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Abstract Simulation systems are becoming common in different knowledge
fields, such as aeronautics, defense, and industrial applications, among many
others. While in the past these systems where mostly based on typical Virtual
Reality Environments, with the advance of the game industry simulators are being
developed using typical game engines and gaming software architectures. Dis-
tributed computing is being used in several fields to solve many computation
intensive problems. Due the complexity of Simulation systems, this architecture
can also be used, devoting host processing to renderization, which is usually the
task that simulators spend most of its processing time. By using distributed
computing, simulators could need softer system requirements, since the main loop
would be distributed. This work presents concepts of simulator software, which is
based on the main loop technique. After describing state-of-the-art concepts, we
present an efficient automatic load balancing and distributing logic computation
among several computers for simulators.
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2.1 Introduction

Increasing realism level in virtual simulations depends not only on the enhancement
of modeling and rendering effects, but also on the improvement of different aspects
such as animation, artificial intelligence of the characters, and physics simulation.
Real-time systems are defined as solutions that have time constraints to run their
tasks. Hence, if the system is unable to execute its work under some time threshold,
it will fail. In order to achieve such constraints, the main loops have to be carefully
implemented. The main loop is the design pattern of such kind of applications.

Real-time simulators are applications that employ knowledge of many different
fields, such as computer graphics, artificial intelligence, physics, computer net-
works, and others. While these are typical requirements found in games, simula-
tions usually require these features with much more accuracy. More, computer
simulators are also interactive applications that exhibit three general classes of
tasks: data acquisition, data processing, and data presentation. Data acquisition is
related to gathering data from input devices as keyboards, mice, and dedicated
interfaces, depending on the simulator. Data processing tasks consists on applying
logic rules, responding to user commands, simulating physics, and artificial
intelligence behaviors. Data presentation tasks relate to providing feedback to the
user about the current simulation state, usually through images and audio. Many
simulators are included in multiuser environments, requiring the usage of distri-
bution and logical partitioning of the scene [1].

Simulators are interactive real-time systems and have time constraints to exe-
cute all of their processes and to present the results to the user. If the system is
unable to do its work in real time, it will lose its interactivity and consequently it
will fail. A common parameter for measuring the performance is frames per
second (FPS). The general lower acceptable bound for a game is 16 FPS. There are
no higher bounds for a FPS measurements, but when the refresh rate of the video
output (a computer monitor) is inferior to the game application refresh rate, some
generated frames will not be presented to the user (they will be lost). One moti-
vation for designing loops optimizations is to better achieve an optimal FPS rate
for the application. Doing so, it is possible to spend more time with higher pre-
cision physical calculation or more complex logic behaviors.

The architecture that we present in this paper follows a similar concept as cloud
and distributed computing, where machines across the Internet shares resources,
software, and information, where the user’s computer can use other resources
available on the network, to help it in processing the application. By using this
approach, a computer with less computing power could join the simulation session,
by relaying the effort to process the system to the network cloud.
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This work summarizes several works of the authors, more specially [2–6],
which presented different approaches for automatic task distribution between CPU
cores and GPU in game and simulation environments, for single or multithreaded
loops. In this work, we extend and describe more details related to the distribution
of tasks of main loop and a smart load/balancing of the tasks.

This chapter is organized as follows: Sect. 2.2 presents a set of real-time loop
model concepts found in the literature, specially coming from the gaming field.
Section 2.3 presents a framework architecture concept that can be used for mul-
tiplatform simulation environments, with dynamic load balancing. Finally we
present the conclusions.

2.2 Related Works

The real-time loop is the underlying structure games and real-time simulations are
built upon. These loops are regarded as real time due to the time constraints to run
the game-related tasks. This loop may become a bottleneck in complex simula-
tions, due the complexity of physics and visualization requirements.

As mentioned earlier, the tasks that a computer simulation should execute can
be broken down into three general groups: data acquisition, data processing, and
presentation. Data acquisition means gathering data from available input devices,
such as, mice, joysticks, keyboards, motion sensors, and dedicated input devices,
such as an aircraft panel or car instrumentation. The data processing part refers to
applying the user input into the application (user commands), applying simulation
rules (the simulation logic), simulating the world physics, the artificial intelli-
gence, and related tasks. The presentation refers to providing feedback to the user
about the current simulation state, through images, audio, and in some cases
motion.

Real-time simulators provide the illusion that everything is happening at once.
Since these systems are interactive applications, the user will not have a good
experience if the systems are not able to deliver its work on time. This issue
characterizes these systems as heavy real-time applications. Although the real-time
loop represents the heart of real-time simulations, it is not easy to find academic
works specifically devoted to this subject. The works by Valente et al. [7], Dalmau
[8], Dickinson [9], Watte [10], Gabb and Lake [11], and Monkkonen [12] are
among the few ones.

The simplest real-time loop models are the coupled ones. The Simple Coupled
Model [13] is perhaps the most straightforward approach to modeling real-time
loops. It consists of sequentially arranging the tasks in a main loop. Figure 2.1
depicts this model.

The uncoupled models separate the rendering and update stages, so they can run
independently, in theory. These models consider single-thread [9, 13] and multi-
thread designs [11–13]. The Multithread Uncoupled Model [13] and the Single-
thread Uncoupled Model [13] try to bring determinism to the simulator execution
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by feeding the update stage with a time parameter. Figures 2.2 and 2.3 illustrate
these models, respectively.

By using these models, the application has a chance to adjust its execution with
time, so the system can run the same way in different machines. More powerful
machines will be able to run the simulation more smoothly, while less powerful
ones will still be able to provide some experience to the user. This requirement is
also important due the fact that hardware configuration change fast, while the
simulator may have a longer time of life.

Although these are working solutions, time measuring may vary greatly in
different machines due to many reasons (such as process load), making it difficult
do reproduce it faithfully. For example, some training sessions may require a scene
replay feature [5], which may not be trivial to implement if it is not possible to run
some part of the loop sequence in a deterministic way. Other features as network
module implementation and program debugging [5] may be easier to implement if
the loop uses a deterministic model. Another issue is that running some simula-
tions too frequently, like AI and the game logic, may not yield better results.

Fig. 2.1 Simple coupled
model
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Hence, the models proposed in [9, 13, 14] try to address these issues. The
Fixed-Frequency Uncoupled Model outlined in [13] features another update stage
that runs at a fixed frequency, besides the time-based one. Dalmau [8] presents a
similar model, although not naming it explicitly. These works describe the model
using a single-thread approach. Figure 2.4 illustrates the Fixed-Frequency
Uncoupled Model.

The model described in [9] presents just one update stage that runs at a fixed-
frequency, whose main objective is to attain reproducibility. Another interesting
model is the one used in the Microsoft XNA framework [14]. The XNA model has
an update stage that runs at a fixed frequency or freely, but not both. The user is able
to set a parameter that informs the XNA framework about which one to use. While
this is an old framework, modern engines still keep using the same approach. This is
especially relevant for simulators, since they typically use high profile machines.

Dealing with concurrent programming introduces another set of problems, such
as data sharing, data synchronization, and deadlocks. Also, as Gabb and Lake [11]
states, that not all tasks can be fully parallelized due to dependencies among them.
As examples, a dynamic simulation element cannot move until the complete logic
is computed, and visualization cannot be performed until the game state is
updated. Hence, serial tasks represent a bottleneck to parallelizing simulation
computation.

Monkkonen [12] presents models regarding multithread architectures that are
grouped into two categories: function parallel models and data parallel models. The
first category is devoted to models that present concurrent tasks, while the second
one tries to find data that can be processed entirely in parallel. The Synchronous
Function Parallel Model [12] proposes to allocate a thread to all tasks that are
(theoretically) independent of each other. For example, performing complex
physics simulation while calculating animation. Figure 2.5 illustrates this model.

Fig. 2.2 Multithread uncoupled model
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Monkkonen states that this model is limited by the amount of available pro-
cessing cores, and the parallel task should have little dependency on each other.
The Asynchronous Function Parallel Model [12] is the formalization of the idea
found in [11]. This model does not present a main loop. Figure 2.6 illustrates the
model.

Different threads run the simulation tasks by themselves. The model is cate-
gorized as asynchronous because the tasks do not wait for the completion of other
ones to perform their job. Instead, the tasks use the latest computed result to
continue processing. For example, the visualization task would use the latest
completed physics information to draw the objects. This measure decreases the
dependency among tasks. However, task execution should be carefully scheduled
for this scheme to work nicely. Unfortunately, this is often out of the scope of the
application. Also, serial parts of the application (like rendering) may limit the
performance of parallel tasks [11].

Fig. 2.3 Single-thread
uncoupled model

46 M. Joselli et al.



Fig. 2.4 Fixed-frequency uncoupled model

Fig. 2.5 Synchronous function parallel model
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Rhalibi et al. [15] show a different approach for real-time loops that is modeled
by taking the tasks and its dependency into consideration. It divides the loop steps
in three concurrent threads, creating a cyclic-dependency graph, to organize the

Fig. 2.6 Asynchronous
function parallel model
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task ordering. In each thread, the tasks for rendering and update are divided taking
into consideration their dependency.

The Data Parallel Model [12] uses a different paradigm where data are grouped
in parallel sections of the application where they are processed. So, instead of
using a main loop with concurrent parts that process all data, the Data Parallel
Model proposes to use separate threads for sets of data (like game objects). This
way, the objects run their own tasks (like AI and animation) in parallel. Figure 2.7
depicts this approach.

Fig. 2.7 Data parallel model
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According to Monkkonen [12], this model scales well because it can allocate as
many processing cores as they are available. Performance is limited by the amount
of data processing that can run in parallel. An important issue is how to syn-
chronize communication of objects running in different threads. The author states
that the biggest drawback of this model is the need to having components designed
with data parallelism in mind.

GPGPU stands for General Purpose GPU Computing. The focus on GPGPU
Computing has been increasing since graphics hardware had become program-
mable. It is a massively parallel architecture with more powerful processing than
the CPUs. GPU Computing has been theme of research on diverse areas like:
image analysis [16], linear algebra [17], chemistry [18], physics simulation [19],
and crowd simulation [20]. There are some works that discuss using GPU with
game loops [2–6]. These works concentrate using the GPU mostly for the physics
calculations, and they extend one of the game loops presented previously, i.e.,
multithread uncoupled model by adding a GPU stage. Figure 2.8 illustrates the
Single Coupled Model with a GPGPU stage, Fig. 2.9 presents Multithread Model
with a GPGPU uncoupled for the main loop, and Fig. 2.10 depicts the Multithread
Uncoupled with GPGPU.

Joselli et al. [6] present an architecture for loops that is able to implement any
simulation or game loop model and distribute tasks between the CPU and the
GPU. We also describe a framework for loops that are able to detect the available
hardware in many computers and automatically distribute tasks among the various
CPU cores and also to the GPU, as Fig. 2.11 illustrates.

2.3 A Dynamic Distributed Framework Architecture

The described architecture provides a management layer that is able to analyze
dynamically the hardware performance and adjust the amount of tasks to be
processed by the resources, computers, CPUs, and GPUs. In order to make a
correct task distribution, it is necessary to run an algorithm for the estimation. The
architecture applies a scripting approach because the loop can be used in many
different kinds of simulations, and for each of them it uses a different algorithm
and a subset of its parameters.

The core of the proposed architecture corresponds to the Task Manager and the
Hardware Check class. The Task Manager schedules tasks in threads and changes
which processor handles them whenever it is necessary. The Hardware Check
detects the available hardware configuration capabilities.

Additionally, with this architecture one can implement any loop model previ-
ously presented in this work. Also the heuristics presented in [4] can be adapted for
this framework. An earlier version of this architecture was first presented in [6]
and it is based on the concept of tasks. A task corresponds to some work that the
application should execute, for instance: reading player input, rendering, and
updating application objects.
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In this architecture, a task can be anything that the application should work
toward processing. However, not all tasks can be processed by all processors.
Usually, the application defines three groups of tasks. The first one consists of
tasks that can be modeled only for running on the CPU, like reading player input,
file handling, and managing other tasks. The second group consists of tasks that
run in the GPU, like the presentation of the scene. The third group can also be
modeled for running on both processors and also for distributing among

Fig. 2.8 Single coupled
model with a GPGPU stage
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computers. These tasks are responsible for updating the state of some objects that
belongs to the application, like AI and Physics.

The Task class is the virtual base class and has six subclasses: Input Task,
Update Task, Presentation Task, Hardware Check Task, Network Check Task, and
Task Manager (Fig. 2.12). The first three are also abstract classes. The fourth and
fifth is a special class to check the hardware and network connection speed. The

Fig. 2.9 Multithread uncoupled with GPGPU

Fig. 2.10 Multithread with render uncoupled and with GPGPU stage
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latter is a special class whose work consists on performing the distribution of tasks.
This special class is used by the Automatic Update Task, which distributes tasks
between CPU cores and GPU, and Distribution Task, which distributes tasks
among computers.

The Input Task classes and subclasses handle user input-related issues. The
Update Task classes and subclasses are responsible for updating the loop state. The
CPU Update class should be used for tasks that run on the CPU, the GPU Update

Fig. 2.11 The distributed system loop

Fig. 2.12 Framework UML diagram
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class corresponds to tasks that run on the GPU, and the CPU Multithread task class
correspond to task that can be distributed among CPUs cores. The Presentation
Task and subclasses are responsible for presenting information to the user, which
can be visual (Render Task) or audio (Sound Task).

The Network Check is implemented as a task that runs on the CPU. There is
only one instance of this class in the application. This class checks the available
computers for task processing and keeps track of the available bandwidth of the
connection to each computer.

With this class the distribution task manager can know, without previous
knowledge, the network connection speed to several computers. Using this
information, the automatic distribution class is able to better distribute the task
between the computers.

This class is always executed at the beginning of the simulation if the real-time
loop model is automatic. In the case of the loop used in the simulation is a
deterministic one, this class is not executed.

The Hardware Check is implemented as a task that runs on the CPU. There is
only one instance of this class in the application. This class checks the available
hardware and keeps track of the configuration of each computer, i.e., the number of
CPU cores and GPUs (with their capabilities) available in the system.

With this class the automatic task manager can know, without previous
knowledge, the available hardware for the end user computer.

This class is always executed at the beginning of the simulation if the real-time
loop model is automatic. In the case of the loop used in the simulation is a
deterministic one, this class is not executed.

The Task Manager (TM) is the core component of the proposed architecture. It
is responsible for instancing, managing, synchronizing, and finalizing task threads.
Each thread is responsible for tasks that run either on the CPU or on the GPU or on
the network. In order to configure the execution of the tasks, each task has control
variables described as follows:

• THREADID: the id of the thread that the task is going to use. When the TM
creates a new thread, it creates a THREADID for the thread and it assigns the
same id to every task that executes in that thread;

• UNIQUEID: the unique id of the task. It is used to identify the tasks;
• TASKTYPE: the task type. The following types are available: input, update,

presentation, and manage;
• DEPENDENCY: a list of the tasks (ids) that this task depends on to execute.

With that information, the TM creates the task and configures how the task is
going to execute. A task manager can also hold another task manager, so it can use
it to manage some distinct group of tasks. An example of this case is the automatic
update tasks and the distribution task.

The Task Manager acts as a server and the tasks act as its clients, as every time
a task ends, it sends a message to the Task Manager. The Task manager then
checks which task it should execute in the thread.
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When the Task Manager uses a multithread loop model, it is necessary to apply a
parallel programming in order to identify the shared and nonshared sections of the
application, because they should be treated differently. The independent sections
compose tasks that are processed in parallel, like the rendering task. The shared
sections, like the update tasks, need to be synchronized in order to guarantee
mutual-exclusive access to shared data and to preserve task execution ordering.

Although the threads run independently from each other, it is necessary to
ensure the execution order of some tasks that have processing dependence. The
architecture accomplishes this by using the DEPENDENCY variable list that the
Task Manager checks to know the task execution ordering.

The processing dependence of shared objects needs to use a synchronization
object, as applications that use many threads do. Multithread programming is a
complex subject, because the tasks in the application run alternately or simulta-
neously, but not linearly. Hence, synchronization objects are tools for handling
task dependence and execution ordering. This measure should also be carefully
applied in order to avoid thread starvation and deadlocks. The TM uses sema-
phores as the synchronization object.

2.3.1 An Automatic and Dynamic Update Task

This is an important module that we propose. The purpose of this class is to define
which processor will run the task. The class may change the task’s processor
during the application execution, which characterizes a dynamic distribution.

One of the major features of this new architecture is to allow dynamic and
automatic task allocation between the CPU threads and GPU. In order to do that it
uses the Automatic Update Task class. This task can be configured in order to be
executed in five modes: one CPU thread only, multithread CPU, GPU only, in the
automatic distribution between the hardware detected by Hardware Check class.

In order to execute on the multithread CPU mode, there are some requirements:
a parallel CPU implementation must be provided for the CPU; for executing on the
GPU mode a GPU implementation must be provided; and in order to make use of
the automatic distribution all the implementations must be provided accordingly to
the mode. The distribution is done by a heuristic in a script file. Also a configu-
ration on how the heuristic is going to behave is needed, and for that a script
configuration file is required. The script files can be implemented in any scripted
language and in our work we developed using Lua [21].

The Automatic Update Task acts like a server and its tasks as clients. The role
of the automatic update task is to execute a heuristic to automatic determine in
which processor the task will be executed. The Automatic update task executes the
heuristic and determines which client will execute the next task and will send a
message to the chosen client, allowing it to execute. Also, every time the clients
finish a task they send a message to the server to let it know it has finished.
Figure 2.13 illustrates this process.
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One of the main features of the proposed architecture is scheduling a task to run
on another processor (CPU core to GPU or GPU to CPU core or CPU core to other
CPU core) during its execution. In these cases, the task state is pushed to the task’s
own stack (and later restored) regardless of the processor type. For example, in
time t1 the GPU processes a physics task and in time t2 this task is scheduled to the
CPU. When the task starts to run again (now in the CPU), the Task Manager
reloads the task state from the tasks stack and signals it that the processor type has
changed. The task priority is changed to a value of zero, which means that the task
is placed on the front of the task queue. This measure is a way to guarantee that the
task will keep on running. Also the Automatic Update Task can perform load
balancing according to the usage rate of processors.

2.3.2 Configuration Script

The configuration script is used in order to configure how the automatic update
task will execute the heuristic.

This script defines four variables:

• INITFRAMES: used in order to set how many frames are used by the heuristic
to do the initial tests. These initial tests are used so the user may want the
heuristic to make the initial tests differently from the normal test;

• DISCARDFRAME: used in order to discard the first DISCARDFRAME frame
results, because the main thread can be loading images or models and this can
affect the tests;

• LOOPFRAMES: it is used to setup how frequently the heuristic will be exe-
cuted. If this value is set to -1 the heuristic will be executed only once;

• USEHARDWARE: a variable to determinate which modes will be used for the
automatic update tasks;

Fig. 2.13 The automatic update task class and messages

56 M. Joselli et al.



• EXECUTEFRAMES: it is used to set how many frames are needed before the
decision on changing the processor will execute the next tasks.

An example of the configuration script file can be seen in List 1.

List 1: Configuration Variables
INITFRAMES ( 20
DISCARDFRAME ( 5
LOOPFRAMES ( 50
USEHARDWARE ( ALLAVAILABLE
EXECUTEFRAMES ( 5
The automatic update task begins executing after the DISCARDFRAME are

executed. In the sequel, it executes INITFRAMES frames in the CPU cores and the
next INITFRAMES in the GPU.

Afterward, it decides where the next LOOPFRAMES frames will be executed.
If the LOOPFRAMES is greater than -1, it executes EXECUTEFRAMES frames
in the CPU cores and it executes EXECUTEFRAMES frames in the GPU. Finally,
it decides where the next LOOPFRAMES frames will be executed and keep
repeating until the application is aborted.

The heuristic script is used in order to distribute automatically the tasks
between the CPU cores and the GPU. This script defines three functions:

• reset (): reset all the variables that the script uses in order to decide which
processor will execute the task. This function is called after the LOOPFRAMES
frames are executed. The variable that are normally used by the heuristic are:

– CPUTime: an array that contains the sum of all the elapsed times that the
task has been processed in this CPU thread;

– GPUTime: the sum of all the elapsed times that the task has been processed
in the GPU;

– numBodies: the number of bodies that have been processed;
– initialBodies: the number of bodies in the beginning of the processing.

• SetVariable (elapsedTime, numberBodies, processor, thread): this function sets
all the variables that the heuristic uses. This function is called after running the
EXECUTEFRAMES frames in each processor. The script that defines this
function can be seen on List 2.

• main (): This is the function that executes the heuristic and decides which
processor will execute the task. This function is called just before the
LOOPFRAMES frames is executed.

List 2: SETVARIABLE script
numBodies ( numberBodies
if processor == CPU then
CPUTime[thread] ( CPUTime[thread] + elapsedTime
else
GPUTime ( GPUTime + elapsedTime
end if
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The component in the architecture enables the implementation of any real-time
loop model and heuristic presented with the adaptation for distribution of tasks
between cores of the same processor.

2.3.3 The Distribution Task

The purpose of this class is to define which computer will run the task. The class
may change the task’s computer during the application execution, which charac-
terizes a dynamic distribution.

One of the major features of this new architecture is to allow dynamic task
allocation between the computers. In order to do that it uses the Distribution Task
class. This task can be configured in order to be executed in two modes: in the
automatic distribution between computer with the information of the network and
hardware detected by the Network Check and Hardware Check class, and in a
manual mode.

The Distribution Task acts like a server and distribute the tasks between the
clients. The role of the automatic update task is to execute a configuration script to
determinate the execution mode of it. With that it executes the Network Check, in
order to check the network between the computers, and the Hardware Check to
know the configuration of each computer. The Distribution task determines which
client will execute the next task and will send the task to the chosen client,
allowing it to execute. Also, every time the clients finish a task they send the result
to the server to let it know it has finished. Figure 2.14 illustrates this process.

Fig. 2.14 The distribution
update task class and
messages
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Each computer have an Automatic Update Task that receives task from the
Distribution Task and executes the task, when it finishes the task execution it sends
the results back to the server. If a computer loses the link with the server, the
server will automatic distribute its task to another client.

2.3.4 The Configuration Script

The configuration script is used in order to configure how the automatic distri-
bution task will execute the heuristic. This script can be used to define:

• the maximum numbers of computers that will be used in the simulation;
• the computers IP addresses;
• the network mode (if it will run the tasks locally or in the network distribution

mode);
• the tasks that can use the network mode;
• the minimum network connection speed between the server and the client in

order to use that client machine.

2.3.5 A Summary of the Architecture Execution

First, the server computer (which displays visualization and gathers the player
input) queries the network for available computers and their capacity. After that, it
divides the amount of work between the computers, considering the processing
power of each one. While running the game loop, the server verifies if any
computer is down or if there are lost connections, in this case, it tries to redistribute
the task to the other remaining computers. It also exchange messages with the
computers, process its own tasks that it might have been assigned to, and then
presents the results to the end user.

2.4 Conclusion

With the evolution of computer networks, distributing computation will become
more in evidence, allowing more complex real-time simulations.

This work presents and summarizes the concept of the main loops present in
simulations, a subject that is not very much discussed in the literature. We discuss
an architecture for loops that are able to distribute tasks between computers in a
network, and inside computers through CPUs, CPU cores, and GPUs. With this
approach a simulator is able to use more resources available to it (local and
remote), reducing its system requirements.
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The framework and concept presented here can be applied to any game or real-
time simulation task that can be put in a parallel mode. With the use of a distri-
bution across the internet one could run more processing consuming simulators.

As network bandwidth increases and with the development of cloud computing,
the concept of this work presents will become more and more relevant.
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