
L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 103–106, 2014.
© IFIP International Federation for Information Processing 2014

Improving Mozilla’s In-App Payment Platform

Ewa Janczukowicz1,2, Ahmed Bouabdallah2, Arnaud Braud1,
Gaël Fromentoux1, and Jean-Marie Bonnin2

1 Orange Labs, Lannion, France
{ewa.janczukowicz,arnaud.braud,gael.fromentoux}@orange.com

2 Institut Mines-Telecom / Telecom Bretagne,
Université européenne de Bretagne, Cesson sévigné, France

{ahmed.bouabdallah,jm.bonnin}@telecom-bretagne.eu

Abstract. Nowadays, an in-app payment mechanism is offered in most existing
mobile payment solutions. However, current solutions are not flexible and
impose certain restrictions: users are limited to predefined payment options and
merchants need to adapt their payment mechanisms to each payment provider
they use. Ideally mobile payments should be as flexible as possible to be able to
target various markets together with users’ spending habits. Mozilla wants to
promote an open approach in mobile payments by offering a flexible, easily
accessible solution. This solution is analyzed, its shortcomings and possible
improvements are discussed leading to an original proposal.

1 Introduction

Smartphones have changed the way mobile payments work. Marketplaces with
applications have become an essential element of the mobile payment ecosystem.
They have changed users’ spending patterns and got especially specialized in micro-
payments [1]. There are multiple application stores that offer in-app payment
functionalities, like Google’s or Apple’s solutions. However they are mostly wall-
gardened, so clients and developers need to have an account set up with the imposed
payment provider. The system is easier to control since there are no unauthorized
third parties, but at the same time it becomes very limited.

PaySwarm and Mozilla have chosen a more open approach, in order to implement
platforms based on open standards and accessible to multiple payment providers. So
far some limiting implementation choices are imposed, but these projects are still
under development. Mozilla’s idea of a payment platform seems to be the most open
and flexible. This approach is beneficial for new and emerging markets, since
different payment methods can be introduced.

This paper focuses on Mozilla’s payment solution. Firstly, it is presented and
analyzed. Secondly, its limits and possible improvements are discussed. Finally a
solution is proposed and analyzed.

104 E. Janczukowicz et al.

2 Mozilla’s In-App Payment Platform

In-app payments are supported by Mozilla, that encourages providing a possibility of
previewing an app or installing its basic version for free [2]. It also gives the
possibility of implementing different marketplaces and working with different
payment providers, thus it would be possible to target various markets and to address
the needs of all users no matter the payment method [3].

Mozpay is a payment solution implemented in Firefox OS v.1.0 [4, 5]. Mozilla
offered a WebPayment API that, via the mozpay function, allows web content to
perform a payment [6]. Figure 1 shows the existing call flow.

Fig. 1. Mozpay based call flow

PP implements the WebPaymentProvider API [7]. The payment flow is managed
from PP’s server inside the trusted user interface (UI), limited to whitelisted domains.
The whitelist is preregistered in the user agent and is controlled by Mozilla or
whoever builds the OS. So far there is only one PP, created by Mozilla [2].

AS contains all application logics, manages the payment token and assures
delivering goods to the user. It is assumed that to set up payments, a developer is
already registered within PP (e.g. Firefox Marketplace Developer Hub), they have
exchanged information like: financial details, application key and secret.

CA allows buying digital goods as one of its features.
The payment token contains all the essential information concerning a good being

purchased. It is sent between all three parties throughout the payment process.
The purchase flow given below is based on Mozilla’s payment provider example.

1. A user by clicking the “Buy” button requests a payment token from AS.
2. AS generates and signs the payment token, later sends it to CA.
3. CA forwards the token by calling the mozpay API [3]. If PP is whitelisted a

trusted UI is opened, the user authenticates and the purchasing flow starts.

 Improving Mozilla’s In-App Payment Platform 105

4. Postback (success) or chargeback (error) are tokens with additional fields
(e.g. transaction ID) that inform AS about the payment result.

5. When AS receives a postback (or a chargeback) it acknowledges it.
6. In case of successful payment the purchased good is sent to the user.

The mozpay function has been proposed to be abandoned due to too rigid end-to-
end transaction flows by imposing the payment token mechanism. Exposing payment
provider primitives was suggested as an improvement. Payment providers would
manage their own payment flows by providing JavaScript files to developers and by
using a trusted UI with access restricted to whitelisted domains [8]. It can be seen on
Figure 2 where the calls 1 and 2 from Figure 1 are replaced by a JS file.

3 Proposed Solution

In existing solution in order to access a trusted UI payment providers had to be
whitelisted by Mozilla. It was impossible to add a new one between the Firefox OS
versions. The improvement of exposing payment primitives does not solve this issue,
since the access to trusted UI remains restricted to whitelisted domains [8].

A certification mechanism is a possible improvement that could replace a
predefined whitelist. The solution is presented in Figure 2.

Fig. 2. Proposed solution

Instead of the mozpay method, PP’s JS file is included within CA. PP also
provides a certificate with a URL needed to launch the trusted UI. When the Firefox
OS receives a request to start the payment, it calls TP and verifies the certificate. If
the verification is successful it uses the provided URL to open the trusted UI and the
payment process begins. We assume there are no attacks on application integrity.

The proposed architecture allows changing the list of authorized payment providers
without the need of redistributing the whole operating system every time a new player
enters the business value chain. Instead of a central entity that controls the whitelist,

106 E. Janczukowicz et al.

there may be several trusted parties. As a result the number of payments providers
would increase, so they would compete and transaction fees would become more
beneficial. This also gives clients and app developers more freedom to choose a
payment option. More universal system would give the possibility of efficiently
targeting specific markets and clients’ spending habits. There are a lot of factors to
consider: different type of clients (illiterate, cash-challenged, without credit cards)
and national regulations (taxes, currency). Additionally, well-known, open standards
would facilitate the development process.

The drawback of the solution is that payment providers would need to adapt their
flows in order to assure certificate management. Security aspects need to be studied,
although an advantage of certificates is that they are widely implemented and trusted.

4 Conclusion

In-app payments are used more often but the widely used application stores or
payment providers have implemented a walled-garden approach. Mozilla wants to
change the way in-app payments work by offering a platform that is open and that
targets new markets while not imposing strict business models. The version
implemented so far has several limits. One of the biggest limitations is a whitelist of
authorized payment providers that is currently shipped with the devices. The proposed
solution solves this problem by offering a certification system that would manage
payment providers. As a result Mozilla’s solution can become more flexible and be
able to meet most of participating players’ requirements.

References

[1] Copeland, R.: Telco App Stores – friend or foe? In: IEEE 14th International Conference on
Intelligence in Next Generation Networks (ICIN 2010), Berlin, Germany, October 11-14
(2010)

[2] https://developer.mozilla.org/docs/Mozilla/Marketplace/
Marketplace_Payments (accessed November 27, 2013)

[3] https://hacks.mozilla.org/2013/04/introducing-navigator-
mozpay-for-web-payments/ (accessed November 28, 2013)

[4] https://developer.mozilla.org/en-US/Firefox_OS (accessed November
29, 2013)

[5] Janczukowicz, E.: Firefox OS Overview. Telecom Bretagne Research Report RR-2013-04-
RSM (November 2013)

[6] https://wiki.mozilla.org/WebAPI/WebPayment (accessed November 28,
2013)

[7] https://wiki.mozilla.org/WebAPI/WebPaymentProvider (accessed
November 28, 2013)

[8] https://groups.google.com/forum/#!msg/mozilla.dev.webapi/
cyk8Nz4I-f4/5er6JojC3TsJ (accessed November 13, 2013)

	Improving Mozilla’s In-App Payment Platform
	1 Introduction
	2 Mozilla’s In-App Payment Platform
	3 Proposed Solution
	4 Conclusion
	References

