(X,Y �) = 1, then return ⊥;

else, (k;m2)← Enc1(X, p2); r
$← Zm2

p2
; return K ←

{
g
k(0,r,h)
2 if b = 0

g
k(α,r,h)
2 if b = 1

• Co-selective Security (CMH). Both O1,O2 can be queried once.

O1
CMH,b(X

�): (k;m2)← Enc1(X�, p2); r
$← Zm2

p2 ; return K ←
{
g
k(0,r,h)
2 if b = 0

g
k(α,r,h)
2 if b = 1

O2
CMH,b(Y ) : If Rp2(X

�, Y ) = 1, then return ⊥;
else, (c;w2)← Enc2(Y, p2); s

$← Z
(w2+1)
p2 ; return C ← g

c(s,h)
2 .

We define the advantage of A in the game G ∈ {SMH,CMH} relative to G
as AdvGA(λ) := |Pr[ExpG,G,0,A(λ) = 1]− Pr[ExpG,G,1,A(λ) = 1]|. We say that the
pair encoding scheme P is selectively (resp., co-selectively) master-key hiding in
G if AdvSMH

A (λ) (resp., AdvCMH
A (λ)) is negligible for all PPT attackers A. If both

hold, we say that it is doubly selectively master-key hiding.
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Remark 3. The terms corresponding to parameter h (in particular, gh2 ) need not
be given out to the adversary. Intuitively, this is since the security of encoding will
be employed in the semi-functional space, and the parameter then corresponds
to semi-functional parameter ĥ, which needs not be sent (cf. §2).

4.3 Generic Construction for Functional Encryption from Encoding

Construction. From a pair encoding scheme P for predicate R, we construct a
functional encryption scheme for R, denoted FE(P), as follows.

• Setup(1λ, κ): Run (G,GT , e,N, p1, p2, p3)
$← G(λ). Pick generators g1

$← Gp1 ,

Z3
$← Gp3 . Run n← Param(κ). Pick h

$← Zn
N and α

$← ZN . The public key is
PK =

(
g1, e(g1, g1)

α, gh1 , Z3

)
. The master secret key is MSK = α.

• Encrypt(Y,M,PK): Upon input Y ∈ YN , run (c;w2) ← Enc2(Y,N). Pick

s = (s, s1, . . . , sw2)
$← Zw2+1

N . Output the ciphertext as CT = (C, C0):

C = g
c(s,h)
1 ∈ Gw1 , C0 = (e(g1, g1)

α)sM ∈ GT .

Note that C can be computed from gh1 and s since c(s,h) contains only linear
combinations of monomials s, si, shj , sihj .

• KeyGen(X,MSK,PK): Upon input X ∈ XN , run (k;m2)← Enc1(X,N). Parse

MSK = α. Recall that m1 = |k|. Pick r
$← Zm2

N ,R3
$← Gm1

p3
. Output SK as

K = g
k(α,r,h)
1 ·R3 ∈ Gm1 .

• Decrypt(CT, SK): Obtain Y,X from CT, SK. Suppose R(X,Y ) = 1. Run E ←
Pair(X,Y ). Compute e(g1, g1)

αs ← e(KE,C), and obtainM←C0/e(g1, g1)
αs.

Correctness. For RN (X,Y ) = 1, we have Rp1(X,Y ) = 1 from the domain-

transferability. Then, e(KE,C)=e((gk1 ·R3)
E , gc1) = e(g1, g1)

kEc�
= e(g1, g1)

αs,
where the last equality comes from the correctness of the pair encoding scheme.

Semi-functional Algorithms. These will be used in the proof only.

• SFSetup(1λ, κ): This is exactly the same as Setup(1λ, κ) except that it addi-

tionally outputs a generator g2
$← Gp2 and ĥ

$← Zn
N .

• SFEncrypt(Y,M,PK, g2, ĥ): Upon inputs Y,M,PK, g2 and ĥ, first run (c;w2)←
Enc2(Y ). Pick s = (s, s1, . . . , sw2), ŝ

$← Zw2+1
N Output CT = (C, C0) as

C = g
c(s,h)
1 g

c(ŝ,ĥ)
2 ∈ Gw1 , C0 = (e(g1, g1)

α)sM ∈ GT .

• SFKeyGen(X,MSK,PK, g2, type, α̂, ĥ): Upon inputs X,MSK,PK, g2, and type

∈ {1, 2, 3}, α̂ ∈ ZN , run (k;m2) ← Enc1(X). Pick r, r̂
$← Zm2

N ,R3
$← Gm1

p3
.

Output SK as

K =

⎧⎪⎪⎨⎪⎪⎩
g
k(α,r,h)
1 · gk(0,r̂,ĥ)

2 ·R3 if type = 1

g
k(α,r,h)
1 · gk(α̂,r̂,ĥ)

2 ·R3 if type = 2

g
k(α,r,h)
1 · gk(α̂,0,0)

2 ·R3 if type = 3

Note that the input α̂ (resp., ĥ) is not needed for type 1 (resp., type 3).
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Gres :The restriction becomes Rp2(Xj , Y
�) = 0. (Instead of RN (Xj , Y

�) = 0).

G0 :Modify (1) SFsetup(1λ, κ)→ (PK,MSK, g2, ĥ) in the Setup phase.

Modify (3) CT� ← SFEncrypt(Y,Mb,PK, g2, ĥ) .

Gk,1 :Modify (2) α̂j
$← ZN , SKj ←

⎧⎪⎨⎪⎩
SFKeyGen(Xj ,MSK,PK, g2, 3, α̂j ,0) if j < k

SFKeyGen(Xj ,MSK,PK, g2, 1, 0, ĥ) if j = k

KeyGen(Xj ,MSK,PK) if j > k

Gk,2 :Modify (2) α̂j
$← ZN , SKj ←

⎧⎪⎨⎪⎩
SFKeyGen(Xj ,MSK,PK, g2, 3, α̂j ,0) if j < k

SFKeyGen(Xj ,MSK,PK, g2, 2, α̂j , ĥ) if j = k

KeyGen(Xj ,MSK,PK) if j > k

Gk,3 :Modify (2) α̂j
$← ZN , SKj ←

{
SFKeyGen(Xj ,MSK,PK, g2, 3, α̂j ,0) if j ≤ k

KeyGen(Xj ,MSK,PK) if j > k

Gq1+1:Modify
(4) SKj ← SFKeyGen(Xj ,MSK,PK, g2, 1, 0, ĥ)

Gq1+2:Insert α̂
$← ZN at the begin of Phase 2.

Modify (4) SKj ← SFKeyGen(Xj ,MSK,PK, g2, 2, α̂, ĥ)

Gq1+3:Modify
(4) SKj ← SFKeyGen(Xj ,MSK,PK, g2, 3, α̂,0)

Gfinal :Modify
(3) M

$← M, CT� ← SFEncrypt(Y,M,PK, g2, ĥ) .

Fig. 1. The sequence of games in the security proof

Theorem 1. Suppose that a pair encoding scheme P for predicate R is selec-
tively and co-selectively master-key hiding in G, and the Subgroup Decision As-
sumption 1,2,3 hold in G. Also, suppose that R is domain-transferable. Then
the construction FE(P) in G of function encryption for predicate R is fully se-
cure. More precisely, for any PPT adversary A, there exist PPT algorithms
B1,B2,B3,B4,B5, whose running times are essentially the same as A, such that
for any λ, we have AdvFEA (λ) ≤ 2AdvSD1

B1
(λ) + (2q1 + 3)AdvSD2

B2
(λ) + AdvSD3

B3
(λ) +

q1Adv
CMH
B4

(λ) + AdvSMH
B5

(λ), where q1 is the number of queries in phase 1.

Security Proof. We use a sequence of games in the following order:

Greal Gres G0 G1,1

· · ·
Gk−1,3 Gk,1 Gk,2 Gk,3

· · ·
Gq1,3 Gq1+1 Gq1+2 Gq1+3 Gfinal

SD1, 2 SD1 SD2 CMH SD2 SD2 SMH SD2 SD3

where each game is defined as follows. Greal is the actual security game, and
each of the following game is defined exactly as its previous game in the sequence
except the specified modification that is defined in Fig. 1. For notational purpose,
let G0,3 := G0. In the diagram, we also write the underlying assumptions used for
indistinguishability between adjacent games. The proofs are in the full version.
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We also obtain the theorem for the case where the encoding is perfectly secure.

Theorem 2. Suppose that a pair encoding scheme P for predicate R is perfectly
master-key hiding, and the Subgroup Decision Assumption 1,2,3 hold in G. Sup-
pose also that R is domain-transferable. Then FE(P) is fully secure. Indeed, let
qall = q1+q2 be the number of all queries. For any PPT adversary A, there exist
PPT algorithms B1,B2,B3, whose running times are essentially the same as A,
such that for any λ, AdvFEA (λ) ≤ 2AdvSD1

B1
(λ)+ (2qall +1)AdvSD2

B2
(λ)+AdvSD3

B3
(λ).

5 Instantiations

5.1 Efficient Fully Secure IBE with Tighter Reduction

We first construct an encoding scheme for the simplest predicate, namely the
equality relation, and hence obtain a new IBE scheme. This is shown as Scheme 1.
It is similar to the Boneh-Boyen IBE [4] (and Lewko-Waters IBE [20]), with the
exception that we have one more element in each of ciphertext and key. Their
roles will be explained below. The encoding scheme can be proved perfectly
master-key hiding due to the fact that f(x) = h1 + h2x is pairwise independent
function (this is also used in [20]). The novelty is that we can prove the SMH
security (with tight reduction to 3DH). Note that the CMH security is implied
by perfect master-key hiding. Hence, from Theorem 1, we obtain a fully secure
IBE with O(q1) reduction to SD2 (plus tight reduction to 3DH, SD1, SD3). 5

Pair Encoding Scheme 1: IBE with Tighter Reduction

Param → 3. Denote h = (h1, h2, h3).

Enc1(X)→ k(α, r,h) = (α+ r(h1 + h2X) + uh3, r, u) where r = (r, u).

Enc2(Y ) → c(s,h) = (s, s(h1 + h2Y ), sh3) where s = s.

Theorem 3. Scheme 1 is selectively master-key hiding under 3DH.

Proof. Suppose we have an adversary A with non-negligible advantage in the
SMH game against Scheme 1. We construct a simulator B that solves 3DH. B
takes as an input the 3DH challenge, D = (g2, g

a
2 , g

b
2, g

z
2 , g1, g3) and T = gτ+abz

2 ,

where either τ = 0 or τ
$← Zp2 . B first gives (g1, g2, g3) to A.

Ciphertext Query (to O1). The game begins with Amaking a query for iden-

tity Y � to O1. B picks h′1, h
′
2, h

′
3

$← ZN and defines h = (h1, h2, h3) by implicitly

setting gh1
2 = g2

h′
1g−Y �za

2 , gh2
2 = g2

h′
2gza

2 , gh3
2 = g2

h′
3gz

2 . Note that only the last

term is computable. B picks s
$← ZN and computes C = g2

c(s,h) = (C1, C2, C3)

as: C1 = gs
2, C2 = g

s(h′
1+h′

2Y
�)

2 , C3 = (gh3
2 )s. Obviously, C1, C3 are properly dis-

tributed. C2 is properly distributed due to the cancellation of unknown za in
the exponent: h1 + h2Y

� = (h′1 − Y �za) + (h′2 + za)Y � = h′1 + h′2Y
�.

5Compared to the recent IBE of [8], their scheme has the reduction cost that does not
depend on the number of queries; they achieved O(�) reduction to DLIN, while the
public key size is O(�), where � is the identity length. Ours has O(1) public key size.
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Key Query (to O2). When A makes the j-th key query for Xj(= Y �), B first

computes a temporary keyK ′=(K ′
1,K

′
2,K

′
3) whereK

′
1 = T ((gb

2)
1

Xj−Y �
)h

′
1+h′

2Xj ,

K ′
2 = (gb

2)
1

Xj−Y �
, and K ′

3 = 1. We then claim that K ′ = g2
kXj

(τ,r′
j,h), where

r′j = (r′j , u
′
j) = ( b

Xj−Y � , 0). This holds since K ′
1 = g2

(τ+abz)+( b
Xj−Y � )(h′

1+h′
2Xj)

=

g2
τ+( b

Xj−Y � )((h′
1−Y �za)+(h′

2+za)Xj)
= g2

τ+r′
j(h1+h2Xj), where the unknown ele-

ment abz in the exponent term r′j(h1 + h2Xj) is simulated by using abz from T .
A crucial point here is thatK ′ is not properly distributed yet as r′j is not indepen-
dent among j (since all r′j are determined from b). We re-randomize it by picking

r′′j , u
′′
j

$← ZN and computing K1 = K ′
1(g2

r′′
j )h

′
1+h′

2Xj (gz
2)

u′′
j ,K2 = K ′

2g2
r′′
j , and

K3 = K ′
3g2

u′′
j (ga

2 )
−r′′

j (Xj−Y �). This is a properly distributed K = g2
kXj

(τ,rj ,h)

with rj = (rj , uj) = ( b
Xj−Y � + r′′j , u

′′
j − ar′′j (Xj − Y �)).

Guess. The algorithm B has properly simulated K = g2
kXj

(α,rj ,h) with α = 0
if τ = 0, and α is random if τ is random (since α = τ). B thus outputs the
corresponding guess from A. The advantage of B is thus equal to that of A. ��

Remark 4 (Randomizer Technique). Our proof much resembles the Boneh-Boyen
technique [4], with a crucial exception that here we need to establish the indis-
tinguishability in G (for our purpose of master-key hiding notion), instead of GT

(for the purpose of proving security for BB-IBE). Therefore, intuitively, instead
of embedding only ga to the parameter gh as usual, we need to embed gaz so as
to obtain the target element gabz in G when combining with r (which uses b).
This is in contrast to BB-IBE, where the target e(g, g)abz is in GT . Now that gh

contains non-trivial term gaz, we cannot re-randomize r in keys. To solve this,
we introduce u as a “randomizer” via ga. This is why we need one more element
than BB-IBE. This technique is implicit in ABE of [23].

5.2 Fully Secure FE for Regular Languages

Waters [34] proposed a selective secure FE scheme for regular languages. No
fully secure realization has been known so far. 6 Our scheme is built upon [34].

Motivation for Large Universe.Waters’ scheme operates over small-universe
alphabet sets, i.e., |Λ| is of polynomial size. We argue that this small-universe
nature makes the system less efficient than other less-advanced FE for the same
functionality. For example, we consider IBE, of which predicate determines equal-
ity over two identity X,Y ∈ {0, 1}�. To construct DFA that operates over small-
size universe to determine if X = Y would require Θ(log 
) transition, which
might not be so satisfactory for such a simple primitive.

Our Fully Secure FE for Regular Languages. We propose a new scheme
which is fully secure and operates over large-universe alphabet sets, i.e., |Λ| is
6Waters also suggested that dual system techniques could be used, but only with the
restricted version of the primitive where some bounds must be posed. This is not
satisfactory since the bound would negate the motivation of having arbitrary string
sizes for the ciphertext attribute. A recent work [31] proposes such a bounded scheme.
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of super-polynomial size, namely we use Λ = ZN . This is also called unbounded
alphabet universe (since the parameter size will not depend on the alphabet
universe). Our encoding scheme is shown as Scheme 2.

Pair Encoding Scheme 2: FE for Regular Languages

Param → 8. Denote h = (h0, h1, h2, h3, h4, φ1, φ2, η).

For any DFA M = (Q,ZN , T , q0, qn−1), where n = |Q|,
let m = |T |, and parse T = {(qxt , qyt , σt)|t ∈ [1,m]}.

Enc1(M)→ k(α, r,h) =
(
k1, k2, k3, k4, k5, {k6,t, k7,t, k8,t}t∈[1,m]

)
:⎧⎪⎨⎪⎩

k1 = α+ rφ1 + uη, k2 = u, k3 = r,

k4 = r0, k5 = −u0 + r0h0, k6,t = rt,

k7,t = uxt + rt(h1 + h2σt), k8,t = −uyt + rt(h3 + h4σt)

⎫⎪⎬⎪⎭
where un−1 := φ2r and r = (r, u, r0, r1, . . . , rm, {ux}qx∈Q�{qn−1}).

For w ∈ (ZN )∗, let 
 = |w|, and parse w = (w1, . . . , w�).
Enc2(w) → c(s,h) =

(
c1, c2, c3, c4, {c5,i}i∈[0,�], {c6,i}i∈[1,�]

)
:{

c1 = s, c2 = sη, c3 = −sφ1 + s�φ2,

c4 = s0h0, c5,i = si, c6,i = si−1(h1 + h2wi) + si(h3 + h4wi)

}
where s = (s, s0, s1, . . . , s�).

The correctness can be shown by providing linear combination of kιcj which
summed up to αs. When R(M,w) = 1, we have that there is a sequence of states
ρ0, ρ1, · · · , ρn ∈ Q such that ρ0 = q0, for i = 1 to 
 we have (ρi−1, ρi, wi) ∈ T ,
and ρ� ∈ F . Let (qxti

, qyti
, σti) = (ρi−1, ρi, wi). Therefore, we have the following

bilinear combination: k1c1 − k2c2 + k3c3 − k4c4 + k5c5,0 +
∑

i∈[1,�](−k6,tic6,i +

k7,tic5,i−1+k8,tic5,i) = αs. This holds since for any i ∈ [1, 
], we have −k6,tic6,i+
k7,tic5,i−1 + k8,tic5,i = si−1uxti

− siuyti
. The sum of these terms for all i ∈ [1, 
]

will form chaining cancelations and results in s0uxt1
− s�uyt	

= s0u0− s�un−1 =
s0u0 − s�φ2r. Adding this to the rest, we obtain αs.

We prove that Scheme 2 does not satisfy the perfectly master-key hiding
security, by using some basic properties of DFA (see the full version). We then
prove its SMH security under a new static assumption, EDHE1 (see below), which
is similar to the assumption for Waters’ scheme [34]. A notable difference is that
the target element will be in G instead of GT (similar to [23]). This is analogous
to our IBE, where we use 3DH. The proof strategy for SMH of our encoding
naturally follows from the selective security proof of Waters’. The harder part
is to prove the CMH security (under another new static assumption), where we
use completely new techniques. This is since there has been no known selectively
secure FE for the dual predicate of regular languages functionality. One of our
techniques is that we construct the scheme in such a way that both terms related
to transitions in DFA (i.e., k7,t, k8,t) are functions of the corresponding alphabet
σt. This is in contrast with Waters’ scheme where only one of them is a function
of σt. The intuition is to perform a certain type of cancellation that comes
from both terms, in the CMH proof. We state here only the assumption and the
theorem for SMH, and postpone those for CMH to the full version.
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Definition 3 (
-EDHE1). The 
-Expanded Diffie-Hellman Exponent Assump-

tion-1 in subgroup Gp2 is defined as follows. Let (G,GT , e,N, p1, p2, p3)
$← G(λ)

and gi
$← Gpi . Let a, b, c, d1, . . . , d�+1, f, z

$← ZN . Suppose that an adversary is

given g1, g2, g3, T , and D consisting of the following: ga
2 , g

b
2, g

a/f
2 , g

1/f
2 , g

a	c/z
2 ,

∀i∈[1,�+1] g
ai/di

2 , gaibf
2 ; ∀i∈[0,�] gaic

2 , gbdi
2 , g

bdi/f
2 , g

abdi/f
2 ; ∀i∈[1,2�+1],i�=�+1, j∈[1,�+1]

g
aic/dj

2 ; ∀i∈[2,2�+2], j∈[1,�+1] g
aibf/dj

2 ; ∀i,j∈[1,�+1],i�=j g
aibdj/di

2 . Then, it is hard for

any PPT adversary to distinguish whether T = gabz
2 or T

$← Gp2 .

Theorem 4. Scheme 2 is selectively master-key hiding under 
-EDHE1 with
tight reduction, where 
 is the length of the ciphertext query w�.

5.3 Fully Secure ABE

Fully-Secure Unbounded ABE with Large Universes. Our pair encoding
scheme for unbounded KP-ABE with large universes is shown as Scheme 3. We
can see that the parameter size is constant, and we can deal with any sizes of at-
tribute policies, attribute sets, while the attribute universe is ZN . The structure
of our scheme is similar to the selectively secure ABE of [26]. The correctness
can be shown as follows. When R((A, π), S) = 1, let I = { i ∈ [1,m] | π(i) ∈ S },
we have reconstruction coefficients {μi}i∈I such that

∑
i∈I μiAiv

� = v1 =
rφ2. Therefore, we have the following linear combination of the kιcj terms:
k1c1 − k2c2 − k3c3 +

∑
i∈I μi

(
k4,ic4 − k5,ic5,π(i) + k6,ic6,π(i)

)
= αs.

Pair Encoding Scheme 3: Unbounded KP-ABE with Large Universes

Param → 6. Denote h = (h0, h1, φ1, φ2, φ3, η).

For LSS A ∈ Zm×k
N , π : [1,m]→ ZN (π needed not be injective).

Enc1(A, π)→ k(α, r,h) =
(
k1, k2, k3, {k4,i, k5,i, k6,i}i∈[1,m]

)
:{

k1 = α+ rφ1 + uη, k2 = u, k3 = r,

k4,i = Aiv
� + riφ3, k5,i = ri, k6,i = ri(h0 + h1π(i))

}
where v1 = rφ2, r = (r, u, r1, . . . , rm, v2, . . . , vk), v = (v1, . . . , vk).

For S ⊆ ZN .
Enc2(S) → c(s,h) =

(
c1, c2, c3, c4, {c5,y, c6,y}y∈S

)
:{

c1 = s, c2 = sη, c3 = sφ1 + wφ2,

c4 = w, c5,y = wφ3 + sy(h0 + h1y), c6,y = sy

}
where s = (s, w, {sy}y∈S).

Fully-Secure ABE with Short Ciphertexts. Our encoding for this primitive
is shown as Scheme 4. Denote by T the maximum size for attribute sets S. No
further restriction is required. We can see that the ciphertext contains only 6
elements. The scheme is a reminiscent of the selectively secure ABE of [2]. The
correctness can be shown as follows. When R((A, π), S) = 1, we have coefficients
{μi}i∈I similarly as above. Hence, we have k1c1−k2c2−k3c3+

∑
i∈I μi

(
k4,ic4−

k5,ic5 + (k6,i(1,a)
�)c6
)
= αs, where (1,a) := (1, a1, . . . , aT ) and ai is the coef-

ficient of zi in p(z) =
∏

y∈S(z − y). Note that π(i) ∈ S implies p(π(i)) = 0.
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Pair Encoding Scheme 4: KP-ABE with Short Ciphertexts

Param(T ) → T + 6. Denote h = (h0, h1, . . . , hT+1, φ1, φ2, φ3, η).

For LSS A ∈ Zm×k
N , π : [1,m]→ ZN (π needed not be injective).

Enc1(A, π)→ k(α, r,h) =
(
k1, k2, k3, {k4,i, k5,i,k6,i}i∈[1,m]

)
:⎧⎪⎪⎨⎪⎪⎩

k1 = α+ rφ1 + uη, k2 = u, k3 = r,

k4,i = Aiv
� + riφ3, k5,i = ri,

k6,i =
(
rih0, ri

(
h2 − h1π(i)

)
, . . . , ri

(
hT+1 − h1π(i)

T
))
⎫⎪⎪⎬⎪⎪⎭

where v1 = rφ2, r = (r, u, r1, . . . , rm, v2, . . . , vk), v = (v1, . . . , vk).

For S ⊆ ZN such that |S| ≤ T ,
let ai be the coefficient of zi in p(z) :=

∏
y∈S(z − y).

Enc2(S) → c(s,h) =
(
c1, c2, c3, c4, c5, c6

)
:{

c1 = s, c2 = sη, c3 = sφ1 + wφ2,

c4 = w, c5 = wφ3 + s̃(h0 + h1a0 + · · ·+ hT+1aT ), c6 = s̃

}
where s = (s, w, s̃).

Both ABE schemes are special cases of our another new primitive called key-
policy over doubly spatial encryption. We prove their SMH, CMH security under
new static assumptions that are similar to those used for proving selective se-
curity of KP-ABE, CP-ABE of [26] respectively. Theses are provided in the full
version. All the assumptions hold in the generic (bilinear) group model.

Acknowledgement. I would like to thank Michel Abdalla, Takahiro Matsuda,
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Abstract. We introduce the problem of Multi-Input Functional En-
cryption, where a secret key skf can correspond to an n-ary func-
tion f that takes multiple ciphertexts as input. We formulate both
indistinguishability-based and simulation-based definitions of security
for this notion, and show close connections with indistinguishability and
virtual black-box definitions of obfuscation.
Assuming indistinguishability obfuscation for circuits, we present

constructions achieving indistinguishability security for a large class of
settings. We show how to modify this construction to achieve simulation-
based security as well, in those settings where simulation security is
possible.

1 Introduction

Traditionally, encryption has been used to secure a communication channel
between a unique sender-receiver pair. In recent years, however, our networked
world has opened up a large number of new usage scenarios for encryption. For
example, a single piece of encrypted data, perhaps stored in an untrusted cloud,
may need to be used in different ways by different users. To address this issue,
the notion of functional encryption (FE) was developed in a sequence of works
[19,13,7,14,15,6,16,18]. In functional encryption, a secret key skf can be created
for any functions f from a class F ; such a secret key is derived from the master
secret key MSK. Given any ciphertext c with underlying plaintext x, using SKf a
user can efficiently compute f(x). The security of FE requires that the adversary
“does not learn anything” about x, other than the computation result f(x).

How to define “does not learn anything about” x is a fascinating question
which has been addressed by a number of papers, with general formal definitions
first appearing in [6,16]. The definitions range from requiring a strict simulation
of the view of the adversary, which enlarges the range of applications, but has
been shown to necessitate a ciphertext whose size grows with the number of
functions for which secret keys will ever be released [1] (or a secret key whose
size grows with the number of ciphertexts that will ever be released [6]), to an
indistinguishability of ciphertexts requirement which supports the release of an
unbounded number of function keys and short ciphertexts.

Functional encryption seems to offer the perfect non-interactive solution to
many problems which arise in the context of delegating services to outside
servers. A typical example is the delegation of spam filtering to an outside server
as follows: Alice publishes her public key online and gives the spam filter a key for
the filtering function; Users sending email to Alice will encrypt the email with her
public key. The spam filter can now determine by itself, for each email, whether
to pass it along to Alice’s mailbox or to deem it as spam, but without ever
learning anything about Alice’s email (other than the fact that it was deemed
a spam message or not). This example inherently requires computing a function
f on a single ciphertext.

Multi-Input Functional Encryption. It is less clear, however, how to define or
achieve functional encryption in the context of computing a function defined
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over multiple plaintexts given their corresponding ciphertexts, or further, the
computation of functions defined over plaintexts given their ciphertexts each
encrypted under a different key. Yet, these settings, which we formalize as Multi-
Input Functional Encryption, encompass a vast landscape of applications, going
way beyond delegating computation to an untrusted server or cloud.

Let us begin by clarifying the setting of Multi-Input Functional Encryption:
Let f be an n-ary function where n > 1 can be a polynomial in the security
parameter. We begin by defining multi-input functional encryption where the
owner of a master secret key MSK can derive special keys SKf whose knowledge
enables the computation of f(x1, . . . , xn) from n ciphertexts c1, . . . , cn of
underlying messages x1, . . . , xn with respect to the same master secret key MSK.
We next allow the different ciphertexts ci to be each encrypted under a different
encryption key EKi to capture the setting in which each ciphertext was generated
by an entirely different party.

Let us illustrate a few settings in which one would want to compute a function
over multiple plaintexts given the corresponding ciphertexts.

Example: Multi-input symmetric-key FE can be used for secure searching over
encrypted data, where it can function in the same role as order-preserving
encryption (OPE) [4,5] or, more generally, property-preserving encryption [17].
A direct application of our construction yields the first OPE scheme to satisfy the
indistinguishability notion of security proposed by Boldyreva et al. [4], resolving
a primary open question in that line of research. More specifically, consider a
setting in which a client uploads several encrypted data items c1 = Enc(x1),
. . . , cn = Enc(xn) to a server. If at some later point in time the client wants to
retrieve all data items less than some value t, the client can send c∗ = Enc(t)
along with a secret key SKf for the (binary) comparison function. This allows the
server to identify exactly which data items are less than the desired threshold t
(and send the corresponding ciphertexts back to the client), without learning
anything beyond the relative ordering of the data items. In fact, we can hide
even more information than OPE: if the client tags every data item with a ‘0’
(i.e., uploads ci = Enc(0‖xi)) and tags the search term with a ‘1’ (i.e., sends
c∗ = Enc(1‖t)), then the client can send SKf for the function

f(b‖x, b′‖t) =
{

x < t b = 0, b′ = 1
0 otherwise

Thus, SKf allows comparisons only between the data items and the threshold,
but not between the data items themselves. More generally, the same approach
can be followed to enable arbitrary searches over encrypted data while revealing
only a minimal amount of information. We note also that the search query itself
can remain hidden as well.

More generally, suppose Alice wishes to perform a certain class of general
SQL queries over this database. If we use ordinary functional encryption, Alice
would need to obtain a separate secret key for every possible valid SQL query,
a potentially exponentially large set. Multi-input functional encryption allows
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us to address this problem in a flexible way. We highlight two aspects of how
Multi-Input Functional Encryption can apply to this example:

– Let f be the function where f(q, x) first checks if q is a valid SQL query
from the allowed class, and if so f(q, x) is the output of the query q on the
database x. Now, if we give the secret key SKf and the encryption key ek1
to Alice, then Alice can choose a valid query q and encrypt it under her
encryption key EK1 to obtain ciphertext c1. Then she could use her secret
key SKf on ciphertexts c1 and c2, where c2 is the encrypted database, to
obtain the results of the SQL query.

– Furthermore, if our application demanded that multiple users add or
manipulate different entries in the database, the most natural way to build
such a database would be to have different ciphertexts for each entry in the
database. In this case, for a database of size n, we could let f be an (n+1)-
ary function where f(q, x1, . . . , xn) is the result of a (valid) SQL query q on
the database (x1, . . . , xn).

1.1 This Paper

This paper is a merge of two independent works, both of which can be found
online [10,12]. These two works contain many overlapping results dedicated to
the study of multi-input functional encryption, starting with formalizations of
security. In them, the authors provide both feasibility results and negative results
with respect to different definitions of security. Following the single-input setting,
they consider two notions of security, namely, indistinguishability-based security
(or IND security for short) and simulation-based security (or SIM security for
short). Below we summarize only what appears in this proceedings, and refer
the reader to the full versions for a more complete study of the subject.

Indistinguishability-Based Security. We start by considering the notion of
indistinguishability-based security for n-ary multi-input functional encryption:
Informally speaking, in indistinguishability security for multi-input functional
encryption, we consider a game between a judge and an adversary. First, the
judge generates the master secret key MSK, evaluation keys {EK1, . . . ,EKn},
and public parameters, and gives to the adversary the public parameters and
a subset of evaluation keys (chosen by the adversary). Then the adversary can
request any number of secret keys SKf for functions f of the adversary’s choice.
Next, the adversary declares two “challenge vectors” of sets X0 and X1, where
Xb

i is a set of plaintexts. The judge chooses a bit b at random, and for each
i ∈ [n], the judge encrypts every element of Xb

i using evaluation key eki to
obtain a tuple of “challenge ciphertexts” C, which is given to the adversary.
After this, the adversary can again request any number of secret keys SKf for
functions f of the adversary’s choice. Finally, the adversary has to guess the bit
b that the judge chose.

If the adversary has requested any secret key SKf such that there exist
vectors of plaintexts x0 and x1 where for every i ∈ [n], either xb

i ∈ Xb
i or the

adversary has EKi, such that f(x0) = f(x1), then we say that this function f
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splits the challenge, and in this case the adversary loses – because the legitimate
functionalities that he has access to already allow him to distinguish between the
scenario where b = 0 and b = 1. If the adversary has never asked for any splitting
function, and nevertheless the adversary guesses b correctly, we say that he wins.
The indistinguishability-based security definition requires that the adversary’s
probability of winning be at most negligibly greater than 1

2 .
This definition generalizes the indistinguishability-based definition of (single-

input) functional encryption, which was historically the first security formaliza-
tion considered for functional encryption [19]. Informally speaking, this definition
captures an information-theoretic flavor of security, where the adversary should
not learn anything beyond what is information-theoretically revealed by the
function outputs it can obtain.

With regard to the indistinguishability notion of security, we obtain the
following results:

– Indistinguishability-based security implies indistinguishability
obfuscation, even for single-key security. We show that the existence
of a multi-input functional encryption scheme achieving indistinguishability-
based security for all circuits implies the existence of an indistinguishability
obfuscator [2] for all circuits, even when security is only needed against an
adversary that obtain a single secret key, and where the adversary does not
receive any evaluation keys. This stands in stark contrast to the single-
input setting, where [18] showed how to obtain single-key secure (single
input) functional encryption for all circuits, under only the assumption that
public-key encryption exists. Indeed further research in single-key security
for functional encryption has largely focused on efficiency issues [11] such as
succinctness of ciphertexts, that enable new applications. In the setting of
multi-input security, in contrast, even single key security must rely on the
existence of indistinguishability obfuscation.

– Positive Result, General Setting. On the other hand, if we assume
that an indistinguishability obfuscator for general circuits exists with sub-
exponential security (the first candidate construction was recently put
forward by [9]), and we assume that sub-exponentially secure one-way
functions exist, then we obtain full indistinguishability-based security for
any polynomial-size challenge vectors, with any subset of evaluation keys
given to the adversary. Furthermore, our construction has security when
the adversary can obtain any unbounded polynomial number of secret
keys SKf . Our result is obtained by first achieving selective security,
where the adversary must begin by declaring the challenge vectors, using
indistinguishability obfuscation and one-way functions (leveraging the results
of [20]). Then we use complexity leveraging to obtain full security in a
standard manner.

– Positive Result, Symmetric Key Setting. We consider a special case
where the adversary is not given any of the evaluation keys, corresponding
to a typical symmetric key setting. As an example, this can be useful in
a scenario where a single user wishes to outsource their private dataset to
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one or more untrusted servers, issuing keys to facilitate searches over the
data. In this setting, we give a construction with succinct ciphertexts whose
size is dependent only on the security parameter, and not on the number
of challenge plaintexts. We remark that the size of the public parameters,
which are used in encryption and decryption, still grows with the number of
challenge plaintexts. We refer the reader to the full versions [10,12] for ways
to remove this dependency.

– Positive Result, Isolated Time-steps.We consider one last setting where
each party encrypts a single plaintext in every time-step, and we modify the
security definition to prevent the computation on ciphertexts from different
time-steps. In this setting, as above, the adversary can request any subset
of the evaluation keys. We give a construction that has succinct ciphertexts,
dependent only on the security parameter, and independent of the number
of time-steps or the number of challenge plaintexts. (The remark about the
public parameters that appears above still applies.)

Simulation-Based Security. In simulation-based security, informally speak-
ing, we require that every adversary can be simulated using only oracle access
to the functions f for which the adversary obtains secret keys, even when it can
obtain a set of “challenge” ciphertexts corresponding to unknown plaintexts –
about which the simulator can only learn information by querying the function f
at these unknown plaintexts. We highlight two natural settings for the study of
simulation security for multi-input functional encryption: (1) the setting where
an adversary has access to an encryption key (analogous to the public-key
setting), and (2) the setting where the adversary does not have access to any
encryption keys (analogous to the secret key setting). The security guarantees
which are achievable in these settings will be vastly different as illustrated below.

Several works [6,1,3] have shown limitations on parameters with respect to
which simulation-based security can be achieved for single-input functional
encryption. For multi-input functional encryption, due to the connection to
obfuscation discussed above, the situation for simulation-based security is more
problematic. Indeed, it has been a folklore belief that n-ary functional encryption
with simulation-based security would imply Virtual Black-Box obfuscation,
which is known to be impossible [2]. We strengthen and formalize this folklore
in three results:

– In the setting where the adversary receives only a single key for a single n-
ary function, and receives no evaluation keys, and where the adversary can
obtain a set of challenge ciphertexts that can (informally speaking) form a
super-polynomial number of potential inputs to f , if simulation security is
possible then virtual black-box obfuscation must be possible for arbitrary
circuits, which is known to be impossible [2]. This follows immediately from
the same construction that shows the connection of indistinguishability-
based security to indistinguishability obfuscation mentioned above, and most
directly formalizes the folklore belief mentioned above.

– In the setting where the adversary receives only a single key for a 2-ary
function, and receives one evaluation key and one challenge ciphertext, if
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simulation security is possible then virtual black-box obfuscation must be
possible for arbitrary circuits, which is known to be impossible [2].

– The above results demonstrate that we cannot achieve simulation security
for arbitrary multi-input functions. Looking at which functions we might
support, we define a new notion of learnable functions and demonstrate
that we can only achieve simulation-based security for this type of function.
Informally, we call a 2-ary function, f(·, ·), learnable if, when given a
description of f and oracle access to f(x, ·), one can output the description of
a function that is indistinguishable from fx(·) (i.e. from the function obtained
when restricting f to input x).

Positive Result. In light of these negative results, the only hope for obtaining
a positive result lies in a situation where: (1) no evaluation keys are given to the
adversary, and (2) the challenge ciphertexts given to the adversary can only form
a polynomial number of potential inputs to valid functions. Assuming one-way
functions and indistinguishability obfuscation, for any fixed polynomial bound on
the size of these potential inputs we give a construction that achieves simulation-
based security for multi-input functional encryption where the adversary obtains
no evaluation keys, but can obtain some fixed polynomial number of secret keys
SKf before obtaining challenge ciphertexts, as well as an unbounded number of
secret keys SKf after obtaining challenge ciphertexts.

Finally, we complement this positive result by showing that even in the setting
where the adversary obtains no evaluation keys and an unlimited number of
challenge ciphertexts, simulation-based security is impossible if the adversary
can ask for even one secret key SKf before it obtains the challenge ciphertexts.

Our Techniques. We have several results in this work, but to provide some flavor
of the kinds of difficulties that arise in the multi-input functional encryption
setting, we now describe some of the issues that we deal with in the context of our
positive result for indistinguishability-based security for multi-input functional
encryption. (Similar issues arise in our other positive result for simulation-based
security.)

The starting point for our construction and analysis is the recent single-input
functional encryption scheme for general circuits based on indistinguishability
obfuscation due to [9]. However, the central issue that we must deal with is
one that does not arise in their context: Recall that in the indistinguishability
security game, the adversary is allowed to get secret keys for any function f , as
long as this function does not “split” the challenge vectors X0 and X1. That
is, as long as it is not the case that there exist vectors of plaintexts x0 and x1

where for every i ∈ [n], either there exists j such that xb
i ∈ Xb

j or the adversary

has EKi, such that f(x0) = f(x1). A crucial point here is what happens for an
index i where the adversary does not have EKi. Let us consider an example with
a 3-ary function, where the adversary has EK1, but neither EK2 nor EK3.

Suppose the challenge ciphertexts (CT1,CT2,CT3) are encryptions of either
(y01 , y

0
2 , y

0
3) or (y11 , y

1
2 , y

1
3). Now, any function f that the adversary queries is

required to be such that f(·, y02 , y03) ≡ f(·, y12 , y13) and f(y01, y
0
2 , y

0
3) = f(y11 , y

1
2 , y

1
3).
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However, there may exist an input plaintext (say) z such that f(y01 , y
0
2 , z) =

f(y11 , y
1
2, z). This is not “supposed” to be a problembecause the adversarydoes not

have EK3, and therefore it cannot actually query f with z as its third argument.
However, in the obfuscation-based approach to functional encryption of [9]

that we build on, the secret key for f is essentially built on top of an obfuscation
of f . Let CT∗ denote an encryption of z w.r.t. EK3. Then, informally speaking, in
one of our hybrid experiments, we will need to move from an obfuscation that on
input (CT1,CT2,CT

∗) would yield the output f(y01 , y
0
2 , z) to another obfuscation

that on the same input would yield the output f(y11 , y
1
2 , z). Again, while an

adversary may not be able explicitly perform such a decryption query, since we
are building upon indistinguishability obfuscation – which only guarantees that
obfuscations of circuits that implement identical functions are indistinguishable
– such a hybrid change would not be indistinguishable since we know that
f(y01 , y

0
2, z) = f(y11, y

1
2 , z) are not identical.

Solving this problem is the core technical aspect of our constructions and
their analysis. At a very high level, we address this problem by introducing a new
“flag” value that can change the nature of the function f that we are obfuscating
to “disable” all plaintexts except for the ones that are in the challenge vectors.
We provide more intuition in the full-versions.

Open Questions. Currently, our positive result for indistinguishability-based
security requires that there to be a fixed polynomial limit on the size of challenge
vectors, known at the time of setup. Unlike in the case of simulation security, we
know of no corresponding lower bound showing that such a bound is necessary.
Achieving full security without using complexity leveraging is another open
question.

2 Multi-Input Functional Encryption

In this work, we study functional encryption for n-ary functions, where n > 1
(and in general, a polynomial in the security parameter). In other words, we
are interested in encryption schemes where the owner of a “master” secret key
can generate special keys SKf that allow the computation of f(x1, . . . , xn) from
n ciphertexts CT1, . . . ,CTn corresponding to messages x1, . . . , xn, respectively.
We refer to such an encryption scheme as multi-input functional encryption.
Analogously, we will refer to the existing notion of functional encryption (that
only considers single-ary functions) as single-input functional encryption.

Intuitively, while single-input functional encryption can be viewed as a specific
(non-interactive) way of performing two-party computation, our setting of multi-
input functional encryption captures multiparty computation. Going forward
with this analogy, we are interested in modeling the general scenario where the n
input ciphertexts are computed by n different parties. This raises the following
two important questions:

1. Do the parties (i.e., the encryptors) share the same encryption key or do
they use different encryption keys EKi to compute input ciphertexts CTi.

2. Are the encryption keys secret or public?
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As we shall see, these questions have important bearing on the security
guarantees that can be achieved for multi-input functional encryption.

Towards that end, we present a general, unified syntax and security definitions
for multi-input functional encryption. We consider encryption systems with n
encryption keys, some of which may be public, while the rest are secret. When all
of the encryption keys are public, then this represents the “public-key” setting,
while when all the encryption keys are secret, then this represents the “secret-
key” setting. Looking ahead, we remark that our modeling allows us to capture
the intermediary cases between these two extremes that are interesting from the
viewpoint of the security guarantees possible.

The rest of this section is organized as follows. We first present the syntax and
correctness requirements for multi-input FE in Section 2.1). Then, in Section 2.2,
we present our security definitions for multi-input FE. In Section 2.3 we give a
construction that meets these definitions.

2.1 Syntax

Throughout the paper, we denote the security parameter by k. Let X = {Xk}k∈N
and Y = {Yk}k∈N be ensembles where each Xk and Yk is a finite set. Let F =
{Fk}k∈N be an ensemble where each Fk is a finite collection of n-ary functions.
Each function f ∈ Fk takes as input n strings x1, . . . , xn, where each xi ∈ Xk

and outputs f(x1, . . . , xn) ∈ Yk.
A multi-input functional encryption scheme FE for F consists of four

algorithms (FE.Setup, FE.Enc, FE.Keygen, FE.Dec) described below.

– Setup FE.Setup(1k, n) is a PPT algorithm that takes as input the security
parameter k and the function arity n. It outputs n encryption keys
EK1, . . . ,EKn and a master secret key MSK.

– Encryption FE.Enc(EK, x) is a PPT algorithm that takes as input an
encryption key EKi ∈ (EK1, . . . ,EKn) and an input message x ∈ Xk and
outputs a ciphertext CT.
In the case where all of the encryption keys EKi are the same, we assume that
each ciphertext CT has an associated label i to denote that the encrypted
plaintext constitutes an i’th input to a function f ∈ Fk. For convenience of
notation, we omit the labels from the explicit description of the ciphertexts.
In particular, note that when EKi’s are distinct, the index of the encryption
key EKi used to compute CT implicitly denotes that the plaintext encrypted
in CT constitutes an i’th input to f , and thus no explicit label is necessary.

– Key Generation FE.Keygen(MSK, f) is a PPT algorithm that takes as
input the master secret key MSK and an n-ary function f ∈ Fk and outputs
a corresponding secret key SKf .

– Decryption FE.Dec(SKf ,CT1, . . . ,CTn) is a deterministic algorithm that
takes as input a secret key SKf and n ciphertexts CTi, . . . ,CTn and outputs
a string y ∈ Yk.
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Definition 1 (Correctness). A multi-input functional encryption scheme FE
for F is correct if for all f ∈ Fk and all (x1, . . . , xn) ∈ Xn

k :

Pr

[
(EK,MSK) ← FE.Setup(1k) ; SKf ← FE.Keygen(MSK, f) ;

FE.Dec (SKf , FE.Enc (EK1, x1) , . . . , FE.Enc (EKn, xn)) �= f(x1, . . . , xn)

]
= negl(k)

where the probability is taken over the coins of FE.Setup, FE.Keygen and FE.Enc.

2.2 Security for Multi-Input Functional Encryption

We now present our security definitions for multi-input functional encryption.
We provide the most general possible definition with respect to adversarial
corruptions, allowing the adversary to choose which subset of parties he corrupts,
and which evaluation keys he will learn as a consequence. In Section 3 we will
consider more restricted definitions.

Following the literature on single-input FE, we consider two notions of
security, namely, indistinguishability-based security (or IND-security, in short)
and simulation-based security (or SIM-security, in short).

Notation. We start by introducing some notation that is used in our security
definitions. Let N denote the set of positive integers {1, . . . , n} where n denotes
the arity of functions. For any two sets S = {s0, . . . , s|S|} and I = {i1, . . . , i|I|}
such that |I| ≤ |S|, we let SI denote the subset {si}i∈I of the set S. Throughout
the text, we use the vector and set notation interchangeably, as per convenience.
For simplicity of notation, we omit explicit reference to auxiliary input to the
adversary from our definitions.

Indistinguishability-BasedSecurity. Here we present an indistinguishability-
based security definition for multi-input FE.

Intuition. We start by giving an overview of the main ideas behind our
indistinguishability-based security definition. To convey the core ideas, it suffices
to consider the case of 2-ary functions. We will assume familiarity with the
security definitions for single-input FE.

Let us start by considering the natural extension of public-key single-input
FE to the two-input setting. That is, suppose there are two public encryption
keys EK1, EK2 that are used to create ciphertexts of first inputs and second
inputs, respectively, for 2-ary functions. Let us investigate what security can
be achieved for one pair of challenge message tuples (x0

1, x
0
2), (x

1
1, x

1
2) for the

simplified case where the adversary makes secret key queries after receiving the
challenge ciphertexts.

Suppose that the adversary queries secret keys for functions {f}. Now, recall
that the IND-security definition in the single-input case guarantees that an
adversary cannot differentiate between encryptions of x0 and x1 as long as
f(x0) = f(x1) for every f ∈ {f}. We note, however, that an analogous security
guarantee cannot be achieved in the multi-input setting. That is, restricting



588 S. Goldwasser et al.

the functions {f} to be such that f(x0
1, x

0
2) = f(x1

1, x
1
2) is not enough since an

adversary who knows both the encryption keys can create its own ciphertexts
w.r.t. each encryption key. Then, by using the secret key corresponding to
function f , it can learn additional values {f(xb

1, ·)} and {f(·, xb
2)}, where b is

the challenge bit. In particular, if, for example, there exists an input x∗ such
that f(x0

1, x
∗) = f(x1

1, x
∗), then the adversary can learn the challenge bit b!

Therefore, we must enforce additional restrictions on the query functions f .
Specifically, we must require that f(x0

1, x
′) = f(x1

1, x
′) for every input x′ in the

domain (and similarly f(x′, x0
2) = f(x′, x1

2)). Note that this restriction “grows”
with the arity n of the functions.

Let us now consider the secret-key case, where all the encryption keys are
secret. In this case, for the above example, it suffices to require that f(x0

1, x
0
2) =

f(x1
1, x

1
2) since the adversary cannot create its own ciphertexts. Observe,

however, that when there are multiple challenge messages, then an adversary can
learn function evaluations over different “combinations” of challenge messages.
In particular, if there are q challenge messages per encryption key, then the
adversary can learn q2 output values for every f . Then, we must enforce that
for every i ∈ [q2], the i’th output value y0i when challenge bit b = 0 is equal to
the output value y1i when the challenge bit b = 1.

The security guarantees in the public-key and the secret-key settings as
discussed above are vastly different. In general, we observe that the more the
number of encryption keys that are public, the smaller the class of functions that
can be supported by the definition. Bellow, we present a unified definition that
simultaneously captures the extreme cases of public-key and secret-key settings
as well as all the “in between” cases.

Notation. Our security definition is parameterized by two variables t and q,
where t denotes the number of encryption keys known to the adversary, and q
denotes the number of challenge messages per encryption key. Thus, in total, the
adversary is allowed to make Q = q · n number of challenge message queries.

To facilitate the presentation of our IND security definition, we first introduce
the following two notions:

Definition 2 (Function Compatibility). Let {f} be any set of functions f ∈
Fk. Let N = {1, . . . , n} and I ⊆ N. Then, a pair of message vectors X0 and X1,
where Xb =

{
xb
1,j , . . . , x

b
n,j

}q
j=1

, are said to be I-compatible with {f} if they

satisfy the following property:

– For every f ∈ {f}, every I′ = {i1, . . . , it} ⊆ I ∪ ∅, every j1, . . . , jn−t ∈ [q],
and every x′i1 , . . . , x

′
it ∈ Xk,

f
(⎡

x0
i1,j1 , . . . , x

0
in−t′ ,jn−t

, x′
i1 , . . . , x

′
it

⎣⎤
=f

(⎦
x1
i1,j1 , . . . , x

1
in−t,jn−t

, x′
i1 , . . . , x

′
it

〉)
,

where 〈yi1 , . . . , yin〉 denotes a permutation of the values yi1 , . . . , yin such that
the value yij is mapped to the 
’th location if yij is the 
’th input (out of n
inputs) to f .
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Definition 3 (Message Compatibility). Let X0 and X1 be any pair of
message vectors , where Xb =

{
xb
1,j , . . . , x

b
n,j

}q
j=1

. Let N = {1, . . . , k} and I ⊆ N.

Then, a function f ∈ Fk is said to be I-compatible with (X0,X1) if it satisfies
the following property:

– For every I′ = {i1, . . . , it} ⊆ I ∪ ∅, every j1, . . . , jn−t ∈ [q] and every
x′i1 , . . . , x

′
it ∈ Xk,

f
(⎦
x0
i1,j1 , . . . , x

0
in−t,jn−t

, x′
i1 , . . . , x

′
it

〉)
= f

(⎦
x1
i1,j1 , . . . , x

1
in−t,jn−t

, x′
i1 , . . . , x

′
it

〉)
,

We are now ready to present our formal definition for (t, q)-IND-secure multi-
input functional encryption.

Definition 4 (Indistinguishability-based security). We say that a multi-
input functional encryption scheme FE for for n-ary functions F is (t, q)-IND-
secure if for every PPT adversary A = (A0,A1,A2), the advantage of A defined
as

AdvFE,IND
A (1k) =

∣∣∣∣Pr[INDFE
A (1k) = 1]− 1

2

∣∣∣∣
is negl(k), where:

Experiment INDFE
A (1k):

(I, st0)← A0(1
k) where |I| = t

(EK,MSK)← FE.Setup(1k)

(X0,X1, st1)← AFE.Keygen(MSK,·)
1 (st0,EKI) where X� =

{
x�
1,j , . . . , x

�
n,j

}q
j=1

b← {0, 1} ; CTi,j ← FE.Enc(EKi, x
b
i,j) ∀i ∈ [n], j ∈ [q]

b′ ← AFE.Keygen(MSK,·)
2 (st1,CT)

Output: (b = b′)

In the above experiment, we require:

– Compatibility with Function Queries: Let {f} denote the entire set of
key queries made by A1. Then, the challenge message vectors X0 and X1

chosen by A1 must be I-compatible with {f}.
– Compatibility with Ciphertext Queries: Every key query g made by
A2 must be I-compatible with X0 and X1.

Selective Security. We also consider selective indistinguishability-based security
for multi-input functional encryption. Formally, (t, q)-sel-IND-security is defined
in the same manner as Definition 4, except that the adversary A1 is required to
choose the challenge message vectors X0, X1 before the evaluation keys EK and
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the master secret key MSK are chosen by the challenger. We omit the formal
definition to avoid repetition.

Simulation-Based Security. Here we present a simulation-based security
definition for multi-input FE. We consider the case where the adversary makes
key queries after choosing the challenge messages. That is, we only consider
adaptive key queries.

Our definition extends the simulation-based security definition for single-input
FE that supports adaptive key queries[6,16,3,8]. In particular, we present a
general definition that models both black-box and non-black-box simulation.

Intuition. We start by giving an overview of the main ideas behind our
simulation-based security definition. To convey the core ideas, it suffices to
consider the case of 2-ary functions. Let us start by considering the natural
extension of public-key single-input FE to the two-input setting. That is,
suppose there are two public encryption keys EK1, EK2 that are used to create
ciphertexts of first inputs and second inputs, respectively, for 2-ary functions.
Let us investigate what security can be achieved for one challenge message tuple
(x1, x2).

Suppose that the adversary queries secret keys for functions {f}. Now, recall
that the SIM-security definition in the single-input case guarantees that for every
f ∈ {f}, an adversary cannot learn more than f(x) when x is the challenge
message. We note, however, that an analogous security guarantee cannot be
achieved in the multi-input setting. Indeed, an adversary who knows both the
encryption keys can create its own ciphertexts w.r.t. each encryption key. Then,
by using the secret key corresponding to function f , it can learn additional values
{f(x1, ·)} and {f(·, x2)}. Thus, we must allow for the ideal world adversary, aka
simulator, to learn the same information.

In the secret-key case, however, since all of the encryption keys are secret, the
SIM-security definition for single-input FE indeed extends in a natural manner
to the multi-input setting. We stress, however, that when there are multiple
challenge messages, we must take into account the fact that adversary can learn
function evaluations over all possible “combinations” of challenge messages. Our
definition presented below formalizes this intuition.

Similar to the IND-security case, our definition is parameterized by variables
t and q as defined earlier. We now formally define (t, q)-SIM-secure multi-input
functional encryption.

Definition 5 (Simulation-based Security). We say that a functional en-
cryption scheme FE for n-ary functions F is (t, q)-SIM-secure if for every PPT
adversary A = (A0,A1,A2), there exists a PPT simulator S = (S0,S1,S2)
such that the outputs of the following two experiments are computationally
indistinguishable:
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Experiment REALFEA (1k):
(I, st0)← A0(1

k) where |I| = t
(EK,MSK)← FE.Setup(1k)
(M, st1)← A1(st0,EKI)
X ←M where X = {x1,j , . . . , xn,j}qj=1

CTi,j ← FE.Enc(EKi, xi,j) ∀i ∈ [n], j ∈ [q]

α← AFE.Keygen(MSK,·)
2 (CT, st1)

Output: (I,M,X, {f}, α)

Experiment IDEALFES (1k):
(I, st0)← S0(1k)
(M, st1)← S1(st0)
α← STP(M,·,·)

2 (st1)
Output: (I,M,X, {g}, α)

where the oracle TP(M, ·, ·) denotes the ideal world trusted party, {f} denotes the
set of queries of A2 to FE.Keygen and {g} denotes the set of functions appearing
in the queries of S2 to TP. Given the message distributionM, TP first samples a
message vector X ←M , where X = {x1,j , . . . , xn,j}qj=1. It then accepts queries

of the form
(
g, (j1, . . . , jn−p) ,

(
x′i′1

, . . . , x′i′p

))
where p ≤ t, {i′1, . . . , i′p} ⊆ I ∪ ∅

and x′i′1
, . . . , x′i′p ∈ Xk. On receiving such a query, TP outputs:

g
(〈

xi1,j1 , . . . , xin−p,jn−p , x
′
i′1
, . . . , x′i′p

〉)
,

where 〈yi1 , . . . , yin〉 denotes a permutation of the values yi1 , . . . , yin such that the
value yij is mapped to the 
’th location if yij is the 
’th input (out of n inputs)
to g.

Remark 1 (On Queries to the Trusted Party). Note that when t = 0, then given
the challenge ciphertexts CT, intuitively, the real adversary can only compute
values FE.Dec (SKf ,CT1,j1 , . . . ,CTn,jn) for every ji ∈ [q], i ∈ [n]. To formalize
the intuition that this adversary does not learn anything more than function
values {f (x1,j1 , . . . , xn,jn)}, we restrict the ideal adversary aka simulator to learn
exactly this information.

However, when t > 0, then the real adversary can compute values:

FE.Dec
(
SKf ,
〈
CTi1,j1 , . . . ,CTin−t,jn−t ,CT

′
i′1
, . . . ,CT′i′t

〉)
for ciphertexts CT′i′	 of its choice since it knows the encryption keys EKI.
In other words, such an adversary can learn function values of the form
f
(〈

xi1,j1 , . . . , xin−t,jn−t , ·, . . . , ·
〉)
. Thus, we must provide the same ability to

the simulator as well. Our definition presented above precisely captures this.

Selective Security. We also consider selective simulation-based security for multi-
input functional encryption. Formally, (t, q)-sel-SIM-security is defined in the
same manner as Definition 5, except that in the real world experiment, adversary
A1 chooses the message distribution M before the evaluation keys EK and
the master secret key MSK are chosen by the challenger. We omit the formal
definition to avoid repetition.
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Remark 2 (SIM-security: Secret-key setting).When t = 0, none of the encryption
keys are known to the adversary. In this “secret-key” setting, there is no
difference between (0, q)-sel-SIM-security and (0, q)-SIM-security.

Impossibility of (0, poly (k))-SIM-security. We note that the lower bounds of
[6,3] already establish that it is impossible to achieve (0, poly(k))-SIM-secure
functional encryption for 1-ary functions. In particular, [6] prove their result
for the IBE functionality, while the [3] impossibility result is given for almost
all 1-ary functionalities (assuming the existence of collision-resistance hash
functions). The positive results in this paper for SIM-secure multi-input FE are
consistent with these negative results. That is, our constructions (for general
functionalities) provide SIM security only for the case where the number of
challenge messages q are a priori bounded.

2.3 A Construction for the General Case

Let F denote the family of all efficiently computable (deterministic) n-ary
functions. We now present a functional encryption scheme FE for F . Assuming
the existence of one-way functions and indistinguishability obfuscation for
all efficiently computable circuits, we prove the following security guarantees
for FE :

1. For t = 0, and any q = q(k) such that
(
qn
n

)
= poly(k), FE is (0, q)-SIM-

secure.1 In this case, the size of the secret keys in FE grows linearly with(
qn
n

)
.

2. For any t ≤ n and q = poly(k), FE is (t, q)-sel-IND-secure. In this case, the
size of the secret keys is independent of q.

Note that by using standard complexity leveraging, we can extend the second
result to show that FE is, in fact, (t, q)-IND-secure. Note that in this case, we
would require the indistinguishability obfuscator iO (and the one-way function)
to be secure against adversaries running in time O(2M ), where M denotes the
total length of the challenge message vectors.

Notation. Let (CRSGen,Prove,Verify) be a NIWI proof system. Let Com denote
a perfectly binding commitment scheme. Let iO denote an indistinguishability
obfuscator. Finally, let PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a semantically
secure public-key encryption scheme. We denote the length of ciphertexts in PKE
by c-len = c-len(k). Let len = 2 · c-len.

We now proceed to describe our scheme FE = (FE.Setup,FE.Enc,FE.Keygen,
FE.Dec).

Setup FE.Setup(1k): The setup algorithm first computes a CRS crs←CRSGen(1k)
for the NIWI proof system. Next, it computes two key pairs – (pk1, sk1) ←
1 Recall that when t = 0, there is no difference between selective security and standard
security as defined in Section 2.2. See Remark 2.
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PKE.Setup(1k) and (pk2, sk2) ← PKE.Setup(1k) – of the public-key encryption
scheme PKE. Finally, it computes the following commitments: (a) Zi,j

1 ←
Com(0len) for every i ∈ [n], j ∈ [q]. (b) Zi

2 ← Com(0) for every i ∈ [n].

For every i ∈ [n], the i’th encryption key EKi =
(
crs, pk1, pk2,

{
Zi,j
1

}
, Zi

2, r
i
2

)
where ri2 is the randomness used to compute the commitment Zi

2. The master

secret key is set to be MSK =
(
crs, pk1, pk2, sk1,

{
Zi,j
1

}
,
{
Zi
2

})
. The setup

algorithm outputs (EK1, . . . ,EKn,MSK).

Encryption FE.Enc(EKi, x): To encrypt a message x with the i’th encryption
key EKi, the encryption algorithm first computes c1 ← PKE.Enc(pk1, x) and
c2 ← PKE.Enc(pk2, x). Next, it computes a NIWI proof π ← Prove(crs, y, w) for

the statement y =
(
c1, c2, pk1, pk2,

{
Zi,j
1

}
, Zi

2

)
:

– Either c1 and c2 are encryptions of the same message and Zi
2 is a commitment

to 0, or
– ∃ j ∈ [q] s.t. Zi,j

1 is a commitment to c1‖c2.

A witness wreal = (m, s1, s2, r
i
2) for the first part of the statement, referred to

as the real witness, includes the message m and the randomness s1 and s2 used
to compute the ciphertexts c1 and c2, respectively, and the randomness ri2 used
to compute Zi

2. A witness wtrap = (j, ri,j1 ) for the second part of the statement,

referred to as the trapdoor witness, includes an index j and the randomness ri,j1

used to compute Zi,j
1 .

The honest encryption algorithm uses the real witness wreal to compute π.
The output of the algorithm is the ciphertext CT = (c1, c2, π).

Key Generation FE.Keygen(MSK, f): The key generation algorithm on input f
computes SKf ← iO(Gf ) where the function Gf is defined in Figure 1. Note that
Gf has the master secret key MSK hardwired in its description.

Gf (CT1, . . . ,CTn)

1. For every i ∈ [n]:
(a) Parse CTi = (ci,1, ci,2, πi).
(b) Let yi =

(
ci,1, ci,2, pk1, pk2,

{
Zi,j

1

}
, Zi

2

)
be the statement corresponding

to the proof string πi. If Verify(crs, yi, πi) = 0, then stop and output ⊥.
Otherwise, continue to the next step.

(c) Compute xi ← PKE.Dec(sk1, ci,1).
2. Output f(x1, . . . , xn).

Fig. 1. Functionality Gf

The algorithm outputs SKf as the secret key for f .
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Size of Function Gf . In order to prove that FE is (0, q)-SIM-secure, we require
the function Gf to be padded with zeros such that |Gf | = |Sim.Gf |, where the
“simulated” functionality Sim.Gf is described in the full version. In this case,
the size of SKf grows linearly with

(
qn
n

)
.

Note, however, that such a padding is not necessary to prove (t, q)-sel-IND-
security for FE . Indeed, in this case, the secret keys SKf are independent of the
number of message queries q made by the adversary.

Decryption FE.Dec(SKf ,CT1, . . . ,CTn): The decryption algorithm on input
(CT1, . . . ,CTn) computes and outputs SKf (CT1, . . . ,CTn).

This completes the description of our functional encryption scheme FE . The
correctness property of the scheme follows from inspection. In the full version
by Goldwasser et al. [10], we prove that FE is (0, q)-SIM-secure, and that FE is
(t, q)-sel-IND-secure (and (t, q)-IND-secure via complexity leveraging).

3 Restricted Security Notions

In this section we present indistinguishability-based definitions and constructions
for two restricted settings: the symmetric key setting in which the adversary does
not learn any evaluation keys, and a setting in which all clients operate in fixed
time-steps, encrypting only one plaintext in each time-step. In this latter setting,
we do not allow functions to compute on ciphertexts from different time-steps.
A full exposition appears in the full version by Gordon et al. [12].

3.1 The Symmetric-Key Setting

For simplicity, we focus on the binary-input setting in the symmetric key setting.
However, we remark that our construction extends naturally to the n-ary setting.
The only modification is to make the iO circuit accept more ciphertexts as
inputs, and compute the function f over all decrypted values. The proof follows
in a straightforward manner.

Definitions. Let F = {Fn}n>0 be a collection of function families, where every

f ∈ Fn is a polynomial time function f : {0, 1}m1(n) × {0, 1}m2(n) → Σ. A
binary symmetric key FE scheme supporting F is a collection of 4 algorithms:
(Setup,KeyGen,Enc,Eval). The first three algorithms are probabilistic, and Eval
is deterministic. They have the following semantics, if we leave the randomness
implicit:

Setup: (msk, param)← Setup(1κ)

KeyGen: for any f ∈ Fn, TKf ← KeyGen(msk, f)

Enc: CT← Enc(msk, x)

Eval: ans← Eval(param,TKf ,CT1,CT2)
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As usual, we must define the desired correctness and security properties.
The correctness property states that, given (msk, param) ← Setup(1κ), with
overwhelming probability over the randomness used in Setup, KeyGen and Enc,
it holds that Eval(KeyGen(msk, f), param,Enc(msk, x),Enc(msk, y)) = f(x, y).

We now define security for IND-secure symmetric-key binary FE. In the
full version by Gordon et al.[12] we provide the stronger, adaptive security
definition. Unlike in the public key setting, here single-message security does
not imply multi-message security, so we cannot prove a parallel to Lemma 1.
(Technically, the problem arises in the reduction, where the simulator cannot
create the necessary ciphertexts for the hybrid world without knowing the secret
key.) Instead, we only define the multi-message variant.

Our construction below only achieves selective security, but we note that
we can achieve adaptive security through standard complexity-leveraging tech-
niques. (We omit the details.)

Selective security. An Ind-Secure scheme is said to be selectively IND-secure if
for all PPT, non-trivial adversary A, its probability of winning the following
game is Pr[b = b′] < 1

2 + negl(κ).

Ind-Secure-selective:

1. {(x1, . . . , xn), (y1, . . . , yn)} ← A(1κ)
2. (msk, param)← Setup(1κ)
3. b← {0, 1}
4. if b = 0: ∀i ∈ [n] : CTi ← Enc(msk, xi), else: ∀i ∈ [n] : CTi ← Enc(msk, yi).

5. b′ ← AKeyGen(·)(param,CT1, . . . ,CTn)

An adversary is considered non-trivial if for every query f made to the KeyGen(·)
oracle, and for all i, j ∈ [n], it holds that f(xi, xj) = f(yi, yj). We note that this
is a much weaker restriction on the adversary than the one used in the public
key setting, which makes symmetric key schemes more difficult to construct.

A Construction

Scheme description. Our construction uses a SSS-NIZK scheme NIZK :=
(Setup,Prove,Verify) that is statistically simulation sound for multiple simu-
lated statements an indistinguishable obfuscation scheme iO, and a perfectly
binding commitment scheme (commit, open), all of which are defined in the
full version [12]. We also use a CPA-secure public-key encryption scheme
E := (Gen,Enc,Dec) with perfect correctness. Our construction is as follows:
Setup(1κ) :

1. crs← NIZK.Setup(1κ)
2. α, r ← {0, 1}κ; com = commit(α; r)
3. (pk, sk)← E .Gen(1κ), (pk′, sk′)← E .Gen(1κ)
4. Output param := (crs, pk, pk′, com), msk := (sk, sk′, α, r)
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Internal (hardcoded) state: param = (crs, pk, pk′, com), sk, f

On input: CT0,CT1

– Parse CT0 as (c0, c
′
0, α0, π0) and CT1 as (c1, c

′
1, α1, π1). Let

stmt0 := (c0, c
′
0, α0), and stmt1 := (c1, c

′
1, α1). Verify that α0 = α1

and NIZK.Verify(crs, stmt0, π0) = NIZK.Verify(crs, stmt1, π1) = 1. If
fails, output ⊥.
– Compute x0 = E .Dec(sk, c0) and x1 = E .Dec(sk, c1) output
f(x0, x1).

Fig. 2. Symmetric-key IND-secure binary FE: Program P

KeyGen(msk, f)

1. Using msk = (sk, sk′, α, r), construct a circuit Cf that computes program P
as described in Figure 2.

2. Define TKf := iO(Cf ), and output TKf .

Enc(msk, x):

1. Parse msk as (sk, sk′, α, r).
2. Compute c = E .Enc(pk;x; ρ) and c′ = E .Enc(pk′;x; ρ′) for random strings ρ

and ρ′ consumed by the encryption algorithm.
3. Output CT := (c, c′, α, π) where π := NIZK.Prove(crs, (c, c′, α), (r, ρ, ρ′, x))

is a NIZK for the language Lpk,pk′,com: for any statement stmt := (c, c′, α),
stmt ∈ Lpk,pk′,com if and only if ∃(r, ρ, ρ′, x) s.t. (c = E .Enc(pk;x; ρ)) ∧(
c′ = E .Enc(pk′;x; ρ′)

)
∧ (com = commit(α; r)).

Eval(param,TKf ,CT0,CT1):

1. Interpret TKf as an obfuscated circuit. Compute TKf (CT0,CT1) and output
the result.

In the full version we provide a proof of the following theorem [12].

Theorem 1. If the iO is secure, the NIZK is statistically simulation sound, the
commitment is perfectly binding and computationally hiding, and the encryption
scheme is semantically secure and perfectly correct, then the above construction
is selectively IND-secure, as defined in Section 3.1

Instantiation and efficiency. If we use the approach described in our full version
for constructing the SSS-NIZK, the ciphertext is succinct, and is poly(κ) in size
[12]. For a scheme tolerant up to n ciphertext queries, the public parameter size,
encryption time, decryption time areO(n)poly(κ). The reason for the dependence
on n is due to the simulator’s need to simultaneously simulate O(n) SSS-NIZKs
in the simulation, which increases the size of the crs. Removing the dependence
on n remains an important open problem.
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3.2 Time-dependent Setting

Definitions. Let F = {F�}�>0 be a collection of function families, where every
f ∈ F� is a polynomial time function f : D� × · · · × D� → Σ. A multi-client
functional encryption scheme (MC-FE) supporting n users and function family
F� is a collection of the following algorithms:

Setup : (msk, {uski}i∈[n])← Setup(1κ, n), uski is a user secret key

Enc : CT ← Enc(uski, x, t), here t ∈ N denotes the current time step

KeyGen : TKf ← KeyGen(msk, f).

Dec : ans← Dec(TKf , {CT1,CT2, . . . ,CTn}).

Correctness. We say that an MC-FE scheme is correct, if given
(msk, {uski}i∈[n]) ← Setup(1κ, n), given some t ∈ N, except with negligible
probability over randomness used in Setup, Enc, KeyGen, and Dec, it holds that
Dec(KeyGen(msk, f),Enc(usk1, x1, t), . . . ,Enc(uskn, xn, t)) = f(x1, x2, . . . , xn).

Below we define a selectively secure indistinguishability-based security for
binary FE. In the full version [12] we provide two other, stronger security
definitions, both allowing adaptive plaintext challenges. There we prove the
following Lemma stating that the two notions are equivalent.

Lemma 1. Adaptive, multi-message indistinguishability security is equivalent to
adaptive, single-message indistinguishability security.

Our construction below only achieves selective security, but we note that we can
achieve the stronger definitions through standard complexity-leveraging tech-
niques [Folklore]. (We omit the details.)

Our definitions assume a static corruption model where the corrupted parties
are specified at the beginning of the security game. How to support adaptive
corruption is an interesting direction for future work.

Notations. We often use a shorthand x to denote a vector x := (x1, x2, . . . , xn).
Let disjoint sets G,G denote the set of uncorrupted and corrupted parties respec-
tively. G ∪G = [n]. We use the short-hand −→varG to denote the vector {vari}i∈G

for a variable var. Similarly, we use the short-hand CTG ← Enc(uskG,xG, t) to
denote the following: ∀i ∈ G : CTi ← Enc(uski, xi, t). We use the shorthand

f(xG, ·) : D|G| → Σ to denote a function restricted to a subset G on inputs
denoted xG ∈ D|G|. Let h := f(xG, ·), then by our definition, h(xG) := f(x).

Selective security. We define a relaxation of the above security notion called
selective security. Define the following single-challenge, selective experiment for
a stateful adversary A. For simplicity, we will omit writing the adversary A’s
state explicitly.

Define short-hand K(·) := KeyGen(msk, ·) to be an oracle to the KeyGen
function. Define EG(·) to be a stateful encryption oracle for the uncorrupted set
G. Its initial state is the intial time step counter t := 0. Upon each invocation
EG(xG), the oracle increments the current time step t ← t + 1, and returns
Enc(uskG,xG, t).
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1. G,G, (x∗G,y∗G)← A.
2. b

$← {0, 1}, (msk, {uski}i∈[n])← Setup(1κ, n)

3. “challenge”← AK(·),EG(·)(uskG).
4. If b = 0: CT∗

G ← EG(x
∗
G). Else: CT∗

G ← EG(y
∗
G).

5. b′ ← AK(·),EG(·)(CT∗
G).

We sayA is non-trivial, if for any function f queried to the KeyGen(msk, ·) oracle,
f(x∗G, ·) = f(y∗G, ·).

Definition 6 (Selective IND-security of MC-FE). We say that an MC-FE
scheme is selectively and indistinguishably secure, if for any polynomial-time,
non-trivial adversary A in the above selective security game,

∣∣Pr[b′ = b]− 1
2

∣∣ ≤
negl(κ).
A Construction Intuition: In this setting, the adversary is allowed to corrupt
some set Ḡ. Our restriction on the adversary is that for challenge vectors xG

and yG, f(xG, · · · ) = f(yG, · · · ), where xG and yG correspond to the plaintexts
by the uncorrupted parties, and · · · denotes the plaintexts corresponding to the
corrupted parties.

Recall that in the aforementioned single-client, symmetric-key setting, the
sender must have a secret value α to encrypt. However, here we cannot give a
single α to each party since the adversary can corrupt a subset of the parties.
Instead, we would like to give each party their own αi.

As before, there is a hybrid world in which the challenger must encrypt as
(Enc(xG),Enc(yG)) in the two parallel encryptions. Later, in order for us to
switch the decryption key in the iO from sk to sk′, the two iO’s (using sk and sk′

respectively) must be functionally equivalent. To achieve this functional equiv-
alence, we must prevent mix-and-match of simulated and honest ciphertexts. In
the earlier single-client, symmetric-key setting, this is achieved by using a fake
α value in the simulation, and verifying that all ciphertexts input into the iO
must have the same α value. In the multi-client setting, a simple equality check
no longer suffices, so we need another way to prevent mix-and-match of hybrid
ciphertexts with well-formed ciphertexts. We do this by choosing a random vector
βG such that 〈βG,αG〉 = 0. We hard-code βG in the iO, and if the αG values
in the ciphertexts are not orthogonal to βG, the iO will simply output ⊥.

In the hybrid world, instead of using the honest vector αG, the simulator uses
another random α′

G orthogonal to βG, and simulates the NIZKs. In this way,
a mixture of honest and simulated ciphertexts for the set G will cause the iO
to simply output ⊥, since mixing the coordinates of αG and α′

G will result in a
vector not orthogonal to βG (except with negligible probability over the choice
of these vectors). In this way, except with negligible probability over the choice
of these vectors, using either sk or sk′ to decrypt in the iO will result in exactly
the same input and output behavior.

Finally, in order for us to obtain faster encryption and decryption time, instead
of encoding αG directly in the ciphertexts, we use a generator for a group that
supports the Diffie-Hellman assumption and encode gαG instead. As we will show
later, this enables the simulator to simulate fewer NIZKs. In fact, with this trick,
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the simulator only needs to simulate NIZKs for the challenge time step alone.
Therefore, the CRS and the time to compute ciphertexts will be independent of
the number of time steps.

Let G denote a group of prime order p > 2n · 2κ in which Decisional Diffie-
Hellman is hard. Let H : N → G denote a hash function modelled as a random
oracle. Let E := (Gen,Enc,Dec) denote a public-key encryption scheme.

– Setup(1κ, n): Compute (pk, sk) ← E .Gen(1κ), and (pk′, sk′) ← E .Gen(1κ).
Run crs := NIZK.Setup(1κ, n), where n is the number of clients. Choose

a random generator g
$← G. Choose random α1, α2, . . . , αn ∈ Zp. For i ∈

[n], let gi := gαi . Set param := (crs, pk, pk′, g, {gi}i∈[n]). The secret keys
for each user are: uski := (αi, param) The master secret key is: msk :=
({αi}i∈[n], sk, sk′).

– Enc(uski, x, t): For user i to encrypt a message x for time step t, it computes
the following. Let ht := H(t). Choose random ρ and ρ′ as the random bits
needed for the public-key encryption scheme. Let c := E .Enc(pk, x; ρ) and
c′ := E .Enc(pk′, x; ρ′). Let d = hαi

t , Let statement stmt := (t, i, c, c′, d); let
witness w := (ρ, ρ′, x, αi). Let the NP language be defined as in Figure 3. Let
π := NIZK.Prove(crs, stmt, w). Informally, this proves that 1) the two cipher-
texts c and c′ encrypt consistent plaintexts using pk and pk′ respectively;
and 2) (ht, gi, d) is a true Diffie-Hellman tuple.
The ciphertext is defined as:CT := (t, i, c, c′, d, π).
∃ m, (ρ, ρ′), ω s.t.

DH(ht, gi, d, ω) ∧ (c = E .Enc(pk,m;ρ)) ∧
(
c′ = E .Enc(pk′,m; ρ′)

)
where ht = H(t) for the t defined by CT; gi := gαi is included in the public
parameters; (ρ, ρ′) are the random strings used for the encryptions; and
DH(A,B,C, ω) is defined as the following relation that checks that (A,B,C)
is a Diffie-Hellman tuple with the witness ω:

DH(A,B,C, ω) := ((A = gω) ∧ (C = Bω)) ∨ ((B = gω) ∧ (C = Aω))

Our NP language Lpk,pk′,g,{gi}i∈[n]
is parameterized by (pk, pk′, g, {gi}i∈[n]) output by

the Setup algorithm as part of the public parameters. A statement of this language is
is of the format stmt := (t, i, c, c′, d), and a witness is of the format w := (ρ, ρ′, x, ω).
A statement stmt := (t, i, c, c′, d) ∈ Lpk,pk′,g,{gi}i∈[n]

, iff

∃ x, (ρ, ρ′), ω s.t. DH(ht, gi, d, ω) ∧ (c = E .Enc(pk, x; ρ)) ∧
(
c′ = E .Enc(pk′, x; ρ′)

)
where ht = H(t) for the t defined by CT; gi := gαi is included in the
public parameters; (ρ, ρ′) are the random strings used for the encryptions; and
DH(A,B,C, ω) is defined as the following relation that checks that (A,B,C) is a
Diffie-Hellman tuple with the witness ω:

DH(A,B,C, ω) := ((A = gω) ∧ (C = Bω)) ∨ ((B = gω) ∧ (C = Aω))

Fig. 3. NP language Lpk,pk′,g,{gi}i∈[n]
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Note that the NIZK π ties together the ciphertexts (c, c′) with the term
d = H(t)αi . This intuitively ties (c, c′) with the time step t, such that it
cannot be mix-and-matched with other time steps.

– KeyGen(msk, f): To generate a server token for a function f over n parties’
inputs compute token TKf := iO(P ) for a Program P defined as in Figure 4:

– Dec(TKf ,CT1, . . . ,CTn): Interpret TKf as an obfuscated program. Output
TKf (CT1,CT2, . . . ,CTn).

Program P (CT1,CT2, . . . ,CTn):

Internal hard-coded state: param = (crs, pk, pk′, g, {gi}i∈[n]), sk, f

1. For i ∈ [n], unpack (ti, ji, ci, c′i, di, πi) ← CTi. Check that t1 = t2 =
. . . = tn, and that ji = i. Let stmti := (ti, ji, ci, c

′
i, di).

2. For i ∈ [n], check that NIZK.Verify(crs, πi, stmti) = 1.
3. If any of these above checks fail, output ⊥.
Else: for i ∈ [n], let xi ← E .Dec(sk, ci). Output f(x1, x2, . . . , xn).

Fig. 4. MC-FE: Program P

Theorem 2. Let G be a group for which the Diffie-Hellman assumption holds,
and let H be a random oracle. If the iO is secure, the NIZK is statistically
simulation sound, and the encryption scheme is semantically secure and perfectly
correct, then the above construction is selectively, IND-secure, as defined in
Section 3.2.

Removing the random oracle. It is trivial to remove the random oracle if we
choose h1, h2, . . . , hT at random in the setup algorithm, and give them to each
user as part of their secret keys (i.e., equivalent to embedding them in the public
parameters). This makes the user key O(n+ T )poly(κ) in size, where n denotes
the number of parties, and T denotes an upper bound on the number of time
steps.

Instantiation and efficiency. We can instantiate our scheme using the SSS-NIZK
construction and the iO construction described by Garg et. al [9]. In this way,
our ciphertext is succinct, and is only poly(κ) in size. Letting n denote the
number of parties, the encryption time is O(n)poly(κ), and the decryption time
isO(n+|f |)·poly(κ). The dependence on n arises due to the need for the simulator
to simulate O(n) SSS-NIZKs. Each user’s secret key is of size is O(n)poly(κ) for
the version with the random oracle, and is O(n+T )poly(κ) for the version of the
scheme without the random oracle. Note that due to our use of the Diffie-Hellman
assumption, we have removed the dependence on T for encryption/decryption
time in a non-trivial manner.
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Salvaging Indifferentiability

in a Multi-stage Setting

Arno Mittelbach

Darmstadt University of Technology, Germany

Abstract. The indifferentiability framework by Maurer, Renner and
Holenstein (MRH; TCC 2004) formalizes a sufficient condition to safely
replace a random oracle by a construction based on a (hopefully) weaker
assumption such as an ideal cipher. Indeed, many indifferentiable hash
functions have been constructed and could since be used in place of ran-
dom oracles. Unfortunately, Ristenpart, Shacham, and Shrimpton (RSS;
Eurocrypt 2011) discovered that for a large class of security notions, the
MRH composition theorem actually does not apply. To bridge the gap
they suggested a stronger notion called reset indifferentiability and es-
tablished a generalized version of the MRH composition theorem. How-
ever, as recent works by Demay et al. (Eurocrypt 2013) and Baecher
et al. (Asiacrypt 2013) brought to light, reset indifferentiability is not
achievable thereby re-opening the quest for a notion that is sufficient for
multi-stage games and achievable at the same time.

We present a condition on multi-stage games called unsplittability. We
show that if a game is unsplittable for a hash construction then the MRH
composition theorem can be salvaged. Unsplittability captures a restricted
yet broad class of games together with a set of practical hash construc-
tions including HMAC, NMAC and several Merkle-Damg̊ard variants. We
show unsplittability for the chosen distribution attack (CDA) game (Bel-
lare et al., Asiacrypt 2009), a multi-stage game capturing the security of
deterministic encryption schemes; for message-locked encryption (Bellare
et al.; Eurocrypt 2013) a related primitive that allows for secure deduplica-
tion; for universal computational extractors (UCE) (Bellare et al., Crypto
2013), a recently introduced standard model assumption to replace ran-
dom oracles; as well as for the proof-of-storage game given by Ristenpart
et al. as a counterexample to the general applicability of the indifferentia-
bility framework.

1 Introduction

The notion of indifferentiability, introduced by Maurer, Renner and Holenstein
(MRH) [25] can be regarded as a generalization of indistinguishability tailored
to situations where internal state is publicly available. It has found wide ap-
plicability in the domain of iterative hash functions which are usually built
from a fixed-length compression function together with a scheme that describes
how arbitrarily long messages are to be processed [26,16,30,23,11]. The MRH

P.Q. Nguyen and E. Oswald (Eds.): EUROCRYPT 2014, LNCS 8441, pp. 603–621, 2014.
c© International Association for Cryptologic Research 2014
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CDAHh,A1,A2
AE (1λ)

b ← {0, 1}
(pk, sk)← KGen(1λ)

(m0,m1, r)← Ah
1(1

λ)

c ← EHh

(pk,mb; r)

b′ ← Ah
2(pk, c)

return (b = b′)

CRPHh,A1,A2
p,s (1λ)

M ← {0, 1}p

st ← Ah
1(M, 1λ)

if |st| > n then
return false

C ← {0, 1}c

Z ← Ah
2(st,C)

return (Z = Hh(M ||C))

PRV-CDAHh,A1,A2
MLE (1λ)

P ← P
b ← {0, 1}
(m0,m1, Z)← Ah

1(1
λ)

c ← EHh

P (KP (mb),mb)

b′ ← Ah
2(P, c, Z)

return (b = b′)

UCES,D
Hh (1

λ)

b ← {0, 1}; k ← K
L ← SHash(1λ); b′ ← D(1λ, k, L)
return (b = b′)

Hash(x)

if T [x] = ⊥ then

if b = 1 then T [x]← Hh(k, x)

else T [x]← {0, 1}�
return T [x]

Fig. 1. Security Games. From left to right: the chosen distribution attack (CDA)
game [4] capturing security in deterministic encryption schemes [3], the proof-of-storage
challenge-response game (CRP) due to Ristenpart et al. [29] given as counter-example
of the general applicability of the indifferentiability composition theorem, message
locked encryption (MLE) [7], and universal computational extractors (UCE) [6] a stan-
dard model security assumption on hash-functions.

composition theorem formalizes a sufficient condition under which such a con-
struction can safely instantiate a random oracle: namely indifferentiability of a
random oracle. A different view on this is that with indifferentiability one can
transfer proofs of security from one idealized setting into a different (and hope-
fully simpler) idealized setting. For example, proofs in the random oracle model
(ROM) [8] imply proofs in the ideal cipher model if a construction from an ideal
cipher that is indifferentiable from a random oracle exists.

Ristenpart, Shacham and Shrimpton (RSS) [29] gave the somewhat surprising
result that the MRH composition theorem only holds in single-stage settings and
does not necessarily extend to multi-stage settings where disjoint adversaries are
split over several stages. As counterexample they present a simple challenge-
response game (CRP, depicted in Figure 1): a file server that is given a file M
can be engaged in a simple proof-of-storage protocol where it has to respond
with a hash value H(M‖C) for a random challenge C while only being able to
store a short state st (with |st| ' |M |). The protocol can easily be proven secure
in the ROM since, without access to file M , it is highly improbable for the server
to correctly guess the hash value H(M ||C). The server can, however, “cheat” if
the random oracle is replaced by one of several indifferentiable constructions.
Here the server exploits the internal structure by computing an intermediate
chaining value which allows it to later compute extended hash values of the
form Hh(M‖·). We refer to [29] for a detailed discussion.

To circumvent the problem of composition in multi-stage settings, RSS
propose a stronger form of indifferentiability called reset indifferentiabil-
ity [29], which intuitively states that simulators must be stateless and pseudo-
deterministic [2]. While this notion allows composition in any setting, no domain
extender can fulfill this stronger form of indifferentiability [17,24,2]. Demay et
al. [17] present a second variant of indifferentiability called resource-restricted in-
differentiability which models simulators with explicit memory restrictions and
which lies somewhere in between plain indifferentiability and reset indifferentia-
bility. However, they do not present any positive results such as constructions
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that achieve any form of resource-restricted indifferentiability or security games
for which a resource-restricted construction allows composition.

The only positive results, we are aware of, is the analysis of RSS of the non-
adaptive chosen-distribution attack (CDA) game [4], depicted in Figure 1. CDA
captures a security notion for deterministic public-key encryption schemes [3],
where the randomness does not have sufficient min-entropy. In the CDA game,
the first-stage adversary A1 outputs two message vectors m0 and m1 together
with a randomness vector r which, together, must have sufficient min-entropy
independent of the hash functionality. According to a secret bit b one of the
two message vectors is encrypted and given, together with the public key, to
the second-stage adversary A2. The adversary wins if it correctly guesses b. For
the non-adaptive CDA game, RSS give a direct security proof for the subclass
of indifferentiable hash functions of the NMAC-type [18], i.e., hash functions
of the form Hh(M) := g(f h(M)) where function g is a fixed-length random
oracle independent of f h which is assumed to be preimage aware. Note, while
this covers some hash functions of interest, it does not, for example, cover chop-
MD functions [15] (like SHA-2 for certain parameter settings) or Keccak (aka.
SHA-3).

In the lights of the negative results on stronger notions of indifferentiability,
we aim at salvaging the current notion; that is, we present tools and techniques
to work with plain indifferentiability in multi-stage settings. For this, let us have
a closer look at what goes wrong when directly applying the MRH composition
theorem in a multi-stage setting.

Plain Indifferentiability in Multi-stage Settings. Consider the basic Merkle-
Damg̊ard construction1 and consider a two stage game with adversaries A1 and
A2. If adversary A1 makes an h-query y1 ← h(m1, IV) and passes on this value
to adversary A2, then A2 can compute arbitrary hash values of the form m1‖ . . .
without having to know m1. The trick in the MRH composition theorem is to
exchange access to h with access to a simulator S when placing the adversary
in a setting where it plays against the game with random oracle R. If we apply
this trick to our two-stage game we need two independent instances of this sim-
ulator, one for A1 and one for A2. Let’s call these S(1) and S(2). The problem is
now, that if A1 and A2 do not share sufficient state the same applies to the two
simulator instances: they share exactly the same state that is shared between
the two adversaries. Thus, if adversary A2 makes the query (y,m2) simulator
S(2) does not know that y corresponds to query (m1, IV) from A1 and it will
thus not be able to answer with a value y′ such that g(y′) = R(m1‖m2). This
is, however, expected by A2 and would be the case if A1 and A2 had had access
to the deterministic compression function h.

Contributions. Our first contribution (Section 3) is to develop a model of hash
functions based on directed, acyclic graphs that is rich enough to pinpoint and

1 The basic MD function Hh(m1, . . . ,m�) is computed as H
h(m1, . . . ,m�) := h(m�, x�)

where x1 := IV is some initialization vector and xi+1 := h(mi, xi).
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argue about such problematic adversarial h-queries while at the same time al-
lowing us to consider many different constructions simultaneously. Given this
framework we define a property on games and hash functions called unsplitta-

bility (Definition 10). If a game is unsplittable for a hash construction, this
basically means that problematic queries as the one from the above example do
not occur.

In Section 4 we then give a composition theorem for unsplittable games
which intuitively says that if a game is unsplittable for an indifferentiable
hash construction, then security proofs in the random oracle model carry over
if the random oracle is implemented by that particular hash function. Assum-
ing unsplittability, the main technical difficulty in proving composition is to
properly derandomize the various simulator instances and make them (nearly)
stateless. Note that simulators for indifferentiable hash constructions in the lit-
erature are mostly probabilistic and highly stateful. In a multi-stage setting the
various instances of the simulator must, however, answer queries consistently,
that is, in particular the same query by different adversaries must always be
answered with the same answer independent of the order of queries. For this,
we build on a derandomization technique developed by Bennet and Gill to show
that the complexity classes BPP and P are identical relative to a random ora-
cle [10]. One interesting intermediary result is that of a generic indifferentiability
simulator that answers queries in a very restricted way.

In Section 5 we show how to prove unsplittability for all multi-stage secu-
rity games depicted in Figure 1. We show that the CDA game (both, the non-
adaptive and adaptive) is unsplittable for Merkle-Damg̊ard-like functions as
well as for HMAC and NMAC (in the formulation of [5]) thereby complement-
ing the results by RSS. Let us note that, that our results on CDA require less
restrictions on the public-key encryption scheme (that is, the encryption scheme
does not need to be IND-SIM [29]). Similarly, we show unsplittability for
message locked encryption (MLE), a security definition for primitives that allow
for secure deduplication [7]. MLE is closely related to CDA with the additional
complication that the two adversaries here can communicate “in the clear” via
state value Z (see Figure 1). For the RSS proof-of-storage (CRP) game given
as counter-example for the general applicability of the MRH composition theo-
rem, we show that it is unsplittable for any so-called 2-round hash function.
These are hash functions, such as Liskov’s Zipper Hash [23] that process the
input message twice for computing the final hash value. Finally, we resolve an
open problem from [6]. Bellare, Hoang and Keelveedhi (BHK) introduce UCE a
standard model assumption for hash constructions which is sufficient to replace
a random oracle in a large number of applications [6]. At present the only in-
stantiation of a UCE-secure function is given in the random oracle model and
BHK left as open problem whether HMAC can be shown to meet UCE-security
assuming an ideal compression function. We show that this is not just the case
for HMAC but also for many Merkle-Damg̊ard variants.

Finally, we want to note that we give the results for CDA, MLE and UCE
via a meta-result that considers security games for keyed hash functions where
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the hash function key is only revealed at the very last stage. We show that all
three security games can be subsumed under this class and we show that games
from this class are unsplittable for a large class of practical hash construc-
tions including HMAC and NMAC and several Merkle-Damg̊ard-like functions
such as prefix-free or chop-MD [15]. This is particularly interesting as CDA and
MLE are per se not using keyed hash functions, but can be reformulated in this
setting and it seems that with keyed hash functions it is simpler to work with
indifferentiability in a multi-stage scenario.

2 Preliminaries

If n ∈ N is a natural number then by 1n we denote the unary representation
and by 〈n〉� the binary representation of n (using 
 bits). By [n] we denote the
set {1, 2, . . . , n}. By {0, 1}n we denote the set of all bit strings of length n while
{0, 1}∗ denotes the set of all finite bit strings. For bit strings m,m′ ∈ {0, 1}∗ we
denote by m||m′ their concatenation. If M is a set then by m ←M we denote
that m was sampled uniformly fromM. If A is an algorithm then by X ← A(m)
we denote that X was output by algorithm A on input m. As usual |M| denotes
the cardinality of set M and |m| the length of bit string m. Logarithms are
to base 2. By H∞ (X) we denote the min-entropy of variable X , defined as
H∞ (X) := minx log(1/Pr[X = x ]). We assume that any algorithm, game, etc. is
implicitly given a security parameter as input, even if not explicitly stated. We
call an algorithm efficient if its run-time is polynomial in the security parameter.
Probability statements of the form Pr[ step1; step2 : condition ] should be read as
the probability that condition holds after the steps are executed in consecutive
order. We use standard boolean notation and denote by ∧ the AND by ∨ the
OR of two values.

Hash Functions. A hash function is formally defined as a keyed family of func-
tions H(1λ) where each key k defines a function Hk : {0, 1}∗ → {0, 1}n. “Prac-
tical” hash functions are usually built via domain extension from an underlying
function h : {0, 1}d × {0, 1}k → {0, 1}s that is iterated through an iteration
scheme H to process arbitrarily long inputs [26,16,30,23,1,21,31,11,20], with
widely varying specifications. The underlying function h usually is a compression
function— the first input taking message blocks and the second an intermediate
chaining value—and we will state our results relative to compression functions.
As an exception to this rule, the Sponge construction [12] (the design principle
behind SHA-3, aka. Keccak [11]) iterates a permutation instead of a compression
function. We discuss, how this fits into our model in the full version [27].

Indifferentiability. A hash function is called indifferentiable from a random oracle
if no distinguisher can decide whether it is talking to the hash function and its
ideal compression function or to an actual random oracle and a simulator. We
here give the definition of indifferentiability from [15].
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Definition 1. A hash construction Hh : {0, 1}∗ → {0, 1}n, with black-box access
to an ideal function h : {0, 1}d×{0, 1}k → {0, 1}s, is called indifferentiable from
a random oracle R if there exists an efficient simulator SR such that for any
distinguisher D there exists a negligible function negl, such that∣∣∣Pr[DHh,h(1λ) = 1

]
− Pr
[
DR,SR

(1λ) = 1
]∣∣∣ ≤ negl(λ) .

Game Playing. We use the game-playing technique [9,29] and present here a
brief overview of the notation used. A game GF ,A1,...,Am gets access to ad-
versarial procedures A1, . . . ,Am and to one or more so called functionalities F
which are collections of two procedures F .hon and F .adv, with suggestive names
“honest” and “adversarial”. Adversaries (i.e., adversarial procedures) access a
functionality F via the interface exported by F .adv, while all other procedures
access the functionality via F .hon. In our case, functionalities are exclusively
hash functions which will be instantiated with iterative hash constructions Hh.
The adversarial interface exports the underlying function h, while the honest in-
terface exports plain access to Hh. We thus, instead of writing F .hon and F .adv
usually directly refer to Hh and h, respectively. Adversarial procedures can only
be called by the game’s main procedure.

By GF ,A1,...,Am ⇒ y we denote that the game outputs value y. If the game
is probabilistic or any adversarial procedure is probabilistic then GF ,A1,...,Am is
a random variable and Pr

[
GF ,A1,...,Am ⇒ y

]
denotes the probability that the

game outputs y. By GF ,A1,...,Am(r) we denote that the game is run on random
coins r.

For this paper we only consider the sub-class of functionality-respecting games
as defined in [29]. A game is called functionality respecting if only adversarial
procedures can call the adversarial interface of functionalities. We define LG to
be the set of all functionality-respecting games. Note that this restriction is a
natural restriction if a game is used to specify a security goal in the random
oracle model since random oracles do not provide any adversarial interface.

3 A Model for Iterative Hash Functions

In the following we present a new model for iterated hash functions that allows
to argue about many functions at the same time. A similar endeavor has been
made by Bhattacharyya et al. [13] who introduce generalized domain extension.
For our purpose, we need a more explicit model that allows us to talk about the
execution of hash functions in great detail. Still, our model is general enough to
capture many different types of constructions, ranging from the plain Merkle-
Damg̊ard over variants such as chop-MD [15] to more complex constructions
such as NMAC, HMAC [5] or even hash trees. We give an overview over several
hash constructions that are captured by our model in the full version of this
paper [27].
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Fig. 2. Execution graph for NMAC for message m1‖ . . . ‖m� := M . Value IVkey1 is an
initialization vector representing the first key in the NMAC-construction. Value IVkey2

is a constant representing the second key. The difference between initialization vectors
and constants is that constants are used within the execution graph, i.e., in conjunction
with interim values, while initialization vectors are used at the beginning of the graph.

Execution Graphs - An Introduction. We model iterative hash functions Hh

as directed graphs where each message M is mapped to an execution graph
which is constructed independently of a particular choice of function h. Figure 2
presents the execution graph for a message M := m1‖ . . . ‖m� for the NMAC
construction [5]. For each input message M the corresponding execution graph
represents how the hash value would be computed relative to some oracle h, that
is, we require that, relative to an oracle h, a generic algorithm EVALh on input the
execution graph for M can then compute value Hh(M). Nodes in the execution
graph are either value-nodes or function-nodes. A value node (indicated by dot-
ted boxes) does not have ingoing edges and the outgoing edge is always labeled
with the node’s label (possibly prefixed by a constant). Function nodes represent
functions and the outgoing edges are labeled with the result of the evaluation of
the corresponding function taking the labels of the ingoing edges as input. An
h-node represents the evaluation of the underlying function h. Outgoing edges
can, thus, only be labeled relative to h. Nodes labeled mp, hp or hmp correspond
to preprocessing functions (defined by the hash construction) which ensure that
the input to the next h-node is of correct length: mp processes message blocks,
hp processes h-outputs and hmp, likewise, processes the output of h-nodes but
such that it can go into the “message slot” of an h-node (see Figure 2). An exe-
cution graph contains exactly one g-node with an unbound outgoing edge which
corresponds to an (efficiently) computable transformation such as the identity
or truncation.

Formalizing Hash Functions as Directed Graphs. We now formalize the above
concept to model an iterative hash construction Hh : {0, 1}∗ → {0, 1}n with
a compression function of the form h : {0, 1}d × {0, 1}k → {0, 1}s. For this let
pad : {0, 1}∗ → ({0, 1}b)+ be a padding function (e.g. Merkle-Damg̊ard strength-
ening [16,26]) that maps strings to multiples of block size b. Let mp : {0, 1}∗ →
{0, 1}d, hp : {0, 1}∗ → {0, 1}k and hmp : {0, 1}∗ → {0, 1}d be “preprocess-
ing” functions that allow to adapt message blocks and intermediate hash values,
respectively. We assume that pad, mp, hp, and hmp are efficiently computable, in-
jective, and efficiently invertible. Note that for many schemes these functions
will be the identity function and b = d and s = k. Let g : {0, 1}s → {0, 1}n
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be an efficiently computable transformation (such as the identity function, or a
truncation function).2 Additionally we allow for a dedicated set IV ⊂ {0, 1}∗
and containing initialization vectors and constants.

We give a formal definition of the graph structure in the full version [27] and
give here only a quick overview. Execution graphs consist of the following node
types: IV-nodes, message-nodes, h-nodes, mp, hp, and hmp-nodes and a single g-
node. For each message block m1‖ . . . ‖m� := pad(M) the graph contains exactly
one message-node. All outgoing edges must again be connected to a node, except
for the single outgoing edge of the single g-node. An h-node always has two
incoming edges one from an hp-node and one from either an mp or an hmp-node.
Message nodes can be connected to mp-nodes. The outbound edges from h can
be connected to either hp or hmp-nodes.3 A valid execution graph is a non-empty
graph that complies with the above rules. We require that for each message
M ∈ {0, 1}∗ there is exactly one valid execution graph and that there is an
efficient algorithm that given M constructs the execution graph.

Besides valid execution graphs we introduce the concept of partial execution
graphs which are non-empty graphs that comply to the above rules with the only
exception that they do not contain a g-node. Hence, they contain exactly one
unbound outgoing edge from an h-node. A partial execution graph is always a
sub-graph of potentially many valid execution graphs. Given a valid execution
graph a partial execution graph can be constructed by choosing an h-node and
removing every node that can be reached via directed path from that h-node
and then remove all unconnected components that do not have a directed path
to the chosen h-node.

We define EVAL to be a generic, deterministic algorithm evaluating execution
graphs relative to an oracle h. Let eg be a valid execution graph for some message
M ∈ {0, 1}∗. To evaluate eg relative to oracle h, algorithm EVALh(eg) recursively
performs the following steps: search for a node that has no inbound edges or for
which all inbound edges are labeled. If the node is a function-node then evaluate
the corresponding function using the labels from the inbound edges as input.
If the node is a value-node, use the corresponding label as result. Remove the
node from the graph and label all outgoing edges with the result. If the last
node in the graph was removed stop and return the result. Note that EVALh(eg)
runs in time at most O

(
|V 2|
)
assuming that eg contains |V | many nodes. If pg is

a partial execution graph then EVALh(pg), likewise, computes the partial graph
outputting the result of the final h-node. We denote by g(pg) the corresponding
execution graph where the single outbound h-edge of pg is connected to a g-node.
We call this the completed execution graph for pg.

We can now go on to define iterative hash functions such as Merkle-Damg̊ard-
like functions. Informally, an iterative hash function consists of the definitions

2 We stress that g is efficiently computable and not an independent (ideal) compression
function.

3 The difference between hp and hmp is that hp outputs values in {0, 1}k which hmp

outputs values in {0, 1}d. Note that function h is defined as h : {0, 1}d × {0, 1}k →
{0, 1}s.
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of the preprocessing functions, the padding function and the final transforma-
tion g(·). Furthermore, we require (efficient) algorithms that construct execution
graphs as well as parse an execution graph to recover the corresponding message.

Definition 2. Let IV ⊂ {0, 1}∗ be a set of named initialization vectors and |IV|
be polynomial in the security parameter λ. We say Hh

g,mp,hp,hmp,pad : {0, 1}∗ →
{0, 1}n is an iterative hash function if there exist deterministic and efficient
algorithms construct and extract as follows:

construct: On input M ∈ {0, 1}∗, algorithm construct outputs a valid execu-
tion graph containing one message-node for every block in m1‖ . . . ‖m� :=
pad(M). For all messages M ∈ {0, 1}∗ it holds that Hh(M) =
EVALh(construct(M)). For any two M,M ′ ∈ {0, 1}∗ with |M | = |M ′| it
holds that graphs construct(M) and construct(M ′) are identical but for
labels of message-nodes.4

extract: On input a valid execution graph eg, algorithm extract outputs mes-
sage M ∈ {0, 1}∗ if, and only if, construct(M) is identical to eg. On in-
put a partial execution graph pg, algorithm extract outputs message M ∈
{0, 1}∗ if, and only if, the completed execution graph g(pg) is identical to
construct(M). Otherwise extract outputs ⊥.

When functions g, mp, hp, hmp and pad are clear from context we simply write
Hh.

We give a detailed description of valid execution graphs, extensions to the
model that, for example, cover keyed constructions, as well as several examples
of hash constructions that are covered by Definition 2 in the full version [27].

3.1 Important h-Queries

Considering the execution of hash functions as graphs allows us to identify cer-
tain types of “important” queries by their position in the graph relative to a
function h. Assume that Q = (mi, xi)1≤i≤p is an ordered sequence of h-queries
to compression function h. If we consider the i-th query qi = (mi, xi) then only
queries appearing before qi in Q are relevant for our upcoming naming conven-
tions. We call qi an initial query if, and only if, hp−1(xi) ∈ IV . Besides initial
queries we are interested in queries that occur “in the execution graph” and we
call these chained queries. We call query qi a chained query if given the queries
appearing before qi there exists a valid (partial) execution graph containing an
h-node with its unbound edge labeled with value hp−1(xi). Finally, we call query
qi result query for message M , if g(qi) = Hh(M) and qi is a chained query. We
define result queries in a broader sense and independent of a specific message
by considering all possible partial graphs induced by query set Q and say that a
query is a result query if it is a chained query and if its induced partial graph pg
can be completed to a valid execution graph, that is, g(pg) is a valid execution
graph. For a visualization of the query types see Figure 3.

4 This condition ensures that the graph structure does not depend on the content of
messages but only on its length.
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Definition 3. Let Q = (mi, xi)1≤i≤p be a sequence of queries to h : {0, 1}d ×
{0, 1}k → {0, 1}s. Let qi = (mi, xi) be the i-th query in Q and let Q|1,...,i
denote the sequence Q up to and including the i-th query. Let the predicate
init(qi) := init(mi, xi) be true if, and only if, hp−1(xi) ∈ IV. We define the
predicate chainedQ(mi, xi) to be true if, and only if,

init(mi, xi) ∨ ∃ j ∈ [i− 1] :
(
chainedQ(mj , xj) ∧ hp(h(mj , xj)) = xi

)
.

Let pg[h, Q|1,...,i , qi] denote the set of partial graphs such that for all pg ∈
pg[h, Q|1,...,i , qi] it holds that all h queries occurring during the computation of
EVALh(pg) are in Q|1,...,i and that the final h-query equals qi.

5 We define the

predicate resultQ(mi, xi) to be true if, and only if,

chainedQ(mi, xi) ∧ ∃pg ∈ pg[h, Q|1,...,i , qi] : g(pg) is a valid execution graph .

We drop the reference to the query set Q if it is clear from context.

m1

mp

hhh

init(mp(m1), hp(IV))
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hhh

chained(mp(m2), hp(x2))
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result(mp(m	), hp(x	))

hp gIV Hh(M)

Fig. 3. Denoting queries in the Merkle-Damg̊ard construction where value x2 is com-
puted as x2 := h(mp(m1), hp(IV)) and value xl is computed recursively as x� :=
h(mp(m�), hp(x�−1))

3.2 Message Extractors and Missing Links

We now give two important lemmas concerning iterative hash functions. The first
argues that if an adversary does not make all h-queries in the computation of
Hh(M) for some messageM , then its probability of computing the corresponding
hash value is small. To get an intuition note that each h-node has a directed path
to the final g-node. As we model the underlying function as ideal, an h-evaluation
has s bits of min-entropy which are, so to speak, sent down the network to the
final g-node. We refer to the full version [27] for the proof.

Lemma 1. Let function Hh : {0, 1}∗ → {0, 1}n be an iterative hash function and
let h : {0, 1}d × {0, 1}k → {0, 1}s be a fixed-length random oracle. Let Ah be an
adversary that makes at most qA many queries to h. Let qryh(Ah(1λ; r)) denote
the adversary’s queries to oracle h when algorithm A runs on randomness r and

5 If h is modeled as an ideal function then set pg[h, Q|1,...,i , qi] contains with very high
probability at most one partial graph as multiple graphs induce collisions on h.
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by qryh(Hh(M)) denote the h-queries during the evaluation of Hh(M). Then it
holds that

Prr,h

[
(M, y)← Ah(1λ; r) :

Hh(M) = y ∧(
qryh(Hh(M)) \ qryh(Ah(1λ; r))

)
�= ∅

]
≤ qA

2s
+

1

2H∞(g(Us))

where \ denotes the simple complement of sets and Us denotes a random variable
uniformly distributed in {0, 1}s. The probability is over the choice of random
oracle h and the coins of A.

Next, we show that given the sequence of h-queries and corresponding answers
of an adversary, there exists an efficient and deterministic extractor E that can
reconstruct precisely the set of messages for which the adversary “knows” the
corresponding hash value. We refer to the full version [27] for the proof.

Lemma 2. Let function Hh : {0, 1}∗ → {0, 1}n be an iterative hash function
and h : {0, 1}d × {0, 1}k → {0, 1}s a fixed-length random oracle. Let Ah be an
adversary making at most qA queries to h. Let qryh(Ah(1λ; r)) denote the adver-
sary’s queries to oracle h (together with the corresponding oracle answer) when
algorithm A runs on randomness r. Then there exists an efficient deterministic
extractor E outputting sets M and Y with |M| = |Y| ≤ 3qA, such that

Prr,h

[
(M, y) ← Ah

(1
λ
; r);

(M,Y) ← E(qryh(Ah(1λ; r))
:

∃ X ∈M : H
h
(X) /∈ Y ∨(

H
h
(M) = y ∧M /∈ M

)
]
≤ 3q2A

2H∞(g(Us))
.

Value Us denotes a random variable uniformly distributed in {0, 1}s. The prob-
ability is over the coins r of Ah and the choice of random oracle h.

3.3 h-Queries during Functionality Respecting Games

We now define various terms that allow us to talk about specific queries from
adversarial procedures to the underlying function h of iterative hash function Hh

during game G. Recall that, as do Ristenpart et al. [29], we only consider the
class of functionality-respecting games (see Section 2) where only adversarial pro-
cedures may call the adversarial interface of functionalities (i.e., the underlying
function h in our case).

Definition 4. Let GHh ,A1,...,Am be a functionality respecting game with access
to hash functionality Hh and adversarial procedures A1, . . . ,Am. We denote by
qryG,h the sequence of queries to the adversarial interface of Hh (that is, h)
during the execution of game G.

Note that qryG,h is a random variable over the random coins of game G. Thus,
we can regard the query sequence as a deterministic function of the random
coins. In this light, in the following we define subsequences of queries belonging
to certain adversarial procedures such as the i-th query of the j-th adversarial
procedure.

Game GHh,A1,...,Am can call adversarial procedures A1, . . . ,Am in any or-
der and multiple times. Thus, we first define a mapping from the sequence of
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adversarial procedure calls by the game’s main procedure to the actual adver-
sarial procedure Ai. For better readability, we drop the superscript identifying
game G in the following definitions and whenever the game is clear from context.
We drop the superscript identifying oracle h exposed by the adversarial interface
of functionality Hh if clear from context.

Definition 5. We define AdvSeqi (for i ≥ 1) to denote the adversarial procedure
corresponding to the i-th adversarial procedure call by game G. We set |AdvSeq|
to denote the total number of adversarial procedure calls by G.

We define sequence of h-queries made by the i-th adversarial procedure AdvSeqi

as:

Definition 6. By qryi we denote the sequence of queries to h by procedure
AdvSeqi during the i-th adversarial procedure call by the game’s main procedure.
By qryi,j we denote the j-th query in this sequence.

We also need a notion which captures all those queries executed before a specific
adversarial procedure AdvSeqi was called. For this, we will slightly abuse notation
and “concatenate” two (or more) sequences, i.e., if S1 and S2 are two sequences,
then by S1||S2 we denote the sequence that contains all elements of S1 followed
by all elements of S2 in their specific order.

Definition 7. By qry<i we denote the sequence of queries to h before the exe-
cution of procedure AdvSeqi. By qry<i,j we denote the sequence of queries to h

up to the j-th query of the i-th adversarial procedure call. Formally,

qry<i :=

i−1∣∣∣∣∣∣
k=1

qryk and qry<i,j := qry<i ||
j−1∣∣∣∣∣∣
k=1

qryi,k

Finally, we define the sequence of h-queries by procedure AdvSeqi up-to the i-
th adversarial procedure call by the game’s main procedure. That is, in addition
to queries qryi we have all queries from previous calls to AdvSeqi by the game’s
main procedure.

Definition 8. By qry<Ai,j we denote the sequence of queries to procedure h by
the i-th adversarial procedure AdvSeqi up-to query qry<i,j. Formally,

qry<Ai,j :=
∣∣∣∣∣∣

0<�<i,
AdvSeq	=AdvSeqi

qry� ‖
j−1∣∣∣∣∣∣
k=1

qryi,k .

Bad Result Queries. Having defined queries to the adversarial interface of the
hash functionality (i.e., underlying function h) occurring during a game G allows
us to use our notation established in Section 3.1 on h-queries: initial queries,
chained queries and result queries. For example, we can say that query qryi,j is
an initial query. With this, we now define a bad event corresponding to splitting



Salvaging Indifferentiability in a Multi-stage Setting 615

up the evaluation of hash values via several adversarial stages (also refer to the
introduction).

Informally, we call a query (m,x) to function h(·, ·) badResult if it is a result
query (cp. Definition 3) with respect to all previous queries during the game, but
it is not a chained query (and thus not a result query) if we restrict the sequence
of queries to that of the current adversarial procedure. Note that, whether or
not a query is bad only depends on queries to h prior to the query in question
and is not changed by any query coming later in the game. (Note the change in
the underlying sequence for the two predicates in the following definition.)

Definition 9. Let GHh ,A1,...,Am be any game. Let (m,x) := qryi,j be the j-th
query to function h by adversary AdvSeqi. Then query (m,x) is called badResult
Ai(qryi,j) if, and only if: resultqry<i,j (m,x) and ¬chainedqry<Ai,j (m,x).

4 Unsplittable Multi-stage Games

The formalization of hash functions together with terminology on particular
queries during a game allows us to define a property on games that will be
sufficient to argue composition similar to that of the MRH composition theorem
for indifferentiability. We call a gameG ∈ LG unsplittable for an iterative hash
construction Hh, if two conditions hold: 1) For any adversary A1, . . . ,Am there

exists adversary A∗
1, . . . ,A∗

m such that games GHh ,A1,...,Am and GHh,A∗
1 ,...,A∗

m

change only by a small factor, and 2) During gameGHh ,A∗
1,...,A

∗
m we have that bad

result queries only occur with small probability. Intuitively, this means that it
does not help adversaries to split up the computation of hash values over several
distinct adversarial procedures. After formally defining unsplittability we will
then formulate the accompanying composition theorem which informally states
that if a game is unsplittable for an indifferentiable hash construction Hh,
then security proofs in the ROM carry over if the random oracle is implemented
by that particular hash function.

Definition 10. Let Hh be an iterative hash function and let h : {0, 1}d ×
{0, 1}k → {0, 1}s be an ideal function. We say a functionality respecting
game G ∈ LG is (tA∗ , qA∗ , εG, εbad)-unsplittable for Hh if for every adver-
sary A1, . . . ,Am there exists algorithm A∗

1, . . . ,A∗
m such that for all values y

Pr
[
GHh,A1,...,Am ⇒ y

]
≤ Pr
[
GHh,A∗

1 ,...,A
∗
m ⇒ y

]
+ εG .

Adversary A∗
i has run-time at most t∗Ai

and makes at most q∗Ai
queries to h.

Moreover, it holds for game GHh ,A∗
1,...,A∗

m that:

Pr
[
∃i ∈ [|AdvSeq|], ∃j ∈ [q∗Ai

] : badResultAi(qryi,j)
]
≤ εbad .

The probability is over the coins of game GHh ,A∗
1,...,A∗

m and the choice of
function h.
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4.1 Composition for Unsplittable Multi-stage Games

We here give the composition theorem for unsplittable games in the asymp-
totic setting. The full theorem with concrete advantages is given in the full ver-
sion [27]. Due to space limitations, we here also only present a much shortened
proof sketch.

Theorem 1 (Asymptotic Setting). Let Hh : {0, 1}∗ → {0, 1}n be an itera-
tive hash function indifferentiable from a random oracle R and let h : {0, 1}d ×
{0, 1}k → {0, 1}s be an ideal function. Let game G ∈ LG be any functionality
respecting game that is unsplittable for Hh and let A1, . . . ,Am be an adver-
sary. Then, there exists efficient adversary B1, . . . ,Bm and negligible function
negl such that for all values y∣∣∣Pr[GHh,A1,...,Am ⇒ y

]
− Pr
[
GR,B1,...,Bm ⇒ y

]∣∣∣ ≤ negl(λ) .

Proof (Proof Sketch). The proof consists of two steps. In a first step we are going
to take the indifferentiability simulator for Hh and transform it into a simulator
with a special structure that we call Sd. Secondly, we take the unsplittabil-

ity-property of game G to get a set of adversaries A∗
1, . . . ,A∗

m such that during
game GF ,A∗

1,...,A
∗
m bad result queries (cp. Definition 9) occur only with negli-

gible probability. This property, together, with the structure of simulator Sd

then allows to argue composition, similarly to RSS in their composition theorem
for reset-indifferentiability: Theorem 6.1 in [28]. (Theorem 4 in the proceedings
version [29]).

Construction of Sd. We begin with the construction of simulator Sd. Since Hh is
indifferentiable from a random oracle there exists a simulator S such that no effi-
cient distinguisher D can distinguish between talking to (Hh, h) or (R,SR). From
this simulator we are going to construct a generic simulator S∗ which keeps track
of all queries internally constructing any potential partial graph for the query-
sequence. We give a shortened description of simulator S∗ in Figure 4. If a query
corresponds to a result query (cp. Definition 3) it ensures to be compatible with
the random oracle by picking a value from the preimage of g−1(R(extract(pg)))
uniformly at random (see line 8), where pg is the corresponding partial graph.
Note that this ensures consistency with the answers of the random oracle. Oth-
erwise, if the query is not a result query, it simply responds with a random value
(line 9). The full construction and proof of indifferentiability is presented in the
full version [27].

In a next step (the details are given in [27]) we derandomize simulator S∗ using
the random oracle and a derandomization technique by Bennet and Gill [10]. For
any fixed value tD, this yields simulator Sd such that for any distinguisher D
that runs in time at most tD it holds that∣∣∣Pr[DHh,h(1λ) = 1

]
− Pr
[
DR,SR

d (1λ) = 1
]∣∣∣ ≤ negl(λ) .
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Simulator S∗(m,x) :
1 if M[m,x] �= ⊥ then return M[m,x]
2 T ← {}
3 if init(m,x) then
4 create partial graph from (m,x) and add to T
5 test all existing partial graphs, if any can be extended
6 by query(m,x). If so, add result to T
7 if ∃pg ∈ T : extract(pg) �= ⊥ then

8 M[m,x]←$ g−1(R(extract(pg)))
9 else M[m,x]←$ {0, 1}s
10 if |T | > 0 then
11 label output edge of any graph in T by M[m,x]
12 add all graphs in T to a list of partial graphs
13 return M[m,x]

Fig. 4. Simulator S∗ for
proof of Theorem 1. S∗ main-
tains a list of partial graphs
that can be constructed from
the query sequence. If query
(m,x) is an initial query it
constructs the corresponding
partial graph and adds it
to the temporary set T . It
then tries all existing partial
graphs, if they can be ex-
tended by the current query.
A query is answered either
by a random value or (for
result queries) by sampling
a value uniformly at random
from g−1(R(extract(pg)).

Using Sd with unsplittable Games. Let A∗
1, . . . ,A∗

m be such that during game
GF ,A∗

1,...,A
∗
m bad result queries occur only with negligible probability. We now set

Bi := A∗
i
S(i)
d where every S(i)

d denotes an independent copy of Sd. The structure
of Sd ensures that non-result queries (cp. Definition 3) are answered consistently
over the several independent copies. Furthermore, the fact that result queries
are with overwhelming probability not bad ensures that also these are answered
consistently. We, thus, get that

Pr
[
GHh,A1,...,Am ⇒ y

]
≈ Pr

[
GHh,A∗

1 ,...,A∗
m ⇒ y

]
≈ Pr

[
GR,A∗

1
S(1)
d

R
,...,A∗

m
S(m)
d

R

⇒ y

]

which yields that Pr
[
GR,B1,...,Bm ⇒ y

]
≤ negl. ��

5 Applications

We turn to the task of proving unsplittability for the various multi-stage
games from the introduction: While for the RSS proof-of-storage game we will
give a direct proof (which appears only in the full version [27]) we prove the
results for CDA, MLE and UCE via a meta result on games using keyed hash
functions (Theorem 2).

5.1 Unsplittability of Keyed-Hash Games

Let qryH
h
[
GHh ,A1,...,Am(r)

]
be the list of queries by gameG (running on random

coins r) to the honest interface of the functionality (i.e., Hh) and let

qryh
[
GHh,A1,...,Am(r)

]
:=

{
(m, x) : ∃M ∈ qryH

h
[
GHh,A1,...,Am(r)

]
, (m, x) ∈ qryh(Hh(M))

}
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be the list of queries by game G, when run on random coins r, to h triggered by
queries to the honest interface of the functionality. (Note that the adversarial
proceduresA1, . . . ,Am never query the honest interface.) For fixed random coins

r and an adversarial h-query qryi,j during game GHh ,A1,...,Am(r) we set

G-relevant(qryi,j ; r) ⇐⇒ qryi,j ∈ qryh
[
GHh ,A1,...,Am(r)

]
That is, we call an adversarial query G-relevant if the same query occurs during
the honest computation of an Hh query by game G.

Let us observe that we can replace the adversarial interface h given to an
adversarial procedure by one that differs from h on all points except for points
that are also queried indirectly by the game (i.e., queries which are G-relevant),
without changing the outcome of the game (or rather its distribution over the
choice of ideal functionality h).

Keyed-Hash Games. Hash functions can be considered in a keyed setting, where
a key is included in the computation of every hash value. HMAC or NMAC were
designed as keyed functions, other hash functions like Merkle-Damg̊ard variants
can be adapted to the keyed setting, for example, by requiring that the key is
prepended to the message. In the following we write Hh(κ,M) to denote an
iterative hash construction with an explicit key input (for further information
on how keyed hash constructions are captured by our framework we refer to the
full version [27]).

Many keyed constructions are designed such that the key is used in all initial
queries. HMAC and NMAC are of that type, and also the adapted Merkle-
Damg̊ard variants such as chop-MD or prefix-free-MD [15] can be regarded of
that type, if the key is always prepended to the message. We call such hash
functions key-prefixed hash functions.

Definition 11. A keyed iterative hash function Hh is called key-prefixed, if for
all κ ∈ K and all M ∈ {0, 1}∗

∀(m,x) ∈ qryh(Hh(κ,M)) : ¬init(m,x) ∨ mp−1(m) = κ ∨ hp−1(x) = κ

where K denotes the key-space of function Hh.

Now, consider games that only make keyed hash queries. By this we mean
that either the game is defined using keyed hash functions directly, or it can be
restated as such by identifying a part of each query as key, for example, because
some parameter is prepended to every hash query.

Definition 12. We call a game G ∈ LG a keyed-hash game, if G only makes
keyed hash queries. We denote by KG[H

h, r] the set of keys used by G when run
on coins r and with hash function Hh, and require that KG[H

h, r] is polynomially
bounded and chosen independently of the adversarial procedures.

We now show that an interesting sub-class of keyed-hash games are unsplit-
table for key-prefixed hash functions.
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Theorem 2. Let G ∈ LG be a keyed-hash game where adversarial procedures
A1, . . . ,Am are called exactly once and in this order. Let Hh be a key-prefixed
iterative hash-function, that is indifferentiable from a random oracle. Let h :
{0, 1}d × {0, 1}k → {0, 1}s be an ideal function. Denote by View[Ai;H

h, r] the
view of adversary Ai, i.e., the random coins of Ai together with its input and
answers to any of its oracle queries when game G is run with coins r and function
Hh.

If for every efficient extractor E and for every efficient adversary Ai (for
i = 1, . . . ,m− 1) there exists negligible function negl such that

Prr
[
k← E(View[Ai;H

h, r]) : k ∈ KG[H
h, r]
]
≤ negl(λ)

and adversary Am gets KG[H
h, r] as part of its input then G is unsplittable

for Hh.

The theorem can be applied to the CDA, the MLE and the UCE game (see Fig-
ure 1). Note that the CDA and the MLE game do not necessarily require keyed
hash functions but in most constructions explicitly make only keyed hash queries
by embedding the public key (for CDA) and the public parameter (for MLE)
respectively in every hash query.6 For the chosen distribution attack (CDA)
game [3], which captures the security of deterministic PKE schemes, the only
assumption is that the public-key cannot be guessed. For the adaptive version
of the CDA game one needs the additional assumption that the PKE scheme
does not leak the public-key within its ciphertexts. We call the corresponding
property PK-EXT (short for public key extractability) and introduce it in the
full version [27]. For message-locked encryption (MLE) [7] one needs to assume
that the public parameter P cannot be guessed. Finally, UCE is stated directly
for keyed-hash functions that is, here one needs to assume that the hash-key
cannot be guessed. Note that this shows that HMAC is UCE-secure when as-
suming idealized compression functions which solves an open problem in [6]. We
give introductions to the various notions, as well as, formal statements listing
under which assumptions Theorem 2 applies to CDA, MLE and UCE in the full
version of this paper [27].
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Abstract. After more than a decade of usage, bilinear groups have es-
tablished their place in the cryptographic canon by enabling the con-
struction of many advanced cryptographic primitives. Unfortunately, this
explosion in functionality has been accompanied by an analogous growth
in the complexity of the assumptions used to prove security. Many of
these assumptions have been gathered under the umbrella of the “uber-
assumption,” yet certain classes of these assumptions—namely, q-type
assumptions—are stronger and require larger parameter sizes than their
static counterparts. In this paper, we show that in certain bilinear groups,
many classes of q-type assumptions are in fact implied by subgroup hid-
ing (a well-established, static assumption). Our main tool in this en-
deavor is the dual-system technique, as introduced by Waters in 2009.
As a case study, we first show that in composite-order groups, we can
prove the security of the Dodis-Yampolskiy PRF based solely on sub-
group hiding and allow for a domain of arbitrary size (the original proof
only allowed a logarithmically-sized domain). We then turn our atten-
tion to classes of q-type assumptions and show that they are implied—
when instantiated in appropriate groups— solely by subgroup hiding.
These classes are quite general and include assumptions such as q-SDH.
Concretely, our result implies that every construction relying on such as-
sumptions for security (e.g., Boneh-Boyen signatures) can, when instan-
tiated in appropriate composite-order bilinear groups, be proved secure
under subgroup hiding instead.

1 Introduction

For the past decade, bilinear groups— i.e., groups equipped with a bilinear map,
or pairing—have allowed for the efficient construction of a wide variety of
advanced cryptographic primitives, including (but by no means limited to):
signatures [10,3,5,35], group signatures [7,13,20], zero-knowledge proofs [21,22],
(hierarchical) identity-based encryption [8,4,6,31], and functional and attribute-
based encryption [29,33,34]. As such, pairings are now used as a standard general-
purpose tool in cryptographic constructions.
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Unfortunately, this growth in the complexity of cryptographic primitives has
been accompanied by an analogous growth in the complexity of the assumptions
required to prove security. While assumptions such as Bilinear Diffie Hellman
(BDH) [8] and Decision Linear [7] have become relatively standard, the use of
pairings has also ushered in various classes of assumptions such as q-type as-
sumptions, in which the size of the assumption grows dynamically, or interactive
assumptions, in which the adversary is given access to some oracle(s). For exam-
ple, in the q-DBDHI (Decisional Bilinear Diffie Hellman Inversion) assumption,

the adversary is given (g, gx, gx2

, . . . , gxq

) and is asked to produce e(g, g)1/x.
While the “uber-assumption” [6,12] generalizes many q-type assumptions (as
well as many static assumptions) and provides a lower bound for their secu-
rity in the generic group model [43], such assumptions nevertheless remain less
understood than their static counterparts.

Beyond the understanding of such assumptions, the fact that they scale asymp-
totically with the security of the scheme can be problematic. In a reduction, the
value of q is frequently tied to the number of queries that the adversary makes to
an oracle. As a result, q must scale with some parameter of the system; e.g., for
identity-based encryption, q must be at least as big as the number of parties that
the adversary is able to corrupt. As it is typically the case that an assumption
parameterized by q′ implies the same assumption parameterized by q for q′ > q
(as the assumption parameterized by q′ gives out strictly more information), this
means that the assumption gets stronger as the adversary is able to corrupt more
parties. In some cases, this correlation is more striking. For example, Dodis and
Yampolskiy [17] use the 2a(λ)-DBDHI assumption to prove the security of their
pseudorandom function (PRF), where a(λ) is the size of the domain of the PRF
(and λ is the security parameter); as a result, the domain is restricted to be of
logarithmic size. This correlation is furthermore not always an artifact of proof
techniques, as Jao and Yoshida [24] showed that Boneh-Boyen signatures were in
fact equivalent to the q-SDH assumption that they rely on for security. Finally,
Cheon [16] showed that the time required to recover a secret key scales inversely
with the size of q, so that if recovering a secret key takes time t when using q = 1
(e.g, it takes t steps to recover x given g and gx), then it takes time t/

√
q in the

general case (e.g., given (g, gx, . . . , gxq

)). This means that constructions rely on
asymptotically stronger assumptions to obtain stronger security guarantees, so
the parameters must grow appropriately in order to maintain a constant level of
security (e.g., 128-bit security).

On the positive side, one technique that has proved particularly effective at
avoiding q-type assumptions—and boosting security as a result— is the dual-
system technique, which was introduced by Waters [44] in 2009 and has been
used extensively since [31,29,30,33,28,34]. Briefly, this technique takes advan-
tage of subgroup hiding in bilinear groups [9]; i.e., the assumption, in a group
of composite order N = p1p2, that a random element of the full group is in-
distinguishable from a random element of order p1. (Subgroup hiding can also
be defined, albeit in a more complex way, for vector spaces over prime-order
bilinear groups.) Using this core assumption, the dual-system technique begins
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with a scheme in a particular subgroup (for concreteness, the subgroup of el-
ements of order p1); i.e., a scheme in which all elements are contained solely
within the subgroup. To prove security, a “shadow” copy of the original scheme
is first added in a new subgroup (e.g., the subgroup of order p2); the addition
of this shadow copy goes unnoticed by subgroup hiding. Using a property called
parameter hiding [28], this shadow copy is then randomized, so the value in the
additional subgroup is now unstructured; in Waters’ terminology, this object
is now semi-functional. This randomness is then pushed back into the original
subgroup, again using subgroup hiding, and is used to blind the structure of
the original scheme; e.g., in an IND-CPA game it can be used to obscure all
information about the challenge message.

Our Contributions. In this paper, we expand the usage of the dual-system tech-
nique. Rather than work at the level of constructions, we show directly that
many q-type assumptions can be implied—with a crucial looseness of q—by
subgroup hiding. In some sense, we thus interpret previous usages as absorbing
rather than avoiding q-type assumptions, and believe our work takes a (perhaps
surprising) step in expanding the power of the dual-system technique.

As a first exercise, we prove in Section 3 that the Dodis-Yampolskiy PRF—
unmodified, but instantiated in a composite-order group—can be proved secure
using only the subgroup hiding assumption. Because of the limitations (described
above) in the original security proof, our result not only uses a static assumption,
but also boosts security to allow for domains of arbitrary size, which is useful in
and of itself for the many applications of the Dodis-Yampolskiy PRF [14,2,15,26].

Next, in Section 4, we look beyond cryptographic primitives and instead focus
directly on the underlying assumptions, and in particular on the class of q-
type assumptions that are instantiations of the uber-assumption. Here we show
that many instantiations of the uber-assumption can be reduced—following a
modified version of the dual-system technique, which still assumes subgroup
hiding—to instantiations that are significantly weaker; in fact, in many cases
we can reduce to an assumption so weak that it actually holds by a statistical
argument. As examples, we revisit a number of well-known q-type assumptions.
By applying our general theorem to these assumptions, we can reduce them to
assumptions in which all secret information (e.g., the exponent x in q-DBDHI)
is statistically hidden, so an adversary can do no better than a random guess
and the security of the entire assumption collapses down to subgroup hiding.

Finally, in Section 5, we discuss the concrete implications of our work; i.e.,
in which concrete bilinear settings the abstract requirements of the dual-system
technique (namely, subgroup hiding and parameter hiding) can be expected to
hold. Due to current limitations in the parameter hiding supported by prime-
order bilinear groups, our results can most generally be applied in asymmetric
composite-order bilinear groups [11,37].

Putting it all together, we obtain the following concrete results:

– In a composite-order group (such as the target group of a composite-order
pairing, or any composite-order elliptic curve group without a pairing),
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subgroup hiding implies any q-type assumption where the exponents are
linearly independent rational functions.

– In an asymmetric composite-order bilinear group, subgroup hiding implies
any q-type assumption where the exponents are linearly independent rational
functions and the adversary must compute a value in the source group.

Related Work. As mentioned above, the dual-system technique was first intro-
duced by Waters in 2009 [44], and was applied subsequently to achieve a wide
variety of results [31,29,41,30,33,32,28,42], all involving randomized public-key
primitives (e.g., identity-based encryption) in bilinear groups.

To the best of our knowledge, we are the first to systematically apply the
dual-system technique directly to assumptions, and in particular to q-type
assumptions. Boneh, Boyen, and Goh [6] analyzed the security of the uber-
assumption—which includes many q-type assumptions— in the generic group
model, and derived generic lower bounds on the runtime of an adversary that
could break the uber-assumption; this work was later extended by Jager and
Rupp [23], who showed the equivalence of many assumptions in the semi-generic
group model. Our result is somewhat orthogonal to theirs, as we seek to show
that in certain concrete (i.e., non-generic) settings these assumptions actually
reduce to subgroup hiding. Anecdotally, several results use the dual-system tech-
nique to eliminate the requirement on q-type assumptions for specific primitives
or constructions: Gerbush et al. [18] obtained Camenisch-Lysyanskaya signa-
tures under static assumptions, as opposed to the interactive LRSW assumption;
Attrapadung and Libert achieved the first identity-based broadcast encryption
scheme with short ciphertexts [1]; and the original result of Waters [44] achieved
the first secure HIBE under non-q-type assumptions.

2 Definitions and Notation

2.1 Preliminaries

If x is a binary string then |x| denotes its bit length. If S is a finite set then |S|
denotes its size and x

$←− S denotes sampling a member uniformly from S and
assigning it to x. λ ∈ N denotes the security parameter and 1λ denotes its unary
representation.

Algorithms are randomized unless explicitly noted otherwise. “PT” stands
for “polynomial-time.” By y ← A(x1, . . . , xn;R) we denote running algorithm
A on inputs x1, . . . , xn and random coins R and assigning its output to y. By

y
$←− A(x1, . . . , xn) we denote y ← A(x1, . . . , xn;R) for some random coins R.

By [A(x1, . . . , xn)] we denote the set of values that have positive probability of
being output by A on inputs x1, . . . , xn. Adversaries are algorithms.

We use games in definitions of security and in proofs. A game G has a main

procedure whose output is the output of the game. Pr[G] denotes the probability
that this output is true.
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2.2 Bilinear Groups

We refer to a bilinear group as a tuple G = (N,G,H,GT , e), where N can be
either prime or composite, |G| = |H | = kN and |GT | = 
N for some k, 
 ∈ N, and
e : G×H → GT is a bilinear map, meaning it is (1) efficiently computable; (2)
satisfies bilinearity: e(xa, yb) = e(x, y)ab for all x ∈ G, y ∈ H , and a, b ∈ Z/NZ;
and (3) satisfies non-degeneracy: if e(x, y) = 1 for all y ∈ H then x = 1 and
if e(x, y) = 1 for all x ∈ G then y = 1. When G and H are cyclic, we may
include in G generators g and h of G and H respectively, and when the groups
G and H decompose into subgroups G = G1 ⊕G2 and H = H1 ⊕H2, we may
additionally include descriptions of these subgroups and/or their generators. In
what follows, we use BilinearGen to denote the algorithm by which bilinear groups
are generated, and provide it with an argument n that specifies the number of
subgroups.

There are two additional structural properties of bilinear groups that are ex-
ploited in the dual-system technique: subgroup hiding and parameter hiding.
Subgroup hiding is a computational assumption that requires that, if G (respec-
tively H) decomposes into two subgroups, then distinguishing between a random
element of the full group and a random element of one of the subgroups should
be hard. (This is actually the specific simple case of subgroup hiding originally
introduced by Boneh, Goh, and Nissim [9]; more general definitions exist as
well [28,27].)

Assumption 2.1 (Subgroup hiding). For a bilinear group G = (N,G,H,GT ,
e, g1, g2, h1, h2), subgroup hiding holds in G if no PT adversary A has a non-
negligible chance of distinguishing a random element of the subgroup G1 from a
random element of the group G; formally, define Advsgh

A (λ) = 2Pr[SGHA
μ (λ)]−1,

where SGHA
μ (λ) is defined as follows for μ ⊆ {g1, g2, h1, h2}:

main SGHA
μ (λ)

b
$←− {0, 1}; (N,G,H,GT , e, g1, g2, h1, h2)

$←− BilinearGen(1λ, 2)

if (b = 0) then T
$←− G

if (b = 1) then T
$←− G1

b′
$←− A((N,G,H,GT , e), μ, T )

return (b′ = b)

Then subgroup hiding holds with respect to the auxiliary information μ if for all
PT adversaries A there exists a negligible function ν(·) such that Advsgh

A (λ) <
ν(λ).

There are often limits to the auxiliary information that can be provided to A;
e.g., if A is attempting to distinguish T = gr

1 from T = gr for r
$←− Z/NZ and

has access to a canceling pairing e(·, ·)— i.e., a pairing such that e(G1, H2) =
e(G2, H1) = 1—and h2 ∈ μ, it can easily distinguish between these elements
by checking if e(T, h2) = 1 or not. Thus, if an adversary is trying to distinguish
between a random element of G1 and a random element of G1⊕G2 (analogously,
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if it is trying to distinguish between G2 and G1⊕G2), the problem becomes easy
if μ includes h2 (analogously, h1).

Parameter hiding, unlike subgroup hiding, is a statistical property of the
group that allows certain distributions across subgroups to be independent. In
composite-order groups, for example, the Chinese Remainder Theorem tells us
that the values of x mod p1 and x mod p2 are independent, so that given gx

1 , the
value of gx

2 is unconstrained. In prime-order groups, Lewko [28] demonstrated
how to support parameter hiding with respect to linear functions; i.e., how—
using appropriate constructions of G1 and G2 —the distribution of gax

2 and gr
2

for a, r
$←− Fp is identical, even given x and ga

1 . The first formal notion of param-
eter hiding with respect to these linear functions was later given by Lewko and
Meiklejohn [27]; we generalize their notion as follows:

Definition 2.1 (Parameter hiding). For a bilinear group G = (N,G,H,GT ,
e), parameter hiding holds in G with respect to a family of functions F if the dis-

tribution {gf(x1,...,xn)
1 g

f(x1,...,xn)
2 }f∈F is identical to {gf(x1,...,xn)

1 g
f(x′

1,...,x
′
n)

2 }f∈F
for g1

$←− G1, g2
$←− G2, and x1, x

′
1, . . . , xn, x

′
n

$←− Z/NZ. (And holds analogously
in H using h1 and h2.)

As a very simple example, if F = {1, x1}, for g1
$←− G1, g2

$←− G2, and x1, x
′
1

$←−
Z/NZ, the distributions (g1g2, g

x1
1 gx1

2 ) and (g1g2, g
x1
1 g

x′
1

2 ) are identical.
We also define a somewhat weaker condition, which requires distributions that

are statistically close for any (potentially adaptively chosen) polynomial-sized
subset of F.

Definition 2.2 (Adaptive parameter hiding). For a bilinear group G =
(N,G,H,GT , e), adaptive parameter hiding holds with respect to a family of
functions F if for all λ ∈ N and all adaptively chosen sets S ⊆ F of size poly(λ),

the distribution {gf(x1,...,xn)
1 g

f(x1,...,xn)
2 }f∈S is statistically close to {gf(x1,...,xn)

1

g
f(x′

1,...,x
′
n)

2 }f∈S for g1
$←− G1, g2

$←− G2, and x1, x
′
1 . . . , xn, x

′
n

$←− Z/NZ.

We use these definitions in Sections 4, and discuss the different families of
functions that can be supported in different types of bilinear groups in Section 5.

2.3 Pseudorandom Functions

A pseudorandom function family [19] F specifies the algorithms F.Pg, F.Keys,

F.Dom, F.Rng, and F.Ev. Via fp
$←− F.Pg(1λ) one generates a description fp

of a function F.Ev(1λ, fp) : F.Keys(1λ, fp) × F.Dom(1λ, fp) → F.Rng(1λ, fp). The
evaluation algorithm F.Ev is PT and deterministic.
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Definition 2.3. For a function family F and an adversary A, let Advprf
F,A(λ) =

2Pr[PRFAF (λ)]− 1, where PRFAF (λ) is defined as follows:

main PRFAF (λ) Procedure Fnsk (x)

b
$←− {0, 1}; fp $←− F.Pg(1λ); sk

$←− F.Keys(1λ, fp) if b = 0 y
$←− F.Rng(1λ, fp)

b′
$←− AFn(1λ, fp) if b = 1 y ← F.Ev(1λ, fp, sk , x)

return (b′ = b) return y

Then F is pseudorandom if for all PT algorithms A there exists a negligible
function ν(·) such that Advprf

F,A(λ) ≤ ν(λ).

3 Pseudorandom Functions

In this section, we explore the security of the Dodis-Yampolskiy PRF [17]. First,
we recall the Dodis-Yampolskiy PRF, instantiated for our purposes in a group
of composite order N = p1p2:

1

– F.Pg(1λ): Output (N,G,H,GT , e, g, h)
$←− BilinearGen(1λ, 2). Then F.Keys =

F.Dom = Z/NZ, and F.Rng = GT .

– F.Ev(1λ, fp, sk , x): Output y := e(g, h)
1

sk+x . If (sk + x)−1 is undefined in
Z/NZ, then output y := 1.

Dodis and Yampolskiy originally showed that this was a verifiable random func-
tion—a more powerful primitive than a PRF, as it comes with the additional
ability to prove that the PRF value was computed correctly—under the q-
DBDHI assumption, which states that when given (g, gx, . . . , gxq

), it should be
hard to distinguish e(g, g)1/x from random. Their reduction, however, is quite
loose: if the size of the PRF domain is a(λ), then they use the 2a(λ)-DBDHI as-

sumption, and show that Advpr-vrf
F,A (λ) ≤ 2a(λ) ·Adv2a(λ)-DBDHI

A (λ), which means
that the scheme is provably secure only if the domain is restricted to be of log-
arithmic size (i.e., its size is logarithmic in the size of the security parameter).

We instead make two minor modifications to the PRF and show that

Advprf
F,A(λ) ≤ q ·Advsgh

A (λ)

for an adversary A that makes q queries to the PRF oracle; while the reduction
is still not tight, our approach nevertheless allows for a domain of arbitrary size.
Our first modification is to move the scheme into a subgroup: rather than use
e(g, h) for the full group generators, we switch to using e(g1, h1), where g1 and h1

generate G1 and H1 respectively. (In a cyclic group, such as a composite-order

1 To mirror the exposition of the original PRF, we use the target group GT here, but
note that in fact our analysis would work for any composite-order group in which
subgroup hiding holds and there is no pairing.
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target group, this could instead be accomplished using an additional application
of subgroup hiding, and we can show that the function is a PRF even in the full
group.) Our second modification is to use, rather than the “canonical” generator
e(g1, h1), a random generator w1 ∈ GT,1. We stress that these modifications are
purely syntactical and do not fundamentally alter the spirit of the construction
(and, in particular, do not affect its usage in applications). They do, however,
allow us to prove the following theorem:

Theorem 3.1. For all λ ∈ N and fp ∈ [F.Pg(1λ)], if subgroup hiding holds in G
and adaptive parameter hiding holds with respect to {F.Ev(1λ, fp, ·, x)}x∈F.Dom,
then F is a pseudorandom function family.

A proof of Theorem 3.1 can be found in the full version of the paper. Intu-
itively, our approach amplifies the only unknown value present in the PRF—
namely, the sk value—as follows: first, this secret value is replicated in the GT,2

subgroup, which is indistinguishable from the original by subgroup hiding. The
secret value in the GT,2 subgroup is then decoupled from the secret value in
the GT,1 subgroup, which is indistinguishable (in fact identical) by parameter
hiding. Finally, the new secret value from the GT,2 subgroup is moved back into
GT,1, which is again indistinguishable by subgroup hiding. At this point, we
now have one additional secret value in the PRF values we return. By repeat-
ing the process, we can embed polynomially many secret values (in particular,
we embed as many values as there are oracle queries), at which point we have
enough entropy to argue that the values returned by the PRF are statistically
indistinguishable from truly random values.

One interesting feature of our approach is that—because we are using a
deterministic primitive—we do not need to follow the traditional dual-system
structure and adhere to a “query hybrid,” in which each query to the oracle
must be treated separately. Nevertheless, we do need to add enough additional
degrees of randomness to cover all of the adversary’s queries, so we still end up
with a looseness of q in our reduction (but where q is the number of queries, not
the size of the PRF domain).

4 Reducing q-Type Assumptions to Subgroup Hiding

Our main result in this section is to show that— if subgroup hiding holds and
parameter hiding holds with respect to certain functions in the exponent—
certain q-type assumptions are equivalent to significantly weaker assumptions. In
fact, these equivalent assumptions are often so weak that they hold by a purely
statistical argument, so the original assumption is fully implied by subgroup
hiding.

We begin by recalling the uber-assumption, which serves as an umbrella for
many q-type assumptions. We then describe two approaches: roughly, the first
reduces any uber-assumption to subgroup hiding, but only if the assumption
gives out meaningful functions on one side of the pairing (or in the target group),
and the second reduces any computational uber-assumption in the source group
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to subgroup hiding. Both of our reductions incur a looseness of q in the reduction,
so we can think of them as “absorbing” the factor of q from the assumption rather
than eliminating it outright.

4.1 The Uber-Assumption

We are able to examine many q-type assumptions at the same time using the
“uber-assumption” [6,12], which was first introduced by Boneh, Boyen, and Goh
as a way to reason generally about a wide variety of pairing-based assump-
tions. They prove that if the parameters of the uber-assumption meet certain
independence requirements then the assumption is hard in the generic group
model, which eliminates the need to prove generic lower bounds for every indi-
vidual instantiation of the assumption that is introduced. Our motivation, on
the other hand, is to prove that many common instantiations of the assumption
are in fact implied—assuming subgroup hiding holds in the bilinear group—by
weaker versions of the assumption.

Formally, for a bilinear group G = (N,G,H,GT , e, g, h) (where N can be ei-
ther prime or composite) the uber-assumption is parameterized by five values: an
integer c ∈ N, three sets R, S, and T of polynomials over Z/NZ (which represent
the values we are given in G, H , and GT respectively), and a polynomial f over
Z/NZ. For the sets of polynomials, we write R = 〈ρ1(x1, . . . , xc), . . . , ρr(x1, . . . ,
xc)〉 and as shorthand use ρi(%x) = ρi(x1, . . . , xc) and gR(x1,...,xc) = {gρi(!x)}ri=1

(and similarly for S and T ).

Assumption 4.1 (Computational). For an adversary A, define Advuber
A (λ)

= Pr[c-UBERA
c,R,S,T,f(λ)], where c-UBERA

c,R,S,T,f(λ) is defined as follows:

main c-UBERA
c,R,S,T,f(λ)

(N,G,H,GT , e, g, h)
$←− BilinearGen(1λ, 2); x1, . . . , xc

$←− Z/NZ

y
$←− A(1λ, (N,G,H,GT , e, g, h), gR(x1,...,xc), hS(x1,...,xc), e(g, h)T (x1,...,xc))

return (y = e(g, h)f(x1,...,xc))

Then the uber-assumption holds if for all PT algorithms A there exists a negli-
gible function ν(·) such that Advuber

A (λ) < ν(λ).

As an example, CDH in a symmetric group G uses c = 2, R = S = 〈1, x1, x2〉,
T = 〈1〉, and f(x1, x2) = x1x2, so that given (g, gx1 , gx2), it should be hard to
compute gx1x2 . As long as R and S both include 1, the computational uber-
assumption in the target group implies the computational uber-assumption in
the source group, since given X = gf(!x) one can always compute e(X,h) =
e(g, h)f(!x).

The game d-UBERA
c,R,S,T,f(λ) for the decisional uber-assumption is defined

analogously, except rather than compute gf(x1,...,xc) at the end, the adversary
has only to distinguish it from random. Unlike the computational version,
the decisional uber-assumption in the source group implies the decisional uber-
assumption in the target group, since one can use a decider between e(g, h)f(!x)
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and RT to decide between gf(!x) and R by computing the pairing. Furthermore,
the decisional uber-assumption (in either group) implies the computational uber-
assumption, since the ability to compute the target value immediately implies
the ability to distinguish it from random. The strongest version of the uber-
assumption, and the one we therefore choose to aim for in the next section, is
the decisional assumption in either of the source groups.

4.2 A First Approach: Functions on One Side of the Pairing

Our first approach shows that certain classes of the uber-assumption are equiv-
alent to significantly weaker classes, and that in fact these weaker classes are
so weak that the assumption holds by a statistical argument. The subclass of
uber-assumptions we cover includes q-type assumptions such as exponent q-SDH
(defined above), and implies that any schemes that currently rely on such as-
sumptions can be instantiated so that they rely solely on subgroup hiding.

Our only modifications to the parameters of the uber-assumption are analo-
gous to our modifications in Section 3, which are as follows: first, we assume G,
H , and GT all have two subgroups, and we initially operate solely in the first of

these subgroups, so that A is given (g
R(x1,...,xc)
1 , h

S(x1,...,xc)
1 , e(g1, h1)

T (x1,...,xc))
rather than values in the full group. Second, we again switch from the canoni-
cal generators g1 and h1 to random generators u1 and v1. To make our proofs
cleaner, we phrase this requirement as follows: for every ρi ∈ R, there must exist

an efficiently computable function ρ̂i such that g
ρi(!x)
1 = u

ρ̂i(!x)
1 , and there must

also exist an efficiently computable function f̂ such that g
f(!x)
1 = u

f̂(!x)
1 . Practi-

cally, suppose that u1 = gr
1 . Then, using x1 = r, our requirement is equivalent

to the requirement that ρi(x1, . . . , xc) = x1 · ρ̂i(x2, . . . , xc) (and the same for f).
Again, we stress that this is just a base translation rather than a restriction on
the parameters of the uber-assumption.

Theorem 4.2. For a bilinear group G = (N,G,H,GT , e, g1, g2) ∈ [BilinearGen(
1λ, 2)], consider the decisional uber-assumption parameterized by c, R = 〈1,
ρ1(%x1), . . . , ρr(%x1)〉, S = T = 〈1〉, and f(%x1). Then, if subgroup hiding holds in
G with respect to μ = {g1, g2} and parameter hiding holds with respect to R∪{f},
this assumption is implied by the decisional uber-assumption parameterized by

c, R′ = 〈1,

∑�
i=1 ρ1(%xi), . . . ,

∑�
i=1 ρr(%xi)〉, S, T , and f ′ =

∑�
i=1 f(%xi) for all


 = poly(λ).

A proof of this theorem can be found in the full version of the paper, and also
applies when R = S = 〈1〉 and only T contains meaningful functions, or more
generally in the case when there might not be an efficiently computable pairing.
Intuitively, the transitions rely on the same modified dual-system technique that
we used in the proof of Theorem 3.1. First, all elements exist only in the G1

subgroup, operating over the original set of variables %x1. A shadow copy of these
elements is then added into the G2 subgroup, which goes unnoticed by subgroup
hiding. This shadow copy is then switched to operate over a new set of variables
%x2, which is identical by parameter hiding. These new values are then folded
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back into the G1 subgroup, which is again indistinguishable by subgroup hiding.
Finally, the G2 component is eliminated, which is once again indistinguishable
by subgroup hiding. The result is now a G1 component that operates over both
%x1 and %x2, and the effect is analogous to the extra degree of randomness we
obtain in the proof of Theorem 3.1. Repeating this process 
 − 1 more times
proves the theorem.

To now show why this theorem is useful, we illustrate that the resulting game
is often statistically hard, and thus the original uber-assumption is implied solely
by subgroup hiding. To start, consider

V =

⎡⎢⎢⎢⎢⎢⎢⎣
1 ρ1(%x1) ρ2(%x1) · · · ρq(%x1) f(%x1)
1 ρ1(%x2) ρ2(%x2) · · · ρq(%x2) f(%x2)

...
...

. . . ...
.... . .

1 ρ1(%x�) ρ2(%x�) · · · ρq(%x�) f(%x�)

⎤⎥⎥⎥⎥⎥⎥⎦ (1)

We then have the following lemma, which relates the linear independence of
the polynomials with the invertibility of the matrix:

Lemma 4.1. For all λ ∈ N, if the functions in R∪{f} are linearly independent
and of maximum degree poly(λ), 
 = q+2 for q = poly(λ), and N = p1 ·. . .·pn for
distinct primes p1, . . . , pn ∈ O(2poly(λ)), then with all but negligible probability
the matrix V is invertible.

Proof. If the matrix V is invertible in Z/piZ for each prime pi | N , then it
is also invertible in Z/NZ. To see that V is invertible (with all but negligible
probability) in Z/piZ for all i, define F = Z/piZ (or, in the case that N is
itself prime, define F = Z/NZ); then V is a matrix over F , where |F | is ex-
ponential in λ. If we consider V instead as a matrix over the polynomial ring
F [x1,1, . . . , x1,c, . . . , xq+2,c], then we can define its determinant to be the polyno-
mial D(%x1, . . . , %xq+2). By the definition of polynomial linear independence, the
columns of V are linearly independent, so D is not the zero polynomial.

To consider the linear independence of the matrix over F , we must con-
sider an assignment of concrete values %a1, . . . ,%aq+2 for the variables %x1, . . . , %xq+2.
To see that D(%a1, . . . ,%aq+2) = 0 with all but negligible probability—and thus
the matrix V is invertible—consider d = maxq

i=0(di), where d0 = deg(f) and
di = deg(ρi) for all ρi ∈ R; then deg(D) ≤ (q + 1)d. By the Schwartz-Zippel

lemma, Pr[D(%a1, . . . ,%aq+2) = 0] ≤ (q + 1)d/|F | for %a1, . . . ,%aq+2
$←− F . As |F |

is exponential in λ and both q and d are polynomial in λ, the probability is
bounded by a negligible function in λ. ��

We then have the following corollary, which indicates when we can show that
the original decisional assumption is implied by subgroup hiding.

Corollary 4.1. The decisional uber-assumption parameterized by (c, R, S, T, f)
holds with all but negligible probability if (1) subgroup hiding holds in G with
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respect to μ = {g1, g2}, (2) parameter hiding holds with respect to R ∪ {f}, (3)
S = T = 〈1〉, and (4) the polynomials in R ∪ {f} are linearly independent.

Proof. By requirements (1), (2), and (3), Theorem 4.2 tells us that the (c, R, S, T,
f)-uber assumption is equivalent to the (
c, R′, S, T, f ′)-uber-assumption. In this
latter assumption, the adversary sees values with exponents of the form %y = %r ·V ,
where %r is a random vector of length 
 and V is the 
 × (q + 2) matrix defined
in Equation 1. If we use 
 = q + 2, then by requirement (4), Lemma 4.1 tells us
that V is invertible with all but negligible probability.

We can now use a bijection argument similar to the one in the proof of The-
orem 3.1: %r and %y are both members of the set S containing all sets of size q+2
over Z/NZ, so multiplication by V maps S to itself. As V is invertible, the map
is invertible as well, and is thus a permutation over S. Sampling %r uniformly
at random and then multiplying by V thus yields a vector %y that is distributed
uniformly at random over Z/NZ.

An adversary A thus has no advantage in distinguishing between %y and a
uniformly random vector in S, as the distributions over the two are identical,
and thus has no advantage in d-UBERA

�c,R′,S,T,f ′(λ). ��

As observed by Boneh, Boyen, and Goh, if f is not linearly independent
from all polynomials in R ∪ T , then the assumption becomes trivially false. It
furthermore unnecessarily expands the size of the tuple to use polynomials in R
or T that are linearly dependent, as, e.g., g2x is redundant given gx. We therefore
believe that the requirement that the polynomials in R ∪ T ∪ {f} be linearly
independent is not restrictive, and in fact— to the best of our knowledge— it is
satisfied by all existing instantiations of the uber-assumption.

As a concrete example, we finally examine the exponent q-SDH assumption,
as introduced and used by Zhang et al. [45].

Example 4.1. For exponent q-SDH, R = 〈1, α, α2, . . . , αq〉 and f(α) = αq+1.
Plugging these values into the matrix V gives a Vandermonde matrix, which
is invertible. By Corollary 4.1, exponent q-SDH is thus implied by subgroup
hiding, assuming parameter hiding holds with respect to the set {fk(α) = αk}q+1

k=1

(which, given our discussion in Section 5, currently restricts us to composite-
order groups).

4.3 A Second Approach: Computational Assumptions in the Source
Group

Although our results in the previous section have potentially broad implications,
the requirements for Theorem 4.2—and in particular the requirement that S =
〈1〉—are somewhat restrictive, as many q-type assumptions require meaningful
functions on both sides of the pairing. We furthermore do not seem able to relax
this requirement using our current proof strategy: briefly, the fact that we need
subgroup hiding between both G1 and G1 × G2 and between G1 × G2 and G2

means that we cannot give out the subgroup generators h1 and h2 on the other
side of the pairing. To get around this restriction and allow meaningful functions



634 M. Chase and S. Meiklejohn

on both sides of the pairing, we now consider an alternate approach in which we
require subgroup hiding only between G1 and G1 ×G2, which allows us to give
out h1.

Theorem 4.3. For a bilinear group G = (N,G,H,GT , e) ∈ [BilinearGen(1λ, 2)],
consider the computational uber-assumption parameterized by c, R = 〈1, ρ1(%x),
. . . , ρr(%x)〉, S, T , and f . Then, if subgroup hiding holds in G with respect to
μ = {g1, g2, h1} and parameter hiding holds with respect to R ∪ {f}, this is
implied by the following assumption for all 
 = poly(λ): given

(G, u1g
∑	

i=1 ri
2 , {uρk(!x)

1 g
∑	

i=1 riρk(!xi)
2 }rk=1, v

S(x1,...,xc)
1 , e(u1, v1)

T (x1,...,xc))

for %x, r1, %x1, . . . , r�, %x�
$←− Z/NZ, it is difficult to compute u

f(!x)
1 g

∑	
i=1 rif(!xi)

2 .

A proof of this theorem can be found in the full version of the paper. In-
tuitively, the starting point is the same as in our previous proofs: all elements
exist only in the G1 subgroup, operating over the original set of variables %x, and
a shadow copy of these elements is added into the G2 subgroup, which goes un-
noticed by subgroup hiding. This shadow copy is then switched to operate over
a new set of variables %x1, which is identical by parameter hiding. Now, rather
than attempt to move these new variables back into G1, we simply repeat the
process of adding and re-randomizing the original set of variables into the G2

subgroup, until we end up with 
 sets of variables there.
Once again, the usefulness of this theorem is revealed only when we examine

what this more complex assumption provides. Interestingly, it is not clear how
to show that the decisional assumption holds by a statistical argument, as the
isolation of the %x variables in the G1 subgroup provides a potentially detectable
distribution. Instead, we restrict our attention to computational assumptions in

the source group, in which the adversary is required to compute u
f(!x)
1 g

∑	
i=1 rif(!xi)

2

rather than distinguish it from random. In this setting, we have the following
corollary; as its proof is analogous to the proof of Corollary 4.1, we omit it here
(but it can be found in the full version of the paper).

Corollary 4.2. The computational uber-assumption parameterized by (c, R, S,
T, f) holds in the source group with all but negligible probability if (1) subgroup
hiding holds in G with respect to μ = {g1, g2, h1}, (2) parameter hiding holds
with respect to R∪{f}, (3) the polynomials in R∪{f} are linearly independent.

To bring everything together, we examine the q-SDH assumption, as defined
by Boneh and Boyen [5].

Example 4.2. The q-SDH assumption uses R = 〈1, α, . . . , αq〉, S = 〈1, α〉, T =

〈1〉, and asks A to compute (c, u
1

α+c ). Using Theorem 4.3,2 this is equiva-
lent (under subgroup and parameter hiding) to an assumption in which A is

2 Technically, this assumption doesn’t meet the requirements of the theorem, as A
produces a new value c rather than a function f(�x). The proof of the theorem can,
however, be trivially extended to support assumptions of this type as well, as long
as the group satisfies adaptive parameter hiding.
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given (u1g
∑q+2

i=1 ri
2 , uα

1 g
∑q+2

i=1 riγi

2 , . . . , uαq

1 g
∑q+2

i=1 riγ
q
i

2 , v1, v
α
1 ), where γ1, . . . , γq+2

$←−
Z/NZ, and is asked to compute (c, u

1
α+c

1 g

∑
i

ri
γi+c

2 ). Applying the same analysis
as above, we can ignore G1 and focus on G2, in which we use the matrix

A =

⎡⎢⎢⎢⎣
1 γ1 · · · γq

1
1

γ1+c

1 γ2 · · · γq
2

1
γ2+c

...
...

. . .
...

...
1 γ� · · · γq

�
1

γ	+c

⎤⎥⎥⎥⎦
Then, for its choice of c, A is given the first q + 1 entries of %r · A and needs to
compute the final entry. This matrix is invertible, so the same bijection argument
as in Corollary 4.2 thus implies that A can produce the correct value with at
most negligible probability, which implies (assuming parameter hiding holds with
respect to {ρk(α) = αk}qk=1) that q-SDH is implied by subgroup hiding.

5 Instantiating Our Results

Abstractly, our results provide quite a strong guarantee: as long as subgroup
hiding and parameter hiding hold, many instantiations of the uber-assumption
hold (as well as non-uber-assumptions, such as q-SDH), as they reduce to as-
sumptions that hold by a statistical argument. Concretely, we need to examine
which groups support these underlying assumptions.

Parameter Hiding. Our strongest requirement in our analysis was the generality
of parameter hiding: to reason about any q-type assumption, we need a group
where parameter hiding holds for all rational functions. While this seems hard
to achieve in general, it does hold for any composite-order group (e.g., any group
of order N = p1p2 for primes p1 and p2), as the value of any exponent modulo
p1 is independent of its value modulo p2.

Subgroup Hiding. In groups without a pairing—such as the target group of a
bilinear tuple or a group over a non-pairing-friendly elliptic curve—subgroup
decision is fairly straightforward. In groups with a pairing, however, the concerns
mentioned in Section 2 (in which certain subgroup generators on the other side
of the pairing could render subgroup decision easy) mean we have to be more
careful. Our first approach in Section 4.2 relies on being unable to distinguish
random elements of both G1 and G2 from G1 ×G2, even when given g1 and g2.
This cannot hold, for example, in a symmetric bilinear group, so this assumption
is reasonable only in the asymmetric setting. Our second approach in Section 4.3
requires that subgroup hiding holds even given h1 and g2, so it again requires
an asymmetric pairing.

Instantiations. As mentioned above, our results in Sections 3 and 4 can be
applied in any composite-order group where we can assume subgroup hiding.
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Reasonable candidates for such a group include composite-order elliptic curve
groups without efficient pairings, the target group of a composite-order bilinear
group, or composite-order subgroups of finite fields.

In the case where we do have a pairing, we need an asymmetric composite-
order bilinear group in order to make subgroup hiding a reasonable assump-
tion. Although most composite-order bilinear groups are symmetric (as they are
groups of points on supersingular curves), ordinary composite-order curves were
first introduced by Boneh, Rubin, and Silverberg [11], and their applicability
for cryptography—and in particular an examination of the nature of the result-
ing asymmetric composite-order bilinear group—was very recently explored by
Meiklejohn and Shacham [37].

Applications. In asymmetric composite-order bilinear groups we can prove a
wide range of constructions secure based on just subgroup hiding. For example,
our examination of q-SDH means that the Boneh-Boyen signature, the Boneh-
Boyen-Shacham group signature [7], and the attribute-based signature due to
Maji et al. [36] can all be proved secure under subgroup hiding, and the fact that
q-DHI [38] is also equivalent to subgroup hiding implies the Dodis-Yampolskiy
VUF and the Jarecki-Liu PRF [25] can also both be proved secure based on
subgroup hiding.

6 Conclusions and Open Problems

This paper demonstrated the applicability of the dual-system technique (and
variants on it) by first proving the security of the Dodis-Yampolskiy PRF—
using a domain of arbitrary size—under subgroup hiding, and then proving
equivalence between many classes of the uber-assumption. This latter result
further implies that many of these classes are in fact implied solely by subgroup
hiding, as they reduce to assumptions that hold by a purely statistical argument.
Our paper thus demonstrates that many common q-type assumptions—and
the constructions that rely on them for security—can be implied directly by
subgroup hiding when instantiated in the appropriate bilinear groups.

As our paper is a first step, many interesting directions and open problems
remain. For example, we currently cannot prove anything about, e.g., decisional
assumptions— such as q-DDHE—that require meaningful functions on both
sides of the pairing. Perhaps the biggest open problem is obtaining more robust
forms of parameter hiding in prime-order groups. Prime-order groups have the
benefit of being significantly more efficient, and it is possible to construct groups
with the appropriate subgroup hiding requirements using dual pairing vector
spaces [39,40], as exemplified most recently by Lewko and Meiklejohn [27].

For parameter hiding in prime-order bilinear groups, however, it is currently
known how to obtain parameter hiding only for linear functions. Papers that
have focused on translating these structural properties into prime-order settings,
however, have indicated that they focus on such simple functions to keep their
“constructions. . . simple and tailored to the requirements that [they] need” [27],
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so we consider constructing parameter hiding for more robust functions in the
prime-order setting an interesting open problem rather than an impossibility.

Acknowledgments. We thank Michael Naehrig for his valuable feedback, and
the anonymous reviewers for their helpful suggestions.
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1 Introduction

For x, y ∈ {0, 1}∗, the point function Px,y is defined by Px,y(x) = y and
Px,y(x

′) = 0|y| for all x′ = x. Motivated by the goal of improving the efficiency of
private information retrieval (PIR) [8,24] and related cryptographic primitives,
we introduce and study the notion of a distributed point function (DPF). Infor-
mally speaking, a DPF is a representation of a point function Px,y by two keys
k0 and k1. Each key individually hides x, y, but there is an efficient algorithm
Eval such that Eval(k0, x

′) ⊕ Eval(k1, x
′) = Px,y(x

′) for every x′. Letting Fk

denote the function Eval(k, ·), the functions Fk0 and Fk1 can be viewed as an
additive secret sharing of Px,y.

A simple implementation of a DPF is to let k0 specify the entire truth-table
of a random function Fk0 : {0, 1}|x|→ {0, 1}|y| and k1 specify the truth-table of
Fk1 = Fk0 ⊕ Px,y. Since each of k0 and k1 is random, this solution is perfectly
secure. The problem with this solution is that the size of each key is exponential
in the input size. Our main goal is to obtain a DPF with polynomial key size.

To demonstrate the usefulness of this new primitive, consider the goal of ob-
taining a 2-server secure keyword search protocol with low communication com-
plexity. In such a protocol, two servers hold a large database D = {w1, . . . , wn},
where each wi is an 
-bit keyword, and a user wishes to find whether w ∈ D
while hiding w from each server. Given a DPF scheme, the user creates keys
(k0, k1) for the point function Pw,1 and sends one key to each server. Given a
key kb, b ∈ {0, 1}, server b returns the answer bit ab =

⊕n
j=1 Fkb

(wj). The user
then computes a0 ⊕ a1, which is equal to 1 if and only if w ∈ D. Essentially
the same solution applies to 2-server PIR, where D is an n-bit database and the
user wants to privately retrieve the i-th bit Di.

The connection to PIR can be used to translate linear lower bounds on the
communication complexity of 2-server PIR protocols with short answers [8,32]
into an exponential lower bound of 2Ω(|x|) on the DPF key size if we require that
each key hide x with information-theoretic security. However, this lower bound
does not hold in the context of computational PIR (CPIR), where the security
requirement is relaxed to computational security [7].

Based on the above discussion, we define a DPF to be a pair of PPT algorithms
(Gen,Eval), such that Gen receives x and y as input and creates the keys
(k0, k1). In particular, the efficiency of Gen forces the key size to be polynomial
in |x|+ |y|. Each key individually must give no information in the computational
sense on x, y. However, as described previously, Eval(k0, x

′) ⊕ Eval(k0, x
′) =

Px,y(x
′) for every x′.

Our Contribution. Our main result is establishing the feasibility of a DPF
under the (minimal) assumption that a one-way function exists. Our construction
uses a recursion that compresses the keys k0 and k1. The base scheme is the
simple solution described above with each key of length 2|x| |y|. The recursion
runs for �log |x|� steps. In each step of the recursion, the key is compressed to
almost a square root of its former size. Random portions of the key are replaced
with seeds for a pseudo-random generator (PRG) that can be expanded to longer
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strings that are pseudo-random. Carefully correlating the seeds in the two keys
ensures that running Eval on the two compressed keys and x′ and then taking
the XOR of the results still gives Px,y(x

′) as it does with the uncompressed keys.
Our construction looks quite attractive from a concrete efficiency point of

view and may well give rise to the most practical solutions to date to PIR and
related problems. The key size in our DPF is roughly 8κ · |x|log 3

, where κ is the
seed length of the underlying PRG and log is a base 2 logarithm. (This analytical
bound is somewhat pessimistic; we present optimized key sizes for typical lengths
of x in Table 1.)

Using the transformation described above, we get a 2-server CPIR protocol
with query size equal to the DPF key size and a single bit answer from each
server. The single bit answer feature is appealing in situations where the same
user queries are used many times, say when the database is rapidly updated but
the user’s interests remain the same. We refer to a protocol that has this feature
as binary CPIR.

Our protocol improves over the first CPIR protocol from [7], which implicitly

relies on a DPF of super-polynomial complexity |x|O(
√

log |x|), and gives rise
to the first polylogarithmic communication 2-server CPIR protocol based on
(exponentially hard)1 one-way functions, and the first binary polylogarithmic
2-server PIR protocol under any standard assumption.

In terms of computational cost on the server side, which typically forms
the practical efficiency bottleneck in PIR, the computation of each server on
a database of size n roughly corresponds to producing n pseudorandom bits.2

(The computation on the client’s side is negligible.) This is faster by orders of
magnitude than the Ω(n) public-key operations required by known single-server
CPIR protocols (cf. [24,29,10,25,17]).

Additional Applications. The above applications to 2-server PIR also ap-
ply to the related problem of private information storage [26] (aka “PIR writ-
ing”), where a client wants to non-interactively update entry i in a database
D which is additively secret-shared between two servers without revealing i to
each server. We get the first polylogarithmic solution to this problem (assuming
exponentially strong OWFs). We note that single-server CPIR protocols or even
stronger primitives such as fully homomorphic encryption [16] do not apply in
this setting.

1 In this work we say that a one-way function is exponentially hard if it is hard to
invert by circuits of size 2n

c

, for some c > 0. The proof of Theorem 5 shows that such
a one-way function is necessary for the existence of binary 2-server CPIR protocols
in which the query length is polylogarithmic in the database size n and security
holds against poly(n)-time distinguishers. Alternatively, using the two-parameter
definition of CPIR from [25] that limits the distinguisher to run in poly(κ) time
(independently of n), we get binary 2-server PIR with query length κ·polylog(n)
assuming the existence of a standard one-way function.

2 A naive usage of a DPF requires a separate DPF evaluation for each nonzero entry
of the database. In the full version we describe a method for amortizing this cost.
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As the previous example demonstrates, DPF can be used to get qualitatively
improvements over previous protocols for private keyword search [9,15,27]. Recall
that in the two-server variant of this problem, two servers hold a set of words
{w1, . . . , wn} and a user wishes to find out whether a word w is part of the set,
while hiding w from each server. Previous solutions to this problem either make
intensive use of public-key cryptography or alternatively involve data structures
that have overhead in communication, round complexity, storage complexity,
update cost, and error probability. Our protocol avoids all these disadvantages
using only symmetric cryptography. It involves a single communication round,
requires no data structures, has no error probability, and is the first private
keyword search protocol we are aware of (under any standard assumption) that
only requires one-bit answers. In more concrete terms, the query length of our
protocol is O(κ |w|log 3

) and the dominant computational cost involves a small
number of PRG invocations (roughly corresponding to the DPF key size) for
each keyword in the database. It can easily support database updates and be
used in the streaming model of [27]. It can also be extended to support private
keyword search with payloads, where the answer size of each server is equal to
the size of the payload.

Finally, we present an application of DPFs to complexity theory. Assuming the
existence of an exponentially hard one-way function, we get the first worst-case to
average case reduction for PSPACE and EXPTIME languages which only makes
O(1) oracle calls. Concretely, we show a languageL in PSPACE (or in EXPTIME)
such that if an algorithm A decides L correctly on all but a δ fraction of the in-
stances, then every language L′ in PSPACE (or EXPTIME) admits a polynomial
time oracle algorithm R such that RA decides L′ with good probability on every
instance. The new feature of our reduction is thatRmakes only two calls to its or-
acleA. The best previous reductions requiredΩ(n/ logn) calls for inputs of length
n [1,2]. A different version of the reduction applies to the case where A decides L
correctly on all but a δ fraction of the instances, and on the other instances re-
turns “don’t know”. In this case, RA correctly decides any instance in L′, with
probability 1, while the expected number of calls to A is O(1).

Alternatives and RelatedWork. In the information-theoretic setting for PIR,
the best known 2-server protocol requiresO(n1/3) bits of communication [8]. How-
ever, in the case of binary 2-server PIR, the query size must be linear in n [8,32,3].
Much better protocols are known if there are 3 or more servers and security should
only hold against a single server. The best known 3-server protocols [33,14,4] have

queries of size 2O(
√
logn·log logn) and single-bit answers. Note that unlike our 2-

server protocols, this communication complexity is super-polynomial in the bit-
length of the user’s input i. Polylogarithmic information-theoretic PIR protocols
are known to exist only with Ω(logn/ log logn) servers [8]. A general technique
from [5] can be used to convert a k-server binaryPIRprotocol with security against
a single server into a kt-server binary PIR protocol with security against t servers
and comparable communication complexity. This technique can be applied to our
2-server protocol to yield t-private 2t-server CPIR protocols with polylogarithmic
communication.
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While in this work we mainly focus on 2-server CPIR protocols, a better
studied model for CPIR is the single-server model, introduced in [24]. Single-
server protocols with polylogarithmic communication are known to exist under
standard cryptographic assumptions [10,25,17,6].

Our two-server CPIR protocol has three main advantages over its single-server
counterparts. First, as discussed above, our protocol is significantly more efficient
in computation. Second, our protocol has single-bit answers, instead of answers
that are at least the size of a security parameter (typically the ciphertext size in
an underlying public-key encryption scheme). The third advantage is that our pro-
tocol relies on a much weaker cryptographic assumption, namely the existence of
one-way functions. In contrast, single-server PIR protocols imply oblivious trans-
fer [13], which in turn implies public-key encryption. We get even more significant
advantages for the problems of private keyword search or PIR writing, where stan-
dard CPIR does not apply and alternative solutions have additional costs.

Organization. In Section 2 we present definitions and notation. Section 3 de-
scribes a construction for a distributed point function. Three applications of a
distributed point function are presented in Section 4, a CPIR scheme in subsec-
tion 4.1, a scheme to privately retrieve information by keywords in subsection
4.2 and a worst case to average case reduction for EXPTIME and PSPACE lan-
guages in subsection 4.3. Finally, a proof that the existence of a DPF implies
the existence of a one-way function appears in Section 6.

2 Definitions and Notation

Notation 1. For x, y ∈ {0, 1}∗, the point function Px,y : {0, 1}|x| → {0, 1}|y| is
defined by Px,y(x) = y and Px,y(x

′) = 0|y| for all x′ = x.

Definition 1. A distributed point function is a pair of PPT algorithms DPF =
(Gen,Eval) with the following syntax:

– Gen(x, y), where x, y ∈ {0, 1}∗, outputs a pair of keys (k0, k1). When y is
omitted it is understood to be the single bit 1.

– Eval(k, x′,m), where k, x′ ∈ {0, 1}∗ and m ∈ N, outputs y′ ∈ {0, 1}∗.

DPF must satisfy the following correctness and secrecy requirements.
Correctness: For all x, x′, y ∈ {0, 1}∗ such that |x| = |x′|

Pr[(k0, k1)← Gen(x, y) : Eval(k0, x
′, |y|)⊕ Eval(k1, x

′, |y|) = Px,y(x
′)] = 1.

Secrecy: For x, y ∈ {0, 1}∗ and b ∈ {0, 1}, let Db,x,y denote the probability
distribution of kb induced by (k0, k1) ← Gen(x, y). There exists a PPT algo-
rithm Sim such that the following distribution ensembles are computationally
indistinguishable:

1. {Sim(b, |x|, |y|)}b∈{0,1},x,y∈{0,1}∗
2. {Db,x,y}b∈{0,1},x,y∈{0,1}∗
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The above definition captures the intuitive security requirement that kb re-
veals nothing except b, |x|, and |y|. We will also be interested in exponentially
strong DPFs, which satisfy the stronger requirement that for some constant
c > 0, the above two ensembles are (2(|x|+|y|)

c

, 2−(|x|+|y|)c)-computationally
indistinguishable.

Notation 2. Let ⊕ denote bitwise exclusive-or and let || denote concatenation
of strings. We use + to denote addition over a field or a vector space, as implied
by the context.

Notation 3. Let F2q denote the finite field with 2q elements and let Fn denote
the vector space of dimension n over a field F. The i-th unit vector of length n
over F is denoted by ei. The j-th element in a vector v ∈ Fn is denoted by v[j].

We sometimes view the input and output of Gen and Eval as elements
of a finite field with an appropriate number of elements instead of as binary
strings. The correctness requirement can be restated as Pr[(k0, k1)← Gen(x, y) :
Eval(k0, x

′, |y|) + Eval(k1, x
′, |y|) = Px,y(x

′)] = 1, with addition over F2|y| .

3 Distributed Point Function

3.1 Initial Scheme

If we dispense with the requirement that Gen and Eval run in polynomial time
then we can construct a fairly simple scheme for a DPF as follows. Gen(x, y)

outputs two keys k0, k1 such that k0, k1 ∈ (F2|y|)
2|x|

. Each key is regarded as
a vector of length 2|x| over the field F2|y| and is chosen randomly with the
constraint that k0[x] + k1[x] = y, while k0[x

′] + k1[x
′] = 0, for all x′, x′ = x.

Eval(k, x′, |y′|) returns k[x′] for every x′. Clearly, this scheme has both the
correctness and secrecy properties required in a DPF.

The scheme we propose recursively compresses the keys k0, k1. Starting with
the scheme above, which we denote DPF0 = (Gen0, Eval0), each recursion step
compresses the length of the keys to slightly more than a square root of their
length in the previous step. Repeating the process log |x| times results in poly-
nomial length.

As an initial attempt towards constructing the next step, DPF1 = (Gen1,
Eval1), we consider a simpler scheme DPF∗1 = (Gen∗1, Eval∗1). The 2|x| possible
inputs x to the point function Px,y are arranged in a table with 2m rows and 2μ

columns for some m,μ such that m+ μ = |x|. Each input x′ is viewed as a pair
x′ = (i′, j′), which represents the location of x′ in the table.

Let G : {0, 1}κ −→ {0, 1}2μ|y| be a pseudo-random generator. Let the repre-
sentation of x as a pair be x = (i, j). Gen∗1 first chooses uniformly at random and
independently 2m +1 seeds of length κ each, s1,. . .,si−1,s

0
i ,s

1
i ,si+1,. . .,s2m . The

output of Gen∗1 is a pair (k0, k1) defined by k0 = s1, . . . , si−1, s
0
i , si+1, . . . , s2m

and k1 = s1, . . .,si−1,s
1
i ,si+1,. . .,s2m . Given input k, x′ = (i′, j′) and |y′|, the

algorithm Eval∗1(k, x
′, |y′|) uses G to obtain 2μ · |y′| bits by computing G(k[i′]).
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This expanded string is viewed as a vector of length 2μ over F
2|y′| . Eval∗1

(k, x′, |y′|) returns the j′-th entry of this vector, G(k[i′])[j′].
While DPF∗1 seems promising in terms of key length it is only partially correct.

For each x′ = (i′, j′) such that i′ = i, we have that:

Eval∗1(k0, x
′, |y′|)⊕ Eval∗1(k1, x

′, |y′|) = G(si′)[j
′] +G(si′ )[j

′] = 0.

However, if i′ = i, we have that

Eval∗1(k0, x
′, |y′|)⊕ Eval∗1(k1, x

′, |y′|) = G(s0i )[j
′] +G(s1i )[j

′],

and this value is wrong with overwhelming probability.
One possible approach to correct this deficiency of DPF∗1 is as follows. Asso-

ciate each element in the vector space F2μ

2|y| with an element in the field F2|y|2μ

in the natural way. Compute the element CW ← (G(s0i ) +G(s1i ))
−1 · (yej) over

F2|y|2μ . Modify Gen∗1 by concatenating CW to both k0 and k1. Modify Eval∗1
by computing G(k[i′]) · CW over F2|y|2μ , regarding the result as a vector over
F
2|y′| and returning the j′-th entry of this vector.
The actual approach we use in the next two algorithms, Gen1 and Eval1 is

slightly more complex, involving two correction elements CW0 and CW1 instead
of just one. This approach allows a recursion, further compressing the key size,
which does not seem to be possible using a single CW .

In both Algorithm 1 implementing Gen1 and Algorithm 2 we assume that
|y| ≤ κ+ 1.

Algorithm 1. Gen1(x, y)

1: Let G : {0, 1}κ −→ {0, 1}κ2|x|/2
be a pseudo-random generator.

2: if (|y| · 2|x| ≤ κ+ 1) then
3: Return Gen0(x, y).

4: Let m ← �log(( |y|·2
|x|

κ+1
)1/2)� where κ is the length of the seeds.

5: μ ← �log(( 2
|x|·(κ+1)

|y| )1/2)�.
6: Choose 2m + 1 seeds s1, . . . , s

0
i , s

1
i , . . . , s2m randomly and independently from

{0, 1}κ.
7: Choose 2m random bits t1, . . . , t2m .
8: Let t0i ← ti and t1i ← ti ⊕ 1.
9: Choose two random vectors r0, r1 ∈ F2μ

2|y| such that r0 + r1 = y · ej .
10: Let CWb ← G(sbi) + rb, for b = 0, 1, with addition in F2μ

2|y| .

11: Let kb ← s1||t1, . . . , sbi ||tbi , . . . , s2m ||t2m , CW0, CW1, for b = 0, 1.
12: Return (k0, k1).

We argue that DPF1 is correct by looking at the following cases. If (|y| · 2|x| ≤
κ+1) then Gen1 executes Gen0 and Eval1 executes Eval0 with correct results.
Otherwise, if i′ = i then
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Algorithm 2. Eval1(k, x
′, |y′|)

1: Let G : {0, 1}κ −→ {0, 1}2x/2κ be a pseudo-random generator.

2: if (|y′| · 2|x
′| ≤ κ+ 1) then

3: Return Eval0(k, x
′, |y′|).

4: Let m ← �log(( |y
′|·2|x

′|
κ+1

)1/2)� where κ is the length of the seeds.

5: μ ← �log(( 2
|x′|·(κ+1)

|y′| )1/2)�.
6: Parse k as k = s1||t1, . . . , s2m ||t2m , CW0, CW1.
7: Let the location of x′ in the 2m × 2μ table be x′ = (i′, j′).
8: Let v ← G(si′) + CWti′ , with addition in F2μ

2|y| .
9: Return v[j′].

Eval∗1(k0, x
′, |y′|)⊕ Eval∗1(k1, x

′, |y′|) =
(G(si′ ) + CWt′i)[j

′] + (G(si′ ) + CWt′i)[j
′] = 0.

If i′ = i then

Eval∗1(k0, x
′, |y′|)⊕ Eval∗1(k1, x

′, |y′|) =
(G(s0i ) + CWti)[j

′] + (G(s1i ) + CWti⊕1)[j
′] = r0[j

′] + r1[j
′].

By the choice of r0 and r1, if j
′ = j thenEval∗1(k0, x

′, |y′|)⊕Eval∗1(k0, x
′, |y′|) =

0, while if j′ = j, i.e x′ = x then Eval∗1(k0, x
′, |y′|)⊕ Eval∗1(k0, x

′, |y′|) = y.
Intuitively speaking, DPF1 is secret, because k0 and k1 are each pseudo-

random. Note that the only parts of a key kb which are not completely in-
dependent of the rest are sbi , CW0 and CW1. Together, these elements satisfy
CW0+CW1+G(sbi)+G(s1⊕b

i ) = y·ei. However, since kb does not include the seed
s1⊕b
i , the three elements sbi , CW0 and CW1 are polynomially indistinguishable
from a random string.

If |x| and |y| are so small that |y| · 2|x| ≤ (κ+1) then Gen1 has similar length
output to Gen0. Otherwise, the keys in DPF1 are significantly smaller than the
keys of DPF0. Specifically, the total length of the seeds and additional bits (ti) is
2m(κ+1). The total length of the correction words is 2 |y| · 2μ. The total length
of a key is at most 6((κ+ 1) |y| · 2|x|)1/2, which is only about 6κ1/2 larger than
a square root of the key size of DPF0.

The computational complexity of Gen1 and Eval1 is proportional to the
length of the keys and therefore slightly more than a square root of the com-
plexity of the matching algorithms Gen0 and Eval0.

3.2 Full Scheme

While DPF1 is a major improvement over DPF0, the running time of Gen1 (and
that of Eval1) is still exponential in |x|. Improving the scheme by repeating the
compression step recursively requires the following two observations.

Gen1 chooses r0, r1 randomly in line 9 so that r0, r1 ∈ (F2|y|)
2μ and r0 + r1 =

y · ej. Therefore, the pair (r0, r1) is distributed identically to the output of
Gen0(j, y).
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In addition, the keys k0 and k1 that Gen1 creates have a list of seeds for G

and associated bits. Specifically, kb includes σb
"
= s1||t1, . . . , , sbi ||tbi , . . . , s2m ||t2m

for b = 0, 1. Regarding σ0 and σ1 as vectors in (F2κ+1)2
m

we have that σ0+σ1 =

(s0i ||t0i + s1i ||t1i ) · ei. If si
"
= s0i ⊕ s1i then σ0 + σ1 = (si||1) · ei. Therefore, the pair

(σ0, σ1) is distributed identically to the output of Gen0(i, si||1).
The conclusion is that Gen1 can be implemented by two calls to Gen0.

Similarly, we can define a pair of algorithms Gen�(x, y) = Gen(
, x, y) and
Eval�(x, y) = Eval(
, x, y) by using recursive calls to Gen�−1(x, y) and
Eval�−1(x, y). The scheme DPF� is defined as the pair of algorithms Gen�−1

and Eval�−1. Gen� is described in Algorithm 3 and Eval� is described in Al-
gorithm 4. Setting 
 = 1 yields identical Gen1 and Eval1 algorithms to those
defined in the previous sub-section.

In both the following algorithms, we assume that |y| ≤ κ+ 1.

Algorithm 3. Gen�(x, y)

1: Let G : {0, 1}κ −→ {0, 1}α be a PRG (for α that will be determined in step 11).
2: if (� = 0) or (|y| · 2|x| ≤ κ+ 1) then

3: Choose two random vectors k0, k1 ∈ (F2|y| )
2|x|
, such that k0 + k1 = y · ex.

4: Return (k0, k1).

5: Let m ← �log(( |y|·2
|x|

κ+1
)1/2)�.

6: Let μ ← |x| −m.
7: Regard x as a pair x = (i, j), i ∈ {0, 1}m, j ∈ {0, 1}μ.
8: Choose a random κ-bit string si and let ti = 1 be a bit.
9: Recursively compute (σ0, σ1)← Gen�−1(i, si||ti).
10: Let s0i ||t0i ← Eval�−1(σ0, i, κ+ 1) and let s

1
i ||t1i ← Eval�−1(σ1, i, κ+ 1).

11: Recursively compute (r0, r1)← Gen�−1(j, y). Let α ← |r0| (= |r1|).
12: Let CWtbi

← G(sbi ) + rb, for b = 0, 1, with addition in Fα
2 .

13: Let kb ← σb||CW0||CW1, for b = 0, 1.
14: Return (k0, k1).

3.3 Analysis

We proceed to prove that DPF� = (Gen�, Eval�) is a distributed point function
and analyze the complexity of Gen� and Eval�. This analysis will determine the
computational complexity of Gen� and Eval� and the size of the output of Gen�.

The reason to generalize DPF1 to DPF� is to improve performance and specif-
ically to obtain two algorithms Gen� and Eval� that run in polynomial time.
Since Gen� outputs two keys (k0, k1), the length of the keys is a lower bound
on its computational complexity. In the next proposition we provide an upper
bound on the length of the output of Gen�.

Proposition 1. For every κ, 
 ∈ N and every x, y ∈ {0, 1}∗, such that |y| ≤
κ+ 1, if (k0, k1) is a possible output of Gen�(x, y) then the length of k0 and k1

is at most 3�(2|x|)
1

2	 · (4(κ+ 1))
2	−1

2	 |y|
1

2	 .
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Algorithm 4. Eval�(k, x
′, |y′|)

1: Let G : {0, 1}κ −→ {0, 1}α be a PRG (for α that will be determined in step 7).
2: if (� = 0) or (|y′| · 2|x′| ≤ κ+ 1) then
3: Return k[x′].

4: Let m ← �log(( |y
′|·2|x′|
κ+1

)1/2)�.
5: Let μ ← |x| −m.
6: Regard x′ as a pair x′ = (i′, j′), i′ ∈ {0, 1}m, j′ ∈ {0, 1}μ.
7: Parse k as k = σ||CW0||CW1. Let α ← |CW0| (= |CW1|).
8: Let si′ ||ti′ ← Eval�−1(σ, i

′, κ+ 1).
9: Let v ← G(si′) + CWti′ , with addition in Fα

2 .
10: Let y′ ← Eval�−1(v, j

′, |y′|).
11: Return y′.

Proof. We prove the proposition by induction on 
. For 
 = 0, each key is chosen

from (F2|y|)
2|x|

and is therefore of length 2|x|·|y| which is exactly what is obtained

by setting 
 = 0 in 3�(|y| 2|x|)
1

2	 · (4(κ+ 1))
2	−1

2	 .
For the induction step, let 
 ≥ 1 and assume that the proposition is correct

for 
 − 1. If |y| · 2|x| ≤ κ + 1 then Gen� runs the same algorithm as Gen0 and
the key size that Gen� outputs is |y| · 2|x|. Since |y| · 2|x| ≤ κ+1, we deduce that

(|y| · 2|x|)
2	−1

2	 ≤ (4(κ+ 1))
2	−1

2	 and therefore,

2|x| · |y| ≤ (2|x|)1/2
	

· (4(κ+ 1))
2	−1

2	 |y|1/2
	

.

If |y| · 2|x| > κ + 1 then Gen� outputs two keys k0, k1 such that
kb = σb||CW0||CW1 for b = 0, 1. Gen�(x, y) computes σb by (σ0, σ1) ←
Gen�−1(i, si||ti). Since i ∈ {0, 1}m, the length of i is �log( |y|·2

|x|

κ+1 )1/2�. The length
of si||ti is κ+ 1. Therefore, by the induction hypothesis the length of σb is

3�−1 · (2�log(
|y|·2|x|

κ+1 )1/2�)
1

2	−1 (4(κ+ 1))
2	−1−1

2	−1 (κ+ 1)
1

2	−1 ≤

3�−1(2(
|y| · 2|x|
κ+ 1

)1/2)
1

2	−1 4
2	−1−1

2	−1 (κ+ 1) =

3�−1(|y| · 2|x|)
1

2	 (4(κ+ 1))
2	−1

2	

CW0 and CW1 are the same length as r0 and r1. Gen�(x, y) computes r0
and r1 by (r0, r1) ← Gen�−1(j, y), where j ∈ {0, 1}μ. The value of μ is set to

μ ← �log(2
|x|·(κ+1)

|y| )1/2� and by the induction hypothesis, the length of each of
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r0 and r1 is at most:

3�−1 · (2�log(
2|x|·(κ+1)

|y| )1/2�)
1

2	−1 (4(κ+ 1))
2	−1−1

2	−1 |y|
1

2	−1 ≤

3�−1((
4(κ+ 1) · 2|x|

|y| )1/2)
1

2	−1 4
2	−1−1

2	−1 |y|
1

2	−1 =

3�−1(|y| · 2|x|)
1

2	 (4(κ+ 1))
2	−1

2	

The length of kb is the sum of the lengths of σb, CW0 and CW1, which is:

3 · 3�−1(|y| · 2|x|)
1

2	 (4(κ+ 1))
2	−1

2	 = 3�(|y| · 2|x|)
1

2	 (4(κ+ 1))
2	−1

2	 .

��

Table 1 shows the length of a key kb (either k0 or k1) for |y| = 1 and for some
values of |x| that are typical in applications of a distributed point function. The
length of a key can be compared to the domain size, which is 2|x|. The leftmost
column of the table shows the value of |x|. The next two columns show the
depth of the recursion (
) and the key size for after an actual execution of the
algorithm that minimized the key size. The last two columns show the depth of
the recursion and the key size as predicted by Proposition 1 for 
 = �log |x|�.

Table 1. Key length in bytes for some values of |x|

|x| � (exact) |kb| (exact) � (Prop. 1) |kb| (Prop. 1)
20 2 1298 3 4513
40 4 5000 4 20003
80 5 18906 5 72941
160 6 61943 6 241256

Corollary 1. In the special case of y = 1, by setting 
 = �log |x|� each key that

Gen� outputs is of length at most 8(κ+ 1) |x|log 3
bits.

Proposition 2. [Correctness] The scheme DPF� = (Gen�, Eval�) is correct as
defined for a distributed point function, for every 
 = 0, 1, . . ..

The correctness claim for DPF� = (Gen�, Eval�) is proved using induction
similarly to the correctness proof of DPF1 = (Gen1, Eval1).

The next step we take is analysis of the computational complexity of Eval�
and Gen�. That complexity depends on the computational complexity of the
PRG G.

Notation 4. Since G is a PRG, it stretches a κ-bit seed s to an n-bit string
G(s) in polynomial time in n. Let γ ≥ 1 be a constant such that computing G(s)
with additional O(n) work can be done in time at most nγ . We need γ as a
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bound on the work that Gen� performs aside from its recursive calls. Therefore,
it can be defined exactly such that nγ is a bound on the work that Gen�(x, y)
does in lines 1 − 10, 12 and 14 − 16, where n is the length of the output, i.e.

n = 2 · 3�(2|x|)
1

2	 · (4(κ+ 1))
2	−1

2	 |y|.

Proposition 3. If |y| ≤ κ+1 then the computational complexity of Eval�(x, y)

is at most 3�+1[(2|x|)
1

2	 · (4(κ+ 1))
2	−1

2	 |y|
1

2	 ]γ for any x ∈ {0, 1}∗ and 
 ∈ N.

Proof Sketch. We prove the claim by induction on 
. For the base case, 
 = 0,
the claim is obvious. For the induction step, the work that Eval� does can be
divided into three parts. The first part is made up of the recursive call in line
8 to Eval�−1(σ, i

′, κ + 1), the second includes the recursive call in line 10 to
Eval�−1(v, j

′, |y′|) and the third part of the algorithm is made up of all the
operations apart from the two recursive calls. Most of the work in the third part
is done in line 9, which includes an expansion of a seed by the PRG G.

By induction and the definition of γ, the computational complexity for each
of the three parts is at most

3�[(2|x|)
1

2	 · (4(κ+ 1))
2	−1

2	 |y|
1

2	 ]γ .

��

Proposition 4. If |y| ≤ κ+ 1 then the computational complexity of Gen�(x, y)

is at most 8 · 3�+2[(2|x|)
1

2	 · (κ+ 1)]γ any x ∈ {0, 1}∗ and 
 ∈ N.

The proof is omitted and will appear in a full version of the paper.
In the next part of the analysis we show that DPF� is secret. We do so by

proving that each key kb is pseudo-random and can therefore be simulated.

Notation 5. LetL(Gen�(x, y))denote the lengthofk0 andk1 inducedby (k0, k1)←
Gen�(x, y). Let T (Gen�(x, y)) denote the computational complexity of Gen�(x, y).

Notation 6. Let R denote the distribution induced on rb and S denote the dis-
tribution induced on σb by the coin tosses of Gen�(x, y). Let Un denote the uni-
form distribution on strings of length n and let G(Uκ) denote the distribution
induced by choosing a random string of length κ and extending it by G to |rb|
bits.

Notation 7. Denote by K the distribution of the key kb. Let S||S′ denote the
distribution of σb||s1−b

i . Let CW (1) ← G(s)+r1−b, where s is a uniformly random

seed of length κ. Let k
(1)
b be identical to kb, except for replacing CWt1−b

i
by CW (1)

and let K(1) denote the distribution induced by k
(1)
b . Let CW (2) ← u(2) + r1−b,

where u(2) is a uniformly random string of length |r1−b|. Let k
(2)
b be identical to

k
(1)
b , except for replacing CW (1) by CW (2) and let K(2) denote the distribution

induced by k
(2)
b . Let CW (3) ← G(sbi ) + u(3), where u(3) is a uniformly random

string of length |rb|. Let k
(3)
b be identical to k

(2)
b , except for replacing CWtbi

by

CW (3) and let K(3) denote the distribution induced by k
(3)
b .
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Proposition 5. Let 
 ∈ N, let x ∈ {0, 1}∗ and let G : {0, 1}κ −→ {0, 1}α be a

T (κ), ε(κ)-pseudo-random generator, for α = 4(κ + 1) · 3�(2|x|)
1

2	 .
Then, for b = 0, 1, the distribution K on the outputs kb of Gen�(x, y) is
(T (κ) − T (Gen�(x, y)),

1
2 (3

� − 1)ε(κ))-computationally indistinguishable from
UL(Gen	(x,y)).

Proof Sketch: We use induction on 
 to prove the statement. In the base of
the induction, 
 = 0, the key kb is distributed uniformly and therefore the claim
is obvious. In the induction step, we use a hybrid argument on the ensembles
induced from the distributions K,K(1),K(2),K(3) and U|kb| when x ranges over
{0, 1}∗.
Proposition 6. Let x, y ∈ {0, 1}∗, let κ = max{|x| , |y|}, let 
 = �log |x|� and
let G : {0, 1}κ −→ {0, 1}α be a T (κ), ε(κ)-pseudo-random generator, for α =

4(κ+ 1) · 3�(2|x|)
1

2	 .

1. If G is a pseudo-random generator, i.e. T (κ) ≥ q(κ) and ε(κ) ≤ 1/q′(κ)
for any two polynomials q(·), q′(·) then DPF� = (Gen�(x, y), Eval�(x, y))
satisfies the secrecy requirement for a distributed point function.

2. If G is an exponentially strong PRG G, i.e. T (κ) = 2κc

and ε(κ) = 2−κc

for some constant c > 0 then DPF� = (Gen�(x, y), Eval�(x, y)) satisfies the
exponential secrecy requirement for a distributed point function.

Proof Sketch. For any polynomial T ′(κ) we have that T (κ) = T ′(κ) +
T (Gen�(x, y)) is also a polynomial in κ. If G is a PRG, its output is (T (κ), ε(κ))-
computationally indistinguishable from Un for a negligible function ε(κ). Setting

ε′(κ) = 1
2 (3

� − 1)ε(κ) ≤ 1
2 (3 |x|

log 3 − 1)ε(κ), we have by Proposition 5 that kb,
the output ofGen�(x, y), is (T

′(κ), ε′(κ))-computationally indistinguishable from
the uniform distribution, which satisfies the secrecy property. The exponential
secrecy property is proved using a similar argument. ��
Theorem 1. The existence of a one-way function implies the existence of a
DPF. If the one-way function is exponentially strong, so is the DPF.

Proof. We show that the construction of DPF�log|x|�, is a DPF assuming the
existence of a one-way function. By Proposition 2, DPF� is correct for any 
 =
0, 1, . . ..

A series of works, beginning with [22] and currently culminating in [31] es-
tablish that the existence of one-way functions implies the existence of pseudo-
random generators and furthermore that the existence of an exponentially hard
one-way function implies the existence of an exponentially strong PRG.

Proposition 6 proves that given a security parameter κ = max{|x| , |y|}, the
scheme DPF�log|x|� satisfies the secrecy requirement if G is a PRG and satis-
fies the exponential secrecy requirement if G is an exponentially strong PRG.
Therefore, the existence of one-way functions implies that DPF�log|x|� satisfies
the secrecy requirement and the existence of an exponentially strong one-way
function implies that DPF�log|x|� satisfies the exponential secrecy requirement.

Propositions 4 and 3 prove that Gen� and Eval� are polynomial time algo-
rithms for 
 = �log |x|�. These results together satisfy Definition 1.
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The converse of the first statement of Theorem 1, that DPF implies a one-way
function is also true, see Theorem 5.

4 Applications

4.1 Computationally Private Information Retrieval

In the problem of private information retrieval (PIR) [8] a user wishes to retrieve
the i-th bit of an n-bit string z = (z1, . . . , zn). This string, called the database, is
held by several different non-colluding servers. The goal of the user is to obtain
the bit zi without revealing any information on i to any individual server. The
index i can be hidden in an information-theoretical or computational sense, in
which case the scheme is called a CPIR scheme. A formal definition of a two-
server CPIR is as follows.

Definition 2. A two-server CPIR protocol involves two servers S0 and S1,
each holding the same n-bit database z, and a user. The protocol P = (DomQ,
DomA, Q,A,M) consists of a query domain DomQ, an answer domain DomA,
and three polynomial-time algorithms: a probabilistic query algorithm Q, an an-
swering algorithm A and a reconstruction algorithm M . To retrieve zi, the i-th
bit of z, the user computes two queries Q(n, i, r) = (q0, q1) ∈ (DomQ)

2 using
random coin tosses r. For each b, b ∈ {0, 1}, the server Sb receives qb and com-
putes an answer ab = A(b, z, qb) ∈ DomA. The user receives a0 and a1 and
recovers zi by applying the reconstruction algorithm M(i, r, a0, a1). A two-server
CPIR protocol must satisfy the following requirements:

Correctness: For every n, n ∈ N, every z ∈ {0, 1}n and every i ∈ {1, . . . , n}
and given a random string r

Pr[(q0, q1)← Q(n, i, r) : M(i, r, A(0, z, q0), A(1, z, q1)) = zi] = 1.

Secrecy: Let Db,�log n�,i, b ∈ {0, 1}, n ∈ N and i ∈ {1, . . . , n}, denote the
probability distribution on qb induced by (q0, q1)← Q(n, i, r). There exists a PPT
algorithm Sim such that the following distribution ensembles are computationally
indistinguishable:

1. {Sim(b, �logn�)}b∈{0,1},n∈N
2. {Db,�logn�,i}b∈{0,1},n∈N,i∈{1,...,n}.

The main measure of the efficiency of a PIR scheme is its communication
complexity, which is the maximum number of bits exchanged between the user
and servers over the choices of z, i and r. The query complexity is log |DomQ|
and the answer complexity is log |DomA|.

In the following theorem we show how to turn a DPF scheme into a two-server
CPIR scheme.
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Theorem 2. Let DPF = (Gen,Eval) be a distributed point function and let
m(b, |x| , |y|) = max{|kb| : b ∈ {0, 1}, (k0, k1)← Gen(x, y)}. There exists a CPIR
scheme that for every n has query complexity m(b, logn, 1), answer complexity
1 and thus total communication complexity 2m(b, logn, 1) + 2.

The full proof is omitted, but it relies on the procedure outlined in the intro-
duction that involves computing Eval(qb, j, 1) separately for every j = 1, . . . , n.
The computational complexity of such a procedure is n times the computation
required for a single invocation of Eval. Specifically, about n·|kb| pseudo-random
bits need to be computed. However, there is a more efficient alternative that for
each node in the PRF tree rooted by kb computes all of the node’s children
instead of a single one. This alternative results in computing less than n+2n1/2

pseudo-random bits.
By using the construction of DPF�log log n� from Section 3, we get the following:

Corollary 2. The existence of a one-way function f implies the existence of a
two-server CPIR scheme with query complexity O(κ(log n)log 3) and answer com-
plexity 1. The term κ = κ(n) is the length of a seed for a PRG G : {0, 1}κ(n) →
{0, 1}n that is implied by f being a one-way function.

4.2 Private Information Retrieval by Keywords

In the problem of Private Information Retrieval by Keywords [9,15] several
servers hold a copy of the same set of n words, w1, . . . , wn, of the same length ν.
A user holds a word w and wishes to find out whether w ∈ {w1, . . . , wn} without
providing information to any individual server on w.

Theorem 3. The existence of a one-way function f implies the existence of
a two-server scheme for private information retrieval by keywords with query
length O(κνlog 3) and answer length 1. The term κ = κ(n) is the length of a
seed for a PRG G : {0, 1}κ(n) → {0, 1}n that is implied by f being a one-way
function.

Proof. The user generates two queries (q0, q1) by running (q0, q1)← Gen�logn�(w).
Upon receiving a query qb, the server Sb returns ab =

∑n
j=1 Eval(qb, wj) mod 2

as its answer. The reconstruction algorithm M returns a0 + a1 mod 2. The cor-
rectness, secrecy and query length are proved in the same way as in Theorem 2.

The above protocol can be efficiently extended to the case where each keyword
wi has an associated nonzero payload pi of length γ and the user should output
pi if wi is in the database and output 0 otherwise. This is done by having each
server respond with ab =

∑n
j=1 pj · Eval(qb, wj) where addition is in Fγ

2 . In the
full version we will describe the application to PIR writing.

4.3 Worst-Case to Average-Case Reduction

A worst-case to average-case reduction transforms any average-case algorithm for
one language L2 into an algorithm that with good probability works on all inputs
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for another language L1. We show how our scheme for a DPF translates into a
worst-case to average-case reduction for languages in PSPACE and EXPTIME.
Our result improves on known worst-case to average-case reductions for PSPACE
and EXPTIME by requiring our worst-case algorithm to make only a constant
number of queries to an average-case algorithm.

An interesting way to view our result is as a transformation of a heuristic
algorithm to a worst-case algorithm. Given a heuristic algorithm A that correctly
decides a certain language in PSPACE or EXPTIME on a 1− δ fraction of the
inputs we show that for any language L in PSPACE or EXPTIME there exists
an algorithm that decides L with good probability on any input and makes only
two calls to the heuristic algorithm.

We complement a negative result from Theorem 3 of Watson’s paper [30].
That theorem rules out a similar result where A is unbounded, thus applying to
a reduction of “type 1” in his classification. We show that a reduction of “type
2” is possible (under standard assumptions), thus his negative result for type 1
reductions is tight.

We assume the existence of an exponentially hard one-way function. Given
such a function there exists an exponentially strong PRG G [31].

Theorem 4. Let δ < 1/2 and assume the existence of an exponentially hard
one-way function. Then,

1. There exist a language L2 in EXPTIME (PSPACE) and a constant c > 0
such that if there is an algorithm A, which for any κ runs in time at most
2κc

and correctly decides a 1−δ fraction of the instances of L2∩{0, 1}κ then
for any language L in EXPTIME (or PSPACE) there exists a probabilistic,
polynomial time oracle algorithm R such that RA decides any instance in
L ∩ {0, 1}κ with error at most 2δ + 2−κc

and with only two queries to A.
2. There exist a language L2 in EXPTIME (PSPACE) and a constant c > 0

such that if there is an algorithm A running in time at most 2κc

that correctly
decides a 1 − δ fraction of the instances of L2 ∩ {0, 1}κ and returns ⊥ on
any other instance then for any language L in EXPTIME (or PSPACE)
there exists a probabilistic, polynomial time oracle algorithm R such that RA

decides any instance in L ∩ {0, 1}κ with only 1/(1 − 2δ − 2−κc

) expected
queries to A.

The proof is omitted and will appear in the full version of the paper

5 Efficient Implementation DPF with Large Output

Algorithms 3 and 4 assume that |y| ≤ κ+1. Given x and y, seeds must be chosen
to be of length κ such that |y| ≤ κ + 1. For concrete applications in which the
length κ is given, a more efficient implementation is possible.

Let DPF = (Gen,Eval) be a distributed point function for any x ∈ {0, 1}∗
and any y, |y| ≤ κ+1. Define DPF ′ = (Gen′, Eval′) on any x, y ∈ {0, 1}∗ as fol-
lows. Let G : {0, 1}κ → {0, 1}|y| be a PRG. Gen′(x, y) checks if y is the all-zero
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string. If it is, then Gen′(x, y) executes (k0, k1)← Gen(x, 0κ+1), chooses a ran-
dom element r ∈ F2|y| and outputs a key pair (k

′
0 = k0||r, k

′
1 = k1||r). If y is not

zero then Gen′(x, y) chooses a random seed s ∈ {0, 1}κ and executes (k0, k1)←
Gen(x, s). It then computes r ← y · (G(Eval(k0, x, |y|)) +G(Eval(k1, x, |y|)))−1

over F2|y| and outputs a key pair (k
′
0 = k0||r, k

′
1 = k1||r).

Eval′(k||r, x, |y′|) returns as its output r·G(Eval(k, x, |y′|)) with computation
over F2|y| . The correctness is easy to verify and the secrecy of the DPF ′ follows
from the secrecy of DPF and from G being a PRG.

6 DPF Implies OWF

In this section we show that the existence of a distributed point function implies
the existence of a one-way function. As Theorem 2 proves, the existence of a DPF
implies the existence of a binary two-server CPIR scheme with query length o(n).
We rely on the following lemma.

Lemma 1. [19] Suppose there exist a pair of distribution ensembles {Xn}n∈N,
{Yn}n∈N and a polynomial p(·) such that Xn and Yn can be sampled in time
polynomial in n; The statistical distance between Xn and Yn is greater than
1/p(n) for all n, and Xn and Yn are computationally indistinguishable. Then a
one-way function exists.

Theorem 5. Suppose that there is a two-server CPIR protocol with query length
o(n) and binary answers. Then a one-way function exists.

Proof. Denote the two servers by S0, S1 and define the following distribution
ensembles:

– Xn = (i, b, Qb(n, i)) where i ∈ {1, . . . , n} is a random index, b ∈ {0, 1} is a
random server index, and Qb(n, i) is a random PIR query to server Sb on a
database of size n and index i.

– Yn = (i, b, Qb(n, i
′)) where i′ ∈ {1, . . . , n} is a random index picked indepen-

dently of i.

The secrecy property of the PIR protocol implies that Xn and Yn are indis-
tinguishable. They are also efficiently samplable, since the query generation in
the PIR protocol is efficient. It remains to show that they are statistically far.

Suppose towards contradiction thatXn, Yn are (1/n2)-close for infinitely many
n. It follows that, for infinitely many n, there are no i, j, b such that Qb(n, i)
and Qb(n, i

′) are more than 0.1-far. Thus, Q defines for infinitely many n an
information-theoretic 2-server PIR protocol with statistical privacy error ε ≤ 0.1,
sublinear-size queries, and binary answers. Such a protocol is known not to exist
(see [32], Thm 8).
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Abstract. We settle a long standing open problem which has pursued
a full characterization of completeness of (potentially randomized) fi-
nite functions for 2-party computation that is secure against active ad-
versaries. Since the first such complete function was discovered [Kilian,
FOCS 1988], the question of which finite 2-party functions are complete
has been studied extensively, leading to characterization in many special
cases. In this work, we completely settle this problem.

We provide a polynomial time algorithm to test whether a 2-party
finite secure function evaluation (SFE) functionality (possibly random-
ized) is complete or not. The main tools in our solution include:
– A formal linear algebraic notion of redundancy in a general 2-party

randomized function.
– A notion of statistically testable games. A kind of interactive proof

in the information-theoretic setting where both parties are computa-
tionally unbounded but differ in their knowledge of a secret.

– An extension of the (weak) converse of Shannon’s channel coding
theorem, where an adversary can adaptively choose the channel based
on its view.

We show that any function f , if complete, can implement any (ran-
domized) circuit C using only O(|C|+ κ) calls to f , where κ is the sta-
tistical security parameter. In particular, for any two-party functionality
g, this establishes a universal notion of its quantitative “cryptographic
complexity” independent of the setup and has close connections to circuit
complexity.

1 Introduction

Understanding the complexity of functions is central to theoretical computer
science. While the most studied notion of complexity in this literature is that
of computational complexity, there have also been other important aspects ex-
plored, most notably, communication complexity [35]. Another aspect of com-
plexity of a (distributed) function is its cryptographic complexity, which seeks
to understand the cryptographic utility of a function, stemming from how it
hides and reveals information. While it is only recently that the term has been
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explicitly used, cryptographic complexity theory has been vigorously pursued at
least since Kilian introduced the notion of completeness of cryptographic primi-
tives [23].

Completeness (of functions with finite domains) has been the first and most
important question of cryptographic complexity: what properties of a function let
all other cryptographic tasks (in the context of secure computation) be reduced to
it. This question has been asked and answered several times [23,11,24,25,12,28,31]
each time for a different class of functions, or restricted to different kinds of re-
ductions (see Fig. 1 for a summary of the state of the art). These works produced
several exciting ideas and advances, and brought together concepts from different
fields. For instance, [25] used the Nash equilibrium in a zero-sum game defined
using the function to obtain a secure protocol; earlier [11] identified the binary
symmetric channel (noisy channel) as a complete function, paving the way to a
fruitful and successful connection with information-theory literature.

However, these works left open what is arguably the hardest part of the char-
acterization: completeness of randomized functions with finite domain under re-
ductions that are secure against an active adversary (see Fig. 1). Indeed, even
with a (usually simplifying) restriction that only one of the two parties receives
an output from the function, it was not known which randomized functions are
complete. In this work, we finally provide a full characterization of completeness
of general1 2-party functions with finite domains. This work brings to close this
rich line of investigation, but also introduces several new ideas and notions, and
poses new questions regarding cryptographic complexity.

Prior to our work, the only completeness results known for randomized func-
tions against active adversaries were for the very restricted case of channels [12],
i.e. randomized functions that only take input from one party, and deliver the
output to the other. Thus, in particular, before our work, no completeness char-
acterization results against active adversaries were known for any randomized
function classes that take input from both parties.

Also, along the way to our main construction, we generalize a result in
another line of work, on black-box protocol constructions [20,19,22,9]. We
give a black-box transformation from a passive-secure OT protocol in a hybrid
setting (wherein the protocol has access to an ideal functionality) to a UC-secure
OT protocol in the same hybrid setting, with access to the commitment
functionality.2 Our transformation relativizes with respect to any ideal func-
tionality, as long as that functionality is “redundancy free” (see later). Though
our focus is on information-theoretic security, we note that by considering ideal

1 By a general function, we mean one without any restrictions on which parties have
inputs and which parties have outputs. Earlier work on characterizing randomized
functions considered only “symmetric” (both parties get same output) and “asymmet-
ric” (only one party gets any output) functions. Beyond this, only specific examples
were known, like correlated random variables considered by Beaver [1].

2 It is interesting to note that, unlike in many other settings, a black-box transfor-
mation in the plain model does not imply a transformation in a hybrid model. That
is, there is no analogue of universal composition for black-box protocol compilation.
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functionalities that are not information-theoretically complete, our transforma-
tion implies black-box equivalence of related computational assumptions.

Passive Completeness Active Completeness

Deterministic
Symmetric: [24]-1991 Symmetric: [24]-1991
Asymmetric: [3]-1999 Asymmetric: [25]-2000
General: [28]-2011 General: [28]-2011

Randomized
Symmetric: [25]-2000 Channels: [12]-2004
Asymmetric: [25]-2000 Symmetric/Asymmetric/General: Open
General: [31]-2012 Settled in this paper

Fig. 1. Summary of Completeness Characterization Results

Finally, our tools for analysis are novel in this line of work. In particular,
we introduce the notion of statistically testable games, which is a kind of
interactive proof in the information-theoretic setting where both parties can be
computationally unbounded, but differ in their knowledge of some secret. We
discuss these in more detail in Section 1.3 and in subsequent sections.

We also formulate and prove a new converse of Shannon’s Channel Coding
theorem to obtain a hiding property from a “channel.” This is perhaps an unusual
(but in hindsight, natural) use of a converse of the channel coding theorem, which
was originally used to establish the optimality of the channel coding theorem.

1.1 Our Results

We provide the first algorithmic characterization of all finite 2-party (potentially
randomized) functions that are complete for secure function evaluation against
active adversaries: Namely, our results provide the first explicit algorithm (see
Fig. 2 for an abridged version; the full figure is provided in the full version of
the paper [27]) that can analyze any given (randomized) function f , and output
whether or not f is complete against active adversaries.

The algorithm has two steps: finding what we call the “core” of a given function
f and then checking if it is “simple” or not. A function f is complete if and only
if its core is not simple.

Input: A 2-party randomized SFE f , given as a matrix Pf of conditional probabilities
pf [w, z|x, y].
Output: Whether f is UC-complete or not.
1. Compute a core f̂ of f .
2. Check if f̂ is simple or not (using combinatorial characterization in [31].
3. If f̂ is simple, then f is not complete.
4. Else (i.e., f̂ is not simple), f is complete.

Fig. 2. This algorithm tests whether a function f is UC-complete or not. More detailed
version is provided in [27].
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We now provide a high-level intuitive explanation of our algorithmic char-
acterization works, by considering some easy and well-known examples. This
will help in understanding our exact characterization, which is somewhat more
involved since it covers general randomized functions.

The core of f is computed by removing “redundant” parts of the function f .
To develop some intuition for this, consider the one-sided OR function which
takes two bits from Alice and Bob and outputs the logical OR of these two bits
to only Bob. This function is not complete against active adversaries, and in fact
is trivial: the reason is that a corrupt Bob can always choose his input to be “0”
– and by doing so, it can always learn Alice’s input, without Alice detecting this.
(Thus, even a trivial protocol in which Alice sends her bit to Bob is indeed secure
against active adversaries, since if Bob is corrupt, he could have learned Alice’s
input even in the ideal world.) Because of this, we say that Bob’s input “1” is
redundant from the adversary’s point of view: the adversary is always better off
using the input “0”.

When extended to the setting of randomized functions, redundancy becomes
more subtle. For instance, an input can become redundant because instead of
using that input, an adversary could use a distribution over other inputs, without
being detected. Another form of redundancy that appears for randomized func-
tions is that of redundant outputs (for the same input). As an example, suppose
in the above example, when Bob’s input is 0, if Alice’s input is 0 then he receives
0, but if her input is 1, he receives the output symbol α with probability 3/4 and
the symbol β with probability 1/4. Here, we observe that the two outcomes α
and β give Bob the same information about Alice’s input, and could be merged
into a single outcome. More generally, if two possible outputs that the adversary
can obtain for the same input have identical conditional distributions for the
other party’s input-output pair, then the distinction between these two output
values is redundant.

We provide a novel formal definition of redundancy that fully captures both
these forms of redundancy: (1) it identifies inputs that are useless for the adver-
sary; and (2) it identifies if the output can be compressed to remove aspects of
the output that are useless for the adversary’s goal of gaining information about
the honest party’s inputs. While the above intuition is useful, it is not exactly
the motivation behind our formal definition. The formal definition balances the
following two requirements on redundancy:

– Adding or removing redundancy does not change a function’s complexity (as
far as security against active corruption alone is concerned): in particular, f
is complete if and only if its core is complete.

– A redundancy free function removes the possibility for a party to freely de-
viate from its interaction with a functionality without the rest of the system
(the environment and the other party) detecting any difference.

The formal definition (based on Equation 1) is linear algebraic, inspired by simu-
latability considerations, and seemingly more general; but as will be discussed in
Section 1.3 and later, this definition coincides with exactly the above two forms
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of redundancies. An explicit algorithm for removing redundancy and finding the
“core” is given in the full version of the paper [27].

The second phase of our algorithm determines whether the core of f is simple,
a notion defined earlier by [31] generalizing Kilian’s condition for passive com-
pleteness [25]. Informally, a function g is simple if it preserves the independence
of views. To develop intuition for this, consider a common randomness function
that ignores the inputs of the two parties and simply outputs a uniform inde-
pendent random bit to both parties. This function is intuitively useless because,
at least in the passive-security setting, this function can be trivially realized by
one party sampling this bit, and sending it to the other party. The formal notion
of a simple function generalizes this to arbitrary randomized functions, by en-
suring that if the parties start with independent inputs, then conditioned on the
“common information” present after function evaluation, the views of the two
players remain independent of each other (see the full version [27] for details).
A natural explicit algorithm for determining whether a function is simple was
already given by [31], which we use here.

Beyond the basic feasibility result, we also show that secure evaluation of any
finite function g to a complete finite function f can be carried out, asymptoti-
cally, at “constant rate.” That is, n copies of g can be evaluated with access to
O(n+ κ) copies of f , and in fact, only O(n+ κ) communication, overall. Here κ
is a statistical security parameter; that is, the error in security (simulation error)
is negligible in κ. In fact, the total amount of communication in the protocol
(including the interaction with copies of f) is also bounded by O(n + κ). This
leads to our main theorem:

Theorem 1. A finite 2-party function is UC-complete (or equivalently,
standalone-complete) against active adversaries if and only if its core is not sim-
ple. Further, if f is such a function, n copies of any finite 2-party function can
be securely evaluated by a protocol in f -hybrid with communication complexity
O(n+ κ), where κ is the security parameter.

Connections to Circuit Complexity. An interesting measure of complexity of a
function g (modeled as a 2-party function) is its “OT complexity” – the number
of (1 out of 2, bit) OT instances needed for securely evaluating it.3 As sketched
below, the OT complexity of a function is closely related to its circuit complexity
and may provide an approach to proving explicit circuit lowerbounds. Our results
show that instead of OT complexity, one could consider f -complexity, for any
f whose core is not simple. This establishes “cryptographic complexity” as a
fundamental complexity measure of (2-party) functions, independent of which
complete finite 2-party function is used to securely realize it, just the same way
circuit complexity is independent of which specific set of universal finite gates
are used to implement it.

Circuit complexity and OT complexity are closely related to each other as
follows. By a simple protocol due to [16,17,18], we know that the OT complexity
3 One may also define OT complexity to be the total amount of communication

(possibly amortized) needed for securely evaluating g, in the OT-hybrid model.
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of a function g (defined with respect to passive security) is O(C(g)), where C(g)
stands for the circuit complexity of g. This means that a super-linear lowerbound
for OT complexity of g gives a super-linear lowerbound on C(g). Of course, this
only shows that it is a hard problem to lowerbound OT complexity. But inter-
estingly, this connection does open up a new direction of approaching circuit
complexity lowerbounds: the fact that most functions have exponential circuit
complexity is an easy consequence of a counting argument due to Shannon; but
for OT complexity, even such an existential lowerbound is not known. Resolv-
ing this could be an easier problem than finding explicit circuit lowerbounds,
yet could lead to new insights to proving explicit OT complexity and circuit
complexity lowerbounds.

The same argument applies for OT complexity defined with respect to active
adversaries as well, due to the result of [22]. Note that it would be easier to
lowerbound OT complexity when it is defined this way, than when defined with
respect to passive adversaries. The relevance of our result is that instead of OT,
one can consider any 2-party function f whose core is not simple. As we show
that OT can be reduced to any such function at a constant rate, a super-linear
lowerbound on (amortized) f -complexity will indeed translate to a super-linear
lowerbound on circuit complexity. We discuss this more in the full version of
our paper [27] and leave it as an important direction to study. Recently Beimel
et al. [2] have shown that the OT-complexity of random functions is significantly
lower than their (AND) circuit complexity, but still exponential in the input
length, in the worst case.

1.2 Related Work

We briefly summarize the results on completeness from prior work (also refer to
Fig. 1). The function oblivious transfer (OT) was identified independently by
Wiesner and Rabin [32,34]. Brassard et al. [5] showed that various flavors of OT
can be reduced to each other with respect to security against active adversaries.
In a seminal work, Kilian identified OT as the first active-complete function [23].
Prior to this Goldreich and Vainish, and independently Micali and Haber, showed
that OT is passive-complete [18,17]. Crépeau and Kilian then showed that the
noisy channel is also active-complete [11]. The first characterization of com-
pleteness appeared in [24] where it was shown that among deterministic “sym-
metric” functions (in which both parties get the same output) a function f is
active-complete if and only if there is an “OR minor” in the matrix representing
f . Beimel, Malkin and Micali showed that among “asymmetric” functions (in
which only one party gets the output), a function is passive-complete if and only
if it is not “trivial” [3]. ([3] also concerned itself with the computational setting
and asked cryptographic complexity questions regarding computational assump-
tions.) Kilian vastly generalized this by giving several completeness character-
izations: active-complete deterministic asymmetric functions, passive-complete
symmetric functions and passive-complete asymmetric functions [25]. Kilian’s
result for active-completeness was extended in two different directions by sub-
sequent work: Crépeau, Morozov and Wolf [12] considered “channel functions”
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which are randomized asymmetric functions (only one party has output), but
with the additional restriction that only one party has input; Kraschewski and
Müller-Quade [28] considered functions in which both parties can have inputs
and outputs, but restricted to deterministic functions.

Kilian’s result for passive-completeness was extended to all functions in a
recent work [31], which also presented a unification of all the prior character-
izations and posed the question of completing the characterization. The full
characterization we obtain matches the unified conjecture from [31].

A related, but different line of work investigated secure computability and
completeness for multi-party computation (with more than 2 parties)
(e.g., [8,4,33,29,26,14,13]). We restrict ourselves to 2-party functions in this work.
Another direction of research considers whether a short protocol for f (instead
of a black-box implementing f) is complete or not [30].

1.3 Technical Overview

An important ingredient of our result is a combinatorial/linear-algebraic char-
acterization of “redundancy” in a general 2-party function. The importance of
redundancy is two fold:

– Any function f is “equivalent” (or weakly isomorphic, as defined in [31]) to
a “core” function f̂ which is redundancy free, so that f is complete against
active adversaries if and only if f̂ is. Thus it is enough to characterize com-
pleteness for redundancy free functions.

– Our various protocols rely on being given access to a redundancy free func-
tion. Redundancy makes it possible for an adversary to deviate from a pre-
scribed interaction with a function without any chance of being detected.
Thus the statistical checks used to enforce that the adversary does not de-
viate from its behavior crucially rely on the protocol using only redundancy
free functions.

While redundancy of special classes of 2-party functions have appeared in the
literature previously, it turns out that for general 2-party functions, the nature of
redundancy is significantly more intricate. Recall that we discussed redundancy
informally by considering an adversary that tries to learn about the other party’s
input-output pair: any input it can avoid, and distinction between outputs (for
the same input) that provide it with identical information are both redundant.
However, the role of redundancy in showing completeness is somewhat different:
redundancy in a function makes it hard (if not impossible) to use it in a pro-
tocol, as it allows an active adversary to deviate from behavior prescribed by
a protocol, with no chance of being caught. Possible deviation includes replac-
ing its prescribed input to the function by a probabilistically chosen input, and
probabilistically altering the output it receives from the function before using
it in the protocol, at the same time. The goal of this deviation is to minimize
detectability by the other party (and the environment). Our formal definition
of redundancy uses this point of view. We define irredundancy quantitatively
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(Definition 1) as a lowerbound on the ratio of the detection advantage to the
extent of deviation (“irredundancy = detection/deviation”).

The first step in our characterization is to bridge the gap between these two
formulations of redundancy. While the definition of irredundancy is what allows
us to use a redundancy-free function in our protocols, to find the core of a func-
tion, we rely on the formulation in terms of redundancy of individual inputs – we
shall reduce redundancy one input or output at a time, until we obtain a redun-
dancy free function. Clearly when redundancy is present, irredundancy would be
0 (i.e., can deviate without being detected); but we show that conversely, when
irredundancy is 0, then one of the two forms of redundancy must be present. We
stress that a priori, it is not at all obvious that irredundancy cannot be 0 even if
there is no redundancy (i.e., detection/deviation could approach 0 by a sequence
of deviations that are smaller and smaller, achieving even smaller detectability).
We provide a non-trivial linear algebraic analysis of irredundancy and show that
this is not the case (Lemma 1).

Simple Function. Following [31], we define a simple function. First, we present a
combinatorial characterization (given in Lemma 1 in [31]) of a simple function,
which constitutes the algorithm for determining if a function is simple or not.

A 2-party randomized function f is described by a joint distribution over
Alice-Bob output space W × Z for every Alice-Bob input pair in X × Y . We
consider the |Y ||Z| × |X ||W | matrix Pf , with rows indexed by (y, z) ∈ Y × Z

and columns indexed by (x,w) ∈ X ×W , such that Pf
(y,z),(x,w) = pf [w, z|x, y].

The function f is simple if Pf can be partitioned into a set of rank-1 minors
such that no row or column of the matrix pass through two of these minors.
Being of rank 1, each minor has all its rows (equivalently, columns) parallel to
each other. (In [31], this is described in terms of a bipartite-graph in which each
connected component is a complete bipartite graph, with weights on the edges
being proportional to the product of the weights on the two end points of the
vertex.)

To better understand what being simple means, we briefly explain how it is
defined. The kernel of a function f is a symmetric function that provides both
the parties with only the “common information” that f provides them with.
A simple function is one which is “isomorphic” to its kernel: i.e., given just the
output from the kernel, the rest of the information from f can be locally sampled
by the two parties, independent of each other.

As stated in [31], the passive-complete functions are exactly those which are
not simple. Our construction shows that restricted to the class of redundancy
free functions, the same characterization holds for complete functions for active-
security as well.

1.4 The Construction

Our main construction shows that any redundancy free function f which is not
simple is also UC-complete. This construction separates into two parts:
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– A protocol to UC-securely reduce the commitment functionality Fcom to f .

– A protocol in the Fcom-hybrid model that UC-securely reduces OT to f ,
starting from a passive-secure reduction of OT to f (since f is passive-
complete, such a protocol exists). That is, we compile (in a black-box man-
ner) a passive-secure OT protocol using f , to a UC-secure OT protocol using
f (and Fcom).

In building the commitment functionality we rely on a careful analysis of func-
tions that are redundancy free and not simple, to show that there will exist
two or more extreme views for one party (which cannot be equivocated) that are
confusable by the second party (provided it uses inputs from an “unrevealing dis-
tribution” — something that can be verified by the first party). We interpret the
function invocations as a channel through which the first party transmits a mes-
sage using the set of its extreme views as the alphabet. This message is encoded
using an error correcting code of rate 1 − o(1) and o(1) distance; the distance
would be sufficient to prevent equivocation during opening. To argue hiding, we
rely on a well-known result from information theory, namely the (weak) converse
of Shannon’s Channel Coding Theorem. We extend this theorem to the case of
adaptively chosen channel characteristics, corresponding to the fact that the re-
ceiver can adaptively choose its input to the function and that determines the
channel characteristics. Due to confusability, the capacity of this channel will be
less than 1 (measured with the logarithm of the input alphabet size as the base).
Since the rate of the code is higher than the capacity of the channel, this gives
us some amount of hiding (which is then refined using an extractor).

The second part, which gives a compiler, is similar in spirit to prior protocols
that established that a passive-secure OT protocol (in the plain model) can be
converted to an active-secure OT protocol in a black-box manner [20,19,9]. In
particular, its high-level structure resembles that of the protocol in [9]. However,
the key difference in our protocol compared to these earlier protocols (which
were all in the computational setting), is that the passive-secure OT protocol
that we are given is not in the plain model, but is in the f -hybrid model. The
technical difficulty in our case is in ensuring that a cut-and-choose technique can
be used to verify an adversary’s claims about what inputs it sent to a 2-party
function and what outputs it received, when the verifier has access to only the
other end of the function. This is precisely where the statistical testability of
redundancy free functions (see below) is invoked.

Also, in contrast with the above mentioned compilers, we do not use a two-
step compilation to first obtain security against active corruption of the receiver
and then that of the sender. Instead, we directly obtain a somewhat “noisy”
OT protocol that is secure against active corruption of either player, and use
techniques from [22,21] to obtain the final protocol. In particular, we show how
the result in [22] can be extended so that it works in a noisy OT-hybrid rather
than a regular OT-hybrid. (A similar extension was used in [21], to allow using
a noisy channel hybrid instead of a regular OT-hybrid.) These tools help us
achieve a constant rate in implementing OTs from instances of f .
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Statistically Testable Games. We introduce a formal notion of statistically testable
game, which is an information-theoretic analogue of interactive proofs where both
players can be computationally unbounded. Note that interactive proofs are not
interesting in this information-theoretic setting (or if P=PSPACE). In a statisti-
cally testable game, the statements being proven (tested) are statements regarding
the private observations of the prover in a system, which provides partial obser-
vations to the verifier as well. The non-triviality of such a proof system stems not
from the computational limitations of the verifier, but from the fact that the veri-
fier cannot observe the entire system. While such proofs have been implicitly con-
sidered in several special cases in many prior works (e.g. [11,12,22,21]), the class of
games we consider is much more general than those implicitly considered in these
earlier instances, and the soundness of the tests we consider is not at all obvious.

The game we consider is of 2-party function evaluation, in which the prover
and the verifier interact with a (stateless) trusted third party which carries out
a randomized function evaluation for them. The prover first declares a sequence
of n inputs it will feed the function (the verifier chooses its inputs privately
and independently). After n invocations of the function, the prover declares to
the verifier the sequence of the n outputs it received from the invocations. A
statistical test is a sound and complete proof system which convinces the verifier
that the input and output sequences declared by the prover has a o(1) fraction
Hamming distance from the actual sequences in its interaction with the trusted
party. Note that the verifier can use its local observations (its input-output
sequences) to carry out the verification.

A major technical ingredient of our compiler is the following theorem:

Evaluation of a 2-party function f is statistically testable if and only if
f is redundancy free.

Clearly, if a function is not redundancy free, it admits no sound statistical test.
But a priori, it may seem possible that even if no single input has redundancy,
the prover can map the entire sequence of inputs and outputs to a different
sequence, with only a small statistical difference in the verifier’s view, such that
this difference vanishes with the length of the sequence. We show that this is not
the case: if the function is redundancy-free, then there is a lowerbound on the
ratio of the “detection advantage” to “extent of deviation” that does not vanish
with the number of invocations.

This naturally motivates our approach of compiling a passive-secure protocol
in f -hybrid, where f is redundancy free, into one that is secure against active
adversaries. We should be able to enforce honest behavior by “auditing” randomly
chosen executions from a large number of executions, and the auditing would
use the statistical tests. However, this idea does not work directly: the statistical
test models a test by an environment: it lets the adversary arbitrarily interact
with f and report back a purported output, but the purported input it sent to f
was fixed by the environment before the adversary obtained the output from f .
On the other hand, in a protocol, the honest party does not get to see the input
to be sent to the functionality ahead of time. It is to solve this issue that we rely
on the commitment functionality: the input each party should be sending to f is
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fixed a priori using commitments (and coin-tossing-in-the-well). When a session
is chosen for auditing, the adversary could have sent a different input to f than
it was supposed to, and it can lie about the output it received from f as well,
but it cannot choose the purported input it sent to f after interacting with f .

2 Preliminaries

Matrix Definitions. In the following we shall refer to the following matrix norms:
‖A‖∞ = maxi

∑
j |aij | (maximum absolute row sum norm), and ‖A‖sum =∑

i,j |aij | (absolute sum norm). We shall also use the function max(A) =
maxi,j aij (maximum value among all entries); note that here we do not consider
the absolute value of the entries in A. For a probability distribution pXover a
space X (denoted as vectors), we define min(pX) = minx∈X pX [x], the minimum
probability it assigns to an element in X . The norm ‖·‖∞ when applied to a
column vector simply equals the largest absolute value entry in the vector. We
say that a matrix P is a probability matrix if its entries are all in the range [0, 1]
and ‖P‖sum = 1. We say that a matrix is a stochastic matrix (or row-stochastic
matrix) if all its entries are in the range [0, 1] and every row sums up to 1.
For convenience, we define the notation 〈M〉I for a square matrix M to be the
diagonal matrix derived from M by replacing all non-diagonal entries by 0.

2-Party Secure Function Evaluation. A two-party randomized function (also
called a secure function evaluation (SFE) functionality) is specified by a single
randomized function denoted as f : X × Y →W ×Z. Despite the notation, the
range of f is, more accurately, the space of probability distributions over W ×Z.
The functionality takes an input x ∈ X from Alice and an input y ∈ Y from
Bob and samples (w, z) ∈ W × Z according to the distribution f(x, y); then it
delivers w to Alice and z to Bob. Throughout, we shall denote the probability
of outputs being (w, z) when Alice and Bob use inputs x and y respectively by
pf [w, z|x, y]. We use the following variables for the sizes of the sets W,X, Y, Z:

|X | = m |Y | = n |W | = q |Z| = r.

In this paper we shall restrict to function evaluations where m, n, q and r are
constants, i.e. as the security parameter increases the domains do not expand.
(But the efficiency and security of our reductions are only polynomially depen-
dent on m,n, q, r, so one could let them grow polynomially with the security
parameter. We have made no attempt to optimize this dependency.) W.l.o.g.,
we shall assume that X = [m] (i.e., the set of first m positive integers), Y = [n],
W = [q] and Z = [r].

We consider standard security notions in the information-theoretic setting:
UC-security, standalone-security and passive-security against computationally
unbounded adversaries (and with computationally unbounded simulators). Using
UC-security allows to compose our sub-protocols securely [7]. Error in security
(simulation error) is always required to be negligible in the security parameter
of the protocol, and the communication complexity of all protocols are required
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to be polynomial in the same parameter. However, we note that a protocol may
invoke a sub-protocol with a security parameter other than its own (in particular,
with a constant independent of its own security parameter).

Complete Functionalities. A two-party randomized function evaluation f is
standalone-complete (respectively, UC-complete) against information theoretic
adversaries if any functionality g can be standalone securely (respectively, UC
securely) computed in f hybrid. We shall also consider passive-complete func-
tions where we consider security against passive (semi-honest) adversaries.

3 Main Tools

In this section we introduce the three main tools used in our construction.

3.1 Characterizing Irredundancy

Redundancy in a function allows at least one party to deviate in its behavior in
the ideal world and not be detected (with significant probability) by an environ-
ment. In our protocol, which are designed to detect deviation, it is important
to use a function in a form in which redundancy has been removed. We define
irredundancy in an explicit linear algebraic fashion, and introduce a parameter
to measure the extent of irredundancy.

Irredundancy of a System of Stochastic Matrices. Let Pi, i = 1, . . . ,m be a
collection of s × q probability matrices (i.e., entries in the range [0, 1], with
‖Pi‖sum = 1). Consider tuples of the form (j, {Mi, αi}mi=1), where j ∈ [m], Mi

are q × q stochastic matrices, and αi ∈ [0, 1] are such that
∑

i αi = 1. Then we
define the irredundancy of this system as

D(P1, . . . , Pm) = inf
(j,{αi,Mi}mi=1)

‖(
∑m

i=1 αiPiMi)− Pj‖∞
1− αj‖Pj · 〈Mj〉I‖sum

(1)

where the infimum is over tuples of the above form. (Recall that 〈Mj〉I refers to
the diagonal matrix with the diagonal entries of Mj .)

Intuitively, consider the rows of Pi to be probability distributions over a q-ary
alphabet produced as the outcome of a process with the row index corresponding
to a hidden part of the outcome, and the column index being an observable
outcome. Then, irredundancy measures how well a Pj can (or rather, cannot) be
approximated by a convex combination of all the matrices Pi, possibly with the
observable outcome transformed using a stochastic matrix (corresponding to a
probabilistic mapping of the observable outcomes); the denominator normalizes
the approximability by how much overall deviation (probability of changing the
process or changing the outcome) is involved. This excludes the trivial possibility
of perfectly matching Pj by employing zero deviation (i.e., taking αj = 1 and
Mj = I).
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Irredundancy of a 2-Party Secure Function Evaluation Function. Recall that a
2-party SFE function f with input domains, X × Y and output domain W × Z
is defined by probabilities pf [w, z|x, y]. We define left and right redundancy of
f as follows. Below, |X | = m, |Y | = n, |W | = q, |Z| = r.

To define left-redundancy, consider representing f by the matrices {P x}x∈X

where each P x is an nr×q matrix with P x
(y,z),w = pf [w, y, z|x]. Here, pf [w, y, z|x]

� 1
np

f [w, z|x, y] (where we pick y independent of x, with uniform probability
pf [y|x] = 1

n ).

Definition 1. For an SFE function f : X×Y →W×Z, represented by matrices
{P x}x∈X, with P x

(y,z),w = Pr[w, y, z|x], we say that an input x̂ ∈ X is left-
redundant if there is a set {(αx,Mx)|x ∈ X}, where 0 ≤ αx ≤ 1 with

∑
x αx = 1,

and each Mx is a q × q stochastic matrix such that if αx̂ = 1 then Mx̂ = I, and
P x̂ =

∑
x∈X αxP

xMx.
We say x̂ is strictly left-redundant if it is left-redundant as above, but αx̂ = 0.

We say x̂ is self left-redundant if it is left-redundant as above, but αx̂ = 1 (and
hence Mx̂ = I).

We say that f is left-redundancy free if there is no x ∈ X that is left-
redundant.

Right-redundancy notions for inputs ŷ ∈ Y are defined analogously. A function
f is said to be redundancy-free if it is left-redundancy free and right-redundancy
free. The main result about irredundancy is the following quantitative lemma:

Lemma 1. Suppose a 2-party function f : X × Y → W × Z is left redun-
dancy free. Let pY be a probability distribution over Y . Let the probability matri-
ces {P x}x∈X, be defined by P x

(y,z),w = pf [w, z|x, y]pY [y]. Then there is a constant
εf > 0 (depending only on f) such that D(P 1, . . . , Pm) ≥ εfmin(pY ).

The analogous statement holds for right redundancy.

3.2 Statistically Testable Function Evaluation

In this section we consider the notion of a statistically testable function eval-
uation game. (The notion is more general and could be extended to reactive
systems, or multi-player settings; for simplicity we define it only for the rel-
evant setting of 2-party functions.) We informally defined a statistical test in
Section 1.3. As mentioned there, we shall show that evaluation of a 2-party
function is statistically testable if and only if the function is redundancy free.
For simplicity, we define a particular test and show that it is sound and com-
plete for redundancy free functions (without formally defining statistical tests in
general). (It is easy to see that functions with redundancy cannot have a sound
and complete test. Since this is not relevant to our proof, we omit the details.)

Let f be redundancy free. Consider the following statistical test, formulated
as a game between an honest challenger (verifier) and an adversary (prover) in
the f -hybrid.



672 D. Kraschewski et al.

Left-Statistical-Test(f, pY ;N):

1. The adversary picks x̃ = (x̃1, . . . , x̃N ) ∈ XN , and for each i ∈ [N ] the chal-
lenger (secretly) picks uniform i.i.d yi ∈ Y , according to the distribution
pY .

2. For each i ∈ [N ], the parties invoke f with inputs xi and yi respectively;
the adversary receives wi and the challenger receives zi, where (wi, zi)

$←
f(xi, yi).

3. The adversary then outputs w̃ = (w̃1, . . . , w̃N ) ∈WN .

The adversary wins this game (breaks the soundness) if the following condi-
tions hold:

1. Consistency: Let μw̃,x̃,y,z be the number of indices i ∈ [N ] such that w̃i =
w̃, x̃i = x̃, yi = y and zi = z. Also, let μx̃,y be the number of indices
i ∈ [N ] such that x̃i = x̃ and yi = y. The consistency condition requires that
∀(w, x, y, z) ∈W ×X × Y × Z,

μw̃,x̃,y,z = μx̃,y × pf [w̃, z|x̃, y]±N2/3.

2. Separation: Let vectors A, Ã ∈ (W ×X)N be defined by Ai := (wi, xi) and
Ãi = (w̃i, x̃i). The separation condition requires that the Hamming distance
between the vectors A and Ã is Δ(A, Ã) ≥ N7/8.

The Right-Statistical-Test(f, pX ;N) is defined analogously. The experiment
Statistical-Test(f, pX , pY ;N) consists of the left and right statistical tests, and
the adversary wins if it wins in either experiment.

Before proceeding, we note that the above statistical test is indeed “complete”:
if the prover plays “honestly” and uses x̃ = x and w̃ = w, then the consistency
condition will be satisfied with all but negligible probability (for any choice of x).

Lemma 2. If f is redundancy free, and pXand pY are constant distribution
which have full support over X and Y respectively, then the probability that any
adversary wins in Statistical-Test(f, pY , pX ;N) is negl(N).4

3.3 A Converse of the Channel Coding Theorem

A converse of the channel coding theorem states that message transmission is
not possible over a noisy channel at a rate above its capacity, except with a
non-vanishing rate of errors (see, for e.g., [10]). We give a generalization of the
(weak) converse of channel coding theorem where the receiver can adaptively
choose the channel based on its current view. We show that if in at least a μ
fraction of the transmissions, the receiver chooses channels which are noisy (i.e.,
has capacity less than that of a noiseless channel over the same input alphabet),
then we can lower bound its probability of error in predicting the input codeword
as a function of μ, an upper bound on the noisy channel capacities, and the rate
of the code.
4 The distributions pXand pY are constant while N is a growing parameter.
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Lemma 3 (Weak Converse of Channel Coding Theorem, Generaliza-
tion). Let F = {F1, . . . ,FK} be a set of K channels which take as input alpha-
bets from a set Λ, with |Λ| = 2λ. Let G ⊆ [K] be such that for all i ∈ G, the
capacity of the channel Fi is at most λ− c, for a constant c > 0.

Let C ⊆ ΛN be a rate R ∈ [0, 1] code. Consider the following experiment:
a random codeword c1 . . . cN ≡ c

$← C is drawn and each symbol c1 . . . cN is
transmitted sequentially; the channel used for transmitting each symbol is chosen
(possibly adaptively) from the set F by the receiver.

Conditioned on the receiver choosing a channel in G for μ or more transmis-
sions, the probability of error of the receiver in predicting c is

Pe ≥ 1− 1

NRλ
− 1− cμ/λ

R
.

4 Main Construction

The main ingredient for the proof of Theorem 1 is the following result (details
are provided in the full version [27]):

Theorem 2. If f is a redundancy free 2-party function and f is passive-complete,
then there is a constant rate UC-secure protocol for Fot in the f -hybrid model.

Since f is passive-complete we know that OT does reduce to f against passive
adversaries. We shall take such a passive-secure OT protocol in the f -hybrid,
and convert it into a UC-secure protocol. For this we need two ingredients:
first a UC-secure commitment protocol in the f -hybrid model, and secondly
a compiler to turn the passive secure OT protocol in the f -hybrid model to
a UC-secure protocol in the commitment-hybrid model. In building the UC-
secure commitment protocol, we rely on the irredundancy of f as well as the
combinatorial characterization that passive-complete functions are exactly those
that are not simple (see Section 1.3).

4.1 A UC Secure Commitment Protocol

In this section we present the outline of a UC-secure commitment protocol in
the f -hybrid model, for any 2-party randomized function f that is redundancy
free (Definition 1) and is not simple (see Section 1.3).

The high-level structure of the protocol is as follows. The definition of the un-
derlined terms cannot be accommodated due to lack of space. Interested readers
should refer to [27].

1. Commitment phase:
(a) The sender plays the role of (say) Alice in f , and the receiver plays

the role of Bob in f . The sender invokes f several times, with random
inputs x ∈ X ; and the receiver will be required to pick its inputs from
an unrevealing distribution pY .
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(b) The sender checks if the frequencies of all the input-output pairs (x,w)
it sees are consistent with the receiver using pY .

(c) The sender announces a subset of indices for which in the corresponding
invocations, it obtained an extreme input-output pair.

(d) The sender picks a random codeword from an appropriate code, and
masks this codeword with the sequence of input-output pairs from the
previous step, and sends it to the receiver.

(e) The sender also sends the bit to be committed masked by a bit extracted
from the codeword in the previous step.

2. Reveal phase: The sender sends its view from the commitment phase. The
receiver checks that this is consistent with its view and the protocol (in
particular, the purported codeword indeed belongs to the code, and for each
possible value (x,w) of the sender’s input-output pair to f , the frequency of
input-output pairs (y, z) on its side are consistent with the function). If so,
it accepts the purported committed bit.

The delicate part of this construction is to show that there will indeed be a
set of extreme input-output pairs and an unrevealing distribution as required
above. We point out that we cannot use our results on statistical testability of
the function evaluation game from Section 3.2 directly to argue that binding
would hold for all input-output pairs. This is because the game there requires
the adversary to declare the input part of its purported view before invoking the
function. Indeed, once we have a commitment functionality at our disposal, we
can exploit the binding nature of this game; but to construct our commitment
protocol this is not helpful.

Due to lack of space, we provide rest of our construction in the full version of
the paper [27].
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1 Introduction

A commitment scheme is a digital analogue of a locked box. It enables one party,
called the committer, to transfer a value to another party, called the receiver,
while keeping it hidden, and later reveal it while guaranteeing to the receiver
its originality. Commitment schemes are a fundamental building block for cryp-
tographic protocols withstanding active adversarial attacks. As such, efficient
implementations of the latter—particularly in realistic complex environments
where they are to execute—crucially hinge on them. Such complex environments
are today epitomized by the universal composability (UC) framework [6], which
allows for a protocol to run concurrently and asynchronously with arbitrarily
many others, while guaranteeing its security.

The first constructions of UC commitments were given by Canetti et al. [7,8]
as a feasibility result. (It was also shown in [7] that it is impossible to construct
UC commitments in the plain model, and that some setup such as a common
reference string (CRS) is required.) Since then, and motivated by the above, a
series of improvements (e.g., [14,13,28,19,33,4,1,25]) culminated in constructions
achieving under various cryptographic assumptions constant communication rate
and practical computational complexity, making it possible to commit to, say, L
group elements by sending O(L) group elements and performing O(L) public-key
operations (e.g., exponentiations).

Shortcomings—as well as ample room for improvement, however, remain, as
the constant rate currently achieved is small and the computational cost per
committed bit is high. This is the case even when committing to long messages
and even when ignoring the cost of offline interaction that does not depend on
the committed message. More concretely, the communication complexity is big-
ger than the length of the message by a large constant factor, and the online
computation includes a large number of computationally expensive public-key
operations for each block of the message being committed.1 This is not sat-
isfactory when considering concrete applications where UC commitments are
used, such as UC secure computation and UC zero-knowledge. (See [4,28,1] for
additional motivation on these applications.)

Our Results. We obtain both positive and negative results on the complexity of
UC commitments. Our main positive result is a UC commitment protocol which
simultaneously overcomes both of these limitations. Specifically, it achieves an
optimal rate of 1 (strictly speaking, 1 − o(1)) by making only few calls to an
ideal oblivious transfer (OT) oracle and additionally making a black-box use

1 Recent constructions [28,4] that work over standard DDH groups require at least 10
group elements and at least 20 public key operations per commitment instance. A
very recent work by [25] (improving over [16]) requires 5 group elements in a bilinear
group (assuming SXDH).
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of a (computationally inexpensive) PRG. By plugging in known efficient pro-
tocols for UC-secure OT (e.g., [34]), we get rate-1, computationally efficient
UC commitment protocols under a variety of setup assumptions (including the
CRS model) and under a variety of standard cryptographic assumptions (includ-
ing DDH). We are not aware of any previous UC commitment protocols which
achieve an optimal asymptotic rate.

Our main idea is to use a simple code-based generalization of the standard
construction of commitment from δ-Rabin-string-OTs [11,26,24,18]. The key ob-
servation is that the use of a rate-1 encoding scheme with a judicious choice of
parameters yields a rate-1 construction of UC commitments.

Next, we show how to further reduce the computational complexity of the
basic construction by using OT extension [2,23,24]. Our improvement ideally
suits the setting where we need to perform a large number of commitments in
a single parallel commit phase (with potentially several reveal phases), as with
applications involving cut-and-choose. In particular, we show that the number
of calls to the OT oracle can be made independent of the number of instances
of UC commitments required. (Note that such a result does not follow from
multiple applications of the basic construction.) We stress that when handling
a large number of commitment instances (say, in garbled circuit applications
of cut-and-choose), the number of public key operations plays a significant role
(perhaps more than the communication) in determining efficiency. While current
state-of-the-art UC commitment protocols [28,4] suffer from the need to many
computationally expensive public-key operations, our result above enables us to
obtain better computational as well as overall efficiency.

Lastly, another corollary of our technique is a rate-1 construction for UC
commitment length extension, that is, a UC commitment protocol for a long
message using a single ideal commitment for a short message. The extension
protocol additionally requires the use of a semi-honest (stand-alone) OT proto-
col. This raises a natural question of whether we can achieve UC commitment
length extension while using only inexpensive PRG operations as is the case for
stand-alone commitments and UC OT. We answer this question in the nega-
tive, showing that the existence of a semi-honest OT protocol is necessary (and
sufficient) for UC commitment length extension. This shows that UC commit-
ments are qualitatively different from both stand-alone commitments and UC
OT, which can be extended using any PRG [2], and are similar to adaptively-
secure OT whose extension requires the existence of (non-adaptively secure)
oblivious transfer [29].

We note that our constructions are only secure against a static (non-adaptive)
adversary; we leave the extension to adaptive security for future work.

Related Work. We already mentioned above the series of results leading to
constant-rate UC-commitments. Here we give a brief overview. Canetti et al. [7,8]
were the first to construct (inefficient) UC commitments in the CRS model
from general assumptions, and also achieve adaptive security. Shortly thereafter,
Damg̊ard and Nielsen [14] presented UC commitments with O(1) exponentia-
tions for committing to a single group element. Their construction is based on
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N -residuosity and p-subgroup assumptions, and is also adaptively secure (with-
out erasures), but requires a CRS that grows linearly with the number of parties.
A construction of Damg̊ard and Groth [13], also adaptively secure without era-
sures and based on the strong RSA assumption, requires a fixed-length CRS.

An important improvement in concrete efficiency was presented recently by
Lindell [28]; this is achieved for static corruptions based on the DDH assump-
tion in the CRS model. Blazy et al. [4] build on Lindell’s scheme to achieve
adaptive security (assuming erasures); they also obtain improvements in con-
crete efficiency. Fischlin et al. [16] also build on Lindell’s scheme and present
a non-interactive scheme using Groth-Sahai proofs [21]. Furthermore, they also
provide an adaptively secure variant (with erasures) based on the DLIN assump-
tion on symmetric bilinear groups. As mentioned above, none of these works
achieve rate 1. We provide a concrete analysis of our protocol, with a comparison
to [28,4] in Section 3.3.

A code-based construction of UC commitments from OT was recently used by
Frederiksen et al. [18] as part of an efficient protocol for secure two-party com-
putation. While this construction uses a similar high level technique as our basic
construction, its suggested instantiation in [18] only achieves a small constant
rate.

Our work also considers the extension of UC commitments. We mainly focus
on the goal of length extension, namely using an ideal commitment to a short
string for implementing a UC commitment to a long string. For standalone
commitments, such a length extension is easy to implement using any PRG.
This is done similarly to the standard use of a PRG for implementing a hybrid
encryption scheme. It was previously shown by Kraschewski[27] that this simple
extension technique does not apply to UC commitments. We strengthen this
negative result to show that any extension protocol for UC commitments implies
oblivious transfer. Similar negative results for adaptively secure OT extension
were obtained by Lindell and Zarosim [29]. and for reductions between finite
functionalities by Maji et al. [30]. Negative results for statistical UC coin-tossing
extension were obtained by Hofheinz et al. [22].

In an independent work [12], Damg̊ard et al. also construct UC commitments
using OT, PRG and secret sharing as the main ingredients. While the basic
approach is closely related to ours, the concrete constructions are somewhat
different, leading to incomparable results. In particular, a major goal in [12]
is to optimize the asymptotic computational complexity as a function of the
security parameter, achieving in one variant constant (amortized) computation
overhead for the verifier. Moreover, they achieve both additive and multiplicative
properties for UC commitments, which are not considered in our work.

Organization of the Paper. The rest of the paper is organized as follows. Model,
definitions and basic functionalities are presented in Section 2. Our main
construction—rate-1 UC commitment from OT—is presented in Section 3, to-
gether with the case of multiple commitment instances and a concrete efficiency
analysis. Finally, the treatment of UC commitment extension—rate-1 construc-
tion and necessity of OT—is presented in Section 4. Due to space limitations,
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only proof sketches are presented in the main body; full proofs as well as com-
plementary material are deferred to the full version.

2 Model and Definitions

In this section we introduce some notation and definitions that will be used
throughout the paper. We denote the computational security parameter by κ,
and the statistical security parameter by σ. A function μ is negligible if for every
polynomial p there exists an integer N such that for every n > N it holds that
μ(n) < 1/p(n).

In this paper wewill be concernedwith efficient universally composable (UC) [6]
realizations of functionalities such as commitments. Assuming already some fa-
miliarity with the framework, we note that it is possible to consider variants of
the definition of UC security in which the order of quantifiers is “∀A∃S∀Z”. Con-
trast this with our definition (and also the definition in [28]) in which the order of
quantifiers is “∃S∀Z∀A”. Both definitions are equivalent as long as S, in the for-
mer definition makes only a blackbox use of A [6]. Indeed, this will be the case in
our constructions. Therefore, as in [28], we demonstrate a single simulator S that
works for all adversaries and environments, and makes only a blackbox use of the
adversary. (In this case, one may also denote the ideal process by idealF ,SA,Z .)

We will sometimes explicitly describe the functionalities we realize. For in-
stance, if a functionality F accepts inputs only of a certain length 
, then we
will use the notation F [
] to denote this functionality. We let cc(F) denote the
communication cost, measured in bits, of realizing F in the plain model.

The multi-commitment ideal functionality FMCOM, which is the functional-
ity that we UC realize in this work, is given in Figure 1. As mentioned above,
FMCOM[
] will explicitly denote that the functionality accepts inputs of length
exactly 
. We will be giving our constructions in the OT-hybrid model.

Functionality FMCOM

FMCOM with session identifier sid proceeds as follows, running with parties
P1, . . . , Pn, a parameter 1

κ, and an adversary S :

– Commit phase: Upon receiving a message (commit, sid, ssid, s, r,m) from Ps

where m ∈ {0, 1}�, record the tuple (ssid, s, r,m) and send the message
(receipt, sid, ssid, s, r) to Pr and S . (The length of the strings � is fixed and
known to all parties.) Ignore any future commit messages with the same ssid
from Ps to Pr.

– Decommit phase: Upon receiving a message (reveal, sid, ssid) from Ps:
If a tuple (ssid, s, r,m) was previously recorded, then send the message
(reveal, sid, ssid, s, r,m) to Pr and S . Otherwise, ignore.

Fig. 1. Functionality FMCOM for multiple commitments
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Functionality FN
OT

FN
OT with session identifier sid proceeds as follows, running with parties P1, . . . , Pn,
a parameter 1κ, and an adversary S :

– Upon receiving a message (sender, sid, ssid, s, r, x1, . . . , xN ) from Pi, where
each xj ∈ {0, 1}�, record the tuple (sid, ssid, s, r, x1, . . . , xN ). (The length
of the strings � is fixed and known to all parties.) Ignore any future sender
messages with the same sid, ssid pair from Ps to Pr.

– Upon receiving a message (receiver, sid, ssid, s, r, q) from Pr, where q ∈ [N ],
send (sid, ssid, s, r, xq) to Pr and (sid, ssid, s, r) to Ps, and halt. (If no
(sender, sid, ssid, s, r, . . .) message was previously sent, then send nothing to
Pr.)

Fig. 2. Functionality FN
OT for 1-out-of-N oblivious transfer. We omit superscript N

when N = 2.

Functionality Fδ
OTR

Fδ
OTR

with session identifier sid proceeds as follows, running with parties
P1, . . . , Pn, parameters 1

κ and a real number δ, 0 < δ < 1, and an adversary
S :

– Upon receiving a message (sender, sid, ssid, s, r, x) from Ps, where x ∈ {0, 1}�,
record the tuple (sid, ssid, s, r, x). (The length of the strings � is fixed and
known to all parties.)

– Upon receiving a message (receiver, sid, ssid, s, r) from Pr, set y = x with
probability δ, and y = ⊥ with probability 1− δ. Send (sid, ssid, s, r, y) to Pr

and (sid, ssid, s, r) to Pr, and halt. (If no (sender, sid, ssid, s, r, . . .) message
was previously sent, then send nothing to Pr.)

Fig. 3. Functionality Fδ
OTR

for Rabin-OT with noise rate δ

The oblivious transfer functionality FN
OT, capturing 1-out-of-N OT for N ∈ Z,

is described in Figure 2. When N = 2, this is the standard 1-out-of-2 string-OT
functionality, denoted by FOT. The δ-Rabin-string-OT functionality, denoted
Fδ

OTR
, is described in Figure 3.

3 Rate-1 UC Commitments from OT

A recent line of work has focused on the practical efficiency of UC commitment
in the CRS model [28,4,1,19,33]. In these works, a κ-bit string commitment is
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implemented by sending O(1) group elements and computing O(1) exponentia-
tions in a DDH group of size 2O(κ). We start this section by presenting a κ-bit
UC-secure string commitment protocol in the FOT-hybrid model where the total
communication complexity of each phase (including communication with the OT
oracle) is κ(1 + o(1)). The above implies that if OT exists (in the plain model),
then there is a UC-secure protocol for an N -bit string commitment in the CRS
model which uses only N + o(N) bits of communication.

Thus, our construction improves over previous protocols which achieve con-
stant rate, but not rate 1. Using, for example, the DDH-based OT protocol
of [34], we can get a rate-1 UC-commitment protocol in the CRS model which
is quite efficient in practice; alternatively, if we wish to obtain a construction
in the single global CRS model, we may instead start with the OT protocols
given in [10,1]. We then address the setting where multiple UC commitments
need to be realized, showing again a rate-1 construction where, in particular,
the number of calls to the OT oracle is independent of the number of UC com-
mitments required. We conclude the section with concrete efficiency analysis of
our constructions.

On the “Optimality” of Our Construction. We note that our construction achieves
essentially “optimal” rate. In any statistically binding commitment scheme aswith
our construction, the commit phase communication must be at least the message
size. Moreover, any static UC secure commitment scheme must be equivocable,
since the simulator for an honest sender does not know the message during the
commit phase, and yet must be able to provide openings to any message. There-
fore the communication in the decommit phase must be at least the message size,
via an argument similar to the lower bound on secret key size in non-committing
encryption [32].

3.1 Main Construction

Our idea is to use a simple code-based generalization of the standard construction
of commitment from δ-Rabin-string-OTs [11,26,24,18]. Our key observation is
that the use of a rate-1 encoding scheme with a judicious choice of parameters
yields a rate-1 construction of UC commitments. We start off with the following
reduction.

Rate-1 Rabin-OT from OT. We first show an efficient realization of Rabin-OT
for a given δ ∈ (0, 1), denoted Fδ

OTR
, in the FOT-hybrid model, making black-box

use of a PRG.

Lemma 1 (Rabin-OT from OT [5,11,26,24]). Let G : {0, 1}κprg→{0, 1}� be
a secure PRG, and let δ ∈ (0, 1) such that 1/δ is an integer. Then, there exists a
protocol which UC-realizes a single instance of Fδ

OTR
[
] in the FOT[κprg]-hybrid

model such that:

The protocol has total communication complexity at most 
+(1/δ)+3κprg·1/δ
bits, including communication with FOT[κprg].
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The protocol makes at most 1/δ calls to the FOT[κprg] functionality and
requires each party to make a single invocation of G.

The protocol works by implementing Fδ
OTR

[
] in the FN
OT[
]-hybrid model for

N = 1/δ. Then FN
OT[
] is realized in the FOT[κprg]-hybrid model.

Rate-1 UC-Commitments from Rabin-OT. The construction is presented in the
following lemma. Further construction and proof details can be found in the full
version.

Encoding scheme Enc

Parameters: n′, d, n such that n′ > d > n.
Input: m ∈ {0, 1}� for any � > n log(n+ n′).

Parse m ∈ {0, 1}� as (m1, . . . ,mn) ∈ Fn where F is such that log |F| = �/n.

Let e1, . . . , en and α1, . . . , αn′ be (n+ n′) distinct elements in F.

Pick random polynomial p of degree d such that mi = p(ei) for all i ∈ [n].
Output encoding m′ = (p(α1), . . . , p(αn′)) ∈ Fn′

.

Fig. 4. A rate-1 encoding scheme based on the multi-secret sharing scheme of [17]

Lemma 2. Let σ be a statistical security parameter, and let n be such that there
exists ε ∈ (0, 1/2) satisfying n1−2ε = σΩ(1). Then, for δ = (2nε + 4)−1, and any

 > n log(2n+2n1−ε), there exists a protocol that statistically UC realizes a single
instance of FMCOM[
] in the Fδ

OTR
[
/n]-hybrid model in the presence of static

adversaries such that:

The protocol has communication complexity 
(1 + 2n−ε) bits in each phase,
including communication with Fδ

OTR
[
/n].

The protocol makes n(1 + 2n−ε) calls to the Fδ
OTR

[
/n] functionality.

Proof. The protocol uses the randomized encoding scheme Enc described in
Figure 4 with parameters n as in the Lemma, and n′ = n + 2n1−ε and d =
n + n1−ε − 1. Note that δ = (d + 1 − n)/2n′. Scheme Enc takes as input m ∈
{0, 1}� and parses them as n elements from a field F and satisfies the following
properties:

it has rate 1 + 2n−ε;

any (d+1−n)/n′ = 2δ fraction of the symbols reveal no information about
the encoded message2;

any encodings of two distinct messages differ in Δ
def
= n′ − d positions (and

we can efficiently correct Δ/2 errors);

2 We actually require a slightly stronger property to achieve equivocation, namely,
that we can efficiently extend a random partial assignment to less than 2δ fraction
of the symbols to an encoding of any message.
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The construction realizing FMCOM[
] in the Fδ
OTR

[
/n]-hybrid model is described
in Figure 5. We first analyze the protocol’s complexity:

Communication. In the commit phase, the sender transmits the encoding, i.e.,
n(1+2n−ε) symbols of F via Fδ

OTR
[
/n]. Since log |F| = 
/n, the communication

complexity is (n+2n1−ε) ·
/n = 
(1+2n−ε) bits. In the reveal phase, the sender
sends the encoding in the clear. It follows from the calculations above that the
communication complexity of this phase is also 
(1 + 2n−ε) bits.

Computation. In the commit phase, the sender makes n(1 + 2n−ε) calls to
Fδ

OTR
[
/n].

We now turn to the proof of security. Note that δ = O(n−ε) while Δ =
O(n1−ε). Simulating when no party is corrupted or both parties are corrupted
is straightforward. We briefly sketch how we simulate a corrupted sender and a
corrupted receiver:

Corrupt Sender. Here the simulator extracts the committed value by looking
at the corrupted codeword c that Ps sends to the ideal OT functionality and
compute the unique codeword c∗ that differs from c in at most Δ/2 positions.
In addition, the simulator reveals each symbol of c to the honest receiver with
probability δ. If c and c∗ agree on all the positions that are revealed, then the
committed value is the message corresponding to c∗; else the committed value
is ⊥.

Next, suppose Ps sends a codeword c′ in the reveal phase. We consider two
cases:

if c′ and c differ in at most Δ/2 positions, then c = c∗ and the simulator
extracted the correct value;

otherwise, the honest receiver accepts with probability at most (1 − δ)Δ/2,
which is negligible in σ.

Corrupt Receiver. In the commit phase, the simulator acts as the ideal OT
functionality and for each symbol of the encoding, decides with probability δ
whether to send (and, thereby fix) a random element of F as that symbol to the
receiver.

Next, the simulator receives the actual message m in the reveal phase. We
consider two cases:

As long as less than a 2δ fraction of the symbols are transmitted in the
simulated commit phase above, the simulator can efficiently extend a random
partial assignment implied by the transmitted symbols to the encoding of
m;

otherwise, the simulation of the reveal phase fails with probability at most
e−n′δ/3, which is negligible in σ.

Putting things together:

Theorem 1 (Rate-1 UC commitments from OT). Let κ be a computa-
tional security parameter, and let α ∈ (0, 1/2). Then, there is a protocol which
UC-realizes a single instance of FMCOM[κ] using κα calls to FOT[κ

α] and a
black-box use of a PRG, where the total communication complexity of each phase
(including communication with FOT) is κ(1 + o(1)).
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Realizing FMCOM in the Fδ
OTR

-hybrid model

Let Enc : Fn→Fn′
be a randomized encoding scheme as in Figure 4.

Commit Phase.

1. Upon receiving input (commit, sid, ssid, s, r,m) with �-bit input m,
party Ps parses m as (m1, . . . ,mn) ∈ Fn. It then computes m′ =
(m′

1, . . . , m
′
n′)←Enc(m).

2. For each j ∈ [n′]:
Ps sends (sender, sid, ssid ◦ j, s, r,m′

j) to Fδ
OTR

.

Pr sends (receiver, sid, ssid ◦ j, s, r) to Fδ
OTR

.

Ps and Pr receive (sid, ssid◦j, s, r) and (sid, ssid◦j, s, r, yj) respectively
from Fδ

OTR
.

3. Ps keeps state (sid, ssid, s, r,m,m′).

4. Pr keeps state (sid, ssid, s, r, {yj}j∈[n′]), and outputs (receipt, sid, ssid, s, r).
Also, Pr ignores any later commitment messages with the same (sid, ssid)
from Ps.

Opening Phase.

1. Upon input (reveal, sid, ssid, Ps, Pr), party Ps sends (sid, ssid,m
′), where

m′ ∈ Fn′
, to Pr. Let Pr receive (sid, ssid, m̃

′), where m̃′ = (m̃′
1, . . . , m̃

′
n′).

2. Let J denote the set {j : yj �= ⊥}. Pr outputs ⊥ if any of the following
checks fail:

m̃′ is an (error-free) codeword;
for all j ∈ J , it holds that yj = m̃′

j .

If both conditions hold, Pr decodes m̃′ to obtain m̃, and outputs
(reveal, sid, ssid, s, r, m̃).

Fig. 5. A statistically UC-secure protocol for FMCOM in the Fδ
OTR

-hybrid model

Proof. We set 
 = κ and σ = κ. Then we pick n, ε ∈ (0, 1/2) such that n1+ε =
κα/10. Note that σ, n, ε, 
 satisfy conditions of Lemma 2. Further, setting κprg =
κα, also ensures that O(κprgn

1+ε) = o(κ). The security proof readily follows
from composing the protocols given in the Lemmas 1 and 2. We just need to
analyze the complexity of the resulting protocol.

Communication. By Lemma 1, to implement n+ 2n1−ε calls to Fδ
OTR

[κ/n], we
need to communicate (n+2n1−ε)((κ/n)+O(κprgn

ε)) = κ+2κn1−ε+O(κprgn
1+ε)

bits in the FOT[κprg]-hybrid model. For n, ε, κprg as set above, it follows that the
communication cost of this phase is κ(1+o(1)) bits in each phase. Computation.

By Lemma 1, to implement the required n+ 2n1−ε calls to Fδ
OTR

[κ/n], we need
to make blackbox use of PRG, and additionally (n+2n1−ε) · (1/δ) = 2n1+ε+8n,
i.e., at most κα calls to the FOT[κ

α] functionality.
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3.2 Multiple Commitment Instances

Next, we show how to further reduce the computational complexity of the previ-
ous construction by using OT extension [2,23,24]. Our improvement here extends
to the setting where we need to perform a large number of commitments in a
single parallel commit phase (with potentially many reveal phases), as with ap-
plications involving cut-and-choose. In particular, we show that the number of
calls to FOT[κprg] can be made independent of the number of instances of UC
commitments required. (Note that such a result does not follow from multiple
applications of the protocol implied by Theorem 1.)

Theorem 2. Let κ be a computational security parameter, and let α ∈ (0, 1/2).
For all c > 0, there exists a protocol which UC-realizes κc instances of FMCOM[κ]
with rate 1+o(1) that makes κα calls to FOT[κ

α] and a blackbox use of correlation
robust hash functions (alternatively, random oracle, or non-blackbox use of one-
way functions).

Proof. We repeat the protocol of Theorem 1 κc times to construct κc instances
of FMCOM[κ] using κc+α calls to FOT[κ

α]. By Theorem 1, the communication
cost of this construction is κc(1 + o(1)). We note that for each instance of this
protocol, the commit phase has o(κ) communication in addition to the cost
involved in communicating with FOT[κ

α].
We then implement the required κc+α calls to FOT[κ

α] using the constant rate
UC-secure OT extension protocol of [24] which makes blackbox use of correlation
robust hash functions (alternatively, random oracle, or non-blackbox use of one-
way functions). This implementation requires κα calls to the FOT[κ

α] functional-
ity, and has communication complexity O(κc+2α) = o(κc+1) bits for α ∈ (0, 1/2).
Therefore, the total communication complexity of this protocol in each phase
(including communication with the FOT[κ

α] functionality) is κc(1 + o(1)) for
c > 1.

3.3 Concrete Efficiency Analysis

In this section, we provide an analysis of the concrete efficiency of our proto-
col, specifically requiring that the statistical security loss be < 2−σ for statisti-
cal security parameter σ, and the seedlength for PRG be 128. This reflects the
state-of-the-art choices for similar parameters in implementations of secure com-
putation protocols. In addition to the communication complexity, we will also
be interested in the number of public key operations. (In practice, public-key
operations (e.g., modular exponentiation) are (at least) 3-4 orders of magnitude
slower than symmetric-key operations (e.g., AES).)

In the concrete instantiation of our UC commitment protocol in the CRS
model, we will use (1) the protocol of Nielsen et al. [31] for OT extension in the
ROmodel since it has better concrete security (cost≈ 6·128 bits for each instance
of 128-bit OT excluding the “seed” OTs) than the protocol of [24]), and (2) the
protocol of Peikert et al. [34] to realize “seed” OTs in the CRS model (with
concrete cost per OT instance equal to 5 modular exponentiations and 6 elements
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in a DDH group of size 256). Note that for realizing 128 instances of FOT[128],
the cost is 6 ·128 ·256 = 196608 bits and the number of modular exponentiations
is 5 · 128 = 640.3 We stress that this cost is independent of parameters 
, σ,
and number of commitment instances. In the following we summarize the cost
of our construction for some parameters. Our costs are calculated by choosing
concrete parameters for the encoding scheme Enc used in Lemma 2, and then
apply the transformation of Lemma 1, and finally realizing FOT using state-of-
the-art protocols as discussed above.

For long strings, say of length 
 = 230, and for σ = 30, we can get concrete rate
as low as 1.046−1 in each phase. However, the choice of parameters necessitate
working over a field F with log |F| = 219. If we work over relatively smaller fields
F with say log |F| = 512, then the rate of the encoding can be made 1.19−1 (resp.
2.01−1), but the cost of realizing OTs (including OT extension) makes the total
rate of the commit phase ≈ 9.58−1 (resp. 5.55−1). Note, however, that there
are standard techniques to reduce the communication cost of realizing OTs in
our setting. For instance, by replacing Rabin-OT with d-out-of-n′ OT (for d, n′

as in Figure 4), we may then use standard OT length extension techniques.
This however has the drawback that RS encodings need to be performed over
large fields, and further the number of public-key operations increases with the
number of commitment instances.

Consider the following alternative approach that ports our construction to
work with smaller fields, and yet get concrete rate close to 1. First, the sender
parse the message m as a matrix where each element of the matrix is now from
the field of desired size. Next, the sender performs a row-wise encoding (using
Enc) of this matrix, and sends each column of the encoded matrix via Fδ

OTR
.

Later in the reveal phase, the sender simply transmits the encoded matrix. As
noted earlier, the above approach lets us work over small fields, and the concrete
rate would be as good as the concrete rate for encoding each row.

Next, we discuss the cost of our basic construction when committing to short
strings. For short strings, say of length 
 = 512 (resp. 256) and σ = 20, while the
rate of our reveal phase can be as low as 4.6−1 (resp. 8.12−1), the rate of our com-
mit phase can be very high (≈ 1000−1). While we concede that this is not very
impressive in terms of communication cost, we wish to stress that our construc-
tions do offer a significant computational advantage over the protocols of [28,4]
since we perform only a fixed number of public key operations independent of
the number of commitment instances. In Appendix A, we propose efficient con-
structions to handle commitments over short strings in settings where a large
number of such short commitments are used, e.g., in cut-and-choose techniques.

Efficiency in the preprocessing model. Our protocols can be efficiently adapted to
the preprocessing model [3,31], and further, the online phase of our protocol can

3 The protocol of [34] requires CRS of size m for m parties (cf. [10]). However, since
CRS is a one-time setup, this does not affect our (amortized) communication cost.
Alternatively, we could use the DDH based construction of [10] which uses a constant
sized (6 group elements) global CRS for all parties and will only mildly increase (by
a multiplicative factor ≈ 6) the cost of realizing the “seed” OTs).
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be made free of cryptographic operations. First, note that any UC commitment
protocol can be preprocessed, for example by committing to a random string in
the offline model, and sending the real input masked with this random string
in the online commit phase. Therefore, the online rate of the commit phase of
the protocol in the preprocessing model can always be made 1. Next, the online
rate in the reveal phase of our protocol is exactly the rate of the underlying
encoding. Note that in the online reveal phase, we only need the receiver to
check the validity of the encoding.

4 UC Commitment Extension

As a corollary of our technique above, we start this section by showing a rate-
1 construction for UC commitment length extension, that is, a UC commit-
ment protocol for a long message using a single ideal commitment for a short
message. The extension protocol additionally requires the use of a semi-honest
(stand-alone) OT protocol. We then show that the existence of a semi-honest
OT protocol is necessary for UC commitment length extension.

4.1 Rate-1 UC Commitment Length Extension

In this setting, we want a secure realization of a single instance of UC commit-
ment on a 
-bit string, for 
 = poly(κ), while allowing the parties to access ideal
functionality FMCOM[κ] exactly once. We show that UC commitment length
extension can be realized with rate 1− o(1).

Theorem 3 (Rate-1 UC commitment length extension). Let κ be a com-
putational security parameter, and assume the existence of semi-honest stand-
alone oblivious transfer. Then, for all c > 0, there exists a protocol which
UC-realizes a single instance of FMCOM[κc] with rate 1 − o(1) and makes a
single call to FMCOM[κ].

Proof. The desired protocol is obtained by using the results of [15,9] to im-
plement the necessary calls to the OT functionality in a protocol obtained by
composing protocols of Lemma 2 and Lemma 1.

Using a single call to FMCOM[κ], we can generate a uniformly random string
(URS) of length κ. Interpreting this κ-bit string as a κ1/2 instances of a κ1/2-bit
URS, and assuming the existence of semi-honest stand-alone OT, one can apply
the results of Damg̊ard et al. [15], or Choi et a. [9] to obtain κα instances of
FOT[κ

α] with p(κα) invocations of a semi-honest stand-alone OT and commu-
nication cost p(κα), where p(·) is some polynomial, as long as α ≤ 1/2. We set
α ∈ (0, 1/2) such that p(κα) = o(κc).

Using Lemma 2 with parameters σ = κ, and n, ε such that n1+ε = κα/10, and

 = κc, we can UC-realize FMCOM[κc] by making n+2n1−ε calls to Fδ

OTR
[κc/n]

with δ = (2nε + 4)−1. Then, setting κprg = κα, we use Lemma 1 to UC-realize
these n+2n1−ε calls to Fδ

OTR
[κc/n] with communication complexity (n+2n1−ε)·

((κc/n) + (1/δ) + 3κα · (1/δ)) while making 2n1+ε + 8n calls to FOT[κprg].
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Thus, for parameters n, ε, κprg as described above, we see that the communica-
tion complexity is κc(1+o(1)) while making (at most) κα calls to FOT[κ

α]. As de-
scribed in the previous paragraph, these κα calls to FOT[κ

α] can be implemented
with communication cost o(κc). Therefore, a single instance of FMCOM[κc] can
be realized with communication cost κc(1 + o(1)) in each phase.

For any setup where it is possible to construct UC-secure commitments on
κ-bit strings (i.e., realize FMCOM[κ]), then assuming the existence of semi-honest
stand-alone oblivious transfer, Theorem 3 implies that it is possible to realize
UC-secure commitments on strings of arbitrary length (in particular, on κ-bit
strings) with rate 1 − o(1) in that model. We explicitly state this for the CRS
model, where it is known that a protocol for UC commitments in the CRS model
implies the existence of semi-honest stand-alone oblivious transfer [15].

Corollary 1. If UC commitments exist in the CRS model, then they exist with
rate 1− o(1).

4.2 UC Commitment Length Extension Implies OT

We now show that the existence of semi-honest stand-alone OT is necessary for
the result above.

Theorem 4. Let κ be a computational security parameter, and suppose there
exists a protocol in which at most one party is allowed to make (at most) a
single call to FMCOM[κ] to UC-realize a single instance of FMCOM[3κ]. Then
there exists a protocol for semi-honest stand-alone OT.

Here we present only a proof sketch. The full proof is deferred to the full
version.

Proof. We begin with a proof (sketch) for a weaker statement, namely, that
UC commitment length extension from κ bits to 3κ bits implies key agreement.
Recall that key agreement is implied by OT.

Key Agreement from Length Extension. Let Π denote the commitment protocol
assumed to exist. We construct a bit agreement protocol between two parties, A
and B, from Π as follows:

A commits to a random 3κ-bit string m by acting as the honest sender in
an execution of Π , and in addition, sends the query q ∈ {0, 1}κ it makes to
the short commitment oracle and a random r ∈ {0, 1}κ;
B runs the UC straight-line extractor for Π to obtain m.

Both parties then agree on the Goldreich-Levin hard-core bit [20] b = 〈m, r〉 ofm.
We now want to argue that an eavesdropper does not learn anything about b

in two steps:

First, if we ignore the query q, then the view of the eavesdropper is exactly
the commitment-phase transcript for Π , which reveals no information about
m, which means m has 3κ bits of information-theoretic entropy.



On the Complexity of UC Commitments 691

The query q then reveals at most κ bits of information about m. Therefore,
even upon revealing q, the message m still has ≈ 2κ bits of (min-)entropy.
Then, the Goldreich-Levin hard-core bit works as a randomness extractor
to derive a random bit from m.

Correctness is straightforward. To establish security against an eavesdropper, we
crucially use the fact that a UC commitment scheme is equivocal, which allows us
to essentially argue that m has 3κ bits of information-theoretic entropy. (Indeed,
revealing κ bits of information about a 3κ-bit pseudorandom string could reveal
the entire string, as is the case when we reveal the seed used to generate the
output of a pseduorandom generator.)

Remark. For technical reasons, we will require that the equivocal simulator can
simulate not only the public transcript of the protocol, but also the query q
made to the short commitment oracle. The existence of such a simulator does
not follow immediately from UC security, since the query q may not be revealed
to the malicious receiver and the environment. To handle this issue, we basically
proceed via a case analysis:

If the honest sender always reveals q to the receiver either in the commit or
the reveal phase, then the equivocal simulator must be able to simulate the
query q since it is part of the public transcript.

Otherwise, we show by a simple argument that a cheating receiver can break
the hiding property of the commitment scheme. (See full version for details.)

We are now ready to show the OT implication.

OT from Length Extension. In the OT protocol, A holds (b0, b1), B holds σ, and
B wants to learn bσ. The protocol proceeds as follows:

Alice runs two independent executions Π0, Π1 of the key agreement protocol
for two random strings m0,m1 ∈ {0, 1}3κ in parallel. In addition, A sends

z0 = b0 ⊕ 〈m0, r0〉, z1 = b1 ⊕ 〈m1, r1〉.

In the execution Πσ, B behaves as in the key agreement protocol, which
allows him to learn 〈mσ, rσ〉 and thus recover bσ. In the other execution, B
acts as the honest receiver in an execution of commitment scheme Π .

Correctness follows readily from that of key agreement. We argue security as
follows:

First, we claim that a corrupted semi-honest A does not learn σ. This follows
from UC security of the commitment scheme against corrupted senders.

Next, we claim that a corrupted semi-honest B does not learn b1−σ. This
follows essentially from a similar argument to that for the security of the key
agreement protocol with two notable differences: (i) in the execution Π1−σ,
B acts as the honest receiver in Π (instead of running the extractor as in the
key agreement protocol), and (ii) a semi-honest B learns the coin tosses of
the receiver in Π , whereas an eavesdropper for the key agreementprotocol
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does not. Handling (i) is fairly straightforward albeit a bit technical; to
handle (ii), we simply use the fact that the commitment phase transcript
reveals no information about the committed value, even given the coin tosses
of the honest receiver.
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A Efficient Commitments for Cut-and-Choose

While our rate 1 construction has good concrete efficiency for large string com-
mitments, the case of short string commitments leaves a lot to be desired. An
obvious approach to handle short strings is simply to concatenate these strings
together to form one large string, and then use the rate 1 construction with this
string as the input message. While this approach does provide a concrete rate
close to 1 when the number of instances is large, it has the drawback that all in-
stances of short strings must be opened simultaneously. In this section, we design
more efficient commitment scheme for handling multiple instances of κ-bit strings
with two opening phases (as required in techniques such as cut-and-choose). The
extension to three or more opening phases is straightforward.

For i ∈ [n], let the i-th κ-bit string be denoted bymi, and letm = (m1, . . . ,mn).
Let p denote the number of opening phases, and for j ∈ [p], let uj denote the char-
acteristic vector of the subsetSj ⊆ [n] of the strings that need to opened in the j-th
opening phase. Note that uj is not known to the sender during the commit phase.

Our high level idea is as follows. As in our rate 1 construction, we let the
sender encode m in to m′ using the rate 1 encoding scheme. In addition, for each
i ∈ [p], the sender uses the rate 1/2 encoding scheme (naturally derived from Enc)
to encode the zero string (0, . . . , 0) ∈ Fn twice using independent randomness
to obtain codewords z(1), z(2) (each of length 2n′). Next the sender prepares
to send symbols through the Rabin-OT oracle. For this, it constructs Mk =

(m′
k, z

(1)
k , z

(2)
k ) for k ≤ n′, and symbols Mk = (z

(1)
k , z

(2)
k ) for k ∈ {n′+1, . . . , 2n′},

as the k-th input to the Rabin-OT oracle. Then, it transmits Mk through Rabin-
OT oracle with parameter δ′ = δ/2 (where δ is the best parameter for obtaining
commitments on strings of length nκ). Then, in the j-th opening phase, the
receiver sends the randomness (alternatively, a seed to a PRG) to encode uj into
u′j using the rate 1 encoding scheme. Now, denote the underlying polynomials
(cf. Figure 4) for (1) the rate 1 encoding of m by qm, (2) the rate 1/2 encoding

of z(j) as q
(j)
z , and (3) the rate 1 encoding of uj by qj

u. In the j-th opening phase,

the sender simply reveals the polynomial q(j) = (qm ·qj
u)+q

(j)
z . Now, let {M̃k}k∈J

denote the messages received by the receiver. The receiver checks if for all k ∈
J ∩ [n′], it holds that M̃k = (m̃′

k, z̃
(1)
k , z̃

(2)
k ) satisfies q(j)(k) = (m̃′

k · qj
u(k)) + z̃

(j)
k .

If the check succeeds, then the receiver computes vi = q(j)(ei), where ei are the
publicly known points as described in Figure 4. If for all i ∈ Sj , it holds that
vi = 0, then receiver outputs {vj}j∈Sj and terminates, else it outputs ⊥ and
terminates. Let c1, c2, c3 represent our concrete cost of realizing commitments on
strings of length nκ in the offline, the online commit, and the online reveal phases
respectively. It can be verified that the cost of the above scheme that implements
n instances of κ-bit commitments with two opening phases is ≈ 8c1, 2c2, 2c3 in
the offline, the online commit, and the online reveal phases respectively.
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Abstract. We consider a class of two-party function evaluation proto-
cols in which the parties are allowed to use ideal functionalities as well
as a set of powerful primitives, namely commitments, homomorphic en-
cryption, and certain zero-knowledge proofs. With these it is possible to
capture protocols for oblivious transfer, coin-flipping, and generation of
multiplication-triples.
We show how any protocol in our class can be compiled to a symbolic

representation expressed as a process in an abstract process calculus, and
prove a general computational soundness theorem implying that if the
protocol realises a given ideal functionality in the symbolic setting, then
the original version also realises the ideal functionality in the standard
computational UC setting. In other words, the theorem allows us to
transfer a proof in the abstract symbolic setting to a proof in the standard
UC model.
Finally, we have verified that the symbolic interpretation is simple

enough in a number of cases for the symbolic proof to be partly auto-
mated using the ProVerif tool.
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1 Introduction

Giving security proofs for cryptographic protocols is often a complicated and
error-prone task, and there is a large body of research targeted at this problem
using methods from formal analysis [AR02, BPW03, CH06, CC08, CKW11].
This is interesting because the approach could potentially lead to automated or
at least computer-aided (formal) proofs of security.

It is well known that the main difficulty with formal analysis is that it is
only feasible when enough details about the cryptographic primitives have been
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abstracted away, while on the other hand this abstraction may make us “forget”
about issues that make an attack possible. One solution is to show once and for
all that a given abstraction is computational sound, which loosely speaking means
that for any protocol, if we know there are no attacks on its abstract symbolic
version then this (and some appropriate complexity assumption) implies there
are no attacks on the original computational version. Such soundness theorems
are known in some cases (see related work), in particular for primitives such as
public-key encryption, symmetric encryption, signatures, and hash functions.

Another issue with formal analysis is how security properties should be speci-
fied. Traditionally this has been done either through trace properties or “strong
secrecy” where two instances of the protocol running on different values are com-
pared to each other1. This approach can be used to specify security properties
such as authenticity and key secrecy. However, it is much less clear how it can
capture security of protocols such as oblivious transfer where players take input
from the environment. In the cryptographic community it is standard to give
simulations-based definitions of security for such protocols, yet this approach
have so far only received little attention in formal analysis.

Finally, making protocol (and in particular system) analysis feasible in general
requires some way of breaking the task into smaller components which may be
analysed independently. While also this has been standard in the cryptographic
community for a while (in the form of, e.g., the UC framework [Can01]) it has
not yet received much attention in the symbolic community (but see [CH06] for
an exception).

1.1 Our Results

In this paper we make progress on expanding the class of protocols for which a
formal analysis can be used to show security in the computational setting. We
are particularly interested in two-party function evaluation protocols and the
primitives used by many of these, namely homomorphic public-key encryption,
commitments, and certain zero-knowledge proofs. We aim for proofs of UC secu-
rity against an active adversary where one party may be (statically) corrupted.

Protocol Model. Besides the above primitives protocols are also allowed to use
ideal functionalities and communicate over authenticated channels. We put some
restrictions on how the primitives may be used. First, whenever a player sends
a ciphertext he actually sends a package which also contains a zero-knowledge
proof that the sender knows how the ciphertext was constructed: if the cipher-
text was made from scratch then he knows the plaintext and randomness used,
and if he constructed it from other ciphertexts using the homomorphic prop-
erty then he knows randomness that “explains” the ciphertext as a function of

1 For strong secrecy one runs the same protocol on two fixed but different inputs
(or with one instance patched to give an independent output) and then ask if it
is possible to tell the difference between the two executions. This can for instance
be used to argue that a key-exchange protocol is independent of the exchanged key
given only the transmitted messages.
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that randomness and ciphertexts that were already known. We make a similar
assumption on commitments and allow also zero-knowledge proofs that commit-
ted values relate to encrypted values in a given way. Second, we assume that
honest players use the primitives in a black-box fashion, i.e. an honest player
can run the protocol using a (private) “crypto module” that holds all his keys
and handles encryption, decryption, commitment etc. This means that all ac-
tions taken by an honest player in the protocol may depend on plaintext sent or
received but not, for instance, on the binary representation of ciphertexts. We
emphasise that we make no such restriction on the adversary.

We believe that the assumptions we make are quite natural: it is well known
that if a player provides input to a protocol by committing to it or sending an
encryption then we cannot prove UC security of the protocol unless the player
proves that he knows the input he provides. Furthermore, active security usually
requires players to communicate over authenticated channels and prove that the
messages they send are well-formed. We stress, however, that our assumptions do
not imply that an adversary must be semi-honest; for instance, our model does
not make any assumptions on what type and relationship checks the protocol
must perform, nor on the randomness distributions used by a corrupted player.

Security Properties. We use ideal functionalities and simulators to specify and
prove security properties. More concretely, we say that a protocol φ is secure
(with respect to the ideal functionality F) if no adversary can tell the difference
between interacting with φ and interacting with F and simulator Sim , later
written φ ∼ F / Sim for concrete notions of indistinguishability. When this
equivalence is satisfied we also say that the protocol (UC) realises the ideal
functionality. We require that ideal functionalities only operate on plain values
and do not use cryptography. Like honest players in protocols, our simulators
will only use the primitives and their trapdoors in a black-box fashion which
allows us to specify them on an abstract level.

Proof Technique. Our main result is quite simple to state on a high level: given a
protocol φ, ideal functionality F , and simulator Sim, we show how these may be
compiled to symbolic versions such that if we are given a proof in the symbolic
world that φ realises F then it follows that φ realises F in the usual compu-
tational world as well (assuming the crypto-system, commitment scheme and
zero-knowledge proofs used are secure). As usual for UC security, we need to
make a set-up assumption which in our case amounts to assuming a function-
ality that initially produces reference strings for the zero-knowledge proofs and
keys for the crypto-system.

We arrive at our result as follows. First we define a simple programming
language for specifying, on a rather high and abstract level, the programmes for
honest players, ideal functionalities, and simulators that participate in a session
of both the real protocol containing φ and the ideal protocol containing F and
the simulator. The language is parameterised by the three corruption scenarios,
indicated by which players are honestH ∈ {AB ,A,B}, and the class of protocols
and properties we consider is implicitly defined as whatever can be described
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in it. We call such a set of programmes a system and may hence fully describe
real and ideal protocols by system triples (SysAB , SysA, SysB ).

We then define three different ways of interpreting such systems:

– Real-world interpretation RW(Sys): Assuming concrete instantiations of the
cryptographic primitives this interpretation produces from system Sys a set
of interactive Turing machines that fits in the usual UC model. For instance,
if SysAB

real is the system for a real protocol in the scenario where both players
are honest then RW(SysAB

real) contains two ITMs MA,MB executing the
player programmes.

– Intermediate interpretation I(Sys): This interpretation also produces a set
of ITMs fitting into the UC model, but does not use concrete cryptographic
primitives. Instead we postulate an ideal functionality Faux that receives
all calls from all parties to cryptographic functions and returns handles to
objects such as encrypted plaintexts while storing these plaintexts in its
memory. Players then send such handles instead of actual ciphertexts and
commitments. In this interpretation, the adversary is limited to a certain
benign cryptographic behaviour as he too can only access cryptographic
objects through Faux.

– Symbolic interpretation S(Sys): This interpretation closely mirrors the in-
termediate interpretation but instead produces a set of processes described
in a well-known process calculus.

Having defined these interpretations we define notions of equivalence of sys-
tems in each representation: RW(Sys1)

c∼ RW(Sys2) means that no polynomial
time environment can distinguish the two cases given only the public and cor-
rupted keys, and may for instance be used to capture that a protocol UC-securely
realises F in the standard sense; for the intermediate world I(Sys1)

c∼ I(Sys2)
means the same but in the Faux-hybrid model; finally, S(Sys1)

s∼ S(Sys2) means
the two processes are observationally equivalent in the standard symbolic sense.

We then prove two soundness theorems stating first, that I(Sys1)
c∼ I(Sys2)

implies RW(Sys1)
c∼ RW(Sys2) and second, that S(Sys1)

s∼ S(Sys2) implies

I(Sys1)
c∼ I(Sys2), so that in order to prove UC security of a protocol it is now

sufficient to show equivalence in the symbolic model and this is the part we may
automate using e.g. ProVerif [BAF05].

Finally, we note that in some cases (in particular when both players are hon-
est) it is possible to use a standard simulator construction and instead check a
different symbolic criteria along the lines of previous work [CH06]. This removes
the manual effort required in constructing simulators.

Analysis Approach. Given the above, a protocol φ may be analysed as follows:

1. formulate in our model protocol φ and the ideal functionalities F1, . . . ,Fn

it uses as a triple (SysAB
real , Sys

A
real , Sys

B
real)

2. likewise formulate the target ideal functionality G and suitable simulators as
a triple (SysAB

ideal , Sys
A
ideal , Sys

B
ideal)

3. show in the symbolic model that S(SysHreal)
s∼ S(SysHideal) for all three H
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4. the soundness theorem then givesRW(SysHreal)
c∼ RW(SysHideal), and in turn

that φ realises G under static corruption

Note that as usual in the UC framework we only need to consider one session
of the protocol since the compositional theorem guarantees that it remains se-
cure even when composed with itself a polynomial number of times. Note also
that we may apply our result to a broader class of protocols through a hybrid-
symbolic approach where the protocol in question is broken down into several
sub-protocols and ideal functionalities analysed independently either within our
framework or outside in an ad-hoc setting (possibly using other primitives).

We have tried to make the symbolic model suitable for automated analysis
using current tools such as ProVerif, and although our approach requires the
manual construction of a simulator for the symbolic version of the protocol, this
is usually a very simple task. As a case study we have carried out a full analysis
of the OT protocol from [DNO08] in the full version of this paper2, where we
also illustrate compositional analyses through a coin-flipping protocol, and that
the model may express the preprocessing phase of the multi-party computation
protocol in [BDOZ11]3.

1.2 Related Work

The main area of related work is computational soundness as discussed below (see
also [CKW11] for an in-depth survey of this area), but there is also a large body
of work on symbolic modelling of security properties which at this point has not
given much attention to the simulation-based paradigm (see [DKP09, BU13] for
two examples without computational soundness), as well as a substantial amount
of work on the direct approach where the symbolic model is altogether avoided
but instead used as inspiration for creating a computational model easier to
analyse; this latter line of work includes [Bla08, BGHB11, MRST06, DDMR07]
and while it is more expressive than the symbolic approach we have taken here,
our focus has been on abstracting and automating as much as possible.

Computational Soundness. The line of work started by Backes et al. in [BPW03]
and known as “the BPW approach” gives an ideal cryptographic library based
on the ideas behind abstract Dolev-Yao models. The library is responsible for all
operations that players and the adversary want to perform (such as encryption,
decryption, and message sending) with every message being kept in a database by
the library and accessed only through handles. Using the framework for reactive
simulatability [PW01] (similar to the UC framework) the ideal library is realised
using cryptographic primitives. This means that a protocol may be analysed rel-
ative to the ideal library yet exhibit the same properties when using the realisa-
tion instead. The original model supporting nested nonce generation, public-key

2 Available at http://eprint.iacr.org/2013/296
3 Due to limitations on expressibility of probabilistic choice in our model we analyse a
slight variant of the protocol where the verification of the generated triples is pushed
into the online phase.

http://eprint.iacr.org/2013/296
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encryption, and MACs has later been extended to support symmetric encryp-
tion [BP04] and a simple form of homomorphic threshold-encryption [LN08]
allowing a single homomorphic evaluation. The approach has been used to anal-
yse protocols for trace-based security properties such as authentication and key
secrecy [BP03, BP06].

Comparing our work to the BPW approach we see that the functionality Faux

in our intermediate model corresponds to the ideal cryptographic library, and
the real-world operation modules to the realisation. The difference lies in the
supported operations, namely our more powerful homomorphic encryption and
simulation operations – the former allows us to implement several two-party func-
tionalities while the latter allows us to express simulators for ideal functionalities
within the model. This not only allows us to capture an entirely different class
of indistinguishability-based security properties4 (such as the standard assump-
tions on OT with static corruption) but also to do modular and hybrid-symbolic
analysis. The importance of this was elaborated on in [Can08].

The next line of closely related work is that started by Canetti et al. in
[CH06] and building on [MW04, BPW03] but adding support for modular analy-
sis. They first formulate a programming language for protocols using public-key
encryption and give both a computational and symbolic interpretation. They
then give a mapping lemma showing that the traces of the two interpretations
coincide, i.e. the computational adversary can do nothing that the symbolic ad-
versary cannot also do (except with negligible probability). This is used to give
symbolic criteria for realising authentication and key-exchange functionalities,
and show that ProVerif may be used to automate the analysis of the original
Needham-Schroeder-Lowe protocol (relative to authenticity) and two of its vari-
ants (relative to key-exchange). Later work [CG10] again targets key-exchange
protocols but adds support for digital signatures, Diffie-Hellman key-exchanges,
and forward security under adaptive corruption.

Most importantly, our approach has been that of not fixing the target ideal
functionalities but instead letting it be expressible in the model (along with
the realising protocol and simulator). Hence it is relatively straight-forward to
analyse protocols implementing other functionalities than what we have done
here, whereas adapting [CH06] to other classes of protocols requires manually
finding and showing soundness of a symbolic criteria. It is furthermore not clear
which functionalities may be captured by symbolic criteria expressed as trace
properties and strong secrecy. In particular, the target functionalities of [CH06]
and [CG10] do not take any input from the players nor provide any security
guarantees when a player is corrupt, and hence the criteria do not need to account
for these case. Again we also show soundness for a different set of primitives.

4 In principle the BPWmodel could be used as a stepping-stone to analyse cases where
the simulator may simply run the protocol on constants. However, the simulator
is sometimes required to use trapdoors in order to extract information needed to
simulate an ideal functionality in the simulation-based paradigm. These cases cannot
be analysed with the operations of the BPW model.
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The final line of related work is showing soundness of indistinguishability-
based (instead of trace-based) properties. This was started by Comon-Lundh
et al. in [CC08] and, unlike the two previous lines of work, aims at showing
that if the symbolic adversary cannot distinguish between two systems in the
symbolic interpretation then the computational adversary cannot do so either for
the computational interpretation. [CC08] showed this for symmetric encryption
and was continued in [CHKS12] for public-key encryption and hash functions.

Our work obviously relates in that we are also concerned about soundness
of indistinguishability. Again the biggest difference is the choice of primitives,
but also that our framework seems more suitable for expressing ideal function-
alities and simulators: although mentioned as an application, their model does
not appear to be easily adapted to capturing the typical structure of a compos-
able analysis framework such as the UC framework (private channels are not
allowed for instance). To this end the result is closer to what might be achieved
through the BPW approach. Note that the work in [CHKS12] does not require
computable parsing (as we do through the NIZK proofs). However, for secure
function evaluation in the simulation-based paradigm some form of computa-
tional extraction is typically required in general.

The work in [BMM10] is also somewhat related in that they also aim at
analysing secure function evaluation, namely secure multi-party computations
(MPC). However, they instead analyse protocols using MPC as a primitive
whereas we are interested in analysing the (lower-level) protocols realising MPC.
Moreover, they are again limited to trace properties.

Organisation. The rest of the paper is organised in a “top-down” approach
of progressively removing cryptography and bitstrings, and ending up with an
highly idealised model. Section 2 specifies our protocol class including the inter-
face of the operation modules. Section 3 gives the preliminaries for the real-world
interpretation in Section 4. The intermediate and symbolic worlds are given in
Section 5 and 6 respectively together with their soundness statements. Further
details including definitions and proofs are given in the full version of this paper.

2 Protocol Model

The specific form of protocols introduced here is an essential part of our sound-
ness result in that it characterises the class of protocols for which the result
holds. The model is parameterised by a finite domain of values {Vn}, two finite
sets of types {Ti}, {Uj}, and two finite sets of arithmetic expressions {ek} ⊆ {f�}
which for simplicity we often assume to be over four variables.

Programmes are given in a simple programming language allowing input, out-
put, conditionals, and invocation of operations. We consider three kinds of pro-
grammes, plain, player, and simulator, differing in what operations they may
use and whether or not they accept cryptographic packages.
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Plain programmes, such as ideal functionalities, may only use operations

isValue(x)→ b, eqValue(v, w)→ b, inTypeU (v)→ b, inTypeT (v)→ b,

pevalf (v1, v2, w1, w2)→ v, isConst(x)→ b, eqConstc(x)→ b,

isPair(x)→ b, pair(x1, x2)→ x, first(x)→ x1, second(x)→ x2

where for instance isValue determines if a message is a value, inTypeU if a value
belongs to type U , pevalf evaluates expression f on the four values, pair forms a
pairing, and first projects the first component of a pairing. Their input command
aborts if any cryptographic package is received.

Player programmes, in addition to those of plain programmes, may also use
operations

isComPack(x)→ b, isEncPack(x)→ b, isEvalPack(x)→ b,

commitU,ck,crs(v, r)→ d, encryptT,ek,crs(v, r)→ c,

evale,ek,ck,crs(c1, c2, v1, r1, v2, r2)→ c, decryptdk(c)→ v,

verComPackU,ck,crs(d)→ b, verEncPackT,ek,crs(c)→ b,

verEvalPacke,ek,ck,crs(c, c1, c2, [d1, d2])→ b

to respectively determine: whether a message is a cryptographic package and its
kind; form a new commitment package under their own commitment key and
CRS using the value and randomness supplied, and with a proof of plaintext
membership in type U5; form a new encryption package under either encryption
key and their own CRS using the value and randomness supplied, and with a
proof of plaintext membership in type T ; form a new evaluation package under
the encryption key of the inputs and their own commitment key and CRS, with
a fresh ciphertext, a proof that it was created through homomorphic evaluation
of expression e on inputs c1, c2, v1, v2, and commitments to v1, v2 under the
randomness supplied6; decrypt a ciphertext under their own encryption key;
and finally verify cryptographic packages under the specified keys and, in case
of evaluation packages, that the correct ciphertexts and (optional) commitments
were used. Their input command aborts on cryptographic packages not created
under the commitment key and CRS of the other player.

Finally, simulator programmes instead use simulation versions of the player
operations

simcommitU,ck,simtd(v, r)→ d, simencryptT,ek,simtd(v, r)→ c,

simevale,ek,ck,simtd(c1, c2, v1, r1, v2, r2)→ c,

simevale,ek,ck,simtd(v, c1, c2, d1, d2)→ c

5 Note that the NIZK proofs allow us to realise an ideal commitment functionality
with opening despite no explicit opening operation for commitments.

6 Note that as an artefact from wanting a symbolic model easier to analysis with
available tools, operation evale (unlike commitU and encryptT ) only takes r1, r2 for
commitments d1, d2 as input, and not an r for re-randomisation of the resulting
ciphertext; instead, the implementations will choose fresh randomness internally.
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for an honest player (and no decryption operation), and operations

extractComextd(d)→ v, extractEncextd(c)→ v,

extractEval1,extd(c)→ v, extractEval2,extd(c)→ v

for a corrupt player. The operations for an honest player are similar to those of
a player programme except that less checks are performed and proofs are simu-
lated. The operations for a corrupt player allows the programme to extract the
plaintext value of commitment and encryption packages, and the two plaintext
values of commitments in evaluation packages, as long as they were created un-
der the CRS of the corrupt player. Their input command behaves as for player
programmes.

As an example, consider the OT protocol from [DNO08]. Intuitively, the re-
ceiver gets a bit b from the environment, encrypts it as cb under his own encryp-
tion key, and sends cb to the sender along with a proof that it really contains
either 0 or 1. After checking the proof, the sender uses the homomorphic prop-
erty to evaluate expression sel(b, v0, v1) = (1 − b) · v0 + b · v1 on the received
ciphertext and the values v0, v1 given by the environment. He then sends the
resulting ciphertext cv back to the receiver along with a proof that it was con-
structed correctly. Finally, the receiver checks the proof to ensure that cv was
created using cb, and outputs the decrypted value.

In our protocol model we may express the two players as the programmes in
Figure 1 with sender P S

OT on the left and receiver PR
OT on the right. Under the

three scenarios of static corruption the real protocol may then be described by
system triple(

P S
OT /AuthRS /AuthSR / PR

OT , P S
OT , PR

OT

)
where the first system for when both players are honest also have one authen-
ticated channel in each direction (and no ideal functionalities), and the next
two systems for when one player is corrupted contain just the honest player
programme. Likewise we may describe the ideal protocol with an ideal OT func-
tionality and simulators in the protocol model, obtaining system triple(

FSR
OT / Sim

SR,R
OT /AuthRS /AuthSR / SimSR,S

OT ,

FS
OT / SimS

OT , FR
OT / SimR

OT

)
with simulators that respectively run the protocol on dummy values, use ex-
traction to obtain b, and use extraction to obtain v0, v1. In our case analysis we
use ProVerif to conclude for each of the three cases that the two corresponding
systems are indistinguishable.

Note that the input command inputP [p : x] is specified with a set of ports P
on which the programme is also listening but which will result in the programme
aborting. The motivation for having these is that the symbolic soundness result
requires that systems are non-losing, in the sense that whenever a programme
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input∅[receiveRS : cb];

if verEncPackbit,ekR,crsR(cb) then

output[outSOT : getInput];

input∅[in
S
OT : (v0, v1)];

if isValue(v0) and isValue(v1) then

let cv ← evalsel,R,S,S(cv , v0, r0, v1, r1);

output[sendSR : cv];

stop

input∅[in
R
OT : b];

if inTypebit(b) then

let cb ← encryptbit,ekR,crsR
(b, r);

output[sendRS : cb];

input∅[receiveSR : cv ];

if verEvalPacksel,R,S,S(cv, cb) then

let vb ← decryptdkR
(cv);

output[outROT : vb];

stop

where evalsel,R,S,S(. . . ) = evalsel,ekR,ckS ,crsS (. . . )

and verEvalPacksel,R,S,S(. . . ) = verEvalPacksel,ekR,ckS ,crsS (. . . )

Fig. 1. Player programmes for OT sender (left) and receiver (right)

sends a message on a closed port p the receiving programme must also be lis-
tening on p. This also accounts for the atypical specification of the sender pro-
gramme above; making it explicit ask the environment for its input by sending
getInput means we may use P = ∅ for all input commands, thereby simplifying
the symbolic analysis.

3 Computational Model and Cryptographic Primitives

Our computational model is that of the UC framework as described in [Can01].
In this model ITMs in a network communicate by writing to each others tapes,
thereby passing on the right to execute. In other words, the scheduling is token-
based so that any ITM may only execute when it is holding the token. Initially
the special environment ITM Z holds the token. When it writes on a tape of an
ITM M in the network it passes on the token and M is now allowed to execute.
If the token ever gets stuck it goes back to the environment.

For environmentZ, adversaryA, and networkN , we write ExecZ,A,N(κ, z) for
the random variable denoting the output bit (guess) of Z after interacting with
A and N , and denote ensemble {ExecZ,A,N(κ, z)}κ∈N,z∈{0,1}� by ExecZ,A,N . We
may then compare networks as follows:

Definition 1 (Computational Indistinguishability).Two networks of ITMs
N1 andN2 are computational indistinguishabilitywhen no polynomial time adver-
sary A may allow a polynomial time environment Z to distinguish between them
with more than negligible probability, i.e. for all PPT Z andA we have ExecZ,A,N1
c≈ ExecZ,A,N2 which we write N1

c∼ N2.

By allowing different adversaries in the two networks we also obtain a no-
tion of one network realising another, namely network N1 realises network N2
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when, for any PPT A, there exists a PPT simulator Sim such that for all PPT
Z we have N1

c∼ N2.

We require the following primitives and security properties:

Commitment Scheme. We assume two PPT algorithmsComKeyGen(1κ)→ ck
and Comck(V,R)→ D for key-generation and commitment, respectively. We re-
quire that the scheme is well-spread, computationally binding and computation-
ally hiding. Intuitively, well-spread means that it is hard to predict the outcome
of honestly generating a commitment.

Homomorphic Encryption Scheme. An encryption scheme is given by three PPT
algorithms EncKeyGen(1κ) → (ek, dk), Encek(V,R) → C, and Decdk(C) →
V . A homomorphic encryption scheme furthermore contains a PPT algorithm
Evale,ek(C1, C2, V1, V2, R) → C for arithmetic expression e(x1, x2, y1, y2) and
randomness R for re-randomisation. We require that the scheme is well-spread,
correct, history hiding (or formula private), and IND-CPA secure for the entire
domain. Here, correct means that decryption almost always succeeds for well-
formed ciphertexts, and history hiding that a ciphertext produced using Evale,ek
is distributed as Encek on the same inputs.

Non-Interactive Zero-Knowledge Proof-of-Knowledge Scheme. For binary rela-
tion R we assume PPT algorithms CrsGenR(1

κ)→ crs, SimCrsGenR(1
κ)→

(crs, simtd), and ExCrsGenR(1
κ)→ (crs, extd) for CRS generation, PPT algo-

rithms ProveR,crs(x,w)→ π, SimProveR,simtd(x)→ π, and VerR,crs(x, π)→
{0, 1} for respectively generating, simulating, and verifying proofs π, and finally
deterministic polynomial time algorithm ExtractR,extd(x, π) → w for extract-
ing witnesses. We require that such schemes are complete, computational zero-
knowledge, and extractable, and assume instantiations for:

– RU =
{
(x,w)

∣∣D = Comck(V,R) ∧ V ∈ U
}
with x = (D, ck), w = (V,R)

– RT =
{
(x,w)

∣∣C = Encek(V,R) ∧ V ∈ T
}
with x = (C, ek), w = (V,R)

– Re =
{
(x,w)

∣∣C = Evale,ek(C1, C2, V1, V2, R) ∧Di = Comck(Vi, Ri)
}

with x = (C,C1, C2, ek,D1, D2, ck) and w = (V1, R1, V2, R2, R).

4 Real-World Interpretation

In the real-world model all messages sent between entities are annotated bit-
strings BS of the following kinds: 〈value : V 〉 and 〈const : Cn〉 for values
and constants, 〈pair : BS1, BS2〉 for pairings, and [comPack : D, ck, πU , crs],
[encPack : C, ek, πT , crs], [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs] for com-
mitment, encryption, and evaluation packages. In interpretation RW(Sys) of
a system Sys each programme P is executed by ITM MP with access to its
own operation module OP enforcing sanity checks on received messages and
implementing the operations available to P as described in Section 2. These
implementations follow straight-forwardly from the primitives.



706 M. Dahl and I. Damg̊ard

The interpretation also contains a setup functionality Fsetup connected to
the operation modules of the cryptographic programmes. It is set to support
either a real or an ideal protocol, is assumed to know the corruption scenario,
and is responsible for generating and distributing the cryptographic keys and
trapdoors, including leaking the public and corrupted keys to the adversary.

When a message is received by an MP it is immediately passed to OP which
checks that every cryptographic package in it comes with a correct proof gen-
erated under the other player’s CRS. The operation module also keeps a list
σ of the ciphertexts received and generated by the player, so that it may en-
force a policy of only accepting an evaluation package if it has first seen the
ciphertexts it is supposedly constructed from, and rejecting certain ciphertexts
that an honest player would never have produced and which cannot occur in the
intermediate interpretation7.

If the message was accepted by the operation module the machine gets back a
reference through which it may access the message in the future. It then executes
the operations as dictated by the programme and finally either halts or sends a
message to another machine.

5 Intermediate Interpretation

The intermediate interpretation uses the same machines MP for executing pro-
grammes as the real-world interpretation, however all operation modules and
the setup functionality are now replaced with a single functionality Faux of-
fering operation implementations to the honest entities as well as a certain set
of methods to the adversary. In effect, the cryptographic primitives and setup
functionality has been replaced by a global memory with logical restrictions on
how the adversary is allowed to access it.

All cryptographic messages passed around among the entities are uniformly
random handles H of length κ associated to data objects in the global mem-
ory: commitment objects take form (com : V,R, ck), encryption objects (enc :
V,R, ek), and proof objects8 (proofU : HD, ck, crs), (proofT : HC , ek, crs), and
(proofe : HC , HC1 , HC2 , ek,HD1 , HD2 , ck, crs). Note that the ck, ek, crs here are
simply constants chosen by Faux and indicating the creator and owner of the
objects. For packages we have objects (comPack : HD, ck,Hπ, crs), (encPack :
HC , ek,Hπ, crs), and (evalPack : HC , HC1 , HC2 , ek,HD1 , HD2 , ck,Hπ, crs).

The intermediate implementation of operations for honest entities follows the
real-world implementation closely, yet of course using data objects instead of
cryptographic bitstrings. One difference is that some guarantees are now pro-
vided by the model itself as a consequence of the adversary being limited in

7 One example is if it receives two evaluation packages with the same C but with,
say, different D1; an honest player would have re-randomised the result thereby
with overwhelming probability not produce the same C twice. As mentioned earlier,
rejecting certain ciphertexts gives an easier-to-analyse symbolic interpretation.

8 Note that proof objects do not have a randomness (or counter) component; we have
gone with this option to simplify the symbolic model but it may easily be removed.
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what he may do; for instance, it is not possible for him to construct packages
with an invalid proof, and even adversarily evaluated ciphertexts are correctly
re-randomised. This means that less checks are enforced through the σ list.

The methods offered to the adversary by Faux essentially allows him to inspect
and construct cryptographic packages, including decrypting ciphertexts for cor-
rupted players, and compare arbitrary handles through a method eq(H,H ′) →
{0, 1}. These methods are determined by what is needed by translator9 T� in
the soundness proof (see below and full paper).

5.1 Soundness of Intermediate Interpretation

Through a series of hybrid interpretations T [I(Sys)], where leakage and influence
ports of the authenticated channels are rewired to run through translator T ,
we show that a real-world adversary cannot distinguish between RW(Sys) and
I(Sys) for a well-formed system Sys .

Theorem 1 (Soundness of Intermediate Model). Let Sys1 and Sys2 be

two well-formed systems. If I(Sys1)
c∼ I(Sys2) then RW(Sys1)

c∼ RW(Sys2).

Proof (overview). By a series of hybrid interpretations we first use the properties
of the primitives to show that for any well-formed real or ideal protocol Sys we
haveRW(Sys)

c∼ T�
[
I(Sys)

]
for a constructed PPT translator T� using only the

methods offered to the adversary by Faux. An important property here is that
the identity of commitments and ciphertexts are preserved by the translation
performed by each (hybrid-)translator. Next, by assumption no polynomially
bounded ITM Z ′ can tell the difference between I(Sys1) and I(Sys2) using
only the adversarial methods, and hence no Z ′ = Z / T� for a polynomially
bounded ITM Z can tell the difference either. The result then follows.

Corollary 1. Let (SysHreal)H specify a real protocol for φ and let (SysHideal)H
specify an ideal protocol with target functionality F . If I(SysHreal)

c∼ I(SysHideal)
for all three corruption cases H then φ is a realisation of MF (with inlined
operation module) under static corruption.

6 Symbolic Model and Interpretation

The symbolic model and interpretation is tailored to be a conservative ap-
proximation of the intermediate model and is based on the well-known dialect
in [BAF05] of the applied-pi calculus [AF01], for which automated verification
tools exist in the form of ProVerif.

We assume a modelling of the values v in the domain and a modelling of all
constants plus true, false,garbage. Let names N be a countable set of atomic

9 In UC-terms the translator is simply a simulator for Faux used to show that the real-
world interpretation is a realisation of the intermediate interpretation. However, we
use this wording to avoid too much overload.
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symbols used to model randomness r, secret key material dk, extd, and ports p.
A term t is then build from names, a countable set of variables x, y, z, . . . , and
constructor symbols

pair, ek, crs, com, enc, proofU , proofT , proofe,

comPack, encPack, evalPack

where the three proof (·) constructors are unavailable to the adversary. The
destructor symbols are

isValue, eqValue, inTypeU , inTypeT , isConst, eqConstc, equals,

isPair, first, second, isComPack, isEncPack, isEvalPack,

verComPackU , verEncPackT , verEvalPacke, evale, pevalf ,

dec, extractCom, extractEnc, extractEval1, extractEval2,

ckOf , ekOf , crsOf , comOf , encOf , encOf1, encOf2, comOf1, comOf2

where only evale is unavailable to the adversary. The reason for this is that in
order to keep the symbolic model suitable for automated analysis, we do not wish
to symbolically model the composition of randomness from encryptions when
performing homomorphic evaluations; instead the private evale destructor takes
a name r as input and we give the adversary access to it only via an honest
process that accepts inputs c1, c2, v1, r1, v2, r2, picks a fresh name for r, and
applies the destructor before sending back the result. We also use t to range
over terms with destructors.

Processes Q are built from grammar

nil

new n; Q

in[p, x]; Q

out[p, t]; Q

let x = t in Q else Q′

if t = t′ then Q else Q′
Q || Q′

!Q

where n is a name, p is a port, and x a variable. The nil process does nothing
and represents a halted state. The new n;Q process is used for name and port
restriction. Intuitively, the let x = t in Q else Q′ process tries to evaluate t to
t′ by reducing it using our rewrite rules and (trivial) equational theory; if it is
successful it binds it to x in Q and proceeds as this process, and if it fails then
it proceeds as Q′ instead. The if t = t′ then Q else Q′ process is just syntactic
sugar but intuitively proceeds as Q if t and t′ can be rewritten to equivalent
terms, and as Q′ if not. Finally, Q || Q′ denotes parallel composition, and !Q
unbounded replication.

An evaluation context E is essentially a process with a hole, built from [ ],
E || Q, and new n; E . We obtain process E [Q] as the result of filling the hole in
E with Q. The formal semantics of a process can then be given by a reduction
relation −→ defined as the smallest relation closed under application of evaluation
contexts and rules:

out[p, t];Q1 || in[p, x];Q2 −→ Q1 || Q2{t/x}

let x = t in Q else Q′ −→
{
Q{t′/x} when t ⇓ t′

Q′ otherwise
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where t ⇓ t′ indicates that t may be rewritten to some t′ containing no destruc-
tors. We write −→∗ for the reflexive and transitive closure of reduction.

Our equivalence notion for formalising symbolic indistinguishability is obser-
vational equivalence [AF01]. Here we write Q↓p when Q can send an observable
message on port p; that is, when Q −→∗ E [out[p, t];Q′] for some term t, processQ′,
and evaluation context E that does not bind p.

Definition 2 (Symbolic indistinguishability). Symbolic indistinguishabil-

ity, denoted
s∼, is the largest symmetric relation R on closed processes Q1 and

Q2 such that Q1 R Q2 implies:

1. if Q1↓p then Q2↓p
2. if Q1 → Q′

1 then there exists Q′
2 such that Q2 →∗ Q′

2 and Q′
1 R Q′

2

3. E [Q1] R E [Q2] for all evaluation contexts E

Intuitively, a context may represent an attacker, and two processes are symbolic
indistinguishable if they cannot be distinguished by any attacker at any step:
every output step in an execution of process Q1 must have an indistinguishable
equivalent output step in the execution of process Q2, and vice versa; if not then
there exists an evaluation context that “breaks” the equivalence. Note that the
definition uses an existential quantification: if Q1

s∼ Q2 then we only know that
a reduction of Q1 can be matched by some reduction of Q2.

6.1 Symbolic Interpretation

Using the model from above it is somewhat straight-forward to give a symbolic
interpretation of a system S(Sys) by giving an interpretation of a programme
P in the form of a process QP , as well as a symbolic implementation of its
operation module. Doing this we obtain a process Qh for the honest entities,
and for the adversary’s operations we get a process Qadv, both of which depend
on the corruption scenario H. The symbolic interpretation of a protocol is hence
given by the three processes

EAB
setup

[
QAB

h || QAB
adv

]
EA
setup

[
QA

h || QA
adv

]
EB
setup

[
QB

h || QB
adv

]
where QH

h and QH
adv are put together inside an evaluation context responsible

for generating keys.

6.2 Soundness of Symbolic Interpretation

Since the symbolic model already matches the intermediate model quite closely,
the main issue for the soundness theorem is to ensure that the two notions of
equivalence coincide. This in turn boils down to ensuring that the scheduling that
leads to symbolic equivalence coincides with the scheduling policy used in the
computational interpretations. Our solution is to restrict systems such that they
allow only one choice of symbolic scheduling, namely that of the computational
model. It is enough to require that no message is lost, i.e. for any strategy of
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the adversary, if a programme sends a message on a port then the receiving
programme is listening on that port. The motivation behind this is that the
two models disagree on what happens when the receiver is not ready: in the
computational model the message is lost (read but ignored by the receiver) while
in the symbolic model the message hangs around (possibly blocking) until the
receiver is ready; this may then lead to non-determinism and several scheduling
choices.

Theorem 2. Let Sys1 and Sys2 be two systems that do not allow messages to

be lost. If S(Sys1)
s∼ S(Sys2) then I(Sys1)

c∼ I(Sys2).

Proof (overview). By fixing the random bitstrings seen by Z when interacting
with I(Sysi) we obtain a deterministic execution that with overwhelming prob-
ability will be matched by the symbolic execution on some evaluation context;
the only situation where this is not possible is if Z manages to guess a bitstring
drawn uniformly at random from {0, 1}κ. Symbolic indistinguishability between
the two systems then implies that with overwhelming probability Z sees the
same when interacting with I(Sys1) and I(Sys2).
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