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Abstract. Our research is focused on the simplification of parallel pro-
gramming for distributed memory systems. Our goal is to build a uni-
fying framework for creating, debugging, profiling, and verifying parallel
applications. The result of this effort is an open source tool Kaira. In
this paper, we focus on prototyping of parallel applications. We have
extended Kaira by the ability to generate parallel libraries. More pre-
cisely, we present a framework for fast prototyping of parallel numerical
computations. We demonstrate our idea on a combination of parallel
libraries generated by our tool Kaira and GNU Octave. Hence, a user
can verify the idea in a short time, create a real running program and
verify its performance and scalability.

Keywords: Prototyping · Parallel computing · Visual programming ·
Libraries

1 Introduction

Parallel computers are more and more available nowadays. A lot of people par-
ticipate in developing parallel programs, but there are well-known difficulties of
parallel programming. For example the user must learn how to use different spe-
cialized tools for profiling or debugging. Also, it usually takes more time to get
a working parallel application that can be tested. Therefore, it can be difficult
for many non-experts (even if they are experienced programmers of sequential
applications) to make their programs run in parallel on a computer cluster.

The overall goal of our research is to reduce some complexity in parallel
programming. In this paper, we focus on parallel application prototyping. More
precisely, we present a framework for fast prototyping of parallel numerical com-
putations. Hence, a user can verify his/her idea in a short time, create a real run-
ning program, and verify its performance and scalability. To address numerical
computations, we demonstrate our idea on the combination of parallel libraries
generated by our tool Kaira and GNU Octave1 (Which we will now simply refer
to as “Octave” in text). However, this approach can be easily generalized and

1 http://www.gnu.org/software/octave/
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generated libraries can be combined with other tools. We have chosen Octave
because it represents a good example of a prototyping software, where users can
easily experiment with their ideas.

2 Related Work

This section presents tools which have implemented ideas similar to Kaira and
from which we have drawn inspiration. First, there were tools for visual pro-
gramming of parallel applications. These tools were developed mainly in the
90s. As an example we can name GRADE [9], CODE [11] or HeNCE [3]. It is
hard to evaluate these tools because they are no longer available or they run on
no longer available hardware or operating systems. The semantics of our tools is
similar to CODE but as far we know, CODE is not able to show a state of the
application through the visual model. The same holds also for HeNCE that had
similar features like CODE but expressiveness of its language was restricted. In
GRADE, the application could be visually debugged but the visual language is
based on different concept in comparison to our tool.

Despite that we are not aware of any such tool that is still actively developed
or become widely accepted, we think that the visual approach to developing par-
allel applications is interesting and it deserve another chance. Parallel computers
are more common and more accessible today; therefore, more scientific and engi-
neering applications can profit from such hardware and not all of them require
optimized handmade solutions. Additionally, we want to create a unified envi-
ronment, where the same visual model is used not only during the development,
but also to simplify various supportive activities.

A more successful approach to more abstract parallel programming is stream
processing (StreamIt [12], FumeJava, Fastflow, etc.). FlumeJava [6] can be
described as follows. It is a Java library for developing data-parallel pipelines. It
offers lazy colle ction types and operations (map, filter, count, etc.), automati-
cally generating and running a sequence of MapReduces only when the actual
results are requested. MapReduce offers a good abstraction where many real
parallel problems can be expressed. But data-flow is inherently limited by the
target MapReduce framework – all data are processed uniformly in alternating
and isolated map and reduce steps. From the perspective of these tools our tool
offers a more low-level approach, less abstract programs. and more control over
final applications. In our approach, we want to offer a more flexible environment
where the user has more control to experiment with parallel algorithms.

Another approach is to introduce special constructions or annotations into
widely used languages. As an example, we can name OpenMP2, Unified Par-
allel C3 [5] or Cilk++ [10]. The combination with standard languages makes
these frameworks good prototyping tools, because a sequential program can be
gradually parallelized. Many standard patterns, like parallelization of an inde-
pendent for-cycle, can be also easily expressed in these tools. Our approach may
2 http://openmp.org/wp/
3 http://upc.lbl.gov/

http://openmp.org/wp/
http://upc.lbl.gov/
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need more work in the initial phase, because drawing a visual model is more
demanding than setting up some annotations. But such model is useful for clear
representation of the inner state of a running application, so it can speed up
understanding of the application’s behavior during testing, profiling, and other
supportive activities.

If standard algorithms from a specific area are needed it is often the best
solution to use some specialized libraries with tuned implementations. Consider-
ing numerical computations, there are specialized libraries for parallel numerical
computations - for example libraries PETSc4 and Trilinos5. However, when some
special needs are required, it can be hard to adjust these libraries. They can be
good prototyping tools and they can solve different problems, but if we want to
experiment with different parallelization approaches, then they are usually not
sufficient.

Use of such libraries is compatible with our approach. It is possible to combine
their sequential parts with Kaira. For example, considering numerical compu-
tations, Kaira controls the overall data flow and Trilinos matrices are used for
computations themselves.

3 Tool Kaira

This section serves as an overview for our tool Kaira; for more details see [1,2].
Our goal is to simplify the development of Message Passing Interface (MPI)6

parallel applications and create an environment where all activities (prototyping,
debugging, performance prediction, profiling, etc.) are unified under one concept.

The key aspect of our tool is the usage of visual models. In the first place,
we have chosen visual models to obtain an easy and clear way to describe and
expose parallel behavior of applications. The other reason is that a distributed
state of an application can be shown through such visual model. The represen-
tation of an inner-state of distributed applications by a proper visual model can
be more convenient than traditional ways like back-traces of processes and mem-
ory watches. Using this approach, we provide visual simulations where the user
observes the behavior of the developed application. It can be used on incomplete
applications from an early stage of development; therefore, it is a very useful fea-
ture for a prototyping tool. In a common way of development of MPI programs,
it often takes a long time to get the developed application to a state where its
behavior can be observed. We also use the same visual model for debugging and
profiling. The user specifies through the visual model what to measure and Kaira
generates a tracing version of the application recording its own runs. The record
is presented back to the user through the original visual model of the application.

On the other hand, we do not want to create applications completely through
visual programming. Sequential parts are written in the standard program-
ming language (C++) and combined with the visual model that catches parallel
4 http://www.mcs.anl.gov/petsc/
5 http://trilinos.sandia.gov/
6 http://www.mpi-forum.org/docs/docs.html

http://www.mcs.anl.gov/petsc/
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aspects and communication. We want to avoid huge unclear diagrams; therefore,
we visually represent only what is considered as “hard” in parallel program-
ming. Ordinary sequential codes are written in a textual language. Moreover,
this design allows for easy integration of existing C++ codes and libraries.

It is important to mention that our tool is not an automatic parallelization
tool. Kaira does not automatically detect parallelizable sections. The user has
to explicitly define them, but they are defined in a high-level way and the tool
derives implementation details.

Semantics of the Kaira visual programming language is based on Coloured
Petri nets (CPNs) [8]. Petri nets are a formalism for description of distributed
systems. They also provide well-established terminology, natural visual repre-
sentation of models for their editing, and their simulations. The modeling tool
CPN Tools7 inspired us how to show visual models.

To demonstrate how our models work, let us consider a model in Fig. 1. It
presents a problem where some jobs are distributed across computing nodes and
results are sent back to process 0. When all these results arrive, they are written
into a file. Circles (places in terminology of Petri nets) represent memory spaces.
Boxes (transitions) represent actions. Arcs run from places to transitions (input
arcs) or from transitions to places (output arcs). When a transition is executed it
takes values (tokens) from places according to input arcs. When a computation
in a transition is finished, then it produces new tokens to places according to
output arcs. A computation described by this diagram runs on every process.
Transferring tokens between processes are defined by the expression followed
after character “@” in expressions on output arcs. A double border around a
transition means that there is a C++ function inside. It is executed whenever
the transition is fired. A double border around a place indicates an associated
C++ function that defines the initial content of the place.

Fig. 1. The example of a model

4 Libraries

The infrastructure of libraries in Kaira is based on modules. A module is a
model in Kaira enriched by an interface (depicted as a gray rectangle around the
model). From a set of modules, Kaira generates a C++ library. As an example,
consider the module in Fig. 2. It takes two input integers (x, y) and outputs a
7 http://cpntools.org/

http://cpntools.org/
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Fig. 2. The module sum

single integer (z). The example of a bigger module is presented in Sect. 5. When
a library is generated from this module, we obtain the C++ library with the
following interface:

void c a l i b i n i t ( int argc , char ∗∗ argv ) ;
void sum( int &x , int &y , int &z ) ;

It is possible to use such library in any sequential C++ application. This
application can be compiled and run through MPI infrastructure. The applica-
tion will be executed in process 0 sequentially. When it calls a generated function,
then the computation will be run across all MPI processes according to the struc-
ture of the module. When the function is finished (i.e. the module is finished)
then the program continues again sequentially.

The library can be also generated in the Remote Procedure Call (RPC) mode.
Kaira generates both server and client parts. The client side is a library that has
the same interface as was described in the example above, but when a function
is called it sends a request through a network to the server where a requested
computation is executed.

4.1 Octave Libraries

Octave offers a possibility to create C++ modules (so called “oct-files”). It
makes calling C++ functions accessible in the Octave environment. We use
this infrastructure; Kaira is able to generate an oct-file that wraps our par-
allel libraries. Hence, the user is able to use modules smoothly in Octave in a
similar way as in C++ applications. The important aspect of such integration
is interoperability between data types. Kaira contains conversion functions for
basic data types likes numbers or vectors. The user must provide conversion
functions for own data types.

5 Case Study

As an example we have chosen a variant of the Finite Element Tearing and Inter-
connecting (FETI) domain decomposition method – Total-FETI [4]8. Omitting
other aspects like numerical scalability; parallelization of Total-FETI can be very
8 The model and source codes used in this example are available on the website of our

project http://verif.cs.vsb.cz/kaira.
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straightforward. In [4], the basic idea is to decompose the domain into N sub-
domains. After the discretization, we get a block diagonal stiffness matrix (Eq. 2
in [4]), where matrices K1 . . .KN are stiffness matrices for corresponding sub-
domains. Using such block diagonal stiffness matrix K, we are usually able to
divide computations and perform them in parallel (see the following equation).

K =

⎡
⎢⎣
K1

. . .

KN

⎤
⎥⎦ ,x =

⎡
⎢⎣
x1

...
xN

⎤
⎥⎦ ,Kx =

⎡
⎢⎣
K1x1

...
KNxN

⎤
⎥⎦ . (1)

Such straightforward approach is far from being optimal. More advanced
approaches were published in [7], where the authors focus on performance and
usage of thousands of processors. In their solution, they use the library PETSc.
Of course, such solution is much more time and resource demanding and rel-
atively very complicated. On the other hand, Octave implementation that we
start with roughly follows steps from paper [4] and it is relatively simple and
readable. With such implementation, it is easy to explore different mathematical
aspects or perform different experiments, but it is hard to address issues related
to parallel programming.

More precisely, in the Octave API, there are external packages9 for paral-
lel/distributed computing. Package general contains two functions (parcellfun
and pararrayfun) that evaluate functions using multiple processes. But it is
restricted only to shared memory architectures. For distributed memory there
are packages openmpi ext and parallel. These packages are basic wrappers to
MPI functions and simple sockets API. In both cases, they are quite low-level
interfaces from a programmer’s point of view. Tasks like debugging and profiling
can be complicated considering development environments for Octave.

At the beginning, we had a working sequential implementation of Total-FETI
for Octave. The most time consuming operation is a solution of linear system
Ky = x. As was suggested in [4], Cholesky factorization of the stiffness matrix is
used ([L,ans,P]=chol(K,’lower’)). The following Octave code performs this
time consuming computation:

function y=Kplus aux (L , P, x )
Lt=L ’ ;
Pt=P ’ ;
y=P∗( Lt \(L\(Pt∗x ) ) ) ;

end

Total-FETI iteratively computes the result and thus uses Kplus aux several
times. We want to parallelize this operation using Kaira and explore its proper-
ties. Module Kplus par from the Fig. 3 defines the parallel computations. In this
model we use types Matrix and SparseMatrix which are native types offered by
the Octave C++ interface.

Matrices L and P are a block diagonal. First, they are (along with vector
x) divided according to their block diagonal structure (transition Divide). By

9 All mentioned packages are available at http://octave.sourceforge.net
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Fig. 3. Module Kplus par

this action we obtain N smaller tasks. These tasks are processed by transition
Compute. A source code in the transition Compute performs the same compu-
tation like the original Octave function Kplus aux, but using a single block that
represents one sub-domain. The following source code is stored in the transi-
tion Compute. The user needs to write only the three lines in the body of the
function. The rest is a template generated by the tool.

struct Vars {
Matrix x ; Matrix y ;
SparseMatrix L ; SparseMatrix P;
int n ;

} ;
void t r a n s i t i o n f n ( CaContext &ctx , Vars &var ) {

SparseMatrix Lt=var .L . t ranspose ( ) ;
SparseMatrix Pt=var .P . t ranspose ( ) ;
var . y = var .P∗( Lt . s o l v e ( var . L . s o l v e (Pt∗var . x ) ) ) ; }

}
When all partial results are produced, transition Combine is fired and the

resulting vector is composed. After that, the module is terminated and the data
are transmitted back to the Octave. In the original source code for Octave, the
only change is the call of the generated function (instead of the original sequential
one). It has one additional parameter N indicating the number of sub-domains.

The model shown in Fig. 3 represents a solution for a shared memory system.
If the resulting application is started in a configuration with multiple threads,
then it is performed in parallel. An extension of this net for usage with distributed
memory is easy. We just need to modify the existing arc inscription: (Lblock,
Pblock, xblock, n) to: (Lblock, Pblock, xblock, n)@n and (n, y) to (n, y)@0. It
causes that blocks will be assigned to MPI processes according to their positions
and results are sent back to process 0.
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5.1 Experiments and Results

Now with the existing model, a user is able to use various features of Kaira.
For example it is possible to perform simulations of module executions indepen-
dently on Octave code (Fig. 4), where the user manually controls the simulation.
Additionally, it is possible to run the application in the tracing mode where
the execution of a module is recorded. Such recorder execution can be replayed
using the original model or some performance statistics can be obtained (like
execution times for each transition, etc).

Fig. 4. A screenshot of a simulation

To test the module’s performance, we solve a displacement of a 1D string
that is fixed on both ends. We prepare a stiffness matrix where each sub-domain
has 500000 discretization steps and we use 30 sub-domains. The measurement
was performed on a computer with 8 processors AMD Opteron/2500 (having a
total of 32 cores). A computation of original Kplus aux takes in average 21.79 s
in the pure Octave solution. We measured runs of the library generated from our
module Kplus par. The test was performed in RPC mode, where both client and
server run on the same computer. The measured times for multithreading and
MPI backends are listed in Table 1.

These results are consistent with reasonable expectations. They show that
there is a communication cost related to the RPC mode (difference between
running times for multithreading with and without RPC). This cost is fixed due

Table 1. Running times (in seconds) of Kplus par using threads and MPI

Nodes 1 2 4 8 16 32

Threads + RPC 25.30 19.87 10.32 8.02 7.70 7.76
MPI + RPC 25.19 20.88 16.89 15.36 16.55 16.39
Threads (no RPC) 21.71 11.05 6.51 4.35 4.06 3.93
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to the fixed problem size. It also presents a bottleneck for further performance
improvements. For multithreading we reached this bottleneck around 16 cores.
At this point, a time to distribute matrices is much bigger than a time to per-
form the computation itself. Usage of MPI introduces additional communication
overhead, because data are distributed between nodes using MPI functions.

The execution of the sequential version (using only one core) of the whole
computation takes approximately 320 s while the function Kplus aux was used 5
times. For real problems, the number of iterations can be different (usually big-
ger) and when the stiffness matrices contain more non-zero elements, the func-
tion Kplus aux will be more time consuming. We present these results mainly
to prove, that we are able to get a working parallel solution with reasonable
performance and even if the obtained solution may not be the most optimal, we
were able to develop it fast.

To keep the presented solution simple, the stiffness matrix K is divided and
distributed for every computation. To improve the performance further, we can
store these blocks in computing nodes and use them several times, while they
do not change during the computation. Mentioned matrices are sparse, but they
are usually huge. Their size is based on the number of primary variables and
there can be millions of primary variables in real problems. So for real experi-
ments the memory consumption often becomes an issue (usually even before the
performance). In fact, we do not need to compose the whole stiffness matrix.
When we divide its blocks between computing nodes, we can handle a problem
originally too large for a single computer. This can be an even bigger advantage
than just the performance improvement.

6 Conclusion

The paper presents our tool Kaira and its ability to generate parallel libraries.
Also it demonstrates their usage in a combination with Octave. Such combi-
nation allows rapid prototyping of parallel numerical computations. On a real
example (TotalFETI method), we demonstrated that it takes only a few lines of
C++ code and a relatively simple model based on CPNs to get a working par-
allel application with reasonable performance. Further, this model can be easily
extended and we are use the same visual model for debugging and profiling.
Thus, an inexperienced user does not have to learn additional tools.

Kaira is still being actively developed. We are trying to improve the process
of gathering information from the model to provide functions like performance
prediction or verification. From the perspective of this paper, we are also focused
on additional simplifications for binding Octave types and allow for preserving
data on computing nodes during consecutive computations. We also want to
extend our approach to Matlab.
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European Regional Development Fund in the IT4Innovations Center of Excellence
project (CZ.1.05/1.1.00/02.0070) and Grant of SGS No. SP2013/145, VŠB - Technical
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