
Chapter 1
Average Run Length Performance Approach
to Determine the Best Control Chart When
Process Data is Autocorrelated

Ana Sofia Matos, Rogério Puga-Leal and José Gomes Requeijo

Abstract Most conventional Statistical Process Control techniques have been
developed under the assumption of the independence of observations. However,
due to advances in data sensing and capturing technologies, larger volumes of data
are routinely being collected from individual units in manufacturing industries and
therefore data autocorrelation phenomena is more likely to occur. Following this
changes in manufacturing industries, many researchers have focused on the devel-
opment of appropriate SPC techniques for autocorrelated data. This paper presents
a methodology to be applied when the data exhibit autocorrelation and, in parallel,
to evidence the strong capabilities that simulation can provide as a key tool to deter-
mine the best control chart to be used, taking into account the process’s dynamic
behavior. To illustrate the proposed methodology and the important role of sim-
ulation, a numerical example with data collected from a pulp and paper industrial
process is provided. A set of control charts based on the exponentially weightedmov-
ing average (EWMA) statistic was studied and the in and out-of-control average run
length was chosen as performance criteria.The proposed methodology constitutes a
useful tool for selecting the best control chart, taking into account the autocorrelated
structure of the collected data.
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1.1 Introduction

Traditional statistical process control assumes that consecutive observations from
a process are independent. Nowadays, in industrial processes, autocorrelation has
been recognized as a natural phenomenon, more likely to be present when:

• Parameters, such as temperature and pressure, are subject to small variations con-
sidering the rate at which they are measured;

• The presence of tanks and reactors inducts inertial process elements;
• Data is sequentially sampled in time and with a sampling rate that can be very
high, due to high-performance measurement devices.

Chemical and pharmaceutical industries can be pointed as examples of processes
where the existence of autocorrelation in data is extremely likely. Only in recent years
has autocorrelation become an important issue in statistical process applications,
particularly in the industrial field and, due to this fact, a large number of researchers
has focused and contributed to this field of knowledge.

Data independency assumption violation is incurred when autocorrelation is
present between two consecutive measurements that may cause severe deteriora-
tion of standard control chart performance, usually measured in terms of run length
(RL), i.e. the number of observations required to obtain an observation outside of
the control limits [6, 7].

Several authors have studied and discussed the negative effects of traditional
control charts applied to processes with autocorrelated observations [1, 4, 6]. In these
cases, there is a significant increase in the number of false alarms, or a considerable
loss of control chart sensitivity, caused by incorrect estimation of process parameters.
As a consequence, these two situations can produce, respectively: pointless searches
for special causes, maybe with costly discontinuity in the production rates; and a loss
of sensitivity that may undermine product reputation and discredit this powerful tool.

In order to overcome these limitations, two main approaches have emerged. The
first approach uses traditional control charts for independent and identically distrib-
uted data (iid) but with suitably modified control limits to take into consideration
the autocorrelation structure [4, 9]. The second approach uses time series models to
fit to the observations and apply traditional control charts to the residuals from this
model [1, 3].

The main goal of this article is to present a methodology that points out the main
issues to be considered in both phases of control chart implementation (phase I and
II) and to provide a set of guidelines when simulation is used for optimal Con-
trol Chart selection with autocorrelated data. A stationary first-order autoregressive
AR(1) process was considered in the study with individual observations. As a perfor-
mance criterion, it was used the average run length (ARL) and their corresponding
standard deviation of the run length (SDRL). In this study, a set of widely accepted
control charts applicable for monitoring the mean of autocorrelated processes were
selected, namely: the residual-based chart or the special control chart (SCC) of
Alwan [1] (in both phase I and II), the Exponentially Weighted Moving
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Average (EWMA) control chart for residuals [3], the EWMAST chart (EWMA
for Stationary process) developed by Zang [9] and the MCEWMA chart (Moving-
Centerline EWMA), with variable limits proposed byMontgomery andMastrangelo
[5]. Detailed simulation results are provided and suggestions are made.

1.2 Theoretical Background

1. EWMAST Chart
Zhang [9] proposes the EWMAST chart as being an extension of the traditional

EWMA chart designed to monitor a stationary process. This chart uses the autocor-
relation function to modify the control limits of the EWMA chart. The EWMA chart
is defined by:

Et = (1 − λ)Et−1 + λXt , (1.1)

where Xt corresponds to data under control at a time t , E0 = μ and the parameter
λ(0 < λ < 1) is a constant. The approximate variance, according to Zhang [9] is
given by:

σ 2
EWMAST ≈ σ 2

(
λ

2 − λ

) (
1 +

M∑
k=1

ρk(1 − λ)k(1 − (1 − λ)2(M−k))

)
, (1.2)

where ρx (k) is the process autocorrelation at lag k and M is an integral ≥25. The
control limits of this chart are given by:

⎧⎨
⎩

L SCEWMAST = E0 + LEWMASTσ̂EWMAST
LCEWMAST = E0

L SCEWMAST = E0 − LEWMASTσ̂EWMAST,

where L is usually equals to 2 or 3.
Note that when the data process are independently and identically distributed,

or white noise, ρx (k) = 0 when k �= 0. In this case, the EWMAST chart and the
traditional EWMA are de same.

Zhang [9] shows that for stationary AR(1) processes the EWMAST chart per-
forms better than the EWMA residual chart and, that’s an obvious advance for using
EWMAST chart is that is no need to build a time series model for stationary process
data.
2. MCEWMA Chart

Montgomery and Mastrangelo [5] developed a new chart that brings together all
the information on the MM chart, also developed by these authors, in a single one
called MCEWMA chart. This chart allows, simultaneously, analyzes the evolution
of the process behavior and detect special causes of variation.

Defining the variable Et by Eq. (1.1) and considering that X̂t = Et−1, the residual
et , at time t is given by: et = Xt − X̂t = Xt − Et−1. The control limits and centerline
of the MCEWMA chart vary over time and, are defined at time t , by:
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⎧⎨
⎩

L SCt = Et−1 + 3σep

LCt = Et−1
L SCt = Et−1 − 3σep,

where the standard deviation of forecast errors, σep, can be estimated by any of the
following equations:

σ̂ep = 1

N

N∑
t=1

e2t , (σ̂ep)t ∼= 1.25DAMt , (σ̂ep)t = (1 − α)(σ̂ep)t−1 + α|et |,

with DAMt corresponding to the mean absolute deviation, given by:

DAMt = (1 − α)DAMt−1 + α|et |, (1.3)

and 0 < α ≤ 1.
The MCEWMA chart presents a poor sensitivity in detecting small or mod-

erate changes in the process mean. Taking into account this limitation, Mont-
gomery and Mastrangelo [5] proposed the use of “tracking signal”, which together
with the MCEWMA chart help increase its sensitivity in detecting trends. The

smoothed-error tracking signal, T s(t), can be obtained by: T s(t) =
∣∣∣ Qt
DAMt

∣∣∣, where
Qt = αet + (1 − α)Qt−1 and DAMt defined by (1.3), with 0.05 ≤ α ≤ 0.15 as a
smoothing constant. When the T s(t) exceeds a constant K s, typically with values
between 0.2 and 0.5, means that the forecast error is biased, indicating a change in
the underlying process.
3. EWMA Chart with Residuals

The traditional EWMA chart may also be built using residuals, by using residual
values instead of the data collected from the process. The use of these charts signif-
icantly increases detection of minor to moderate changes of the expected residual
value and its variance σ 2

e and, consequently changes in process parameters. The sta-
tistic used in the EWMA of residuals chart, to monitor the process mean at time t is
given by: EWMAt = (1 − λ)EWMAt−1 + λet with EWMA0 = 0 and θ = 1 − λ.

The control limits are simply given by:±LEWMAres σEWMAres , where the variance
of residual EWMA statistics is:

σ 2
EWMAres

≈ σ 2
e

(
λ

2 − λ

)
. (1.4)

1.3 Methodology

In Fig. 1.1 the proposedmethodology is presented, providing a basis for control chart
implementation guidance when the assumption of data independence is violated.
The methodology, in general, does not differ significantly from the approach that
is generally used when the data are independent, but there are important aspects to
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Fig. 1.1 Methodology for phase I and II

consider, including the treatment of special variation causes that may arise in Phase I,
the correct selection of a set of control charts and the important role that simulation
can play in identifying the best control chart to be used in Phase II.
1. Phase I:Process Parameter Estimation

The evaluation of process stability and subsequent estimation of its parameters
are the main objectives underlying the Phase I. However, it is necessary to verify
that the assumptions underlying its implementation are satisfied (independence and
normality of data). The verification of the first assumption can be ensured by the
interpretation of the sample ACF (autocorrelation function) and the sample PACF
(partial autocorrelation function) of the residuals. If there is significant autocorrela-
tion in the data, it is implicit that the second assumption is valid, since the residuals
obtained from a well adjusted ARIMA model should be normally distributed with
zero mean and constant variance. After fitting an appropriate time series model, a
residual-based control chart should be used. The existence of assignable causes indi-
cates the presence of special causes of variation and requires a different treatment
that does not pass by mere identification and elimination of those special causes, as
if data were uncorrelated. Since autocorrelated data is characterized by having time-
oriented observations, when an assignable cause is detected in phase I, the value yt ,
in that instance, should be replaced by their expected value at time t .
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The calculation of expected values can be done by applying an outlier’s detection
model [2]. After achieving process stability, the final step consists on parameter
estimation: residual standard deviation, processmean and process standard deviation.
2. Phase II: Process Monitoring

After evaluating process stability, process monitoring will take place. The first
step comprises the identification of a set of candidate control charts. This selection
may include control charts with modified control limits (1st approach) and/or control
charts with residuals obtained from a time series model (2nd approach). To help with
the selection, some guidelines can be found in Montomery [6], Zhang [9], and Sheu
and Lu [8]. The choice of a suitable control chart depends, in a large way, on the
type of shifts (δ) in mean and/or standard deviation or changes in ARIMA’s model
parameters that are to be detected. The last step to be fulfilled in phase II comprises a
comparison of the control chart’s performance through collectingARLout-of-control
(ARLOC ) and correspondent SDRL, when the process is subject to shifts/changes
in parameters (mean, standard deviation or ARIMA model parameters). Once more,
simulation reveals to be a valuable and indispensable tool in achieving this milestone,
i.e., defining the optimum control chart to be used in monitoring phase.

1.4 Case Study

The case study refers to a pulp and paper process, where individual paper pulp
viscosity measurements were collected from the bottom of a 100 m high digester.
This type of process is characterized as being continuous and highly dynamic. For
phase I, a sample of 300 viscosity measurements were obtained, collected every four
hours and analyzed in the laboratory. Moreover, this sample represents a period of
50 production days, which is also representative in what respects to process dynamic
behavior. For phase II, a sample size of 200 viscosity measurements were collected
at the same conditions, corresponding to a period of 33 production days.
1. General

According to phase I showed in Fig. 1.1, underlying control chart assumption
verification should be compulsory, especially when data is provided from a contin-
uous and high dynamic process. Nowadays, several commonly available software
packages (Statistica�, Matlab�, Minitab�) allow a fairly expeditiously assumption
check. The present study adopts the use of Statistica� software package in order
to obtain the sample ACF and sample PACF, with the 300 viscosity measurements,
both represented in Fig. 1.2.

Graphic interpretation clearly shows that data follows an autoregressive first order
model, AR(1), evidenced by slow ACF peak decline and existence of only one sig-
nificant PACF peak.

The time series model that better adjusts to data was obtained with an autore-
gressive parameter φ equal to 0.561 (standard error of φ equal to 0.0528). Process
mean obtained from viscosity measurements was μy = 1076.45, with σy = 47.923
(process standard deviation) and σs = 39.677 (residual standard deviation).
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Fig. 1.2 Sample partial autocorrelation function (PACF) for viscosity

Since the first-order autor regressive residuals, εt , are assumed to be independent
and identically distributed (iid) with mean zero and σs constant, the first residual
control chart can be established, considering an ARLIC = 370. For this ARLI C the
control limits are given by ±3 × σs , taking a numerical value of ±119.0. For the
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residual moving range (MR) chart the upper control limit is given by 3×M Rs/1.128,
with centerline equal to M Rs . The numerical values for upper control limit and
centerline are 146.2 and 44.7, respectively. The lower control limit is equal to zero.

The residual control charts, εt − M Rs , were constructed and the existences of
five possible assignable causes were identified (values outside the control limits).
According to the methodology in Fig. 1.1, those possible assignable causes cannot
simply be eliminated, requiring their replacement with the corresponding expected
values. The iterative outlier’s detection model was applied and the corresponding
expected value for each outlier was determined and replaced on the original data set.
A new data set, ytnew with the same length, is obtained as well as new estimates
for process viscosity mean (μnew

y = 1,074.0) and corresponding standard deviation
(σ new

y = 44.9). The new adjusted time series model is given by:

ynewt = 0.579ynewt−1 + εt , (1.5)

with standard error of autoregressive parameter, σ new
s , equal to 0.0512 and residual

standard deviation, σ new
y , equal to 36.0. Comparing the new results with the previous

ones, there is a slight increase in the autoregressive parameter (with decrease in stan-
dard error), followed by an adjustment in the processmean, reducing both the process
and residual standard deviations, as expected. Based on the Eq. (1.5) model and in
its parameters, new control limits were determined for both control charts: residuals
and moving ranges. The numerical values obtained were±108.0 for residual control
chart, 132.7 and 40.6 for upper and centerline of MR chart, respectively.
2. Phase II

In the present study four control charts were identified as being good candidates,
namely MCEWMA with tracking signal, T s, and EWMAST charts, included in the
1st approach; residual control chart (SCC) and residual EWMA chart, considering
the 2nd approach.

The methodology and formulas used to construct the first two charts follows the
original references, namely Montgomery and Mastrangelo [5] for MCEWMA and
Zang [9] for EWMAST. Those three control charts, based on EWMA statistics, were
modeled in MatLab�’s software, using Eq. (1.5) to obtain the autoregressive first
order model, where errors are independent and identically distributed withmean zero
and standard deviationof 36.0. The chart parameterswere obtainedby simulatingdata
sets of 4,000 values, repeated 10,000 times. For EWMA of residuals and EWMAST,
we considered the same smoothing constant (θ), equal to 0.2. The in-control ARL
was fixed on 370, establishing a common performance comparison platform between
all candidate control charts. The estimates of control chart parameters are shown in
Table 1.1. Mean-square errors are presented in parenthesis in front of each related
parameter.

Once control limits for all control charts are established, a competitive analysis
was performed by considering the different types of changes that may occur in a
process such as mean shifts and disturbances in model parameters. The simulation
conditions were the same as in the previous study. The simulation results for the
four control charts are presented in Table 1.2 and their corresponding ARL’s and
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Table 1.1 Estimates of control charts parameters obtained by simulation for the numerical example

Control limit (ARLI C = 370) Chart parameters

EWMAST LEWMAST = ±2.542 σ̂EWMAST(0,2) = 28.299 (2.9170)
MCEWMA LMCEWMA = ±2.542 θ̂min = 0.445 (0.0322) and σ̂p = 41.5448 (2.1421)
EWMAres LEWMAres = ±14.166

Table 1.2 ARL’s and SDRL (in parentheses) for SCC, EWMAres, EWMAST and MCEWMA
charts

Shift size SCC EWMAres MCEWMA EWMAST
δ K = 3.000 K = 2.857 K = 3.308 K = 2.542

0.0 369.02 (368.435) 369.82 (360.634) 370.29 (529.281) 370.38 (360.791)
0.5 155.71 (155.177) 36.91 (30.765) 233.85 (459.974) 33.28 (26.472)
1.0 45.19 (43.629) 10.83 (5.890) 60.86 (246.139) 10.58 (5.028)
1.5 16.03 (14.557) 6.21 (2.288) 9.42 (81.872) 6.59 (1.893)
2.0 7.29 (5.766) 4.59 (1.288) 3.54 (23.954) 5.17 (1.052)
2.5 4.22 (2.694) 3.77 (0.840) 3.01 (0.166) 4.44 (0.700)
3.0 3.01 (1.423) 3.31 (0.612) 3.00 (0.053) 4.01 (0.545)

Fig. 1.3 Sensitive analysis on changes to autoregressive parameter, φ

SDRL’s for the mean shifts were determined. The parameter is the size of the mean
shift, measured in terms of the standard deviation (new mean = μ + δσ ) and with
0.5 increments.

Six changes with 5 % interval in autoregressive parameter (φ = 0.597) were
considered in what respects to model parameter disturbances (illustrated in Fig. 1.3).

Both sensitivity analysis methods evidence that EWMAres and EWMAST charts
are the best performers in the autoregressive process in the study. Moreover, both
present a similar behavior. As expected, SCC and the MCEWMA charts show poor
sensitivity when detecting small to moderate shifts in mean, although they exhibit
robustness in the presence of model parameter disturbances (Fig. 1.3). In contrast,
EWMAres and EWMAST charts decrease their sensitivity whenever the autoregres-
sive parameter decreases and increase their sensitivity whenever the autoregressive
parameter increases.
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1.5 Conclusion

Whenever statistical process control monitoring is to be used, great care should be
taken to ensure that control chart requirements such as data independence are ful-
filled. Ignoring data correlation has direct consequences regarding control chart per-
formance deterioration (increased number of false alarms or decreased sensitivity).
Through a case study, the present work evidences the key issues that should be taken
into account in the presence of data autocorrelation. The role of simulation is demon-
strated to be of great relevance not only to define the control limits that are able to
converge on a singleARLvalue for all charts being used but also to obviate their com-
parative performance analysis. Considering process dynamic characteristics, AR(1),
and taking into account the objective of detecting little to moderate disturbances in
the process mean, the best choice dictates the use of EWMAST chart and EWMA
residuals.
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