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7.1            Introduction 

 Innate and adaptive immune mechanisms are 
prevalent in the dental pulp and are a key feature 
of its defense capacity to minimize the effects of 
injurious challenge. Thus, the pulp shows simi-
larities to many of the other connective tissues of 
the body but perhaps differs due to its noncompli-
ant environment where the rigid covering shell of 
hard mineralized tissue constrains the pulp tissue 
swelling. The architecture of the tissue provides 
further constraints clinically and limits attempts 
to remove and repair the causes of the injury. 
Bacterial infection of the dental pulp represents 
the most common injurious challenge to the tis-
sue due to the effects of dental caries, clinical 
operative procedures, and trauma. As a conse-
quence, a mixed microbial fl ora, particularly 
including gram-negative, anaerobic bacteria, is 
present in the diseased pulp [ 1 ]. 

 Infl ammatory processes are important in the 
host’s immune response to injurious challenge 
and represent a broad array of cellular and molec-
ular events. These processes aim to both recruit 
circulating immunocompetent cells from the vas-
culature to eliminate pathogens and necrotic tis-
sue debris and stimulate responses by resident 
cells in the pulp to minimize tissue damage and 

initiate reparative and regenerative events. Innate 
immune responses will particularly trigger local 
cytokine production and promote an infl ux of 
phagocytic leukocytes as part of the proinfl am-
matory response. The relatively noncompliant 
and non-self-cleansing environment of the pulp 
may often lead to infections becoming chronic, 
and adaptive immune responses can also come 
into play. The latter process leads to T- and B-cell 
recruitment and activation and adds further com-
plexity to the infl ammatory response. Although 
clearly these various responses are defensive in 
nature, both the combination of their complexity 
and the constraints imposed by the structure of 
the tooth can lead to exacerbation of tissue injury 
and compromise tooth vitality. There is also 
increasing evidence of the sequestration of a vari-
ety of bioactive molecules within the dentin 
matrix [ 2 ] and their release during carious matrix 
dissolution will further complicate the cellular 
signaling taking place in the pulp. Clearly, while 
it is possible to generalize about the various 
defense responses occurring in the diseased and 
infected pulp, each individual case will be unique 
in terms of the extent of disease activity and the 
consequent involvement and timing of the vari-
ous defense responses. Thus, the clinical man-
agement of pulpal infl ammation can be a 
signifi cant challenge. 

 Although there is a good clinical appreciation 
of the impact of infl ammation on disease pro-
gression and treatment outcomes (see Chap.   9    ), 
the correlations between the biological events of 
pulp infl ammation and the clinical presentation 
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of disease progression are currently poorly 
understood. This represents a signifi cant chal-
lenge to clinical diagnosis and management of 
pulpal disease [ 3 ,  4 ], particularly as regenerative 
approaches to therapeutically promote tooth 
vitality emerge [ 5 – 10 ]. The importance of under-
standing the cellular and molecular basis of 
pulpal infl ammatory processes is now further 
emphasized with the recognition that there is 
considerable cross talk between infl ammatory 
and regenerative events. Traditionally, tissue 
defense and repair/regeneration have been con-
sidered as distinct processes but clearly, these 
processes should now be considered as working 
in tandem.  

7.2     The Pulpal Environment 
and Injury Responses 

 Dental caries represents the most prevalent infec-
tious disease globally and affects the majority of 
the population. While not a life-threatening dis-
ease, caries has signifi cant impact economically, 
nutritionally, and in terms of pain and quality of 
life. In health, the architecture of the tooth pro-
tects the pulp well from the infectious infl uences 
of the oral cavity. Carious infection of the tooth, 
however, soon exposes the pulp to bacteria and 
their products. Traumatic injury to the tooth, 
although physical in nature, provides indirect 
exposure of the pulp to these bacterial infl uences 
since the tooth is constantly bathed in bacteria- 
containing oral secretions. Increasing identifi ca-
tion of tooth wear in the population is also a risk 
factor for pulpal infection with dentin exposure 
due to erosion, abrasion, and attrition opening 
diffusion pathways to the pulp. 

 The nature of the bacterial challenge will vary 
depending on disease progression and the extent 
of existing tooth tissue loss. At earlier stages, 
relatively small bacterial products may begin to 
diffuse within the tubules to the pulp, but with 
increasing disease progression, permeability of 
the tissues will increase and allow intact bacteria 
to migrate and colonize the deeper areas of the 
dentin and pulp (Fig.  7.1a–c ). Thus, both the 
range of bacterial pathogenic challenges and 

their intensity may show considerable variation 
during the course of disease. As well as the chal-
lenge from intact bacteria, both cellular break-
down products and metabolites will likely 
contribute. Thus, cell membrane degradation 
products from gram-positive and gram-negative 
microbes, such as lipoteichoic acids, lipopolysac-
charides, and DNA as well as other cell-derived 
products, may all contribute to the challenge 
posed by bacteria. Bacterial metabolites such as 
the weak organic acids produced during carbohy-
drate fermentation are well-established as major 
factors in tooth tissue degradation during caries, 
and these may also contribute to the insult caused 
by the bacteria. It is important, however, to rec-
ognize that there may also be an indirect bacterial 
challenge posed through the action of these bac-
terial metabolites on the dental tissues. Carious 
demineralization of dentin by bacterial acids will 
be accompanied by the dissolution of a signifi -
cant proportion of the noncollagenous extracel-
lular matrix of dentin. These dentin matrix 
components are now recognized to comprise a 
diverse range of molecules; a number of which 
include structural matrix molecules while others 
include cytokines, growth factors, and infl amma-
tory mediators [ 2 ,  11 ]. Proteomic analysis of 
dentin already indicates the presence of up to 
nearly 300 distinct proteins [ 12 ,  13 ], and many of 
these display bioactive properties capable of sig-
naling a multitude of cellular events in both 
tissue- resident cells and those recruited to the 
pulp as a part of the immune defense and wound 
healing processes. Mineralized tissues provide a 
unique environment in that expression of bioac-
tive molecules by their formative cells frequently 
leads to their subsequent sequestration in the 
extracellular matrix in a fossilized state. This is 
especially true of dentin, which shows limited 
remodeling, unlike bone, and these sequestrated 
molecules may remain with their bioactivity in a 
protected state until the matrix is demineralized 
during injurious events, such as caries. While 
bacteria and their products may initiate defense 
responses classically associated with many of the 
other tissues of the body, superimposition of the 
effects of dentin matrix components released dur-
ing carious demineralization may signifi cantly 
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modulate the pulpal and immune responses 
(Fig.  7.1a–c ). Indeed, antibacterial activity dis-
played by some of these dentin matrix compo-
nents [ 14 ] may modify the nature or intensity of 
the bacterial challenge to the pulp. Some signal-
ing pathways are common to a number of cell 
types and their processes, which lead to more 
unpredictable effects of the combined challenges 
from bacterial and dentin matrix component 
exposure. For example, p38 mitogen-activated 
protein kinase (MAPK) signaling has been impli-
cated in the control of odontoblast secretory 
activity during tertiary dentinogenesis [ 15 ]. 
Exposure to reactive oxygen species (ROS), 
which are generated during bacterial challenge, 
can also activate MAPK and NF-κB signaling 
pathways [ 16 ,  17 ]. These pathways can be initi-
ated through a variety of cellular stresses, such as 

cytokine and bacterial LPS exposure as well as 
heat shock [ 18 ,  19 ].

   Traditionally, wound generation and healing 
in the body’s tissues follow a distinct chronologi-
cal pattern with defense mechanisms initiated 
fi rst, and once clearance of the injurious chal-
lenge has been largely achieved, healing pro-
cesses are invoked (Fig.  7.1a–c ). Such a pattern 
may be less distinct in the dentin-pulp where sig-
nifi cant release of pro-regenerative factors at the 
time of tissue injury may lead to competing infl u-
ences of defense and regeneration or healing 
occurring alongside one another. In such circum-
stances, the relative intensities of these compet-
ing infl uences may direct the outcomes of tissue 
events, although other factors may also affect 
outcomes. Tertiary dentinogenesis represents a 
repair response of the dentin-pulp, ultimately 
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  Fig. 7.1    ( a ) Early stage of carious disease with minimal 
hard tissue involvement. ( i ) Infl ammation and infection 
are at relatively low levels which enable and promote tis-
sue regenerative mechanisms, such as reactionary dentin-
ogenesis. ( ii ) Bacteria and their products, as well as 
released dentin matrix components ( DMCs ), diffuse 
within the dentinal tubules where they are detected by 
odontoblasts, which can then elicit reactionary dentino-
genic events and cytokine and complement secretion. 
Immune and potentially stem cells can be attracted to the 
site beneath the lesion at relatively low levels where they 
contribute further to proinfl ammatory mediator produc-
tion. ( b ) Chronic and later stages of carious disease with 
increasing hard tissue involvement. ( i ) Relatively high 
levels of infection and infl ammation lead to the impeding 
of tissue regenerative events. ( ii ) Increased amounts of 

bacteria and their products, as well as released DMCs, dif-
fuse down the dentinal tubules where they signal odonto-
blast death. Relatively high levels of cytokines and 
immune system cells are present in the infected pulpal 
tissue. ( c ) Resolution of infection and modulation of 
infl ammation, e.g., following clinical intervention. ( i ) 
Dental tissue regenerative events, such as reparative den-
tinogenesis, are enabled as infection and infl ammation 
levels are decreased. ( ii ) Progenitor cells are recruited and 
differentiate to give a new population of odontoblast-like 
cells. Potential sources of progenitor cells include dental 
pulp stem cells ( DPSCs ). Low-level proinfl ammatory 
mediators, e.g., complement, cytokines, and reactive oxy-
gen species ( ROS ), may promote signaling of these events. 
 Arrows  within pulp indicate signaling or secretory 
activity       
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aimed at tissue regeneration if conditions are 
 permissive. This repair process may be further 
subclassifi ed into reactionary and reparative den-
tinogenesis depending on whether the formative 
cells are upregulated surviving postmitotic pri-
mary odontoblasts or a new generation of odon-
toblasts-like cells arising from differentiation of 
stem/progenitor cells due to local death of the 
primary odontoblasts (see Chap.   2    ). Clearly, the 
complexity of these two processes differs signifi -
cantly, and in the context of competing tissue 
defense and healing infl uences, simple upregula-
tion of secretory activity of an existing popula-
tion of odontoblasts (reactionary dentinogenesis) 
may be more easily achieved. During reparative 
dentinogenesis, involvement of pulp-derived 
mesenchymal stem cells (MSCs) may infl uence 
defense events through their immunomodulatory 
properties [ 20 – 22 ]. Thus, it is important that 
infl ammation and repair/regeneration are consid-
ered as overlapping and interrelated processes.  

7.3     Environmental Sensing by 
Odontoblasts and Pulp Cells 

 The main role of odontoblasts has long been con-
sidered to be that of dentin matrix secretion, and 
morphologically, these cells are well adapted to 
this function. However, it is becoming increas-
ingly apparent that odontoblasts have much 
broader roles in the defense of the tooth and envi-
ronmental sensing (Fig.  7.1a–c ). This is empha-
sized by the histological structure of the 
dentin-pulp where the intricate and elaborate per-
meation of dentin matrix by the odontoblast pro-
cess and its lateral branches [ 23 ] ensures that the 
cell communicates intimately with its extracellu-
lar matrix. Thus, the odontoblasts are well posi-
tioned to detect invading bacteria and their 
products, as well as dentin matrix components 
released during carious demineralization, at an 
early stage of the disease process. While odonto-
blasts are likely to be the fi rst cells of the pulp 
that come into contact with the bacterial patho-
gens and their components, other pulpal cells will 
also subsequently be exposed to these stimuli. 
Indeed, recent evidence implicates odontoblasts, 

pulpal fi broblasts, and endothelial cells in the 
detection of exposure to bacterial pathogens. 
Consequently, these cells should be regarded as a 
constitutive part of the pulp’s defense response to 
bacterial pathogens [ 16 ].  

7.4     Innate and Adaptive 
Immune Responses 

 Both innate and adaptive immune responses 
encompass a complex range of cellular and 
molecular events. While the earlier responses to 
bacteria and other injurious challenges generally 
refl ect innate immunity, the transition to adaptive 
immunity is a gradual one as infections become 
chronic and will vary in the same way as disease 
progression in each individual patient varies. 
Thus, at later stages of disease progression, adap-
tive responses will likely be superimposed on 
innate responses. This situation provides signifi -
cant challenges to the identifi cation of suitable 
targets for diagnosis or therapeutic intervention. 
In describing the innate and adaptive immune 
responses of the pulp, it is diffi cult to categorize 
or assign the molecular and cellular changes 
observed in the tissue as being distinct to either 
of these responses. Instead, it is probably more 
helpful for the reader to consider these changes in 
a chronological order in relation to disease pro-
gression. In this way, it is perhaps easier to under-
stand their involvement in the clinical presentation 
of pulpal infl ammation (see Chap.   9    ). 

7.4.1     Bacterial Pathogen 
Recognition 

 Pattern recognition receptors (PRRs) are a group 
of cell membrane- and endosome-bound recep-
tors, which can recognize ligands (pathogen- 
associated molecular patterns or PAMPs) that 
are broadly shared by pathogens but which are 
distinct from host molecules [ 24 ]. The Toll-like 
receptors (TLRs) are a key family of PRRs, 
which play a central role within the innate 
immune system in the recognition of their 
ligands or PAMPs. These ligands  predominantly 
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include the surface components of bacteria, 
including lipopolysaccharides (LPS), lipotei-
choic acids (LTS), fl agellin, peptidoglycans, and 
lipoproteins as well as nucleic acid ligands from 
bacterial or viral pathogens. TLR-1 to TLR-6 
and TLR-9 expression has been detected in 
odontoblasts and pulpal fi broblasts, and binding 
of these PRRs to their respective ligands initiates 
an acute infl ammatory response, leading to acti-
vation of cells and release of proinfl ammatory 
mediators [ 16 ,  25 – 31 ]. These molecules include 
those associated predominantly with the vascu-
lar responses of the pulp including histamine, 
endothelin, serotonin, and neuropeptides and a 
broad array of cytokines and chemokines with 
potent cellular signaling properties (Fig.  7.1a–c ). 
Other PRRs include the cytoplasmic NOD-like 
receptors (NLRs) and retinoic acid-inducible 
gene (RIG)-like receptors (RLRs) [ 32 ], although 
minimal information is currently available 
on their involvement in dentin- pulp-mediated 
infl ammation.  

7.4.2     Early Vascular Responses 

 An early feature of pulpal infl ammation is 
changes to the vascular fl ow in the pulp with 
vasodilation and increases in blood fl ow. These 
changes are associated with increased fl uid and 
plasma protein exudation and recruitment of leu-
kocytes. Fluid exudation or edema during acute 
infl ammation classically gives rise to swelling in 
soft tissues, although, as noted previously, such 
swelling is constrained in the pulp by the cover-
ing hard shell of mineralized dentin. Key molecu-
lar mediators of these vascular responses may 
include histamine, endothelin, neuropeptides, 
and serotonin. Both in vitro [ 33 ,  34 ] and in vivo 
[ 35 ,  36 ] studies indicate that histamine can pro-
duce vasodilation and reductions in blood fl ow in 
the pulp. Endothelin-1, a vasoconstrictor, and its 
receptors are constitutively expressed in odonto-
blasts and dental papilla of the developing teeth 
[ 37 ], and its application to pulp causes a decrease 
in blood fl ow [ 38 ]. A number of neuropeptides 
have been reported in pulp including substance P, 
calcitonin gene-related peptide, neurokinin A, 

neurokinin K, neuropeptide K, neuropeptide Y, 
somatostatin, and vasoactive intestinal peptide 
[ 39 ], and while these are largely associated with 
neural structures, some neuropeptides have been 
reported to be expressed in pulp fi broblasts [ 40 , 
 41 ]. A number of these neuropeptides are vasodi-
lators, while others are vasoconstrictors. Their 
involvement in neurogenic infl ammation is com-
plex [ 39 ], but these neuropeptides may provide 
novel therapeutic targets for the control of both 
pain and infl ammation simultaneously [ 42 ]. 
Serotonin, a vasoconstrictor, can stimulate pros-
taglandin E 2  (PGE 2 ) [ 43 ] and prostacyclin (PGI 2 ) 
[ 44 ] production as well as increase blood fl ow in 
the pulp tissue [ 45 ]. PGE 2  and PGI 2  are among a 
broader family of prostaglandins, which have 
been implicated in pulpal infl ammation [ 46 – 48 ]. 
Interestingly, histamine synergistically activates 
COX-2 (one of the cyclooxygenase enzymes 
involved in prostaglandin generation) expression 
and PGE 2  production in pulp fi broblasts through 
a TLR2-mediated process [ 49 ]. 

 Several molecular cascade systems, based on 
plasma proteins, act in parallel to these cell- 
derived mediators to further initiate and propa-
gate the acute infl ammatory response. The 
complement system is activated by bacteria, with 
the outcome being the lysis of the bacterial mem-
brane. Early reports have provided rather variable 
evidence for the contribution of complement acti-
vation in the pulp [ 50 – 54 ]; however, these data 
may refl ect the diffi culties in detecting the rather 
transient presence of these proteins during the 
infl ammatory process. Many infl ammatory medi-
ators have relatively short half-lives, which in 
part explains why acute infl ammation readily 
subsides in some tissues once the stimulus has 
been removed [ 55 ]. However, in the pulp, the 
problems of elimination of the infectious agents 
and their components ensure that the stimulus 
will often be ongoing. Complement will likely 
play a role in leukocyte recruitment (see next sec-
tion) in the pulp as well as potentially progenitor 
cell recruitment for subsequent regenerative 
events [ 56 ] (Fig.  7.1a–c ). The other molecular 
cascade systems closely associated with infl am-
mation are the clotting and fi brinolytic systems. 
Dental pulp has long been recognized to show 
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fi brinolytic activity [ 57 ] and the fi brinolytic sys-
tem may contribute to early wound organization 
during pulp healing. In the infl amed pulp, gene 
transcript and protein levels of tissue-type plas-
minogen activator are increased signifi cantly [ 58 ] 
and are upregulated in the presence of proinfl am-
matory cytokines [ 58 ,  59 ]. As well as allowing 
plasminogen cleavage to plasmin for fi brin clot 
lysis, the proteolytic action of plasmin may 
breakdown C3 facilitating initiation of the com-
plement cascade. 

 Even at the level of the vascular responses to 
injurious challenges, the complexity and interrela-
tionships of infl ammatory mediator involvement 
in the pulp are apparent, and our understanding of 
these events is currently limited.  

7.4.3     Leukocyte Recruitment 

 Recruitment of leukocytes to sites of infl amma-
tion is an important aspect of pathogen elimina-
tion through phagocytosis and degranulation 
mechanisms. Increases in vascular permeability 
facilitate their migration through the endothelial 
lining, and such extravasation is carefully regu-
lated by the action of molecules involved in their 
adhesion and transmigration. These molecules 
include integrins, selectins, endothelial adhesion 
molecules, and the cell adhesion molecules 
(intercellular adhesion molecules 1–5, ICAM 
1–5; vascular cell adhesion molecule 1, VCAM- 
1; junctional adhesion molecules, JAMs; platelet 
endothelial cell adhesion molecule 1, PECAM-1; 
endothelial cell adhesion molecule, ECAM). 
While some of these adhesion molecules are con-
stitutively expressed in odontoblasts and other 
pulp cells in health [ 60 ,  61 ] for the maintenance 
of tissue architecture, expression of others 
increases signifi cantly during episodes of infl am-
mation. For instance, weak reactivity for E- and 
P-selectins in the healthy pulp is strongly upregu-
lated following injury [ 62 ,  63 ]. 

 Recruitment of leukocytes and other cells to 
sites of infl ammation involves attraction along 
gradients of chemotactic molecules (Fig.  7.1a–c ). 
These chemotactic molecules are diverse in their 
origins, perhaps refl ecting to some extent the lack 

of specifi city of their infl uences on cell type. 
Bacterial components are chemotactic to 
 neutrophils in the pulp [ 64 ], and components of 
the dentin matrix released during carious demin-
eralization are chemotactic to both infl ammatory 
cells [ 65 – 68 ] and resident pulp cells [ 69 ]. 
Recognition that the composition of the dentin 
matrix refl ects the expression of a diverse range of 
molecules by odontoblasts in addition to the well-
established structural extracellular matrix compo-
nents [ 2 ,  11 ] explains why these matrix 
components have immunomodulatory effects. 
Certain interleukins are basally expressed by 
odontoblasts [ 70 ] leading to their sequestration 
within the dentin matrix, and a complex cocktail 
of pro- and anti- infl ammatory molecules have 
been detected in the dentin matrix [ 71 ]. Several 
infl ammatory mediators also show chemotactic 
properties including complement components 
C3a and C5a, the arachidonic acid metabolites, 
and the leukotrienes (especially leukotriene B 4  – 
LTB 4 ). Growth factors, cytokines, and chemo-
kines also modulate chemotaxis. The chemotactic 
effects of some of these molecules infl uence 
migration of both pulp progenitor and infl amma-
tory cells [ 56 ,  69 ] highlighting the interplay 
between infl ammatory defense and regenerative 
events in this tissue following injury (Fig.  7.1a–c ).  

7.4.4     Cytokine and Chemokine 
Mediation of Infl ammatory 
and Post-injury Events 

 PAMP recognition by TLRs on odontoblasts and 
pulpal fi broblasts results in activation of the 
nuclear factor kappa B (NF-κB) intracellular sig-
naling pathway, which is central to regulation of 
the molecular infl ammatory response in many cell 
types [ 16 ,  25 – 31 ]. A range of cytokines and che-
mokines are produced as a result of activation of 
NF-κB signaling, and these molecules regulate 
much of the immune and infl ammatory response. 
These cytokines and chemokines are synthesized 
by a variety of immune and tissue structural cells 
in response to infectious and traumatic challenge 
and have potent cellular signaling properties. 
Binding of these molecules to specifi c cell  surface 
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receptors further modulates target-cell gene 
expression and molecular responses via second 
messenger signaling mechanisms [ 72 ,  73 ]. The 
actions of these cytokines and chemokines are 
often synergistic with stimulation of a cascade of 
release of other related molecules following their 
initial receptor binding [ 74 ]. The immunomodula-
tory actions of these cytokines and chemokines 
will impact on both innate and adaptive immune 
processes, including extravasation, leukocyte 
recruitment, cell activation and differentiation, and 
antibody production, as well as regenerative events 
associated with the wound healing response. 

 The archetypal proinfl ammatory regulatory 
cytokines include interleukin-1α and 
interleukin-1β (IL-1α,IL-β) and tumor necrosis 
factor-α (TNF-α), which have been demonstrated 
to play important roles in pulp’s response to bac-
terial challenge [ 66 ,  67 ,  75 – 81 ]. Dentin matrix 
dissolution during caries may also stimulate 
expression of both TNF-α and IL-1β by macro-
phages [ 65 ] emphasizing that environmental 
sensing and defense mechanisms in the pulp may 
be broad ranging. The cascades of infl ammatory 
mediator released after early PAMP-PRP interac-
tion are well illustrated by the induction of the 
proinfl ammatory cytokine, IL-8 (which is central 
to neutrophil recruitment and activation), by 
stimulation with bacterial components or due to 
IL-1β and TNF-α exposure [ 70 ]. Upregulation of 
IL-8 has been reported in carious human pulp tis-
sue [ 71 ,  78 ,  82 ], and the constitutive expression 
of this cytokine in odontoblasts [ 70 ] also high-
lights the complexity of the cellular interrelation-
ships taking place in the defense of the pulp. Both 
gene and antibody array technologies have 
allowed demonstration of increased levels of sev-
eral infl ammatory cytokines and S100 transcripts 
and proteins in carious compared with healthy 
pulpal tissue [ 71 ,  78 ,  83 ]. These data are corrobo-
rated by other reports demonstrating increased 
interleukin levels in bacterially challenged pulpal 
tissue, including increases in IL-4 [ 84 ], IL-6 [ 85 ], 
and IL-10 [ 84 ]. The release of proinfl ammatory 
cytokines within the diseased pulp will have 
wide-ranging effects generally aimed at reinforc-
ing control of the pathogenic challenge and sub-
sequently resolution of infl ammatory processes 

and stimulation of regenerative events. Among 
these proinfl ammatory effects will be the devel-
opment of chemotactic gradients which promote 
the recruitment and activation of immune system 
cells [ 86 ,  87 ] to underpin the innate and adaptive 
immune responses (Fig.  7.1a–c ). These chemo-
tactic mechanisms will operate in tandem with 
those described previously for leukocyte recruit-
ment to sites of infl ammation.  

7.4.5     Immune Cell Mediation 
of Innate and Adaptive 
Immune Responses 

 T- and B-lymphocytes, plasma cells, neutrophils, 
and macrophages are observed to infi ltrate the 
pulp in increasing numbers as carious disease 
progresses [ 88 ,  89 ] (Fig.  7.1a–c ). These cells 
constitute the effectors of the innate and adaptive 
immune responses; the latter of which will 
become increasingly superimposed on the former 
as caries extends deeply and more extensively 
into the dentin-pulp and the infl ammation 
becomes more chronic in nature. As caries 
extends, the immune cell infi ltrate in the pulp will 
also increase and will change from being more 
focal and localized to a much more extensive pre-
sentation. Such changes refl ect the transition 
from more acute to chronic infl ammation 
(Fig.  7.1a–c ). 

 A prime role for the neutrophils and macro-
phages is that of phagocytosis, especially during 
the earlier acute phase of infl ammation when 
bacterial pathogens are fi rst encountered. 
Extravasation of natural killer (NK) cells to sites 
of infl ammation in response to cytokines [ 90 ] 
allows their interaction with immature dendritic 
cells (DCs), which can lead to reciprocal activa-
tion and increased cytokine production by these 
cells [ 91 ]. NK cells likely contribute to further 
cytokine production during caries including that 
of IFN-γ [ 84 ], which can activate macrophages to 
stimulate phagocytosis as well as promoting 
T-cell responses [ 92 ]. Tissue-resident DCs are 
found in the pulp and following PAMP recogni-
tion; immature DCs will undergo maturation 
after which they will likely function in antigen 
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presentation to naïve T cells. T cells have been 
shown to be present in healthy pulp [ 93 ] with 
CD8+ T cells predominating [ 88 ,  89 ,  94 ]. An 
immunosurveillance role is generally assumed 
for these cells. This contrasts with B cells, which 
appear to be largely absent from the healthy pulp 
[ 89 ,  93 ] as also are their plasma cell progeny 
[ 51 ]. However, with establishment of deeper 
infection within the dentin-pulp, the initial 
infl ammatory cell infi ltrate of neutrophils and 
monocytes intensifi es with accumulation of 
helper T ( T  H ) cells, cytotoxic T ( T  C ) cells, regula-
tory T ( T  reg)  cells, B cells, and plasma cells as 
adaptive immune defenses develop [ 88 ]. While 
these immune cells are recruited to the tissue for 
defense purposes, their ability to achieve clear-
ance of the infection is frequently insuffi cient, 
and tissue destruction will often result collater-
ally. Such tissue destruction may in part be a 
direct result of the immune cells’ scavenging 
actions on bacterial pathogens during which 
release of degradative enzymes and molecules, 
such as matrix metalloproteinases (MMPs), and 
reactive oxygen species (ROS) can negatively 
impact on the host tissue extracellular environ-
ment. ROS, which include superoxide anions, 
hydrogen peroxide, and hydroxyl radicals, can 
exacerbate tissue injury due to their damaging 
effects on DNA, proteins, and lipids. Apoptosis 
can result from cell exposure to ROS through 
activation of mitogen-activated protein kinase 
(MAPK) and NF-κB signaling pathways [ 16 , 
 17 ]. These pathways can be initiated through a 
variety of cellular stresses, such as cytokine and 
bacterial LPS exposure, and heat shock [ 18 ,  19 ] 
highlighting the many opportunities for their acti-
vation during infection and infl ammation in the 
pulp. Triggering of these pathways will further 
stimulate immune cell activity and contribute to 
an increasing accumulation of infl ammatory 
mediators. It is abundantly clear that the cellular 
responses initiated during the innate responses 
associated with acute infl ammation and their 
increasing complexity as adaptive immune 
responses come into play during chronic infl am-
mation are still poorly defi ned in the pulp as dis-
ease progresses. While many observational 
studies have reported the presence of various 

immune cells and their infl ammatory mediators 
in carious pulpal tissue, few functional studies 
have provided a clear picture of the specifi c func-
tional activities of these cells and their complex 
interrelationships. This potentially refl ects the 
individual variation in disease progression in the 
pulp, which is controlled by diverse factors. 
Signifi cant challenges still exist to our under-
standing of the innate and adaptive immune 
defenses in the pulp, and this constrains clinical 
approaches to management of pulpal infection 
and infl ammation.  

7.4.6     Anti-infl ammatory Activities 
and Infl ammation Resolution 

 In ideal circumstances, immune defense follow-
ing injurious challenge to a tissue will lead to 
elimination of the infecting agent and ultimately 
provides a conducive environment within which 
wound healing can occur. Such circumstances are 
not easily achieved in the dentin-pulp with its 
noncompliant environment and the exposure of 
the tooth to the oral cavity with its complex 
microfl ora and abundant supply of nutrients. 
Nevertheless, mechanisms for the regulation of 
infl ammation require both suppression and acti-
vation of responses. Identifi cation of several anti- 
infl ammatory and pro-resolving mediators has 
started to clarify how infl ammation may be sup-
pressed after it has achieved its purpose. 

 The lipoxins are metabolites of arachidonic 
acid, which negatively regulate the actions of the 
leukotrienes inhibiting neutrophil chemotaxis 
and adhesion as well as stimulating apoptotic cell 
phagocytosis by macrophages and other anti- 
infl ammatory actions [ 95 ]. Although there have 
been no reports of lipoxins in pulp to date, they 
represent an interesting potential target for con-
trol of pulpal infl ammation together with the 
other families of anti-infl ammatory mediators 
described later in this chapter. Three distinct fam-
ilies of anti-infl ammatory pro-resolving lipid 
mediators are now recognized: resolvins, protec-
tins, and maresins [ 96 ]. These families target dis-
tinct cell populations by interaction with specifi c 
receptors and contribute to the overall resolution 
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of infl ammation. Resolvins suppress proinfl am-
matory mediator production and regulate neutro-
phil movement to sites of infl ammation. In a 
rodent model of pulpal infection and infl amma-
tion, resolving E1 (RvE1) application led to a 
decrease in infl ammation at 24 and 72 h [ 97 ]. 
Protectins can block T-cell migration and secre-
tion of TNF-α and IFN-γ and promote T-cell 
apoptosis as well as upregulating the chemokine 
receptor CCR5 on neutrophils to suppress che-
mokine signaling. The recently discovered 
maresins are produced by macrophages and 
inhibit proinfl ammatory mediator production by 
LTA4 hydrolase [ 98 ]. The actions of these vari-
ous specialized pro-resolving anti-infl ammatory 
mediators are only starting to be elucidated, and 
little information exists on their involvement in 
pulpal infl ammation. Nevertheless, they repre-
sent exciting targets for the modulation of infl am-
matory activity, and the use of analogs may 
potentially provide novel therapeutic tools for 
clinical management of infl ammation.  

7.4.7     Infl ammation-Regeneration 
Cross Talk in Dentin-Pulp 
After Injury 

 The specialized environment of the dentin-pulp 
can lead to competing pathogenic infl uences dur-
ing disease in terms of concomitant release of 
proinfl ammatory and pro-reparative/regenerative 
factors as identifi ed earlier in this chapter. Clearly, 
a balance in favor of tissue repair is the goal of 
clinical management of pulpal disease, but this 
may be unrealistic when relatively high levels of 
infection and infl ammation persist. Current evi-
dence suggests that reparative and regenerative 
processes ensue only after signifi cant control or 
resolution of infection and infl ammation has 
occurred [ 99 – 101 ] (Fig.  7.1a–c ). Many of the 
potential cellular signaling mediators present in 
the post-injury tissue milieu demonstrate pleio-
tropic effects, which can show dose dependency 
and contribute to the balance of tissue outcomes. 
Thus, cytokines and growth factors, such as 
TNF-α and TGF-β as well as released dentin 
matrix components, can have detrimental effects 

on pulpal tissue and induce cell death if present at 
relatively high concentrations during the infec-
tious and infl ammatory processes [ 66 ,  68 ,  102 , 
 103 ] in contrast to their benefi cial effects at lower 
concentrations. While therapeutic targeting of 
infl ammation may be attractive to change the bal-
ance of tissue events, infection control may prove 
more effective since the infl ammatory challenge 
will continue as long as bacterial involvement 
persists. However, eradication of bacterial infec-
tion of the dental tissues, especially while mini-
mizing host cell damage, has long been a 
challenge to operative dentistry and endodontics. 
It is therefore important to better understand the 
interplay between infl ammation and repair/
regeneration to guide decision making in the 
management of dental disease. 

 It has recently been emphasized that infl am-
mation is an important prerequisite to enable 
repair and regeneration to subsequently ensue 
[ 104 ]. This may refl ect both the need for defense 
processes to create a conducive environment for 
repair/regeneration and, also, the pleiotropic 
effects of some of the proinfl ammatory media-
tors, which may impact on repair/regenerative 
events. A number of proinfl ammatory mediators 
can promote degradative events in the oral and 
dental tissues during their defense responses to 
pathogenic challenge, for example, in bone 
resorption in periapical lesions [ 66 ,  105 ]. 
However, some cytokines, such as TNF-α, can 
also stimulate pro-regenerative/reparative signal-
ing, including via p38 MAPK pathway activa-
tion, leading to odontoblast-like differentiation of 
dental pulp stem cells with increased dentin 
phosphoprotein (DPP) and dentin sialoprotein 
(DSP) expression and tertiary dentinogenesis 
[ 106 ]. The importance of this infl ammation- 
regeneration interplay is further emphasized by 
the correlation of p38 MAPK signaling with ini-
tiation of tertiary dentinogenesis [ 15 ]. Such 
molecular switching is fundamental to the upreg-
ulation of odontoblast secretory activity and den-
tin deposition during the wound healing responses 
in the pulp. Other proinfl ammatory mediators, 
including IL-1β, may also contribute to the inter-
play of events in the pulp post-injury. IL-1β can 
stimulate mineralized bone matrix formation by 
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osteoblasts while inhibiting proliferation and dif-
ferentiation of bone marrow mesenchymal stem 
cells (BMMSCs) [ 107 ]. In the liver, IL-1β can 
induce the normally quiescent hepatocytes to 
proliferate, thereby contributing to regeneration 
of this organ [ 107 ]. In the context of the dentin- 
pulp, proinfl ammatory cytokines may stimulate 
wound healing in surviving odontoblasts at ear-
lier stages of disease when the pathogenic chal-
lenge is relatively less intense. However, during 
chronic disease, these cytokines may suppress 
odontoblast-like cell differentiation from stem/
progenitor cells until infection is controlled and a 
more conducive tissue environment for wound 
healing prevails (Fig.  7.1a–c ). 

 Other infl ammatory mediators may also infl u-
ence post-injury events in the pulp. While immune 
cell-derived ROS can contribute to tissue damage, 
at relatively low levels, these molecules can pro-
mote stem/progenitor cell differentiation and 
mineralization [ 108 ]. Clearly, there is a complex 
interplay occurring between the various mole-
cules mediating events in the pulp post-injury, and 
the relative concentrations of these molecules 
may be key to the cellular signaling outcomes. 
Thus, at relatively low concentrations, these mol-
ecules may stimulate regenerative/reparative 
events, including cellular recruitment, differentia-
tion, and matrix secretion. At higher concentra-
tions, however, such events may be impeded 
through signaling inhibition and tissue degrada-
tive processes (Fig.  7.1a–c ). Elucidation of these 
infl ammation-regeneration interplay relationships 
is complicated by the various origins of these 
mediator molecules. Contributory sources will be 
tissue resident and immune cells as well as dentin 
matrix sequestrated pools released during carious 
dissolution. The relative contributions from these 
various sources will fl uctuate with both the rate of 
disease progression (and hence, carious matrix 
dissolution) and the extent of cellular signaling 
taking place in the tissue (Fig.  7.1a–c ). Some of 
the cytokine receptors responsible for triggering 
of cellular responses are common to both the 
immune/infl ammatory and stem cells, which may 
explain the pleiotropic effects of these cytokines. 
For example, C-X-C chemokine receptor 4 
(CXCR4) is expressed on lymphocytes and 

 granulocytes and is also involved in stem cell 
recruitment [ 109 ,  110 ]. Both stromal cell-derived 
factor-1 (SDF-1)/CXCL12 and its receptor are 
expressed in pulp and are upregulated during dis-
ease [ 111 ,  112 ]. The sharing of common cytokine 
receptors between immune and stem cells proba-
bly refl ects evolutionary conservation of cellular 
signaling processes. Recruitment of both cell 
types is required post-injury, and the extent of 
injury or infection may be the prime determinant 
of the level of involvement of these different cell 
types [ 113 ]. Further regulatory control of tissue 
events in the infl ammatory milieu may also be 
triggered through modulation of stem cell cyto-
kine receptor expression. For instance, increased 
cytokine levels can modulate the surface expres-
sion of CXCR4 on stem cells [ 109 ]. Such modu-
lation could result in the suppression of 
regenerative/reparative responses during active 
infl ammation. 

 In addition, mesenchymal stem cells (MSCs) 
can display immunomodulatory effects in tissues 
further demonstrating the dynamic interplay 
between infl ammation and regeneration [ 114 ]. 
Dampening of excessive infl ammatory responses 
by MSCs through modulation of immune cells 
will likely involve a number of mechanisms. One 
such process has recently been identifi ed in 
which MSCs have been demonstrated to inhibit 
the NOD-like receptor family, pyrin domain con-
taining 3 (NLRP3) infl ammasome in monocytes/
macrophages by decreasing ROS generation 
[ 115 ]. Although the scope of the immunomodu-
latory properties of dental pulp stem cells is still 
being explored [ 20 – 22 ], their contribution to the 
infl ammation-regeneration interplay in pulp is 
already evident. Notably, TLR binding to stem 
cells, including those from pulp, can activate the 
NF-κB proinfl ammatory signaling cascade result-
ing in suppression of their differentiation [ 25 , 
 26 ]. In addition, LPS binding to TLR4 in stem 
cells from the apical papilla (SCAPs) induces 
IL-6, IL-8, and TNF-α production in a time- 
dependent manner, and this can be suppressed by 
treatment with the transcription factor nuclear 
factor I C (NFIC) [ 116 ]. 

 The infl uences of cell death on the tissue envi-
ronment should also be considered in the context 
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of the interplay between infl ammation and regen-
eration. Pulp-capping agents, such as calcium 
hydroxide and mineral trioxide aggregate (MTA), 
have long been used to stimulate reparative den-
tinogenesis following pulpal disease. Although 
the precise mechanisms of action of these agents 
remain controversial, it has been suggested that 
hydroxyl ion release from the material [ 117 ] 
leads to high pH conditions locally in the tissue 
resulting in cell necrosis [ 118 ,  119 ]. Chemical 
irritation of vital pulp tissue beneath the area of 
necrosis was proposed to stimulate reparative 
processes. Other possible mechanisms of action, 
including the local dissolution of growth factors 
and cytokines from the dentin matrix [ 120 ,  121 ], 
have also been proposed. It is now known that 
necrotic cells release low levels of proinfl amma-
tory mediators [ 122 – 125 ], and these may pro-
mote regenerative/reparative events if the levels 
of release do not become excessive. Increased 
cytokine release (IL-1α, IL-1β, IL-2, IL-6, and 
IL-8) from mineralizing cells has also been 
reported following exposure to MTA [ 126 – 128 ]. 
The release of low levels of cytokines from 
necrotic and mineralizing cells, in addition to 
dentin matrix dissolution of these molecules, 
may provide concentrations which favor regen-
eration/repair rather than promoting signifi cant 
infl ammation during milder disease conditions in 
the tissues. As the disease stimulus becomes 
more intense, the increasing levels of these cyto-
kines released may then tip the balance towards 
more chronic infl ammation. 

 It is clear from this that there are many com-
plex molecular responses and interactions occur-
ring in the diseased pulp. Identifi cation of the 
involvement of these molecules is important both 
to our understanding of infl ammatory and regen-
erative/reparative events, the identifi cation of 
diagnostic markers, and the development of novel 
clinical therapeutic strategies to maintain pulp 
vitality. As new technologies become available, 
opportunities for more sensitive molecular profi l-
ing of diseased tissues arise. High-throughput 
transcriptional profi ling and subsequent bioinfor-
matic analyses represent one such technology. 
The use of this approach to investigate carious 
pulp tissue identifi ed that infl ammation was the 

predominant ontological tissue response upregu-
lated; however, several other activated processes 
were also detected [ 129 ]. Notably, scrutiny of 
pro-regenerative/reparative responses indicated 
that the cytokine adrenomedullin (ADM) was 
also upregulated in carious pulp tissue. This mol-
ecule has wide-ranging effects, including immu-
nomodulatory and antibacterial capabilities, and 
can stimulate hard tissue cell differentiation and 
mineralization [ 130 – 133 ]. We have now demon-
strated similar effects for ADM in pulp [ 134 ]. 
Interestingly, ADM is a part of the neuropeptide 
family released during dental neuro- infl ammatory 
events [ 135 ], and as discussed previously, these 
neuropeptides can exhibit anti-infl ammatory 
actions [ 136 ,  137 ], and therefore ADM may con-
tribute to the infl ammation-regeneration inter-
play in diseased pulp. Exploitation of other new 
tissue-profi ling technologies will undoubtedly 
further contribute to our understanding of the 
interplay of tissue events in the diseased pulp at 
the molecular level and identify further diagnos-
tic and therapeutic molecular targets.   

7.5     Future Directions 

 The environmental sensing and defense roles of 
odontoblasts and pulpal fi broblasts provide an 
exquisite system to detect pathogenic challenges 
which subsequently lead to release of a wide vari-
ety of regulatory cytokines and chemokines [ 138 ] 
that signal subsequent infl ammatory, immune, 
and regenerative responses in pulp. The seques-
tration of many bioactive molecules and proin-
fl ammatory mediators within the dentin matrix in 
a fossilized state provides a further level of modu-
lation once these molecules are released during 
carious dissolution of the dental tissues. It has 
become clear that a complex interplay can take 
place between all of these molecules and that 
infl ammation and regeneration/repair are not dis-
tinct, but are intimately interlinked. The cross talk 
and balance between infl ammation and regenera-
tion/repair are dependent on both the presence 
and concentrations of the various signaling 
 mediators. Thus, in a slowly progressing carious 
lesion tissue, conditions may be conducive to 
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regenerative/reparative events, which become 
suppressed as the injurious challenge increases 
with advancing disease (Fig.  7.1a–c ). While there 
is still considerable scope to better understand the 
involvement of many of the signaling mediators 
in both infl ammation and regeneration/repair, 
there is also now a signifi cant opportunity to ther-
apeutically target some of the infl ammatory medi-
ators to dampen their effects. For instance, the use 
of antioxidants, such as N-acetyl cysteine (NAC), 
in conjunction with dental restorative materials 
may limit the activation of key proinfl ammatory 
signaling pathways, including NK-κB activation, 
with subsequent effects on cytokine release which 
may then favor regenerative events within the 
dentin- pulp [ 139 ]. In addition, the anti-infl amma-
tory actions of TGF-β1 [ 30 ,  140 ] may comple-
ment its stimulatory effects in reparative 
dentinogenesis. Furthermore, targeted upregula-
tion of the transcription factor NFIC, which is 
important in tooth root development, can suppress 
cytokine production by pulp stem cells [ 116 ]. 
These and many other therapeutic routes offer 
exciting possibilities to modulate the infl amma-
tory responses in the diseased pulp and to tip the 
balance of tissue responses towards preservation 
of pulp vitality and tissue repair.     
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