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Abstract. This paper presents a new approach to modelling the time
course of user-experience (UX). Flexibility in modelling is essential: to
select or develop UX models based on the outcome variables that are of
interest in terms of explanation or prediction. At the same time, there
is potential for (partial) re-using UX models across products and gener-
alisation of models. As a case study, an experience model is developed
for a particular consumer product, based on a time-sequential frame-
work of subjective well-being [13] and a theoretical framework of flow for
human-computer interaction [23]. The model is represented as a dynamic
Bayesian network and the feasibility and limitations of using DBN are
assessed. Future work will empirically evaluate the model with users of
consumer products.

1 Introduction

Parallel to the spread of personal computing, user-experience (UX) has become
a major area in HCI research. Sutcliffe [20] provides a useful definition of UX:
users’ judgment of product quality arising from their experience of interaction,
and the product qualities which engender effective use and pleasure. UX stresses
that interactive products do not only deliver functional benefits, they promote
experiences too, and users intention to (re)live positive experiences is an impor-
tant driver of technology use [7]. Because most modern interactive products,
such as laptop computers, hand-held devices (e.g. smart phones) and tablets,
can be used both for work and leisure, utilitarian aspects (e.g., ease of use and
learnability) are widely regarded as important, but insufficient by themselves
to give a complete account for the acceptance, use and success of these tech-
nologies [3]. Indeed, the main idea behind the concept of UX is that the success
of interactive products is fundamentally connected to their ability to promote
high-quality experiences, but usability remains important. It is helpful to distin-
guish between instrumental and non-instrumental factors in relation to UX [22].
Usability of a product, as an instrumental factor, may strongly contribute to
negative experiences, if it does not reach a satisfactory level expected by users.
However, in order to achieve positive experiences, high levels of non-instrumental
factors (e.g. positive and negative affect) are needed.
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Models that represent HCI knowledge are useful to summarize data, formal-
ize relationships between variables and to make predictions, even if or precisely
because they possess a degree of incompleteness and falseness. Indeed, HCI mod-
els can have theoretical and practical value as long as they fit data well, and make
theoretical and practical sense, without actually being entirely truthful in their
description of a particular phenomenon or process. Flexibility in modeling is
therefore essential: to select or develop UX models based on the outcome vari-
ables that are of interest in terms of explanation or prediction, instead of using a
single one-size-fits-all approach. Usually outcome variables are seen as indicators
of success of a particular product, for example satisfaction or overall evaluation of
experience. Outcome variables can be derived from, for instance, defined user-
requirements (e.g. health improvement) or marketing objectives (e.g. satisfied
customers). After UX has been measured it is possible to establish (a) to which
extent requirements or objectives of the product have been met and (b) which
other variables mostly contribute to explaining variance in the outcomes, as a
basis for potential product improvement. Products that share the same outcome
variables may share the same or similar models, thereby facilitating potential
(partial) re-use UX models for new products and generalization of models.

With a change in emphasis from usability to experience, it is increasingly
important that products promote a high-quality experience. This is particularly
important for new technology that users may be unfamiliar with, such as aug-
mented reality (AR). AR systems could promote high-quality UX, but there
is a lack of UX research to underpin the design of such systems. Research to
inform the design of such products is expected to benefit both product users
and product manufacturers.

Existing models of UX have been formulated and tested with techniques
based on the general linear model. In particular, multiple regression analysis,
variance-based structural equation modeling (partial least-squares path mod-
eling) and covariance-based structural equation modeling have been used. In
this paper we explore the use of dynamic Bayesian networks, with the follow-
ing contributions: (a) a flexible, but theory-driven, approach to UX modeling,
(b) the specification of a particular well-grounded theory-based UX model and
(c) the representation of the model as a dynamic Bayesian network and analy-
sis of the modeling work. Section 2 presents related work. Section 3 presents the
modeling approach, followed by conclusions and future work in Sect. 4.

2 Related Work

Existing research on UX modeling distinguishes instrumental and non-
instrumental aspects of experience. However, in this work UX outcomes are usu-
ally non-instrumental. In Hassenzahl’s user-experience [7,8] model perceptions of
product characteristics (pragmatic quality and hedonic quality) are antecedents
of global product evaluations (goodness and beauty). In Porat and Tractinsky’s
environmental-psychology UX model [18], environmental stimuli (classical aes-
thetics, expressive aesthetics and usability) are antecedents of emotional states
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(pleasure, arousal and dominance); in turn, these are antecedents of attitudes
towards service. In Thüring and Mahlke’s [22] CUE model, system properties,
user-characteristics, and task/context are antecedents of interaction character-
istics; in turn, these are antecedents of perceptions of instrumental qualities
and perceptions of non-instrumental qualities, both of which lead to emotional
reactions; all three are antecedents of appraisal of the system. In Hartmann
et al.’s model of user-interface quality assessment [8], three stages are involved
in users’ judgment of quality assessment. First, users assess an interactive system
based on their goals and the task domain. Second, users select decision-making
criteria based on their goals and task. Third, users evaluate the system using
these criteria.

Tests of these four UX models were in empirical studies used analysis of vari-
ance [7,21,22], partial correlation [7], covariance-based structural modeling [18].
Recent work has proposed the use of dynamic Bayesian networks (DBNs) for
modeling quality of experience [11]. In their approach, context attributes are
antecedents of the context state; in turn, context-state variables are antecedents
of the situation state. The approach is illustrated with simulation results. Lim-
itations of this work include the following. The work has no apparent credible
theoretical justification; it does not build on existing theory of UX. Further-
more, it does not account for experience of a particular episode of interaction as
it happens and global judgment of interaction with a product. Instead it only
accounts for the memory of interaction episodes. Moreover, it does not account
for causal relations between these three aspects of experience and, in a gross
simplification, reduces the measurement of technology acceptance to a Boolean.

A major shortcoming of existing UX research on AR (and interactive prod-
ucts more generally) is that often actual product use and long-term use are not
studied [24]. Furthermore, the role of task performance is not addressed; more-
over, most research is not experimental, so cause (design) and effect (UX) cannot
be established. Therefore, our program of research aims to conduct experimen-
tal research that models UX over time to inform the design of AR systems to
sustain high-quality UX. We use a time-sequential framework of subjective well-
being [13], our methods for modeling UX [23] and our hybrid real-time motion
measurement system [19]; this work is expected to lead to new applications and
improvements in product design.

3 Modeling Approach

Models of UX specifying determinants of positive experiences have been tested
with a range of interactive devices and technologies. However, several chal-
lenges in UX modeling remain, in terms of UX theory, research design, technical
solution and application of modeling to product design. Based on Kim-Prieto
et al.’s time-sequential framework of subjective well-being [13], a time-sequential
framework of UX can be framed as a sequence of stages over time: from the
experience of a particular episode of interaction as it happens (Level 1) to the
memory of interaction episodes (Level 2) to global judgment of interaction with
a product (Level 3).
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The approach taken here to model UX with a product over time uses DBNs
[11]. This is illustrated with a consumer product (shaver), but the approach
applies without loss of generality to any product. Based on existing work with
industry by the research team, a sensor-embedded shaver will be developed. The
shaver will communicate with a users existing smart phone to record the users
behavior and measure the users experience in terms of memory of experience
episodes (shaves) and global judgment of shaving experience.

The use of DBNs for UX modeling over time has several advantages over
other techniques such as multiple regression analysis, structural equation mod-
eling (SEM, in particular PLS path modeling and covariance based SEM), mul-
tilevel modeling and time series analysis are. DBNs are a dynamic version of
probabilistic graphical models - Bayesian networks-that represent cause-effect
relations embedded in a domain. They are able to structure the relations over
time and provide an intuitive tool for conducting various inference tasks in the
domain. To make a functional DBNs, it is always quite tedious to construct the
DBNs manually, which requires a large amount of knowledge input from domain
experts. Considering the availability of data in our domain, we are using auto-
matic methods to learn DBNs from the accumulated data over subject study.
However, it remains important that modeling results are grounded in theoretical
understanding in order to build cumulative knowledge; therefore, as a starting
point, we derive a well-argued theoretical model by integrating existing theoret-
ical frameworks.

A recent theoretical framework of flow for HCI will be used [23] because
the crucial role of task performance in modeling UX and the theory of flow
experience (the degree to which a person feels involved in a particular activ-
ity) uniquely addresses this performance. In this framework, characteristics of
person (user), artifact (product) and task are antecedents of flow experience.
Flow experience consists of two main components: preconditions of flow and the
dimensions of flow proper. Consequents of flow include objective, subjective and
behavioral out-comes. The concept of flow is linked to that of effortless(ness
of) performance [2]: the more flow people experience, the more effortless/less
effortful their task performance is.

3.1 Data Capture and Variables

At Level 1, experience as it happens is inferred from captured sensor data
and secondary-task data collected during each interaction episode. The three-
dimensional position of the shaver is recorded continuously as well as the force
a user applies to the shaver (and, optional, muscle activity). From these, mea-
sures of effortlessness are computed, including accuracy of motor performance,
frequency and size of (motor) corrections and speed of action (variability) [5].
Performance is more effortless with more accurate motor performance, more
frequent and smaller (motor) corrections and greater speed of action [5].

From a secondary task (for example, a reaction-time task where people
respond to specific [sound] signal), response time is recorded. Attentional demand
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is measured as speed of secondary-task performance (timing of response rela-
tive to signal). Performance is more effortless with reduced attentional demand
(faster secondary-task performance). In sum, online UX variables for DBN-

modeling include: U1 Accuracy of motor performance; U2 Frequency and size of

(motor) corrections; U3 Speed of action; U4 Speed of secondary-task
performance.

Rather than using these variables as nodes in a model, we use a hidden
(latent) variable to represent effortlessness inferred from these (indicator) vari-
ables, with reflective measurement. This is because the latent variable is the
cause of the variables. At Level 2, memory of interaction episode is inferred
from captured psychometric-questionnaire data collected immediately after each
interaction episode. Flow experience is measured using Guo and Pooles 30-item
inventory (or a subset or a similar instrument) [6]. From the 30 items, nine
dimensions as hidden (latent) variables are inferred. The first three dimensions
are preconditions of flow and the remaining six are dimensions of flow proper. For
simplification, from the six dimensions of flow one high-order flow dimension may
be inferred, but autotelic experience (Dimension 9) may also be used in the mod-
eling as a variable on its own as it captures most clearly the intrinsically motiva-
tional value of flow experience. Visual attractiveness is measured using a single
item from Tractinsky et al. [17], using a 10-point semantic differential. Affect
is measured using PANAS with 10 items for positive affect and 10 for negative
affect [1]. From the 20 items, two dimensions (positive and negative affect) are
inferred. In sum, online interaction-memory variables for DBN-modeling include:

U5 Balance of challenge and skill; U6 Goal clarity; U7 Feedback; U8 Autotelic

experience; U9 Visual attractiveness; U10 Positive affect; U11 Negative affect.
Quality of task result (quality of shave) is assessed from a photograph taken

of a particular save and satisfaction with task result from psychometric-
questionnaire data collected immediately after each interaction episode. Quality
of task result is rated by an independent judge or through image interpretation
software. Items(5) to measure satisfaction from result are developed, based on
existing instruments. From the items the satisfaction with task result as hidden
(latent) variables is inferred. In sum, task result variables for DBN-modeling

include: U12 Quality of task result; U13 Satisfaction with task result.
At Level 3, global judgment of interaction is inferred from captured psycho-

metric questionnaire data collected after a number of interaction episodes. Items
to measure utility(4), appearance(4), positive memories(3), pleasure of inter-
action(2), product attachment(5) and product satisfaction(4) are from Mugge
et al. [16]. Items to measure intention(4) of future purchase are adapted from
Kowatsch and Maass [14]. From the items the three global-judgment constructs
as hidden (latent) variables are inferred. In sum, global-judgment variables for

DBN-modeling include: U14 Utility; U15 Appearance; U16 Positive memories;
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U17 Pleasure; U18 Product attachment; U19 Product satisfaction; U20

Intention of future purchase.
The role of person characteristics in relation to flow experience is that they

moderate the effect of preconditions of flow experience on flow proper [4]. These
characteristics are inferred from captured psychometric-questionnaire data col-
lected once at the start of a trial. The constructs of achievement motivation
and in particular action orientation (volatility subscale of the Action Control
Scale, 12 items) from Diefendorff et al. [10] and perceived importance (3 items)
from [4] are measured. From the items each of these constructs are inferred as
hidden (latent) variables. In sum, person variables for DBN-modeling include:

U21 Action orientation (volatility); U22 Perceived importance.

3.2 Static BN

To structure a potential BN, we proceed to specify relations among variables by
exploiting their description in the existing literatures.

Level 1. Experience during interaction. The hidden variable effortlessness
is modeled reflectively as a cause. This is because all measured variables at
Level 1 are indicators of and ‘caused’ by effortless attention. We may abuse the
functional relations as follows.

– Accuracy of motor performance = F(Effortlessness)
– Frequency and size of (motor) corrections = F(Effortlessness)
– Speed of action = F(Effortlessness)
– Speed of secondary-task performance = F(Effortlessness)

Level 2. Memory of interaction episode. Peoples memory of flow imme-
diately after an interaction episode reflects the degree of effortlessness of the
activity [2]. Therefore,

– Balance of challenge and skill = F(Effortlessness)
– Goal clarity = F(Effortlessness)
– Feedback = F(Effortlessness)

According to the staged model of flow experience [6] preconditions of flow are
causes of flow experience proper; according to Engeser and Rheinberg [4] and
Keller and Bless [12], achievement motivation is a moderator of the effect of the
preconditions of flow on flow proper; according to Engeser and Rheinberg [4],
importance is a moderator of this effect. Therefore,

– Autotelic Experience = F(Balance of challenge and skill, Goal clarity, Feed-
back, Achievement motive, Importance)



Using Dynamic Bayesian Networks to Model User-Experience 9

Because of cognitive (attention-enhancing) and motivational facilitation
[4,23] task performance and the result of task performance are enhanced. There-
fore,

– Quality of task result = F(Effortlessness, Balance of challenge and skill, Goal
clarity, Feedback)

Level 3. Global judgment of interaction. Consistent with Kim-Prieto
et al. [13], (immediate) memories of task result provides extrinsically motiva-
tional value that contributes to the global judgment of perceived utility. There-
fore,

– Utility = F(Satisfaction with task result)

Brief (immediate) judgment of visual attractiveness contributes to elaborate
(reflective) judgment of aesthetics [17]. Therefore,

– Appearance = F(Visual attractiveness)

(Immediate) memories of experience contribute to global judgment of expe-
rience [13]. Therefore,

– Positive memories = F(Positive affect, Negative affect)

Autotelic experience in a particular interaction episode is an ‘intrinsically
rewarding experience’ [9] and therefore produces pleasure that contributes to a
global judgment of pleasure of interaction. Utility and appearance contribute to
pleasure [16]. Therefore,

– Pleasure = F(Autotelic experience, Utility, Appearance)

Pleasure partially mediates the effect of utility on satisfaction and fully medi-
ates the effect of appearance [16]. Therefore,

– Product Satisfaction = F(Pleasure, Utility, Appearance)

The effects of utility and appearance on product attachment are fully medi-
ated by pleasure [16]. Positive memories have a positive effect on pleasure [16].
The effects of utility and appearance on product attachment are moderated by
positive memories [16]. Therefore,

– Product Attachment = F(Pleasure, Utility, Appearance, Positive Memories)

Satisfaction is an antecedent of intention [15]. Therefore,

– Intention of Future purchase = F(Satisfaction)

By combining the relations specified above, we may present the static BN
for the UX in Fig. 1.
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Fig. 1. A static BN represents the UX.

Fig. 2. A dynamic BN represents one relation over time.

3.3 Dynamic BN

To construct a time-dependent framework, we assume a first-order Markov
process: the previous experience is an antecedent of next experience. There-
fore, each experience variable at the previous time (t1) is treated a cause of the
same variable at the next time(t2). The relations (indicated by F) can also turn
into a first-order Markov process. For example, we may represent the relation
below over time in Fig. 2.

– Positive memories = F(Positive affect, Negative affect)

Obviously, the complete DBN will be a very complicated model where all
relations are expanded over time. We will further test whether any descendants
of the antecedents in the relations are statistically significant. By doing this, we
expect to simplify the model by reducing the connectivity over time.
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3.4 Discussions

Complicated UX relations always puzzle both domain experts and practitioners
as the dimensions grow over time. Resorting to probabilistic graphical models,
we intend to provide a more intuitive representation to describe UX over time.
Particularly, the model becomes an easy way to convey UX to product designers
who can understand the studied domain through a formal language.

By exploiting the previous study on UX, we structure UX variables into one
BN and expand the BN into DBN assuming a first-order Markov process. The
remaining thing is to specify DBN parameters (conditional probability tables)
that normally can be done in an automatic way. Currently, we are gathering
domain data from the field study and expect to estimate the parameters through
a proper learning method.

4 Conclusions and Future Work

Modeling the time course of UX is important, but an under-researched field of
study. The use of DBN is a promising approach to modeling UX over time, but
this work needs to be informed by and account for existing theoretical frame-
works and new ideas. This will allow existing theories to be refined or replaced by
new theories. We have demonstrated the feasibility and limitations of using DBN
to model UX. Most important findings were that UX relations can be explic-
itly represented through BN and can be intuitively understood by researchers
and practitioners without different knowledge background; however, learning BN
parameters could be a potential issue as a sufficient amount of data shall be gath-
ered. We will exploit domain knowledge to develop a more reliable and efficient
learning process.

Future work will include testing the UX flow model that has been presented
here in experiments with different products where (the result of) task perfor-
mance is essential. Furthermore, it is important to realize that modeling needs
to be flexible to select or develop UX models based on the outcome variables
that are of interest in terms of explanation or prediction, instead of using a single
‘one-size-fits-all’ approach. Depending on target UX outcomes and the role of
task performance for particular products, different models need to be formulated
and tested for theoretical understanding and as a basis for design improvement.
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