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Abstract. In this paper boundary value problems for second order
elliptic equations with highly discontinuous coefficients are considered
on a 2D polygonal region. The problems are discretized by a discontin-
uous Galerkin (DG) with finite element method (FEM) on triangular
elements using piecewise linear functions.

The goal is to design and analyze a parallel algorithm for solving the
discrete problem whose rate of convergence is independent of the jumps
of the coefficients. The method discussed is an additive Schwarz method
(ASM) which belongs to a class of domain decomposition methods and
is one of the most efficient parallel algorithm for solving discretizations
of PDEs.

It turns out that the convergence of the method presented here is
almost optimal and only weakly depends on the jumps of coefficients.
The suggested method is very well suited for parallel computations.
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1 Introduction

We consider boundary value problems (BVPs) for second order elliptic equa-
tions with highly discontinuous coefficients posed on a 2D polygonal region. The
problem is discretized by a discontinuous Galerkin (DG) method with FEM
on triangular elements and piecewise linear functions, see [1,3], and references
therein. The goal of this paper is to design and analyze a parallel algorithm for
solving the discrete problem with rate of convergence independent of the jumps
of coefficients.

The proposed algorithm is an additive Schwarz method (ASM) with overlaps
and belongs to a class of domain decomposition methods and it is one of the
most efficient parallel algorithms for solving discretizations of PDEs, see [5].
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In the paper the results obtained in [4] for continuous piecewise linear finite
element discretization are extended to DG discretization. They are more general
comparising to the results of [4].

The presented ASM is two-level with a special coarse space defined on large
triangles of coarse triangulation, i.e. a multiscale coarse space. This is a space of
continuous functions which are discrete harmonic on edges of the coarse triangles
and inside of them in the sense of corresponding bilinear forms. The local spaces
are defined in a standard way, on the fine triangulation, on extensions of coarse
triangles; these spaces contain discontinuous functions. For literature on the
topic see [4,5], and references therein.

It turns out that the convergence of the discussed ASM is dependent of the
jumps of the coefficients on the boundary of coarse triangles only. For some
distributions of jumps, the convergence of the ASM is also independent of these
jumps.

The paper is organized as follows. In Sect. 2, differential and discrete problems
are formulated. In Sect. 3, a two level ASM for solving the discrete problem is
designed and analyzed. The main result is Theorem 5, which guarantees the opti-
mality of the method. Section 4 is devoted to an implementation of the method
discussed.

2 Differential and Discrete DG Problems

We consider the following elliptic problem:
Find u∗ ∈ H1

0 (Ω) such that

a(u∗, v) = f(v), ∀v ∈ H1
0 (Ω) (1)

where
a(u, v) =

∫
Ω

ρ(x)∇u · ∇vdx, f(v) =
∫

Ω

fvdx.

We assume that Ω is a polygonal region, f ∈ L2(Ω) and ρ(x) ≥ ρ0 > 0, and
ρ ∈ L∞(Ω). Under these assumptions problem (1) is well posed.

We will also assume that ρ0 ≥ 1. This can be fulfilled by scaling (1). It is
used in the analysis of preconditioner discussed in Sect. 3.

Let T h(Ω) be a triangulation of Ω with triangular elements Ki and the mesh
parameter h. It is constructed as a refinement of the coarse triangulation of Ω
consisting of large triangles Ωl of diameter Hl, l = 1, · · · , L,Hl = diam(Ωl)
and H = max Hl. The refinement procedure is repeated several times, where
one step of the process is to split each triangle into four smaller ones, obtained
by connecting the midpoints of its edges. Let Xi(Ki) denote a space of linear
functions on Ki and

Xh(Ω) = ΠN
i=1Xi(Ki), Ω̄ = ∪N

i=1Ki,

be the space in which problem (1) is approximated. Note that Xh(Ω) �⊂ H1(Ω)
and its elements do not vanish on ∂Ω, in general.
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The discrete problem for (1) is of the form:
Find u∗

h ∈ Xh(Ω) such that

âh(u∗
h, vh) = f(vh), vh ∈ Xh(Ω), (2)

where for u, v ∈ Xh(Ω), u = {ui}N
i=1, ui ∈ Xi(Ki),

âh(u, v) =
N∑

i=1

âi(u, v), f(v) =
N∑

i=1

∫
Ki

fvidx.

Since we use linear elements, we can assume without loss of generality that
ρ|Ki

= ρi is constant on Ki. Here

âi(u, v) = ai(u, v) + si(u, v) + pi(u, v),

ai(u, v) =
∫

Ki

ρi∇ui · ∇vidx,

si(u, v) =
∑

Eij⊂∂Ki

∫
Eij

ωij [nT
i ρi∇ui(vj − vi) + nT

i ρi∇vi(uj − ui)] ds,

pi(u, v) =
∑

Eij⊂∂Ki

σ

h

∫
Eij

γij(ui − uj)(vi − vj) ds

where Eij = Eji = ∂Ki ∩ ∂Kj , Eij ⊂ ∂Ki and Eji ⊂ ∂Kj ; ni = nEij
is the unit

normal vector to Eij pointing from Ki to Kj ;

ωij ≡ ωEij
=

ρj

ρi + ρj
, ωji ≡ ωEji

=
ρi

ρi + ρj

and
γij ≡ γEij

=
2ρiρj

ρi + ρj
;

σ is a positive penalty parameter (sufficiently large, see below Lemma 1). For
boundary egdes these definitions extend straightforwardly, setting for Eij ⊂ ∂Ω:
ωij = 1, ωji = 0, vj = uj = 0 and γij = ρi.

To analyze problem (2) we introduce some auxiliary bilinear forms and a
broken norm. Let

dh(u, v) =
N∑

i=1

di(u, v), di(u, v) = ai(u, v) + pi(u, v) (3)

and let the weighted broken norm in Xh(Ω) be defined by

‖ u ‖21,h≡ dh(u, u)=
N∑

i=1

{
‖ (ρi)1/2∇ui ‖2L2(Ki)

+
∑

Eij⊂∂Ki

σ

h
γij ‖ ui−uj ‖2L2(Eij)

}.

(4)
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Lemma 1. There exists σ0 > 0 such that for σ ≥ σ0 there exist positive con-
stants C0 and C1 independent of ρi and h such that for any u ∈ Xh hold

C0di(u, u) ≤ âi(u, u) ≤ C1di(u, u)

and
C0dh(u, u) ≤ â(u, u) ≤ C1dh(u, u).

For the proof we refer the reader to [2]; see also [3] or [1].
Lemma 1 implies that the discrete problem (2) is well posed if the penalty

parameter σ ≥ σ0. Below σ is fixed and assumed to satisfy the above condition.
The error bound is given by

Theorem 2. Let u∗ and u∗
h be the solutions of (1) and (2). For u∗

|Ki
∈ H2(Ki)

holds

‖ u∗ − u∗
h ‖21,h≤ Mh2

N∑
i=1

ρi|u∗|2H2(Ki)

where M is independent of h, u∗ and ρi.

The proof follows from Lemma 1; for details see, for example, [3].

3 ASM with a Multiscale Coarse Space

We design and analyze a two-level additive Schwarz method (ASM) for solving
the discrete problem (2). For that the general theory of ASMs is used, see [5].
The decomposition of Xh(Ω) consists of the local spaces defined on subdomains
extended from the coarse triangles Ωl, and the global space of continuous discrete
harmonic functions related to the coarse triangulation.

3.1 Decomposition of Xh(Ω)

Let

Xh(Ω) = V (0)(Ω) +
L∑

l=1

V (l)(Ω) (5)

where V (0)(Ω) is a coarse space while V (l)(Ω), l = 1, . . . L, are local spaces
associated with Ωl. They are defined as follows. For l = 1, . . . , L, Ωl is extended
to Ω′

l by adding triangles from the fine triangulation around ∂Ωl which intersect
∂Ωi by vertex and/or edge. In this way we get an overlapping partitioning of Ω,

Ω̄ =
L⋃

l=1

Ω̄′
l

with overlap δl ≈ 2h defined as

δl = dist(∂Ω′
l \ ∂Ω, ∂

o

Ωl \ ∂Ω)
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where
o

Ωl denotes the interior part of Ωl which is not overlapped by any other
Ωp for p �= l; see [5, p. 198] for figures which exemplify such decomposition.

The local spaces V (l)(Ω) for l = 1, . . . , L are defined as

V (l)(Ω) = {{vi}N
i=1 ∈ Xh(Ω) : vi = 0 on Ki �⊂ Ω̄′

l}. (6)

Thus V (l)(Ω) is the restriction of Xh(Ω) to Ω̄′
l and zero outside of Ω̄′

l.
The coarse space V (0)(Ω) is defined in a special way. The functions in V (0)(Ω)

are going to be piecewise linear continuous on the fine triangulation and discrete
harmonic on ∂Ωl and in Ωl. Let ν be the set of all vertices of Ω̄l. With each x(k) ∈
ν, a function Φk(x) is associated with support on a union of coarse triangles Ωl

for which x(k) is a common vertex. On the set ν, we set Φk(x(k)) = 1 and
Φk(x) = 0 otherwise. Next we define Φk on the boundary of each Ωl. Let x(k) be
a vertex of Ωl and let Flp denote an edge of Ωl shared with Ωp, Flp = ∂Ωl ∩∂Ωp.
Let aΩl

(·, ·) be the restriction of a(·, ·) to Ω̄l, i.e.

aΩl
(u, v) =

∑
Ki⊂Ω̄l

(ρi∇u,∇v)L2(Ki) = (ρ(l)∇u,∇v)L2(Ωl), (7)

where by definition ρ(l) = ρi on Ki ⊂ Ω̄l. Then the restriction of aΩl
(·, ·) to Flp

is defined as
aFlp

(u, v) = (ρlpDτu,Dτv)L2(Flp) (8)

where Dτ is the tangential derivative and ρlp, on Flp, is the harmonic average
of the coefficients on Ωl and Ωp, i.e. ρlp = 2ρ(l)ρ(p)/(ρ(l) + ρ(p)). Note that in
this way ρlp = ρpl. On Flp, we define the values of Φk as the solution of the
one-dimensional problem:

aFlp
(Φk, v) = 0 ∀v ∈

o

V h(Flp) (9)

with Dirichlet boundary conditions Φk(x(k)) = 1 and Φk(x(m)) = 0 at the other

end, x(m), of Flp. Above,
o

V h(Flp) is the set of piecewise linear continuous func-
tions with zero values on ∂Flp. In addition we set Φk(x) = 0 on those edges of
Ωl which do not end at x(k).

Finally we extend Φk, already defined on ∂Ωl, into Ωl as a discrete harmonic
function in the sense of aΩl

(·, ·), i.e.
{

aΩl
(Φk, v) = 0, ∀v ∈

o

V h(Ωl)
with Φk(x) on ∂Ωl defined in (9).

(10)

Here v ∈
o

V h(Ωl) is a set of piecewise linear continuous functions defined on Ω̄l

with zero values on ∂Ωl.
Using these functions, the coarse space V (0)(Ω) is defined as

V (0) = span{Φk(x)}x(k)∈ν . (11)

Of course V (0) ⊂ Xh(Ω).
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Remark 3. This space is called a multiscale coarse space and at the beginning it
was used to obtain more accurate approximation. In [4], V (0)(Ω) was used also
as a coarse space in ASM for the conforming (continuous) finite element method
in the case when the coefficients are piecewise constant across ∂Ωl, l = 1, . . . , L.

3.2 Inexact Solver

For u(0), v(0) ∈ V (0)(Ω), let

b0(u(0), v(0)) = dh(u(0), v(0)), (12)

where dh(·, ·) is defined in (3).
For l = 1, . . . , L we set

bl(u(l), v(l)) = dΩ′
l
(u(l), v(l)), u(l), v(l) ∈ V (l)(Ω) (13)

where for u(l) = {u
(l)
i }N

i=1, v(l) = {v
(l)
i }N

i=1

dΩ′
l
(u(l), v(l)) =

∑
Ki⊂Ω̄′

l

{(ρi∇u
(l)
i ,∇v

(l)
i )L2(Ki) +

+
∑

Eij⊂∂Ki

γij
σ

h
(u(l)

j − u
(l)
i , v

(l)
j − v

(l)
i )L2(Eij)}. (14)

3.3 The Operator Equation

For l = 0, 1, . . . , L let Tl : Xh(Ω) → V (l)(Ω) be defined by

bl(Tlu, v) = âh(u, v), v ∈ V (l)(Ω). (15)

Note that Tlu is defined uniquely for given u ∈ Xh(Ω) as the solution of local
problems defined on Ω′

l for l = 1, . . . , L, and the global one for l = 0.
Let

T = T0 + T1 + · · · + TL. (16)

We replace (2) by the following operator equation

Tu∗
h = gh (17)

where gh =
∑L

l=0 gl, gl ≡ Tlu
∗
h. Note that to compute gl we do not need to know

u∗
h, the solution of (1).

Problems (2) and (17) are equivalent, what follows from the theorem below.
To formulate the convergence theorem for the discussed ASM we have to

introduce some notation. Let us for each Ωl define

ρ̄l = sup
Ki⊂Ωh

l

ρi (18)
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where Ωh
l is a union of triangles Ki ⊂ Ω̄l which intersect ∂Ωl by vertex and/or

edge.

Theorem 4. The operator T defined in (16) satisfies T = T ∗ > 0. Moreover,
for any u ∈ Xh(Ω) there holds

C0β
−1âh(u, u) ≤ âh(Tu, u) ≤ C1âh(u, u) (19)

where

β = max
l=1,...,L

ρ̄l
Hl

h

(
1 + log

Hl

h

)2

, (20)

with ρ̄l defined in (18), and C0 and C1 are positive constants independent of H,
h and the jumps of ρ(x).

Remark 5. The proof of Theorem 5 needs to check three key assumptions of
abstract theory of ASMs, see for example the book [5]. For that we need several
auxiliary lemmas, some of them are new. The proof is omitted here due to the
limit of pages. It will be published elsewhere together with supporting numerical
tests.

4 Implementation

Equation (17) can be solved efficiently by the conjugate gradient method. To
simplify the presentation we discuss here the Richardson’s method instead. The
latter is of the form: given u(0), iterate for n = 0, 1, . . .

u(n+1) = u(n) − τ∗(Tu(n) − gh) (21)

where we can set τ∗ = 2/(C1 + C0β
−1) according to Theorem 5. Since

r(n) ≡ (Tu(n) − gh) =
L∑

l=0

(Tlu
(n) − gh) =

L∑
l=0

Tl(u(n) − u∗
h) ≡

L∑
l=0

r
(n)
l , (22)

we need to compute r
(n)
l ≡ Tl(u(n) − u∗

h) for l = 0, 1, . . . , L. Note that these
problems, see (15), are independent of each other, therefore, they can be solved
in parallel. Problems for l = 1, . . . , L are local, and they are defined on Ω′

l.
The problem for l = 0 is global and it is defined on the coarse triangulation

with piecewise linear continuous functions. The solution of the coarse problem
requires finding the coarse basis functions {Φk} for all the vertices x(k) of the
coarse triangles. This is a precomputation step and it should be carried out
before starting the iterative process (21).

The above implementation shows that the proposed algorithm is very well
suited for parallel computations.
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