
Scheduling Moldable Tasks with Precedence
Constraints and Arbitrary Speedup Functions

on Multiprocessors

Sascha Hunold(B)

Research Group Parallel Computing,
Vienna University of Technology, Vienna, Austria

hunold@par.tuwien.ac.at

Abstract. Due to the increasing number of cores of current parallel
machines, the question arises to which cores parallel tasks should be
mapped. Thus, parallel task scheduling is now more relevant than ever,
especially under the moldable task model, in which tasks are allocated
a fixed number of processors before execution. Scheduling algorithms
commonly assume that the speedup function of moldable tasks is either
non-decreasing, sub-linear or concave. In practice, however, the resulting
speedup of parallel programs on current hardware with deep memory
hierarchies is most often neither non-decreasing nor concave.

We present a new algorithm for the problem of scheduling moldable
tasks with precedence constraints for the makespan objective and for
arbitrary speedup functions. We show through simulation that the algo-
rithm not only creates competitive schedules for moldable tasks with
arbitrary speedup functions, but also outperforms other published heuris-
tics and approximation algorithms for non-decreasing speedup functions.

Keywords: Multiprocessor scheduling · Homogeneous processors ·
Moldable tasks · Makespan optimization · Speedup functions

1 Introduction

The problem of scheduling parallel tasks has been intensively studied, and it
originally stems from the need of improving the utilization of massively parallel
processors (MPPs) [1]. Researchers attempted to understand the implications of
different job scheduling strategies on the utilization of parallel systems theoret-
ically and practically. Drozdowski distinguishes between three types of parallel
tasks [2] (called job flexibility by Feitelson et al. [1]): (1) the rigid task requires
a predefined fixed number of processors for execution, (2) the moldable task for
which the number of processors is decidable before the execution starts, but
stays unchanged afterwards, and (3) the malleable task, where the number of
processors may vary during execution.

We focus on the moldable task model. The reason is mostly practical, since
the malleable model would require additional effort from programmers, e.g., to

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 13–25, 2014.
DOI: 10.1007/978-3-642-55195-6 2, c© Springer-Verlag Berlin Heidelberg 2014

14 S. Hunold

5
1
0

2
0

5
0

1
0
0 NAS PB / LU, Class A

ti
m

e
[s

]

0 10 20 30 40

1
0
0

1
4
0

1
8
0

2
2
0

nb. of cores

w
o
rk

[s
]

1 4 7 10 13 16 19 22 25 28 31

0
.0

0
.5

1
.0

1
.5

2
.0

PDGEMM / matrix size = 2048

nb. of cores

ru
n

ti
m

e
[s

]

Fig. 1. Left: work (top) and run-time (bottom) of LU benchmark (4 sockets, 48 cores,
AMD Opteron 6168); Right: execution times of PDGEMM (20 runs per core count,
GBit Ethernet, AMD Opteron 6134)

redistribute data or synchronize thread groups. Pthreads or OpenMP programs
are typical examples of moldable tasks as users can specify the number of threads
before the execution of a parallel program. MPI applications are examples of
moldable programs for distributed memory machines.

Today, researchers in parallel computing face the question of how to program
the available processors (or cores) efficiently. One approach is to model an appli-
cation as directed cyclic graphs (DAGs), where edges make data dependencies
explicit and nodes represent computations. The MAGMA library is an example,
where DAGs represent parallel applications [3].

To execute moldable tasks of a DAG, a scheduling algorithm has to determine
(1) the next task to be executed and (2) the set of processors to which a task
is mapped. In the scheduling literature, this is known as scheduling problem for
moldable tasks with precedence constraints [2] (sometimes also called malleable
task scheduling [4–7]). A common assumption is that the run-time function of
each parallel task is non-increasing and the corresponding work function is non-
decreasing in the number of processors. The work is defined as the product of
run-time and number of processors. Figure 1 shows two examples where this
assumption is violated in practice. The two plots on the left show run-time and
work of the NAS LU benchmark on a 48-core shared-memory machine (median
of five runs). The run-time is almost non-increasing but the corresponding work
decreases several times, e.g., at 21 or 31 cores. The chart on the right shows the
run-time of PDGEMM from ScaLAPACK (using GotoBLAS). Since this matrix
multiplication routine works best on a square processor grid, we see an increased
run-time for 11 or 13 processors. This “zigzagging” was already observed by van
de Geijn and Watts [8]. One could solve this problem of the 0run-time function
by using (k − 1) instead of k processors if the run-time on (k − 1) processors is
smaller. The resulting run-time function would be non-increasing, but the work
function could still be decreasing (similar to the plot on the left-hand side).

Scheduling Moldable Tasks with Arbitrary Speedup Functions 15

Therefore, we propose an algorithm for scheduling non-preemptive mold-
able tasks with precedence constraints for (1) non-increasing run-time and non-
decreasing work functions and also (2) arbitrary run-time and work functions.
In the three-field notation of Graham et al., we investigate P |any,NdSub, prec|
Cmax and P |any, prec|Cmax, where P denotes the number of processors, any the
moldable tasks, prec the precedence constraints, and NdSub the nondecreasing
sublinear speedup1. Our objective is to minimize the makespan Cmax.

We make several contributions to moldable task scheduling. First, we propose
a new algorithm (CPA13)2 that supports arbitrary run-time functions of mold-
able tasks. We show through simulation that our algorithm is competitive in the
cases considered. Second, we compare schedules produced by CPA13 with sched-
ules produced by several approximation algorithms with performance guarantees.
To the best of our knowledge, this is the first experimental study that evaluates
both CPA-style algorithms and approximation algorithms through simulation.
We show that our new algorithm CPA13 produces shorter schedules even when
the run-time function of each parallel task is non-increasing. Previous studies
of moldable task scheduling algorithms use the absolute makespan to compare
heuristics. However, such analysis provides little evidence of the schedule quality.
Hence, as third contribution, we compare algorithms by their performance ratio,
which is the ratio of makespan and lower bound.

Section 2 introduces notation and Sect. 3 discusses related work. We introduce
the new scheduling algorithm and show complexity results in Sect. 4, while Sect. 5
presents the simulation results before we conclude in Sect. 6.

2 Definitions and Notation

We consider the problem of scheduling n moldable tasks with precedence con-
straints on m identical processors under the makespan objective Cmax. We study
the offline and clairvoyant version of the problem, i.e., the entire DAG and the
processing times for each node are known to the scheduler. The application is
represented as directed acyclic graph G = (V,E), where V = {1, . . . , n} denotes
the set of moldable tasks and E ⊆ V × V represents the set of edges (arcs)
between tasks (e = |E|). For every task vj , pj(i) denotes the execution time of
task j on i processors, and wj(i) = i · pj(i) denotes its work. Further, variable
αj refers to the number of processors allotted to task j.

The functions pj(i) and wj(i) are often assumed to be monotonic [10, Chap.
26], i.e., pj(i) is non-increasing and wj(i) non-decreasing in i. Formally, pj(i) ≥
pj(k), and wj(i) ≤ wj(k), for i ≤ k. Some algorithms require that pj(i) not only
needs to be non-increasing, but also convex in the interval [1,m]. The work W
of a DAG is computed as W =

∑
vi

pi(αi)αi.

1 For more details on notation see [2,9,10].
2 Critical Path and Area-based Scheduling (CPA), “13” refers to the present year.

16 S. Hunold

3 Related Work

The problem of scheduling rigid tasks, where precedence constraints are given as
a set of chains P2|sizej , chain|Cmax is strongly NP-hard for m ≥ 2 [10]. For the
more general problem of scheduling moldable tasks with precedence constraints
several approximation algorithms exist. Lepère et al. presented an approxima-
tion algorithm with performance guarantee of 3 +

√
5 ≈ 5.236 [4], where the

scheduling problem is decomposed into an allotment and a mapping problem.
The allotment problem is solved by applying Skutella’s method for obtaining
an approximate solution to the discrete time-cost trade-off problem [11]. Jansen
and Zhang improved the approximation ratio (to ≈ 4.73) by changing the round-
ing strategy for the fractional solution produced by the linear relaxation of the
discrete problem [5]. The algorithms presented in [4–6] require monotony of run-
time and work, and the most recent algorithm (with approximation ratio ≈ 3.29)
also requires that “the work function of any malleable task is non-decreasing in
the number of processors and is convex in the processing time” [6].

Radulescu and van Gemund used similar observations as reported in [4,5] for
solving the allotment problem. Thus, the Critical Path and Area-based Schedul-
ing (CPA) algorithm is based on the fact that the average work W/m and the
length of the critical path L are lower bounds of Cmax [12]. CPA starts by allo-
cating a single processor to each task, inspects the tasks on the critical path, and
then adds one processor to the task that decreases the average processor utiliza-
tion (runtime / number of processors) the most. The allocation process repeats
until the critical path L is smaller than the average work (W/m). Bansal et al.
discovered that CPA should take task parallelism better into account [13]. More
precisely, the allocation routine of CPA often produces large processor allot-
ments, with the consequence that tasks—which can potentially be executed in
parallel—need to run sequentially. Bansal et al. introduced the Modified CPA
(MCPA) algorithm, which considers the depth of tasks in the allocation phase.
In particular, no more processors are allotted to a task if already m processors
have been allotted to tasks in the same depth. We showed in previous work how
low-cost improvements to MCPA, such as relaxing the allotment constraints per
precedence level or allowing allocation reductions, can improve the performance
significantly [14].

Desprez and Suter attempted to optimize both the makespan and the total
work when scheduling a DAG [15]. They proposed the bi-criteria optimization
algorithm BiCPA that computes the processor allotment for m different cluster
sizes [1, 2, . . . ,m] and selects the allotment that optimizes a given makespan-
work ratio. BiCPA produces “short” and “narrow” schedules, yet it increases
the computational complexity significantly.

All algorithms described above assume non-increasing run-time and non-
decreasing work functions. For the case of arbitrary run-time functions, only
few algorithms have been proposed. Günther et al. presented an FPTAS for this
scheduling problem [7]. As the general problem is strongly NP-hard, they looked
at DAGs with bounded width and developed a dynamic program. For practical
applicability, the FPTAS has a rather large complexity of O((n3

ε)2ωm2ω), where

Scheduling Moldable Tasks with Arbitrary Speedup Functions 17

Table 1. Overview of notation used in the present article

m – number of processors n – number of tasks (nodes)
e – number of edges (|E|) L – length of critical path
W – overall work of DAG G – min.rel. run-time improvement
vj – task j αj – processors allotted to task vj
pj(k) – run-time of task j with k processors bj – benefit of task j

rj – rel. run-time improvement lbj – bottom level of task vj
lpj – precedence level of task vj m̃d – nb. processors in prec. level d

ω denotes the maximum width of a DAG. In previous work, we already addressed
the challenge of arbitrary run-time functions by using an evolutionary algorithm
(EA) to find short schedules [16]. The proposed algorithm EMTS takes allotment
solutions of several heuristics, like CPA and MCPA, and optimizes them using
an (μ+λ)-EA. When generating and evaluating many offspring, EMTS can find
short schedules, while having the disadvantage of an increased run-time.

In sum, efficient heuristics and approximation algorithms only exist for non-
increasing run-time and non-decreasing work functions, and previous algorithms
without such limitations have high computational demands.

4 Scheduling Algorithm

Our proposed scheduling algorithm applies concepts of the algorithms discussed
before, e.g., reducing the critical path while keeping the overall work small.
Lepère et al. and Jansen/Zhang also applied this concept in their algorithms.
We define the following requirements for our scheduling algorithm: several pub-
lished articles addressed the problem of CPA that allotments can grow too big
regardless of their speedup. To solve this problem, we introduce the relative run-
time threshold G, which defines the minimum runtime improvement that a larger
allotment needs to provide to be considered as possible solution. As shown later,
this threshold is key for short and compact schedules. Task parallelism should be
conserved as much as possible. To do so, MCPA checks all the visited nodes in a
certain DAG depth, but may unmark once visited nodes. In contrast, our algo-
rithm considers all allotments of those nodes that were once marked. In addition,
the mapping function that selects processors for ready tasks has often been over-
looked in previous studies. Since we showed that reducing processor allotments
in the mapping step can significantly improve the overall schedule [14], CPA13
applies a binary search strategy to find a possibly smaller task allotment that
does not increase the estimated completion time.

4.1 Pseudocode

Algorithm 1 presents the allotment function of our algorithm named CPA13. For
an easier comprehension we summarize the notation in Table 1. Let us highlight
the main steps of the algorithm. In the initialization phase, each task is allotted

18 S. Hunold

Algorithm 1. CPA13 allocation procedure
1: for all vj ∈ V do
2: αj ← 1
3: mark vj as UNVISITED
4: Aj ← list of increasing allotment sizes for which:

∀ai, ak ∈ Aj , i < k : pj(i) > pj(k)
5: k̃ ← 1
6: for k in 2 . . . |Aj | do
7: bjk ←

(
pj(ak̃

)

a
k̃

− pj(ak)

ak

)

8: rjk ← pj(ak̃
)−pj(ak)

pj(ak̃
)

9: if rjk ≥ G then

10: k̃ ← k
11: store (k, bjk) in list of possible allotments for task vj
12: while L > W/m do
13: VCP ← collect tasks on critical path
14: (vb, α̃b, bb) ← (nil, m, 0.0) // initialize current best temporary values
15: m̃d ←∑vl∈Ṽ αl where Ṽ = {vk ∈ V s.t. lbk = d ∧ vk marked VISITED }
16: for all vj ∈ VCP do
17: bjk , ajk ← benefit and size of task’s vj next larger allocation
18: s ← ajk − αj // absolute increase in number of processors
19: if m̃dj + s ≤ m ∧ bjk > bb then
20: (vb, α̃b, bb) ← (vj , ajk , bjk) // current best
21: if vb �= nil then
22: αb ← α̃b // increase allotment of task vb
23: mark vb as VISITED
24: recompute L and W
25: else
26: break // terminate while loop

one processor and marked unvisited. We also pre-compute the possible benefit
and the relative execution time reduction of each processor allotment (line 6–11).

In the second phase (line 12), we compute the critical path and select the
task with the greatest benefit value. We allot more processors to this task unless
the number of processes in this precedence level is exceeded (lines 19–20) (The
precedence level denotes the shortest path to a node from the source node). After
changing the allotment of one task on the critical path, we need to recompute L
and W . The allotment process repeats until either the critical path L is smaller
than (or equal to) W/m or no more task satisfies the precedence level constraint
or provides additional run-time benefit.

Algorithm 2 presents the mapping procedure of CPA13, which first considers
all ready tasks and extracts the task with highest priority. We use the highest
bottom level as priority, i.e., the longest path from a node to the sink of the DAG.
After extracting the ready task vj , the procedure selects the αj processors that
first become idle. However, this allotment of vj might be packed (decreased in
size) without increasing its completion time. In order to find such a smaller
processor allotment for vj we perform a binary search on vj ’s allotments.

Scheduling Moldable Tasks with Arbitrary Speedup Functions 19

Algorithm 2. CPA13 mapping procedure
1: while not all tasks scheduled do
2: vj ← find tasks with maximum lbj
3: LET Cj = τj + pj(αj) be the completion time of vj

if vj is allocated αj processors that become available first at time
τj

4: αi ← use binary search to find an allocation αi ≤ αj s.t. τi + pj(αi) ≤ Cj

5: schedule vj onto first αi processors that become available

Table 2. Summary of complexity results, “t.p.” stands for “this paper”

Algorithm Allocation procedure Mapping procedure

CPA [12] O(nm(n + e)) [12] O(n log n + nm + e)
MCPA [13] O(nm(n + e)) [12] O(n log n + nm + e)
BiCPA-S [15] O(nm(n + e)) [15] O(m(n log n + nm + e))
JZ06 [5] O(LP (mn, n2 + mn)) [4] O(mn + e)
JZ12 [6] O(LP (mn, n2 + mn)) [4] O(mn + e)
CPA+NM+R t.p. O(nm(n + e)) [12] O(n log n + nm + e)
MCPA+NM+R t.p. O(nm(n + e)) [12] O(n log n + nm + e)
EMTS [16] input dependent [12] O(r(n log n + nm + e))
CPA13 t.p. O(nm(n + e)) [14] O(n(log n + m log m) + e)

4.2 Asymptotic Run-Time Analysis

We determine the run-time complexity of CPA13 (the number of operations to
perform) by examining the allocation and the mapping step separately. In the
allocation phase of CPA13 (Algorithm 1), the benefit of a processor allotment is
computed for all tasks (O(nm)). The body of the loop (line 12) determines the
number of processors per precedence level (O(n)) and the critical path (O(n+e)).
After selecting and modifying the best task, the critical path needs to be updated
((O(n + e)). The outer loop (line 12) is executed at most n · m times since then
each tasks will have m processors allotted to it. Thus, the complexity of the
allocation phase is O(nm(n + e)).

The mapping procedure (Algorithm 2) first extracts the task with highest
priority (O(log n) using a heap) and selects the processors that become idle
next (O(m)). We apply a binary search (O(log m)) on the processors, but which
need to be sorted by increasing finishing time first (O(m log m)). Upon mapping
a task, the algorithm visits every outgoing edge to detect ready tasks. In total
over all iterations, O(e) edges are visited in the procedure. Given that the loop in
line 1 runs once for every task, the overall complexity of the mapping procedure
is O(n(log n + m log m) + e).

Additionally, we present the asymptotic run-times of both the allocation and
mapping procedure of related algorithms in Table 2. JZ06 and JZ12 denote the
algorithms of Jansen and Zhang from 2006 [5] and 2012 [6]. The authors state
that the LIST scheduling function requires O(nm) operations, while LP (p, q)
denotes “the time to solve a linear program with p variables and q constraints” [5].

20 S. Hunold

As the number of edges may be greater than mn, we updated this run-time to
O(mn+ e). The suffix “NM+R” behind CPA and MCPA identifies our modified
versions, which are aware of possibly increasing run-time functions (discussed in
Sect. 5). The evolutionary algorithm EMTS is input-dependent as it takes solu-
tions of other heuristics for obtaining the initial population, and its run-time
grows with the number of generations produced in the optimization process.
Thus, EMTS calls the mapping function for each individual, and r denotes the
total number of individuals created.

5 Evaluation

We use simulation to evaluate CPA13 for two reasons: (1) Simulations allows
us to obtain a statistically significant number of results. (2) Not many truly
moldable applications exist, which would limit the variety of experiments.

5.1 DAGs and Platforms

We consider two types of DAGs in the simulation: (1) application DAGs that
mimic existing parallel algorithms and (2) synthetic random DAGs. Strassen’s
matrix multiplication algorithm and the Fast Fourier Transformation (FFT) are
examples of application-oriented DAGs. To obtain different computation and
scalability ratios, we keep the shape of these DAGs fixed but change the number
of operations of each task. The synthetic DAGs are generated with DAGGEN [17]
and contain 20, 50 or 100 nodes. Four parameters influence the DAG generation
process: the width controls how many task can run in parallel, the regularity
defines the uniformity of the number of tasks per DAG level, density specifies
the number of edges, and jump denotes if and how many DAG levels an edge
(arc) may span. In total, we created 400 FFT, 100 Strassen, 108 layered and
324 irregular DAGs. Layered DAGs have edges only between adjacent precedence
levels (jump = 0) and the tasks in one tree level have an equal number of
operations.

The number of operations per task depends on a data size d (number of ele-
ments) and a function applied to the data, which were both randomly selected.
The function f(d) that is applied to the d elements defines the number of oper-
ations and is one of the following: stencil – d, sorting – d log d, matrix multipli-
cation – (

√
d)3. Function f(d) and data size d only define the sequential time

of a task. To obtain the parallel run-time, we apply Amdahl’s model and pick
the non-parallelizable fraction β (see next section) of f(d), which is selected ran-
domly from a uniform distribution between 0 and 0.25. Due to the page limit
we refer to [15,16] for more details.

The platform model has two parameters: (1) the number of processors m
and (2) the speed of the processor (in GLFOPS). We use two machine models
in the simulations. The first models a Grid’5000 cluster (Grelon) with m =
120 processors providing 3.1 GFLOPS each (obtained with HP-LinPACK). The

Scheduling Moldable Tasks with Arbitrary Speedup Functions 21

other machine has m = 48 processors running at 6.7 GFLOPS (measured with
GotoBLAS2), modeling a shared-memory system at TU Vienna.

We apply two different run-time models to parallel tasks in our simulation.
Run-time Model 1: Since each task in the DAG generation process is assigned

(1) a number of operations to perform and (2) the fraction of non-parallelizable
code, we apply Amdahl’s law to obtain a run-time model. Let pi(1) be the sequen-
tial run-time of task vi, determined by the ratio of the number of operations and
the speed of the processor. Let β, 0 ≤ β ≤ 1, be the non-parallelizable fraction
of a parallel task, then the run-time of task vi on k processors is bounded by
p1i (k) = (β + 1−β

k) ·pi(1). Applying this formula yields a non-increasing run-time
and non-decreasing work function for each parallel task. In addition, the run-
time function is also convex over the interval [1,m], which is required to apply
algorithm JZ12.

Run-time Model 2: Figure 1 has shown that the run-time of PDGEMM is
larger with an odd number of processors or if the number of processors has no
integer square root. We model the second runtime function accordingly, but base
it on the Amdahl model p1i (k). Equation (1) shows the runtime function p2i (k),
which may increase if allocations get larger.

p2i (k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p1i (1) if k = 1,

s1 · p1i (k) if k > 1 ∧ k is odd,
s2 · p1i (k) if k > 1 ∧ k is even, but

√
k not an integer,

p1i (k) otherwise.

(1)

s1 and s2 are the slowdown factors applied when the number of processors is odd
or has no integer square root. In the simulations, we set s1 = 1.3 and s2 = 1.1
to reflect the observed run-time behavior of PDGEMM.

5.2 Simulation Results

Run-time Model 1. The first set of simulations compares algorithms that were
designed for non-increasing run-time functions with CPA13. This experiment
answers two questions: (1) What is the overall schedule quality of CPA13 com-
pared with the lower bound? (2) How good are CPA13’s solutions compared
with solutions of approximation algorithms?

In previous studies of CPA, algorithms have been compared without a base-
line, so it was uncertain whether experimental findings have significant impact.
Since the problem is strongly NP-hard, we use the lower bound as an approxima-
tion of the optimum as done by Albers and Schröder [18]. The length of the crit-
ical path and the average work per processor are lower bounds of the makespan.
Thus, the lower bound of the makespan is LB = max

{∑n
j=1 wj(1)/m,L∗

}
,

where L∗ denotes the shortest possible critical path. To compute L∗ we allocate
k processors to task vj with k = arg min

l
pj(l), then we compute the critical path

using this processor allotment and determine its length.

22 S. Hunold

CPA13

JZ12

JZ06

BiCPA

MCPA

CPA

1 2 3 4
Performance Ratio

m = 48

1 2 3 4 5 6
Performance Ratio

irregular

layered

Strassen

FFT

m = 120

Fig. 2. Performance ratios of scheduling algorithms for each DAG class (Run-time
Model 1); m = 48 (left) and m = 120 (right) processors

Figure 2 compares the performance ratio (makespan of algorithm / lower
bound) of the algorithms under Run-time Model 1. The CPA13 threshold for
the relative gain was set to G = 0.01, i.e., an allocation needs at least 1 %
of runtime improvement to be considered. We can see that CPA13 achieves the
lowest performance ratio, while MCPA obtains a slightly better ratio for Strassen
DAGs on 48 processors and for layered DAGs on 120 processors. The reason is
that CPA13 optimizes not only the makespan but also tries to keep the total
work small. For a chain of parallel tasks, MCPA may allocate all processors to
some task, whereas CPA13 stops if the efficiency threshold is exceeded. Thus,
MCPA produces larger allocations with slightly shorter runtime, but which leads
to slightly shorter schedules. The graph also shows that the performance ratio of
CPA13 decreases on the bigger machine. Overall, in the cases considered, CPA13
is comparable and mostly better than JZ12, which has an approximation ratio of
≈ 3.29. We also experimented with larger DAGs, for which the linear programs
of JZ06 and JZ12 have many constraints. On an Intel Core i7 (2.3 GHz) using
IBM CPLEX, the time for solving instances with 1000 tasks and 120 processors
took on average 49 s with JZ12 and 28 s with JZ06. In contrast, CPA13 produces
solution for these instances in an average time of 2.5 s, which shows its scalability.

Run-time Model 2. The second study examines parallel tasks with arbitrary run-
time functions. Here, we also include the meta-heuristic EMTS that performs
an evolutionary schedule optimization [16].

Since CPA and MCPA only assume non-increasing run-time functions, we
make both algorithms non-monotony-aware. To do so, we change the run-time
function of a parallel task as follows: We use the run-time of the next smaller

Scheduling Moldable Tasks with Arbitrary Speedup Functions 23

algorithm m work ratio
√
Cmax · W ratio

CPA13 120 / 48 3.88 / 2.01 2.17 / 1.75
JZ12 120 / 48 3.17 / 1.85 2.16 / 1.74
JZ06 120 / 48 5.62 / 2.45 2.94 / 2.02
BiCPA 120 / 48 2.09 / 1.62 1.84 / 1.67
MCPA 120 / 48 4.05 / 2.07 2.57 / 1.99
CPA 120 / 48 4.08 / 2.08 2.67 / 2.07

Fig. 3. Performance ratios of evaluated scheduling algorithms for several DAG classes;
m = 48 (left) and m = 120 (right) processors (Run-time Model 2)

processor allocation if the run-time increases when the number of processors
increases, e.g., if in the original execution time model pj the execution time of
pj(k) < pj(k + 1), we set in the modified model p̃j(k + 1) = pj(k). Then the
following holds: let 1 ≤ k, k′ ≤ m, k < k′, so p̃(k′) ≤ p̃(k). Yet, this newly con-
structed run-time function p̃ is neither convex in run-time nor non-decreasing
in work. For this reason, we cannot apply JZ06 or JZ12 but we can use CPA
and MCPA with p̃. We distinguish them from the original versions by appending
“NM+R” to the name, where “R” stands for allotment “reduction” in the follow-
ing case: after the allocation procedure of CPA+NM+R or MCPA+NM+R has
finished, processor allotments may be reducible, i.e., a task vj has k processors
allotted, but ∃k′, k′ < k for which p̃(k′) = p̃(k). If so, we assign k′ processors to
task vj since the smaller allotment is not increasing the task’s run-time.

Figure 3 shows the distribution of performance ratios over all DAG classes.
The chart reveals that CPA13 produces mostly schedules that are close to the
lower bound with a performance ratio of less than three. EMTS is a meta-
heuristic that takes allotments produced by MCPA, CPA, and CPA13 as input
and attempts to optimize them. In the simulations, we instantiated an (10 +
100)-EA for EMTS, i.e., μ = 10 parents and λ = 100 offspring per generation. We
stopped EMTS after evaluating 10 EA generations. It is therefore not surprising
that EMTS has a slightly better performance ratio than CPA13. However, we
can state that CPA13 already produces very short schedules since EMTS hardly
can optimize them further.

6 Discussion and Conclusions

The performance of parallel applications on current hardware depends on many
factors such as deep memory hierarchies. As a result, run-time functions of a par-
allel program depending in the number of processors are neither non-increasing
or strictly convex. Hence, we designed a scheduling algorithm for moldable tasks
with precedence constraints and for arbitrary run-time functions. We identified
key ingredients for producing short schedules for moldable tasks through careful
investigation of different problem instances, which are: (1) force task parallelism,

24 S. Hunold

(2) avoid allotments with small parallel efficiency and (3) adjust allotments to
reduce idle times in the mapping phase.

We showed in a detailed simulation study that the algorithm CPA13 improves
schedule not only in the case of arbitrary run-time functions but also for non-
increasing run-time functions. One major contribution lies in the comparison of
CPA and its variants to known approximation algorithms. Our results revealed
that CPA13 generates the shortest schedules among the competitors in most
cases. Yet, our results are limited to the cases studied here since CPA13 has no
performance guarantee, which could be addressed in future work.

References

1. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and practice in parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.)
IPPS-WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 1–34. Springer, Heidelberg
(1997)

2. Drozdowski, M.: Scheduling for Parallel Processing. Springer, London (2009)
3. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for

multicore with GPU accelerators. In: HIPS Workshop, pp. 1–8 (2010)
4. Lepère, R., Trystram, D., Woeginger, G.: Approximation algorithms for scheduling

malleable tasks under predence constraints. Int. J. Found. Comput. Sci. 13(04),
613–627 (2002)

5. Jansen, K., Zhang, H.: An approximation algorithm for scheduling malleable
tasks under general precedence constraints. ACM Trans. Algorithms 2(3), 416–
434 (2006)

6. Jansen, K., Zhang, H.: Scheduling malleable tasks with precedence constraints. J.
Comput. Syst. Sci. 78(1), 245–259 (2012)

7. Günther, E., König, F.G., Megow, N.: Scheduling and packing malleable and par-
allel tasks with precedence constraints of bounded width. J. Comb. Optim. 27(1),
164–181 (2014)

8. van de Geijn, R.A., Watts, J.: SUMMA: scalable universal matrix multiplication
algorithm. Concurr. Pract. Exp. 9(4), 255–274 (1997)

9. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.: Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete
Math. 5, 287–326 (1979)

10. Leung, Y.J.T. (ed.): Handbook of Scheduling: Algorithms, Models and Perfor-
mance Analysis. Chapman & Hall/CRC, Boca Raton, FL, USA (2004)

11. Skutella, M.: Approximation algorithms for the discrete time-cost tradeoff problem.
Math. Oper. Res. 23(4), 909–929 (1998)

12. Radulescu, A., van Gemund, A.: A low-cost approach towards mixed task and data
parallel scheduling. In: ICPP, pp .69–76 (2001)

13. Bansal, S., Kumar, P., Singh, K.: An improved two-step algorithm for task and
data parallel scheduling in distributed memory machines. Parallel Comput. 32(10),
759–774 (2006)

14. Hunold, S.: Low-cost tuning of two-step algorithms for scheduling mixed-parallel
applications onto homogeneous clusters. In: CCGrid, pp. 253–262 (2010)

15. Desprez, F., Suter, F.: A bi-criteria algorithm for scheduling parallel task graphs
on clusters. In: CCGrid, pp. 243–252 (2010)

Scheduling Moldable Tasks with Arbitrary Speedup Functions 25

16. Hunold, S., Lepping, J.: Evolutionary scheduling of parallel tasks graphs onto
homogeneous clusters. In: CLUSTER, pp. 344–352 (2011)

17. Suter, F.: DAGGEN: a synthetic task graph generator. https://github.com/
frs69wq/daggen

18. Albers, S., Schröder, B.: An experimental study of online scheduling algorithms.
J. Exp. Algorithmics 7, 3 (2002)

https://github.com/frs69wq/daggen
https://github.com/frs69wq/daggen

	Scheduling Moldable Tasks with Precedence Constraints and Arbitrary Speedup Functions on Multiprocessors
	1 Introduction
	2 Definitions and Notation
	3 Related Work
	4 Scheduling Algorithm
	4.1 Pseudocode
	4.2 Asymptotic Run-Time Analysis

	5 Evaluation
	5.1 DAGs and Platforms
	5.2 Simulation Results

	6 Discussion and Conclusions
	References

