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Tomàs Artés(B), Andrés Cencerrado, Ana Cortés, and Tomàs Margalef
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Abstract. Software simulators are developed to predict forest fire
spread. Such simulators require several input parameters which usually
are difficult to know accurately. The input data uncertainty can provoke
a mismatch between the predicted forest fire spread and the actual evo-
lution. To overcome this uncertainty a two stage prediction methodology
is used. In the first stage a genetic algorithm is applied to find the input
parameter set that best reproduces actual fire evolution. Afterwards, the
prediction is carried out using the calibrated input parameter set. This
method improves the prediction error, but increments the execution time
in a context with hard time constraints. A new approach to speed up the
two stage prediction methodology by exploiting multicore architectures
is proposed. A hybrid MPI-OpenMP application has been developed and
different allocation policies have been tested to accelerate the forest fire
prediction with an efficient use of the available resources.

Keywords: Forest fire · Simulation · Data uncertainty · Hybrid MPI-
OpenMP · Evolutionary computation · Resource assignment · Multicore
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1 Introduction

Some natural hazards involve serious consequences from the environmental, eco-
nomic and social point of view. Therefore, it is critical to react as soon as possible
to minimize their effects. This work focuses on forest fire spread prediction. This
kind of natural disasters are among the most worrisome in southern European
countries. To deal with this hazard, models which describe the forest fire spread
have been developed and implemented in simulators. In the case of forest fire,
the Rothermel model [1] is one of the most used and proven. FARSITE [2] is a
widely used simulator which implements this model. To perform a simulation,
it requires a set of parameters that describes the environment where the fire is
taking place. These input parameters may present several difficulties: some of
them are not uniform along the forest fire scenario, others can present a tempo-
ral variability, others must be estimated by interpolated measures, others must
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be obtained from complementary models. This fact results in a certain degree
of uncertainty in input data that provokes a lack of accuracy in the prediction.
A calibration method has been used to reduce the uncertainty of the input data
set [3]. In this method the prediction is based on two stages where firstly a
calibration is carried out and afterwards the prediction is done. The first stage
consists on searching the input parameters set that best reproduces the actual
fire behavior. This search is carried out applying a Genetic Algorithm (GA)
[4] over a certain number of iterations. Once the preset number of iterations is
reached, the best set of parameters is used to carry out the prediction for the
following time step. Although this prediction approach provides better results
in terms of quality degree, it is more computing demanding. The increase in
the time needed to obtain a satisfactory prediction result could not always be
a feasible approach when dealing with emergencies. For this reason, the cali-
bration stage has been implemented using a message passing Master/Worker
paradigm to take advantage of parallel/distributed systems. The two stage pre-
diction scheme was originally designed to run each fire spread simulation using
a single core. In previous studies, it has been stated that every fire spread sim-
ulation lasts shorter or longer depending on the particular setting of the input
parameters. Actually, the time needed to complete every generation of the cal-
ibration stage is bounded by the worker that lasts longer. Therefore, the just
mentioned master/worker scheme using a single core per worker could eventu-
ally generate unbalance among workers. For this reason, the kernel of the used
simulator (FARSITE) has been parallelized using OpenMP in order to reduce
execution time. In this context, it is not worthy dedicating the same amount
of resources to short and long simulations. Therefore, a methodology to char-
acterize FARSITE which allows us to assess, beforehand, the execution time
of a given scenario has been developed. This ability enables the possibility of
designing core allocation policies to minimize the total execution time of the
prediction scheme and, to use the available resources more efficiently. In Sect. 2,
the two stage methodology and its implementation are described. Subsequently,
in Subsect. 2.1 the results of the kernel parallelization are detailed. In Sect. 3,
the methodology used to detect slower kernel executions is briefly presented.
The results of the hybrid MPI-OpenMP with different core allocation policies
are shown in Sect. 4. Finally, conclusions and future work are described in Sect. 5.

2 Hybrid MPI-OpenMP Master/Worker Prediction
Scheme

A simulator independent data-driven prediction scheme is used to calibrate the
input data set provided to the simulator [3]. For this purpose, a previous cali-
bration step is introduced, as can be seen in Fig. 1. So, the input data set used
for the prediction stage is calibrated in this first stage for each prediction step.
Based on the hypothesis that the meteorological conditions will not suddenly
change from the calibration stage to the prediction stage, the calibrated data set
could be used to produce a more accurate prediction.
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Fig. 1. 2 stage prediction method

Because of their outstanding results within this framework [5] this work is based
on the use of GA as calibration technique. The algorithm starts from an initial
random population of individuals, each one representing a scenario to be simu-
lated. An individual is composed of a number of different genes that represent
input variables such as dead fuel moistures, live fuel moistures, wind speed and
direction, among others. Each individual is simulated and it is evaluated com-
paring the predicted and real fire propagation by estimating the fitness func-
tion described in Eq. 1. This fitness function computes the symmetric difference
between predicted and real burned areas.

Difference =
UnionCells − IntersectionCells

RealCells − InitCells
(1)

In Eq. 1, UnionCells is the number of cells which describe the surface burned
considering predicted fire and the real fire. IntersectionCells is the number of
cells burned in the real map and also in the predicted map, and RealCells are
the cells burned in the real map. InitCells is the number of cells burned at
the starting time. This difference takes into account the wrong burned cells
and the mistaken for burned cells. According to this fitness function the whole
population is ranked and the genetic operators selection, elitism, mutation and
crossover are performed over the population, producing an evolved population
which will have, at least, the best individual of the last generation (elitism).
The new population is then evaluated in the same way. This iterative process
allows us to find a good input parameter set, but it involves high computational
cost due to the large amount of simulations required. Therefore, it is essential
to speed up the execution keeping the accuracy of the prediction. For this rea-
son, an implementation of the two stage methodology has been developed using
High Performance Computing techniques. Since the GA fits the Master/Worker
paradigm, an MPI implementation has been developed. At the first stage, the
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master node generates an initial random population which is distributed among
the workers. Then, the workers simulate each individual and evaluate the fit-
ness function. The errors generated by the workers are sent to the master which
sorts the corresponding individuals by their error before applying the genetic
operators and producing a new population. This iterative process is repeated
a fixed number of times. The last iteration (generation) contains a population
from which the best individual is taken as the best solution, and then it is used
in the prediction stage. Since every simulation can be carried out in a parallel
way, the individual whose simulation takes longer determines the elapsed time
for that particular generation. In order to shorten simulation times, FARSITE
has been analyzed with profiling tools such as OmpP [6] and gprof [7] to deter-
mine which regions of the code could be parallelized with OpenMP. The result
of such analysis determined the particular loops that could be parallelized using
OpenMP pragmas. The results of such parallelization have been presented in [8].
The parallelized loops represents about 60 % of one iteration execution time. It
means that 40 % of the iteration execution time is sequential and it implies that
the speed up is not linear, but is limited by such sequential part.

2.1 Evaluating the Hybrid Scheme

In order to have an snap shot of the Hybrid Master/Worker scheme potential,
we performed two preliminary test experiments. For this purpose, we used as a
terrain, a geographical zone of high risk of forest fire located in the North-East
of Spain, Cap de Creus. In this terrain, a synthetic fire has been simulated using
as input setting information provided by the local meteorological centre SMC
(Catalan Meteorological Service) obtained from the Automatic Weather Sta-
tion Network (XEMA). The vegetation types has been obtained from CORINE
land cover data base [9]. The obtained fire spread was used as a real fire for
comparison purposes. The computational platform used was a 32 nodes IBM
x3550 cluster where each computing node has two dual core Intel Xeon 5160
and 12 GB of memory at 667 Mhz. The first experiment consists of executing
the hybrid Master/Worker prediction scheme using a random initial popula-
tion of 25 individuals, which was evolved 10 generations using one core for each
individual. The resulting evolved populations obtained at each iteration of the
GA, are recorded and reused again but using 4 core per individual. This way,
both cases use the same individuals at each iteration and they only differ in the
cores assigned to each individual. Figure 2 depicts the calibration errors evolu-
tion through obtained over the evolution of the population and shows the elapsed
time to execute the 25 individuals of each iteration. As it was expected, the exe-
cution time is reduced significantly when the number of cores is increased. For
example, the total execution time is reduced from 72693 s to 27174 s. The error
evolution is consistent because the error for the next generation must be equal,
as least, to the last generation. This is due to the elitism genetic operator. The
best individual is introduced without changes to the next population to evalu-
ate. If crossover or mutation operator does not create a new individual better
than the individual chosen by elitism, there are no error improvement. This fact



Core Allocation Policies on Multicore Platforms 155

produces a stair like behaviour when plotting the error for each generation. Bear-
ing in mind the results obtained in this preliminary study, to increase the num-
ber of cores assigned to FARSITE simulations (individuals of the GA algorithm)
could not always be a benefit in terms of final execution time. In particular, for
those short simulations (several seconds) that will not bound the duration of a
given generation, it will not be useful to allocate more than one core. Therefore,
in order to be able to determine how many cores to assign to each FARSITE
simulation (individual evaluation in the GA scheme), it is necessary to be able
to asses before running the simulation, its execution time. In the next section,
we describe a methodology to characterize FARSITE that allows us determin-
ing in advance the duration of a given FARSITE simulation for a certain input
settings. In particular, the estimated execution time is defined by and interval
time called class.

Fig. 2. Execution time and error considering 1 and 4 cores

3 FARSITE Characterization

As it has been mentioned, the execution time of a single simulation on the same
map and simulating the same time can vary from seconds to several minutes or
even hours depending on the input settings of the fire spread simulator. Con-
sequently, in order to design core allocation strategies, we need to be able to
anticipate the execution time of a certain input setting without the necessity of
running that simulation. For this purpose, we propose a real time strategy to
rapidly assess for a given input scenario (simulator input setting) an execution
interval time where the corresponding FARSITE simulation time will fit. This
strategy has been successfully tested for several forest fire spread simulators as
is reported in [10]. To be operative during a real hazard, this execution-time
estimation of a given scenario must be inferred as quickly as possible, keeping
the cost of carrying out this operation to a minimum, in terms of time needed.
For this reason, we rely on the field of Artificial Intelligence to be able to auto-
matically learn from stored knowledge, so as to provide smart decisions. In par-
ticular, we use Decision Trees to extract this knowledge from certain database.
The FARSITE characterization (or simulator kernel characterization) is fulfilled
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by means of carrying out large sets of executions (on the order of thousands)
counting on different initial scenarios (different input data sets), and then, apply-
ing knowledge-extraction techniques from the information they provide, i.e. we
record the execution times from the experiment, and then we establish a classi-
fication of the input parameters according to the elapsed times they produced.
Specifically, we follow this sequence of steps:

– Training database building: Currently, we work with training databases com-
posed of 12000 different scenarios.

– Determination of execution time classes: The whole training database is exe-
cuted, and every par [scenario, execution time] is recorded. After this, the
histogram of execution times is analyzed. Identifying the local minimums of
the histogram the upper and lower boundaries of each execution time class
are determined. Figure 3 depicts the histogram of execution times obtained
for FARSITE. From the analysis of this histogram the resulting classes are
the following:

• Class A: ET ≤ 270 s.
• Class B: 270 seconds < ET ≤ 750.
• Class C: 750 seconds < ET ≤ 1470 s.
• Class D: 1470 seconds < ET ≤ 3600 s.

– Decision Tree building: once we have determined how many classes we will
consider, then we are ready to build the Decision Tree. For this purpose, we
rely on the C4.5 algorithm, specifically, the J48 open source Java implemented
in the Weka data mining tool [11].

These steps are carried out off-line, in a preparation phase before any real emer-
gency is under analysis. Once this methodology has been followed, only one
final step remains: the application of the built Decision Tree with the scenario
describing the ongoing fire, in order to assess in advance the execution time its
simulation will produce. This action supposes a negligible cost, in terms of time
overhead (on the order of a few seconds) and enables the ability of deciding at
real-time how many cores allocate to each simulation depending on its estimated
execution time class. The results of applying Decision Trees were validated in
[12], where it is demonstrated that we reach 96.4 % correct classifications. In
the following section, we reported an experimental study where different core
allocation strategies have been analyzed in terms of speedup an efficiency.

4 Experimental Study

By means of the simulator kernel Characterization described in Sect. 3, we are
able to identify those individuals that will last longer in a given iteration of the
Hybrid Master/Worker prediction scheme. This fact allows us to take advan-
tage of the OpenMP parallel version of FARSITE, determining a real-time core-
allocation strategy for each individual in a generation in order to save as much
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Fig. 3. Histogram of execution times using FARSITE. vertical dotted lines indicate
the defined classification boundaries.

overall execution time as possible. Thus, in this section, the benefits of apply-
ing the FARSITE characterization together with the developed Hybrid Mas-
ter/Worker prediction scheme are evaluated. For this purpose, we conducted an
experimental study consisting of applying different core-allocation policies and
analyzing the obtained speedup and efficiency. The execution platform and the
terrain where the experiments have been performed are the same that the ones
used in Sect. 2. The experiments carried out consist of executing the Hybrid Mas-
ter/Worker prediction scheme using 9 different initial populations each one com-
posed of 25 individuals and the GA iterates 10 generations. As it was done in the
preliminary study reported in Sect. 2.1, the intermediate populations obtained
at each generations for the case of one single core allocation per simulations,
have been recorder to be able to reproduce the same evolution with different
allocation policies which are listed following:

– All-1: The basic case, where each individual is allocated to one core.
– C2D4: Individuals belonging to class C are allocated to 2 cores. Individuals

belonging to class D are allocated to 4 cores. The rest of individuals are
allocated to one core.

– D4: Individuals belonging to class D are allocated to 4 cores. The rest of
individuals are allocated to one core.

– All-4: All the individuals are allocated to 4 cores. It is worth mentioning
that, for this experimental study, the workers are limited to execute only an
individual per generation. This fact reduces the efficiency because parts of the
workers are waiting for the slowest simulation to end.

It is worth mentioning that, for this experimental study, the workers are lim-
ited to execute only an individual per generation. This fact reduces the effi-
ciency because some workers are waiting for the slowest simulation to end but it
ensures seeing the effects of the different core-allocations. Figure 4(a) shows the
results obtained. This figure presents the average speedup (sequential execution
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time/parallel execution time) obtained by applying the 4 different allocation
policies. As it was expected, policy All-4 was the most favorable in terms of
speedup and it is useful to compare to the speedup reached by the other poli-
cies. It can also be observed that policy C2D4 is the most close to the maximum
speedup obtained by policy All-4. Policy D4 gets a slightly lower value than
policy C2D4. This means that there are cases in which C individuals execution
time become the slowest ones executed with one core and this fact determines the
execution time. Thus, in such cases, allocating C individuals to 2 cores would be
suitable. However, if the efficiency (speedup/number of cores) is considered, All-
1 strategy presents a very poor efficiency since it needs 100 cores to be executed.
So, it results in a very poor resource utilization. Figure 4(b) shows the average
efficiency for each policy. Between the extreme policies All-1 and All-4, execu-
tions of policy D4 are using significantly less cores than policy C2D4 achieving
a minimally less speedup. It can be observed that assigning strictly 4 cores to
D individuals (policy D4 ) provides better efficiency than policy C2D4 where C
individuals are assigned 2 cores. Figure 5(a) depicts the obtained speed up values
for each case. As can be seen in Fig. 5(a), policies D4 and C2D4 almost reach the
same speed up as the one obtained when allocating every simulation to 4 cores.
In some cases, such as 1, 3 and 5, shortening class D individuals may cause that
class C individuals become the lengthiest simulation at each generation. This

(a) Average Speedup. (b) Average Efficiency.

Fig. 4. Speedup and Efficiency for the 4 scheduling policies.

(a) Speedup per case (b) Core usage per case

Fig. 5. Speedup and core usage for the 4 allocation policies.
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can be observed in Fig. 5(b). The benefit obtained by the application of these
simple policies can also be analyzed. For instance, considering cases 4 and 6, we
are able to obtain almost the same speedup as the most favorable case, in terms
of execution time (policy All-4 ) by adding only 3 and 6 cores, respectively. In
general terms, policy C2D4 requires only 7 cores extra to be implemented, but
the gain is relevant.

5 Conclusions and Future Work

Nowadays, the existing forest fire spread simulation tools provide us with more
accurate results as well as the ability to use more complex simulation features.
However, the predictions based on a single-simulation strategy still presents the
serious disadvantage of not being able to effectively deal with the uncertainty
related to the context of an environmental emergency management. In this paper,
we describe two kind of uncertainties which may lead us to inaccurate predic-
tions: uncertainty in the values of the input parameters of the simulator, and
uncertainty in the time needed to deliver a fire spread prediction. In order to deal
with the former, we describe a two-stage prediction framework based on the iter-
ative calibration of the input parameters according to the actual evolution of the
fire. The later issue is tackled by means of an Artificial Intelligence technique
(specifically, Decision Trees) to classify in advance the different sets of input
parameters according to the expected execution time they will produce. How-
ever, while these methods clearly benefits the consecution of our goal, the need
arises to address the problem of efficient computational resources exploitation.
The proposed calibration technique for the two-stage prediction framework, GA,
presents outstanding results as regards the improvement in the quality of our
predictions, but it is very computational demanding, since it needs the execution
of multiple simulations at the same time. Taking advantage of the fact that we
are able to estimate how long a simulation will last before its execution, we pro-
pose to rely on this technique to decide how to allocate the different simulations
to the available resources. The results obtained in the reported experimental
study demonstrate the great benefit we obtain, mainly in terms of absolute time
savings in the prediction process, by means of the application of simple core-
allocation policies. This allows us to set out the main question of our ongoing
work: the implementation of an intelligent scheduling system for the optimization
of the available resources in order to enhance the quality of our predictions as
quick as possible. For instance, it would be an important advantage to be able to
dynamically group the fastest simulations in subsets of computational resources,
allocating the slowest ones to other dedicated subsets, according to the specific
needs of each case. Ongoing work is also related to add to our methodologies the
capability to automatically adapt to new computing resources appearance in real
time. The results obtained open up these new challenges with good expectations
and a guaranteed background.
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