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6.1           Introduction 

 The mammalian dentition is of ultimate impor-
tance for survival in the animal kingdom. It is 
thus not surprising that teeth are equipped with 
an abundant, sophisticated, protective neurosen-
sory system that mediates the sensation of pain 
(see [ 1 ]). Impressive progress in the understand-
ing of this system has made it evident that it dif-
fers in many ways from nociceptive (i.e., pain 
detecting) networks at other body sites. Despite 
this, fundamental issues regarding the formation, 
structure, reaction to injuries, and especially the 
transduction mechanisms of the sensory system 
within the dental pulp remain elusive. From a 
functional standpoint, it appears enigmatic why 
most or all stimuli that excite pulpal nerve fi bers, 
whether noxious cold or noxious heat to a fully 
intact tooth, or extremely light mechanical forces 
or subtle thermal, osmotic, or chemical changes 
to exposed dentin, result only in the sensation of 
pain, with no mechanism for discrimination (see 
[ 2 ]). In this context, it is of interest to consider 
the tooth from an evolutionary perspective. 

Hence, it may not be that teeth are simply miner-
alized feeding and fending structures incidently 
provided with highly sensitive nerves. Rather, 
they may have evolved from primitive electrore-
ceptor organs that ultimately accumulated a cal-
cifi ed shield. Accordingly, it has been proposed 
that cartilage, bone, dentin, and enamel-like tis-
sues evolved in association with new vertebrate 
sense organs and only secondarily provided 
mechanical support [ 3 ,  4 ]. This may have been 
possible through an evolution of cranial neural 
crest populations with mixed neurogenic, osteo-
genic, and odontogenic potentials [ 5 ]. 
Intriguingly, teeth could then be regarded as ves-
tigial sensors that have gradually adapted to syn-
thesize mineralized matrix and eventually 
changed fate to become neurosensory organs for 
mastication [ 6 ]. 

 To maintain an effi cient afferent transduction 
system in highly mineralized teeth, there is a 
need for a low-threshold sensory apparatus that 
will be able to detect stimuli through a hard shell 
of calcifi ed tissue. Activation of highly sensitive 
intradental mechanoreceptors would alert to 
potentially endangering hardness and texture of 
food or other intraoral objects [ 7 – 9 ]. This, in 
turn, would provide input for coordination and 
refl ex activity of the masticatory muscle complex 
[ 10 ,  11 ]. Nerve fi bers with higher thresholds 
would also be required to record and report on 
infl ammatory threats. The pulp of the tooth seems 
to possess both these nerve fi ber types. At odds 
with the current general concepts of pain trans-
duction, the low-threshold mechanosensory 

        K.   Fried ,  DDS, PhD      (*) 
  Department of Neuroscience ,  Karolinska Institutet , 
  Retzius väg 8 ,  Stockholm   SE-171 77 ,  Sweden   
 e-mail: kaj.fried@ki.se   

    J.  L.   Gibbs ,  MAS, DDS, PhD      
  Department of Endodontics ,  New York University 
College of Dentistry ,   345 E 24th Street, 
Clinic 7W ,  New York ,  NY   10010 ,  USA   
 e-mail: jlg15@nyu.edu  

  6      Dental Pulp Innervation 

           Kaj     Fried       and     Jennifer     Lynn     Gibbs     

mailto:kaj.fried@ki.se
mailto:jlg15@nyu.edu


76

fi bers apparently connect to central pain- 
mediating, rather than tactile-mediating, path-
ways. In fact, intrapulpal nerves are probably the 
main source of tissue-damaging stimulus signal-
ing from the dentition, while periodontal affer-
ents serve to provide information on tooth load 
when subjects contact and gently manipulate 
food [ 12 ].  

6.2    Development of Tooth Pulp 
Innervation 

 The ingrowth of trigeminal ganglion (TG) nerve 
fi bers to the neural crest-derived condensed mes-
enchyme that will form the dental pulp occurs 
at a comparatively late developmental stage. 
This is in contrast to the surrounding mesenchy-
mal tissue, which has a well-developed neural 
supply much earlier (for review, see [ 13 ,  14 ]). 
Thus, already at embryonic day 13.5 (E13.5), 
the mandibular molar tooth germ of the mouse 
has buccal and lingual nerve branches that sur-
round the dental mesenchyme in basketlike for-
mations. However, they remain in that position 
for a considerable developmental period [ 13 , 
 15 ]. Only after the crown shape is set and min-
eralization of both enamel and dentin has com-
menced, around postnatal day 3–4 in the mouse 
and rat, do pioneer nerve fi bers enter the api-
cal region of the tooth germ [ 16 ,  17 ] (Fig.  6.1 ). 
The functional explanation for this delay, which 
cannot be accounted for by any obvious physi-
cal boundary such as an epithelial barrier, is not 
clear. In the dental papilla, neurotrophic factor 
genes are expressed long before pulpal innerva-
tion is established. However, the dental papilla/
pulp cells also express neurite growth inhibitory 
factors at early stages [ 15 ,  18 ,  19 ], whose effects 
most likely dominate over the neurotrophic ones. 
Accordingly, early fetal dental mesenchyme 
repels neurites from TG explants of correspond-
ing stages in vitro [ 19 ]. Among several puta-
tive neurorepelling factors that could be active 
during odontogenesis, the semaphorin (Sema) 
group of molecules has received the most atten-
tion. A number of Sema gene family members 
are present in tooth-related mesenchyme from 

embryonic and postnatal mice. The expres-
sion of some of them, namely, 3A, 3C, 3F, 4F, 
5B, 6A, 6B, and 6C, is high early in develop-
ment and then decreases in a temporal pattern 
that correlates with neurite inhibitory/repulsive 
effects of dental mesenchyme [ 19 ]. Of particular 
interest is Sema3A, which shows a spatiotempo-
ral expression pattern in restricted dental mesen-
chyme areas in areas where axons appear to be 
unable to enter. Furthermore, in Sema3A mutant 
embryos, nerve fi bers grow into the dental mes-
enchyme prematurely and ectopically, suggest-
ing that Sema3A has a major role in preventing 
axonal ingrowth to early tooth anlagen [ 15 ]. 
Interestingly, the tooth-instructive oral and den-
tal epithelia, as well as epithelial Wnt4, induce 
Sema3a expression in the dental mesenchyme 
at early developmental stages. At the bud stage, 
epithelial Wnt4 and Tgfβ1, which both are piv-
otal in odontogenesis, regulate Sema3a expres-
sion in the dental mesenchyme. This suggests 
that a coordinating axis exists between epithe-
lial-mesenchymal interactions that lead to tooth 
formation and the control of the subsequent 
innervation of the dental organ [ 15 ]. Sema3A 
continues to exert important functions during 
postnatal innervation of the dental pulp. In addi-
tion to a continued axon- repelling effect which 
demarcates and directs ingrowing nerve fi bers 
to appropriate sites, it also affects the structural 
development of the axonal pathways. This is 
evident by the fact that in the molars of mice 
defi cient for Sema3A, nerves become defascicu-
lated and thinner and form a premature, abnor-
mal, enlarged nerve plexus at the pulp-dentin 
border [ 20 ]. Another member of the Sema fam-
ily, Sema3F, may serve additional functions as 
a tooth target-derived axonal chemorepellent to 
control the establishment of the local nerve sup-
ply [ 21 ]. A functional role for Semas in tooth-
nerve interactions is underpinned by the fact that 
the relevant Sema receptors, Npn1, plexinA3, 
and -A4, are expressed in trigeminal ganglion 
neurons during development [ 19 ,  21 ].

   As seen from this discussion, a shift in expres-
sion from neurorepulsive to neuroattractive 
dental papilla/pulpal factors apparently takes 
place during odontogenesis. In tissue culture, 
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late embryonic or early postnatal dental mesen-
chyme strongly attracts TG neurites [ 19 ]. The 
main molecular candidate for this effect is nerve 
growth factor (NGF). NGF in the developing 
tooth pulp has been demonstrated with a variety 
of methods [ 22 – 24 ]. In support of this, mutant 
mice which lack the high-affi nity NGF receptor 
trkA do not develop a pulpal nerve supply [ 25 ]. 
In addition, glial cell line-derived neurotrophic 
factor (GDNF) and its receptor GFR-α1 mRNAs 
are expressed in patterns that suggest that GDNF 
contributes to the establishment of pulpal inner-
vation [ 24 ,  26 ,  27 ]. However, in vitro, neutral-
izing antibodies against NGF, brain-derived 
neurotrophic factor (BDNF), and GDNF applied 
to cocultures of pulpal and TG explants do not 
fully block neurite outgrowth. This could be due 
to growth-stimulating activities of other GDNF- 
related factors such as neurturin (NRTN), arte-
min (ARTN), and/or persephin (PSPN), which 

are expressed in pulpal mesenchymal cells [ 28 ]. 
It may also be explained by effects from other 
hitherto largely unexamined pulpal neurotrophic 
factors, e.g., neuregulins [ 29 ]. 

 Once having entered the dental pulp, it is 
likely that local extracellular matrix (ECM) pro-
teins help guide and promote the growth of axons 
toward their fi nal targets. Among them, laminins, 
a group of heterotrimeric αβγ proteins, display a 
clear-cut specifi city in this zone. Pulpal nerves 
seem to use defi ned laminin substrates for growth 
and likely also nerve terminal integrity. Tooth 
pulp nerves express the laminin chains α2, α4, 
β1, and γ1, as reported for other peripheral 
nerves. Larger, but not smaller, nerve fascicles 
also express α5 [ 30 ]. In addition, and unexpect-
edly, laminin α1 chain immunoreactivity is pres-
ent in tooth pulp nerve bundles. Nerve    trunks 
display marked immunoreactivity for laminin 
integrin receptors INTα3, INTα6, INTβ1, and 
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  Fig. 6.1    This schematic drawing shows the relationship 
between tooth development and pulpal innervation. At 
early stages, nerve fi bers are located below the dental 
lamina. Axons then form a plexus underneath the tooth 
organ and innervate the dental follicle but do not enter the 

dental papilla. Later, when the formation of mineralized 
tissue is already initiated, nerve fi bers invade the tooth 
pulp, apparently as a result of a shift from secretion of 
pulpal neurorepelling to pulpal neurotrophic factors 
(Used with permission of Elsevier from Fried et al. [ 16 ])       
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INTβ4 chains. Importantly, laminins 211 
(α2β1γ1) and 411 (α4β1γ1) are synthesized and 
secreted from pulpal fi broblasts and could poten-
tially represent important substrates for pulpal 
nerve fi bers. However, when TG neurons were 
cultured on isolated laminin-211 or laminin-411 
surfaces, only 411 promoted neurite outgrowth. 
Conversely, 211 exerted minimal, if any, neurito-
genic activity and seems rather to be involved in 
mineralization [ 31 ]. Thus, in the tooth pulp 
stroma, laminin-411 may promote the migration 
of nerves during development and/or regenera-
tion after injury. Another ECM glycoprotein, ree-
lin, which is important for axon development in 
the central nervous system, is strongly expressed 
in fully differentiated human odontoblasts. In 
vitro cocultures with rat TG neurons have indi-
cated that neurites contact odontoblasts at sites of 
reelin expression. Consequently, since reelin 
receptors ApoER-2, VLDLR, CNR, and 
Disabled-1 are expressed in the trigeminal gan-
glion, it has been suggested that reelin might be 
an ECM molecule that is involved in the terminal 
innervation of the dentin-pulp complex [ 32 ]. 
Other nervous system-related signaling mole-
cules such as glutamic acid, phosphatidylcholine, 
phosphatidylserine, and phosphatidylinositol are 
present in the mineralized matrix of the peritubu-
lar dentin that encapsulates odontoblast processes 
[ 33 ], where they may interact with axons. 

 In diphyodont species, the primary dentition is 
eventually replaced by the permanent dentition. 
The developmental anatomy of the intradental 
axons is similar in primary and permanent teeth, 
although the formation of a sensory innervation 
is more rapid in deciduous than in permanent 
teeth [ 34 ].  

6.3    The Structure 
of Pulpal Axons  

 When mature, the innervation of primary teeth is 
structurally identical to that of permanent teeth, 
although axon numbers are smaller due to size 
differences [ 1 ]. Within the root pulp of permanent 
teeth in experimental animals and humans, ~70–
90 % of axons are unmyelinated, and most of the 

remainder seem to be Aδ-fi bers [ 1 ,  23 ,  34 – 36 ]. 
This is in agreement with the classical concept of 
nociceptors and has appeared obvious since pain 
is the predominant if not the only experience that 
can be evoked when pulpal nerves are excited. 
However, the parent axons of most pulp afferents 
are myelinated and have larger diameters, usually 
in the Aβ-fi bers range [ 36 ]. They often have rapid 
extradental conduction velocities as found in 
large-diameter fi bers, for example, in the cat 
reaching up to almost 60 m −s , while Aδ axons usu-
ally conduct in the order of 25 m −s  [ 37 ]. Their tri-
geminal cell bodies are of medium or large sizes 
and have a number of cytochemical characteris-
tics that are specifi c for the category of primary 
sensory neurons usually associated with low-
threshold mechanoreceptors (LTMs) (see [ 38 ]). 
These observations suggest that a very large num-
ber of pulpal axons are end branches of larger or 
much larger parent axons that branch, taper, and 
lose their myelin sheaths. Thus, in the rat, EM 
analysis has shown that whereas 95.6 % of the 
parent nerve fi bers innervating the dental pulp are 
myelinated, a minority of all axons in the apical 
part of the radicular pulp have myelin coverings 
[ 36 ]. Further, within the tooth, the unmyelinated 
axons show immunoreactivity to specifi c neuro-
fi lament antibodies that are conventional markers 
for myelinated, medium-sized, and large primary 
sensory neurons [ 39 ,  40 ] (Figs.  6.2a – c  and  6.3a , 
 b ). Nonetheless, there is no reason to doubt that 
some unmyelinated pulpal axons are “true” 
C-fi bers and belong to a restricted proportion of 
pulp-innervating trigeminal ganglion neurons that 
are small sized and express heat-sensitive TRPV1 
and cold-sensitive TRPA1 receptors [ 41 ]. These 
nerve fi bers likely terminate in the coronal pulp 
and convey thermo-induced pain sensations. 
Similarly, some thinly myelinated pulpal fi bers 
are most probably genuine Aδs with properties 
and cell soma sizes that are typical for this cate-
gory of primary sensory neurons.

    A subset of intradental sensory nerves is 
involved in the local control of blood fl ow. By 
virtue of their neuropeptide content, these affer-
ent fi bers cause vasodilation and inhibit sympa-
thetic vasoconstriction in response to painful 
stimulation of the tooth [ 42 ]. 
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 As axons traverse the radicular canal to reach 
the coronal regions of the pulp, they give off a few 
collaterals, taper, and those that still are myelin-
ated have progressively thinner and shorter inter-
nodes [ 1 ]. Up to 90 % of the myelinated axons lose 
their myelin within the short intradental course 
from the radicular to the coronal pulp [ 36 ,  40 ]. In 
the pulpal horn, there is an extensive axonal arbo-
rization. The sensitivity of the tooth is also most 
intense here and then gradually declines in paral-
lel with a decrease in nerve fi ber density at the 
pulp-dentin border toward the crown-root transi-
tion [ 43 ]. Many axons terminate below or in the 
odontoblast layer region. Near the terminals, they 
lose their Schwann cell ensheathment  altogether, 

assuming intimate relationships with odontoblasts 
as well as with specifi c sub- and periodontoblas-
tic cells with features similar to central nervous 
system glia. These cells are associated with the 
local microcirculation in what seems to be analo-
gous to a blood-barrier system [ 6 ]. Some axon 
terminals proceed beyond this site and continue 
along odontoblast processes into dentinal tubules 
to innervate the inner segment (0.1 mm) of the 
dentin. A single intrapulpal axon might branch 
and innervate more than 100 dentinal tubules 
([ 44 ]; for further references, see [ 1 ,  34 ]). The 
fact that mature odontoblast processes and asso-
ciated nerve fi bers are embedded in  mineralized 
dentin limits their accessibility for structural as 

a b c

  Fig. 6.2    ( a – c ) Neurofi lament 200 kDa expression is 
prominent in the human dental pulp. Confocal micro-
graphs showing nerve fi bers identifi ed by two different 
neurofi lament 200 kDa antibodies [ b  N52-mouse mono-
clonal;  c  neurofi lament heavy ( NFH )-chicken monoclo-

nal] in the pulp horn of a normal human dental pulp. The 
overlapping of the N52 and NFH immunoreactivity 
appears  yellow  in the merged image ( a ). Scale bar, 50 μm 
(Used with permission from Henry et al. [ 39 ])       

a b

  Fig. 6.3    ( a ,  b ) Light micrographs showing HRP-labeled 
somata in the TG that innervate the upper molar ( a ) and 
lower incisor ( b ) pulp. Both large- and medium-sized neu-
rons were frequently labeled. The  arrowheads  indicate 

labeled cells with clear nucleoli, selected for measure-
ments of cross-sectional area. Scale bar = 50 μm (Used 
with permission of Elsevier from Paik et al. [ 36 ])       
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well as functional studies. Consequently, many 
aspects of the complex nerve-odontoblast archi-
tecture and possible interactions remain obscure. 
A number of electron microscopical studies on 
odontoblast-axon relationships have yielded 
inconclusive results (for references, see [ 45 ]). 
This is probably to some extent caused by inad-
equate preservation techniques, which fail to 
maintain the native morphology. Thus, samples 
from the pulp-dentin junction usually have to be 
decalcifi ed, which removes the peritubular den-
tin and distorts estimations of tubule and peri-
odontoblastic size and  content [ 46 ]. Even more 
important though is a lack of reliable markers in 
existing reports to determine the identity of cel-
lular elements in ultrathin sections. In what seems 
to be a singular exception, an anterogradely 
transported neuronal tracer was used to examine 
odontoblast-predentin- dentin innervation. Here, 
it was concluded that clear-cut ultrastructural 
signs of synaptic formations were absent from 
this region [ 47 ].  

6.4    Neuropeptides in Pulpal 
Afferents 

 The neurons innervating the dental pulp express 
numerous biologically active neuropeptides that 
are released from both the peripheral terminal of 
the neurons (within the pulp) and the central ter-
minal located within the trigeminal nuclear com-
plex in the medulla. Some of the neuropeptides 
identifi ed in pulpal afferents include substance P, 
calcitonin gene-related peptide (CGRP), vasoac-
tive intestinal peptide (VIP), neuropeptide Y 
(NPY), and somatostatin. In the periphery, these 
neuropeptides have multiple varied effects 
including regulating blood fl ow, recruitment and 
modulation of activity of immune cells, and 
fi nally proliferation of and secretion of bioactive 
molecules from pulpal fi broblasts [ 48 ,  49 ]. 
Sensory neurons themselves express receptors 
for neuropeptides; thus, peripherally and cen-
trally released neuropeptides bind to membrane- 
bound neuronal receptors, either increasing or 
decreasing neuronal activity, and thus modulat-
ing infl ammatory pain states. 

 Small diameter C-fi ber neurons expressing the 
neuropeptides CGRP and substance P represent 
an anatomically and functionally distinct class of 
sensory neurons than those without peptides, 
which typically express a different set of markers 
including the IB4-lectin binding site, the puriner-
gic P2X3 receptor, and the Mrgprd receptor [ 50 , 
 51 ]. The peptidergic and non-peptidergic C-fi bers 
are responsive to different growth factors with 
the non-peptidergic fi bers responding to GDNF 
and the peptidergic to NGF via the trkA receptor. 
Interestingly, the dental pulp appears to mostly 
lack the non-peptidergic C-fi ber population, but 
is well populated by the peptidergic fi ber types, 
both with and without myelin. Other “deep” tis-
sues, including the knee joint and intestines, also 
have very low levels or even no innervation by 
non-peptidergic neurons, in contrast to superfi -
cial tissues such as the skin in which these fi bers 
are plentiful [ 52 ,  53 ]. The biological consequence 
of this unique property of neurons innervating the 
dental pulp is not fully understood, but it could be 
relevant to the quality and persistence of pain 
states produced in the setting of injury to pulpal 
tissues [ 54 ,  55 ]. 

 The neurotransmitter CGRP is expressed in 
many neurons that innervate the dental pulp, 
more so than other functionally important neu-
rotransmitters like substance P. Further, the 
CGRP-expressing pulpal afferents are likely ana-
tomically and functionally unique relative 
CGRP-expressing afferents innervating other tis-
sues [ 56 – 59 ]. The expression of CGRP in pulpal 
afferents is dynamic, with increased expression 
observed after pulpal injury [ 60 – 62 ]. Anatomical 
studies demonstrate that CGRP-expressing axons 
will sprout adjacent to an area of a dentinal dam-
age and this sprouting precedes the observation 
of reparative dentin deposition [ 63 ] (Fig.  6.4a – d ). 
After artifi cial mechanical exposure of the dental 
pulp to the oral environment, sprouting of CGRP-
expressing axons is observed in the remaining 
vital pulp tissues, adjacent to abscesses where no 
vital tissue is found [ 64 ]. Although in these 
experiments CGRP was primarily used as an ana-
tomical marker of pulpal axons, there is good 
 evidence that CGRP mediates numerous effects 
on  resident cells of the pulp, supporting the 
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 hypothesis that CGRP release from sensory neu-
rons is an important component of healing and 
repair processes. The function of CGRP has been 
more thoroughly studied in the context of bone 
physiology, where it plays an important role in 
bone healing and remodeling, in part by inducing 
osteoblast proliferation and differentiation of 
stem cells into osteoblasts [ 65 – 67 ]. Similarly, in 
the dental pulp, CGRP can promote the prolifera-

tion of fi broblasts, causing BMP-2 production, 
and thus could potentially stimulate dentin for-
mation [ 68 – 71 ]. Further in vivo experiments are 
needed to determine if this is a mechanism that 
can be utilized to promote dentin bridge forma-
tion and pulpal healing after injury.

    In addition to infl uencing healing and repair 
via fi broblasts, CGRP release from sensory neu-
rons mediates several aspects of infl ammatory 

a b

c d

  Fig. 6.4    ( a – d ) Sprouting of 
CGRP fi bers in response to 
dentinal injury (Used with 
permission of Elsevier from 
Taylor et al. [ 63 ])       
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processes. CGRP is a potent vasodilator and also 
causes plasma extravasation [ 72 ]. In fact, activa-
tion of sensory neurons in the pulp produces an 
overall vasodilatory effect and increases vascular 
permeability [ 73 ]. In contrast, activation of sym-
pathetic neurons produces vasoconstriction, 
mediated by both monoamine sympathetic neu-
rotransmitters as well as the peptide NPY [ 74 ]. 
CGRP, substance P, and sympathetic NPY- 
expressing nerve fi bers are found in abundance in 
close approximation to arterioles [ 75 ] (Fig.  6.5 ). 
Like CGRP, substance P also causes vasodilation, 
and the magnitude of their individual vasodila-
tory effects is augmented when they are co- 
administered [ 76 ].

   CGRP and substance P also produce several 
effects on the immune system. Although there 
are contradictory fi ndings, the effects of CGRP 
are found to generally inhibit the immune 
responses, while substance P is an immune sys-
tem stimulant [ 77 ,  78 ]. However, in vivo experi-
ments in rats show that denervating the pulp 
results in reduced immune cell recruitment in 
response to experimental cavity preparation, sug-
gesting an overall immunostimulatory effect of 
sensory neuron activation. Both CGRP and sub-
stance P cause cytokine release from pulpal fi bro-
blasts [ 79 ]. Relevant to infl ammatory mechanisms 
in the dental pulp, CGRP was recently shown to 
inhibit the release of bacterially stimulated 

TNF-α release from macrophages, and reduce 
lymphadenopathy in vivo, after acute bacterial 
exposure [ 80 ]. 

 The immunomodulatory mechanisms of neuro-
peptides released from dental pulp afferents are 
complex, and many questions regarding these pro-
cesses remain. The more we learn about infl am-
mation, the more diffi cult it is to interpret fi ndings 
relating to very specifi c immunomodulatory 
effects on overall disease processes. From a high 
level perspective, it’s important to recognize that 
pulpal sensory neurons are a critical player in the 
defense mechanisms of the pulp, as pulpal necro-
sis proceeds more rapidly in denervated teeth that 
receive a pulp exposure, than in teeth with intact 
innervation [ 81 ]. As this protective effect is likely 
related to neurosecretions, manipulation of neuro-
peptide signaling represents an important potential 
point of therapeutic intervention in the infl amed 
pulp. Currently, the options for pulpal therapeutic 
interventions are expanding to include the promo-
tion of biological repair and regenerative pro-
cesses; thus, a fundamental understanding of the 
role of neuropeptides in these processes is needed. 

 The receptors for neuropeptides are found on 
peripheral sensory neurons, in the trigeminal 
nucleus, where processing of sensory signaling 
occurs, as well as other more rostral neuronal 
structures involved in pain/sensory perception. 
Endogenous release of neuropeptides can thus 
modulate sensory neuron activity and pain. 
Increased levels of neuropeptides, including 
CGRP, substance P, and NKA, are found in pulps 
from carious teeth versus non-carious teeth [ 56 ]. 
However, only substance P expression levels 
were found to be elevated in symptomatic versus 
non-symptomatic pulps and as well as elevated in 
pulpal tissues of patients with irreversible pulpi-
tis [ 82 ,  83 ,  84 ] (Fig.  6.6a, b ). Multiple preclinical 
studies have supported a role for substance P, via 
the NK1 receptor, to be an important mechanism 
for maintaining infl ammatory and neuropathic 
pain states. However, an NK1 antagonist was not 
successful in demonstrating pain relief in clinical 
studies [ 85 ]. On the other hand, CGRP antago-
nists have demonstrated clinical effi cacy in treat-
ing migraine pain [ 86 ]. Preclinical studies using 
animal models of pain have also suggested that 

  Fig. 6.5    Substance P-expressing fi bers ( green ) forming a 
plexus around a blood vessel ( blue ) (Used with permission 
of John Wiley and Sons from Rodd and Boissonade [ 75 ])       
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CGRP receptors have value as a therapeutic tar-
get for neuropathic pain. Interestingly, there may 
be some specifi city toward the trigeminal system 
for the anti-hyperalgesic effects of CGRP antago-
nist after nerve injury [ 87 ]. NPY was shown to 
produce anti-hyperalgesic effects via the Y1 
receptor in animal models in the pulpal tissues as 
well as in the spinal system [ 88 ]. NPY is highly 
expressed in the spinal cord and trigeminal 
nucleus and appears to be an important compo-
nent of endogenous pain relief [ 89 ]. In sum, the 
receptors for neuropeptides expressed in affer-
ents innervating dental pulp are attractive targets 
for manipulating pain of pulpal origin.  

6.5    TRP Channels 

 Our current understanding of how peripheral 
neurons detect and transmit thermal, mechanical, 
and chemical stimuli is greatly infl uenced by the 
characterization of a family of cation-permeable 
channels, termed the transient receptor potential 
channels or TRPs [ 90 ]. The molecular basis for 
the specifi city of populations of peripheral neu-
rons to detect distinct stimuli (e.g., noxious cold 

or low pH) can be attributed, in part, to their 
expression of TRP receptors. Interestingly, the 
expression of TRPs and other sensory receptors 
differs by the target tissue being innervated; thus, 
tissues with unique sensory capacity, such as 
dental pulp, likely demonstrate unique expres-
sion of sensory receptors including TRPs [ 91 ]. 

 The most studied TRP channel to date is the 
TRPV1 receptor. It was the fi rst cloned and is 
notable for being activated by heat in the noxious 
range, low pH, and capsaicin, the pungent chemi-
cal found in chili peppers that causes a warm or 
burning sensation when ingested [ 92 ,  93 ]. 
Interestingly, this channel appears to be under-
represented in neurons innervating the dental 
pulp relative to its expression in other tissues 
innervated by trigeminal nerves, including the 
skin and periodontal tissues [ 41 ,  94 ,  95 ]. As 
TRPV1 is required for normal heat detection, the 
underrepresentation of TRPV1 in dental pulp 
afferents may be one reason why heat is an unre-
liable stimulus to evaluate pulpal vitality in a 
clinical setting [ 96 ]. Although TRPV1 may not 
play an important role in sensation in normal 
pulp, it is very likely involved in pulpal pain in 
the setting of infl ammation, as the TRPV1 recep-
tor is an important site for the integration of sig-
naling pathways from several infl ammatory 
mediators. Also, TRPV1 appears to be upregu-
lated in infl amed human dental pulp [ 97 ,  98 ]. 
Finally, as capsaicin, a specifi c agonist for 
TRPV1, can stimulate the release of neurotrans-
mitters such as CGRP from rodent and human 
dental pulp, the TRPV1 receptor is clearly func-
tional in the dental pulp [ 99 ,  100 ]. 

 It is of interest that the TRPV2 receptor, 
which, like TRPV1, was originally described as 
heat responsive, is highly expressed in the neu-
rons innervating the dental pulp [ 41 ,  94 ,  95 ] 
(Fig.  6.7a – d ). The neuronal population express-
ing TRPV2 does not overlap with those neurons 
expressing TRPV1. The neurons expressing 
TRPV2 are larger in diameter and myelinated 
and thus more likely to be low-threshold mecha-
nosensitive neurons than classical nociceptors 
[ 43 ]. Although the TRPV2 receptor was origi-
nally described as heat responsive, this character-
istic has only been demonstrated in vitro, and 

a

b

  Fig. 6.6    ( a ,  b ) Substance P upregulated in carious human 
teeth (Used with permission of John Wiley and Sons from 
Rodd and Boissonade [ 84 ])       

 

6 Dental Pulp Innervation



84

further studies suggest the TRPV2 receptor is 
likely not involved in thermodetection. However, 
TRPV2 is clearly expressed on both high- 
threshold and low-threshold mechanosensitive 
fi bers [ 101 ,  102 ]. Whether TRPV2 is a marker 
for this class of sensory neurons or is functionally 
involved in transducing mechanosensation has 
yet to be clearly demonstrated.

   Perhaps of more relevance to the dental pulp 
are the cold-responsive channels. Cold allodynia 
is a common complaint in persons experiencing 
odontalgia of several etiologies, including pulpi-
tis and dentin hypersensitivity [ 103 ,  104 ]. In fact, 
an abnormal lingering response to cold is consid-
ered the most important diagnostic test for irre-
versible pulpitis, the clinical diagnosis used when 
a root canal or extraction is deemed necessary to 
relieve pain [ 105 ]. Two TRP receptors have thus 
far been identifi ed as molecular sensors for cold, 
TRPM8, and TRPA1. The TRPM8 receptor is 
responsive to cool temperatures in the non- 
noxious range, as well as chemicals that produce 
a cooling sensation such as menthol and icilin 
[ 106 ,  107 ]. It has been identifi ed in neurons that 
innervate dental pulp, both in humans and 
rodents, although its expression was not corre-
lated with cold sensitivity in humans [ 108 – 110 ]. 
The TRPA1 receptor is activated by cold temper-
atures in the noxious spectrum and is also a 
detector of environmental irritants and pungent 
compounds such as mustard oil [ 111 ,  112 ]. Like 
TRPV1, the TRPA1 receptor activity can be 
modulated by the signaling of several infl amma-
tory mediators including bradykinin [ 113 ]. 

TRPA1 is highly expressed in neurons innervat-
ing the dental pulp and may be upregulated in 
teeth with painful pulpitis [ 109 ,  114 ,  115 ]. 
Although both TRPM8 and TRPA1 are interest-
ing novel targets for treating the pain of pulpitis, 
further work is needed to understand their role in 
pain transduction within the dental pulp.  

6.6    Sodium Channels 

 Voltage-gated sodium and potassium channels 
are needed for the generation of action potentials 
to convey peripheral sensory input into the cen-
tral nervous system. These channels are termed 
“voltage gated” as the channels undergo a con-
formational change in response to application 
of a voltage, leading to sodium infl ux and mem-
brane depolarization. There are several subtypes 
of sodium channels, some of which are expressed 
in specifi c subclasses of sensory fi bers, includ-
ing pain fi bers, which make them potentially 
favorable targets for prospective therapeutics 
[ 116 ,  117 ]. Sodium channels are characterized 
as being either tetrodotoxin resistant (TTX-R) or 
tetrodotoxin sensitive (TTX-S), with the TTX-R 
current mediated by the Na v 1.8 and Na v 1.9 chan-
nels [ 118 ,  119 ]. Studies utilizing mouse genetics 
to knock out the receptor completely, or to make 
the neurons expressing the receptor susceptible 
toxins and subsequent ablation, have shown that 
the Na v 1.8 channel is required for the transmis-
sion of painful cold stimuli, mechanical pain, and 
mechanical and thermal hypersensitivity after 

a b c d

  Fig. 6.7    TRPV2 ( a ) and neurofi lament ( b ) expression in 
trigeminal ganglion neurons innervating the dental pulp 
after retrograde labeling with Fluoro-Gold ( FG ) ( c ). 
 Tailed arrows  point at  FG  cell bodies that show immuno-
reactivity for the indicated antigen.  Arrowheads  highlight 

cells that contain  FG  but are immunonegative for the indi-
cated antigen. ( d ) merged images,  arrows  indicate FG 
labeled pulpal neurons. Scale bar = 200 µm. (Used with 
permission from Gibbs et al. [ 41 ])       
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infl ammation [ 118 ,  120 ,  121 ]. The channel is also 
expressed at higher levels under  infl ammatory 
conditions, and increased expression of Na v 1.8 
has been demonstrated in human dental pulp in 
persons experiencing painful pulpitis [ 122 – 125 ]. 
Importantly, the channel has also been shown to 
reduce the effi cacy of lidocaine to block nerve 
transduction. Thus, the upregulation of Na v 1.8 
within nerves innervating the dental pulp dur-
ing pulpitic states could contribute to the clinical 
challenge of achieving adequate local anesthesia 
during dental procedures. 

 Another interesting molecular target in the 
sodium channel family is the TTX-S channel 
Na v 1.7. The importance of this channel to pain 
was convincingly demonstrated by the identifi ca-
tion of genetic mutations of this channel in 
humans that led to either a gain in function or loss 
of function of the receptor that was clearly linked 
to very unique pain symptomatology [ 126 ]. 
Persons with a loss of function mutation were 
found to demonstrate congenital insensitivity to 
pain, i.e., they are unable to detect any type of 
painful stimulus [ 127 ]. These patients highlight 
the importance of pain perception to survival, as 
they tend to have shortened life spans due to 
gross injuries sustained because of their inability 
to detect tissue damage. Moreover, persons found 
to have a gain in function mutation were found to 
suffer from chronic ongoing spontaneous pain 
with an intense burning characteristic. The chan-
nel Na v 1.7 is found to be upregulated in many 
animal models of infl ammatory pain and also in 
humans with painful pulpitis [ 128 ,  129 ]. Based 
on these fi ndings, both the Na v 1.8 and Na v 1.7 
channels are appealing targets for further investi-
gation of the pain mechanisms originating from 
the dental pulp.  

6.7    Autonomic Innervation 

 The autonomic nerves of the dental pulp belong 
to the sympathetic division of the autonomic ner-
vous system. Parasympathetic fi bers do not seem 
to innervate the tooth pulp [ 130 ]. The sympa-
thetic axons of the dental pulp have their cell 
bodies in the superior cervical ganglion (SCG). 

They mainly project to the radicular pulp and 
form    plexa along the blood vessels, while the 
odontoblast and subodontoblast layers seem to 
lack a sympathetic innervation [ 131 ,  132 ]. The 
main sympathetic functional output in the pulp is 
related to blood vessel constriction. Thus, stimu-
lation of these nerves, or injections of sympa-
thetic transmitters, causes a robust fall in pulpal 
blood fl ow [ 74 ,  133 ]. 

 The distribution and density of pulpal sympa-
thetics in mammalian teeth has been estimated 
with different methods and with varying results. It 
is conceivable that the extent of sympathetic 
innervation of the pulp varies between species. 
Thus, when monoamines have been targeted as 
markers of sympathetic transmitters using 
formaldehyde- induced fl uorescence, positive 
nerve fi bers were observed in pulps of humans, 
rabbits, and cats but not rats [ 132 ,  134 ]. 
Accordingly, the proportion of unmyelinated 
axons in rat molar pulps was not altered by sym-
pathectomy [ 35 ], and retrograde tracer studies 
demonstrated that very few neurons in the 
 ipsilateral superior cervical ganglion of the rat 
had projections to the rat molar pulp [ 135 ]. 
Immunohistochemistry has shown that antibodies 
against neuropeptide Y (NPY), a well-known 
marker of the sympathetic nervous system, label 
nerve fi bers that line the blood vessels of normal 
human [ 75 ,  131 ], cat, and rat pulps [ 74 ,  131 ,  132 ]. 
Another sympathetic nerve marker, tyrosine 
hydroxylase (TH), is expressed in both rat [ 17 ] 
and human [ 39 ] pulps. Nonetheless, these data 
should be interpreted with some care, since TH is 
expressed also in a population of sensory nerves 
[ 136 ]. This is true for NPY as well, which is 
upregulated in sensory pulpal nerves as a response 
to challenges such as injury [ 137 ] or neuropathy 
[ 138 ]. To conclude, sympathetic stimulation of 
the dental pulp provides effective vasoconstrictor 
machinery in mammalian tooth pulps, although 
the numbers of intrapulpal sympathetic axons 
involved seem to vary between types of teeth as 
well as between species. Furthermore, it cannot 
be excluded that in some cases this mechanism is 
partly executed through sympathetic fi bers on 
extrapulpal blood vessels, which would escape 
detection in structural studies of the pulp. 
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 The sympathetic nervous system has an infl u-
ence on the immune system, through local release 
of various molecules (see [ 139 ]). In sympathec-
tomized rat pulpal tissue, granulocyte recruit-
ment was impaired during experimental 
orthodontic tooth movement [ 140 ]. In line with 
this, electrical sympathetic nerve stimulation 
recruited such cells to the pulp. Moreover, 
immunoglobulin- producing cells were recruited 
to normal uninfl amed dental pulps bilaterally 
after unilateral sympathectomy. Consequently, 
pulpal sympathetic nerves appear to play an 
important role in monitoring and infl uencing 
immunocompetent cells in states of infectious/
infl ammatory challenges to the dental pulp. 
However, it seems to be unclear as to whether 
sympathetic activity increases or reduces the 
severity of different types of infl ammation. Thus, 
resection of the SCG in rats reduced abscess for-
mation after molar pulp damage, but only at short 
time points. After longer periods, there was no 
difference in extent or severity of infl ammation 
when compared to controls [ 141 ]. Similarly, con-
fl icting results exist with regard to the degree of 
reparative dentin formation in sympathectomized 
infl amed teeth [ 141 ,  142 ].  

6.8    Generator Mechanisms 
of Sensory Pulp Nerves 

 Weak mechanical stimuli such as air puffs and 
water spray, which are innocuous when applied 
to, e.g., the skin, evoke intense pain when 
directed at exposed dentin [ 143 ]. It appears 
unlikely that this is due to direct stimulation of 
dentinal nerve endings, since these terminate far 
away in the initial pulp-adjacent segment of the 
dentin. The hydrodynamic theory holds that force 
applied at the outermost end of dentinal tubules 
is transmitted to the sensory transduction appara-
tus deep inside by mechanical displacement, i.e., 
fl ow, of the fl uid that the tubules contain [ 144 , 
 145 ]. A prerequisite is then that the nerves that 
are stimulated by these very weak forces are 
LTMs (provided that they are not sensitized by, 
e.g., infl ammation), since no obvious amplifi ca-
tion mechanism is present. This fi ts well with 

the data that many if not most dentinal afferents 
are not classical nociceptors, but rather LTMs. 
An  overwhelming majority is probably A-fi bers, 
but low- threshold C-fi bers could theoretically 
also contribute. The mechanical detection of 
dentinal fl uid movement would require mecha-
nosensory membrane receptors/ion channels 
in the dental LTM afferents. A number of such 
molecules have by now been identifi ed in pulpal 
primary nerve cells. Among these are epithelial 
sodium channels (ENaCs), ASIC3, TREK1, and 
TREK2 [ 114 ,  146 ]. Furthermore, members of the 
TRP family of ion channels, which have been 
implicated in mechanosensation, are expressed 
in pulp- innervating trigeminal ganglion neurons, 
including TRPV2 and TRPA1 (see [ 147 – 149 ]. 
However, the individual contribution and possi-
ble coordinated action of these and perhaps addi-
tional membrane sensors remain to be elucidated.  

6.9    The Odontoblast 
as a Putative Pulpal 
Transducer Cell 

 The hydrodynamic theory, propagated more than 
40 years ago, still provides an attractive model to 
explain the mechanism behind the sharp and 
immediate pain that is elicited by various stimuli 
on dentin. However, it leaves several issues with 
regard to, e.g., hot and cold sensitivity, in the pulp 
unresolved. In some cases there seems to be no 
relationship between pain sensation and move-
ment of dentinal fl uid after cold stimulation 
[ 150 ], although some authors claim that distal 
movement of the fl uid in response to cold stimu-
lation is more rapid than proximal movement by 
hot stimuli, which could affect sensory thresh-
olds [ 151 ]. This raises the possibility that addi-
tional mechanisms might be activated to convey 
sensations when teeth are challenged by thermal 
and perhaps also other stimuli. Very recently, 
several lines of evidence have pointed to the like-
lihood that the odontoblast has a role in sensory 
transduction from teeth, although this is not yet 
conclusively shown. Thus, calcium imaging stud-
ies have demonstrated that human odontoblasts 
express functional TRPM8, TRPA1, and TRPV1 
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channels [ 152 ]. This indicates that odontoblasts 
could mediate thermal stress, in concert with 
 sensory nerves in teeth. Furthermore, odonto-
blasts also express mRNA or protein for mecha-
nosensitive ion channels such as the TREK-1 and 
K Ca  potassium channels, which could suggest a 
mechanosensory function as well [ 153 – 155 ]. An 
additional electrogenic sensor of stretch activa-
tion function of odontoblasts might be accom-
plished by the recently characterized primary 
cilia of these cells [ 156 ]. Finally, and importantly, 
odontoblasts express functional voltage-gated 
sodium channels, which would enable them to 
become electrically excitable. They also express 
mRNA for major subunits of ionotropic gluta-
mate receptors (NMDARs), which potentially 
might be used to generate action potentials [ 157 ]. 
Other sensory cell-related genes present in odon-
toblasts, again with putative roles in stimulus 
transduction, include those that code for parval-
bumin, the membrane adaptor protein harmonin, 
the neuronal calcium sensor-1 [ 6 ], and synaptic 
vesicle protein 2b [ 158 ]. 

 As seen from this discussion, there is mount-
ing evidence that odontoblasts can respond to 
sensory stimuli and become electrically excited. 
However, there is still no reliable proof for the 
presence of a system, synaptic or other, that 
translates odontoblast activity into afferent nerve 
fi ber signaling. An interaction that involves ATP 
is conceivable since purinergic pulp nerve fi bers 
[ 2 ,  159 ] seem to become sensitized by ATP from 
pulpal cells following infl ammation or injury 
[ 160 ,  161 ]. This may well involve odontoblasts, 
but is apparently not a sensory cell/nerve-specifi c 
mechanism.  

6.10    Connectivity of Sensory 
Tooth Pulp Nerves 

 The central branches of TG neurons travel via the 
trigeminal root to the brain stem. Subnucleus 
caudalis of the spinal trigeminal nucleus is seen 
as the major nociceptive relay of the trigeminal 
brain stem complex, since it receives an immense 
input from pain-transmitting axons that innervate 
the orofacial region [ 162 ,  163 ]. Morphological 

investigations using tracing techniques from the 
tooth have shown that pulpal afferent terminates 
predominantly in the superfi cial laminae of sub-
nucleus caudalis, but also in its deep laminae 
[ 164 – 166 ]. Furthermore, many dental pulp fi bers 
have their central endings more rostrally, espe-
cially in the trigeminal subnuclei interpolaris and 
oralis. When tooth pulps are electrically stimu-
lated, the responses of postsynaptic neurons in all 
three spinal trigeminal subnuclei correspond to 
the anatomical fi ndings [ 162 ] and largely agree 
with what would be expected from nociceptors. 
This is remarkable, since most pulpal sensory 
afferents have anatomical and electrophysiologi-
cal characteristics of LTMs and not primary noci-
ceptive neurons. However, since pulpal axons do 
have the capacity to deliver pain messages to 
higher brain centers even upon very weak and 
subtle stimulation, they would have to terminate 
synaptically on spinal trigeminal nuclei neurons 
in order to connect into the pain-mediating 
network. 

 The fact that pulpal afferents are LTMs whose 
signals evoke pain rather than touch, due to idio-
syncratic connectivity and/or neurotransmitter 
content, makes them unique among pain- 
mediating neurons. Since they have very differ-
ent characteristics from classical nociceptors, we 
have proposed a novel defi nition, “algoneurons,” 
for peripheral neurons that, when activated, 
evoke a sensation of pain. In contrast to the term 
nociceptor, the term algoneuron focuses on the 
sensory effect of the afferent’s signal and not its 
response properties. According to this, a majority 
of trigeminal tooth pulp neurons are low- 
threshold mechanoalgoneurons [ 38 ]. 

 In the thalamus, tooth pulp-driven neurons 
have been identifi ed in ventral posteromedial 
(VPM) and mediodorsal (MD) nuclei [ 167 ]. 
Considering even higher CNS levels, functional 
magnetic resonance imaging (fMRI) has demon-
strated that painful electrical tooth pulp stimula-
tion leads to bilateral activation of S1, S2, and the 
insular region of the cerebral cortex. The cingu-
late gyrus is also activated, as well as motor and 
frontal areas including the orbital frontal cortex. 
Tooth pulp pain involves a cortical network, 
which in several respects appears to be different 
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from that activated by painful stimulation of a 
hand [ 5 ]. Seemingly specifi c tooth pulp 
 projections to the somatosensory cortex were 
also shown with magnetic fi eld recording meth-
ods. Here, the latencies clearly indicated that the 
input came from intradental Aβ fi bers [ 168 ].  

6.11    Aging of Pulpal Nerves 

 With increasing age odontoblasts shrink, appar-
ently due to changes in autophagy [ 169 ]. 
However, secondary dentin formation continues 
at a slow rate during the life of the tooth, causing 
a gradual reduction of the pulpal space. This may 
be aggravated by irregular dentin formed in 
response to external stimuli. Concomitant with 
this, a protracted phase of age-related axonal 
alterations and axon loss occurs. In parallel, there 
are changes in pulpal nerve cytochemistry. Some 
of these likely are responses to wear and/or 
trauma, since they are typically seen proximal to 
nerve injuries [ 170 ,  171 ]. Pulpal nerve deteriora-
tion in senescence is paralleled by a reduced sen-
sitivity to electrical pulp stimulation in human 
subjects [ 172 ].  

6.12    Neurotrophins/Receptors 
in Pulpal Nerve Plasticity 

 In addition to their important role in establishing 
innervation of pulpal tissues during development, 
the neurotrophins and their respective receptors 
are critical in maintaining the unique phenotype 
of pulpal afferents in the mature pulp and are 
important mediators of neuronal plasticity in 
response to injury. Nerve growth factor (NGF) is 
the most studied neurotrophin, and indeed all 
pulpal neurons are at some point dependent on 
NGF. The receptors for NGF include the high- 
affi nity tyrosine kinase receptor trkA and the 
low-affi nity neurotrophin receptor p75. The 
importance of the trkA receptor to pulpal inner-
vation is highlighted by the fi nding that sensory 
and sympathetic innervation of the dental pulp is 
eliminated in trkA knockout mice [ 25 ]. In the 
mature pulp, many afferents lose their depen-

dence on NGF with many of the larger fi bers 
becoming dependent on glial-derived neuro-
trophic factor (GDNF) by expressing the GDNF 
receptor GFR-α1 [ 87 ,  173 ]. Neurotrophin and 
neurotrophin receptor expression is altered by the 
presence of injury and infl ammation in the pulp. 
For example, an upregulation in NGF is observed 
in pulpal fi broblasts after dentinal injury and is 
thought to promote sprouting of pulpal afferents 
[ 174 ]. Importantly, neurotrophin expression at 
the site of injury affects the transcription of genes 
encoding neurotransmitters, receptors, and ion 
channels that are key to pain transduction includ-
ing CGRP, SP, TRPV1, TRPA1, and Na v 1.8 [ 175 , 
 176 ]. This plasticity is thought to contribute to 
the hypersensitivity and spontaneous pain that 
occur after injury [ 177 ].  

6.13    Neuroplasticity 
in the Peripheral and Central 
Nervous System Subsequent 
to Pulpal Injury 

 Both the peripheral and central nervous systems 
demonstrate remarkable neuroplasticity in 
response to pulpal injury. In this chapter, we have 
previously described neurotrophin-dependent 
changes in neuropeptide and receptor expression 
that occurs in response to infl ammation, as well as 
sprouting of afferent terminals at the site of injury. 
Both of these mechanisms are thought to contrib-
ute to the development of hypersensitivity in the 
setting of infl ammation. In the trigeminal  ganglion, 
activation of the satellite glial cells surrounding 
neuronal cell bodies occurs subsequent to pulpal 
infl ammation [ 178 ,  179 ]. Activated satellite cells 
can contribute to neuronal hyperexcitability via 
the intraganglionic release of proinfl ammatory 
cytokines. Astroglial induction and proliferation in 
the trigeminal nucleus also contributes to hyper-
sensitivity after dental pulp injury [ 180 ]. In fact, 
signifi cant anatomical and functional changes in 
activity are observed in the trigeminal nucleus 
subsequent to pulpal injury [ 181 ,  182 ]. These 
 fi ndings are important because they parallel obser-
vations from studies using animal models of neu-
ropathic pain, most of which involve a partial 
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nerve injury that produces persistent mechanical 
and/or thermal hypersensitivity in the region inner-
vated by the injured nerve. In total, these studies 
support the existence of neuroplastic mechanisms 
that occur in response to deafferentation of the 
dental pulp and have the potential to contribute to 
persistent pain states subsequent to natural or iat-
rogenic dental pulp injury. 

 The possibility of persistent pain after clini-
cal interventions that remove dental pulp, such 
as root canal treatment, has been recognized for 
quite some time [ 183 – 186 ]. Although persistent 
symptoms could be due to ongoing odontogenic 
causes (e.g., an undetected root fracture or 
recurrent infection), there are cases when pain 
persists despite the absence of obvious pathol-
ogy. Historically such persistent pain was 
referred to as atypical odontalgia, or phantom 
tooth pain, or more currently, persistent dentoal-
veolar pain or peripheral painful traumatic tri-
geminal neuropathy [ 187 ,  188 ]. Although 
debates regarding the criteria for classifi cation 
of this clinical entity are ongoing, it likely rep-
resents a very specifi c type of persistent postsur-
gical pain. The etiology of non-odontogenic 
persistent post endodontic therapy pain is 
unknown, but there is some evidence that neuro-
pathic mechanisms are involved [ 189 – 191 ]. 
More research is needed to continue to gain 
knowledge relating to the biological mecha-
nisms contributing to the development of persis-
tent postsurgical pain.     
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