Chapter 40
Input Analysis in Simulation: A Case Study
Based on the Variability in Manufacturing Lines

David Lucas and Alexandra Tenera

Abstract Simulation is a powerful tool with acknowledged capabilities that has
proved to be a valuable support instrument to decision making. In order to attain
a proper representation from the system, it’s necessary to perceptively observe the
system, to collect the data corresponding to the model’s input, and to perform an
accurate analysis of the same data. The results and recommendations subsequent to
the simulation are as legitimate as its modeling and inputs. In manufacturing systems
build-to-order, that generates multiple products with identical characteristics and
high levels of customization, the input analysis earns a vital role. On this article is
proposed a methodology to deal with the variability inherent to systems, resorting to
statistical inference methods: hypotheses testing. These methods are a vigorous tool
on the analysis of data collected from the system. Furthermore, a case study based
on a real manufacturing line will be presented, where the impact that the information
inputted onto the model has in the simulation’s results shall be analyzed, regarding
the processing lead time. In addition, the presented case study provides evidence of
the two foremost pitfalls, referred by Law, which ought to be avoided. The usage of
the mean towards a statistical distribution misleads the system’s analyst, whereas the
normal distribution doesn’t accurately represent the processing times. An adequate
replication of the variability over the manufacturing processes from the real system,
throughout the probability’s distribution on an “off-line” simulation, comprises as a
vital element to support decision making.
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40.1 Introduction

Simulation is characterized by the customary employment of mathematical and com-
putational models that aid and support the decision-making process. The resort to
these models is common when it’s impossible or impracticable to perform experi-
ences in the system itself [22]. The construction of a model enables not only to study
a system without causing any disturbance on its regular behavior, but it also provides
total freedom to test different ideas and solutions [8].

The high complexity verified in the systems currently considered, infers that its
computation throughout analytical methods can be inefficient and may depend on
an excessive simplification process, questioning the legitimacy of the model. The
construction of a model must include an appropriate amount of detail, so that the
output and consequent understanding from the model’s outcomes may not differ
from the potential insights and understanding engaged directly from the system.
Consequently, despite simulation not being the only available tool concerning the
study of models, it is quite frequently the method chosen to engage in its activity,
as it allows the analysis of complex problems [2, 22]. Although its output is not
precise, there are ways to deal with its imprecision, to quantify it or to reduce it.
It is preferable to obtain an approximate answer to a correct problem than an exact
solution to a wrong problem [8].

Ingalls [6] defines simulation as “the process of designing a dynamic model of an
actual dynamic system for the purpose either of understanding the behavior of the
system or of evaluating various strategies for the operation of the system”. The user
attempts to infer conjectures from the model to the real system via experimentation.
Models are generally simplifications that comprise merely the scope and necessary
amount of detail in order to satisfy the goals of the study [22]. By using software
conceived to emulate systems’ processes and characteristics over time, the model’s
inputs are numerically exercised and its linkage with outputs is verified, with the aim
of determining estimates of the system’s performance status.

Jahangirian et al. [ 7] perform a revision of the application of simulation techniques
within industrial sectors, covering articles between 1997 and 2006 and concluding
that discrete-event simulation (DES) is the dominant technique concerning simu-
lation’s applications over this sector. DES models tend to be suitable to detailed
process analysis, resource management or queuing, being that the authors also ver-
ified several applications regarding operational management from its planning and
production control, to process engineering, inventory management, project manage-
ment or supply chain, over diversified areas of industry.

DES models have proved to be an excellent tool on the modeling, analysis, and
improvement of the production systems’ performance. The disclosure of accessible
and user-friendly software contributes to the rapid increase of its applications [18].

The current simulation-based softwares available are impressive concerning its
range capacity, program capability and sophistication, providing an incomparable
support to the development, display and analysis of complex models. Its capacities
are the convergence of more the half-century of evolution in software, hardware
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and simulation’s investigation [20]. Swain performs a biannual survey [21] focused
on DES based simulators, which according to the author are the most adequate to
apply in management and operational sciences. Throughout the years the author has
observed and incremental increase on the range and variety of simulators, which
is reflected on the strength and robustness of the products, as well as the progres-
sively growing sophistication of its users. To carry out such evolution, it has been
important the contribution of aspects such as the improvements introduced on the
analysis process, as well as the higher capability to obtain significant replications of a
certain experience, which substantially increased the precision verified on statistical
indicators, subsequent from the simulation, and the possibility to combine different
scenarios. The recently available simulators are increasingly more precise when it
comes to respond to problems and in providing solutions.

The optimization of processes and operations on manufacturing systems remains
as an important sector on the segment of simulation, which is reflected on the innu-
merous products available and identified on the survey, concerning the manufacturing
sector.

In order to successfully study simulation and attain its consequent validation, it’s
critical to follow a pre-defined approach that links the construction of the model to a
reliable representation of the reality [10]. Skoogh et al. [ 18] refers that the majority of
project’s stages concerning this area interacts with the input and output data, being
the management of this information the most frequent challenged identified in a
simulation project. To this author, the data gathering, analysis and inputs into the
simulation model are vital stages within a project.

Also to Biller and Gunes [3] and Kuhl et al. [9], the selection of a valid input is
one of the main problems identified in the construction of stochastic models. The
modeling of the input consists on the selection of the probability distributions that
represent the random variables from the system [3], such as the registered periods
of an equipment’s failure, or the time between arrivals on a bank. The goal is not to
obtain an exact input but an approximation that may capture the key features from
each process.

In order to attain a successful simulation, Law [11] identifies two pitfalls to avoid,
related with the model’s input. The first concerns the frequent substitution of the
probability’s distribution by its mean, which according to the author may lead to
utterly erroneous results, affecting the legitimacy of the outputs. Contrarily to the
mean, probability’s distributions introduce the variability that regularly occurs on the
systems, having a significant effect concerning the traffic in queuing systems. Taking
into consideration the distribution’s utility in representing the sources of randomness
of each system, the second pitfall referred by Law is the persistent utilization of the
normal distribution on the model’s inputs, being that it is actually rarely adequate
to model diverse variations, such as service times, processing times or maintenance
operations.

Thus, the choice of a probability’s distribution has a large impact on simulation’s
results and, potentially, on the quality of the decisions taken based on such results.
The inadequacy on the choice of the correct distribution affects the model’s precision
of results, sometimes drastically [2].
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The problem in selecting the appropriate input worsens itself on build-to-order
manufacturing systems, with low volume and high variability, which produce mul-
tiple products with high level of customization in each order, as it happens within
organizations that produce electrical devises of higher dimensions. These charac-
teristics introduce a great variability over operational processing times. The same
operation can extend to for a few hours within a model, and for more than one shift
on the next model.

To engage an off-line simulation of a manufacturing line of this kind it’s neces-
sary to carefully analyze the model’s input to introduce, in order to characterize the
variability existing on the system. Just as important as the use of adequate data on the
model’s construction is the attention to have in structuring the same data. According
to Law [10], when several observations are performed to the same event, the homo-
geneity of data can be evaluated throughout statistical inference tests. If the set of data
appear to be homogeneous, the data can be merged and the information can be used
to the same purpose on the simulation’s model. The manufacturing line’s replication
through simulation requires simplified models that, yet, can properly represent the
reality.

40.2 Problem Statement

Prior to the application of the simulation, in order to promote comprehension, prob-
lem solving, process optimization and the study of alternative scenarios on a manu-
facturing system, it is necessary to gather and analyse the collected data to be able to
construct a simple and reliable model. On this case study, it is intended to analyse the
processing times of five operations engaged by a corporation that manufactures elec-
trical devices, in order to further perform an off-line simulation, using the software
Arena, from Rockwell Automation.

In organizations in which occurs the production of several products that follow the
same manufacturing flow, and in order to properly structure the data and to simplify
the simulation’s model, it’s necessary to verify if there are differences concerning
the operation’s lengths, according to the processed product. If no differences are
verified, the data can be merged and used to represent the existing variability on
the process throughout a probability’s distribution. Otherwise, it’s necessary to find,
for each operation, a statistical distribution that can represent the corresponding
product’s processing time. On the other hand, this analysis enables the organization
to determine in which operations are verified greater variability. Furthermore are
following described the two main objectives of the presented case study:

1. To verity, throughout processing times, which models are significantly different
from one another, in order to be separately modeled in each operation.

2. To adjust the processing times to the statistical distribution that best represents
its behavior.
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Finally, resorting software Arena, it will be examined the first pitfall referred by
Law [2]: the frequent replacement of the probability’s distribution by its mean. It
will be compared the performance of the manufacturing line after introduction of the
results brought by the analysis accomplished, with the performance of the same line
using merely the mean of the processing times collected for each operation.

40.3 Methodology

In order to characterize the processes’ variability over the production line, statistical
inference methods are used to further represent it on simulation. One of its most useful
applications is the hypothesis tests, whose objective is to verify the plausibility of a
particular statement performed. According to Montgomery [13], several engineering
tests or experiments involving decisions can be generated through these methods.

The presented hypothesis to be tested, designated Null hypothesis (H,) must con-
tain an equality which is considered to be truth until a statistical evidence proves
it to be wrong. In that case, the alternative hypothesis (H,), that should contain an
inequality, becomes valid. It’s essential to highlight that hypothesis are statements
about populations or probability distributions studied, and not about samples. Mont-
gomery [13] and Elisabeth Reis [16] developed profounder works concerning this
topic.

Nowadays there’s a wide variety of hypothesis tests, though in order to select
the appropriate test, the type of data collected and purpose of the analysis must
be considered for each situation [12]. The analysis of variability in this case-study,
achieves the proposed objectives by means of diverse hypothesis tests. In Sect. 40.3.1,
a methodology is introduced to perform the comparison of processing times for
the diverse products through parametric or non-parametric tests, according to the
normality of samples. In Sect.40.3.2, a method is described for modeling the sources
of system randomness through statistical distributions.

40.3.1 Data Structure

To attain a forthcoming characterization of processing times throughout statistical
distributions, it’s necessary to structure the available data, determining in which
processes the operation’s length significantly varies with the processed product.

Each set of times from an operation represents a population. In order to determine
the population’s behavior it’s necessary to know its distribution and the value of
each parameter. To do so, random samples of the population for each product are
obtained, and it is performed a comparison between them, through parametric and
non-parametric tests. The goal of this comparison is to verify if the samples can be
considered as being resultant from the same population, i.e. if the processing times
of a certain operation A don’t differ according to the item produced X, Y, or Z.
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Table 40.1 Hypothesis tests designated for the comparison of two or more independent samples

Parametric tests Non-parametric tests
2 Population Mean T-test Mann-Whitney test
Variance F-test
k Population comparison Mean Schefte test Kruskal-Wallis test
HSD Tukey
Variance Bartlett test

On the majority of statistical procedures it is required the evaluation of normality
assumption, being the parametric statistic one of those examples. When the assump-
tion is disrupted, the interpretation and inference may not be trustworthy, or even
valid [14].

Although many practitioners and simulation books use and state normal distrib-
ution, sources of randomness from manufacturing systems frequently discharge to
follow this distribution [2]. If the population’s distribution from which the samples
were taken remains unknown, the first step to perform a statistical analysis consists in
executing a normality test, in order to verify whether if the variable in study follows
a normal distribution. In the case it does, the analysis may proceed by resourcing to
parametric tests. In the case it doesn’t, only the non-parametric tests are liable to be
applied.

The cases of acceptance or rejection of the normality assumption have played
a central role in many investigation sectors. Consequently, efforts in the creation,
development and application of goodness-of-fit tests for normality, have been per-
formed throughout the years, which resulted in a wide number of currently available
tests and multiple comparisons concerning its power. This discussion currently aids
the analyst in performing the adequate choice to each specific situation [17].

According to Razali et al. [15], the most common tests are Kolmogorov-Smirnov
(KS), Anderson-Darling (AD), Lilliefors (LF) and Shapiro-Wilk (SW). These four
are the foremost tests that are generally available on statistical softwares. Through
the comparison of the results obtained over the studies endeavored by Refs. [14, 15,
17] it’s possible to conclude that SW test is the most suitable and most consistent
option in order to study the normality of the sample. The results obtained from the
SW test will determine the application of the following hypothesis tests (Table 40.1).

While engaging in parametric tests, the objective is to study the differences
between parameters, mean and variance, from different populations. It is consid-
ered that different samples are originated from the same population in case there
are no significant differences between their means and variances. Depending on the
parameter and number of samples (k) to study, it is selected the most adequate test.
In addition, it is assumed that, in regard to comparison tests concerning the mean,
the samples are taken from normally distributed populations with equal variances.
This assumption primarily involves the execution of the variance comparison test, as
shown in Fig.40.1.
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The non-rejection of H,, concerning these tests, forwards the process into the
comparison of means; otherwise it’s considered that there are significant differences
over the samples’ variance and, consequently, infers that the samples were withdrawn
from different populations.
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From the several tests entailed in comparing the means, the selection resided on
the multiple comparison testes, in which the Tukey’s HSD test and Scheffe’s test are
the most frequently used [16]. This tendency is related with the fact that ANOVA
merely indicates whether if there are significant differences among analyzed groups,
not specifying which group or which linkage between groups verify those differences.

Between multiple comparison tests, Reis [16] gives preference to Scheffe’s test,
due to its simplicity in the calculation associated, to its consistency in regard to its
assumptions, and to allowing the usage of samples with different dimensions.

In the case the test confirms that the samples derive from populations with equiva-
lent means, and knowing that they also possess corresponding variances, it’s possible
to merge the data and hence it’s possible to consider that there are no significant dif-
ferences between the means of processing times.

On the other hand, in the case that the means of the merged data are significantly
different, the processing times of the corresponding models are separately shaped.

Non-parametric methods own its designation to the fact of the entities in study
not being the parameters of a population and thus not being necessary to specify
the distribution of the corresponding sample, and thus not having to comply with the
normality assumption. These methods are generally less powerful and flexible than its
homologous parametric methods and therefore, as long as the presuppositions from
parametric methods are verified, they should be comprehended as a priority [12].
According to Montgomery and Runger [13] non-parametric tests are less efficient
and need samples with larger dimensions in order to reach the same power than
parametric methods. However, this difference is not resolutely severe and when the
inherent distribution is not normally approximated, these methods are extremely
useful.

In these kinds of tests are not performed comparisons in regard to means or vari-
ances, being that what’s primarily assessed is whether if the shape of the distribution
is the same for all samples. To perform a two population comparison test, Mont-
gomery and Runger [13] and McCrum-Gardner [12] recommend the Mann-Whitney
test, for it is considered to be the non-parametric alternative to ¢ test for differences
between means. Finally, in order to compare populations from k independent sam-
ples, it must be engaged Kruskall-Wallis test, which is a generalization for k > 2
samples from the Mann-Whitney test.

The rejection of H, suggests that populations are not identical and it confirms that
processing times are directly influenced by the processed model and, consequently,
the data can’t be merged over the next step. Otherwise, if H, is not rejected, it means
that it doesn’t comprise statistical evidence, which infers that the processing times
analyzed vary according to the product. Thus data will be merged.

40.3.2 Fit the Statistic Distribution

The assortment of a statistical distribution to a clutch of data can be performed empir-
ically or throughout standard techniques of statistical inference. These techniques
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consist on the adjustment from several theoretical distributions to the available data,
determining the distribution that delivers the closest approximation to the data.
According to Law [11], in regard to the empirical approach, only the observed data
interval can be generated in the model, which is problematic in case the samples
are small. Since is established a theoretical distribution that properly represents the
available data, it should be given preference to the statistical inference methods.

In the second part of the statistical analysis it is intended to select the distribu-
tion that most accurately represents each set of processing times. This distribution’s
selection process is currently an important tool for organizations to deal with risks
and uncertainties existing among their processes. On the majority of cases, none of
the adjusted distributions is precisely correct and thus the goal is to determine the
distribution that is sufficiently precise and adequate to the model’s purposes [11].

When there is available data, both Biller and Gunes [3] and Law [11] designate
three stages to specify a theoretical distribution that may represent the data:

1. Select one or more candidate families of distributions, based on the process’s
physical characteristics and graphical examination of the data;

2. Estimation of parameters;

3. Check the goodness-of-fit via tests and graphical analysis.

According to Kelton et al. [8], the selection of the probability’s distribution to
apply also depends on the type of data in study. In order to study “Task times”, a
positive continuous variable, the author indicates as most adequate the distributions
Erlang, Gamma, Weibull and Lognormal.

Developing these procedures can be a difficult task, expending a great deal of time
and with a will to fall in errors and faults [2], along with the fact that in many of these
cases it’s complicated to adjust the observed data to less common statistical distrib-
utions. For such reasons, the majority of the applications are performed throughout
softwares that automatically determine the most accurate distribution adjusted with
the data provided. Two frequently used programs that fit this purpose are Arena Input
Analyzer and Expert Fit [4].

Due to the acquaintance with the software, and due to its capabilities to serve the
purpose of the present work, the extant case-study was endeavored on the software
Arena, Rockwell Automation, in order to simulate a production line. Consequently
it was resorted the module Input Analyzer in order to determine the distribution that
most accurately represents the inputted data and its parameters. With the function
“FitAl”, the distributions are classified according to its relevancy, based on the values
of the corresponding square errors. The selected distribution is then placed into the
proper format for direct input in Arena Software.

The module Input Analyzer, integrated in Arena software package, also allows the
execution of two goodness-of-fit tests: Chi-Square and Kolmogorov-Smirnov. Since
the distribution inherent to the studied population remains unknown, the goal of these
tests is to study the hypotheses that a certain distribution will fulfill as population
model [13].

On the present literature review are studied several goodness-of-fit tests, their
resultant evolution and numerous comparisons [1, 5, 19, 23]. According to
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Kelton et al. [8], there are no conventional and universally established approaches to
determine a certain distribution, as for different statistical tests may classify distrib-
utions according to dissimilar degrees of relevancy.

The majority of softwares that apply these methods enclose Chi-Square, Kolmog-
orov-Smirnov (KS) and Anderson-Darling (AD). Fischer and Kamps [5] compared
the power of five goodness-of-fit tests and concluded that when statistical values
(distribution parameters) differ, the test power differs and consequently the selection
of the most adequate test differs along with the results. However, Fisher also states
that, in case that only one test is recommended, probably the AD test is the best choice
of selection, for it is the most powerful application in several different situations and
always the most competitive on situations where it is not the foremost selection.
A disadvantage from Input Analyzer points out the fact that it doesn’t contain the
AD test.

40.4 Application/Case Study

The simulation engaged in this study focuses on a production line in which are
produced three electrical devices X, Y and Z, with similar characteristics. All three
products add up to exactly the same manufacturing flow composed by 5 processes—
A, B, C, D and E. The available data employed to analyse the input’s variability
was collected from a computerized data source from within the company where the
results where attained, and comprise the processing times from five years of historical
data. After the assembling and validation of the data along with the designated
organization, it was initiated an analysis to formulate a set of solutions for both of
the problems mentioned in (1) and (2). In order to execute the multiple hypotheses
testing, it was used the SPSS software, because it embraces all statistical procedures
to apply.

The efforts were initiated with Shapiro-Wilk test, being rejected H, for all samples
as observed on Table40.2, and being able to conclude that no set of processing
times belongs to a normally distributed population. Consequently, the effecting of
parametric tests was not carried out.

Due to the non-normality of the samples and intending to compare three sets of
processing times (k = 3), the Kruskal-Wallis test was performed. Results revealed
that in two processes (B and E) it is not rejected the hypotheses of being identical
the populations from which the samples are obtained. Consequently, in these two
processes, the length of operations doesn’t vary depending on the product, thus the
samples are considered to be homogeneous and its data is merged.

When H, is rejected, it’s performed Mann-Whitney test to compare each couple
of samples, aiming to verify if the variability displayed in the process is particularly
caused by any of the products. On process A the distributions of the three samples
are significantly different, concluding that the processed item is determinative to the
length of the operation. Both in processes C and D, the two products’ processing
times are homogeneous, being these set of data also merged.
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Table 40.2 Results of the statistical tests

Process A Process B Process C Process D Process E
Statistical test XY Z X Y Z X 'Y Z X Y Z X Y Z
Shapiro-Wilk Reject H, Reject H, Reject H, Reject H, Reject H,
Kruskal-Wallis Reject H, Failure to Reject H, Reject H, Failure to
Reject H, Reject H,
Mann-Whitney Reject H, NA Failureto — -  Failureto NA
Reject H, Reject H,
- Data Data - — Data Data
merging merging merging  merging

Table 40.3 Results from the input analyzer

Production line Products Input probability distribution
Process A X 44+ ERLA(16.8, 3)

Y 44+ WEIB(37.3,1.72)

Z 1+ WEIB(22.3,2.19)
Process B X, Y, Z 44+ WEIB(16.7,1.8)
Process C X, Y 2+ WEIB(19,1.48)

Z 1+LOGN(13,17.4)
Process D X 10+ WEIB(29.6,2.22)

Y,Z 104+ GAMM(11.2,3.26)
Process E X, Y, Z 2+ GAMM(3.34,5.38)

On the following stage, each set of data was introduced in Input Analizer, which
selected the adequate distributed through the less squared error criteria. Throughout
Kolmogorov-Smirnov test it was able to confirm that the selected distribution is
appropriate as a population’s model.

The results of these goodness-of-fit tests are presented in the shape of p-values,
which is the largest value of the type-I error probability that allows the distribution to
fit the data. The higher the p-value, the better is the fit. On this study it was rejected
H, to values of p-value smaller or equal to the specified significance: 0.05. The
results revealed in Input Analizer are shown on Table40.3.

The analysis performed supports that the information inputted on the model may
represent the variability that truthfully exists amongst the manufacturing line. The
importance verified on the structuring, as well as the modelling of the data through
a probability distribution that represents the system’s random variables, are repre-
sented on Table40.4, where can be observed the results of two simulations on the
manufacturing line. In Table 40.4 is displayed a comparison between the overall time
that products X, Y and Z remain in the system, when are applied the results from
statistical analysis (Case I), and when it is inputted the mean of the collected samples
in each process from the simulation’s model (Case II). It can be verified that in Case
I all products remain less time within the manufacturing line. In addition, the mean
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Table 40.4 Comparison between processing lead times using sample’s mean and using a
probability’s distribution

Product Total time in the production line (h) ~ Percentage of time increased using distributions
Casel:a Casell: b

X 24525  217.64 12.69
Y 271.8 220.5 23.27
z 24159 2185 10.57
Total 25596  219.22 16.76

a: Probability Distribution inputs; b: Sample’s mean inputs

from the processing lead times is lesser 16,76 % on Case I. This is due to the fact that
the normal variations existing among the processes of a manufacturing line are not
accounted, misleading the production manager. On the other hand, with an adequate
input of the variability from processing times in Case II, the three products take
longer in 10 % of the time. In contrast, it can be verified that product Y is the one
taking longer to be manufactured. This different is only noticeable after an analysis
of the input carried on this case-study.

40.5 Conclusions

The presented methodology, intended to characterize the collected data from a man-
ufacturing line with a high degree of variability, enabled to conclude that the two
pitfalls referred by Law substantially affect simulation’s results. On the one hand,
despite being heavily applied, the normal distribution is not the most appropriate dis-
tribution to model many datasets, such as processing times. Throughout Shapiro-Wilk
test it was confirmed that any sample was correctly described by this distribution. On
the other hand, several practitioners frequently replace the usage of a probability’s
distribution by the value of the sample’s mean. Hence, it was possible to conclude
that this replacement misleads the analyst because the variability prevailing in the
system is not inputted on the model, altering results and thus conducting the manager
or person in charge into the risk of carrying decisions that may harm the correspond-
ing organization. To refer that in the present work was used the KS test to engage in
the goodness-of-fit, due to the fact of being available in ARENA’s Input Analyzer.
However, several studies point out to a greater power concerning Anderson-Darling’s
test, being this the most adequate choice. The recourse to softwares that include this
test, such as Experfit, ought to be considered.

Equally important as a correct selection of the distribution that truthfully repre-
sents the collected data from the system, is a careful information structuring. Through
a sequence of statistical inference tests it was verified that it prevails significant dif-
ferences regarding the product’s processing times, which should be addressed. In
addition to a correct input of the information into the model, this analysis enables
the organization to verify in which processes comprise higher sources of variation.
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The use of statistical methods on the modelling and analysis of the simulation’s
input is vital, in order to acquire a reliable representation from the system and con-
sequently to attain a high credibility and legitimacy of the simulation’s results.
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