
Using Quadratic Approximations in an Interval
Method for Solving Underdetermined

and Well-Determined Nonlinear Systems

Bart�lomiej Jacek Kubica(B)

Institute of Control and Computation Engineering, Warsaw University of Technology,
Warsaw, Poland

bkubica@elka.pw.edu.pl

Abstract. This paper considers quadratic approximation as a narrow-
ing tool in an interval branch-and-prune method. We seek the roots of
such an approximate equation – a quadratic equation with interval para-
meters. Heuristics to decide, when to use the developed operator, are
proposed. Numerical results for some benchmark problems are presented
and analyzed.

Keywords: Nonlinear equations systems · Interval computations ·
Quadratic approximation · Interval quadratic equation · Heuristic

1 Introduction

In the paper [11] the author considered an interval solver for nonlinear systems –
targeted mostly at underdetermined equations systems – and its shared-memory
parallelization. In subsequent papers several improvements have been consid-
ered, including various parallelization tools [12] and using sophisticated tools
and heuristics to increase the efficiency of the solver [13]. As indicated in [13]
and [14], the choice of proper tools and the proper heuristic, for their selection
and parameterization, appeared to have a dramatic influence on the efficiency
of the algorithm.

2 Generic Algorithm

The solver uses interval methods.They are based on interval arithmetic opera-
tions and basic functions operating on intervals instead of real numbers (so that
result of an operation on numbers belong to the result of operation on inter-
vals, containing the arguments). We shall not define interval operations here;
the interested reader is referred to several papers and textbooks, e.g., [8,9,19].

The solver is based on the branch-and-prune (B&P) schema that can be
expressed by the following pseudocode:

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 623–633, 2014.
DOI: 10.1007/978-3-642-55195-6 59, c© Springer-Verlag Berlin Heidelberg 2014



624 B.J. Kubica

IBP (x(0); f)

+//+x(0) is the initial box, f(·) is the interval extension of the function f:Rn→R
m

// Lver is the list of boxes verified to contain a segment of the solution manifold
// Lpos is the list of boxes that possibly contain a segment of the solution manifold
L = Lver = Lpos = ∅ ;

x = x(0) ;
loop

process the box x, using the rejection/reduction tests ;
if (x does not contain solutions) then discard x ;
else if (x is verified to contain a segment of the solution manifold) then

push (Lver, x) ;

else if (the tests resulted in two subboxes of x: x(1) and x(2)) then

x = x(1) ;

push (L, x(2)) ;
cycle loop ;

else if (x is small enough) then push (Lpos, x) ;
if (x was discarded or stored) then

x = pop (L) ;
if (L was empty) then exit loop ;

else

bisect (x), obtaining x(1) and x(2);

x = x(1) ;

push (L, x(2)) ;
end if ;

end loop

end IBP

The “rejection/reduction tests”, mentioned in the algorithm are described in
previous papers (specifically [13] and [14]), i.e.:

– switching between the componentwise Newton operator (for larger boxes) and
Gauss-Seidel with inverse-midpoint preconditioner, for smaller ones,

– the sophisticated heuristic to choose the bisected component [13],
– an initial exclusion phase of the algorithm (deleting some regions, not con-

taining solutions) – based on Sobol sequences [14].

Other possible variants (see, e.g., [11]) are not going to be considered.

3 Quadratic Approximations

3.1 Motivation

As stated above, the main tools used to narrow boxes in the branch-and-prune
process are various forms of the Newton operator. This operator requires the
computation of derivatives of (at least some of) the functions fi(·). This com-
putation – usually performed using the automatic differentiation process – is
relatively costly. Because of that, in [14] the author proposed a heuristic using
the Newton operator only for boxes that can be suspected to lie in the vicinity



Using Quadratic Approximations in an Interval Method 625

of a solution (or the solution manifold – in the underdetermined case). For other
areas we try to base on 0th-order information only, i.e., function values and not
gradients (or other derivatives). In [14] an “initial exclusion phase” was proposed,
when regions are deleted using Sobol sequences, inner solution of the tolerance
problem [19] and ε-inflation.

In [16] a similar approach (not using Sobol sequences, though) was consid-
ered for another problem – seeking Pareto sets of a multicriterion problem. Both
papers show that this approach can improve the branch-and-bound type algo-
rithms’ efficiency dramatically – at least for some problems.

However, as for some areas the Newton operators do not perform well, we can
try to use 2nd (or even higher) order information there. Obviously, this requires
Hesse matrix computations, which is very costly, but can be worthwhile.

3.2 Quadratic Approximation

Each of the functions fi(x1, . . . , xn) can be approximated by the 2nd order Taylor
polynomial:

x ∈ x → fi(x) ∈ fi(x̌) + g(x̌)T · (x − x̌) +
1
2

· (x − x̌)T · H(x) · (x − x̌), (1)

where g(·) and H(·) are interval extensions of the gradient and Hesse matrix of
fi(·), respectively.

By choosing a variable xj , we can obtain a univariate formula: x ∈ x →
fi(x) ∈ av2

j + b · v j + c, where vj = x − x̌j .
Obviously:

a =
1
2
Hjj(x),

b = gj(x̌) +
∑

k �=j

Hjk(x) · (xk − x̌k),

c =
1
2

∑

k �=j

(
gk(x̌) · (xk − x̌k) + Hjk(x) · (xk − x̌k)2

)

+
n∑

k=1,k �=j

n∑

l=k+1

Hjk(x) · (xk − x̌k) · (xl − x̌l).

3.3 Interval Quadratic Equations

A quadratic equation is a well-known equation type of the form ax2 + bx + c =
0. Methods of solving this equation in real numbers are common knowledge,
nowadays.

How can such methods be generalized to the case when a, b and c are intervals
and we have an interval x of possible values of the variable? Below, we present
two solutions: a straightforward one and a more sophisticated one, based on the
algorithm, described by Hansen [8].



626 B.J. Kubica

The Straightforward Approach. This approach is a simple (yet not näıve)
“intervalization” of the point-wise algorithm. It is provided by the author, but
it also resembles techniques of [6].

Please note, it is assumed that the interval a is either strictly positive or
strictly negative; for a = 0 the formulae for the quadratic equation do not make
sense – even using extended interval arithmetic is of little help.

So, as for the non-interval case, we start with computing the discriminant
of the equation: Δ = b2 − 4ac. If all possible values of Δ are guaranteed to
be negative, i.e., Δ < 0 then for no quadratic approximation can there be any
solutions, and we can discard the box x. Otherwise, we set: Δ ← Δ ∩ [0,+∞]
and compute the values:

x(1) =
−b − √

Δ

2a
, x(2) =

−b +
√

Δ

2a
. (2)

Please note, we cannot use the Viete formula x(1)x(2) = c
a to compute one of

the roots – c (and the other root) will often contain zero. However, we can use
the Viete formula for narrowing:

x(1) ← x(1) ∩ c
ax(2)

, x(2) ← x(2) ∩ c
ax(1)

. (3)

The two “interval solutions x(1) and x(2) can either be disjoint or not (if 0 ∈ Δ
then they always coincide, but for strictly positive Δ they can coincide, also).
Now we can have the following possibilities:

– two disjoint intervals, both having nonempty intersections with x – the domain
has been split, as for the Newton operator with extended arithmetic,

– two disjoint intervals, but only one of them has a nonempty intersection with
x – then we can contract the domain; if the interval solution belongs to the
interior of x, we can prove the existence of a solution (as for the Newton
operator),

– two coinciding intervals and at least one of them coincides with x – we narrow
the domain, but cannot prove the existence or uniqueness of a solution,

– intervals disjoint with x – then we can discard this area, obviously.

Hansen’s Approach. The book of Hansen and Walster [8] presents a sophis-
ticated and efficient approach to solve quadratic equations with interval coeffi-
cients. This approach is applicable if 0 ∈ a, also.

The essence is to consider upper and lower functions of f(x) = [f(x), f(x)]
and find x’s, where f(x) ≤ 0 ≤ f(x). It is assumed that a > 0; if it is not, we
can multiply both sides of the equation by (−1).

Please note, the upper and lower functions can be expressed as follows:

f(x) =
{

ax2 + bx + c for x ≥ 0
ax2 + bx + c for x < 0

, (4)

f(x) =
{

ax2 + bx + c for x ≥ 0
ax2 + bx + c for x < 0

. (5)



Using Quadratic Approximations in an Interval Method 627

The condition a > 0 implies that the upper function f(x) is convex. The
lower function can be either convex, concave or neither convex nor concave.

The algorithm can be presented as follows:

initialize the list S of points (represented by narrow intervals);
compute roots of f(x) and put them to the list S;
similarly, compute roots of f(x) and put them to the list S;
put −∞ and/or +∞ to S if f(x) ≤ 0 ≤ f(x) is fulfilled for these limits;
sort the list L with respect to lower bounds of the entries;
if (there are no entries in S) then the equation has no solutions;
if (there are exactly two entries in S: s1 and s2) then

the equation has one interval solution [s1, s2];
if (there are exactly four entries in S: s1, . . . , s4) then

the equation has two interval solutions: [s1, s2] and [s3, s4];
if (there are exactly six entries in S: s1, . . . , s6) then

the equation has three interval solutions: [s1, s2], [s3, s4] and [s5, s6];

In [8] it is specified that double roots should be stored twice on the list. Our
implementation does not distinguish the cases when the discriminant Δ > 0
or Δ = 0, as it would be very difficult from the numerical point of view. So,
the double root can be represented by two very close, probably coinciding, but
different intervals.

Also, it is proven in the book that other numbers of solutions are not possible.
The case of three interval solutions can occur when f(x) is nonconvex and it has
four roots – two positive and two negative ones.

3.4 When to Use the Quadratic Approximation?

As stated above, crucial for designing successful interval algorithms is the choice
of a proper heuristic to choose, arrange and parameterize interval tools for a
specific box.

It seems reasonable to formulate the following advice a priori:

– not to use it when traditional (less costly) Newton operators, perform well,
– not to use it on too wide boxes – the ranges of approximations will grow at

least in a quadratic range with the size,
– probably, also not to use it on too narrow boxes – higher order Taylor models

do not have a better convergence than 1st order centered forms [18],
– if the Newton operator could not reduce one of the components as there were

zeros in both the nominator and the denominator of the formula (see, e.g.,
[13]); this indicates that the box might contain a singular (or near-singular)
point – we assume the Newton operator sets the flag singular in such a case.

In particular, the following heuristic appeared to perform well:



628 B.J. Kubica

heuristic_for_use_of_quadratic_approximation
perform the Newton operator of some type on x;
if (x was split or a solution has been verified) then return;
if (diameters of less than m components of x do not exceed the value

max
(
16.0
n , 1.0

)
) then return; // the box is too large

if (diameters of more than n − m components of x exceed the value
2.5
2+n ) then return; // the box is too small

if (some component of x has been narrowed on both sides) then return;
for (k = 1; k ≤ m; ++k) do

if (the k-th equation has at least one quadratic term) then
compute the Hesse matrix of fk(·) on x;
compute the function value and gradient at the midpoint of x;
for each variable, compute coefficients a, b and c of the quadratic
approximation and try to solve the equation;

end if
end for
end heuristic_for_use_of_quadratic_approximation

The above procedure does not take singularities into account. We can modify it,
by changing the proper line to:

if (not singular and diameters of more than n − m components of x exceed
the value 2.5

2+n ) then return;

Both versions of the heuristic will be called: “basic” and “singularity checking”
respectively, in the remainder.

4 Computational Experiments

Numerical experiments were performed on a computer with 16 cores, i.e., 8 Dual-
Core AMD Opterons 8218 with 2.6 GHz clock. The machine ran under control
of a Fedora 15 Linux operating system with the GCC 4.6.3, glibc 2.14 and the
Linux kernel 2.6.43.8.

The solver is written in C++ and compiled using GCC compiler. The C-XSC
library (version 2.5.3) [1] was used for interval computations. The parallelization
(8 threads) was done with TBB 4.0, update 3 [2]. OpenBLAS 0.1 alpha 2.2 [3]
was linked for BLAS operations.

According to previous experience (see [12]), 8 parallel threads were used to
decrease computation time. Please note that parallelization does not affect the
number of iterations, but the execution time only.

The following test problems were considered.
The first one is called the Hippopede problem [11,17] – two equations in

three variables. Accuracy ε = 10−7 was set.
The second problem, called Puma, arose in the inverse kinematics of a 3R

robot and is one of typical benchmarks for nonlinear system solvers [4]. In the



Using Quadratic Approximations in an Interval Method 629

above form it is a well-determined (8 equations and 8 variables) problem with 16
solutions that are easily found by several solvers. To make it underdetermined
the two last equations were dropped (as in [11]). The variant with 6 equations
was considered in numerical experiments as the third test problem. Accuracy
ε = 0.05 was set.

The third problem is well-determined – it is called Box3 [4] and has three
equations in three variables. Accuracy ε was set to 10−5.

The fourth one is a set of two equations – a quadratic one and a linear one
– in five variables [7]. It is called the Academic problem. Accuracy ε = 0.05

The fifth problem is called the Brent problem – it is a well-determined
algebraic problem, supposed to be “difficult” [5]. Presented results have been
obtained for N = 10; accuracy was set to 10−7.

And the last one is a well-determined one – the well-known Broyden-banded
system [4,11]. In this paper we consider the case of N = 16. The accuracy
ε = 10−6 was set.

Results are given in Tables 1–4. The following notation is used in the tables:

– fun.evals, grad.evals, Hesse evals – numbers of functions evaluations, its gra-
dients and Hesse matrices evaluations,

– bisecs – the number of boxes bisections,
– preconds – the number of preconditioning matrix computations (i.e., per-

formed Gauss-Seidel steps),
– bis. Newt, del. Newt – numbers of boxes bisected/deleted by the Newton step,
– q.solv – the number of quadratic equations the algorithm was trying to solve,
– q.del.delta – the number of boxes deleted, because the discriminant of the

quadratic equation was negative,
– q.del.disj. – the number of boxes deleted, because the solutions of a quadratic

equation were disjoint with the original box,
– q.bisecs – the number of boxes bisected by the quadratic equations solving

procedure,
– pos.boxes, verif.boxes – number of elements in the computed lists of boxes

containing possible and verified solutions,
– Leb.pos., Leb.verif. – total Lebesgue measures of both sets,
– time – computation time in seconds.

5 Analysis of the Results

The proposed new version of our B&P algorithm resulted in an excellent speedup
for the Brent problem (for one of the algorithm versions – for the Hippopede
problem, also) and a significant one for Broyden16. For Puma6 the improve-
ment was marginal and for problems Box3 and Academic, the new algorithm
performed slightly worse than the version from [14]. It is worth noting that for
the Academic problem, although the computation time was slightly worse, the
accuracy was a bit better.



630 B.J. Kubica

Table 1. Computational results for the algorithm version from [14]

Problem Hippopede Puma6 Box3 Academic Brent10 Broyden16

fun. evals 440450 3620757 2387475 5568107 43399916 2894815943
grad.evals 502708 3162744 2278533 4776696 65109780 835991376
Hesse evals — — — — — —
bisections 115947 263181 379718 1193829 2822816 25765546
preconds 219599 447788 523947 2165486 2709154 8542793
bis. Newt. 13 99 27 92 432298 357371
del. Newt. 24209 53491 236390 208841 441141 18290280
pos.boxes 43210 184888 0 886722 473 0
verif.boxes 17069 2520 1 91 805 1
Leb.poss. 8e-18 3e-9 0.0 0.028 9e-82 0.0
Leb.verif. 0.003 3e-7 1e-25 1e-5 3e-69 4e-137
time (s) <1 4 2 8 86 2752

Table 2. Computational results for the algorithm version using the quadratic approx-
imation as described in Sect. 3

Problem Hippopede Puma6 Box3 Academic Brent10 Broyden16

fun. evals 240659 3509119 2365265 5652078 43055720 2670617370
grad.evals 271652 3103980 2297800 4850533 64434484 787247696
Hesse evals 44 3786 32734 2547 7134 4135728
bisections 60353 257957 377474 1211743 2788715 24112367
preconds 119833 442924 523643 2197282 2672319 8736413
bis. Newt. 9 103 27 58 432276 358069
del. Newt. 14130 52539 235653 212840 439606 17048221
q.solv. 81 7480 65327 12691 19577 22768329
q.del.delta 0 0 0 0 0 9634
q.del.disj. 0 8 135 0 92 11924
q.bisecs 0 4 0 0 23 698
pos.boxes 21254 181240 0 898837 476 0
verif.boxes 9230 2424 1 88 803 1
Leb.poss. 4e-18 2e-9 0.0 0.027 9e-82 0.0
Leb.verif. 0.005 3e-7 1e-25 7e-6 3e-69 3e-137
time (s) <1 4 2 7 87 2627

It seems, it is difficult to improve the performance of the algorithm, using
the 2nd order information – yet possible, at least for some problems.

It is worth noting that the algorithm cannot improve the performance on
bilinear problems – like the Rheinboldt problem, considered in the author’s ear-
lier papers (e.g., [11,13,14]). In such cases, we can try to transform the problem
using symbolic techniques, e.g., the Gröbner basis theory (see, e.g., [15] and the
references therein), but performance of this approach has yet to be investigated.



Using Quadratic Approximations in an Interval Method 631

Table 3. Computational results for the algorithm version using the quadratic approx-
imation solved by the Hansen method [8] and the basic heuristic

Problem Hippopede Puma6 Box3 Academic Brent10 Broyden16

fun. evals 243336 3385431 2206661 5662094 42671592 2263804495
grad.evals 274676 2941828 2160304 4859064 63752945 691351646
Hesse evals 46 3586 29890 2822 5945 464702
bisections 60912 244445 355031 1213849 2757100 21219462
preconds 121182 417284 494074 2200090 2638126 5865559
bis. Newt. 10 111 28 46 429876 368942
del. Newt. 14174 52131 220406 212714 436998 14621392
q.solv. 87 7152 238676 14100 16410 2517097
q.del.delta 0 0 0 0 0 7915
q.del.disj. 0 8 105 0 91 7465
q.bisecs 1 4 0 0 83 11571
pos.boxes 21288 171496 0 900178 473 0
verif.boxes 9546 2384 1 100 804 1
Leb.poss. 4e-18 3e-9 0.0 0.027 9e-82 0.0
Leb.verif. 0.005 3e-7 1e-25 7e-6 3e-69 3e-137
time (s) <1 4 2 7 84 2304

Table 4. Computational results for the algorithm version using the Hansen method
[8] and the singularity checking version of the heuristic

Problem Hippopede Puma6 Box3 Academic Brent10 Broyden16

fun. evals 556401 3314879 1959329 5612877 18681704 2251193535
grad.evals 635136 2927917 2036653 4870740 18875731 673122158
Hesse evals 1034 28890 539611 54090 571691 666926
bisections 150912 241173 249471 1203934 606847 20641684
preconds 277789 413004 411630 2179986 257325 5077374
bis. Newt. 7 111 26 43 307988 370729
del. Newt. 35268 50611 243524 2041267 318117 14409198
q.solv. 2063 57624 1079109 270431 1537925 3608072
q.del.delta 0 0 0 0 107 14095
q.del.disj. 0 144 107 0 20346 11195
q.bisecs 1 4 0 3 15847 13642
pos.boxes 65184 168944 0 897399 394 0
verif.boxes 11392 1920 1 99 811 1
Leb.poss. 5e-18 3e-9 0.0 0.027 2e-83 0.0
Leb.verif. 0.002 6e-9 1e-25 8e-6 2e-48 2e-144
time (s) <1 4 3 7 31 2251

Performance of the method for the Hippopede problem is surprising – the
algorithm version using the straightforward approach is the best there and the
“singularity checking” heuristic version performs the worst. This remains to
be carefully investigated in the future.



632 B.J. Kubica

6 Conclusions

The proposed additional tool for interval branch-and-prune procedures, using
quadratic approximations, allows us to improve the performance for some prob-
lems. The obtained improvement was minor for some cases, but significant,
e.g., for the Broyden-banded problem and dramatic for the hard Brent prob-
lem. When the use of this tool is crucial, is going to be the subject of future
research.

References

1. C-XSC interval library. http://www.xsc.de
2. Intel Threading Building Blocks. http://www.threadingbuildingblocks.org
3. OpenBLAS library. http://xianyi.github.com/OpenBLAS/
4. Non-polynomial nonlinear system benchmarks. https://www-sop.inria.fr/coprin/

logiciels/ALIAS/Benches/node2.html
5. Difficult benchmark problems. http://www-sop.inria.fr/coprin/logiciels/ALIAS/

Benches/node6.html
6. Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Con-

straints 15(3), 404–429 (2010)
7. Goldsztejn, A., Jaulin, L.: Inner and outer approximations of existentially quan-

tified equality constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp.
198–212. Springer, Heidelberg (2006)

8. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis. Marcel
Dekker, New York (2004)

9. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht
(1996)

10. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Henten-
ryck, P.: Standardized notation in interval analysis. http://www.mat.univie.ac.at/
∼neum/software/int/notation.ps.gz (2002)

11. Kubica, B.J.: Interval methods for solving underdetermined nonlinear equations
systems. SCAN 2008 Proceedings. Reliable Comput. 15(3), 207–217 (2011).

12. Kubica, B.J.: Shared-memory parallelization of an interval equations systems solver
- comparison of tools. Pr. Nauk Politech. Warszawskiej. Elektron. 169, 121–128
(2009)

13. Kubica, B.J.: Tuning the multithreaded interval method for solving underdeter-
mined systems of nonlinear equations. In: Wyrzykowski, R., Dongarra, J., Kar-
czewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp.
467–476. Springer, Heidelberg (2012)

14. Kubica, B. J.: Excluding regions using Sobol sequences in an interval branch-and-
prune method for nonlinear systems. Presented ta SCAN2012 Conference, submit-
ted to Reliable Computing.

15. Kubica, B.J., Malinowski, K.: An interval global optimization algorithm combining
symbolic rewriting and componentwise Newton method applied to control a class
of queueing systems. Reliable Comput. 11(5), 393–411 (2005)

16. Kubica, B.J., Woźniak, A.: Tuning the interval algorithm for seeking Pareto sets
of multi-criteria problems. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS,
vol. 7782, pp. 504–517. Springer, Heidelberg (2013)

http://www.xsc.de
http://www.threadingbuildingblocks.org
http://xianyi.github.com/OpenBLAS/
https://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node2.html
https://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node2.html
http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node6.html
http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node6.html
http://www.mat.univie.ac.at/~neum/software/int/notation.ps.gz
http://www.mat.univie.ac.at/~neum/software/int/notation.ps.gz


Using Quadratic Approximations in an Interval Method 633

17. Neumaier, A.: The enclosure of solutions of parameter-dependent systems of equa-
tions. In: Moore, R. (ed.) Reliability in Computing. Academic Press, San Diego
(1988)

18. Neumaier, A.: Taylor forms - use and limits. Reliable Comput. 9, 43–79 (2003)
19. Shary, S. P.: Finite-difference Interval Analysis. XYZ (2010) (in Russian)


	Using Quadratic Approximations in an Interval Method for Solving Underdetermined and Well-Determined Nonlinear Systems
	1 Introduction
	2 Generic Algorithm
	3 Quadratic Approximations
	3.1 Motivation
	3.2 Quadratic Approximation
	3.3 Interval Quadratic Equations
	3.4 When to Use the Quadratic Approximation?

	4 Computational Experiments
	5 Analysis of the Results
	6 Conclusions
	References


