
Analysis of Partitioning Models and Metrics
in Parallel Sparse Matrix-Vector Multiplication

Kamer Kaya1, Bora Uçar2(B), and Ümit V. Çatalyürek1,3

1 Department of Biomedical Informatics,
The Ohio State University, Columbus, USA

{kamer,umit}@bmi.osu.edu
2 CNRS and LIP, ENS Lyon, Lyon, France

bora.ucar@ens-lyon.fr
3 Department of Electrical and Computer Engineering,

The Ohio State University, Columbus, USA

Abstract. Graph/hypergraph partitioning models and methods have
been successfully used to minimize the communication among processors
in several parallel computing applications. Parallel sparse matrix-vector
multiplication (SpMxV) is one of the representative applications that
renders these models and methods indispensable in many scientific com-
puting contexts. We investigate the interplay of the partitioning metrics
and execution times of SpMxV implementations in three libraries: Trili-
nos, PETSc, and an in-house one. We carry out experiments with up
to 512 processors and investigate the results with regression analysis.
Our experiments show that the partitioning metrics influence the perfor-
mance greatly in a distributed memory setting. The regression analyses
demonstrate which metric is the most influential for the execution time
of the libraries.

Keywords: Parallel sparse-matrix vector multiplication · Hypergraph
partitioning

1 Introduction

Repeated sparse matrix-vector (SpMxV) and sparse matrix-transpose-vector
multiplies that involve the same large, sparse matrix are the kernel operations
in various iterative algorithms involving sparse linear systems. Such iterative
algorithms include solvers for linear systems, eigenvalues, and linear programs.
Efficient parallelization of SpMxV operations is therefore very important in vir-
tually all large scale scientific computing applications. A number of partitioning
methods and models based on hypergraphs have been used to enable efficient
parallelization of SpMxV. These partitioning methods address different commu-
nication cost metrics for some variants of parallel SpMxV operations. In general,
the importance of the communication cost metrics, such as the total volume of
communication, the total number of messages and these two quantities on per

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 174–184, 2014.
DOI: 10.1007/978-3-642-55195-6 16, c© Springer-Verlag Berlin Heidelberg 2014



Analysis of Partitioning Models and Metrics 175

processor basis, depends on the machine architecture, problem size, and the
underlying parallel algorithm. In this study, we investigate the effects of the
partitioning methods in order to identify the most relevant metrics and quantify
their effects in various configurations. Our aims are to help the partitioner devel-
opers identify the important metrics, and to help the users of those partitioners
to identify the most suitable partitioning method for their use case.

The standard hypergraph based models minimize the total volume of com-
munication explicitly [7]. Some more recent variants do that while imposing a
limit on the total number of communication by a 2D partitioning approach [6,9].
More sophisticated approaches [3,12,13] minimize different communication cost
metrics on top of the total volume. Experimental investigations in these studies
demonstrate that different communication cost metrics and their interplay can
be important to achieve scalable parallel algorithms. It is therefore important to
understand the effects of different metrics (optimized by different partitioning
models) on the running time of applications under different configurations.

The contribution of this paper is two-fold. We designed and conducted several
experiments in a system with 512 processors to show the effects of partitioning
models and metrics on SpMxV performance. As far as we know, this is the first
work which compares the existing partitioning models and metrics in modern
architectures with modern software following message-passing paradigm. Our
experiments confirm that it is difficult, if not impossible, to define the correct
partitioning model and metric without analyzing the characteristics of the input
matrices and the SpMxV library being used. We experimented with three exist-
ing libraries, PETSc [1,2], Trilinos [10], and an in-house library SpMV [14]. In
order to overcome the mentioned difficulty, we carefully analyze the results using
regression analysis techniques and relate the execution time of SpMxV imple-
mentations to different partitioning metrics. We portray this analysis, which
forms out the second contribution, in detail so as to suggest improved objec-
tive functions for partitioning software and a guideline to choose partitioning
methods for practitioners. Although, we only had an access to a 512-processor
machine, the experiments and their analysis show that to scale larger systems,
one needs to be more careful while partitioning the matrix—in our experiments
the fact that the communication metrics greatly related to the execution time is
observable starting from 64 processors.

2 Parallel SpMxV Operation and Software

Consider the sparse matrix-vector multiply operation of the form y ← Ax, where
the nonzeros of the m × n matrix A are partitioned among K processors such
that each processor Pk owns a mutually disjoint subset of nonzeros, A(k) where
A =

∑
k A

(k). The vectors y and x are also partitioned among processors, where
the processor Pk holds x(k), a dense vector of size nk, and it is responsible for
computing y(k), a dense vector of size mk.

The standard parallel SpMxV algorithm [9,14,15] based on the described
onzero and vector entry partitioning is called the row-column-parallel algorithm.
In this algorithm, each processor Pk executes the following steps:



176 K. Kaya et al.

1. Expand: Send entries of x(k) that are needed by others. Receive entries of x
that are needed but owned by others.

2. Scalar multiply-adds: Perform ȳ ← A(k)x̄, where x̄ contains x(k) and the
received entries of x.

3. Fold: Send partial results from ȳ to the responsible processors. Receive con-
tributions to the y(k) vector.

If A is distributed columnwise, and the x-vector entries are partitioned con-
formably with the column partition of A, then the expand operation is not
needed. Similarly, if A is distributed rowwise, and the y-vector entries are par-
titioned conformably with the rows of A, then the fold operation is not needed.

2.1 Libraries

There are different implementations of the above algorithm. We summarize three
implementations with which we have experimented. Two of the implementations
are in the well-known general libraries Trilinos [10] and PETSc [1,2]; the third
one, SpMV, is an in-house library [14].

Algorithm 1. ParSpMxV-Trilinos variant
Input: A, x, µ
Output: y

1 Send and Receive x vector entries so that each processor has the required
x-vector entries

2 Compute y
(k)
i ← aij xj for the local nonzeros, i.e., the nonzeros for which

µ(aij)=Pk

3 Send and Receive local nonzero partial results y
(k)
i to the processor µ(yi) �=Pk,

for all nonzero y
(k)
i

4 Compute yi ←∑ y�
i for each yi with µ(yi)=Pk

Trilinos provides an implementation which can be described as in Algo-
rithm 1 from the point of view of the processor Pk. In this implementation,
the expand operations are finished before doing any computation. Then, all the
scalar multiply-add operations are performed. Later on, the fold operations are
completed. Trilinos uses Irecv/Isend and waitall communication primitives
to handle the communications at steps 1 and 2 of Algorithm 1. It issues Irecvs,
performs Isends and then before commencing the computations ensures that all
in the incoming data is received by using the waitall operation.

PETSc provides an implementation of the above algorithm only for the row-
parallel case. Algorithm 2 summarizes that implementation from the point of
view of Pk. First, the expand operation is initiated using Irecv and Isend
primitives. Then, instead of waiting the reception of all necessary x-vector entries,
it performs some local computations so as to overlap communication and compu-
tations. In particular, the processor Pk performs scalar multiply-add operations



Analysis of Partitioning Models and Metrics 177

Algorithm 2. ParSpMxV-Overlap-PETSc variant
Input: A, x, µ
Output: y

1 Send local xj (i.e., µ(xj)=Pk) to those processors that have at least one
nonzero in column j

2 Compute yk
i ← aij xj for the local nonzeros and local xj , i.e., the nonzeros for

which µ(aij)=Pk and µ(xj)= Pk

3 Receive all non-local xj (i.e., µ(xj) �=Pk)

4 Compute yk
i ← yk

i +aij xj for the local nonzeros and non-local xj , i.e., the
nonzeros for which µ(aij) = Pk and µ(xj) �= Pk

Fig. 1. The zones of the matrix A(k) of processor Pk with respect to the vector x
assuming a row-parallel algorithm.

using local aij ’s for which μ(xj) = Pk and there is no ai� with μ(x�) �= Pk.
Then, upon verifying the reception of all needed x-vector entries using waitall,
Pk continues with scalar multiply-add operations with the nonzeros on the rows
that has at least one nonzero in a column j for which μ(x�) �= Pk. The imple-
mentation can also be seen in an earlier technical report [11]. Figure 1 describes
the algorithm pictorially. After issuing Isends and Irecvs (for x̂

(k)
� ), processor

Pk performs the computations associated with the horizontally shaded matrix
zone. Then, waitall is executed to have all x(k) before continuing with the
rows that are below the horizontal ones. Note that the local matrices are actu-
ally permuted into the displayed form (local rows and the interface rows). The
advantage of this implementation with respect to the Algorithm 1 is that it
allows overlap between the reception of messages for the expand operation and
scalar multiply-add operations with the nonzeros in local rows.

Consider again the matrix A(k) of processor Pk as shown in Fig. 1. Before
executing the waitall operation, there are some more scalar multiply-add oper-
ations that Pk can perform before the reception of any x̂

(k)
� . These operations

are related to the nonzeros that are in the hatched zone in the figure. In order to
exploit the hatched zone for communication computation overlap, one can store
that zone in the compressed column storage (CCS) format. This way, one can
delay the invocation of the waitall operation for some more time. In fact, we can
get rid of the waitall operation and maximize the communication computation



178 K. Kaya et al.

overlap by performing all scalar multiply-operations that involve a received x-
vector entry before waiting the reception of any other message. This requires
storing the vertically shaded zones of the matrix in Fig. 1 in CCS format: with
this, when Pk receives x̂

(k)
� , it can visit the respective column and perform all

operations. This way of storing the vertically shaded and hatched zones in CCS
maximizes the amount of overlap in the strict sense (optimal amount of overlap)
when a processor receives a single message from each sender (as should be the
case in a proper SpMxV code). The third library that we investigate in this work,
SpMV [14], implements this approach for row-parallel and row-column parallel
algorithms (see descriptions in the accompanying technical report [8]).

2.2 Investigated Partitioning Metrics and Methods

We study the practical effects of five different metrics: the maximum number of
nonzeros assigned to a processor (MaxNnz) which defines the load balance; the
total communication volume (TotVol); the maximum send volume of a proces-
sor (MaxSV); the total number of messages (TotMsg); and the maximum num-
ber of messages sent by a processor (MaxMS). Our investigations are necessarily
experimental, yet some a priori results can be told about these metrics, see the
accompanying technical report [8] and the references therein.

We investigated the rowwise and columnwise partitioning methods CN and
RN (the naming convention corresponds to the hypergraph models in the original
paper [7]) among the one-dimensional partitioning approaches. Among the two-
dimensional ones we investigated the fine grain (FG), and checkerboard (CB)
partitioning models (see [9] and the references therein). These four methods
try to reduce the total volume of communication and obtain load balance; the
2D methods implicitly reduce the total and maximum number of messages per
processor. We also used a block partitioning (BL) model whose aim is just to have
load balance in rowwise partitioning of the matrices. In this model, we traverse
the rows from 1 to m, generate a part with approximately τ/K nonzeros, and
continue with the next part when this number is exceeded. For matrices based on
2D meshes, we used another rowwise partitioning model called MP. This model
tiles the 2D plane with a diamond-like shape [4, Sect. 4.8] and associates each
shape (corresponding to a set of rows) with a processor. This approach balances
the volume and the number of messages the processors send and receive.

3 Experimental Investigations

We carried our experiments on a 64-node cluster where each node has a 2.27 GHz
dual quad-core Intel Xeon (Bloomfield) CPU and 48 GB main memory. Each core
in a socket has 64 KB L1 and 256 KB L2 caches, and each socket has an 8 MB
L3 cache shared by 4 cores. The interconnection network is 20 Gbps DDR Infini-
Band. For parallelism, mvapich2 version 1.6 is used. We built SpMV, PETSc,
and Trilinos with gcc 4.4.4 and used optimization flag -O3. For PETSc experi-
ments, we used the matrix type MPIAIJ and the multiplication routine MatMult.



Analysis of Partitioning Models and Metrics 179

Table 1. Properties of the experiment matrices.

Matrix Description n τ Matrix Description n τ

atmosmodl Atmosp.

model.

1,489,752 10,319,760 cage15 DNA electrop. 5,154,859 99,199,551

TSOPF RS Opt. pow.

flow

38,120 16,171,169 HV15R 3D engine fan 2,017,169 283,073,458

Freescale1 Semicon.

sim.

3,428,755 17,052,626 mesh-1024 5-point stencil 1,048,576 5,238,784

rajat31 Circuit sim. 4,690,002 20,316,253 mesh-2048 5-point stencil 4,194,304 20,963,328

RM07R Comp. fluid

dyn.

381,689 37,464,962 mesh-4096 5-point stencil 16,777,216 83,869,696

We used PaToH [5] with default setting quality for partitioning the matrices
(this allows 0.03 imbalance). Since each node has 8 cores, we have 512 processors
in total. In the experiments, we use K ∈ {1, 8, 16, 32, 64, 128, 256, 512}. For an
experiment with K �= 1 processors, we fully utilize K/8 nodes of the cluster. To
measure the time of one SpMxV operation (in secs), we do 500 multiplications
for each execution. The tables and figures show the averages of these 500 runs.

We used seven large real-life square matrices from different application
domains that are available at the University of Florida (UFL) Sparse Matrix Col-
lection (http://www.cise.ufl.edu/research/sparse/matrices) and three syntheti-
cally generated matrices corresponding to 5-point stencil meshes in 2D with sizes
1024 × 1024, 2048 × 2048, and 4096 × 4096. The properties of the matrices are
given in Table 1.

In the experiments on real-life matrices, we use PETSc with rowwise models
CN and BL, and SpMV and Trilinos with all models except MP. For meshes,
we added MP to each library’s model set. The reason is technological: PETSc
provides SpMxV routines only for rowwise partitioning.

We designed a set of experiments to show the effect of different partition-
ing metrics in the actual running time of SpMxV computations. Our first two
sets of experiments (Fig. 2 and Table 2 of the accompanying technical report
[8]) showed clearly that the total volume of communication, the total number
of messages, the maximum number and volume of messages sent by a processor
affect significantly the running time of SpMxV. Which one of these four com-
munication metric is the most important in different libraries? To what extent?
What about their combinations? In order to answer these questions we carried
out the following regression analysis.

3.1 Regression Analysis

To evaluate the performance of the libraries with respect to the partitioning
metrics, we use linear regression analysis techniques and solve the nonnegative
least squares problem (NNLS). In NNLS, given a variable matrix V and a vector
t, we want to find a dependency vector d which minimizes ‖Vd− t‖ s.t. d ≥ 0.
In our case, V has five columns which correspond to the partitioning metrics
MaxNnz, TotVol, MaxSV, TotMsg, and MaxSM. Each row of V corresponds to

http://www.cise.ufl.edu/research/sparse/matrices


180 K. Kaya et al.

(a) SpMV 

(b) PETSc

(c) Trilinos

116 64 128 256 512
100

101

102

K
E

xe
cu

tio
n 

tim
e

CN

RN

FG

CB

BL

116 64 128 256 512
100

101

102

K

E
xe

cu
tio

n 
tim

e

CN

BL

116 64 128 256 512
100

101

102

K

E
xe

cu
tio

n 
tim

e

CN

RN

FG

CB

BL

Fig. 2. Mean SpMxV times on real-life matrices in log scale for each library with
respect to partitioning model.

an SpMxV execution where the execution time is put to the corresponding entry
of t. Hence, we have the same V but a different t for each library. We apply a
well-known technique in regression analysis and standardize each entry of V by
subtracting its column’s mean and dividing it to its column’s standard deviation
so that the mean and the standard deviation of each column become 0 and 1,
respectively. This way, the units are removed and each column becomes equally
important throughout the analysis. We then used MATLAB’s lsqnonneg to
solve NNLS. Each entry of the output di shows the dependency of the execution
time to the partitioning metric corresponding to the ith column of V. Tables 2, 3,
and 4 show the dependency values found in various settings.

We first apply regression analysis to each library with all matrices and row-
wise partitioning models CN (column-net) and BL (block). The analysis shows
that when K ≤ 64, SpMxV performance depends rigorously on the maximum
number of nonzeros assigned to a processor. In this case, the dependency values



Analysis of Partitioning Models and Metrics 181

Table 2. Regression analysis of SpMV, PETSc and Trilinos with all matrices and
models CN and BL.

8 ≤ K ≤ 64 128 ≤ K ≤ 512
Metric SpMV PETSc Trilinos SpMV PETSc Trilinos

MaxNnz 8.02 7.81 6.80 0.49 0.44 0.83
TotVol 0.18 0.38 1.00 0.39 0.36 1.06
MaxSV 1.66 1.53 2.20 0.00 0.00 0.11
TotMsg 0.15 0.28 0.00 7.90 8.03 4.51
MaxSM 0.00 0.00 0.00 1.22 1.18 3.49

Table 3. Regression analysis of SpMV and Trilinos with all matrices and partitioning
models. PETSc is not shown in this table because it cannot handle all the schemes.

8 ≤ K ≤ 32 64 ≤ K ≤ 128 256 ≤ K ≤ 512
Metric SpMV Trilinos SpMV Trilinos SpMV Trilinos

MaxNnz 8.43 7.54 2.75 2.52 0.00 0.02
TotVol 0.23 0.89 0.52 1.94 0.38 0.98
MaxSV 1.35 1.57 1.57 1.69 0.04 0.50
TotMsg 0.00 0.00 4.66 2.38 6.24 3.06
MaxSM 0.00 0.00 0.49 1.47 3.34 5.44

Table 4. Regression analysis of SpMV and Trilinos with mesh-based matrices and all
partitioning models.

8 ≤ K ≤ 32 64 ≤ K ≤ 128 256 ≤ K ≤ 512
Metric SpMV Trilinos SpMV Trilinos SpMV Trilinos

MaxNnz 8.97 9.38 8.83 9.05 5.10 5.47
TotVol 0.00 0.00 0.00 0.24 0.00 0.00
MaxSV 0.72 0.48 0.43 0.09 0.92 0.52
TotMsg 0.00 0.00 0.42 0.07 0.42 0.99
MaxSM 0.31 0.14 0.33 0.55 3.55 3.02

for MaxNnz are 8.02, 7.81, and 6.80 for SpMV, PETSc, and Trilinos, respec-
tively. As Table 2 shows, the next important metric is MaxSV with values 1.66,
1.53, and 2.20. The latency-based (TotMsg, MaxSM) partitioning metrics do not
effect the performance for K ≤ 64. However, when K gets larger, these metrics
are of utmost importance. Furthermore, the importance of MaxNnz decreases
drastically for all the libraries. For SpMV and PETSc, MaxNnz becomes the 3rd
important variable, whereas for Trilinos, it is the 4th. This shows that SpMV and
PETSc handle the increase in the communication metrics better than Trilinos.

When K ≥ 128, the dependency of Trilinos to TotMsg is much less than
that of SpMV and PETSc. On the contrary, Trilinos’ MaxSM dependency is
almost 1.75 times more than SpMV and PETSc. This is expected since Trilinos
uses Algorithm 1 which has no communication-computation overlap due to the



182 K. Kaya et al.

use of waitall primitive. Such primitives can cause close coupling among the
processors. When MaxNnz and the variance on the number of messages per
processor are large, the overhead due to the bottleneck processor can result in
poor SpMxV performance. Note that the dependency profiles of SpMV and
PETSc, which are similar due to the communication-computation overlap, do
not point out a similar bottleneck.

We extend the regression analysis to all matrices and all partitioning models
and show the results in Table 3. The performance of SpMV and Trilinos rigor-
ously depend on MaxNnz if K ≤ 32, and on TotMsg and MaxSM when K ≥ 256.
Once again, Trilinos’ MaxSM dependency is higher than that of SpMV due to the
waitall primitive. To see the effect of matrix structure on regression analysis,
we use only mesh-based matrices in the next experiment. As Table 4 shows, we
observe that for these matrices, the performance of SpMV and Trilinos mostly
depend on MaxNnz even when K ≥ 64. Note that these matrices are banded
and the communication metrics have relatively lower values compared to those
of real-life matrices. Hence, the most dominant factor is MaxNnz.

In the light of the regression analysis experiments, we note that the par-
titioning metrics effect the performance of parallel SpMxV libraries. The best
metric (or function of metrics) that needs to be minimized depends on the num-
ber of processors, the size and structure of the matrix, which we are planning
to investigate in the future, and even the library itself. Although some of these
variables are known while generating the partitions, predicting the others may
need a preprocessing phase. For example, we already know that the libraries in
this paper are employing point-to-point communication primitives which makes
the connectivity metric suitable. However, if collective communication primi-
tives, e.g., MPI ALLGATHER, had been used, it would be better to minimize the
cut-net metric as the main partitioning objective (however, we should note that
such collective operations introduce unnecessary synchronization and messages
especially for large K values). On the other hand, the matrix structure can be
different for each input and a partitioner needs either a manual direction or a
preprocessing to predict the best metric for each matrix.

3.2 Summary of Further Results

We provide summary of some further results and refer the interested reader to
the accompanying technical report [8]. We observed that for all libraries and
partitioning methods, minimizing TotMsg is more important than minimizing
MaxSV for reducing the execution time, especially when K is large. Starting from
K = 64, the difference becomes obvious in favor of TotMsg which is concordant
with the regression analyses. For K ∈ {8, 16}, minimizing MaxSV or TotMsg
are equally important.

The checkerboard method (CB) which is demonstrated (see Fig. 4 in [8]) to
reduce most of the communication cost metrics seems to be the method of choice
when K is not small (when K is small, there is no much difference between the
models as also revealed by the regression analysis before). The relative per-
formances of the partitioning methods do not change with the increasing K.



Analysis of Partitioning Models and Metrics 183

However, their difference tend to increase and hence, the model used for par-
titioning becomes more important as the parallel matrix-vector multiplication
times of the libraries show in Fig. 2. When K is 256, the only significant reduction
on the execution time is obtained by SpMV with the CB model.

4 Conclusion

We have carried out a detailed study to understand the importance of parti-
tioning models and their effects in parallel SpMxV operations. As mentioned in
the experiments, minimizing the right metric with the right partitioning model
is crucial to increase throughput. For example, for the real-life matrices in our
test set, CB model is the only one which can obtain a significant reduction on
the SpMxV time when K is increased from 128 to 256 (after that we did not
see any speed up). It is obvious that the other models fail to obtain such a
reduction since the gain by dividing MaxNnz by two does not compensate the
communication overhead induced by multiplying K by two. Hence, assuming
the communication overhead is doubled on the average, doubling K increases
the relative importance of communication on SpMxV four times.

Matrices from today’s scientific and industrial applications can be huge. If one
has only a few processors, partitioning may not matter, since the contribution of
communication to the execution time will be low and the overall improvement on
SpMxV via a good partitioning will be insignificant. However, as the regression
analyses of Sect. 3.1 show, after a number of processors, the communication over-
head will start to dominate the SpMxV time. For our experiments, this number
is somewhere between 32 and 64, and it depends on the characteristics of the
matrix, the library, and the architecture used for SpMxV operations. Although
it may be more than 64, considering the advancements on CPU hardware, we
can easily argue that this number will remain highly practical and partitioning
will matter more for systems that are larger than those considered here.

References

1. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D.,
Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Tech-
nical report ANL-95/11 - Revision 3.2, Argonne National Laboratory (2011)

2. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of par-
allelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M.,
Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–
202. Birkhäuser Press, Basel (1997)

3. Bisseling, R.H., Meesen, W.: Communication balancing in parallel sparse matrix-
vector multiplication. Electron. Trans. Numer. Anal. 21, 47–65 (2005)

4. Bisseling, R.H.: Parallel Scientific Computation: A Structured Approach using BSP
and MPI. Oxford University Press, Oxford (2004)

5. Çatalyürek, Ü.V., Aykanat, C.: PaToH: A multilevel hypergraph partitioning tool,
Version 3.0. Bilkent University, Department of Computer Engineering, Ankara,
06533 Turkey. PaToH. http://bmi.osu.edu/umit/software.htm (1999)

http://bmi.osu.edu/umit/software.htm


184 K. Kaya et al.

6. Çatalyürek, Ü.V., Aykanat, C.: A hypergraph-partitioning approach for coarse-
grain decomposition. In: Supercomputing’01 (2001)

7. Çatalyürek, Ü.V., Aykanat, C.: Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. IEEE Trans. Parall. Distr. 10(7),
673–693 (1999)

8. Çatalyürek, Ü.V., Kaya, K., Uçar, B.: On analysis of partitioning models and
metrics in parallel sparse matrix-vector multiplication. Technical report INRIA,
France (2013)

9. Çatalyürek, Ü.V., Aykanat, C., Uçar, B.: On two-dimensional sparse matrix par-
titioning: models, methods, and a recipe. SIAM J. Sci. Comput. 32(2), 656–683
(2010)

10. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G.,
Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thorn-
quist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An
overview of the trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)

11. Saad, Y., Malevsky, A.V.: P-SPARSLIB: A portable library of distributed memory
sparse iterative solvers. Technical report umsi-95-180, Minnesota Supercomputer
Institute, Minneapolis, MN (1995)

12. Uçar, B., Aykanat, C.: Minimizing communication cost in fine-grain partitioning
of sparse matrices. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869,
pp. 926–933. Springer, Heidelberg (2003)

13. Uçar, B., Aykanat, C.: Encapsulating multiple communication-cost metrics in par-
titioning sparse rectangular matrices for parallel matrix-vector multiplies. SIAM
J. Sci. Comput. 25(6), 1837–1859 (2004)

14. Uçar, B., Aykanat, C.: A library for parallel sparse matrix-vector multiplies. Tech-
nical report BU-CE-0506, Department of Computer Engineering, Bilkent Univer-
sity, Ankara, Turkey (2005)

15. Vastenhouw, B., Bisseling, R.H.: A two-dimensional data distribution method for
parallel sparse matrix-vector multiplication. SIAM Rev. 47(1), 67–95 (2005)


	Analysis of Partitioning Models and Metrics in Parallel Sparse Matrix-Vector Multiplication
	1 Introduction
	2 Parallel SpMxV Operation and Software
	2.1 Libraries
	2.2 Investigated Partitioning Metrics and Methods

	3 Experimental Investigations
	3.1 Regression Analysis
	3.2 Summary of Further Results

	4 Conclusion
	References


