
Hans-Bernd Kittlaus · Samuel A. Fricker

Software
Product
Management
The ISPMA-Compliant Study Guide
and Handbook

Software Product Management

What first readers of “Software Product Management: The ISPMA-Compliant

Study Guide and Handbook” say:

“Software-intensive products are at the heart of many businesses, so product manage-

ment is a paramount business activity. But how can businesses be perfect at it? This

book is the answer. It is your vade mecum for all product management topics and

aspects.”

Dr. Karl Michael Popp, Chief Product Expert and Director Corporate Development,

SAP SE, Walldorf, Germany.

“A book that goes beyond platitudes and offers concrete methods and frameworks to

product managers working with software intensive product development. The authors

have a sound footing in both practice, but also state-of-the-art research, and manage to

combine the two.”

Prof. Dr. Tony Gorschek, Blekinge Institute of Technology, Karlskrona, Sweden.

“By reading and applying the lessons from the new book “Software Product Manage-

ment: The ISPMA-Compliant Study Guide and Handbook” (by Hans-Bernd Kittlaus

and Samuel A. Fricker), you will gain strategic advice, practical techniques, and great

insights into how to accelerate software product management (SPM) success. These

practices and methods will be useful to executives and practitioners in this demanding

area—and those who aspire to a level of software excellence—in both their current jobs

and future careers, as they work to help organizations deliver superior value and

effective software solutions to a world of increasingly demanding customers.”

Michael Eckhardt, Managing Director, CHASM Institute, Palo Alto, California, USA.

“Call her/him a linchpin, a rudder or even a conscience keeper, the role of Software

Product Manager (SPM) is extremely critical for the viability as well as sustainability of

any software product business. This book is a “must read” as well as “must have”, not

just for every SPM but for all the key stakeholders and decision makers connected with a

software product business. And for all the business leaders in the software services

industry aspiring to extend their success into software product business, here’s your

definitive reference.”

Haragopal Mangipudi, CEO, finUNO, Bangalore, India (fintech startup) (formerly Infosys

SVP and Global Head of Finacle).

“Software has been turning into the dominating value driver in most traditional

industries like automotive and banking. I recommend this book not only to software

professionals, but also to managers in these other industries. It provides comprehensive

structural and operational help how to set up and run product management of

software-intensive products. Particularly fascinating are the authors’ highly topical

ideas to extend the discipline of SPM into the management of industrial ecosystems to

tackle the increasing complexity with an integrated consistent approach.”

Wilhelm Gans, CTO, DSV Group (German Savings Banks Organization), Stuttgart,

Germany (banking industry).

“This book provides a comprehensive and enlightening knowledge foundation for both

practitioners and researchers in the increasingly important domain of software product

management.”

Prof. Dr. Bj€orn Regnell, Lund University, Sweden.

“This compendium based on industry best practices provides a toolbox for software

product managers and executives to ensure sustainable success of software products

along their life cycles. The authors have vividly described the multi-faceted role of a

software product manager—the mini CEO—and his embedding into the corporate

organization. Special emphasis is put on areas relevant for SPM such as pricing models,

legal aspects, ecosystem management and orchestration that are not covered too well in

the available literature. A must-read for everyone interested in the software business

aspects in all industries.”

Michael Conrad, Director Portfolio Management, AVL List GmbH, Graz, Austria

(automotive industry).

Praise for “Software Product Management and Pricing,” Hans-Bernd Kittlaus’

previous book which continues to be the only extensive publication on software

pricing:

“These two seasoned practitioners have masterfully distilled the essence of the software

business and the art and craft of the increasingly important and challenging field of

software product management. Worthwhile to any who want an appreciation of the

evolving world of product management, seasoned veteran and new entrant alike.”

Richard Campione, Senior Vice President, Business Suite Solution Management and

CRM On Demand, SAP, Germany/USA.

“Mr. Kittlaus and Mr. Clough have used their considerable knowledge and experience to

succinctly lay out the value chain that is essential to the development of a financially

healthy software company. If you want to understand how to turn software technology

into a long-term profitable company this is the book to read.”

Paul Kaplan, Vice President, Worldwide Enterprise Software Sales, Software Group,

IBM, USA.

“This book on Software Product Management and Pricing is the first book that treats the

business of software in a systematical way. Although software products were already

shipped in the seventies of the last century, there are hardly any books providing an

overview of all issues a company faces when playing a role in this industry. Product

management and pricing are key processes, and this book informs the reader of the

essentials. It is a must-read for anyone involved in software products, be it in business or

in research.”

Prof. Dr. Sjaak Brinkkemper, Information and Computing Sciences, Utrecht University,

Netherlands.

Hans-Bernd Kittlaus • Samuel A. Fricker

Software Product
Management
The ISPMA-Compliant Study Guide
and Handbook

Hans-Bernd Kittlaus
InnoTivum
Rheinbreitbach, Germany

Samuel A. Fricker
University of Applied Sciences
Northwestern Switzerland
Windisch, Switzerland

Blekinge Institute of Technology
Karlskrona, Sweden

ISBN 978-3-642-55139-0 ISBN 978-3-642-55140-6 (eBook)
DOI 10.1007/978-3-642-55140-6

Library of Congress Control Number: 2017938640

Springer-Verlag GmbH Germany 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface

The authors are very grateful to all our contributors without whom we would not

have been able to write a book as comprehensive as this. Here is some information

on authors and contributors:

Authors

Hans-Bernd Kittlaus is the owner and managing director of InnoTivum Consult-

ing (www.innotivum.com) and works as consultant, interim manager, and

trainer for software organizations, in particular in the areas of software

product management and organizational aspects of software organizations.

Before, he was Director of SIZ GmbH, Bonn, Germany (German Savings

Banks Organization) and Head of Software Product Management and

Development units of IBM. He has published numerous articles and books,

e.g., “Software Product Management and Pricing—Key Success Factors for

All Software Organizations,” Springer, 2009. He is Diplom-Informatiker,

ISPMA Certified Software Product Manager, Certified Scrum Product

Owner (CSPO), Certified PRINCE2 Practitioner, and member of ACM and

GI. Hans-Bernd lives near Bonn, Germany. He is a founding board member

and current chairman of ISPMA. Contact: www.innotivum.com, email:

hbk@innotivum.de, Blog: www.innotivum.com/publications/spm-blog/

Samuel A. Fricker is a Professor of Requirements Engineering at the University of

Applied Sciences and Arts Northwestern Switzerland (FHNW) and an Assistant

Professor of Software Engineering at Blekinge Institute of Technology (BTH).

He received his Ph.D. degree in 2009 from the University of Zurich. Samuel spent

his career in both industry and academia. Important industry stays were with

Ericsson, ABB, and Zuehlke. He researches socio-technological alignment

mechanisms for software and networked systems. Samuel leads FHNW in the

EU Horizon 2020 projects Wise-IoT, Bonseyes, and SMESEC and is a researcher

in the Horizon 2020 project SUPERSEDE. He led BTH in the EU FP7 project FI-

STAR. Samuel lives in the greater Zurich area in Switzerland. He is a founding

member, former chairman, and current board member of ISPMA. Contact: bit.ly/

sfr_fhnw, email: samuel.a.fricker@gmail.com, Twitter: @samuelfricker

v

http://www.innotivum.com/
http://www.innotivum.com/
http://www.innotivum.com/publications/spm-blog/

Contributors

Peter Clough was Senior Vice President and management consultant with

InnoTivum Consulting specializing in software pricing. Previously, he was

Enterprise Software Sales Executive and Manager of Software Offerings in

IBM’s Software Group and influenced, participated in, or managed every

major IBM software terms’ development between 1983 and 2008, after holding

previous positions in IBM’s hardware and software marketing and sales. Peter

lives in New York, USA. He served as reviewer of major parts of this book.

Contact email: pnc@innotivum.com

Gerald Heller is principal consultant of Software.Process.Management with more

than 30 years of experience in large-scale, global distributed software develop-

ment. During his professional career, he covered almost every aspect of the

product development life cycle. He holds a diploma in computer science and is a

member of GI and ASQF. Gerald lives near Stuttgart, Germany. He is a founding

member and current board member of ISPMA. Gerald served as reviewer of

parts of this book. Contact email: gerald.heller@swpm.de

Barbara Hoisl is an independent consultant and trainer, supporting software

vendors and Internet companies. Her work is based on more than 20 years of

industry experience, including 14 years with the software product business of

HP. She holds a master’s degree in Computer Science with a minor in Business

Administration from Technical University of Kaiserslautern. Barbara lives in

Stuttgart, Germany. Barbara is a fellow member of ISPMA. She contributed text

to Chap. 5 and served as reviewer of parts of this book. Contact: www.

barbarahoisl.com, email: info@barbarahoisl.com

Peter Lick is process and skill manager for product management at AVL, a

competent partner to the automotive industry. His professional experience

comprises portfolio and innovation management, marketing and software prod-

uct management for process, and testing software. Peter holds an academic

degree in electrical engineering and automation from the Technical University

of Graz and additional degrees in coaching, marketing, and management. Peter

is a board member of ISPMA. He served as reviewer of parts of this book.

Contact: www.avl.com, email: peter.lick@avl.com

Garm Lucassen is a Ph.D. student at Utrecht University in the Netherlands. His

research focuses on the complex relationship between software product

managers and software architects. His current research efforts focus on why

user stories are an effective approach to expressing requirements and how to

help practitioners create higher quality user stories. Together with Prof.

Dr. Sjaak Brinkkemper, he coordinates and teaches the SPM foundation level

course in Utrecht. Garm is a board member of ISPMA. He served as reviewer of

parts of this book. Contact: www.garmlucassen.nl, email: G.Lucassen@uu.nl

vi Preface

http://dx.doi.org/10.1007/978-3-642-55140-6_5
http://www.barbarahoisl.com/
http://www.barbarahoisl.com/
http://www.avl.com/
http://www.garmlucassen.nl/

Andrey Maglyas is a postdoctoral researcher having finished his D.Sc. at

Lappeenranta University of Technology, Finland. His research interests include

empirical investigation of software product management practices, methods, and

tools. In addition, he is an active member of product management community in

Finland and Russia and cofounder of ProductCamp Helsinki. Andrey lives in

St. Petersburg, Russia. He is a board member of ISPMA. He has contributed text

to Chap. 7 and served as reviewer of parts of this book. Contact email:

maglyas@gmail.com.

We would like to thank ISPMA e.V. as an organization for allowing us to make

use of ISPMA’s published material. In addition to the colleagues listed above, we

also thank all the other ISPMA members who contributed to ISPMA’s syllabi:

Jonas Als, Magnus Billgren, Erik Bjernulf, Prof. Dr. Sjaak Brinkkemper, Prof.

Dr. Christof Ebert, Prof. Dr. Tony Gorschek, Rainer Grau, Prof. Dr. Georg

Herzwurm, Dr. Marc Hilber, Robert Huber, Dr. Slinger Jansen, Dr. Mahvish

Khurum, Daniel Lucas-Hirtz, Lars Olsson, Dr. Katharina Peine, Dr. Karl Michael

Popp, Greg Prickril, Prof. Dr. Guenther Ruhe, Ramesh Sundararaman, Dr. Kevin

Vlaanderen, Dr. Inge van de Weerd, and Dr. Krzysztof Wnuk.

Though we acknowledge the contributions of all these colleagues, the contents

of this book including any mistakes, omissions, and judgments are the sole respon-

sibility of the authors.

We would also like to recognize Peter Clough, Christoph Rau ({), and Juergen

Schulz, Hans-Bernd’s coauthors of his previous books on software product man-

agement [KittClou09, KiRaSch04] for all the work that they put into them and that

helped with this publication. We thank Hermann Engesser and Dorothea

Glaunsinger from Springer-Verlag for the good cooperation. We thank Sjaak

Brinkkemper, Utrecht University, Netherlands; Inge van de Weerd, Free University

of Amsterdam, Netherlands; and Gartner, Inc. for giving us some graphical images

for publication. Thanks also to Strategic Pricing Group, Thomas Nagle, and John

Hogan for allowing us to reproduce their Strategic Pricing Pyramid. Last but not

least, special thanks go to our better halves for their moral support.

Rheinbreitbach, Germany Hans-Bernd Kittlaus

Oberuzwil, Switzerland Samuel A. Fricker

December 2016

Preface vii

http://dx.doi.org/10.1007/978-3-642-55140-6_7

Contents

1 Introduction . 1

1.1 About this Book . 3

1.2 Conventions . 4

2 Management of Software as a Business . 7

2.1 A Little History . 7

2.2 Product Management for Software: Terms and

Characteristics . 10

2.3 Software as a Business . 16

2.4 Business Models . 21

2.5 The Software Product Management Framework 33

2.6 The Role and Organization of SPM . 40

3 Product Strategy . 49

3.1 Product Vision . 51

3.2 Product Name . 56

3.3 Customers . 58

3.4 Market . 59

3.5 Product Definition . 67

3.6 Positioning . 71

3.7 Service Strategy . 77

3.8 Sourcing . 79

3.9 Business View . 82

3.10 Pricing . 91

3.11 Ecosystem Management . 96

3.12 Legal Aspects . 101

3.13 Performance and Risk Management . 112

3.14 Product Strategy Processes and Documentation 116

4 Product Planning . 119

4.1 Roadmapping . 120

4.2 Product Requirements Engineering . 130

4.3 Release Planning . 157

4.4 Product Life Cycle Management . 173

4.5 Process Measurement and Improvement 181

ix

5 Strategic Management . 189

5.1 Corporate Strategy . 190

5.2 Portfolio Management . 196

5.3 Innovation Management . 202

5.4 Resource Management . 207

5.5 Market Analysis . 208

5.6 Product Analysis . 215

5.7 Corporate Strategy Processes . 218

6 Orchestration of the Organization’s Functional Areas 219

6.1 Role and Processes . 221

6.2 Development and UX Design . 223

6.3 Marketing . 230

6.4 Sales and Distribution . 237

6.5 Service and Support . 243

6.6 Orchestration Skills . 249

7 SPM Today and Tomorrow . 255

7.1 The Future of SPM . 255

7.2 The State of Practice . 258

7.3 SPM in Different Business Scenarios . 261

7.4 ISPMA . 265

Glossary . 267

Bibliography . 275

Index . 289

x Contents

Introduction 1

Why do we write another book on software product management (SPM)? And what

is so special about product management for software compared to other products?

Product management is a discipline that has been utilized by many industries for

decades, above all the consumer goods industry. The invention of product manage-

ment as an explicit management concept is attributed to Procter and Gamble. In

1931, the company assigned one product manager to each of two competing soap

products (see [Gorche11]). Since then, this basic idea has become widespread. In

fact, it makes sense for any company to manage explicitly the products that

generate its revenue and that, as assets, represent the company’s sustainable

value. But what does product management mean? Unfortunately, a general answer

can only be given for parts of this question. The activities of the product manager

depend largely on the type of product involved, the culture, history, and organiza-

tion of the company, and the target and reward system. Product management means

planning and coordinating all relevant areas of a product inside and outside the

company with the aim of sustainably optimizing product success.

The focus of this book are the tasks of a software product manager, and how they

can be performed well. We follow a best-practice approach and make use of any

techniques that help product managers, from whichever methodology they come, be

it lean, agile, kanban etc. In our experience, methodologies come and go over time,

the tasks remain. Therefore, we do not use temporarily marketable terms like

“Agile Product Management” or “Lean Product Management”. The prime objective

of a product manager is not to follow any particular fashionable methodology, but

to take care of his tasks in the best possible way, and thereby make his product

successful over its life cycle.

Software has become highly pervasive. There is hardly any industry that is not

increasingly dependent on software, be it as part of their products or as the

backbone of their business operations. A good example of that phenomenon is

the automobile industry. The software contents of cars have increased significantly

over the last 10 years. In more and more industries software is turning into the

number one value driver.

Springer-Verlag GmbH Germany 2017

H.-B. Kittlaus, S.A. Fricker, Software Product Management,
DOI 10.1007/978-3-642-55140-6_1

1

Another example is corporate IT organizations. For them, it has become appar-

ent that they need to manage their software applications explicitly as crucial assets

with a life cycle perspective, i.e. as software products. The realization that

companies from non-IT industries are suddenly becoming “standard software

suppliers” by providing apps to their customers may also have contributed to this

development.

Software has become important also in our private sphere. Many use software to

manage their private lives and to communicate with others. Software has also

started to be critical for addressing the big challenges of our societies. For example

in the healthcare area, internet-based apps empower patients and their caregivers to

make decisions for themselves. This empowerment allows expert healthcare staff to

serve more patients for less cost per patient.

Software product management—as we define it—does apply to all these

organizations:

• Vendors of software products and software-intensive technical services, be it

licensed products, or Platform-as-a-Service (PaaS) or Software-as-a-Service

(SaaS) including apps running on all kinds of smart devices (software industry),

• Vendors of software-intensive products (all industries), e.g. cars or smartphones,

• Vendors of professional human services (all industries) in which software is used

to increase productivity, and

• Corporate IT organizations (all industries).

In several decades of experience in the software industry, the authors have come to

realize that the knowledge and experience acquired in other business areas and with

other types of products are only partially transferable to software. We believe that

software is the most complex product of human invention that we know of (see

Chap. 2). That complexity implies that the management of software products is

special and puts unique demands on the persons responsible for this task (see also

Sect. 2.6).

A software product manager’s job is special because software is special, i.e. the

characteristics of software are different from most other products and have a strong

influence on what a software product manager does. Most conspicuous are

• High frequency of change over the life cycle of the software with the resulting

great importance of requirements management.

• High complexity.

• Ability to interact with customers through the product.

• Flexibility of re-configuring the product and adapting it to new purposes and

usage contexts.

• Culture of searching for lightweight, agile approaches to building and evolving

software.

• No or little need for physical manufacturing and distribution.

• Increasing returns through network effects.

• Special financial picture due to low marginal cost.

2 1 Introduction

http://dx.doi.org/10.1007/978-3-642-55140-6_2
http://dx.doi.org/10.1007/978-3-642-55140-6_2

When Hans-Bernd Kittlaus published his first book on Software Product Manage-

ment [KiRaSch04] and his second book on “Software Product Management and

Pricing” [KittClou09], there were not too many publications on this subject avail-

able. Since then, the situation has changed significantly. The number of

SPM-related publications has increased, there is more focused research in acade-

mia, and there is an increasing number of commercial SPM training offerings

available.

These changes are to some degree due to the establishment of International

Software Product Management Association (ISPMA, www.ispma.org). First con-

vened in 2009, ISPMA is a non-profit organization whose fellow members are SPM

experts from the industry and academia. Other types of membership are open to all

interested companies and individuals. ISPMA’s goal is to foster software product

management excellence across industries (for more information see Sect. 7.4).

ISPMA’s fellows have developed a curriculum and a Certifiable Body of Knowl-

edge (SPMBOK) that have become the basis for a high number of commercial

training offerings and university courses. Samuel Fricker and Hans-Bernd Kittlaus

are co-founders of ISPMA. Hans-Bernd is ISPMA’s current chairman, Samuel is

ISPMA’s former chairman and current board member.

1.1 About this Book

This book is intended to provide an integrated view of software product manage-

ment for all the organizations and scenarios listed above. We consider the

similarities between the scenarios that are induced by the specifics of software as

more significant than differences in organizational views. Nevertheless, there are

some differences that require different priorities regarding the individual tasks (see

Sect. 7.3).

The target group of this book is everyone involved or interested in software

product management, be it on the academic side or in organizations in the scenarios

listed above.

With this book, the authors intend to provide a state-of-the-art update of the SPM

part of [KittClou09] that is compliant with ISPMA’s Body of Knowledge1 (as of

December 2016):

• ISPMA SPM Foundation Level Syllabus V.1.3

• ISPMA SPM Excellence Level Syllabus Product Strategy V.1.1

• ISPMA SPM Excellence Level Syllabus Product Planning V.1.1

• ISPMA SPM Excellence Level Syllabus Strategic Management V.1.2

• ISPMA SPM Excellence Level Syllabus Orchestration V.1.0.

1www.ispma.org

1.1 About this Book 3

http://www.ispma.org
http://dx.doi.org/10.1007/978-3-642-55140-6_7
http://dx.doi.org/10.1007/978-3-642-55140-6_7
http://www.ispma.org

As a result, the reader can use the book for supporting the preparation of an

examination for ISPMA certification. However, the primary source for preparation

is always the current release of the corresponding syllabus and the corresponding

training.

We introduce the ISPMA software product management (SPM) framework in

Chap. 2. The remaining chapters will follow that structure. The subject of software

pricing will be addressed in this book (see Sect. 3.10), but not as extensively as in

[KittClou09].

Due to the wealth of publications related to SPM over the last couple of years,

the authors do not claim to provide a comprehensive bibliography. We have rather

restricted ourselves to publications most often cited and publications we find

particularly useful. By reading this book, the reader will know the views of the

most influential results of research aimed at SPM topics.

Clear boundaries are needed to be able to address the breadth of the topic of

software product management. Despite important interfaces between development

and software product management, neither the topics of software development

management nor project management will be discussed here. We have also omitted

operations and consulting issues: the book does not cover bookkeeping, adminis-

tration, and payment for the software licenses acquired and used in a company.

Also, it does not cover software product line management, i.e. the management of

development variants based on the same product platform.

The book is structured as follows. Chapter 2 looks at software as a business and

how we suggest to manage it in terms of business models and organizational

aspects. We define relevant terms and introduce the ISPMA SPM Framework.

Chapter 3 describes the tasks and activities related to product strategy. Chapter 4

focuses on product planning. Chapter 5 covers strategic management. Chapter 6

describes the orchestration of the organization’s functional areas. Chapter 7 rounds

things up by looking at SPM’s state-of-practice, the application of SPM in different

business scenarios, as well as the future of SPM.

At the end of the book, we provide a glossary, i.e. a list of definitions of all

relevant terms used. It is aligned with ISPMA’s glossary as of December 2016.

1.2 Conventions

Before we begin our in-depth discussion of SPM, we need to clarify several

conventions used throughout this book. Terms such as “manager” or “director”

are meant to be gender-neutral, that is they refer equally to female and male

persons. While women increasingly participate in IT management, we have chosen

a convention of referring to such positions using the male pronoun. This is not

intended to be in any way discriminatory and was chosen simply for the purposes of

easier readability. We use terms like development or marketing with small

characters when we mean the activity, with capital characters when we mean the

organizational unit.

4 1 Introduction

http://dx.doi.org/10.1007/978-3-642-55140-6_2
http://dx.doi.org/10.1007/978-3-642-55140-6_3
http://dx.doi.org/10.1007/978-3-642-55140-6_2
http://dx.doi.org/10.1007/978-3-642-55140-6_3
http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_5
http://dx.doi.org/10.1007/978-3-642-55140-6_6
http://dx.doi.org/10.1007/978-3-642-55140-6_7

We use the term “software vendor” when we mean companies whose primary

business is the development and provision of software for commercial purposes for

a relatively large number of consumer and business customers. Examples are

Microsoft, SAP, Oracle, IBM, Google, Samsung and Huawei. We use the term

“corporate IT organization” for organizational units that are part of companies in all

industries and whose primary mission is to provide software or IT support for the

parent company or corporation, which we call “corporate customer”. In that sense,

software vendors are corporate customers of their internal IT.

The term “service” has many different meanings (see Webster’s Dictionary).

The following three meanings are relevant to this book:

• Useful labor that does not produce a tangible commodity (as in “professional

services”).

• A provision for maintenance and repair (as in “software maintenance service”).

• The technical provision of a function through a software component that can be

accessed by another software component. Such access often occurs over a

network and executed on a remote server (as in “web services”, “Software-as-

a-Service”, or “Service-Oriented Architecture”).

Whenever we use the term “service” in this book, we try to make it clear which

meaning is intended.

When we use the term “controlling” we mean “performing the functions of a

(business or financial) controller”.

And now, we can jump right into the secrets of software product management.

1.2 Conventions 5

Management of Software as a Business 2

Product management has become an established discipline in many industries since

Procter and Gamble introduced it in 1931. During the last decades, most software

product companies—such as Microsoft, IBM, and Google—have implemented

Software Product Management (SPM). So did a few corporate information technol-

ogy organizations in essentially all industries, as well as some companies that

produce software embedded in software-intensive products and services. The role

of software product manager has emerged during this time as being of strategic

value since it is crucial to the economic success of a product.

This chapter puts software product management into the context of software as a

business. It outlines the historical context, defines relevant terms and

characteristics, looks at software from a business perspective, introduces ISPMA’s

SPM Framework, and discusses the role of SPM and its positioning in a software

organization. The business context, definitions, and scenarios will help the reader to

understand how to implement the many practices that a software product manager

has available to him to ensure the success of his product.

2.1 A Little History

To understand the business aspects of software, a short detour into the history of this

young industry is helpful before we analyze the current business drivers in more

detail.

The term “software” was first coined in a 1958 article by Tukey from AT&T’s

Bell Labs [Tukey58]. The term has become an integral element of the English

language and has been taken over by many other languages. At the beginning of the

computer era, the computer was considered as a mere machine. Just as we tell an

automobile motor to run faster by pressing the gas pedal, the computer was told

what to do one instruction at a time. Manufacturers sold the computer as a physical

machine and added the operating system and rudimentary software at no additional

cost. Not before the early 1960s was software considered independent and separate,

Springer-Verlag GmbH Germany 2017

H.-B. Kittlaus, S.A. Fricker, Software Product Management,
DOI 10.1007/978-3-642-55140-6_2

7

and at the same time entrepreneurs started to see an opportunity for a software

products business ([Cusuma04], p. 90).

Several technical developments triggered this decoupling of software programs

from the machine. In the beginning, the instruction sets were computer-specific,

i.e. each processor had its individual assembler language. That is why programs

were tied to the respective processor and could not be ported to any other processor.

From the late 1950s on, the first higher-level programming languages like FOR-

TRAN and ALGOL were created that enabled programming on a more abstract

logical level. Compilers that transformed high-level source code into different

assembler languages were offered for these languages. High-level languages

enabled the programmer to develop programs for different processors. Porting a

program from one processor to another came into reach, even though Java’s slogan

“Write Once, Run Everywhere” was still considered a vision when it was introduced

in the mid-1990s. IBM released the/360 processor series in 1964 that contained

processors at a broad spectrum of performance points that could be programmed

with the same assembler language. This development allowed the decoupling of

software from the machine, the understanding of software as something indepen-

dent, separate. Pressed by the USDepartment of Justice and facing forthcoming anti-

trust lawsuits, IBM announced on June 23, 1969, that it would unbundle hardware

and software in the future. This announcement can be seen as the birth date of the

software industry as we know it today. Within a few decades, it has developed into

an enterprise software market with a volume that Gartner estimates at 314 billion

US$ in 2015, with an annual growth rate (CAGR) in the range of 6.8% [Gartner16].

In spite of the overwhelming success of software as an industry, there is an

immense risk in the software business. Compared to more traditional industries, the

software industry is characterized by high speed, a rapid succession of technologi-

cal changes and a lot of irrational hypes. In some aspects, it is still quite immature.

When the term “software engineering” was coined at a NATO conference in

Germany in 1968, the intention was to bring the reliability and scientific approach

of other engineering disciplines to software development. However, even today the

failure rate of software development projects is still considerably higher than in

those other engineering disciplines. Nevertheless, software has pervaded most other

industries to an amazing—and sometimes frightening—degree.

Over the last 50 years, the world of business both in the developed and in the

emerging economies has gone through change at a pace and extent of impact

mankind has never experienced before. Over the last 20 years, the pace has

increased even further. Most of this change is enabled if not driven by information

technology. The fundamental drivers behind that are Moore’s Law and the Internet.

2.1.1 Moore’s Law

In 1965, Gordon Moore observed that the number of transistors that could be placed on

an integrated circuitwas doubling every 2 years. Since themid-70s, it has been doubling

every 1.5–2 years, currently slowing down a bit. Recently this development could not

8 2 Management of Software as a Business

be translated into speed increases of single CPUs anymore, which is the reason for why

we see multi-core architectures that continue to provide significant performance

improvements when compared at the same price level. For storage, the price per storage

unit has been going down by a factor of 2 per year. These exponential improvements

have led to today’s situation that people havemuchmore processing power and storage

capacity in their smartphones than a mainframe computer in a water-cooled computing

center had 40 years ago. Processors and storage, aswell as software, are embedded in all

kinds of products like cars, cameras, or mobile phones. Some industries have been

totally transformed by this shift from analog to digital. Though Moore’s Law does not

hold anymore on the chip level, there continues to be good reason to expect further

exponential growth in computing for the foreseeable future [DenLew17].

2.1.2 The Internet

Originally being the military communications network ARPAnet in the US in the

late 1960s, the internet has turned into the world’s premier communications infra-

structure. Hundreds of millions of people use it all over the world. It enables them to

communicate via email, instant messaging and other paths. Since the introduction

of HTML and the web browser in the mid-90s, people have been able to access

information with unprecedented ease and speed. The internet has given rise to

totally new applications and business models. Examples are search engines like

Google Search, online auctions like eBay, social networks like Facebook, internet

banking, brokerage, and retail platforms like Amazon.

All industries make extensive use of IT today. IT may be an integral part of

products, a major factor of development and manufacturing systems, or the back-

bone of business systems. Banking, financial services and music are just some

examples of industries that have already been fundamentally influenced and radi-

cally changed due to IT and in particular software:

• The worldwide financial markets are totally dependent on IT, in terms of both

size and speed. Prices and returns on many innovative financial products can only

be calculated with the help of IT. This dependency on IT led to the fact that some

players in the industry consider themselves more as IT companies than banks.

• When the music industry switched from LP to CD, i.e. from analog to digital, in

the early 80s, they did not foresee the consequences. In the digital domain, a

copy is identical to the original whereas in the analog domain it is not. With the

proliferation of PCs and the internet, making digital copies and distributing them

has become as easy as a mouse click. The music industry has been helplessly

watching its decline. The pinnacle of humiliation was the success of Apple, an IT

company, with iTunes, the music download platform that demonstrated how to

be successful with music in the digital domain.

Before we look at the current drivers of software as a business, we need to define

our vocabulary.

2.1 A Little History 9

2.2 Product Management for Software: Terms
and Characteristics

Software is an intangible economic good, with no physical form. Only the func-

tionality is perceptible, e.g. via a user interface, or visible in the results of

transactions controlled via software, e.g. as account movements. As with many

highly technical products, many people do not understand how software products

work. Software is therefore in the truest sense of the word “intangible.” Software

thus contrasts greatly with other business investments or acquisitions of consumer

goods. In particular, the customer does not acquire the product when buying

software but specific, precisely defined rights of use as specified in a license or a

Software-as-a-Service (SaaS) contract. However, investments in software today

represent a larger proportion of spending for IT infrastructure than investments in

hardware. Software contracts with large companies often amount to multiple

millions of dollars.

Software belongs not to the three classic economic factors of capital, land, and

labor, but in the new fourth category of “knowledge.” Software is the manifestation

of human know-how in bits and bytes. This form possesses the invaluable advan-

tage that software can be easily copied and quickly circulated over any distance—

which can also be a disadvantage as the example of the music industry above

demonstrated. The right software, used appropriately, can represent a more impor-

tant strategic competitive advantage in today’s economic life than all the other

factors. Software can be crucial for competitiveness in production processes,

functionality, the availability of service products, and thus for a company’s success

or failure on the market. But what is a software product and what is it not—or not

yet? What role does the price play? How should we classify services offered on the

basis of software?

We find it reasonable not to limit the term “software product” to the world of

software vendors, but also to use it in the world of corporate IT organizations. Is, for

example, an online account with a direct bank, a mobile phone in combination with

a special mobile phone tariff or the membership to a chat community a software

product? In this chapter, we attempt to define the term “software product” and to

discuss certain features of software and their relevance for products and product

management.

Marketing defines the term “product” as follows: “a product is anything that can

be offered to a market for attention, acquisition, or consumption that might satisfy a

want or need.” (see [KotArm15, p. 256]).

While products typically address bigger markets, if not “mass markets”, we want

to include internal customer-supplier relationships as well. Therefore we put the

relationship between two parties in the foreground.

Product ¼ A combination of goods and services, which a supplier or develop-

ment organization combines in support of its commercial interests to transfer

defined rights to a customer.

Combination of material or intangible goods and services, which one party

(called vendor) combines and evolves in support of their commercial interests,

10 2 Management of Software as a Business

with the intention to transfer defined rights to one or more second parties (called

customers).

Software product ¼ Product whose primary component is software.

The phrase “in support of their commercial interests” should make clear that it

refers to business but does not necessarily lead to payment. There is also a

commercial interest behind Open Source. Even a product free of charge

(e.g. Adobe’s Acrobat Reader) has a commercial goal—to increase market pene-

tration of another product from the same software vendor that is subject to a fee.

The phrase “defined rights” expresses that there is some room for variation here,

e.g. right of use (possibly with restrictions), property right, and right of resale.

Details are typically defined in the software vendor’s licensing terms or an individ-

ual contract between the parties concerned.

This product definition should also be construed as meaning that an item may

already be a product when it has not yet been bought. It does not become a product

through the buying process, but through the intention to make it available as a

useful entity to third parties, either inside or outside one’s corporation, for monetary

consideration or not.

In establishing the boundaries of what a software product is and is not, we have

knowingly chosen a “flexible” phrase: the word “primary” should make it clear that

there is room for discretion.

Still, a mobile phone is not a software product according to our definition (rather

a telecommunication product), even if software is an important part and may have

absorbed a large proportion of the development costs. In this case, we would be

talking about embedded software. Here, embedded software “serves” most of the

functionality and is, therefore, an underlying part of the whole product. The

embedded software cannot be bought separately. We define:

Embedded software¼ Software parts of software-intensive systems that are not

marketed and priced as separate entities.

Embedded software does not manage and operate only a computer or a proces-

sor, but rather is embedded in a technical system that consists of other components.

All components together allow the whole thing to become a product. Embedded

software can be the software for programming and managing a machine, diagnosis

software for finding errors in an automobile, or software for servicing a dialysis

machine in medicine. These programs serve highly specialized interfaces, which

are typically very closely integrated with hardware.

The requirements and the product management for embedded software are

driven by the functionality of the complete system that we call a “software-

intensive system”. Software-intensive systems can be products from many

industries like cars, airplanes, and smartphones. Software-intensive services,

often delivered as cloud or internet services, can also be products from any

industries like financial, insurance, gaming, social software, or personal services

based on software support. For the ease of reading this book, we will use the term

“software products” instead of explicitly referring to software-intensive products

as well.

2.2 Product Management for Software: Terms and Characteristics 11

Another important term in this context is “OEM product”. OEM stands for

Original Equipment Manufacturer. We define:

OEM software product ¼ software product of software vendor A that is used

by company B as a component under the covers of one of B’s products.

The term “OEM” was originally coined in the hardware business and later

transferred into the software world. It means that one manufacturer sells one of

his products to another manufacturer who uses it as a component in one of his

products without showing its origin openly. We differentiate “OEM” companies

from integrator companies, the former offering products to customers, the latter a

system development service to a specific customer.

Notice that B’s product can be, but does not have to be a software product. A

vendor is usually willing to sell his products as OEM products at a significantly

reduced price to increase his volume.

Let’s look at some more examples. A games console is also not a software

product (rather a games product). The same arguments are valid here as for the

mobile phone. A game for this console—purchased separately, separately packaged

with its price and own terms of licensing—is obviously a software product,

however.

An online bank account is not a software product, according to this definition.

Rather, the account is a banking product implemented with the help of software

products. The bank’s customer receives online access to his account from his bank,

which allows him to carry out bank transactions (bank balance enquiries, transfers,

establishment of standing orders etc.) at home or wherever he happens to be. The

software is only useful and usable in connection with the account. So the account is

the primary component.

A search offering like Google qualifies as a software product even though that

may be contrary to some people’s intuitive understanding. It does fulfill all the

criteria of our definition: there is a commercial interest, the customer gets the right

to use it, and its primary component is software. This approach builds on the

“Software as a Service” model (SaaS).

The term “solution” is quite popular from a marketing perspective since it

implies that a customer’s problems are addressed and solved. It is used by both

product vendors and professional service organizations.

Solution ¼

(a) A product that is a combination of other products, human services, and

possibly some glue code and customization.

(b) A combination of products and customer-specific code that is developed and

implemented for a specific customer.

An example for (a) are SAP’s solutions for different industries or lines of business.

12 2 Management of Software as a Business

2.2.1 Product Platform, Family, and Line

For technology companies, it can make sense to differentiate between product

platform, product family, and individual product. McGrath defines [McGrat01]: “A

product platform is not a product. It is a collection of the common elements, especially

the underlying defining technology, implemented across a range of products. A

product platform is primarily a definition for planning, decision making, and strategic

thinking. The choice of a defining technology in platform strategy is perhaps the most

critical strategic decision that a high-technology company makes.” So we define:

Product Platform ¼ the technical foundation on which several software

products are based.

An example of a product platform is the SAP core system that serves as the basis

for all SAP components. With software, there can be platforms that are not under

the control of the software vendor, but which nevertheless may have a key influence

on the success of his product. For example, for any smartphone software the

question of the operating system platforms needs to be answered. I.e. a vendor

must define whether the software shall run on Apple’s iOS, Google’s Android,

Microsoft’s Windows, or other platforms such as Firefox OS.

A product platform is not necessarily an independent product, but rather a

combination of technological elements used in various products. Such a platform

often constitutes a valuable asset and serves as a market differentiation factor.

Therefore, the platform requires cautious management, since errors will immedi-

ately have serious consequences for all products based on the platform and thus for

the company as a whole. An interesting example is Amazon, which not only

developed a highly successful e-commerce platform, but also a second platform

with Amazon Web Services (AWS).

A platform that brings real competitive advantage may serve as a base for a

whole family of products. The establishment of a product family in the market,

however, is motivated by pure marketing reasons. An example is IBM’s DB2

family. In the 1990s, IBM combined all relational database products on the various

system platforms to the DB2 product family and gave all products this name (which

had previously only been used for the host product). However, this was not based on

a joint code base of the individual products, even though this would have been

preferable from a development and customer perspective. In any case, customers

associated the same family name with a large degree of similarity. We define:

Product Family¼ A group of software products that are marketed as belonging

together under a common family name.

A software vendor groups various products together under a “family name”. That

family name allows marketing the products more efficiently than with single-product

marketing approach. This product family approach suggests that the products belong

together, implying that they are either technologically similar or that together they

provide a solution for specific problems. The technological similarity can be a

common product platform, e.g. SAP products, or a common basic technology,

e.g. IBM’s DB2 family. Microsoft Office is an example of a product family compris-

ing a group of products that address specific problems, in this case, office tasks, even if

the components of Office have not always had a seamless relationship.

2.2 Product Management for Software: Terms and Characteristics 13

The above examples illustrate that the terms “product platform” and “product

family” sometimes coincide. Products based on a common product platform can

be—but do not have to be—marketed as a product family. Conversely, products

marketed as a family can have—but do not have to have—a common product

platform. Whether or not it is advisable to establish a family concept is primarily a

marketing decision. That decision has an impact on the requirements for the

products. Customers expect products belonging to a product family to exhibit

more common features in terms of integration of product combinations or interface

similarities in the case of technologically similar products. If the products do not

adequately meet customer integration expectations, the family concept can have a

negative market impact.

The term “product line” has gained a lot of attention, primarily in, but not

restricted to the area of embedded software. We define:

Product Line ¼ A set of products based on a common platform with defined

(static or dynamic) variability tailored to different markets and users.

An example is an application software for offer calculation for craftsmen that needs

to be adapted to any specialized craft it supports, like plumber, gardener, etc. Here

adaptation means more than just customization. Adaptation means not just setting

parameters differently, but applying changes to the code of the base product. That is

why in this case we do not call the base product a product platformwhich by definition

would have to be identical for all products based on it. Product lines are established for

reasons induced by both business and technology management considerations.

All three concepts, the product platform, the product family, and the product

line, increase the complexity of software product management. However, when

used appropriately, they can accelerate development and marketing and increase

return-of-investment.

2.2.2 Cloud Computing

One innovative area that has changed the IT landscape significantly is “cloud

computing”. The term came up around 2007, but the underlying concept is older.

Since then, the concept has been extended into the mobile space. For this book, we

will use the following definition:

Cloud Computing ¼ Service and delivery model for the provisioning of IT

components through the internet based on an architecture that enables a high level

of scalability and reliability.

Cloud computing can be offered for

• IaaS: Infrastructure as a Service, e.g. processor capacity or storage,

• PaaS: Platform as a Service, i.e. infrastructure plus pre-installed enabling

products, e.g. a database,

• SaaS: Software as a Service, i.e. infrastructure plus middleware plus application

software, e.g. a customer relationship management (CRM) software.

14 2 Management of Software as a Business

Examples for IaaS are Amazon’s Simple Storage Service (S3) and Elastic

Compute Cloud (EC2) in the public cloud. Companies like IBM or HP help

corporate IT organizations of larger enterprise customers to build private

clouds that use internet technologies, but are strictly separate from the public

internet.

IaaS providers have started to extend their IaaS offering into a PaaS offering that

allows third-party developers to develop and offer their software products rapidly.

Also governments have invested in such PaaS platforms. For example, the

European Commission developed FIWARE, a platform which got adopted by a

large number of startup companies already in its early years.

A well-known SaaS provider is Salesforce.com with its CRM application. Many

interpret search engines like Google also as SaaS. This model means that the

vendor does not sell a license to the customer, but a software-enabled service.

The vendor will host, i.e. install and run the software on his own or a subcontracted

computing center and take care of the installation of any updates. The customer

gets the right to access the software via the internet and use it according to its

contractual terms that will have the character of a Service Level Agreement (SLA).

The customer stores his data on the vendor’s system. SaaS promises unprecedented

levels of scalability for customers without any significant investments in their

infrastructure or operations. A lot of implementations follow a hybrid model

where one software component runs on the user’s device and communicates

directly with the cloud component. The hybrid model is very popular with mobile

app providers.

The SaaS delivery model may seem financially attractive. However, compared

to a customer’s on-premise cost of ownership, SaaS providers’ real cost savings are

confined to the savings gained from centralized management and infrastructure.

These are higher if the software supports multi-tenancy which means the ability to

run multiple clients in parallel on the same runtime instance of the software. Those

savings are what the providers can share with their customers. Additional business

benefits for a provider, especially in the consumer business, can come from

opportunities based on the data that customers provide. The Google business

model of offering targeted advertisements based on the customers’ search profiles

is a good example of this.

From a customer perspective, SaaS has several advantages:

• The customer does not have to deal with the operations aspects of installation,

maintenance, data storage, and backup.

• The software is automatically on the latest release level (which is hopefully

compatible with the previous release level).

• The customer usually perceives the new pricing models as advantageous com-

pared to the traditional license model.

• In most jurisdictions, customers have a financial advantage since periodic

payments for SaaS are handled as operating expenses whereas investments in

infrastructure and software licenses are considered as capital expenses.

2.2 Product Management for Software: Terms and Characteristics 15

http://salesforce.com

The disadvantages are:

• The data is stored under the control of the vendor. The customer needs to have

sufficient trust in the vendor, and the vendor needs to ensure an appropriate level

of security.

• The availability of the service is dependent on the availability of the internet that

is typically neither controlled by the vendor nor the customer. The delivery of

software services at the location of the customer is a business opportunity for

telecom companies that they pursue under the name “mobile edge computing”.

SaaS was preceded in the 1990s by the Application Service Provider (ASP) model.

ASPs leased communication lines instead of using the internet. Most ASP

applications were customer-specific whereas SaaS offers standard software in a

multi-user mode that the individual customer can only customize to a limited

extent. The lease-based single-tenant approach never gained significant momentum

in the market. The trend towards SaaS was predicted by [RusKan03] as early as

2003 when the authors still called it e-service. According to market intelligence

firm IDC, in 2020 more than 25% of software spending will be on cloud software

services instead of a product license [IDC16]. The average annual growth rate will

be 20%. These figures mean that the market share of cloud software services in

terms of number of new customers will be significantly higher than these 20% since

a lot of the product licenserevenue is still based on one-time charges.

2.3 Software as a Business

Consideration of software as a business implies consideration of the what and why

of the software: the definition of the product and the markets, the delivery and

sourcing of the product, and the competitive positioning. A software product

manager who wants to define such a product strategy needs to have an excellent

understanding of the software industry, its trends and drivers, and the relevant

markets for the product.

What we have seen in the banking or music industries has only been the

beginning. Software penetrates the core of more and more industries, be it

software-based diagnosis and personalized care systems in the healthcare industry,

software-controlled engines and brakes in the automotive industry, and even cars

which no longer even need a driver. This importance of software is quite new to

these industries. It requires not only technical but also cultural changes that can be

facilitated by introducing software product management in these organizations.

At the same time, more and more IT components become commodity products,

like storage, processors, or inexpensive or free software apps. For a company from

any industry, the challenge is finding the right combination of low-cost commodity

IT and differentiating non-commodity elements that improve the company’s com-

petitiveness. Enablers of competitiveness are the attractiveness of the company’s

products, the effectiveness and efficiency of the business processes of the company,

16 2 Management of Software as a Business

the abilities of the employees, and the design of the customer interface. It is a basic

element of our economic system that these factors have been, are, and will be

enabling differentiation in the market. Investments in IT that support these factors

will be highly relevant for competitiveness in the future. Well known current

examples of companies that are differentiating themselves in the market in exactly

this way are Amazon, Apple, and Samsung. Their success is primarily based on

innovative processes and customer interfaces that could only be implemented with

IT. Commodity products can be part of those solutions, but they alone will not result

in competitive advantage. Of course, when commoditization leads to lower prices

for both hardware and software and thereby higher performance per $, then

innovative offerings become financially feasible that were not feasible before.

2.3.1 Low Capital Investment

For software products, almost the entire product cost is incurred during develop-

ment. As a consequence, a certain minimum revenue or minimum number of

licenses must be achieved to reach the break-even point. In other words, software

is one of very few products for which any additional revenue beyond the break-even

point is almost pure profit. This characteristic of software products means that there

is a high incentive—or necessity—for software companies to offer their products

internationally to achieve the largest possible sales volumes. Internationalization

usually requires translation of usage interfaces and documentation into the respec-

tive languages and addressing the specific requirements of each targeted country.

The software market, in general, is international though there are some successful

vendors for regional software solutions. This international orientation is an impor-

tant element of the job of a product manager in software companies.

Compared to traditional industries that develop and produce physical goods, a

software company needs relatively little capital and investments initially and in the

course of its development. In principle, for software development “only” good

know-how, a development environment, and a few PCs are required. Creation of

software product deliverables is cheap because it can be done by duplication of

media and printing of brochures and handbooks. Such production activities may not

even be needed in case of internet distribution. In reality, even in the software

industry it can be a bit more complicated, but the famous garage start-ups are not

just myth. Anyone can start a software company—but not necessarily make it

succeed. As is true for all startups, the secret of success is good know-how and

professional management, with the difficult transition of company leaders from

start-up entrepreneurs to businessmen. Eric Ries claims that “entrepreneurship is

management” ([Ries11], p. 8). This sentence works both ways. Entrepreneurship

means building an institution that automatically involves management ([Ries11],

p. 15). On the other hand, a manager in an established company can benefit a lot

from acting like an entrepreneur and applying ideas of Ries’ “Lean Startup”.

The low capital investment means low market entry barriers. Somewhere in this

world, new software companies are founded daily—and die daily. The most

2.3 Software as a Business 17

significant asset of software companies—human know-how—is in the brains of the

employees, i.e. highly mobile. The fluidity of such know-how leads to very high

innovation in the software industry. Technological innovations spread quickly and

get introduced into new product versions. Many software products have ideas at the

core of their value which may not be patentable, copyrightable, or intellectual

property protected via “trade secret.” This high speed of innovation and adoption

lowers the technical entry barriers, i.e. the software market is characterized by low

market entry barriers and extremely high competition and fluctuation compared to

other industries.

In the IT industry, the hardware manufacturers are in constant competition. A

manufacturer of goods fears nothing so much as commoditization, i.e. the ability of

his customers easily to replace his products with those of his competitors. The end

user is not faced with big functional or economic barriers if he wants to change for

example, the brand of car he buys. Therefore, manufacturers of commodity

products invest heavily in brand and image marketing. Also, they invest in bells

and whistles that attempt to differentiate the product or make it to some degree

proprietary (though the latter may backfire).

With software, competition is different. There is significant effort and risk

involved in switching from an installed software product to a competitive product

than for any other element of the IT infrastructure. This statement is valid for

enterprise software, but also to some degree for consumer software. The main

reason is that software is rarely used in an isolated way, but instead as an integral

part of the complete software landscape, in an enterprise environment usually

including self-developed applications. Unless there is a major quantifiable and

visible-to-end-userimprovement in a replacement product, the IT professional

will correctly reject any decision to replace a working product. He will receive

zero credit if he succeeds (no visible benefit), and the wrath of all his end users if the

product fails. Another aspect is the high level of company-specific customization.

The degree of interdependence of a product with the other components of the

software landscape is extremely high and very often not properly documented.

That is why software once installed, integrated and used is very difficult to replace.

It also means that ongoing product development, maintenance of older releases, and

compatibility of new to old releases and versions have high importance and are a

key success factor for software product management.

2.3.2 Law of Increasing Returns

As pointed out in [HoRoPL00], the software industry is governed by the law of

increasing returns that was first described by the economist Brian Arthur

[Arthur96]. This law says that a software product with a high market share will

experience a further improvement of its market position just because of this high

market share whereas a low market share leads to a further decrease. In other words,

trends in market share intensify themselves. There are three main reasons for this

18 2 Management of Software as a Business

phenomenon: the network effect, the increasing cost of switching, and the trust in

the market leader.

The network effect was described by Katz and Shapiro in [KatSha85]: “The

utility that a user derives from the good depends on the number of other users who

are on the same network.” There are direct effects like standardization of interfaces

that allow users of the same software product to exchange data and user experience

more easily—they speak the same language. With users in different companies, this

leads to a trend towards standardization of software products across companies.

Indirect effects come from complementary products and services whose number

increases when more customers use the base product (see [BuDiHe12], p. 21).

The increasing cost of switching characterizes how software “sticks” in a

customer environment. The longer a user or company has a certain software product

in use (e.g. text processing software), the larger the effort of switching to a different

product. The data created with one program cannot necessarily be interpreted by the

other program. Imagine the difficulties in a company that has changed from text

processor “A” to “B.” If, a year or two later, it is necessary to refer to or change a

document created under “A” there must be a way to do that. So in some way the

older program must either be kept or conversion provided for, which is a significant

inhibitor to change. Also, the switch usually means significant education effort.

The trust in the market leader describes some of the behavior of customers when

they make buying decisions. Consumers, as well as big companies, tend to rely on

established brands and leading products. An established brand gives the investment

the security that the chosen product will not disappear from the market the next day.

Customers interpret the market leading position as a quality seal since many have

already decided for the product. The standardization of interfaces and data is also

relevant in this context.

The importance of market share for a software product is different dependent on

the level of maturity of the market in which competition takes place. In an early

technology phase, there are typically a large number of young products with similar

functionality and the customers are in an orientation phase. The first products are

tested; some early adopters make product decisions and invest in installations. In

this phase, there is no market leader, but trends and camps emerge. The power and

prestige of the respective camps will usually determine the market leader of the

future. During the growth phase of a product market, two or at most three

dominating products and vendors can be identified very quickly, i.e. within 12–18

months. In the maturity phase, one can observe all three of the effects described

above. The combined effect is a consolidation and disappearance of the smaller

vendors, and often a concentration on two or only one dominating product.

The law of increasing return makes market leadership more important for

software products than for most other products. Of course, market leadership is

an important competitive advantage for most products, be it for cost efficiency

through economies of scale, be it as a marketing argument. But nowhere is market

leadership so important for the future of a company in a market as in the software

industry. That is why short term the goal of market leadership in a chosen market

segment has priority over other company goals like revenue or profitability.

2.3 Software as a Business 19

One note of caution on the law of increasing returns and the network effect in

particular: they alone do not guarantee sustained success when new technologies

emerge. For example, Lotus dominated the spreadsheet market with “1-2-3,”

Netscape had a majority share of the browser market, and WordStar dominated

the text editing market. A competitive bundle appeared, Microsoft bundling or

selling with Windows, and broke the domination. The disruption happened even

though the market was mature and the product well established. A vendor must be

vigilant, particularly as new technologies are introduced. The best strategy appears

to be continuous evolution and improvement and never resting on your laurels. An

example is Adobe’s Photoshop. Although Adobe’s high price strategy created a

price umbrella for others to come in under and compete with compatible or similar

products, the product continued to be successful for a long time. Nevertheless,

Adobe made a radical switch to a SaaS model for most of their products.

New software technologies develop and drive new markets for software

products. These markets show fast, often drastic growth, during which a high

number of competitors boil down into a few winners and lots of losers. Software

technologies and their markets can be compared to layers of an onion. New layers

are created continuously, and the old ones dry out and die. The art of running a

software company is to leave the drying outer layers in time and jump onto a juicy

inner layer, a new market in which there is a new fight for market leadership.

2.3.3 The Financial Life Cycle of a Software Product

As just discussed, the start-up capital requirements for a software company are

modest. If one has a good idea, and perhaps the beginnings of a demo or prototype,

venture capital can be found which is sufficient to begin. Still, just as in almost any

startup, there will be a great deal of expenditure before the first dollar of revenue is

earned for a software product. Software is unique in that most of the capital outlay

occurs during this pre-revenue period. As soon as revenue is earned, excepting

major enhancements, the software product incurs small variable cost and high

marginal profit. With SaaS, variable cost is a bit higher than a one-time electronic

distribution of the software due to hosting.

To earn revenue with a software product, two common revenue models compete

with each other: the one-time charge (OTC) model and the periodic charge model.

Once sales begin, there will be pressure to show profits, certainly pressure to show

dramatic yearly increases in revenues. In a periodic charge model with recurring

charges, there is no acceleration of revenue through initial sales. Revenue is earned

over time as the product is used. This revenue model contrasts with the up-front

revenue model that is based on the sale of a one-time charge (OTC) perpetual

license. Like someone who owns an apartment building and rents out the

apartments, a software company with attractive products who licenses them using

recurring charges may make a great deal of money in the long term. However,

deferred recurring revenue is not the way to show the most dramatic financial

growth as one might want to do in a start-up, particularly if one were contemplating

20 2 Management of Software as a Business

an Initial Public Offering (IPO). This communication problem may influence a

company to offer its licenses on an OTC basis, relying on maintenance charges to

provide a recurring stream of revenue following the initial sale. With SaaS, periodic

charge models have turned into the standard.

As the product becomes established, the objective shifts to wanting to maintain

price and preserve revenue stream with less regard for quick growth. Achieving this

shifted objective requires clarity of strategy, strength of will, and discipline in terms

of discounting, periodic enhancements, continued marketing to increase share. As

we said in the previous section, there is no fear as great as that of commoditization

during this phase. Most software businesses will need the cash being generated by

their successful products to finance the development of enhancements and new

products, as well as potentially the acquisition of companies with interesting and

innovative products. So the objective in the medium term is often to prolong

product life as much as possible with modest expenditures to maximize profits,

yet retain market leadership.

As companies grow, they often choose to grow by acquisition, particularly if

they have cash. One can see this clearly with IBM, Computer Associates, Oracle,

and others. IBM has been acquiring software companies at an increasing rate of

more than one per month for several years. Reasons can be to buy innovation and

shorten the time-to-market, to buy market share, or to get specific skills fast

[Popp13].

Eventually most products move into a sunset phase where they reach their end of

life, replaced by a new product in the vendor’s portfolio (hopefully) or perhaps by a

competitor. However, a product may be devilishly difficult to replace if it is tightly

integrated into a company’s infrastructure. Therefore, it behooves the vendor to

provide an easy, effective, and financially attractive migration to his replacement

product. If the migration to the vendor’s follow-on product is difficult or expensive,

the sunset will invite the customer to consider competitive alternatives. For

customers who have a perpetual license, it is even harder to get them to migrate

to a new product. Microsoft and their challenge to motivate customers to migrate to

newer versions of Windows or Office is a good example. Microsoft tried to address

this issue by offering Windows 7 and 8 users in the consumer market a free

migration to Windows 10 for the first year following availability.

2.4 Business Models

A business model describes the “rationale of how an organization creates, delivers

and captures value by interacting with suppliers, customers and partners”

([OstPign10], p. 14). The business model reflects how a company intends to make

money. The term “business model” has become popular with the Internet, which

has opened up a wealth of possibilities to do business. The term can be applied to

any business organization though it is often considered at the corporate or business

unit level. A business model analysis can be helpful for a software product manager

when analyzing potential partners. While relevant for an individual product, its

2.4 Business Models 21

consideration can also make sense for a solution that spans multiple products and

services. We will come back to this in the chapter on Product Strategy.

2.4.1 Describing a Business Model

A Business Model is a conceptual model that describes the products and services

considered and how revenue streams relate to these products and services. Teece

provides some scientific foundations to the concept [Teece10]. Business models can

be classified according to three dimensions: “the type of products or services

provided, the business model archetype, and a revenue model” [PoppMey10]. A

business model is constructed by choosing one or more combinations of the three

elements of a business model (see Fig. 2.1).

According to [PoppMey10], types of products or services can be

• Financial products (cash and other assets),

• Physical products (real, physical products, durable and non-durable goods),

• Intangible products (software but also other intellectual property, knowledge and

brand image), and

• Human services (people’s time and effort).

Business Model Archetypes are basic patterns of doing business. Available

archetypes are creator, distributor, lessor, and broker.

• A creator uses supplied goods and internal assets and transforms them to create a

product sold to customers. It is important to know that the main work done by the

creator is designing the product. An example is Apple. Apple designs the iPod in

California. So Apple is a creator.

Financial Physical Intangible Human

Creator Entrepreneur Manufacturer Inventor,
Developer, Author

./.

Distributor Financial Trader Wholesaler,
Retailer

IP Distributor ./.

Lessor Financial Lessor Physical Lessor IP Lessor Contractor

Broker Financial Broker Financial Lessor IP Broker HR Broker

Type of Products and Services

B
us

in
es

s
M

od
el

 A
rc

he
ty

pe

Business Model Matrix

Fig. 2.1 Business model matrix [PoppMey10]

22 2 Management of Software as a Business

• A distributor buys a product and provides the same product to customers.

Obvious examples are companies in the wholesale and retail industries, like

Sears or Saks, or Apple’s online retail store for applications, the iTunes AppStore.

• A lessor provides the temporary right to use, but not own, a product or service to

customers. Examples are landlords, lenders of money, consultants and software

companies that license their software to customers. For human services, human

resource lessors lend their employees’ time to customers.

• A broker facilitates the matching of potential buyers and sellers. A broker never

takes ownership of the products and services. An example is a stock broker.

Another example is Google’s advertising business, which matches the advertiser

with potential customers.

Single products and services can be offered stand-alone, or they can be offered as a

bundle, which is a combination of products and services. Software vendors are

typically offering intangible products and act as a creator and lessor of software, but

also offer human services like consulting, maintenance and support.

A revenue model describes how revenue is generated from the product offering.

Details will be discussed under Pricing (Sect. 3.10).

One of the widespread tools for reviewing and evaluating existing business

models is the Business Model Canvas. It is also used to systematically invent

new ones that change the way a product competes. The Business Model Canvas

consists of nine segments, see Fig. 2.2. On the right-hand side, we find the segments

representing market- and customer-facing views (e.g. customer segments and

revenue streams). On the left-hand-side, we find those representing company-

internal and supplier-facing views (e.g. key resources and cost structures). In the

middle, the value proposition links the two sides or views.

Each of the dimensions of a business model leads to particular entries in the

Business Model canvas. The entries are as follows:

• Products, services, or bundles are compensated by the customer. Compensation

can be monetary (revenue streams) or non-monetary (exchange of products,

services or information). So for each product there always is compensation,

which in many cases is a revenue stream.

Key
Partners

Key
Activities

Value
Propositions

Customer
Relationships

Customer
Segments

Key
Resources

Channels

Cost Structure Revenue Streams

Fig. 2.2 Business Model Canvas [OstPign10]

2.4 Business Models 23

http://dx.doi.org/10.1007/978-3-642-55140-6_3

• Products, services, or bundles have a corresponding value proposition.

• For each type of product, service, and bundle there is a specific cost structure.

• Business models are executed by activities, some of them being key activities.

Activities are carried out by resources, some of them being key resources.

An example will be given in the next section.

2.4.2 Business Models in the Software Industry: Software Product
Company

The prototypical type of company in the software industry is the software product

company, also known as software vendor, that develops, offers, and maintains

software products. The customer buys a license, and installs and runs the software

on-premise or as a cloud-based offering. To do the latter, the customer signs a

contract for a cloud-based service where the vendor runs the software, and the

customer accesses the service over the internet.

Figures 2.3 and 2.4 give a description of a software vendor’s business model. We

assume that the vendor has both on-premise and Cloud-based businesses (which

requires hosting, shown in Fig. 2.3 as “Physical Lessor”). The vendor develops soft-

ware, distributes it directly and/or indirectly, and sells licenses, i.e. act as a lessor. Also,

the vendor offers product-related human services likemaintenance, shown in Fig. 2.3 as

“Contractor”. Figure 2.3 demonstrates that the vendor covers five elements of the

matrix. The business model canvas (Fig. 2.4) showsmore details of the business model.

The business model of a software vendor assumes standard software products

that are suitable for a large number of customers.

The sales of a software product can be combined with product-related services

that can be priced based on actual effort, or as a package with the software license,

Financial Physical Intangible Human

Creator Entrepreneur Manufacturer Inventor,
Developer, Author

./.

Distributor Financial Trader Wholesaler,
Retailer

IP Distributor ./.

Lessor Financial Lessor Physical Lessor IP Lessor Contractor

Broker Financial Broker Financial Lessor IP Broker HR Broker

Type of Products and Services

B
us

in
es

s
M

od
el

 A
rc

he
ty

pe

Business Model Matrix
Software Vendor

Fig. 2.3 Software Vendor’s business model matrix

24 2 Management of Software as a Business

or as a subscription as is customary for product maintenance. According to

Cusumano [Cusuma03]: “A general rule of thumb is that, over the lifetime of

using a software product, enterprise customers pay between one and two dollars

in service and maintenance fees per dollar of software license fees (the up-front

product cost).” In particular when the economy is bad and product sales are down,

the importance of this income for the survival of a software vendor becomes

obvious. That is why maintenance fees and even more so the pricing model of

Monthly License Charge (MLC) are so attractive. There is no large up-front

payment, but smaller monthly payments. This pricing model has been a pleasant

pillar for IBM for a long time since it resulted in a more balanced, smoother revenue

stream. The stock market deplores nothing as much as unpredictable earnings. With

SaaS, the recurring pricing model has returned under the name ‘subscription fee’.

2.4.3 Business Models in the Software Industry: Professional
Service vs. Product

While both the software product and the professional services business models are

attractive, there are significant differences that make them difficult to combine. In

this context, it is important to differentiate between the different meanings of the

term “service” that we introduced in Chap. 1. There is a continuum from services to

products that can be confusing. It is shown in Fig. 2.5.

Key
Partners

ISVs

Hosting

Provider

VARs

Consulting

companies

Key
Activities

Develop

Sell

Manage

Value
Propositions

Value of

software in

its application

domain

Customer
Relationships

Automated

mass rel.

Direct rel. to

corporate

customers

Customer
Segments

Consumer

customers

Corporate

customers

Advertising

customersKey
Resources

Developers,

Sales reps,

Partner ma-

nagers,

Software

product

managers

Channels

Partner

network

Direct sales to

corporate

customers

Cost Structure

Personnel cost,

Hosting cost

Revenue Streams

License fees,

Subscription fees,

Service fees

Fig. 2.4 Software Vendor’sBusiness Model Canvas (example)

2.4 Business Models 25

http://dx.doi.org/10.1007/978-3-642-55140-6_1

Of course, a company can follow the business model of a professional service

company that develops customer-specific software. This businessmodelmeans that the

development of software is paid for, either based on effort or at a fixed price. The focus

is not on a software product, but on projects and the employees who deliver the service.

The goal is to implement an application, according to the requirements of the customer.

It is typically not designed for a broad and flexible spectrum of usage scenarios.

The “service” in SaaS or PaaS is a technical service. For these offerings, it makes

more sense to look at them as product offerings. Directly product-related services

like maintenance or training ought to be managed as part of the whole software

product offering. The term “whole product” was popularized by Geoffrey Moore

[Moore14]. It means the combination of the base product and additional products

and services by the same or different companies that together provide a convincing

solution to customers in the target market.

In contrast, customer-specific human services like custom software development

constitute a professional service business. This differentiation is required because service

(or project) and product businesses have different business models as shown in Fig. 2.6.

In most cases, the financial characteristics of software products are opposed to

those of professional services. Software requires high upfront investment and has

low revenue-dependent variable cost. Once the original investment is recouped,

additional sales result in very high profit margins. Professional services, in contrast,

require low upfront investment and have high revenue-dependent variable cost. Of

course, once a services team is hired the personnel costs can be considered as fixed.

It would be difficult to lay off staff when there is not work to keep the employees

busy and rehire the same skill pool when there is more work. Pricing is fundamen-

tally different. For professional services the standard pricing approach is cost-

based, whereas for software products it is value-based (see Sect. 3.10). Key

performance indicators (KPIs) are different as well. For services, companies look

at utilization rate, i.e. the percentage of work time of service employees that is paid

for by customers. If that KPI is applied to a product business that business is killed

Fig. 2.5 Service-product continuum

26 2 Management of Software as a Business

http://dx.doi.org/10.1007/978-3-642-55140-6_3

because the required upfront investment would never be made. The reason why a lot

of service companies want to start a product business is the market evaluation of the

company. For a service business, it tends to be in the range of 2–3 times the annual

revenue, for a product business often in the range of 10.

Software product management has been common practice for most software

vendors. However, this does not mean that all software vendors manage their

products explicitly. Often start-up companies are founded with the intention to go

to market as software vendors, but lack the capital needed to develop the first

release. If venture capital or bank credits are not available, an alternative is driving

development through customer-specific projects that the customer pays for.

Customers can often be found on the basis of sufficiently attractive prototypes.

An interested customer may be willing to pay for the way from a prototype to a

commercially usable product that meets his specific requirements. However, he will

be watchful that his money is not “misused” for the way to a more widely usable

software product. That is why this approach does not succeed in most cases and

often leads to separate code bases for each customer and not to a more widely

usable product. As long as further development and maintenance of these code

bases is paid for by the respective customers according to effort, the model can

work. But it is the business model of a service company, not of a software vendor.

When company and customers switch to the software vendor model, the customers

only pay standard maintenance fees that would be sufficient for maintaining a

common product code base, but not separate customer-specific code bases. A mix

of customer-specific development and standard maintenance frequently results in

economic problems for the vendor.

Our experience suggests the following rules of thumb:

• The relation of the effort for a prototype versus a piece of software commercially

usable in one customer environment is 1:3.

• The relation of effort for a software commercially usable in one customer

environment versus a software product that can be used by a higher number of

customers is again 1:3.

Fig. 2.6 Differences between (professional) service and product business

2.4 Business Models 27

What can we conclude from this? The executive management of a company must be

clear in what the company is supposed to be, i.e. which business model it intends to

follow. Michael Cusumano, professor at MIT Sloan School of Management, writes

in [Cusuma03]: “Regardless of the balance of products and services they choose,

managers of software companies must understand what their primary business is,

and recognize how the two differ—for selling products requires very different

organizational capabilities than selling (professional) services.” The cultural

differences between software and service companies often lead to failure whenever

a service company tries to turn a piece of software that had been developed based on

a service contract into a standard product. However, this cultural change is possible.

An example is the CAD software CATIA developed by Dassault in France that

became a very successful software product.

These are the reasons why all major IT companies that have both product and

service business used to separate them strictly on the executive management level.

A good example is IBM, who tried to establish a PaaS/SaaS business run out of

IBM’s service division that had a lot of outsourcing experience. It did not work too

well. So in 2014, IBM relaunched its PaaS/SaaS business under the name Bluemix

managed by IBM’s product group. With their 2015 reorganization, IBM left that

proven path of separating product and service business by establishing business

units like Analytics or Commerce that combine software products, additional

partner products, and product-related services. This experiment bears a lot of risk.

2.4.4 Business Models in the Software Industry: Open Source

Usually, ownership of software code is with the company that develops it. In case of

custom software development for an individual customer, it is a matter of contract

negotiation whether ownership is with the customer, the professional service

company or both. We cannot recommend strongly enough that thius be crystal

clear in the contractual wording in order to avoid later conflicts over intellectual

property, royalties, right to market, etc.

With the emergence of open-source software like the Linux operating system, an

alternative to the product ownership paradigm has proven its feasibility. A growing

community of developers contributes in a self-managed and parallel way to the

development of a complex system that has gone through the metamorphosis from a

cult object to a de facto industry standard. Through the internet, the Linux code is

available to everybody at no cost whereas the packages of Linux distributors that

add installation and implementation tools and documentation to the code have a

price tag.

Given the success of the open-source movement with software like Linux,

Apache, the middleware JBOSS, or the MySQL database, there is some speculation

that all software may be free of charge over time. We think this extrapolation is

misleading. The history of open source shows that motivations can be observed that

are clearly rooted in specific characteristics of the contributing programmer com-

munity. There is a strong anarchic element that favors the elegance and beauty of a

28 2 Management of Software as a Business

technical solution versus any economical considerations. This element tends to

rebel against restrictions that companies put on their employees or that the eco-

nomic system puts on its market participants. A key factor of the open-source

community has always been resistance against companies dominating the market,

in former times IBM, then Microsoft. In the community, recognition by peers,

i.e. other acknowledged specialists, is more important than economic success.

However, many of these programmers use the recognition for getting well-paid

jobs. The contradiction between the economic interest of the individual whose work

as a programmer has to pay the bills and the anti-economic attitude of the commu-

nity characterize the movement. Since this community consists exclusively of

“techies”, i.e. technically oriented programmers, it does not surprise that the

primary focus has been on infrastructure software, i.e. operating systems and

middleware. In recent years, there has been an increasing number of application-

oriented open source projects, but none has reached market share comparable to the

open source flagships like Linux or Apache. Applications can only be developed in

cooperation with specialists from the application domain who typically do not share

the anti-economic attitude of the open-source community. Over time, some

companies have embraced the open source model for their own commercial

reasons, e.g. Netscape [Hecker99]. Other companies work with hybrid models by

combining proprietory and open source software [BoGiRo06]. Demil and Lecocq

[DemLec06] look at open source ecosystems as controlled by “bazaar governance”.

Of course, commercial software can make use of open source code, but vendors

need to beware of legal implications and risks (see Sect. 3.6). Once a piece of open-

source software has gained a certain market share, it becomes interesting for

commercial software companies. Based on the open-source code, software products

can be sold with packaging and product-related services justifying the price tag.

Examples are companies like Red Hat or Suse (acquired by Novell) in the Linux

area. Established vendors have also embraced open source. Examples are Sun’s

acquisition of MySQL (now Oracle), or IBM that has jumped on the Linux

bandwagon. What is the motivation behind this? The effort of a software company

for the continuous development of complex software like an operating system is

enormous. For this to make sense for the bottom-line, either the product price has to

be high—an example is IBM’s DB2 for z/OS—or the volume has to be high—as for

Microsoft’s Windows. A relevant open-source operating system, which is offered at

almost no cost, may encuorage a manufacturer to support that open source project,

while making sure that his hardware will continue to be supported. Such coopera-

tion may be financially more attractive than a self-developed software product.

Apps in app stores can usually not be considered as open source software even if

their price is zero. They are usually developed by individual developers, not by a

community, and their code is not made available to the public. Also, the developer

will often try to generate revenue in other ways described below.

2.4 Business Models 29

http://dx.doi.org/10.1007/978-3-642-55140-6_3

2.4.5 Business Models in the Software Industry: Free Commercial
Products

Besides open source, there are a lot of commercial products that do not cost

anything or very little. They can usually be downloaded or used on the internet.

Low-cost pricing is typically driven by commercial interests and marketing

strategies. The following variants are known: freeware, trial-ware, or upgrade-ware.

Freeware is the offering of a product at no charge. Examples are viewer or player

products like Adobe’s Acrobat Reader and Flash Player or Real Audio’s player.

Here, the software vendor intends to make the usage and exchange of files in “his”

format easy and at the same time to create demand for his costly full-function-

product that is needed to create the files.

Trial-ware is the offering of a product either as a web download or sometimes

media (CD or DVD) which offers a trial period after which it requires payment of a

fee for continued use. Demo versions often have restrictions in functionality or

capacity or become unusable after the trial period. This type of software does have

the character of products, is part of a product family and is managed by the

respective product management organization. A plan is needed that specify the

functions to be made available and for how long they should be available since this

product behavior has to be implemented by Development.

Upgrade-ware (or Freemium) is the offering of a product with a base version at

no charge and with enhancements that require payment. The user is encouraged to

upgrade to obtain additional function. Base versions may range from full function

products, where the upgrades offer additional bells and whistles, to limited (or no)

function programs that simply tell you what they would do if they were fully

functional. Especially with online games, this business model is also known as

the freemium model where users can play a game for free, but as soon as they want

extra features, they need to pay. A variant of this is Adware where the software can

be used for free, but contains advertisement. If the user wants to get rid of the ads he

needs to pay a fee.

SaaS may be offered for free and be financed through advertising. Examples are

search engines like Google or Yahoo and Google Apps, the office and collaboration

suite that Google has launched. Google Apps can be seen as Google’s attempt to

transfer its extremely successful search business model that is based on advertising

revenues to software market segments whose business models have traditionally

been based on license fees. Social media platforms like Facebook are also trying to

monetize their reach through advertisement. From a customer perspective, these

offerings do not require monetary payment. However, there is a price to be paid in

terms of being exposed to ads and revealing information about one’s identity or

interests. An increasing number of apps in the app stores of Apple or Google also

fall into this category, i.e. the app developers try to generate revenue through ads.

Both open source and SaaS offerings providing revenue through the support of

paid advertisements are examples of Wikinomics at work. The term “Wikinomics”

was coined by Don Tapscott and described in his book of the same name

[TapWil06]. It stands for the emergence of new business models that are based

30 2 Management of Software as a Business

on the network effect enabled by the internet. We can expect to see more innovative

business models over time in this context, in particular in connection with social

and business communities on the net, some of which will impact software vendors.

In addition to these business models of software vendors and internet companies,

there are other business models in software ecosystems. Examples are Value-Added

Resellers (VARs), System Integrators, Hosting Providers, etc. (see [Kittlaus14]).

We will come back to these ecosystem-oriented business models when we discuss

software ecosystems in Sect. 3.11.

In software-intensive industries, the business models are governed by their

respective products. These are not software business models. However, given the

increasing importance of software in the products of almost all industries, software

influences these business models. Software may even lead to disruptive business

model revolutions, as in the music industry or the newspaper industry.

2.4.6 Business Considerations for Corporate IT Organizations

Corporate IT organizations have traditionally not had the view that they developed,

marketed and sold software products. Typically they saw themselves as the master

and caretaker of an IT system that consisted of hardware and an applications

landscape that was difficult to comprehend and manage because it was most often

not thoroughly documented. Where and when a new function was implemented was

often more a case of arbitrary organizational responsibilities and informal

relationships than of a forward-looking planning of individual applications or the

complete landscape. This randomness of decision-making was typically

accompanied by severe communication problems between IT and the business

units. The increasing dissatisfaction of the internal contract givers with the price

and performance of IT—whether justified or not—has led to initiatives over the last

30 years aiming at making the IT organizations more manageable.

One area has been in providing more “customer” control, replacing the former

dissatisfying fixed cost allocation with a more cause-oriented, sometimes

transaction-based cost allocation. Also, there have been attempts to destroy the

former monopoly of the IT organization by introducing competition. In some

companies, the business units were allowed to order hardware and software without

coordinating with the IT organization. This competition succeeded in weakening

the IT organization, but unfortunately it also weakened the whole company because

the inexperience of the business units sometimes led to poor decisions or was taken

advantage of by the vendors. This situation resulted in an unmanageable collection

of badly integrated islands with increasing data redundancy and risk of data loss.

We are currently seeing a very similar trend with SaaS offerings. Since the pricing

of SaaS allows business units to book the cost as operational expenses, they can

easily work with SaaS without involving the IT departments unless governance

rules forbid this.

The idea of introducing competition was also the main corporate motivator for

outsourcing IT organizations into independent companies that were still fully

2.4 Business Models 31

http://dx.doi.org/10.1007/978-3-642-55140-6_3

owned by the parent corporation. The unfortunate executives of these companies

were expected to achieve the square of the circle: strengthen customer orientation,

lower cost, and develop new business as a service provider on the open market. It

has hardly ever worked. Customer focus suffered because established communica-

tion paths were disrupted by the new organizational and often physical separation.

The cost structures could only be improved long term. In fact, since many of these

separated IT companies were expected to turn a profit and executive incentives

were established to promote that, the companies added a profit margin to the fees

they charged their largest customer, their parent, thereby increasing corporate costs

for IT. This in turn provided additional incentive for business units to buy their own

small computers or outsource their work to outside service organizations with more

aggressive pricing. In Europe, the work councils made sure that at least short term

no employee suffered due to the outsourcing. In the US, social pressures and

potential loss of government incentives often had similar effects. And the new

business did not materialize because selling on the open market was foreign to the

company’s culture and not realistic as any potential customer knew that he would

always have second priority versus the parent corporation. Another issue was the

lack of focus of the outsourcer on his client and in the welfare of the client’s

business.

Then there was a trend of external outsourcing to big IT service providers that

imposed their outsourcing management and processes and often took over a large

number of employees. Outsourcing a data center can lead to significant cost savings

if the vendor passes on the cost savings realized by the consolidation. For software

development, this is rare. Even if the service provider can develop more efficiently

and at a lower cost, his profit orientation will jeopardize the benefits for the host

company. Also, a formal requirements management process will limit the service

provider’s ability to cooperate flexibly. Only if additional customers for the appli-

cation landscape can be won, significant cost advantages can be enjoyed. Success-

ful examples are joint IT service providers of major German banking groups that

provide services to a higher number of banking institutions, or service companies

like First Data in the US that achieve significant economies of scale.

So far, attempts to make internal IT more manageable have led to mixed results.

There is one positive outcome: The executives of the IT organizations—whether

outsourced or not—have gained a much stronger entrepreneurial view of their

organizations. Business units are today considered more as customers than as

solicitors. The willingness to understand and manage the offerings as products

and services has increased. This product and service orientation has made these

IT organizations similar to software vendors, with the result that software product

management has started to be accepted as a useful concept by the corporate IT

organizations as well. The core elements of SPM are the same for software vendors

and corporate IT organizations. The priorities may differ.

The increasing pervasiveness of IT and in particular software across most

industries is leading to a changing view of high-ranking executives. This change

is visible both in corporate IT organizations responsible for business infrastructure

and in software development units that produce software embedded in the

32 2 Management of Software as a Business

company’s products and services. For these organizations it is challenging to meet

the increasing expectations in terms of value contribution, time-to-market, and

innovativeness. Software product management can help a lot in these environments

to improve communication and cooperation, and to focus more on business value.

2.5 The Software Product Management Framework

Given the broad spectrum of tasks and responsibilities of a software product

manager, some structure is welcome. The first attempt to provide structure is the

Reference Framework for Software Product Management developed by Inge van de

Weerd, Willem Bekkers, Sjaak Brinkkemper, and colleagues at the University of

Utrecht, Netherlands in 2006 ([WBNVB06], see Fig. 2.7). It focuses on the core

activities of a software product manager in the areas of product planning and

includes recommendations for portfolio management, product roadmapping,

release planning, and requirements management.

The framework’s structure is based on the entity hierarchy portfolio, product,

release, and requirement that are managed with a set of activities. These activities

are performed by a product manager. The activities belong to the core activities in

the ISPMA framework. When interpreted as a process, the Utrecht framework

shows the core of what some software vendors call their product life cycle manage-

ment (PLM) process which is an iterative process for software repeated for every

release.

Fig. 2.7 Reference framework for software product management [WBNVB06]

2.5 The Software Product Management Framework 33

We consider this framework as very helpful and shall come back to it when we

discuss the individual activities. However, it does not cover all tasks of a software

product manager. For example, economic aspects such as the business case are only

indirectly reflected in this framework. In our view, the business aspects must play a

much more prominent role in a software product management framework.

Bekkers e.a. published a detailed specification of the framework in [BVSB10],

which they had developed and evaluated by studying a large number of small and

mid-size enterprises (SMEs). The focus is on ways how to improve practices. In

Fig. 2.8, “!” points to the practice of next-higher maturity, hence what the next

practice is that should be adopted for increasing maturity.

Practices Improvement Sequence
Portfolio

management

Market analysis: trend identification → market planning → customer

win/loss analysis → competitor analysis

Partnering & contracting: service level agreements → intellectual property

management → distribution channels reviews → pricing model reviews

Product lifecycle management: product lifecycle analysis → portfolio

innovation → portfolio scope analysis → business case reviews → product

lines

Product

roadmapping

Roadmap intelligence: product analysis → society, technology, and

competition trend reviews → partner roadmaps

Core asset roadmapping: asset identification and registration → make or

buy decisions → core asset roadmapping

Product roadmapping: short-term roadmap → internal consultation →

theme identification → long-term roadmap → external roadmap

Release

planning

Requirements prioritization: internal stakeholder involvement →

structured prioritization → customer involvement → cost-revenue

consideration → partner involvement

Release definition: capacity consideration → standardized release

definitions → internal communication → optimized requirements selection

→ multi-release definition

Release validation: internal validation → formal approval → business case

definition

Change management: change requests → milestone monitoring → impact

analysis → scope re-planning

Build validation: internal validation → external validation → certification

Launch preparation: internal communication → formal approval →

external communication → training → launch impact analysis → update

external documentation

Requirements

management

Requirement elicitation: passive basic registration → centralization →

automation → proactive internal stakeholder involvement → proactive

customer and partner involvement

Requirements definition: uniform documentation → requirements

validation → grouping by similarity → automation

Requirements structuring: requirements typing → requirements lifecycle

management → requirements dependency linking

Fig. 2.8 Recommended improvements to product planning practices [BVSB10]

34 2 Management of Software as a Business

Other frameworks consider such business aspects. One is the Pragmatic Market-

ing® Framework [PragMark16]. It mixes product management and product mar-

keting aspects, however. Kittlaus and Clough [KittClou09] defined the roles of

product manager and product marketing manager as separate and focused only on

the software product manager in their SPM Framework. Also Ebert [Ebert07]

focused on product management when he proposed how to manage a software

product along the product’s lifecycle phases of strategy definition, concept devel-

opment, market entry and development, and evolution.

The ISPMA framework [ISPMA16] (Fig. 2.9) is an integration and consolidation

of the three frameworks from Utrecht, Kittlaus, and Ebert. The International Software

Product Management Association (ISPMA) facilitated a consensus between these aca-

demic and industrial opinion leaders [Fricker12]. In contrast to other reference models,

the scope and contents of the ISPMA framework continues to evolve by being discussed

and adjusted by the product management experts that are members of the ISPMA

knowledge network. It hence adapts to the evolving understanding of the discipline.

The ISPMA SPM framework provides a holistic view of the elements of

software product management. The framework can be used as a model to establish

and improve the discipline of software product management in an organization. The

structure of the framework is as follows:

• The horizontal structure (columns) follows the functional areas of a software

organization.

• Vertically within the columns, the structure is based on a top-down approach,

i.e. from strategic and long-term to operational and short-term. However, the

Strategic
Management

Product Strategy Product Planning Development Marketing Sales and
Distribution

Service and
Support

Corporate
Strategy

Positioning and
Product Definition

Product Life-Cycle
Management

Engineering
Management

Marketing Planning Sales Planning Service Planning
and Preparation

Portfolio
Management

Delivery model
and Service
Strategy

Roadmapping Project
Management

Customer Analysis Channel
Preparation

Service
Provisioning

Innovation
Management

Sourcing Release Planning Project
Requirements
Engineering

Opportunity
Management

Customer
Relationship
Management

Technical Support

Resource
Management

Business Case
and Costing

Product
Requirements
Engineering

User Experience
Design

Marketing Mix
Optimization

Operational Sales Marketing Support

Market Analysis Pricing Quality
Management

Product Launches Operational
Distribution

Sales Support

Product Analysis Ecosystem
Management

Operational
Marketing

Legal and IPR
Management

Performance and
Risk Management

Participation Core SPM Orchestration

Fig. 2.9 ISPMA SPM framework V.1.2 [ISPMA16]

2.5 The Software Product Management Framework 35

interdependencies of the elements within each column (and also across columns)

are more complex than can be fully expressed in a two-dimensional structure.

There are some cases where the actual doing requires iterative processes that go

back and forth between elements until everything is synchronized. A good

example is the Product Strategy column where this kind of iterative approach

is mandatory between most elements before a product manager gets to a consis-

tent strategy. Also, the elements “Ecosystem Management” and “CRM” contain

both long-term and short-term aspects.

• There is an additional overlay structure with “Core SPM”, “Participation”, and

“Orchestration”. In large companies, corporate functions are typically responsi-

ble for market analysis and product analysis together with the participating

product manager. In small companies, the product manager may be responsible

alone. In both cases, the elicitation of reliable information on market and product

on a frequent basis is part of the core SPM responsibilities.

Typically, software product managers have direct responsibility for the activities

marked as “Core SPM”, in particular, “Product Strategy” and “Product

Planning” [MagNiSmoFri17]. For the activities under “Strategic Management”,

software product managers participate by representing their products on the corpo-

rate level. For example, in portfolio management, product management provides

input and makes use of the results. For the activities under “Development”,

“Marketing”, “Sales and Distribution”, and “Service and Support”, the direct

responsibility lies typically with other units in the company. A software product

manager has to orchestrate these activities so that they are performed in line with

product strategy and plan. Given the broad set of responsibilities, prioritization is

needed on an ongoing basis and can be based on the estimated impact of prioritiza-

tion decisions on short and long-term profitability.

2.5.1 The Four Software Product Scenarios

While we consider the role definition of software product manager described above

as universal, its implementation and priorities depend on the type of product a

software organization offers. Here we see increasing heterogeneity. We look at four

scenarios for software vendors.

Figure 2.10 shows a classification by using two types of runtime environments

for software product instances and two software product life cycle phases.

Vendor-controlled means that the software vendor decides which changes are

made when in the runtime environment. Vendor control is typical for rather

unregulated environments like business-to-consumer (B2C) internet platforms

and SaaS or B2C license products that offer automated maintenance over the

internet. Customer-controlled means that customers want to supervise the runtime

environment, often because of quality, security, or regulatory concerns. Customer

control is typical for business-to-business (B2B) software license products, but can

36 2 Management of Software as a Business

also be found with B2B SaaS, in particular when tied to business process

outsourcing.

The classifications also differentiate between the initial development of a prod-

uct and the evolution of an existing product which already has customers. With new

product development, there is a high level of uncertainty and risk. The focus is on

releasing a minimum viable product as fast as possible. Once the product is rolled

out, the focus shifts to extending the product scope and target market. Also,

compatibility and migration aspects become relevant. We will take a more detailed

look at the later phases of the product life cycle in Sect. 4.4.

In particular, release planning and product requirements engineering in the SPM

Framework’s Product Planning column work differently in the four resulting

scenarios:

Powerboat SPM focuses here on defining the minimum viable product for the first

customers. This goal requires a close link between product management and

development, where the product manager often assumes the product owner role

(in Scrum terminology), and extensive prototyping. In parallel SPM needs to work

with potential customers on contents and business model, and with Marketing on

positioning and pricing. Investments need to be justified based on a strategic

perspective. The product vision (aggressive), the business model (one-page can-

vas), the product strategy (very high-level), the roadmap (high-level), and the

business plan (aggressive) play an important role. Release planning and

requirements engineering are performed in support of short-term experimentation,

which some call “pivoting”. A product example is a new internet e-commerce

platform before its initial launch.

Speedboat SPM focuses here on extending the product scope and thereby increas-

ing the target market. These goals require ongoing analysis of the actual usage of

the product, of the market, and of competition. Depending on the organization’s

size, SPM and product owner roles may be separated, but remain closely linked.

Product strategy and high-level roadmapping become important in combination

with life cycle management. Release planning focuses on prioritization of

New Product
Development

Existing Product
Evolution

Vendor-Controlled Powerboat Speedboat

Customer-Controlled Icebreaker Cruise Ship

Life Cycle Phase
R

un
tim

e
En

vi
ro

nm
en

t
Software Product Scenarios

Fig. 2.10 Software product scenarios for software vendors [Kittlaus15]

2.5 The Software Product Management Framework 37

http://dx.doi.org/10.1007/978-3-642-55140-6_4

individual requirements and scoping of development iterations. Requirements

engineering is a mix of analysis and experimentation through customer discovery.

If the organization does not implement governance functions like Architecture,

things can become messy very quickly. Governance, compatibility, and migration

tend to decelerate the velocity of the organization compared to the Powerboat

phase. A product example is Google Docs.

Icebreaker SPM focuses here on defining the minimum viable product for the first

customers. In the customer-controlled context, this goal requires extensive domain

analysis with potential customers as a basis for requirements engineering and

planning of the first release with a special emphasis on regulatory requirements.

If a pilot customer is involved, a major SPM task is making sure that requirements

are sufficiently generalized so that the first release does not become overly

customer-specific. The interface between SPM and Development depends on the

chosen development methodology. Product strategy and roadmap already need

some focus to support internal investment decisions and to allow B2B customers

to understand the longer-term perspective before they make their investment

decisions. A product example is a new middleware software that is supposed to

run on-premises, like Docker before its first release.

Cruise Ship SPM focuses here on extending the product scope and thereby

increasing the target market. Since customers do not want to test and install new

releases in the customer-controlled environment often, the frequency of releases is

low, often one or two per year. As a consequence, the new and changed contents of

these releases is more significant and requires thorough release planning based on

analytical requirements engineering. Product strategy and roadmap continue to be

important as is life cycle management. A product example is the Oracle database.

These four scenarios may not fit each and every situation. However, from our

experience they are quite representative. We will refer to the four scenarios in

this book whenever this differentiation is needed.

When software organizations adopt agile approaches, they use often Scrum as a

basis that they adapt to their specific needs. For a detailed description of Scrum, we

refer to the Scrum Guide [SuthSchw13], books like [Rubin12], and articles like

[Kittlaus12]. Scrum was originally developed and described as a methodological

framework for software development. There it has proven to be valuable in a lot of

scenarios.

Scrum knows the role of a product owner, a member of the Scrum Team. The

product owner feeds the team continuously with work that is specified with a

prioritized list of user stories, called backlog. The user stories correspond to

requirements. The product owner is the interface to the outside world and shields

the rest of the team so that it can focus on development with optimal productivity.

Implemented like this, the product owner is a rather operational full-time role

whose tasks overlap with a software product manager’s in the areas of requirements

engineering and release planning.

38 2 Management of Software as a Business

This overlap needs to be sorted out in terms of process and role definitions. Some

Scrum consultants claim that the most productive solution is one person who

assumes both the product owner and product manager roles and all tasks attached

to them—which they call product owner. Unfortunately, this is wishful thinking for

most organizations! The approach may work in some environments with one Scrum

Team, but it can hardly scale up. The poor person who gets this combined product

owner and product manager role will always be pushed by the team to prioritize his

operational tasks. Over time, the more strategic tasks are neglected—to the disad-

vantage of the product and the organization. Alternatively, operational tasks can be

delegated to other Scrum Team members, but that boils down to an implicit split of

the two roles again.

In most environments, it makes more sense to have the two roles product owner

and product manager separated. They should remain strongly linked for optimal

communication. They should have clearly defined distinct tasks and responsibilities

(see [Kittlaus12]) that are comparable to those of the strategic and technical product

managers. Product owners can either be part of the Development organization with

a strong connection into SPM or be a part of the SPM organization that is delegated

into the Scrum Teams (see [Leffing11]). For larger organizations that want to scale

up Scrum, Leffingwell’s Scaled Agile Framework (SAFe) is the most popular

approach [Leffing16, KnasLeff17].

In the scenarios where the vendor controls the runtime environment, agile and

lean approaches are dominant and increasingly extended into continuous delivery,

which is based on continuous development, integration, and deployment (see

[HumFar10]). While this approach can result in significantly improved time-to-

market, it requires high investment in software architecture. Its success depends on

fine-grained service-oriented architecture, on test automation, and on infrastructure

such as the sophisticated configuration management and deployment system Apollo

of Amazon (see [Vogels14]).

For corporate IT organizations, the four software product scenarios also apply,

but instead of using the control of the runtime environment as one criterium, it

makes more sense to look at the criticality of the software product for the organiza-

tion (see Fig. 2.11).

New Product
Revolution

Existing Product
Evolution

Non-Mission-Critical and
Less Regulated Powerboat Speedboat

Mission-Critical and/or
Highly Regulated Icebreaker CruiseshipC

rit
ic

al
ity

Software Product Scenarios
Life Cycle Phase

Fig. 2.11 Software product scenarios for corporate IT organizations

2.5 The Software Product Management Framework 39

For mission-critical and/or highly regulated areas Development and Operations

are usually strictly separated. Rigorous processes have been established to bring

new and changed software code into the runtime environment with a rather formal

handover and a lot of checks and balances. By doing it this way, these organizations

have managed to reach ambitious quality and security objectives even with quite

monolithic software applications, typically back-end legacy applications. For non-

mission-critical and less regulated areas, the focus is on tighter integration of

Development and Operations. This approach is also known as DevOps, that is a

prerequisite for continuous delivery approaches described above (see

[BasWebZh15]). Companies can apply this, for example, to most front-end

applications and newly developed non-critical applications. A lot of corporate IT

organizations use hybrid approaches by running older applications as cruise ships.

They start new non-critical application development and deployment as powerboats

and later running them as speedboats (see the highly entertaining novel

[KimBeSp14]). Mc Kinsey calls this a two-speed approach [AveBePe15].

2.6 The Role and Organization of SPM

A software product manager handles the management of software with the objec-

tive of achieving sustained success over the life cycle of the software product,

family, or line. This objective refers to economic success, which is ultimately

reflected in the profits that the products generates. Software product managers

have the business responsibility across different versions, variants, and associated

services of a product. They have to manage a broad set of product-related activities

as shown in the ISPMA SPM Framework (Fig. 2.9).

2.6.1 Objectives and Success Measurements

Sustainability is a common corporate management objective for companies aiming

at ensuring their long-term existence, even if investors have been demanding ever

more short-term success. Sustainability should be included in the corporate vision

statement and strategy (see Chap. 3) and become part of a lasting business model.

For instance, an IT consulting firm cannot suddenly become a software vendor

company and vice versa. Such a change even if feasible would take several years.

Successful products are not automatically sustainable. In the music business, for

example, concert tickets are seasonal articles that lose any value when the concert is

over. Companies who promote or arrange concerts can have a sustainable business

model and a sustainable product family, but their individual products are not

sustainable. Furthermore, a music group can serve as a brand name, so to speak,

and thus be sustainable.

The examples shows that even if a company has an inherently sustainable

business approach, its individual products will not necessarily be sustainable, but

its product families and business model may be. Sustainability is found in a

40 2 Management of Software as a Business

http://dx.doi.org/10.1007/978-3-642-55140-6_3

company’s assets, i.e. in the company’s true values, that need to be protected and

developed. Together, the assets will determine the company’s sustainability. The

purpose of product management is to manage such product-related assets system-

atically on a long-term and sustainable basis, regardless of whether this involves

single products, product families or product platforms.

In the case of software products, the single product itself is usually sustainable,

at least for a time. An exception are low-priced consumer products, such as

computer games. Here, the individual product may enjoy a burst of popularity

and then fade away. The game product family or platform is the determinant for

sustainability and should be managed accordingly. Software product management

refers to the management of a software product (or product family or platform) over

its entire life cycle in accordance with corporate level objectives.

Corporate management may press strongly for short-term success. It may rou-

tinely assign higher priority to exigencies than to essentials. Such pressure

generates the need for caretakers whose job it is to pursue and attend to all urgent

major and minor demands in the company. In our opinion, such caretaker tasks are

best organized in a staff function like a “management assistant.” Such an assistant

can deal with them across the organization. Alternatively, corporate management

may be geared more to a sustainability concept. In that case, it will need people with

managerial skills to manage the corporate assets according to the strategies and

objectives that are laid out. It is the software product manager’s task to manage

these assets insofar as software products (or product families or platforms) are

involved.

In reality, of course, a company is never quite as black-and-white as these

described models. The emphasis on sustainability does not imply that a company

need not quickly and actively take care of urgent customer problems, for instance.

Nevertheless, we find such an exaggerated comparison useful for defining software

product management objectives and job descriptions. A software product manager

cannot work strategicly on software products as sustainable company assets, and at

the same time be burdened with endless day-to-day tasks. This combinationwould

only create another caretaker function with a new name. Such a function can be

useful and important for the company, but it would not be software product

management as defined in this book. Alternatively, the software product manage-

ment function can be staffed with enough personnel so that employees can be

assigned to individual tasks, with caretakers, branding, business analysts, and

requirements management specialists all cooperating. In any case, software product

managers, as defined here, and caretakers must work closely together.

In our view, the primary objective of software product management is to achieve

sustainable success over the life cycle of the software product (or product family or

platform). This objective refers to economic success, which is ultimately reflected

by the profits that the product generates. Since profits lag behind investments,

e.g. an investment phase involving losses may be followed by an extended highly

profitable phase, customer satisfaction is often considered as a significant measure

of software product management success. This significance is based on the hypoth-

esis that there is a strong correlation between customer satisfaction and customer

2.6 The Role and Organization of SPM 41

loyalty to the product and the producer. According to recent publications and based

on our experience, this is only partly true (see [Reichh96]). Of course, an extremely

dissatisfied customer is likely to switch to a different product and producer.

Conversely, a high degree of customer satisfaction will not guarantee that a

customer will not switch to a different product or producer. However, only if the

functionality of a replacement product is much better (e.g. it is considered to be a

“technology leapfrog”) or one is very dissatisfied with the current product, is it

worth the risk of changing. So there is value in customer satisfaction, and it is an

important factor to be taken into consideration. However, the measurement of the

concept is challenging as we will outline in Sect. 5.6.

In certain situations and with some products, software product management does

not focus primarily on profits attributable to a single product. For example, it could

be in the interest of the company to achieve a maximum number of installations of a

particular product platform as a prerequisite for selling other profitable products.

One example of this has been the pre-installation of the Microsoft Windows

operating system on new computers, for which the computer manufacturers pay

Microsoft a relatively small license fee. By doing this, Microsoft ensures the

continued dominance of its Windows operating system on desktop and laptop

computers, which in turn serves as a platform for a large number of profitable

software products sold by Microsoft and other vendors. In this case, market share is

a better measure than profits. However, it needs to be taken into account that no one

ever made much money from a high market share at a low or negative profit.

Two things become apparent in this discussion:

A conflict exists between software product management and executive manage-

ment. Product management, by definition, has a long-term focus. Executive man-

agement has the desire to define objectives and variables that can be linked to

business periods and thus evaluated annually. Development cycles or product

success may not fit neatly into the business cycles that management will want to

use for checking whether product management is on the right course and, if

necessary, to make corrections. Also, there is the need to set individual objectives

for each staff member and meet with them once a year to discuss performance and a

salary increase. Unfortunately, this conflict is usually resolved in favor of more

short-term objectives and measurements.

The sentence that a high-ranking American manager had hanging up as a poster

in his office saying “Measurement Systems Do Work!” is true. If a company uses

measurement systems to evaluate the performance of its employees and perhaps

even makes bonuses and salary increases dependent on the results of such an

evaluation, it must assume that the employees will try to optimize those

measurements. This optimization means that, unless the measuring system uses

measures that reflect what is intended exactly, the employees will be optimizing the

wrong things. Since measurement systems are supposed to be simple so as to

minimize the amount of time and effort necessary for evaluation, we often observe

that the objectives become distorted and the wrong things are optimized. The

inadequacies often have absurd consequences. Sometimes software licenses are

unnecessarily given away to achieve certain target values with respect to the

42 2 Management of Software as a Business

http://dx.doi.org/10.1007/978-3-642-55140-6_5

number of licenses installed. This debases the value of the product in the market-

place and the price it can command. More work is sometimes invested in the

manipulation of figures to meet poorly conceived measurements than in actual

business activities.

We do not have any easy solution regarding the topics of “objectives and

variable elements of compensation”. In the end, the only possible solution is for

software product managers and their superiors to talk about the problems we have

described and reach an agreement together. This agreement should include impor-

tant, period-linked objectives regarding actual individual employee tasks. Yet at the

same time they should ensure that the product manager will still be able and willing

to pursue the objective of sustainable product success. There are some available

levers: milestone payments, employee rankings, longer term quotas and

evaluations, career enhancement (many levels in a professional position). Richard

Campione, former SAP’s Senior Vice President of Suite Solution Management,

confirms this: “The core concern is that the measurable key performance indicators

(KPIs) tend to be significantly lagging indicators, and so while good for communi-

cating intentions, and useful for long term, they frequently are inadequate for the

short term. Here one needs to blend the solid, quantifiable KPIs with softer

measurements and people’s judgment.” He uses criteria like product usage,

deliverables, market responses to the product, and 360-degree evaluations involv-

ing responsible counterparts in the other units of the company like Sales, Market-

ing, Development, etc.

2.6.2 The Role of the Software Product Manager

If software product management is implemented as a role in the company organi-

zation, corporate management must define the purpose and objective of this role

and communicate it throughout the company. It also must ensure that all those

concerned find the job description acceptable. Regardless of how a company is

organized, responsibilities will always be incompletely defined. Some issues and

problems will always be neglected because no one feels responsible. Product

management is therefore often misunderstood as being a universal caretaker

responsible for all such issues and problems. Corporate management must deal

with this problem by defining and delimiting the scope of all relevant tasks. It also

must ensure that the software product management function is instituted with a

genuine focus on sustainability.

The software product manager is supposed to be the person chiefly responsible

for all relevant aspects concerning his product. Management skills are individual,

personal qualities, but they can also be backed up organizationally. A management

position tends to be easier to fulfill when it has managerial authority. Product

managers frequently lack such authority, however.

The following chapters detail the broad spectrum of issues and tasks that a

software product manager stands responsible for. Irrespective of the scope of his

managerial authority, the software product manager has a cross-organizational role,

2.6 The Role and Organization of SPM 43

requiring a high degree of communication and coordination between all functional,

organizational units. Condon describes this challenging task in detail [Condon02].

A job description should include the skills required for this position, i.e. the

knowledge and experience needed to perform the tasks associated with the job. It

will reflect the scope of responsibility of the software product manager’s position as

discussed in this chapter. This approach to the software product manager position is

problematic because the scope of responsibility is so extensive that it will hardly be

possible to find a candidate who can meet all the qualifications. Richard Campione,

formerly SAP’s Senior Vice President of Suite Solution Management, says: “If you

try to find a person who fulfills the complete list of requirements you end up with

the null set.” This statement does not mean that a “software product manager”

position should not be established and filled. Such a position should rather be

created with the understanding that a candidate cannot be equally experienced

and knowledgeable in all aspects of the job. It is a management position for

which it is more important to work in cooperation with specialists from all relevant

organizational units, ask the right questions and be able to draw conclusions. Basic

managerial skills, extensive knowledge and experience in two of the relevant

subject areas, and a capability of seeing things in a broader perspective will usually

be an adequate basis for performing the job. Software vendors always find it

difficult to fill product management positions, since there is no specific training

for the job. This difficulty typically leads to a mixture of very experienced people in

such positions who have worked in completely different areas of the company or

industry during their career on the one hand, and specialists who can competently

assume responsibility for a certain subtask due to their training and career,

e.g. branding, on the other. This mixture is particularly visible if the software

product management function is staffed with enough personnel to allow a speciali-

zation by skills. In any case, career entrants are seldom seen here.

Software organizations can have different foci for the role of SPM which

translates into different priorities regarding these three areas:

• Business aspects.

• Product contents.

• Product Marketing.

We see three typical manifestations in the industry that are shown in Fig. 2.12. The

size of each circle represents the priority of the area.

We consider Product Marketing Manager as a role separate from SPM. How-

ever, in some organizations both roles are assigned to the same person and may be

called SPM. The strategic SPM is the business leader or “mini-CEO”

[Ebert07]. The technical SPM is more focused on defining the contents of the

product than the other two specializations.

Software Product Management’s orchestration task—as shown in the SPM

Framework (Fig. 2.9)—means to optimize the cooperation of all other units to

achieve product-related goals. This task is conflict-laden in several dimensions. If

the company has more than one product or product family, there is competition, not

44 2 Management of Software as a Business

in the market, but internally regarding the limited resources. In this competition that

is carried out in strategy discussions and planning processes, each product manager

represents his product. He is expected to take a strong position and be biased. On

the other hand, it may not help his career if he questions the executive

management’s strategy. These inherent conflicts are the reason for why the product

manager needs not only broad competence, but also a high degree of diplomatic

dexterity when dealing with conflicts of goals and culture, human factors, and

corporate politics. This aspect is well described with real world examples by

Condon [Condon02]. Executive management can and must help here by clearly

defining and separating tasks, responsibilities, and competencies (see [Gorche11])

and by acting as referee in case of escalation.

Corporations use various titles for the software product manager’s position, such

as product manager, programmanager, solutionmanager, offeringmanager or brand

manager. In corporate IT organizations, terms like “applicationmanager” or “(appli-

cation) service manager” can also be found. The latter comes from ITIL role of the

same name [Axelos16]. Essentially, most of these names refer to the software

product manager described in this book, although some differences do exist.

2.6.3 Organizational Aspects of SPM

We have already indicated the broad spectrum of topics and tasks that a software

product manager has to handle. Software product management is not primarily

focused on a single development project or a single marketing action, such as a

product launch. These are “merely” steps taken in the pursuit of long-term sustain-

able objectives. Software product management is the combination of all the tasks

described in this book. It can therefore be conceived neither as a project which by

definition would have a beginning and an end nor as a process which by definition

would consist of a well-defined sequence of process steps. Only some tasks can be

interpreted or organized in this manner. Requirements management, for instance,

Fig. 2.12 SPM manifestations

2.6 The Role and Organization of SPM 45

can be described as a process with respect to individual requirements (see Sect. 4.2),

whereas the development of a new product release is often considered to be a

project.

In conformance with the sustainability of the software product (or product

family or platform), software product management viewed collectively as a combi-

nation of tasks is an ongoing activity. This fact is rather unpopular at a time when a

lot of people believe that they can measure the efficiency of an organization by the

share of its project or agile work. This idea stems from a vague feeling that

unproductive colleagues might just comfortably while away their time performing

ongoing tasks, whereas strictly organized project work—maybe based on agile

methodology—would force everyone to be productive. In over 30 years of experi-

ence in the software business, we have not found any reason to support such views.

We have experienced many unproductive projects and highly productive

employees who perform ongoing jobs. Furthermore, ignorance of ongoing critical

tasks, such as market analysis or personnel development, tends to create enormous

problems in the medium term for the company as a whole. Our observations show

that good corporate management and a good working atmosphere help significantly

to influence productivity. Software product management, in particular, is a good

example of an ongoing task that is one of the most challenging jobs in a company. It

requires a high degree of personal commitment and diligence for the product

manager to be successful in the medium and long term.

A number of product management tasks, in particular in product strategy, are

tied to the company’s annual cycle for strategy and financial planning. For these

tasks, an annual schedule may help product managers to prepare their inputs in time

for the company’s planning schedule. However, there are other tasks like dealing

with legal aspects that are often triggered by outside events like a customer

situation. And some tasks like performance management are really continuous

tasks, i.e. require the product manager’s attention at least once a month.

In big companies, product managers can be organized in a team that can exploit

the different skills of the team members with an intelligent division of work. In a

small company, such a division of work in a product management team is usually

not possible. In addition, the success of a small company is so tightly connected to

the success of the one or the few products that executive management handles the

most important product management tasks themselves, particularly the financial

ones. Still, the holistic product view is important for smaller companies as well. An

single executive cannot cover the holistic approach for time and skill reasons and

might neglect core elements like product planning and legal considerations.

The holistic entrepreneurial component in software product management

suggests a company should be structured so that the SPM unit is close to executive

management, i.e. as a staff function. The probability of success of this structure

depends on the company’s culture and the attitude of the people involved, in

particular of executive management. The staff function has a lot of responsibility

without the right to give orders to those who have the resources and need to

contribute for success. If the company’s culture is in conflict with

non-hierarchical cooperation and any escalation to executive management is

46 2 Management of Software as a Business

http://dx.doi.org/10.1007/978-3-642-55140-6_4

interpreted as a personal attack, as is common in a lot of companies, the software

product manager is in a losing position. SPM as a staff function can only work if

executive management defines, communicates, and supports the software product

management unit openly.

What are the alternatives? Let us first assume a functionally oriented organiza-

tional structure (see Fig. 2.13). Here, underneath the corporate executive manage-

ment there are the areas of Development, Sales, Marketing, and Services plus

administration and staff functions, e.g. Finance and Human Resources. The soft-

ware product management unit could either be integrated with Development or

Marketing. An integration in Sales is not recommended since the short term goals of

Sales create too much of a conflict with the Software Product Management’s goal of

sustainability.

Integration into Development often seems more plausible. This approach is

driven by the idea that Development can best foresee where technology is going.

The experience of IBM that used this organizational structure for a long time shows

disadvantages, however. Developers are typically far away from the market and the

customers even when diverse initiatives support customer contact. Cultural differ-

ence between Development, Sales, and Marketing prevent a product management

unit that belongs to Development to fulfil its role as mediator. It is not considered as

(and probably isn’t) impartial. The responsible Development manager will typically

avoid being escalated by his Product Management unit. And Sales and Marketing—

having been cut out of the requirements and implementation decisions—may well

disavow the product after it is developed.

The same disadvantages appear in part when one considers making Software

Product Management a part of Marketing. Marketing has the advantage of being

closer to the market and the customers. Marketing is usually a smaller unit whose

self-interest is better aligned with sustainable software product management,

although its goals are more short to medium term. So we argue for putting the

Software Product Management unit into Marketing if executive management does

not want it as a staff function in a functionally oriented organizational structure.

However, this is only valid if Marketing is clearly separated from Sales.

A lot of companies have migrated from a strictly functionally oriented structure

to other organizational structures that are better aligned with the necessities of

Fig. 2.13 Functional organization

2.6 The Role and Organization of SPM 47

cooperation across the company. It is not the subject of this book to discuss the pros

and cons of these organizational structures that range from matrix to business

process orientation. However, we want to emphasize that, given the diverse forms

of cooperation and communication within a company, no organizational struc-

ture—whatever it looks like—can make non-hierarchical, horizontal cooperation

superfluous. Exactly the management of such horizontal cooperation is a major task

of product management called orchestration.

48 2 Management of Software as a Business

Product Strategy 3

The pace of technological change in the past several decades has been faster in the

IT industry, specifically in the software sector, than in any other industry. This

development makes it necessary for the organizations concerned, both software

vendors and corporate IT organizations, regularly to make far-reaching decisions

under uncertainty that have considerable financial and even survival consequences.

Yet, in spite of the fast pace of change, companies with a clear strategic view are the

ones that prove to be successful in the long term. In recent years, SAP, Apple, or

PTC have been excellent examples. This does not mean that at these companies all

product ideas are succesful or that every product strategy produces the desired

results. It does also not mean that strategy definition is strictly top-down without

experimentation. However, it does mean that these companies routinely manage to

reach agreement on and consistency in their corporate vision, corporate strategy,

product strategies (or product platform and family strategies) and more short-term

implementation plans by means of iterative processes that sometimes require a

great deal of time and effort. So the companies realize faster what works, and what

does not work, can avoid waste, and move on in a more focused and more

aligned way.

While a product vision gives direction for the future of the product in a

condensed way (see Sect. 3.1), the product strategy provides the details by which

to implement that vision. Normally a strategy covers a time span of about 1–5 years

in the future. For consumer (B2C) products, it is typically shorter, for business-to-

business (B2B) products longer. Due to the increasing pace of change, a lot of

companies have shortened the strategic timeframe that they look at, because

specific strategic plans for the outer years have often proven to be obsolete by the

time you get there. We consider this as a dangerous trend. In our view, companies as

well as product managers need to know on a more abstract level where they want to

go. Otherwise long-term decisions are made without any foundation which

increases risks further. So having more abstract strategy contents for the outer

years is better than no contents at all. In the sections of this chapter, we shall

come back to this challenge. In the Powerboat and Icebreaker scenarios (see Sect.

Springer-Verlag GmbH Germany 2017

H.-B. Kittlaus, S.A. Fricker, Software Product Management,
DOI 10.1007/978-3-642-55140-6_3

49

2.5)—when a new product is developed—the strategy usually evolves in parallel to

the first version of the product with experimentation and learning.

The software product manager is responsible for defining the strategy for his

product (or platform or family) and to support and update this strategy using a

standard process over time. The strategy should address the development or evolu-

tion of each of the items in the list shown in the Product Strategy column of

ISPMA’s SPM Framework (see Fig. 2.9) during the strategic timeframe:

• Positioning and Product Definition: define scope, customer value, target market

segments, channels of the product.

• Delivery model and service strategy: explain how the software product is made

available to customers, and which professional services will be offered as part of

the whole product offering.

• Sourcing: define where resources, in particular human resources and software

components, are coming from.

• Business case and costing: define business elements like benefits and cost,

forecasts and the business plan.

• Pricing: determine how prices are defined and managed over time.

• Ecosystem management: define the roles to be played in relevant ecosystems,

and managing relationships with partners and other external stakeholders.

• Legal and IPR management: take care of all legal product aspects.

• Performance and risk management: define and take actions based on continuous

business performance measurement and risk assessment.

These items are, of course, interdependent. If, for example, the available budget is

smaller than originally assumed, it will only be possible to expand the product

scope to a lesser extent or more slowly. If new segments are to be added to the target

market within the strategic time frame, the product scope may have to be expanded.

Dependency on other products can also have considerable consequences, e.g., if

certain functionalities or enabling code must be available in several products at the

same time. In addition, the aggregate resource planning for all products needs to be

coordinated with the resource planning for the company as a whole. As a rule, the

larger a company is and the more dependencies of this type exist within a company,

the more difficult, complex and time-consuming the entire alignment process will

be, in particular for budgets, resources and roadmaps. The roadmap can be consid-

ered as the bridge between strategy and implementation plan. It will be covered in

Sect. 4.1.

There are a number of models that can be used when defining parts of a software

product strategy. One is Michael Porter’s Five Forces [Porter79]. Another one is

Alexander Osterwalder’s Business Model Canvas ([OstPign10], see Fig. 2.2). Fur-

ther variants of these models have been developed and are in use.

In Fig. 3.1, the elements of the Product Strategy column in ISPMA’s SPM

Framework (Fig. 2.9) are mapped to the Business Model Canvas and to the sections

of this chapter which have a finer granularity in the areas of positioning and product

definition.

50 3 Product Strategy

http://dx.doi.org/10.1007/978-3-642-55140-6_2
http://dx.doi.org/10.1007/978-3-642-55140-6_4

In the last Sect. 3.14, organizational aspects, tools and options for documentation

in the product strategy domain are discussed.

Software is becoming a core element of the products of more and more

industries, like automobile, manufacturing, or health. Therefore, software plays

an increasingly important role in the product strategies of companies in these

industries. To some degree, for them product strategy becomes software product

strategy.

3.1 Product Vision

3.1.1 Overview

A strong product vision is often essential to engage and convince all stakeholders

inside and outside of the company of the worth of a product. A vision describes

what the future product will be, why it is needed, and why it will be successful (see

[McGrat01], p. 1 ff). The elements of the product strategy provide the details that

Section in this book Business Model
Canvas

ISPMA SPM Framework, Product
Strategy column

3.1 Product vision ./. Product Definition

3.2 Product name ./. Positioning and Product Definition

3.3 Customers Customer

Relationships

Value Propositions

Positioning and Product Definition

3.4 Market Customer Segments Positioning and Product Definition

3.5 Product Definition ./. Positioning and Product Definition,

Delivery Model and Service
Strategy

3.6 Positioning Channels Positioning and Product Definition

3.7 Service Strategy Key Partners Delivery Model and Service

Strategy

3.8 Sourcing Key Resources Sourcing

3.9 Business View Cost structure

Revenue streams

Business case and costing

3.10 Pricing Revenue Streams Pricing

3.11 Ecosystem

Management

Key partners Ecosystem Management

3.12 Legal aspects ./. Legal and IPR Management

3.13 Performance and Risk

Management

./. Performance and Risk Management

Fig. 3.1 Mapping of syllabus chapters, Business Model Canvas and ISPMA SPM Framework,

Product Strategy column

3.1 Product Vision 51

turn the vision into a manageable and executable path into the future. In bigger

companies a product vision needs to be aligned with the corporate vision.

The first version of the product vision is needed when work on the development

of the product’s first version starts. Over time, the product vision continues to

evolve so that it always looks ahead at least to the end of the strategic timeframe.

This section describes the contents of a product vision and outlines approaches

how to get to a good product vision. The reader will understand the related process

and the impacts.

3.1.2 Concept

Like product name (see Sect. 3.2), a product vision can be considered as an element

that is referenced in a product strategy, but comes before it. The vision represents

the objective that shall be achieved with the ideas set forth in the strategy. There is

no universally agreed definition of product vision to be found in the literature. We

define

Product vision ¼ Conceptual description of what the future product will be at

the end of the strategic timeframe, i.e. high-level descriptions of a product concept

and a corresponding business model.

The product vision is the “guiding star” for the strategy. It outlines in a

condensed form:

• Conceptual image of what the future product will be,

• The customer value proposition that says why the product is needed and cannot

be replaced by an alternative, and

• The business value for the vendor, i.e. why it will be successful.

A product vision is focused on a point in the future, at least the end of the strategic

timeframe. It is documented in a few sentences or as a relatively short text, no more

than one page of paper. The vision needs to be phrased from a marketing perspec-

tive, in a style that has a motivating effect on stakeholders inside and outside of the

company by painting a desirable, ambitious, but achievable future.

The product vision is especially important in the start phase when the first

version of the product is conceived and developed. In case the product has not

yet been named at that time, most companies work with an internal code name that

is used in the product vision and in internal communication (see Sect. 3.2).

The term “product vision” is also used in connection with agile methodologies,

in particular Scrum. While it is not mentioned in the Scrum Guide [SuthSchw13],

most Scrum consultants consider it as an important element of the Scrum approach.

Originally that agile product vision was focused on the given development task. It

was supposed to describe in a condensed way what the Scrum Team was asked to

develop within a couple of weeks or months. Over time, some Scrum consultants,

e.g. Pichler [Pichler10], have broadened the scope and use product vision in the

sense we define it here.

52 3 Product Strategy

3.1.3 Development of a Product Vision

A convincing product vision looks very straight-forward, logical and easy. How-

ever, developing it is more difficult and time consuming than most people expect.

We suggest the use of a template that we have used in a number of software

companies. It can support the development of a vision by focusing on the problem

space and the solution space. The problem is described in a solution-neutral manner

and explains the pain-points addressed by the solution as well as the criteria used for

evaluating product success from the customer perspective. The solution is described

in terms of use scenarios, features, benchmark, and unique value proposition. For

the development of the vision, a combination of the product manager’s draft as a

synthesis of ideas and contributions solicited internally [GoFrPaKu10] and a

workshop approach [Chesbrou05].

Figure 3.2 illustrates the template. The example is drawn from a product that

tracks consumables in an operating theatre. This template makes sure that relevant

information is collected, but does not automatically result in a wording that is

marketing-oriented. So in a second step, this needs to be turned into a marketing

statement. This transformation can be made by re-ordering the presentation of the

vision statement:

In order to significantly decrease clinics’ effort and increase the availability of operating

theatres, the Consumables Tracking Solution (CTS) reduces the nurses’ and analysts’

manual work by tracking the use of consumables in an operation, enabling its analysis, and

automating reporting. It enables clinics to increase the efficiency of the operation work and

deliver decision-support for consumable planning and improvement.

Often companies want shorter vision statements like:

The Consumables Tracking Solution (CTS) increases clinics’ efficiency and reduces cost

by automating tracking, analysis and reporting of consumables in operating theatres.

Problem statement

the problem of immense effort for reporting consumables

affects nurses, and the clinic overall

the impact of which is inefficient use of operating theatres

a successful solution increase the availability of the operating theatres.

Position statement

for nurses and analysts

who administrate, assist in, and improve operations

the Consumables Tracking Solution (CTS)
that tracks the use of consumables in an operation, enables its

analysis, and automates reporting

unlike the current labor-intensive manual approach

our product increases the efficiency of operations and delivers decision-

support for consumable planning and improvement.

Fig. 3.2 Example of a problem and position statement (source: EU FP7 FI-STAR)

3.1 Product Vision 53

In order to achieve the buy-in of the product team members, it can help to develop

and evolve the product vision in workshops with the key team members.

3.1.4 Further Examples and Variations

While it should be fairly easy to come up with a convincing vision statement for a

new product, it can be challenging to do that for a product in a later phase of the life

cycle when investments are typically reduced. The following examples illustrate

this dependency.

CRM SaaS product, early life cycle phase:

For a mid-sized company’s marketing and sales departments who need basic CRM func-

tionality, the CRM-Innovator is a Web-based service that provides sales tracking, lead

generation, and sales representative support features that improve customer relationships at

critical touch points. Unlike other services or package software products, our product

provides very capable services at a moderate cost.

Code Generator product, late life cycle phase:

“Current drivers of the Code Generator vision include:

• Continued support of J2EE and .NET frameworks

• Extending support of Web services

• Infrastructure enhancements

• Integration with our companies’ systems management, security and application life

cycle solutions

The Code Generator is a world-class enterprise application development environment that

continues to deliver the core capabilities it has provided for two decades:

• Platform independence

• Application portability

• Productivity.”

Some companies prefer not to stay so close to the product functionality and to be

more “visionary” which translates into more abstract vision statements. Here are

examples:

Salesforce.com started with “The end of software” as a vision which sounds a bit

pathetic and is misleading since SaaS is based on software as well. What they have

meant is “the end of deployed software”. They used this claim to justify their

software-as-a-service approach.

SAS Institute’s “Providing organizations with the Power to Know” fits the

business intelligence market nicely promising the transformation of data into

insight.

54 3 Product Strategy

http://salesforce.com

3.1.5 Outcome and Impacts

A compelling product vision can be a powerful instrument to keep the product team

aligned and on track, especially during the development of the initial version of the

software product. It can also be a good marketing tool during initial product launch

and during later phases of the life cycle that communicates the core direction for the

product.

A number of studies have documented the important role of product vision.

Pearce and Ensley [PearEnsl04] looked at teams working on innovative develop-

ment, shared vision and innovation effectiveness which they define as the speed at

which innovation is developed, the magnitude of the innovation, and the productiv-

ity of the implementaton. They found shared vision and innovation effectiveness to

be reciprocally, positively and longitudinally related. This means they influence

each other positively over time. Tessarolo [Tessarol07] looked at cross-functional

teams working across internal and external organizational boundaries. He could

show a shared clear product vision to be strongly correlated to speed of

development.

Lynn e.a. [LyAbVaWr99] studied new product development projects in high

tech industries. They showed product success to be most strongly correlated with

vision and new product development process. In [LynnAkg01] Lynn and Akgün
further detailed these findings by looking at four scenarios and three vision factors,

vision clarity, vision stability, and vision support, i.e. how strongly the project team

members shared the vision. They found that vision clarity correlates with success in

evolutionary market and technical innovation and in revolutionary innovation, but

not in incremental innovation. Vision stability correlates with success in incremen-

tal innovation and evolutionary market innovation. And vision support correlates

with success in incremental innovation and evolutionary technical innovation.

3.1.6 Summary and Conclusions

Given the strong impact a good product vision has on product success and speed of

implementation, it is worth investing some time and effort into creating the vision

and revisiting it whenever the product strategy is updated. The proposed template

can help with articulating a convincing vision. The product strategy must be tightly

linked to and synchronized with the vision. So an update of the vision needs to be

reflected in the product strategy.

3.1 Product Vision 55

3.2 Product Name

3.2.1 Overview

The product name is both the internal and external “face” of your product. So it

should be chosen with a strong marketing perspective taking into account how the

name as a term will be perceived literally and psychologically by all the

stakeholders. With software products, often numbers are added to the name to

differentiate versions and releases of the product. Such an approach both preserves

the product branding and conveys newness with a higher number. Brand recogni-

tion may be significantly increased by combining the product name with a specifi-

cally designed logo.

3.2.2 Concept

A product name is used in a product strategy, but is not part of it. If in the start phase

when the first version of the product is conceived and developed, the product has

not yet been named, most companies work with an internal code name that is used

in internal documents and communication. It is in the DNA of any language that

people need a name as an identifier for “a thing” when they want to talk about

it. There are lots of studies that prove that a good product name has an effect on the

buy decision of customers, more so in B2C, but to some extent also in B2B,

e.g. [HiAlCeBa13]. When the first version of the product is launched, the name,

maybe accompanied by a logo as a graphical representation, must have been chosen

and becomes the center of all marketing messages.

Naming a product works the same way for software as it works for other

products. There are a number of criteria to be met for a good product name:

• Memorable, appealing and motivating for the potential customers in the target

market.

• Distinguishing against competitive products.

• Legally on the safe side.

Naming is a major part of the branding of a product. Since software product

managers are usually not experts on branding, it is advisable to involve such

experts, in particular on the legal side (see Sect. 3.12).

The product name is what stakeholders identify a product by. So as long as the

name does not change, they consider it as the same product even though it may

change significantly over time. For licensed software products, the legal and

financial views often differ from this public view, i.e. a new version is internally

formally considered as a new product even though the name stays the same.

For licensed products, it is common to denominate software versions (see Sect.

4.3) after a specific nomenclature, which is generally dependent on the vendor,

56 3 Product Strategy

http://dx.doi.org/10.1007/978-3-642-55140-6_4

however. Often, we find a three- or four-level hierarchy of software levels, for

example:

• Version number.

• Release number.

• Modification Level.

The version identifier is added to the product name. An example of complete

product identification is IBM z/OS Version 1 Release 9 Modification Level

5 (in short z/OS 1.9.5).

3.2.3 Process

Naming a product may sometimes be quite difficult. Everybody feels competent,

everybody has an opinion. As the responsible product manager, you can leave the

question to your executive manager who will dominate the discussion anyway, or

you can organize a brainstorming or an internal competition with an award for the

winner. A clearly articulated value proposition can inspire the name finding. The

criteria to determine the winner are the ones listed above. A helpful discussion on

project naming that is largely applicable to product naming can be found in

([GausWein89], p. 128 ff.).

Finding an internal code name is not restricted by legal considerations. For the

official external product name, however, the legal criterion can easily turn all the

effort that goes into brainstorming to waste. You do not want to spend a large

amount of marketing money on establishing a new product name in the market, and

then find out that somebody else has a trademark on it and forces you to change your

product name. So legal clearance and possibly protection is highly advisable before

the money is spent. Often the investment in a trademark for the geographic target

markets can make sense. Relevant internet domain names need to be secured as

well. Since most descriptive names are legally protected somewhere by a third

party, you can either buy the rights to the name from that third party, or go with

some artificial word as name that may not be descriptive but is not already legally

protected. If internal brainstorming does not succeed specialized agencies can help

who come up with proposals and take care of the legal clearance.

Once the name is set, the marketing activities are focused on making it known

and creating a brand image in the target market (see Sect. 6.3). This usually means a

significant investment.

Due to the significant branding investment, a change of the product name at a

later point in time only makes sense in exceptional situations, e.g. when you are

legally forced to change because some other party has the rights, or when the

reputation of the product is so bad that you want to relaunch it under a different

name, or when product names are aligned after an acquisition.

3.2 Product Name 57

http://dx.doi.org/10.1007/978-3-642-55140-6_6

3.2.4 Summary and Conclusions

The product name is what people identify the product with. A good name can also

have a positive effect on the motivation of people working on the product inter-

nally. While name finding is a hopefully rather infrequent task for a particular

product, it requires and justifies some effort and investment. Consideration of legal

risks is critical.

3.3 Customers

Customers are at the core of any business. No customer, no business. So anybody

who cares about the business must care about the customers. We differentiate

between customers as the ones who are the legal contractors and pay, and users

who work with the software product on a frequent basis. In the B2B area, customers

are usually companies that are represented by some select employees who are

decision makers and/or interface with the software vendor, and are separate from

users. In the B2C area, customers and users are often the same persons.

While the primary interfaces to existing and potential future customers are

usually with Sales and Marketing units, the software product manager needs to be

in touch with customers and users in order to better understand needs, usage of the

product, and user experience with regard to the product. Every product manager has

to find his own way of having frequent customer contacts without neglecting the

wide spectrum of other tasks that are part of the product manager role.

In the B2B software business, it can make sense to maintain a couple of personal

relationships to customer representatives that the product manager can informally

approach whenever he wants feedback on specific questions. However, these

relationships must not fully replace the broader consideration of the target market.

In the B2C software business, there is usually a mass market with a high number

of customers. Feedback from individual customers can be even more misleading

than in the B2B market. A representative sample of customers promises more

insight. Nevertheless, one-on-one contacts at fairs or similar events can add value.

Customers of software standard products pursue conflicting objectives. They

usually want the standard product to be a perfect fit for their needs and their

environment, i.e. like a custom-made solution, but at the much lower price of the

standard product. Finding a compromise between these conflicting objectives is a

key success factor of the work of the product manager that touches on issues like

customer value definition, product definition, customizing options, service strategy,

pricing, or handling of customer-specific requirements. Conflicts can also arise

between requirements benefitting existing customers vs. potential new customers,

e.g. in different market segments.

The relationship with a customer can be considered as a “Customer Life Cycle”,

which consists of four phases that have some similarities to the product life cycle

(see Sect. 4.4). Note, however, that the former life cycle describes how a customer

58 3 Product Strategy

http://dx.doi.org/10.1007/978-3-642-55140-6_4

evolves. The latter describes how the product evolves. Figure 3.3 shows a simple

customer life cycle.

In each customer life cycle phase the vendor, i.e. primarily the Sales and

Marketing people, ought to define appropriate actions in order to optimize, main-

tain, and renew customer relationships.

It is in the interest of the software vendor, and therefore the product managers of

the involved software products, to make the relationship with a customer, i.e. the

“Customer Life Cycle”, last as long as possible. We recommend to establish

measurements for success for the different phases.

3.4 Market

3.4.1 Overview

The concept of a market is a central element of our worldwide economic system,

and also a central term in economic theory. In general, it is the meeting point of

buyers and sellers of goods and services where they can exchange offerings against

some form of compensation. This exchange is called a transaction.

For a particular product, it makes sense to focus on the subset of buyers and

sellers that are relevant for the product. This relevant market can be further broken

down into market segments that differ with respect to certain criteria, e.g. B2B

versus B2C markets.

Phase of the customer life cycle Appropriate activities
Customer initiation requirements management

information gathering

consulting

configuration

Customer acquisition negotiation

transaction processing

financing

delivery

Customer loyalty customer service (Service Level Agreements)

user behavior

warranty, maintenance

updates

cross-selling

Customer recovery new business

resale

secondary purchase

upgrade/up-selling

Fig. 3.3 Phases of the customer life cycle (based on [MehlBiSt14], p. 64)

3.4 Market 59

The sellers in a relevant market can be competitors offering similar or function-

ally overlapping products, or players with offerings that are complementary. The

latter players are candidates for partnership.

For a software product manager, defining the relevant market is a key part of the

task of product positioning usually done in cooperation with Marketing. Once the

relevant market is defined, the buyers in that market are the target customers for the

product.

3.4.2 Concept

Since “market” is such a central concept in both the academic and the real world,

there are lots of definitions from micro- and macro-economics, marketing, sociol-

ogy, or anthropology. For this book, we use these definitions:

Market ¼
(a) The area of economic activity in which buyers and sellers of goods and

services come together, and the forces of supply and demand affect prices.

(b) A geographic area of demand for commodities or services.

(c) A specified category of potential buyers.

Market segment (of a given market) ¼ Market with a subset of the buyers,

sellers, goods and services of the given market.

The definition (a) above means that a market is a set of sets of potential buyers,

potential sellers, goods and services, respectively, at a particular point in time. A

market segment is homogeneous with regard to certain criteria.

As an example, we look at the market for weather apps worldwide. By using

different criteria for segmentation, we can create different market segments of this

weather app market:

• Free vs. paid apps: defines market segments that are restricted to the sellers that

provide free or paid apps; with free apps, compensation is not monetary, but

e.g. attention to advertisements. Some apps may be available with and without

payment and therefore are part of both segments.

• Geography: restricts the market segment to the buyers and sellers active in a

chosen geography and the products available in that geography, e.g. the UK.

• Functional scope: restricts the market segment to apps that cover the chosen

functional scope, e.g. 15-day forecast in weather apps.

Sellers in a given market for software product A can be

• Competitors: they offer similar or functionally overlapping products; the buyer

will either buy product A or the competitor’s product, but not both,

• Potential partners: they offer products and/or services that are complementary to

product A; they are members of product A’s software ecosystem,

60 3 Product Strategy

• Unrelated sellers: they are neither competitors nor potential partners; if there is a

higher number of unrelated sellers in the market defined it is an indication that

the market definition may not be sufficiently precise and narrow.

The group of buyers in a given market segment is often called customer segment,

e.g. in the Business Model Canvas (see Sect. 2.4). Product managers need to be very

specific about the customer segment(s) they are targeting so that they can develop a

thorough understanding of customer needs. This understanding in turn is key to

developing compelling value propositions that help sell the product (see Sect. 3.6).

A competitive advantage is achieved when the company offers a product that the

competition does not, or when the company offers a better product than the

competition. Competitive advantage comes from one of two sources:

1. Having the lowest cost in the industry or

2. Possessing a product/offering that is perceived as unique in the industry.

Another contributing factor is the scope of product-market (broad or narrow). A

combination of these factors provides the basis for the following three types of

competitive strategies:

• Low cost strategy (be the cost leader),

• Differentiation strategy (be unique),

• Focus strategy (be the niche leader).

Regarding competitive strategy, there is a rather static view of an industry’s

attractiveness, based on Porter’s Five Forces [Porter08]:

1. Rivalry among existing competitors,

2. Threat of new entrants,

3. Bargaining power of suppliers,

4. Bargaining power of customers,

5. Threat of substitute products/offerings.

3.4.3 Determining a Product’s Market

Determining the relevant market for a software product is by no means trivial. The

most comprehensive definition of the market is the overall software market, which

the software product manager can certainly use as a basis. However, as a whole, it is

so huge and inhomogeneous that it is not really useful. The smallest conceivable

market consists only of one product. This definition is not absurd if this product

creates a new market without any competitors. In between these two extremes, of

course, there are many ways to define the market that product managers play with in

practice. If you want to point out the enormous sales potential of a planned product,

for example, you select a broadly defined market segment with a correspondingly

3.4 Market 61

http://dx.doi.org/10.1007/978-3-642-55140-6_2

high volume. If you want to demonstrate what a large market share your product

has, you choose a narrower definition of a market segment. There are no fixed rules

for deciding which market definition is the best for a product. Market research

companies that analyze software markets often divide the overall market into multi-

layered market segments by functions, geographic regions and customer groups

(see Sect. 5.5).

There is a close connection between the market definition and the definition of

the product scope which is part of product definition (see Sect. 3.5). The product

manager must deal with this connection iteratively. On the one hand, the analysis of

the market, market development and competition will influence the definition of the

functional product scope. On the other hand, the product scope will determine in

which segment of the market the product can successfully compete. What is needed,

ultimately, is a time-related close correspondence between product scope, target

market and business prospects. Planning the further development of such a corre-

spondence over time requires coordination with the product vision, maybe also the

corporate vision statement and strategy, and constitutes an essential aspect of

product strategy.

The scope of requirements ensuing from the definition of the target market

should not be underestimated. If the target market is the consumer market, the

product must meet different requirements with respect to usability, packaging,

pricing, sales channels, support structure, etc. than a B2B product. Some market

segments are so special that they even require different approaches to development

and requirements management. For games for example, development is often based

on a story line rather than a technical specification, and developers typically have

more freedom in the graphical design as part of an iterative prototyping approach

(see [Waldo08]).

The requirements for a product to be marketed internationally are significant,

e.g. in terms of product requirements, legal requirements and in the marketing and

support structure. The resulting expenses will be offset by higher sales expectations.

This relationship is discussed in detail by McGrath ([McGrat01], pp. 235–255).

Part of forming a successful product strategy requires identifying competitive

advantage. Providing an answer to the question “How can the product satisfy the

needs of potential customers better than competition?” needs to be incorporated in

the value proposition. The following two methods can be used alone or together to

identify competition:

• Industry method: This method of identifying the competition is based upon an

already established industry in which the business operates. The competition is

identified as companies that produce the same or similar products. For example,

a car manufacturer would identify other car manufacturers as competitors, and a

mobile service provider would identify other mobile service providers as

competitors. This method is particularly important to identify competitors if

the company is planning to enter an existing market. The industry method also

takes into account the level of competition within the industry. Some of the

62 3 Product Strategy

http://dx.doi.org/10.1007/978-3-642-55140-6_5

questions that can be asked to identify and characterize competitors in a given

industry using this method are:

a. Who else differentiates like my company?

b. Who has entry and/or exit barriers like my company?

c. Who has vertical integration like my company?

d. Who is as global or as local as my company?

e. Who has cost structures like my company?

• Market method: The market method depends largely on how well the customer

need is defined in the description of the target customer segments. The market

method of identifying the competition can be established upon marketing

products or services to customer needs. The competition is identified as

companies that satisfy the same need. Market analysis is supposed to identify

market forces, industry forces and key trends (see Sect. 5.5) which can be

analysed to identify competition. With the market method, a movie theatre

may identify entertainment as the customer’s need. Substitutes like video rental

stores, amusement parks, and concert venues could then be identified as

competitors. The main question to ask in this method is

a. Who else can satisfy the same customer need?

b. Who goes after the same market segments with comparable value

propositions?

The Market method can also be useful if a company wants to re-segment existing

markets or create a new market. In that case the product offering may not belong to

any existing industry (i.e. there is no direct “peer-group” of products) for compari-

son. Petal diagrams instead of traditional X/Y axis competitive analysis diagrams

can be used in this case (see Fig. 3.4) as suggested by Blank [Blank13b].

In the petal diagram, the company is placed in the center. Next, the identified

new market segments from where the customers will originate (can be taken from

“Customer Segments”) are plotted as petals. After that each petal (representing a

market segment) is filled in with the names of the companies that are representative

players in that market. Finally, the current and projected market sizes of the

adjacent markets can also be shown to analyze and discuss “How big will our

new market be?”.

It is important to consider

• Direct competitors who produce an almost identical product that is offered for

sale within the same market,

• Indirect competitors who don’t necessarily sell the same products, but offer

different alternatives to satisfy the same customer need,

• Other alternatives customers have, including do-nothing or do-it-yourself.

Once the alternatives have been identified, gap analysis (surveys with the

customers, distributors and partners) can be employed to analyze competitors,

e.g. the strategic groups method. Strategic groups are segments of an industry

that group companies with similar business models or business strategies

3.4 Market 63

http://dx.doi.org/10.1007/978-3-642-55140-6_5
http://www.businessdictionary.com/definition/for-sale.html
http://www.businessdictionary.com/definition/for-sale.html
http://www.businessdictionary.com/definition/market.html

[Porter98]. However, if the companies want to dramatically improve their value

proposition, they need to identify offerings (not competing companies) that fulfill

the same need (maybe in a different way).

A product manager usually needs inputs from other roles (senior strategy

managers, marketing managers) to analyze competition and define competitive

strategy for the respective product. A competitive strategy is defined as a long-

term action plan that is devised to help a company gain a competitive advantage

over its rivals. It consists of business approaches to attract customers (by fulfilling

their needs), withstand competitive pressure and strengthen market position. A

competitive strategy exploits competitive advantage by identifying ways to use

resources and capabilities to differentiate the product from its competitors

[FleBen02].

But for fast-changing software markets, more recent strategy models that

emphasize the ability of companies to actively shape market boundaries and thus,

create new markets (Blue Ocean Strategy, [KimMaub15]) may be more useful:

• Create uncontested market space,

• Make the competition irrelevant,

• Create and capture new demand (innovations),

• Break the cost/value trade-off,

• Align the whole system of a company’s activities in pursuit of low cost and

differentiation.

Fig. 3.4 Example for petal diagram, here for Slack (from http://cunninghamcollective.com/

insights/blog/2015/06/30/escape-the-box-three-great-ways-to-use-the-petal-diagram-for-strategy)

64 3 Product Strategy

http://www.businessdictionary.com/definition/long-term.html
http://www.businessdictionary.com/definition/action-plan.html
http://www.businessdictionary.com/definition/gain.html
http://www.businessdictionary.com/definition/competitive-advantage.html
http://cunninghamcollective.com/insights/blog/2015/06/30/escape-the-box-three-great-ways-to-use-the-petal-diagram-for-strategy
http://cunninghamcollective.com/insights/blog/2015/06/30/escape-the-box-three-great-ways-to-use-the-petal-diagram-for-strategy

However, the two approaches are not mutually exclusive and can be combined. For

example, by slowing down profit erosion with an effective competitive strategy for

an existing market, a company can increase the funds available for Blue Ocean

investments and consequently increase its chances of finding an untapped market

with plenty of customers.

3.4.4 Variations

Customer segments do not always have to be very narrowly focused—according to

Moore [Moore14, Moore04], it depends on the maturity stage of the respective

market how broad or narrow the target segment can be. For example, when bringing

to market a completely new type of B2B product—what Moore calls a new product

category—it is often useful to kick-start mainstream adoption by focusing on a

small, well-defined market niche (the beachhead segment). The strategy is to

expand into adjacent market niches later—one after the other (bowling alley

strategy). Once the new product category is better understood in the market, and

broad adoption sets in at a fast pace (tornado phase), the vendor’s top priority needs

to be capturing market share. In this stage, a broader customer segment definition is

preferable.

When using the Business Model Canvas as a tool for analysis, competition is a

“blind spot”, but an important topic for product strategy. Some variations of the

business model canvas address competition more explicitly. An aspect sometimes

important to consider is the number of customer segments covered: in some types of

business models, for example in multi-sided markets (such as eBay or a real estate

market place) it is obvious that at least two customer segments need to be cov-

ered—for example buyers and sellers in a market place. Since these customer

segments are highly interdependent, they should be covered in the same business

model canvas. In other cases, the product is simply targeting multiple customer

groups, potentially with different value propositions. It can make sense to cover

these multiple segments in the same canvas, too, especially if—apart from the value

propositions—the rest of the business model is the same for all target segments.

Another important consideration is the relationship between products and

solutions (see Sect. 2.2): in an organization that offers both individual software

products and solutions as products that include these individual products, separate

Business Model Canvases should be developed for each individual product and for

each solution. In that situation, it may happen that an individual product is sold

stand-alone and also gets included into multiple solutions. In that case, the question

arises how to address the multiple solution relationships in the Business Model

Canvas for the individual product (not on the solution level). If the different

solutions target different customer segments, it might make sense to list these

solution-level customer segments separately on the product-level canvas, with a

separate value proposition for each segment.

Finally, many software products need to get buy-in from multiple different

constituencies, for example a smartphone app for kids, where parents might make

3.4 Market 65

http://dx.doi.org/10.1007/978-3-642-55140-6_2

the actual purchase or can veto the kid’s purchase. In that case, it is often useful to

include both the kids and the parents as separate target customer segments in the

same canvas and to develop separate value propositions for these two segments.

Other well-known examples for this are different roles that participate in the

complex sales processes for large-scale enterprise software purchases.

Often the definition of the target market and its segments does not lead to a static

result, but needs to be considered over the strategic timeframe. In particular in the

Powerboat or Icebreaker phase, the initial focus may be on a rather narrow market

which can be widened over the strategic timeframe. So it makes sense to look at the

evolution of the market definition as part of the roadmap.

3.4.5 Outcome and Impacts

A good market and segment definition is of key importance for the product strategy.

It is the basis for product definition, positioning and value definition, forecasting,

channel and partner selection, and all the marketing work. At any point in time,

there needs to be a clear definition that is accompanied by results from market

analysis (see Sect. 5.5):

• Market scope and boundaries.

• Appropriate segmentation.

• For each segment:

– Size (in annual revenue and/or annual number of licenses/customers).

– Characteristics of customers.

– Competitive situation.

– Ease of adoption of your product by the segment in question.

This definition is tightly linked to product definition and positioning including

customer value proposition (see Sects. 3.5 and 3.6) which are developed in an

iterative process with market definition. It has an impact on requirements definition

and selection (see Sects. 4.2 and 4.3) since the product contents need to be

optimized for the selected market segments. Pricing is impacted by the competitive

situation, and also by special characteristics and requirements in selected segments

(see Sect. 3.10). And of course, the market definition is the basis for the work of

Marketing and Sales (see Sects. 6.3 and 6.4).

3.4.6 Summary and Conclusions

The importance of the market, its definition, evolution and ongoing analysis cannot

be overestimated. A market can be understood as a set of sets of potential buyers,

potential sellers, goods and services, respectively, at a particular point in time. The

success of your product depends on its fit to the target market. The better you

understand the relevant market and its segments, the more you can improve that fit.

66 3 Product Strategy

http://dx.doi.org/10.1007/978-3-642-55140-6_5
http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_6
http://dx.doi.org/10.1007/978-3-642-55140-6_6

3.5 Product Definition

3.5.1 Overview

The product definition describes the product on a rather abstract level, i.e. what is it,

and what is it not, over the strategic timeframe. The definition addresses users,

intended use, functionality, quality, user experience (UX), compatibility, technical

constraints, customization, delivery model, and the whole product offering. All of

them may change over time.

This section describes the contents of a product definition and outlines

approaches how to get to a good product definition. The reader will understand

the related processes and the impacts.

3.5.2 Concept

As part of product strategy, the product definition details the product vision without

turning into a full-blown specification. It is intended to give guidance to the product

team whenever decisions are required what is inside or outside of the product scope,

in particular with regard to requirements. It is also intended to provide a high-level

product description that can be used as a basis for marketing material or for

educating new team members.

Intended use and users provides rough descriptions of how and by whom the

product is intended to be used. While the detailed definition of use cases is part of

the requirements work, and the detailed definition of personas is part of UX design,

here only high-level descriptions or lists of roles are provided. For example, when

IBM defines a new database management tool, they can simply say it is intended for

database administrators and system administrators and their administration tasks.

Functional scope describes which functional areas are to be covered by the

product, and which functional areas are outside of the product’s intended

capabilities. The latter is very helpful in the area of product requirements manage-

ment (see Sect. 4.2). For example, SAP started out with Enterprise Resource

Planning (ERP) functionality, but added data warehouse, data analytics, or CRM

(customer relationship management) functionality at later stages of its life cycle.

Quality scope describes in which ballpark the quality attributes of the product

are intended to be. While the detailed definition of quality requirements is part of

product requirements management (see Sect. 4.2), here the ballpark is often deter-

mined by listing comparable products or product areas. For example, when

Microsoft defines a new version of Office, they can define the quality scope by

saying that quality needs to be at least as good as with the previous version, but 20%

better in the area of technical performance.

User experience (UX) design scope describes in which ballpark UX is intended

to be. Similar to quality scope, the detailed definition of UX requirements is part of

product requirements management (see Sect. 4.2) in combination with UX design

work. Here the UX ballpark is often determined by listing comparable products or

3.5 Product Definition 67

http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_4

product areas. For example, when a company defines a new product, the product

manager can define the UX design scope by saying that UX measures need to be at

least as good as with a particular existing product in the company’s portfolio, but

20% better in the area of subjective satisfaction, i.e. user happiness.

Compatibility scope is relevant for new versions and releases or follow-on

products of existing products. It describes to which degree compatibility is

intended. By upwards compatibility, it is understood that:

• In changing from software version n of a product to the next version n þ 1,

existing functions of version n continue to be supported.

• Data from version n can be transferred to and used with version n þ 1 without

changes.

• Interfaces of version n (APIs, Interfaces for other Systems/Products) remain

unchanged.

Should only parts of these conditions be fulfilled, we speak of function, data and

interface compatibility. Full upwards compatibility makes the customer’s migration

from version n to version n þ 1 smooth and inexpensive. However, frequently with

a new release of a product comes an expansion and change of the underlying data

model which leads to changes to the data structures. In this case, data compatibility

cannot be achieved easily. A separate data migration is required, for which the

software vendor should preferably provide in the form of procedures and scripts.

By downwards compatibility, it is understood that:

• Data from version n þ 1 can be transferred to and used with version n without

changes.

• Version n þ 1 can communicate to version n, i.e. version n interfaces are

supported.

In contrast to the upwards compatibility, downwards compatibility cannot always

be expected or presumed. For example, when Microsoft introduced the new .docx

format for Word documents with Word 2007, .docx documents could not be read

with older versions of Word. In order to address that problem, Microsoft made a

Compatibility Pack available for free which enabled some older Word versions to

handle .docx documents.

Technical constraints are restrictions that are decided upon early. The technical

constraints complement the quality scope of the software product from the technol-

ogy, platform, and deployment perspectives. The term comes from requirements

engineering, but these early decisions need to be made as part of the product

definition. For example, a software vendor may decide that a particular software

product will only run on Android and iOS as mobile operating systems, but not on

Windows 10 Mobile.

Customization scope describes to what degree customization options are

intended to be provided. The range goes from standard product as it is, i.e. no

customization, to customization options for each and everything. With no

68 3 Product Strategy

customization, you run the risk that quite a number of your target customers do not

buy the product because it deviates from their respective requirements in a few

important areas. With too many customization options, you spend a lot of develop-

ment effort on customization, and it creates a lot of effort and cost for customers

before they can become productive with the software product. With B2B products,

customization options are typically more extensive than with B2C products. For

example, most smartphone apps do not provide any customization options in order

to keep things as simple as possible.

Product lines are a concept that gives the vendor more variability in adapting the

product to different product environments (see Sect. 2.2) while customization refers

to what a customer can do to adapt a product to his environment.

Delivery model describes in which way a software product is made available to

customers. The alternatives are licensed product vs. Software-as-a-Service (SaaS)

offering or a hybrid of both. Historically, the standard delivery model for software

vendors has been that when a customer buys a license for a software product, the

software is transported to the customer on a medium like CD, the customer installs

the software on his computer hardware (possibly with the help of the vendor) and

runs it on his own. Today, it is often downloaded over the internet, e.g. on markets

for apps, components, or access to software or ICT services. Depending on the type

of contract, the customer may be entitled to maintenance updates that he can install

on his computer over time. Over the last years, the Software as a Service (SaaS)

delivery model (see see Sect. 2.2) has emerged that often comes with pricing

models like subscription-based pricing or funding through advertisements.

The reason why we discuss these delivery and pricing models here is that they

can have significant impact on the specification and implementation of the software

product. If SaaS is chosen as the delivery model it means that the software must be

highly scalable and capable of multi-tenancy. These are requirements that a lot of

standard license software products do not fulfill. The same is true for a pricing

model like usage-based pricing that cannot easily be implemented on top of an

existing piece of software, but needs to be considered as a requirement early on in

the initial design.

Whole product offering stands for the complete set of elements that are to be

offered to the customers in order to provide a complete solution (see Sect. 2.4). This

set can contain not only the software itself, but also additional software components

and professional services from the vendor’s portfolio or from other vendors. We

have experienced situations where two customers bought the same product, but got

different sets of components delivered. Therefore, we recommend that product

definition encompasses the definition of the whole product offering including a

complete list of components that belong to the standard product offering and are

included in its price. Since product-related human services are part of the whole

product offering, the service strategy needs to be linked to product definition (see

Sect. 3.7). For software components from other vendors, gaps in the offering need

to be identified that can be addressed by those components. The selection of other

vendors as partners has to be synchronized with ecosystem management (see Sect.

3.11).

3.5 Product Definition 69

http://dx.doi.org/10.1007/978-3-642-55140-6_2
http://dx.doi.org/10.1007/978-3-642-55140-6_2
http://dx.doi.org/10.1007/978-3-642-55140-6_2

3.5.3 Defining a Product

Product definition is an iterative process that is intended to lead to consensus

between the relevant stakeholders, i.e. Product Management, Marketing, Sales,

Development, Services, and executive management. The result is usually not static,

but evolves over the strategic timeframe and beyond.

The iterative process includes:

• Consultation of stakeholders and contributors.

• Development and testing of alternative product definitions with stakeholders and

customers.

• Elaboration in cooperation with selected stakeholders.

• Roadmapping for refinement and buy-in (see Sect. 4.1).

The product manager needs to find a balance between continuous learning and

improvement that translate into changes of the product definition, and some level of

stability that provides a basis for customer communication and avoids wasted

efforts.

There are a number of interdependent factors to be considered: target market

segments, customer value and positioning, service strategy, budget, pricing, and the

product’s life cycle phase (see Sect. 4.4). For new product development, i.e. in the

Powerboat and Icebreaker scenarios, product definition means a rather dynamic

learning process. During later phases of the product life cycle, the product definition

tends to be more stable.

For new products, this is directly related to the minimum viable product (MVP,

see Sect. 2.5) which Eric Ries defines as “that version of a product that enables a full

turn of the Build-Measure-Learn loop with a minimum amount of effort and the

least amount of development time” ([Ries11], p. 77). This focus on learning may be

helpful for a startup, but from a business perspective, Steve Blank’s definition of the

MVP as the minimum feature set “that some customers are willing to pay for in the

first release” [Blank10] seems more on the point. He sees the MVP as a tactic to

reduce engineering waste and to get product in the hands of early adopters soonest.

Of course, that will lead to learning. We define

MinimumViable Product (MVP)¼ The minimum feature set of a new product

that is derived through a learning phase and that some customers are willing to pay

for in the first release.

3.5.4 Outcome and Impacts

The product definition is usually documented as text. When the organization

decides to document the strategy in a formal product strategy document, product

definition is part of it. Product definition is an important element for positioning

(see Sect. 3.6) and sets the scope and the boundaries of the product for the whole

product team.

70 3 Product Strategy

http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_2

3.5.5 Summary and Conclusions

Product definition is an important activity for understanding what the product is

about at any point in time, and how focus and priorities change over time. It covers

intended use and users, functional scope, quality scope, UX design scope, compati-

bility scope, customization scope, and the delivery model. The Whole Product

Offering needs to be considered. Developing the product definition requires an

iterative process that involves all relevant stakeholders.

3.6 Positioning

3.6.1 Overview

With positioning, an approach is defined for communicating a product to potential

customers. This includes an analysis of customer value, often differentiated by

market segments, and the selection of sales channels through which target

customers can be reached in a profitable way.

Concise, understandable positioning is a key product success factor. The objec-

tive is for the product “. . . to occupy a clear, distinctive, and desirable place relative
to competing products in the minds of target customers.” [KotArm15]. It makes it

easier for sales and marketing to address customer groups with the right messages.

It also helps internally in making all product-related decisions.

One of the important aspects of positioning is the question how a product

differentiates itself in the market. This question is related to the concept of Unique

Value Proposition which describes value elements that none of the available

alternatives can provide. For proprietary products, the typical differentiating

arguments have been better functionality, higher level of integration,

performance etc.

In some markets standardization is considered equally important. But how can a

product differentiate itself if it only implements a public standard? The vendors

found this answer in the 1970’s and still apply it: They implement the standard so

that they can claim standard-conformance, and then they add useful proprietary

features. Once a customer makes use of these features, he is tied to the vendor’s

product. So the features not only provide differentiation, but also the glue that

makes a product more difficult to replace.

Positioning can also be relevant within the product portfolio of a software

company, in particular when there are products with overlapping functionality.

Such an overlap can easily create confusion for potential customers, the own sales

force, and channel partners which needs to be addressed by clearly positioning the

products against each other.

3.6 Positioning 71

3.6.2 Customer Segmentation and Value Proposition

Once the market for the product is defined (see Sect. 3.4), the positioning must

focus on describing the value of the product. Again this has to be considered over

time since the value of the product will hopefully increase with each new version or

release. The value definition needs to be approached from a customer perspective,

e.g. what is the business value that the customer will get from using the product?

Customer segmentation, i.e. building market segments as subsets of the total market

of the product, may be needed when different segments experience different

business values from using the product.

The Business Model Canvas can be a helpful tool here. Whether evolving an

existing business model or creating a new one, the business model generation

process often starts with the two canvas segments called “Customer Segments”

and “Value Propositions”. These two segments are closely linked through the

underlying concept of what customers need or want, specifically their pains, their

desired gains, and their “jobs to be done”.

Product managers need to be specific about the customer segment(s) they are

targeting so that they can develop a thorough understanding of customer needs.

This understanding in turn is key to developing compelling value propositions that

help sell the product. Here methods like the Value Proposition Canvas can help

[OstPign14].

However, this does not mean that customer segments always have to be very

narrowly focused—according to Moore [Moore14, Moore04] it depends on the

maturity stage of the respective market how broad or narrow the target segment can

be. For example, when bringing to market a completely new type of B2B product—

what Moore calls a new product category—it is often useful to kick-start main-

stream adoption by focusing on a small, well-defined market niche (the beachhead

segment). The strategy is to expand into adjacent market niches later—one after the

other (bowling alley strategy). Once the new product category is better understood

in the market and broad adoption sets in at a fast pace (tornado phase), the vendor’s

top priority needs to be capturing market share. In this stage, an undifferentiated

strategy is suitable.

The customer understanding is translated into the value propositions that (hope-

fully) strongly resonate with the customer segments and help sell the products and

services [OstPign10]:

• Pain relievers “eliminate or reduce negative emotions, undesired costs and

situations, and risks your customer experiences or could experience before,

during, and after getting the job done”.

• Gain creators “create benefits your customer expects, desires or would be

surprised by, including functional utility, social gains, positive emotions, and

cost savings”.

• Products and Services lists the products and services that together deliver the

value proposition.

72 3 Product Strategy

It is not easy to determine what the drivers of customer value are for a certain

product category. Anderson and Narus [AndNar98] suggested generating a list of

value elements and building customer value models. Almquist e.a. [AlmSenBl16]

build an “Elements of Value Pyramid” based on Maslow.

Especially in B2B technology markets, including B2B software, it is very

common that core products require add-on products, integration with partner

products, and accompanying services as a minimum configuration to deliver a

compelling value proposition. Geoffrey Moore [Moore14] emphasizes the impor-

tance of this—he calls this the whole product concept. Based on the value

propositions, software product managers need to identify which additional products

and services are required to deliver the whole product, and they must make sure

these crucial whole product components are actually available to customers—either

from the vendor itself or from partners. This needs to be reflected in the Service

Strategy. Partners that contribute important whole product components need to

show up in the canvas, either in the channels section or in the key partners section.

3.6.3 Channels

Directly related to the definition of the target market (see Sect. 3.4), the product

definition (see Sect. 3.5), and the positioning of the product is the question of sales

channels. Channels define the path through which goods and services as well as the

compensation are transferred between vendor and customer. We define

Channel ¼ A sequence of intermediaries through which goods and services as

well as the compensation are transferred between a company and its customers.

With this definition, an internal direct sales force is included in the

intermediaries. What is the best way to reach potential customers in the selected

target market segments? That can be a direct sales force, and/or indirect sales

through partners or the internet (see also Sects. 3.11 and 6.4).

There are two criteria that influence the channel selection the most. One is access

to target customers, the other one is channel cost in relation to the financial picture

of the product, in particular price which may be related to the selected delivery

model (see Sect. 3.5). For low-price products, the cost of a direct sales force is

usually not bearable. On the other hand, for high-price products in a B2B market,

customers often expect a personal contact with a sales representative. In a lot of

markets, software vendors cannot easily get direct access to target customers, but

are dependent on partners who have established relationships with those target

customers or the local proximity that allows less costly access. When a vendor uses

multiple channels in parallel, there is the risk of channel conflicts, i.e. channels

competing with each other. This needs to be anticipated and managed (see Sect.

6.4).

There are two main categories of sales channels for software products: The

physical (human) channel and the virtual channel. In the physical (human) channel,

direct sales means that products are marketed directly by the company to customers,

eliminating the need for an external intermediary (e.g. wholesalers, advertisers or

3.6 Positioning 73

http://dx.doi.org/10.1007/978-3-642-55140-6_6
http://dx.doi.org/10.1007/978-3-642-55140-6_6

retailers). An example is a direct sales force, where representatives have in-person

contact to customers. Key account managers and key customers come together

(“farming”) and new customers are recruited from the defined target market

(“hunting”). Since the customers no longer seek information technology as such,

organizations should provide IT solutions that improve the business and describe

advantages and positive effects. Direct selling means that an IT sales specialist

communicates the resulting financial benefits. For global players it can be useful to

implement a “global account management” to be present wherever the customer is.

Another physical (human) channel is indirect sales which means that selling of

products is conducted by partners, e.g., companies such as retail shops or

wholesalers. For the different types of sales partners see Sect. 3.11. The advantage

of the indirect sales channel is that more potential customers can be reached through

the partners and their customer relationships. Decisions are required whether a one-

or multi-tier partner model is appropriate and how channel conflicts can be avoided

with a multi-channel approach. On an operational level, the management of the

selected partners is part of ecosystem management.

Telesales (or inside sales) means that a sales person contacts customers to sell

software products, either via telephone or through a subsequent face to face or web

conferencing appointment scheduled during the call. Telesales is still being used

even though it has increasingly been considered as an annoyance by many

customers.

Internet sales belongs to the virtual channels. Here software products are sold on

the web through e.g. web-based apps, app stores, etc. This works with both license

products, SaaS and advertising. Customers buy conveniently and easily from the

comfort of their home or office at any time.

A further classification of channels differentiates

• Free versus paid: Free channels, e.g. social media or blogging, contain inherent

costs (non-zero human capital cost). In contrast, paid channels like search engine

marketing require explicit investment.

• Inbound versus outbound: Inbound channels rely on being found by the cus-

tomer (pull messaging, e.g. blogs, e-books, and webinars), while outbound
channels reach for customers (push messaging, e.g. trade shows, cold calling).

• Automated versus direct: automated channels to reach a high number of

customers at low cost, versus direct channels (see above).

A software company must make a fundamental decision regarding its channel mix:

should the various sales channels be allowed to overlap and compete with each

other or should each have a well-defined target market and objective? Sales

distribution channels that are to overlap each other are measured by common

objectives in order to avoid channel conflicts in so far as possible. This requires

objectives which are higher to reflect the sum of what would have been the

individual objectives. This may result in the individual channels all pursuing the

large opportunities rather than going after the target market which they were

intended to pursue. The alternative, assigning specific target markets and

74 3 Product Strategy

objectives, may lead to some squabbles at the boundaries, but is often adopted in an

effort to focus sales more strongly and avoid unnecessary overlap-ping. Channel

conflicts are almost always counterproductive in practice.

3.6.4 Process

Positioning is an iterative process that is intended to lead to consensus between

Product Management, Marketing, Sales, and executive management. At least

Marketing needs to participate in this work. The result is usually not static, but

evolves over the strategic timeframe and beyond. There are a number of interde-

pendent factors to be considered, in particular target market segments, product

definition, and pricing.

Determining customer value and how it is generated requires some in-depth

analysis how and for what customers are going to use the product, and what their

alternatives are. Alternatives can be competitive products, custom solutions, or

doing nothing. If possible, it can be helpful to involve existing or potential

customers in this analysis. The drivers or parameters need to be determined that

influence customer value. Ideally, the relationship between the parameters and

customer value is expressed in a formula. Customer value can be considered in

absolute terms, or in terms relative to the identified alternatives that a customer has,

or relative to the price of the product.

For each of the candidate channels, the potential for access to potential

customers in the target market segments and the resulting cost in relation to the

financial model of the product need to be analyzed. The results are the basis for

channel selection.

The sales channels a company uses for a particular product are selected

according to specific criteria:

• Target market (segments) (see Sects. 3.4 and 3.6.2): Which channel has the

highest potential to reach customers in the selected target market?

• Product definition (see Sect. 3.5) including the definition of the “Whole Product”

and the delivery model: Can partners who provide components act as channels?

• Sales cost: What are the cost and benefits the selection of a particular channel

entails.

The cost of direct sales is usually higher than the cost of indirect sales channels.

Therefore, the higher-priced direct sales tends to be restricted to software products

in the high price segment. Software products at lower prices are rather distributed

through indirect channels. In addition, other factors should be considered as part of

a comprehensive channel strategy:

• The relationship frequency [some channels are used systematically and repeat-

edly, others opportunistically (one-offs)].

3.6 Positioning 75

• The place of purchase (online retailer versus software retail store around the

corner).

• The strategies in software ecosystems, i.e. niche players, keystone players,

dominators (see Sect. 3.11).

• The purchase frequency or the degree of willingness to buy (impulse buyers

versus regular customers).

• The purchase occasion.

• The attitude towards the product or the service.

• The use rate.

The selection of channels usually results in a mix that can include direct sales

including telesales and virtual sales, and partner sales. The terms and conditions for

the channels need to be defined such that channel conflicts are prevented. The

operational responsibility of managing this marketing mix on an ongoing basis is

with Marketing.

3.6.5 Outcome and Impacts

Customer value, the advantages that a customer experiences when using the

software product, can be described in absolute and relative qualitative terms. For

example, we can identify a certain feature as highly valuable for customers in a

particular segment and show this feature to be a differentiating factor compared to

the alternatives. This qualitative description provides valuable input for the devel-

opment of marketing messages by Marketing.

Simply evaluating the value as high, medium, low for the different market

segments may be a good start that shows how well the product fits the needs of

the respective market segment. It can also be used for a rough comparison with the

alternatives. However, it is not good enough as input for marketing and pricing.

The drivers of customer value need to be identified on a more detailed level.

They depend on the type of software. For transactional systems like an airline

reservation system, the driver can be the number of transactions, i.e. flight

reservations, or the revenue made through the system. For productivity tools, it

can be the number of users or the usage time, or the savings in terms of time that

employees need for particular tasks. The parameters identified to drive value are the

ones that can be used to calculate the price in a value-based way (see Sect. 3.10).

For a potential customer, the relationship between a product’s value and its price in

comparison to the alternatives determines the buying decision.

The definition of the channel mix may change over time based on experience, or

when market segments are added to the target market definition. For new product

development, i.e. in the Powerboat and Icebreaker scenarios (see Sect. 2.5), posi-

tioning means a rather dynamic learning process. During later phases of the product

life cycle, the positioning tends to be more stable.

76 3 Product Strategy

http://dx.doi.org/10.1007/978-3-642-55140-6_2

3.6.6 Summary and Conclusions

Positioning provides important information how the product is going to be

communicated to the market. The core of positioning is the value proposition.

Differentiation by customer segments may be required. In order to reach the

customers in the segments in a cost-effective way, sales channels have to be

selected and implemented. Positioning is highly relevant for Marketing and Sales,

but also for other product management activities like pricing or release planning.

3.7 Service Strategy

3.7.1 Overview

The software product manager is supposed to manage the whole product offering

which includes product-related human services (see Sect. 2.4) even though the

responsibility for the provisioning of these services may organizationally be

separated from the software product organization. The services are needed to enable

customers to become productive with the product as fast as possible and stay

productive as long as they use the product.

This section describes the contents of a service strategy. The reader will under-

stand the related processes and the impacts.

3.7.2 Concept

Product-related human services can include education, installation, customization,

operations, and maintenance including a user help desk covering technical and

non-technical problems. Typically, these services are priced separately, sometimes

they are bundled with software product offerings. Details of these services are

described in Sect. 6.6.

A software vendor needs to decide if and to what degree these services are

provided by the vendor itself, and/or through partners. Resulting revenue from self-

provided services and capacity considerations are relevant aspects. Also, partners

who provide product-related services are also motivated to sell the product to their

customers. On the other hand, services can help the vendor to intensify the customer

relationship, and to learn about the customer environment and how a customer uses

the product. This information is valuable input for the positioning and evolution of

the product. So the question who provides which services is clearly of strategic

importance. Communication between the in-house service team and Product Man-

agement and Development is usually easier when they all belong to one product

organization.

Another type of human service is custom software development by which

customer-specific functionality is added to the standard software product. This

becomes relevant when a customer has requirements that the software vendor

3.7 Service Strategy 77

http://dx.doi.org/10.1007/978-3-642-55140-6_2
http://dx.doi.org/10.1007/978-3-642-55140-6_6

refuses to implement in the standard product because they are too customer-

specific, i.e. not of value to other customers. When the vendor decides to offer

this kind of custom software development, it needs to be clearly separated from the

standard product both organizationally and contractually. In particular, for cost

reasons this custom code must not be covered by the maintenance contract for the

standard product. There can be additional customer-specific services like system

integration.

For new product development, i.e. in the Powerboat and Icebreaker scenarios

(see Sect. 2.5), services for the first customer are often provided out of Develop-

ment since that first customer is intended to provide domain knowledge and the

vendor organization needs to learn how to provide those services. The services for

later customers, i.e. after the product is launched, needs to be done by the units

declared as responsible in the Service Strategy including external partners. During

later phases of the product life cycle, additional services may be identified and

added to the service strategy. During the maturity and decline stages of license

products, maintenance revenue usually plays an increasingly important role in the

financial picture of the product.

3.7.3 Process

Defining the service strategy is a process that is intended to lead to consensus

between Product Management, Services, Marketing, Sales, and executive manage-

ment. At least Services and Marketing need to participate in this work.

In order to define the whole product, product-related services need to be part of

the product definition (see Sect. 3.5). For the service strategy, the product manager

needs to take a number of aspects into account:

• Which product-related services are needed for offering a complete solution that

satisfies target customers’ needs, and that target customers ares willing to pay

for?

• Who can provide those identified services with regard to capacities, skills, and

customer acceptance?

• What is the right balance between revenue generation and learning from self-

provided services, and customer access and potential additional product revenue

through external service partners who also act as sales partners?

Once the service strategy answers these questions, it is the task of either the internal

Services unit or ecosystem management for partners to make sure that the identified

services are available at the time when they are needed.

78 3 Product Strategy

http://dx.doi.org/10.1007/978-3-642-55140-6_2

3.7.4 Outcome and Impacts

The service strategy is documented in text that is usually part of the product strategy

document. It lists the services identified as part of the whole product offering and

defines who is supposed to provide these services. If additional services outside of

the whole product offering, but related to it, are planned, like custom software

development, these are documented as well.

Product-related services can have a significant impact on customer satisfaction.

They may also contribute significant revenue. The service strategy gives direction

to Services as well as Ecosystem Management.

3.7.5 Summary and Conclusions

Product-related services are important for the business success of the software

product. That is why the service strategy needs to be integrated into the product

strategy and tightly linked with product definition. It looks primarily at product-

related services like education, installation, customization, operations, and mainte-

nance that help a customer to become productive with the product, secondarily at

additional customer-specific services like custom software development and system

integration. The service strategy answers the questions which services are needed,

and who is going to provide them. The product manager needs to manage the

product-related services as part of the Whole Product offering.

3.8 Sourcing

3.8.1 Overview

Sourcing is the process of ensuring that the resources required to implement a

product strategy are available whenever they are needed. Based on a corporate

sourcing strategy that defines if, for what and to what degree external resources can

be used, decisions on a software product level focus on human resources, make-or-

buy for software components, and use of external services and data sources.

This section describes the criteria for sourcing decisions, related processes and

impacts.

3.8.2 Concept

For sourcing, there are basically two options: Required resources can either be

internal, i.e. come from inside of the company, or external, i.e. from outside of the

company. So once the positioning and definition of the product for the strategic

timeframe has been done, the activities need to be identified that are required to

implement the product strategy including very rough estimates for efforts and skill

3.8 Sourcing 79

and time requirements. These estimates can be refined on an ongoing basis, but

initially they are usually good enough to develop a first idea of resource

requirements.

For software products, the most important resource is skilled human beings.

They can either be employees of the software organization, or hired from outside of

the company. In bigger organizations these decisions usually need to be aligned

with corporate resource management (see Sect. 5.4), e.g there may be a sourcing

strategy on the corporate level that gives guidelines as to if, in which areas, under

which circumstances, and to what extent the company wants to use external human

resources. Under these guidelines, a product team can develop a product-specific

sourcing approach.

There are a number of reasons why a software organization may want to work

with external people, e.g. special temporary skill requirements, temporary capacity

requirements, a general wish for resource flexibility in case of changes of strategy

and plan, or cost considerations.

Since the mid-1990’s, a lot of companies have worked with external people in

locations with a considerably lower cost level. This is known as near-shore or

off-shore outsourcing. In the software area, some companies have managed to make

this work and save money, but in a lot of cases the hidden cost generated by

communication overhead and lost time due to communication problems turned

out to eat up the calculated savings. There can also be risks from skill dependencies.

A lot of literature is available on outsourcing, e.g. [OshKoWil11].

In some situations, it can make more economic sense for a software organization

to integrate a software component supplied by an external partner than to develop

that component in-house. This is known as the Make-or-Buy decision. It may also

apply to complete products. Reasons to buy can be faster time to market, improved

quality, skills shortage, or resource shortage. Aspects like interoperability, terms

and conditions, cost, ongoing development and support, and setup of the coopera-

tion need to be considered. The product manager should not leave this decision to

development since developers usually want to make and not buy. In case of a buy

decision, it is of utmost importance to negotiate the contract with the partner that

provides the software such that the dependence on the partner does not lead to a

disaster like losing the right to use the software on short notice, or facing extreme

price increases. There should also be consideration of what could happen in the

longer term. Because IBM was not sure of the future of the PC, they refused to pay

Microsoft for PC DOS and insisted on a royalty arrangement. The cash flow

generated by that decision enabled the emergence of one of IBM’s strongest

competitors.

One option is the use of open source software. Here, the product manager needs

to assess the viability and ongoing support based on the level of activity in the

respective open source community, and the legal risks due to the type of open

source license (see Sect. 3.12.4). Again, we do not recommend to leave this

decision to the developers alone since they are usually not aware of the legal

implications.

80 3 Product Strategy

http://dx.doi.org/10.1007/978-3-642-55140-6_5

Make-or-Buy decisions are also relevant in areas like infrastructure, or data. A

good example is hosting for SaaS offerings. Reasons for partnering can be that a

software organization has no experience with hosting for customers, or that there

may be advantages in terms of price and scalability due to the economies of scale

that a big hosting provider achieves. An example for sourcing data is stock

market data.

3.8.3 Decision-Making for Sourcing

Given the business impact and risks that are associated with sourcing decisions, the

product manager always needs to be involved in the decision making and selection

of sourcing partners. Within the limitations defined by the corporate sourcing

strategy, a product organization needs to decide if it can implement its product

strategy with the available internal resources, or if and where external sources need

to be added. That decision is usually not made by a product manager alone, but

needs to be driven by Product Management. Once a decision for external sourcing

has been made, an external partner has to be selected. Criteria can be financial

stability and reputation of the partner company, skills of the available people the

partner company can provide, cultural fit, terms and conditions, in particular price,

or—in case of software components—functional and technical fit of the partner’s

component to the requirements. Contract negotiation may fall under a product

manager’s responsibility unless there are specialized units like partner management

(see Sect. 3.11). For service contracts, service level agreements need to be

negotiated as part of the contract (see Sect. 3.12).

The selection of a partner company can be a trigger for analysis if the acquisition

of that partner company could bring a strategic advantage, e.g. in terms of product

set, skills, market share, risk reduction or financial impact, and is financially doable.

However, the process of analysis, due diligence and acquisition is outside of the

product management scope. Bigger companies have specialized merger and acqui-

sition units for this (see [Popp13]).

The responsibility for the implementation is usually with the organizational unit

whose resources are extended by the sourcing decision. That can be Development

for software developers or the integration of an externally sourced software com-

ponent, Quality Management for testers, or Operations for a hosting partner.

Though typically not responsible for the implementation and operational manage-

ment, Product Management is recommended to monitor the activities on a frequent

basis in order to take corrective actions in case of negative business impacts.

3.8.4 Summary and Conclusions

Clever sourcing decisions can shorten time-to-market, increase quality and/or

improve financial performance. However, external sourcing comes with increased

risk that needs to be managed well. It is part of the entrepreneurial responsibility of

3.8 Sourcing 81

product managers to drive these sourcing decisions, whether they concern human

resources, or make-or-buy decisions for commercial software, open source soft-

ware, infrastructure, or data.

3.9 Business View

3.9.1 Overview

The primary objective of product management is to achieve sustainable success

over the life cycle of the product (or family or line). This generally refers to

economic success, which is ultimately reflected by the profits generated. Since

profits lag behind investments, i.e., an investment phase involving unreimbursed

costs will be followed by an extended profitable phase, a longer-term perspective is

appropriate. Therefore the product manager has the role of a mini CEO who has to

plan and keep track of the business aspects. This is not limited to the product

manager keeping track of the revenue numbers (see Sect. 3.13). It means a much

more active role in shaping the parameters that are paramount for the economic

success of a product or product family. The relevant topics are covered in this

section, plus pricing in Sect. 3.10 and performance and risk management in Sect.

3.13.

3.9.2 Business Case

Since a product manager is responsible for the economic success of his product over

its life cycle, the business aspects play a major role in all of the product manager’s

tasks and activities, from the analysis and prioritization of individual requirements

to the positioning of the whole product. We define

Business Case ¼ A decision support and planning approach for comparing the

costs and benefits associated with a proposed initiative.

Depending on company rules, a business case may be required for each require-

ment within the requirements management process (see Sect. 4.2). At the minimum,

a business case is required for any new release of a product: if an investment of

&3M is proposed for a release there had better be a forecast of additional revenue

from new customers or increased product usage which is sufficiently large over the

vendor’s return on investment (ROI) period to give the company their desired profit

margin. The calculation of the cost side bears some risk, but is typically easier than

the value side; for one thing, the costs all occur within the developing company’s

control. On the value side the challenge is threefold: often benefits and value are of

a qualitative nature that is difficult to convert into actual earnings or savings; the

monetary benefits may (and usually do) vary from customer to customer; and the

benefits/value may be realized over an extended time period after the release is

made available. A software value map can be helpful by which value can be

analyzed in a systematic way [KhuGorW13].

82 3 Product Strategy

http://dx.doi.org/10.1007/978-3-642-55140-6_4

To be effective, the business case should communicate the following

information:

• The description of the undertaking (name, unique identifier, short text).

• The underlying assumptions.

• An estimate for the required investment (in absolute or relative numbers).

• The approach to generate business benefits with estimates for earnings over time

(in absolute or relative numbers).

• A risk, sensitivity, and contingency analysis.

When business cases are used for selecting or prioritizing alternatives, relative

numbers may be sufficient. When absolute numbers are used, there is considerable

uncertainty and risk that needs to be addressed. This can be done by looking at

different scenarios (e.g. best, median, worst) and analyzing the risks, the sensitivity

of the estimates to the risks, and contingencies, i.e. possible actions to mitigate

those risks. Given the high level of uncertainty, some people in the software

industry claim that any business case is more a pseudo-scientific quantification of

the gut feelings of the decision makers than a valid prediction. But even if this were

true there is value, in particular from planning the approach to generate the

identified business benefits and from the contingency planning.

A business case is credible when it is complete, balanced with important

scenarios elaborated, and with underlying assumptions made explicit and accepted

by all stakeholders. There is a lot of literature on business cases, e.g. [SheeGall15]

or [Schmidt02].

With business cases, a continuous improvement process is highly recommended.

Each business case needs to be revisited after an appropriate period of time so that

the actual outcomes can be compared to the business case and deviations can be

analyzed. That helps the organization to learn and improve.

3.9.3 Business Plan

The business plan documents a complete picture of the financial numbers for the

product over its strategic timeframe. It is often also called financial model. Business

planning is a process that aims at getting the relevant stakeholders’ consent to the

business plan. The business plan is a forecast regarding cost and revenue that leads

to a plan for resources and budgets. We look at forecasting in Sect. 3.9.4, at the cost

side in Sect. 3.9.5, the revenue model in Sect. 3.9.6, and pricing in Sect. 3.10.

We recommend to explicitly document any assumptions that the business plan is

based on. Since it usually gets a lot of attention and scrutiny from top management,

product managers are advised to be prepared to explain each and every detail of the

business plan.

3.9 Business View 83

3.9.4 Forecasting

Estimates and forecasts can be quite good under certain conditions: stable environ-

ment and historic data that can be simply extrapolated. Unfortunately, we often

have to come up with forecasts when those conditions are not present. That is what

Philip E. Tetlock and Dan Gardner’s book “Superforecasting—The Art and Science

of Prediction” [TetGar15] is about. However, if you are seeking a recipe for reliable

forecasts the book will disappoint you. The majority of the content concerns

Tetlock’s huge research studies and their findings. There is clear evidence that

some people are consistently and significantly better than average at this kind of

forecasting. And there is a section on more practical advice called “Ten

Commandments for Aspiring Superforecasters”, but it is only an appendix and

comes more as an afterthought than as the climax of the book. It lists important

factors that have an impact on the predictive quality of forecasts:

• Triage: Focus on predictable questions, not trivial and not unsolvable ones.

• Break seemingly intractable problems into tractable sub-problems.

• Strike the right balance between inside and outside view.

• Strike the right balance between under- and overreacting to evidence (when you

adjust your forecast iteratively).

• Look for the clashing causal forces at work in each problem.

• Strive to distinguish as many degrees of doubt as the problem permits but not

more: look at degrees of uncertainty.

• Strike the right balance between under- and overconfidence, between prudence

and decisiveness: trade-off between accuracy and finite decision time.

• Look for the errors behind your mistakes but beware of rearview-mirror hind-

sight bias: do thorough post-mortems.

• Bring out the best in others and let others bring out the best in you: teamwork

increases success statistically.

• Master the error-balancing bicycle: only forecasting practice and feedback loops

can improve your forecasting ability over time.

• Don’t treat commandments as commandments: There are no firm rules that

apply to any case.

As you can see from the last bullet, this is half-hearted advice. We cannot do

without forecasting, but it remains more art than science.

3.9.5 Cost Structure and Management

For software products, development effort is usually the largest determinant of cost.

So in order to manage cost, an upfront estimation of the development effort is

needed. The discipline of software engineering has come up with a number of

estimation methods over time, e.g. the more recent Cost Estimation, Benchmarking,

and Risk Assessment (CoBRA method) described by [Trendow13]. These methods

84 3 Product Strategy

are usually targeted at custom software development projects, but can easily be

adapted to software product development projects. However, all of them use

historical data and experiences as a base to estimate a new undertaking. When

there is no history the reliability of estimates is typically low (see Sect. 3.9.4).

Planning Poker is a technique that works quite well for effort estimation (described

in Sect. 4.3.3).

Costing or cost management means that the target cost for an undertaking is

defined, and then the undertaking is managed against that target cost which is often

called a budget. That cost management is typically delegated to the responsible line

or project manager.

As a major part of the financial model of a product, we need to understand the

cost structure of that product in a broader sense. A financial model for a software

product is typically structured similar to the income statement (also known as profit

and loss statement, or P&L) for an entire company.

In particular, for software products, the income statement is typically structured

as shown in Fig. 3.5, with costs broken down into several categories. The first

category, cost of revenue, is highly variable. Apart from cost of revenue, we usually

distinguish between four other categories of operating expenses that are “fixed”,

i.e. they will not move immediately in sync with a short-term revenue spike or

revenue decrease. These four fixed cost categories are: research and development

(R&D), sales and marketing, general and administrative (G&A), and other

operating expenses (such as asset depreciation).

Figure 3.5 shows the structure of a full income statement for a standalone

software company, see for example the annual or quarterly reports of companies

Fig. 3.5 Income statement

3.9 Business View 85

http://dx.doi.org/10.1007/978-3-642-55140-6_4

like SAP, salesforce.com, Adobe, Microsoft, or Google. For an initial assessment of

the profit potential for a new product (e.g. for a startup) and for company-internal

business cases, it is usually sufficient to stop at the operating profit. In the company-

internal case, that’s roughly equivalent to the contribution margin that the product

contributes to the larger organization.

In most traditional “brick and mortar” business models, for example a

manufacturing business or a retail operation, the cost of revenue (labor, parts,

etc.) eats up most of the revenue, often in the 70% range. Only the remaining

30% of gross profit are available to cover the fixed cost listed above. This typically

leaves rather small margins for operating profit and net profit. Service businesses,

for example support or professional service organizations of software vendors, have

a similar cost structure, since their main cost driver is the cost of people delivering

the services, and this is classified as “cost of revenue” as well.

However, for pure software products, the income statement looks quite different:

small cost of revenue often leaves a gross profit of 70% or more—and this is needed

to cover high fixed cost, in particular in R&D. Usually, there are no expensive

assets, so depreciation of assets is not a big concern either. Exceptions can come

from investments in infrastructure and licenses from other vendors. In reality, many

software businesses rely on a revenue mix that combines “pure” software revenue,

e.g. from license sales, with revenue from support and professional services.

Depending on the revenue mix, the structure of their income statement falls

somewhere in the middle between the two extremes described above.

3.9.6 Revenue Model

Part of the business plan is the revenue model. According to [Popp11b], a business

may combine multiple revenue models, and each revenue model can rely on

multiple revenue streams (see Fig. 3.6). If multiple revenue streams are combined

in a revenue model, this is called a hybrid revenue model. Hybrid revenue models

are very common in the software industry: for example, the classic software license

model often combines a license revenue stream with support revenues and revenue

from product-related services, such as installation and customization services—

these services are often called “professional services”.

Revenue streams are characterized by the following attributes which we will

come back to when we discuss Pricing in Sect. 3.10:

• Compensator: who provides the compensation?

• Effect: the type of compensation, including

– Payment.

– No compensation, e.g. usage of open source software.

– Compensation in other goods or services, e.g. a Google user compensates

Google for its search service by providing information about his areas of

interest.

86 3 Product Strategy

http://salesforce.com

• Rating: how is the consumption of goods or services measured?

– Time-based, for example usage for 1 month,

– Usage-based, e.g. gigabytes of storage, number of unique or concurrent users

that are permitted to use the product,

– Functionality-based, e.g. silver, gold, platinum editions with increasing func-

tional scope.

• Charging: how is the compensation amount for a certain rating of goods and

services determined?

For example, charging a fixed fee per user per month for using the software.

This also includes different options regarding the frequency of payment:

– Recurring revenue from regular business: support services, rental models, IP

licensing.

– One-time revenue types from regular business: perpetual license.

– One-off revenue (not from the regular business): selling the IP, spin-offs, . . .

In order to come up with ideas for revenue streams, Osterwalder and Pigneur

[OstPign10] suggest considering the following key questions:

• For what value are our customers really willing to pay?

• For what do they currently pay?

• How are they currently paying?

• How would they prefer to pay?

• How much does each revenue stream contribute to overall revenues?

Before building the revenue model, software product managers ought to work with

Finance to understand which revenue recognition guidelines are applied in their

organization: when exactly revenue can be recognized is especially tricky for

Fig. 3.6 Business model and

revenue model [Popp11b]

3.9 Business View 87

software, varies somewhat between different accounting standards (e.g. IFRS

which is heavily used in Europe vs. US-GAAP), and also depends on charging

details (e.g. one-time license charge vs. recurring charges for a SaaS offering or a

support contract) and bundling (e.g. pure software license vs. software bundled with

professional services).

Product managers are typically in charge of building a revenue model that

projects future revenue streams for their product, usually as a spreadsheet. There

are two common approaches: extrapolation from the past vs. bottom-up. Both

approaches use the established pricing strategy (see Sect. 3.10), as well as other

input data, such as

• Current user and revenue base (in case of an existing product).

• Results from market analysis (market size, trends, growth rates,).
• Planned sales channels.

• Planned investments in sales, marketing, customer acquisition efforts.

• Experience values regarding channel effectiveness, return on investment (ROI)

of customer acquisition expenses, or historic sales ramp-up (adoption curves) for

similar products.

Let’s first look at the scenario of an enterprise software product in an established,

“steady-state” market. The product is the market leader in terms of revenue share.

The market itself has been growing at around 10% annually for several years, no

major market disruptions are on the horizon and market forecasts from industry

analysts agree that this growth pattern will continue for the next couple of years.

The market has been very fragmented, but is consolidating, and the product has

been gaining market share steadily, growing about 2% points above the market

growth rate. The product still has “room to grow” by taking market share from its

competitors, since its current market share is still well below 50%.

The company has managed to slowly drive up average deal sizes across

channels, so that the historic revenue growth was achieved with only a small

expansion in sales expenses. For the coming years, the company plans to continue

on this trajectory regarding sales investments. The company will continue to update

and evolve the product as it did in the past, and no pricing changes are planned.

Here we use the approach of extrapolation from the past. Future annual growth

rates are modeled by taking future market growth rate projections from analysts and

adding the 2% points that the product traditionally has “outgrown” the market.

While building the revenue model this way is rather simple, it should be noted how

many context factors from the past must continue to be true in the future for the

revenue projection to hold water. If only one of these context factors changes—

either in the market or company-internally (e.g. changes in sales approach and

investment), the revenue model does not provide plausible guidance any more.

Of course, that approach does not work for entirely new products where no

historic data is available. We look at the scenario of a completely new product in a

product category that does not exist yet. If successful the product will establish this

new product category. Here, it is tempting to start with the estimated market

88 3 Product Strategy

opportunity and to assume that the new product will capture a certain percentage of

the market within a certain time period, say 1% in the first 3 years. This is called a

“top-down” revenue model—a faith-based approach that does not enable any

meaningful discussion, analysis, or planning. We rather go with the approach of

the bottom-up revenue model starting with a model of the customer base, which in

turn is based on the sales and marketing strategy.

The model for the customer base may use the following inputs:

• Conversion rates along the customer acquisition process, for example for a

web-based sales process.

• Other key metrics driving customer acquisition and retention, for example the

“viral coefficient” where applicable (one new user on average draws in another x

users (see [Ries11]) and churn rates (what percentage of the customer base do we

loose in a given time period)).

• Planned investment levels in sales and marketing, e.g. number of sales

representatives, online marketing budget, etc.

• Data on the effectiveness of channels, and of sales and marketing expenses,

e.g. average revenue generated by a sales representative per year or effectiveness

of customer acquisition expenses, such as online ads.

• Average deal size/order size (where applicable).

Once a model of the customer base has been built, pricing information can be

plugged in to create a revenue model. Since price structure and price levels are

likely to change in the early phases of new product development, pricing informa-

tion should be treated as input parameters to the model so that it can be changed

easily.

Of course, when starting with a new product, all the inputs into the revenue

model—from conversion rates to channel effectiveness to deal sizes—are

assumptions. The quality of these assumptions can be improved by using historic

data from comparable products as an initial best guess. But they still remain

assumptions. The Lean Startup movement emphasizes the importance of systemat-

ically validating all the assumptions that are critical to the success of a business

model [Ries11]. As more and more inputs to the revenue model get validated, the

plausibility of the revenue model increases.

Building a bottom-up revenue model requires more effort, but it provides a

number of benefits: it can turn into a very helpful tool to assess viability of the

planned sales approach, and to run what-if analyses for changes in pricing.

For example, for a product that is sold via the web channel, A/B tests may be

used to study the impact of different price metrics, discounts, or price levels on

buying behavior and conversion rates. Results from these tests can then easily be

plugged into the revenue model to determine the financial impact of the pricing

changes and changes in conversion rates.

Finally, the revenue model can also help detect inconsistent assumptions in the

business model, especially regarding the interaction between sales channels and

product structure: for example in a B2B business model that relies primarily on

3.9 Business View 89

license sales through a direct sales force with long sales cycles, each sales repre-

sentative can close only a small number of deals per year. Therefore, the average

deal size will have to be at least in the US&100,000 range.

3.9.7 Bundling

Another interesting business aspect is the bundling of products. We define

Product Bundle¼ Set of products that is sold as one product with its own price.

A bundle can contain products from one or more vendors. There are different types

of product bundles:

• Pure: The products are only sold as part of the bundle, not individually.

• Mixed: The products are sold as part of the bundle and at least some of them also

individually.

Bundling may have several different motivations:

• The bundle makes it easier for the customer to buy a complete solution and

signals that the vendor has already taken care of a tight integration of the

involved products. The vendor hopes for increased revenue and profit.

• The bundle is less expensive than the sum of the individual products and thus

gives the customer the impression that he saves money by buying the bundle.

Again the vendor hopes for increased revenue and profit since a percentage of

the customers would not have bought all products in the bundle individually.

• The bundle combines market-leading products with products that are new or

have strong competition. The vendor hopes for increased market share of the

new or weaker products because for customers who buy the market-leading

products anyway the bundled new or weaker products look like zero-cost

add-ons.

The third case is a frequent cause for legal action if the vendor has a dominating

position with his market-leading products. An example is RealAudio’s fight against

Microsoft for bundling the MediaPlayer with the Windows operating system. In the

second case, the price motivation has been analyzed scientifically (see [Biering04]),

but unfortunately the results are often only applicable in special situations.

If a product manager is responsible for a product family, he may consider

bundling within his family, but in most cases bundling means that several product

managers have to cooperate, maybe even across multiple companies.

3.9.8 Summary and Conclusions

Product managers who have a pure technical background often struggle with the

business aspects. However, these business aspects are of utmost importance with

90 3 Product Strategy

regard to the business success of the product over the strategic timeframe and the

product life cycle, respectively. And in most companies the business aspects, in

particular the financial model, are the number one driver for management decisions

regarding the product. In this section we have looked at business case, business

plan, forecasting, cost structure and management, revenue model, and bundling. In

addition to these topics, we discuss Pricing in Sect. 3.10 and Performance and Risk

Management in Sect. 3.13.

3.10 Pricing

3.10.1 Overview

Software pricing means all activities required to set, communicate, and negotiate

prices in a convincing way. The primary objective of pricing is well aligned with

product management’s objectives, i.e. sustainable success of the software products

across their life cycles. In the software business, cost-based pricing works for

human services, but not for software products (see Chap. 2). So for software a

value-based approach is the way to go. Software pricing means finding ways how to

convert the value the software provides to a customer into economic value to the

vendor.

This section describes the essence of software pricing. The reader will under-

stand the concept, the related processes, and the impacts of pricing. Software

pricing is covered in much more detail in Chap. 5 of [KittClou09].

3.10.2 Concept

Frequently the pricing of their products is not the favorite task of software product

managers. If they are lucky they have professional pricing managers by their side.

But more often than not, they are on their own. So how does software pricing work?

A cost-based approach works nicely for professional services. You calculate the

cost per day of your programmers or consultants, add some percentage for general

cost and absence, add the profit margin, and voila—that is the price you offer.

Unfortunately, this fairly easy approach does not work for software products. There

is no significant variable cost, i.e. cost per license or per SaaS customer, that can be

used as a basis of the cost-based price calculation (see Sect. 3.9.5). So the total cost

per piece goes down significantly with a growing number of pieces, i.e. licenses or

SaaS customers (see Fig. 3.7). This is much more drastic for software products than

the economies of scale that can be found in manufacturing industries.

So for software, the approach of choice is value-based pricing. That is described

by Nagle and Hogan in their Strategic Pricing Pyramid (Fig. 3.8, [NagHog05]):

Strategic software pricing starts with a clear understanding of customer

segments and value delivered to the customers (bottom layer of the pyramid).

3.10 Pricing 91

http://dx.doi.org/10.1007/978-3-642-55140-6_2
http://dx.doi.org/10.1007/978-3-642-55140-6_5

Value Creation ¼ The manner in which value is generated in a customer

organization from using the product, including the metric that shows the impact

of certain parameters on the value.

Segmentation may be needed if value creation is different in different segments.

We analyze the value a customer realizes by using the product. Think of an airline

reservation system. The value to an airline customer comes with each booking

made through the reservation system.

Based on that value analysis, the metrics used in the price structure can be

determined (compensator, effect, rating and charging from the model described in

Sect. 3.9.6). We define

Price Structure ¼ The manner in which the prices for a given software product

are offered, including the metric by which those prices may vary for the single

Fig. 3.7 Cost per piece for software

Fig. 3.8 Strategic pricing pyramid [NagHog05]

92 3 Product Strategy

product (e.g. one single price, price based on number of users, on capacity, on

usage, or on volume of licenses acquired).

An important consideration is that metrics should mirror the generation of

customer value which gives us a nice story how we can justify the price in relation

to that customer value. We may decide to define the price structure as the number of

bookings times a base price. Perhaps we want to add a fixed price component to this

variable price; after all an airline cannot function without a reservation system and

we may not want our entire business being dependent upon the variability in our

client’s bookings.

There is a wide variety of options available to define a price structure:

• One-time vs. periodic, also known as subscription-based pricing.

• Fixed price (one-time or periodic).

• Usage-based pricing (periodic), e.g. based on number of transactions, users or

usage hours.

• Free, i.e. no charges, but revenue generation through advertising.

The resulting price structure may turn out to be quite complex, in particular with

usage-based pricing when the actual price is calculated anew every month based on

the customer’s usage numbers of the previous month. In that case we better make

sure that our back-office systems are able to reliably handle the complexity and

issue correct invoices. Otherwise we had better simplify the price structure so that

we do not impact the customer relationship by frequent incorrect invoices.

Maintenance for license products is usually priced as periodic with an annual

charge as a percentage of the list price. The percentage is typically in the range of

12–25%, dependent on what is included in the maintenance contract, e.g. version

upgrades, hot line for non-defects, or not. With SaaS, maintenance is not charged

separately, but is included in the periodic charges of the SaaS offering.

In some product areas, e.g. airline tickets or rental cars, we see more dynamic

pricing concepts where prices change frequently based on current demand, order

inventory, etc. This is also known as yield management. These concepts can be

applicable to human services. There are examples where yield management is also

used for software, e.g. Amazon PaaS pricing.

The better value creation and price structure are aligned, the smoother is the

communication of price to customers:

Price and Value Communication ¼ The communication concept that is the

basis for communicating price and value to customers by showing how reasonable

the price is for the customer compared to the value he gets from using the product.

Strategic pricing also includes processes and policies to ensure the integrity of

the price structure in the market, for example fences that prevent abuse of discounts

(e.g. student discounts require proof of student status) or criteria for handling

“exception requests” in price negotiations (discounting criteria as part of the pricing

policy layer in the pyramid). We define

3.10 Pricing 93

Pricing Policy ¼ A formal definition of the manner in which prices may be

altered, e.g. price level or price structure, by whom they may be altered, under what

circumstances, and to what degree.

The policy sets governance criteria for the whole company regarding price. If the

company has a separate Pricing organization, that organization usually gets a veto

right to any transactions that do not adhere to the policy.

The top layer of the Strategic Pricing Pyramid is the price setting, i.e. seeting of

the price level. We define

Price Level ¼ The actual amount of charge within the price structure.

In our airline example, for an individual customer, we can calculate an upper

limit of the quantified value by dividing the annual profit through the number of

bookings which gives us the value per booking. Of course, the price level, i.e. the

base price, needs to be considerably lower than the value per booking. Competitive

analysis can further help to determine the price level. At what price are competitors

offering their products? Does the product have competitive advantages/

disadvantages that justify price differences? By carefully analyzing these aspects,

we can come up with the price level at which we want to offer the product.

There are many pricing strategies to choose from:

• Premium price strategy (high price, high quality and image), often combined

with a promotion price strategy (lower price, high quality, e.g. temporary special

offers).

• Price differentiation strategy (same product, different prices, e.g. in different

market segments—temporary, geographically, personnel, quantitatively).

• Price bundling (single pricing or product package, see also Sect. 3.9.7).

• Penetration strategy (low price with the introduction of a product in pursuit of

rapid market share growth).

• Skimming price strategy (high price for innovative products for compensation of

high investment).

• Life-cycle-dependent pricing strategy (situation-specific decision if, e.g. in the

introduction phase, high or low prices are to be set).

• Non-linear pricing strategy (usage independent component, e.g. fixed charges,

and usage based component, e.g. depending on usage).

The classic pricing theories of economic science like price elasticity usually assume

a commodity market and a limited supply of goods. Since these elements don’t exist

for most software products, usual economic theories do not apply.

3.10.3 Subscription-Based Models

It is hard to run a business based on one-off sales. Recurring revenue makes life so

much easier. Once you have acquired the customer, you can be quite sure of a

revenue stream over a longer period of time that covers your monthly cost and

hopefully more. The insurance industry is built on this model. Employees are used

94 3 Product Strategy

to it with their monthly salaries. For customers, no upfront investment is needed,

and the recurring payments are operational expenses.

The software industry has over time demonstrated the pro’s and con’s of each

approach. In the 1970’s and 1980’s there used to be a price model called Monthly

License Charge (MLC) for mainframe software products. It was the basis of IBM’s

wonderfully profitable software business. Of course, it means that revenue is

deferred compared to a one-time-charge (OTC) model where the customer pays

the full license fee immediately when the contract is signed. As a vendor, you need

to be in a financial position to afford this deferral. When the PC software business

started in the 1980’s, the new players like Microsoft wanted the revenue quickly, so

they chose the OTC model. They offered maintenance contracts to enterprise

customers which generated at least some recurring revenue, but certainly less

than the MLC model. It made Microsoft’s financial numbers look great quickly.

But over time, it meant that Microsoft could only generate additional license

revenue from existing customers by charging for version upgrades. So Microsoft

released new versions of Windows and Office every 2 or 3 years, not because

customers wanted new functionality, but primarily for financial reasons. On top of

that, Microsoft often did not care too much about ease of migration. So a large

number of their customers resisted that approach and stayed on older versions as

long as they could. As of March 2015, only 11.5% ofWindows desktop/laptop users

were on the latest Windows version 8.1 (according to Net Applications). This does

not look good in the trade press, means maintenance efforts for 6 Windows versions

in parallel, and results in relatively low upgrade license revenue. With Windows

10, Microsoft was trying something new by offering Windows 10 for free to all

Windows 7 and 8 consumer customers in the first year. Did they give away

revenue? Well, certainly some. But Windows 10 is the basis for an increasing

number of Microsoft applications that come with subscription price models, e.g. the

popular game Solitaire will have a Freemium model (use of the basic product is

free, but you pay monthly for special features and ad-free use).

The move to subscription price models has become a major trend in the software

industry, in particular with Software-as-a-Service (SaaS). It can also be a model for

all the other industries that embrace Internet of Things (IoT). Software is becoming

a key component of their products. It opens the door to creative value propositions

that will make customers pay for subscriptions on top of the OTC price of the base

product. Think of software enhancements for entertainment components in the car,

or a subscription for continuous high quality traffic updates. So there is lots of room

for new ideas how to generate recurring revenue.

3.10.4 Summary and Conclusions

In this section, we have looked at the value-based pricing approach for software and

at subscription-based pricing. There are many more aspects to software pricing than

we can cover here. For a much more detailed discussion including considerations

for corporate IT organizations, we refer to the pricing chapter in [KittClou09].

3.10 Pricing 95

Pricing, and in particular the governance rules related to pricing, are an ongoing

source of conflict. Sales has different, more short-term objectives than a Pricing

organization, or whoever is responsible for Pricing. So the governance rules need to

define clear responsibilities and escalation paths.

It is imperative to keep in mind that price doesn’t sell product. The product must

fit the customer need, then price can become the differentiator between doing

nothing, buying a competitor’s equally useful product, and buying your product.

Pricing too low or discounting too deeply, particularly if this becomes predictable,

will lead to leaving a lot of “money on the table.” Pricing too high will lead to weak

market share.

Since pricing has such a significant impact on the product’s economic success

over its life cycle, the task is always to find the approach which fits the market and

optimizes the vendor’s financial benefit over time. It can be quite hard to do a

convincing customer value analysis. It can also be challenging, at least in B2B

markets, to get accurate case by case information on competitors’ prices (in some

jurisdictions and with some vendor contracts, this may not even be legal to do). And

a forecast always contains risk. However, if we want to optimize our business

results there are no fundamentally different good alternatives to the value-based

pricing approach for software products whether it is an on-premise license product

or SaaS.

3.11 Ecosystem Management

3.11.1 Overview

Software ecosystems have a significant impact on the work of the product manager.

The product manager must conform to the role the software vendor wishes to play

in the ecosystem. The role has direct influence on the positioning of the product, the

pricing strategy, the degree to which the product road map and requirements

decisions depend on other players in the ecosystem. A product manager can

influence the ecosystem strategy and its evolution.

This section describes software ecosystems concept, partner programs and

partner management, and the role of software product managers in that context.

3.11.2 Concept

Over the last 20 years the term “software ecosystem” has found increasing usage. It

is derived from biological ecosystems. The analogy expresses the interdependence

of the players in business networks and was first drawn by Moore in 1993

[Moore93]. We define

Software Ecosystem ¼ A network of people and/or companies that forms

around a software vendor or a product or product platform. The relationships in

96 3 Product Strategy

this network have the goal to achieve benefits for all participants and can be

formalized or not.

The structural constituents of software ecosystems are stakeholders,

relationships, boundaries, behavior, and strategies. Iansiti and Levien [IanLev04]

define three principle roles participants in a business ecosystem can play:

• Keystone:

A benevolent hub in the network that provides benefits to the ecosystem and its

members. It usually provides the core of the innovation in an ecosystem. For

technology-related ecosystems, this effect of keystone players is a key success

factor for survival and adaptability of the overall ecosystem. Keystone players

behave in favour of other players, especially by protecting niche players. The

number and diversity of niche players determine the speed and diversity of

innovation in an ecosystem, which is an important prerequisite for success.

The resulting distributed nature of the network makes it flexible and little

vulnerable to external disruptions. Examples are Google in the Android ecosys-

tem or Microsoft in the Windows ecosystem.

• Dominator:

A hub that aims at controlling as much space in the network as possible. It

leverages a critical position in the ecosystem to exploit or take over a large

portion of the ecosystem. It is not interested in sharing value, but tries to capture

most of the value itself. An example for a dominator is Apple who controls the

IOS ecosystem to a large degree.

• Niche players:

Most members of an ecosystem are niche players who do not try to compete with

a keystone or dominator, but focus their business on critical competencies in

narrow areas of expertise, if there is an opportunity to run a profitable business.

They usually are smaller companies and outnumber keystone players or

dominators. An example for niche players are app developers in the ecosystems

of smartphone platforms like Android or Apple’s IOS.

It is usually not part of the responsibilities of a software product manager to decide

on the role his company wants to play in an ecosystem. This belongs into the realm

of corporate strategy that is owned by executive management. Part of this decision

is how proactively a company wants to influence the ecosystem and other players in

it. Once these decisions are made, they have significant impact on the work of the

product manager, and he must conform to the role his company wishes to play in its

ecosystem(s).

Among the niche players, there are different types of players in an ecosystem:

Development-related:

• Independent Software Vendor (ISV): Develops functional extensions,

i.e. add-on or specific application as his product that uses the platform product

as a prerequisite and enhances its functionality. He is independent in the sense

that he is not controlled or owned by another vendor.

3.11 Ecosystem Management 97

• Original Equipment Manufacturer (OEM): One company integrates the

product of another company into its product offering.

• Technology provider: Provides relevant products and/or technology with

interfaces to the platform product.

• Resource Provider: Provides code that is integrated in other players’ products,

or sends developers into other players’ development teams, or provides

operations services to other players.

Sales-related:

• Reseller: sells software products offered by a software vendor. The reseller has

contractual relationships with the customers and with the vendor.

• Value Added Reseller/Remarketer (VAR): a reseller that offers a software

product offered by a software vendor and adds components and/or services to

them, e.g. customer-specific customizing. The VAR is helpful for better market

penetration, and sometimes for enrichment of products with solution

components.

• Intermediary: mediates between vendors and customers of software products,

with the aim of them signing a contract, e.g. a provider of an internet

marketplace.

• Original Equipment Manufacturer (OEM): The development relationship

described above can also be considered as a type of sales and distribution

outsourcing. The product integration can be visible to customers (black label

approach) or invisible (white label approach).

• Value added distributor (VAD): is used for outsourcing of production and

distribution activities, often for enrichment of products with solution

components, for management of smaller partners and a better market

penetration.

• Technological alliance: is often used as sales cooperation, for preinstallation,

for completeness of solution offers and synergy in marketing.

Service-related (services to potential customers of products in the ecosystem):

• Consultants: Company or individual who offers solution definition (incl. prod-

uct selection), business analysis etc.

• System integrator (SI): coordinates and performs the integration of software

product components supplied by different vendors and customer-specific soft-

ware. This includes the responsibility for the overall system design as well as the

customizing and integration of product and service components and information

management.

• Operations Provider: offers managed services like hosting, maintenance, etc.

Influencers:

• Consultants: may influence customers’ buying decisions through their

consulting work.

• Press: may influence customers’ buying decisions through their coverage of

relevant markets, products and companies.

• Market research companies: may influence customers’ buying decisions

through their coverage of relevant markets, products and companies.

98 3 Product Strategy

• Customers: may influence other customers’ buying decisions through their

testimonials and their acting as reference customers for vendors.

An individual company can often be a player of more than one of these types.

Competitors to the platform product or technology vendor of an ecosystem are

usually not considered as part of the ecosystem unless there is a coopetition

relationship, i.e. the same companies cooperate in one or more product areas and

compete in other product areas.

If a company decides to influence its ecosystem and other players in it proac-

tively it usually establishes some kind of partner program. We define

Partnership ¼ Formalized relationship in a software ecosystem.

A partner program can be applied to all types of players in an ecosystem except

influencers. For software more than for other products, a well-oiled network

machine of diverse partners is a significant prerequisite for long-term success in

addition to the traditional direct sales channels. For a software company, there are

several good reasons for establishing and managing a partner network as part of a

software ecosystem. Partners are needed in order to reach customers that could not

be reached fast enough or at all with a direct sales force. To build up a sales

organization is time and cost-intensive and requires significant revenue per person.

A sales partner may be able to cover a sales area more easily and efficiently by

combining products of several software companies and his own products and

services. Moreover, many sales partners are already established in the market

with customer contacts as value added resellers (VARs) or system integrators

[Bech15].

Customers of business software are usually not interested in a particular software

product, but in a solution for their business problems and an implementation of their

business processes as efficiently as possible. Because of the complexity and inter-

dependence of business software, the desired solution is typically not achieved by a

single software product and requires significant customizing and implementation

effort. Customers frequently rely on qualified consulting and service companies that

are contracted for the implementation and very often also for conception and design

of the solution. This gives these companies a strong influence on the selection of

software products, sometimes the decision is part of the contracted task. That is why

partnering with these consulting companies can be more important for a software

vendor than direct sales. This is valid for application software and especially for

infrastructure software products. In many cases, the decision for a certain software

technology or a software product is not made by the customer, but by the vendor of

an application software solution who decides for a base technology, or by the

system integrator who favors a technology or product and uses it as an integral

part of his offer.

Last but not least, vendors whose products are not competitive, but cooperative,

form technology alliances. These alliances have the purpose to bundle sales

resources. This can happen as sales cooperation, or by preinstalling software

products on the hardware platform of another manufacturer. The advantage of

preinstallation for the hardware manufacturer is that the additional software

3.11 Ecosystem Management 99

products make his product more attractive. The advantage for the software vendor

is that this channel allows easy access to many end users that would otherwise fail

to be addressed in the usual sales process. In view of the high sales volume, the

purchase commitment, the negligible amount of time and effort invested in sales

and distribution, and perhaps even the money saved on media and documentation,

the software vendor will offer to sell his software on very favorable conditions.

Technology alliances also aim at offering integrated solutions that the market

requires by combining products and services of several partners so that the cus-

tomer can assume a proven level of integration. Often partners want to benefit from

the image, the brand or the market position of other partners.

In the end all partnering activities have one goal: faster growth and market

leadership. A balance between growth and profitability needs to be found: The

software vendor gives some part of the revenue and/or profit to its partners in order

to grow faster and reach a leading position in the market.

A comprehensive discussion of business ecosystems can be found in

[JanBrCus13]. Adnar and Kapoor [AdnKap10] look at what technology leadership

and innovation mean in an ecosystem.

3.11.3 Partner Programs

Depending on the role that a company wants to play in a particular ecosystem, the

company needs to be visible as an active member of the ecosystem and influence

and support it. This work is typically split between Product Management, Devel-

opment and Marketing. When larger partner programs generate a significant work-

load and require a uniform management of terms and conditions, a centralized

partner management organization may be the appropriate organizational solution.

But even then, product management needs to be involved on a strategic level.

Software product managers are well advised to participate in, contribute to and try

to influence the ecosystems important for their products. Partnerships and alliances

that are required to actually provide a complete offering to the customer need

special attention.

A partner program typically specifies:

• Structure of the partner program, e.g. different types and levels.

• The prerequisites that a partner must fulfill for participation.

• Contributions of the software vendor, e.g. for joint marketing, education, early

technical information in case of changes, support, or platform for information

exchange among members of the program.

• Terms and conditions, in particular with regard to sales.

• Additional rules, e.g. for joint marketing and sales activities.

When selecting partners, the strength and stability of a company, compatibility of

business models, potential conflicts, market access, skills, and the level of commit-

ment are important criteria (see also [FoFrFiLG14]). Partnerships only make sense

100 3 Product Strategy

when they are beneficial to both parties and the parties trust each other. This win–

win-character needs to be ensured when designing terms and conditions of partner

programs or negotiating individual partnerships.

SAP is an example for a company that has an exceptionally strong focus on

partner management with a partner management unit reporting directly to the CEO.

Marketing is responsible for sales-oriented partner management (see Sect. 6.3).

Here Product Management is involved in dealing with the partner’s product

requirements. Product Management takes care of product-related in-depth

discussions with market research companies and journalists, the overall positioning

within the ecosystem, and the selection of product-specific partners.

3.11.4 Summary and Conclusions

Software ecosystems have a significant impact on the business success of its

players. In this section we have looked at the different roles and types of players.

Companies can intensify cooperation within an ecosystem by establishing a partner

program or joining other players’ partner programs. While the big software

companies invest a lot of resources in extensive partner programs in order to

manage their ecosystems proactively, smaller players often do not give sufficient

attention to this subject. In any case it is part of the software product manager’s

responsibility for product strategy to influence his company’s approach to ecosys-

tem management for the benfit of his product.

3.12 Legal Aspects

3.12.1 Overview

Software product managers are usually not legal experts. And they do not have to

be. However, since legal risks can have a significant negative impact on the

business success of a product, product managers need to be aware of those risks

and take action to avoid or mitigate them. It is advisable to involve legal experts in

these topics. But a product manager needs to know the important questions to ask

the legal experts. That is what this section is about. We cover contracts, the

protection of intellectual property, open source, and data protection in more detail.

3.12.2 Contracts

In this section the focus is on contracts between vendor and customer. The chosen

delivery model, i.e. licensed product vs. Software-as-a-Service (SaaS) offering (see

Sect. 3.5.2) determines the type of contract. A license describes to which extent and

under which conditions the licensee can use an item, e.g. software, which is subject

to intellectual property rights, in particular trademarks, patents or copyrights. These

3.12 Legal Aspects 101

http://dx.doi.org/10.1007/978-3-642-55140-6_6

rights of use are granted by the licensor who may be the owner of all rights in such

item, i.e. the software company, or may be an entity authorized to grant the license,

e.g. a reseller. The term “license contract” means an agreement between the

licensor and the licensee about all terms in connection with one or more licenses.

With software, the term “license” usually describes the scope of rights of use which

the licensor grants to the licensee. In case of SaaS, the customer does not acquire a

license, but a service.

The contract by which software or a software-based service is “acquired”, may

be negotiated individually or, particularly in the mass-market, based on so-called

“standard terms and conditions,” which describe the generally applicable legal

terms.

The scope of the license or service describes the content of the agreement,

i.e. the scope of software, documentation, services and hardware included. Vendor

services (e.g. for custom modifications, initial migration work and for user training)

and further services such as additional copies of the documentation are usually

defined in a separate services agreement. It is worthwhile here to explain an

accounting principle which will be important to the vendor (and which may explain

certain vendor behaviors to the customer): in most countries, revenue for OTC

software is generally bookable upon delivery of usable product and invoice to the

customer. However, if there are services to be performed or an acceptance test

following modifications or there is a right of the customer to cancel, then the

revenue will not be bookable until all of the contingency conditions have been

performed and are accepted. In today’s frenetic scramble for more and earlier

revenue, such contingencies will be very hard for a vendor to accept.

One of the peculiarities of software is that inherent in most contracts there is an

assumption by both the vendor and the customer that the software contains errors

(bugs). That is why the terms and conditions of the license must define how such

bugs and any necessary modifications are to be dealt with. That is also why there is

no guarantee with software except possibly a money-back provision if the cus-

tomer is not satisfied; this generally takes the form of a trial period after which you

must pay or you will no longer be able to use some or all of the functionality or a

“pay now and we will refund your money within xx days if you are not satisfied”.

The “xx” usually ranges between 30 and 90, seldom longer. Both of these

approaches, while helpful to the customer raise revenue recognition issues for the

vendor.

Warranty means that the vendor agrees to make the product perform as

promised in specifications, advertising, or sales presentations during a limited

time. The warranty period is typically 1 year, in some jurisdictions 2 years, unless

specifically stipulated otherwise. Assistance with debugging and provision of fixes

are usually free of charge during the warranty period, i.e. included in the license

price. This situation may continue longer if maintenance is paid for the license. In

case of SaaS, maintenance is part of the scope of service anyway.

In this area the definition of a “bug” is always a critical item. A frequent matter

of customer/vendor dispute is determination of the severity of a bug and whether or

not it really is a bug or rather a request for product enhancement. IBM says that if

102 3 Product Strategy

the code does not do what the product specification says it does, that is a bug.

However, on occasion, when a bug cannot be fixed, the specification is changed

rather than the code. It may be impossible to achieve a legal definition that is

absolutely airtight.

This part stipulates whether or not the licensee may transfer the license to

another physical computer, how to proceed within a local area network, and how

copies of the code are to be handled. Another critical issue is whether or not the

licensee may transfer the license to a third party. In the European Union, there is a

High Court decision that this kind of transfer is generally allowed. In other

jurisdictions, the vendor may still try to prevent this.

Under type of charges there is not necessarily the specific price, but possibly

how the product is charged in terms of metrics. This is a candidate for a product-

specific addendum to a generic vendor license.

Vendors try to limit their liability as much as possible.

Usually if a customer wants to continue to use the debugging service described

under “Warranty” and have access to fixes past the end of the warranty period, he

must acquire a maintenance contract. We recommend vendors to keep the mainte-

nance contract separate from the license contract. In the maintenance contract, the

vendor will define the entitlements being conveyed, charging and duration, and

termination provisions. The vendor may also define a support escalation process

which brings more resource to bear depending on the severity of the bugs. But see

also under “Warranty” what a fix may entail. Some vendors also include upgrades

to new product versions in their maintenance agreements. Various other aspects of

the maintenance services may also differ from vendor to vendor.

In general, a vendor reserves the right to terminate maintenance for a software

product or product version, the common practice being to give notice of this in

advance. The vendor does this with the aim of reducing maintenance costs and

motivating customers still using older product versions to migrate to new ones. The

announcement that maintenance services are to be discontinued is usually not

received very well by the customers involved. This regularly gives rise to fierce

protests that are then settled by reaching a compromise.

Different geographies will have different views on this. Different product sets

may attract different reactions. In Japan there is a tendency to stick with a product

for a very long time, to the extent of being willing to pay extra for product “n”

maintenance in order not to have to move to “n þ 1”. This is an extension of the

adage “if it ain’t broke, don’t fix it.” But this can also delay introduction of new

technology. Microsoft recently experienced this when they announced the discon-

tinuation of maintenance for Windows XP.

Then there are miscellaneous legal provisions that include the definition of the

period during which one can make claims, governing law, and which courts will be

used in case of dispute. Other legal provisions to be included pertain to the mutual

handling of confidential information as well as to the rights and responsibilities

entailed in terminating the license agreement, legal remedies and issues of com-

pensation for damages and liability. A corporate customer in doubt about a

producer’s soundness may insist on a source code escrow (escrow service). This

3.12 Legal Aspects 103

allows the corporate customer to access the source code in the event that the

producer declares bankruptcy, thereby ensuring that maintenance can be continued.

While customers sometimes ask for this, it is usually more a bargaining chip in

negotiation than a practical request. The source code of an operating system, for

example, would not be helpful for a customer. Some vendors like IBM even have

large chunks of code in proprietary languages for which compilers are not commer-

cially available. And where would the customer find the resource and talent to work

on such code? Often customers lose interest in such a request when confronted by

the cost of having an escrow agent keep a copy of the code.

Conflicts between vendor and enterprise customer generally arise in one of four

areas:

• Whether the product is doing what the vendor claimed it would do and if not

whose fault it is that it is not performing;

• The way in which the product is being used compared to what the vendor

authorized; and

• The quantity of product in use compared to what the vendor authorized (for

license contracts);

• Unused quantities of the product which the customer paid for but which he is not

using, which is referred to as “shelfware” (for license contracts).

The license contract attempts to deal with most of these items. Examining the list of

potential conflicts between vendor and customer, one can conclude that most of

them arise because a software “purchase” typically does not mean that ownership or

any proprietary rights are transferred as they usually are in the case of material

products. Only a right to use is granted by the vendor, subject to various restrictions

and often priced based on the scope of use or projected use. This circumstance gives

rise to a legal complexity that results in similarly complex licensing terms and

conditions, the details of which frequently differ from one country to the next, since

the local legal requirements must always be taken into account.

Contrast the acquisition of software with that of a tangible widget: if you buy a

shovel, you can use it 1 day to dig a trench, lend it to a friend the next day to mix

cement, and your wife may use it to plant roses the third day. In fact, if one

discovered that he had purchased too many shovels, he could try to sell his extras.

Not so with software which will probably have restrictions on the purpose for which

it may be used, the number and nature of the people who may use it, and possibly on

where and how it may be used and/or resold. The wording of the terms and

conditions of the license and related documents has by now become so creative

that in some states in the USA, e.g. California, initiatives have (unsuccessfully)

been undertaken calling for a law to regulate standard software license agreements,

as the terms and conditions of license agreements now used by vendors can often no

longer be understood by either retail or corporate customers nor on occasion by the

vendors themselves.

In the case of SaaS or other software-intensive services, the service provider,

i.e. the entity which makes available the software through the internet, needs to

104 3 Product Strategy

either own the IP rights in the relevant software itself or has to conclude license

contracts with the owner of the software which explicitly allow this kind of use, in

other words a SaaS-license. Customers of such a service do not need license

contracts, but only service contracts with the service provider, as the object code

is not running on their system, but only on the service provider’s infrastructure

(whether owned or leased). Please note that this applies to SaaS-scenarios. In IaaS-

scenarios the license requirements may be different: the IaaS-provider or the

customer may need a license for the software installed that runs on the infrastruc-

ture provided by the IaaS-provider.

SaaS contracts usually contain a service level agreement (SLA). SLAs stipulate

which services a customer can expect to receive from a provider. In particular, this

may include:

• Functional scope,

• Availability as an average as well as the maximum length of downtime,

• Quality in terms of absolute errors per time period according to degree of

severity and maximum time for debugging according to degree of severity,

• Performance guarantee, e.g. response time behavior or load values,

• Scope and quality of user support, e.g. hotline, and maximum reaction time to

operational demands, e.g. special evaluation of data on hand,

• Reaction time to new functional demands,

• Test options for new releases and versions including the scope of support and

maximum debugging time according to degree of severity,

• Backup frequency and maximum restore time,

• Disaster recovery measures.

From a customer perspective, an SLA only makes sense if the contract includes

penalties that must be paid by the service provider in the event of a breach of the

terms defined in the SLA. The purpose of this is to motivate the provider and

compensate for damage incurred by the customer in the event of a system failure.

A corporate IT organization acts as a service provider for the company’s other

business units. The services provided include further development and operation of

the software and hardware used to support the business processes of the other

departments. Whereas in the past the relationship between the in-house IT depart-

ment and other departments was often informal, it has become common practice to

use formal service level agreements (SLAs) to define this relationship, especially if

the IT organization has been restructured as a legal self-contained corporate entity,

almost like an outsourcer.

3.12.3 Protection of Intellectual Property

Software product managers normally deal with product evolution. The task of

bringing products to market that are based on real groundbreaking innovation will

be the exception. In such a case, the software product manager is often not involved

3.12 Legal Aspects 105

until the innovation has reached a stage at which it can be included in the normal

development process. Regardless of whether it is a question of evolution or

innovation, the results can lead to a significant market differentiation and to

major competitive advantages. The software product manager will then be respon-

sible for finding a way to turn these competitive advantages into market success and

safeguarding the competitive edge as long as possible.

There are a number of different legal constructs for the protection of intellectual

property. From a macro-economic view, protection leads to more innovation since

it increases the return on investments in innovation. On the downside the use of the

innovative idea by others is delayed or made more expensive, since it cannot be

directly copied. An example is a pharmaceutical company that develops a new drug

and keeps the price high, thereby limiting its use.

On the micro-economic level, if a company seeks legal protection it needs to

make a description of what it wants to protect public which makes it easier for

competitors to understand it and duplicate it legally (and sometimes illegally).

Since this can be difficult to prove with software, smaller companies sometimes

avoid publishing their innovations, whereas larger corporations mostly prefer

it. The advantages are the protection of competitive advantage, possibly an extra

income through license fees, negotiating leverage in case of conflicts with other

patent-holding companies, and the marketing aspect of an innovative corporate

image.

Of course, there is no automatic correlation between the innovative capability of

a company and the number of patents it holds, since the acceptance of a patent does

not signify that the content is useful. So far, the general public does not seem to

have realized this.

There are four fundamental legal constructs for the protection of intellectual

property:

• Trademark: Protection for the names of brands, i.e. brands do not apply to the

software itself but only to the brand under which it is marketed.

• Trade Secret: Protection of company-internal knowledge (primarily against

employees). This protection is exercised by restricting knowledge and access

to a very small number of people and by using non-disclosure agreements. In

most jurisdictions, trade secrets are only protected under unfair competition

laws.

• Copyright: Protection against copying of software code (as specific expressions

of an idea or way of doing something) and product material such as manuals,

brochures and presentations. This is the main way software is protected. The

algorithm or idea behind software is not protected under copyright law.

• Patent: Protection of the specific technical concept or idea. In most jurisdictions,

patent protection can only be obtained for software which is integrated into a

technical solution to a problem.

Traditionally, text has been subject to copyright law, technology to patent law.

Since software became an issue, legal authorities and software developers, seeking

106 3 Product Strategy

protection for their intellectual property, have sought to choose existing recognized

forms of protection under the law and have tried to press software into these

existing alternatives (see [Klemens06]) not accepting the fact that it does not really

fit. This has led to continuous controversial discussions and country-specific

regulations that are not aligned internationally.

In the US up until 1980, patent rights were hardware-oriented, i.e. it was hardly

possible to have software patented. In response to pressure from software vendors, a

Supreme Court decision changed the rules. Suddenly almost everything was pat-

entable, even business processes. This resulted in a glut of patent applications, some

of which seem rather useless or even ridiculous (see [Klemens06], p. 1 ff.).

As long as software patents refer to implementation details, they can be

circumvented by implementing the functionality in some other way. This becomes

more difficult if user interface elements that implicitly describe a business process

are patented (see the Amazon example below).

Some years ago, conflicts arose regarding open source software and patents, as

companies introduced patented elements into open source processes and subse-

quently requested license fees. All open source groups refused to accept this,

arguing that using patents this way prevents progress. In 2002, open source guru

Richard Stallman said that U.S. patent logic would have forced Beethoven to pay

Mozart for the right to create a new symphony.

The monetary judgments that have been sought and sometimes granted in patent

infringement cases in the US are increasingly seen as life-threatening for

participants in the US software market.

The way that patent offices review software patents is also being criticized more

and more. Officially, an application may not be accepted as a patent if its content

already constitutes public property, i.e., whatever is already generally being used

may not be patented. Unfortunately, there are good examples showing that patent

offices were not capable of judging this. In [Besaha03] Besaha proposes measures

for improving the patent process. In two ground-breaking rulings in April 2007, the

US Supreme Court decided to lower the requirements regarding the

non-obviousness test (Teleflex vs. KSR International) and restricted the applicabil-

ity of US patent law to US territory (AT&T vs. Microsoft). The America Invents

Act of 2011 brought some improvements, but no fundamental change.

Amazon is a widely discussed example of how patents can be used to safeguard

the competitive edge of a product platform. Amazon had its one-click technology

patented, making the ordering process extremely easy for registered customers.

This discussion revolves around the issue of patentability. Opponents argue that,

ever since the invention of the mouse, a click has always been used to effect a

transaction. In their opinion, this technology is therefore not patentable. Proponents

say that this special type of one-click technology used in connection with the online

commercial transaction process for which Amazon has submitted a patent applica-

tion did not previously exist in this form and can therefore be patented. In Alice

Corp. v. CLS Bank International, the US Supreme Court decided in 2014 that an

abstract idea cannot be patented just because it is implemented on a computer.

Since then, hardly any patents on pure software or business processes have been

granted in the US anymore.

3.12 Legal Aspects 107

This subject is being heatedly discussed in Europe, too. In compliance with the

current European patent agreements, neither a computer program nor a business

method can be patented as such. However, since it is not clear how a computer

program differs from an invention that includes a computer program as one

component among others, the European patent office has accepted software-related

patents in the past few years. The urgency for a European patent law is obvious

since the heterogeneous legal situation within the European Union means costs for

patent applications are higher than in the US by a factor of 10. The European

Commission has repeatedly started legislative processes in order to establish more

explicit common regulations. The latest one is the European Unitary Patent

accepted by the European parliament in 2012. It is unclear how the required

ratifications by the European countries can procede after the UK’s Brexit decision.

Changes in the legal situation in both the USA and Europe regarding the granting

of software patents can be expected on an ongoing basis given the discussions

described above. Yet, regardless of how the legal situation develops, the software

product manager will still be responsible for considering a patent application as a

means of protecting intellectual property and safeguarding competitive advantages.

There are additional ways and means to do this. A key factor is assuring that

valuable technical employees continue to be committed to the company. Studies

show that typically <10% of the development staff actually possess the essential

product- or technology-related skills. These are the employees that the company

definitely wants to retain. This requires company-wide personnel retention

programs that are generally not within the software product manager’s scope of

responsibility or authority. However, the software product manager needs to ensure

that the employees relevant to his product are included in these programs. The

competitive advantage can also be maintained by continuing to expand the

differentiating elements through further product development.

A major problem for all vendors selling software licenses is software piracy.

IDC conducts studies for the Business Software Alliance (BSA) on global software

piracy quite frequently. According to the latest study [BSA16] 39% of all software

installations worldwide are not properly licensed leading to a total revenue loss of

52 billion & in 2015. The piracy rate ranges from 88% in Venezuela to 17% in the

US. Even if these numbers are a bit inflated there is no doubt that there is a

significant problem and only slow progress. Many large software vendors now

insist on the contractual right to audit customers as one way of curbing losses. That

of course offers no protection for software usable by single clients, pirated versions

of which are often available in Russia, China, and elsewhere for a fraction of the

normal cost. Microsoft now checks routinely whether the requestor has a legitimate

license before allowing downloads of maintenance and upgrades. There are quite a

number of publications on what companies can do to prevent piracy,

e.g. [CollThom02] and [GopSand97]. One of the attractive features of SaaS for

vendors is that it eliminates the piracy risk.

108 3 Product Strategy

3.12.4 Open Source

On the sourcing side (see Sect. 3.8), Open Source software is frequently an

(important) part of software development projects and may help to reduce develop-

ment cost and time (see [Popp15]). However, as all software, open source software

is subject to copyright protection. Thus, the developer of an open source software

component is owner of the pertaining copyrights and disposes of them by offering

the module free of charge under an open source license agreement. Consequently, a

company which uses open source software for its own development processes has to

comply with its license terms. An according license contract is frequently

concluded (implicitly) when downloading or installing the open source component.

The variety of available open source licenses is manifold [DeLaat05]. From the

perspective of the user of open source, the so-called free licenses are not causing

any problems. These licenses simply allow any kind of use of the open source

software free of charge without stipulating any further restrictions (e.g. Creative

Commons’ CC0, BSD License, MIT License).

More difficulties can be caused by the so-called copyleft licenses which often-

times govern the use of open source components [e.g. the GNU-Licenses (GPL,

LGPL and GFDL)]. The underlying idea of copyleft licenses is that the open source

software is made available free of charge and thus any further developments

accomplished on the basis of such copyleft software may only be distributed on

the basis of the copyleft license. In practice, this means that the source code of

software which was developed by using open source software must be offered free

of charge—at least to anyone who acquires a copy of the object code, sometimes

also to the general public. Dangerously, it does not matter how significant the open

source code was in developing software. If only an open source code snippet is

used, the respective copyleft license applicable to such snippet applies to the entire

software (so-called viral effect). As long as such software is used for mere internal

purposes, the copyleft license effect does not apply. As soon as the object code is

sold (stand-alone or as part of a hardware product), the obligations of the copyleft

license apply, in particular the above mentioned duty to make available the source

code, and formal requirements, such as the obligation to mention the applicable

open source license in the source code.

If open source code from various origins has been used, multiple open source

licenses may apply in parallel—making it impossible to comply with all of them

(in case of distribution). In case of an infringement, the owner of the rights (as a

rule, the developer(s) of the respective open source code) have the right to request

halting the use of the software and to claim damages. Damages may e.g. be

calculated by the amount of profit made by distributing the software in violation

of the open source license. Ruffin and Ebert [RufEbe04] look at the risks in more

detail.

Companies who are developing software should implement open source com-

pliance processes. In this process, a list of open source licenses which are compliant

with the intended distribution model is set up and developers (employees,

freelancers and subcontractors) are prohibited from using any open source software

3.12 Legal Aspects 109

for which other than the listed licenses apply. If a developer requests the use of

non-listed software, the pertaining licenses have to be checked by the legal depart-

ment (or outside counsel). In case the respective open source license, e.g. copyleft,

is not in compliance with the intended distribution model, the open source code

should not be made part of the proprietary software to be developed. An option to

nevertheless use the respective open source software, is to make it a part of a

separate component which interacts through defined interfaces with the rest of the

software. This approach may allow the software-developing company to avoid the

obligation to make available the source code of the entire software free of charge

but limit such software to the component comprising of open source software.

A disputed topic is whether or not SaaS has to be considered as distribution

under the copyleft licenses. Only few open source licenses provide for specific and

clear rules in this respect. In lack of clear license clauses, the implications are

unclear. It can be argued that SaaS is not distribution since the object code is not

sold and not transferred to the customer. However, the purpose of copyleft licenses

is to ensure free availability of the source code in case of commercial use. The Free

Software Foundation, issuer of the most common copyleft license family, the

General Public License (GPL), has expressed the view that distribution via SaaS

does not equal distribution in the sense of the license. However, there are a number

of open source licenses now, e.g. AGPL, that explicitly address the SaaS scenario.

3.12.5 Data Protection

European Union (EU) data protection law applies to all companies and branch

offices within the European Economic Area (EEA) and also to other companies to

the extent they collect, process or use personal data with means located in the EEA.

The EU data protection law has served as a model for many other jurisdictions.

Consequently, various other countries have enacted data protection laws which are

meeting the EU data protection requirements, or are even more restrictive:

e.g. Switzerland, Canada, Israel, Argentina, Australia etc. However, in many

other countries, e.g. in the USA, the approach to data protection is fundamentally

different. Whereas in the EU any kind of personal data (i.e. any data which relates

or can be related to an individual) is protected irrespective of its sensitivity, in the

US numerous special data protection laws apply in certain areas, e.g. for health data

or credit card data; outside those areas the general principle of privacy applies

which only grants protection to sensitive data from private spheres. As a result,

e.g. personal data of employees is subject to the data protection laws in the EU, but

not, at least in principle, in the US.

Under EU data protection law the company running software to process personal

data, e.g. ERP software, CRM software etc., is responsible for data protection

compliance. Hence, the software-developing company is not directly in charge of

data protection compliance. However, customers are, and will become more and

more, aware of data protection issues and will thus likely request software which

takes into account data protection principles and requirements, such as data

110 3 Product Strategy

minimization including pseudonymization wherever possible, access by users on a

need to know basis only (roles) and data security. Moreover, the new EU data

protection regulation that came into force in May 2016 establishes the principle of

privacy by design and the right to be forgotten, among other regulations. European

countries are supposed to translate it into national law by May 2018. It will bind

software companies to design their software in a way reducing the risk of data

protection infringements by the users. It remains to be seen to which extent data

protection authorities will address software companies directly in the future.

The situation is fundamentally different if the software company runs the

software and makes it available to its clients under a SaaS distribution model. In

such case, the client’s personal data are processed on the company’s server infra-

structure. Nevertheless, the customer remains the controller of its data who remains

responsible to ensure data protection compliance. As a rule, the SaaS provider is

considered to be a commissioned data processor. In such case, the controller and the

SaaS provider have to conclude a commissioned data processing agreement

according to which the SaaS provider commits to comply with the directions of

the controller, allows regular checks and controls and implements adequate techni-

cal and organizational measures for data security. Special restrictions may apply in

certain areas, e.g. telecommunication, health data, insurance data, tax data etc.

To the extent that personal data is transferred from the EEA to recipients outside

of the EEA, SaaS requires additional precautions if the recipient’s country has not

been approved by the EU commission as a safe country. The typical solution is that

the controller and the SaaS provider agree on the so-called EU model clauses which

oblige the data importer (i.e. the SaaS provider) to comply with the fundamental

principles of EU data protection law. For recipients in the USA, the safe harbor

rules applied till they were declared as invalid by the European Court of Justice in

October 2015. Its replacement, the EU-U.S. Privacy Shield, came into force in July

2016. If a US company registers under the EU-U.S. Privacy Shield and commits to

comply with its rules, it is considered to ensure an adequate level of data protection.

The advantage of commissioned data processing is that the transmission of

personal data from the customer to the SaaS provider (and back), which is triggered

by the use of the software, is as a matter of principle not considered a transfer in the

sense of the law. However, as mentioned above, this applies only provided that the

SaaS provider has no discretion how to process the data and does only process the

data for the customer’s purposes. If this precondition is not fulfilled each and every

transmission of data between the customer and the SaaS provider needs to be based

on the data subject’s consent or a statutory permission.

3.12.6 Summary and Conclusions

Software product managers need to be aware of the legal risks related to their

products which can potentially harm the business success of the product signifi-

cantly. And they need to take action to address these risks in cooperation with legal

experts. We have described risks and in the areas of contracts, protection of

3.12 Legal Aspects 111

intellectual property, open source, and data protection. There are additional risks

such as governance, finance, supply-chain, delivery commitments, laws on general

terms and conditions, blacklisting of countries for specific software components

etc. which are increasingly relevant (see for instance the growing impact of

governance rules and transparency laws).

The term “compliance” is widely used now describe the goal that organisations

aspire to achieve in their efforts to ensure that they are aware of and take steps to

comply with all relevant laws and regulations. Software vendors can achieve

competitive advantages in B2B markets by helping their customers to achieve

compliance.

3.13 Performance and Risk Management

3.13.1 Overview

Once the product strategy is defined business measures or key performance

indicators (KPIs) are needed for continuous tracking and analysis of the business

performance of the product. Ideally, all elements of the product strategy are

addressed. The measurement results help the organization to learn and improve,

and to track whether the product is following or drifting away from the business

model and targets and take appropriate action.

As with any business activity, there are inherent risks that need to be identified

and managed. Risk Management means the continuous tracking and analysis of

risks identified in connection with the software product be it in development, sales,

customer use or anything else. Again appropriate and timely action needs to be

taken if needed.

3.13.2 Performance Management

Figure 3.9 shows examples for frequently used measures in four perspectives. Often

the measures are standardized on the corporate level. If, however, the software

product manager has the freedom to define them a trade-off needs to be determined

what ought to be measured and what can be measured in a relatively simple and

cost-effective manner (see also Sect. 5.6).

An example for a comprehensive measurement approach is the Balanced Score

Card (BSC) [KapNor96a, KapNor96b]. Balanced Score Card (BSC) is a suitable

framework for translating a product’s strategy into a coherent set of performance

measures. It complements traditional financial indicators with measures of perfor-

mance for customers, internal business and innovation and improvement activities.

Although a comprehensive framework, BSC needs to be carefully planned and

implemented as it is complex, time consuming and expensive to define and track

relevant measures.

112 3 Product Strategy

http://dx.doi.org/10.1007/978-3-642-55140-6_5

BSC’s financial perspective (see Fig. 3.9) defines the long-term objectives of a

product. While profitability is the most emphasized financial objective, other

financial objectives are also possible depending on the life cycle stage of the

product. For example in the growth stage, sample measures are sales growth rate

by segment, percentage of revenue from new product, in the maturity stage, sample

measures are cross-selling, indirect profitability, cash-to-cash cycle, in the decline

stage, sample measures are percentage of unprofitable customers etc.

In the customer perspective of the balanced score card, product managers

identify the customer and market segments in which the product will compete

and the measures of the product’s performance in these targeted segments.

Examples of such measures include customer satisfaction, customer retention,

and new customers’ acquisition.

In the internal business perspective of BSC, managers identify the critical

internal processes in which the company needs to excel in order to deliver the

product successfully. Sample measures include process quality, process cycle time.

The innovation and learning perspective identifies the infrastructure needed to

create long-term growth and improvement. Sample measures include human capital

measures (employee retention, employee satisfaction, employee skill, structural

capital etc.).

Using all four perspectives together helps to reveal the existing gaps between

people, systems and procedures that need to be bridged for delivering the promised

value to customers and meeting company’s financial objectives. It is important to

note though that the measures related to financial and customer perspectives are

usually owned by the respective product managers while the respective process

owner usually owns measures related to the internal business process and

innovation and leaning perspectives. However, the product manager can use these

measures for performance measurement of the product.

The choice of measures has to be a careful one since the chosen metrics should

enable effective decision support and be simple to measure (see also Sect. 5.6).

[FotrFric16] shows how analytics can help product managers with the decision-

making. While so-called vanity metrics make a company feel good, they do not

Perspective Business canvas Sample measures
Financial Revenue streams and

cost structure

Profitability, revenue, market share,

acquisition costs

Customer Value proposition,

customer

relationships,

customer segments

Product use, customer satisfaction,

customer perceived value, retention rate,

number of registered users, number of

active customers, number of installed

licenses, conversion rates

Internal

Business

Key activities, key

partners, channels

Process quality, process cycle time,

product quality, development productivity

Innovation

and Learning

Key resources Human capital measures

Fig. 3.9 Mapping of the Balanced Score Card’s four perspectives to business canvas segments

and sample measures

3.13 Performance and Risk Management 113

http://dx.doi.org/10.1007/978-3-642-55140-6_5

provide actionable insight. Thus, a product manager needs to select actionable

metrics (that provide insight and support decision-making). For example, during

the growth phase of a paid web service, it is recommended to continually increase

the budget for customer acquisition initiatives to take advantage of the growth

opportunity. However, in that situation, focusing solely on the number of registered

users in most cases is a vanity metric—what really matters in that situation is the

number of users relative to effort/acquisition costs. If the number of users is

increasing by 50%, it might look good at first sight (vanity metric), but if the

average acquisition cost per user shows a trend of increasing heavily over time, it is

actually not a good development. There is a risk that the product will run into a

situation where acquisition costs per user are getting higher than the average life

time value of a new user. That is clearly not sustainable—every new customer will

increase the company’s losses. In this example, the standalone “number of users”

metric is not really actionable for product managers, as it is not telling them whether

their product is moving in the right direction or not. Here are some examples for

actionable metrics:

• A/B tests: a way of comparing multiple variants of a product to find out which

one works best in terms of predefined objectives and measurements.

• Per-customer metrics: customer-centric measurements.

• Funnel metrics: measurements related to marketing and sales success.

• Cohort analysis: measurements focused on subsets of customers with common

characteristics.

• Keyword metrics: measurements focused on search engine optimization.

With software, product usage can be measured in ways that no other product area

allows. For a web-based environment the Lean Startup movement provides a lot of

information on how to track users and develop meaningful metrics (see

[CrolYosk13]). This data allows highly valuable insight into how individual prod-

uct features are being used or not used.

Performance Management is tightly linked to Product Analysis (see Sect. 5.6)

and Product Life Cycle Management (see Sect. 4.4), and Planning Processes and

Tools (see Sect. 4.5). With Product Analysis, the organization ensures that the

relevant product-related data becomes available in a reliable and frequent way.

Market Analysis (see Sect. 5.5) does the same for market-related data. In Product

Life Cycle Management, Product Management uses this product and market data to

determine the positions of the product in its life cycle and of the market (product

category) in its life cycle. Depending on these positions, different measures will be

prioritized for Performance Management (see Sect. 5.6.3), in which Product Man-

agement tracks the corresponding data continuously and takes corrective action

whenever needed.

114 3 Product Strategy

http://dx.doi.org/10.1007/978-3-642-55140-6_5
http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_5
http://dx.doi.org/10.1007/978-3-642-55140-6_5

3.13.3 Risk Management

The capability to mitigate risks effectively at all the different product management

and development stages is critical for building a successful software product. Three

types of risks can be identified, and corresponding mitigation strategies need to be

devised:

• Product risks: relate to getting the product right. Product risks relate to the

unique value proposition, key activities and key resources, partners, cost struc-

ture (resources) and revenue streams (pricing).

• Customer risks: relate to building a scalable path to the customers. They relate to

the customer segments and channels.

• Market risks: relate to building a viable business. They relate to business

measures and intersection of cost structure and revenue streams segments

(determining the product’s margins).

Depending on the product’s life cycle stage, risks will differ. It is important to focus

on addressing the right risks at the right time to minimize waste since incorrect

prioritization of risks is one of the top reasons for waste.

When developing a new product, the customers’ problems and existing

alternatives need to be understood (problem/solution fit). From the risk perspective,

aspects of the product such as value proposition and customers segments are the

most important. A product manager is responsible for the risk-related activities

identification, mitigation and contingency planning.

Then the product manager needs to make sure that the product being built is what

customers will pay for (product/market fit). From the risk identification and mitiga-

tion perspective, aspects of the product such as unique value proposition and

pricing (segment: revenue streams) are the most important. It is a huge risk if one

cannot identify whether customers will pay for a product or not.

In the growth phase (see Sect. 4.4), risks associated with scaling channels and

optimizing margins against competition should be considered.

Figure 3.10 can help to identify and document risks and how they can be triaged

based on life cycle stage, risk level and uncertainty level. Once the risks have been

triaged, mitigation strategies against the relevant risks can be described.

There is a lot of literature on risk management, e.g. [Pritch15].

3.13.4 Summary and Conclusions

Product management can become increasingly data-driven if the organization

ensures the frequent availability of reliable relevant data. Performance management

means the systematic continuous tracking of all business-related data, in particular

KPIs, analysis and appropriate action taking. Risk Management means the system-

atic continuous tracking and analysis of risks related to the product, and defining

and implementing appropriate mitigation strategies.

3.13 Performance and Risk Management 115

http://dx.doi.org/10.1007/978-3-642-55140-6_4

3.14 Product Strategy Processes and Documentation

3.14.1 Overview

In this section we discuss a classification of the product strategy tasks based on

frequency which can be used for a process view. We describe the structure of a

product strategy document and look at tools.

3.14.2 Strategy Processes and Yearly Plan

The Merriam-Webster Dictionary defines a process as “a series of actions or

operations conducing to an end”. Since software product management is a continu-

ous activity over the life cycle of a product the length of which is not

predetermined, and it consists of a multitude of separate tasks, it does not make a

lot of sense to look at software product management in total as one coherent

process. That is also true when we only look at the combined set of activities in

the product strategy column of the SPM Framework. However, it can be very

helpful for product managers to classify the activities and map the periodic ones

onto a yearly schedule. In that sense, we can consider the steps on the time axis as a

process that aims at achieving consensus about the contents of the product strategy,

even though they do not describe how the separate pieces of contents are developed

or updated, and they do not cover all activities.

For classification we use the following categories:

• Continuous (C): done more often than once a month.

• Periodic (P): done monthly or less often, but with predefined frequency.

• Triggered (T): only done when a particular event or request happens, i.e. not with

predefined frequency.

Problem/solution fit High uncertainty

Low uncertainty

Low risk High risk

Product/market fit High uncertainty

Low uncertainty

Low risk High risk

Growth phase High uncertainty

Low uncertainty

Low risk High risk

Fig. 3.10 Technique for risks triage in new product development (see also [BlanDorf12])

116 3 Product Strategy

We can apply this classification to the product strategy activities listed in the SPM

Framework (Fig. 3.11):

All activities classified as P can be mapped to a yearly plan which can be used as

the software product manager’s workplan. The mapping is usually dependent on the

schedule of activities on the business unit or company level, e.g. the yearly business

planning.

3.14.3 Documentation

The product strategy describes how the product is supposed to evolve over this

strategic timeframe. The table of contents can look like this:

1. Product vision.

2. Product definition.

3. Target market, potential segments.

4. Delivery model and Service Strategy.

5. Product positioning.

6. Sourcing.

Strategy task Continuous Periodic Triggered

Positioning and

Product Definition

P for existing

products

T if new

Delivery model

and Service

Strategy

P for existing

products

T if new

Sourcing P for annual HR

planning

T if driven by

current situation

Business Case and

Costing

P

Pricing P for structural

changes

T if driven by

current sales

situation

Ecosystem

Management

P T if driven by

ecosystem

members

Legal and IPR

Management

P T if driven by

Sales or

Development

Performance and

Risk Management

P (typically

monthly)

Fig. 3.11 Classification of strategy tasks

3.14 Product Strategy Processes and Documentation 117

7. Business plan.

8. Roadmap (see Sect. 4.1).

We recommend to describe this content in one cohesive product strategy document

in order to emphasize the need for full consistency. Producing documents like this is

not very popular anymore, but our experience shows that consistency suffers when

a document structure does not enforce and support it. The product strategy column

in the ISPMA SPM Framework contains additional elements, i.e. Pricing, Ecosys-

tem Management, Legal and IPR Management, and Performance and Risk Man-

agement, which are also of strategic importance, but typically not fully included in a

product strategy document.

All these items are highly interdependent. If, for example, business planning

results in an available budget smaller than originally assumed, it will only be

possible to expand the product scope to a lesser extent or more slowly. If new

segments are to be added to the target market within the strategic time frame, the

product scope may have to be expanded. Dependency on other products can also

have considerable consequences, e.g., if certain functionalities or enabling code

must be available in several products at the same time. In bigger companies that

have one or several product portfolios an individual product strategy needs to be

aligned with the corporate strategy and portfolio. It should be observed that

interdependencies can exist on different levels of abstraction, ranging from portfo-

lio to product to feature to function to component and also covering management

and business decisions included in the strategic concerns described above.

Another way of describing elements of the product strategy is the business model

canvas that we discussed in Sect. 2.4.

3.14.4 Tools

Over the last few years an increasing number of tools have become available that

are explicitely intended and designed for product managers. Some provide

bi-directional interfaces to popular software development tools. While they are

useful for the product planning activities (see Sect. 4.5.5), there are hardly any

dedicated tools for product strategy. What product managers typically use for

product strategy are Office tools and increasingly business intelligence tools the

more data-driven they become.

3.14.5 Summary and Conclusions

Though it does not make sense to attempt to define a process that covers all of

product strategy, a process view on the consensus building through periodic

activities can be helpful. We recommend documentation of the product strategy

in a cohesive document. There are hardly any dedicated tools that support the

product strategy tasks.

118 3 Product Strategy

http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_2
http://dx.doi.org/10.1007/978-3-642-55140-6_4

Product Planning 4

Product planning is a core activity of a software product manager as described in the

Software Product Management Framework. In this book, we differentiate the

following processes:

• Roadmapping: the strategic and long-range planning of how a software product

shall evolve.

• Product Requirements Engineering: the collection, analysis, and documentation

of the software product’s requirements.

• Release Planning: the definition of the detailed contents and schedule of a

forthcoming product release.

These processes are discussed in detail in a top-down sequence in Sects. 4.1–4.3.

From an execution perspective, requirements management is a continuous activity

while roadmaps and release plans are only revised at discrete points in time. These

revisions can always be based on the knowledge that has been accumulated in

requirements management and is most current. In that sense requirements manage-

ment precedes release planning.

Product planning is linked to the company’s planning activities, in particular

portfolio management (see Sect. 5.2). Each existing product that is part of the

portfolio will be in a specific life cycle stage that requires a respective management

and investment focus. Product life cycle management is discussed in Sect. 4.4.

The chapter concludes with Sect. 4.5 that gives an overview of how to measure

software product management performance and how to improve it.

Springer-Verlag GmbH Germany 2017

H.-B. Kittlaus, S.A. Fricker, Software Product Management,
DOI 10.1007/978-3-642-55140-6_4

119

http://dx.doi.org/10.1007/978-3-642-55140-6_5

4.1 Roadmapping

4.1.1 Overview

Product roadmapping is a flexible technique for strategic and long-range planning

of the way in which a software product will evolve [PhaFarPr04]. A product

roadmap, once created, will describe what the product organization will deliver

over time and how the various company functions depend on each other.

Roadmapping can be applied to a single product or a portfolio, line, or family of

products. Roadmaps are a structured and often graphical means for exploring and

communicating the relationships between evolving and developing markets,

products, and technologies over time. The roadmap translates the product strategy

into an action plan how to implement the strategy over the strategic timeframe.

Roadmapping assumes that a product is in a changing but reasonably predictable

environment where markets, and technologies, and products come and go. The

company will evolve the product with the necessary development, marketing,

research, or procurements. The roadmap describes the planned results of these

activities. A roadmap is a means for documenting the predicted or planned change,

agreeing with key stakeholders on the timing and scope of change projects, com-

municating the agreed plans, and monitoring the implementation of the plans as the

activities for implementing a roadmap unfold.

A roadmap depends on corporate and product visions, on product, market, and

technology research, and on product strategy. The technique assumes that the

product organization has a good understanding of the company’s situation and

where the company should be heading. For example, product management should

have a good understanding of target customers, user personas, and potential product

features to satisfy the needs of these stakeholders. Marketing should have a good

understanding of the current situation of the target markets, important events that

the company needs to react to, and of the trends and problems that should be

addressed. Research and development need to understand the capabilities and

limitations of the own software and the technical contributions of third parties.

Roadmapping is best performed as an iterative process. Iteratively, a roadmap is

proposed and agreed, projects launched to implement the roadmap, the achieved

results reviewed, and the roadmap revised. The contents of a roadmap are proposed

by exploring alternative approaches to creating value with a product and by

involving the product stakeholders in decision-making. The roadmap is then used

to focus requirements engineering, plan release projects, and handshake with

development. During the development projects and upon a product release, the

roadmap acts as a basis to check and communicate progress and to request the

contributions from stakeholders that had been agreed. Deviations from the roadmap

are investigated to understand their causes and the roadmap adapted to ensure

relevance and feasibility. The roadmap is updated at regular intervals, before the

launch of large initiatives, or upon release of software products.

Roadmapping for software products is comparable to the roadmapping of other

products. Still, some specialties remain. The provision of a software product for a

120 4 Product Planning

customer requires hardly any elaborate fabrication process. Instead, it requires the

provision of installers, e.g. for licensed products deployed on customer premises, or

hosting of services, e.g. for SaaS. Roadmapping thus is unlikely to consider the

design of production lines that are important for physical products. Instead, it

considers deployment, integration, and provisioning of the software with an end-

to-end view as suggested by DevOps [BasWebZh15]. Many software organizations

also prefer implementing light-weight, agile development methods rather than

elaborate, documentation-intensive methods. The way roadmapping is done should

respect this preference.

A roadmap, when implemented well, allows linking the plans for developing and

evolving a software product to the corporate strategy. It is a means for looking over

more than just one project, thus understanding how product ideas are realized, how

the development and marketing of a product come together, and how to promote

relevant results and sustainability of these results. A roadmap that is agreed with

product stakeholders gives the product manager the confidence that the product can

be implemented. The roadmap also gives management and stakeholders transpar-

ency of how the product vision is implemented and how far the implementation has

come. Such agreement and transparency are particularly important when teams

depend on each other and when a change of plans implies that assumptions of what

needs to be done and of what can be depended upon become invalid. The roadmap

also helps to focus efforts and to identify synergies. It tells what will be done in

imminent projects and what has been postponed but is likely to happen in the near

future.

This chapter introduces the basic elements of roadmaps, describes the major

sources of the inputs that are needed to build a roadmap, and describes approaches

for building and communicating roadmaps. The reader will understand the structure

and form of software product roadmaps and how to implement roadmapping.

4.1.2 Concept

In the most general sense of the word, a roadmap is a plan to guide progress toward

a goal (from Merriam-Webster dictionary). The term originating from automotive

travel has found increased acceptance in other areas such as science, technology,

industry, and business planning to refer to a description of past events and a plan of

how the future will evolve [KostScha01, Kappel01]. In software product manage-

ment, a product roadmap is a document that provides features or themes of the

product releases to come over the strategic timeframe. In other words, it is a plan of

how to implement a product vision and strategy by building and evolving one or

multiple related software products over a series of releases.

The purpose of the roadmap is to provide in bold strokes an overview of how a

product will be developed over several releases, how the product is used to serve

important markets, and how technology is used to build the product

[Groenv97]. The roadmap is created for the product’s strategic timeframe within

which the product vision is to be realized by looking forward from the present.

4.1 Roadmapping 121

A product roadmap usually has the following basic elements:

• Timescale

• Releases and versions

• Release themes and main features

• Target markets

• Product dependencies

• Technology impacts.

A roadmap is mostly presented graphically to illustrate dependencies between its

parts. Figure 4.1 illustrates the key elements of a layered product roadmap that are

used for product planning [PhaFarPr04]. The vertical axis describes the layers that

are relevant for planning how to achieve the product vision. The layers used for

roadmapping are selected to suit the product planning needs. The horizontal axis

indicates the time. For software products with frequent releases this timeframe is up

to 1 year [LeKaVä07]. Products with hardware tend to use longer timeframes

[Groenv97].

A layered roadmap contains the following elements. The markets layer defines

the milestones to be achieved in the product markets. Milestones refer to

achievements that are important to the product’s bottom line. The milestones can

refer to segments that are to be targeted, differentiation to competitors, a market

share that should be built, the installation base that should be achieved, contracts

that are to be won, and other drivers that are used to judge product success. During

the later requirements engineering, each milestone will be refined by specifying

customers and stakeholders, rules and regulations, and requirements that are to be

fulfilled.

The products layer contains development actions in terms of evolving product

versions. Coarse-grained roadmaps indicate the timelines and themes that the

The markets to be served

The products to be built

The technology to be used

Shall we do it? Can we do it? What is the vision?

today vision

Verson 1.0 Verson 2.0

Verson 1.1

Enabler A

Enabler B Enabler C

Milestone MS1 Milestone MS2

Strategic timeframe

Fig. 4.1 Layered product roadmap based on [PhaFarPr04]. The time flows from left to right

122 4 Product Planning

software products will feature. The themes guide the scope of the product versions

to be released. Fine-grained roadmaps indicate the main features to be developed.

Features can further be distinguished into those that are essential for a viable

product release and others that have optional character. The sequence of product

development actions together with the releases intended to achieve market-level

milestones reflects the strategy that the product manager pursues to succeed with

the product.

The technologies layer contains important technological enablers that come and

go and are used to develop or provide software products. For software products,

such enablers refer to components, frameworks, standards, and ICT services. For

services, milestones may be created that define quality of service or cost levels. The

enablers may be developed in-house, developed in collaboration with an open-

source community or partners, or procured from suppliers.

In the figure, the horizontal sequences indicate the role of the created assets for

enabling future assets [KhuFrGor15]. For example, products versions may replace

earlier product versions and thus are dependent on them. Special kinds of such

relationships are branches from one version into multiple future versions and end-

of-life milestones. The vertical cross-layer arrows indicate the value impact of

created assets: the use of the assets as means to achieve the ends at which the

arrows are pointing.

Some product roadmaps can be as simple as having just a product layer. Such

roadmaps imply that knowledge of product impact and product technology is in the

minds of those who use the roadmap. Other product roadmaps indicate additional

dependencies and drivers for product development and release. To depict such

dependencies and drivers, additional layers may be introduced or existing layers

enhanced with additional information such as the following:

• Events of relevance for marketing such as conferences, fairs, publicized launch

dates,

• Events of relevance for sales such as customer contracts or projects,

• Use scenarios and pilot projects used for product validation [FricSchu12],

• Distribution, service, and support services,

• Heartbeats with regularly spaced releases, for example monthly, quarterly, or

half-yearly [RegHNBH01],

• Need for and availability of experts and capacity of product development staff

[VähRau05],

• Dependencies with other product, technology, organization, or industry

roadmaps, and

• Risks to be monitored and acted on.

The definition of product roadmaps requires simultaneous consideration of tech-

nology push and market pull. Technology push should be used to exploit assets that

represent capabilities that are hard to copy or imitate by other companies

[Teece10]. These assets should be used to facilitate and accelerate the development

of products and features that provide a strategic advantage in the markets. Market

4.1 Roadmapping 123

pull should be used to exploit opportunities for the company such as important

tenders, cooperation with partnering customers, or synergies with marketing and

sales initiatives.

A completed roadmap shows how such technology pushes and market pulls are

addressed and orchestrated over time. The short-term roadmap addresses the

question “shall we do it?” This roadmap is used for obtaining stakeholder commit-

ment, launching development projects, and allocating resources to these projects.

Its contents should thus be certain and indicate what the product stakeholders have

agreed to do. The mid-term roadmap addresses the question “can we do it?” It is

used for launching feasibility studies. Its contents should be attractive and indicate

what the product stakeholders have agreed to explore with market analyses, tech-

nology evaluations, and prototyping. The long-term roadmap addresses the ques-

tion “what is the vision?” It should express what the stakeholders perceive to be

attractive goals in terms of market, product, and technology development. The path

chosen from today into the future should enable the creation of the right market,

product, and technological assets to achieve these goals.

4.1.3 Graphical Representations of Roadmaps

The format of roadmaps may vary [PhaFarPr04]. Figure 4.2 gives an overview of

common variations.

The tree-shaped roadmap allows expression of multiple alternative time axes by

depicting the growth of a tree from the root into leaves. Another name for such a

tree-shaped roadmap is the feature tree. This format can be used to define alterna-

tive or complementing options of how to evolve a product. The stem represents the

product’s core, the branches and leaves enhancing features. A branch indicates

dependencies among the nodes. The tree-shaped roadmap can later be transformed

into a linear roadmap by deciding on an implementation order of the nodes while

respecting the dependencies that are implied by the growth metaphor of the tree

[FricSchu12].

Vector-shaped roadmaps are used to express quality or performance. The vector-

shaped format allows expression of performance improvements that are achieved

with a planned sequence of product releases. The horizontal axis represents time,

the vertical axis performance. A vector represents a platform or technology that

gives rise to a series of product versions with increasingly better performance. After

Fig. 4.2 Alternative formats of roadmaps based on [PhaFarPr04] (left tree, middle vectors,right
bars)

124 4 Product Planning

some steps in the product evolution, the many changes have led to so much

architectural degradation that the product cannot be evolved anymore with reason-

able effort and needs replacement. At that moment, a replacement product with at

least comparable functionality and performance must be available to replace the old

product. Vector-shaped roadmaps are also used to analyze innovations by depicting

the impact of new technologies that replace older technologies. In this context, the

vector roadmaps are called S-curves.

The bar-shaped roadmaps represents a third important format. They are typi-

cally used for technology roadmapping [AlbKap03]. Each row corresponds to an

important capability of the product and contains a description of the technologies

available for implementing that capability. Such information is essential for

planning improvements to the evolving product, especially when technology

determines the improvements rather than the way the technology is integrated

and used by the product. Such bar roadmaps may be created during technology

evaluation and used as one of the important inputs to product roadmapping

workshops.

4.1.4 Roadmapping Process

Product roadmapping is a creative, expert-based approach for understanding,

planning, and managing product development and evolution. Product management

drives the activity, supervised by senior management, and involves representatives

of the product organization such as development and marketing. Important criteria

for selecting the representatives are knowledge and authority in each area the

participant represents. Product management must have understood the products it

is responsible for, marketing its markets, and development the software and the

technologies depended on.

During the roadmapping, the parties work together to build a shared understand-

ing of how to implement the product vision and strategy and to agree on how and

when they contribute to the implementation. Product management then uses the

resulting roadmap to launch and supervise projects and to determine and monitor

key performance indicators (KPI). Figure 4.3 gives an overview.

The first step of the roadmapping process identifies and evaluates options for

how the product vision and strategy can be implemented. Each option is a building

block that can be added, removed, or changed as the product evolves. Options can

be alternative product concepts or complementing features that are used to enhance

a base product. Options can depend on each other or be mutually exclusive.

Roadmaps with a tree structure, as opposed to layered roadmaps, can be used to

give a visual overview of the foreseen combinations and structure alternatives,

complements, and dependencies.

Each option should be evaluated in terms of impact. The implementation of an

option requires appropriate design of software architecture and processes. Each

implemented option creates value by satisfying needs and expectations of

stakeholders, by generating customer and user desires, and by establishing assets

4.1 Roadmapping 125

that can be used to build enhancements and future products. Each option requires

time, staff, capacity, and financing to implement and deliver it to customers.

Options may also affect the creation of social capital with knowledge, skills, and

relationships that are to be built [KhuGorW13].

A pragmatic way to evaluate options is to discuss them with the stakeholders.

Such a dialogue can happen during planning meetings [Pichler10] or in a more

elaborate handshaking process that leads to implementation proposals

[FrGoBySc10]. Figure 4.4 shows a lightweight template of how the results of

these discussions have been documented and agreed with marketing (value attri-

bute) and development (design attribute). Some organizations implement such

handshaking as a continuous process.

The second step of the roadmapping process is the creation and agreement of the

roadmap. A layered roadmap helps to define when and how each option will be

realized or whether the option is discarded in favor of others. This step should be

launched as soon as the options and their impacts are sufficiently understood. The

step was effectively implemented with a workshop approach where decision

makers of product management, marketing, development, and other product

stakeholders participate [PhaFarPr07].

iterate

Market Analysis

Product Analysis

Technology Evaluation

Options Evaluation Roadmap Creation

Impact
Analysis Layered

Roadmap

Requirements
Engineering

Release Planning

Performance and Risk
Management

Options

Vision and
Strategy

Fig. 4.3 Roadmapping process. Grey: core activities, white: dependencies

Attribute Description
Title Name of the option (product concept, feature, or theme).

Description Specification of the concept, feature, or theme.

Value Supported market needs, stakeholders, and elements of vision and strategy.

Concept Specification of planned implementation, including components, frameworks,

services, and knowledge needed for implementation.

Evaluation Strengths, limitations, and risks of the choices documented above.

Alternatives Alternative concepts that have been dismissed and why they were dismissed.

Estimates Value and cost estimates.

Fig. 4.4 Documentation of an option [ClaHeyScho08, FrGoBySc10]

126 4 Product Planning

During the workshop, the roadmap is built and reviewed by roughly following

the following agenda:

• Introduction: introduce workshop objectives, participants, and agenda.

• Strategic landscape: discuss the product vision and strategy, the situation,

opportunities, and issues of the company, markets, and technology. The aim is

to build a shared understanding of product context. Important events, issues, and

activities are marked at the appropriate place.

• Options: discuss and prioritize the known product concepts and features to

achieve a shared understanding of options, dependencies, and impacts.

• The way forward: use the roadmap to explore possible sequences of product

development and to review dependencies with Marketing and Development.

Conclude with an agreement of what shall be done with imminent projects and

what shall be explored with feasibility studies.

• Consensus: agree on actions and assess satisfaction with the workshop results.

The roadmapping workshop delivers a plan of how a product will be developed and

evolved and a forecast of what will happen in the context of the company and how

the product team will react to these. The selection of the workshop participants

ensures that the company uses best-possible knowledge for doing these predictions.

The contributions of the key product stakeholders in the joint decision-making

ensure understanding of the roadmap and commitment to implementing the actions

necessary to realize the roadmap. For product development, the roadmap is a means

to facilitate technology push. For marketing, it is a means to achieve market pull.

The results of the roadmapping workshop depend on the knowledge of the

participants. Much that is discussed and agreed may not be feasible or may not

generate the desired impacts. Technologies may not be as effective as anticipated

and have undesirable side effects. Customers may not accept a product, for exam-

ple, because base factors such as security, privacy, quality of service, or the user

experience turn out not to be as good as needed. It is thus essential for the product

manager to evaluate product use, product design, and market acceptance early.

Lessons-learned from ongoing projects, feasibility studies, product monitoring, and

customer feedback are key inputs for the next roadmapping iteration.

4.1.5 Variations of Roadmapping

Product managers may use roadmapping as a tool not only for product planning but

also for other purposes. Product roadmaps can be used as a tool to achieve synergies

in a portfolio of products for cost reduction and for convincing and coordinating

parties external to the company. The former type is called cross-product roadmaps,

the latter external roadmaps. For both alternative purposes, the product roadmap

sketched in Fig. 4.1 is used as a starting point and adapted.

Cross-product roadmaps are used when several products are released with the

same technological base, within a product line [PoBoeLi05]. The product line, as

4.1 Roadmapping 127

defined in Chap. 2, is a form of reuse that focuses on identifying the common and

variable parts between multiple related products. The common part is often called a

platform that is shared by the products. To plan reuse of the platform, a feature tree

is created for the whole set of products that are contained in the product line

[SchoHeTB07]. The feature tree describes the options available to build the

products for specific markets or customer segments. In a second step, a layered

roadmap is created that defines the when the platform and the derived products are

to be developed. A cross-product roadmap differs from the basic already introduced

product roadmap in that it contains multiple products and is used to analyze the

opportunities for planned reuse among the products. Once created, the roadmap is

used to coordinate the actions provided by one team to another.

Cross-product roadmaps may also be used by organizations that offer a portfolio

or family of products, but are not interested in systematic re-use. In this situation,

the cross-product roadmap is used to define how the products complement each

other. It is also used to ensure that the products contained in the family are

non-overlapping and that the family does not have any gaps in the product offering.

Finally, cross-product roadmaps may also be used to plan and manage the

evolution of a software ecosystem. Such use of roadmapping has similarities with

industry-level roadmap [KostScha01], where multiple organizations convene and

agree on how to cooperate to address important industry-wide problems. Such use

of roadmapping requires a joint objective and willingness of the companies

participating in the roadmapping effort to share knowledge and to cooperate.

External roadmaps, in contrast to the roadmaps used internally in a company,

are used for allowing customers, market research agencies, suppliers, and other

stakeholders external to the organization to understand the product vision and

strategy and the approach initiated to implement them. Such sharing of a roadmap

allows positioning a product and eliciting feedback that can be used to validate the

plans for product development and evolution. External roadmaps also play an

important role in demonstrating the viability of a product. They are used to build

trust in the commitment of the company to long-term continuous investment in the

product. Influential customers or partners may want to see a product roadmap,

against the signature of a non-disclosure agreement, before they make a significant

investment decision or decide about continued cooperation. Similarly, press and

market analysts base their judgment of where the company is heading on a

convincing story about a product’s future expressed in the roadmap.

External roadmaps are derived from internal roadmaps and contain just enough

information to fulfill the information need without disclosing too much of the

company’s confidential internals that they wish to keep secret. To influence external

stakeholders, the external roadmap should include information that one would use

for competitive analysis when defining one’s product strategy. Information should

be included about the targeted vision and strategy, current and announced products

with differentiating features, supported applications and solutions, and sometimes

early pricing information. So should information about strengths of the firm,

including an overview of the customer base, market share, distribution channels,

capabilities that are hard to copy or replicate, and important partnerships. The goal

128 4 Product Planning

http://dx.doi.org/10.1007/978-3-642-55140-6_2

of such information is to allow customers and partners to build trust in the viability

of product and company and to encourage others to refrain from competing.

However, revealing too much can lead customers to postpone the investment and

wait for the next release or version. And it can over-promise, leading to disappoint-

ment later if development plans change.

Attached to the external roadmaps are legal disclaimers that explain the confi-

dential and legally non-binding character of the information. The former

contributes to the credibility of the roadmap. The latter allows product management

to retain flexibility while protecting the company against litigations. Such flexibility

is important when the roadmap has become invalid, and changes are necessary.

Companies have to decide how they want to deal with the confidentiality of a

roadmap. Some companies require external parties to sign non-disclosure

agreements before the roadmap is presented to them. Other companies make their

external roadmap freely available on their respective web site.

External roadmaps can also be used to coordinate product development with

customers, partners, and other external stakeholders. When an external roadmap is

used for that purpose, the external parties should be involved in its creation. The

external roadmap is then used to constrain the internal roadmap. Such roadmap

creation follows a process like the one outlined in Fig. 4.3. It leads to the same

benefits of tapping into the knowledge of all involved participants and committing

the partners to joint actions. The external roadmap then has the character of an

industry roadmap that is centered on the development of the product’s ecosystem.

The cooperating partners are responsible for keeping their internal roadmaps

consistent with the jointly agreed roadmap.

The term roadmap is also used with agile development methodologies, but with a

different meaning. In SAFe [Leffing16], it stands for a near-term plan of

deliverables, e.g. what Development will produce over the next 6 months.

4.1.6 Summary and Conclusions

This section has given an overview of the roadmapping concept and how it is used

for product planning. It has described the layered roadmap for implementing the

product vision and strategy and introduced additional forms of roadmaps that are

useful for defining planning options and reflecting upon them. The section has also

described a workshop-based roadmapping process for developing an internal

roadmap and explained the relationship of internal roadmapping to external

roadmapping.

Once created, the roadmap is a tool for communicating how the product vision

and strategy will be implemented. In comparison to an early vision statement, the

roadmap is more detailed, describes the impact on development and marketing,

states concrete actions that will be performed by the important product

stakeholders. The short-term roadmap provides justification for committing

resources to the projects that need to be launched to develop and evolve the product.

The mid-term roadmap captures the technology push and market pull ideas of the

4.1 Roadmapping 129

product stakeholders. It defines the research questions that need to be investigated

with feasibility studies. Finally, the roadmap specifies the sequence and scope of

projects in coarse-grained terms. This information helps the product manager to

launch the right projects, orchestrate the parties that need to cooperate, and monitor

the progress of the developing and evolving product. The elements of the roadmap

refer to the goals that need to be achieved, the milestones for goal achievement, and

the dependencies affected when milestones or goals are not met.

The roadmapping results provide inputs for dependent product management

activities. The identified activities provide the basis for forecasting, budgeting

and the instantiation of projects for the development of specific product releases.

The scope of the planned releases provides information about what kind of

requirements engineering needs to be performed, including user interfaces that

require user interaction design, interfaces towards external software systems, and

other features that require refined alignment between markets and technology. The

roadmap is also a starting point for the detailed planning of upcoming software

releases. Release planning will complement the roadmaps with detailed prioritiza-

tion and definition of minimal versions and enhancements of the selected features.

The roadmap will also provide essential information for defining or refining key

performance indicators such as the timing and quality of the product versions and

the impact of these versions on the market. As for any other decision-making

activity, the relationship between roadmapping and release planning is neither

top-down nor bottom-up. Instead, one influences the other. Thus, the roadmap

should be reviewed when important insights are gained from the dependent

activities.

4.2 Product Requirements Engineering

4.2.1 Overview

Requirements engineering is the process of eliciting needs and expectations from

stakeholders, identifying concepts to satisfy these needs, and validating whether

these concepts satisfy the needs. The resulting requirements are specified with

appropriate notations, communicated to the staff or vendors who implement the

requirements, and used to check whether the delivered product conforms to the

requirements. The alignment between product concepts and stakeholder needs is

essential for a product’s value creations and to win the support of the stakeholders.

This section introduces important requirements engineering concepts, describes

requirements engineering methodology for the four important product scenarios

(see Sect. 2.5), outlines how to document requirements and how to manage the

requirements engineering process.

130 4 Product Planning

http://dx.doi.org/10.1007/978-3-642-55140-6_2

4.2.2 Concepts

According to the IEEE standard glossary of software engineering terminology, a

requirement is “(1) a condition or capability needed by a user to solve a problem or
achieve an objective and (2) a condition or capability that must be met or possessed
by a system or system component to satisfy a contract, standard, specification, or
other formally imposed documents.” Applied to product management and stated in

more straight-forward terms, requirements are characteristics of the software prod-

uct that are (a) needed by stakeholders of the software product and (b) agreed with

the product team or supplier. Requirements may also be imposed, for example,

because of market regulations. The requirements definition will guide the activities

that are to be performed in the requirements engineering work.

For a software product, a stakeholder is a person, group of people, or organiza-

tion who influences the product. Product stakeholders include parties outside and

inside the product organization. Outside are customers and users as well as channels

used to deliver and service the product. User profiles are often characterized by

so-called Personas [PruGru03]. Inside are corporate management and the company

functions that depend on the product, including marketing, sales, distribution,

service, and support. Stakeholders are also representatives of dependent systems

and other products that the product interfaces with. Regulatory bodies that the

product must comply with are also considered to be stakeholders. Even though the

number of stakeholders is high, the product manager does not need to involve all of

them in requirements engineering. The involvement of stakeholders that have the

knowledge to make the product attractive and stakeholders who have the power to

implement or stop the project are both critical to the process.

Software requirements are functional if they define what the software does in

reaction to inputs. According to ISO/IEC FDIS 25010, quality requirements are the

“-ilities” that describe the performance, compatibility, usability, reliability, secu-

rity, maintainability, and portability of the product [Glinz08]. Requirements about

product packaging, licensing, delivery, and service requirements complement the

product requirements. For many of the requirements, tests will be developed to

verify that the developed software product indeed carries the characteristics.

A possible product characteristic is only a requirement if at least one influential-

enough stakeholder needs it. Otherwise, it is merely an idea. This differentiation

between requirements and ideas has important implications on the requirements

process: the results from creativity workshops and related activities should only be

considered as product requirements when enough stakeholder support has been

gained. If the need for an idea is not confirmed by stakeholders, the idea should be

treated with caution.

4.2 Product Requirements Engineering 131

Let’s use the Samsung SHealth product1 to exemplify the concepts. A functional

requirement of such a lifestyle application is to provide the user with the

ability to count steps. In response to movements of the smart phone, the app

increases the step count that it measures. A quality requirement is the

precision of the step-counting. That precision could be measured, for a

given movement sequence, in terms of correct, wrong, and missed step counts

and the quality requirement expressed in those terms.

A common quality requirement is interoperability with other applications.

In the case of Samsung S Health, interoperability is implemented via the

Samsung Digital Health SDK API with functions that offer access to health

data and S Health services. Other product requirements refer to the contents

and design of the product home page that is used for product documentation.

The integration with an electronic patient health record is an idea that

many vendors of health and lifestyle applications are discussing. This idea

should only be considered as a requirement for implementation, however, if

support from medical personnel and patients can be obtained that require the

integration.

Product managers not only manage requirements but also inputs on other

abstraction levels, such as goals and constraints for product design

[GorsWohl06]. The IEEE definition is useful for differentiating between these

concepts. Requirements are characteristics of the product. A goal describes the

desired impacts of the product. Goals are as important as requirements because

goals describe the value proposition of the product. According to ISO/IEC FDIS

25010, common goals include desired usefulness, trust, pleasure, and comfort for

users, effectiveness, efficiency improvements, freedom from risk and flexibility for

customers, and compliance with regulations. Requirements engineering is

concerned with eliciting the goals that the product should achieve and the

requirements the product should implement to satisfy the product goals. The

explanation of how requirements will allow achieving the goals is called vertical
traceability.

Product managers are not only confronted with requirements and goals, but also

with constraints for product design. Design differs from requirements in that the

design decisions are characteristics of the software product that are not visible for a
stakeholder. Usually, design does not need to be agreed with stakeholders but is

under the responsibility of the product organization. Still, for some design

decisions, negotiations cannot be avoided because stakeholders impose them as

constraints on the software product.

1https://shealth.samsung.com/

132 4 Product Planning

https://shealth.samsung.com/

For Samsung S Health, one of the goals is a “healthy lifestyle” for the user.

The goal is not a requirement because it describes the impact of product use

on the user. The adoption of a healthy lifestyle is clearly a characteristic of the

user and not of the product. The S Health product will contribute to achieving

that goal by encouraging the user to adopt such a lifestyle.

In the example of S Health, a constraint may be raised by the Cloud

operations group of Samsung that requires the use of Docker for flexible

deployment of the S Health backend. That constraint is justified by efficiency

and flexibility goals of the Cloud operations group and the ICT technology

stack on which the S Health backend is deployed. Again, the arguments of

how design decisions are connected to requirements and goals are called

vertical traceability.

Product managers are not only confronted with product requirements but also

with customer and project requirements [Schien02]. The three types of

requirements can be understood by looking at the flow of information about

needs and expectations from the customer via the product manager to development.

Customer requirements express needs and expectations of a customer towards a

software solution. In customer-controlled installations, customer requirements are

engineered in customer-specific projects that deliver a software system integrated,

deployed, and configured specifically for that customer. Such a project uses the

customer requirements to tailor the vendor’s software product and integrate it with

other systems of the customer. In vendor-controlled installations, the customer uses

the provided software service largely as-is and use his customer requirements for

configuration.

Product requirements represent a consolidation of the requirements of individ-

ual customers. With product requirements, the product manager considers the needs

of a market from the perspective of product the strategy. When consolidating

customer requirements into product requirements, the product manager looks for

generalization across customers, “which requirements are common enough to be
considered for the product?”, and alignment with strategic objectives, “which
requirements can be justified with the product vision and strategy?” The link

between the product requirements and the customer requirements that the product

requirements originate from is called horizontal traceability. The product

requirements represent the pool of requirements that a product manager considers

for release planning. The more the markets have been served with the product, the

more product requirements are available to the product manager.

Project requirements are a selection of product requirements for implementation

in a product release. The development project staff takes responsibility for the

implementation of the selected requirements and translates them into a specification

of a new software release. In contrast to the product requirements, that specification

is detailed and precise enough for implementation and testing. The link between the

4.2 Product Requirements Engineering 133

project requirements and the product requirements that the project requirements

originate from is called horizontal traceability again. In an agile environment,

where a project organization is not utilized, we suggest to use the terms “develop-

ment requirements” or “team level requirements”. These are the requirements in the

teams’ backlogs for which the respective product owner (in Scrum terminology) is

responsible.

A hospital that is interested in using S Health for lifestyle measurement of

patients may request the integration of S Health measurements with the

patient records stored in the hospital information system. This request is an

example of a customer requirement. A recurring need of integrating S Health

with various hospital information systems would encourage the S Health

product manager to look for standards that can be used to specify and offer

a generic application programming interface (API) that eases such integra-

tion.2 A decision to build such an API is an example of a derived product

requirement. Once a decision is taken to implement the product requirement,

the API becomes a project requirement. The development project for S Health

v4.4.0.0119, for example, included requirements for a new cycling speedom-

eter and requirements for connectivity with the Garmin Bike Sensor.

4.2.3 Requirements Engineering Methodology

Requirements engineering is the systematic process of aligning a software product

with stakeholder needs. Without such alignment, the software would be a mere

collection of bits and bytes that would not create any value, thus would not have any

chance to be sold. We consider the alignment as a process of seeking inputs from

the market to understand needs, adjusting the product to meet the needs, and

checking whether the changed product leads to improved satisfaction. The better

the alignment is the better the performance of the product will be.

One of the product manager’s core tasks is the management of product

requirements. The product manager is responsible for the following tasks continu-

ously and before a release project:

• Consultation with experts and employees, creativity to generate ideas for the

product, validation of these ideas by exposing them to stakeholders in

discussions or via prototypes.

• Collection of requirements from diverse sources. Customer projects and ideas

from development constitute important sources. Other inputs can come from

2Samsung offers such an API on http://developer.samsung.com/health

134 4 Product Planning

http://developer.samsung.com/health

user representatives, market research, and developers, legacy and competitors’

systems, laws and regulations, and previously used requirements specifications.

• Functional analysis, including clarification and consolidation of the

requirements and estimation of value. Such analysis is particularly important

when products do not stand alone but form part of a larger offering.

• Technical analysis to describe how the requirements may be implemented and

what the estimated effort and cost are.

• Documentation of the results of the functional analysis with an appropriate level

of detail as a base for development.

• Go/no go and make/buy decision according to the company-specific decision

processes.

During the development of essentially every product, there will be the need to

change existing requirements or include completely new ones. Such changes may

pose a risk for a project and possess a potential for conflict between Sales and

Marketing, Development, and Product Management, which the product manager

will need to resolve. It is important in this context to understand how requirements

management and the development process are interconnected, since different

development methods also differ in how much they embrace requirement changes.

The product manager is responsible for the following tasks in the implementation of

a product release:

• Implementation management by tracing the individual requirements, i.e. by

documenting where and how each requirement is implemented and can be

used for customer feedback.

• Change management by deciding on change requests that lead to new

requirements and changed or dropped existing requirements and documentation

of the rejection or acceptance of each change request with the rationale for the

decision.

• Quality assurance, if possible through an independent QA organization, to verify

that the implementation is consistent and complete with respect to the original

requirement.

The product manager has the choice between two tactical approaches for

requirements engineering. The traditional approach involves inquiry cycles
[PohlRupp11] with the following elements:

• Elicitation is the systematic application of methods such as interviews, focus

groups, workshops, observation, creativity, surveys, and artifact analysis to

understand the application domain and to identify stakeholders with their

objectives and expectations. Important sources of requirements are internal; in

particular research and development can ensure innovation. The resulting

requirements need to be properly documented, either in natural language or

model-based.

4.2 Product Requirements Engineering 135

• Triage means a first analysis and decision if a given requirement is inside or

outside of the product scope, i.e. needs more detailed analysis or not. This may

include a bundling of small low-level requirements in order to increase the

productivity of the process. The product manager will typically maintain a

backlog with a significant number of requirements that are inside the product

scope, but not yet implemented, and that need frequent reevaluation.

• Analysis of the remaining requirements aims at matching the elicited informa-

tion with appropriate solution concepts by applying specification, modeling, and

prototyping methods which requires decision making. It includes estimation of

cost and required resources.

• Selection means the decision making which requirements are implemented in a

particular product release, i.e. selection includes prioritization and is part of

release planning.

• Validation involves the application of methods such as reviews, inspections, and

simulations to ensure that the proposed solution adequately takes the problem

context into account and is acceptable to its stakeholders. The result of success-

ful requirements engineering is a specification that documents agreement

between stakeholders and development or suppliers of what will be delivered.

Such inquiry is typically performed in situations where the customers are in control

of the execution environment of the software product. More recently, experimenta-
tion has become an attractive alternative. It may be understood as the development

of hypotheses about possibly attractive products and features and experimentation

to test his hypotheses. This alternative approach has become attractive with the

maturation analytics and feedback tools that support such research.

Several requirement life cycle phase models exist. Examples of phases that

might be used are:

• New: the initial state of a requirement.

• Approved: the requirement is approved and ready to be analyzed.

• Specified: the requirement has been analyzed with regard to implementation

concept and cost and impact estimates.

• Rejected: the requirement is a duplicate, already implemented, or out of scope.

• Selected: the requirement has been selected for implementation with a given

priority.

• Implemented: the requirement has been implemented, i.e. development is

finished.

• Tested: the necessary tests have been carried out in order to ensure an adequate

level of quality.

• Released: all activities for the product release have been completed.

However, the naming and number of phases may vary, depending on the

preferences of the organization and the product scenario.

136 4 Product Planning

Requirements engineering may be performed at the level of the whole product,

at the level of features, or at the level of a software release. The product level is

essential in the powerboat situation, where the product manager uses experimenta-

tion to align a minimum viable product with market needs. The feature level is

essential in the speedboat situation where the product manager uses experiments for

identifying and defining complements to the minimal product that is frequently

released. These complements are intended to make the product attractive to new

market segments. The release focus is essential in the icebreaker and cruise ship

situations, where the product manager decides about a well-designed scope of a

product that is released comparatively rarely.

The following subsections introduce common requirements engineering

methods. These methods are presented in the product management scenario (see

Sect. 2.5), into which they fit best. However, each method may be used in any of the

situations if it leads to desired knowledge about product-market alignment.

Powerboat
The powerboat situation is characterized by a lack of knowledge about customer

needs and how a product could satisfy these needs. Here, the product manager has

the role of the creative researcher that rapidly needs to identify an attractive

product-market fit. To minimize complexity and risks of product development

and to achieve fast time-to-market, the software product is on purpose kept as

small as possible. A minimalistic but still useful product is called minimum viable
product. Once a product-market alignment is found, the product is offered to the

market and the marketing and sales processes are started.

In the powerboat situation, the goal of requirements engineering is to innovate.

The organization wants to learn about the market and its needs and to identify a

product concept that is perceived as attractive. The requirements engineering

process starts with an idea of what an attractive software product might be,

prototyping the product idea, and validating the prototype with recruited market

representative [Ries11, Maurya12]. The process succeeds if the idea is simple to

implement and attractive enough to make first customers curious and entices them

to participate in validation and elicitation activities. Their feedback is used to

improve the product and to make it even more attractive to a larger potential market

segment. The process repeats until an alignment has been found with a market

segment that can generate a business volume large enough for launching product

operations and growth.

Startups have been using rapid iterations of product ideation, prototyping, and

validation in a process that others call pivoting [Ries11]. Pivoting is not exclusive

for start-ups and can be easily implemented also by product managers that want to

explore ideas for products whose operations are under their control. Critical for

good results of the pivoting process is the flexibility for abandoning early product

ideas and replacing them with ideas that are clearly superior. The selection of

attractive target markets and appropriate sampling of these markets is critical so

that the elicited customer and user feedbacks are relevant and represent the largest

4.2 Product Requirements Engineering 137

http://dx.doi.org/10.1007/978-3-642-55140-6_2

potential for product revenue and growth. Common sampling strategies used in

such qualitative research are [MileHub94]:

• Typical case or random sampling, where representative customers and users are

invited (the best results are achieved by selecting the invitees randomly),

• Critical case sampling, where lessons from one representative can be

extrapolated to a whole market segment,

• Maximum variation sampling, where the boundaries of a market segment are

explored, and

• Negative cases, where the product idea is not expected to be successful.

Convenience samples, where colleagues and friends are invited, or snowball

samples, where participants suggest other participants are both to be avoided.

These samples would lead to results that are biased and do not represent the market

well. That is also why samples need to be changed over time. Sampling can

conclude when saturation has been observed, i.e. when the results obtained in

workshops already have been known in advance and do not add substantial new

knowledge about customers and their interaction with the intended product.

The powerboat situation calls for creativity, knowledge, and ways to make the

product tangible to obtain feedback. Requirements engineering techniques that are

suitable for this situation are prototyping and workshops. These techniques are

outlined in the next few paragraphs.

Product ideas are created by encouraging people competent in the product

domain to think out of the box. A really new idea solves problems that have not

been solved so far or solves a well-known problem with a new concept much better

than previous products did. Good ideas are often relatively cheap to implement for

the product company and generate a “wow” for customers and other stakeholders.

Good ideas may be created by combining for the first time a well-known problem

with a well-known solution. Such re-combinations may be identified in workshops

where the selected participants brainstorm [MaiGiRob04]. Many creativity

techniques have been developed to support such workshops, including the 6-3-5

technique, where six participants handing off three ideas each to each other five

times, the analogy technique where solutions from one domain are transferred to

another domain, and the Six Thinking Hats technique that allows evaluating ideas

from the perspectives of facts, value, risk, emotions, possibilities, and structured

reasoning [PohlRupp11].

Large companies may have research departments to produce innovations. Alter-

natively, a software vendor may work with universities. Researchers can offer a

product manager important ideas and direction, especially for product strategy and

further technological development. Even if a lot of research ideas cannot be directly

converted into products, research can provide insight into new developments which

can be expected in the next 3–5 years, and to think about how current products can

be positioned accordingly and early enough. Also, many innovations can be

implemented faster and with better quality if they are initially prototyped and tested

in a research environment. To enable such a pre-product-development phase,

138 4 Product Planning

researchers will have knowledge of relevant product technologies and of experi-

mentation methodologies that product development departments often do not have.

Prototypes can be created at varying levels of fidelity. Important for a good

prototype is that the idea becomes clearly visible and that the relevant stakeholders

can give feedback on the implemented idea once they have experienced it.

• Early-phase low-fidelity prototypes: user interfaces can be approximated by

drawing the wireframe of the graphical user interface [MivBen14]. Such

drawings can then be combined into a sequence of screens that show the

appearance of the application for a scenario of using the application. Products

that involve hardware can use existing devices that carry intended functionality

but may not look exactly as intended or vice-versa. The key is rapid development

and not fidelity. Such early-phase prototypes make a software tangible; their low

fidelity encourages feedback and discussion.

• Mid-fidelity prototypes: for maturing the early prototypes, tools may be used to

render interfaces that the user can interact with by clicking on the GUI

components (click-dummy prototype). Hardware may approximate a final

look-and-feel with the help of 3D printers that have become capable of creating

a large variety of shapes and functions.

• Late-phase high-fidelity prototypes: as a next step, the target development

technology can be used to implement the look and feel with a high level of

fidelity and with an early version of the final functionality. These late-stage

prototypes are useful for letting users explore the use of an application. The high

fidelity enables validation of the ideas it implements in realistic conditions that

have been experienced using the prototype.

Product ideas can be validated in workshops that involve a review of the vision by

the stakeholders affected by the product (especially customers and users), role-

playing the product, and debating the benefits, limitations, and risks of the product.

Such focus groups produce valuable inputs for the design of the software product

because they elicit knowledge and experiences about the use context of the product

from the perspective of the future customers and put these results into the perspec-

tive of other customers that may modify their importance or interpretation

[KruCas14].

For role-plays to be effective, it is critical that the participants be true customers

and users, that the role-play take place at the location and setting where the product

will be used, and that the moderator help the participants to walk through the

intended usage process. The role-play will generate emotions about the product,

both positive and negative, and discussions of how to exploit the product and how to

solve problems that have not been thought about during ideation and prototyping.

This feedback can be turned into a backlog of how to adjust the product to make it

more attractive or requirements for selection of user and customer groups to whom

the product should be offered. If video-recorded, the workshops also generate

ample footage for requirements communication to developers who cannot partici-

pate [FricSFT16] and for early marketing and publicity with product videos.

4.2 Product Requirements Engineering 139

Kano Model: Attractive Attributes (Delighters)

Powerboat product ideas are commonly intended to be innovative. Customers

often did not anticipate such solutions, thus were not seeking them in

advance. It is the innovating product itself that generates the desire for the

innovation and the impetus to take advantage of the new product. The

Japanese researcher Kano suggested that such products or features are called

“delighters” or “attractive attributes” [KaSeTT84]. The implementation of a

delighter leads to a “wow” on the customer side because it can result in great

satisfaction. The lack of a delighter will not be noticed.

A delighter X can be identified in a product survey with very positive answers

to a question like “How do you feel if you would obtain a product with

capabilities X?” and neutral answers to a question like “How do you feel if

our product would not have capability X?” The product manager benefits

from such customer surveys by obtaining information about a market. For

example, if customers felt indifferent to the first and second questions the

product idea would be judged unattractive and should be discarded.

Speedboat
The speedboat situation is characterized by the presence of a first product that is

aligned with market needs and that the product organization wants to grow. How to

achieve that growth is unclear, however. The product manager has been working

with a few enthusiastic or visionary customers and may not understand the needs

and expectations of the large majority of pragmatic more conservative customers

yet that represent the mainstream market [Moore14]. This re-alignment that some

call “growth hacking” can be addressed by scaling up the Powerboat requirements

engineering activities: to reach new customers, the product manager changes the

positioning of the now growing product and thereby accepts significantly new

requirements.

The speedboat situation calls for ideas for new product features and feedback

from the market about how attractive they are. Requirements engineering

techniques that are suitable for this situation are idea castings, market research,

user groups, input from development, Hackathons, and “growth hacking.” These

techniques are outlined in the next few paragraphs.

Ideas for how to evolve the product are one of the important inputs in the

Speedboat situation. New features are needed that make the product attractive to

customers that have not shown interest in the minimally viable product until to date.

At the same time, many people have developed product expertise and should

provide inputs and implementation of product changes depends on even more. An

approach to harvesting ideas from these people are idea castings [GoFrPaKu10]. A

casting follows the steps of spreading calls for ideas in the organization, inviting for

meetings where employees to share their ideas with product management, and

140 4 Product Planning

combining the ideas into a product concept with a strong business case. Such idea

castings are especially effective when the successful idea owners are rewarded by

becoming part of the product organization, for example with a leading position in

product development.

To obtain inputs from the market side, market research and user groups play an

important role.

• Market research, introduced earlier in this book, offers aggregated market

analysis with feedback on product strengths and weaknesses and trends of how

the markets and technology develop.

• User groups, in comparison, offer a primary source of individual inputs. A user

group focuses on exchanging information between its members and the software

vendor. That exchange is intended to allow the members to influence the

vendor’s product development. For the product manager, this is an excellent

tool for obtaining first-hand feedback about the strengths and weaknesses of his

product from the perspective of the users and customers. Most major software

vendors have user groups or, the larger variant, conferences at the international

scale. For example, SAP runs its SAPphire conferences each year in collabora-

tion with local SAP User Groups.

A phenomenon that is difficult to manage in this context is the tendency of

executives to match or just outdo the competitor of the moment. Such “shooting

behind the duck” will fail utterly to consider that the competitor will move while

development takes place. A product manager must anticipate what customers want

beyond that current competitor offerings and get there before the competition.

To obtain technology-oriented inputs, product management collaborates with

the development organization. No other unit has a deeper understanding of the

technical details. There are numerous requirements that derive from technical

necessity and must be implemented. An example is changing to a new operating

system or database release—something that may not add value to the product but

may be necessary, e.g. because maintenance for the old version is terminated or

because the new version offers better performance or flexibility. When considering

inputs from development, however, the product manager needs to be aware that

sometimes a simple technical solution that is available in a timely fashion is often

better than a technically interesting, and in some sense perfect or “gold-plated”

product.

An increasingly approach to explore technology are hackathons, events in which

developers meet peers, technology suppliers, and other stakeholders

[RaaMoBia13]. For the organizer, the goal of the event is an efficient assessment

of the requirements and design of products and platforms that guide future devel-

opment. Participants benefit from the belonging to a community that results from

the collaboration, inspiration for product development, and motivation to drive the

personal work forward. Hackathons are particularly well suited for exploring

products, platforms, and standards that target developers and depend on

interoperability.

4.2 Product Requirements Engineering 141

Looking outside the company, social media have become an important source

for identifying topics and influential individuals or organizations that should be

involved in requirements engineering. Twitter, for example, has several hundred

million users that are active at least once per month. To support social media

analysis, applications have been developed to detect emerging topics and trends

[MathKou10]. Social media further provides possibilities to identify interesting

individuals and organizations that can connect important topics that are uncon-

nected otherwise. These so-called structural holes have been shown to generate

great product opportunities [LinWuWen12].

A related set of techniques has started to establish itself under the term “growth

hacking.” Startups use this term to refer to the combination of creativity, analytical

thinking, and social metrics to improve product exposure and sales. Techniques that

are being used aim at improving product sales and obtaining feedback at a low-cost,

including search engine optimization and content marketing. A variety of

techniques can be used for monitoring product use and obtaining feedback from

customers to guide product evolution:

• Analytics [CrolYosk13]: the collection of measurements about the use of a

website or application screens. Particularly interesting are frequencies of page

or screen use, click-trails, and measurements of performance, reliability, and

related product qualities.

• Experiments [McFarland12]: selective presentation of content variations to learn

about user preferences. A widely-used approach is A/B testing, where two

alternatives are compared with each other.

• Micro surveys: the presentation of forms that allow users to provide feedback.

Commonly, questions are asked about the user’s quality of experience, bugs that

have been encountered, and ideas for improving the application. An interactive

chat between the user and the vendor’s sales staff or help desk may enhance a

survey and the knowledge obtained from it.

No matter the source of inputs, the product manager must view the received inputs

in an overall context. He must know how representative the suggested ideas and

needs are. The inputs that are presented most vehemently are not always the most

important ones or the ones that will promote or secure the product in the market in

the medium and long term. Given the finite resources to develop and improve the

product, the product manager will need to be careful in choosing the requirements.

A software product has not only to deliver functionality, but needs to satisfy non-

functional requirements in addition, also known as quality requirements. Quality

attributes that are of particular concern for vendor-controlled products are:

• Usability: Usability is a key success factor for essentially all products. Usability

includes being easy to learn, consistent design of the user interface (or APIs),

understandable error messages, searchable, indexed help functions and docu-

mentation. In a vendor-controlled situation, usability is especially critical as the

142 4 Product Planning

users have low switching cost and will seek the product that is most attractive

to use.

• (Un-)installability: many vendor-controlled products have mobile or PC front

ends that must be installed and replaced, e.g. as part of a product update.

Similarly, web-based applications may require the installation of runtime

environments or browser plugins. Especially for consumer software, the user

expects a smooth installation within a very short time, i.e. minutes. Not meeting

this expectation means frustration and dissatisfaction.

• Documentation: Even though customers may not read product documentation

and expect to be able to install and use a product intuitively, product documen-

tation continues to be a significant quality aspect. Documentation may be

presented in the format of a manual or help indexes or take the format of videos

that introduce the installation and use of the software or a feature.

• Maintainability: Maintainability is primarily an internal objective for a software

company. It can be achieved by thorough and current documentation of the

results of development, i.e. architecture, high and low level design, and code

plus the conformance to development standards like naming conventions, coding

standards, in-code-comments, and interface descriptions. Maintainability will be

influenced by decisions about the use of development frameworks, platforms,

and components that, for example, may have been developed and matured by

open source communities.

Kano Model: One-Dimensional Attributes (Satisfiers)

The product features that are elicited, tested, and implemented in the speed-

boat situation represent characteristics of software products for which better

fulfillment leads to an increment of customer satisfaction. Each customer

segment expects such characteristics to be present in the product; the absence

of these characteristics in the minimal product variant developed in the

powerboat stage was one reason to forgo the procurement of the product.

Kano suggested that such product characteristics are called “satisfiers” or

“one-dimensional attributes” [KaSeTT84]. The more comprehensively the

satisfiers are implemented, the more attractive the product is for the target

customers. The fewer the satisfiers, the less the product is attractive for the

customers.

A satisfier X can be identified in product surveys with positive answers to a

question like “How would you feel if you obtained a product with capabilities

X?” and negative answers to a question like “How would you feel if our

product did not have capability X?” Satisfiers give the product manager

information for prioritizing development. Strong negative reactions to the

absence of features paired with strong positive reactions to the presence of

(continued)

4.2 Product Requirements Engineering 143

these same features indicates where to set priorities for product

enhancements. Similarities among respondents point to customer segments

that can be addressed with a product release containing those features.

Icebreaker
The icebreaker situation is characterized by the presence of customer environments

into which a new software product will be deployed and integrated. The customers

are responsible for the business processes that are executed by the software users

and for the operation (hosting) of the product. Consequently, each deployment of

the product is a custom project, where customer-specific requirements are elicited

and used to adapt the software. Product requirements engineering consolidates

these customer requirements and decides whether they are included in the product

or are relegated to individual customer projects.

The integration of a system in a customer’s environment can be motivated by

business process changes that allow the customer to improve productivity or create

more revenue [Harmon14]. Such changes may be of process improvement nature

and concern specific changes to a process that, for example, may be enabled by the

vendor’s product. Six Sigma is a well-known example of a method framework for

improving business processes. More drastic changes to a customer organization

may involve the design or redesign of whole business processes. The introduction

of automation in a process that was implemented manually could be considered

such a redesign. Process automation is commonly achieved by workflow or pro-

duction automation systems, enterprise resource planning (ERP), or customer

relationship management (CRM) applications. In contrast to a vendor-controlled

scenario, each product deployment will require the execution of a project that

analyzes, improves, and validates the business process changes that are enabled

by the product.

The decision to develop a product offering for deployment to customer sites may

result from an insight that the vendor’s customer projects have significant potential

for reuse. To exploit that potential, a company may engage in a stepwise

productization process [ArWeBriFi10]. First, standard features are identified and

managed based on proactive planning of the development. The reuse achieved with

that first step can then be increased by further standardizing and packaging the

features into a product. The customer projects use that product as a platform to

develop customer-specific solutions. The last step of productization is the definition

of a release train that offers a predictable agenda of updates to the product and

minimizes the need for custom development.

As an alternative to product conceptualization in customer projects, a software

product may be conceived by developing early versions of the product in the

laboratory in intensive collaboration with a small set of selected pilot customers.

Customer input may be obtained through interviews or workshops. To guide the

prototyping, large companies tend to adopt technology readiness levels such as the

144 4 Product Planning

ones suggested by the European Commission.3 TRL1-6 are usually research-

oriented. Starting with TRL4, product management may take over the lead and

bring the product to the market.

TRL 1 - Basic principles of the idea observed

TRL 2 - Technology concept formulated

TRL 3 - Experimental proof of concept

TRL 4 - Technology validated in the laboratory

TRL 5 - Technology validated in a relevant environment

TRL 6 - Technology demonstrated in a relevant environment

TRL 7 - System prototype demonstration in operational environment

TRL 8 - System complete and qualified

TRL 9 - Actual system proven in operational environment

Depending on the customer contact person, it may be sensible for the product

manager to engage members of the sales and marketing staff and have them attend

the events with the pilot customers. To avoid confusion and consequent customer

dissatisfaction, a vendor must be careful to provide consistent, positive messages to

the customer representatives in the various meetings and prototype demonstrations.

For example, it is better to express a statement like “well, yes there are several

problems now but those will be eliminated when you install the new code release

when it is available next year” as “the product is excellent now, and we are

continuing to invest to make it even better.” If the communication is not under

control, the enthusiasm of a lab developer for the next release can easily leave the

impression that the current release has numerous problems and that any implemen-

tation ought to be delayed—the opposite of what sales would like the customer to

take away from the sessions.

The deployment of a product into a customer’s premises may surface several

issues which might not be present in a vendor-controlled installation. Customers

may have differing computation environments and be subject to a variety of

regulations. Thus, the product may be subject to non-functional requirements

that, if not satisfied, will prevent the customer from procuring the product. It is

essential that a product manager knows these requirements and decides whether and

how to support these environments. Quality requirements that are important for

deployment of a system into a customer’s premises are the following ones:

• Portability: a software should be able to run on different hardware and software

platforms without any significant migration effort. This is desirable for software

companies who want to sell to customers with heterogeneous computation

environments as well as for customers who want to be independent from

3Horizon 2020, Technology Readiness Levels (TRL), http://ec.europa.eu/research/participants/

data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf, accessed on October

5, 2015.

4.2 Product Requirements Engineering 145

http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

platform vendors. Over time, portability has become easier to achieve by using

modern languages and multi-platform development environments. Also,

virtualization technologies ease deployment.

• Interoperability: Interoperability enables integration of a software product into

an organization’s system and application landscape. To achieve interoperability,

a product vendor needs to understand or actively contribute to the

standardization of interfaces or support data exchange with the systems that

are most important for the business with the customers.

• Security and privacy: data that is business-critical for the customer, in particular

data about the customer’s customers, must be protected. Features for achieving

security and privacy include identification, authentication, and authorization of

users and confidentiality, non-repudiation, and integrity of data.

• Performance: a system must react within acceptable time to user requests and

limit excessive use of memory, storage, and network resources. The definition of

performance requirements based on realistic assumptions about volumes is one

of the most difficult and most important topics before development is started.

Hardly anything has such a strong influence on the architecture and the design of

a software solution as the performance requirements. Such planning is especially

difficult when computation and networking requirements differ widely among

customers. Cloud technologies have advanced to the extent that the performance

requirements planning problem is eased.

• Reliability: Reliability is the degree to which a software product can deliver

correct results consistently. Reliability is important as otherwise security may be

compromised or the trust of the users may be lost. A special reliability concern is

robustness, the ability of a system to react adequately to erroneous inputs and

user actions without error situations. Another reliability concern is availability.

Many critical applications require an availability above 99%, i.e. allowing a

downtime of roughly 8 h per month. The number of downtimes per timeframe

may also be an important question. High availability may only be achieved by

utilizing adequate hardware and software architecture elements like redundancy,

hot standby, clustering of application components, etc. These must be

implemented on the system and application levels. Fast restart in error situations,

disaster recovery, and the use of backup computing centers may also be critical

to some customers. In recent years, cloud technology has matured to the degree

that common reliability and performance tactics can be easily implemented.

Kano Model: Must-Be Attributes (Dissatisfiers)

The third category of requirements that Kano suggests is called “dissatisfiers”

or “must-be attributes” [KaSeTT84]. Dissatisfiers refer to missing attributes

of a software product that have been considered state-of-the-art for an

(continued)

146 4 Product Planning

extended time. They represent dysfunctional characteristics of a system:

characteristics that are missed by a stakeholder if they are not implemented.

In contrast to the satisfiers, the dissatisfiers do not generate excitement or

delight if implemented. The presence of a dissatisfier may lead to a reaction: a

“no” to the procurement and use of the product.

The consideration of dissatisfiers is of importance in the icebreaker scenario,

where the software product is deployed into the customer’s premises. Here,

the integration of the software product into the chain of tools that are used to

support the customer’s business process will not excite the customer. How-

ever, the absence of such integration will disappoint that customer. One of the

common integration concerns in the context for many enterprise systems is

for user account management. Lack of support for the relevant account

management standards, e.g. for single sign-in, may lead to rejection of the

product in a customer’s environment even if the product satisfies the core

stakeholder needs.

In a survey, a dissatisfier X can be identified with negative answers to a

question like “How would you feel if our product did not have capability X?”

paired with a neutral answer to a question like “How would you feel if you

obtained a product with capabilities X?” These negatively formulated

questions can be used to discover minimal product requirements.

Cruise Ship
The cruise ship situation is characterized by the presence of a product that has been

installed by first customers and needs evolution. The product is deployed at

customer sites by project staff, the vendor’s own staff or partners’, who use the

appropriate product versions to develop and setup customer-specific solutions.

A factor that makes the cruise ship installation complicated is that customers use

different product versions. Since these versions need to be supported, homogeniza-

tion is an important concern of the product manager who needs to convince

resisting customers to do updates and upgrades. Customers are often not interested

in making updates as each update generates cost for adaptation, deployment,

conformance checking, and training. Updates also introduce uncertainty about the

proper functioning and stability of other customer systems. Microsoft, for example,

struggles in convincing customers to adopt the most recent version of Windows,

with the effect that versions need to be supported that are more than a decade old.

In the cruise ship scenario, the product manager is confronted with a stream of

bug reports and feature requests that stem from a variety of sources. They may

originate from customers’ requests for proposals that are handled by sales staff,

customer requirements that are handled by the customer projects, or incidents that

are handled by customer support. The product manager receives requests from these

company functions for product enhancements. Other sources of requests may be

marketing, customers, sales channels, and development.

4.2 Product Requirements Engineering 147

Themarketing team can provide valuable inspiration for the design of a software

product. Marketing is likely to supply information about what the product must be

able to do so that it can be marketed successfully and which features could make the

product more attractive. The way in which a product is presented on the internet, is

packaged for sale, or advertised plays a major role as far as consumer products are

concerned. The marketing staff can also be consulted for information regarding

licensing terms and conditions, pricing, etc.

At any company the sales and distribution team has the most—and hopefully the

best—customer contacts. This is reason enough for it to be an important source for

gathering requirements. Due to their broad scope of responsibility, however, many

sales people have trouble precisely defining requirements for a single product—

unless the person concerned is a product sales specialist.

The requirements obtained from the sales and distribution staff are often vague

or express the opinion of just one or a few customers. Yet, this information is

important for the product manager, particularly as an “early warning system.” The

sales and distribution channel is often the first to be contacted by a customer who is

unsatisfied with a product or product service. The product manager should respond

appropriately before the customer switches to a comparable competing product.

Meeting with the customer together with a development representative or

organizing a requirements workshop often does wonders. The effect of this is that

the customer is more satisfied—feeling that the vendor has taken his problems

seriously—and that the sales specialist feels upbeat, having been able to define his

fuzzy requirements more precisely together with the customer.

Caution must be exercised when developers meet customers, however. The very

act of bringing a developer in to talk to a customer will allow the customer to infer

an expectation that his requirement will be addressed even if the vendor has other

intentions. It should be made clear that the meeting is to gather information and that

there is no commitment to development. One must also guard against an excess of

candor if it takes the form of “that is the silliest requirement I ever heard!”

With all the varied inputs, the product manager must develop a good instinct for

identifying the real problems. Every member or head of the sales and distribution

team—with minds focused on the next sale—tends to present his customer’s

requirements as the most important of all. This will often create a conflict for the

product manager. On the one hand, he should always work in close collaboration

with the sales unit, and on the other, he must prevent the sales and distribution staff

from sidestepping him and submitting requirements directly to development.

Software products may be sold and distributed through sales channels like

retailers, partners, value-added resellers (VARs) (see Sect. 3.11). They are often

difficult for the product manager to “grasp.” If the product is sold and distributed by

third parties, the in-house sales department has limited direct customer contact and

thus has difficulties in obtaining pertinent information for supporting product

decisions. In this case, the retailers and partners are an important source of

information for obtaining suggestions for new products or feedback on existing

products. Such business partnerships work well if both parties benefit from them. A

retailer or partner must be positive about the vendor’s products, regardless of

148 4 Product Planning

http://dx.doi.org/10.1007/978-3-642-55140-6_3

whether he makes money out of the license or product consulting and implementa-

tion services. The reseller will be as keen to remove inhibitors to sales as the vendor

and is a good source of such information. Retailer and partner events organized in

cooperation with the partners’ sales department are—like the user meetings

discussed above—a good forum for the exchange of ideas.

Internal staff or external consultants may execute customer projects. They are a

valuable source for gathering new requirements, especially for commercial soft-

ware products that require a great deal of consultation, customization, and imple-

mentation services. External consultants are interesting for the product manager

because they are independent, are often familiar with the products in various

customer environments, and have usually already worked with similar competing

products.

There are cases of customers developing a product “add-on” that may be

interesting to include in the product offering. In such a case, the vendor needs to

decide whether the “add-on” should remain customer-specific, should be integrated

into the product, or should become part of an ecosystem strategy where the “add-

on” is managed by a third party as an independent product on top of the vendor’s

product. It is advisable for the product manager to meet with the customer together

with a development manager or a system architect. Another proven forum is a

“customer advisory council” of carefully selected and representative users to

review plans and comment on these plans before new functions are invested

in. However, such a dialogue-oriented approach only works if the customers are

representative of the target market and insightful about the underlying product

technology.

Ideas about product enhancements and technological improvements generated

by product development may constitute a further source of product requirements.

These ideas often have a long-term perspective and tend to be justified with cost-

saving arguments, while requests from the customer side tend to follow business

development arguments. The product manager needs to balance these long and

short-term needs and consider both lines of argumentation in the roadmapping and

release planning decisions that follow product requirements engineering.

Also, the support team can be a helpful source of information for requirements

management. The support department knows well the problems customers have—

no other function receives as many customer complaints. It is worthwhile for the

product manager to monitor and evaluate the problem database. The support

function is also a good partner to collaborate with for customer satisfaction surveys.

These surveys may not result in detailed requirements but can provide valuable

pointers to product-related areas that need improvement.

The costs generated by support may be significant. Call center studies have

shown that 80% of all calls concern the same 5–10 problems. In many cases, these

problems involve installation, documentation errors, or problematic workflows.

Improving the installation procedure, documentation, help functions or user inter-

face can drastically reduce support costs as well as increase customer satisfaction.

The process of collecting, evaluating, and deciding about the stream of requests

obtained from the many sources in the cruise ship situation is called triage

4.2 Product Requirements Engineering 149

[Davis05]. Triage of requirements proceeds over a series of steps. First, candidate

requirements are collected and evaluated based on strategic relevance for the

product [GorsWohl06]. Selected requirements are then evaluated from the

perspectives market value and development cost [KarlRyan97]. This evaluation

and subsequent selection for implementation will be elaborated in the release

planning chapter.

Kano Model: Indifferent Attributes (Non-requirements)

A fourth category of features useful to consider in the context of the Kano

model [KaSeTT84] may be called “non-requirements” or “indifferent

attributes.” These features are those that the product manager should avoid.

They refer to attributes of a software product that neither generates positive

emotions when implemented nor negative emotions when not implemented.

The indifference of the customers implies that development resources should

not be wasted for implementing these requirements. A product that lacks

these features is as attractive as one that has them implemented.

In the cruise ship scenario, it is common that the product manager is

confronted with a stream of requests from various company functions. The

filtering of indifferent attributes is important. A requirement that is perceived

as critical for one customer may not be perceived as important by other

customers. A requirement that may be considered exciting by some sales

staff may not deliver the increase in product sales that was hoped for.

Features may be non-requirements for some customer segments and, at the

same time, be important for other segments. When used in conjunction with

market segmentation, the segments that react indifferently to potentially

enhancing features may receive a high priority for early product releases.

They may be offered product versions that have a limited scope, i.e. that do

not include enhancements that must be gotten right for other segments.

In a survey, non-requirements can be identified with the same questions as

satisfiers are identified: “how would you feel if you optained a product with

capabilities X?” and “how would you feel if our product did not have

capability X?” The non-requirements are those for which no strong positive

or negative answers are received.

4.2.4 Internationalization

The decision to sell a product internationally may result in additional requirements

compared to a purely domestic one. One common additional requirement is the

support for multiple languages. If a product is first released in a local language and

subsequently translated into another language to make the product available in

another country, retrofitting the new languages is often time-consuming. National

150 4 Product Planning

language support enablement should be considered early in the product

specifications and design. Such an approach requires the language-dependent

parts of the product, the user interface, screen masks, messages, help functions,

and online documentation, to be separated from the business logic.

When scaling a product to a global market, there are regulations, standards,

certificates, and permits that need to be observed, met, or obtained for each specific

country. Many customer environments and product domains are subject to such

national regulations. A widely known example of a regulation that applies to

customer environments is the American Sarbanes-Oxley act. It regulates financial

practice and corporate governance and contains requirements that affect a

company’s business processes and the software products that support these pro-

cesses. A widely known example of a regulation that applies to products is the

medical device directive. It regulates products, including the software and hardware

which affect the well-being or life of humans. In Europe, products that comply with

the directive gain market access and obtain the CE mark.

A global product must consider cultural issues and local usage. A trivial example

is the use of the period as a decimal separator and the comma as a thousand

separator in the U.S., while in Europe and much of the world, the roles of those

punctuation marks is reversed. Getting such points right may be crucial to the

success of products in specific countries. Even in the case of purely functional

requirements, countries have different priorities, often due to cultural differences.

And there are certainly differences in the legal aspects like sales laws or warranty.

As all these cases show, an internationally oriented product management that takes

these aspects into consideration and prioritizes them properly is important to

successful international development and sales.

4.2.5 Documentation of the Requirements

Requirements must be documented to be useful for building a shared understand-

ing, planning the product, and coordinating the development. How requirements are

documented does not matter [Fricker14]. Aggregated over more than 400 projects,

no evidence could be found that requirements engineering success was influenced

by decisions about templates for requirements phrases, box-and-line drawings, or

even formal specifications. The way requirements are stored did not have any

influence on requirements engineering success either. Specifications may be

saved with documents, spreadsheets, Wikis, or requirements databases. What is

important is the right methodology for building a strong business case and aligning

the software product with the needs of the product stakeholders.

To be efficient, requirements engineering practice should comply with policies

on the development side. These policies include standards for requirements specifi-

cation, the toolchain in the company, and the needs of those who are working with

the requirements.

The software development life cycle chosen by the development organization

determines how to document requirements and ensure that the requirements are

4.2 Product Requirements Engineering 151

implemented and tested appropriately. The extreme life cycle models are agile and

Waterfall development. The Rational Unified Process represent the middle ground.

Agile development started as a development life cycle methodology and philos-

ophy in the early 2000s. Agile development prefers interaction among individuals

over a step-wise process, working software over comprehensive documentation,

collaboration between product management and development over contract negoti-

ation, and responding to change over following a plan.4 The development proceeds

as a series of rapid iterations that result in frequent demonstrations of a functioning

system.

Development is planned and coordinated with backlogs rather than with specifi-

cation documents. A backlog is a list of coarse-grained features that are refined into

fine-grained requirements. When using Scrum as an agile process, the features are

called Epics. Epics should be used for documenting a shared understanding of the

meaning of the feature that the product manager had in mind. For achieving such a

shared understanding, we found the template for documenting options useful

(c.f. the table in Sect. 4.1.4, [FrGoBySc10]).

In Scrum, the requirements are written from a user perspective and follow the

format of User Stories. A User Story has the following format [Cohn04,

LuDaWeBr16]:

• Specification: a sentence that follows the structure “As a <user in the role X>, I

want to <use the functionality Y of the software> so that <the benefit Z that

shall result from using Y that I as a user am interested in>.”

• Comments added as the user story is being discussed: any information important

to correctly interpret the user story. The comments may include constraints that

must be considered for implementation.

• Tests added as the definition of “done” are discussed: exemplary scenarios of

how the system is used and test data defining how the software will react to user

inputs. The tests may be further formalized with the Behavior-Driven Develop-

ment approach [SolisWang11].

In an agile context, requirements are prioritized by sorting the backlog. The top

entries are the most urgent ones and are implemented in the next development

iteration. The lower entries are less urgent; some may never be implemented. A

consequence of this approach is that no importance classes, such as mandatory and

optional requirements, need to be defined. Instead, priorities are re-negotiated at the

beginning of each development iteration.

Waterfall development emerged as a development life cycle model in the early

1970s [Royce70]. In Waterfall development, the upfront planning of the system

development is important. The development is planned based on requirements

specification documents that are created before the development starts. The

4Manifesto for Agile Software Development: http://www.agilemanifesto.org/

152 4 Product Planning

http://www.agilemanifesto.org/

development then proceeds with two iterations, one for a prototype and a

subsequent one for the operational system.

In a Waterfall development context, requirements management is a document-

centered task. All requirements are combined into a document, the high-level

specification of a product. This is the main working document of product

requirements management. From this early requirements specification, the techni-

cal specification document is derived. The ISO/IEC/IEEE 29148:2011 and IEEE

830:1998 standards describe common templates for requirements documents. In a

public tender context, the V-Model XT and Hermes processes provide good

templates.

For Waterfall development to succeed, it is of key importance that the right

requirements are defined, comprehensibly documented, evaluated, and categorized

by their importance. Often, a two- or three-level prioritization scheme is used:

• Mandatory requirements: a requirement is mandatory if not implementing it

would automatically result in potentially drastic consequences for the company,

such as a loss of customers and revenue. Examples are contractual obligations

with a customer or legal requirements.

• Optional requirements: these are the requirements that are less important. Of

course, they can be further differentiated by urgency. Over time, an optional

requirement can turn into a mandatory one.

To manage the risks of missed requirements, misunderstanding of underlying

technology, and wrong estimates, the Rational Unified Process has been proposed.

It suggests that each phase is executed with multiple iterations and by involving all

development disciplines throughout the whole development process [Kruchten96].

When using the Rational Unified Process, the product manager is responsible for

a vision document that development refines into a software requirements specifica-

tion consisting of documents that describe use cases and supplementary

requirements. The vision document refines the definition of the product strategy

and is written for a technical audience that implements a specific product version. It

contains the following information:

• Introduction: purpose, scope, definitions, and references.

• Positioning: descriptions of the business opportunity, the customer problem, and

the positioning of the product.

• Stakeholders: user roles and profiles, competitors and the alternatives they offer,

stakeholders external and internal to the vendor organization.

• Product Overview: interfaces to the product’s environment, overview of product

features, assumptions and dependencies, delivery and installation.

• Non-functional requirements:

– Constraints, i.e business, project or design decisions taken in advance to

ensure the solution fits business, managerial and contextual concerns,

– Quality requirements, and

– Documentation requirements.

4.2 Product Requirements Engineering 153

Whether the development proceeds in an agile or Waterfall fashion, the product

manager is expected to decide about quality requirements that complement the

functional requirements. The decisions concern the prioritization of the types of

qualities that are of importance and the definition of expected quality levels. The

types of quality requirements are discussed in the speedboat and icebreaker

subsections.

Finding the appropriate quality levels is difficult in practice, but may affect

development cost and customer experience in dramatic ways [RegnBSO08]. Too

much quality will force development to choose architectures that may be an order of

magnitude more expensive than if less quality can be afforded. Too little quality

will lead to bad quality experience for the customers and users that interact with the

product. For critical quality attributes, customers will choose competitive products

that deliver better quality. For determining the appropriate levels of quality, the

product manager needs to understand the customers’ priorities in terms of product

quality attributes, competing products’ respective performance from the customer

perspective, and technical options and associated costs for building useful or

competitive quality while avoiding quality excess. This work proceeds best in

focused collaboration with Marketing and Development and may be supported

with workshops where experiments are made to understand the effect of product

quality on the user’s quality of experience [FoFrFi14].

Many software organizations want traceability among requirements artefacts, in

particular between customer, product and project requirements (see Sect. 4.2.6).

That means the ability to follow the path from the original requirement to the

software implementation and back. They often implement an integrated tool chain

for managing these artefacts. An integrated tool chain will allow the product

management organization to establish horizontal traceability from customer

requirements to the product implementation and vertical traceability from strategic

objectives to design decisions. The traceability connections are created by giving

each artefact unique identifiers that could be referred to in the same way as web

pages link to each other with URLs. Standardized notations and traceability give

transparency about development plans and progress, thus allow rapidly introducing

or reacting to changes. In regulated markets, such traceability may be a requirement

for placing a product on the market. Also, in some environments the introduction of

traceability has enabled systematic reuse of requirements, code, and tests to the

extent that the time-to-market for a new product could be accelerated by 90% in a

product line environment.

A Siemens unit, for example, has established the following traceability and

toolchain [ClSeRBC07]:

• Stakeholder requests (documented with text documents) traced to features (man-

aged in a requirements database).

• The features (managed in the requirements database) refined into system use

cases (managed in a modeling tool).

• The use cases refined into requirements that describe concrete system

capabilities (both managed in the modeling tool).

154 4 Product Planning

• Documentation of product releases (managed in a document versioning system)

defining when the concrete system capabilities would be implemented (managed

in the design modeling tool).

Complete toolchains are difficult to establish in practice because they require a

restricted set of tools to be used in the development organization. These restrictions

compete with usability for the people who need to interact with the tools and have

their work effectively supported. Also, a continuous stream of tools is coming on

the market that may change the way development is performed and implies the

consequent changes in the toolchain.

Some organizations have introduced alternative forms of requirements docu-

mentation. Storyboards, whether hand-drawn or assembled with photographs, have

been used to make descriptions of product use more intuitively understandable than

when abstract specifications are used for such descriptions. Storyboards may be

extended with videos showing the use of the product and how stakeholders react to

such use [FricSFT16]. Such rich-media documentation is interesting in situations

where the product organization needs to be convinced about the product context,

where development work needs to be precise, and where there is a need for

knowledge transfer and learning. In addition to being used for requirements docu-

mentation, photos and videos may be used to advertise products, to educate users

about how to use the product, and to capture experiences of these users in support of

product evolution.5

Whatever approach has been chosen to document the requirements, a product

manager has also to decide about the depth of the requirements specification. This

depth, or the level of detail, should be adapted to the maturity of the requirements

understanding and the knowledge of the requirements receivers. A hint about a

possible solution may be enough for an experienced subject expert that the product

manager has collaborated with over long time. In contrast, junior developers may

need to learn about many details before they can interpret the requirements

correctly. For planning the appropriate level of detail, a simple test exists for testing

requirements understanding: ask how the recipient will implement it. If you agree:

fine. If not: change the understanding by adding detail or seek another team

[Condon02]. Also, keep in mind that requirements tend to be vague and abstract

early when product concepts are being explored and tested. Later when the product

concepts have been chosen and solidified, the requirements must be detailed enough

to facilitate project planning, product development, and testing.

4.2.6 Managing Requirements Engineering

Requirements are used to justify decisions among architectural options, to estimate

and schedule work, to facilitate quality assurance, and to coordinate among

5https://youtu.be/CBsOiabbNIc shows an example of such a product video.

4.2 Product Requirements Engineering 155

https://youtu.be/CBsOiabbNIc

different products. Like all business processes that are cross-organizational and

require the cooperation of different organizational units, the requirements manage-

ment process is a big problem in a lot of companies.

The knowledge of who will implement a given requirement and when it will be

implemented avoids redundant activities and allows planning of dependent work.

An assigned and scheduled requirement can be reviewed, followed-up, and changed

if necessary. The following paragraphs describe measurements that companies may

take. The measurements make sense especially in the speedboat and cruise ship

scenarios as the measurements are particularly useful for mature products where

there is a desire to improve the requirements engineering process.

One essential measurement is time-to-market. This measurement tells how fast

and flexible the product organization is to react to market changes and to implement

strategic decisions. If time-to-market is too slow, capacity may need to be

increased, product development focused, and the release frequency increased.

The time-to-market measurements can be refined with measurements that reflect

how fast and thoroughly requirements are worked on, e.g. the average time from the

initiation of a requirement to the point of decision on implementation and to the

availability of the product release that contains the implementation.

Another essential measurement is the size of the requirements backlog. This
measurement tells how much work is pending. If based on a clear definition of the

organization’s requirements process steps, the measurement gives confidence that

the flow of requirements through the process is not stopped at some point. When the

backlogs are measured at different locations in the organization, the requirements

flow becomes visible, and bottlenecks and overcapacity may be identified and

eliminated. Ericsson, for example, applied such value stream analysis systemati-

cally to improve and balance the overall productivity of their product organization

[PetWoh10].

A third measurement that is useful, particularly during requirements triage and

when the scope of a development project is defined, is the degree of confidence in
requirements decisions. Common confidence issues concern the linkage of

requirements with business strategy, seeing the big picture of the offering, under-

standing the planned product’s value, and knowledge of customer problems

[KKTLD15].

The process owner who is measured on how well the end-to-end process works is

a key success factor. The role of the process owner is necessary, even though it is

not always pleasant. The management board needs to support him and give escala-

tion rights to him. The following would constitute good assignment of process

ownership.

• Customer requirements: business development, customer management.

• Product requirements: software product management.

• Project requirements: development.

Customer requirements management can be tightly connected with product

requirements management. Project requirements management is closely connected

156 4 Product Planning

to the project management and development processes. The connection of project

requirements management to customer and product requirements management is

usually looser.

4.2.7 Summary and Conclusions

This chapter has outlined the contexts and ways that requirements are engineered

and managed at the product level. Each of the product scenarios has its specific

approaches to requirements engineering. The powerboat scenario features a light-

weight, flexible experimentation process; the speedboat scales creativity supported

by user feedback; the icebreaker follows a product development process that

generalizes from individual customer projects; and the cruise ship has a continuous

inflow of customer requirements that are triaged into product requirements.

Requirements documentation has to be adapted to the specific circumstances of

the organization. Whether a formal standard is followed for requirements docu-

mentation may not matter for requirements engineering success. However, for

efficient and smooth work, the requirements specification needs to be well

integrated into the corporate work processes, culture, and toolchain. The product

manager will specify and handle requirements in the context of agile development

differently compared with a Waterfall development context.

For mature product companies, requirements represent an important input for

process development. Time-to-market measurements, product backlog size, and

confidence in the requirements will allow planning and balancing capacities and

influence the way requirements decisions are taken.

4.3 Release Planning

4.3.1 Overview

Release planning refers to the management of the detailed contents and schedule of

a forthcoming product release. In comparison to a roadmap, the release plan focuses

on the short-term, a single release. Release plans are important because they define

how the organization balances its capabilities for short-term goal achievement and

long-term investment by adding, changing, and removing or re-focusing resources.

The software product manager needs to make sure that the release plan is

synchronized with the product roadmap and matches the organizational interests.

The release plan is used by the project manager to scope product development.

Often, the development resources are not sufficient to implement all the identified

requirements for timely delivery, implying a need for prioritization and debate

between stakeholders to reach an agreement about trade-offs. Since such detailed

planning leads to new insights, release planning may imply changes in the product

roadmap that affect stakeholders other than just product development.

4.3 Release Planning 157

Release planning is done at regular intervals or at moments that are important for

the product organization. Companies may synchronize development projects with a

heartbeat to achieve consistency across multiple software systems. The heartbeat

determines when release projects are started and when the new product releases are

made available to customers. The frequency of the heartbeat varies, from one

release per year to one release per few months to continuous releases.

Release planning should be supported with tools for managing requirements

backlogs to handle the often large amount of detail. The tools, discussed in Sect.

4.5, give transparency about pending and completed work and may be as simple as a

spreadsheet or as advanced as issue trackers that interoperate with project, test, and

knowledge management tools. This transparency, reflected by changes in the

backlog, gives an indication of remaining time-to-complete and of whether the

right amount of development resources is available.

4.3.2 Concepts

The Release Concept
A software product evolves over time and thus exists in different releases. Releases

have different size and visibility external to the product organization. According to

the ISPMA glossary, releases that are offered to customers are called product

releases, while releases that are only visible within the product organization are

called pre-releases. Releases with large changes may be called versions, while

releases with small changes are called increments. Figure 4.5 gives an overview

of these terms.

A variety of labeling schemes for the released software is practiced by vendors.

Depending on the type and amount of change, releases are called major, minor,

update, and service or patch release. Other names are invented for marketing

reasons. To use a widely-known software product as an example, Google numbered

the latest release of the Android Gmail application available on February 3, 2016

“version 5.10.112808100” to reflect that the Gmail app was the update

“112808100” of the tenth increment of the fifth version of the product. Another

Term Definition
Release An instance of software that is made available to stakeholders.

Pre-Release A result of development activity that is testable, e.g. the result of a sprint in

Scrum.

Product Release An instance of the product that is delivered to customers, and maintained
as part of product maintenance.

Major Release The release contains significant new or changed functionality compared to

other releases. It may be selected as a new version for marketing or

business reasons.

Increment or

Minor Release

A minor release that contains new or changed functionality compared to

other releases.

Fig. 4.5 Release planning definitions

158 4 Product Planning

example, the Android operating system, was called version 6.0, “Marshmallow”

when released by Google on October 5, 2015. As indicated by the increment “0”,

the release 6.0 was a major release. “Marshmallow” is a marketing name.

A product organization may offer multiple product releases at the same time.

This may occur when customers cannot be convinced to install the latest version. Or

a vendor may offer an older version at a considerably lower price to address price-

sensitive markets. However, the support of multiple product releases in the market

generates cost, diverts resources to maintenance, and thereby reduces the

organization’s capacity for developing new releases. For that reason, product

organizations typically try to keep the number of concurrently maintained releases

small.

The Release Planning Process
Releases are planned by selecting requirements for implementation. A variety of

sources offer requirements from the perspectives of market needs and technological

opportunities. Feedback obtained from customers and users is the most direct

source of input on market needs. Marketing and sales may offer insights into trends

and what customers are interested in buying. Support is exposed to the limitations

of a product and knows about bug reports and feature requests. Other sources are

partners, professional services, competitors, market research, and executive man-

agement. Electronic sources like app stores, social networks, customer relationship

management databases, and product analytics offer a wealth of information about

the use of products, customer needs, and opportunities for product improvement.

Development, operations, and research may offer insights into technological

opportunities.

To achieve short time-to-market, a first version of a new product should be

small, yet still viable for the first customers. Later releases enhance that minimally

viable scope and make the product attractive for customer segments that were not

addressed with the first version. When a product achieves maturity, release

decisions aim at keeping the product competitive and interoperable. At the end of

the life of a product, release plans may contain features that help customers to

migrate to replacement products. Section 4.4 describes how the product life cycle

affects product planning.

Figure 4.6 shows how the inputs obtained from the market and technology

perspectives are used in a step-wise refinement and selection process for deciding

about a release for a mature product. Candidate requirements are received and

specified, are evaluated in terms of value and cost. Release plans are created by

selecting, or making a triage, among the requirements based on the budget that is

made available to the release projects. The selection of requirements to be

implemented is called the scope of the release. As the analysis and development

unfold in the release projects, release plans are reviewed and adjusted until a

dependable commitment can be given for what the exact scope is that is about to

be released. Each instance of the release plan that is communicated is called a

baseline.

4.3 Release Planning 159

Release Trains, Staging, and Product Variants
To minimize the time-to-market and utilize specialist capacity efficiently, software

organizations work with parallel projects. A heartbeat is used to define a schedule of

releases that is called a release train. Figure 4.7 shows such a schedule. The release

train below shows clearly how this development plan allows compact utilization of

requirements engineering and development capacity. Management and other com-

pany functions are involved on a regular schedule for project scoping and product

release. Notice that the term “release train” is a central term in SAFe [Leffing16],

but defined differently. Here an “agile release train” is the team of agile teams

working together.

In many situations, the release development work is structured with a staging

process that aims at delivering software product releases that are attractive and

mature. When the staging process is followed, the implementation of requirements

must meet a series of quality gates. At each quality gate, a pre-release is created,

labeled according to the achieved maturity, and made available to those who are

List of Candidate
Requirements

List of Evaluated
Candidate

Requirements

60%
Baseline

100%
Baseline

Release
Notes

Feature Requests

Refactoring

Postponed

Bug Reports

Value Estimates

Cost Estimates

Scoping based on Budget

Customers & Competition

Technology

Fig. 4.6 Requirements flow and triage for a mature product, adapted from [Davis05]. Vertical
gray bars requirements baselines. Vertical dashed lines triage decisions

Release n

Release n+1

Release n+2

Q1 Q2 Q3 Q4 …

Requirements Evaluation

Project Scoping

Implementation

Product Release

Fig. 4.7 Parallelization of release development projects with a release train, based on [Reg

HNBH01]: shown is an extract with a series of 3 release projects over four quarters (Q)

160 4 Product Planning

maturing the software towards the next stage. Mozilla, for example, requires the

features of the Firefox Browser to be matured in a four-staged environment.6

Figure 4.8 illustrates this Mozilla staging process.

The Mozilla staging process includes the following releases:

• The nightly Central release allows experimental features to be exposed to the

developer community and tried out.

• The subsequent Aurora release allows developers and early adopters to work

with the features.

• The subsequent Beta release allows a release candidate of Firefox to be tested

before it becomes the official product release.

• Finally, Firefox Release is the official product release of Firefox.

The code for a feature is in a Mozilla stage for at least 6 weeks, implying a

minimum time-to-market duration of 18 weeks. The work for a feature may have

much longer lead time, however. A feature is only branched into the next more

mature stage if it has met the criteria of the quality gate that guards the stage. The

staging allows the community to work on multiple Firefox releases at the same time

while assuring high quality of the published product releases.

Release planning becomes a complex multi-dimensional problem when product

families, lines, or platforms are involved. Versioning across product variants adds

complexity in addition to the time-oriented versioning described above. A product

manager is confronted with horizontal versioning if e.g. the same product is offered

in different industry-specific incarnations or on multiple platforms. Vertical

versioning signifies the offering of product variants with differing functionality

and price points. When a product portfolio comprises a bundle of separate products

with dependencies on each other and individual release plans, release planning and

execution for the bundled product can become a nightmare. Hence, the product

manager must do all that can be done to simplify the portfolio of variants and the

release planning process.

Code for new feature

Mozilla Central

Mozilla Aurora

Mozilla Beta

Mozilla Product Release

Quality Gate

Quality Gate

Quality Gate

Fig. 4.8 Release of features

in the staged Mozilla

environment

6https://wiki.mozilla.org/Release_Management/Release_Process (accessed in February 2016).

4.3 Release Planning 161

https://wiki.mozilla.org/Release_Management/Release_Process

Small vs. Large Releases
Whether to choose smaller releases with higher frequency or bigger releases with

lower frequency are often a discussion point in a development effort. Big releases

can be implemented more efficiently than small releases and sometimes are

unavoidable due to requirements whose implementation would otherwise span

multiple releases. Products with hardware elements tend to be developed with big

releases. In any case, the release cycle should be short enough in order to avoid

changes in the target market.

Small releases require less effort, can be implemented faster, and offer greater

flexibility to account for changes in customer situations and changes in the compet-

itive landscape. However, due to the high fixed cost per release for product and

project management, regression testing, packaging, distribution, and sales and

marketing, small releases are costlier unless significant parts of the process can

be automated. Also, the larger the number of variants that are in use the higher the

support complexity and cost.

The extreme case is the continuous delivery approach in which software may be

released, e.g. in the extreme case of Amazon, every few seconds.7 Software quality

is managed by promoting changed software through testing into production in a

semi-automated manner. The advantages of continuous delivery are accelerated

time-to-market, rapid feedback from users on new requirements, and ultimately

improved productivity and product quality with the consequent customer satisfac-

tion. The biggest challenges are the resolution of conflicts among stakeholders, a

software architecture and runtime environment that allow micro-changes during

runtime, integration with slower processes of the organization, and the setup of a

tool suite that enables continuous delivery.

A lot of software companies combine frequent small releases with infrequent big

releases. A common industry approach, e.g. in the context of maintenance, is the

release of critical fixes as they are developed followed by an entire maintenance

release. The maintenance release combines the previous fixes and may add changes

that can only be offered in conjunction with all the critical fixes. An example is

Windows XP, then SP1, then SP2, and then SP3 with critical fixes all along the way.

The product manager must keep an eye on upwards and downwards compatibility

between releases and versions as described in Chap. 2.

4.3.3 Release Planning Methods

Various methods exist to answer the following questions: when and what should be

released? The release planning decisions that drive the answers must balance

opposing forces. On one side, the selected requirements need to satisfy business

objectives and real customer needs while leading to a recognizable advantage over

the competition. Such value consideration needs trade-off between technology push

7https://www.thoughtworks.com/insights/blog/case-continuous-delivery

162 4 Product Planning

http://dx.doi.org/10.1007/978-3-642-55140-6_2
https://www.thoughtworks.com/insights/blog/case-continuous-delivery

and market pull, i.e. between technology-driven features and customer

requirements. The organization’s strategy may guide this trade-off and determine

to what degree the company is reactive to its markets by giving priority to customer

needs or pursues a proactive innovation strategy by pushing new technologies to the

markets. On the other side, the selected requirements need to take into account the

capabilities and capacity of the product organization, while being compliant with

time and budget constraints and architectural considerations. Other influencing

factors can be customer commitments and sales and marketing activities like a

product presentation at a trade fair.

Deciding About a Release Plan
Academics have done interesting work on this subject by considering release

planning as an optimization problem. Major factors considered in such release

plan optimization are the value and effort estimated for individual requirements.

Other factors are marketing themes attached to new releases or versions,

dependencies between requirements and other products, customer commitments,

and risk. Formal optimization approaches easily deal with value, effort, and

dependencies. Other factors are more difficult to account for. Consequently, the

optimization of release plans has been called the “Art and Science of Software

Release Management” [RuheSal05]. The difficulty of formalizing a release

planning problem is a reason for why many product managers do not use mathe-

matical optimization yet.

In practice, release planning involves negotiations and setting priorities to

resolve conflicts between stakeholders about release objectives and contents. An

approved release plan is one that all stakeholders agree to, and conflicts are

inevitable. Typically, a multi-stakeholder agreement is an iterative decision-

making process of requirements elicitation, concept validation, and decision-

making. Also, the software development methodology will affect the release

planning. Agile and lean approaches allow frequent consideration and

re-consideration of requirements’ priorities, thus support a trial-and-error learning

process of what is acceptable to the stakeholders. In contrast, Waterfall develop-

ment freezes project scope and formalize change management early. Hence, this

Objective: agree with stakeholders on the scope of the next release project.

Steps:

1. Understand the release objectives and themes, the product and organizational environment,

the parameters of the development, and the product’s current life cycle phase that influence

release decisions.

2. Prepare the release planning support and schedule.

3. Generate, evaluate, and negotiate the release plan, and make decisions.

4. Analyze, reflect, and package the release planning outcome and make the experience

available to others to support organizational learning.

Fig. 4.9 Generic approach for deciding about a release plan

4.3 Release Planning 163

latter development methodology requires more upfront thinking and, consequently,

more firm agreements.

Figure 4.9 shows a generic decision-making process for a software product

release. Even though presented in a linear fashion, the process is highly iterative

because the value of a release is hard to judge [Carlshamre02]. The evaluation

criteria can often not be defined in advance. Judgments are highly subjective, and

the grouping of requirements and features affects the value and cost of their

implementation. As a consequence, it is difficult to assess whether a release content

is good enough.

Release planning work requires significant preparation. In relation to step 1, a

solid understanding of the product and organizational environment helps the prod-

uct manager in the execution of the release planning process. Knowledge of the

stakeholders, requirements, preferences, constraints, and cost constraints allows the

product manager to conceive tactical options for alternative release plans and

streamlines the release planning process. The preparation concludes in step 2 by

selecting analysis and visualization approaches and defining a schedule of stake-

holder workshops.

The step 3 is iterative and involves discussions between the stakeholders

concerned with the release. The critical stakeholders are product management,

engineering, marketing, and executive management. To facilitate scoping of the

release consensus is necessary among the important stakeholders concerning the

evaluation and prioritization of requirements and skillful visualization of the

results.

Release planning work is concluded by analyzing the process and the outcome

that has been achieved. This analysis aims at identifying opportunities for improv-

ing release planning. It involves investigation of the stakeholders’ satisfaction with

how release planning was performed and the appropriateness and stability of the

release planning decisions. These outcomes should flow into the preparation of

subsequent iterations of release planning thus avoiding unnecessary problems

proactively while achieving an efficient and flexible process.

Evaluation Criteria
The evaluation, prioritization, and packaging of requirements into releases require

creativity and experience. The ideal release, of course, is well-balanced, perfectly

timed, and contains the most significant requirements that are of value for the

customers, are required to fulfill the organization’s strategic initiatives, and satisfy

the needs for quality improvements. Obviously the release must be accepted by all

product stakeholders. This ideal will rarely be achieved in practice. Usually focus

areas must be defined for a release, e.g. making it a release for a new customer

segment, a quality release, or a migration release that supports a new database

system.

There are always more requirements than can be implemented with the given

resources and budget. Also, time restrictions need to be considered, e.g. to meet the

deadlines of trade fairs or answer announcements of competitive products. In some

companies, a business evaluation of the individual features is to be done. That

164 4 Product Planning

means that a business case is calculated that considers the cost side, in cooperation

with development for the estimation of effort, and the value or benefits that an

implementation of the requirements would bring. Other aspects to be considered are

dependencies and grouping of requirements so that a combined implementation

means less effort or less cost and can be explained to customers and stakeholders.

Also, the resolution of conflicts between marketing and development becomes an

integral part of requirements prioritization negotiations. Based on this evaluation,

the product manager needs to decide what is to be done given the resources, budget,

and time restraints.

Various criteria are used for requirements evaluation from the perspectives of

the business, management, and system [WohAur05]. Business criteria are based on

the product strategy. They include marketing concerns, e.g. release themes and

dates, the competitive situation, stakeholder priorities, and requirements volatility.

Management criteria include value, cost, and risk of the development, the needs for

resources and competencies, the delivery date and calendar time in relation to the

roadmap, and the availability of support for education and training. System criteria

include system impact, complexity, requirements dependencies, evolution, and

maintenance. Requirements dependencies increase the complexity of release

planning and require additional analysis to be performed as the removal of any

prerequisite requirement for the release affects the dependent requirements. Also,

care must be taken on requirements that span teams or delivery cycles. Figure 4.10

gives an overview of the most common prioritization criteria.

The products’ life cycle affects the selection of release planning criteria. In the

early phases of the product life cycle, a high degree of uncertainty characterizes

release planning. The product is not yet completely shaped, and the product use

cases are evolving. Release planning focuses therefore on the most important

Prioritization criteria for value

- Priority of stakeholders: prioritize by the beneficiaries of the requirements.

- Priority of customers and users: prioritize the requirements of prioritized customers.

- Competitors: prioritize requirements that allow equalizing or winning over competitors.

- Urgency: prioritize requirements by considering the product’s release date.

Prioritization criteria for cost

- Effort: prioritize requirements that require little effort for implementation.

- Development cost/benefit: prioritize requirements with high expected benefit and low cost.

- Staff: prioritize requirements for which the right knowledge and skills are available.

- System operation: prioritize requirements based on the expected cost of system operation.

- Availability of support: prioritize requirements for which technical support and training can

be provided.

Prioritization criteria related to the development of the technical solution

- Complexity: prioritize requirements that impede architectural degradation of the systems.

- Evolution: prioritize requirements that bring flexibility for system evolution.

- Dependencies: group requirements that should be implemented together and prioritize them

by technical and marketing-related dependencies.

- Volatility: prioritize requirements that should be stabilized or isolated.

Fig. 4.10 Common prioritization criteria based on [WohAur05]

4.3 Release Planning 165

requirements that are needed for onboarding of the next customers and learning by

the product organization. To ease change and evolution, a minimum viable product

(MVP) approach is pursued (see Sect. 3.5.3).

In the growth phase, releases are planned that extend the MVP with features for

satisfying interesting market segments and countering competitive threats. Also,

interoperability is a key concern as it allows a product to be integrated into the

customers’ environments and increases the customers’ difficulty of switching to

alternatives. Because of the many additions, the product evolves rapidly, and

complexity becomes an issue.

In the maturity phase, release planning no longer focuses primarily on the

addition of new functions. Instead, requirements are prioritized that support new

environments, improve user experience, and increase performance and reliability.

Since the product architecture and constraints are well known, requirements can be

estimated more precisely than in earlier phases, which leads to improved release

planning outcomes.

Towards the end of the life of a product, requirements are prioritized that help to

retain customers with minimal investment and help them switch to a replacement

product that has hopefully been added to the company’s portfolio. Large and

disruptive improvements are directed towards the replacement product to avoid

stakeholder inertia that hinder product replacement.

Prioritization Techniques
Several requirements prioritization techniques are commonly used. Techniques that

are simple and can be employed ad-hoc are used to evaluate requirements in

workshops with the concerned stakeholders. The more advanced techniques,

which are based on mathematical optimization, require tool support and are used

to generate and analyze options for release plans off-line in the preparation of

decision-making workshops.

Figure 4.11 gives an overview of the techniques that can easily be employed in a

workshop setting. In such a workshop, a moderator prioritizes requirements

together with stakeholders according to the chosen evaluation criteria. To ensure

the credibility of the results, the workshop will involve the stakeholders that have

the best possible knowledge about the concerned requirements and estimates.

Market representatives should evaluate requirements value, and developers

requirements cost. The prioritization is repeated for each prioritization criterion.

When stakeholders are confronted with many requirements, the requirements are

aggregated, e.g. into features, before prioritization.

Especially in agile settings, the Planning Poker technique is used for estimating

effort. It can be shown that the technique is efficient and leads to reliable estimates

[KarTRBW06]. Also, the technique is interesting because the differences between

estimates can be used as an indicator for uncertainty, and disagreement can be

resolved through a dialogue among the participants. These two aspects let risk be

exposed and controlled, thus let the participants develop trust in the prioritization

results. In addition to effort estimation, the technique can be used for evaluating

requirements according to any other criterion as well.

166 4 Product Planning

http://dx.doi.org/10.1007/978-3-642-55140-6_3

When selecting requirements for implementation, multiple criteria need to be

combined. Wiegers suggests to combine the benefits from need satisfaction, the

penalty of need dissatisfaction, the cost of requirements implementation, and risk

into an aggregate score [Wiegers03]. The requirements selection problem then

becomes the problem of selecting the best-scoring requirements. Also, Ruhe and

his colleagues consider requirements selection as a multi-criteria optimization

problem. A further approach is the Analytical Hierarchy Process that allows

defining weights for criteria in addition to evaluating the requirements with the

criteria. While providing fine-grained rankings and supporting sensitivity analyses,

these approaches suffer from a dependency on tools and from giving the

Top-10

1. Prepare: the moderator introduces the requirements and the prioritization criteria.

2. Evaluate: each participant selects the ten most relevant items privately, without sharing the

results with any other participant.

3. Aggregate: the moderator counts the number of votes for each requirement.

Success enhancer: in step 2, 10%-30% of the requirements should be selected.

Numerical Assignment (Grouping)

1. Prepare: the moderator introduces the requirements and the prioritization criteria.

2. Evaluate: each participant privately partitions the requirements into three groups, for

example, into “critical” (weight 9), “important” (weight 3), and “optional” (weight 1).

3. Aggregate: the moderator calculates the weighted sum of votes for each requirement.

Success enhancer: in step 2, each group should have approximately the same size.

Ranking (Sorting)

1. Prepare: the moderator introduces the requirements and the prioritization criteria.

2. Evaluate: each participant privately sorts the requirements so that the best-ranking

requirements is at the top and the worst-ranking at the bottomof the list.

3. Aggregate: the moderator calculates the median rank (more robust) or average rank

(enables many statistical tests) of each requirement.

Success enhancer: allow participants to sort visually, e.g. with a spreadsheet.

100 Dollar (Cumulative Voting)

1. Prepare: the moderator introduces the requirements and the prioritization criteria.

2. Evaluate: each participant privately invests a total of 100 points (or dollars or euros) into

the set of requirements, proportional to the perceived worth according to the criteria.

3. Aggregate: the moderator sums the number of invested points for each requirement.

Success enhancer: vary the number of points to be invested as necessary.

Planning Poker for Effort Estimation (Consensus Seeking)

1. Prepare: the moderator introduces the requirements and the procedure.

2. Evaluate: each participant privately estimates the effort for implementing the requirement.

3. Aggregate: each participant shares his estimate and, if it is the highest or lowest estimate,

provides a justification for it. The group discusses the estimates and justifications.

4. Seek Consensus: go to step 2 if no consensus has been reached. If the differences between

the most optimistic and pessimistic estimates are small, select an estimate in the middle.

5. Repeat the Planning Poker for all requirements that are to be evaluated.

Success enhancer: make estimates based on a Fibonacci-like series of numbers. A commonly

used series is 0, ½, 1, 2, 3, 5, 8, 13, 20, 40, 100, ?, and Coffee. “?” reflects the inability to

estimate. “Coffee” reflects a need to make a break, e.g. for private discussions.

Fig. 4.11 Prioritization techniques for workshop settings, in the order of increasing complexity

4.3 Release Planning 167

impressions of being black boxes. They deliver results in ways that are not

understood by the stakeholders. Also, the estimates of value and cost are often

questionable even if sophisticated estimation approaches are used. Accordingly, the

simpler techniques are much more frequently used.

Releases are often planned based on the Pareto principle. Pareto analysis is a

technique to match the most important requirements with the given delivery

capacity. The technique is based on the 80:20 principle that says that 20% of the

work will generate 80% of the value. When following this approach, the top 20% of

the analyzed requirements are selected. Davis recommends starting development

with a requirements baseline that represents 60% of the capacity available in

development [Davis05].

While the so far introduced techniques work well for functional requirements,

they are of limited use for quality requirements. The definition of quality

requirements, such as performance, usability, and reliability, is often a problem

of defining appropriate levels of quality, rather than defining whether to add or

remove a quality requirement. Regnell and his colleagues proposed the quality

performance QUPER approach that determines quality levels based on competitive

analyses and architectural barriers [RegnBSO08]. QUPER is a simplified form of

the more elaborated Quality Function Deployment approach that is established for

hardware products. Figure 4.12 gives an overview of the QUPER technique that is

performed by a team of analysts that are competent both in technology and the

market.

Visualizing and Agreeing on Prioritization Results
Visualization makes the requirements evaluation results accessible for the decision

makers. It is a tactical tool that can be employed during the release negotiations.

Visualization can be used to underline how collected evidence supports or speaks

against the arguments that are used when deciding about a proposed release plan.

Evaluation results may be visualized in text or graphical format. A widely-used

approach is to use sorted requirements lists or tables that indicate selection and

Quality Performance (QUPER) Approach

1. Prepare: define the type of quality requirement to be defined.

2. Evaluate benefit: estimate the breakpoints of useless, useful, competitive, and excessive

quality from a user perspective.

3. Evaluate cost: estimate barriers for quality levels that require a significant change of the

technical approach.

4. Analyze market: estimate the product’s current quality and the current and expected

quality of the competing products.

5. Propose releases: estimate quality targets for coming releases that reflect technical

feasibility and the product’s competitive strategy.

6. Repeat by extending the analysis with other important quality characteristics.

Success enhancer: measure the users’ perceived benefit with a Mean Opinion Score “MOS.”

The MOS is on a scale from 1-5 and can be determined experimentally by letting users use

the concerned features and asking them for feedback [FoFrFi14].

Fig. 4.12 QUPER technique for planning quality levels, based on [RegnBSO08]

168 4 Product Planning

discarding of requirements. In an agile context, the sorted requirements lists are

called requirements backlogs. In a product line context, often tables are used that

show the matching of requirements to product variants. Both visualization

approaches may be enhanced with information about ratings and rankings, by

adding columns with the respective information. When used for supporting

decisions, the text-based visualizations offer insights both into the evaluation

results and the detailed data.

When estimates are on a proportional scale, graphical representations are attrac-

tive. Their advantage is that they can express patterns and relationships better than

text-based formats. A simple approach is the use of bar charts, illustrated in

Fig. 4.13 that shows evaluation results of smartphone features. Bar charts can

also be visualized as stacked bars, e.g. to indicate the contribution of individual

stakeholders to the total estimate. Graphical formats may also be used to indicate

the spread of estimates. For example, frequency distribution charts show the spread

of values [RegHNBH01] and box-plots aggregate information about these

distributions [McGiTuLa78]. These are common tools used by statisticians to

give an overview of estimates.

When relationships between estimates are of interest, scatter plots become a

useful visualization tool. In comparison to one-dimensional graphical

representations, scatter plots make interesting data points, e.g. outliers, and clusters

of data better visible. In release planning, scatter plots may be used to show the cost/

value relationship of requirements. Figure 4.14 shows a cost/value diagram of the

evaluation results shown in Fig. 4.13. Each point represents a feature: the x-axis the

relative cost and the y-axis the relative value of a feature.

Fig. 4.13 Visualization of evaluation results for smartphone features with bar charts

4.3 Release Planning 169

Figure 4.14 illustrates the use of a cost/value diagram for selection of features

with a dashed line. If all features above the line are chosen for implementation, the

selection will imply the creation of 83% value for 46% cost by a development

project in comparison to the possible total. Such selection of features leads to a

large return on investment. Similar diagrams and similar analyses can be made for

other combinations of evaluation criteria, for example, the criterion of risk.

More advanced charts have been proposed by Regnell and colleagues who

suggest the use of disagreement charts, satisfaction charts, and influence charts

[RegHNBH01]. The disagreement chart shows how much stakeholders agree or

disagree on the priority of each feature. It allows identification of problematic

features. The satisfaction chart shows how much each stakeholder’s priorities

agree with the overall priorities. The influence chart, finally, shows how much

weight is given to each stakeholder. We refer to Regnell’s publications for the

details of how to construct these diagrams. What is important is that the product

manager know who disagrees, who is satisfied, and who has what kind of influence.

That knowledge allows acting by reviewing and influencing the decision-making.

To get to an agreement when multiple stakeholders are involved, the so far

introduced analytical approaches are not enough. Reaching an agreement depends

on the skillful use of the evaluation results, the development of convincing

arguments, and the willingness of all involved to adjust their position to reach an

agreement. This readiness for a successful dialogue can only be reached with

trusted relationships among the involved parties, by having prepared alternative

Fig. 4.14 Visualization of evaluation results as a cost/value scatter plot. Dashed line selection

170 4 Product Planning

proposals for release plans, and with an in-depth understanding of the impact of

these plans for the stakeholders.

It is also important to know that a product manager does not need to obtain the

support of all stakeholders [FricGru08]. An alliance of stakeholders suffices if the

allied stakeholders have enough power to make the decision. If an agreement is not

possible, the product manager may propose a middle way between the stakeholders’

positions, a consensus. If conflicts persevere, the product manager may initiate an

escalation of the decision-making to an authority with power stronger than the

involved parties, for example to the head of the business unit or company to which

the product belongs.

4.3.4 The Release Plan

The results from release planning are documented in a release plan. The release

plan defines the core product in terms of functionality, quality, and constraints. The

functionality reflects the services that the product offers to its users, the quality how

well these services are offered. Section 4.2 on requirements engineering offers

more details about the types of requirements. In addition to the specification of the

software, the documentation for a software product release may contain the defini-

tion of the whole product, including non-software parts like hardware, documenta-

tion, and services such as consulting, pre-sales, post-sales services, and support.

There is no standard format for a release plan. The development and release

process will guide how a release plan is documented. The simplest versions of

release plans may be encountered in agile development projects. The most

elaborated versions in a product line or systems-of-systems environments with

staged releases of the product under development. The product manager needs to

understand this product development context and adapt the format and contents of

the release plan.

Minimal elements of a release plan include:

• A definition of the software version,

• The release date,

• Resource assumptions, and

• Selected requirements.

Many release plans include additional information:

• The intent-summarizing theme of the release,

• Supported stakeholders, and

• Traceability to the sources of the selected requirements.

Release plan may be even further enhanced with the following information:

• The customers or beneficiaries that are targeted with the software release,

4.3 Release Planning 171

• The budget, capacity, and staffing of the development project,

• Assumptions, dependencies, risks, and other issues, and

• Definition of product variants with allocation of the requirements.

Traditionally release planning practice documents the scope of a release in a

succession of requirements documents. The marketing requirements document

(MRD) documents the market opportunities that are to be addressed with the

release. It is the first document to capture the list of evaluated candidate

requirements. The product requirements document (PRD) consolidates relevant

customer requirements into a coherent vision of the planned product release that

considers the budget that is available for the release project. The technical

requirements document (TRD) is a low-level specification of functional

requirements, quality requirements, and constraints for the software to be devel-

oped. It defines the 100% scope of the software product.

Modern approaches for requirements specification are based on the idea of

backlogs used to manage software development. These approaches are frequently

used in the powerboat and speedboat constellations. Rather than writing

requirements documents, Wikis and issue tracking tools are used to define plans

and monitor progress. The plan that was historically defined by the documentation

of requirements in a document is here defined by allocating the requirements to a

release. The progress that was historically visible by the progressing set of

documents is here managed by defining and following the life cycle of individual

requirements.

During the release project, the product grows and matures. Upon conclusion of

the release project, the documentation of the release must reflect any updates to the

original documentation of the product. At this stage, the release notes replace the

earlier release plan with a description of the implementation requirements together

with an overview of known issues and bugs for the release. The product documen-

tation includes, also, the technical artifacts, including architecture, development

environment, code, test environment, tests, and test reports.

4.3.5 Summary and Conclusions

This chapter has given an overview of the concepts, process, and techniques for

planning software product releases and documenting a release plan. Release

planning has been presented as an evaluation and selection process, in which

requirements from market pull and technology push undergo triage and are

allocated to release projects that are lined up in a release train. To decide on the

scope of a release, the product manager seeks agreement and support from impor-

tant stakeholders with proposed plans that are developed by prioritizing the

requirements according to criteria like value, cost, and risk. The chapter described

the generic release planning process and gave an overview of the many techniques

that are available. The chapter has concluded with suggestions for documenting the

172 4 Product Planning

release plan, both with backlogs for the modern agile environment and as a series of

documents in more traditional environments.

4.4 Product Life Cycle Management

4.4.1 Overview

Product management is responsible for a product throughout its entire life cycle.

The product manager conceives the product, introduces the product to the market,

facilitates its growth, revitalizes it, and withdraws it at the end of its life. Each

product life cycle phase affects the product manager’s focus and how he does

product planning. In the early stages, experimentation with the product concept

and with new features is important. In the later stages, maintenance and replace-

ment get center stage.

Not only the product, but also the category of the product undergoes its own life

cycle. In the early stages of the product category, the technology adoption life cycle

applies. Enthusiasts and visionaries become excited about the new capabilities and

try to build new business with the technology. This phase is followed by the chasm

where success in market niches determines the survival of the technology. A

successful product category will continue to grow one niche market after the

other until a widespread appeal has surfaced and a market has been created. That

market grows, matures, and eventually declines. This category life cycle affects

product planning as well. Each product category phase has a predominant type of

new customer who is receptive to the product category and needs to be addressed if

a product is to be sold successfully.

This chapter introduces the concepts of product life cycle management. The

reader obtains an understanding of the three relevant life cycle and their stages, and

recommendations about common tactics to implement product planning. Our pri-

mary focus will be on new products for immature markets and product evolution for

mature markets.

4.4.2 The Product and Product Category Life Cycles

Product management must have a solid understanding of the various phases of a

product and the product category to which it belongs. This understanding is needed

to develop strategies and actions that suit the product’s situation. Also, the product

manager needs to ensure that the right knowledge for building and maintaining the

product is available in the product organization. Finally, a product manager must

analyze how well the product is performing by monitoring product profitability,

actual versus planned revenue, customer satisfaction, and market share (see Sect.

3.13). If necessary, corrective actions must be initiated, and the concerned product

team must be supported and given the competencies necessary to implement these

actions.

4.4 Product Life Cycle Management 173

http://dx.doi.org/10.1007/978-3-642-55140-6_3

Life Cycle Model for a Software Product
The importance of the product life cycle for a company is evident when looking at

the product portfolio and how that portfolio evolves over time (see Sect. 5.2).

Portfolio evolution may be measured by recording the number of new product

sales or active licenses. The recording of new product sales is common for products

in an early life cycle phase where the growth of the business is of key interest. The

recording of active licenses is common for products in a late life cycle phase

because that record allows knowing who is still using the product.

The growth and decline of business volume for a product version over time

reveals the different stages in its life cycle. We see a product moving through six

life cycle phases: the product is conceived and created, is being introduced to the

market, is being grown, matures, and declines until it is withdrawn. Each phase of

the life cycle has its individual characteristics, business aims, and focus areas for

the product manager’s attention. Figure 4.15 gives an overview.

A product organization pursues different business aims depending on the prod-

uct life cycle phase. The first three life cycle phases of a product are investment

phases. Investments in the product are necessary to develop, test, and market the

product. Products in later phases serve as cash cows and generate significant

revenue with relatively little investment. The resulting profit can be used for

investing in other promising products in the portfolio. Often, the product manager

will minimize the need for additional investments, maximize the revenue generated

by the product, and achieve break-even as rapidly as possible. Agile approaches

combined with a minimal viable product strategy and rapidly released product

versions may yield quick return on investment by generating positive cash flow

much earlier than a Waterfall-oriented approach [DenCle04].

Figure 4.15 shows the focus areas for each product life cycle phase. During

conception and creation, the product manager assesses market opportunities for

product ideas, aligns a winning idea with company strategy and positions the

product, and develops and tests the product [SongMon98]. The market introduction
includes the validation of the product with customers, testing of the marketing and

advertising programs, and coordination, implementation, and monitoring of the

new product launch. During growth, the product manager markets, extends, and

evolves the product to win new customers, gain market share, and fight against

competitors who do the same [Moore14]. With the maturity phase, the business aim

Phase Business Aim Focus Areas
Conception and creation Investment Innovate, position product

Market Introduction Launch product, grow market share

Growth Grow market share, extend functionality

Maturity Cash Cow Revitalize product, service product

Decline Retain customers

Withdrawal Retain customers, reduce cost

Fig. 4.15 Life cycle model for a software product

174 4 Product Planning

http://dx.doi.org/10.1007/978-3-642-55140-6_5

changes, and the product assumes the role of a cash cow. The product manager

starts limiting the investments in the product and evolves it only as much as needed

[RajlBenn00]. When product sales decline, a limited servicing of the product with

minimal bug fixes replaces the previously more extensive product evolution. To

account for the declining income within the decline phase, a product manager seeks

ways to reduce cost, e.g. by moving support services to a low-cost country. With the

final phase of withdrawal, the product manager prepares the product’s phase-out

and performs its closedown.

The life cycle phase also influences maintenance. A vendor may introduce

variability into the product to address diverging needs of different market segments,

especially during the growth phase of a product. Later, the product organization will

recognize a need to minimize the number of parallel versions of a product that are to

be maintained. Excessive parallelism would produce portfolio and organizational

complexity. Therefore, the maintenance of older versions is frequently

decommitted with some lead time to motivate customers to migrate to newer

versions. These migrations are often a point of conflict between vendor and

customers that vendors try to mitigate by offering discounted upgrade prices.

Challenging decisions are thus required when moving from one phase to another.

Approaches that worked well in one phase may need to be changed to prepare for

the next phase, even when the changes create irritation and resistance.

In practice, the life cycle of a product is hardly as stepwise and linear as Fig. 4.15

suggests. While the markets for B2B license products may be slow, Internet-based

markets tend to be turbulent. Consequently, product development and evolution are

often iterative and confronted with much trial-and-error and failures. Also, a

product organization may discover that a product is in a different life cycle stage

than initially thought. For example, a product believed to be mature may be

changed and evolved to address a newly discovered growth market.

The iterative nature of the product life cycle is particularly important until a

product is on the market that satisfies customer needs, is well differentiated, and is

technologically viable [KhuFrGor15]. Only successful products undergo all life

cycle phases; the unsuccessful product should be withdrawn rapidly.

The product organization utilizes measurements that are connected to the posi-

tion of a product in its life cycle to support product life cycle management. Data

from product analysis and market analysis will be used to determine the current

product life cycle phase. Other measurements are used to monitor and control the

life cycle-specific work and the outcomes that are achieved with that work.

Section 3.13.2 offers more details on these measurements.

Life Cycle Model for a Product Category
Products compete within product categories which Moore defines as “A term used

by customers to classify what they are buying and distinguish it from other

purchasing choices”. Examples are smartphones, or ERP software. These product

categories either already exist in the market, or a vendor might research or leverage

new technologies to establish a new category. The product category also follows a

life cycle. For the early stage, Moore coined the term “technology adoption life

4.4 Product Life Cycle Management 175

http://dx.doi.org/10.1007/978-3-642-55140-6_3

cycle”, which he defines as “A model that describes how communities react to the

introduction of a discontinuous technology, consisting of a progression through five

adoption strategies: technology enthusiast, visionary, pragmatist, conservative, and

skeptic”. The later stages are called “category maturity life cycle” defined as “A

model that describes the rise, duration, and decline of a category of product or

service”. The combination is named “market development life cycle” [Moore08,

Moore04a]. Figure 4.16 gives an overview.

The life cycle of a product category reflects how the market reacts to that

category. Most customers will be resistant to new types of products and will only

adopt what is proven. Technology enthusiasts and visionaries will be more wel-

coming early on. So in order to make decisions about whom to market a product to

and how to market that product at a given point in time, it is important for product

managers to understand the current category phase of their product. Spending

money in the wrong area would be a waste, and highest potential customer types

change from category phase to category phase.

An idea for a new product category is often developed in collaboration with

enthusiasts that are willing to try and explore new technologies with low readiness.

These innovators are few in numbers. A product needs to address the next class of

customers: the visionaries to grow product sales. Visionaries are often interested in

a potentially risky product because of the potential it brings to build new business.

While working with the visionaries, a product manager must manage to adapt the

product to the needs of the first big category of customers: the early majority. If not

successful, the product will be trapped in the “Chasm” and cannot get to significant

revenue growth.

Customers in the early majority adopt a product on pragmatic grounds. The

product should be well established, deliver the expected value, and be of high

quality. Moore has characterized a product category at this stage to be first in a

Bowling Alley, then a Tornado, and finally the Main Street. Each Bowling pin in

Phase Constellation Dominant New Customer Type
Early Market Testing and early adoption of a

new product category by a

market.

Enthusiasts and visionaries

Chasm Niche market

Bowling Alley Increasing number of niche markets

Tornado Pragmatists

Main Street

Growth Market Large-scale adoption of the

product category.

Mature Market Growth flattens, and

competition is noticeable.

Conservatives

Declining Market Technologies for new product

categories emerge.

Skeptics

End of Life A new product category is in

the Tornado stage.

-

Fig. 4.16 Market development life cycle model for a product category based on [Moore08,

Moore04a]

176 4 Product Planning

the Bowling Alley corresponds to a market niche that may be convinced of the

category with the help of another already won niche. The Tornado and Main Street

represent the transition to the mass market that offers attractive growth rates with

few threats by competitors.

When a product category further matures, the conservative customers become

important. They invest in products that are mature and convenient to use. Also, they

are price-sensitive. If multiple competitive products exist in the same space, fierce

competition may characterize the mature product category because the market

growth has flattened.

A market starts to decline when technologies for new product categories emerge

and are being tried. In this stage, the only source of new revenue for the aging

product category may be the skeptics who have resisted so far. They may be

convinced if the product is integrated into other products or services. As soon as

a new product category is in the Tornado stage, according to Moore, the declining

market should be exited.

Figure 4.17 shows how successions of product categories imply changes in the

markets, and how each category evolves measured in units shipped. We chose here

the camera market because it is well documented and an interesting example of how

the inclusion of software into a product category can replace categories based on

other technologies. Growth and decline are clearly evident as one category replaces

a previous category. The growth of the digital camera category puts an end to the

prospering film cameras category.

Following Moore’s model, the growth was achieved with sales to early adopters.

These early adopters followed the latest technology that had achieved a good

reputation. Once compact digital cameras were sufficiently reliable, the early

adopters shifted from buying analog cameras to digital ones. The products based

on the previous technology were mostly sold to a declining number of

conservatives. The graph also illustrates the decline of the digital still cameras

category.

0
20
40
60
80

100
120
140

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

20
14

m
ill

io
n p

ie
ce

s

Shipments of Digital St ill Cameras

Film

Digital

Fig. 4.17 Example of how product categories affect markets: Camera market (Source: CIPA)

4.4 Product Life Cycle Management 177

The relative maturity of technology for a product category and Moore’s market

maturity life cycle model affect a product’s value focus and proposition as well as

the product planning priorities. Figure 4.18 gives an overview. These

recommendations apply to any competitor who addresses the concerned market

with the concerned product category. The value proposition characterizes the type

of message for which new customers will be receptive. The product planning

priorities indicate the type of work that should be done by the product organization

to sustain business in the market.

4.4.3 Product Planning Tactics

Both, the product and category life cycles influence product planning priorities and

focus areas. The development of a new product for a new market will require a

planning approach that completely differs from the evolution of an existing product

for a mature market. We offer here a discussion of three important constellations.

Other constellations are possible and may be addressed with a combination of the

three we present here.

Innovating with a New Product in an Immature Product Category
When developing a new product for a new market, the product manager finds

himself in the product life cycle stage of product conception and in the early

product category cycle stage where a new technology is becoming interesting for

enthusiasts and visionaries. This situation is covered by our Powerboat or Ice-

breaker product scenarios. The product conception phase implies substantial invest-

ment into the development and testing of the new product. Since there is no

Phase Value Focus Value Proposition Product Planning Priority
Early Market Curiosity of

enthusiasts

New technology to

try and explore

Identify most attractive use

cases for the product

New opportunities

for visionaries

New means for

business

development

Mature the product and

reputation to win trust of

niche market

Chasm,

Bowling Alley

Value for

pragmatists (narrow

niche)

Practical, value-

creating product

with low risk

Increase convenience and

win trust of new niches

Tornado, Main

Street, Growth

Value for

pragmatists (broad

market)

Mature Convenience for

conservatives

Established, cheap

standard with

reliable support

Develop products for new

product categories

Decline Necessity for

skeptics

Product integrated

into other offerings

Phase-out the product, and

replace by new product

category or exit the market

Fig. 4.18 Implications of the product category life cycle for product planning

178 4 Product Planning

established market for the chosen technology yet, much work goes into trials in

collaboration with the enthusiasts and visionaries to identify the most attractive use

cases for the product.

Many startup companies are working in this constellation. As a result,

approaches that facilitate flexible trials and learning influence product management

thinking. These approaches may also be applied in an established organization,

usually by putting the innovating team in a separate organizational unit. The

separation ensures that the team is not concerned with the daily business operations

of the rest of the larger organization and that the measurements of the team’s

performance suit the innovation situation. In both, the startup and the separate

unit cases, the product team benefits from business and technological background,

either developed at universities or reused from previous products, to accelerate

product development and market introduction [KhuFrGor15].

The Design Thinking approach describes how to develop attractive product

concepts. It suggests how to collaborate with stakeholders by experimenting with

prototypes, developing empathy for users and customers, and adopting a systemic

view [Brown08]. In a design thinking project, the team identifies a problem that

matters, generates ideas for potential solutions, implements and tests these

solutions, and brings the successful one to the market.

The Lean Startup approach explains how to plan, test, and evolve a business

model until one is found that works [Blank13c, Maurya12, Ries11]. The business

planning activities center around the Business Model Canvas that we introduced

earlier (see Sect. 2.4), which is used to document the building blocks of the product

business that the product manager intends to develop. Each of these building blocks

represents hypotheses that need to be tested with prototypes or minimum viable

products, and adapted to the lessons learned from the tests. The Design Thinking

and Lean Startup approaches can combined. An early business model canvas can be

built on top of what has been learned during the design thinking work.

The Lean Startup approach builds on Agile Development by initiating a work

style of rapidly iterating between implementation and testing. In Agile Develop-

ment, the team uses a backlog to prioritize incremental deliveries of a working

product [Schwaber02]. For software-as-a-service products, DevOps may be used to

enhance the Agile approach. In DevOps, the cross-organizational, multidisciplinary

product development team is extended to the organization that hosts and operates

the growing product [BasWebZh15, Bosch12].

New Product in a Mature Product Category
When developing a new product in a mature product category, the product manager

is in the Powerboat or Icebreaker product scenarios. He finds himself in the product

life cycle stage of conception and creation. The new product is to be introduced to a

market in which pragmatic customers expect more value and conservative customer

prospects expect more convenience. The mature product category implies that

competitors exist and have well-established ties with important customers.

New products in a mature product category unavoidably implement a follower
strategy that copies or imitates a successful product concept. The product addresses

4.4 Product Life Cycle Management 179

http://dx.doi.org/10.1007/978-3-642-55140-6_2

already known needs that are relatively easy to elicit because of the previously

existing products. Important for the success of the follower strategy is that the

product is more attractive to the targeted customers than the competing products.

To achieve this aim, the product manager may adapt a broader product concept to

the specific needs of a narrow customer segment or offer a comparable product at a

lower price and greater convenience.

Evolution of an Existing Product in a Mature Product Category
When evolving an existing product in a mature product category, the product

manager is in the Speedboat or Cruise Ship product scenarios. He finds himself in

the product life cycle stage of growth, maturity, or decline, and in the category life

cycle stage of the mature market.

The mature product life cycle stage implies that the product is being used as a

cash cow to invest in new products. A limited part of the product’s revenue is used

to extend the product scope and increase the target market. The increasing conser-

vatism of the new customers implies that the feedback obtained from the large

customer base should be used to make the product easier to use and to integrate it as

a standard into other offerings.

When companies have existing products in mature product categories, product

management thinking is usually influenced a lot by methods or approaches that

facilitate collaboration with many company-internal stakeholders, the utilization of

a stream of feedback about existing products, and structured decision-making with

staff that has in-depth product knowledge. The work is often performed by follow-

ing structured processes that reflect how companies at high levels of maturity

do work.

An important process is the continuous product requirements management

process used to capture bug reports and feature requests, perform triage, and plan

releases according to a funnel metaphor ([Davis05], see Sect. 4.2). With product

requirements engineering and release planning (see Sect. 4.3), the product manager

aligns the evolving product with the company’s strategic objectives [GorsWohl06]

and agrees on product development plans with company-internal stakeholders

[PhaFarPr07, Carlshamre02].

We have discussed the benefits of simplifying products and services offered to

customers. To accomplish this product lines and ecosystems become attractive

ways to deal with the increasing diversity of the customer base and new markets.

The product organization may utilize product lines as a structured approach to

reusing components across a set of product variants, embedding them in a common

platform, and specifying the selection of features that are offered for each variant

([PohlBoLi05], see definition in Sect. 2.2). The product organization may also

allow other companies to use the product as a common platform for the develop-

ment of own value-adding products and services. This ecosystem approach allows

sharing risks and efforts with specialized companies against a share of the possible

revenue ([JanBrCus13], see Sect. 3.11).

180 4 Product Planning

http://dx.doi.org/10.1007/978-3-642-55140-6_2
http://dx.doi.org/10.1007/978-3-642-55140-6_3

4.4.4 Summary and Conclusions

In this chapter, we have discussed product life cycle management by looking at the

product life cycle, the technology adoption life cycle and the category maturity life

cycle. We analyzed how these life cycles affect product planning. The product life

cycle describes the six phases of a product in a company’s portfolio. The first three

phases are investment phases. In the following three phases, the product serves as a

cash cow to generate profit and finance the investment in new products. With the

increasing maturity of a product category, a series of new customer types appear

whose specific needs must be addressed if a product in that category is to be

successful.

The phases in these life cycles relevant for a particular product affect the product

manager’s focus and product planning tactics. The development of a new product in

a new category differs substantially from the evolution of an existing product in a

mature category. We have outlined the role of the Lean Startup approach to address

the former constellation and of structuring the stream of customer feedback and

requirements to address the latter constellation. The approaches described in this

chapter are prototypical approaches. For any real-world situation, our discussion is

the starting point for an essential specific analysis which may lead to conclusions

that differ from what theories suggest.

4.5 Process Measurement and Improvement

4.5.1 Overview

Many software organizations fight with release schedules, cost control, and release

of products that should meet the expectations of the markets. To find ways to

improve an organization, assessments are used. With assessments, the organization

determines the practices that are in use by the organization and compares them with

those of other organizations or frameworks. The results of an assessment may also

be compared with benchmarks. A benchmark is quantitative data about the work

and the achieved outcomes within the same or another company or even within the

industry. The benchmark allows comparison of the assessed organization with an

earlier situation or ‘best practice.’

This section gives a brief overview on of product planning processes, how

product management performance may be measured, what the frameworks are

that may be used for improving software product management practice, and what

the tools there are to are that facilitate product management productivity. The

section adds the process performance perspective to the product performance

perspective that was discussed in Sect. 3.13. The section also relates to Sect. 5.6

that explains how the performance indicators may be obtained so that they can be

used for managing performance.

4.5 Process Measurement and Improvement 181

http://dx.doi.org/10.1007/978-3-642-55140-6_3
http://dx.doi.org/10.1007/978-3-642-55140-6_5

4.5.2 Product Planning Processes

For classification of product planning tasks, we use the categories introduced in

Sect. 3.14:

• Continuous (C): done more often than once a month.

• Periodic (P): done monthly or less often, but with predefined frequency.

• Triggered (T): only done when a particular event or request happens, i.e. not with

predefined frequency.

We apply this classification to the product planning activities listed in the SPM

Framework (Fig. 4.19):

Most software organizations define and implement a process for product

requirements engineering in order to stay on top of the usually high number of

requirements to be managed. Such a process is typically be supported by an

appropriate tool (see Sect. 4.5.4). In mature software product management

organizations, processes for release planning and roadmapping are often defined

in a more formal way.

4.5.3 Improving Software Product Management Performance

Once a product strategy has been defined, product management is in a race to bring

the product to market. Time-to-market is critical to position a product in the market

before competitors do. Even if a product has already been released, features must be

rapidly developed or evolved. With such product extensions, the product may

become attractive for additional segments of the market that were insufficiently

addressed before, and more satisfying for existing customers.

Strategy task Continuous Periodic Triggered

Product Life Cycle

Management

P for existing

products

T if new

Roadmapping P T if changes need

to be reflected and

a presentation is

required

Release Planning P T if changes need

to be reflected

Product

Requirements

Engineering

C

Fig. 4.19 Classification of planning tasks

182 4 Product Planning

http://dx.doi.org/10.1007/978-3-642-55140-6_3

Time-to-market also influences the value that is created by the product

[DenCle04]. It influences the moment in time when revenue is created with the

developed product and also influences the return-on-investment rate. The earlier a

product is released the earlier revenue is generated. That revenue can fuel further

investment that is needed to build the product. At the same time, more revenue may

be generated because of the time advantage against competitors who try to take a

share of that revenue. Also, early revenue shortens the time to reach the break-even

point as revenue can be accumulated over a longer time than if product management

waits with product releases.

When a product is established, efficiency and adherence to plans become

increasingly important. The product management organization must be structured

and processes designed so that as much value can be created with as little effort as

possible. Release plans are a frequent focus for improvement. They must be revised

when schedules are not met, whether a product’s schedule or schedules on which

the product depends, and when the product releases do not perform as expected.

Release plans revised outside of the corporate planning cycles are formally

synchronized with the next corporate planning cycle.

The product organization should prioritize product development work with

maximal value impact and minimal cost [KarlRyan97]. The amount of pending

work implied by the product requirements and the time and money spent on these

activities can constitute further measurements. Changes in the number of pending

product requirements at different steps in their realization (e.g. analysis, decision-

making, implementation, testing, and release) can be used to identify bottlenecks or

overcapacity in the product organization [PetWoh10].

As soon as a product is released there will be feedback from actual and potential

customers. Measurement of confidence in the product planning process may be

measured by gauging its ability to predict that feedback before the release of the

product. Often, confidence issues may be identified that allow proactive risk

management. Common issues concern the linkage of requirements with business

strategy, seeing the big picture of the offering, understanding of the planned

product’s value, and knowledge of customer problems [KKTLD15].

After the release, the customer feedback is essential for deciding whether the

product has been appropriately designed. If interest in the product is mediocre, the

product strategy, in particular scope, positioning, or target market may have to be

changed. Outcome measurements include those related to product development,

such as planning accuracy [Ebert07], and those related to how well requirement

cost and value were predicted [Karlsson06, HerrDan08]. The better the original

assumptions were, usually a consequence of early product validation, the less

requirement volatility and the more product stability. A root-cause analysis of the

major deviations between prediction and realized results should be used for guiding

the future product planning decisions. Examples of causes that lead to deviations

are under-estimation of development effort, orders issued by a specific customer,

actions from competitors, or the lack of availability of an effective, validated

solution to a design problem. Any critique that is received as a feedback should

be evaluated and the product definition or positioning adapted.

4.5 Process Measurement and Improvement 183

Figure 4.20 summarizes these aspects of product management performance and

offers suggestions for relevant measurements. The may be used as a starting point

for planning product management performance measurements and assessing how

the performance evolves over time. A root-cause analysis of the major deviations

between prediction and realized results should be used for guiding future product

planning decisions.

Planned process improvement programs follow the assessment and benchmarks

[Jones08]. Various frameworks have been developed for improving product man-

agement practice in the product organization. Section 2.5 of this book gives an

overview of software product management frameworks that are useful for assessing

software product management practice and for planning improvements.

The frameworks are useful for assessing the as-is situation and should be used

for planning incremental improvements that are effective but do not overwhelm the

product organization. The guidelines that these frameworks contain should be

applied consciously and by reflecting what works well and what not in the

organization’s practice.

Also, it is effective to elicit experiences from product managers on a continuous

and to use these for bottom-up improvements of product management practice. Of

greatest importance are patterns of recurring practices that work well and are

effective. These should be documented and spread throughout the organization.

4.5.4 Tool Support

Product management is such a multifaceted, data-driven, and decision-oriented

work that it would not be possible without tools. A product manager documents

ideas, analyzes data to answer questions about the product, leads the product

organization through important decisions about the product, and orchestrates prod-

uct development and operations. Documentation tools are used to make ideas

available throughout the organization. Modeling tools are used to analyze situations

and reduce complexity. Prototyping tools may be used to allow stakeholders to

experience possible products. To win stakeholders and to orchestrate their work,

communication and tracking tools are needed. Figure 4.21 gives an overview of

important tool categories.

Performance Aspect Selected Measurements
Time-to-market Duration between product or feature definition and release.

Value Return-on-investment, revenue, market share, customer feedback

Efficiency velocity in value per time unit, amount of work remaining (backlog)

Predictability Confidence, adherence to plans

Quality Requirements volatility, number of problem reports

Fig. 4.20 Aspects of product management performance and corresponding measurements

184 4 Product Planning

http://dx.doi.org/10.1007/978-3-642-55140-6_2

The market for specific product management tools is quite young. Historically,

product managers have used development tools like Jira even though they are not

ideally suited for product management work. At least the use of development tools

ensured that there were no data synchronization problems between Product Man-

agement and Development. The newer specific product management tools try to

address that requirement by providing interfaces to popular development tools like

Jira. Examples are Aha!, ProductPlan and ProdPad. The requirements management

tools category is much more mature. IBM Rational Doors succeeded in

establishiing itself as a requirements management tool. It has become a standard

in the automotive and aviation industries. For markets that are not required to

comply with comparable regulation, a new market leader, Atlassian, has emerged.8

Atlassian offers cloud-based products for Wiki-based requirements definition and

requirements management.

Tools from domains other than software have not been successful in capturing

the market for software product management. For example, there are components in

Enterprise Resource Planning (ERP) software offerings called product life cycle

management (PLM). These were designed primarily for manufacturing companies

Category Benefits Examples
Specific

Product

Management

Tools

Support of product planning tasks, in

particular roadmapping, some

extended into product strategy tasks

Aha!, Product Plan, ProdPad,

SensorSix1.

Documentation

Tools

Documentation of ideas and decisions

and visualization of concepts. The

tools should allow collaborative

editing of the documents.

Word processors, presentation

tools, e-mail, Wikis like Atlassian

Confluence, and shared

repositories like Dropbox.

Modeling Tools Structuring and analysis of data,

information, and knowledge in

preparation of decision-making. Some

of the tools allow informal modeling

without any constraints, while others

implement standard languages.

Mind-mapping, roadmapping, and

system modeling tools, e.g. with

UML or SysML. Stackoverflow

ranks UML tools2.

Prototyping

Tools

Approximation of systems, their user

interfaces, and their use for discussion

and testing with stakeholders.

GUI design tools, e.g. for creating

wireframes. Quora has a discussed

ranking of wireframing tools3.

Communication

Tools

Communication with stakeholders.

These tools are usually used in

conjunction with documentation tools.

Phone, e-mail, messengers, and

conferencing tools, such as Skype

or GoToMeeting.

Tracking Tools Enactment of workflows, usually to

manage requirements, issue, and task

backlogs.

Spreadsheets and issue

management tools.

MakingOfSoftware offers a

curated overview of such tools4.

Fig. 4.21 Categories of tools for product management

8Gartner’s 2015 Magic Quadrant for Application Development Life Cycle Management.

4.5 Process Measurement and Improvement 185

where product life cycle has a meaning very different from software. We expect

new categories of tools to become important in product organizations, including

product usage monitoring tools and collaboration tools that allow developers,

supporters, and users to interact with each other. Among these new tool categories,

there is no dominant tool yet, and we expect that more tools will be released and

disappear again.

Since product management works intensively with other units within the com-

pany, it can be helpful for a product manager to get access to these units’ task-

specific software systems. Whether to grant such access will be decided in the

context of the company’s culture, the organizational structure and defined role of

product management, as well as the personal working habits and reputation of the

product manager. Project management tools in development, issue tracking tools in

development and support, customer relationship management tools in marketing,

and sales and planning and controlling tools of the company or individual units can

be of interest. What is important is that the product manager has timely access to all

factual data that he needs for his work. If this can be achieved without giving him

access to the task-specific software systems, everyone will likely prefer that.

The use of tools can significantly improve productivity. At the same time, there

is no guarantee that productivity improvements will be achieved. The effect of a

tool on productivity was shown to differ significantly depending on the context of

where the tool was used [BrMaJaHe96]. A tool may increase the productivity for

some products and projects and, at the same time, decrease the productivity for

other products and projects of the same organization. Also, the processes run in the

organization and the complexity of the products affect the impact of a tool.

Conversely, the choice of an inappropriate tool can have devastating effects on

an organization. Employees may be blocked in their work due to an inappropriate

tool and will do everything they can do to circumvent the tool [Farmer06]. A

systematic tooling process should be followed to avoid such problems proactively

[GoWoGL06]. The selection process should select tools which address the right

problems, are better suited than other tools, can be implemented in the organization,

and are accepted by the users that interact with the tools in their daily work. All

tools should be integrated into the organization’s toolchain to avoid manual,

clerical work and find a permanent home in the organization [Farmer06]. Only

tools that fulfill these requirements and lead to the desired productivity

improvements should be rolled out organization-wide.

4.5.5 Summary and Conclusions

This chapter has given an overview of indicators for measuring the performance of

the product management process and how the performance may be improved. The

indicators reflect the important primary concerns of a product manager: time-to-

market, value, efficiency, predictability, and quality. Frameworks for process

improvement and software tools are instruments to improve the performance of

product management. These become effective when the product manager knows

186 4 Product Planning

how to integrate them into an appropriate methodology—knowledge that may be

obtained by education such as defined by the ISPMA syllabi.

Process improvement frameworks and classroom training need to be

accompanied by practical experience gained by the actual execution of practicing

product management and learning from others. Observing and reflecting on one’s

practice, attempting at to generalizing generalize from the observations, and testing

the learned lessons in new situations provides relevant advancement of understand-

ing and abilities [Kolb14]. Communities of practice (like ISPMA) allow

practitioners to developing relationships with experts, peers, and stakeholders,

sharing share ideas, setting standards, and building tools to solve problems

[WenSny00]. Such learning enables product managers to improve as individuals,

and as a community, and as effective members of their companies.

4.5 Process Measurement and Improvement 187

Strategic Management 5

Strategic Management is an activity within an organization with the objective to

define, plan, agree, implement and evaluate the organization’s strategy. It is part of

the responsibility of executive management who can delegate preparatory work to

staff functions. Strategic Management includes a number of elements related to

software product management (see the ISPMA SPM Framework in Sect. 2.5).

Software product managers are typically not responsible for any of these activities,

but they either participate in them, e.g. portfolio management, provide inputs, or

make use of their outputs, e.g. product analysis.

Of course, it is not the objective of this book to provide a handbook on executive

management. This is covered by a huge spectrum of publications. However, since a

software product manager has the responsibility for his product(s) and thereby a

partial responsibility for the success of the whole company, he is very directly

involved in some aspects of executive management.

A Software Product Manager usually spends some of his time with the task to

represent his product in the internal strategy and planning processes of his com-

pany. This includes the marketing and sales plans and the budget and resource

planning. The underlying question is which resources will be dedicated to the

product in the short, medium, and long term. This decision is based on market

and revenue forecasts, the positioning of the product in its life cycle, and the

dependencies with other products. From these elements, the product manager puts

a “story” together that is used to “sell” the product within the planning processes.

The company’s culture influences how these planning processes work and what

is expected from the product manager. Ideally, all involved parties should have the

common goal to get to an agreed result that is good for the company. Often,

however, these processes degenerate into a competition that the players try to use

for their personal advancement. The “winner” is the one who gets most of the

resources for his product. Only the executive management can prevent this degen-

eration. The individual product manager will have to play his role according to the

company’s culture, for the good or for the bad.

Springer-Verlag GmbH Germany 2017

H.-B. Kittlaus, S.A. Fricker, Software Product Management,
DOI 10.1007/978-3-642-55140-6_5

189

http://dx.doi.org/10.1007/978-3-642-55140-6_2

Typically, the corporate strategy and planning process is a mix of bottom-up and

top-down planning. Bottom-up means that each product manager develops a plan

from his product perspective. Top-down means that executive management, typi-

cally under the lead of finance, looks at the aggregated bottom-up plans and cuts

them down to what seems affordable. Since the assigned budget and resources have

their consequences on the revenue side, this process is iterated until an agreement is

reached. This process serves as a synchronization point at which the plans on all

levels and of all products are synchronized. Executive management usually defines

the schedule of this process. IBM, for example, goes through two cycles per year,

the Spring and the Fall plans.

At this point we want to go into the elements of the corporate strategy and

planning process and the role that the product manager plays in them.

5.1 Corporate Strategy

5.1.1 Overview

Corporate strategy is a phenomenon that entered the scene in the sixties of the

twentieth century. Since then, many different approaches and tools for strategic

management have been developed and are used across industries. These approaches

and tools can be traced back to different schools of thought that evolved over time.

Some of these tools and approaches are frequently used in modern software

organizations. We will focus our discussion on these frequently used tools.

In addition to industry-agnostic approaches to corporate strategy, there are also

tools and approaches that have been developed specifically for high-tech markets,

including software markets. They have been designed to address the specific

strategic challenges of markets that are based on quickly evolving technology,

resulting in fast value erosion for products.

Software product managers may have to provide input whenever the corporate

strategy is updated or revised, and they need to ensure that product strategies stay

consistent with corporate strategy. To achieve this, software product managers need

to be aware of the strategy tools and approaches that are used in higher-level

strategy processes in their organization. Understanding which key ideas and

assumptions are underlying the use of these tools and approaches helps product

managers improve their contribution: they can provide more useful input into

strategy processes performed at higher levels in their organization and will better

understand and use the guidance they receive from these higher-level strategy

processes.

190 5 Strategic Management

5.1.2 Concept

Corporate strategy considers a timeframe that is at least as long as the strategic

timeframes of the individual software products. Therefore, the timeframe consid-

ered may be up to 5 years, or even longer, depending on the domains covered.

Strategy processes on the corporate level can be triggered or happen on a

periodic schedule. A strategy revision may be triggered by major changes in the

environment, for example substantial regulatory changes, unexpected major strate-

gic moves by competitors, or technology disruptions. Updates to an existing

strategy are typically conducted periodically—tied to the organization’s regular

planning and reporting cycle, for example preceding the annual planning cycle.

A corporate strategy process includes activities to develop or update the follow-

ing strategy elements: corporate vision, mission, values and goals, corporate posi-

tioning, business model and financial plan, product portfolio and its evolution,

resource and competency evolution, technology trends and innovation strategy,

market trends and competitive strategy, policies and governance.

Many of these strategy elements are comparable to corresponding elements on

the product strategy level. Figure 5.1 compares the elements from these two

different levels of strategy process.

However, there are a few differences beyond the scope of product(s) or

businesses being covered. The corporate vision is typically a very short statement,

often just one very high-level sentence about a desired future state that the corpo-

ration wants to help create. This describes why the company exists. To further

substantiate this, it typically is accompanied by a corporate mission that describes

on a high level what the company is doing to achieve the vision, plus a statement of

the company’s values and goals.

Elements
of Corporate Strategy

Comparable Elements
on the Product Strategy Level

Corporate vision,

mission, values and goals

Product vision

Corporate positioning Product positioning

Business model(s) and

financial plan

Business model(s) and

financial plan

Product portfolio(s)

and their evolution

Product Roadmap

Market trends and

competitive strategy

Market trends and

competitive strategy

Technology trends and

innovation strategy

Technology trends

(from market analysis)

Resource and competency evolution –

Policies and governance –

Fig. 5.1 Elements of

corporate strategy with their

equivalents on the product

level

5.1 Corporate Strategy 191

Instead of a product roadmap, the corporate strategy process will look at entire

portfolios of products and set goals and boundary conditions for the evolution of

these portfolios.

Finally, corporate strategy addresses three areas that do not have a direct

equivalent on the product strategy level: Innovation strategy (see Sect. 5.3),

resource and competency evolution (see Sect. 5.4), and policies and governance.

5.1.3 Process

Corporate strategy processes are often based on industry-agnostic tools and

approaches which can be traced back to different schools of thought that have

evolved over time.

In [MinAhlLa08] Mintzberg, Ahlstrand, and Lampel provide an overview on

strategic management approaches, identifying ten underlying schools of thought in

corporate strategy. They further classify those ten schools into three major groups:

prescriptive, descriptive, or integrative schools of thought.

Figure 5.2 provides an overview of all ten schools of thought and their associated

tools, based on [MinAhlLa08].

The tools and approaches highlighted in the last column of Fig. 5.2 are fre-

quently used in strategic management processes:

• SWOT Matrix: maps internal Strengths and Weaknesses of the organization

against the Opportunities and Threats presented by the external environment.

This is frequently developed for individual products as well, as part of the market

analysis (see Sect. 5.5)

• Scenario Planning: aims to broaden the view of decision makers by developing

several alternative long-term scenarios. Each scenario describes a possible future

state of the organization’s external environment. For each scenario, the impact

on the organization and possible responses are elaborated. This is especially

suitable for volatile times and fast-moving markets—that’s why this strategic

tool is sometimes used by software organizations. Due to their market under-

standing, product managers may be asked to contribute to the development of

scenarios, or they may contribute to developing the strategic responses in the

various scenarios.

• Porter’s 5 Forces: Michael Porter in [Porter79] and [Porter08] identifies five

forces that characterize the nature of competition within an industry, also called

the industry structure. The five forces are: threat of new entrants, bargaining

power of customers, threat of substitute products or services, bargaining power

of suppliers, and rivalry among existing competitors. In [Porter85] he described

that only three classes of strategies can be chosen by firms—what he calls

generic strategies. These are cost leadership strategy, differentiation strategy,

and focus strategy (niche strategy). The 5 Forces model and the generic

strategies are routinely taught in management education and are broadly

known and used, especially in industries where the costs for manufacturing

192 5 Strategic Management

School Key assumptions Key authors Key approaches & tools

Prescriptive – how strategy should be formulated: strategy precedes structure

Design School
strategy
formation as a
process of
conception

“Establish fit” – between
internal capabilities and
external possibilities;
Design several alternative
strategies (a creative act) and
choose the best

Kenneth
Andrews

SWOT matrix (internal
Strengths & Weaknesses,
external Opportunities &
Threats);

Planning School
strategy
formation as a
formal process

“formal procedure, formal
training, formal analysis, lots
of numbers” replace the
creative act of strategy
design

H. Igor Ansoff,
George Steiner

Elaborate planning cycles
and schedules, cascading
systems of plans;
Scenario planning

Positioning
School
strategy
formation as an
analytical
process

Impact of industry structure
on strategy: only a few
positions in the market are
desirable, and there are only
a few generic strategies to
select from

Michael Porter Porter’s 5 forces - for
competitive analysis and
Generic Strategies: cost
leadership, differentiation,
focused strategies;
Experience curve => focus
on market leadership
BCG growth/share matrix
– for portfolio
management;
Value chain analysis

Descriptive – understand strategy as it unfolds

Entrepreneurial
School
strategy
formation as a
visionary
process

Strategy exists in the mind of
the leader (entrepreneur) as
a vision, strategy formation is
rooted in experience and
intuition of the leader; often
starts in niche market

Schumpeter
(creative
destruction)

Vision statements

Cognitive
School
strategy
formation as a
mental process

Strategy formation as a
cognitive process that takes
place in the mind, creating
perspectives that shape how
people deal with input from
the environment

Many different
sub-schools and
authors

Tools to help managers/
leaders better understand
their cognitive biases and
their personal preferences,
e.g. by doing a Meyers-
Briggs personality test

Learning School
strategy
formation as an
emergent
process

Strategies emerge as people
(individually or collectively)
learn about a situation as
well as their organization’s
capability to deal with it.

Brian Quinn,
C.K. Prahalad,
Gary Hamel,
Peter Senge,

Internal corporate
venturing;
Learning organization

Fig. 5.2 Schools of thought in strategic management—the big 10

5.1 Corporate Strategy 193

and delivering products are non-negligible, for example for software-intensive

products that include hardware.

• The BCG Growth/ShareMatrix: was introduced by the Boston Consulting

Group in 1970 to classify products according to their success in the market

vs. attractiveness of the market they participate in. Since it is frequently used in

portfolio management as well, see Sect. 5.2 for a more detailed discussion

• Internal Corporate Venturing: where larger organizations encourage

employees deeper down in the corporate hierarchy to come up with new product

initiatives. These initiatives then compete for corporate funding, similar to

The leader’s responsibility is
not to preconceive deliberate
strategies, but to manage the
process of strategic learning.

& many others

Power School
strategy
formation as a
process of
negotiation

Strategy formation is shaped
by power and politics, both
inside the organization and
outside. The resulting
strategies take the form of
positions or ploys more than
perspectives

Many, including
Michael Porter

Strategic alliances
Strategic sourcing - incl.
make vs. buy and vertical
(dis-) integration decisions;
Stakeholder analysis;
Strategic maneuvering - in
response to competitors

Cultural School
strategy
formation as a
collective
process

Strategy formation is a
process of social interaction,
based on the beliefs and
understandings shared by
members of an organization

Several sub-
schools

Strategic resources

Environmental
School
strategy
formation as a
reactive process

Leadership is a passive
element for reading the
environment and ensuring
proper adaptation by the
organization

Various authors
and sub-schools

--

Integrative

Configuration
School
strategy
formation as a
process of
transformation

Organizations are stable most
of the time, but occasionally,
they need to transform –
take a quantum leap to reach
another configuration.
Strategic management needs
to sustain stability most of
the time, but recognize the
occasional need for
transformation and manage
it without destroying the
organization

Many, including
Mintzberg

Change management

Fig. 5.2 (continued)

194 5 Strategic Management

startups working to raise venture capital. This is usually part of an organization’s

innovation management strategy (see also Sect. 5.3)

• Strategic Alliances and Strategic Sourcing: in today’s markets companies

typically act within a complex web of relationships, for example with suppliers,

channel partners, and other partners. In that situation, strategy needs to be

developed collaboratively with partners. For a deeper discussion of partner

relationships, see Sects. 3.11, and 3.8.

5.1.4 Examples and Variations

So far, we have looked at industry-agnostic approaches to strategic management. In

addition to those, software organizations may use approaches and tools that have

been developed specifically to address challenges of fast-moving high-tech

markets:

• Category Maturity Model for high-tech markets: This model described by

Moore in [Moore08] helps determine strategic focus areas depending on the

maturity stages of the product categories relevant to the organization (see Sects.

4.4 and Sect. 5.3).

• Strong focus on innovation management: Software markets are often moving

fast, resulting in fast value erosion—this usually leads to a strong emphasis on

innovation management (see Sect. 5.3) and on making sure that the product

portfolio stays fresh (see Sect. 5.2).

• Ecosystem strategy: Software organizations often need to maintain a complex

web of relationships to other players in the ecosystem(s) they participate in. In

that case, determining the role the organization wishes to play in the ecosys-

tem—keystone, dominator, or niche player—is typically part of Corporate

Strategy (for more on these roles and the associated strategies, see Sect. 3.11).

• Big data and analytics: in many cases, in particular with SaaS software,

software organizations can obtain detailed information on usage patterns and

user behavior that helps making strategic decisions.

5.1.5 Outcome and Impacts

The outcome of corporate strategy processes is typically a comprehensive docu-

mentation that describes conclusions and next steps, as well as the rationale behind

that, i.e. the process used and more detailed information that led to the conclusions.

These will be presented in some level of detail to key decision makers of the

organization. A simplified subset of the results, focusing on key messages and

required changes will typically be circulated further down into the organization.

Software product managers need to understand their organization’s corporate

strategy as well as the portfolio strategy so they can ensure their product strategy is

aligned with these higher-level strategies.

5.1 Corporate Strategy 195

http://dx.doi.org/10.1007/978-3-642-55140-6_3
http://dx.doi.org/10.1007/978-3-642-55140-6_3
http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_3

5.1.6 Summary and Conclusions

Corporate strategy processes consider a time frame of up to 5 years, or even longer,

depending on the domains covered. For this timeframe, a wide range of strategy

elements are developed or updated: from very high level elements such as corporate

vision, mission, values and goals, down to policies and governance. Strategy

processes on the corporate level can be triggered by major external events, or

happen on a periodic schedule, for example preceding the annual planning cycle.

Software product managers may have to provide input whenever the corporate

strategy is updated or revised, and they need to ensure that product strategies stay

consistent with corporate strategy.

To achieve this, software product managers need to be aware of the strategy

tools and approaches that are used in their organization. Tools and approaches that

are frequently used across industries include Porter’s 5 forces, SWOT matrix, BCG

growth/share matrix, strategic alliances and strategic sourcing, internal corporate

venturing, and scenario planning. In addition, software organizations frequently use

tools and approaches developed specifically for fast-moving high-tech markets:

Moore’s category maturity model, a strong focus on innovation management,

ecosystem strategy, and leveraging big data and analytics to support strategy

decisions.

5.2 Portfolio Management

5.2.1 Overview

In any product organization, leaders need to ask themselves regularly: Do we have

the right products for future business success? Portfolio management addresses this

key question, looking both at the existing product portfolio, and at plans for product

evolution and new product development. Software product managers are typically

asked to represent their product(s) in the update cycle for the product portfolio.

Portfolio management is a term that is well known in the financial services

industry. An investor or fund manager invests the available capital in a diversified

way, i.e. in different stocks, securities, real estate etc. The total collection of these

investments is called a portfolio. Portfolio management is the management of these

investments over time following profit and risk criteria. This same approach can be

applied to a set of opportunities to invest in existing and new software products, to

decide which products and product development initiatives will receive how much

investment over the strategic timeframe.

Since the portfolio management process is concerned with investment alloca-

tion, it is typically tied to the regular planning and budgeting cycle of the software

organization (periodic activity). In practice, it is often performed on an annual

basis.

In the software business, it is especially important to critically evaluate the

portfolio on a regular basis, for the following reasons:

196 5 Strategic Management

• Market needs can change rather quickly: software markets are fast-moving,

definitions of market segments can shift over time with new market segments

forming, and well-established market segments may become less attractive

• There’s always a danger that new competitors may enter: software markets

typically have low barriers to entry and the boundaries between market segments

are often fluid, so that vendors in adjacent markets can enter “our” markets, for

example by extending one of their products.

• Software is malleable, so even existing products can evolve in many different

directions—which can easily lead to uncontrolled growth and lack of alignment

between portfolio products, which may create portfolio gaps or unintended

overlaps between products that result in positioning and sales problems within

the portfolio.

• Software organizations need to make sure they have a balanced portfolio with

products in different life cycle stages—in particular, they need to ensure that

there is always sufficient investment in new products.

The last bullet is related to the unique economics of software products. Software is

characterized by relatively low variable costs (cost of goods sold) and high fixed

costs. It typically takes several years for new software products to become opera-

tionally profitable, i.e. before product revenue covers ongoing product-related

expenses, unless customers are willing to pay for part of the development cost

(see also Chap. 2).

Therefore, software organizations need to make sure they invest some of the

revenue surplus of more mature, successful products into new product initiatives.

They need to make these investments early enough—so that the new products

become mature as revenue from the older products stagnates or declines. On the

other hand, a successful mature software product is usually highly profitable: it will

have high profit margins (profit as % of revenue) and due to its high overall revenue

will be an indispensable source of profits for the organization. Therefore, the

organization needs to allocate sufficient investment to mature products to keep

them competitive, so that the associated revenue and profit opportunity can be

exploited as long as possible.

5.2.2 Concept

The portfolio management process reviews the product portfolio whether it still

meets corporate objectives and guidelines, covering both existing products and

proposed new product initiatives.

The review evaluates the product portfolio from several angles, asking the

following questions:

• Do portfolio products meet their respective measures of business success, such

as profitability, market share, number of active users?

5.2 Portfolio Management 197

http://dx.doi.org/10.1007/978-3-642-55140-6_2

• Is the portfolio innovative enough: do we “keep up” the existing products and do

we have enough new products in the pipeline?

• How do we want to evolve the portfolio: are there new opportunities that we’d

like to take advantage of—with new products or major extensions of existing

products? Do we have gaps in our portfolio, for example due to a new market

segment that is emerging?

As input into that process, software product managers typically are required to

provide the following product-specific information:

• Product roadmaps

• Forecasts of relevant business metrics, for example a multi-year revenue forecast

• And the investment requested for the product.

In addition, product managers are typically asked to provide a summary of the

product-specific market analysis, covering market sizing, trends, and competition

(see Sect. 5.5), as well as a summary of the product analysis, describing where their

product stands against plan (see Sect. 5.6). These inputs may be used by the

portfolio management team to complement and extend the market and product

analysis they create on the portfolio level.

5.2.3 Process

Portfolio Management for software products follows the same basic methods and

processes as any portfolio management. Based on a structured and transparent

process, it balances limited resources in order to maximize benefits.

We emphasized already that due to the fast-moving nature of software markets,

innovation is a key concern in software portfolio management. To ensure a focus on

innovation, software portfolio management often uses the concept of three time

horizons that Moore applied specifically to fast-moving high-tech and software

markets [Moore14].

According to Moore, “Horizon 1 corresponds to managing the current fiscal-

reporting period, with all its short-term concerns, Horizon 2 to onboarding the next

generation of high-growth opportunities in the pipeline, and Horizon 3 to

incubating the germs of new businesses that will sustain the franchise far into the

future.”

To ensure long-term success of the organization, the portfolio should be bal-

anced in the sense of having all three time horizons adequately covered.

Moore contends that Horizon 2 initiatives are the most challenging ones: Hori-

zon 1 covers the existing products which are usually sufficiently equipped resource-

wise across the organization, from development to sales. Horizon 1 investments

typically deliver a return on investment in the same reporting period they are

incurred in. Horizon 3 initiatives are usually conducted in separate lab or research

organizations that have their own, separate funding.

198 5 Strategic Management

In contrast, Horizon 2 initiatives are somewhat lost in the middle: they still need

nurturing and investment to become successful products or new businesses, and this

nurturing is not part of the research lab’s agenda, it needs to come out of the

established businesses. However, the full benefits from these investments will be

reaped in the future, typically several years out, and not in the current reporting

period.

Therefore, organizations frequently fail to adequately create and nurture Hori-

zon 2 initiatives. To address this problem, portfolio management processes typi-

cally look at investment proposals for each timeframe separately, and with a special

focus on Horizon 2 initiatives. It can be helpful to allocate budgets to the three

horizons top-down upfront, and then do portfolio management for each separately.

To achieve an adequate balance between timeframes, organizations may start

with a top-down split of the total investment budget between these timeframes, see

also Sect. 5.4 on Resource Management.

5.2.4 Examples and Variations

A key challenge in portfolio management is the need to look at many different

products at once, to put them in context, and finally, to prioritize them. To help deal

with this complexity, matrixes are commonly used to classify the products and get

an overview on the portfolio. These matrixes are typically based on two attributes

that are relevant to decision making in the portfolio process.

A popular example is the Growth Share matrix. It was introduced for corporate

portfolio management by the Boston Consulting Group in 1970 [Hender70] and is

still widely used today. It classifies products according to their success in the market

vs. attractiveness of the market they participate in. As indicator for market success,

relative market share is used, i.e. market share relative to the number three player in

the market. As indicator for market attractiveness, market growth is used (High/

Low).

The result is a two by two matrix. According to Henderson [Hender70], the four

quadrants of the matrix carry the following meaning:

• “Products with high market share and slow growth are cash cows. Characteristi-

cally, they generate large amounts of cash, in excess of the reinvestment required

to maintain share.

• Products with low market share and slow growth are pets. They may show an

accounting profit, but the profit must be reinvested to maintain share, leaving no

cash throwoff. The product is essentially worthless, . . .”
Today, these are often called dogs.

• Low market share, high growth products are the question marks. They almost

always require far more cash than they can generate.

5.2 Portfolio Management 199

• The high share, high growth product is the star. “. . . If it stays a leader, . . . it will
become a large cash generator . . . The star eventually becomes the cash cow,

providing high volume, high margin, high stability, security, and cash throwoff

for reinvestment elsewhere.”

The resulting matrix may look like shown in Fig. 5.3. In this example, the matrix

represents the entire software portfolio, the color indicates different product

families, and the size of the circles represents investment planned for the

current year.

In fast-growing and fast-changing markets, portfolio management needs to

ensure the portfolio always has cash cows and stars, it needs to critically evaluate

the potential of the question marks, and to aggressively exit the pets or dogs.

Many different attributes can be used to build portfolio matrices. In [Cooper00],

the following attribute pairs are suggested:

• Risk vs. reward

• Technical vs. market newness

• Technical feasibility vs. market attractiveness

• Competitive position vs. attractiveness

• Cost vs. reward

• Cost vs. time to implement.

Another example that may be used to compare new product initiatives only

(Horizon 2) is the Oyster/Pearls matrix that classifies new initiatives by their

probability of success vs. expected profit. It may look like this (Fig. 5.4):

RelativeMarketShare

Market
Growth

Pets or Dogs

F

E H

G

C
A

B
D

High

Low

High Low

Cash Cows

Question MarksStars

Fig. 5.3 Growth Share Matrix for existing product portfolio

200 5 Strategic Management

Based on this representation of new product initiatives, the portfolio manage-

ment process needs to make sure investment in the white elephants is curbed: these

are new product initiatives that are not likely to succeed, and even if they were to

succeed, they are not likely to generate significant profits.

In project-oriented organizations, portfolio management is often applied to the

project portfolio. For product organizations, we do not recommend to do that. When

you have applied portfolio management to the product portfolio, there is no need to

do portfolio management for the projects in which new releases and versions of

these products are developed.

5.2.5 Outcome and Impacts

On a portfolio level, one of the desired outcomes is an investment strategy that

minimizes risks on the portfolio level and balances the need for short-term profit

maximization with the requirement to invest for future success. Another desired

outcome is alignment between portfolio products so that synergies can be exploited,

for example by optimizing products for upsell and cross-sell opportunities between

adjacent products.

Overlaps between portfolio products—in terms of multiple products offering

similar value propositions to the same customer groups—need to be managed

carefully. Again, it’s a matter of careful balancing: while it may make sense for

adjacent products to have some overlaps in their value propositions, so that each

product is complete and can be successful on its own, portfolio management usually

tries to avoid full, direct competition between products within the same portfolio.

Expected Profit

Probability
of Success

Oysters

High

Low

Low High

White Elephants

PearlsBread and Butter

F

E
HG

C
A

B
D

Fig. 5.4 Oyster-Pearls Matrix for new product initiatives

5.2 Portfolio Management 201

The results of the portfolio update cycle define boundary conditions for the

products: In addition to the investment level that will be allocated to the product,

product managers will also receive key business goals to achieve, along with target

numbers for key business measures, for example revenue or growth targets. Finally,

the portfolio management process may define portfolio themes that must be fac-

tored into release plans and roadmaps for the product. These boundary conditions,

as well as the investment level allocated to the product can have significant

consequences for the individual product strategy.

5.2.6 Summary and Conclusions

Portfolio management uses a structured and transparent process to balance limited

resources to maximize benefits across existing products and initiatives for new

product development.

A key outcome of portfolio management is investment allocation among com-

peting initiatives in the product portfolio. Therefore, portfolio management is

typically tied to the regular planning and budgeting cycle (periodic activity, often

performed annually).

In the fast-moving software business, it is especially important to critically

evaluate the portfolio on a regular basis to ensure the portfolio still is aligned

with market developments, meets organizational goals and objectives, and is

balanced across the life cycle stages of products.

Software product managers are typically asked to represent their product(s) by

providing inputs such as: product roadmaps, forecasts of relevant business metrics,

for example a multi-year revenue forecast, and the requested investment. In addi-

tion, product managers typically need to provide a summary of the product-specific

market and product analysis.

Portfolio management frequently uses matrixes to classify products and to derive

appropriate strategies for each class of products. A popular example is the BCG

Growth/Share matrix.

One of the outcomes of portfolio management is an investment strategy that

minimizes risks on the portfolio level and balances the need for short-term profit

maximization with the requirement to invest for future success. Another desired

outcome is alignment between portfolio products so that synergies can be exploited,

while overlaps between portfolio products are managed carefully.

5.3 Innovation Management

5.3.1 Overview

Software markets tend to be fast-moving with low barriers to entry. Therefore, they

are often highly competitive. Differentiators of software products tend to have a

short life time, as competitors are quick to catch up.

202 5 Strategic Management

This results in fast value erosion for software products: delighter features (from

the Kano model, see Sect. 4.2) are quickly taken for granted, turning into perfor-

mance or even must-have features. Competitive advantage of a software product

needs to be constantly re-created—and innovation is one way to address that

challenge.

That’s why software organizations typically put a strong focus on innovation,

and why software product managers need to understand key innovation concepts: so

they can ensure their product benefits from innovation initiatives of their

organization.

5.3.2 Concept

Innovation can occur in many shapes or forms: There can be innovation in how to

market products, how to expand current business models, or how to improve

organizations or processes. Product managers often focus on product innovations

that result in new features, new quality aspects, or an improved user experience.

Innovations also have a different level of market impact, ranging from incre-

mental improvements of the current product offering up to disruptive innovations

that create new product categories and new markets, replacing incumbent products

in the process.

With such a wide spectrum of innovation types to consider, it is important for

software product managers to focus their energy and the available investments on

those innovations that are most effective. In [GoFrPaKu10], an innovation process

is described that works in software environments.

The suitability of an innovation depends not only of the lifecycle stage of the

product itself, but also on the maturity stage of the product category. Geoffrey

Moore in [Moore08] (see also Sect. 4.4) identifies fourteen different types of

innovation relevant to product managers of high-tech products—including soft-

ware. He presents a model which innovation types to use at a given category

maturity stage. For example, application innovation—finding and exploiting a

new application or use for an existing technology—is necessary for a new technol-

ogy product category to achieve initial penetration into the mainstream market.

Line extension innovation—creating a new sub-category to engage new customers

or to re-engage old ones—helps maintain and even grow revenue in a mature

product category.

Since software organizations put a strong focus on innovation, we may find

innovation initiatives at different levels of the organization. For example, a large

organization might fund a corporate research initiative with the charter to work on

“horizon 3” innovations (see Sect. 5.2), which require several years to turn into

viable products. It might also fund “horizon 2” innovations that can be productized

faster, but still require more than 1 year to pan out. These might be funded through

the portfolio management process. Finally, on the individual product level, “hori-

zon 1” innovations can be funded that require <1 year to be productized.

5.3 Innovation Management 203

http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_4

Even with adequate funding of innovation initiatives for the different time

horizons, software organizations often find it a challenge to actually benefit from

these initiatives. A famous historic example is the failure of XEROX to benefit from

the groundbreaking innovations of its horizon 3 research lab XEROX PARC: these

innovations included the windows-based graphical user interface (GUI) and desk-

top paradigm and the computer mouse.

Therefore, it is critical to align innovation management with the corresponding

elements of the corporate strategy on a continuous basis. Alignment is required in

both directions: When innovation management leads to significant results these

need to be incorporated into the relevant corporate, portfolio, and product strategies

to transform them into competitive advantage. On the other hand, changes of the

corporate strategy need to be reflected in innovation management to align agendas

and resources with the new direction.

5.3.3 Process

Creating innovation is a process of understanding problems, available technologies

and creating the right ideas to bring them together. It is extremely difficult to order

or formalize the innovation processes.

However, an environment can be created to foster innovation. An important

element of that is the organization’s culture: an innovation-friendly culture needs to

be established and popularized from the top down, where employees are

encouraged to come up with ideas, where it is acceptable for innovative attempts

to fail without punishing or critiquing the employees, but rather learn from the

failure. Processes must be established that allow for the testing and tweaking of

innovation ideas.

While it is important to create an environment that fosters innovation, it is also

important to have some gates within the company to select the most promising ideas

and put some focus on them or reject ideas for which the company may not have the

right competencies to implement and is not willing to invest in building up the

missing competencies. Overall, this is a challenging task within a company. On one

hand, it is necessary to generate many ideas and give them a chance; on the other

hand it is important to focus on a few to bring them to success. After all an idea only

generates value to a company if it is implemented or sold to someone else.

A great idea is normally never perfect at the beginning and requires many

improvement and testing iterations before it matures. This refinement and testing

process involves iterations of discussions with customers and the R&D team,

creating incremental improvements that are best applied in prototypes, re-testing

the concepts and challenging the value. This process can be supported by combin-

ing agile development process with customer collaboration.

While creating the innovative environment as well as the decisions which ideas

to realize is the responsibility of management, software product managers have the

obligation to take advantage of such an environment, spend time for their research

in terms of opportunities, come up with ideas together with the team and prepare

204 5 Strategic Management

them well to increase the chances of receiving funding and support for a project.

This includes drawing the big picture about the result once the idea has been

implemented. Furthermore, it also requires preparing an initial business case for a

first overview of the potential financial impact. Other benefits may need to be

mentioned and accounted for as well such as user experience, customer satisfaction

or customer retention. A good selection methodology is the software value map, as

it incorporates many different value aspects for a structured decision.

Gathering this information supports management in making decisions,

validating also that a proposed initiative fits into the overall corporate strategy.

Once a project is approved or proceeds to the next gate, it is the product

management’s responsibility to select the right users/customers to collaborate

with. This is necessary to drive development teams to iteratively work on the

project and get quick feedback from real users. These many validation steps ensure

quick learnings and corrections before significant investments are made and costs

are encountered. It is also important that at every stage gate the progress is being

presented and the predictions are being updated. The further a project is, the more

reliable the predictions of business impact will become. This is to ensure that should

something go wrong or deviate from the corporate strategy, a decision can be made

to either stop the project, align the project with the corporate strategy or even to

expedite the project.

5.3.4 Examples and Variations

Lean Startup
We already emphasized the importance of refining ideas through an iterative

process that relies on fast feedback loops with customers. This is especially

important for innovations that seek to establish a new product category. An

approach to address this special situation has been developed in the Silicon Val-

ley—and the term Lean Startup was coined in 2011 to describe how this approach

(see [Ries11, BlanDorf12, Blank13c]). Despite its name, this approach applies not

only to startups, but to corporate innovation projects as well.

Driving the iterations is clearly the role of product managers. They act as

facilitators to bring the customer demands together with the developer’s solution

and refine them until the value and user experience are optimal. Requirements

triage (see Sect. 4.2) is a simple yet efficient tool for understanding which of the

suggested ideas are the most suitable and promising. In this phase, it may also turn

out that the chosen strategy to achieve the vision is not appropriate. This leads to

pivoting, which means the vision remains but a completely different strategy to get

there is required.

Idea Generation
There are many methods that support idea generation. Among them, Cooper and

Edgett in [CooEdg09] have done research on the effectiveness of different idea

generation methods.

5.3 Innovation Management 205

http://dx.doi.org/10.1007/978-3-642-55140-6_4

Figure 5.5 visualizes their findings, mapping idea generation methods by

effectivenss vs. frequency of use. The method that is rated most effective is

ethnography, which basically means in this context that a product manager or a

group of people visit users of a product or performing a job and observe, study and

systematically record without interfering the behavior of users, their challenges and

possible improvements in their tasks.

In general, the most effective methods involve customers for example through

interviews. On the other hand, the most practiced method is internal idea creation.

This is the easiest to execute as someone only has to think of an idea without putting

in an effort to visit customers. However, as the result also shows, it is not the most

effective idea generation method.

5.3.5 Outcome and Impacts

We already discussed that innovation initiatives can typically be classified based on

the time horizon they look at. Horizon 3 initiatives are often driven in some type of

corporate research lab, while horizon 2 initiatives may be executed within a

business unit and funded through the portfolio process. Horizon 1 initiatives are

often driven on the individual product level—although they may affect multiple

Fig. 5.5 The effectiveness vs. popularity of ideation techniques [CooEdg09]. Used with

permission

206 5 Strategic Management

products and may get “imposed” on the individual product as part of portfolio

themes (see Sect. 5.2).

As a result, innovation management impacts the organization on all levels—and

it is most closely related to strategy at multiple levels of the organization: corporate

strategy, portfolio strategy, and product strategy.

On the product level, the responsibility for aligning with innovation efforts falls

on software product managers—they need to ensure that their products benefit from

innovation initiatives. Again, this is a bi-directional process: on one hand, software

product managers need to understand their organization’s innovation initiatives to

determine whether results can be used to benefit their products. On the other hand,

they may seek to influence the agenda of innovation initiatives so that they address

actual use cases and customer problems: Corporate innovation initiatives are often

quite interested in leveraging the deep market insight and customer understanding

of product managers to help inform their agenda.

5.3.6 Summary and Conclusions

Since software markets are fast-moving, software organizations typically put a

strong focus on innovation so their products and product portfolios stay

competitive.

Larger software organizations often establish different types of innovation

initiatives that work on different time horizons: from corporate research initiatives

with the charter to work on “horizon 3” innovations, to “horizon 2” innovations that

can be productized faster, and “horizon 1” innovations which typically are driven

on the individual product level.

Software product managers are responsible to ensure that their product benefits

from the innovation initiatives in their organization. To do that effectively, they

need to understand key innovation concepts, such as

• The 3 horizons framework.

• The category maturity model that suggests which types of innovations are most

critical depending on the maturity stage of the market.

• Approaches for iteratively improving innovations through iterative processes

that relies on fast feedback loops with customers, combining agile development

process with customer collaboration and using Lean Startup techniques.

• Idea generation methods, in particular voice-of-customer methods, such as

ethnography.

5.4 Resource Management

On the corporate level, resource management needs to ensure that resources are

available in the required quantities and qualities and at the required points in time so

that the company is enabled to implement the corporate strategy and the aligned

5.4 Resource Management 207

product strategies. This applies to human resources, physical resources as well as

information resources. For software, human resources are the most important ones,

both in terms of numbers and skills. A software product manager, usually in close

cooperation with the responsible line managers, needs to ensure that the resource

requirements that result from the product strategy and plan can be fulfilled, i.e. are

aligned with corporate resource management.

A product manager’s life would be easier if he could make any sourcing

decisions by himself based on the product strategy and the annual

budget allocated to the product (see Sect. 3.8). However, that is not the way it

works in most companies. Decisions on hiring new employees or making

investments in IT equipment or real estate or renting space in different locations

are considered as long-term commitments that cannot be made solely based on

short-term resource needs. So companies usually establish corporate decision

processes for these resource aspects in which the individual product manager is a

requestor, but not the decision maker. When there are corporate guidelines for

sourcing, a product manager may be a bit more empowered within those guidelines.

When external human resources are needed for capacity or skill reasons (see Sect.

3.8), additional corporate rules may apply, e.g. procurement processes that are

optimized to keep external spending as low as possible. The efficiency of all

these processes can differ significantly from company to company. In other

words, it can eat up a lot of a product manager’s time and energy to “fight the

system”.

If portfolio management does not only allocate budgets, but also assigns human

resources to product teams, that can help the efficiency. For strategic and/or

successful products, the core product team should stay quite stable over longer

periods of time in order to keep productivity high and reduce or avoid resource

management overhead. Human resources are not only a question of numbers, but

also of skills. When the product manager can foresee that certain skills will be

needed to implement the product strategy, these skills can be temporarily sourced

externally, or can be hired as new internal employees, or existing employees can be

educated and trained.

If a software product has a very long life people retire or leave the organization

for other reasons. It is part of the product manager’s life cycle responsibility to keep

an eye on the continuous availability of skills needed to keep the product viable

even if the direct management responsibility for this is with other units, e.g. the

development manager.

5.5 Market Analysis

5.5.1 Overview

The goal of market analysis is to determine the characteristics of both current and

future markets, researching customers, competitors, relevant technologies and

economic developments.

208 5 Strategic Management

http://dx.doi.org/10.1007/978-3-642-55140-6_3
http://dx.doi.org/10.1007/978-3-642-55140-6_3

Organizations evaluate the attractiveness of a future market by gaining an

understanding of evolving opportunities and threats as they relate to that

organization’s own strengths and weaknesses.

5.5.2 Concept

It is of utmost importance for a software organization to have deep insight into

trends and developments in relevant markets: the markets it plays in, markets the

organization wants to enter, other markets where new competitors might come

from, and newly emerging markets or market segments.

Market analysis is typically performed on all three levels we discuss in this

section: on the corporate level, the portfolio level, and the individual product level.

Unless the company has a dedicated market analysis unit, software product

managers are responsible for the product-level analysis and provide their results

as input into portfolio or corporate strategy.

To conduct a market analysis, software product managers or market research

specialists will typically look into the following research areas:

• Market Forces

– Market issues: Identify key issues driving and transforming your market.

– Market segments: Identify major market segments, describe their attractive-

ness and seek to spot new segments.

– Needs and demands: Outline market needs and describe how well they are

served.

– Willingness to pay: Identify and describe for which features customers are

willing to pay.

– Switching cost: Describe the cost factors customers are facing when they

switch to a competitive product.

• Industry Forces

– Competitors (Incumbents): Identify incumbent competitors and their relative

strengths.

– New entrants (Insurgents): Identify new, insurgent players and determine

whether they compete with a business model different from yours.

– Pricing: Identify price structures and levels prevalent in the selected market

segments.

• Key Trends

– Technology trends: Identify technology trends that can threaten your business

or enable it to evolve and improve.

– Regulatory trends: Describe regulatory trends that may influence your

business.

• Quantitative data about the market to support the qualitative analysis

– Market size.

– Competitor’s revenue, profit, market share (analysis of the annual reports, if

available).

5.5 Market Analysis 209

When collecting the information for market analysis, the following information

sources can be used:

Primary Research A fancy word for doing their own research, using

• Direct contacts inside the organization, for example colleagues from marketing,

sales, support, other services, and from development.

• Direct contacts outside the organization, including ecosystem participants such

as partners or media contacts, as well as customers.

Customers may also provide valuable insights into competition.

• Systematic industry studies, from running a survey to commissioning a custom

study with an industry analyst or market research agency.

Secondary Research This means using research done by others, for example

industry analysts or market research agencies.

Industry analysts play an important role in IT markets: they are a valuable source

of quantitative information, for example current market (segment) sizes, growth

rates, market shares. They also provide qualitative information, for example market

segmentation, technology and business trends, and newly emerging opportunities.

Internal Market Research Department Organizations often have specialized

market research departments that act as internal service units, which can and should

be leveraged by product managers. These departments conduct their own research

and collect, evaluate and aggregate information from industry analysts and market

research agencies, and provide regular updates to their internal audiences, in

particular to product managers. Often, they also control access to the services of

industry analysts. If no such market research department is available, for example in

smaller organizations, software product managers may need to perform the market

analysis completely on their own.

For competitive analysis we need to go beyond simple feature-by-feature

comparisons of existing products. We also need to understand the strategies of

competitors, their product and portfolio strategies, and their vision. To obtain this

information, all the information sources listed before can be used. In addition, the

website, documents, and events of competitors will provide relevant information,

for example their annual or quarterly reports, materials for investors, product

brochures etc.

5.5.3 Examples and Variations

Defining the Addressable Market
Defining the market that is addressed by a product is central for market analysis and

helps to better understand customers. Several different segmentation models are

available, one of them is the Three Level Model proposed by Weinstein in

[Weinst04] (Fig. 5.6).

210 5 Strategic Management

• Level 1—Relevant Market

– Define Geographic Trade Area ¼ current market served.

– Define Product Market ¼ current products offered (myopia).

– Define Generic Market ¼ mass marketing definition (mass market).

– Relevant Market ¼ Larger than Product Market/Smaller than Generic

Market.

• Level 2—Defined Market

– Defined Market ¼ Relevant Market segmented into penetrated market

(existing customers) and untapped market (non-customers).

• Level 3—Target Markets

– Apply Segmentation Dimensions to Defined Market.

– Identify Multiple Segments within Defined Market.

– Select Attractive Segments within Defined Market.

A key benefit of this model is the balance that can be achieved between myopia (too

narrow segment definitions) and mass market (too broad definition).

Industry Analysts
Industry analysts are a valuable source not only for quantitative market information,

such as size of market segments and market share of players within the segment,

they also provide qualitative information, for example technology and business

trends, changes in market segmentation, and newly emerging opportunities.

There are a lot of smaller boutique analysts that specialize in certain geographic

or functional segments. The worldwide leaders conduct qualitative and quantitative

analyses on a larger scale, such as IDC (www.idc.com), Gartner (www.gartner.

com), and Forrester Research (www.forrester.com). Analysts have different

strengths that need to be considered when selecting.

What they all have in common is the relatively high prices that they charge for

the use of their research results. Their primary target group are usually corporate IT

organizations who use the research results as input for investment decisions.

Industry analysts stress their independence, although, in fact, they are forced to

cooperate with the software vendors to obtain the information they need. In

Fig. 5.6 Example for

definition of level 1—relevant

market: achieving balance

between going too narrow nor

too broad

5.5 Market Analysis 211

http://www.idc.com
http://www.gartner.com
http://www.gartner.com
http://www.forrester.com

addition, over time, analysts expanded their business models to include consulting,

a service regularly used by vendors and corporate IT organizations alike which can

easily lead to a conflict of interests. They also sell research results to vendors who

want to use them for marketing purposes.

The results provided by the market research companies are nevertheless a useful

source of information, even if one should not rely on them unquestioningly. It

should always be remembered that market research companies do not consider it

their job to merely penetrate the vendors’ marketing hype and conduct serious

analyses, but that they also like to produce their own hype to promote their business.

In the end, product managers need to use their own sense of judgment and make

business assessments and decisions in consultation with colleagues and superiors

and their company-internal market research department (if available).

The fact that market research results are not only input for product management,

but can be useful for marketing too, was shown by CRM software producer Siebel

(in the meantime acquired by Oracle) in the spring of 2003 when it published the

results of a CRM market analysis conducted by Gartner in full-page advertisements

worldwide. The advertisement displayed, among other things, the “Magic Quad-

rant,” a Gartner evaluation of companies and their products based on a system of

coordinates with a “completeness of vision” axis and an “ability to execute” axis.

There is no better advertisement for a vendor than to be located in the leaders

quadrant, as Siebel was in the majority of the analyzed CRM segments in the above

example. In the meantime, IT industry analysts impose very strict limitations on

which kind of information can be used in which context: for example, they may

allow a software company to use approved quotes in their marketing materials or

refer to their position in the magic quadrant. But using the full magic quadrant in

ads is usually no longer permitted by Gartner.

Figure 5.7 shows the Magic Quadrant’s skeleton, in which companies are

positioned. Gartner describes in [Hawkins08] how a magic quadrant is to be read.

The axis “Ability to Execute” summarizes factors such as the vendor’s financial

viability, market responsiveness, product development, sales channels and cus-

tomer base. The axis “Completeness of Vision” reflects the vendor’s innovation,

whether the vendor drives or follows the market, and if the vendor’s view of how

the market will develop matches Gartner’s perspective. Figure 5.7 also shows how

the individual quadrants should be interpreted (Fig. 5.8).

Gartner also regularly publishes the Gartner Hype Cycles, another qualitative

market analysis tool that is quite influential in the IT industry. A Gartner Hype

Cycle describes the response to new technologies. Gartner defines the terms used as

follows (see [FennRask08]):

• Technology trigger: A breakthrough, a public demonstration, a product launch

or some other event generates significant press or industry interest.

• Peak of inflated expectations: During this phase of overenthusiasm and unreal-

istic projections, a flurry of well-publicized activity by technology leaders

results in some successes, but more failures, as the technology is pushed to its

212 5 Strategic Management

limits. The only companies making money are conference organizers and maga-

zine publishers.

• Trough of Disillusionment: Because the technology does not live up to its

overinflated expectations, it rapidly becomes unfashionable. Media interest

wanes, except for a few cautionary tales.

• Slope of Enlightenment: Focused experimentation and solid hard work by an

increasingly diverse range of organizations lead to a true understanding of the

technology’s applicability, risks and benefits. Commercial off-the-shelf

methodologies and tools ease the development process.

• Plateau of Productivity: The real-world benefits of the technology are

demonstrated and accepted. Growing numbers of organizations feel comfortable

with the reduced levels of risk, and the rapid growth phase of adoption begins.

New technologies positioned on the Hype Cycle do not move at a uniform speed

through the cycle. When discussing a new technology, Gartner also provides their

estimate how long it will take the technology to reach the plateau of productivity.

Fig. 5.7 Gartner magic quadrant (# Gartner, Inc. 2008)

5.5 Market Analysis 213

This is important information that product managers need to consider in their

planning activities.

5.5.4 Outcome and Inputs

A large part of market analysis results are graphics, such as market size and market

share diagrams, visualization of trends and their impact on markets and on the

competitive landscape. Therefore, market analysis if often documented in slide

decks, accompanied by spreadsheets providing more detailed numbers and the

foundation for charts.

Market analysis results are used in a number of activities of software product

management, in particular product positioning, business aspects, ecosystem man-

agement, and roadmapping.

5.5.5 Summary and Conclusions

The goal of market analysis is to determine the characteristics of both current and

future markets, researching customers, competitors, relevant technologies and

economic developments.

Sources for market research can be classified into primary research, secondary

research, and the company-internal market research department (if available).

Fig. 5.8 Gartner Hype cycle (# Gartner, Inc. 2008)

214 5 Strategic Management

Market analysis also includes competitive analysis. Here, it is important to go

beyond simple feature-by-feature comparisons of existing products and to under-

stand the strategies of competitors, their product and portfolio strategies, and their

vision.

Industry analysts play a very important role in the IT industry, providing both

quantitative market research data, as well as competitor information and qualitative

insights into market and technology trends.

5.6 Product Analysis

5.6.1 Overview

Across all industries, businesses tend to become more and more data-driven. In

Product Analysis, the data relevant for the management of a product is defined,

located or generated, reliably and regularly accessed, aggregated based on agreed-

upon definitions, and made available in an appropriate way to everybody who has a

need to know. It is typically used by product managers for performance manage-

ment (see Sect. 3.13) and product life cycle management (see Sect. 4.4), also by

executive management as input to portfolio management (see Sect. 5.2) and for

operational business management.

5.6.2 Concept

With more and more data being available to companies, it is becoming increasingly

challenging to ensure that data is provided to decision makers in a way that

increases the quality of decisions. For product-related data, this is what product

analysis is about. We differentiate hard measures, a.k.a. key performance indicators

(KPIs), and softer measures.

KPIs can be defined in four different areas. Here are often used examples:

• Financial KPIs focusing on the history, current state and plan for:

– Cost of the product (development, maintenance and support or third party

license fees, patent license fees). This information usually comes from the

finance and controlling organization.

– Revenue as well as the existing pipeline of potential customers is analyzed

(license, subscription, maintenance and support revenue). This information

should come from the sales and finance and controlling organizations. It can

be provided per time period, per product version, etc.

– Profitability, for which product-related cost are subtracted from product-

related revenue.

5.6 Product Analysis 215

http://dx.doi.org/10.1007/978-3-642-55140-6_3
http://dx.doi.org/10.1007/978-3-642-55140-6_4

Accounting rules apply to all the financial numbers which means that the numbers

from the books may not fully reflect the actual situation. So internally, it makes

sense to also look at contracted revenue.

• Customer-related KPIs focusing on the history, current state and plan for:

– The number of licenses ordered, installed, new, total etc. (for a licensed

product).

– The absolute number of active customers and end users including growth

rates and market shares (from Market Analysis) (for SaaS, internet platforms

etc.). This can also be used for analyzing customer retention in the later stages

of the product’s life cycle. The definition of what is an active customer can be

highly political.

– Themaintenance situation in terms of total number of customers, number of

releases in maintenance und number of customers per release. This informa-

tion usually comes from the support organization.

– The quality situation in terms of number of support incidents and customer

escalations per release. This information usually comes from the support

organization.

– Customer satisfaction can be evaluated through some metrics or based on

qualitative analysis. Often companies conduct customer surveys on a frequent

basis. Customer satisfaction is difficult to quantify. It is generally not deter-

mined on the basis of a single factor, but rather as a group of up to 20 variables

regarding a range of topics, such as reliability, documentation, usability,

service quality, sales coverage, etc. [JohGus00, Myers00].

• Development-related KPIs focusing on history, current state and plan for:

– Quality during the development process and its relationship to customer-

perceived quality (see above).

– Productivity of the development team.

Some development organizations tend to consider this data as internal, but a

product manager needs to look at this data at least on a summary level.

• Product-usage-related information and KPIs:

– For licensed software products where the runtime environment is under the

responsibility of the customer, runtime measurement is usually limited and

may require the customer’s agreement.

– In an internet environment like Software-as-a-Service (SaaS) or a (self-

developed) e-commerce platform, measurement is easier, since software

and runtime environment are both under the same company’s responsibility.

This includes web analytics measuring, click rates and analyzing visitors as

well as detailed monitoring how users interact with the software

[CrolYosk13]. Some internet companies use customer discovery to test the

user acceptance of new features.

216 5 Strategic Management

This data can be helpful for a product manager’s decisions regarding requirements

(see Sect. 4.2).

All the numbers need to be considered over longer periods of time, i.e. not only

current actuals, but also in comparison to the history, the plan and budget, and

possibly the market (with data from market analysis, see Sect. 5.5).

Customer satisfaction can be considered as one of the softer measures. They also

include qualitative input like feedback from market analysts, trade press articles,

individual customer feedback, information from the sales channels (like win/loss

analysis or opportunities), information from the support and service functions

and more.

5.6.3 Implementation

When an organization has more than a few products in its portfolio, we recommend

to work with common definitions for the selected measures so that numbers are

comparable. Then productivity can be optimized by establishing a central data

analyst or team of data analysts who collect the relevant data reliably and regularly,

aggregate them, and make them available in a way that helps the decision makers,

be it product managers or executive managers. Standardized graphical

representations can add value here.

When there is no central product analysis, this is part of the responsibility of each

product manager or product management team. In that case, the product manager

can focus directly on those measures that are selected and relevant for a particular

product. This selection can change dependent on the product life cycle phase

(Fig. 5.9):

Even if there is a central data analyst responsible for product analysis, it is

important for product managers to fully understand how measures are defined,

where the data comes from, and how the numbers are aggregated. This may require

some deep-diving. When done for the first time, results are often surprising, like

product revenue that is accounted as service revenue (from combined product-

Phase Focus of product analysis
Conception and
creation

Financial KPIs for planned data, Development-related KPIs

Market
introduction

Product-usage-related KPIs based on planned and current data,
Financial KPIs for planned and current data, Development-
related KPIs

Growth Customer-related KPIs, Financial KPIs, Product-usage-related
KPIs, Development-related KPIs

Maturity Financial KPIs for current data, Product-usage-related KPIs,
Customer-related KPIs, Development-related KPIs

Decline Customer-related KPIs, Financial KPIs, Development-related KPIs
Withdrawal Financial KPIs for historic and current data

Fig. 5.9 Key Performance Indicators (KPIs) in product life cycle phases

5.6 Product Analysis 217

http://dx.doi.org/10.1007/978-3-642-55140-6_4

service deals), or cost accounted against the product that has absolutely no relation-

ship to the product. Those findings require correction.

The product analysis results are used in a number of activities of software

product management, in particular business aspects, performance management,

life cycle management, roadmapping, release planning, and product requirements

engineering.

5.6.4 Summary and Conclusions

For a software product manager, it is of key importance to have reliable product-

related data updated frequently as a basis for decision making. Company-wide

standards regarding the selection, definition, data sources, aggregations and graph-

ical representations help the understanding and comparability between products

significantly.

5.7 Corporate Strategy Processes

On the corporate and/or business unit level, strategy processes are usually governed

by a yearly calendar that ensures that business planning is finished in time for a new

financial year. The financial year may not be identical to the calendar year,

e.g. Apple’s financial year starts on October 1. At the beginning of the financial

year, all stakeholders within the organization need to know what the objectives,

allocated resources and budgets are within which they are supposed to work.

Corporate business planning needs to be aligned with an updated corporate strategy

which in turn needs to be aligned with updated product strategies. So all this update

work can be scheduled on the yearly calendar as well (see also Sects. 3.14 and 4.5).

Documentation of a corporate or business unit strategy can differ significantly

from company to company. Some companies go through the annual update cycle

with great consequence, in particular publicly traded companies. They usually

document the results internally, and publish a subset externally. A documented

corporate strategy is very helpful for product managers since they can use the

corporate strategy for alignment and also for justification of their respective product

strategy.

Unfortunately, there is a surprisingly high number of companies that do not

update their corporate strategy on a yearly basis. There may be no need for such an

update frequency—that is rare for software—, executive management may be

hesitant to document a strategy because they are unsure where they want to go, or

there are political reasons for not documenting the corporate strategy. The latter

happens frequently in companies where owners and customers are partly identical

with corresponding conflicts of interest that the executive management does not

want to address explicitly. All these situations make life more difficult for a product

manager.

218 5 Strategic Management

http://dx.doi.org/10.1007/978-3-642-55140-6_3
http://dx.doi.org/10.1007/978-3-642-55140-6_4

Orchestration of the Organization’s
Functional Areas 6

It is part of the concept of an “enterprise” that people with different abilities,

experiences, and skills work together as employees to reach common goals. Typi-

cally this cooperation is governed by a division of work so that the individual

strengths of each employee can be optimally utilized. The task of management lies

in the definition and communication of the goals—strategic to operational—to

create organizational structures that lead and support the cooperation, to check

the progress towards the goals frequently and to intervene whenever necessary. In

this sense, software product management is a comprehensive management task to

its full extent focused on one or several software products.

The division of work for a software company usually means that there are

separate functional units. The ISPMA SPM Framework identifies four key func-

tional areas that a software product manager usually needs to orchestrate: Develop-

ment, Marketing, Sales and Distribution, and Services and Support. The framework

lists the core tasks that each of these functions performs in the respective columns

of the framework. In addition to these four key areas, orchestration of other areas is

often required, in particular, the SPM units of other products within the company,

Finance, Controlling, Human Resources (HR), Legal, and Research. Here, the

product manager’s orchestration responsibility includes the alignment of product

strategies and plans, research and innovation initiatives for both functional and

technical innovations, resource management, and availability of correct and timely

measurements.

Corporate IT organizations more and more are organizing themselves like

software companies, often without differentiating between Sales and Marketing.

Here the existence of HR and Legal depends on the degree of independence from

the parent company.

Whether Software Product Management is a separate organizational unit or not,

product managers collaborate with a wide range of stakeholders from both outside

and inside their organization. Inside the organization, they work together with other

business functions in a cross-functional product team that ideally stays in place for

the long term, i.e., not merely for a single release. The purpose of this team is “. . . to

Springer-Verlag GmbH Germany 2017

H.-B. Kittlaus, S.A. Fricker, Software Product Management,
DOI 10.1007/978-3-642-55140-6_6

219

manage all the elements needed to achieve the financial, market, and strategic

objectives of the product as a business” [Haines14].

The cross-functional product team has members from different departments in

the organization and may often be virtual, with members from different geographic

locations or cultural backgrounds. In this setup, product managers are challenged to

achieve “influence without authority, accountability without control” ([Hall13],

p. 1). This task is conflict-laden in several dimensions.

Orchestration challenges typically exist:

• Between product managers for different products in the organization’s portfolio

due to resource allocation, budget allocation, positioning of products against

each other within the portfolio, functional scope, interfaces, release dates, and

bigger requirements that require parts of the implementation in different

products with resulting dependencies,

• Between sales and development unit due to short-term goals and individual

customers versus long-term abstract perspectives,

• Between product manager and development unit due to release scope and dates,

resource allocation, and project planning (overall project portfolio, not details in

each project),

• Between product manager and marketing unit due to brand marketing versus

product marketing, and

• Between product manager and sales and distribution unit due to discounting, the

reliability of commitments regarding the sales volume of the product, reporting

granularity, customer commitments and what can be delivered realistically

versus everything that customers want.

Units like Sales and Development differ in their cultures in all industries, but

nowhere as severely as in software. While sales people usually have an orientation

towards short-term goals and individual customers, developers tend to have a long-

term abstract perspective. Denning and Dunham state in [DenDun03], p. 141:

“Information technologists are trained to view worldly objects as potential

abstractions to represent inside a computation. Customers collapse into abstractions

in this world. Abstractions do not have concerns or make assessments.” On the

other hand, salespeople tend to make a sale at almost any price even when customer

requirements have to be committed that endanger the focus and consistency of a

software product.

Condon tells in his book [Condon02] how the software product manager has to

act as a mediator in conflicts like this one. Very rarely has a software product

manager the right to give orders to all relevant organizational units. Typically he

needs to sell and persuade. Such persuasion may be easy if he is considered

competent in the subject under discussion. But since nobody can be equally

competent in all areas, leadership in a non-hierarchical sense is required. However,

often the product manager does not act as leader, but as Jack of all trades. In those

companies, executive management, as well as the managers of the other organiza-

tional units, tend to misuse the product manager as caretaker for any problem that

220 6 Orchestration of the Organization’s Functional Areas

comes up and does not clearly belong to one of the units. As a consequence, the

product manager is forced to give higher priority to the urgent tactical problems

than to the important strategic ones which often means that he cannot deal with the

important ones that influence the mid to long term success of his products at all.

Executive management is not well advised to allow such a situation. What can help

are clear mandates that include the following:

• Clear definition and separations of concerns, responsibilities and competencies,

and clear definition of accountability,

• Delineation of responsibility between product managers and project managers,

• Definition of release planning, requirements management, and quality assurance

processes, and

• Establishment of clear channels of communication between product manager

and different organizational parts (for example sales).

In addition to those mandates, roadmaps are also an important tool that supports

collaboration with the various company functions.

To achieve excellence in orchestration, software product managers need to drive

process improvement in working with other functions. Excellent software product

managers are not just reacting to operational challenges. Instead, they pro-actively

foster better relationships and drive better processes for collaborating with these

other functions.

In this chapter, we look in more detail at the orchestration tasks towards

Development, Marketing, Sales and Distribution, and Services and Support and

then describe the associated skills requirements.

6.1 Role and Processes

The role of orchestrator is one of the central tasks of SPM. It aims at optimizing the

cooperation of all units for achieving product-related goals. Each unit is expected to

contribute to product success in the best possible way. Conflicts of interest are

bound to exist among the units and sometimes even within the product management

organization. This task calls for successful negotiations in case of conflicts of

interest [FrGoBySc10, Thomp14].

Conflicts may surface when product strategy decisions are to be implemented.

For example, a change in pricing that affects the pricing metric may impact

development to implement changes in license reporting or enforcement, support

to update support pricing, marketing to update the price list, license key generation,

and to communicate the change to customers, and sales needs to be trained as well.

Conflicts may also surface in operational tasks. For example, resolving an

escalated customer problem may require the product manager to change a roadmap

to provide a good longer-term solution. He may also need to coordinate activities

between support, development, and sales (account management for the customer) to

find an acceptable workaround for the short term.

6.1 Role and Processes 221

The SPM Framework can be used to know which activities of other functions—

represented by cells in the orchestration columns—are affected by the decision or

problem at hand. This knowledge can help identify the stakeholders that need to be

involved.

Once the right stakeholders have been identified, the software product manager

needs to use their understanding of the other functional units to map out a suitable

approach for addressing the situation. Such an approach may include establishing

role clarity and defining a process to use to address the situation at hand. Then, the

product manager can exercise his leadership skills to work through the agreed

process with the stakeholders.

Software product managers typically don’t have the power to direct the other

members of the cross-functional team. To achieve a constructive, successful col-

laboration with these other functions, software product managers can use two

levers: First, they need to exercise their leadership skills (see Sect. 6.6). Second,

they need to achieve a common understanding of roles, responsibilities, and

contributions of each member of the cross-functional product team.

For setting expectations and achieving role clarity, it is ideal to have a compre-

hensive process model. Process models can be characterized by

• Their scope regarding the business functions they cover and

• Whether they explicitly recognize different stages of the product life cycle.

The ideal situation from an orchestration perspective is an up-to-date process

model. That process model should take a holistic product view and cover all

business functions involved in taking a software product to market. Also, the

model should be aware of life cycle stages and cover the entire life cycle of a

software product from inception to withdrawal, i.e. be a product development life

cycle (PDLC) model. The coverage of the life cycle is important because the

different stages of a product’s life cycle require vastly different contributions

from the various business functions.

Unfortunately, few software organizations have implemented a comprehensive

process model. Instead, many process models are established that only cover

development activities—a software development life cycle (SDLC). These types

of process models are often based on the chosen software development methodol-

ogy, Scrum for example, and do not distinguish between different stages of the

product life cycle. SDLC models may be helpful for clarifying roles and

responsibilities when collaborating with the development team, but from a software

product manager’s perspective, they are incomplete since they do not address other

critical functions that are required to take a software product to market.

In all cases where the product manager cannot lean on an up-to-date, compre-

hensive PDLC, product managers need to negotiate rules of engagement,

deliverables, and timelines individually with the other business functions

represented on the cross-functional product team.

A RACI matrix [Haines14] is a frequently used tool to clarify roles and

responsibilities. A RACI matrix defines who is Responsible, Accountable,

222 6 Orchestration of the Organization’s Functional Areas

Consulted, and Informed for each activity or deliverable within a process. Based on

the RACI matrix, functional support plans (FSPs) can be established: “FSPs are

created as action planning, horizontal contracts across the cross-functional product

team’s memberships. FSPs describe the activities, deliverables, dependencies, and

schedules for each team member across the entire life cycle . . .” [Haines14]. In

most companies today, this is handled in a more informal way.

In the long-term, it makes sense for software product managers to push for the

development and introduction of a suitable PDLC. The PDLC will reduce the effort

involved in negotiating FSPs with multiple different business functions.

6.2 Development and UX Design

The development unit is responsible for all technical software aspects including the

implementation of extensions and changes to the software. The development

function exercises a strong influence on the product’s functional capabilities and

qualities, as well as the user experience. Therefore, successful collaboration with

Development and User Experience (UX) Design is a key success factor for software

product managers—and there are many possible areas for conflict.

The Development column in the SPM Framework details the tasks of

Development.

Engineering management addresses all development aspects that are relevant

across and above development projects. These include governance of product

architecture, development processes and tools, configuration management, knowl-

edge management, resource and skills management, development sourcing, and

estimations.

Project management addresses the execution of a release plan in software

development. The execution is typically done based on a project organization.

The project is also responsible for writing internal documentation and contributing

to the software-related external documentation.

For a project, an appropriate development methodology must be selected and

followed. This choice has an impact on the way SPM and the development project

cooperate. Development organizations use a variety of methodologies. The chosen

methodology on the development side has an impact on the work of the software

product manager and the interface between SPM and Development—how

requirements are handed over for implementation and how the acceptance of

project deliverables is managed. Most companies use a mix of different

methodologies, be it agile, iterative, or stage-gate, often called waterfall. Popular

agile and lean methodologies include Scrum, Kanban, and eXtreme Programming

(XP). When agile methodologies are implemented in their pure form, there may not

be a project organization anymore. In that case, we use the term “Development

Management” instead of “Project Management”.

At a high level, agile as well as iterative development are driven with small,

controllable steps or iterations. With most agile methodologies, every iteration

consists of analysis, design, coding, and testing. With iterative, only coding and

6.2 Development and UX Design 223

testing are done in iterations while analysis and design are done upfront. With

stage-gate, or waterfall, there are no iterations, but one stage or phase is done after

the other. So, with stage-gate and iterative, requirements are handled early whereas

with agile, requirements usually need to be handled in each iteration.

There is a role in agile projects that deals with requirements. In Scrum, that role

is the Product Owner. In smaller agile projects, the SPM may assume the Product

Owner role, but that does not scale up [Kittlaus12]. In larger projects, the Product

Owner role needs to be filled with additional team members who cooperate tightly

with the SPM. The Scaled Agile Framework (SAFe, [Leffing16]) offers an

approach for scaling agile in larger organizations.

With agile methodology and continuous integration (and even continuous

deployment), new functionality can be delivered daily if customers can deal with

such a high release frequency (see Sect. 4.3). The SPM challenge is to focus on the

strategic and important items in such a high-pace environment.

Project requirements engineering is part of the project team responsibility and

follows a process like the product requirements engineering process (see Sect. 4.2).

Once the contents of a release are defined, the corresponding product requirements

are transferred into project requirements and further refined. Project requirements

can also address development-internal needs that are raised in the course of a

project. Tracking the project requirements and synchronization with the product

requirements are continuously required. With agile methodologies like Scrum, a

large part of the requirements analysis is done by the product owner. In that case,

we use the term “Development requirements engineering” instead of “Project

requirements engineering”.

User experience (UX) design addresses every aspect of the users’ interactions

with a software product or component (see Sect. 6.2.2). UX may be part of

Development’s responsibilities or organized as a separate shared-service organiza-

tion. The UX design scope and expectation for a product are described in the

Product Strategy under Product Positioning (see Sect. 3.6).

Quality Management addresses the technical quality of software. It includes

test concepts and infrastructure, technical support concepts and structure (together

with the Support unit), a historical quality database, quality forecasting, and the

execution of tests.

The product manager’s orchestration responsibility includes the acceptance of

results based on tests, agreements on release scope, schedules, and estimates,

tracking of the execution of plans, tracking of the project vs. product requirements,

and negotiations and adjustments of plans including scope changes if needed.

6.2.1 Organizational Setup, Roles, and Processes in Development

The organizational structure, job titles, and processes used by the development

function depend on several factors. These factors include the type of software

product and the development method, e.g. waterfall, iterative, or agile, and the

process chain from code development to product delivery.

224 6 Orchestration of the Organization’s Functional Areas

http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_3

The typical setup in a traditional software development organization using a

waterfall or iterative development process includes the following roles:

• Development team, including developers, architects, and development managers

This team may be relatively stable with developers working on the same product

for many years. In that case, the development team has deep and highly relevant

product knowledge;

• Separate QA team—by intent, members of these teams often are different from

the developers.

• Engineering support teams: e.g. roles for maintaining development and test

environments, configuration management, etc.

The setup of an agile development organization that uses Scrum, for example,

consists of the following roles [SuthSchw13]:

• Product Owner

Software product manager and product owner are two different roles that need to

be closely aligned. The same person may assume both roles in smaller

organizations. Often, however, the combined workload is too high for one

person, and the job profiles are hard to reconcile: e.g. SPMs often need to travel

quite a bit, while product owners should always be available to the product team.

• Development Team(s) of fewer than ten people each

In contrast to the typical setup for waterfall development, testers in agile

development are part of the development team.

• The Scrum Master who is “[. . .] responsible for ensuring Scrum is understood

and enacted [. . .] by ensuring that the Scrum Team adheres to Scrum theory,

practices, and rules.”

A software organization may introduce additional coordination layers and functions

to scale the development organization beyond a small number of Scrum teams. For

example, a release management function may be established, as suggested by the

Scaled Agile Framework (SAFe, [Leffing16]).

Some agile gurus tend to be dogmatic arguing that the role of product owner

covers everything that is needed for product management and the role of SPM is

superfluous. We disagree. In our experience, the operational character of the

product owner role does not leave enough time for the strategic tasks of product

management. Therefore, a separate SPM role is needed. Our view is also described

in SAFe [Leffing16]. If in a smaller environment, it is possible to assign both the

SPM and the product owner role to the same person, this person needs to cover all

SPM tasks as described in the SPM Framework and this book.

Continuous Everything and DevOps

Software organizations increasingly automate the processes that lead from finalized

code changes to the deployment of new software in production environments.

6.2 Development and UX Design 225

The software product manager needs to be aware of the technical capabilities of

the development organization and needs to make sure that the actual delivery to

customers is aligned with business needs: how to use these capabilities must be a

business decision, based on what the market can absorb.

The processes that lead from finalized code changes to deployment in production

environments include:

• Continuous Integration: automated integration, build, and test in the develop-

ment environment,

• Continuous Deployment: automated push of software into the production envi-

ronment, and

• Continuous Delivery: automated delivery of software to customers.

If the continuous integration, deployment, and delivery capabilities are in place, the

organization can choose how frequently to deliver code changes to customers.

Continuous deployment can result in multiple production deployments per day,

for example in a SaaS delivery model [HumFar10].

To implement continuous deployment and delivery, Development needs to

collaborate closely with other functions. If the software vendor also operates the

software, for example in a Software as a Service (SaaS) delivery model, tight

integration with the Operations function is required. This integration is called

DevOps: “DevOps is about aligning the incentives of everybody involved in

delivering software, with a particular emphasis on developers, testers, and

operations personnel” [HumMol11].

In a DevOps context, it can be beneficial to establish a “release heartbeat” where

new functionality is released to the market at regular intervals, e.g. once every week

or every 6 months. The heartbeat drives alignment and efficiency within the

software organization and properly sets expectations of the market.

Typical Areas of Conflict: Development

Typical areas of conflict between SW Product Management and Development

include:

Release Planning: Disagreement About the Priority of Requirements

The disagreements may be related to individual requirements or features, or to

classes of requirements: for example, SPMs often focus heavily on functional

requirements, while Development may push to spend more effort on architectural

improvements, code cleanups, reduction of technical debt, or on addressing

non-functional requirements.

Release Planning: Development “Does What TheyWant” Instead of Executing

the Release Plan

For example, Development may consider the list of requirements to incorporate in

next release or the planned release date as unrealistic considering existing resource

226 6 Orchestration of the Organization’s Functional Areas

and schedule constraints—and simply goes off to execute based on priorities they

set themselves.

Requirements Engineering: Disagreement About the Meaning of Requirements

The software product manager does not agree with the way Development has

translated certain product requirements into project requirements.

Requirements Management: Changing Requirements

From a development perspective, it would be ideal if all requirements were

completely and precisely defined at the beginning of a project without any

subsequent changes during the project. From a business perspective, however,

changes in the market, in customer situations, or on the legal side can lead to

changes in project requirements at any time. In these situations, it is the task of

Development’s project requirements management in cooperation with SPM to

ensure timely decisions. The additional efforts in development that are caused by

such changes depend to a certain degree on the type of development process

employed. The waterfall model assumes a strictly sequential process and cannot

cope well with late changes. Iterative or Agile models are better suited to handling

change. Also, iterative and agile models provide early indicators of project success

and customer acceptance of the results. They allow in a relatively early phase and

continuously throughout the project to get hands-on experience with a prototype.

Agile Development: Misalignment of Sprints with Product Strategy

Over multiple short sprints, the product increasingly evolves into a direction that is

not in line with the release themes and epics defined by the product manager.

Continuous Deployment: Disagreement About Deployment Frequency

Once continuous deployment capabilities have been set up, Development and

Operations may want to use these capabilities to a full extent. However, the

software product manager may want to exercise more control over what is deployed

when and exert power to group changes together or to delay deployment of certain

changes.

It can be helpful to give Product Management the role of the internal client to

ease or avoid these conflicts. The client role includes responsibility for budgets,

contents, and acceptance of the results of the development activities. Budgeting

needs to be ensured in the planning processes of the company (see Sect. 5.2). The

content is managed in the release planning and requirements management processes

(see Sects. 4.2 and 4.3). Acceptance of development results is based on reviews and

tests that are part of the development process. The Software Product Manager must

rely on qualified internal or external reviewers and testers, e.g. a Quality Manage-

ment unit, who provide a reliable basis for his acceptance decision.

A strict separation of client and contractor is usually somewhat difficult to start

for Development since the developers tend to see this more as an annoying control

than as help whereas people on the business side often feel forced into sharing

6.2 Development and UX Design 227

http://dx.doi.org/10.1007/978-3-642-55140-6_5
http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_4

responsibility for the results of development. If these initial difficulties can be

overcome, the separation usually turns out to be helpful. It makes the role

definitions more precise and leads to better cooperation. The separation does not

prevent conflicts between Product Management and Development, however. It

simply clarifies the rules of conflict resolution.

An ideal of Software Engineering is expressed in the Capability Maturity Model

Integration (CMMI) of Carnegie Mellon University. It states that the “perfect”

software organization can work with all types of development processes in the same

reliable and masterful way and selects the optimal type at the beginning of each

project following certain criteria. Few development organizations are perfect in that

sense. Most are glad when they master one process type in a reliable way. We do not

recommend the Software Product Manager to enforce any process type that the

development team does not master. An unsuitable process would increase the

probability of project failure. Rather, the product manager should motivate Devel-

opment to adopt more flexible process types depending on the type of software. For

example, the development process for software games is highly prototype-oriented

and seems to be closer to the production of a Hollywood movie than to traditional

commercial software development [Waldo08].

The software product manager is dependent on being able to predict if Develop-

ment can meet the plan in terms of time and quality. Once Development has written

the project plan, the product manager is advised to follow the progress of the project

in comparison to this project plan. He must ensure that marketing and sales are

ready for the launch of a new product or release. Mistakes in the prediction can

result in significant cost, bad press, and revenue loss. Since these mistakes happen

within most software organizations, a lot of software companies do not publish

fixed dates. Instead, they start with limited availability for pre-selected customers

before the product becomes widely available. Internal IT organizations may follow

the same model by introducing new applications for a small number of users first.

However, this approach is often impractical for company-wide applications without

building extensive interface code—e.g. payroll. With agile methodologies, often

part of the defined release contents is sacrificed in order to meet the planned date.

6.2.2 User Experience (UX) Design

User Experience (UX) Design can be anchored at different positions in the org

chart, but often resides within or close to the development function. UX has a strong

impact on product management and marketing, support, and development.

UX is a broad term covering and interacting with disciplines like graphic design,

information architecture, Human-Computer-Interface (HCI) design, interaction

design, and usability engineering [ShPlCoJa13]. UX addresses every aspect of the

users’ interactions with a software product or component with the purpose of

shaping the user’s behaviors, attitudes, and emotions about that product or compo-

nent. Emotions include delight and annoyance about the product [LeCB€olPe13],
excitement and fear in games, and a feeling of being in control when using decision-

support software. UX must take human-system interaction, user interfaces, device

228 6 Orchestration of the Organization’s Functional Areas

and workplace ergonomics, service and content offered by the product, the context

of product use, and standards like ISO 9241 [ISO98] into consideration. UX also

needs to consider the various standards and user expectations, which may vary

widely across types of software and market segments.

Cagan distinguishes four UX design-related activities that are critical to the

success of software products: interaction design, visual design, rapid prototyping,

and usability testing. These four roles need to “[. . .] work closely with the software
product manager to discover the blend of requirements and design that meet the

needs of the user.” [Cagan08].

Startup communities have developed a variant of UX, Lean UX, to “[. . .] break
the stalemate between the speed of Agile and the need for design in the product-

development life cycle.” [GotSei13]. Lean UX is based on three foundations:

design thinking, agile software development, and the Lean Startup method. All

three methods emphasize experimentation, rapid iterations, and deep customer and

user involvement. The principles and techniques of these underlying methods are

then applied to the design process. “[. . .] this is the essence of the Lean UX

approach. Only design what you need. Deliver it quickly. Create enough customer

contact to get meaningful feedback fast.” [GotSei13].

Typical Areas of Conflict: UX Design

Due to the objectives of UX Design, there is a significant overlap with the product

manager role, especially in the following areas:

• Developing a deep understanding of customers’ true needs.

• Understanding intended product usage.

• Developing product scope and product definition.

• Eliciting product requirements.

In these areas, software product managers may find that UX designers are powerful

allies that help them define a product that serves customers and users even better.

Alternatively, they might be in stark conflict, quarreling over decisions and

accountabilities.

A software product manager is well advised to canalize the creativity of UX

designers into the refinement of early product concepts and utilize their experimen-

tation skills to get evidence that the product concept works for the intended users. If

the UX designers discover significant problems in user acceptance and product

effectiveness, the product manager may have to pivot the product concept.

6.2.3 SPM’s Focus Areas for Orchestrating Development

An SPM needs to focus on the following areas when orchestrating development:

• Acceptance of results based on verification and validation tests.

• Release scope and dates, project planning.

6.2 Development and UX Design 229

• Execution of plans.

• Synchronization and tracking of project vs. product requirements.

• Estimates.

• Resource, knowledge, and skills management.

The less experience a development organization has with software product devel-

opment, the more they will underestimate the extra effort that comes with a product

vs. a software that just runs in one customer environment. This situation needs an

SPM’s special attention regarding estimates and the execution of plans.

6.3 Marketing

Marketing is a top priority for a software company. Successful software companies

spend a high percentage of their revenue on sales and marketing—on the average

twice as much as for research and development of new products. There are several

reasons for this:

• Software is an intangible commodity that is not easy to describe. The intangibil-

ity makes it more important and time-consuming to give the customer an “idea”

of the product by way of marketing measures.

• Due to low variable costs, gross software sales margins are very high. These high

margins can be used to pay for expensive marketing measures, boost sales

numbers, and thus create a yet higher profit margin, even after marketing

expenses have been deducted.

• The law of increasing returns (see Sect. 2.3) in the software industry challenges

every vendor to have his products achieve market leadership. Sales numbers and

market share are therefore crucial for every software company.

In this book, we assume that software product management and marketing are two

separate tasks that are assigned to two separate units within a company. However,

in cases when a company does not have a separate marketing unit, the software

product manager often must take care of some or all of the marketing

responsibilities and may get the title “Product Marketing Manager” or similar.

The Marketing unit is responsible for all aspects of preparation and support of

the product sales activities of a company including the positioning of the product in

the market and the creation of product awareness. The actual split of responsibilities

between Marketing and Sales may differ from company to company. Typically,

companies establish a company-wide marketing strategy within which the market-

ing activities for individual products are defined and executed. The Marketing

column in the SPM Framework describes the main tasks of Marketing.

Marketing planning addresses the development and negotiation of plans for all

marketing-related activities during a given timeframe, often a year, including

respective budgets. The plans can be product-specific, or for groups of products.

230 6 Orchestration of the Organization’s Functional Areas

http://dx.doi.org/10.1007/978-3-642-55140-6_2

They need to be synchronized with corporate and product strategies and plans, and

the sales plan.

Customer analysis means the analysis of existing or potential customers or

groups of customers regarding additional business opportunities and retention. The

analysis is frequently repeated.

Opportunity management means the pursuance of identified business

opportunities with the objective to turn these opportunities into concrete product

success. Opportunity management may include the formulation of product

requirements, development and implementation of new marketing approaches,

and tight cooperation with Sales. It is performed continuously.

Marketing mix optimization means the selection, implementation, and man-

agement of appropriate marketing tools. Since we have covered product and price

under product strategy (see Chap. 3), here the focus is on promotion and communi-

cation, and on channels appropriate for a product, and the management of market-

ing partners within the product ecosystem. All require tight cooperation with SPM

and synchronization with the corresponding product strategy.

Product launch means the introduction of a new product, version, or release to

the market. Marketing needs to orchestrate the activities that serve to create

attention of existing or potential future customers, in the trade press, with market

research agencies, and so on. Typically, SPM, Development, Sales, executives,

partners, and sometimes customers are involved.

Operational marketing means the execution of the marketing plan, tracking of

the relevant measurements, and taking corrective actions when measurements

deviate from the plan.

The product manager’s orchestration responsibility includes the positioning of a

product in the marketing plan, tracking of plan execution, and cooperation in

product launches, channel, and partner management. The product manager may

decide to participate in marketing events selectively.

The product marketing department of a software producing organization is

responsible for all aspects of preparing and supporting product sales. Their goal

is to craft an effective marketing and sales funnel: attracting as many prospects as

possible, turning them into leads that are interested in the product, converting them

into paying customers, and ultimately turning them into promoters of the product.

This product marketing goal closely aligns with essential responsibilities of a

software product manager as identified by Ebert [Ebert07]: to conquer markets and

grow market share. Because of this, effective collaboration with and orchestrating

of the product marketing department is a core determinant for creating a winning

product [GriHau96]. Nevertheless, the core activities of product management differ

from those of product marketing. Product management defines the product to be

built, while product marketing defines how to communicate the product to the

market.

6.3 Marketing 231

http://dx.doi.org/10.1007/978-3-642-55140-6_3

6.3.1 The Marketing Organization

The marketing of a software product has the following three concerns [KotArm15]:

• Strategic marketing: defining a strategic direction for marketing that is in

accordance with the corporate strategy,

• Product marketing: translating the marketing strategy to the product level, and

• Marketing communication: executing the marketing strategies to create tangible

deliverables such as promotional materials or event booths.

Depending on the size and design of your organization, these concerns can be

addressed by one single person, a team, or even multiple teams. The three concerns

have a reciprocal relationship. The marketing strategy influences the marketing

goals that the product marketing team pursues. Similarly, the product marketing

decisions impact marketing communication (MarCom). The success of the

MarCom activities, then, affect the key performance indicators (KPI) of all three

marketing disciplines. The MarCom KPIs inform the product KPIs, which in turn

inform the strategic KPIs.

Strategic Marketing

The goal of strategic marketing is to create a recognizable brand. Together with the

Board, the Chief Marketing Officer formulates, analyzes, and evaluates a marketing

strategy in accordance with the corporate strategy for positioning and presenting the

company or products in the market. They define a clear message that the other

marketing disciplines embed in their activities. For example, upper management

may make a strategic decision to focus marketing investments more on the

company’s brand or on specific products.

Especially for software, which is a product type that is difficult to describe and to

communicate, the creation of a strong brand is essential for successful market

recognition. In the software industry, the marketing expenses compared to revenue

are higher than in most other industries. It can be observed that a software vendor

spends 5–6% of its total revenue for external marketing programs. This spending

does not include personnel expenditures and other internal expenses.

There are various qualities that characterize a successful brand, which a software

product manager must be aware of:

• A brand is based on an identity that has gradually developed, namely the

corporate identity, which consists of company-specific competence coupled

with the experience and culture of the company.

• The core values of a brand need to be outlined as clearly as possible and easy to

understand. Focusing on only a few dimensions constitutes a key success factor.

• A strong brand develops its own “ecosystem” as described in Chap. 3. Such an

ecosystem is decisive in determining how a brand and a company develop, thus

has a restrictive character. An ecosystem does not permit arbitrary diversifica-

tion attempts, as these could be detrimental to the brand.

232 6 Orchestration of the Organization’s Functional Areas

http://dx.doi.org/10.1007/978-3-642-55140-6_3

• Strong brands require publicly visible profiles. These may be created based on

technological leadership or the fringes of a niche market and are difficult to

develop in a mainstream market.

• Strong brands owe their existence to a convincing core element, namely

company-specific competencies, or to their fascinating aura. The addition of

an emotional desire to the brand’s core creates the ideal situation. In the IT

market, Apple is a good example for generating such an aura.

• Especially in difficult times or in saturated markets with intensive competition,

strong brands have a clear advantage and tend to improve their market position

in comparison to weaker competitors.

A source of discussions in a multi-product company is the conflict between brand

marketing and product marketing. The software product manager wishes marketing

for making the product known and understood by specific target groups or for

boosting product sales. If marketing aims at establishing a brand, however, it will

invest its limited resources in establishing and maintaining the publicly visible

brand profile.

A brand is a valuable asset for a company. A product marketed under this brand

name will benefit from the brand recognition. Oracle, for example, consistently

markets all its products using the corporate name. This brand name is consistently

used for its diversification strategy and to market both Oracle database products and

other products, such as financial applications or application servers.

A company such as IBM, on the other hand, would have difficulty marketing all

its products using the corporate brand name IBM. IBM offers a too wide range of

products and services. The brand is still valuable, but its breadth makes it difficult to

evoke the associations desired for specific software products. Particularly in the

software market, where IBM is traditionally not recognized as a major player,

brands need to be differentiated. IBM, therefore, continued to use the brand

names “Lotus,” “Tivoli,” and “Rational” after the acquisition of these companies

to achieve better recognition in the respective market segments and to prevent

losing the intrinsic value of these brands. At the same time, immediately after

acquiring Informix or Sybase, IBM merged these brand names with its own IBM

DB2, which never attained the same brand status as Oracle. What we can see here is

the area of conflict between the corporate brand and the individual brand names for

products or product families, reflecting the conflict of interests between corporate

marketing and product marketing. IBM has never succeeded in establishing “IBM

Software” as a distinct brand despite attempts to do so, perhaps because these

attempts were not consistently pursued or implemented.

An effective marketing strategy influences the end-results of the MarCom

activities. Therefore, popular strategic KPIs include both strategic concerns and

tactical result metrics:

• TheNet Promoter Score for a brand is a method to measure customer loyalty by

asking a single 0–10 scale question: “How likely is it that you would recommend

6.3 Marketing 233

the brand to a friend or colleague?”. The promoter score is the percentage of

customers who answer 9 or 10 subtracted by those who answer 0–6.

• The Brand Awareness, typically expressed as a percentage of a target market, is

a measure of whether potential customers correctly identify a brand. The mea-

sure indicates whether a customer can respond to the brand after viewing its logo

or packaging.

• Return on Marketing Investment (ROMI)—a simple Return on Investment

(ROI) formula calculated as follows: [Incremental Revenue Attributable to

Marketing (€) * Contribution Margin (%)—Marketing Spending (€)]/Market-

ing Spending (€).

Product Marketing

Product marketing starts with market and customer analysis. Marketing

opportunities are identified by analyzing the relevant market segments, understand-

ing their respective needs, and defining the appropriate communication approach

for each segment. Marketing is responsible for this process in close collaboration

with product management based on the contents of the product strategy. For a new

product release, Marketing prepares the release launch by preparing the appropriate

marketing communication deliverables and possibly by organizing events.

The KPIs for product marketing are roughly like those of strategic marketing,

but on a product level instead of brand level. The product-level KPIs need to be

aligned with corporate objectives and used to inform the strategic marketing KPIs.

The product-level KPIs should at least include:

• The Net Promoter Score for a product by asking a single 0–10 scale question:

“How likely is it that you would recommend the product to a friend or col-

league?”. The Net Promoter Score is the percentage of customers who answer

9 or 10 subtracted by those who answer 0–6.

• The Product Awareness is comparable to the brand awareness measurement but

also includes whether the brand is correctly associated with the product.

• Conversion is a measure of how many of the potential customers converted into

paying customer.

• Cost per Lead is a measure of how much, in average, had to be invested to

acquire one new lead.

• Return on Investment is the average revenue per lead divided by cost per lead.

Marketing Communication

Marketing communication, MarCom or operational marketing, concerns the exe-

cution of the marketing plan and results in concrete marketing outputs. Tradition-

ally, this activity was focused on producing print media, television, and radio

advertisement. Nowadays, marketing communication also includes the use of the

brand language, public relations, sponsorship, social media, tradeshows, and

in-product communication. Within a software producing organization, Marketing

takes ownership of these activities and discusses the deliverables with the software

234 6 Orchestration of the Organization’s Functional Areas

product manager. The software product manager should only be actively involved

in marketing communication activities in exceptional situations.

The marketing communication plan for a product is derived from the marketing

strategy and defines the objectives for the individual marketing measures. Besides

advertising, important measures are public relations, online marketing, telemarket-

ing, and sales support. A special case is the launch of new products, new versions,

or major releases of existing products. Usually, a launch plan for each product

launch is developed and implemented that should be integrated into the overall

MarCom plan. The significance of launch activities depends on the type of product.

Typically, the launch focused on a release date is important in the consumer market.

In the enterprise market the focus on a hard release date is no longer the rule. Also,

adoption of new products or versions takes a lot longer with enterprise customers

than in the consumer market. Therefore, launch activities are spread over longer

periods of time. There is a lot of literature about product launches like [Lawley07]

or [Cooper00].

A combination of the various marketing components is used for integrated

marketing in the software industry. The MarCom Plan describes media planning

as well as the campaign’s creative strategy for advertising and public relations

online and offline. Public relations have top priority in marketing communication

for software companies. Leaders of successful software companies spend a lot of

time discussing market trends, corporate visions, and strategies with the technical

and business press as well as with analysts.

User conferences are another important forum for a software company. The

company may organize such conference for its products (e.g. SAP’s SAPphire) or

join industry conferences (e.g. the European Banking and Insurance Forum, EBIF,

JAVAWorld, etc.). A software company needs its corporate management to be

visible and approachable in such conferences and involve chief architects, commu-

nity leaders, and product managers.

The chosen product development methodology will impact the marketing

orchestration approach. The typical marketing department sets plans, goals, and

budgets at the beginning of a new year or period and will be unwilling to deviate

from these plans substantially. This resistance can create frustration in a high-

pressure, quickly changing environment that is typical for a software product

organization. It is good practice to make agreements with the marketing department

on the type of work and howmuch work they can do for a product on an intermittent

basis. For example, 10% of marketing resources could be made available to product

management for unforeseen feature announcements.

6.3.2 Typical Areas of Conflict

Marketing and product management frequently find themselves in a state of conflict

because of the strong interdependencies between the two roles. We highlight three

common sources of conflicts and discuss ways to mitigate them.

6.3 Marketing 235

Strategic Conflict: Brand Versus Product Investment

A typical marketing department is inclined to invest in overall brand development

because this will lead to a more beneficial impact for their KPIs. On the other hand,

investment in product marketing suits the product manager’s KPIs better. The

decision of how to distribute marketing investments among brand development

and specific products is a strategic decision that should be made at the board level.

Point this out to management when necessary.

Product Conflict: Roadmap and Requirements

The roadmap is a heavily contested document that virtually all departments want to

influence. The marketing department is no different. Indeed, the number of inter-

esting and potentially worthwhile ideas is typically much bigger than can be

implemented. A product manager should say no to most these. At the same time,

a product manager needs to be on the lookout for features that convey the ‘allure of

innovation.’ Although these features will not drive sales, they demonstrate to your

customer that you are an ‘innovative player’ or ‘thought leader’ that is worthy of

their business.

Communication Conflict: Product Launch

The launch of a new product or product version requires careful orchestration of

many different stakeholders within and outside of your organization. The marketing

department is responsible for supplying all product promotion matters. However,

asking them to drop everything and start working on a particular product when that

product’s next version is nearing technical completion will result in protest and

conflict. It is best to make an organization-wide agreement on what is in a product

promotion package and the expected time for delivering such a package. Note that

this can take many different forms aside from the classical brochures and slide deck.

For example:

• Press conferences accompanied by a press release.

• Media buys, both online and offline (Google ads, posters).

• Product logo.

• Media and texts for the website.

• Public relations deals with strategic partners.

• Inclusion in the organizational newsletter.

• Social media presence.

Approaches to Addressing Conflicts with Marketing

To avoid and mitigate conflicts with marketing, a software product manager can:

• Ask the Board to define trade-off criteria for brand versus product marketing,

• Involve Marketing early and frequently in product strategy discussions,

• Agree what a product promotion package entails and the time required for

completion, and

236 6 Orchestration of the Organization’s Functional Areas

• Have a regular jour fixe meeting with Marketing to exchange information and

make decisions in a timely way.

6.3.3 SPM’s Focus Areas for Orchestrating Marketing

There are some areas that an SPM needs to focus on when orchestrating marketing:

• Positioning of product in marketing plan,

• Plan execution,

• Product launch,

• Channel and partner management,

• Selective participation in marketing events, and

• Trading off brand marketing with product marketing.

Measuring Marketing’s work and success have historically been difficult. The more

marketing is focusing on the internet, the easier measurement becomes. Fine-

grained marketing-specific KPIs that reflect customer behavior are collected to

measure the success of the communication efforts. Examples are:

• Opens and clicks: the percentage of people that open communication messages

and click on action links or buttons,

• Email submissions: the number of emails submitted each day/week/month,

• Requests for information: the number of requests for information (RFIs) or

requests for proposals (RFPs) received,

• Number of new customer contacts,

• Number of new business opportunities,

• Online conversions: conversion of all or specific online channels, and

• Number of trade show leads: the number of people that can be contacted thanks

to a trade show.

The marketing industry is claiming that they are turning themselves into a data-

driven industry, and a software product management organization should embrace

this trend.

6.4 Sales and Distribution

Companies establish a company-wide sales strategy within which the sales

activities for individual products are planned and executed. The more a software

company invests in sales, the higher the sales volume and profit margin usually are.

The economic considerations described in Chap. 2 and the marketing leverage

described in Sect. 6.3 explain this relationship. An important question is whether

the main objective of the product strategy is growth or profitability. The former

6.4 Sales and Distribution 237

http://dx.doi.org/10.1007/978-3-642-55140-6_2

maximizes the sales volume, the latter the number of licenses placed on the market.

The answer depends on to the position of the product in its life cycle (see Sect. 4.4).

Marketing measures create the necessary pull in the market and stimulate

demand. Sales activities provide the supplemental push so that products are pur-

chased and contracts signed. Sales success determines the top line, i.e. the total

corporate revenue and market growth. The actual split of responsibilities between

Marketing and Sales may differ from company to company.

There are two approaches to sales: inside and outside sales. Outside sales
involve interacting with customers face-to-face. Outside sales are common in

enterprise sales, where the sales process tends to be more complicated due to the

complexity of the problem space and customer decision making. Inside sales are
made remotely with sales representatives interacting with customers via the phone

or internet. As the Internet grows in importance as a channel to software customers

and as more software is delivered as a service, the role of inside sales is growing.

Distribution means making the product available to the customer for use.

Distribution can be under Sales’ responsibility, or with a central fulfillment unit.

Distribution can include the logistics needed to transport shrink-wrapped products

to retail outlets, offer downloads on the internet, or deliver the software product on

physical storage media to a customer after an acquisition. Manufacturing is usually

not an issue for pure software products or services except for shrink-wrapped

software. In the case of Software-as-a-Service, the provisioning of software in

clouds, i.e. hosting, is the equivalent of manufacturing and supply of physical

products.

The Sales and Distribution column in the SPM Framework lists the main tasks:

Sales planning addresses the development and negotiation of plans for all sales-

related activities. Sales are planned for a pre-defined timeframe, often a year. A

sales plan defines target values and incentives. The plans can be product-specific, or

for groups of products. They need to be synchronized with corporate and product

strategies and plans, and the Marketing plan.

Channel preparation means that the selected channels (see Sect. 3.6.3) are

enabled in time to sell a new product, version, or release. It includes skills

management and the provision of materials, website, and customer testimonials.

Sometimes this responsibility is assigned to Marketing.

Customer relationship management (CRM) means the systematic manage-

ment of a company’s interactions with customers, clients, and sales prospects. CRM

includes customer communication, knowledge management, and customer

requirements engineering. CRM must not only focus on short-term sales success,

but also on long-term customer relationships. Maintaining contact with existing

customers is extremely important, since satisfied customers are a reliable source of

information and future revenue, especially in the software industry. In comparison,

winning new customers requires far more time and effort, but it is a process that is

essential for further growth.

Operational sales mean the execution of the sales plan, tracking of the relevant

measurements, and taking corrective actions when measurements deviate from the

238 6 Orchestration of the Organization’s Functional Areas

http://dx.doi.org/10.1007/978-3-642-55140-6_4
http://dx.doi.org/10.1007/978-3-642-55140-6_3

plan. The execution includes offers and the negotiation of contracts, and the

management of offers and contracts.

Operational distribution means ensuring smooth order and distribution pro-

cesses, sufficient supply (in the case of physical distribution), meeting the terms of

service level agreements (in the case of software-as-a-service), stable and easy

online order and distribution, and smooth and correct billing and payment follow-

up.

The product manager’s orchestration responsibility includes the positioning of a

product in the sales and incentives plan and tracking of plan execution. He has to be

involved when product-specific commitments are given to customers. This involve-

ment is particularly important when customer requirements are traded off between

the short-term sales and long-term product perspective, and when Sales has to

deviate from the standard terms and conditions, price levels, or price structure.

Also, the product manager may decide to be selectively involved in pre-sales

meetings with key customers.

Understanding the Sales organization and related processes is important to

software product managers because, as part of their orchestration responsibilities,

they should attempt to influence the motivation of the Sales organization for their

product and ensure the salesforce is willing and able to sell their product.

6.4.1 Sales Motivation and Compensation

Compensation for sales professionals is different from that of other software

organizational functions in that a significant proportion of their compensation is

variable. Sales professionals are often compensated based on commission, which is

a percentage of the sales revenue they generate. As part of the sales planning

process, sales professionals can be given a sales quota, which is a monetary figure

representing the minimum amount of revenue they are expected to generate from

particular products or services. Setting quotas can be a powerful way to incent sales

professionals to focus on specific products or markets.

Customers are sometimes given a discount on the purchase price of software

products to encourage them to purchase it. Discounting is a powerful mechanism

for sales professionals to convince customers to buy. Discounts, however, lower

product-related revenue. We recommend strict governance rules for any pricing

decisions (see Sect. 3.10). In any case, Product Management must monitor the

discounting practices and balance the need to close sales with defined business

objectives to manage this trade-off.

6.4.2 The Sales Organization

Sales organizations often report to a board level position responsible for sales or

sales and marketing. Still, there is no single, widely accepted organizational

structure for the Sales function within the company or for the Sales organization

6.4 Sales and Distribution 239

http://dx.doi.org/10.1007/978-3-642-55140-6_3

itself. Sales may be given accountability based on a myriad of segmenting

dimensions such as geography, industry, customer size, or a combination of them.

The Sales responsibility and activities of an account manager for existing

customers are completely different from those required for new customer acquisi-

tion. The terms farmer and hunter can be used to describe these two different types

of sales representatives. Depending on the size of the company and on the product,

it can make sense to assign different persons to each of these two tasks or even to

establish special Sales units for new customers.

A vertical sales structure, one that is organized by industries, has become

increasingly popular and proven successful for both existing customer service and

new customer acquisition. Today, practically every software product vendor whose

target market is cross-industry, and most of the larger consulting and service

companies have such a vertical sales structure if the company size and critical

mass of the Sales organization permit this. The reason for the attractiveness of the

vertical structure lies in market expectations: Many customers no longer seek

information technology as such, but rather ICT-based solutions to improve their

business processes. Therefore, vendors must be able to describe the advantages of

ICT and its positive effects on the business processes of an industry or a single

customer.

A customer does not expect the salesperson to be an expert in their industry.

However, a customer expects that the salesperson knows the vendor’s products and

enough about the industry to explain how the offered products can be converted into

financial benefits for the customer. The winning market player will be the one

whose sales structures and processes can most convincingly communicate this type

of conversion.

The disadvantage of a vertical structure is that it does not allow comprehensive,

regional customer attention. In increasingly specialized ICT markets, the

advantages of focusing on an industry clearly outweigh the disadvantages of not

being able to provide regional attention. In some companies, the vertical sales

organization even takes precedence over and has a more binding character than

individual country or territorial organizations.

In a globalized world, it is no longer possible to give regional attention to key

customers. It is increasingly becoming a major competitive advantage to have a

Sales organization that operates on a global scale and is available to global

customers. Many large ICT vendors have therefore implemented concepts such as

global account management to provide a one-stop service to global clients. This

approach is also attractive to conceal internal conflicts between individual Sales

units from the customer.

6.4.3 The Sales Cycle

The process of identifying potential customers and selling them a software product

is often described as a series of steps that are known as the sales cycle. The goal of

Sales is to make the sales cycle as short as possible. Many definitions for the sales

240 6 Orchestration of the Organization’s Functional Areas

cycle are available from various sources, with many of them defining phases or

stages like these (Fig. 6.1):

The process of a customer buying a product is often referred to as the buying

cycle. It is important that the stages of the vendor’s sales cycle are aligned with

those of the customer’s buying cycle, particularly for complex sales.

6.4.4 Typical Areas of Conflict: Sales

In most companies, the relationship between Software Product Management and

Sales is conflict-laden. Typical areas of conflict include:

Getting Product-Related Commitments from Sales

While a product manager wants reliable commitments regarding the sales volumes

of his product, Sales is typically only willing to commit numbers for larger product

groups, but not for individual products. Consequently, the product manager often

complains that Sales is not sufficiently focused on his product. Sales will claim that

the product does not fulfill the current market requirements. Those conflicts can

only be overcome if both parties are forced to commitments early in the develop-

ment cycle of a product version. Such commitments can only be achieved if

executive management enforces them.

Getting Product Feedback from Sales

Their contacts with prospects, clients, and competitors make sales professionals a

valuable source of product-relevant information. The variable nature of their

compensation and the inherent difficulty of their job prevent many sales teams to

invest the time necessary for providing detailed feedback to the product team and

the product manager. Product managers and their leadership must negotiate with

Phase Description
Prospect Prospecting involves identifying potential customers

Contact The contact phase represents communicating directly with prospects identified in

the previous phase.

Identify

needs

The sales professional gathers information from the prospect to identify pains

and needs andassess if the vendor’s offering can address these pains and needs.

Propose

offer

The sales professional generates an offer. For complex solutions, e.g., enterprise

B2B solutions, the sales professional relies on others, sometimes from the

product team, to suggest the most attractive offer possible for the prospect.

Manage

objectives

Once the offer is delivered to the prospect, objections to the offer often arise. For

example, the prospect may feel the offer is too expensive.

Close The sales professional generates a contract and gets binding commitment from

the prospect to pay for the software product.

Fig. 6.1 Stages of the sales cycle

6.4 Sales and Distribution 241

sales leadership sufficient time and rewards for engagement and underscore the

critical and unique value of information coming from the sales organization.

Sales Incentives

Because of misaligned quotas and incentives, sales professionals may not be

motivated to give some products the attention that the associated product managers

expect. It is important for product managers to know and influence the product-

related incentives to ensure their product is receiving the focus from Sales it needs

to meet its business objectives.

Sales Price and Discounting

Pressure to close sales can incent salespeople to seek significant discounts and

thereby lower a product’s overall revenue and profitability. Product managers must

monitor discounting policy and practice to ensure that discounting isn’t compromis-

ing a product’s overall business objectives. Differing discounting policies between

products can result in some products’ being heavily discounted to compensate for

“discounting freezes” on others. Ideally, there are corporate pricing governance

rules in place (see Sect. 3.10).

Short-Term Customer Requirements vs. Longer-Term Market Requirements

To secure sales, sales professionals may need to request features that a small

number of customers, or even a single customer, requires. Product managers must

consider the opportunity costs of such investments, primarily related to diminished

investment in features that are broadly appealing. Features that are narrowly used

can generate significant development and maintenance costs over the life cycle of

the product and, consequently, increase complexity and erode profitability. The

business impact of alternative investments in the product and the cost impact of

implementing customer-specific features should be part of the product manager’s

arguments.

Impact of SPM Customer Engagement on Sales

It is important or even critical for SPMs to have direct contact with customers for a

variety of reasons. These include the gathering of feedback and validating product-

related plans. Customer contact should be coordinated with sales to reduce the risk

of endangering ongoing sales negotiations or the appearance that the different

organizations within the software vendor are not aligned.

Approaches to Addressing Conflict: Sales

Product managers should agree on a formal engagement model with Sales. That

model should include regular, timely face-to-face meetings to discuss strategic

product-related topics:

• Obtain the support of leadership to ensure that the Sales organization has the

appropriate incentives in place to position and sell the product manager’s

product(s),

242 6 Orchestration of the Organization’s Functional Areas

http://dx.doi.org/10.1007/978-3-642-55140-6_3

• Regularly review discounting policy and behavior to become aware of the

impact of discounting on the product’s revenue,

• Ensure that Sales understand the product strategy and market needs to set

priorities when sales are blocked due to the requirements of a small subset of

customers, and

• Actively keep the Sales organization apprised of customer engagement

activities, including updating CRM or similar systems of record.

6.4.5 SPM’s Focus Areas for Orchestrating Sales and Distribution

There are some areas that an SPM needs to focus on when orchestrating Sales and

Distribution:

• Positioning of the product in the sales plan,

• Sales plan execution,

• Product-specific commitments to customers (features and/or measurements),

• Handling of customer requirements (short-term sales vs. longer-term product

goals),

• Deviations from standard terms and conditions,

• Deviations from minimum price levels or price structure,

• Selective participation in pre-sales meetings,

• Skills of sales representatives,

• In bigger companies: sales representatives dedicated to product family vs. cross-

product, and

• Alignment of sales measurements with SPM’s responsibilities (product

vs. product group focus)

Measuring Sales’ work and success is easy. It can be measured in revenue, number

of licenses or contracts, and market share, either new or total. The selection of

measurements depends on the stage of the product’s life cycle (see Sect. 4.4) and

the company’s strategic focus.

6.5 Service and Support

The service unit is responsible for the services that are offered and provided to

customers. The offering includes both product-related and consulting services. The

latter are not product-related, but customer-specific like custom software develop-

ment or system integration, and therefore out of SPM scope.

Product-related services include education, installation, customization,

operations, maintenance, technical support, and helpdesk covering technical and

non-technical problems. Typically, these services are priced separately. Sometimes

they are bundled with software product offerings.

6.5 Service and Support 243

http://dx.doi.org/10.1007/978-3-642-55140-6_4

The term support is often used for the services that help customers with product-

related problems. In some organizations, support may be organizationally separated

from other services. Also, there can be internal support for marketing and sales.

Product managers need to have a broad and deep understanding of customer

pains to identify opportunities to address customer challenges with services.

Services can be critical for customer adoption and retention, particularly for

products that address complex problems.

The vendor as well as partners can provide services. Even companies that would

prefer to relegate service delivery to partners can be compelled by customers to

provide them as well as they expect a complete solution and don’t want to establish

an additional business relationship.

The Service and Support column in the SPM Framework lists the main tasks:

Service planning and preparation address the development and negotiation of

plans for all product-related service activities during a given timeframe, often a

year. The planning includes the definition of target values and incentives. The

plans need to be synchronized with product strategies and plans, and the

marketing plan. Preparation includes the development of a technical basis if

required, the forecast of demand in collaboration with SPM, resource manage-

ment, skills development, and development of marketing material in collabora-

tion with Marketing.

Service provisioning means the execution of the service plan, tracking of the

relevant measurements, and taking corrective actions when measurements devi-

ate from the plan.

Technical support means the fulfillment of maintenance contracts. The typical

support structure is:

• Level 1: Helpdesk,

• Level 2: Technical Maintenance, and

• Level 3: Change Team (typically in or with Development).

A call center on level 1 answers telephone calls or receives inputs from users. The

call center staff does not need to have profound technical product knowledge but

should be able to answer basic questions and differentiate between product failures

and user errors. On level 2 dedicated product specialists deal with failure analysis

and debugging. Level 3 usually involves the product developers, also known as the

change team, and handles particularly difficult problems and fixing.

As a rule, 80–90% of all problems arising at the levels 1 and 2 should be dealt

with on the respective level. Only 1–4% of all problems reported on level 1 should

be permitted to reach level 3. Significant deviations from this rule of thumb, i.e. a

higher percentage at level 3, require thorough analysis. Such deviations constitute a

cost and resource problem as the change team at level 3 constitutes a rare resource

whose other job may be coding new function. The deviations may be caused by a

product quality problem or by level 1 and 2 staff members being poorly qualified, a

problem that can be addressed by training.

244 6 Orchestration of the Organization’s Functional Areas

The inputs obtained in the customer calls need to be categorized in bug reports or

defects, feature requests, and non-technical problems. These customer inputs

should be documented in a customer issue database.

Marketing support means providing help to Marketing. It may include the

production and distribution of marketing material, organization and execution of

marketing events (e.g. conferences and user groups), and documentation and

tracking of marketing activities and their results.

Sales support means providing help to sales representatives and channels. It

may include sales-related inbound and outbound communication with customers,

typically through a call center. Also, it may concern the organization and execution

of sales events (e.g. customer visits and meetings), documentation and tracking of

sales activities and their results, and the provision of marketing material on request.

The product manager’s orchestration responsibility includes the management of

product-related services as part of the product offering, tracking of service execu-

tion, resource management, and skills development.

Product-related services include:

• Installation support,

• Customization,

• Operations (for SaaS offerings),

• Product training for various target groups,

• Helpdesk, and

• Technical support and maintenance.

Service and support produce product-related documentation. Such documentation

is required both internally and externally. Internal documentation includes

documents like specifications and technical manuals. Development usually

develops this documentation, and it is not intended for customers. External docu-

mentation refers to all documentation intended for use by people outside of the

vendor company like end users, ecosystem players, or service partners. For end

users’ guidance, printed and online manuals, help functions, or step-by-step

instructions need to be specifically developed. This work requires collaboration

between UX design, software development, technical support, and marketing. This

work needs to be orchestrated by the product manager.

Another important element of product-related services is product-specific train-
ing. Training is offered to the company’s sales and marketing, technical support,

maintenance staff and, if relevant, to the customers. In larger companies, the

provision of training requires a multiplier approach. Developers and product

managers conduct initial training for the training staff (train the trainers) that

subsequently conduct the training. Such elaborate training programs must be

planned far in advance. The responsible product manager must ensure that the

relevant organizational units allow for the training and provide in time the required

workforce and budget.

Support services interact with customers after the sale, often at particularly

critical times, for example, when an issue is preventing the software from

6.5 Service and Support 245

performing important functions. Service organizations also get deep insight into

how customers are using the software product and, thus, which parts of the product

cause customer dissatisfaction. It is for these reasons that it is important that SPMs

regularly engage with support. Product managers should seek to understand support

requirements and challenges and prioritize features that improve supportability

based on sound business criteria. Although supportability enhancements don’t

generate the same customer excitement as features aimed at end users, such

investments can improve customer satisfaction. As a result, support costs become

lower, and the business performance of the software organization improves.

Also, service and support professionals need to understand the product’s value

proposition and roadmap and should know to whom to refer a customer if they

discover product-related opportunities.

Although services can play an important role in providing good customer value,

the definition and management of services require knowledge and skills that differ

from those required to manage software products. Product managers should play a

key role in shaping the product-related service strategy (see Sect. 3.7), identifying

services opportunities, and defining service-related requirements for their product.

Nonetheless, they should engage other professionals with the appropriate level of

experience to do the detailed services definition, planning, and delivery.

Since Service organizations focus on various aspects of delivery and mainte-

nance, they may report to the sales organization. Or, Services may be set up as a

peer organization to sales and marketing or report to another organization entirely.

It is common for Services organizations to have a planning cycle and business

model that is independent of the product organization (see Sect. 2.4).

6.5.1 Typical Areas of Conflict: Service

Service and product management sometimes find themselves in a state of conflict.

We highlight the following sources of conflicts and discuss ways to mitigate them.

Getting Feedback About the Product from Services

Because they often help customers deploy and use software products, services

personnel are a rich source of feedback about the product. Unfortunately, people

in the Services organization are often incentivized to spend as much time as

possible working on customer projects. This work focus leaves them and their

leadership with little incentive to invest time in providing feedback or otherwise

engaging with SPMs. SPMs should seek to develop relationships with members of

the services organization and should lobby for a reasonable amount of time per year

to provide feedback to the product team.

Sharing the Product Roadmap/Positioning with Services

As previously noted, Services can spend a considerable amount of time with

customers before and after the sale. They may, therefore, be able to position new

features or offerings with customers. For this reason, product managers should

246 6 Orchestration of the Organization’s Functional Areas

http://dx.doi.org/10.1007/978-3-642-55140-6_3
http://dx.doi.org/10.1007/978-3-642-55140-6_2

invest time in sharing the roadmap and associated positioning with the Services

organization.

Prioritizing Features for Markets vs. Individual Customers

The Services organization’s involvement in customer projects may incentivize

them to advocate for product features that have low appeal to other customers.

SPMs should be prepared to explain investment decisions to Services personnel and

underscore the necessity of meeting the needs of multiple stakeholders like

customers.

Product Enablement for Services Personnel

Product managers should ensure that Services personnel receive adequate informa-

tion and training about the products, especially in conjunction with new releases.

Inadequate enablement may result in low-quality work on their part on customer

projects or the perception that others, e.g. third-party services providers, have

superior product knowledge.

Provisioning and Hosting

With Software-as-a-Service offerings, the software organization is responsible for

hosting services. A lot of companies work with external hosting providers. An

in-house hosting approach offers opportunities for improving time-to-market with a

DevOps approach (see Sect. 6.2.1), however. The key success factor for

implementing DevOps is the definition of fast and flexible collaboration between

Development and Operations.

Product Team Support for Services Organizations

The Services organization may need support from the product team for solution

design and bug resolution. Product managers should attempt to provide the Services

organization the help it needs while minimizing the impact on product

development.

Ensuring Customer Satisfaction with Support Issue Resolution

Support professionals and organizations are often measured on how quickly they

resolve customer issues. The KPI can incentivize them to mark support incidents as

closed before the customer is satisfied with the resolution. Frequent engagement

with the Support organization and the definition of guidelines or practices

indicating when SPM should be made aware of important issues can help SPMs

to manage this risk.

Balancing Investment in Supportability Features with Other Priorities

A product should be easy to support. The required investments must be balanced,

however, with investments that ensure appropriate market demand. All too often,

investments in supportability receive lower priority than features that customers

request. Unbalanced decisions result in low business performance due to support

6.5 Service and Support 247

costs. SPMs should seek to assess investments in supportability based on business

criteria.

Ensuring Support Professionals Have Adequate Knowledge of the Product

Support professionals must be trained on how the product functions from the

perspectives of the end-user and backend. For customer satisfaction, it is in the

SPM’s best interest to ensure that the Support organization understands not only the

technical aspects of the product but also the business goals of the product. Such

understanding gives them context that can be important in understanding the nature

and magnitude of customers’ support issues. The product team may need to supply

product documentation aimed at Support professionals in additional to documenta-

tion intended for customers.

Timely Communication of Support Issues that Impact Customer Satisfaction

SPMs should work with the Support organization to define guidelines for when

SPM should be made aware of issues that may affect customer satisfaction or

business performance. These issues must be routinely brought to the attention of

SPMs that make the appropriate business decisions. Also, since SPMs often engage

with a customer, it is important that they not be caught unaware of critical issues.

6.5.2 Approaches to Address Conflict: Service and Support

To avoid and mitigate conflicts with Service and Support, a software product

manager should:

• Create formal plans to ensure Service personnel understands both the business/

functional and technical aspects of the products, including positioning and

appropriate hand-offs for customer queries regarding product roadmap and

strategy and the value of the overall portfolio,

• Define reasonable practices to ensure that development capacity is not lowered

thus impacting business objectives by direct queries from Service to

Development,

• Make themselves available to help Service personnel to navigate the Develop-

ment organization to ensure timely resolution of product-related issues encoun-

tered by the Service organization,

• Explain Support professionals the important role they play in customer satisfac-

tion, so they can better assess tradeoffs between this and support goals such as

closing open issues as quickly as possible,

• Play an active role in upskilling Support with each new release, including the

business motivation,

• Invest time in working with or “shadowing” Support to understand supportabil-

ity requirements and Support’s daily challenges better,

• Elicit supportability requirements from the Support organization and involve the

Support organization in release planning, and

248 6 Orchestration of the Organization’s Functional Areas

• Collaborate with Support to define reasonably clear criteria that trigger Support

to contact SPM regarding issues that are deemed relevant.

6.5.3 SPM’s Focus Areas for Orchestrating Service and Support

There are some areas that an SPM needs to focus on when orchestrating Service and

Support:

• Consider and manage product-related services and documentation as part of the

offering,

• Service execution,

• Skills of Service specialists,

• Frequent analysis of incoming service calls (often good indicators for problems

with quality, usability, and functional coverage), and

• Resource management (avoid bottlenecks that impact product development,

sales, and customer satisfaction).

Service units are typically measured on revenue and customer satisfaction. They

usually follow a service business model (see Sect. 2.4).

6.6 Orchestration Skills

6.6.1 Virtual Teams and the Matrix Mindset

Product managers are challenged to achieve “influence without authority, account-

ability without control” [Hall13]. This challenge is the same that managers in

matrix organizations face.

A certain mindset and leadership skills are required to succeed in such a setup.

Hall compares two very different mindsets regarding matrix work: a successful

matrix manager “relishes the flexibility, autonomy, and breadth that the matrix

gives them.” This statement describes the approach that helps software product

managers succeed in orchestrating other functions. Someone believing that things

can only get done in a traditional organizational structure, “where managers

thought they had all the answers and cascaded clarity, authority, and responsibility”

will find it difficult to succeed in a matrix organization. This mindset is the one of

the matrix victim, which is not helpful for orchestration tasks.

Hall summarizes key beliefs that characterize these two different mindsets

(Fig. 6.2):

6.6 Orchestration Skills 249

http://dx.doi.org/10.1007/978-3-642-55140-6_2

6.6.2 Sources of Power

Because the various company functions rarely report to the SPM organization,

software product managers must find creative ways to influence to achieve product

vision, goals, and objectives. Understanding what power is, where it comes from,

and how to increase it can help software product managers increase their influence.

Social communication studies have theorized that leadership and power are

closely linked. They have further suggested that some forms of power affect

one’s leadership and success. That idea is often used in organizational communica-

tion and throughout the workforce.

The social psychologists French and Raven released a study in 1959

[FrenRav59], in which they define the terms power, the ability to influence others,

and identified the bases of power described in Fig. 6.3.

Product managers typically exert the most influence using referent and expert

power. Depending on the organizational setup, their legitimate power is limited,

and they have little or no reward or coercive power over other organizational

functions.

6.6.3 Managing Conflict

Product managers are expected to orchestrate across the organizational boundaries

of an organization, without the power to direct other business functions. Conse-

quently, conflict with other business functions will occur that prevents product

managers from reaching their goals. Nevertheless, conflict is also beneficial for

organizations. Disagreement necessitates two parties to negotiate to find a single,

mutually satisfactory solution [ZarRub00], a solution that is often of superior value

than if it would not have been negotiated [RaiRicMe07]. This chapter introduces

selected approaches to conflict resolution, the human-process and techno-structural

approaches [Rahim15], that include the possibility of intervention by a third party

after escalation.

Matrix Victim Successful Matrix Manager
My goals are not clear. Here are the commitments I have chosen.

I do not have a job description,and I am not

clear what I should be doing.

This is what needs to be done.

I do not have the authority to get things done. Who do I need to influence to get this done?

I cannot be accountable for things I do not

control.

Where can I get the resources to meet my

commitments?

My manager doesn’t empower me. What have I done to earn the right to take on

more responsibility?

Fig. 6.2 Beliefs about matrix organizations [Hall13]

250 6 Orchestration of the Organization’s Functional Areas

The human-process approach “attempts to improve organizational effectiveness

by changing members’ attitudes and behavior regarding a conflict.” The approach

suggests achieving this goal by educating the concerned stakeholders on the five

styles of handling interpersonal conflict. Figure 6.4 gives an overview, and Fig. 5.9

briefly summarizes each style, differentiated on two dimensions: concern for the

self (how much a person attempts to satisfy his personal interests) and concern for

the others (how much a person wants to satisfy other parties’ interests) (Fig. 6.5).

The techno-structural approach attempts to “improve organizational effective-

ness by changing the organization’s structural design characteristics” or managing

the amount of conflict by introducing organizational changes. A variety of organi-

zational change techniques exists. Weiss and Hughes introduce a comprehensive set

of best practices for managing disagreements at the point of conflict

[WeiHug05]. These practices enable employees in resolving conflicts themselves.

Weiss and Hughes also suggest approaches for managing conflict upon escalation

up the management chain. When necessary, employees escalate a conflict to a

superior, who decides on the employees’ behalf. Weiss and Hughes recommend

implementing three tactics for each type of conflict resolution. These tactics

transform conflict from a major liability into a significant asset. We summarize

Basis Characterization
Reward

power

Reward power is based on a person being able to control the likelihood that

another person will be rewarded. Close alignment of SPM with executive

leadership may offer SPM some reward power.

Coercive

power

Coercive power uses the threat of force to gain compliance from another with

physical, social, emotional, political, or economic means. Typically, SPMs have

very little coercive power over other functions as they have no direct

management authority over them.

Legitimate

power

Legitimate power comes from an elected, selected, or appointed position of

authority and may be underpinned by social norms. An employee’s direct

manager often can exert legitimate power because the organization has

authorized that manager to influence the people that report to him or her. SPMs

typically have some legitimate power granted to them by the organization. Some

development life cycle models, like Scrum, empower the product owner, who

may report to the product manager, by giving the product owner ownership of

the product backlog.

Referent

power

Referent power is based on one person’s strong identification with another. A

person identifying with another person is likely to adopt attitudes and beliefs

similar to that other person. Referent power is often the primary source of power

for software product managers. Product managers can increase their referent

power by defining and executing a compelling product strategy and investing in

trustful relationships with other organizational functions.

Expert

power

Expert power is based on one person’s perception of another’s knowledge in a

given area. For example, a person’s thinking and behavior regarding a legal case

might easily be influenced by advice from a lawyer. SPMs often have expert

power based on their knowledge of stakeholders, the business aspects of the

software product, and the domain addressed by the software product.

Fig. 6.3 Bases of Power [FrenRav59]

6.6 Orchestration Skills 251

the tactics in Figs. 6.6 and 6.7. Be aware that the applicability of escalation depends

on the corporate culture of an organization.

Fig. 6.4 Styles of handling interpersonal conflict, [FricGru08] based on [Rahim15]. Grey-shaded
desired, value-creating behaviors

Yielding
low concern for self,

high concern for

others

A party sacrifices his personal interests to satisfy the interests of the

other party. The former reacts to a perceived hostile act of the latter

with low hostility or even positive friendliness. During a negotiation,

the former will attempt to play down the differences and emphasize

commonalities between the two parties.

Dominating
high concern for

self, low concern for

others

A competitive or dominating individual will do anything to achieve

their personal objectives. Consequently, he or she ignores the needs and

expectations of the other party. A dominating person tries to impose his

will by sheer force, e.g. on subordinates, and commands their

obedience.

Avoiding
low concern for self,

low concern for

others

A party avoids negotiation by “I see no evil, hear no evil, and speak no

evil.” The party attempts to postpone an issue, withdraw from the

situation, and refuse to acknowledge the conflict. When the conflict is

avoided, the interests of neither party are satisfied.

Problem-Solving
high concern for the

self, high concern

for others

Leads to full collaboration between parties. All try to be open, exchange

information, and examine differences to reach a mutually acceptable

solution. This style has two distinctive elements: confrontation and

problem solving: “confrontation involves open and direct

communication which should make way for problem-solving. As a

result, it may lead to creative solutions to problems.”

Compromising
medium concern for

self, medium

concern for others

Compromising is characterized as give-and-take or sharing and often

used to conclude negotiations rapidly. Both parties give up something to

make a mutually acceptable decision. They might split the difference,

exchange concessions, or search for middle ground. This style is in the

middle of all other styles.

Fig. 6.5 Styles of handling interpersonal conflict, based on [Rahim15]

252 6 Orchestration of the Organization’s Functional Areas

Devise and implement a common method for resolving conflict

A company-wide process for resolving disagreements prevents useless debate about who is right

or wrong and haggling over small concessions. A well-designed conflict resolution method will

reduce transaction costs and foster an environment in which innovative outcomes emerge from

discussions. Unfortunately, no conflict resolution method is universally applicable. A conflict

resolution method must offer a clear, step-by-step process and integrate the process in existing

business activitiesto be effective. Exceptionally used processes will be unsuccessful.

Provide people with criteria for making trade-offs

From time to time, two parties need to make zero-sum trade-offs between competing priorities –

situations in which it is unclear which decision is best. The criteria for making such choices

must be defined for the whole organization. E.g., salespeople that know that 5 points on a

customer satisfaction scale are more important than 10 points of market share are capable of

making informed decisions. The criteria will foster productive discussion of common

objectives.

Use the escalation of conflict as an opportunity for coaching

Senior management should view each escalation of conflict as an opportunity to teach

employees about how to resolve conflicts effectively. Management should push their respective

employees to consider “the needs of the other party, alternatives that might best address the

collective needs of the other party, and the standards to be applied in assessing the trade-offs

between alternatives.” While this approach requires time from senior managers initially, it

reduces the time senior managers need to spend on resolving escalated conflicts in the long run.

Fig. 6.6 Tactics for managing disagreement at the point of conflict

Establish and enforce a requirement of joint escalation

In many conflicts, the parties try to get support from their direct leadership. Prevent a vicious

circle by enforcing people to present disagreements to their management together. Now, the

decision maker has a balanced view of the perspectives on the conflict, its causes, and possible

solutions. Moreover, the number of problems that are escalated decrease.

Ensure that managers resolve escalated conflicts directly with their counterparts

An unresolved dispute tends to travel up the management chain until a senior manager with the

appropriate organizational influence makes a unilateral decision. This dynamic breeds

organization-wide resentment in the form of “we’ll win next time, ” making friendly conflict

resolution increasingly difficult. Moreover, unilateral decisions lead to inefficiency, ill feelings,

and bad decision-making. Instead of propagated escalation, managers should formally commit

to dealing with escalated conflicts directly with their management counterparts in other

departments.

Make the process for escalated conflict resolution transparent

Having resolved a conflict, managers at most companies announce the decision and move on.

This behavior prevents employees from learning how to resolve similar issues in the future.

Management should explain instead how the specific aspects were weighed and how the

decision was reached. No tevery single detail of the process needs to be shared, but the relevant

trade-offs honestly discussed and people enabled for resolving future conflicts.

Fig. 6.7 Tactics for managing conflict upon escalation

6.6 Orchestration Skills 253

6.6.4 Negotiation Skills

Negotiation is a discussion for reaching a shared agreement among multiple parties.

As a leader in the product organization responsible for aligning the requirements

and efforts of multiple stakeholders, negotiation is a critical skill for most software

product managers. Product managers negotiate regarding the following topics,

among others:

• Release scope and timing with executive management, Development, and

others.

• Budget for functions like Marketing and Sales.

• Contracts with third parties like software suppliers or service providers.

• Product pricing and discounting with individual customers.

The Harvard Negotiation Project developed the concept of principled negotiation
as described in their seminal work on negotiation, “Getting to Yes” [FiUrPa11] that

was originally published in 1981 and elaborated into a systematic approach to

negotiation [RaiRicMe07]. The concept addressed what they considered

non-productive negotiation approaches and tactics. Principled negotiation

encourages negotiators to bargain over interests rather than positions. It defines

four principles:

• Separate the people from the problem: by nature, people often conflate the

relationship with the substance of the conflict. Fears and perceptions can be

turned into better understanding by discussing each other’s emotions.

• Focus on interests, not positions: a position is what a party in a negotiation is

willing or unwilling to accept. Interests represent the party’s wants or needs.

• Invent options for mutual gain: creatively think of options that address negotia-

tion parties’ interests.

• Insist on using objective criteria: these criteria provide a means of resolving

differences in interests outside the context of the negotiating parties’ wills.

Principled Negotiation also defines the concept of a Best Alternative to a
Negotiated Agreement (BATNA). The BATNA is the most advantageous alternative

course of action a party can take if negotiations fail and an agreement cannot be

reached. A party in a negotiation should typically not accept an outcome that is less

desirable than their BATNA. It is important to not only consider your BATNA

when negotiating, but also that of the other parties.

254 6 Orchestration of the Organization’s Functional Areas

SPM Today and Tomorrow 7

Companies are usually founded to participate in the economy as organizations that

exist in the long term. In spite of all modernistic focus on the short term, it must be a

key objective of any executive management to make the company’s success

sustainable. Based on this concept of sustainability, this book emphasizes the

importance of state-of-the-art software product management for the success of

companies that have software(-intensive) products in their portfolio.

In this last chapter, we want to look into the future of SPM (Sect. 7.1), derive

conclusions from analyzing the state of practice (Sect. 7.2), and describe how SPM

can be applied in different business scenarios (Sect. 7.3). Finally, we present

ISPMA, the International Software Product Management Association, and how

you can get value from ISPMA (Sect. 7.4) as a software product manager or a

company.

7.1 The Future of SPM

Since software is not only becoming more and more pervasive in the form of

standard software products, but also as embedded software in other industries’

products and services, the value of software as a critical asset is increasingly

recognized. This asset plays a major role in the sustainable economic success of

the respective companies and therefore needs to be managed in a comprehensive

business-driven way, which is exactly what Software Product Management (SPM)

is about. With trends like Cloud, Internet of Things, Industry 4.0, fifth-generation

telecommunication networks (5G), smart systems like self-driving cars etc., soft-

ware is becoming the number 1 value driver in more and more industries. Harvard

professor Michael Porter analyzed this development in recent articles [PortHepp15,

PortHepp14]. We are seeing more and more tightly integrated systems with soft-

ware, hardware, telecommunications (ICT), etc. that redefine the relationship

between human beings and technology.

Springer-Verlag GmbH Germany 2017

H.-B. Kittlaus, S.A. Fricker, Software Product Management,
DOI 10.1007/978-3-642-55140-6_7

255

With the growing importance of software, we are convinced that the establish-

ment of and focus on software product management will enable the companies in all

these industries to cope with future business and technological challenges in a better

way. And challenges will abound. Most companies in non-software industries are

facing severe cultural and skill issues that make it difficult for them to embrace the

opportunities that software can open up for their businesses. Serious change

management is required top-down, i.e. from executive management, but also

bottom-up. Here software product managers can help as change managers who

keep the organization on track towards “software thinking”.

Corporate IT organizations have often considered themselves as project-driven

service organizations. There is increasing awareness that a corporate IT

organization’s portfolio of software applications constitute sustainable assets not

only for IT, but for the corporation as a whole. So a pure project view is not

sufficient. They require a life cycle view that can be institutionalized through the

establishment of SPM. In total, these developments broaden the applicability of the

concept of SPM across industries significantly.

In Asia and other regions in the world where the software industry has been

primarily focused on providing offshore outsourcing services, there is increasing

interest in establishing a software product business. Reasons are that offshore

outsourcing does not grow as much anymore as it used to, and that in a lot of

these regions there is growing demand for localized standard software products and

internet services, e.g. in India. Companies who want to address this demand need to

establish product organizations including the role of software product manager, and

need to change their business model and culture (see Sect. 2.4).

The combination of all the new technologies produces unprecedented amounts

of data about customers and things (as in “Internet of Things”). So access to this

data, aggregation and interpretation become key capabilities within companies.

This creates opportunities for “data products”, i.e. offerings by vendors where the

main deliverable is data. Such products already exist for certain markets like stock

markets or pharmaceutical markets. It is an interesting area for research and

consulting how the concept of software product management can be adapted to

become applicable to the management of these data products.

A software product management survey conducted by Andrey Maglyas and

Samuel Fricker in 2014 produced some results regarding the future of software

product management ([MaglFri14], quotes from participants in quotation marks):

All respondents agreed that SPM will play an important role in the future. With

advances in technologies and tough competition in the market, empowered, sys-

tematic, and consistent SPM is important for software organizations to excel.

Overall, based on the answers from the respondents three directions on the future

of SPM can be identified:

Increased Awareness and Importance
In many companies SPM is still immature today [MagNiSmo12]. Companies try

different approaches to adopt software product management practices in order to

deal with constantly changing markets and technology trends, but the definition of

256 7 SPM Today and Tomorrow

http://dx.doi.org/10.1007/978-3-642-55140-6_2

role and responsibilities of product managers is still far from being mature, under-

stood and recognized [MagNiSmo13].

There will be a better understanding of how important the product manager’s contribution

is to the success of software-based offerings (especially given that the technical feasibility

is becoming less of an issue). Therefore, product managers will be increasingly recognized.

Certification, Standardization, and Education
As one of the respondents said

It [software product management] will be more formalized, since the right product man-

agement is probably the most efficient investment you can make in a product, regardless of

its place in the life cycle.

The product manager can be seen as an example of a middle manager who acts

as a “linking pin” connecting different parts of the organization [FloyWool94]. In

this position, product managers act as interpreters and implementers of the

decisions, but also mediate between strategic and operational levels

[MagNiSmo13]. This requires a deep understanding of the role and responsibilities

of SPM in general and the ability to map this to a company-specific organizational

structure and work practices of functional units like marketing, sales, development,

and support. As long as product managers learn everything by doing, they fre-

quently miss best practices already known in other companies. Therefore, education

in product management will be the next milestone in accepting and spreading the

discipline from self-learning to industry-wide practices. Serious certification will

certainly help in this process both to encourage personal development and to help

companies to identify qualified software product managers.

More Authority
The term “authority” can be interpreted in two different ways:

• Hierarchical authority in a management hierarchy enabling SPMs to implement

any decisions they make with their own team reporting to them.

• Personal authority based on personality, experience, recognition and respect.

Product managers usually have no direct subordinates, and this differentiates them

from other middle managers. This means that their hierarchical authority is limited

and their role may be restricted to the role of advisor only [MagNiSmo13] or “cross

functional leadership with no authority.” Many of the respondents expect having

more authority in the future. If they mean hierarchical authority we interpret this as

wishful thinking only and do not see any signals for companies giving more

hierarchical authority to product managers in the near future, exceptions granted.

If they mean personal authority we agree with this assessment. The more executive

management values the SPM role and communicates the corresponding positioning

accordingly, the better are the prerequisites for a well-educated and experienced

SPM to achieve a higher level of personal authority. This in turn makes it easier for

7.1 The Future of SPM 257

an SPM to convince and influence customers, executives, and colleagues in the

organization.

For the IT industry, prices have been going down so much that processor and

storage capacity and communication bandwidth have already become commodities.

Cloud computing is firmly established and shows continuous significant growth

rates. In a lot of areas, capacity considerations are no longer the limiting factors that

they used to be. This opens the door to a new phase of innovation with software as

the key component. After a phase of about 15 years in which innovation was very

much driven by the consumer business, innovation areas like Internet of Things,

Industry 4.0, Big Data e.a. are driven by the enterprise business side again.

It is increasingly difficult for corporate IT organizations to stay on top of all

these changes and innovations. Technology-driven start-ups come up with

specialized new business processes and quickly take away market share,

e.g. fin-techs in the financial services industry. “Digital Natives”, the generation

that has been used to PC games and the internet before they could even talk, are

entering the workforce. They expect the same IT capabilities at their workplace that

they are used to at home. They will not join a company that does not support their

work style and life style adequately. Plus a company cannot benefit from their

abilities to the full extent if it does not provide the appropriate environment. So the

move to “Bring your own device” that a lot of companies have implemented can be

seen as a response to this challenge, but it will not be sufficient.

The technological changes will continue to lead to innovative new business

models some of which will have significant disruptive power. The role of software

product manager will become even more important for continuously bringing

together technology and business anew, not only in software vendor companies

and corporate IT organizations, but across all industries.

These developments provide hugh opportunities for research. We can only list

some topics as examples:

• Analytics for software product management.

• Correlation between a product manager’s authority and product success.

• Correlation between software pricing approach and product success.

• Correlation between ecosystem strategy and product success.

• Software category building in different product scenarios and business

scenarios.

7.2 The State of Practice

The role of the software product manager is firmly established in North America.

One can hardly find any software vendor company that does not employ such a role.

In Europe, the majority of software vendor companies have that role as well. Even

in Asia/Pacific and other parts of the world, where the role is not commonly

established yet, we see examples of strong companies like Samsung or some

Chinese companies that have adopted the role. Also, there is a growing trend

258 7 SPM Today and Tomorrow

towards adoption in corporate IT organizations and companies in non-software

industries that produce software-intensive products and services.

While the term “software product manager” is most often used for the role, there

are many other terms used as well (see Sect. 2.6). Also, we observe differences in

the way the role is defined and lived (see Sect. 2.6), often a consequence of the

specific business environment (see Sect. 7.3).

ISPMA Fellow Members Andrey Maglyas and Samuel Fricker conducted a

software product management survey in 2014 [MaglFri14]. They collected the

following quotes from participants in quotation marks):

Skills and Education
The need for SPM knowledge, but a lack of specialized education was constantly

claimed by the respondents, e.g. “Even small software companies can now build

business applications just like Oracle, SAP, etc. but typically the smaller companies

do not have trained SPM professionals. Therefore the training becomes more

important.”

The respondents considered global competition, new markets, lowered entry

barriers, and increased importance for sustainable strategy as the main drivers for

the need of SPM education to acquire and train new skill sets to manage software

products. Another lacking skill identified by the respondents is orchestration.

Lacking skills product managers are learning by doing which can have a negative

effect on the product.

To decrease the number of failures and bad decisions made by immature product

management and to make the hiring process easier and more convenient, the

respondents have proposed standardization and professionalization as a solution.

The standardization should help to improve the “lack of consistency or consensus

about product management roles and responsibilities across companies.” Product

managers have difficulties in finding comprehensive information work guidelines

online. Standardization and professionalization may also address that need for

knowledge.

As SPM is a multidisciplinary field, companies struggle with defining the skill

requirements when appointing new product managers.

Companies don’t know how to hire product managers. They tend to focus on just one facet

of a multifaceted job. For example, some will look for domain knowledge while others look

for computer science training. I think an educational path would provide some degree of

clarity.

Software Product Management Challenges
Lack of education and standardization in SPM are not the only challenges today.

Although the respondents reported unclear definition of the role as one of the main

challenges, we tend to consider this lack of clarity as a result of other challenges

like too many responsibilities and little authority. With too many responsibilities, a

product manager can easily keep herself busy with purely tactical activities like

endless customer meetings and lose the focus on strategic activities like

7.2 The State of Practice 259

http://dx.doi.org/10.1007/978-3-642-55140-6_2
http://dx.doi.org/10.1007/978-3-642-55140-6_2

roadmapping and product strategy. Another risk of being a “multipurpose person”

is receiving more and more requests to fill many tasks ranging from development to

user experience design to marketing, sales and support. However, while being in

charge of many activities critical to the product success, product managers rarely

have authority in practice. They are “often not sufficiently empowered by manage-

ment and cannot make market-facing decisions or resist development’s technically

motivated agenda.” Such lack of authority is a characteristic that distinguishes

technically oriented product managers from more business-oriented product

managers or senior product managers [MagNiSmo13].

The other reported challenges were related to general challenges of development

and management of software products: customer understanding, rapidly changing

environment, prioritization, coordination, and resource management. Regarding

resource management, product managers rarely have their own resources and

must make a request to higher management every time he or she needs extra

resources for the product [MagNiSmo13]. So product managers need to identify

resource gaps and predict a shortage of resources in order to request them from

higher management in time.

Software Product Management Activities
To bring some insight to SPM in practice, the respondents were asked to name the

most important SPM activities to manage a product properly. They mentioned:

market analysis, requirements management, communication with stakeholders,

customer analysis, roadmapping, orchestration, product life cycle management,

product strategy, prioritization, vision, product planning, and product analysis.

All of these 12 activities are explicitly or implicitly contained in the ISPMA

SPM Framework as shown in Fig. 7.1.

Most companies focus on a subset of activities prescribed by the framework,

primarily in the area of core SPM activities. However, in the area of Product

Strategy a number of activities listed in the ISPMA SPM Framework are not

covered by a lot of product managers. This is a serious gap that companies need

to address if they want to become more successful.

The fact that the survey results show Customer Analysis as a key activity can be

interpreted in two ways. One is that knowing the market and what customers are

doing with the product is highly important for product managers. The other one is

that in some companies SPM tasks are mixed with marketing tasks.

Having time to actually be a product manager—roles in every company are so different but

overall, product managers seem to be the all-in-one job role, putting down fires, solving

crisis, running after budgets and resources, which leaves little to no room to actually know

what your roadmap should look like.

Therefore, prioritization is not only relevant with regard to product

requirements, but also for the self-organization of the SPM.

In general, there is no single magic recipe for the definitions of responsibilities and

the organization of software product management. These questions have to be

260 7 SPM Today and Tomorrow

answered dependent on the objectives of the company, the products to be managed,

the existing organizational structure and the company’s culture. We argue that

Software Product Management has the responsibility for the sustainable success

of a product in the market. Success depends on allowing the software product

managers to focus on the important items and not be overwhelmed by the urgent

day-to-day necessities.

7.3 SPM in Different Business Scenarios

The concept of software product management described in this book and in

ISPMA’s syllabi is business-context-agnostic and therefore applies to a wide

range of industries. However, there are some specific considerations in certain

business contexts as described in the previous two sections of this chapter. These

business scenarios are considered:

• Standard software products.

• Software in software-intensive technical services (e.g. internet platforms

or SaaS).

Fig. 7.1 Mapping of survey results into ISPMA SPM Framework

7.3 SPM in Different Business Scenarios 261

• Software in software-intensive systems (embedded software).

• Software in professional (human) services (embedded software).

• Software managed by Corporate IT organizations (for one or multiple internal

customers).

7.3.1 Standard Software Products

In this scenario the full contents of the SPM Framework is applicable.

7.3.2 Software in Software-Intensive Technical Services

The amount of software used in services like Software-as-a-Service (SaaS) or for

internet platforms like community, communication, shopping, or contents

platforms is increasing at a high pace. In all these instances the software contributes

a significant part to the value proposition of the entire service. Therefore it ought to

be managed from a software product management perspective. Actually, we con-

sider SaaS offerings as software products (see Sect. 2.4). Often, the product

manager of the technical service is also responsible for the software product

management.

In these environments, agile methodologies are widely used. The relationship

between SPM and the Product Owner is described in Sect. 6.2.1.

Most strategy aspects, in particular business aspects, are managed on the service

level. Here the full contents of the SPM Framework is applicable. If standard

software products from other vendors are used the service provider needs license

contracts with licensors of the software which explicitly allow this kind of use.

Customers of such a service do not need license contracts, but only service contracts

with the service provider.

7.3.3 Software in Software-Intensive Systems (Embedded
Software)

The amount of software embedded in hardware components and systems is increas-

ing at a high pace (see Sect. 2.2). Software is turning into the number 1 value driver

in more and more industries. Traditionally, hardware manufacturers had a life cycle

view on their products that differed significantly from software vendors. With

hardware, when the development of a version of a product is finished, the product

goes into production. For an extended period of time, there is no further develop-

ment, but only after sales services that take care of defects in individual product

instances, e.g. individual cars. Then after quite some time, a new development

project is started for the next version of the hardware product, and the cycle starts

anew. If the hardware product includes software components, hardware

manufacturers tended to treat this software in the same way as the hardware.

262 7 SPM Today and Tomorrow

http://dx.doi.org/10.1007/978-3-642-55140-6_2
http://dx.doi.org/10.1007/978-3-642-55140-6_6
http://dx.doi.org/10.1007/978-3-642-55140-6_2

These days, this approach does not work anymore for more and more hardware

products, because there is an increasing necessity for frequent software changes. So

the life cycles of the software components become more similar to those of standard

software products while the life cycles of the hardware components do not change

so much. Actually, cost considerations motivate manufacturers to keep the hard-

ware components as stable as possible. So from a product management perspective,

hardware and software components need to be managed at two very different

speeds (see also [LickKitt16]).

This difference means a significant challenge for a product manager who is

responsible for the complete system of hardware and software components. The

software components need to be managed from a software product management

perspective. If there is a product management team it makes sense to establish

dedicated software product managers.

Most strategy aspects, in particular business aspects, are managed on the product

level. The software product manager will focus on positioning with regard to the

other components of the product; on the scope of the software; on the business

aspects directly related to the software part, e.g. business cases and costing; and on

make or buy decisions.

7.3.4 Software in Professional (Human) Services (Embedded
Software)

As we have pointed out in Sect. 2.4, the business models of a software product

business and a professional service business are fundamentally different. In partic-

ular, there are limits to the profitability of a professional service business that do not

exist for a software product business. That is why professional service providers in

all industries are trying to find ways how to improve their profitability by replacing

humans through standard software components in their professional service

offerings. Sawhney has analyzed this approach in detail [Sawhney16]. He calls

the software components products in order to point out that they need to be

standardized and managed like software products, but they are not software

products according to our definition since they are not sold as standalone products.

The software components need to be managed from a software product manage-

ment perspective. Depending on the type of service, it may be too big a challenge

for the business manager responsible for the service to assume the software product

management tasks as well. We recommend a dedicated software product manager

who works in tight cooperation with the service business manager.

Most strategy aspects, in particular business aspects, are managed on the service

level. The software product manager will focus on positioning with regard to the

other components of the service; on the scope of the software; on the business

aspects directly related to the software part, e.g. business cases and costing; and on

make or buy decisions.

7.3 SPM in Different Business Scenarios 263

http://dx.doi.org/10.1007/978-3-642-55140-6_2

7.3.5 Software Managed by Corporate IT Organizations

A growing number of corporate IT organizations in all industries is adopting the

concept of software product management. The software components, in particular

applications, in an enterprise architecture tend to have very long life cycles which

require a strategic view and continuity in management. Both cannot be ensured in a

pure project organization. Some corporate IT organizations have been transformed

into profit centers and may have multiple customers inside and outside of the

corporation for the same software components which makes their business model

more similar to a software vendor.

In corporate IT organizations, the role of software product manager sometimes

has different names, e.g. application manager or (application) service manager (see

Sect. 2.6). Strategy aspects need to be managed in close cooperation with the

companies, business units or departments in the corporation that are the customers

of the software product. A most important aspect is the positioning of the software

product in the enterprise architecture of the corporation over time. The relevance of

the business aspects depends on how the business relationship between the corpo-

rate IT organization and the companies, business units or departments in the

corporation is designed. If the corporate IT organization is run as a cost center its

focus will be on business cases, budgets and costing, while the overall business

responsibility is on the business side. The more the corporate IT organization is run

as a business unit of its own, the more relevant the other business aspects become.

The relevant ecosystem is usually restricted to the technology side, i.e. software

and other technology providers and software development partners. Since a corpo-

rate IT organization usually has the responsibility for Operations, i.e. the run-time

production environment, risk management has the added focus on operational risks.

While contractual issues between the corporate IT organization and the companies,

business units or departments in the corporation that are the customers of the

software product are typically not relevant on a product level, contracts with

software providers need special attention. Dependent on the industry the corpora-

tion, company or business unit is doing business in there may be specific legal or

regulatory requirements.

Product planning needs to be managed in close cooperation between the corpo-

rate IT organization and the companies, business units or departments in the

corporation that are the customers of the software product. The business side of

the enterprise architecture, in particular business process models and data models,

play an important role with regard to requirements and integration aspects. In

product life cycle management, profit considerations and market share are typically

not relevant unless the IT organization is run as a profit center and/or the corpora-

tion allows its business units to work with external competitors.

The relevance of the strategic management aspects depends on how the business

relationship between the corporate IT organization and the companies, business

units or departments in the corporation is designed. If the corporate IT organization

is run as a cost center its focus will be on innovation management and resource

264 7 SPM Today and Tomorrow

http://dx.doi.org/10.1007/978-3-642-55140-6_2

management. The more the corporate IT organization is run as a business unit of its

own, the more relevant the other strategic management aspects become.

On the orchestration side, marketing and sales are usually not relevant unless the

corporation allows its business units to work with external competitors. An excep-

tion is customer relationship management with the company-internal departments

and users as customers. Services usually include Operations, i.e. the run-time

production environment which is governed by the IT service management pro-

cesses. The product manager is in a monitoring role and may be directly involved in

critical situations.

7.4 ISPMA

The International Software Product Management Association (ISPMA, www.

ispma.org) is an open non-profit association of experts, companies, research

institutes, and practitioners with the goal to foster software product management

excellence across industries. ISPMA was started in 2009 and legally founded in

2011. As of November 2016, it has more than 800 members worldwide. Hans-

Bernd Kittlaus is ISPMA’s current chairman, Samuel Fricker is ISPMA’s former

chairman. Both have been founding board members of ISPMA since ISPMA’s

inception.

ISPMA aims at establishing software product management as a discipline of its

own in both academia and industry, and disseminates and maintains a Curriculum

and a Certifiable Body of Knowledge (SPMBoK). The SPMBoK is documented in

syllabi that are the basis for training courses and certification exams:

• Foundation Level.

• Excellence Level: Product Strategy.

• Excellence Level: Product Planning.

• Excellence Level: Strategic Management.

• Excellence Level: Orchestration.

The foundation level is targetted at participants with up to 5 years of practical

experience in the software area. They ought to have a fundamental understanding of

the software business, but the training requires no specific technical or commercial

competencies. The excellence level modules are targetted at product managers who

already have the ISPMA Foundation Level Certificate or comparable SPM experi-

ence of at least 3 years.

ISPMA’s results are applicable to the software industry, to vendors of software-

intensive products and technical and human services in other industries (embedded

software), and to corporate IT organizations in all industries.

The syllabi are available for free on the ISPMAweb site. Training courses can be

offered by commercial training providers and universities after approval by

ISPMA. Certification exams are conducted by independent certification agencies

that issue the certificates on behalf of ISPMA.

7.4 ISPMA 265

http://www.ispma.org
http://www.ispma.org

ISPMA also provides a platform for communication and exchange between its

members, be it on conferences, in workshops and working groups, or on the

internet.

There are different membership types:

• Fellow Member: Distinguished expert from industry or academia that is elected

by the existing fellow members. Fellow members are committed to contribute to

ISPMA work results and represent ISPMA.

• Certified Member: Practitioner or academic member who has at least one of

ISPMA’s certificates.

• Subscribing Member: People from industry and academia who are interested

in SPM.

• Company Member: Company or academic institution which is committed to

excellence in SPM and wants to support ISPMA. Company members nominate

delegates who have the rights of fellow members.

ISPMA provides a lot of value to the SPM community, participants in trainings and

certification exams, and companies and academic institutions interested in SPM

that is unique in comparison to all the other players in product management

education:

• Focus on software only.

• Tight cooperation between experts from industry and academia for continuous

updates and improvements of the SPMBoK based on the latest developments in

business, technology and methodology.

• Non-profit organization.

• Strict separation between

– ISPMA as developer of curriculum, syllabi and exams (non-profit).

– Training provider and trainers (commercial or academic).

– Certification agencies.

• High quality of SPMBOK.

• High confidentiality of exam contents.

• High value of certificates (due to the separation described above).

• Free availability of syllabi.

• Frequent information on latest developments in SPM.

• Open platform for networking, exchange and cooperation.

With these elements, ISPMA is helping individuals to learn about SPM or improve

their SPM skills. ISPMA also helps companies that want to establish or improve

their SPM organizations. And ISPMA creates a basis for training providers and

trainers who want to offer SPM trainings. All of these groups are welcome to

become personal and company members of ISPMA.

266 7 SPM Today and Tomorrow

Glossary

Brand Awareness A measure of whether a brand is correctly identified by poten-

tial customers. Typically expressed as a percentage of a target market. There are

many different approaches to measuring this statistic, but it typically means that

a customer can respond to a brand after viewing its logo or packaging.

Business Case A decision support and planning approach for comparing the costs

and benefits associated with a proposed initiative.

Business Model Description of the rationale of how an organization creates,

delivers and captures value by interacting with suppliers, employees, customers

and partners.

Business Model Archetype A basic pattern of doing business. Available

archetypes are creator, distributor, lessor and broker.

Category Maturity Life Cycle A model that describes the rise, duration, and

decline of a category of product or service in terms of total revenue or number of

users.

Channel A sequence of intermediaries through which goods and services as well

as the compensation are transferred between a company and its customers.

Cloud Computing Service and delivery model for the provisioning of IT

components through the internet based on an architecture that enables a high

level of scalability and reliability.

Company Board The entity of a company which is responsible for the definition

and communication of strategy, vision and mission to the rest of the company.

Also, it has the managerial supervision of the different departments, including

product management.

Competitor A competitor of company A is another company that sells products

and/or services to A’s target market (or a subset thereof) which are similar to A’s

products and/or services.

Constraint Business, project or design decisions taken in advance to ensure the

solution fits business, managerial and contextual concerns. These decisions limit

the solution space.

This glossary is aligned with ISPMA’s Glossary 2.0 as of December 2016.

Springer-Verlag GmbH Germany 2017

H.-B. Kittlaus, S.A. Fricker, Software Product Management,
DOI 10.1007/978-3-642-55140-6

267

Continuous Delivery Automated push of software into the production environ-

ment or delivery to customers.

Continuous Deployment Combination of continuous integration and continuous

delivery to automatically deliver code changes to customers.

Continuous Integration Automated integration, build, and test of software in the

development environment.

Conversion Rate Metric for the number of customers who have completed a

transaction on a web site divided by the total number of website visitors.

Copyright A form of intellectual property right that gives the author of an original

work exclusive rights for publishing, distributing and adapting the work.

Corporate Strategy The basic long-term goals of an enterprise and the courses of

action for carrying out these goals.

Cost Per Lead Metric for the average amount of money invested to acquire a

new lead.

Cost Structure The types and relative proportions of fixed and variable costs

connected to a business model.

Customer Segment A subset of existing and/or potential customers targeted by a

common value proposition.

Customer A party that receives or consumes products and/or services from a

second party.

Delivery Model A description of the mechanisms in which a product is made

available to customers. Examples: Licensed product vs. Software-as-a-Service

(SaaS).

DevOps Tight cooperation of Development and Operations with the objective to

significantly increase the speed and quality of software deployment.

Embedded Software Software parts of software-intensive systems that are not

marketed and priced as separate entities.

Functional Requirement A statement that identifies what a product or process

must accomplish to produce required behavior and/or results.

Functional Support Plan Describes the activities, deliverables, budgets,

dependencies, and schedules for a business function to members of a cross-

functional product team, on behalf of a product.

Innovation Management The discipline of managing processes related to

innovation. Innovation management allows the organization to respond to exter-

nal or internal opportunities, and use its creative efforts to introduce new ideas,

processes or products.

Intellectual Property Exclusive rights that are granted by law to the owner(s) of

intangible assets that result from creations of the mind, such as inventions,

literary and artistic works, and symbols, names, and images used in commerce.

Key Performance Indicator (KPI) A specific numerical measure that represents

the progress towards a strategic goal, objective, output, activity, or further input.

Kano Analysis A technique for understanding which product features will help

drive customer satisfaction.

268 Glossary

License A set of rights concerning a licensor’s intellectual property which a

licensor grants to a licensee.

License Agreement A legal document that describes a license and the related

financial conditions.

Market (a) The area of economic activity in which buyers and sellers of goods and

services come together, and the forces of supply and demand affect prices. (b) A

geographic area of demand for commodities or services.(c) A specified category

of potential buyers.

Market Analysis Analysis of all aspects relevant for a particular market in its

current state and over the strategic time frame including market structure,

competitors, market shares, customer preferences and behavior.

Market Segmentation Division of a market into sub-sets called market segments

that are distinct from each other, and homogeneous with regard to certain

criteria.

Market Share Percentage of revenue or volume that a particular player makes in a

particular market or market segment in relation to the market’s total revenue or

volume.

Marketing (a) The activities that are involved in making people aware of a

company’s products and making sure that the products are available to be

bought.(b) The organizational and/or functional unit in an organization that is

responsible for (a).

Marketing Communication (MarCom) Set of marketing activities that concerns

executing the marketing strategy to create communication deliverables includ-

ing advertising, branding, graphic design, promotion, publicity, public relations

and more.

Matrix Organization Organizational structure in which individuals report to

more than one person

Minimum Viable Product The minimum feature set of a new product that is

derived through a learning phase and that some customers are willing to pay for

in the first release.

Mission Statement Definition of the present activities or purpose of an organiza-

tion by saying what it does for whom and how.

Net Promoter Score Method to measure customer loyalty by asking a single 0–10

scale question: “How likely is it that you would recommend $BRAND$ to a

friend or colleague?”. Your promoter score is the percentage of customers who

answer 9 or 10 subtracted by those who answer 0–6.

Non-functional Requirement A requirement that pertains to a quality concern

that is not covered by functional requirements. Also referred to as -> Quality

requirement

Open Source Software Software that can be freely accessed, used, changed, and

shared (in modified or unmodified form) by anyone. Open source software is

made by one or more people, and distributed under licenses that comply with the

Open Source Definition.

Glossary 269

Partner A party who joins one or more other parties based on an agreement that

defines the terms and conditions of the relationship (partnership).

Patent A patent is an exclusive intellectual property right for an invention granted

to the inventor for a defined timeframe by an authorized body of a sovereign

state. The right is granted for the territory of that sovereign state. It is the right to

exclude others from making, using, offering for sale, or selling the invention.

The types of inventions covered by patent law can be different from state to

state.

Performance Management Continuous tracking and analysis of selected KPIs

relevant for business success, plus timely action taking if needed

Pricing All activities required to set, communicate, and negotiate prices in a

convincing way.

Process Improvement All activities to analyze, plan and execute changes in

processes with the goal to optimize the defined process KPIs.

Process Model An abstract description of one or more processes. A process model

typically describes a process as a sequence of activities and the involved roles

and responsibilities.

Product A combination of goods and services, which a supplier/development

organization combines in support of its commercial interests to transfer defined

rights to a customer.

Product Analysis Analysis of all business aspects relevant for a particular product

in its current state and over the strategic time frame including KPIs like revenue,

revenue distribution, footprints, and market shares.

Product Family A group of software products that are marketed as belonging

together under a common family name.

Product Life Cycle The evolution of a product from its conception to its discon-

tinuance and market withdrawal.

Product Life Cycle Management The management of the business and technical

aspects of a software product with regard to its position in its life cycle.

Product Line A set of products based on a common platform with defined (static

or dynamic) variability tailored to different markets and users.

Product Management (a) The discipline which governs a product along the

product life cycle with the objective to generate the biggest possible value to

the business.(b) The organizational and/or functional unit in an organization that

is responsible for (a).

Product Manager A person responsible for -> Product Management in an orga-

nization. An organization can have multiple product managers.

Product Marketing Applying -> Marketing to a -> Product. Translates strategic

marketing decisions to the product level.

Product Platform The technical foundation on which several software products

are based.

Product Portfolio Set of products or services offered by a company.

270 Glossary

Product Portfolio Management The activity of making decisions about

investments in the products included in the product portfolio over the strategic

timeframe.

Product Roadmap A document that provides features or themes of the product

releases to come over the strategic timeframe. The creation of a roadmap is

influenced by the product strategy designed for this product.

Product Scope Abstract description of the functional and quality characteristics of

the product.

Product Strategy (a) Combination of the strategic goals and measures for the

product, i.e. aspects that need to be defined and managed for the strategic

timeframe of the product. See corresponding column in ISPMA’s SPM Frame-

work. (b) Consistent documentation containing the following items and their

evolution during the strategic timeframe: • Product vision• Product definition•

Target market, potential segments• Delivery model• Product positioning• Sourc-

ing• Business plan• Roadmap

Product Vision Conceptual description of what the future product will be at the

end of the strategic timeframe, i.e. high-level descriptions of a product concept

and a corresponding business model.

Product-Technology Roadmap Overview of the relationship between product

releases (product evolvement) and successive technology generations.

Quality Requirement A requirement that pertains to a quality concern that is not

covered by functional requirements. Also referred to as -> Non-functional

requirement.

Release (a) Product release: an instance of the product that is delivered to

customers, and maintained as part of product maintenance.(b) Pre-release: a

result of development activity that is testable, e.g. the result of a sprint in Scrum.

Release Definition The result of selecting the requirements to be implemented in

the next release. Usually this result is documented including statements about

the relationship between the selected requirements and strategic objectives.

Release Planning The process of selecting the requirements for the next release.

Requirement (a) A condition or capability needed to solve a problem or achieve

an objective.(b) A condition or capability that must be met or possessed by a

system or system component to satisfy a contract, standard, specification, or

other formally imposed document.(c) A documented representation of a condi-

tion or capability as in definition (a) or (b). Three different types of requirements

are distinguished: functional requirements, quality requirements and constraints.

Requirements Engineering (a) The disciplined and systematic approach (i.e.,

“engineering”) for elicitation, documentation, analysis, agreement, verification,

and management of requirements while considering market, technical, and

economic goals.(b) Activity within systems engineering and software

engineering.

Requirements Management Planning, executing, monitoring, and controlling

any or all of the work associated with requirements elicitation and collaboration,

requirements analysis and design, and requirements life cycle management.

Glossary 271

Requirements Prioritization The activity during which the most important

requirements for the product are determined. As priorities change over time

this activity is often targeted at the next release of the product.

Requirements Triage An activity for early and fast acceptance/rejection of

requirements.

Resource Management The efficient and effective development of an

organization’s resources. In the software business resources are primarily peo-

ple, existing software and systems that the software runs on or is developed on.

Return On Investment Metric for the average amount of revenue divided by the

related cost.

Revenue Money collected by an organization in return for products and/or

services.

Revenue Model Set of all -> revenue streams of a company.

Revenue Stream Describes generation of compensation over time for a product,

service or company as revenue or in non-monetary ways. Non-monetary aspects

may be data or services in return.

Risk Management The identification, assessment, and prioritization of risks

followed by coordinated and economical application of resources to minimize,

monitor, and control the probability and/or impact of unfortunate and/or unde-

sired events.

Scenario Description of a real or imagined situation under a defined set of

assumptions.

Service (a) Useful labor that does not produce a tangible commodity (as in

“professional services”).(b) A provision for maintenance and repair (as in “soft-

ware maintenance service”).(c) The technical provision of a function through a

software component that can be accessed by another software component, often

over a network and executed on a remote server (as in “web services” or

“Software-as-a-Service”).

Service Level Agreement (SLA) Agreement between two or more parties about

the target values a service-giving party has to achieve for the defined measures

that are relevant for quality and cost of the service.

Software Ecosystem A network of people and/or companies that forms around a

software vendor or a product or product platform. The relationships in this

network have the goal to achieve benefits for all participants and can be

formalized or not. Formalized relationships are called partnerships.

Software Intensive System A system where a significant part of the value

originates from software.

Software Product A product whose primary component is software.

Software Product Family A group of software products which for marketing

reasons are marketed as belonging together under a common family name.

Software Product Line A set of software-intensive systems that share a common,

managed set of features satisfying the specific needs of a particular market

segment or mission, and that are developed from a common set of core assets

in a prescribed way.

272 Glossary

Software Product Management The management of a software product or the

software components of a software-intensive product over its life cycle with the

objective of generating the biggest possible value to the business.

Software Product Management Competence Model Competence model that

guides product management in process improvement.

Software Product Manager Product manager of a software product or the soft-

ware components of a software-intensive product.

Software Value Map A decomposition of the “value” concept that details value of

a software intensive product from the main areas of financial, customer, internal

business process, and innovation and learning perspectives.

Software-as-a-Service (SaaS) A delivery model for software that is used in cloud

computing.

Solution (a) A product that is a combination of other products, human services,

and possibly some glue code and customization.(b) A combination of products

and customer-specific code that is developed and implemented for a specific

customer.

Sourcing The process of ensuring that all required resources are available when

they are needed.

Stakeholder A person, group, or organization that has direct or indirect stake in an

organization because it can affect or be affected by the organization’s actions,

objectives, and policies.

Strategic Marketing The way a firm effectively differentiates itself from its

competitors by effectively segmenting the market, selecting the appropriate

targets and consistently developing a better value positioning to customers

than its competitors.

Target Market A set of market segments to which a particular product is

marketed to.

Trade Secret Something which has economic value to a business because it is not

generally known or easily discoverable by observation such as an algorithm and

for which efforts have been made to maintain secrecy.

Trademark A distinctive identifier, such as a phrase, word or sign, for certain

products or services as those produced or provided by a specific person or

enterprise. Protection of trademarks depends on local law.

User A person or thing that uses something i.e. products or services.

User Experience Every aspect of the users’ interactions with a software product or

component with the purpose of shaping the user’s behaviors, attitudes, and

emotions about that product or component.

Value Proposition Description of the benefits customers can expect from one

product, or from the products and services of a company.

Virtual Team A group of individuals who work together across time, space and

organizational boundaries with links strengthened by webs of communication

technology.

Glossary 273

Bibliography

[Aaker13] Aaker, D.A.: Strategic Market Management. Wiley, New York (2013)

[AdnKap10] Adner, R., Kapoor, R.: Value creation in innovation ecosystems: how the

structure of technological interdependence affects firm performance in new

technology generations. Strateg. Manag. J. 31(3), 306–333 (2010)

[AlbKap03] Albright, R., Kappel, T.: Roadmapping the corporation. Research-Technology

Management. 46(2), 31–40 (2003)

[Allen06] Allen, P., Higgins, S.: Service Orientation: Winning Strategies and Best

Practices. Cambridge University Press, Cambridge (2006)

[AlmSenBl16] Almquist, E., Senior, J., Bloch, N.: The elements of value. Harv. Bus.

Rev. 94, 46–53 (2016)

[Alvarez14] Alvarez, C.: Lean Customer Development—Build Products Your Customers

Will Buy. O’Reilly, Sebastopol, CA (2014)

[AndNar98] Anderson, J.C., Narus, J.A.: Business marketing: understand what customers

value. Harv. Bus. Rev. 76, 53–65 (1998)

[AndZei84] Anderson, C., Zeithaml, C.: Stage of the product life cycle, business strategy,

and business performance. Acad. Manag. J. 27(1), 5–24 (1984)

[Arthur96] Arthur, W.B.: Increasing returns and the new world of business. Harv. Bus.

Rev. 74, 100–109 (1996)

[ArWeBriFi10] Artz, P., van de Weerd, I., Brinkkemper, S., Fieggen, J.: Productization:

Transforming from Developing Customer-Specific Software to Product Soft-

ware. International conference on software business (ICSOB 2010), Jyväskylä,

Finland, 2010

[AveBePe15] Avedillo, J.G., Begonha, D., Peyracchia, A.: Two Ways to Modernize IT

Systems for the Digital Era. McKinsey Insights, Spain (2015)

[Axelos16] Axelos: ITIL Practitioner Guide. TSO, Norwich (2016)

[BasWebZh15] Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective.

Addison-Wesley, Upper Saddle River (2015)

[Bech15] Bech, H.P.: Building Successful Partner Channels. TBK Publishing,

Klampenborg (2015)

[BekWeer10] Bekkers, W., van de Weerd, I.: SPM Maturity Matrix. Technical report

UU-CS-2010-013, University of Utrecht (2010)

[BVSB10] Bekkers, W., van de Weerd, I., Spruit, M., Brinkkemper, S.: A Framework for

Process Improvement in Software Product Management. European conference

on software process improvement (EuroSPI 2010), Grenoble, France, 2010

[BenMcF13] Benko, C.A., McFarlan, W.: Connecting the Dots. Aligning Your Project

Portfolio with Corporate Objectives. McGraw-Hill, London (2013)

[BerAnd05] Berander, P., Andrews, A.: Requirements prioritization. In: Aurum, A.,

Wohlin, C. (eds.) Engineering and Managing Software Requirements.

Springer, Berlin (2005)

Springer-Verlag GmbH Germany 2017

H.-B. Kittlaus, S.A. Fricker, Software Product Management,
DOI 10.1007/978-3-642-55140-6

275

[BGRTSF11] Berntsson-Svensson, R., Gorschek, T., Regnell, B., Torkar, R., Shahrokni, A.,

Feldt, R.: Quality requirements in industrial practice—an extended interview

study at eleven companies. IEEE Trans. Softw. Eng. 38(4), 923–935 (2011)

[Besaha03] Besaha, B.: Bounty hunting in the patent base. Commun. ACM. 46(3), 27–29

(2003)

[Biering04] Biering, S.: Preis- und Produktstrategien für digitale Produkte, untersucht am

Beispiel des Software-Marktes (Dissertationsschrift). Haufe, Freiburg (2004)

[Blank13a] Blank, S.: The Four Steps to the Epiphany, 2nd edn. K & S Ranch, Menlo Park

(2013)

[Blank13b] Blank, S.: A new way to look at competitors. https://steveblank.com/2013/11/

08/a-new-way-to-look-at-competitors/ (2013). Accessed 25 Dec 2016

[Blank13c] Blank, S.: Why the lean startup changes everything. Harv. Bus. Rev. 91(5),

63–72 (2013)

[BlanDorf12] Blank, S., Dorf, B.: The Startup Owner’s Manual: The Step-By-Step Guide for

Building a Great Company. K & S Ranch, Menlo Park (2012)

[Blank10] Blank, S.: Perfection by subtraction—the minimum feature set. http://

steveblank.com/2010/03/04/perfection-by-subtraction-the-minimum-feature-

set/ (2010). Accessed 25 Dec 2016

[BoGiRo06] Bonaccorsi, A., Giannangeli, S., Rossi, C.: Entry strategies under competing

standards: hybrid business models in the open source software industry. Manag

Sci. 52(7), 1085–1098 (2006)

[Bosch09] Bosch, J.: From Software Product Lines to Software Ecosystems. 13th interna-

tional software product line conference (SPLC 2009), San Francisco, CA,

USA, 2009

[Bosch12] Bosch, J.: Building Products as Innovation Experiment Systems. International

conference on software business (ICSOB 2012), Cambridge, MA, USA, 2012

[Boulding62] Boulding, K.: Conflict and Defense: A General Theory. Harper & Brothers,

New York (1962)

[Brown08] Brown, T.: Design thinking. Harv. Bus. Rev. 86(6), 84–92 (2008)

[Brynjo03] Brynjolfsson, E.: The IT productivity gap. Optimize Mag. 21, 26–43 (2003)

[BrMaJaHe96] Bruckhaus, T., Madhavji, N., Janssen, I., Henshaw, J.: The impact of tools on

software productivity. IEEE Softw. 13(5), 29–38 (1996)

[BSA16] BSA: Seizing opportunity through license compliance: BSA global software

survey. http://globalstudy.bsa.org/2016/downloads/studies/BSA_GSS_US.pdf

(2016). Accessed 25 Dec 2016

[BuStTh10] Burke, A., van Stel, A., Thurik, R.: Blue ocean vs. five forces. Harv. Bus. Rev.

88(5), 28–29 (2010)

[BusZim12] Buse, R.P.L., Zimmermann, T.: Information Needs for Software Development

Analytics. Proceedings of the 34th international conference on software engi-

neering (ICSE 2012 SEIP Track), Zurich, Switzerland, 2012

[Butje05] Butje, M.: Product Marketing for Technology Companies. Butterworth-

Heinemann, Burlington (2005)

[BuDiHe12] Buxmann, P., Diefenbach, H., Hess, T.: The Software Industry. Springer,

Heidelberg (2012)

[BuJaPo11] Buxmann, P., Jansen, S., Popp, K.M.: The Sun also Sets: Ending the Life of a

Software Product. International conference on software business (ICSOB

2011), Brussels, Belgium, 2011

[Cagan08] Cagan, M.: Inspired—How to Create Products Customers Love. SVPG Press,

Sunnyvale, CA (2008)

[Carey09] Carey, P.: Data Protection: A Practical Guide to UK and EU Law. Oxford

University Press, Oxford (2009)

[Carlshamre02] Carlshamre, P.: Release planning in market-driven development: provoking an

understanding. Requir. Eng. 7(3), 139–151 (2002)

[CSLRH01] Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J.: An

Industrial Survey of Requirements Interdependencies in Software Product

276 Bibliography

https://steveblank.com/2013/11/08/a-new-way-to-look-at-competitors/
https://steveblank.com/2013/11/08/a-new-way-to-look-at-competitors/
http://steveblank.com/2010/03/04/perfection-by-subtraction-the-minimum-feature-set/
http://steveblank.com/2010/03/04/perfection-by-subtraction-the-minimum-feature-set/
http://steveblank.com/2010/03/04/perfection-by-subtraction-the-minimum-feature-set/
http://globalstudy.bsa.org/2016/downloads/studies/BSA_GSS_US.pdf

Release Planning. 5th international symposium on requirements engineering

(RE’01), Toronto, Canada, 2001

[CheCheMe13] Chen, S., Cheng, A., Mehta, K.: A review of telemedicine business models.

Telemed. e-Health. 19(4), 287–297 (2013)

[Chesbrou05] Chesbrough, H.W.: Open Innovation: The New Imperative for Creating and

Profiting from Technology. Harvard Business Review Press, Boston (2005)

[Christen13] Christensen, C.A.: The Innovator’s Solution. Harvard Business Review Press,

Boston (2013)

[ClaHeyScho08] Classen, A., Heymans, P., Schobbens, P.: What’s in a Feature: A Requirements

Engineering Perspective. 11th international conference on fundamental

approaches to software engineering (FASE 2008), Budapest, Hungary, 2008

[ClSeRBC07] Cleland-Huang, J., Settimi, R., Romanova, E., Berenbach, B., Clark, S.: Best

practices for automated traceability. IEEE Comput. 40(6), 27–35 (2007)

[Cohn04] Cohn, M.: User Stories Applied: For Agile Software Development. Mountain

Goat Software, Denver, CO (2004)

[Cohn06] Cohn, M.: Agile Estimating and Planning. Prentice Hall PTR, Upper Saddle

River (2006)

[CollThom02] Collberg, C.S., Thomborson, C.: Watermarking, tamper-proofing, and obfus-

cation—tools for software protection. IEEE Trans. Softw. Eng. 28(8), 735–746

(2002)

[Condon02] Condon, D.: Software Product Management: Managing Software Development

from Idea to Product to Marketing to Sales. Aspatore Books, Boston (2002)

[CooEdg09] Cooper, R.G., Edgett, S.J.: Generating Breakthrough New Product Ideas:

Feeding the Innovation Funnel. Product Development Institute, Canada (2009)

[CooEdg08] Cooper, R.G., Edgett S.J.: Ideation for product innovation: what are the best

methods? PDMA Vis. Mag. 32, 12–17 (2008)

[CoEdKl01] Cooper, R.G., Edgett, S.J., Kleinschmidt, E.J.: Portfolio Management for New

Products, 2nd edn. Perseus Books, Cambridge (2001)

[Cooper00] Cooper, R.G.: Product Leadership—Creating and Launching Superior New

Products. Perseus Books, Cambridge (2000)

[Coulter12] Coulter, M.: Strategic Management in Action, 6th edn. Pearson Prentice Hall,

Upper Saddle River (2012)

[CrolYosk13] Croll, A., Yoskovitz, B.: Lean Analytics—Use Data to Build a Better Startup

Faster. O’Reilly, Sebastopol, CA (2013)

[Cusuma07] Cusumano, M.: The changing Labyrinth of software pricing. Commun. ACM.

50(7), 19–22 (2007)

[Cusuma04] Cusumano, M.: The Business of Software. Free Press, New York (2004)

[Cusuma03] Cusumano, M.: Finding your balance in the products and services debate.

Commun. ACM. 46(3), 15–17 (2003)

[DavBrHo07] Daviesa, A., Bradyb, T., Hobday, M.: Organizing for solutions: systems seller

vs. systems integrator. Ind. Mark. Manag. 36(2), 183–184 (2007)

[Davis05] Davis, A.: Just Enough Requirements Management. Dorset House Publishing,

New York (2005)

[DeLaat05] De Laat, P.B.: Copyright or copyleft? An analysis of property regimes for

software development. Res Policy. 34(10), 1511–1532 (2005)

[DemLec06] Demil, B., Lecocq, X.: Neither market nor hierarchy nor network: the emer-

gence of bazaar governance. Organ. Stud. 27(10), 1447–1466 (2006)

[DenCle04] Denne, M., Cleland-Huang, J.: Software by Numbers: Low-Risk, High-Return

Development. Prentice Hall PTR, Upper Saddle River (2004)

[DenLew17] Denning, P.J., Lewis, T.G.: Exponential laws of computing growth. Commun.

ACM. 60(1), 54–65 (2017)

[DenDun03] Denning, P.J., Dunham, R.: The missing customer. Commun. ACM. 46(3),

19–23 (2003)

Bibliography 277

[Druck73] Drucker, P.: Management: Tasks, Responsibilities, Practices, pp. 64–65.

Harper and Row, New York (1973)

[Ebert07] Ebert, C.: The impacts of software product management. J. Syst. Softw. 80(6),

850–861 (2007)

[Ebert09] Ebert, C.: Software product management. CrossTalk. 16, 15–19 (2009)

[Ebert11] Ebert, C.: Global Software and IT: A Guide to Distributed Development,

Projects, and Outsourcing. Wiley, Hoboken (2011)

[EberBrin14] Ebert, C., Brinkkemper, S.: Software product management—an industry eval-

uation. J. Syst. Softw. 95, 10–18 (2014)

[EberDumk07] Ebert, C., Dumke, R.: Software Measurement: Establish—Extract—Evalu-

ate—Execute. Springer, Berlin (2007)

[Fagerb05] Fagerberg, J.: Innovation—a guide to the literature. In: Fagerberg, J., Mowery,

D., Nelson, R. (eds.) The Oxford Handbook of Innovation. Oxford University

Press, Oxford (2005)

[Farmer06] Farmer, E.: The Gatekeeper’s guide, or how to kill a tool. IEEE Softw. 23(6),

12–13 (2006)

[FeFiHL05] Feller, J., Fitzgerald, B., Hissam, S.A., Lakhani, K.R. (eds.): Perspectives on

Free and Open Source Software. MIT Press, Cambridge (2005)

[FennRask08] Fenn, J., Raskino, M.: Mastering the Hype Cycle: How to Choose the Right

Innovation at the Right Time. Harvard Business Review Press, Boston (2008)

[FiUrPa11] Fisher, R., Ury, W.L., Patton, B.: Getting to Yes: Negotiating Agreement

Without Giving in, upd. rev. edn. Penguin, New York (2011)

[FleBen15] Fleisher, C., Bensoussan, B.: Business and Competitive Analysis: Effective

Application of New and Classic Methods, 2nd edn. Pearson Education, Upper

Saddle River (2015)

[FleBen02] Fleisher, C., Bensoussan, B.: Strategic and Competitive Analysis: Methods and

Techniques for Analyzing Business Competition. Prentice Hall, Upper Saddle

River (2002)

[FloyWool94] Floyd, S.W., Wooldridge, B.: Dinosaurs or dynamos? Recognizing middle

management’s strategic role. Acad. Manag. Exec. 8(4), 47–57 (1994)

[FlyvBud11] Flyvbjerg, B., Budzier, A.: Why your IT project may be riskier than you think.

Harv. Bus. Rev. 89(9), 23–25 (2011)

[FotrFric16] Fotrousi, F., Fricker, S.: Software Analytics for Planning Product Evolution.

International conference on software business (ICSOB 2016), Ljubljana,

Slovenia, 2016

[FoFrFi14] Fotrousi, F., Fricker, S., Fiedler, M.: Quality Requirements Elicitation based on

Inquiry of Quality-Impact Relationships. IEEE 22nd international

requirements engineering conference (RE 14), Karlskrona, Sweden, 2014

[FoFrFiLG14] Fotrousi, F., Fricker, S., Fiedler, M., Le Gall, F.: KPIs for Software

Ecosystems: A Systematic Mapping Study. International conference on the

software business (ICSOB 2014), Paphos, Cyprus, 2014

[FrenRav59] French, J.R.P., Raven, B.: The bases of social power. In: Cartwright, D.P. (ed.)

Studies in Social Power, pp. 150–167. University of Michigan Press, Ann

Arbor (1959)

[Fricker12] Fricker, S.A.: Software product management. In: Maedche, A., Botzenhardt,

A., Neer, L. (eds.) Software for People—Fundamentals, Trends and Best

Practices, pp. 53–81. Springer, Heidelberg (2012)

[Fricker14] Fricker, S.A., Grau, R., Zwingli, A.: Requirements engineering: best practice.

In: Fricker, S.A., Thümmler, C., Gavras, A. (eds.) Requirements Engineering

for Digital Health. Springer, Cham (2014)

[FricGru08] Fricker, S.A., Grünbacher, P.: Negotiation Constellations—Method Selection

Framework for Requirements Negotiation. International working conference

on requirements engineering: foundation for software quality (RefsQ 2008),

Montpellier, France, 2008

278 Bibliography

[FricSFT16] Fricker, S.A., Schneider, K., Fotrousi, F., Thümmler, C.: Workshop videos for

requirements communication. Requir. Eng. 21(4), 521–552 (2016)

[FricSchu12] Fricker, S.A., Schumacher, S.: Release Planning with Feature Trees: Industrial

Case. 18th international working conference on requirements engineering:

foundation for software quality (RefsQ 2012), Essen, Germany, 2012

[FrGoBySc10] Fricker, S.A., Gorschek, T., Byman, C., Schmidle, A.: Handshaking with

implementation proposals: negotiating requirements understanding. IEEE

Softw. 27(2), 72–80 (2010)

[Gartner16] Gartner Group: Gartner Market Databook, 2Q16 Update (2016)

[Gartner13] Gartner Group: Understanding Gartner’s Hype Cycles. Gartner Group,

Stamford, ID Number G00251964 (2013)

[GausWein89] Gause, D.C., Weinberg, G.M.: Exploring Requirements: Quality Before

Design. Dorset House, New York (1989)

[Glinz08] Glinz, M.: A risk-based, value-oriented approach to quality requirements.

IEEE Soft. 25(2), 34–41 (2008)

[GopSand97] Gopal, R.D., Sanders, G.L.: Preventive and deterrent controls for software

piracy. J. Manag. Inf. Syst. 13(4), 29–47 (1997)

[GoFrPaKu10] Gorschek, T., Fricker, S.A., Palm, K., Kunsman, S.: A lightweight innovation

process for software-intensive product development. IEEE Softw. 27(1), 37–45

(2010)

[GorsWohl06] Gorschek, T., Wohlin, C.: Requirements abstraction model. Requir. Eng. 11(1),

79–101 (2006)

[GoWoGL06] Gorschek, T., Wohlin, C., Garre, P., Larsson, S.: A model for technology

transfer in practice. IEEE Softw. 23(6), 88–95 (2006)

[Gorche11] Gorchels, L.: The Product Manager’s Handbook: The Complete Product Man-

agement Resource, 4th edn. McGraw Hill, New York (2011)

[GotSei13] Gothelf, J., Seiden, J.: Lean UX—Applying Lean Principles to Improve User

Experience. O’Reilly, Sebastopol, CA (2013)

[GottGor12] Gottesdiener, E., Gorman, M.: Discover to Deliver: Agile Product Planning and

Analysis. EBG Consulting, Acton, MA (2012)

[GreRuh04] Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative

approach. Inf. Softw. Technol. 46(4), 243–253 (2004)

[GriHau96] Griffin, A., Hauser, J.R.: Integrating R&D and marketing: a review and analy-

sis of the literature. J. Prod. Innov. Manag. 13(3), 191–215 (1996)

[Groenv97] Groenveld, P.: Roadmapping integrates business and technology. Res.

Technol. Manag. 40(5), 49–58 (1997)

[Haines14] Haines, S.: The Product Manager’s Desk Reference, 2nd edn. McGraw Hill,

New York (2014)

[Hall13] Hall, K.: Making the Matrix Work—HowMatrix Managers Engage People and

Cut Through Complexity. Nicholas Brealey Publishing, London (2013)

[Harmon14] Harmon, P.: Business Process Change. Morgan Kaufmann, Amsterdam (2014)

[HassTrac06] Hassenzahl, M., Tractinsky, N.: User experience—a research agenda. Behav.

Inf. Technol. 25(2), 91–97 (2006)

[Hawkins08] Hawkins, S.: Magic Quadrants and Market Scopes: How Gartner Evaluates

Vendors Within a Market, Gartner, Inc., Research Document G00154752,

January 2008

[Hecker99] Hecker, F.: Setting up shop: the business of open-source software. IEEE Softw.

16(1), 45–51 (1999)

[Hender70] Henderson, B.: The Product Portfolio. Boston Consulting Group, Boston

(1970)

[HerrDan08] Herrmann, A., Daneva, M.: Requirements Prioritization based on Benefit and

Cost Prediction: An Agenda for Future Research. 16th IEEE international

conference on requirements engineering (RE’08), Barcelona, Spain, 2008

Bibliography 279

[Herzwurm10] Herzwurm, G.: Produktmanagement in der IT: Geschäftsmodelle und

Produktpositionierung, 7. Fachtagung Software Management—Vom Projekt

zum Produkt (FTSWM’2010), Aachen, Germany, 2010

[HerzPiet09] Herzwurm, G., Pietsch, W.: Management von IT-Produkten—

Geschäftsmodelle, Leitlinien und Werkzeugkasten für softwareintensive

Systeme und Dienstleistungen. Springer, Heidelberg (2009)

[HerzPiet08a] Herzwurm, G., Pietsch, W.: Guidelines for the Analysis of IT Business Models

and Strategic Positioning of IT-Products. 2nd international workshop on soft-

ware product management (IWSPM’2008), Barcelona, Spain, 2008

[HerzPiet08b] Herzwurm, G., Pietsch, W.: Management von IT-Produkten.

Geschäftsmodelle, Leitlinien und Werkzeugkasten für softwareintensive

Systeme und Dienstleistungen. Springer, Heidelberg (2008)

[HiAlCeBa13] Hillenbrand, P., Alcauter, S., Cervantes, J., Barrios, F.: Better branding: brand

names can influence consumer choice. J. Prod. Brand Manag. 2(4), 300–308

(2013)

[HoRoPL00] Hoch, D.J., Roeding, C.R., Purkert, G., Lindner, S.K.: Secrets of Software

Success. Harvard Business School Press, Boston (2000)

[HooFar01] Hooks, I.F., Farry, K.A.: Customer-Centered Products—Creating Successful

Products through Smart Requirements Management. Amacom, New York

(2001)

[HumMol11] Humble, J., Molesky, J.: Why enterprises must adopt DevOps to enable

continuous delivery. Cutter IT J. 24(8), (2011)

[HumFar10] Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. Addison-Wesley, Upper

Saddle River (2010)

[IanLev04a] Iansiti, M., Levien, R.: Strategy as ecology. Harv. Bus. Rev. 82(3), 68–81

(2004)

[IanLev04] Iansiti, M., Levien, R.: The Keystone Advantage—What the New Dynamics of

Business Ecosystems Mean for Strategy, Innovation, and Sustainability.

Harvard Business School Press, Boston (2004)

[IDC16] IDC: Worldwide Software as a Service and Cloud Software Forecast,

2016–2020. IDC, Framingham (2016)

[ISO98] ISO/AWI TR 9241-1: Ergonomics of Human-System Interaction. Part 1:

Introduction to the ISO 9241 Series (1998)

[ISPMA16] ISPMA.: www.ispma.org (2016). Accessed 25 Dec 2016

[JanBrCus13] Jansen, S., Brinkkemper, S., Cusumano, M.A. (eds.): Software Ecosystems:

Analyzing and Managing Business Networks in the Software Industry. Edward

Elgar Publishing, Cheltenham (2013)

[JohGus00] Johnson, M.D., Gustafsson, A.: Improving Customer Satisfaction, Loyalty, and

Profit: An Integrated Measurement and Management System. Jossey-Bass, San

Francisco, CA (2000)

[Jones08] Jones, C.: Applied Software Measurement: Global Analysis of Productivity

and Quality. McGraw-Hill, London (2008)

[Kappel01] Kappel, T.: Perspectives on roadmaps: how organizations talk about the future.

Journal of Product Innovation Management. 18(1), 39–50 (2001)

[KaSeTT84] Kano, N., Seraku, N., Takahashi, F., Tsuji, S.: Attractive quality and must-be

quality. J. Jpn. Soc. Qual. Control. 14(2), 147–156 (1984)

[KapNor96a] Kaplan, R.S., Norton, D.P.: Linking the balanced scorecard to strategy. Calif.

Manage. Rev. 39(1), 53–79 (1996)

[KapNor96b] Kaplan, R.S., Norton, D.P.: Using the balanced scorecard as a strategic man-

agement system. Harv. Bus. Rev. 74(1), 75–85 (1996)

[KarlRyan97] Karlsson, J., Ryan, K.: A cost-value approach for prioritizing requirements.

IEEE Softw. 14(5), 67–74 (1997)

280 Bibliography

[Karlsson06] Karlsson, L.: Requirements prioritisation and retrospective analysis for release

planning process improvement. Ph.D. Thesis at Lund University (2006)

[KaReTh06] Karlsson, L., Regnell, B., Thelin, T.: Case studies in process improvement

through retrospective analysis of release planning decisions. Int. J. Softw. Eng.

Knowl. Eng. 16(06), 885–915 (2006)

[KarTRBW06] Karlsson, L., Thelin, T., Regnell, B., Berander, P., Wohline, C.: Pair-wise

comparisons versus planning game partitioning—experiments on requirements

prioritisation techniques. Empir. Softw. Eng. 12(1), 3–33 (2007)

[KatSha85] Katz, M.L., Shapiro, C.: Network externalities, competition, and compatibility.

Am. Econ. Rev. 75(3), 424–440 (1985)

[KhuFrGor15] Khurum, M., Fricker, S., Gorschek, T.: The contextual nature of innovation—

an empirical investigation of three software intensive products. Inf. Softw.

Technol. 57(1), 595–613 (2015)

[KhuGorW13] Khurum, M., Gorschek, T., Wilson, M.: The software value map—an exhaus-

tive collection of value aspects for the development of software intensive

products. J. Softw. Evol. Process. 25(7), 711–741 (2013)

[KhuKhuGo07] Khurum, M., Khurum, A., Gorschek, T.: A Model for Early Requirements

Triage and Selection (MERTS) Utilizing Product Line Strategies. 11th interna-

tional software product line conference (SPLC 2007), Kyoto, Japan, 2007

[KimBeSp14] Kim, G., Behr, K., Spafford, G.: The Phoenix Project. IT Revolution Press,

Portland (2014)

[KimMaub15] Kim, W.C., Mauborgne, R.: Blue Ocean Strategy: How to Create Uncontested

Market Space and Make the Competition Irrelevant—Extended Ed. Harvard

Business School Press, Boston (2015)

[Kittlaus15] Kittlaus, H.-B.: One Size Does Not Fit All: Software Product Management for

Speedboats vs. Cruiseships. International conference on software business

(ICSOB 2015), Braga, Portugal, 2015

[Kittlaus14] Kittlaus, H.-B.: Geschäftsmodelle. In: Hilber, M. (ed.) Handbuch Cloud Com-

puting, pp. 29–53. Dr. Otto Schmidt Verlag, K€oln (2014)

[Kittlaus12] Kittlaus, H.-B.: Software product management and agile software develop-

ment: conflicts and solutions. In: Maedche, A., Botzenhardt, A., Neer, L. (eds.)

Software for People—Fundamentals, Trends and Best Practices, pp. 83–96.

Springer, Berlin (2012)

[KittClou09] Kittlaus, H.-B., Clough, P.: Software Product Management and Pricing—Key

Success Factors for Software Organizations. Springer, Berlin (2009)

[KiRaSch04] Kittlaus, H.-B., Rau, C., Schulz, J.: Software-Produkt-Management—

Nachhaltiger Erfolgsfaktor bei Herstellern und Anwendern. Springer, Berlin

(2004)

[Klemens06] Klemens, B.: Math You Can’t Use—Patents, Copyright, and Software.

Brookings, Washington, DC (2006)

[KnasLeff17] Knaster, R., Leffingwell, D.: SAFe® 4.0 Distilled: Applying the Scaled Agile

Framework® for Lean Software and Systems Engineering. Addison-Wesley,

Upper Saddle River (2017)

[Kolb14] Kolb, D.: Experiential Learning: Experience as the Source of Learning and

Development. Pearson Education, Upper Saddle River (2014)

[Kollm16] Kollmann, T.: E-Business, 6th edn. Springer, Berlin (2016)

[KKTLD15] Komssi, M., Kauppinen, M., T€oh€onen, H., Lehtola, L., Davis, A.:

Roadmapping problems in practice: value creation from the perspective of

the customers. Requir. Eng. 20(1), 45–69 (2015)

[KostScha01] Kostoff, R., Schaller, R.: Science and technology roadmaps. IEEE Trans. Eng.

Manag. 48(2), 132–143 (2001)

[KotArm15] Kotler, P., Armstrong, G.: Principles of Marketing, 16th edn. Prentice Hall,

Upper Saddle River (2015)

[Kruchten96] Kruchten, P.: A rational development process. CrossTalk. 9(7), 11–16 (1996)

Bibliography 281

[KruCas14] Krüger, R., Casey, M.: Focus Groups: A Practical Guide for Applied Research,

5th edn. SAGE Publications, Thousand Oaks, CA (2014)

[Kude12] Kude, T.: The Coordination of Inter-Organizational Networks in the Enterprise

Software Industry: The Perspective of Complementors. Peter Lang Verlag,

Frankfurt (2012)

[KuSiKa12] Kumar, L., Singh, H., Kaur, R.: Web Analytics and Metrics: A Survey.

International conference on advances in computing, communications and

informatics (ICACCI’12), 2012

[LarVod10] Larman, C., Vodde, B.: Practices for Scaling Lean & Agile Development.

Addison-Wesley, Upper Saddle River (2010)

[Lawley07] Lawley, B.: Expert Product Management: Advanced Techniques, Tips and

Strategies for Product Management & Product Marketing. Happy About,

Cupertino, CA (2007)

[Lazzar04] Lazzaro, N.: WhyWe Play Games: Four Keys to More Emotion Without Story.

Report, XEO Design (2004)

[LeCB€olPe13] Le Callet, P., B€oller, S., Perkis, A., et al: Qualinet White Paper on Definitions

of Quality of Experience. European network on quality of experience in

multimedia systems and services, 2013

[Leffing16] Leffingwell, D.: SAFe® 4.0 Reference Guide: Scaled Agile Framework® for

Lean Software and Systems Engineering. Addison-Wesley, Upper Saddle

River (2016)

[Leffing11] Leffingwell, D.: Agile Software Requirements. Addison-Wesley, Upper Saddle

River (2011)

[LeKaVä07] Lehtola, L., Kauppinen, M., Vähäniitty, J.: Strengthening the Link from Busi-

ness Decisions to Requirements Engineering: Long-term Product Planning in

Software Product Companies. 15th IEEE international requirements engineer-

ing conference (RE’07), New Delhi, India, 2007

[LickKitt16] Lick, P., Kittlaus, H.-B.: Software Product Categories in the Automotive

Industry and How to Manage Them. International conference on software

business (ICSOB 2016), Ljubljana, Slovenia, 2016

[LinWuWen12] Lin, C., Wen, Z., Tong, H., Griffiths-Fisher, V., Shi, L., Lubensky, D.: Social

network analysis in enterprise. Proc. IEEE. 100(9), 2759–2776 (2012)

[LinFen03] Linden, A., Fenn, J.: Understanding Gartner’s Hype Cycles. Gartner Group,

Mai (2003)

[LoKaVäKo09] Loehtola, L., Kauppinen, M., Vähäniitty, J., Komssi, M.: Linking business and

requirements engineering: is solution planning a missing activity in software

product companies? Requir. Eng. 14(2), 113–128 (2009)

[LuDaWeBr16] Lucassen, G., Dalpiaz, F., van der Werf, J., Brinkkemper, S.: Improving agile

requirements: the quality user story framework and tool. Requir. Eng. 21(3),

383–403 (2016)

[LynnAkg01] Lynn, G.S., Akgün, A.E.: Project visioning: its components and impact on new

product success. J. Prod. Innov. Manag. 18(6), 374–388 (2001)

[LyAbVaWr99] Lynn, G.S., Abel, K.D., Valentine, W.S., Wright, R.C.: Key factors in increas-

ing speed to market and improving new product success rates. Ind. Mark.

Manag. 28(4), 319–326 (1999)

[MaglFri14] Maglyas, A., Fricker, S.: Preliminary Results from the Software Product

Management State-of-Practice Survey. International conference on software

business (ICSOB 2014), Paphos, Cyprus, 2014

[MagNiSmo13] Maglyas, A., Nikula, U., Smolander, K.: What are the roles of software product

managers? An empirical investigation. J. Syst. Softw. 86(12), 3071–3090

(2013)

[MagNiSmo12] Maglyas, A., Nikula, U., Smolander, K.: What Do Practitioners Mean When

They Talk About Product Management? 20th IEEE international requirements

engineering conference (RE), Chicago, IL, USA, 2012

282 Bibliography

MagNiSmoFri17 Maglyas, A., Nikula, U., Smolander, K., Fricker, S.: Core software product

management activities. Journal of Advanced in Management Research. 14(1),

23–45 (2017)

[MaiGiRob04] Maiden, N., Gizikis, A., Robertson, S.: Provoking creativity: imagine what

your requirements could be like. IEEE Softw. 21(5), 68–75 (2004)

[MatMat98] Matheson, D., Matheson, J.: The smart organization: creating value through

smart R&D. Harvard Business School Press, Cambridge (1998)

[MathKou10] Mathioudakis, M., Koudas, N.: Twittermonitor: Trend Detection over the

Twitter Stream. 2010 ACM SIGMOD international conference on management

of data, 2010

[Maurya12] Maurya, A.: Running Lean: Iterate from Plan a to a Plan that Works. O’Reilly

and Associates, Sebastopol, CA (2012)

[McFarland12] McFarland, C.: Experiment!: Website Conversion Rate Optimization with A/B

and Multivariate Testing. New Riders Publishing, Berkeley (2012)

[McGee04] McGee, K.: Heads Up—How to Anticipate Business Surprises and Seize

Opportunities First. Harvard Business School Press, Boston (2004)

[McGiTuLa78] McGill, R., Tukey, J., Larsen, W.: Variations of box plots. Am Stat. 32(1),

12–16 (1978)

[McGrat01] McGrath, M.E.: Product Strategy for High Technology Companies, 2nd edn.

McGrawHill, New York (2001)

[MehlBiSt14] Mehler-Bicher, A., Steiger, L.: Augmented Reality – Theorie und Praxis, 2.

überarbeitete Auflage. DeGruyter, München (2014)

[MessSzy03] Messerschmitt, D.G., Szyperski, C.: Software Ecosystem—Understanding an

Indispensable Technology and Industry. MIT Press, Cambridge (2003)

[Meyer08] Meyer, R.: Partnering with SAP. Books on Demand, Norderstedt (2008)

[MileHub94] Miles, M., Huberman, A.: Qualitative Data Analysis. Sage Publications, Thou-

sand Oaks, CA (1994)

[MilWed13] Miller, P., Wedell-Wedellsborg, T.: Innovation as Usual. How to Help Your

People Bring Great Ideas to Life. Harvard Business Review Press, Boston

(2013)

[MilMor99] Miller, W.L., Morris, L.: 4th Generation R&D: Managing Knowledge, Tech-

nology, and Innovation. Wiley, New York (1999)

[Mintzb13] Mintzberg, H.: The Rise and Fall of Strategic Planning: Reconceiving Roles for

Planning, Plans, Planners. Free Press, New York (2013)

[MinAhlLa08] Mintzberg, H., Ahlstrand, B., Lampel, J.: Strategy Safari: The Complete Guide

Through the Wilds of Strategic Management, 2nd edn. Financial Times Pren-

tice Hall, Harlow (2008)

[MivBen14] Mival, I., Benyon, D.: User experience (UX) design for medical personnel and

patients. In: Fricker, S., Thümmler, C., Gavras, A. (eds.) Requirements Engi-

neering for Digital Health. Springer, Cham (2014)

[Moore93] Moore, J.F.: Predators and prey: a new ecology of competition. Harv. Bus. Rev.

71(3), 75–83 (1993)

[Moore04] Moore, G.A.: Inside the Tornado: Strategies for Developing, Leveraging, and

Surviving Hypergrowth Markets. Harper, New York (2004)

[Moore04a] Moore, G.A.: Darwin and the demon: innovating with established enterprises.

Harv. Bus. Rev. 82(7–8), 86–92 (2004)

[Moore08] Moore, G.A.: Dealing with Darwin: How Great Companies Innovate at Every

Phase of Their Evolution. Portfolio/Penguin, New York (2008)

[Moore14] Moore, G.A.: Crossing the Chasm. Harper, New York (2014)

[Myers00] Myers, J.H.: Measuring Customer Satisfaction: Hot Buttons and Other Mea-

surement Issues. American Marketing Association, Chicago (2000)

[NagHogZ14] Nagle, T.T., Hogan, J.E., Zale, J.: The Strategy and Tactics of Pricing—A

Guide to Growing More Profitably, 5th edn. Pearson, Harlow (2014)

[NagHog05] Nagle, T.T., Hogan, J.E.: What Is Strategic Pricing? Strategic Pricing Group

Insights (Monitor Group) (2005)

Bibliography 283

[NeeSiCe98] Neef, D., Siesfeld, G.A., Cefola, J. (eds.): The Economic Impact of Knowl-

edge. Elsevier, Amsterdam (1998)

[OshKoWil11] Oshri, I., Kotlarsky, J., Willcocks, L.P.: The Handbook of Global Outsourcing

and Offshoring, revised 2nd edn. Palgrave Macmillan, London (2011)

[OstPign14] Osterwalder, A., Pigneur, Y.: Value Proposition Design. Wiley, Hoboken, NJ

(2014)

[OstPign10] Osterwalder, A., Pigneur, Y.: Business Model Generation. Wiley, New York

(2010)

[PearEnsl04] Pearce, C.L., Ensley, M.D.: A reciprocal and longitudinal investigation of the

innovation process: the central role of shared vision in product and process

innovation teams (PPITs). J. Organ. Behav. 25(2), 259–278 (2004)

[Peine14] Peine, K.: Situative Gestaltung des IT-Produktmanagements, Unv. Diss.,

Universität Stuttgart (2014)

[PepRyl06] Peppard, J., Rylander, A.: From value chain to value network: insights for

mobile operators. Eur. Manag. J. 24(2–3), 128–141 (2006)

[PetWoh10] Petersen, K., Wohlin, C.: Measuring the flow in lean software development.

Softw. Pract. Exp. 41(9), 975–996 (2010)

[PhaFarPr07] Phaal, R., Farrukh, C., Probert, D.: Strategic roadmapping: a workshop-based

approach for identifying and exploring strategic issues and opportunities. Eng.

Manag. J. 19(1), 3–12 (2007)

[PhaFarPr04] Phaal, R., Farrukh, C., Probert, D.: Technology roadmapping—a planning

framework for evolution and revolution. Technol. Forecast. Soc. Chang. 71

(1), 5–26 (2004)

[Pichler10] Pichler, R.: Agile Product Management with Scrum. Addison-Wesley, Upper

Saddle River (2010)

[PoBoeLi05] Pohl, K., Böckle, G., van der Linen, F.: Software Product Line Engineering.

Springer Science & Business Media, Heidelberg (2005)

[PohlBoLi05] Pohl, K., B€ockle, G., van der Linden, F.: Software Product Line Engineering:

Foundations, Principles, and Techniques. Springer, Berlin (2005)

[PohlRupp11] Pohl, K., Rupp, K.: Requirements Engineering Fundamentals. Rocky Nook

Computing, Santa Barbara (2011)

[Popp15] Popp, K.M.: Best Practices for Commercial Use of Open Source Software.

Books on Demand, Norderstedt (2015)

[Popp13] Popp, K.M.: Mergers and Acquisitions in the Software Industry—Foundations

of Due Diligence. Books on Demand, Norderstedt (2013)

[Popp12] Popp, K.M.: Leveraging Open Source Licenses and Open Source Communities

in Hybrid Commercial Open Source Business Models. International workshop

on software ecosystems (IWSECO 2012), Cambridge, MA, USA, 2012

[Popp11a] Popp, K.M.: Software industry business models. IEEE Softw. 28(4), 26–30

(2011)

[Popp11b] Popp, K.M.: Hybrid Revenue Models of Software Companies and Their Rela-

tionship to Hybrid Business Models. International workshop on software

ecosystems (IWSECO 2011), Brussels, Belgium, 2011

[PoppMey10] Popp, K.M., Meyer, R.: Profit from Software Ecosystems. Books on Demand,

Norderstedt (2010)

[Popp10] Popp, K.M.: Goals of Software Vendors for Partner Ecosystems—A

Practitioner’s View. International conference on software business (ICSOB

2010), Jyväskylä, Finland, 2010

[PortHepp15] Porter, M.E., Heppelman, J.: How smart, connected products are transforming

companies. Harv. Bus. Rev. 93(10), 96–114 (2015)

[PortHepp14] Porter, M.E., Heppelman, J.: How smart, connected products are transforming

competition. Harv. Bus. Rev. 92(11), 64–88 (2014)

[Porter08] Porter, M.E.: The five competitive forces that shape strategy. Harv. Bus. Rev.

86(1), 78–93 (2008)

[Porter98] Porter, M.E.: Competitive Strategy. Free Press, New York (1998)

284 Bibliography

[Porter85] Porter, M.E.: Competitive Advantage. Free Press, New York (1985)

[Porter79] Porter, M.E.: How competitive forces shape strategy. Harv. Bus. Rev. 57,

137–145 (1979)

[PragMark16] Pragmatic Marketing, Inc.: Pragmatic Marketing Framework (2016)

[Pritch15] Pritchard, C.L.: Risk Management: Concepts and Guidance, 5th edn. CRC

Press, Boca Raton (2015)

[PruAdl06] Pruitt, J., Adlin, T.: The Persona Lifecycle: Keeping People in Mind Through-

out Product Design. Elsevier, Amsterdam (2006)

[PruGru03] Pruitt, J., Grudin, J.: Personas: Practice and Theory. ACM conference on

designing for user experiences, San Francisco, CA, USA, 2003

[Rahim15] Rahim, M.A.: Managing Conflict in Organizations, 4th edn. Transaction

Publishers, Lewiston (2015)

[RaiRicMe07] Raiffa, H., Richardson, J., Metcalfe, D.: Negotiation Analysis—The Science

and Art of Collaborative Decision Making. The Belknap Press of Harvard

University Press, Cambridge (2007)

[RajlBenn00] Rajlich, V., Bennett, K.: A staged model for the software life cycle. IEEE

Comput. 33(7), 66–71 (2000)

[RaaMoBia13] Raatikainen, M., Komssi, M., Dal Bianco, V.: Industrial Experiences of

Organizing a Hackathon to Assess a Device-centric Cloud Ecosystem. IEEE

37th annual computer software and applications conference (COMPSAC

2013), Kyoto, Japan, 2013

[Reichh96] Reichheld, F.F.: The Loyalty Effect: The Hidden Force Behind Growth, Profits,

and Lasting Value. Harvard Business School Press, Cambridge (1996)

[RegnBSO08] Regnell, B., Berntsson Svensson, R., Olsson, T.: Supporting roadmapping of

quality requirements. IEEE Softw. 25(2), 42–47 (2008)

[RegnBrin05] Regnell, B., Brinkkemper, S.: Market-driven requirements engineering for

software products. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing

Software Requirements. Springer, Berlin (2005)

[RegHNBH01] Regnell, B., H€ost, M., Natt och Dag, J., Beremark, P., Hjelm, T.: An industrial

case study on distributed prioritization in market-driven requirements engi-

neering for packaged software. Requir. Eng. 6(1), 51–62 (2001)

[Ries11] Ries, E.: The Lean Startup. Crown Business, New York (2011)

[RobRob06] Robertson, S., Robertson, J.: Mastering the Requirements Process, 2nd edn.

Addison-Wesley, Upper Saddle River (2006)

[Royce70] Royce, W.: Managing the Development of Large Software Systems. IEEE

WESCON (1970)

[Rubin12] Rubin, K.S.: Essential Scrum: A Practical Guide to the Most Popular Agile

Process. Addison-Wesley, Upper Saddle River (2012)

[RufEbe04] Ruffin, M., Ebert, C.: Using open source software in product development: a

primer. IEEE Softw. 21(1), 82–86 (2004)

[Ruhe10] Ruhe, G.: Product Release Planning: Methods, Tools and Applications. CRC

Press, Boca Raton (2010)

[RuheSal05] Ruhe, G., Saliu, M.: The art and science of software release planning. IEEE

Softw. 22(6), 47–53 (2005)

[RusKan03] Rust, R.T., Kannon, P.K.: E-service: a new paradigm for business in the

electronic environment. Commun. ACM. 46(6), 37–42 (2003)

[Samuel03] Samuelson, P.: Trade secrets vs. free speech. Commun. ACM. 46(6), 19–23

(2003)

[Sawhney16] Sawhney, M.: Putting products into services. Harv. Bus. Rev. 94, 82–89 (2016)

[Schien02] Schienmann, B.: Kontinuierliches Anforderungsmanagement. Addison-

Wesley, Upper Saddle River (2002)

[Schmid03] Schmid, K.: L€osungen für Probleme des Requirements Engineering für
Produktlinien. Softwaretechnik Trends. 23(1), 20–21 (2003)

Bibliography 285

[Schmidt02] Schmidt, M.: The Business Case Guide. Solution Matrix, Boston (2002)

[SchoHeTB07] Schobbens, P., Heymans, P., Trigaux, J., Bontemps, Y.: Generic semantics of

feature diagrams. Comput. Netw. 51(2), 456–479 (2007)

[SchKuPop13] Schütz, S., Kude, T., Popp, K.M.: The Impact of Software-as-a-Service on

Partner Management. International conference (ICSOB 2013), Potsdam,

Germany, 2013

[Schwaber02] Schwaber, K.: Agile Software Development with Scrum. Pearson Interna-

tional, New York (2002)

[Schwind07] Schwind, M.: Dynamic Pricing and Automated Resource Allocation for Com-

plex Information Services. Springer, Berlin (2007)

[SheeGall15] Sheen, R., Gallo, A.: HBR Guide to Building Your Business Case. Harvard

Business Review Press, Boston (2015)

[SegMeDu11] Segetlija, Z., Mesarić, J., Dujak, D.: Importance of Distribution Channels—

Marketing Channels—for National Economy. 22nd CROMAR congress: mar-

keting challenges in new economy, Pula, Croatia, 2011

[ShPlCoJa13] Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S.: Designing the User

Interface: Strategies for Effective Human-Computer Interaction, 5th revised

edn. Addison-Wesley, Upper Saddle River (2013)

[ShoWar07] Shore, J., Warden, S.: The Art of Agile Development. O’Reilly Media,

Sebastopol, CA (2007)

[SodhSodh07] Sodhi, M.N., Sodhi, N.N.: Six Sigma Pricing: Improving Pricing Operations to

Increase Profit. Pearson FT Press, Upper Saddle River (2007)

[SolisWang11] Solis, C., Wang, X.: A Study of the Characteristics of Behaviour Driven

Development. IEEE 37th EUROMICRO conference on software engineering

and advanced applications, Oulu, Finland, 2011

[SongMon98] Song, M., Montoya-Weiss, M.: Critical development activities for really new

versus incremental products. J. Prod. Innov. Manag. 15(2), 124–135 (1998)

[Standish16] Standish Group: Chaos Report (2016)

[SuthSchw13] Sutherland, J., Schwaber, J.: The scrum guide. http://www.scrumguides.org

(2013)

[SvGoFTSM10] Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S., Mu, S.: A

systematic review on strategic release planning models. Inf. Softw. Technol. 52

(3), 237–248 (2010)

[TapWil06] Tapscott, D., Williams, A.D.: Wikinomics—HowMass Collaboration Changes

Everything. Portfolio/Penguin, New York (2006)

[Teece10] Teece, D.J.: Business models, business strategy and innovation. Long Range

Plann. 43(2), 172–194 (2010)

[Tessarol07] Tessarolo, P.: Is integration enough for fast product development? An empiri-

cal investigation of the contextual effects of product vision. J. Prod. Innov.

Manag. 24(1), 69–82 (2007)

[TetGar15] Tetlock, P.E., Gardner, D.: Superforecasting—The Art and Science of Predic-

tion. Crown, New York (2015)

[Thomp14] Thompson, L.: The Mind and Heart of the Negotiator, 6th edn. Pearson

Prentice Hall, Upper Saddle River (2014)

[Trendow13] Trendowicz, A.: Software Cost Estimation, Benchmarking, and Risk Assess-

ment: The Software Decision-Makers’ Guide to Predictable Software Devel-

opment. Springer, Berlin (2013)

[Tukey58] Tukey, J.W.: The teaching of concrete mathematics. AmMath Mon. 65(1), 1–9

(1958)

[UlrEpp11] Ulrich, K., Eppinger, S.: Product Design and Development. McGrawHill,

New York (2011)

[VähRau05] Vähäniitty, J., Rautiainen, K.: Towards an Approach for Managing the Devel-

opment Portfolio in Small Product-Oriented Software Companies. 38th annual

Hawaii international conference on system sciences (HICSS’05), Hawaii,

USA, 2005

286 Bibliography

http://www.scrumguides.org

[VAKaPoJa13] van Angeren, J., Kabbedijk, J., Popp, K.M., Jansen, S.: Managing software

ecosystems through partnering. In: Jansen, S., Brinkkemper, S., Cusumano,

M.A. (eds.) Software Ecosystems: Analyzing and Managing Business

Networks in the Software Industry, pp. 85–102. Edward Elgar Publishing,

Cheltenham (2013)

[Vasudeva14] Vasudeva, V.N.: Open Source Software and Intellectual Property Rights.

Klüwer Information Law Series, Alphen aan den Rijn (2014)

[Vogels14] Vogels, W.: The story of Apollo—Amazon’s deployment engine. http://www.

allthingsdistributed.com/2014/11/apollo-amazon-deployment-engine.html

(2014). Accessed 25 Dec 2016

[Waldo08] Waldo, J.: Scaling in games and virtual worlds. Commun. ACM. 51(8), 38–44

(2008)

[Waltl13] Waltl, J.: Intellectual Property Modularity in Software Products and Software

Platform Ecosystems. Books on Demand, Norderstedt (2013)

[WBNVB06] van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J.M.,

Bijlsma, A.: On the Creation of a Reference Framework for Software Product

Management: Validation and Tool Support. International workshop on soft-

ware product management (IWSPM’06), Minneapolis, MN, USA, 2006

[WMDUHW05] Weill, P., Malone, T.W., D’Urso, V.T., Herman, G., Woerner, S.: Do Some

Business Models Perform Better than Others? A Study of the 1000 Largest US

Firms. Working Paper No. 226, MIT Center for Coordination Science, Boston

(2005)

[Weinst04] Weinstein, A.: Handbook of Market Segmentation: Strategic Targeting for

Business and Technology Firms, 3rd edn. Haworth Press, Philadelphia (2004)

[WeiHug05] Weiss, J., Hughes, J.: Want collaboration? Accept—and actively manage—

conflict. Harv. Bus. Rev. 83(3), 93–101 (2005)

[WenSny00] Wenger, E., Snyder, W.: Communities of practice: the organizational frontier.

Harv. Bus. Rev. 78(1), 139–146 (2000)

[Wiegers03] Wiegers, K.: Software Requirements. Microsoft Press, Redmond (2003)

[WohAur05] Wohlin, C., Aurum, A.: What is Important when Deciding to Include a Soft-

ware Requirement in a Project or Release? International symposium on empir-

ical software engineering (ISESE 2005), Noosa Heads, QLD, Australia, 2005

[XuJYHKO09] Xu, Q., Jiao, R., Yang, X., Helander, M., Khalid, H., Opperud, A.: An analyti-

cal kano model for customer need analysis. Des. Stud. 30(1), 87–110 (2009)

[ZarRub00] Zartman, I.W., Rubin, J.Z.: The study of power and the practice of negotiation.

In: Zartman, I.W., Rubin, J.Z. (eds.) Power and Negotiation, pp. 3–28. Univer-

sity of Michigan Press, Ann Arbor (2000)

[ZowCou05] Zowghi, D., Coulin, C.: Requirements elicitation: a survey of techniques,

approaches, and tools. In: Aurum, A., Wohlin, C. (eds.) Engineering and

Managing Software Requirements. Springer, Berlin (2005)

Bibliography 287

http://www.allthingsdistributed.com/2014/11/apollo-amazon-deployment-engine.html
http://www.allthingsdistributed.com/2014/11/apollo-amazon-deployment-engine.html

Index

A
Agile, 1, 2, 38, 39, 46, 52, 121, 129, 134, 152,

154, 157, 160, 163, 166, 169, 171, 173,

174, 179, 204, 207, 223, 224, 227, 228,

262

Availability, 10, 16, 21, 53, 105, 110, 115, 123,

146, 156, 165, 183, 208, 219, 266

B
Brand awareness, 234

Bundling, 20, 88, 90, 91, 94

Business case, 34, 50, 82–83, 86, 91, 141, 151,

165, 205, 263, 264

Business model, 4, 9, 15, 21–33, 37, 40, 52, 63,

72, 86, 87, 89, 100, 112, 179, 191, 203,

212, 246, 249, 256, 258, 263, 264

archetype, 22

canvas, 23–25, 50, 51, 61, 65, 72, 118,

179

Business plan, 37, 50, 83, 86, 91, 117, 118, 121,

218

Business-to-business (B2B), 36, 38, 49, 56, 58,

59, 62, 65, 69, 72, 73, 89, 96, 112, 175

Business-to-consumer (B2C), 36, 49, 56, 58,

59, 69

C
Caretaker, 31, 41, 43, 220

Category maturity life cycle, 176, 181

Channel, 50, 62, 66, 71, 73–77, 88, 89, 99, 100,

115, 128, 131, 147, 148, 195, 217, 221,

231, 237, 238, 245

conflicts, 73–76

mix, 74, 76

Charging, 87, 88, 92, 95, 103

Cloud computing, 14–16, 258

Commodity, 5, 16–18, 94, 230

Company Board, vi

Compatibility, 18, 37, 38, 67, 68, 71, 100, 131,

162

Competitive analysis, 63, 94, 128, 210, 215

Competitor, 18, 20, 21, 60–64, 80, 88, 94, 96,

99, 106, 122, 135, 141, 153, 159,

177–179, 182, 183, 191, 192, 197, 202,

208–210, 214, 215, 233, 241, 264, 265

Constraint, 67, 68, 132, 133, 152, 163, 164,

171, 172, 181

Continuous delivery, 39, 40, 162, 226

Continuous deployment, 226, 227

Continuous integration, 226

Contract, 10, 11, 24, 28, 31, 69, 78, 80, 81, 88,

93, 95, 96, 98, 101–105, 109, 111, 122,

131, 152, 223, 227, 239, 243, 244, 254,

262, 264

Conversion rates, 89

Copyright, 18, 101, 106, 109

Corporate IT organization, 2, 5, 10, 15, 31–33,

39, 40, 45, 49, 95, 105, 211, 219, 256,

258, 259, 262, 264–265

Corporate strategy, 49, 97, 118, 121, 190–196,

204, 205, 207, 209, 218, 232

Cost per lead, 234

Cost structure, 23, 24, 32, 63, 84–86, 91, 115

Cruise ship, 38, 40, 137, 147, 150, 156, 180

Customer, 2, 10, 41, 50, 58, 120, 192, 220, 256

experience, 72, 76, 154

relationship, 14, 54, 59, 67, 74, 77, 93, 144,

159, 186, 238, 265

requirements, 133, 144, 147, 154, 156, 163,

172, 220, 238, 239, 242, 243

satisfaction, 41, 79, 113, 149, 162, 173,

205, 216, 217, 246–248

segment, 23, 61, 63, 65, 72–73, 77, 128,

143, 150, 159, 164

Customization, 12, 14, 18, 67–69, 71, 77, 79,

86, 149, 243, 245

Springer-Verlag GmbH Germany 2017

H.-B. Kittlaus, S.A. Fricker, Software Product Management,
DOI 10.1007/978-3-642-55140-6

289

D
Delivery model, 14, 15, 50, 67, 69, 71, 73, 75,

101, 117, 226

DevOps, 40, 121, 179, 226, 247

Differentiation, 13, 17, 26, 38, 61, 64, 71, 77,

94, 106, 122, 131, 192

Discount, 21, 89, 93, 96, 175, 220, 239, 242,

243, 254

Distribution, 2, 17, 20, 36, 74, 98, 100,

109–111, 123, 128, 148, 162, 169,

219–221, 238, 239, 243, 245

Documentation, 17, 28, 51, 100, 102, 116–119,

121, 135, 142, 143, 149, 151–155, 157,

171, 172, 184, 195, 218, 223, 245, 249

Dominator, 76, 97, 195

E
Ecosystem, 29, 31, 36, 50, 60, 69, 74, 76, 78,

96–101, 129, 180, 195, 196, 210, 214,

231, 232, 245, 258, 264

Embedded software, 11, 14, 255, 262–263, 265

F
Forecasting, 66, 83, 84, 91, 130

Framework, 4, 7, 33–40, 44, 50, 51, 54, 112,

116, 118, 119, 123, 143, 181, 184, 186,

189, 207, 219, 222, 223, 230, 238, 244,

260–262

Freemium, 30, 95

Functional requirement, 132, 151, 154, 168,

172, 226

Functional support plans (FSPs), 223

H
Hype cycles, 212

I
Icebreaker, 38, 49, 66, 70, 76, 78, 137, 144,

147, 154, 157, 178, 179

Incentive, 32, 242, 244

Independent Software Vendor (ISV), 97

Influencers, 98, 99

InnoTivum, v, vi

Innovation, 18, 21, 55, 64, 97, 100, 106, 113,

125, 135, 138, 140, 163, 191, 192, 198,

203–205, 207, 219, 258

Innovation management, 195, 196, 202–207,

264

Intellectual property, 18, 22, 28, 101, 105–108,

111

International Software Product Management

Association (ISPMA), 3, 4, 7, 35, 50,

51, 118, 158, 187, 189, 219, 255,

259–261, 265–266

K
Kano analysis, 140, 143, 146, 150, 203

Key performance indicators (KPIs), 26, 43,

112, 125, 130, 215, 232, 233

Keystone players, 76, 97

L
Law of increasing returns, 18–20, 230

Lean, 1, 17, 39, 89, 114, 163, 179, 205, 207,

222, 229

Liability, 103

License, 2, 4, 10, 15–17, 20, 21, 23–25, 36, 42,

56, 66, 69, 78, 86–88, 91, 93, 95,

101–104, 107–110, 121, 174, 215, 243,

262

License agreement, 103, 104, 109

M
Magic quadrant, 212

Make-or-buy, 79–82

Market, 8, 50, 59, 120, 137, 189, 220, 256

analysis, 36, 46, 63, 66, 88, 114, 141, 175,

192, 208–215, 217, 260

leader, 19–21, 88, 100

research, 62, 98, 101, 128, 135, 141, 159,

210, 212, 215

segment, 19, 30, 50, 58–63, 66, 70–73, 75,

76, 94, 113, 137, 138, 166, 175, 197,

209, 211, 229, 233

segmentation, 150

share, 16, 18, 19, 21, 29, 42, 62, 65, 72, 81,

88, 90, 94, 96, 128, 173, 197, 199, 209,

211, 214, 230, 243, 258

Marketing, 4, 10, 52, 120, 189, 220, 230, 257

Marketing communication (MarCom),

232–234

Marketing strategy, 89, 232, 233, 235

Matrix organization, 249, 250

Minimum viable product (MVP), 37, 38, 70,

137, 166

Mission statement, 191

N
National language support (NLS), 150

Net Promoter Score, 233, 234

290 Index

Network effect, 2, 19, 20, 31

Niche player, 76, 97, 195

Non-functional requirements, 142, 145

O
Open source, 11, 28–30, 80, 82, 86, 101, 107,

109–110, 123, 143

Orchestration, 3, 4, 36, 48, 220–222, 224, 235,

236, 239, 245, 249–254, 259, 260, 265

Organization, 1, 3, 4, 7, 40, 49, 120, 190, 219,

255

Original Equipment Manufacturer (OEM), 12,

98

Outsourcing, 28, 31, 32, 37, 80, 98, 256

P
Partner 21, 28, 50, 60, 61, 63, 66, 69, 71, 73, 74,

77, 78, 80, 81, 98, 100, 101, 115, 128,

129, 147, 148, 159, 195, 231, 244, 245

management, 81, 96, 100, 101, 237

program, 96, 99–101

Patent, 101, 106–108, 215

Performance management, 46, 112–115, 215,

218

Portability, 54, 131, 145

Portfolio management, 33, 36, 189, 194,

196–202, 215

Positioning, 7, 16, 37, 50, 66, 70–77, 79, 82, 96,

101, 117, 128, 140, 153, 183, 189, 197,

220, 230–232, 239, 243, 246–248, 257,

263, 264

Powerboat, 37, 49, 66, 70, 76, 78, 137, 140,

157, 172, 178, 179

Pre-sales, 171, 243

Pricing, 3, 4, 15, 23, 25, 26, 30–32, 37, 50, 62,

66, 69, 70, 75, 76, 82, 83, 86, 88, 89,

91–96, 115, 209, 221, 242, 254, 258

level, 9, 89, 94, 239, 243

model, 95

policy, 94

structure, 89, 92–94, 209, 243

Prioritization, 36, 37, 82, 115, 130, 136, 153,

157, 164–171, 260

Process improvement, 144, 186, 187, 221

Process model, 222, 264

Product, 1, 7, 10, 49, 120, 190, 219, 255

analysis, 36, 114, 189, 198, 202, 215–218,

260

definition, 11, 50, 62, 66–71, 73, 75, 78, 79,

117, 183, 229

family, 13, 14, 30, 40, 41, 44, 46, 82, 90, 243

life cycle, 36, 70, 76, 78, 91, 159, 165, 174,

175, 178, 180, 181, 217, 222

line, 4, 14, 69, 127, 154, 169, 171, 180

management, 1, 7, 33, 70, 120, 205, 255

manager, 1, 7, 70, 121, 205, 219, 255

marketing, 13, 35, 44, 220, 230–234, 236,

237

name, 52, 56–58

planning, 3, 4, 33, 34, 36, 37, 46, 118, 119,

127, 129, 159, 173, 177–183, 260, 264,

265

platform, 4, 13–14, 41, 42, 49, 96, 107

portfolio, 71, 118, 161, 191, 195–197, 207

requirement, 37, 62, 67, 101, 119, 130–157,

172, 180, 183, 218, 229, 231, 260

roadmap, 33, 121–123, 125, 128, 157, 198,

246

scenario, 36–40, 130, 136, 157, 178–180,

258

scope, 37, 38, 50, 62, 67, 118, 136, 180, 229

strategy, 3, 4, 16, 22, 36, 37, 46, 49–118,

120, 128, 165, 174, 182, 183, 191, 192,

195, 202, 207, 208, 221, 224, 227, 231,

236, 243, 260, 265

vision, 37, 49, 51–55, 62, 67, 117, 120, 121,

125, 128, 129, 250

Product life cycle management (PLM), 33,

114, 119, 173–181, 264

Product-technology roadmap, Professional

service, 5, 12, 25–28, 50, 69, 86, 88, 91,

123, 159, 263

Project requirements, 154, 156, 224

Q
Quality assurance, 135, 155

Quality management, 81, 224, 227

Quality requirement, 67, 131, 132, 142, 145,

154, 168, 172

R
Release, 4, 15, 56, 119, 158, 216, 219

definition, 34

planning, 33, 37, 38, 77, 119, 130, 136,

149, 150, 157–173, 180, 182, 218,

221, 226

Reliability, 8, 14, 85, 131, 142, 146, 166, 168,

216, 220

Requirement, 2, 11, 58, 119, 131, 201, 220, 259

engineering, 37, 38, 68, 120, 122, 130, 131,

134–151, 155–157, 160, 180, 224, 227,

238

Index 291

Requirement (cont.)
management, 2, 32, 33, 41, 45, 62, 82, 119,

135, 149, 153, 156, 157, 185, 227, 260

prioritization, 165, 166

triage, 156, 205

Resource management, 80, 199, 207–208, 219,

244, 245, 249, 260, 264

Return on investment (ROI), 82, 88, 106, 170,

198, 234

Revenue, 1, 16, 17, 19, 20, 23, 76–79, 82, 83,

85–88, 90, 93–95, 99, 100, 102, 108,

113, 153, 173, 174, 176, 177, 180, 183,

197, 198, 202, 203, 215

model, 20, 22, 23, 86–91

stream, 21–23, 25, 94, 115

Risk management, 50, 82, 91, 112–115, 118,

183, 264

Roadmap, 37, 38, 50, 66, 70, 118–130

S
Safety, 56, 111

Sales plan, 189, 231, 239, 243

Scaled Agile Framework (SAFe), 39, 224

Scenario, 3, 7, 26, 37–39, 49, 55, 70, 76, 78, 83,

105, 123, 137, 139, 144, 147, 150, 156,

192, 196, 255, 258, 261–265

Scrum, 37, 38, 52, 222, 224

Security, 16, 19, 36, 40, 54, 111, 127, 131, 146

Service, 2, 7, 50, 77, 121, 210, 221, 255

Service level agreement (SLA), 15, 81, 105

Service provider, 16, 32, 62, 104, 105, 254,

262, 263

Service strategy, 50, 69, 70, 73, 77–79, 117

Software-as-a-Service (SaaS), 101, 216

Software ecosystem, 31, 60, 76, 96, 99, 101,

128

Software-intensive systems, 11, 262–263

Software license management, 4

Software product, 2, 7, 11, 40, 50, 121, 214,

222, 255

Software product family, 13, 14, 30, 41

Software product line, 4

Software product management competence

model, 265

Software product management (SPM), 1–5, 14,

16, 18, 27, 32–45, 47, 116, 121,

181–185, 189, 214, 218, 219, 230

Software product manager, 1, 2, 7, 16, 21, 33,

36, 38, 40

Software value map, 82, 205

Software vendor, 5, 10, 11, 13, 23–25, 27,

30–33, 36, 40, 44, 49, 59, 68, 69, 73, 77,

86, 96, 98, 99

Solution, 12, 53, 128, 205, 240, 259

Sourcing, 16, 50, 79–82, 117

Specification, 133, 135, 136, 151, 152, 155,

157, 172, 245

Speedboat, 37, 40, 140, 143, 154, 157, 172, 180

Stakeholder, 50, 120, 131, 141, 147, 153, 155,

162, 164, 218, 219, 260

Strategic marketing, 232

Strategic pricing pyramid, 92, 94

Subscription, 25, 94–95, 215

Support, 4, 10, 50, 130, 196, 221, 243, 257

System integrator (SI), 31, 98, 99

T
Target market, 26, 37, 50, 56–58, 62, 66, 70,

73–75, 117, 120, 122, 137, 162, 180

Terms and conditions, 76, 80, 81, 100, 102,

104, 148, 239, 243

Trade secret, 18, 106

Trademark, 57, 106

U
Usability, 62, 131, 142, 155, 168, 216, 228

User, 10, 58, 131, 197, 223, 260

User experience (UX), 19, 58, 67, 71, 127, 203,

205, 223, 224, 228, 229, 260

User experience design (UX design), 67, 71,

223, 224, 228, 229, 260

V
Value proposition, 24, 52, 53, 57, 61, 62, 64,

65, 71–73, 95, 115, 178, 201, 262

Value-added resellers (VARs), 31, 148

Versions, 18

Virtual teams, 249

Vision, 8, 37, 40, 49, 51–55, 62, 67, 117, 120,

121, 124, 125, 128, 129, 139, 153, 172,

176, 191, 196, 205, 210, 212, 215, 250,

260

W
Warranty, 102, 103, 151

292 Index

	Preface
	Contents
	1: Introduction
	1.1 About this Book
	1.2 Conventions

	2: Management of Software as a Business
	2.1 A Little History
	2.1.1 Moore´s Law
	2.1.2 The Internet

	2.2 Product Management for Software: Terms and Characteristics
	2.2.1 Product Platform, Family, and Line
	2.2.2 Cloud Computing

	2.3 Software as a Business
	2.3.1 Low Capital Investment
	2.3.2 Law of Increasing Returns
	2.3.3 The Financial Life Cycle of a Software Product

	2.4 Business Models
	2.4.1 Describing a Business Model
	2.4.2 Business Models in the Software Industry: Software Product Company
	2.4.3 Business Models in the Software Industry: Professional Service vs. Product
	2.4.4 Business Models in the Software Industry: Open Source
	2.4.5 Business Models in the Software Industry: Free Commercial Products
	2.4.6 Business Considerations for Corporate IT Organizations

	2.5 The Software Product Management Framework
	2.5.1 The Four Software Product Scenarios

	2.6 The Role and Organization of SPM
	2.6.1 Objectives and Success Measurements
	2.6.2 The Role of the Software Product Manager
	2.6.3 Organizational Aspects of SPM

	3: Product Strategy
	3.1 Product Vision
	3.1.1 Overview
	3.1.2 Concept
	3.1.3 Development of a Product Vision
	3.1.4 Further Examples and Variations
	3.1.5 Outcome and Impacts
	3.1.6 Summary and Conclusions

	3.2 Product Name
	3.2.1 Overview
	3.2.2 Concept
	3.2.3 Process
	3.2.4 Summary and Conclusions

	3.3 Customers
	3.4 Market
	3.4.1 Overview
	3.4.2 Concept
	3.4.3 Determining a Product´s Market
	3.4.4 Variations
	3.4.5 Outcome and Impacts
	3.4.6 Summary and Conclusions

	3.5 Product Definition
	3.5.1 Overview
	3.5.2 Concept
	3.5.3 Defining a Product
	3.5.4 Outcome and Impacts
	3.5.5 Summary and Conclusions

	3.6 Positioning
	3.6.1 Overview
	3.6.2 Customer Segmentation and Value Proposition
	3.6.3 Channels
	3.6.4 Process
	3.6.5 Outcome and Impacts
	3.6.6 Summary and Conclusions

	3.7 Service Strategy
	3.7.1 Overview
	3.7.2 Concept
	3.7.3 Process
	3.7.4 Outcome and Impacts
	3.7.5 Summary and Conclusions

	3.8 Sourcing
	3.8.1 Overview
	3.8.2 Concept
	3.8.3 Decision-Making for Sourcing
	3.8.4 Summary and Conclusions

	3.9 Business View
	3.9.1 Overview
	3.9.2 Business Case
	3.9.3 Business Plan
	3.9.4 Forecasting
	3.9.5 Cost Structure and Management
	3.9.6 Revenue Model
	3.9.7 Bundling
	3.9.8 Summary and Conclusions

	3.10 Pricing
	3.10.1 Overview
	3.10.2 Concept
	3.10.3 Subscription-Based Models
	3.10.4 Summary and Conclusions

	3.11 Ecosystem Management
	3.11.1 Overview
	3.11.2 Concept
	3.11.3 Partner Programs
	3.11.4 Summary and Conclusions

	3.12 Legal Aspects
	3.12.1 Overview
	3.12.2 Contracts
	3.12.3 Protection of Intellectual Property
	3.12.4 Open Source
	3.12.5 Data Protection
	3.12.6 Summary and Conclusions

	3.13 Performance and Risk Management
	3.13.1 Overview
	3.13.2 Performance Management
	3.13.3 Risk Management
	3.13.4 Summary and Conclusions

	3.14 Product Strategy Processes and Documentation
	3.14.1 Overview
	3.14.2 Strategy Processes and Yearly Plan
	3.14.3 Documentation
	3.14.4 Tools
	3.14.5 Summary and Conclusions

	4: Product Planning
	4.1 Roadmapping
	4.1.1 Overview
	4.1.2 Concept
	4.1.3 Graphical Representations of Roadmaps
	4.1.4 Roadmapping Process
	4.1.5 Variations of Roadmapping
	4.1.6 Summary and Conclusions

	4.2 Product Requirements Engineering
	4.2.1 Overview
	4.2.2 Concepts
	4.2.3 Requirements Engineering Methodology
	Powerboat
	Kano Model: Attractive Attributes (Delighters)

	Speedboat
	Kano Model: One-Dimensional Attributes (Satisfiers)

	Icebreaker
	Kano Model: Must-Be Attributes (Dissatisfiers)

	Cruise Ship
	Kano Model: Indifferent Attributes (Non-requirements)

	4.2.4 Internationalization
	4.2.5 Documentation of the Requirements
	4.2.6 Managing Requirements Engineering
	4.2.7 Summary and Conclusions

	4.3 Release Planning
	4.3.1 Overview
	4.3.2 Concepts
	The Release Concept
	The Release Planning Process
	Release Trains, Staging, and Product Variants
	Small vs. Large Releases

	4.3.3 Release Planning Methods
	Deciding About a Release Plan
	Evaluation Criteria
	Prioritization Techniques
	Visualizing and Agreeing on Prioritization Results

	4.3.4 The Release Plan
	4.3.5 Summary and Conclusions

	4.4 Product Life Cycle Management
	4.4.1 Overview
	4.4.2 The Product and Product Category Life Cycles
	Life Cycle Model for a Software Product
	Life Cycle Model for a Product Category

	4.4.3 Product Planning Tactics
	Innovating with a New Product in an Immature Product Category
	New Product in a Mature Product Category
	Evolution of an Existing Product in a Mature Product Category

	4.4.4 Summary and Conclusions

	4.5 Process Measurement and Improvement
	4.5.1 Overview
	4.5.2 Product Planning Processes
	4.5.3 Improving Software Product Management Performance
	4.5.4 Tool Support
	4.5.5 Summary and Conclusions

	5: Strategic Management
	5.1 Corporate Strategy
	5.1.1 Overview
	5.1.2 Concept
	5.1.3 Process
	5.1.4 Examples and Variations
	5.1.5 Outcome and Impacts
	5.1.6 Summary and Conclusions

	5.2 Portfolio Management
	5.2.1 Overview
	5.2.2 Concept
	5.2.3 Process
	5.2.4 Examples and Variations
	5.2.5 Outcome and Impacts
	5.2.6 Summary and Conclusions

	5.3 Innovation Management
	5.3.1 Overview
	5.3.2 Concept
	5.3.3 Process
	5.3.4 Examples and Variations
	Lean Startup
	Idea Generation

	5.3.5 Outcome and Impacts
	5.3.6 Summary and Conclusions

	5.4 Resource Management
	5.5 Market Analysis
	5.5.1 Overview
	5.5.2 Concept
	5.5.3 Examples and Variations
	Defining the Addressable Market
	Industry Analysts

	5.5.4 Outcome and Inputs
	5.5.5 Summary and Conclusions

	5.6 Product Analysis
	5.6.1 Overview
	5.6.2 Concept
	5.6.3 Implementation
	5.6.4 Summary and Conclusions

	5.7 Corporate Strategy Processes

	6: Orchestration of the Organization´s Functional Areas
	6.1 Role and Processes
	6.2 Development and UX Design
	6.2.1 Organizational Setup, Roles, and Processes in Development
	6.2.2 User Experience (UX) Design
	6.2.3 SPM´s Focus Areas for Orchestrating Development

	6.3 Marketing
	6.3.1 The Marketing Organization
	6.3.2 Typical Areas of Conflict
	6.3.3 SPM´s Focus Areas for Orchestrating Marketing

	6.4 Sales and Distribution
	6.4.1 Sales Motivation and Compensation
	6.4.2 The Sales Organization
	6.4.3 The Sales Cycle
	6.4.4 Typical Areas of Conflict: Sales
	6.4.5 SPM´s Focus Areas for Orchestrating Sales and Distribution

	6.5 Service and Support
	6.5.1 Typical Areas of Conflict: Service
	6.5.2 Approaches to Address Conflict: Service and Support
	6.5.3 SPM´s Focus Areas for Orchestrating Service and Support

	6.6 Orchestration Skills
	6.6.1 Virtual Teams and the Matrix Mindset
	6.6.2 Sources of Power
	6.6.3 Managing Conflict
	6.6.4 Negotiation Skills

	7: SPM Today and Tomorrow
	7.1 The Future of SPM
	7.2 The State of Practice
	7.3 SPM in Different Business Scenarios
	7.3.1 Standard Software Products
	7.3.2 Software in Software-Intensive Technical Services
	7.3.3 Software in Software-Intensive Systems (Embedded Software)
	7.3.4 Software in Professional (Human) Services (Embedded Software)
	7.3.5 Software Managed by Corporate IT Organizations

	7.4 ISPMA

	Glossary
	Bibliography
	Index

