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Abstract Today the most important concern of the managers is to make their firms
viable in the competitive trade world. Managers are looking effective tools for deci-
sion making in the complex business world. This paper addresses a hierarchical
multi objective production-distribution planing problem under fuzzy random envi-
ronment. A mathematical model is presented to describe the purpose problem. To
deal the uncertain environment, the fuzzy random variables are first transformed into
trapezoidal fuzzy numbers, and by using the expected value operation, the trape-
zoidal fuzzy numbers are subsequently defuzzified. For solving the multi-objective
problem a weighted sum base genetic algorithm is applied. Finally, the result of a
numerical example are presented to demonstrate the practical and efficiency of the
optimized model.

Keywords Multi-objective optimization · Fuzzy lead-time · Fuzzy inventory cost
parameters · Inventory planing · Interactive fuzzy decision making method

52.1 Introduction

A supply chain contains all activities that transform raw materials to final prod-
ucts and deliver them to the customers. Production-distribution (PD) planing is most
important operational function in a supply chain. In today competitive environment,
it is required to plan the products, manufactured and distribution, also need for
higher efficiency, lower production cost and maximize the customer satisfaction. In
general PD problems in supply chains, the decision maker attempts to achieve the
following (a) set overall production levels for each product category for each source
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(manufacturers) to meet fluctuating or uncertain demand for various destinations
(distributors) over the intermediate planning horizon, and (b) make right strategies
regarding production, subcontracting, back-ordering, inventory and distribution lev-
els, and thus determining appropriate resources to be used [1, 24]. Several methods
and algorithms have been developed to solve various PD problems in certain envi-
ronments [4, 5, 23].

In real-world PD problems, however, related environmental coefficients and para-
meters, including market demand, available labor levels and machine capacities, and
cost/time coefficients, are often imprecise/fuzzy because of some information being
incomplete or unobtainable. It is critical that the satisfying goal values should nor-
mally be uncertain as the cost coefficients and parameters are imprecise/fuzzy in
practical PD problems [20, 24]. The practical PD problems generally have con-
flicting goals in term of the use of organizational resources, and these conflicting
goals must be simultaneously optimized by the decision makers in the framework
of imprecise aspiration levels [17, 18]. The conventional deterministic techniques
cannot solve all integrating PD programming problems in uncertain environments.
PD planning is a core issue influencing the producer, distributor and customer. The
importance of PD planning has already been recognized [10, 23] and structure and
different views of PD planning have been proposed in a great deal of research [2, 4,
15, 16, 21, 22].

The uncertainty in PD system is widely recognized because uncertainties exist in
a variety of system components. As a result, the inherent complexity and stochas-
tic uncertainty existing in real-world PD decision making have essentially placed
them beyond conventional deterministic optimization methods. While, modeling a
production distribution problem, production costs, purchasing, selling prices, trans-
portation cost, delivery time and demand of products in the objectives and constraints
are defined to be confirmed. However, it is seldom so in the real-life. For example,
holding cost for an item is supposed to be dependent on the amount put in the stor-
age. Similarly, set-up cost also depends upon the total quantity to be produced in a
scheduling period, transportation cost depend upon the number of items delivered
and scheduling the good network,delivery time also depend upon the production
capacity and communication network. So, due to the specific requirements and local
conditions, uncertainties may be associated with these variables and the above goals
and parameters are normally vague and imprecise, i.e. fuzzy random variable in
nature. However, from the previous study review, there appear to be few literature
that deal with the uncertainty environment using both fuzziness and randomness in
supply chain PD planning problem. Kwakernaak [13, 14] introduced a mathematical
model by using fuzzy random variables, which was later developed more clearly
by Kruse and Meyer [12]. In the Kwakernaak/Kruse and Meyer approaches, fuzzy
random variables is viewed as a fuzzy perception/observation/report of a classical
real-valued random variable. Xu and Pei [25] proposed a construction supply chain
management PD planning, a bi-level model with demand and variable production
costs with both fuzzy and random varieties is developed. From a probability space
fuzzy random variable is a measurable function to a collection of fuzzy variables,
so, roughly speaking, an fuzzy random variable is a random variable that takes fuzzy
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values. In this paper, for production-distribution planning, a bi-level multi objective
model with demand, production costs, selling price and transportation costs all are
considered as a fuzzy random.

This paper contributes to current research as follows: first, a multi-objectives
model is proposed which considers two objective functions in large-scale industry
which solve PD planing problem. In addition, fuzzy random variables are used to
describe the demand,variable production costs, transportation cost and delivery time,
which assists decision makers to make more effective and precise decisions. In the
following sections of this paper is designed as follow. In Sect. 52.2 multi objective
problem description and motivation of using fuzzy random variables are described.
A mathematical model is used to optimized the production-distribution planing is
explained in Sect. 52.3. In Sect. 52.4 fuzzy random simulation based genetic algo-
rithm is explained. A numerical example is parented in Sect. 52.5 to show the sig-
nificance of proposed model. At the end conclusions are given in Sect. 52.6.

52.2 Multi Objective Problem Description

This paper consider multi-objective PD problems examined here can be described
as follows. Assume that the decision maker attempts to determine the integrating
PD plan for K types of homogeneous commodities from L sources (factories) to
M destinations (distribution centers) to satisfy the market demand. Every source
has a supply of the commodity available to distribute to various destinations, and
each destination has its forecast demand for the commodity to be received from
the sources. The estimate demand, unit cost coefficients, and machine capacity are
normally imprecise/fuzzy randomowing to incomplete and unobtainable information
over the intermediate planning horizon. This work focuses on developing a expected
programming method for optimizing the PD plan in fuzzy random environments.

The need to describe uncertainty in PD planning is widely acknowledged because
uncertainties exist in a variety of system components and a linkage to the regulated
policies. In PD the source of the uncertainty mainly has four aspects in the PD
planning: production cost; transportation cost, market demand and delivery time.
Uncertainty in production mainly exist on the reliability of the production system.
Such as; machine fault, change in input prices, executive deviation of the plan etc.
Similarly, uncertainty exist in the market demand of the product. Randomness exist
in themarket demand because of change in product price and season, disaster, market
competitors influence etc. Uncertainty also exist in transportation cost of product,
transfer to the sale markets. Such as change in flue price, market distance from dis-
tribution center, quantity of order etc. Uncertainty may exist in the delivery time
because of labor strike, machine working and shortage of components that help in
manufacturing the products etc. Generally we define out the uncertainty first with
the help of sampling analysis on the base of statistical data when considering the
production cost, market demand, transportation cost and delivery time. Then we can
value them and make fuzzy random variables with the help of expert experiences.
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In such a case of study, because it is very difficult to estimate the accurate value of
all these fuzzy random variables. It is mostly defined by giving a range in which
the most possible value is considered as a random variable, i.e, viz (a, ρ, b). On the
basis of statistics characteristics it is found that the most possible value of all these
fuzzy random variables follow a normal distribution, i.e, ρ ∼ N (μ, σ 2). To deal
this situation the triangular fuzzy random variables (a, ρ, b), where ρ ∼ N (μ, σ 2)

is applied to deal with these uncertain parameters by combining fuzziness and ran-
domness. As a consequence, it is appropriate to consider production cost, product
demand, transportation cost and delivery time as a fuzzy random variables.

52.3 Modeling

In this section, a multi objective programming model for the PD planning consider-
ing fuzziness and randomness is constructed. The mathematical description of the
problem is given as follows:

Index Sets
k: index for source, for all i = 1, 2, · · · , K ,
l: index for kind of product, for all l = 1, 2, · · · , L ,
j : index for destinations of delivery, for all j = 1, 2, · · · , J .
Parameters
Uw: maximum inventory that can be store in warehouse,
˜Ckl : Fuzzy random total cost of production per unit for product l by source i ,
ykl : inventory level of product k by source i ,
hkl : inventory holding cost per unit of product k by source i ,
˜tkl : delivery cost per unit of product k by source i ,
Skl setup cost per unit of product k by source i ,
˜Pkl : production cost per unit of product k by source i ,
rkl : rate of production of product k by source i ,
Ml : maximum level of production of source i ,
pt : delivery time period lengths,
˜T kl : per unit delivery time.
Decision Variables
Xkl : production volume of product k by source i ,
pt : delivery time periods length.

The multi objective optimization model of PD planing under fuzzy random envi-
ronment is mathematically formulated as follow:
Objective function 1:
Thefirst objective of PDplan is tominimize the total cost. The total cost of PDplaning
is composed by three parts namely total production cost which included regular
production cost and setup cost, inventory holding cost and product delivery cost. The

mathematical expression is as follow: min F1 = ∑

k
∑

l Xkl
˜Ckl + ∑

l
∑

k Ikl hkl +
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∑

k
∑

l Xkl
˜tkl , where

˜Ckl = ∑

k
∑

l Skl + ∑

k
∑

l
˜Pkl . There are some uncertain

parameters in the objective function namely fuzzy random variables, ˜Ckl and˜tkl ,
so it will be difficulty for decision makers to obtain the minimal cost accurately.
Therefore, the decision makers usually only consider the average minimum cost by
using the fuzzy random expected value model by Xu and Zhou as follow: min F1 =
E

[ ∑

k
∑

l Xkl
˜Ckl + ∑

l
∑

k Iklhkl + ∑

k
∑

l Xkl
˜tkl

]

.
Constraint:
Sum of total available product is greater then sum of total demand of product:
∑

k
∑

l Xkl ≥ ˜Dkl . There is uncertain parameter in the constraint namely fuzzy

random variable ˜Dkl . Therefore, decision maker use fuzzy random expected value

model to deal this as follow: E
[ ∑

k
∑

l Xkl ≥ ˜Dkl
]

. The sources are working at
maximum level:

∑

k
∑

l rkl Xkl ≤ Mk . Inventory level of product is less then the
upper bound of warehouses: 0 ≤ ∑

k
∑

l Ikl ≤ Uw.
Objective function 2:
The second objective of PD plan is to minimize the delivery time, which is mathe-

matically formulated as follow: min F2 = ∑

k
∑

l Xkl
˜T kl . There is uncertain para-

meter in the constraint namely fuzzy random variable ˜T kl . Therefore fuzzy random

expected value model is used to minimize as follow: min F2 = E
[ ∑

k
∑

l Xkl
˜T kl

]

.
Constraint:
The total delivery timeof productmust be less thanperiod time:

∑

k
∑

l Xkl
˜T kl ≤ pt .

52.4 Solution Method

To solve the previous multi objective PD planing problem, four step are proposed.
First, a fuzzy random variables transform into fuzzy trapezoidal numbers. Secondly,
fuzzy simulation is applied to calculate the expected value of objective functions.
Third, weighted sum method is used to transformed the multi objective into single
objective. At the end a genetic algorithm is proposed to solve the above describe
multi objective problem.

52.4.1 Dealing with Fuzzy Random Variables

Generally we know that, it is difficult to directly obtain an optimal solution of fuzzy
random variables. Therefore, the fuzzy random variables convert into deterministic
ones by the proposed transformation method. At First, the fuzzy random variables
are transformed into fuzzy numbers, and then Heilpern [9] expected value operator
is applied to to drive the deterministic variables.



596 M. Nazim et al.

Transformation of fuzzy numbers variables into fuzzy numbers

Total Production Cost. Generally, a fuzzy random variable is denoted as ˜ξ =
([m]L , ρ(c), [m]R). From the previous section, ρ(ω) is supposed to approximately
follow a normal distribution N (μ0, σ

2)with a probability density function of ϕρ(x),
so the expression of ϕρ(x) should be ϕρ(x)=(1/

√
2/piσ0 exp[−(x − μ0)

2/2σ 2
0 ]).

Suppose thatσ is a given probability level of randomvariable andσ ∈ [0, supϕρ(x)],
r is a given possibility level for the fuzzy variable and r ∈ [rl , 1], where rl =
([m]R − [m]L)/([m]R − [m]L + ρR

σ − ρL
σ ), both of them reflecting the decision

maker’s degree of optimism. For an easy description, the probability level and the
possibility level are called σ and r , respectively. The transformation method consists
of the following steps:

1. Through historical data and professional experience using statistical laws, esti-
mate the parameters [m]L , [m]R, μ0 and σ0;

2. Obtain the decision maker’s degree of optimism, i.e., the values of probability
level σ ∈ [0, sup ϕρ(x)] and possibility level r ∈ [rl , 1], where rl = ([m]R −
[m]L)/[m]R − [m]L + ρR

σ − ρL
σ ), which are often determined by using a group-

decision-making approach;
3. Let ρσ be the σ -cut of the random variable ρ(c), that is ρσ = [ρL

σ , ρR
σ = {x ∈

R|ϕρ(x) ≥ σ }], then, the value of ρL
σ and ρR

σ can be expressed as

ρL
σ = in f {x ∈ R|ϕρ(x) ≥ σ } = in f ϕ−1

ρ (σ ) = μ0 −
√

−2σ 2
0 ln

√

2πσ0σ ,

(52.1)

ρR
σ = sup{x ∈ R|ϕρ(x) ≥ σ } = supϕ−1

ρ (σ ) = μ0 −
√

−2σ 2
0 ln

√

2πσ0σ .

(52.2)
4. Transform the fuzzy random variable˜ξ = ([m]L), ρ(c), [m]R into the (r, σ ) level

trapezoidal fuzzy number c̃̃
ξ(r,σ )

by using the following equation:

˜ξ → c̃̃
ξ(r,σ )

= ([m]L , m, m, [m]R), (52.3)

so

m = [m]R − r([m]R − ρL
σ ) = [m]R − r([m]R − μ0 +

√

−2σ 2
0 ln

√

2πσ0σ),

(52.4)

m = [m]L + r(ρR
σ − [m]L) = [m]L + r(μ0 − [m]L +

√

−2σ 2
0 ln

√

2πσ0σ).

(52.5)
˜ξ can be specified by c̃̃

ξ(r,σ )
= ([m]L , m, m, [m]R) with the following member-

ship function:

μc̃̃
ξ(r,σ )

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 for x < [m]L , x > [m]R
x−[m]L
m−[m]L

for [m]L ≤ x < m

1 for m ≤ x ≤ m
[m]R−x
[m]R−m for m < x ≤ [m]R .

(52.6)
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The transformation process of fuzzy random variable˜ξ to the (r, σ )-level trapezoidal
fuzzy number c̃̃

ξ(r,σ )
is described in Eqs. (52.1)–(52.6).

Let˜tkl transportation cost,
˜Dkl demand of product and ˜T kl per unit delivery time

of product are also fuzzy random variables. Based on the previous method described
for˜ckl total cost of production, can be transformed into (r, σ )-level trapezoidal fuzzy
numbers.

52.4.2 Fuzzy Simulation for Expected Value

By using the fuzzy random simulation we can get the expected value of objective
functions. The procedure is describe step by step as follow.

Step 1. Set E[ f (C, Q, ξ)] = 0.
Step 2. Randomly generate μi , i = 1, 2, · · · , m from the ε-level sets of ξ , where
ε is a sufficiently small number.
Step 3. Set a = f (C, Q, μ1) ∧ f (C, Q, μ2)∧, · · · ∧ f (C, Q, μm), b = f (C, Q,

μ1) ∨ f (C, Q, μ2)∨, · · · ∨ f (C, Q, μm).
Step 4. Randomly generate r from [a, b].
Step 5. If r ≥ 0, then E[ f (C, Q, ξ)] ← E[ f (C, Q, ξ)]+Cr [ f (C, Q, μ1)] ≥ r .
Step 6. If r < 0, then E[ f (C, Q, ξ)] ← E[ f (C, Q, ξ)]−Cr [ f (C, Q, μ1)] ≤ r .
Step 7. Repeat the fourth to sixth steps for m times.
Step 8. E[ f (C, Q, ξ)] = a ∨ 0 + b ∧ 0 + E[ f (C, Q, ξ)].(b − a)/m.

52.4.3 Weighted Sum Method

The weight sum method is one of the technique which is mostly applied to solve
the multi-objective programming problem. By applying the weighted sum method
we can convert the multi objective into single objective giving the weight of each
objective function.

Assume that the related weight of the objective function fi (x) is wi such that
∑m

i=1 wi = 1 and wi ≥ 0. So we can construct the evaluation function as fol-
lows: u( f (x)) = ∑m

i=1 wi fi (x) = wt f (x), where wi expresses the importance of
the object fi (x) for decision maker. Then we get the following weight problem,
minxεX u( f (x)) = minxεX

∑m
i=1 wi fi (x) = minxεX wt f (x).

52.4.4 Genetic Algorithm

In this subsection we have applied a stochastic search methods for optimization
problems based on the mechanics of natural selection and natural genetics, genetic
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algorithms (GAs), which have received remarkable attention regarding their potential
as a novel approach to multi objective optimization problems. GAs do not need
many mathematical requirements and can handle any types of objective functions
and constraints. GAs have been well discussed and summarized by several authors,
e.g., Holland [11], Goldberg [8], Michalewicz [19], Fogel [6], Gen and Cheng [7]
and Liu [3].

This section attempts to present a fuzzy random simulation and weighted sum
method-based genetic algorithm to obtain a solution of multi objective programming
with fuzzy random coefficients.
1. Representation structure: We use a vector x = (x1, x2, · · · , xn) as a chromosome
to represent a solution to the optimization problem.
2. Handling the constraints: To ensure the chromosomes generated by genetic oper-
ators are feasible, we can use the technique of fuzzy random simulation to check
them.
3. Initializing process: Suppose that the DM is able to predetermine a region which
contains the feasible set. Generate a random vector x from this region until a feasible
one is accepted as a chromosome. Repeat the above process Npop_si ze times, then
we have Npop_si ze initial feasible chromosomes x1, x2, · · · , x Npop_si ze .
4. Evaluation function: The regret value of each chromosome x is calculated, then
the fitness function of each chromosome is computed by

eval(x) =
m

∑

k=1

E[ fk(x, ξ)] − zmax
k

zmax
k − zmin

k

.

5. Selection process: The selection process is based on spinning the roulette wheel
Npop_si ze times. Each time a single chromosome for a new population is selected in
the following way: Calculate the cumulative probability qi for each chromosome xi

q0 = 0, qi =
i

∑

j=1

eval(x j ), i = 1, 2, · · · , Npop_si ze.

Generate a random number r in [0, qNpop_si ze ] and select the i th chromosome xi such
that qi−1 < r ≤ q
i , 1 ≤ i ≤ Npop_si ze. Repeat the above process Npop_si ze times
and we obtain Npop_si ze copies of chromosomes.
6. Crossover operation: Generate a random number c from the open interval (0, 1)
and the chromosome xi is selected as a parent provided that c < Pc, where parameter
Pc is the probability of crossover operation. Repeat this process Npop_si ze times and
Pc.Npop_si ze chromosomes are expected to be selected to undergo the crossover
operation. The crossover operator on x1 and x2 will produce two children y1 and y2

as follows: y1 = cx1 + (1 − c)x2, y2 = cx2 + (1 − c)x1.
If both children are feasible, thenwe replace the parentswith them, or elsewe keep

the feasible one if it exists. Repeat the above operation until two feasible children
are obtained or a given number of cycles is finished.
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7. Mutation operation: Similar to the crossover process, the chromosome xi is
selected as a parent to undergo the mutation operation provided that random num-
ber m < Pm , where parameter Pm as the probability of mutation operation.
Pm · Npop_si ze chromosomes are expected to be selected after repeating the process
Npop_si ze times. Suppose that x1 is chosen as a parent. Choose a mutation direction
dεRn randomly. Replace x with x + M · d if x + M · d is feasible, otherwise we
set M as a random number between 0 and M until it is feasible or a given number of
cycles is finished. Here, M is a sufficiently large positive number.

We illustrate the fuzzy random simulation-based genetic algorithm procedure as
follows:

Step 1. Input the parameters Npop_si ze, Pc and Pm .
Step 2. Initialize Npop_si ze chromosomes whose feasibility may be checked by
fuzzy random simulation.
Step 3. Update the chromosomes by crossover and mutation operations and fuzzy
random simulation is used to check the feasibility of offspring.
Step 4. Compute the fitness of each chromosome based on the regret value.
Step 5. Select the chromosomes by spinning the roulette wheel.
Step 6. Repeat the second to fourth steps for a given number of cycles.
Step 7. Report the best chromosome as the optimal solution.

52.5 Numerical Example

A numerical example is proposed in this section which illustrate the practical appli-
cation of the proposed optimized model.

• Number of production plant (source): 1
• Numbers of distribution places: 4
• Fuzzy random cost of production: (140,ρ(c), 160); where ρ(c) ∼ N (150, 4).
• Fuzzy random cost of transportation:˜t11 = (4, ρ(t), 8); ρ(t) ∼ N (7, 1),˜t12 =

(3.5, ρ(t), 7); ρ(t) ∼ N (6, 0.8),˜t13 = (4.2, ρ(t), 8.4); ρ(t) ∼ N (7, .9),˜t14 =
(4, ρ(t), 6.1); ρ(t) ∼ N (7, 1).

• Fuzzy random delivery time: ˜T 11 = (8, ρ(T ), 12);ρ(T ) ∼ N (11, 1), ˜T 12 =
(6.5, ρ(T ), 10); ρ(T ) ∼ N (8, 0.8), ˜T 13 = (8.5, ρ(T ), 13); ρ(T ) ∼ N (11, .95),
˜T 14 = (6, ρ(T ), 12); ρ(T ) ∼ N (9.5, 1).

• Fuzzy random demand: ˜D11 = (80, ρ(D), 100); ρ(D) ∼ N (90, 4), ˜D12 = (60,

ρ(D), 90); ρ(D) ∼ N (80, 3.5), ˜D13 = (85, ρ(D), 100); ρ(D) ∼ N (94, 4.1),
˜D14 = (65, ρ(D), 90); ρ(D) ∼ N (80, 3.5).

• Inventory Holding cost per unit: 2.

In the view of final solution of GA in Table 52.1, the producer can rationally
allocate the production and save cost and delivery time. We have considered the
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Table 52.1 The result of GA using weighted sum method

w1 w2 f ∗
1 f ∗

2 x1∗1 x1∗2 x1∗3 x1∗4 x2∗1 x2∗2 x2∗3 x2∗4
0.6 0.4 1,640 37 90 75 90 85 10 8 10 9

fuzziness and randomness at the same time when making planing which assist deci-
sion makers to make more accurate and well informed planing. Suppose the decision
maker is not satisfied with the current solution when w1 = 0.6 and w2 = 0.4, so he
can get the satisfied approximate solution by changing the weight coefficients of w1
and w2.

52.6 Conclusion

In this paper, we have proposed the multi objective production-distribution program-
ming problem with fuzzy random coefficients. For a special type of fuzzy random
variables, we have applied amethod to transfer into fuzzy number and expected value
operator was applied to get the deterministic variables. A fuzzy random simulation-
based genetic algorithm using weighted sum method approach which is effective
to solve the general fuzzy random multi objective programming problem. Though
the fuzzy random simulation-based genetic algorithm proposed in this paper usually
spends more CPU time than traditional algorithms, it is a viable and efficient way to
deal with complex optimization problems involving randomness and fuzziness.In the
future, fuzzy random simulation-based multi objective genetic algorithm is another
field that we will consider.
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