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Integrated System Health Management
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System in Manned-Spacecraft
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Abstract This paper addresses the integrated system health management (ISHM)
diagnostics and prognostics for amanned spacecraft’s environmental control and life-
support system (ECLSS),which ensures the safety of astronauts and guarantees space
mission success. For the complex system structure, an integrated diagnostics and
prognostics method is presented, which allows for the consideration of continuously
monitored signals. In this method, the condition monitoring data are first classified
by exploiting the comprehensive evaluation technique, and then the feature data are
used to train the corresponding diagnosis models, which themselves represent the
different stages of system degradation. Due to the variant behavior of the ECLSS in
the space environment, variational approximation-based learning is designed in the
diagnostics procedure to estimate the parameter distribution of the trained models
rather than the parameters themselves. By exploiting the constructed trained models,
the current ECLSS health stage and remaining useful life (RUL) can be identified. A
numerical stimulation is provided to demonstrate the performance of the proposed
integrated algorithm.

Keywords Integrated system health management · Environmental control and life
support system · Diagnostics · Prognostics

37.1 Introduction

Manned space flight allows for the exploration of the universe and is, by its very
nature, complicated and innovative [14]. The functions of the earth’s natural life
support system such as the provision of air, water, and other conditions must be
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performed by artificial means in manned spacecraft to guarantee that people can live
and work in space. To meet this need, the environmental control and life support
system (ECLSS) plays an important role in the development of future space shuttles
to provide the crew with a comfortable environment in which to live [16]. ECLSS
are critical subsystems in manned spacecraft as they are an indispensable safeguard
for life in the harsh environmental conditions of space and on lunar and planetary
surfaces [8].

Health management, which can guarantee the reliability of the system by evaluat-
ing its life-cycle conditions, determining the advent of failure, and mitigating system
risks, has been viewed as having the role of an autonomic safeguard, and is also vital
to complex systems such as the ECLSS [5, 12]. However, health management for
ECLSS is a complex task, due to the complex system structures and the large amount
of devices and interfaces in the ECLSS subsystems, both of which may cause com-
plicated failure mechanisms. The complexity of the ECLSS can be attributed to the
highly nonlinear behavior of the individual subsystems, the effect of which is further
magnified by the number of interacting subsystems, and the fact that these systems
have to operate with limited resources in unpredictable environments. In the ISHM
for the ECLSS, the health stages for the system environment need to be comprehen-
sively evaluated by exploiting the monitored data from different subsystems. Then,
diagnostics are conducted to identify the current health condition and the extent of
the degradation, and prognostics are then needed to predict the remaining useful
life (RUL) and the associated confidence bounds for the system within the limited
resources in space. Hence, an ISHM, with its efficient diagnostic and prognostic
capability, has become a very important design requirement as a result of the need
to provide the ECLSS in spacecraft with system level health management.

This paper deals with the integrated assessment, diagnostics and prognostics of a
designed ISHM framework for an ECLSS. Previous research has discussed the key
techniques, including data preprocessing, health assessment, diagnostics and prog-
nostics respectively for ISHM, but the integrated capability in the complex systemhas
not been well implemented which just focused on the conceptual framework design
[4]. In this paper, integrated diagnostics and prognostics are presented for the ISHM
of an ECLSS, by using data-based learning. In the proposed diagnostic and prognos-
tic method, the diagnostics and prognostics can be performed in two main phases;
the learning phase and the exploitation phase. During the learning phase, the moni-
tored data with a known health condition are used in the trained diagnostic models
to represent the system’s health stages. The trained models are based on a mixture of
Gaussian Hidden Markov Model (MoG-HMM), which allows for continuous obser-
vations through the taking in of input. By exploiting proposed learning algorithm,
the parameter distributions of the MoG-HMM, rather than the fixed parameters, are
estimated, which better represents the degradation of the complicated ECLSS in a
complex environment. In the exploitation phase, when the monitored feature data are
obtained, the current health stages of the ECLSS are determined by exploiting the
statistical properties of the trained models. Based on the current diagnostics results,
furthermore, the RUL and associated confidence bounds are estimated.
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The rest of this paper is organized as follows: Sect. 37.2 first describes the ISHM
scheme for the ECLSS, where the key to the ISHM implementation is presented.
Then the integrated diagnostics model for ISHM is given in Sect. 37.3. Section37.4
is dedicated to the proposed diagnostic and prognostic method. Numerical examples
are illustrated to demonstrate the performance of the proposed algorithm inSect. 37.5.
Section37.6 gives some conclusions.

37.2 Problem Statement

In general, the main functional subsystems of the ECLSS used in aeronautic and
aerospace applications include a unified form: atmosphere control and supply (ACS),
atmosphere revitalization (AR), temperature and humidity control (THC), water
recovery and management (WRM), waste management (WM), fire detection and
suppression (FDS), and spacesuits [9]. The ACS provides the cabin with sufficient
oxygen and nitrogen, adjusting pressure immediately. The objective of the AR is to
maintain the trace harmful gases in the crew’s cabin within safe bounds. The THC
ensures an equal distribution of temperature, humidity and gas around the astronauts.
TheWRMandWMdeal with liquid and solid waste, respectively. The FDSmonitors
any exceptional smoke and fire situations to trigger a timely alarm. The spacesuit
is a relatively independent subsystem which works as an emergency backup for the
manned spacecrafts ECLSS. Depending on the duration and distance from earth of
a mission, the ECLSS varies greatly in complexity [3, 13]. However, one of the key
elements of the ECLSS, the ISHM for ECLSS, can have a direct bearing on crew
safety and mission success and must be pursued with a careful and systemic consid-
eration of the monitoring capability, safety margins, maintenance, and sustainment
requirements. Therefore, ISHM-based state evaluation, diagnostics and prognostics
have become necessary for the ECLSS in providing effective health management
under an uncertain environment [6]. A feasible ISHM framework which consid-
ers integrated assessment, diagnostics and prognostics is proposed to improve the
ECLSS health management at the system level. Figure37.1 shows the ECLSS ISHM
conceptual framework.

As can be seen in Fig. 37.1, data from the functional ECLSS subsystems are first
monitored in situ, and then the data are pre-processed to extract feature parameters.
For some health state factors it is difficult to give an accurate quantitative description
and therefore expert knowledge and historical data are needed. Diagnostics and
prognostics are then conducted used the health assessed information. In the ISHM
conceptual framework, these processes determine the system’s current state of health,
diagnose and identify malfunctions, and estimate the advent of failure by providing
a distribution of the RUL, and the current level of deviation or degradation [15]. The
main purpose for the diagnostics and prognostics is to recognize the system’s actual
state and estimate the remaining time before failure. Based on that, the decisions for
safeguarding and maintenance can be determined.
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Fig. 37.1 ISHM conceptual framework for ECLSS

37.3 ISHM-Based Diagnostics Model

From the ECLSS ISHM framework, the diagnostics and prognostics are vital, but for
an integrated implementation, the feature information needs to be used. For a complex
system with limited resources, a degrading of the system, which cannot directly
observed, may result from the transition of some different stages. The integrated
ECLSS diagnostics and prognostics needs to make full use of the feature data from
the monitoring sensors to build the behavioral models of the system states through a
learning process.

Consider the characteristics of the whole system, the ECLSS health states are
difficult to observe directly, as the only information that can be obtained is the mon-
itored data from the subsystems. Usually, an HMM represents stochastic sequences
as Markov chains, where the states are not directly observed, but the output depends
on the states which are visible. Thus, let theMarkov chains state sequence be {st }T

t=1,

i.e., P(st |st−1, · · · , s1) = P(st |st−1), ∀t, and the associated observation sequence
be Y = {y}T

t=1, supposed that st ∈ {1, 2, · · · , N }, yt ∈ {1, 2, · · · , M},∀t, then the
discrete HMM is completely defined by the following parameters:

1. The initial state distribution: π = [πi ], where πi = P(s1 = i), 1 ≤ i ≤ N .

2. The state transition probability distribution: A = [ai j ], where ai j = P(st =
j |st−1 = i), 1 ≤ i, j ≤ N .

3. The observation probability distribution: B = [bi (k)], where bi (k) = P(yt =
k|st = i), 1 ≤ i ≤ N , 1 ≤ k ≤ M.

It can be seen that the model parameters for the HMM are π, A, B. The discrete
HMMmodel considers the observations as discrete symbols and uses discrete prob-
ability densities to model the transition and the observation probabilities. However,
the observations from the condition monitoring are typically continuous variant sig-
nals in practice [7, 10]. In order to overcome this limitation, the MoG-HMM can be
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used in which the distribution of the observations are viewed as a combination of a
finite number of mixtures, i.e., b j (yt ) = ∑K

k=1 c jk N (yt ;μ jk,Σ jk). In the Mixed
Gaussian observations, let zt = k represent the k density at t, then the corresponding
weight is c jk = P(zt = k|st = j). By assuming a mixture of Gaussian rather than
using just a Gaussian distribution, the observations can be identified with differing
covariance structures. The complete parameter set of the MoG-HMM can be given
by the compact notation θ = (π, A, B, C, μ,Σ), where, (μ,Σ) = ({μ jk}, {Σ jk}).

The parameters of the models are important, as they can determine the MoG-
HMMs. For the diagnostics learning process, the goal is to recognize the different
ECLSS health stages by exploiting the trainedmodels. Different trainedmodels learn
from different groups of monitored data, which represent the different health stages
of the system. Therefore, the ECLSS diagnostics needs to develop the diagnosis
models from the monitored data from varying health conditions, and so it is essential
to learn the parameters of the models which represent the characteristics of their cor-
responding diagnosis model. However, because the ECLSS is under a complex space
environment, the fixed parameters cannot represent the degradation when the system
under conditions varies greatly, so there should be uncertain parameters with some
distribution. In other words, the parameters of the trained model have an unknown
distribution:

p(θ) = p(π)p(A)p(C)p(μ)p(Λ), (37.1)

where Λ = Σ−1, consider the parameters being independent. With the diagnostics
model’s parameter distribution, the extracted features information from the condi-
tional monitoring histories are transformed into different MoG-HMMs associated to
the ECLSS health stages. After that, when the current monitored data is obtained,
the identification or exploitation can be conducted by comparing the observations
likelihood under different trained models. According to the highest likelihood for
the observations, the ECLSS current health stages can be identified.

37.4 Integrated Diagnostics and Prognostics

In order to implement the integrated diagnostics and prognostics for ECLSS in the
space environment, the learning phase and exploitation phase need to exploit the
parameter distributions of the diagnosis models. In this situation, the only solution
is to estimate the distributions of those parameters using the Bayesian approach.
1. Variational Bayesian Method

The classical Bayesian inference is to estimate the conditional probability density
of the unknown parameters θ under the condition of given observations Y. It is
assumed that the density of observations Y with respect to the parameters θ, i.e.,
p(Y |θ), called the conditional likelihood function, can be known. The estimation
result of the conditional probability density function p(Y |θ) with respect to a given
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observation Y, which is called the posterior distribution of θ, can be yielded as
follows by using the Bayesian Theorem.

p(θ |Y ) = p(Y |θ)p(θ)
∫

p(Y |θ)p(θ)dθ
. (37.2)

Here p(θ) is the prior distribution of θ. Taking the Bayesian framework, the prior
distributions of those parameters are assumed, then the posterior density of the para-
meters can be obtained by exploiting the observations likelihood.

From the above formula, the difficulty is that the analytical solution to calculate
the integral of Eq. (37.2) is generally difficult. Several methods, such as the Monte
Carlo method and sampling methods [11], are available but these require significant
computational effort. Thus, the variational approximation method is used here to
approximate the analytical solution of Eq. (37.1). In the diagnostics models from our
learning phase, there are two unknown parameters: the model parameter θ and the
hidden variable x. Denoting the true posterior distribution of those parameters as
p(x, θ |y), and the approximated density as q(x, θ), the approximation principle is
given as follows.

From the observation log-likelihood log p(y), it can be expressed by:

log p(y) =
∫

dxdθq(x, θ)log
p(x, y, θ)

p(x, theta|y)
= KL(q(x, θ)‖p(x, θ |y)) + F(q(x, θ)),

(37.3)

where, F(q(x, θ)) can be written as:

F(q(x, θ)) =
∫

dxdθq(x, θ)log
p(x, y, θ)

q(x, θ)

and it is actually the function of q(x, θ).

From Eq. (37.3), the Kullback-Leibler (KL) divergence describing the distance
between the true posterior density p(x, θ |y) and its approximation q(x, θ) is non-
negative, and equal to zero if and only if the two densities are the same. Further,
the left side of Eq. (37.3) does not depend on the estimated density. This means that
minimizing the KL divergence is equivalent to maximizing F(q(x, θ)) by selecting
the function q. Consequently, a distribution q(x, θ) maximizing F(q(x, θ)) can be
viewed as the best approximation of the true posterior distribution. Suppose that the
model parameters are independent of the hidden variables in the approximation dis-
tribution, thus, its density can be written as q(x, θ) = q(x)q(θ). Then, the functional
F(q(x, θ)) can be given as:

F(q(x, θ)) =
∫

dxdθq(x)q(θ)log
p(x, y|θ)

q(x)
+

∫

dθq(θ)log
p(θ)

q(θ)
. (37.4)
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In order to maximize the functional F(q(x, θ)) with the constraint
∫

q(x, θ)

dxdθ = 1. In fact, let the first term on the right side in Eq. (37.4) be F(q(x)),

then the maximization of the functional F(q(x, θ)) needs to maximize F(q(x)),

since F(q(x)) = −KL(q(x)‖Q(x)),where Q(x) can be approximated by exp[〈log p
(x, y|θ) 〉q(θ)] and the notation 〈·〉q(·) is represented as the expectation with density
q(·). Therefore, solving the maximization F(q(x)) can yield:

q∗(x) = Q(x) ∝ exp[〈logp(x, y|θ)〉q(θ)], (37.5)

in the above notation ∝ refers to the achievement of equality with a normal-
izing constant. Similarly, consider that the model parameters θ can be decom-
posed by independent components. Accordingly, its density can be expressed by
q(θ) = ∏

l q(θl), so the variational posterior distribution of θl can be estimated
as follows: q∗(θl) = Q(θl) ∝ p(θl)exp[〈log p(x, y|θ)〉q(x)q(θ−l)], where the θ−l =
{θ1, · · · , θl−1, θl+1, · · · , θN }. It can be seen that the above solution procedure can
be computed iteratively until it converges. Actually, the above iteration procedure
can be viewed as a special case of the expectation maximization (EM) algorithm,
whereas the iterations terminate until the functional F(q(x, θ)) is converged.

2. Proposed Diagnostics and Prognostics Algorithm

In this section, the integrated ECLSS diagnostics and prognostics is presented
based on the variational approximation. First of all, the prior distribution of the mod-
els parameters needs to be considered from the variational approximation scheme.
Considered analytically intractable and with Bayesian properties, the conjugate prior
is assumed which can be expressed as:

p(π) = Dir(π; uπ ), p(A) =
N∏

i=1

Dir(ai ; u A
i ), p(C) =

N∏

j=1

Dir(c j ; uC
j ),

p(μ) =
K∏

k=1

N∏

j=1

N (μ jk; d jk, D−1
jk ), p(Λ) =

K∏

k=1

N∏

j=1

W (Λ jk; v jk, Vjk),

where, Dir(·), N (·), W (·) are described as the DirichletGaussian and Wishart dis-
tributions respectively.

From the variational approximation principle, the conditional distribution of the
observations with the given model’s parameters and the hidden variables needs to be
exploited to drive the posterior of the model’s hidden variables. The hidden variables
in our MoG-HMM-based trained models are the sequence st and the mixture com-
ponent variables zt which are shown as x in Eq. (37.2). To express the conditional
distribution of the observations for the iteration procedure, it is assumed that the
posteriors for the parameters are available from the previous iteration. For simplicity
and clarity of presentation, the superscript “′” is use to describe the posterior of the
model’s parameter distributions obtained in the previous iteration, a tilde indicates an
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updated posterior for the parameter distributions, or a density of the condition obser-
vations and hidden variables. From Eq. (37.5), the likelihood of each observation yt

with a given hidden sequence and mixture component variables can be written as:

p̃(yt |st = j, zt = k) ∝ exp[〈logN (yt ;μ jk,Λ
−1
jk )〉q ′(μ jk)q ′(Λ jk )]

= exp

[

− n

2
log 2π + 1

2
〈log|Λ jk |〉q ′(Λ jk ) − ṽ′

jk

2
(yt − d̃ ′

jk)
T Ṽ ′

jk(yt − d̃ ′
jk)

]

,

(37.6)

using the expressions, the follow densities can be computed: p̃(yt |st ) = ∑
zt

p̃(yt , zt |st ) = ∑
k c̃ jk p̃(yt |st = j, zt = k), notice that the p̃(zt |st ), corresponds

to the parameters C̃ = [̃c jk] ∝ [exp(〈log c jk〉q ′(c jk))]. In the variational approxima-
tion, the joint posterior densities of the hidden variables and the posterior densities
of the distribution parameters interact and can be approximated iteratively until con-
vergence. To implement the procedure, the forward and backward recursions need
to be noticed. Utilizing the Markov properties of the models, the recursive formula
can be given respectively as follows:

α(st ) = p̃(st |y1:t ) ∝ p̃(yt |st )
∑

i

ãi jα(st−1), (37.7)

β(st ) = p̃(yt+1:T |st ) =
∑

j

ãi j p̃(yt+1|st+1)β(st+1), (37.8)

where, the updated parameters: π̃ = [π̃i ] ∝ [exp(〈logπi 〉q ′(πi ))], Ã = [̃ai j ] ∝ [exp
(〈log ai j 〉q ′(a jk))].

The initial conditions of Eqs. (37.7) and (37.8) are α(s1) ∝ p̃(yt |st )π̃, β(sT ) =
[1, · · · , 1]′. The computing detail can be found in the appendices.

Using the above notations, the updated distribution of the health state at time, and
the joint posterior for the two states in interval time can be yielded:

q∗(st ) = p̃(st |Y ) = p̃(st |y1:t ) p̃(yt+1:T |st )

p̃(yt+1:T |y1:t ) = α(st )β(st )
∑

st
α(st )β(st )

, (37.9)

q∗(st−1, st ) = p̃(st−1, st |Y ) = α(st−1) p̃(st |st−1) p̃(yt |st )β(st )
∑

st ,st−1
α(st−1) p̃(st |st−1) p̃(yt |st )β(st )

, (37.10)

similarly, the joint posterior for the two hidden variables is:

q∗(st , zt ) = p̃(st , zt |Y ) = p̃(yt |st , zt ) p̃(zt |st )

p̃(yt |st )
q∗(st ). (37.11)

The posterior distribution of the trained models parameters can be updated by
exploiting the current densities of the hidden variables. Thus, for the different
assumed priors of theMoG-HMMparameters, the following results can be achieved:
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denote q∗(st ) = τt = [τti ], q∗(st−1, st ) = ηt = [ηti j ], q∗(st , zt ) = ωt = [ωt jk],
then the Dirichlet posteriors for the initial distribution, the transition parameter, and
the mixture components can be updated by:

q∗(π) = Dir(π; ũπ ), q∗(A) =
J∏

i=1

Dir(ai ; ũ A
i ), q∗(C) =

J∏

j=1

Dir(c j ; ũC
j ),

where ũπ
i = uπ

i + τ1 j , ũ A
i j = u A

i j + ∑T
t=2 ηti j , ũC

jk = uC
jk + ∑T

t=1 ωti j .

For the Gaussian posteriors of the mixture component parameters, we have:
q∗(μ jk) = N (μ jk; d̃ jk, D̃−1

jk ), where, D̃ jk = D jk + ṽ′
jk Ṽ ′

jk
∑T

t=1 ωt jk, d̃ jk =
D̃−1

jk (D jkd jk +ṽ′
jk Ṽ ′

jk
∑T

t=1 ωt jk yt ).

The Wishart posteriors for the parameter distribution matrices can be given by:
q∗(Λ jk) = W (Λ jk; ṽ jk, Ṽ jk), where, ṽ jk = v jk + ∑T

t=1 ωt jk, Ṽ −1
jk = V −1

jk +
∑T

t=1 ωt jk(yt − d̃ ′
jk)(yt − d̃ ′

jk)
T + (D̃′

jk)
−1 ∑T

t=1 ωt jk . It can be seen that the
posterior updating for the diagnosismodel’s parameters and the hidden state variables
can be computed recursively. The termination condition can choose the variational
free energy F(q(x, θ)) to converge or until the maximum number of iterations is
reached.

After the above learning for the diagnosis models, the conditional observations
representing different degradation stages are classified on the basis of the trained
MoG-HMMs. Then, the identification of the ECLSS current health stages when
the next observation is obtained need to exploit the observation likelihood to find
the trained model that best fits with the current observations. Thus, the probability
P(y1:T |θ) under the different models parameters needs to be computed. For the
trained models corresponding to the N health stages, let λ

(n)
i (t) = P(y1:t , st =

i |θ(n)) be the probability of the y1:t ending in state i under the trained model θ(n),

n = 1, · · · , N , then the likelihood of the given observations y1:T can be written as:
λ

(n)
i (1) = π

(n)
i b(n)

i (y1), λ
(n)
j (t +1) = [∑N

i=1 λ
(n)
i (t)a(n)

i j ]b(n)
j (yt+1), P(y1:T |θ(n)) =

∑N
i=1 λ

(n)
i (T ).

For the integrated prognostics, the system RUL can be estimated using the diag-
nostics information. Taking into account the transition instant between the states, let
Di be defined as the duration of state i, then: Di �

∑
t E[I (st = i)] = ∑

t ri (t).
From the posterior distribution of the state, the Di = ∑

t τti . Given the Gaussian
distribution assumption, the mean time duration μDi and the standard deviation σDi

of the state can be estimated by:

μDi = 1

N

N∑

t=1

(Di )t , σDi =
√
√
√
√ 1

N

N∑

t=1

[(Di )t − μDi ]2.
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Table 37.1 The number of training and testing data

Stages S0 S1 S2 S3 S4

Learning Training Testing Training Testing Training Testing Training Testing Training Testing
Number 8 1 9 2 10 2 10 2 8 1

Fig. 37.2 The learning log-
likelihood curve of different
stages
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37.5 Numerical Simulation

In this section, the integrated diagnostics and prognostics method presented previ-
ously was tested on a rich condition monitoring database taken from the test system
containing different health stages simulated until failure. The diagnosis feature data
was first classified through a health evaluation, then the different health stages which
are most common in the ECLSS were identified and the prognostics results were
determined using the diagnosis information for the new feature. The performance of
the proposed variational approximation-based integrated diagnostics and prognos-
tics was illustrated by a comparison with the existing methods based on the HMMs
and HSMMs.

1. Diagnosis Models Training

On the basis of this evaluation information, the health stages represented by the
monitored data which from the different subsystems were determined, so the corre-
sponding feature data with known health conditions can be used for theMoG-HMMs
training in the learning phase. In the two situations, the number of the training feature
data and the test data under different situations are given in Table37.1.

The log-likelihood through the training procedure in the proposed learning
algorithm are given in Fig. 37.2.

Here, we compare the two existing methods with our method in which the first is
the method based on the HMM in which the discrete parameters are learned using
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Table 37.2 Diagnostics results based on three methods

Likelihood value Test S0 Test S1 Test S1 Test S2 Test S2 Test S3 Test S3 Test S4

EM-HMM0 −11.23 −inf −inf −inf −inf −inf −inf −inf
EM-HMM1 −inf −inf −18.73 −inf −inf −inf −inf −inf
EM-HMM2 −inf −inf −inf −19.26 −12.21 −inf −inf −inf
EM-HMM3 −inf −inf −inf −inf −inf −21.93 −32.14 −inf
EM-HMM4 −inf −inf −inf −inf −inf −inf −inf −19.26

HSMM0 −16.74 −32.65 −23.31 −17.78 −19.61 −28.67 −27.11 −17.64
HSMM1 −21.41 −21.43 −17.36 −23.26 −29.14 −37.76 −32.73 −23.31
HSMM2 −23.74 −38.21 −31.68 −14.87 −16.73 −43.71 −36.17 −34.18
HSMM3 −27.35 −41.64 −38.97 −21.33 −31.12 −24.46 −23.57 −37.14
HSMM4 −18.64 −35.38 −26.82 −19.23 −18.67 −32.65 −29.54 −13.72

MoG-HMM0 −9.38 −17.63 −24.64 −17.14 −19.23 −23.16 −33.65 −19.34
MoG-HMM1 −17.63 −16.45 −19.23 −21.76 −31.75 −36.77 −48.23 −23.47
MoG-HMM2 −24.57 −32.28 −31.78 −11.68 −14.71 −34.84 −39.76 −21.68
MoG-HMM3 −11.74 −43.67 −45.85 −28.44 −38.23 −17.65 −21.41 −31.63
MoG-HMM4 −38.24 −21.34 −23.76 −16.28 −21.67 −21.36 −32.28 −14.76

Table 37.3 Mean and variance of RUL for different healthstates

Stages S0 S1 S2 S3 S4

RULmean 238.63 196.32 71.64 42.47 19.33
RULvariance 1.65 1.24 1.87 2.41 1.56

the expectation maximization (EM) algorithm [1], and the second method was based
on the Hidden Semi-Markov Models (HSMM) [2].

2. Diagnostics Results

The diagnostics results for the three differentmethods (EM-HMM,HSMM,MoG-
HMM) are shown in Table37.2. From Table37.2, the log-likelihood values of the
tested monitored observations under different trained models are yielded, thus, the
system health stages are able to choose the diagnosis model with the maximum
log-likelihood value. For the diagnostics results from situation1, the recognition rate
based on the traditional HMM, which itself has been based on the EM algorithm is
7/8 = 87%, and the recognition rate based on the HSMM and the MoG-HMMwith
proposed variational approximation learning is 7/7 = 100%. Therefore, the new
method is effective as a method based on HSMM, when the degradation models can
be determined by fixed parameters.

Based on above diagnostics results, the statistical properties of the trained models
representing four health stages canbeobtained.The test datawas generated randomly,
thus the associated confidence value estimations can also be obtained. From these,
the mean and variance of the duration in each state are also available using the
prognostics algorithm. The results are given in Table37.3.
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37.6 Conclusion

An integrated diagnostics and prognostics for ECLSS in a manned-spacecraft has
been presented in this paper. To implement the ECLSS health management at the
system level, the proposed method makes full use of a health condition evaluation
to diagnose the current health stages of the system, and predict the statistical prop-
erties of the RUL. In the proposed method, the feature data from different health
stages are transformed to the corresponding MoG-HMMs, which take the feature as
continuous observations. Different from the existing data-driven method based on
parameter learning for the trained diagnosis models, the variational approximation-
based technique is used to learn the distributions of the model parameters. Based on
the diagnostics information of the trained models, the health stages are able to be
identified when the next features are received, so the RUL and the associated con-
fidence value estimations can also be obtained. Numerical examples demonstrated
the effectiveness of the proposed integrated approach.
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