
Chapter 5
An Automated System for 3D
Segmentation of CT Angiograms

Y. Wang and P. Liatsis

Abstract This chapter presents a novel automated two-step algorithm for
segmentation of the entire arterial tree in 3D contrast-enhanced Computed
Tomography Angiography (CTA) datasets. In the first stage of the proposed
algorithm, the main branches of the coronary arteries are extracted from the
volume datasets based on a generalised active contour model by utilising both
local and global intensity features. The use of local regional information allows for
accommodating uneven brightness distribution across the image. The global
energy term, derived from the histogram distribution of the input images, is used to
deform the contour towards to desired boundaries without being trapped in local
stationary points. Possible outliers, such as kissing vessel artefacts, are removed in
the following stage by the proposed slice-by-slice correction algorithm. Experi-
mental results on real clinical datasets have shown that our method is able to
extract the major branches of the coronaries with an average distance of 0.7 voxels
to the manually defined reference data. Furthermore, in the presence of kissing
vessel artefacts, the outer surface of the coronary tree extracted by the proposed
system is smooth and contains less erroneous segmentation as compared to the
initial segmentation.
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List of Abbreviations

CTA Computed tomography angiography
CAD Coronary artery disease
CT Computed tomography
EM Expectation maximisation
GMM Gaussian mixture model
LAD Left anterior descending
LCA Left coronary artery
LCX Left circumflex
LM Left main coronary
RCA Right coronary artery
WHO World Health Organization

5.1 Introduction

According to the most recent statistics by the World Health Organization (WHO),
coronary artery disease (CAD) is one of the most prevalent causes of death in the
world. Approximately 17 millions people are killed due to one or more types of
CAD every year worldwide [1]. Atherosclerosis is a common cause of CAD,
where plaque builds up on the insides of arteries. Plaques are typically made up of
fat, cholesterol, calcium and other substances found in the blood. If left untreated,
it will harden and narrow the arteries over a period of years. As a consequence, the
flow of oxygen-rich blood to organs and other parts of body will be reduced thus
leading to serious problems, including myocardial/cerebral infarction, or even
death. Figure 5.1 shows a comparison before and after plaque builds up within a
blood vessel.

Coronary arteries are the network of blood vessels which supply blood to the
myocardium. CAD occurs when the coronaries are occluded and become con-
stricted, which makes the heart become starved for oxygen and other nutrients and
eventually stop beating. As illustrated in Fig. 5.2, the arterial tree basically con-
sists of two main branches, namely the Left Coronary Artery (LCA) and Right
Coronary Artery (RCA), which arise from the root of the aorta, near the top of the
heart. In LCA, the initial segment between the aorta and the first bifurcation is
called the left main (LM) coronary. The LM typically branches into the left
anterior descending (LAD) and the left circumflex (LCX) arteries. On the other
hand, the RCA normally originates from the right coronary cusp and travels to the
posterior interventricular branch. In 85 % of cases, the RCA is the dominant vessel
and supplies the posterior descending branch which travels in the PIV groove.
However, the exact anatomy of the coronary arteries could exhibit large differ-
ences from individual to individual [2].
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In order to evaluate the development of coronary artery disease, efficient
screening procedures are urgently needed for early diagnosis and ultimately timely
treatment. From the clinician’s point of view, it is essential to detect and visualise
the branches of the arteries, which may be associated to stenosis (narrowing of the
arteries). Then, potentially carrying out haemodynamic studies to establish the risk
of a patient developing a heart attack, followed by the application of appropriate
treatment based on medication or surgical procedures, such as diagnostic cardiac
catheterisation and stent implantation [3, 4].

Recent advances in vascular imaging technology using multiple-slice Computed
Tomography (CT) provide volumetric datasets with high spatial and temporal res-
olution. This has given rise to CT becoming a frequently used and reliable imaging
modality for the early diagnosis and quantification of atherosclerosis in clinical
practice. However, clinical diagnosis of CAD by means of CT imaging is difficult
because of the huge amount of data produced in the cardiac CT scanning process
(typically, more than 300 slices of axial CT images are produced for a patient).
Interpretation of a CT study is a labour-intensive and time-consuming task even with
the assistance of semi-automatic software packages [5], as the radiologist has to track
and carefully examine each branch of the arteries, segment by segment. Therefore,
automated algorithms for segmentation of the coronaries in CT angiograms will
facilitate and enhance the accuracy and reliability of the clinical evaluation.

In the following section, we provide an overview of recent developments in the
field of the research. Next, we present the proposed framework in Sect. 5.3. This is
followed by the presentation of results demonstrating the benefits of the proposed
approach. Finally, the conclusions and future developments of this research are
presented.

Fig. 5.1 Effect of plaque
builds up. a Shows a normal
artery with normal blood
flow. b Shows an artery with
plaque buildup [2]
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5.2 State of the Arts in Vessel Segmentation

Despite numerous past and on-going research efforts in the past decade, seg-
mentation of vascular structures from CT images remains a challenging topic due
to the small size of vessels in medical images and the complex pathology. Since
their introduction as a means of front propagation-based segmentation method,
active contour models (also known as snakes) received a great amount of attention
by the medical image processing community [6–12]. Active contour models for
image segmentation iteratively deform a contour in order to minimise a user-
defined energy functional, which often depends on the shape of the contour and its
position in the image. Such methods are usually implemented using level sets [13],
where the boundaries of the object to be segmented are embedded as the zero level
of a higher dimensional level set function. Due to their ability to deal with
topological changes, such as region merging and splitting, level sets-based active
contour models are usually employed in segmentation of the vascular structures in
medical images. Active contour-based methods can be categorised in two folders,
when considering image-driven energy: edge-based and region-based models.

In the early edge-based models [11, 14, 15], the active contour deforms with a
speed F based on the derivatives of the image, which approaches zero at high
image gradients. These methods make use of the local edge information to stop

Fig. 5.2 Illustration of the coronary arteries of human, including: the right coronary artery
(RCA), left anterior descending (LAD) and left circumflex (LCX)
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curve deformation, which makes them robust to region inhomogeneities. On the
other hand, they are sensitive to image noise and contour initialization due to the
use of local gradients. Yang and her colleagues proposed an improved algorithm to
segment coronary arteries based on a Bayesian probabilistic framework [16]. In
their work, the image force is redefined using posterior probabilities, calculated
from the global histogram distributions, to more accurately terminate the surfaces
at desired boundaries. In their method, the posterior probabilities are obtained from
global statistics, which cannot handle the varying brightness and contrast changes
over the image. Thus, their method is not capable of segmenting small and distal
segments of the coronary arteries due to their relatively low intensity contrast. In
medical images, the borders between different objects are not always clearly
defined by the gradients, and thus, the contour may leak into adjacent regions,
when using the edge function as the stopping criterion. Nain et al. [17] incorporate
a soft shape prior into the conventional active contour model. They propose the
application of a shape filter to locally describe the shape of the segmented region.
As illustrated in Fig. 5.3, the shape filter is defined as a ball structure centred on
each point along the contour with radius r. This measures the percentage of voxels
belonging to both the ball and the object (i.e. the regions inside the contour). The
output of the shape filter is high when the current point belongs to a region
corresponding to leakage. Conversely, lower values of the filter’s output indicate
that the current point is within the vessel. The filter response then serves as the
external energy of the active contour, penalising leakages during the curve evo-
lution. However, the shape filter cannot discriminate vessel bifurcations from
leakage areas, and may result in undesired gaps in the vicinity of vessel
bifurcations.

Region-based image segmentation methods, which utilise intensity information
obtained from image regions, are more robust to image noise. In these methods,
region statistics along the contour are calculated to drive the segmentation process.
Under the assumption that the object and the background are approximately uni-
formly distributed, Chan and Vese [6] proposed an active contour model using
regional statistics to segment the object of interest in two-phase images. Their
work was later extended to multiple-phase images [18], where the N regions
(phases) are represented by log2N level set functions. However, empty regions will
be produced when less than N regions are present in the image. To handle more
complex intensity distributions, non-parametric method is applied to estimate
regional statistics [19]. The aforementioned methods, however, solely based on
global intensity statistics, are inefficient in cases where regional statistics are
spatially varying across the image. Localised approaches [20–22], where regional
statistics are calculated in a neighbourhood of the active contour, have recently
emerged to overcome this problem. Such models are more robust to local varia-
tions of the region of interest and therefore improve the overall segmentation
results. However, segmentation based on local decisions alone may not be suffi-
cient to drive the contour to stop at the desired boundaries, since the contour may
be trapped in undesired local stationary points. Moreover, the selection of
appropriate scales also poses additional difficulties.
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Another issue in the segmentation of vascular structures in coronary CT images
is the so called ‘kissing vessel artefacts’, i.e. the non-coronary vessels in close
proximity to the arteries. This is a partial volume problem which is often
encountered in CT angiograms [23]. It may result to artificial vessel junctions and
thus distort the geometry of the vessels. To address this problem, Wong and Chung
[24] proposed the tracing of vessel centrelines and segmentation of their cross-
sections based on a probabilistic vessel-axis tracing framework. Their algorithm
allows user’s interaction to produce the desired traces through the abnormal
regions, which contain the kissing vessels, lesion vessels (e.g. the stenosis) and
vessel junctions. The final segmentation in these regions is then derived from the
axis of the cross-sections.

5.3 Proposed Framework

This section presents the proposed two-step system for segmentation of coronary
arteries in CTA images by using both global and local intensity statistics. We deal
with the varying image brightness characteristics by computing regional statistics
locally, in the neighbourhood of the active contour. The global intensity constraint,
on the other hand, is utilised to evolve the contour to the desired boundaries
without being trapped in local minima. The proposed approach is implemented in a
Bayesian probabilistic framework to incorporate these two homogeneity con-
straints. Possible outliers, such as kissing vessel artefacts, are removed in the
subsequent stage by a novel slice-by-slice correction scheme, which uses multiple
regions competition.

Fig. 5.3 Graphic demonstrating the effect for the shape filter. a Shows of the shape filter centred
at x and with the radius R. b The output of the shape filter [17]
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5.3.1 Coronary Arteries Segmentation

We commence our analysis by assuming that voxels in contrast-enhanced CTA
images fall into three categories, i.e. the air in the lungs, soft tissues and blood-
filled regions. Then, we use a Gaussian Mixture Model (GMM) to fit the histogram
of the input CTA volume to estimate the probability density function for each
class, as shown in Fig. 5.4a. The mean and variance for each class are estimated
using the Expectation–Maximization (EM) method. We use prior anatomical
knowledge that coronaries are located on the outer surface of the heart, and thus,
we neglect the class corresponds to the air to obtain a bi-modal histogram (see
Fig. 5.4b). The first peak (T1) in the fitted histogram corresponds to soft tissues in
the heart, which reflect the intensity distribution of the background pixels.
According to the assumption that voxels with intensity values less than T1 as
belonging to the background, while voxels with intensity values greater than this
threshold are treated as potential objects of interest (i.e. blood-filled regions), we
assign each voxel in the volumetric data with a fuzzy label, which indicates the
probability of the voxel belonging to the object.

In this research, we formulate the labelling function as a normalised cumulative
density function of the histogram. We normalise the labelling function between -1
and 0 for voxels with intensity values between 0 and T1, and the output of the
labelling function bounded between 0 and 1 for the input voxels with intensity
values greater than T1. Thus, the function is defined as follows:

LðxÞ ¼
½�1; 0Þ; if x belongs to the background

½0; 1�; if x is a potential ‘object’

(
ð5:1Þ

Let Xx denote a neighbourhood with a radius r centred at x on the active
contour C(x).The localised image, Xx, can be partitioned into two sub-regions by
the active contour, i.e. the regions inside and outside the active contour, respec-
tively. Hence, we define the probability of a voxel being classified as belonging to
the region Xi as follows:

Pi ¼ PðIðyÞjy 2 Xi \ XxÞ ¼
1ffiffiffiffiffiffi

2p
p

ri

exp �ðli � IðyÞÞ2

2r2
i

 !
ð5:2Þ

where Xiji ¼ 1; 2f g denote the regions inside and outside the contour. I(y) is the
image intensity at y, li and ri represent the mean and the variance derived from
region Xi, respectively. Note that, we use x and y as two independent spatial
variables to represent a single point in the image domain. Let C(x) denotes a
contour, representing the boundary of the object to be segmented. For each point
along the contour, given its local image Xx and the labelling function L(y), the
posterior probability of a voxel y being classified as belonging to the sub-region
Xi \ Xx can be defined as:
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Pðy 2 Xi \ XxjIðyÞ; LðyÞÞ ¼
PðIðyÞ; LðyÞjy 2 Xi \ XxÞPðy 2 Xi \ XxÞ

PðIðyÞ; LðyÞÞ ð5:3Þ

where P(y [ Xi\Xx i = 1,2) is the prior probability of the current voxel being
assigned to region Xi among all the possible partitions within the local image Xx.
This term can be ignored, if equal probabilities are assumed for all partitions of the
image. P(I(y), L(y)) denotes the joint probability density distribution of the grey
level value I(y) and the labelling function L(y), which is independent of the seg-
mentation of the image and can therefore be neglected. We assume that the voxel
labels and the grey level intensity distribution are independent. The posterior
probability for each voxel can thus be computed as:

PðIðyÞ; LðyÞjy 2 Xi \ XxÞ ¼ PðIðyÞjy 2 Xi \ XxÞPðLðyÞjy 2 Xi \ XxÞ ð5:4Þ

The prior probability of P(I(y)|y [ Xi\Xx) has been already defined in Eq. 5.2. In
order to compute the posterior probabilities in Eq. 5.4, the prior probability of the
labelling function should be known. In this research, we model the prior proba-
bility distribution of the labels as:

PðLðyÞjy 2 Xi \ XxÞ / exp
v

2
LðxÞRðxÞkrðx; yÞ

� �
ð5:5Þ

where:

krðx; yÞ ¼
1ffiffiffiffiffiffi
2p
p

r
exp �ðx� yÞ2

2r2

 !
ð5:6Þ

represents the weighting kernel, which is a decaying function of the distance
between x and y. v2 is the overall weight that determines the influence of the labels
on the segmentation. R(x) is a normalised Boolean function indicating whether the

Fig. 5.4 The histogram of the CTA image. a The histogram and the fitted mixture model of the
CTA image. b The bi-modal histogram obtained within the heart region
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current voxel x is located inside the contour C(x) within the local image Xx.
According to Eq. 5.5, when a voxel, located at position y, is classified as belonging
to the object, i.e. R(x) = 1, then a point x in its vicinity has a high probability of
being marked as the object (i.e. L(y) ? 1) and is less likely to be considered as the
background (L(y) ? -1).

Maximising the posterior distribution in Eq. 5.4 is equivalent to minimising its
negative logarithm, and thus the energy function can be presented as:

E ¼ �
Z

H0ðuðxÞÞ
X2

i¼1

f
Z

Xi\Xx

½log PðIðyÞjy 2 Xi \ XxÞ

þ log PðLðyÞjy 2 Xi \ XxÞdy�MiðuðyÞÞgdx

þ l
Z
jrHðuðxÞÞjdx

ð5:7Þ

where M1(/(y)) = H(/) and M2(/(y)) = 1-H(/), and H0(�) denotes the derivative
of Heaviside function:

Hð/Þ ¼
0; if /� 0

1; if / [ 0

(

and the associated Euler–Lagrange equation can be then obtained as:

o/
ot
¼ dð/Þ l div

r/
jr/j

� �
þ log

p1

p2
þ v

Z
LðxÞkrðx; yÞdy

� �

p1 ¼
Z

X1\Xx

1ffiffiffiffiffiffi
2p
p

r1
expð� ðl1ðxÞ � IðyÞÞ2

2r2
1ðxÞ

dy

p2 ¼
Z

X2\Xx

1ffiffiffiffiffiffi
2p
p

r2
exp �ðl2ðxÞ � IðyÞÞ2

2r2
2ðxÞ

 !
dy

ð5:8Þ

where p1 and p2 denote the probability density distribution of the object and
background, respectively.

5.3.2 Slice-by-Slice Correction

The segmentation results obtained from the first stage are rather accurate. How-
ever, due to the complexity of medical images and associated artefacts, these may
contain outliers, such as kissing non-arterial vessels and other fragments (e.g. as
shown in Fig. 5.5a). In order to further improve segmentation performance, we
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propose a novel slice-by-slice correction scheme to the resulting images obtained
in the first stage of the segmentation. We assume that the coronary arteries can be
modelled as a tree structure, originating from the ostium (located in the descenting
aorta at the top of the heart) and that their transaxial cross-sectional segments
taken from the top to the bottom can only split but not merge over the frame
sequence (see Fig. 5.6).

It can be observed from the zoomed image at the right of Fig. 5.5b that the non-
arterial vessel appears darker than the coronary, and therefore, it can be distin-
guished from the coronary by intensity difference. However, two-phase level set
methods (i.e. using one level set function for segmentation) can only separate two
homogenous regions. Images with more than one object regions cannot be cor-
rectly segmented using such models. In this research, we employ a multiple
regions competition-based level sets method to correct the resulting image slice-
by-slice. In the proposed method, each homogenous region (object) is represented
by a level set function, and thus, other non-arterial structures can be identified and
removed from the segmentation. As described by Brox and Weickert [25], for a
fixed number of objects to be segmented, the evolution equations of multiple
regions level sets for image segmentation can be defined as:

oEð/iÞ
ot

¼ H0ð/iÞ ei � max
H0ð/jÞ[ 0

j 6¼i

ðej; ei � 1Þ

0
B@

1
CA

ek ¼ log pk þ v
2 div r/k

jr/k j

� � ð5:9Þ

Since the term log(p1) is always negative, the evolution of a contour based on
this force alone will eventually lead to the level set becoming negative every-
where, and thus eventually shrinking to a single point. The maximum operator
ensures that the contour expands outwards with a constant speed, when there is no
competition around the zero level set of the current embedding function. If there
are multiple regions within a narrow band of current zero levels of the embedding
function, the contour will evolve according to the maximal force in the interface.
However, the scheme would quickly expand the current contour if only one curve
is present, thus, moving the contour away from its initial location and capturing
undesired boundaries. By making use of the fact that the segmentation obtained in
the first stage is almost accurate, we allow the curve to evolve according to
multiple-phase energy when there is no competition nearby, while, when multiple
contours are presented in an interface, the points in the interface will move
together subject to the strongest force across all the regions. The steps of the slice-
by-slice correction algorithm are as follows:

1. Determine the first axial image which contains coronary arteries using the
segmented images obtained in the first stage.

2. Assign each connected object to a level set function in the starting slice.
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3. Evolve the curves in terms of the energy function defined in Eq. 5.9. To speed
up convergence, the segmentation mask obtained from this slice is used as an
initial estimate in the following slice.

4. Detection of non-arterial objects. We compare the initialization against the
segmentation mask obtained from the first stage. If there is a connected
component which does not touch any known components in the initialization
mask, then the object is considered as a non-arterial component, and a level set
is assigned to it.

5. If the area of the level sets is less than one pixel, we remove such level set and
decrease the number of level sets functions.

6. If the current frame is not the last frame containing coronaries, go to step 3.

Fig. 5.5 Segmentation results obtained from the first stage of the proposed algorithm. a 3D
surface reconstruction of the coronary arteries with a touching non-arterial vessel (shown by the
arrow). b The cross-sectional image taken from the volume. The closed up image shows the
intensity characteristics of the vessel in an axial image. The non-arterial vessel (arrowed) appears
darker than the artery

Fig. 5.6 3D reconstructed
image of the coronary arteries
and part of the aorta. a and
b are 3D surface rendering
images reconstructed from
different view of points,
respectively. They have
shown that the arteries
originate from the aorta
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5.4 Experiments and Results

The proposed method was tested on real clinical datasets. Twelve coronary CT
volumes were acquired from St Thomas’ and Guys’ Hospitals, London, UK. Two
of them were obtained with a 16-slice CT scanner (Brilliance, Philips), and the
remaining volumes were acquired with a Philips ICT-256 workstation. The mean
size of the images is 512 9 512 9 286 with an average in-plane resolution of
0.40 mm 9 0.40 mm, and the mean voxel size in the z-axis is 0.42 mm. For each
CTA image, four major coronary arterial branches, namely, Right Coronary Artery
(RCA), Left Anterior Descending Artery (LAD), Left Circumflex artery (LCX)
and one large side branch of the coronaries were evaluated. To quantify the per-
formance of the resulting segmentation, four metrics were used to validate the
results, specifically:

TP ¼ NB \ NR

NR
; FN ¼ NR � NB \ NR

NR

FP ¼ NB � NB \ NR

NR
; OM ¼ 2 � NB \ NR

NB þ NR

ð5:10Þ

where the ground truth NR is a binary image with voxels labelled to one for the
object and zero for others, NB indicates the voxels, which are segmented as the
object by the aforementioned algorithms. TP, FN and FP denote the true positive,
false negative and false positive metrics, respectively. OM represents the over-
lapping metric defined in [26], which is close to 1, when the segmentation is well
matched to the reference ground truth and approaches zero when the results have
no similarity to the reference.

The ground truth data were obtained through manual delineation with the
assistance of interactive software, developed in our centre. To construct the ground
truth data, the CT volume was firstly resampled as a successive cross-sections,
which is perpendicular to the course of the arteries, as shown in Fig. 5.7. Then, the
luminal area was manually annotated by trained biomedical engineering research
students (see Fig. 5.8a). The software will fit the manually delineated curve to a
circle by solving the associated least squares problem (see Fig. 5.8b). The software
then records the coordinates of the centre and the associated radius. In order to
ensure the correct generation of the ground truth data, the luminal area of the
artery is required to be specified by the observer at least every 3 mm. By doing so,
the ground truth data for each major branch of the arterial tree contains on average
48 central axis points and the associated radii, which takes approximately half an
hour to complete. Next, the centreline points were uniformly resampled with a
distance at 0.05 mm (roughly 0.1 voxel), and the associated radii were determined
via linear interpolation. To construct a closed surface of the ground truth data, we
firstly generate the boundary points of the artery based on the centreline and radius
information, which is depicted in Fig. 5.9a. Then, the outer surface of the artery
can be reconstructed using the ball pivoting algorithm, as illustrated in Fig. 5.9b.
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Since the manual segmentation procedure is very time consuming, only four
major branches, i.e. right coronary artery (RCA), left anterior descending artery
(LAD), left circumflex artery (LCX) and one large side branch of the coronaries,
were chosen for evaluation. In addition to the metrics defined in Eq. 5.10, the
Hausdorff distance was also applied to measure the difference between the seg-
mented vessel surface and the manually delineated ground truth data. The Hausdorff
distance is defined as:

Fig. 5.7 Illustration of the resampled cross-sectional images of the CTA data for the
construction of the ground truth data. a The segmented coronary artery is represented as 3D
surface (semi-transparent structure), b Cross-sectional images of the artery, obtained by slicing
the volume data using the planes perpendicular to the orientation of the vessel

Fig. 5.8 Determination of the ground truth data based on the successive cross-sections. a An
example of the annotation of the observer (show in blue), the red circles are the control points
determined by the observer (the square denotes the starting control point), b The resulting ground
truth data determined by the software in red. The red dot indicates the centre and the circle
represents the radius of the artery at this cross section
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dHðX;YÞ ¼ maxfsup
x2X

inf
y2Y

dðx; yÞ; sup
y2Y

inf
x2X

dðx; yÞg ð5:11Þ

where X, Y are the vertices of the mesh surfaces of the arteries corresponding to
the segmentation results and the ground truth, respectively, and d(x, y) measures
the Euclidean distance between points x and y belonging to vertices X and Y. The
mesh surface of the arteries was obtained by extracting the isosurface of the binary
volume obtained from the segmentation/manual delineation, using the marching
cube algorithm.

To demonstrate the efficiency of incorporating local intensity features into
active contour functional, we compare the performance of the proposed method
with the work proposed by [16], which utilises global intensity information alone,
in extraction of the arteries in clinical images. In Figs. 5.10 and 5.11, Tables 5.1,
5.2 and 5.3, we present the comparison of the resulting segmentation obtained
using the proposed technique and Yang et al.’s method [16], with respect to the
ground truth data. The initial surface for the active contour models was obtained
through the application of a Hessian-based vessel enhancement filter [27]. The
tuning parameters of both of the two techniques were empirically determined from
a training set, which consisted of three CT studies randomly selected from the
available datasets. Specifically, for the proposed approach, we set u = 0.2, v = 0.1
and the radius of localised kernel was set to 7 voxels. The proposed approach was
implemented in MATLAB (R2010b) on a standard specification PC (Dell Preci-
sion T3500, Inter(R) Xeon(R) CPU at 2.67 GHz), and the average execution time
was found to be 80 s for extraction of the entire coronary trees. Yang et al.’s
algorithm, on the other hand, requires roughly 45 s to carry out the same process.

As shown in Table 5.1, the mean TP rate and OM metric for the proposed
method were found to be 91.1 % and 0.776, respectively, which indicate that the
proposed method is able to correctly extract the major branches of the coronary
arteries (see Fig. 3.10a–c). Meanwhile, the high values of the FP rate (39.2 % on
average) mean that the proposed method over-segments the arteries, as illustrated in
Fig. 5.11, where the segmentation results were shown on the 2D axial image as
contours. In these axial images, the red contours represent the ground truth

Fig. 5.9 Construction of the ground truth surface from manually delineated vessel boundaries.
a The boundary points of the left coronary artery constructed using the centreline and the
corresponding radius information obtained via manual annotation, b The outer surface of the
artery reconstructed based on the boundary points shown in (a)
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boundary, and the blue and black curves represent the segmentation obtained using
the proposed method and Yang et al. [16] algorithm, respectively. Since the ground
truth data were modelled as circular cross-sectional tubes, this would lead to the
resulting ground truth data under-estimating the true vessel surfaces. However, in
terms of the voxel-wise measurements, the average value of the Hausdorff distance
metric was found to be 0.73 voxels, which implies that the proposed method is
capable of extracting the luminal surfaces of the arteries with sub-voxel accuracy.

In terms of the FP rate, the Yang et al. [16] method outperforms the proposed
approach, with the average value found to be 16.9 %. However, we note that the
TP and OM metrics of their segmentation results are significantly lower than those
of the proposed technique, with the average values being 53.8 % and 0.556,
respectively. In addition, by observing the statistics presented in Tables 5.2 and
5.3, we note that both the TP rate and the OM metric vary significantly, with the
TP rate ranging from 23.4 to 89.9 %, while the minimum and maximum values of
the OM metric were found to be 0.318 and 0.717, respectively. These observations
imply that Yang et al. [16] model under-segments the coronary arteries and is only
able to extract partial branches of the arterial tree, which is illustrated in
Figs. 5.10b, d, e. The reason for this is that the technique, solely relying on global
intensity statistics, is sensitive to image contrast and brightness changes. The
method is able to correctly extract the arteries when the intensity densities are
evenly distributed along the vessel. However, uneven intensity distribution is

Fig. 5.10 Comparison of the
resulting segmentation for
datasets #3, #5 and #11
obtained using the proposed
model (a), (c) and (e) and
Yang et al. [16] technique
(b), (d) and (f), with respect
to the ground truth data. The
semi-transparent surface
denotes the outer surface of
the ground truth data, and the
resulting segmentation is
depicted in red
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Fig. 5.11 2D transaxial images illustrating the segmentation results. a and b depict the resulting
segmentation on 2D cross-sectional images randomly taken from dataset #3, c and d depict the
resulting segmentation on 2D axial image from dataset #5, The examples of the segmentation
results on data #11 are illustrated in (e) and (f). The red contour represents the manually
delineated ground truth, while the segmentation obtained from the proposed method and Yang
et al. [16] method are shown in blue and black contours, respectively. Note that, the cross-
sectional images were up-sampled by a factor of five using linear interpolation to increase the
resolution
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commonly encountered in coronary CTA, because of the concentration attenuation
of the contrast agent and acquisition noise. In this case, the Yang et al. [16]
approach can only extract the proximal segments of the arteries, since distal

Table 5.1 Comparison of the 3D CTA segmentation results between the proposed method and
Yang et al. [16] technique (overall)

Rate Methods

Proposed method
mean

Yang et al. [16] method
mean

TP (%) 91.1 53.8
FP (%) 39.2 16.9
OM 0.776 0.556
Mean (dH) 0.730 1.07

Table 5.2 Comparison of the 3D CTA segmentation results between the proposed method and
Yang et al. [16] technique: datasets #1–6

Metrics Methods 3D CTA images

1 2 3 4 5 6

TP (%) Proposed 94.1 93.9 93.1 92.8 97.0 93.2
Yang et al. 47.6 50.3 52.1 25.6 89.9 87.9

FN (%) Proposed 32.4 28.4 43.1 38.3 45.5 29.4
Yang et al. 1.31 8.39 13.6 3.16 60.7 68.9

FP (%) Proposed 0.831 0.731 0.791 0.803 0.800 0.837
Yang et al. 0.639 0.634 0.629 0.397 0.717 0.685

OM Proposed 0.623 1.02 0.670 0.833 0.623 0.782
Yang et al. 0.865 1.35 1.00 1.09 0.767 0.891

Mean(dH) Proposed 94.1 93.9 93.1 92.8 97.0 93.2
Yang et al. 47.6 50.3 52.1 25.6 89.9 87.9

Table 5.3 Comparison of the 3D CTA segmentation results between the proposed method and
Yang et al. [16] technique: datasets #7–12

Metrics Methods 3D CTA images

7 8 9 10 11 12

TP (%) Proposed 90.1 89.0 95.3 80.5 86.5 87.8
Yang et al. 51.2 49.2 88.4 53.6 23.4 26.7

FN (%) Proposed 41.6 38.6 51.8 35.2 42.2 44.7
Yang et al. 3.16 1.57 16.3 10.0 9.55 6.18

FP (%) Proposed 0.778 0.782 0.713 0.744 0.756 0.755
Yang et al. 0.663 0.318 0.580 0.655 0.353 0.402

OM Proposed 0.759 0.719 0.620 0.561 0.769 0.783
Yang et al. 1.07 1.63 0.976 1.15 1.24 0.861

Mean(dH) Proposed 90.1 89.0 95.3 80.5 86.5 87.8
Yang et al., 51.2 49.2 88.4 53.6 23.4 26.7
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segments have relatively lower intensity values and lack image contrast. In
addition, we also found that the TP and OM rates of the proposed method tend to
decrease when approaching the distal and small segments of the arteries. However,
clinically significant coronary lesions are usually identified in the main and
proximal branches of the arteries, which can be well defined by the proposed

Fig. 5.12 The comparison a before and b after the correction process (datasets #7). The touching
non-arterial vessel (within the blue circle) has been removed

Fig. 5.13 Transaxial slices illustrate the slice-by-slice correction algorithm. a The first slice
contains the artery (delineated in red), b The artery is tracked through slices, c The binary image
obtained from the first stage segmentation, this is the first slice that contains the kissing vessel
(arrowed), d and e Kissing vessel is identified and tracked over slices (depicted in green
contours), f The original segmentation in same transaxial slice as shown in (e)
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method. Nevertheless, we can conclude that our technique is able to delineate the
vessel boundaries in clinically important coronary segments with a level of vari-
ability similar to those obtained through manual segmentation.

Two CTA studies were affected by the presence of kissing vessels (i.e. datasets
#7 and #11). The slice-by-slice correction scheme was subsequently applied after
the first step of the segmentation. Figure 5.12 illustrates the 3D surface recon-
struction image before and after applying the slice-by-slice correction algorithm.
Figure 5.13a shows the first slice, which contains the cross-sectional segments of
the coronary arteries. The false positives, i.e. the kissing vessel artefacts, were
identified and then tracked in Fig. 5.13b–e. The boundaries of the coronary arteries
are shown in red, and the green curve represents the kissing vessel structures. In
Fig. 5.13f, we illustrate the initial segmentation of the axial image shown in
Fig. 5.13e prior to the correction.

Instead of using the entire volume to quantify the performance of the slice-by-
slice correction, we conduct the assessment on a 2D axial image basis. The
resulting segmentation with and without the slice-by-slice correction is illustrated
in Fig. 5.14, where the boundaries of the artery before and after correction are
depicted in black and blue, respectively, and the manual segmentation is shown in
red. The four metrics, defined in Eq. 5.10, were used to quantify the performance
and the results are shown in Table 5.4. It can be observed from the table that the
FP rate, which is primarily caused by the kissing vessels, is dramatically reduced
after the application of the slice-by-slice correction algorithm (reduced from 294
to 22.8 % for arterial segments containing kissing vessels, e.g. the vessel segment
shown in Fig. 5.12a, within the circle).

Fig. 5.14 The efficiency of the proposed slice-by-slice correction algorithm demonstrated by
cross-sectional view image. a 3D volume data and b Cross-sectional view image randomly taken
from the 3D volume data, illustrating the resulting segmentations with and without the correction
step are shown in blue and black, respectively. The red contour represents the reference
boundaries of the vessel obtained through manual delineation

Table 5.4 Comparison of
the segmentation results
before and after the
application of the correction
scheme

Rate Before correction After correction

TP (%) 82.4 85.3
FN (%) 17.6 14.7
FP (%) 294 22.8
OM 0.380 0.820
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5.5 Conclusions and Future Work

Accurate segmentation of vascular structures is an essential and fundamental step
for various clinical tasks, such as stenosis grading and surgical planning. In this
chapter, we presented a computer vision system which contributes towards the
development of the proposed framework for segmentation of coronary arteries in
3D CTA images. In particular, a novel two-step algorithm was proposed to effi-
ciently segment coronary arteries from CT images by making use of both global
and local intensity statistics. The global energy was designed as a normalised CDF
based on the histogram of the input image data, which adapts its contribution to the
overall active contour energy by considering the spatially varying properties of the
artery. The kissing vessels were identified and tracked throughout the axial slices
in the second stage of the segmentation based on a multi-region competition
algorithm. Experimental results show that the proposed approach is able to cor-
rectly segment the major branches of the arterial tree, with an average voxel-wise
distance of 0.73 voxels to the manually delineated ground truth. Furthermore, in
the presence of kissing vessel artefacts, the overall performance of the segmen-
tation can be significantly improved by the slice-by-slice correction scheme. The
FP rate from these cross-sections containing kissing vessels was reduced from 294
to 22.8 %.

In terms of future research, we intend to introduce spatial/intensity correlations
between frames to the correction process, since the information extracted from
previous frames can be used to assist in segmentation of coronary arteries in the
subsequent frame. Based on the 3D surface reconstructed from the segmentation,
the geometric parameters along each of the main branches of the coronary arteries
can be precisely computed, which are very useful for diagnostic purposes, such as
stenosis detection and grading.
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