Accelerating String Matching
on MIC Architecture for Motif Extraction

Solon P. Pissis"2®) Christian Goll?,
Pavlos Pavlidis®, and Alexandros Stamatakis?

! Florida Museum of Natural History, University of Florida, Gainesville, USA
solon.pissis@kcl.ac.uk
2 Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
3 Foundation for Research and Technology — Hellas, Iraklio, Greece

Abstract. Identifying repeated factors that occur in a string of letters
or common factors that occur in a set of strings represents an important
task in computer science and biology. Such patterns are called motifs,
and the process of identifying them is called motif extraction. In biology,
motifs may correspond to functional elements in DNA, RNA, or pro-
tein molecules. In this article, we orchestrate MoTeX, a high-performance
computing tool for MoTif eXtraction from large-scale datasets, on Many
Integrated Core (MIC) architecture. MoTeX uses state-of-the-art algo-
rithms for solving the fixed-length approximate string-matching prob-
lem. It comes in three flavors: a standard CPU version; an OpenMP
version; and an MPI version. We compare the performance of our MIC
implementation to the corresponding CPU version of MoTeX. Our MIC
implementation accelerates the computations by a factor of ten com-
pared to the CPU version. We also compare the performance of our MIC
implementation to the corresponding OpenMP version of MoTeX running
on modern Multicore architectures. Our MIC implementation accelerates
the computations by a factor of two compared to the OpenMP version.

Keywords: Motif extraction - HPC - MIC architecture

1 Introduction

Identifying repeated factors that occur in a string of letters or common factors
that occur in a set of strings represents an important task in computer science
and biology. Such patterns are called motifs, and the process of identifying them
is called motif extraction. Motif extraction has numerous direct applications in
areas that require some form of text mining, that is, the process of deriving
reliable information from text [5]. Here we focus on its application to molecular
biology.

In biological applications, motifs correspond to functional and/or conserved
DNA, RNA, or protein sequences. Alternatively, they may correspond to (recently,
in evolutionary terms) duplicated genomic regions, such as transposable elements
or even whole genes. It is mandatory to allow for a certain number of mismatches

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part IT, LNCS 8385, pp. 258-267, 2014.
DOI: 10.1007/978-3-642-55195-6_24, (© Springer-Verlag Berlin Heidelberg 2014

Accelerating String Matching on MIC Architecture for Motif Extraction 259

between different occurrences of the same motif since both, single nucleotide poly-
morphisms, as well as errors introduced by wet-lab sequencing platforms might
have occurred. Hence, molecules that encode the same or related functions do not
necessarily have exactly identical sequences.

A DNA motif is defined as a sequence of nucleic acids that has a specific
biological function (e.g., a DNA binding site for a regulatory protein). The pat-
tern can be fairly short, 5 to 20 base-pairs (bp) long, and is known to occur in
different genes [7], or several times within the same gene [9]. The DNA motif
extraction problem is the task of detecting overrepresented motifs as well as
conserved motifs in a set of orthologous DNA sequences. Such conserved motifs
may, for instance, be potential candidates for transcription factor binding sites.

A single motif is a string of letters (word) on an alphabet X'. Given an integer
error threshold e, a motif on X' is said to e-occur in a string s on X, if the motif and
a factor (substring) of y differ by a distance of e. In accordance with the pioneering
work of Sagot [10], we formally define the common motifs problem as follows:

The common motifs problem takes as input a set s1,...,sy of strings on
Y, where N > 2, the quorum 1 < ¢ < N, the maximal allowed distance (error
threshold) e, and the length k for the motifs. It consists in determining all motifs
of length k, such that each motif e-occurs in at least ¢ input strings. Such motifs
are called valid. The values for k, e, and g are determined empirically.

In accordance with [3], motif extraction algorithms can be divided into two
major classes: (1) word-based (string-based) methods that mostly rely on exhaus-
tive enumeration, that is, counting and comparing oligonucleotide sequence
(k-mer) frequencies; and (2) probabilistic sequence models, where the model para-
meters are estimated using maximum-likelihood or Bayesian inference methods.

Here, we focus on word-based methods for motif extraction. A plethora of
word-based tools for motif extraction, such as RISO [6,10], YMF [11], Weeder [7],
and RISOTTO [1], have already been released. The comprehensive study by
Tompa et al. [12] compared thirteen different word-based and probabilistic meth-
ods on real and synthetic datasets, and identified Weeder and YMF—which are
both word-based—as the most effective methods for motif extraction.

Very recently, we have introduced MoTeX, the first word-based HPC tool
for MoTif eXtraction from large-scale datasets [8]. It can be used to tackle the
common motifs problem by making a stricter assumption on motif validity, which
we will elaborate later on. MoTeX is based on string algorithms for solving the so-
called fixed-length approximate string-matching problem under the edit distance
model [4] and under the Hamming distance model [2]. Given that k < w, where
w is the size of the computer word (in practice, w = 64 or w = 128), the time
complexity of this approach is O(N?n?) for the common motifs problem, where
n is the average sequence length. The analogous parallel time complexity is
O(N2n?/p), where p is the number of available processors.

Hence, MoTeX exhibits the following advantages: under the realistic assump-
tion that k& < w, time complexity does not depend on (i) the length k for the
motifs (ii) the size |X| of the alphabet, or (iii) the maximal allowed distance e.
Given the stricter assumption on motif validity, it is guaranteed to find globally

260 S.P. Pissis et al.

optimal solutions. Furthermore, the size of the output is linear with respect to
the size of the input. In addition, MoTeX can identify motifs either under the edit
distance model or the Hamming distance model. Finally, apart from the stan-
dard CPU version, MoTeX comes in two HPC flavors: the OpenMP-based version
that supports the symmetric multiprocessing programming (SMP) paradigm; and
the MPI-based version that supports the message-passing programming (MPP)
paradigm.

In [8], we demonstrated that MoTeX can alleviate the shortcomings of current
state-of-the-art tools for motif extraction from large-scale datasets. We showed
how the quadratic time complexity of MoTeX can be slashed, in theory and in
practice, by using parallel computations. The extensive experimental results pre-
sented in [8] are promising, both in terms of accuracy under statistical measures
of significance as well as efficiency; a fact that suggests that further research
and development of MoTeX is desirable. For instance, the MPI version of MoTeX
requires about one hour to process the full upstream Homo sapiens genes dataset
using 1056 processors, for any value of k£ and e, while current sequential pro-
grammes require more than two months for this task.

Our contribution. Many Integrated Core (MIC) architecture combines many
cores onto a single chip, the coprocessor. One can write parallel programs, using
the SMP paradigm, that can offload sections of code to run on the coprocessor—
or alternatively, that run natively on the coprocessor. The compiler provides the
language extensions to facilitate programming for MIC architecture such as prag-
mas to control the data transfer between the host CPU and the coprocessor. In
this article, we orchestrate MoTeX on MIC architecture. We compare the perfor-
mance of our MIC implementation, running on a single chip of MIC architecture,
to the corresponding CPU version of MoTeX running on the host CPU. Our MIC
implementation, using the full single-chip potential, accelerates the computa-
tions by a factor of ten compared to the CPU version. We also compare the
performance of our MIC implementation to the corresponding OpenMP version
of MoTeX running on a single chip of modern Multicore architectures. Our MIC
implementation accelerates the computations by a factor of two compared to the
OpenMP version, both using the full single-chip potential.

2 Definitions and Notation

In this section, in order to provide an overview of the algorithms used later on,
we give a few definitions.

An alphabet X' is a finite non-empty set whose elements are called letters.
A string on an alphabet X is a finite, possibly empty, sequence of elements of
2. The zero-letter sequence is called the empty string, and is denoted by €. The
length of a string x is defined as the length of the sequence associated with
the string z, and is denoted by |z|. We denote by z[i], for all 1 <4 < |z, the
letter at index ¢ of x. Each index 4, for all 1 < ¢ < |z|, is a position in & when
x # e. It follows that the ith letter of x is the letter at position 4 in x, and that
z=z[l..|z]].

Accelerating String Matching on MIC Architecture for Motif Extraction 261

A string x is a factor of a string y if there exist two strings v and v, such
that y = uxv. Let the strings z, y, u, and v, such that y = uzv. If u = ¢, then z
is a prefix of y. If v =€, then x is a suffiz of y.

Let be a non-empty string and y be a string. We say that there exists an
(exact) occurrence of x in y, or, more simply, that x occurs (exactly) in y, when
x is a factor of y. Every occurrence of z can be characterised by a position in y.
Thus we say that @ occurs at the starting position i in y when y[i . .i+|z|—1] = z.
It is sometimes more suitable to consider the ending position i + |x| — 1.

The edit distance, denoted by dg(z,y), for two strings « and y is defined as
the minimum total cost of operations required to transform string x into string
y. For simplicity, we only count the number of edit operations and consider that
the cost of each edit operation is 1. The allowed operations are the following:

— ins: insert a letter in y, not present in z; (€,b), b # &;
— del: delete a letter in y, present in z; (a,€), a # €;
— sub: substitute a letter in y with a letter in x; (a,b), a # b, a,b # e.

The Hamming distance dg is only defined on strings of the same length. For
two strings z and y, dg(x,y) is the number of positions in which the two strings
differ, that is, have different letters.

3 Algorithms

In this section, we first formally define the fized-length approximate string-
matching problem under the edit distance model and under the Hamming dis-
tance model. We then provide a brief description and analysis of the sequential
algorithms to solve it. Finally, we show how the common motifs problem can
be reduced to the fixed-length approximate string-matching problem, by using a
stricter assumption than the one in the initial problem definition for the validity
of motifs.

Problem 1 (Edit distance). Given a string x of length m, a string y of length n,
an integer k, and an integer e < k, find all factors of y, which are at an edit
distance less than, or equal to, e from every factor of fixed length k of x.

Problem 2 (Hamming distance). Given a string x of length m, a string y of
length n, an integer k£, and an integer e < k, find all the factors of y, which are
at a Hamming distance less than, or equal to, e from every factor of fixed length
k of x.

Let D[0..n,0..m] be a dynamic programming (DP) matrix, where D[z, j]
contains the edit distance between some factor y[i’ .. 1] of y, for some 1 < i’ <4,
and factor zfmax{1l,j —k+1}..j] of z, forall 1 <4 <mn, 1 < j < m. This
matrix can be obtained through a straightforward O(kmn)-time algorithm by
constructing DP matrices D*[0..7n,0..k], for all 1 < s < m — k + 1, where
D?[4, j] is the edit distance between some factor of y ending at y[i] and the prefix
of length j of z[s..s + k — 1]. We obtain D by collating D' and the last row of
D?, for all 2 < s <m — k+ 1. We say that z[max{1,j —k + 1}..j] e-occurs in
y ending at y[i] iff D[i,j] <e, forall1 <j<m,1<i<n.

262 S.P. Pissis et al.

Table 1. Matrix D and matrix M

o 1 2 3 4 5 6 7 O 1 2 3 4 5 6 7

[e]GlG]G[T[C[T[A] [e[G]T[G[AA[C]T]
o[€e] [0]1]2]3]3]3]3]3 o[e] [0]1]2]3]3]3]3]3
[6| [0]o]1]2]2]2][3]3 1[G [0]0]2][2][3]3]3]3
2[G|[0]o[0]1][1]2]3]3 2|T| [0]1]0]3]2]3]3]2
s|G|[0]o[0]0[1]2]3]3 s|c| [0]1][2]1[3]2]2]3
JT|[Of1]T]T]0[1]2]2 Jaljol1Tl2]3]1]23]2
5101221012 5101233213
o T| [0]1]2]3]2]1]0]1 |G| [0]0[2]2][3]3]2]1
7|A] [0]1][2]3]3]2]1]0 7|T] [0]1]0]3]2]3]3]2
(a) Matrix D for z = y := (b) Matrix M for := GTCACGT,
GGGTCTA and k :=3 y := GTGAACT, and k := 3

Example 1. Let the string « := GGGTCTA, the string y := z, and k := 3. Table 1a
illustrates matrix D. Consider, for instance, the case where ;7 = 6. Column 6
contains all e-occurrences of factor z[4..6] = TCT, that is the factor of length
k = 3 ending at position 6 of x, in y. Cell D[4, 6] = 2, tells us that there exists
some factor y[i’ .. 4] of y, such that, for i’ =2, dg(y[2..4],z[4..6]) = 2.

Hiopoulos, Mouchard, and Pinzon devised MaxShift [4], an algorithm with
time complexity O(m[k/w]n), where w is the size of the computer word. By
using word-level parallelism MaxShift can compute matrix D efficiently. The algo-
rithm requires constant time for computing each cell D[, j] by using word-level
operations, assuming that & < w. In the general case it requires O([k/w]) time.
Hence, algorithm MaxShift requires time O(mn), under the assumption that
k < w. The space complexity is O(m) since each row of D only depends on the
immediately preceding row.

Theorem 1 ([4]). Given a string x of length m, a string y of length n, an
integer k, and the size of the computer word w, matrix D can be computed in
time O(m[k/w]n).

Let M[0..n,0..m] be a DP matrix, where M[s, j] contains the Hamming
distance between factor ylmax{1,i—k+ 1} ..4] of y and factor x[max{1,j —k +
1}..jlof z, for all 1 <i <mn, 1 <j < m. Crochemore, Iliopoulos, and Pissis
devised an analogous algorithm [2] that solves the analogous problem under the
Hamming distance model with the same time and space complexity.

Theorem 2 ([2]). Given a string x of length m, a string y of length n, an
integer k, and the size of the computer word w, matric M can be computed in
time O(m[k/wln).

Ezxample 2. Let the string & := GTGAACT, the string y := GTCACGT, and k := 3.
Table 1b illustrates matrix M. Consider, for instance, the case where j = 7.

Accelerating String Matching on MIC Architecture for Motif Extraction 263

Column 7 contains all e-occurrences of factor x[5..7] = ACT, that is, the factor
of length k& = 3 ending at position 7 of z, in y. Cell M[6,7] = 1, tells us that
o (y[4..6],z[5..7]) = 1.

By making the following stricter assumption for motif validity, the common
motifs problem can be directly and efficiently solved using the above algorithms.

Definition 1. A wvalid motif is called strictly valid iff it occurs exactly, at least
once, in (any of) the input strings.

Consider, for instance, the DNA alphabet X = {A,C,G,T}. The number of
possible DNA motifs of length k := 10 is |X|*¥ = 1,048,576. Given a dataset
with a size of ~1 MB, the possibility that there exists a motif that is valid, but
not strictly valid, is rather unlikely. In other words, given such a dataset, the
possibility that there exists a pattern which does not occur exactly, at least
once, in the dataset and it also satisfies all the restrictions imposed by the input
parameters, is rather unlikely.

The common motifs problem (detecting strictly valid motifs) can be directly
solved by solving the fixed-length approximate string-matching problem for all
N? pairs of the N input strings. Consider, for example, the common motifs
problem under the Hamming distance model. We use an array u,. for each input
string s,., such that for all 1 < r < N, k < j < |s,|, u.[j] contains the total
number of strings in which motif s.[j — k + 1..j] e-occurs; we set u,[j] := 0,
for all 0 < j < k. Array u,., for all 1 < r < N, can easily be computed, by
computing matrix M for pair (s,, s¢), for all 1 < ¢ < N. While computing matrix
M, we increment w..[j] only once iff M[i, j] < e, for some k < i < |s|; as soon as
we have computed the N different matrices M for s,., it suffices to iterate over
array u, and report s.[j — k + 1..j], for all & < j < |s,|, as a strictly valid
motif iff u,.[j] > ¢. An array v,., such that v,[j], for all 1 < j < |s,|, denoting
the total number of e-occurrences of motif s.[fj —k—+1..j] in s1,...,$x can also
be maintained. Maintaining arrays u, and v, does not induce additional costs.
Therefore, the common motifs problem can be solved in time O(n?) per matrix,
where n is the average length of the N strings, thus O(N?n?) in total.

Ezample 3. Let the input strings s, := GTGAACT, s; := GTCACGT, e := 1, q := 2,
and k := 3. Further, let the current state of arrays u, and v, be:

7:01234567
u,[j]: 00001010
v:[j]:00002020

Table 1b illustrates matrix M. Arrays u, and v, are:

j:01234567
ur[j]:00012021
0 [j]:00013031

and so the strictly valid motifs are s,.[2..4] = TGA and s,[4..6] = AAC.

264 S.P. Pissis et al.

4 Implementation

MoTeX is implemented as a programme that solves the common motifs problem
for strictly valid motifs. MoTeX was implemented in the C programming language
under a GNU/Linux system. It is distributed under the GNU General Public
License (GPL). The open-source code and documentation are available at http://
www.exelixis-lab.org/motex. The mandatory input parameters are:

— a file with the N input strings in FASTA format (sequences);

— the length k for the motifs;

— the distance d (d := 0 for Hamming distance or d := 1 for edit distance);
— the maximal allowed distance e;

— the quorum ¢’ < 100 (%) as the ratio of quorum ¢ to N.

Given these parameters, MoTeX outputs a text file containing the strictly valid
motifs. For each reported motif, it also outputs the total number of sequences in
which the motif e-occurs at least once and the total number of its e-occurrences.

Apart from the standard CPU version, MoTeX comes in two HPC flavors: the
OpenMP version for shared memory systems and the MPI version for distributed
memory systems. The user can choose the best-suited version depending on: the
total size of the input sequences; the nature of the input dataset, for instance, a
few very long sequences or many relatively short sequences; the available HPC
architecture; and the number p > 1 of available processors.

Here we focus on the case when p < N, where N is the number of input
sequences; that is, we have a large number of relatively short sequences. The
user can choose any of the two HPC versions. MoTeX evenly distributes the com-
putation of the N2 distinct DP matrices for the N input sequences in a straight-
forward manner across the p processors. Therefore, if p < N, the common motifs
problem for strictly valid motifs can be solved in parallel in time O(N?n?/p).

4.1 MIC Implementation

Our MIC implementation is a parallel program that uses the SMP paradigm
by offloading sections of the code to run on the coprocessor. First, we used the
compiler option offload-attribute-target to flag every global routine and
global data object in the source file with the offload attribute target (mic).
The compiler supports two programming models: a non-shared memory
model and a virtual-shared memory model. In our implementation, we used the
non-shared memory model which is appropriate for dealing with flat data struc-
tures such as scalars, arrays, and structures that are bit-wise copyable. Data in
this model is copied back and forth between the host CPU and the coproces-
sor around regions of the offloaded code. The data selected for transfer is a
combination of variables implicitly transferred because they are lexically refer-
enced within offload constructs, and variables explicitly listed in clauses in the
pragma. Only pointers to non-pointer types are supported—pointers to pointer
variables are not supported. Arrays are supported provided the array element

http://www.exelixis-lab.org/motex
http://www.exelixis-lab.org/motex

Accelerating String Matching on MIC Architecture for Motif Extraction 265

type is a scalar or bitwise copyable structure or class—so arrays of pointers are
not supported. We therefore defined the following flat data structures:

— Sequence S = s$185...5n of size nIN, where s; is an input sequence, for all
1 <4 < N, and n is the average sequence length;

— Array L of size N, such that L[i] stores the length of s;1, for all 0 < i < N;

— Array | of size N, such that I[i] stores the starting position of s,11 in S, for
all 0 <i < N;

— Array U of size nN, such that U[I[7]..L[:] — 1] stores array u (see Sect.3 for
details) of s;41, for all 0 < i < Nj;

— Array V of size nN, such that V[I[{]..L[i] — 1] stores array v (see Sect.3 for
details) of s;41, for all 0 < i < N.

Then we placed the offload pragma before the code block computing the N2
distinct DP matrices for the N input sequences. While the instruction sets for
the host CPU and the coprocessor are similar, they do not share the same system
memory. This means that the variables used by the code block must exist on
both the host CPU and coprocessor. To ensure that they do, the pragmas use
specifiers to define the variables to copy between the host CPU and coprocessor:

— in specifier defines a variable as strictly an input to the coprocessor. The
value is not copied back to the host CPU. S, L, and | were defined by in;

— out specifier defines a variable as strictly an output of the coprocessor. U and
V were defined by out.

Therefore it becomes obvious that S, L, I, U, and V are copied either back or
forth between the host CPU and the coprocessor at most once.

Finally, the code-block statement following the offload pragma is converted
into an outlined function that runs on the coprocessor. This code is permitted to
call other functions. In order to ensure that these called functions are also avail-
able on the coprocessor, we marked the functions to be called by the offloaded
code block with the special function attribute _ _declspec(target (mic)).

5 Experimental Results

The following experiments were conducted on a GNU/Linux system running on:

— Multicore architecture I: a single AMD Opteron 6174 Magny-Cours CPU
at 2.20 GHz with 12 cores;

— Multicore architecture II: a single Intel Xeon CPU E5-2630 0 at 2.30 GHz
with 6 cores;

— MIC architecture: a single Intel Xeon host CPU E5-2630 0 at 2.30 GHz
with a single Intel Xeon Phi 5110P coprocessor at 1.053 GHz with 60 cores.

We evaluated the time performance of our MIC implementation, denoted by
MoTeX-MIC (Xeon-Phi), running on the host CPU and the coprocessor against:
(i) the standard CPU version of MoTeX, denoted by MoTeX-CPU (Opt), and

266 S.P. Pissis et al.

2500

T 2500 T
MoTeX-CPU (Opt) E50cE

MoTeX-OMP -t 12 (Opt) &
MoTeX-CPU (Xeon)
MoTeX-OMP -t 6 (Xeon
MoTeX-MIC (Xeon-Phi)

MoTeX-CPU (Opt
MoTeX-OMP -t 12 (Of
MoTeX-CPU (Xeor
MoTeX-OMP -t 6 (Xeon) ¢
MoTeX-MIC (Xeon-Phi)
2000 - 1 2000 |-

possstoten

XX

%

X
3%

%5

XX
R

CRES

S90ees
SSoesasstetes

1500 4 Z 1500 |

o

S
B

2

Elapsed time [
29383

Elapsed time [s]

1000

09S

1000 -

3

RRIIRRE:
SIRELELEE

s
K

8021 8121 10,031 101,31
Length for motifs [bp], Distance [-], Max distance [, Quorum [%] Length for motifs [bp], Distance [-, Max distance [-], Quorum [%]

(a) 1062 sequences of Bacillus subtilis (b) 200 sequences of Homo sapiens

Fig. 1. Elapsed-time comparisons for the common motifs problem

(ii) the OpenMP version with 12 threads, denoted by MoTeX-OMP -t 12 (Opt),
both running on the Multicore architecture I; and (iii) the standard CPU ver-
sion of MoTeX, denoted by MoTeX-CPU (Xeon), and (iv) the OpenMP version
with 6 threads, denoted by MoTeX-0OMP -t 6 (Xeomn), both running on the Mul-
ticore architecture II. As input datasets for the programmes, we used 1062
upstream sequences of Bacillus subtilis genes of total size 240 KB and 200 and
1200 upstream sequences of Homo sapiens genes of total size 240 KB and 1.2 MB,
respectively, obtained from the ENSEMBL database. We measured the elapsed
time for each programme for different combinations of input parameters. In par-
ticular, we provided different values for the motif length k, the distance d used,
the maximal allowed distance e, and the quorum ¢’ as a proportion of sequences
in the input dataset.

As depicted in Figs. 1 and 2, our MIC implementation accelerates the compu-
tations by a factor of ten compared to the corresponding CPU version and by a
factor of two compared to the OpenMP version. We observe that, similar to other
architectures such as GPGPU, for the same input dataset, the speedup gained

8000 T T

MoTeX-OMP -t 12 (Opt) E2x= P
MoTeX-OMP -t 6 (Xeon) ewsszn
MoTeX-MIC (Xeon-Phi) messses

7000

6000

5000

4000

Elapsed time [s]

3000

2000

1000

12,041 12,141
Length for motifs [bp], Distance [-], Max distance [, Quorum [%]

Fig. 2. Elapsed-time comparison for the common motifs problem using 1200 sequences
of Homo sapiens

Accelerating String Matching on MIC Architecture for Motif Extraction 267

from our MIC implementation increases as the ratio of the workload to the size
of the data transferred between the host CPU and the coprocessor increases.
For instance, notice that in Fig.2, while the time efficiency of MoTeX-OMP -t
12 (Opt), MoTeX-0OMP -t 6 (Xeon), and MoTeX-MIC (Xeon-Phi) is similar for
Hamming distance, the later programme becomes faster by a factor of two with
the same dataset for edit distance, which is computationally more intensive.

References

10.

11.

12.

. Pisanti, N., Carvalho, A.M., Marsan, L., Sagot, M.-F.: RISOTTO: fast extraction

of Motifs with mismatches. In: Correa, J., Hevia, A., Kiwi, M. (eds.) LATIN 2006.
LNCS, vol. 3887, pp. 757-768. Springer, Heidelberg (2006)

Crochemore, M., Iliopoulos, C.S., Pissis, S.P.: A parallel algorithm for fixed-
length approximate string-matching with k-mismatches. In: Elomaa, T., Mannila,
H., Orponen, P. (eds.) Ukkonen Festschrift 2010. LNCS, vol. 6060, pp. 92-101.
Springer, Heidelberg (2010)

Das, M., Dai, H.K.: A survey of DNA motif finding algorithms. BMC Bioinform.
8(Suppl 7), S21+ (2007)

Iliopoulos, C.S., Mouchard, L., Pinzon, Y.J.: The Max-Shift algorithm for approxi-
mate string matching. In: Brodal, G., Frigioni, D., Marchetti-Spaccamela, A. (eds.)
WAE 2001. LNCS, vol. 2141, pp. 13-25. Springer, Heidelberg (2001)

Lothaire, M. (ed.): Applied Combinatorics on Words. Cambridge University Press,
New York (2005)

Marsan, L., Sagot, M.F.: Algorithms for extracting structured motifs using a suffix
tree with an application to promoter and regulatory site consensus identification.
J. Comput. Biol. J. Comput. Mol. Cell Biol. 7(3-4), 345-362 (2000)

Pavesi, G., Mereghetti, P., Mauri, G., Pesole, G.: Weeder web: discovery of tran-
scription factor binding sites in a set of sequences from co-regulated genes. Nucleic
Acids Res. 32(Web-Server-Issue), 199-203 (2004)

Pissis, S.P., Stamatakis, A., Pavlidis, P.: MoTeX: a word-based HPC tool for MoTif
eXtraction. In: Gao, J. (ed.) Fourth ACM International Conference on Bioinfor-
matics and Computational Biology (ACM-BCB 2013), pp. 13-22 (2013)
Rombauts, S., Déhais, P., Van Montagu, M., Rouzé, P.: PlantCARE, a plant cis-
acting regulatory element database. Nucleic Acids Res. 27(1), 295-296 (1999)
Sagot, M.-F.: Spelling approximate repeated or common Motifs using a suffix tree.
In: Lucchesi, C., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 374-390.
Springer, Heidelberg (1998)

Sinha, S., Tompa, M.: YMF: a program for discovery of novel transcription factor
binding sites by statistical verrepresentation. Nucleic Acids Res. 31(13), 3586-3588
(2003)

Tompa, M., Li, N.; Bailey, T.L., Church, G.M., De Moor, B., Eskin, E., Favorov,
A.V., Frith, M.C., Fu, Y., Kent, W.J., Makeev, V.J., Mironov, A.A., Noble, W.S.,
Pavesi, G., Pesole, G., Regnier, M., Simonis, N., Sinha, S., Thijs, G., van Helden, J.,
Vandenbogaert, M., Weng, Z., Workman, C., Ye, C., Zhu, Z.: Assessing computa-
tional tools for the discovery of transcription factor binding sites. Nat. Biotechnol.
23(1), 137144 (2005)

	Accelerating String Matching on MIC Architecture for Motif Extraction
	1 Introduction
	2 Definitions and Notation
	3 Algorithms
	4 Implementation
	4.1 MIC Implementation

	5 Experimental Results
	References

