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Abstract. A parallel algorithm for simultaneous untangling and
smoothing of tetrahedral meshes is proposed in this paper. This algo-
rithm is derived from a sequential mesh optimization method. We provide
a detailed analysis of its parallel scalability and efficiency, load balancing,
and parallelism bottlenecks using six benchmark meshes. In addition, the
influence of three previously-published graph coloring techniques on the
performance of our parallel algorithm is evaluated. We demonstrate that
the proposed algorithm is highly scalable when run on a shared-memory
computer with up to 128 Itanium 2 processors. However, some paral-
lel deterioration is observed. Here, we analyze its main causes using a
theoretical performance model and experimental results.
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1 Introduction

Engineering design and analysis of real systems are becoming increasingly com-
plex. The 80/20 design/analysis ratio seems to be a common industrial experi-
ence: design and analysis account for about 80 % and 20 % of time, respectively.
In the design process, there are many methods that are time consuming. On
average, mesh generation accounts for 20 % of overall time and may take as
much CPU-time as field solver, which may need of many man-months [18]. In
our Meccano method for tetrahedral mesh generation, the most time-consuming
phase is devoted to mesh optimization [15]. On the other hand, mesh generation
tools frequently produce meshes with inverted and/or poorly shaped elements.
So, untangling and/or smoothing techniques are applied to improve the mesh
quality before or during the numerical analysis. In all these problems, improv-
ing the speed of mesh optimization with parallelism helps users solve problems
faster.

In [8] we propose a simultaneous untangling and smoothing algorithm for
tetrahedral meshes, in contrast with other techniques that require two separate
and consecutive steps, one for untangling and another for smoothing. For very
large tangled meshes, the runtime of our sequential algorithm may be long.
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The improvement of our technique using parallel computation is not trivial
because two vertices of the same tetrahedron cannot be simultaneously opti-
mized on different processors. In this paper, we propose a parallel algorithm
for simultaneously untangling and smoothing tetrahedral meshes with a num-
ber of vertices far greater than the number of available processors. Additionally,
the performance of this algorithm on a shared-memory computer is analyzed.
We show that our algorithm is highly scalable and compute-bound. However,
the OpenMP thread scheduling overhead significantly deteriorates the parallel
performance.

Section 2 summarizes our sequential approach to mesh untangling and
smoothing. Section 3 describes its parallelization. The methodology we used to
evaluate the performance of this parallel algorithm is explained in Sect. 4. Its
results are presented in Sect. 5. Finally, Sect. 6 provides the main conclusions.

2 Our Approach to Tetrahedral Mesh Optimization

Let us consider M to be a tetrahedral mesh. Usual techniques to improve the
quality of a mesh without inverted tetrahedra are based upon local smoothing
[6]. These techniques consist of finding the new position xv that each inner mesh
node v must hold, in such a way that they optimize an objective function. Such
a function is based on a certain measurement of the quality of the local submesh
Nv ⊂ M that is formed by the set of tetrahedra connected to the free node v.
As it is a local optimization process, we cannot guarantee that the final mesh is
globally optimal. Nevertheless, after repeating this process several times for all
the nodes of the mesh M, quite satisfactory results can be achieved.

The algebraic quality metrics proposed by Knupp [13] provide us an appro-
priate framework to define objective functions. In this paper, we use,

K(xv) =
n∑

i=1

([ηi(xv)]p)
1
p (1)

being n the number of elements in Nv, p is usually chosen as 1 or 2, ηi = 1/qi
is the distortion of the i-th tetrahedron of Nv, and qi is the mean ratio quality
measure of a tetrahedron given by q = 3σ

2
3 /|S|2, where |S| is the Frobenius

norm of matrix S associated to the affine map from the ideal element (usually
an equilateral tetrahedron) to the physical one, and σ is the determinant of
matrix S: σ = det(S). Specifically, the weighted Jacobian matrix S is defined as
S = AW−1, being A = (x1 − x0,x2 − x0,x3 − x0) the Jacobian matrix, and
xj , j = 0, . . . , 3 the coordinates of the vertices of the tetrahedron. The constant
matrix W is derived from the ideal element. For more details, see [8].

Objective functions like (1) do not work properly when there are inverted
elements (σ < 0). This is because they present singularities (barriers) when any
tetrahedron of Nv changes the sign of its Jacobian matrix. In [8] we proposed
a suitable modification of the objective function such that it is regular all over
R

3. It consists of substituting the term σ in the quality metrics by the positive



The Effect of Parallelization on a Tetrahedral Mesh Optimization Method 165

and increasing function h(σ) = 1
2 (σ +

√
σ2 + 4δ2). When a feasible region exists

(subset of R3 where a free node v could be placed, being its Nv a valid submesh),
the minima of the original and modified objective functions are very close and,
when this region does not exist, the minimum of the modified objective function
is located in such a way that it tends to untangle Nv. With this approach, we can
use any standard and efficient unconstrained optimization method to find the
minimum of the modified objective function [1]. In this way, our method allows
simultaneous untangling and smoothing of tetrahedral meshes, in contrast with
other techniques that require two separate and consecutive steps.

3 Parallel Algorithm for Mesh Untangling and Smoothing

Algorithm 1 shows our sequential method for simultaneous untangling and smoo-
thing of tetrahedral meshes. It has the following inputs: M is a tetrahedral mesh,
IT is a function that provides its total number of inverted tetrahedra, Nv is the
set of tetrahedra connected to a free node v, and xv is the initial position of
v. The algorithm iterates over all the nodes and adjusts the spatial coordinates
xv of a free node v in each step; x̂v is its position after optimization, which is
provided by the procedure OptimizeNode. Then, Q saves the lowest quality of a
tetrahedron when the above-mentioned quality function (q) is used (it is 0 if any
tetrahedron is tangled). The function called quality measures the increment in
Q between successive iterations of mesh optimization. The mesh is optimized
until it is completely untangled: IT(M) = 0, and successive iterations increase
the minimum mesh quality less than λ = 5%: ΔQ < λ. The algorithm also stops
when the number of optimization iterations is larger than maxIter.

Algorithm 1. Sequential algorithm for the mesh optimization method
1: Q ← 0

2: j ← 0

3: while (IT(M) > 0 or ΔQ ≥ λ) and j ≤ maxIter do
4: for each vertex v ∈ M do
5: x̂v ← OptimizeNode(xv,Nv)

6: end for
7: ΔQ ← quality(M)

8: j ← j + 1
9: end while

Algorithm 2 is a parallel algorithm for our mesh optimization method. Its
inputs M, IT, Nv, xv, OptimizeNode, quality, λ, and maxIter have the same
meanings as described for Algorithm 1. This algorithm has to prevent two adja-
cent nodes from being simultaneously optimized in parallel. On the contrary,
new inverted mesh tetrahedra may be created [10]. Thus, when the sequential
Algorithm 1 is parallelized, a computational dependency appears between adja-
cent vertices. This justifies the use of a graph coloring technique in our parallel
algorithm to find mesh vertices that do not have computational dependency.
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Algorithm 2. Parallel algorithm for the mesh optimization method
1: I ← Coloring(G=(V,E))

2: Q ← 0

3: j ← 0

4: while (IT(M) > 0 or ΔQ ≥ λ) and j ≤ maxIter do
5: for each independent set Ii ∈ I do
6: for all each vertex v ∈ M do in parallel
7: x̂v ← OptimizeNode(xv,Nv)

8: end for
9: end for

10: ΔQ ← quality(M)

11: j ← j + 1
12: end while

We implemented graph coloring with procedure Coloring, which is expressed
as follows. Let us consider G = (V,E) to be the graph associated to the tetrahe-
dral mesh M, where V is its set of vertices (without spatial information), and
E is the set of their edges, then Coloring is a procedure to color G = (V,E).
An independent set or color, Ii, is a set of non-adjacent vertices: v ∈ Ii → v /∈
adj(Ii, G = (V,E)), being adj(Ii, G = (V,E)) the set of vertices that are adja-
cent to all vertex z ∈ Ii, z �= v. In this way, the graph G = (V,E) of a tetrahedral
mesh M is partitioned in a disjoint sequence of colors, I = {I1, I2, . . . }.

Three different and previously published coloring methods called C1, C2, C3
were implemented. C1 is a sequential coloring method that has been used for
mesh smoothing [10]. It requires the use of the asynchronous coloring heuristic
proposed in [12]. This heuristic is based on Luby’ s Monte Carlo algorithm for
determining the maximal independent set [14]. C2 is a parallel version of C1
for shared-memory computers that was proposed by Jones and Plassmann [12]
for distributed-memory computers. C3 is an parallel greedy coloring algorithm
that was proposed by Catalyurek et al. [5]. Section 5 compares the impact of
these graph coloring methods on the performance of our parallel optimization
method.

The vertex set with the same color (Ii) is equipartitioned among the available
processors. Each processor optimizes its assigned set of vertices in a sequential
fashion. At each sequential step, OptimizeNode procedure is applied to a single
vertex v with the method described in Sect. 2. The new vertex spatial position
is available to other processors by writing to shared memory. Each subsequent
parallel phase optimizes another color until all vertices are optimized. Finally,
the exit criteria are the same as the ones used for the sequential algorithm.

Previous studies on parallel algorithms for mesh optimization include the
work of Freitag et al. [10], which relies on a theoretical shared-memory model
with results using distributed-memory computers. Another similar study was
published by Shontz and Nistor [17], which provides performance results for
mesh simplification algorithms on GPUs although they do not use graph coloring
algorithms to find mesh vertices that do not have computational dependency.
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Table 1. Description of the tangled tetrahedral meshes

NAME m T IT DEGREE OBJECT

“m = 6358” 6358 26446 2215 26 Bunny
“m = 9176” 9176 35920 13706 26 Tube
“m = 11525” 11525 47824 1924 26 Bone
“m = 39617” 39617 168834 83417 26 Screwdriver
“m = 201530” 201530 840800 322255 26 Toroid
“m = 520128” 520128 2201104 1147390 26 HR toroid

Legends. NAME: name of the tetrahedral mesh. m: total number of mesh vertices. T:
total number of mesh tetrahedra. IT: total number of inverted tetrahedra. DEGREE:
maximum vertex degree. OBJECT: short description of the real object that is meshed.

4 Experimental Methodology

Our experiments were conducted on a HP Integrity Superdome node with 128
Itanium 2 cores, multithreading disabled, and 1TB NUMA shared memory. Algo-
rithms 1 and 2 were applied on six tangled tetrahedral meshes (see Table 1). All
these meshes were constructed with a tool that applies an strategy for adaptive
mesh generation based on the Meccano method [15], using surface triangulations
from different repositories as input data [16]. We also used the Intel C++ com-
piler 11.1 with -O2 on a Linux system. The source code of the parallel version
included OpenMP directives, which were disabled when the serial version was
compiled [9]. Both versions were profiled with PAPI [4], which uses performance
counter hardware [11]. All versions were run with processor and memory binding
enabled, and the processors were not shared among other user or system level
workloads. For each mesh, we run the parallel version using a given maximum
number of threads between 1 and 128. Since our algorithms are CPU-bound,
there is little sense in using more threads than available cores. We use the fol-
lowing performance metrics: wall-clock time, true speedup, parallel efficiency,
and load balancing, which were averaged over more than 30 runs. Each run was
divided into two phases. The first phase loops over all vertices repetitively and

Table 2. Best execution times for the complete parallel algorithm (Algorithm 2)

NAME SRT BPRT BNC BSU BPE (%) BCA C I MMQ AMQ

“m = 6358” 17.3 1.5 72 11.7 16.2 C1 29 25 0.13 0.66
“m = 9176” 37.3 1.2 88 31.9 36.3 C3 29 26 0.26 0.68
“m = 11525” 33.7 1.1 120 29.7 24.8 C3 10 38 0.11 0.65
“m = 39617” 87.4 1.6 128 54.9 42.9 C1 31 11 0.17 0.73
“m = 201530” 2505.4 81.3 128 30.8 24.1 C2 21 143 0.23 0.67
“m = 520128” 2259.7 41.9 120 54.0 45.0 C3 34 36 0.22 0.68

Legends. NAME: mesh name. SRT: serial runtime (s). BPRT: best parallel runtime (s);
its number of cores: BNC, speedup: BSU, parallel efficiency: BPE, coloring algorithm:
BCA, colors: C, untangling/smoothing iterations: I, minimum mesh quality: MMQ,
and average mesh quality: AMQ.
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(a) (b) (c)

Fig. 1. (a) The tangled (upper) and untangled (lower) meshes called “m = 6358”. True
speedup and parallel efficiency of: (b) body of the main loop (line 7 of Algorithm 2),
(c) complete parallel Algorithm 2, when the graph coloring technique is C3.

completely untangles a mesh; at the same time, the mesh is also smoothed. The
second phase smoothes the mesh until the exit criteria is met. Table 2 shows the
number of untangling and smoothing iterations (I) for each mesh.

5 Performance Evaluation

5.1 Performance Scalability

When the execution time of the main mesh optimization procedure is profiled
in both versions of our algorithms, line 5 of sequential Algorithm 1 vs. line 7 of
parallel Algorithm 2, we achieve results for true speedup as depicted in Fig. 1(b)
when the “m = 6358” mesh is optimized. As can be seen, the true speedup
linearly increases as the number of cores increases. Figure 1(b) also shows the
parallel efficiency of the main mesh optimization procedure of Algorithm 2
(line 7). Note that up to 128 cores, the parallel efficiency is always above 67 %.
Similar results were obtained for the rest of meshes. These results indicate that
the main computation of our parallel algorithm is highly scalable. This perfor-
mance scalability is caused by the parallel processing of independents sets of
vertices (colors) that is made in each optimization iteration of the Algorithm 2
(line 7).

When the execution times of the complete sequential and parallel algorithms
are profiled, we obtained results for true speedup as depicted in Fig. 1(c) when
the “m = 6358” mesh is optimized. Note that in this case, the speedup does not
increase so linearly as when the main mesh optimization procedures of algorithms
are profiled, and maximum parallel efficiency is lower than 20 %. Table 2 shows
the best results for all tetrahedral meshes. Note that the maximum parallel
efficiency is 45 %, which was obtained when “m = 520128” mesh was optimized.
Furthermore, the number of cores with best speedup depends on the benchmark
mesh. In some cases, these highest performance results are obtained when the
number of cores is lower than maximum (see column BNC in Table 2).
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We investigated the causes of this degradation with a performance model.
SpeedUp is modeled as the ratio between the sequential (TS) and the parallel
execution times when k cores are activated (TP,k):

SpeedUp =
TS

TP,k
(2)

being TP,k the sum of the idealized parallel execution time (Tk, without overhead
and with perfect load balancing) and the average performance overhead (Ok) [3]:

TP,k = Tk + Ok , , Tk =
TS

k
→ SpeedUp =

k

1 + Ok

Tk

(3)

Tk =
Nk

IPCk × f
, , Ok =

NO,k

IPCO,k × f
→ SpeedUp =

k

1 + NO,k×IPCk

Nk×IPCO,k

(4)

N is the total number of executed instructions excluding no-operation instruc-
tions: Nk during mesh optimization tasks, and NO,k during parallel thread
scheduling; IPC is the number of executed instructions per clock cycle during
the runtime: IPCk during mesh optimization tasks, and IPCO,k during parallel
thread scheduling; and f is the fixed clock speed of 1.6 GHz. N and IPC are
obtained during profiling with performance counter hardware [7,11].

In Fig. 2, real speedups (graphic marks) are overlapped with predictions of
our performance model (lines) when three benchmark meshes are optimized.
Real data were obtained using dynamic OpenMP thread scheduling and color-
ing algorithm C3. The average precision of the performance model for all meshes
was 95.6 %. Based on these results, we can conclude that for our complete paral-
lel Algorithm 2, true speedup and parallel efficiency deteriorate as the number of
cores increases because they tend to be dominated by the loop-scheduling over-
head. We note that this parallel overhead is caused by the Itanium 2 instructions
(NO,k) that are generated when the OpenMP directive that implements line 6 is
compiled. Figure 2 also shows that the speedup is maximum at certain number
of processors. Our model indicates that it is due to the quadratic polynomial
form of the overhead time (Ok) as the number of threads increases.

5.2 Load Balancing

The error produced by the above-described model may be caused by other
sources of performance degradation; for example, load imbalance between proces-
sors. The load imbalance of k cores (Lk) is measured as follows:

Lk = 100% × tmax − tmin

tavg
, , tmax ≥ tavg ≥ tmin > 0 (5)

where tmax, tavg, tmin are respectively the maximum, average and minimum
execution times of the parallel threads without parallel loop-scheduling overhead
(line 7 of Algorithm 2). As Lk is smaller, the difference between maximum and
minimum thread execution time is smaller than the average execution time of
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Fig. 2. Comparison of real data and data predicted by the performance model for the
true speedup of parallel Algorithm 2.

threads. In these cases, threads tend to be stalled less time because load is more
balanced, and so performance is better.

We note that the load imbalance of our parallel algorithm for the six bench-
mark meshes when all graph coloring algorithms and up to 128 Itanium 2 proces-
sors are used is mainly caused by the number of active threads. The higher the
number of active threads, the higher the load imbalance. This means that as the
loop-scheduling overhead instructions increase, the main computation of threads
is more unbalanced. We tested our parallel algorithm on other x86 parallel com-
puters, and the same effect on load imbalance was observed [2].

5.3 Parallelism Bottlenecks

We applied the profiling methodology described in [7] to analyze the perfor-
mance inefficiencies caused by bottlenecks in processor functional units, cache
memories, and NUMA shared memory. When up to 128 Itanium 2 processors are
used, the stall cycles of parallel threads are in the range [29 %. . . 58 %]. These stall
cycles are related to double-precision floating-point arithmetic units (from 70 %
to 27 % of stall cycles), data loads (from 16 % to 55 %), and branch instructions
(from 5 % to 14 %). Stall cycles due to data load instructions are mainly caused
by cache memory latencies. NUMA memory latencies cause less than 1 % of data
stall cycles, which is corroborated by monitoring the NUMA memory bandwidth
usage that was never higher than 5 %. Thus, our parallel algorithm is compute
bound and memory binding techniques have low impact on performance.

Another performance bottleneck was identified in the machine code that is
generated by the compiler for Itanium 2 processors. On average, 40 % of executed
instructions are no-operation instructions. This is caused by the long instruc-
tion format where up to three explicit instructions are included [11]. When the
compiler cannot schedule a bundle of at least three instructions, no-operation
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instructions are used to fill some instruction slots. Enhancing the instruction level
parallelism of our main optimization procedure may improve thread perfor-
mance. However, it is a time-consuming task because the algorithms would
have to be hand coded. Conventional x86 architectures do not suffer from this
performance bottleneck because their instruction formats only include one
instruction [2].

5.4 Influence of Graph Coloring Algorithms on Parallel
Performance

Many papers evaluate the performance of graph coloring algorithms on parallel
computers [5,10,12]. However, for the authors’ knowledge, their impacts on the
performance of algorithms that use these coloring algorithms is rarely reported.

First of all, we confirmed the performance results published in previous
papers for C1, C2 and C3 coloring algorithms. Then, we investigated their
influence on the performance of our parallel optimization algorithm. Since graph
coloring aids in discovering parallelism, the time involved in graph coloring is
only considered when profiling our parallel algorithm and not the sequential
algorithm. When up to 128 processors and the six benchmark meshes are used,
the percentage of total runtime that is required by the graph coloring methods
C1, C2 and C3 ranges respectively from 0.8 % to 3.4 %, from 2.4 % to 12.9 %,
and from 0.1 % to 1.9 %. This means that the computational load required by
our parallel algorithm is much heavier than required by these graph coloring
algorithms.

However, the total execution time depends on the selected coloring algo-
rithm. We note that our parallel algorithm achieves the best performance on the
Itanium2-based computer when the C3 graph coloring technique is used. This is
due to the lowest number of colors in which C3 groups the vertices of each mesh
with respect to the other graph coloring methods C1 and C2. A lower number
of vertex groups allow a larger number of vertices to be processed in parallel.

6 Conclusions and Future Work

We have proposed a new parallel algorithm for simultaneous untangling and
smoothing of tetrahedral meshes. It is based on successive optimization itera-
tions. In each of them, the spatial coordinates of independent sets of vertices
are modified in parallel. The performance evaluation of this algorithm on a 128-
core shared-memory computer using six meshes shows that it is a scalable and
efficient parallel algorithm. It is due to the graph coloring method that is used
to identify independent sets of vertices without computational dependency. We
have additionally analyzed the causes of the parallel performance deterioration.
We conclude that it is mainly due to loop-scheduling overhead of the OpenMP
programming methodology. When analyzing hardware usage, we observe that
our parallel algorithm is compute-bound because it uses the functional units and
cache memory during 99 % of runtime. Finally, we also investigated the influence
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of three graph coloring methods on the performance of our parallel algorithm.
They have low impact on the total execution time. However, the performance of
our parallel algorithm depends on the selected coloring method. In this paper,
we have shown that the C3 coloring method [5] allows our parallel algorithm to
achieve the highest parallel performance on a Itanium2-based computer.

The demonstrated scalability potential of our compute-bound parallel algo-
rithm for shared-memory architectures encourages us to extend our work to
achieve higher performance improvements from GPUs. The main problem will
be to reduce the negative impact of global memory random accesses when non-
consecutive mesh vertices are optimized by the same streaming multiprocessor.
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