
123

Luis Corral
Alberto Sillitti

Giancarlo Succi
Jelena Vlasenko

Anthony I. Wasserman
(Eds.)

10th IFIP WG 2.13 International Conference
on Open Source Systems, OSS 2014
San José, Costa Rica, May 6–9, 2014
Proceedings

Open Source Software:
Mobile Open Source
Technologies

IFIP AICT 427

IFIP Advances in Information
and Communication Technology 427

Editor-in-Chief

A. Joe Turner, Seneca, SC, USA

Editorial Board

Foundations of Computer Science
Jacques Sakarovitch, Télécom ParisTech, France

Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

Education
Arthur Tatnall, Victoria University, Melbourne, Australia

Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

Communication Systems
Aiko Pras, University of Twente, Enschede, The Netherlands

System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

Information Systems
Jan Pries-Heje, Roskilde University, Denmark

ICT and Society
Diane Whitehouse, The Castlegate Consultancy, Malton, UK

Computer Systems Technology
Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Security and Privacy Protection in Information Processing Systems
Yuko Murayama, Iwate Prefectural University, Japan

Artificial Intelligence
Tharam Dillon, Curtin University, Bentley, Australia

Human-Computer Interaction
Jan Gulliksen, KTH Royal Institute of Technology, Stockholm, Sweden

Entertainment Computing
Matthias Rauterberg, Eindhoven University of Technology, The Netherlands

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within its member countries and to encourage
technology transfer to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is about information processing may
apply to become a full member of IFIP, although full membership is restricted to
one society per country. Full members are entitled to vote at the annual General
Assembly, National societies preferring a less committed involvement may apply
for associate or corresponding membership. Associate members enjoy the same
benefits as full members, but without voting rights. Corresponding members are
not represented in IFIP bodies. Affiliated membership is open to non-national
societies, and individual and honorary membership schemes are also offered.

Luis Corral Alberto Sillitti
Giancarlo Succi Jelena Vlasenko
Anthony I. Wasserman (Eds.)

Open Source Software:
Mobile Open Source
Technologies
10th IFIP WG 2.13 International Conference
on Open Source Systems, OSS 2014
San José, Costa Rica, May 6-9, 2014
Proceedings

13

Volume Editors

Luis Corral
Alberto Sillitti
Giancarlo Succi
Jelena Vlasenko
Free University of Bozen/Bolzano
Piazza Domenicani 3, 39100 Bolzano, Italy
E-mail: {luis.corral, asillitti, gsucci, jelena.vlasenko}@unibz.it

Anthony I. Wasserman
Carnegie Mellon University Silicon Valley
Moffett Field, CA 94035, USA
E-mail: tony.wasserman@sv.cmu.edu

ISSN 1868-4238 e-ISSN 1868-422X
ISBN 978-3-642-55127-7 e-ISBN 978-3-642-55128-4
DOI 10.1007/978-3-642-55128-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014936103

© IFIP International Federation for Information Processing 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The International Conference on Open Source Systems (OSS) celebrated 10 years
of interchange, discussion, progress, and openness. This year we received a rel-
evant number of submission and workshop proposals, on all aspects of open
source. Moreover, the conference was honored with the presence of distinguished
speakers from leading technology companies who shared their experience on how
to achieve success on top of open source technologies. A total of 37 high-quality
contributions from 18 countries were accepted in the final program, thanks to
the effort and coordination of the program chairs and the rigorous reviews of the
Program Committee.

In 2014, OSS traveled to Latin America, landing in the beautiful city of
San Jose, capital of the lively Republic of Costa Rica. OSS 2014 took place in
Latin America, a region that experiences an enthusiastic and continuous growth
in the development and implementation of open source technologies. The high
participation of Latin American authors in the main program of the confer-
ence was remarkable, as was the celebration of the First Latin Colloquium on
Open Source Software. This colloquium brought together authors and audience
members speaking diverse Latin languages, such as Catalan, French, Italian,
Portuguese, Romanian, Spanish, etc.

OSS 2014 presented as a featured topic “Mobile Open Source Technologies.”
Given the widespread diffusion of mobile devices and the relevance of open source
operating systems for such devices (not only Android, but also Sailfish, Ubuntu,
and others) the 10th edition of the conference solicited in particular submis-
sions that focus on this area of open source, targeting their architectures, design
choices, programming languages, etc.

This volume presents the 37 peer-reviewed contributions that made up the
main program of OSS 2014. We organized the contents in eight parts, each con-
cerning a relevant area of open source: open source visualization and reporting;
open source in business modeling; open source in mobile and Web technologies;
open source in education and research; development processes of open source
products; testing and assurance in open source projects; global impact on open
source communities and development; and case studies and demonstrations of
open source projects. We heartily believe that this book will provide useful in-
sights into the current state of the art and the practice of open source software
development, technologies, project management, education, and applications.

For one decade, the OSS series of conferences has been a key reference to
the open source research and practitioner community. This would have not been
possible without all software developers, authors, reviewers, sponsors, keynote
speakers, organization committees, local liaisons and all the involved staff who

VI Preface

generously contributed to make OSS successful since its very first edition. We
would like to gratefully thank them all for their interest, time, and passion.

March 2014 Luis Corral
Alberto Sillitti
Giancarlo Succi
Jelena Vlasenko

Anthony I. Wasserman

Organization

General Chair

Anthony I. Wasserman

Program Chair

Giancarlo Succi

Organizing Chair

Jelena Vlasenko

Proceedings, Web, and Social Media Chair

Luis Corral

Tutorial Chair

Stephane Ribas

Workshop Chair

Greg Madey

Panel Chair

Bjorn Lundell

PhD Symposium Chair

Andrea Janes

Experience Report Chairs

Mauricio Aniche
Carlos Denner Santos Jr.

VIII Organization

New Ideas Track Chair

Alessandro Sarcia

Poster Chair

Kathryn Ambrose Sereno

Mobile Track Chairs

Mikko Terho
Ignacio Trejos

Industry Liaison Chair

Alessandro Garibbo

Financial Chair

Alberto Sillitti

Local Organization Chair

Otto Chinchilla

Program Committee

Wasif Afzal
Chintan Amrit
Claudia P. Ayala
Mauricio Aniche
Luciano Baresi
Cornelia Boldyreff
Andrea Capiluppi
Otto Chinchilla
Paolo Ciancarini
Reidar Conradi
Luis Corral
Francesco Di Cerbo
Carlos Denner Santos Jr.
U. Yeliz Eseryel

Jonas Gamalielsson
Carlo Ghezzi
Jesus M. Gonzalez-Barahona
Imed Hammouda
Scott Hissam
Netta Iivari
Paola Inverardi
Andrea Janes
Stefan Koch
Fabio Kon
Luigi Lavazza
Bjorn Lundell
Gregory Madey
Eda Marchetti

Organization IX

Sandro Morasca
Juan Ramon Moreno
John Noll
Witold Pedrycz
Etiel Petrinja
Mauro Pezze’
Rafael Prikladnicki
Stephane Ribas
Dirk Riehle
Gregorio Robles
Francesco Rogo
Daniela S. Cruzes
Denis Roberto Salazar
Alessandro Sarcia’
Walt Scacchi
Charles Schweik

Maha Shaikh
Emad Shihab
Alberto Sillitti
Diomidis Spinellis
Megan Squire
Klaas-Jan Stol
Eleni Stroulia
Marcos Sfair Sunye
Giancarlo Succi
Mikko Terho
Davide Tosi
Ignacio Trejos
Aaron Visaggio
Jelena Vlasenko
Eugenio Zimeo

Table of Contents

Open Source Visualization and Reporting

Code Review Analytics: WebKit as Case Study . 1
Jesús M. González-Barahona, Daniel Izquierdo-Cortázar,
Gregorio Robles, and Mario Gallegos

Navigation Support in Evolving Open-Source Communities
by a Web-Based Dashboard . 11

Anna Hannemann, Kristjan Liiva, and Ralf Klamma

Who Contributes to What? Exploring Hidden Relationships between
FLOSS Projects . 21

M.M. Mahbubul Syeed and Imed Hammouda

How Do Social Interaction Networks Influence Peer Impressions
Formation? A Case Study . 31

Amiangshu Bosu and Jeffrey C. Carver

Drawing the Big Picture: Temporal Visualization of Dynamic
Collaboration Graphs of OSS Software Forks . 41

Amir Azarbakht and Carlos Jensen

Open Source in Business Modeling

Analyzing the Relationship between the License of Packages and Their
Files in Free and Open Source Software . 51

Yuki Manabe, Daniel M. German, and Katsuro Inoue

Adapting SCRUM to the Italian Army: Methods and (Open) Tools 61
Franco Raffaele Cotugno and Angelo Messina

Applying the Submission Multiple Tier (SMT) Matrix to Detect Impact
on Developer Interest on Open Source Project Survivability 70

Bee Bee Chua

FOSS Service Management and Incidences . 76
Susana Sánchez Ortiz and Alfredo Pérez Benitez

Open-Source Software Entrepreneurial Business Modelling 80
Jose Teixeira and Joni Salminen

XII Table of Contents

Open Source in Mobile and Web Technologies

Towards Understanding of Structural Attributes of Web APIs Using
Metrics Based on API Call Responses . 83

Andrea Janes, Tadas Remencius, Alberto Sillitti, and Giancarlo Succi

Open Source Mobile Virtual Machines: An Energy Assessment
of Dalvik vs. ART . 93

Anton B. Georgiev, Alberto Sillitti, and Giancarlo Succi

Improving Mozilla’s In-App Payment Platform . 103
Ewa Janczukowicz, Ahmed Bouabdallah, Arnaud Braud,
Gaël Fromentoux, and Jean-Marie Bonnin

A Performance Analysis of Wireless Mesh Networks Implementations
Based on Open Source Software . 107

Iván Armuelles Voinov, Aidelen Chung Cedeño,
Joaqúın Chung, and Grace González

Use of Open Software Tools for Data Offloading Techniques Analysis
on Mobile Networks . 111

José M. Koo, Juan P. Espino, Iván Armuelles, and Rubén Villarreal

Open Source in Education and Research

Crafting a Systematic Literature Review on Open-Source Platforms 113
Jose Teixeira and Abayomi Baiyere

Considerations Regarding the Creation of a Post-graduate Master’s
Degree in Free Software . 123

Sergio Raúl Montes León, Gregorio Robles,
Jesús M. González-Barahona, and Luis E. Sánchez C.

Lessons Learned from Teaching Open Source Software Development 133
Becka Morgan and Carlos Jensen

A Successful OSS Adaptation and Integration in an e-Learning
Platform: TEC Digital . 143

Mario Chacon-Rivas and Cesar Garita

Smart TV with Free Technologies in Support of Teaching-Learning
Process . 147

Eugenio Rosales Rosa, Abel Alfonso F́ırvida Donéstevez,
Marielis González Muño, and Allan Pierra Fuentes

Table of Contents XIII

Development Processes of Open Source Products

Barriers Faced by Newcomers to Open Source Projects: A Systematic
Review . 153

Igor Steinmacher, Marco Aurélio Graciotto Silva, and
Marco Aurélio Gerosa

Does Contributor Characteristics Influence Future Participation?
A Case Study on Google Chromium Issue Tracking System 164

Ayushi Rastogi and Ashish Sureka

A Layered Approach to Managing Risks in OSS Projects 168
Xavier Franch, Ron Kenett, Fabio Mancinelli, Angelo Susi,
David Ameller, Ron Ben-Jacob, and Alberto Siena

A Methodology for Managing FOSS Migration Projects 172
Angel Goñi, Maheshwar Boodraj, and Yordanis Cabreja

The Agile Management of Development Projects of Software Combining
Scrum, Kanban and Expert Consultation . 176

Michel Evaristo Febles Parker and Yusleydi Fernández del Monte

Testing and Assurance on Open Source Projects

An Exploration of Code Quality in FOSS Projects 181
Iftekhar Ahmed, Soroush Ghorashi, and Carlos Jensen

Polytrix: A Pacto-Powered Polyglot Test Matrix . 191
Max Lincoln and Fernando Alves

Flow Research SXP Agile Methodology for FOSS Projects 195
Gladys Marsi Peñalver Romero, Lisandra Isabel Leyva Samada, and
Abel Meneses Abad

How to Support Newcomers Onboarding to Open Source Software
Projects . 199

Igor Steinmacher and Marco Aurélio Gerosa

Global Impact on Open Source Communities and
Development

The Census of the Brazilian Open-Source Community 202
Gustavo Pinto and Fernando Kamei

Cuban GNU/Linux Nova Distribution for Server Computers 212
Eugenio Rosales Rosa, Juan Manuel Fuentes Rodŕıguez,
Abel Alfonso F́ırvida Donéstevez, and Dairelys Garćıa Rivas

XIV Table of Contents

A Study of the Effect on Business Growth by Utilization and
Contribution of Open Source Software in Japanese IT Companies 216

Tetsuo Noda and Terutaka Tansho

Case Studies and Demonstrations of Open Source
Projects

USB Device Management in GNU/Linux Systems . 218
Edilberto Blez Deroncelé, Allan Pierra Fuentes,
Dayana Caridad Tejera Hernández, Haniel Cáceres Navarro,
Abel Alfonso F́ırvida Donéstevez, and Michel Evaristo Febles Parker

PROINFODATA: Monitoring a Large Park of Computational
Laboratories . 226

Cleide L.B. Possamai, Diego Pasqualin, Daniel Weingaertner,
Eduardo Todt, Marcos A. Castilho, Luis C.E. de Bona, and
Eduardo Cunha de Almeida

Book Locator: Books Manager . 230
Dairelys Garćıa Rivas

Automation of Agricultural Irrigation System with Open Source 232
Bladimir Jaime Pérez Quezada and Javier Fernández

When Are OSS Developers More Likely to Introduce Vulnerable Code
Changes? A Case Study . 234

Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz,
Patrick Hilley, and Derek Janni

Author Index . 237

Code Review Analytics: WebKit as Case Study

Jesús M. González-Barahona1, Daniel Izquierdo-Cortázar2, Gregorio Robles1,
and Mario Gallegos3

1 GSyC/LibreSoft, Universidad Rey Juan Carlos
{jgb,grex}@gsyc.urjc.es

2 Bitergia
dizquierdo@bitergia.com

3 Universidad Centroamericana José Simón Cañas
mgallegos@uca.edu.sv

Abstract. During the last years, most of the large free / open source
software projects have included code review as an usual, or even manda-
tory practice for changes to their code. In many cases it is implemented
as a process in which a developer proposing some change needs to ask
for a review by another developer before it can enter the code base. Code
reviews, therefore, become a critical process for the project, which could
cause delays in contributions being accepted, and risk to become a bot-
tleneck if not enough reviewers are available. In this paper we present a
methodology designed to analyze the code review process, to determine
its main characteristics and parameters, and to detect potential prob-
lems with it. We also present how we have applied this methodology to
the WebKit project, learning about the main characteristics of how code
review works in their case.

1 Introduction, Motivation and Goals

Code review is gaining importance in free, open source software (FLOSS) projects,
as it started to gain relevance several years ago in proprietary software firms [2,1].
Currently, most large FLOSS projects are using it in one way or another. Under-
standing how it is working, how it can be characterizedwith traceable, measurable
parameters, and understating how it may affect to the relationships between ac-
tors in the project is becoming of great importance [4]. In this paper, we present
a methodology that addresses these needs1. It starts by identifying traces from
the review process in software development repositories such as source code man-
agement or issue tracking systems, and goes all the way to the characterization
of performance and extension properties of the process. In particular, the follow-
ing research questions are addressed: (Q1) To which extent can the review process
based on traces in development repositories be characterized? (Q2) How can the
evolution over time of the code review process be characterized?

1 Reproduction information and data sources of the study, according to [3], are available
at http://gsyc.es/~jgb/repro/2014-oss-webkit-review

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 1–10, 2014.
c© IFIP International Federation for Information Processing 2014

http://gsyc.es/~jgb/repro/2014-oss-webkit-review

2 J.M. González-Barahona et al.

The answer to Q1 is important because if those traces can be found, and
automatically extracted from software development repositories, an automated
or semiautomatic methodology could be designed, implemented and deployed
to track the evolution of the main parameters of the code review process. This
would be a first step to build an automated dashboard that allows to better
understand the process and for the continuous follow-up of those aspects by
any interested party [5]. Q2 is focused on identifying parameters as simple as
possible to calculate, but that capture information about important aspects of
the evolution of the code review process. Again, if this can be done, instead of
using a large collection of complex parameters, a small number automatically
computed could be used. In our case, we have checked these two questions in
the well-known WebKit project.

The next section presents the WebKit code review process, and provides a
qualitative answer to Q1. Then, the methodology for the data retrieval and
postprocessing is described in Section 3, including a quantitative answer to Q1.
The analysis itself, with the answer to Q2, follows in Section 4. Section 5 is
devoted to discussion and the analysis of the main threats to validity. The paper
concludes with a section presenting the conclusions.

2 The Code Review Process, and Its Traces

In WebKit, most significant source code contributions must go through a review
process. However, activities considered trivial, or very basic maintenance issues
(such as minor fixes due peculiarities of one of the platforms) can be committed
directly.

2.1 Code Review: Is It Possible to Follow It in Detail?

Anyone may send a contribution to WebKit. But usually the contribution must
go through a review process, and be accepted by a reviewer. Both committers
and reviewers are selected by previous WebKit committers and reviewers by a
meritocratic, peer-approval process2.

The contribution process3 is centered around the Subversion repository and
the Bugzilla system. Developers start by choosing or opening a new ticket in
Bugzilla. The ticket may correspond to a bug report, a feature request, or some-
thing else. While working on it, developers compose a patch in their local working
copy of the Subversion repository, including entries in changelog files, describing
the changes and identifying the ticket. Then, it is submitted to Bugzilla with
another script, where it is attached to its ticket.

Usually, upon submission to Bugzilla, code review is requested. This can be
done by flagging the attachment to the ticket (as “Review?”), but it can also be
requested by other means, such as in the project IRC channel. Unfortunately,
only the flagging in Bugzilla leaves traces. Fortunately, flagging the ticket is

2 http://www.webkit.org/coding/commit-review-policy.html
3 http://www.webkit.org/coding/contributing.html

http://www.webkit.org/coding/commit-review-policy.html
http://www.webkit.org/coding/contributing.html

Code Review Analytics: WebKit as Case Study 3

the most popular requesting method. The review request is not directed to a
reviewer in particular, although the developer may try to get the attention of
some of them by CCing them in the ticket update, or by directly addressing
them somehow.

Reviewers deal with review requests according to their preferences. Once they
have reviewed a contribution, they can decide to accept it, to ask for changes,
or to reject it. Acceptance and rejection is signaled with a new flag (“Review+”
or “Review-”) to the ticket. When developers are asked for changes, they have
to send a new patch for review with a new “Review?” flag. Changes may follow
several iterations, which can in many cases be tracked by examining the review
flags.

Once a contribution is accepted, it can be committed to the Subversion repos-
itory by any committer, or marked for automatic commit by the commit-queue
bot. Therefore, only those developers who are also committers usually commit
their own contributions. This means that the “committer” field in the Subversion
commit record does not contain information about the real author or reviewer
(and Subversion keeps no information about authorship).

2.2 Traces

Summarizing, the traces left by the code review process are:

– Changelog files in the Subversion repository. They include information for
every commit, and at least author (usually including name and email ad-
dress), Bugzilla identifier of the related ticket, and reviewer (if the commit
was accepted after a code review process).

– Commit records in the Subversion repository. The committer information is
not reliable, but useful information can still be extracted from the committed
changelog files.

– Attachments and flags in the Bugzilla repository. Each contribution is usu-
ally submitted as an attachment to a ticket, and reviews are requested and
granted usually setting flags in it. Detailed timing of all these operations
is available, and some information about the person performing it. So, at
least this information is available: time of review request (“Review+?”) and
results of the review process: acceptance (“Review+”) or rejection (“Review-
”), and Bugzilla identifier of those changing the state of the ticket.

Not always all of this information is available. However, commits with missing
information is mainly from old reviews; since about 2005 a very large fraction
of them have all data (see details in section 3). Using this information, a char-
acterizations of the review process is possible:

– The most reliable information about authors and reviewers (i.e., name and
email address) comes from the changelog files, since they are well documented.

– Alternatively, authors and reviewers could also be determined from their
identities in Bugzilla ticketsA manual examination of a random collection
shows that both sources offer the same information, as usually scripts auto-
matically include identities in both.

4 J.M. González-Barahona et al.

– Timing information is obtained from Bugzilla. The review process starts
when a developer flags an attachment to a ticket as “Review?”. The end of
the process occurs when a “Review+” flag is set. If there are several requests,
the timing of each “Review?” flag can also be determined.

– Authors and reviewers are linked to tickets thanks to the ticket identifier
found in the changelog files.

With all this information the duration of reviews, and the number of iterations
(number of review requests) can be tracked with great accuracy. Therefore, the
answer to Q1 is, in principle, positive: the review process can be characterized
with great detail at least in the above described terms. Some other aspects
of the review process could be characterized with these data, such as the size
of reviewed code (which could be extracted both from the commit record and
the attachments to the ticket), the changes to code due to the review process
(comparison of attachments to the ticket), etc.

3 Methodology

The methodology that we have used to characterize the code review process in
WebKit is based on the following steps, similar to those described in [3]: data
retrieval from development repositories into databases; clean-up, organization
and sampling; and analysis. The first two steps are presented in this section.

3.1 Data Sources and Data Retrieval

The study has been performed using data from the Bugzilla (issue tracking)
system4, and from the Subversion (source code management) repository5 of the
WebKit project. In the case of the Subversion repository, it has been accessed
through a git front-end6 which allows for complete access to all the information.

The git front-end to the Subversion repository was cloned on January 17th
2013 and includes information since August 24th 2001. Metainformation about
all commit records (a total of 125,863) was obtained using CVSAnalY, from
the MetricsGrimoire toolset7. This metainformation was used mainly for cross-
validation, but is not really a data source for this study. The git clone was also
used to extract information from changelog files. These files, which are spread
through the source code tree, were identified, and their relevant information
extracted, using an ad-hoc script based in part in the webkitpy library8, main-
tained by the WebKit project itself. This script retrieves the complete list of
commits from the git clone, identifying and parsing for each of them the modified
changelog files. From these files, it extracts the relevant fields: author, reviewer

4 https://bugs.webkit.org
5 http://www.webkit.org/building/checkout.html
6 http://trac.webkit.org/wiki/UsingGitWithWebKit
7 http://metricsgrimoire.github.com
8 https://trac.webkit.org/browser/trunk/Tools/Scripts/webkitpy

https://bugs.webkit.org
http://www.webkit.org/building/checkout.html
http://trac.webkit.org/wiki/UsingGitWithWebKit
http://metricsgrimoire.github.com
https://trac.webkit.org/browser/trunk/Tools/Scripts/webkitpy

Code Review Analytics: WebKit as Case Study 5

and Bugzilla ticket. A total of 117,079 entries in changelog files were identified
this way.

The exact strategy followed by the script to determine changelog entries starts
by obtaining a list of all commit identifiers (hashes) directly from the git front-
end. For each of them, changelog files added or modified are identified, and their
diff information obtained. All entries in those diffs are considered to be related
to the commit. The author, reviewer and Bugzilla ticket identifier are retrieved
and stored.

Information for all changes to all Bugzilla tickets was retrieved on January
29th 2013 using Bicho, from the MetricsGrimoire toolset. A total of 100,221
issues, and 976,879 ticket state changes were retrieved, with the first ticket dating
from June 1st 2005 (there is a single older ticket from 2000, which seems to be
an error, and was not considered).

3.2 Cleaning and Organizing the Data

A quick observation of the retrieved dataset shows how, as expected, committer
information in the Subversion repository is unreliable. 24,406 commit records
were found to have a committer which is not the author, according to the
changelog information. Many of those are submitted by bots, who perform au-
tomatic commits of already reviewed code, or of small maintenance changes.
For example, during 2012 about 22% of commits (7,079 out of 31,923) were
performed by bots.

The analysis of the changelog files shows that they covered a very large frac-
tion of all commits: only 8,784, or about 7% of the commits, are missing in the
changelogs. The difference can be attributed in some cases to errors, but usu-
ally to minor maintenance commits, such as versioning commits, which are not
considered to deserve an entry in changelog files. Although other approaches are
possible, we considered only a single author for each commit. This meant that
of the commits identified in changelog files, an additional 578 (about 0.5%) were
ignored because they included information about more than one author (this
usually happens when several developers collaborated in the code change).

The number of commits that included “Reviewed by” and similar entries
was 74,290. On the other hand, the number of commits with changelog files
that reference a Bugzilla ticket is 68,460. Both conditions (being reviewed and
referencing a ticket) are fulfilled by only 60,991. Many of the commits that do
not comply with both conditions correspond to the period before June 2005,
when tickets were not introduced in the Bugzilla database. In some cases, a
ticket is referenced in more than one commit: 55,649 unique tickets were found
in changelogs. When looking for those tickets, some corresponded to non-public
tickets (such as those used in some cases by Apple developers), being 54,501 the
total number of tickets that we could use in our study.

The last step in selecting tickets is considering only those with complete in-
formation about the review process: we need to know when it was initiated, and
when it finished. For that, we selected tickets flagged at least once as “Review?”
(review request) and “Review+” (review approved).

6 J.M. González-Barahona et al.

Our study will consider tickets with review request after 2006 and before 2013.
This will avoid the early days of the project when few information about code
review is available in the Bugzilla system, and the final part of the sample, which
would distort the final part of the evolution studies. For that period, we have a
total of 75,179 commits marked as reviewed in the changelog files. Out of them,
61,867 (82%) reference a Bugzilla ticket, with 56,483 different tickets referenced.
Of those, 55,303 (98%) are publicly available. Of those, 53,212 include at least
one review request and approval: this is our final sample, which will be used for
the following analysis.

4 Analysis Over Time

In order to characterize the evolution of the review process over time, after
informal discussion with some WebKit developers, we have used the following
parameters as they capture the most relevant aspects of how the code review
process is changing:

– Bulk parameters: number of commits subject to code review, number of
authors and reviewers involved, per month. They capture the “size” of the
review process: how many actors are involved, how many actions (“review
processes”) they perform.

– Performance parameters: number of iterations (review requests needed) per
review, delay from review request to reviewed. They capture how much effort
is put into the review process (measured by iterations), and how much delay
the process is causing (by measuring time-to-review).

Time

R
e
vi

e
w

e
d

 c
o

m
m

its

2007 2008 2009 2010 2011 2012 2013

0
5

0
0

1
5

0
0

Time

A
u

th
o

rs

2007 2008 2009 2010 2011 2012 2013

5
0

1
5

0
2

5
0

Fig. 1. Bulk parameters (authoring). Total number of tickets corresponding to review
processes, and of active authors (review requesters) per month. Time of review request
is used to determine the month for each ticket.

Figure 1 shows the bulk parameters for authoring. The number of reviewed
commits is increasing clearly over time (from less than 400 per month before mid-
2009 to around 1,500 per month during 2012). The number of active authors per
month is also increasing, following closely (although not always) the number of
reviewed commits. In this case, the growth started a bit earlier than for commits,
and shows what at first sight seems to be a linear trend.

Code Review Analytics: WebKit as Case Study 7

Time

R
e
vi

e
w

e
d

 c
o

m
m

its

2007 2008 2009 2010 2011 2012 2013

0
5

0
0

1
5

0
0

Time

R
e
vi

e
w

e
rs

2007 2008 2009 2010 2011 2012 2013

2
0

4
0

6
0

8
0

Fig. 2. Bulk parameters (reviewing). Total number of tickets corresponding to review
processes, and of active reviewers (review approvers) per month. Time of review ap-
proved is used to determine the month for each ticket.

Bulk parameters for reviewing, shown in Figure 2, show very similar patterns.
With a median delay of 151 minutes, times for asking for review and granting it
are very close, which explains the almost equal shapes for commits. The growth
in reviewers, on the contrary, is a bit slower than in the case of authors. While
from 2008 to 2012 authors increased from around 50 to 250-300, reviewers grew
only from about 20 to 80.

Time

It
e

ra
tio

n
s

(m
e

a
n

)

2007 2008 2009 2010 2011 2012 2013

1
.4

1
.8

Time

D
e

la
y

(m
e

a
n

)

2007 2008 2009 2010 2011 2012 2013

0
4

0
0

0
0

8
0

0
0

0

Fig. 3. Performance parameters (mean per month). Number of iterations (review re-
quests for the same ticket) and delay (time from review request to review approval, in
minutes).

Performance parameters tell about how the process is actually working over
time. Figure 3 shows the evolution of the means: mean iterations and mean delay
over time. In the case of iterations (number of cycles implying review requests)
per ticket, although there is a lot of variance over time, a slowly growing trend
seems clear. In early 2007, the mean number of iterations per ticket was of about
1.4, while in 2012 it remains around 1.8 most of the year.

Despite this increase in the number of iterations, the mean delay for tickets has
been decreasing since mid 2008, after a couple of long peaks (in mid 2007 and mid
2008), for which we have found no apparent explanation. Looking at the general
trend, it shows how, despite putting more effort in the review process (more
iterations), the project is being able of reducing the time-to-review. This means
that both reviewers are being more responsive to review requests by authors, but
also that those have into account quickly the suggestions for changes, so that a
new review cycle can start.

This said, it is important to signal that the distribution of delays is very
skewed: while the median for delays is 151 minutes, the mean is 7,447 minutes.

8 J.M. González-Barahona et al.

Time

0
.5

 (
b
la

ck
)

/
0

.2
 (

g
re

e
n

)

2007 2008 2009 2010 2011 2012 2013

0
1

0
0

0
2

0
0

0

Time

0
.9

5
 (

b
la

ck
)

/
0

.8
 (

g
re

e
n

)

2007 2008 2009 2010 2011 2012 2013

0
e

+
0

0
2

e
+

0
5

4
e

+
0

5

Time

0.
95

 (
bl

ac
k)

 /
0.

8
(g

re
en

)
/ 0

.5
 (

re
d)

 /
0.

2
(b

lu
e)

2007 2008 2009 2010 2011 2012 2013

1
2

3
4

5

Fig. 4. Performance parameters (quantiles per month). Delay (time from review re-
quest to review approval, in minutes) for “quick” (top) and “slow” (middle) reviews,
and logarithm of the delay (bottom).

Therefore, we have considered convenient to offer also, in Figure 4, similar in-
formation, but now using quantiles. In the top chart in that figure we can see
the maximum delay for the quickest closed tickets. For example, the .2 (green)
line in that chart shows how the maximum delay for the 20% quickest review
processes, over time. The .5 (black) line shows the evolution of the median delay.

For all the quantiles analyzed, the evolution of delay over time is quite similar,
and consistent with the one found for the mean delay. Maybe the quickest tickets
are reducing their delays, while the slower ones tend to be more stable. This can
be seen in the middle chart, with the delays for 80% and 95% of the tickets, but
more clearly in the bottom one, which shows the logarithm of delay over time:
the red and blue lines shows a tendency to descend since 2008, while the black
and green ones are almost horizontal. The bottom chart, taking into account the
log scale, shows also the great skewness of the distribution of delays.

5 Discussion and Threats to Validity

In large projects where many different actors contribute, each with their own and
usually competing interests, many software development processes are difficult,
yet important to understand. In the case of our study, the code review process
is specially important, because it controls what enters the code base, but also
what is left out. It is a barrier that developers have to overcome for contributing.
Therefore, understanding it is really important, and more when the stakeholders
are companies competing in the marketplace, but collaborating in the project.

A pure qualitative understanding, based on the modeling of the mechanics of
the process, is not enough. Quantitative information is needed to back discussions
with data, to detect early problems, and to be able of evaluating solutions and

Code Review Analytics: WebKit as Case Study 9

new policies. In this respect, we have quantified several aspects of the process,
and have validated them with WebKit developers.

The main contribution of our study, from this point of view, is a detailed
methodology, that can be used in the WebKit project and, with some variations,
in other projects too. The parameters and charts presented can be the basis
for a specialized dashboard that tracks the details of how the review process is
evolving. The parameters presented, and the way they are calculated, can also
be the basis of a validation system for any quantitative model of the code review
process.

There are several threats to the internal validity of the study. The main one
is probably the validity of the parameters selected to characterize the code re-
view process. In general, both practitioners and academics consulted agree on
the validity and usefulness of them as they can be linked to important concepts
such as effort or delay in actions. But more research is needed to really corre-
late them with other parameters, so that it becomes clear that they are really
important for the review process. Other threats to internal validity are related
to the actual data retrieval process, the validity of the analyzed sample, and
the exact procedures for estimating the parameters. In general, all of them have
been validated with developers from the project. Section 3, and the answer to
Q1, have also tried to establish how the sample is good and large enough, as well
as the process for estimating parameters from it. However, errors and conceptual
problems may remain.

With respect to external validity, it is important to notice that this study
does not try to state proprieties to be valid in other projects, nor even in the
future of WebKit. We have only tried to determine techniques and artifacts that
help to understand the review process, and not to determine general laws or
models of how it works. This said, the methodology and the presented artifacts
(charts, statistics) are meant to be valid for other projects, and therefore threats
to external validity can be applied to them.

6 Conclusions

This paper has presented a detailed methodology for the quantitative analysis of
the code review process in large software development projects, based on traces
left in software repositories. The methodology has been tested with WebKit, a
large and complex project with high corporate involvement. Some developers
have given us assistance in the validation and understanding of the code review
process, ensuring a higher usability of the results for its stakeholders.

We have answered the two research questions stated in the introduction of
this paper. First of all, we have determined how there is enough information in
the project repositories to characterize the code review process, and how it can
be used, in fact, to calculate parameters that seem to be related to the extension
and performance of the project (Q1). We have also characterized the evolution
over time of the process using quantitative (bulk or performance) parameters,
and have shown how they can be useful to understand such evolution (Q2).

10 J.M. González-Barahona et al.

By doing this we have characterized the review process of the WebKit project,
and proposed the fundamentals for a dashboard that can serve to evaluate it.
We have found that the importance and extension of code review is growing in
the project, that reviewers are not growing as fast as authors - and although this
has not supposed delays so far, it could cause bottlenecks in the future. On the
contrary, the project is improving in the code review process over time, probably
due to developers devoting more effort to it.

Acknowledgments. The work of Gonzalez, Robles and Izquierdo has been
funded in part by the Spanish Gov. under SobreSale (TIN2011-28110) and Torres
Quevedo (PTQ-12-05577). We thank the Webkit developers for their feedback
and suggestions.

References

1. Ackerman, A.F., Buchwald, L.S., Lewski, F.H.: Software inspections: An effective
verification process. IEEE Software 6(3), 31–36 (1989)

2. Ackerman, A.F., Fowler, P.J., Ebenau, R.G.: Software inspections and the industrial
production of software. In: Proc. of a Symposium on Software Validation: inspection-
Testing-Verification-Alternatives, pp. 13–40. Elsevier Inc. (1984)

3. Jesus, M.: Gonzalez-Barahona and Gregorio Robles. On the reproducibility of em-
pirical software engineering studies based on data retrieved from development repos-
itories. Empirical Software Engineering 17, 75–89 (2012)

4. Rigby, P.C., German, D.M., Storey, M.A.: Open source software peer review prac-
tices: a case study of the apache server. In: Proceedings of the 30th International
Conference on Software Engineering, pp. 541–550. ACM (2008)

5. Rigby, P.C., Storey, M.A.: Understanding broadcast based peer review on open
source software projects. In: Proceedings of the 33rd International Conference on
Software Engineering, pp. 541–550. ACM (2011)

Navigation Support in Evolving Open-Source

Communities by a Web-Based Dashboard

Anna Hannemann, Kristjan Liiva, and Ralf Klamma

RWTH Aachen University,
Ahornstrasse 55, 52056 Aachen, Germany

{hannemann,liiva,klamma}@dbis.rwth-aachen.de

The co-evolution of communities and systems in open-source software (OSS)
projects is an established research topic. There are plenty of different studies of
OSS community and system evolution available. However, most of the existing
OSS project visualization tools provide source code oriented metrics with little
support for communities. At the same time, self-reflection helps OSS community
members to understand what is happening within their community. Considering
missing community-centered OSS visualizations, we investigated the following
research question: Are the OSS communities interested in a visualization plat-
form, which reflects community evolution? If so, what aspects should it reflect?

To answer this research question, we first conducted an online survey within
different successful OSS communities. The results of our evaluation showed that
there is a great interest in community-centered statistics. Therefore, we devel-
oped an OSS navigator: a Web-based dashboard for community-oriented reflec-
tion of OSS projects. The navigator was filled with data from communication and
development repositories of three large bioinformatics OSS projects. The mem-
bers of these OSS communities tested the prototype. The bioinformatics OSS
developers acknowledged the uniqueness of statistics that the NOSE dashboard
offers. Especially, graph visualization of the project social network received the
highest attention. This network view combined with other community-oriented
metrics can significantly enhance the existing visualizations or even be provided
as a standalone tool.

1 Introduction

Success of an OSS project is tightly interwoven with the success of its commu-
nity [Ray99], [HK03]. OSS systems co-evolve strongly with their communities
[YNYK04]. Thus, the more successful a project is, the higher is the degree of
its complexity in terms of project structure and community size. The complex-
ity affects the awareness of community members of what is happening in their
community. In interviews with OSS developers Gutwin et al. in [GPS04] find
out that the awareness of other developers within OSS projects is essential for
an intact project life. Within the study, project mailing lists (MLs) and text
chats are determined as the main resources for maintaining group awareness.
However, in large OSS projects, it gets very difficult for community members,

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 11–20, 2014.
c© IFIP International Federation for Information Processing 2014

12 A. Hannemann, K. Liiva, and R. Klamma

especially for the less experienced ones, to establish a complete and correct per-
ceptional awareness model. In such cases, Gutwin et al. suggest to develop new
representation methods for communication and its history.

Considering OSS mining research, there are already studies concentrating on
OSS communication analysis: to investigate social network structure [BGD+06],
to analyze content [BFHM11], to estimate the sentiment within OSS commu-
nities [JKK11]. OSS communication repositories reflect complete communities
of the corresponding projects. In contrast, OSS source code repositories are re-
stricted to the developers only. If we take a look at the OSS visualization plat-
forms (e.g. GitHub, Ohloh, etc.), then they are focused either on source code or
individual contributors. Platforms which provide OSS metrics based on project
communication are still missing. To investigate this research niche, we address
the following research question: Are the OSS communities interested in
a platform reflecting community evolution and if so, what evolution
aspects should it reflect?

The rest of the paper is organized as follows. Section 2 provides an overview on
related systems for OSS project evolution visualization. To address our research
questions, we executed an iterative study (Section 3). The achieved results are
presented in Section 4. Section 5 concludes the paper and gives an overview of
some ideas for future work.

2 Related Research

There are already plenty of related applications available for OSS development
visualization. To give an overview of existing concepts and principles, the more
notable ones are presented.

GitHub1 offers a web-based hosting for software projects. Additionally, it
provides visualizations focused mainly on project source code (commit activity,
code amount) and some statistics on project contributors (contributor activity,
followers and following people, projects, organizations, etc). Another popular
web-platform for software projects’ hosting is SourceForge2. It offers just some
statistics on project traffic (hits on the project, number of downloads) and SVN
activity. What statistics are visible to users depends on the project settings. In
contrast, a web-service Ohloh3 does not host the actual source code, but simply
crawls and analyzes the OSS data. Ohloh offers many charts regarding the source
code and contributors (their ranking and activity). Pure statistics are trans-
formed into textual statements. Ohloh also provides data on project estimation
effort based on the COCOMO model for software cost development [Boe81]. The
next web front-end Melquiades4 provides visualization for the data collected
within FLOSSmetrics5 research project [HIR+09]. The supported analysis is

1 GitHub, https://github.com, last checked 2013/09/10
2 SourceForge, https://sourceforge.net, last checked 2013/09/10
3 Ohloh, www.ohloh.net, last checked 2013/09/10
4 Melquiades, melquiades.flossmetrics.org, last checked 2013/09/10
5 FLOSSmetrics, flossmetrics.org, last checked 2013/09/10

https://github.com
https://sourceforge.net
www.ohloh.net
melquiades.flossmetrics.org
flossmetrics.org

Navigation Support in Evolving Open-Source Communities 13

divided into three different types according to data resource used: data from
source code repositories, data from mailing lists archives and data from tracker
system repositories. However, not all projects have data regarding all three re-
sources. Melquiades offers important metrics, like activity over time, growth and
member inflow rate. The next two visualizations Open Source Report Card
(OSRC)6 and Sargas [SBCS09] provide contributor-oriented metrics. Based on
the data from GitHub OSRC establishes developers profiles based on their daily
and weekly activities, project participation, etc. Whereas, Sargas estimates the
social profile of contributors based on their behavior within four social networks:
open discussion forum, developers discussion list, discussions about the bugs and
social network extracted from the source code.

To summarize, the existing applications are ranging from source code hosting
services with visualization tools to pure analysis and visualization platforms.
The last clearly proves the need and the interest of the OSS communities in
self-monitoring tools. However, the existing systems focus mainly either on the
system source code or on individual contributors. For monitoring of community
evolution the information need to be presented from different perspectives.

3 Study Settings

Figure 1 represents the workflow of our study. To find out if the OSS members
are interested in the community-related reflection of their projects, we first con-
ducted an online survey within OpenStack, PostgreSQL, GIMP, Mozilla, Oracle
VM VirtualBox, GNOME, TomCat OSS communities. The survey addressed
questions related to the developer interest in a community-oriented metrics and
what metrics are missing in the existing OSS navigators. Most of the questions
had an optional comment field. We contacted OSS developers via the Internet
Relay Chat (IRC) channels. The survey was anonymous, therefore, it was not
possible to trace from which project the participants originated. Nevertheless,
based on the survey results and by observing each chat for the next four hours,
no malicious users were detected. The result of the survey was a positive answer
to the first part of our research question. The OSS members do have strong
interest in platforms reflecting OSS community evolution. Additionally, the OSS
members suggested several ideas for metrics/aspects, which were assumed to be
important to be aware of. To evaluate the feasibility of the collected ideas, we
next applied prototype testing.

We selected a dashboard as a technological approach. “Dashboard is a visual
display of the most important information needed to achieve one or more ob-
jectives; consolidated and arranged on a single screen so the information can
be monitored at a glance” [Few06]. The goal of the developed Navigator for
OSS Evolution (NOSE) is to provide community-oriented navigation support
for OSS project members. We filled the NOSE dashboard with the data from
three long-term bioinformatics OSS (BioJava, Biopython and BioPerl), which
have been already analyzed in our previous studies (e.g. [HK13]). Therefore, we

6 Open Source Report Card, osrc.dfm.io, last checked 2013/09/10

osrc.dfm.io

14 A. Hannemann, K. Liiva, and R. Klamma

were able to proceed with the prototype testing immediately after the develop-
ment. An iterative development process of the NOSE dashboard was executed.
Before starting the survey with bioinformatics communities, the dashboard was
evaluated with 10 computer scientists. This evaluation was used to identify the
design shortcomings of the developed dashboard.

OSS developers

OpenStack GNOME Mozilla

NOSE
Dashboard 1.0

NOSE
Dashboard 2.0

Insights from
BioInformatics
OSS developers

Previous
Studies

GIMP PostgreSQL Other

Survey

OSS Community &
Sentiment analysis

Evaluation with
computer scientists

User study with
BioInformatics

communityOracle VM
VirtualBox

TomCat

Fig. 1. Study Workflow

The relevance of the presented metrics and the data quality reflected in NOSE
were directly investigated within bioinformatics OSS communities. We contacted
the bioinformatics OSS community members via private emails. Such textual
inquires encourage the participants to explain their answers and, thus, provides
a more detailed feedback. Moreover, informal email exchange could trigger a
fruitful discussion. The sent out email consisted of a short description of the
NOSE goal and three questions:

– Do you find that the visualization features offered by GitHub are sufficiently
informative?

– Would you additionally like to have features to represent the community and
its structures?

– If so, would network graph be a viable option?

4 Navigator for OSS Community: Evaluation Results

In following the results of both conducted surveys and prototype testing are
presented.

4.1 Survey of OSS Developers

From OSS developers we received 32 responses with many (49) comments. Some
developers provided initial feedback directly in the chat. Everyone who started
the survey also finished it, what indicates the true interest of the participants in
the survey. Figure 2 displays the survey questions with the collected feedback.
Every question was optional, therefore some questions had less than 32 answers.

Navigation Support in Evolving Open-Source Communities 15

Web-platforms like Ohloh or GitHub were used by 75% of the participants.
There were 16 comments in total, with GitHub being mentioned 13 times,
SourceForge 5 times and Ohloh 4 times. 63.3% of the OSS developers were
interested in the statistics related to community evolution. However, in four of
the seven comments the participants mentioned, that it was unclear what kind of
information was meant or “How would/could I benefit from those information?”

Social Analysis. The OSS developers were mostly interested in getting statis-
tics from the MLs regarding the whole community. MLs were recognized as a use-
ful source of information for getting an approximate user base size. However, one
participant also mentioned a negative aspect, that “[...] too much statistical eval-
uation could put the community of as they feel ‘observed’ ”. The most opinions of

22 (68.8%)

Fig. 2. OSS Developers Survey Results

network graph representation of an OSS community were again positive with
only two answerers mentioned that they would find it more interesting than
useful.

Text Mining (TM). Communication presents not only a source for social
network analysis. It also provides a great unplugged pool for TM. TM methods
allow to determine end-user requirements, discover conflicts, etc. Special area
of TM is sentiment analysis. The mood of a user can be implicitly estimated
based on opinionated documents generated by the user (e.g. postings in MLs).
However, the OSS developers were mostly uninterested in sentiment analysis.
The negative reaction could be the result of little awareness of the sentiment

16 A. Hannemann, K. Liiva, and R. Klamma

analysis meaning. For example, one of the participants said that “Only slightly
interested. I doubt that much useful information could be drawn from such an
analysis, but I would need to know more about the methodology and findings to
be sure, and it sounds interesting at least”. Another participant expressed the
concern that such analysis “Would be interesting/fun, but i m not sure whether
its useful for me [...]”. However, there were also participants that were clearly
in favor of sentiment analysis: “Definitely. I would have stopped before entering
some projects if I would have known about the mood swings of their contributors
beforehand...”. In contrast, other responses were clearly against it, for exam-
ple “I don’t think public statistics of the form “messages from developer X are
mostly aggressive” would do anything good”. The concern of feeling observed was
already mentioned in the context of social analysis. Consequently, the develop-
ers are rather interested in the aggregated statistics. For example: “I think this
[sentiment analysis] is only useful if combined with a certain segmentation of the
user groups”.

Majority of the participants were interested in TM analysis of the ML com-
munication for other purposes:

– “[...] determine the needs of the users in addition to voting and tagging in
bugtrackers”

– “[...] creating FAQs for new contributors”

– “[...] finding out in which direction the community wants to evolve”

Missing Functionalities. Finally, the following statistics were missed in the
existing OSS visualizations:

– “[...] which wiki pages are consulted often, which problem appear in lists/
forums frequently and so on.”

– “Some projects [...] allow Users to be credited in commits for there Testing
or Bug reports (e.g. Reported-By: Tested-By:) including those contributions
in statistics would by nice [...]”

– “Last time on ohloh I wanted to see a simple list of contributions, but I only
found timelines and such, which I find hard to browse”

– “More informations about project activity. Most FOSS project have stalled
development, are abandoned. This is for me the #1 FOSS problem”

Dashboard. A personalized dashboard was considered useful by 25% of the
participants, while the majority of the participants (68.8%) replied that they
would need to try it first. One participant mentioned that “The projects I con-
tribute to have their own dashboards, I don’t think an external dashboard would
match my expectations”. Indeed, many of the OSS hosting platforms offer their
own built-in analysis and visualization.

Summarized, the OSS developers showed a strong interest in both social and
text-based community communication analysis. To find out which statistical
charts and designs were truly useful, there had to be an application that the
OSS developers could try out.

Navigation Support in Evolving Open-Source Communities 17

4.2 Bioinformatics OSS Developers

Figure 3 displays a screenshot of the NOSE dashboard evaluated by bioinfor-
matics OSS developers. It consists of five widgets: inflow vs. outflow of members
in project MLs, number of commits, sentiment within community vs. commit
activity, size of community core, social network graph of the project community.
The last widget additionally provides several options: to search for a person, to
select a yea or a release, and to highlight the core.

Fig. 3. Screenshot of the NOSE Dashboard Prototype

The survey was sent to members of all three bioinformatics communities. We
selected the participants who were active in the MLs in the last two years. In
total, we sent an email to 46 project participants. From the 46 persons, nine
replied to our email. The participants were also open for the discussion, thus,
many issues got an extensive clarification. One of the BioPython developers even
posted an article about the NOSE dashboard to his blog7, which again supports
the community interest in the self-monitoring and -reflection.

The proposed community metrics mainly received a positive feedback from
the bioinformatics OSS developers. However, three bioinformatics developers re-
ported that, they were not using the OSS visualizations. Nevertheless, one of
them mentioned that the NOSE dashboard looked fairly attractive, but he was
unsure what he would use it for. Another developer gave a longer explanation
saying that “I don’t find this type of community information particularly useful.
Over time I’ve developed a habit of doing my own, informal, reputation scores

7 ‘The Bio* projects: a history in graphs”,
http://bytesizebio.net/2013/09/07/bio-projects-a-history-in-graphs ,
last checked 2013/11/27

http://bytesizebio.net/2013/09/07/bio-projects-a-history-in-graphs

18 A. Hannemann, K. Liiva, and R. Klamma

in my head, based on people’s list participation and tone, their code, their con-
structive criticisms, etc.... Who’s talking to whom, etc... has never been particu-
larly useful”. Similar skepticism among OSS developers was previously reported
in [GPS04]. Despite some critical opinions, other evaluation participants were
more in favor of the community statistics. One BioJava developer stated, that
although BioJava project currently uses Ohloh for visualization, the NOSE dash-
board could be complementary to existing visualization platforms. The developer
added that these kinds of statistics would be useful for recruiting and funding.
“For instance, we use these types of stats when applying for Google Summer of
Code sponsorship”.

The network graph received by far the most praise and interest. One developer
commented that adding “[...] the social graph to the existing GitHub facilities
would be valuable”. Another reply was: “The social aspects of OSS projects are no
less intriguing than the technological ones!”. The developer additionally named
two gains from such statistics. Firstly, that visualization platforms like the NOSE
dashboard are great for getting an overview of the project’s history. Secondly,
that “[...] there is a lot to learn from this on how OSS projects get off the ground,
what makes a successful project, etc”.

4.3 Discovered Weaknesses

More Data Sources. Many of the developers mentioned that additionally it
would be nice to have data from GitHub. One developer expressed interest in
comparing the social networks created based on GitHub and ML. GitHub is “a
great place to discuss code specifics, so is often easier to go back and forth on
than writing e-mails. It would be cool to see how the interactions there overlay
on this”. Another developer expressed interest in getting such communication
statistics from the project LinkedIn8 group.

Network Graph. Broadcasts were excluded from the network graph visual-
ization. If the broadcasts were included, it would create an enormous amount of
edges. That would make the rendering of a comprehensible network almost im-
possible. Additionally, it would create many hubs, thus lowering the presence of
actual core developers. Further, one of the evaluation participants identified one
core developer, who was split into two aliases. This splitting decreased his/her
social role in the network graph. Nevertheless, bioinformatics developers believed
the network graph captures the community quite accurately.

There were many suggestions and requests. Most of the feature requests were
directed at getting statistics from additional sources and not only from the ML.
Some metrics requests were related to the social network graph:

– “[...] add a graph to the dashboard that shows, for each year who are the top
linked nodes”

8 http://www.linkedin.com/groups/BioJava-58404?home=&gid=58404&trk=

anet ug hm, last checked 12.09.2013

http://www.linkedin.com/groups/BioJava-58404?home=&gid=58404&trk=anet_ug_hm
http://www.linkedin.com/groups/BioJava-58404?home=&gid=58404&trk=anet_ug_hm

Navigation Support in Evolving Open-Source Communities 19

– “[...] graph comparative metrics, such as consensus linkage, slope of the edge-
number histogram [...]”. The developer suggested that it could be used for
comparing the three bioinformatics projects.

– “[...] use the graph’s connecting edges to indicate the strength/weight of the
the connection (i.e. line thickness linked to number of email conversations)”

5 Conclusions and Future Work

In this paper, we addressed the research question: Are the OSS communities
interested in a visualization platform, which reflects community evolution? If
so, what aspects should it reflect? To answer this research question, we surveyed
members from different OSS communities. Based on the survey results, we devel-
oped a dashboard prototype for community-oriented navigation in OSS projects.
The evaluation within three long-term bioinformatics OSS showed a strong in-
terest of OSS developers in visualization of community statistics. Especially, the
network graph visualization of the communities was recognized as the most in-
teresting metric. The developers are more interested in aggregated statistics in
order to avoid the feeling of being observed among the project participants. On
contrary, sentiment analysis did not get much attention, which might be a re-
sult of a poor description or little awareness of the analysis method. However,
some evaluation participants saw the NOSE platform more as fun, than as a
useful evolution barometer. Further, the dashboard was suggested as a possible
extension for the existing platforms and not as a standalone application.

Our next steps are to realize the identified requirements. In terms of analysis
metrics, the OSS members wish topic-based text mining [GDKJ13] measures,
with the goal to see where users struggle. Considering the data, there are many
requests to extend the data sources, for example by the data from GitHub.
Further studies with domains outside bioinformatics are needed to achieve truly
generalizable results. Currently, we apply the concept of the NOSE dashboard to
support and manage an OSS community around a EU project Learning Layers9.

Acknowledgement. This work is supported by the LAYERS FP7 ICT Inte-
grated Project (grant agreement no. 318209) of the European Commission.

References

[BFHM11] Bohn, A., Feinerer, I., Hornik, K., Mair, P.: Content-based social network
analysis of mailing lists. The R Journal 3(1), 11–18 (2011)

[BGD+06] Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining
email social networks. In: Proceedings of the 2006 International Workshop
on Mining Software Repositories, MSR 2006, pp. 137–143. ACM, New York
(2006)

[Boe81] Boehm, B.W.: An experiment in small-scale application software engineer-
ing. IEEE Transactions on Software Engineering 7(5), 482–493 (1981)

9 Learning Layers, http://learning-layers.eu, last checked 2013/11/10

http://learning-layers.eu

20 A. Hannemann, K. Liiva, and R. Klamma

[Few06] Few, S.: Information Dashboard Design: The Effective Visual Communica-
tion of Data, p. 35. O’Reilly Media (2006)

[GDKJ13] Günnemann, N., Derntl, M., Klamma, R., Jarke, M.: An interactive system
for visual analytics of dynamic topic models. Datenbank-Spektrum 13(3),
213–223 (2013)

[GPS04] Gutwin, C., Penner, R., Schneider, K.: Group awareness in distributed
software development. In: Proceedings of the 2004 ACM Conference on
Computer Supported Cooperative Work, CSCW 2004, pp. 72–81. ACM,
New York (2004)

[HIR+09] Herraiz, I., Izquierdo-Cortazar, D., Rivas-Hernandez, F., Gonzalez-
Barahona, J., Robles, G., Duenas-Dominguez, S., Garcia-Campos, C.,
Gato, J.F., Tovar, L.: Flossmetrics: Free/libre/open source software met-
rics. In: 13th European Conference on Software Maintenance and Reengi-
neering, CSMR 2009, pp. 281–284 (2009)

[HK03] von Hippel, E., von Krogh, G.: Open source software and the “private-
collective” innovation model: Issues for organization science. Journal on
Organization Science 14(2), 208–223 (2003)

[HK13] Hannemann, A., Klamma, R.: Community dynamics in open source soft-
ware projects: Aging and social reshaping. In: Petrinja, E., Succi, G., El
Ioini, N., Sillitti, A. (eds.) OSS 2013. IFIP AICT, vol. 404, pp. 80–96.
Springer, Heidelberg (2013)

[JKK11] Jensen, C., King, S., Kuechler, V.: Joining free/open source software com-
munities: An analysis of newbies’ first interactions on project mailing lists.
In: Proceedings of the 44th Hawaii International Conference on System
Sciences (HICSS), pp. 1–10 (January 2011)

[Ray99] Raymond, E.S.: The Cathedral and the Bazaar. O’Reilly Media (1999)
[SBCS09] de Sousa, S.F., Balieiro, M.A., dos R. Costa, J.M., de Souza, C.R.B.: Mul-

tiple social networks analysis of floss projects using sargas. In: 42nd Hawaii
International Conference on System Sciences, HICSS 2009, pp. 1–10 (2009)

[YNYK04] Ye, Y., Nakakoji, K., Yamamoto, Y., Kishida, K.: The co-evolution of sys-
tems and communities in free and open source software development. In:
Koch, S. (ed.) Free/Open Source Software Development, pp. 59–82. Idea
Group Publishing, Hershey (2004)

Who Contributes to What?

Exploring Hidden Relationships between FLOSS
Projects

M.M. Mahbubul Syeed1 and Imed Hammouda2

1 Department of Pervasive Computing,
Tampere University of Technology, Finland

mm.syeed@tut.fi
2 Department of Computer Science and Engineering,
Chalmers and University of Gothenburg, Sweden

imed.hammouda@cse.gu.se

Abstract. In this paper we address the challenge of tracking resembling
open source projects by exploiting the information of which developers
contribute to which projects. To do this, we have performed a social
network study to analyze data collected from the Ohloh repository. Our
findings suggest that the more shared contributors two projects have,
the more likely they resemble with respect to properties such as project
application domain, programming language used and project size.

1 Introduction

With the exponential increase of Free/Libre Open Source (FLOSS) projects [6],
searching for resembling open source components has become a real challenge for
adopters [7]. By resemblance, we mean similarity factors between projects such
as features offered, technology used, license scheme adopted, or simply being of
comparable quality and size levels.

In this paper we exploit the information of ’which developers contribute to
which FLOSS projects’ to identify resembling projects. Our assumption is that if
a developer contributes to several projects, simultaneously or at different times,
then there might be implicit relationships between such projects. For example,
one FLOSS project may use another as part of its solution [17] or two projects
could be forks of a common base [16].

The idea of collecting and studying data of who contributes to which FLOSS
projects is not new. The question has been the focus of many studies due to its
relevance from many perspectives. For instance, the question has been significant
for companies who want to identify who influences and controls the evolution
of a specific project of interest[2], or to explore the social structure of FLOSS
development [1], or simply to study what motivates people to join open source
communities [3]. In this work, we address the following research questions:

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 21–30, 2014.
c© IFIP International Federation for Information Processing 2014

22 M.M.M. Syeed and I. Hammouda

1. How do FLOSS project development communities overlap?
2. To what extent can developer sharing in FLOSS projects approximate re-

semblance between the projects themselves?

For answering these questions, we used social network analysis techniques to
analyze data collected from the Ohloh repository [4].

2 Study Design

This section presents in detail our study design, covering discussion on the data
sources, required data sets, data acquisition, cleaning, and analysis process along
with validation and verification of the analysis process.

2.1 Data Source

For this study we selected Ohloh data repository [4], which is a free, public
directory of open source software projects and the respective contributors.

Ohloh collects and maintains development information of over 400 thousand
FLOSS projects, and provide analysis of both the codes history and ongoing up-
dates, and attributing those to specific contributors. It can also generate reports
on the composition and activity of project code bases. These data can be ac-
cessed and downloaded through a set of open API which handles URL requests
and responses [4]. The response data is expressed as an XML file, an example of
which is shown in Fig. 1.

Our selection of Ohloh data repository is predominantly influenced by the
following factors: (a) Ohloh data can be publicly reviewed, which in turn makes
it one of the largest, most accurate, and up-to-date FLOSS software directo-
ries available; (b) the use of Ohloh repository makes FLOSS data available in
a cleaned, unified and standard platform independent format. This makes the
process of data analysis and visualization independent of technology, and data
repository.

2.2 Data Collection

The following information has been collected from Ohloh repository in relation
to this study:

Developer Account Information: An Account represents an Ohloh mem-
ber, who is ideally a contributor to one or more FLOSS projects. Ohloh records
a number of properties (or attributes) for an account.Among thousands of reg-
istered members, we collected account information of top 530 contributors ac-
cording to assigned kudo rank of 10 and 9. Kudo rank is a way of appreciation
to the FLOSS contributors through assigning a number between 1 and 10 for
every Ohloh account [5].

Project Data: A Project represents a collection of source code, documenta-
tion, and web site data presented under a set of attributes, a list of which can

Exploring Hidden Relationships between FLOSS Projects 23

Fig. 1. (a) Project Information (b) Developer Position Information

be found in Fig. 1(a). We collected information of 4261 projects to which a total
of 530 developers have contributed.

Position Information: A position is associated with each Ohloh account,
which represents the contributions that the account holder has made to the
project(s) within Ohloh. Information maintained in a position repository can be
found in Fig. 1(b). We collected the position information for each of the 530
contributors.

For downloading these repository data, we have implemented Java programs,
one for each repository. Each Java program implements the API corresponding
to a repository by combining the repository URL’s and the unique API key to
query the database. The result data set is in XML format.

2.3 Data Processing

From the collected repository data (i.e., the XML files as presented in Section
2.2), we parsed only the information that has significance to this study. The
parsed information is recorded under a defined set of attributes/tags in XLSX
files, one for each XML repository file.

Collected information is then merged to built a complete database required for
data analysis. A partial snapshot of this database can be visualized in Fig. 2. Each

24 M.M.M. Syeed and I. Hammouda

row presents detailed information about (a) a contributor, (b) a project in which
he/she contributed, and (c) the record of contribution to that project.

To automate data parsing and merging, parsers and data processors were
written in Java. These programs use Jsoup HTML parser [9] and Apache POI
[8] for parsing the XML files and to create database in XLSX format, respectively.

Fig. 2. Partial Snapshot of the database

2.4 Data Analysis

Data analysis targeting to answer the research questions composed of two steps:
First, we created an Implicit Network in which two projects have a rela-

tionship if both are contributed to by the same contributor. An edge weight in
this network represents the number of such common contributors between two
projects. As an illustration, consider contributors Stefan Küng and XhmikosR
in Fig. 2. The former contributor has contributed to 4 FLOSS projects as listed
under the projectName column, while the latter has contributed to 5 projects.
Both developers contributed to projects TortoiseSVN, CryptSync, and Commit-
Monitor. In total, Fig. 2 lists 6 distinct projects. An implicit network among
these 6 projects is shown in Fig. 3. Projects TortoiseSVN, CryptSync, and Com-
mitMonitor are linked with edge of weight 2 (i.e. 2 shared developers). All other
edges have weight 1 as those project pairs have only one shared contributor.
For example, FFmpeg and CommitMonitor have only developer XhmikosR in
common.

The complete network is composed of 194424 edges between 4261 projects,
with edge weight varies between 1 and 41. Complete edge list of this network
can be found in [10].

Second, we measured the extent to which this implicit network comply with
the factors often used to classify projects. For this study we selected five factors
that are often cited by popular forges (e.g., SourceForge [11]) for categorizing
FLOSS projects. These factors include programming language, project size, li-
cense, project rating [4] and project domain. Project size was further categorized

Exploring Hidden Relationships between FLOSS Projects 25

Fig. 3. An illustration of the implicit network

into very large (500K SLOC), large (50K-500K SLOC), medium (5K-50K SLOC)
and small (<5K SLOC), according to current literature [19]. Similarly, project
rating was classified into top (≤ 4), high (≤ 3 and <4), medium (≤ 2 and <3)
and low (<2) on a scale of 5.

For each factor, we identified from the implicit network the number of edges
in which both projects have the same value. Due to the large size of the implicit
network, we limited this investigation to top ranked 262 edges (the edges that
have weight greater than 10) and least ranked edges (random selection of 500
edges from the edges that have weight of 1).

The result of this analysis is reported in Table 2. As an illustration of this
approach, consider the project factor Language in Table 2. Among the top 262
edges, projects in 228 edges (87.03%) use same programming language, whereas
among the bottom 495 edges, projects in 233 edges (47%) have same languages.

2.5 Program Verification

Two pass evaluations were conducted to verify the correctness of the imple-
mented programs. First, the programs were tested with limited number of data
samples taken from the collected data. Notified bugs (e.g., errors in parsed data
for an HTML tag) were fixed accordingly. Second, a manual checking on a ran-
dom sample of the actual collected data was done. The correctness of collected
data in the second pass was reported to be over 98%.

3 Result Analysis

In this section we investigate the research questions primarily based on the
implicit network (described in Section 2.4) revealing projects relationships based
on common contributor(s), and by evaluating its compliance with the project
factors (presented in Table 2) often used to classify FLOSS projects.

26 M.M.M. Syeed and I. Hammouda

1. How do FLOSS project development communities overlap?
In this study we examined the implicit relationships among 2641 FLOSS

projects that are contributed to by 530 contributors. Based on common con-
tributor(s) as a relationship criterion, the implicit network reveals 194424 edges
(implicit relations) between 4261 projects. Edge weight lays between 1 and
41, which simply reflects the total number of common contributors between
projects. A partial snapshot of this network is shown in Figure 4, in which, for
instance, projects Debian and x.Org have a relationship edge with weight 17.
This is because 17 contributors contributed to both projects. This result, all to-
gether, portrays the collaborative nature of contribution by FLOSS community
members.

Fig. 4. Partial snapshot of the Implicit Network

To dig further and reason about such large deviation of edge weight, we
counted the edges within a certain weight range, result of which is shown in
Table 1. As presented in the table, the majority of the edges has low edge weight
count (192559 edges out of 194424 have weight bellow 5). Investigating the cause,
we observed that projects in these relationships are either medium or small size
projects. Even in case where both projects have similar project sizes (3rd row of
Table 2), 30% of the projects are medium or small sized. Hence, it is reasonable
that communities of such projects should be small. Contrary to this, projects
that are within the high edge weight count (e.g., edge weight over 10), are among
the very large or large project groups, thus justifying the large overlapping com-
munity of contributors.

The above observation is analogous to the richer gets rich phenomenon in
FLOSS projects collaboration [12], which states that communities that already
had a high population would effectively attract more contributors.

Additionally, this structure of sharing contributors among multiple projects
is supported by the small-world phenomenon [13]. In a small-world structure

Exploring Hidden Relationships between FLOSS Projects 27

several projects are connected with each other through one or more links, e.g.,
common contributors. In this setup, with increasing number of common contrib-
utors, the communities of related projects (as realized by the implicit network)
become strongly interconnected. We argue that this in turn may affect project
success: The productivity of the contributors is boosted by providing them a
dense communication channel to acquire more quantity and variety of informa-
tion and knowledge resources [14].

Table 1. Edge count under edge weight category

Edge Weight Category Edge Count

Less than 5 192559

Between 5 and 10 1603

Between 10 and 20 252

Greater than 20 10

Furthermore, contributors often participated in projects that belong to the
same domain or are sub-projects to a larger one, and that utilizes same program-
ming language(s) as development medium. High percentage of commonalities in
implicit network under these two categories (as reported in row 6 and 2 of Table
2) vindicated the claim. This complies with the fact that contributors develop
relationships on the common ground of interest [15].

Based on the above observation and discussion it can be affirmed that
FLOSS communities often prefer to participate in related projects with
participation count varies with the size of the projects.

2. To what extent can developer sharing in FLOSS projects approxi-
mate resemblance between the projects themselves?

Within the scope of this investigation, we rationalized the projects relationship
in implicit network against the actual factors that relate FLOSS projects. In
doing so, we measured the extent to which the implicit network comply with
the factors often used to classify projects. This approach is explained in detail
in Section 2.4, and the result of which is presented in Table 2.

Among the five project factors, implicit network could effectively approximate
three of them, namely, project domain, programming language and project size.
Column six in Table 2 shows high percentage of compliance of the implicit rela-
tionships to these project factors.

Contributors are most often attracted towards projects that fall within the
same project domain or are the sub-projects of a larger one. As can be seen in
row six of Table 2, among the top listed 262 edges, 257 (98%) has conformance
to same project domain. Similar observation holds (with 70% of conformance)
for bottom 500 edges as well. This implies that similar project domain most
effectively creates favorable ground for attracting contributors to participate in
them.

28 M.M.M. Syeed and I. Hammouda

Table 2. Compliance of the edges in Implicit Network to that of project factors

Project
Factor

Edge Selection
Category

Selected
edges
within the
category

No of Edges
in which both
nodes have at-
tribute value

Edges having
same attribute
value for the
nodes

(%)
count

Additional Info

Language Top
[Edge weight >10]

262 262 228 87.03%

Bottom
[Edge weight = 1]

500 495 233 47%

Project Size Top
[Edge weight >10]

262 262 168 64.13% Very large: 139
Large: 29

Bottom
[Edge weight = 1]

500 500 150 30% Very large: 25
Large: 70
medium: 35
Small: 20

License Top
[Edge weight >10]

262 214 84 39.26%

Bottom
[Edge weight = 1]

500 290 96 33.1%

Project
Rating

Top
[Edge weight >10]

262 182 124 68.14% Top: 107
High: 17

Bottom
[Edge weight = 1]

500 145 130 89.66% Top: 120, High:
10

Project
Domain

Top
[Edge weight >10]

262 262 257 98%

Bottom
[Edge weight = 1]

500 500 350 70%

Language similarity is found to be one of the major selection factors for con-
tributors participation. According to the data in the second row of Table 2,
87.03% of the top ranked 262 edges have language similarity in contrast to only
47% similarity for the bottom 500 edges. This observation approves that lan-
guage similarity among projects offers strong support to attract large number of
contributors.

The factor project size also imitate analogous results to that of language factor
(row three in Table 2). Projects that are very large or large in size (64.13%) are
able to manage larger collaborative contributor community than medium or
smaller sized projects (30%).

Additionally, results on project rating show that contributors are more at-
tracted towards highly rated projects than low rated ones (row 5 of Table 2).

However, contributors participation to the projects is not constrained by the
licenses of the respective projects. Our investigation reported that very low per-
centage of projects in implicit network have same license terms (only 39.26% of
the top ranked edges and 33.1% of the bottom edges as presented in row 4 of
Table 2).

Projects that are linked in the implicit network with high edge weight count
most likely belong to the same domain, use the same programming languages,
or have similar project size.

The following aspects have been identified which could lead to threats to
validity of this study.

Exploring Hidden Relationships between FLOSS Projects 29

External validity (how results can be generalized): This study includes 4261
FLOSS projects that are contributed by 530 contributors. Though, these projects
cover a wide spectrum of FLOSS territory according to project size, domain, used
languages and licenses, we cannot claim completeness of this justification.

Internal validity (confounding factors can influence the findings): The data used
in this study is limited to the one provided by Ohloh and may raise trust
concerns.

Construct validity (relationship between theory and observation): Data analysis
programs written for this study produce data accuracy of over 98%, which was
measured with random sample of collected data. This may affect the construct
validity.

4 Conclusions

This paper studied to what extent resembling FLOSS components can be tracked
based on community activities. Based on our findings, we claim that the pro-
posed approach could approximate to a satisfactory degree resemblance between
projects with respect to project domain, programming language and project
size. Contrary to these factors, license terms of the projects came out as the
least influential factor among all. This finding points out the fact that individ-
ual contributors may not be concerned about the licensing issues while selecting
projects for contribution. These claims however, need further study. In this re-
gard, a questionnaire to the open source community could be planned and carried
out.

Acknowledgement. This work is funded by the Nokia Foundation Grant, 2013
and the TiSE Graduate school, Finland.

References

1. Crowston, K., Howison, J.: The social structure of Free and Open Source Software
development. First Monday 10(2) (2005)

2. Aaltonen, T., Jokinen, J.: Influence in the Linux Kernel Community. In: Feller,
J., Scacchi, B.F.W., Sillitti, A. (eds.) Open Source Development, Adoption and
Innovation. IFIP, vol. 234, pp. 203–208. Springer, Boston (2007)

3. Bonaccorsi, A., Rossi, C.: Altruistic individuals, selfish firms? the structure of
motivation in open source software. First Monday (1-5) (2004)

4. Ohloh, http://www.ohloh.net/ (last accessed November 2013)

5. Ohloh kudo rank, http://meta.ohloh.net/kudos/ (last accessed November 2013)

6. Deshpande, A., Riehle, D.: The Total Growth of Open Source. In: Russo, B., Dami-
ani, E., Hissam, S., Lundell, B., Succi, G. (eds.) Open Source Development, Com-
munities and Quality. IFIP, vol. 275, pp. 197–209. Springer, Boston (2008)

http://www.ohloh.net/
http://meta.ohloh.net/kudos/

30 M.M.M. Syeed and I. Hammouda

7. Rudzki, J., Kiviluoma, K., Poikonen, T., Hammouda, I.: Evaluating Quality of
Open Source Components for Reuse-Intensive Commercial Solutions. In: Proceed-
ings of EUROMICRO-SEAA 2009, pp. 11–19 (2009)

8. Apache POI-Java API for Microsoft Documents, http://poi.apache.org/ (last
accessed September 2013)

9. jsoup: Java HTML Parser, http://jsoup.org/
10. Research Data, http://datasourceresearch.weebly.com/
11. Source Forge, http://sourceforge.net (last accessed November 2013)
12. Weiss, M., Moroiu, G., Zhao, P.: Evolution of Open Source Communities. In: Dami-

ani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G. (eds.) Open Source Sys-
tems. IFIP, vol. 203, pp. 21–32. Springer, Boston (2006)

13. Vir Singh, P.: The Small-World Effect: The Influence of Macro-Level Proper-
ties of Developer Collaboration Networks on Open-Source Project Success. ACM
TOSEM 20(2), Article 6 (2010)

14. Watta, D.: Networks, dynamics, and the small world phenomenon. Amer. J. Soci-
ology 105, 493–527 (1999)

15. Madey, G., Freeh, V., Tynan, R.: The open source software development phe-
nomenon: An analysis based on social network theory. In: Americas Conf. on In-
formation Systems, pp. 1806–1813 (2002)

16. Robles, G., González-Barahona, J.M.: A Comprehensive Study of Software Forks:
Dates, Reasons and Outcomes. In: Hammouda, I., Lundell, B., Mikkonen, T., Scac-
chi, W. (eds.) OSS 2012. IFIP AICT, vol. 378, pp. 1–14. Springer, Heidelberg (2012)

17. Orsila, H., Geldenhuys, J., Ruokonen, A., Hammouda, I.: Update Propagation
Practices in Highly Reusable Open Source Components. In: Russo, B., Damiani,
E., Hissam, S., Lundell, B., Succi, G. (eds.) Open Source Systems. IFIP, vol. 275,
pp. 159–170. Springer, Boston (2008)

18. Gonzalez-Barahona, J.M., Robles, G., Dueñas, S.: Collecting Data About FLOSS
Development: The FLOSSMetrics Experience. In: Proceedings of FLOSS 2010,
Cape Town, South Africa, pp. 29–34 (2010)

19. Scacchi, W.: Understanding Open Source Software Evolution: Applying, Breaking,
and Rethinking the Laws of Software Evolution. John Wiley and Sons (2003)

http://poi.apache.org/
http://jsoup.org/
http://datasourceresearch.weebly.com/
http://sourceforge.net

How Do Social Interaction Networks Influence

Peer Impressions Formation? A Case Study

Amiangshu Bosu and Jeffrey C. Carver

University of Alabama, Tuscaloosa, AL, USA
asbosu@ua.edu, carver@cs.ua.edu

Abstract. Due to their lack of physical interaction, Free and Open
Source Software (FOSS) participants form impressions of their team-
mates largely based on sociotechnical mechanisms including: code com-
mits, code reviews, mailing-lists, and bug comments. These mechanisms
may have different effects on peer impression formation. This paper de-
scribes a social network analysis of the WikiMedia project to determine
which type of interaction has the most favorable characteristics for im-
pressions formation. The results suggest that due to lower centralization,
high interactivity, and high degree of interactions between participants,
the code review interactions have the most favorable characteristics to
support impression formation among FOSS participants.

Keywords: Open Source, OSS, FOSS, social network analysis, collab-
oration.

1 Introduction

Impression Formation (i.e., obtaining an accurate perception of teammates’ abil-
ities) is difficult for Free Open Source Software (FOSS) developers because of
the lack of physical interaction with their distributed, virtual teammates. Inac-
curate perceptions of teammates’ abilities and expertise may reduce the team’s
productivity because some developers improperly disregard the opinions or con-
tributions of certain teammates. Due to the lack of physical interaction, mem-
bers of distributed teams form impressions based on tasks [16]. This task-focus
increases the potential effects of socio-technical interactions (i.e. social interac-
tions facilitated by technological solutions) on impression formation. Common
FOSS socio-technical interaction mechanisms include: project mailing-lists, bug
repository, code review repository, and code repository.

Each of these socio-technical mechanisms facilitates different types of interac-
tions among project participants. The results of our recent large-scale survey of
FOSS developers suggest that developers believe code review is beneficial in the
impression formation process [6]. Our hypothesis in this work is that due to the
nature of interaction supported by each of these mediums, some may be more
beneficial than others for impression formation. We conducted a social network
analysis (SNA) of the interactions facilitated by each socio-technical mechanism
to determine which of those mechanisms tended to support impression formation.

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 31–40, 2014.
c© IFIP International Federation for Information Processing 2014

32 A. Bosu and J.C. Carver

A social network is a theoretical construct that represents the relationships
between individuals, organizations, or societies. These networks are typically
modeled as a graph in which vertices represent individuals or organizations and
edges represent a relationship between individuals or organizations. SNA focuses
on understanding the patterns of interactions and the relative positions of indi-
viduals in a social settings [10]. SNA is commonly used in many domains, e.g.,
sociology, biology, anthropology, communication studies, information science, or-
ganizational studies, and psychology.

Here we summarize the results of previous SNA analysis on interactions facil-
itated by socio-technical mechanisms. Code-commit social networks: 1) exhibit
‘small world’ characteristics1, 2) show that developers who work on the same
file are more likely to interact in the mailing-list [4], and 3) identify the influ-
ence of a sponsoring company on the development process, release management,
and leadership turnover [15]. Bug-fixing social networks show: 1) decentralized
interactions in larger projects [8] and 2) a stable core-periphery structure with
decreasing group centralization over time [14]. Mailing-list social networks: 1)
exhibit ‘small world’ characteristics with developers having higher status [3] and
2) the core members have disproportionately large share of communication with
the periphery members [17]. Code-review social networks show those responsible
for testing and approving patches are the central actors [19].

Previous studies applying SNA to FOSS projects focused on only one or two
of these social networks. However, due to the differing characteristics of each
network, it is important to compare the networks to understand the various
types of interactions within FOSS communities. Therefore this study has two
primary goals: 1) Identify the key characteristics of each FOSS social interaction
networks, and 2) Compare those networks to identify which have characteristics
that best support peer impression formation.

The remainder of the paper is organized as following. Section 2 describes the
research method. Section 3 defines the metrics used in this study. Section 4
discusses the study results. Finally, Section 5 concludes the paper.

2 Research Method

We performed a case study to analyze four types of social networks. This section
details the methods for project selection, data collection, and data analysis.

2.1 Project Selection

To allow for the desired analysis, we needed to identify a FOSS project with a
large, active developer community who performed code reviews that had pub-
licly accessible repositories. The FOSS projects maintained by the WikiMedia
foundation (www.wikimedia.org) satisfy the criteria. WikiMedia foundation is
a non-profit organization that maintains many active, open-source, web-based

1 The average distance between pairs of nodes in a large empirical networks are often
much shorter than in random graphs of the same size [18].

www.wikimedia.org

How Social Interaction Networks Influence Peer Impression Formation 33

projects including: MediaWiki, and Wikdata. Contributors to these projects in-
clude a good mix of volunteers and paid Wikimedia employees. This character-
istic is representative of many popular FOSS projects and therefore makes these
projects ideal for this research.

2.2 Data Collection

The data from WikiMedia required to conduct SNA on the four sociotechnical
mechanisms is available in online repositories. The WikiMedia project develop-
ment policy2 requires all code changes to be reviewed prior to inclusion in the
project. To facilitate this review process, the WikiMedia projects use Gerrit3, an
online code review tool. Because all changes were submitted to Gerrit, this repos-
itory contains the code review and the code commit information. WikiMedia’s
BugZilla4 repository contains the fault data. We developed Java applications to
mine these repositories. WikiMedia’s mailing-list archives (i.e. wikitech-l5) con-
tains the development mailing-list data. We used the Mailing List Stats tool [13]
to mine the development mailing-list data. All tools populated a local MySQL
database.

2.3 Data Analysis

We cleaned the data by removing ’bot’ accounts from the code review and bug
repositories. A manual inspection of the comments by accounts that contained
’bot’ in the name (e.g. L10n-bot or jenkins-bot) revealed that the messages
were automated rather than human-generated. We also merged multiple mailing-
list accounts from the same developer using an existing approach [3] to resolve
multiple email aliases belonging to same developer.

We then wrote scripts to calculate the number of interactions between devel-
opers captured by data in each repository. For each data type, we created social
networks as undirected, weighted graphs where nodes represent developers and
edge weights represent the quantity of interactions between the developers. Ta-
ble 1 provides an overview of the characteristics of the four social interaction
networks. We then used Gephi [2] for SNA and UCINet [5] for calculating net-
work centralization scores.

3 Social Network Metrics

This section describes the commonly used SNA metrics employed in this study.

Average Degree: Average of the degrees of all the nodes in the network, where
degree is the number of edges connected to a node. This metric quantifies the
average number of teammates with which each person interacts.

2 http://www.mediawiki.org/wiki/Developmentpolicy
3 https://gerrit.wikimedia.org
4 https://bugzilla.wikimedia.org/
5 https://lists.wikimedia.org/mailman/listinfo/wikitech-l

http://www.mediawiki.org/wiki/Developmentpolicy
https://gerrit.wikimedia.org
https://bugzilla.wikimedia.org/
https://lists.wikimedia.org/mailman/listinfo/wikitech-l

34 A. Bosu and J.C. Carver

Table 1. Overview of the four social interaction networks

Network Data source Edge weight between nodes

Mailing-list 29,038 emails # of mutual email threads

Bug interaction 9,952 bugs # of bugs where both have commented

Code review 90,186 requests # of mutual code review requests

Code commit 90,186 commits # of files where both have made at least one
change

Average Weighted Degree: Average of the weighted degrees of all the nodes
in the network, where weighted degree is the sum of the edge weights of all edges
connected to a node. This metric indicates the average volume of interaction
between any two teammates.

Network Density: The ratio of the number of edges that exist to the maximum
number of edges possible. This metric indicates how many pairs of teammates
are interacting with each other.

Because many real-world networks exhibit small-world properties, the next three
metrics quantify the small-world characteristics of the networks.

Average Path Length: The average length of the shortest paths (i.e. number
of steps) between every pair of nodes. This metric indicates the average distance
in the interaction network between any two teammates.

Average Clustering Coefficient: The clustering coefficient of a node is a
measure of the connectedness of its neighbors. That is, it is the percentage of
all possible edges between a node’s neighbors that are actually present or the
probability that any two neighbors of the node are connected. The Average
Clustering Coefficient of a network is the average of the clustering coefficients of
the nodes in the graph. Small-world networks have a higher average clustering
coefficient relative to other networks of same size [18].

Network Centralization: Network centralization is a measure of the relative
centrality of the most central nodes in a network [9]. A higher centralization
means that there are a relatively small number of central nodes. According to
Freeman [9], network centralization can be calculated as

CX =
∑n

i=1[CX(p∗)−CX (pi)]

max
∑n

i=1[CX(p∗)−CX(pi)]

where n= number of nodes in the network, CX(pi) = any centrality measure
of point i, CX(p∗) = largest value of CX(pi) for any node in the network, and
max

∑n
i=1[CX(p∗)−CX(pi)]= the maximum possible sum of differences in point

centrality for a network on n nodes. Among the different methods for calculating
network centrality, Freeman recommends using Betweenness Centrality (i.e. the
number of times a node acts as a bridge along the shortest path between two

How Social Interaction Networks Influence Peer Impression Formation 35

other nodes [9]), to identify the central nodes in a network [11]. Therefore, we
used Betweenness Centrality as an indicator of the extent to which a small
number of central nodes dominate the interactions.

4 Results

Figure 1 shows the social networks built from the four data sources using the
Fruchterman-Reingold layout algorithm [12]. To make the diagrams more com-
prehensible, we first filtered out the low-weight edges and then excluded the
isolated nodes. Node size is based on weighted degrees. Edge widths are based
on edge weights. Intensity of the node color is based on betweenness centrality.

A visual inspection of the diagrams suggests that the bug interaction and
mailing-list networks are similar. They each contain only a few nodes with high
weighted degree (i.e. node size) and high betweenness centrality (i.e. color inten-
sity). There are also a small number of edges between non-central nodes, which
indicates little interaction among them. Conversely, the code review and code
commit networks have more nodes with high weighted degree and high between-
ness centrality. Furthermore, in the code commit network, the distribution of
nodes based on weighted degree and betweenness centrality is more uniform and
contains a lot of edges between the non-central nodes. These graphs suggest that
the mailing-list and bug interactions networks are the most centralized, followed
by the code review network and finally the code commit network, which is the
most decentralized.

The following subsections provide a more detailed comparison of the networks
using the metrics defined in Table 2.

Table 2. Metrics describing each social interaction network

Mailing-
list

Bug
interaction

Code
review

Code
commit

of nodes 2,518 3,416 522 448

of edges 28,208 34,200 5,052 21,353

Avg. degree 22.33 20.02 19.36 95.33

Avg. weighted degree 28.35 39.12 196.93 688.55

Avg. path length 2.67 2.6 2.53 1.88

Network density 0.009 0.006 0.037 0.213

Avg. clustering coefficient 0.762 0.853 0.693 0.839

Network centralization 28.49% 32.18% 10.94% 5.94%

4.1 Network Size

The bug interaction network has the most nodes, followed by the mailing-list
network, the code review network and finally the code commit network. The
bug interaction network is the largest because any user can create an account
and post bugs in the BugZilla repository, while the development mailing-list

36 A. Bosu and J.C. Carver

is only for development discussion and posting requires approval from the list
administrator. The code review network is slightly larger than the code commit
network because a contributor without commit access can submit a patch for
code review. If that patch passes the code review, a core developer commits it
to the main branch. Finally, because only long time contributors earn commit
access, the code commit network is the smallest.

Participants have a similar number of peers in all networks except for the code
commit network, where they have more. This larger number of peers may indicate
that developers work on many modules. Although participants in the mailing-
list, bug, and code review networks have a similar number of peers, participants

Fig. 1. Social network diagrams

How Social Interaction Networks Influence Peer Impression Formation 37

Fig. 2. Weighted degree distributions (log-log)

in the code review network interact more frequently with those peers (i.e. higher
average weighted degree). Because of the very high average degree, the code
commit network has the lowest average path length, and highest density. The
mailing-list and bug interaction networks have similar densities and average path
lengths. However, the code review network has a lower average path length,
and higher density, indicating that two contributors are more likely to interact
through code review than through a mailing-list or a bug. Considering the higher
probability (i.e. density) and higher volume (i.e weighted degree) of code commit
and code review interactions, developers are more likely to form impressions with
their teammates via those interactions.

4.2 Network Model

Figure 2 shows that for three of the four networks (excluding the code commit
network), the weighted degree distribution may follow the power law distribution
(p[X = x] ∝ (x)−α)6. We used the R - poweRlaw package [7] to estimate the
α values (i.e. power law exponent) and the goodness-of-fit7 (p) for the power
law distributions. The α values for the mailing-list, bug interaction, and code
review networks are estimated as 1.73 (p=.976), 1.7 (p=.994), and 1.9 (p=.851),
respectively. This result suggests that like many other real world social networks,
the mailing-list, bug interaction, and code review networks follow the power law
distribution. The low value of α(< 3), short average path length (Table 2),
‘small world’ property (i.e. high clustering coefficients), and presence of hubs
that indicate those three graphs follow the scale-free network model [1].

6 In a power law distribution, small occurrences are extremely common and large
instances are extremely rare. Because the probability of a large value decreases ex-
ponentially, this disribution is referred to as the ‘power law’.

7 Kolmogorov-Smirnov goodness of fit test measures if the dataset comes from a spe-
cific distribution. p ≈ 0 indicates the model does not provide a plausible fit.

38 A. Bosu and J.C. Carver

The results of previous research [1] into understanding the properties and
modeling the growth of scale-free networks can be helpful for understanding the
interactions among FOSS participants. For example, scale-free networks are ro-
bust because the removal of any randomly-chosen node is not likely to break
network connectivity. Conversely, hub nodes are points of failure whose removal
can lead to network disintegration. As a result, the unavailability of a central
developer may break FOSS network connectivity and affect the productivity of
the other dependent developers. In terms of growth, scale-free networks follow
a preferential attachment model in which a new node is more likely to begin
interactions with high degree nodes than with low degree nodes. Therefore, in
scale-free FOSS networks, new members are more likely to begin their interac-
tions with contributors who are popular (i.e. the higher degree nodes).

4.3 Network Centralization

The betweenness centralization scores indicate that the bug interaction and the
mailing-list networks are the most centralized. They depend more upon the
central nodes than do the code commit and code review networks.

High centralization might be beneficial in some cases (i.e. making quick deci-
sions). But for a large FOSS network, high centralization has many drawbacks.
First, central nodes may become bottlenecks due to overload. Second, because
most interaction goes through the central hubs, there is less interaction among
the non-central nodes. In this situation, the central nodes become familiar with
most of the network while the non-central nodes become familiar only with the
hubs. Therefore, high centralization is not helpful for impression formation in a
FOSS community because most nodes are non-central nodes. As a result, lower
centralization may be better for impressions formation.

Because it has the lowest centralization score, the code commit network has the
most favorable characteristic for impression formation. While working on code
written by a teammate could lead to impression formation, the lack of the type
of direct interaction that occurs during code review suggests that interactions
around code commits may not be the best for impression formation. The code
review network has the second lowest centralization score. As opposed to the
code commit interactions, code review interactions are highly interactive between
the author and reviewer. Evaluating the quality of code written by a peer and
discussing it’s design helps to build mutual impressions between the author and
reviewers. Although mailing-lists and bug interaction are also interactive, those
interactions are highly centralized.

Therefore, considering both interactivity and centralization, we hypothesize
that code review interactions should provide the best support for impression
formation between FOSS developers. The results of our prior study, which in-
dicate a high level of trust, reliability, perception of expertise, and friendship
between FOSS peers who have participated in code review for a period of time,
also provide evidence for this hypothesis [6].

How Social Interaction Networks Influence Peer Impression Formation 39

5 Conclusion

Considering network structure, centralization, and number of interactions, in-
teractions related to code commits have the most favorable characteristics for
impression formation, followed by interactions related to code review. However,
because the interactions related to code commits lack the type of direct inter-
activity present in those related to code review, we hypothesize that the code
review activity may be best suited to support impression formation. Despite the
differences in SNA metric values, we hypothesize that the code review and code
commit interactions are complementary for impressions formation, because de-
velopers who work on the same module are more likely to review each others’
code. While in this paper we did not study this hypothesis, we consider testing
this hypothesis as a future goal.

Additionally, the characteristics of the four WikiMedia social networks are
quite different, except for some similarities in the mailing-list and bug interac-
tion networks. These different characteristics suggest that each social network
provides a different perspective on interactions within an FOSS community. To
fully understand the community interactions and the peer impression forma-
tion process, it is likely necessary to examine multiple perspectives rather than
drawing a conclusion based only on one type of interaction.

The primary threats to validity for this are related to external validity. Due
to the vast differences among FOSS projects, the results of this one case study
are not generalizable to the entire FOSS domain. To build reliable empirical
evidence, we need to study more FOSS projects. We carefully selected Wiki-
Media projects for this case study as those might be good representatives of
community-driven FOSS projects. The results of this study can help to build
research questions for future FOSS studies.

The contributions of this paper include:

– Identified the need for studying different interaction networks to understand
FOSS community structure;

– Identified the scale-free network model to describe FOSS participants’ inter-
action networks; and

– Identified the code review interaction as a likely method for impression for-
mation among FOSS participants.

The future work for this research includes replicating this case study using
more FOSS projects to verify the generalizability of this result.

Acknowledgment. This research is supported by US National Science Foun-
dation grant 1322276.

40 A. Bosu and J.C. Carver

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512 (1999)

2. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for explor-
ing and manipulating networks. In: Proc. 3rd Int’l. AAAI Conf. on Weblogs and
Social Media, San Jose, California (2009)

3. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email
social networks. In: Proc. 3rd Int’l Wksp. on Mining Soft. Repositories, Shanghai,
China, pp. 137–143 (2006)

4. Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Latent social structure
in open source projects. In: Proc. 16th ACM SIGSOFT Int’l Symp. on Foundations
of Soft. Eng., Atlanta, Georgia, pp. 24–35 (2008)

5. Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for windows: Software for
social network analysis (2002)

6. Bosu, A., Carver, J.C.: Impact of peer code review on peer impression formation:
A survey. In: Proc. 7th ACM/IEEE Int’l. Symp. on Empirical Soft. Eng. and
Measurement, Baltimore, MD, USA, pp. 133–142 (2013)

7. Clauset, A., Shalizi, C., Newman, M.: Power-law distributions in empirical data.
SIAM Review 51(4), 661–703 (2009)

8. Crowston, K., Howison, J.: The social structure of free and open source software
development. First Monday 10(2-7) (2005)

9. Freeman, L.C.: Centrality in social networks conceptual clarification. Social Net-
works 1(3), 215–239 (1979)

10. Freeman, L.C.: The development of social network analysis: A study in the sociol-
ogy of science, vol. 1. Empirical Press, Vancouver (2004)

11. Freeman, L.C., Roeder, D., Mulholland, R.R.: Centrality in social networks: II.
experimental results. Social Networks 2(2), 119–141 (1980)

12. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement.
Software: Practice and Experience 21(11), 1129–1164 (1991)

13. Herraiz, I., Perez, J.G.: Mailing list stats
14. Long, Y., Siau, K.: Social network structures in open source software development

teams. Journal of Database Mgmt. 18(2), 25–40 (2007)
15. Martinez-Romo, J., Robles, G., Gonzalez-Barahona, J.M., Ortuño-Perez, M.: Using

social network analysis techniques to study collaboration between a FLOSS com-
munity and a company. In: Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi,
G. (eds.) Open Source Development, Communities and Quality. IFIP, vol. 275, pp.
171–186. Springer, Boston (2008)

16. McKenna, K.Y., Bargh, J.A.: Plan 9 from cyberspace: The implications of the
internet for personality and social psychology. Personality and Social Psychology
Review 4(1), 57–75 (2000)

17. Oezbek, C., Prechelt, L., Thiel, F.: The onion has cancer: Some social network
analysis visualizations of open source project communication. In: Proc. 3rd Int’l.
Wksp. on Emerging Trends in Free/Libre/Open Source Soft. Research and Devel-
opment, Cape Town, South Africa, pp. 5–10 (2010)

18. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Na-
ture 393(6684), 440–442 (1998)

19. Yang, X., Kula, R.G., Erika, C.C.A., Yoshida, N., Hamasaki, K., Fujiwara, K., Iida,
H.: Understanding oss peer review roles in peer review social network (PeRSoN).
In: Proc. 19th Asia-Pacific Soft. Eng. Conf., Hong Kong, pp. 709–712 (2012)

Drawing the Big Picture:

Temporal Visualization of Dynamic
Collaboration Graphs of OSS Software Forks

Amir Azarbakht and Carlos Jensen

Oregon State University, School of Electrical Engineering & Computer Science,
1148 Kelley Engineering Center, Corvallis OR 97331, USA

{azarbaam,cjensen}@eecs.oregonstate.edu

Abstract. How can we understand FOSS collaboration better? Can so-
cial issues that emerge be identified and addressed as they happen? Can
the community heal itself, become more transparent and inclusive, and
promote diversity? We propose a technique to address these issues by
quantitative analysis and temporal visualization of social dynamics in
FOSS communities. We used social network analysis metrics to identify
growth patterns and unhealthy dynamics; This gives the community a
heads-up when they can still take action to ensure the sustainability of
the project.

1 Introduction

Social networks are a ubiquitous part of our social lives, and the creation of online
social communities has been a natural extension of this phenomena. Free/Open
Source Software (FOSS) development efforts are prime examples of how com-
munity can be leveraged in software development, groups are formed around
communities of interest, and depend on continued interest and involvement in
order to stay alive [17].

Though the bulk of collaboration and communication in FOSS communities
occurs online and is publicly accessible, there are many open questions about
the social dynamics in FOSS communities. Projects might go through a meta-
morphosis when faced with an influx of new developers or the involvement of
an outside organization. Conflicts between developers’ divergent visions about
the future of the project might lead to forking of the project and dilution of
the community. Forking, either as a violent split when there is a conflict or as
a friendly divide when new features are experimentally added both affect the
community [3].

Most recent studies of FOSS communities have tended to suffer from an im-
portant limitation. They treat community as a static structure rather than a
dynamic process. In this paper, we propose to use temporal social network anal-
ysis to study the evolution and social dynamics of FOSS communities. With
these techniques we aim to identify measures associated with unhealthy group
dynamics, e.g. a simmering conflict, as well as early indicators of major events

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 41–50, 2014.
c© IFIP International Federation for Information Processing 2014

42 A. Azarbakht and C. Jensen

in the lifespan of a community. One set of dynamics we are especially interested
in, are those that lead FOSS projects to fork. We used the results of a study
of forked FOSS projects by Robles and Gonzalez-Barahona [19] as the starting
point for out study, and tried to gain a better understanding of the evolution of
these communities.

This paper is organized as follows: We present related literature on online
social communities. We then present the gap in the literature, and discuss why
the issue needs to be addressed. After that, in methodology, we describe how
gathering data, doing the analysis, and the visualization of the findings was
carried out. At the end, we present results, discussion and threats to validity.

2 Related Work

The social structures of FOSS communities have been studied extensively. Re-
searchers have studied the social structure and dynamics of team communi-
cations [4][10][11], identifying knowledge brokers and associated activities [20],
project sustainability [10], forking [18] [19], their topology [4], their demographic
diversity [13], gender differences in the process of joining them [12] and the role
of the core team in their communities [21], etc. All of these studies have tended
to look at community as a static structure rather than a dynamic process. This
makes it hard to determine cause and effect, or the exact impact of social changes.

The study of communities has grown in popularity in part thanks to advances
in social network analysis. From the earliest works by Zachary [22] to the more
recent works of Leskovec et al. [14][15], there is a growing body of quantitative
research on online communities. The earliest works on communities was done
with a focus on information diffusion in a community [22]. Zachary investigated
the fission of a community, the process of communities splitting into two or more
parts. He found that fission could be predicted by applying the Ford-Fulkerson
min-cut algorithm [6] on the group’s communication graph; “the unequal flow
of sentiments across the ties” and discriminatory sharing of information lead to
“subcommunities with more internal stability than the community as a whole.”

Community splits in FOSS are referred to as forks, and are relatively common.
Forking is defined as “when a part of a development community (or a third party
not related to the project) starts a completely independent line of development
based on the source code basis of the project.” Robles and Gonzalez-Barahona
[19] identified 220 significant FOSS projects that have forked over the past 30
years, and compiled a comprehensive list of the dates and reasons for forking.
They classified these into six main categories. (Table 3.) which we build on
extensively. They identified a gap in the literature in case of “how the community
moves when a fork occurs”.

The dynamic behavior of a network and identifying key events was the aim
of a study by Asur et al [1]. They studied three DBLP co-authorship networks
and defined the evolution of these networks as following one of these paths: a)
Continue, b) k-Merge, c) k-Split, d) Form, or e) Dissolve. They also defined four
possible transformation events for individual members: 1) Appear, 2) Disappear,

Drawing the Big Picture: Temporal Visualization of Collaboration Graphs 43

3) Join, and 4) Leave. They compared groups extracted from consecutive snap-
shots, based on the size and overlap of every pair of groups. Then, they labeled
groups with events, and used these identified events. The communication pat-
terns of FOSS developers in a bug repository were examined by Howison et al.
[10]. They calculated out-degree centrality as their metric. Out-degree centrality
measures the proportion of the number of times a node contacted other nodes
(outgoing) over how many times it was contacted by other nodes (incoming).
They calculated this centrality over time “in 90-day windows, moving the win-
dow forward 30 days at a time.” They found that “while change at the center
of FOSS projects is relatively uncommon,” participation across the community
is highly skewed, following a power-law distribution, where many participants
appear for a short period of time, and a very small number of participants are
at the center for long periods. Our approach is similar to theirs in how we form
collaboration graphs and perform our temporal analysis. Our approach is differ-
ent in terms of our project selection criteria, the metrics we examine, and our
research questions.

The tension between diversity and homogeneity in a community was studied
by Kunegis et al. [13]. They defined five network statistics used to examine
the evolution of large-scale networks over time. They found that except for the
diameter, all other measures of diversity shrunk as the networks matured over
their lifespan. Kunegis et al. [13] argued that one possible reason could be that
the community structure consolidates as projects mature.

Community dynamics was the focus of a recent study by Hannemann and
Klamma [8] on three open source bioinformatics communities. They measured
”age” of users, as starting from their first activity and found survival rates
and two indicators for significant changes in the core of the community. They
identified a survival rate pattern of 20-40-90%, meaning that only 20% of the
newcomers survived after their first year, 40% of the survivors survived through
the second year, and 90% of the remaining ones, survived over the next years.
As for the change in the core, they suggested that a falling maximal betweenness
in combination with an increasing network diameter as an indicator for a signif-
icant change in the core, e.g. retirement of a central person in the community.
Our approach builds on top of their findings, and the evolution of betweenness
centralities and network diameters for the projects in our study are depicted in
the following sections.

To date, most studies on FOSS have only been carried out on a small number
of projects, and using snapshots in time. To our knowledge, no study has been
done of project forking that has taken into account the temporal dimension.

3 Methodology

We argue that the social interactions data reflects the changes the community
goes through, and will be able to describe the context surrounding a forking
event. Robles and Gonzalez-Barahona [19] classify forking into six classes, listed
in Table 1, based on the motives for forking.

44 A. Azarbakht and C. Jensen

Table 1. The main reasons for forking as classified by Robles and Gonzalez-Barahona
[19]

Reason for forking Example forks

Technical (Addition of functionality) Amarok & Clementine Player

More community-driven development Asterisk & Callweaver

Differences among developer team Kamailio & OpenSIPS

Discontinuation of the original project Apache web server

Commercial strategy forks LibreOffice & OpenOffice.org

Legal issues X.Org & XFree

The first three of the six motives listed are social, and so should arguably be
reflected in the social interaction data. For example, if a fork occurs because of
a desire for “more community-driven development”, we would perhaps expect
to see patterns in the data showing a strongly-connected core that is hard to
penetrate for the rest of the community prior to the fork. In other words, the
power stays in the hands of the same people over a long period of time while new
people come and go. Our goal was to visualize and quantify how the community
is structured, how it evolves, and the degree to which involvement changes over
time. To this end, we picked projects from the aforementioned three categories
of forked projects. This involved obtaining communication archives, creating
the collaboration graphs, applying social network analysis (SNA) techniques to
measure key metrics, and visualizing the evolving graphs. We did this in four
phases as described in the following:

3.1 Phase 1: Data Collection

The study of forks by Robles and Gonzalez-Barahona [19] included informa-
tion on 220 forks and their reasons. We applied three selection criteria to those
projects. A project was short-listed if it was recent, i.e. the fork had happened
after the year 2000; data was available; and their communities were of approxi-
mately the same size. This three stage filtering process resulted in the projects
listed in Table 2.

Data collection involved analyzing mailing list archives. We collected data for
the year in which the fork happened, as well as for three month before and three

Table 2. Forked projects for which collaboration data was collected

Projects Reason for forking Year

Amarok & Clementine Player Technical (Addition of functionality) 2010

Asterisk & Callweaver More community-driven development 2007

Kamailio & OpenSIPS Differences among developer team 2008

Drawing the Big Picture: Temporal Visualization of Collaboration Graphs 45

months after that year in order to capture the social context context at the time
of the fork.

3.2 Phase 2: Creating Communication Graphs

Many social structures can be represented as graphs. The nodes represent ac-
tors/players and the edges represent the interaction between them. Such graphs
can be a snapshot of a network – a static graph – or a changing network, also
called a dynamic graph. In this phase, we processed the data to form a com-
munication graph of the community. We were looking for how people interacted
with each other. We decided to treat the general mailing list as a person, because
the bulk of the communication was targeted at it, and most newcomers start by
sending their questions to the general mailing list. Each communication effort
was captured with a time-stamp. This allowed us to form a dynamic graph, in
which the nodes would exist if and only if they had an interaction with another
node during the period we were interested in.

3.3 Phase 3: Temporal Visualization and Temporal Evolution
Analysis

In this phase, we wanted to analyze the changes that happen to the community
over a given period of time, i.e. three months before and three months after the
year in which the forking event happened. We measured betweenness centrality
[5] of the most significant nodes in the graph, and the graph diameter over time.
Figures 2-4 show the betweenness centralities over the 1.5 year period for the
Camailio, Amarok and Asterisk projects respectively. To do temporal analysis,
we had two options; 1) look at snapshots of the network state over time, (e.g.
to look at the network snapshots in every week, the same way that a video is
composed of many consecutive frames), and 2) look at a period through a time
window. We preferred the second approach, and looked through a time window
of three months wide with 1.5 month overlaps. To create the visualizations, we
used a 3 months time frame that progressed six days a frame. In this way, we
had a relatively smooth transition.

We visualized the dynamic network changes using Gephi [2]. The videos show
how the community graph is structured, using a continuous force-directed linear-
linear model, in which the nodes are positioned near or far from each other
proportional to the graph distance between them. This results in a graph shape
between between Früchterman & Rheingold’s [7] layout and Noack’s LinLog [16].

4 Results and Discussion

4.1 Kamailio Project

Figure 1 shows four key frames from the Kamailio project’s social graph around
the time of their fork (the events described here are easier to fully grasp by

46 A. Azarbakht and C. Jensen

watching the video. A node’s size in a proportional to the number of interactions
the node (contributor) has had within the study period and the position and
edges of the nodes change if they had interactions within the time window shown,
with six day steps per frame. The 1 minute and 37 seconds video shows the life of
the Kamailio project between October 2007, and March 2009. Nodes are colored
based on the modularity of the network.

The community starts with the GeneralList as the the biggest node, and four
larger core contributors and three lesser size core contributors. The big red-
colored node’s transitions are hard to miss, as this major contributor departs
from the core to the periphery of the network (Video minute 1:02) and then leaves
the community (Video minute 1:24) capturing either a conflict or retirement.
This corresponds to the personal difference category of forking reasons.

(a) (b) (c) (d)

Fig. 1. Snapshots from video visualization of Kamailio’s graph (Oct. 2007 - Mar. 2009)
in which a core contributor (colored red) moves to the periphery and eventually departs
the community

Figure 2 shows the betweenness centrality of the major contributors of Ka-
mailio project over the same time period. The horizontal axis marks the dates,
(each mark represents a 3-month time window with 1.5 months overlap). The
vertical axis shows the percentage of the top betweenness centralities for each
node. The saliency of the GeneralList – colored as light blue – is apparent due
to to its continuous and dominant presence in the stacked area chart. The chart
legend lists the contributors based on the color and in the same order of ap-
pearance on the chart starting from the bottom. One can easily see that around
the ”Aug. 15, 2008 - Nov. 15, 2008” tick mark on the horizontal axis, several
contributors’ betweenness centralities shrink to almost zero and disappear. This
helps identify the date of fork with a month accuracy. The network diameter
of the Kamailio project over the same time period is also shown in Figure 3.
The increase in the network diameter during this period confirms the findings
of Hannemann and Klamma [8].

This technique can be used to identify the people involved in conflict and the
date the fork happened with a months accuracy, even if the rival project does
not emerge immediately.

Drawing the Big Picture: Temporal Visualization of Collaboration Graphs 47

Fig. 2. Kamailio top contributors’ betweenness centralities and network diameter over
time (Oct. 2007 to Mar. 2009) in 3-month time windows with 1.5-month overlaps

4.2 Amarok Project

The video for the Amarok project fork is available online1, and the results from
our quantitative analysis of the betweenness centralities and the network diame-
ters are shown in Figure 3. The results show that the network diameter has not
increased over the period of the fork, which shows a resilient network. The video
shows the dynamic changes in the network structure, again typical of a healthy
network, rather than of simmering conflict. These indicators show that Amarok
fork in 2010 arguably belongs to the “addition of technical functionality” ratio-
nale for forking, as there are no visible social conflict.

4.3 Asterisk Project

The video for the Asterisk project is also available online, and the results from
our quantitative analysis of the betweenness centralities and the network diame-
ters are shown in Figure 4. The results show that the network diameter remained
steady at 6 throughout the period. The Asterisk community was by far the most
crowded project, with 932 nodes and 4282 edges. The stacked area chart shows
the distribution of centralities, where we see an 80%-20% distribution (, i.e. 80%
or more of the activity is attributed to six major players, with the rest of the
community accounting for only 20%). This is evident in the video representa-
tion as well, as the top-level structure of the network holds throughout the time
period. The results from the visual and quantitative analysis links the Asterisk
fork to the more community-driven category of forking reasons.

1 Video visualizations available at
http://eecs.oregonstate.edu/~azarbaam/OSS2014/

http://eecs.oregonstate.edu/~azarbaam/OSS2014/

48 A. Azarbakht and C. Jensen

Fig. 3. Amarok project’s top contributors’ betweenness centralities and network di-
ameter over time between Oct. 2009 to Mar. 2011 in 3-months time windows with 1.5
months overlaps

Fig. 4. Asterisk project’s top contributors’ betweenness centralities and network di-
ameter over time between Oct. 2009 to Mar. 2011 in 3-months time windows with 1.5
months overlaps

Drawing the Big Picture: Temporal Visualization of Collaboration Graphs 49

5 Conclusion

We studied the collaboration networks of three FOSS projects using a combina-
tion of temporal visualization and quantitative analysis. We based our study on
two papers by Robles and Gonzalez-Barahona [19] and Hannemann and Klamma
[8], and identified three projects that had forked in the recent past. We mined the
collaboration data, formed dynamic collaboration graphs, and measured social
network analysis metrics over an 18-month period time window.

We also visualized the dynamic graph (available online) and as stacked area
charts over time. The visualizations and the quantitative results showed the dif-
ferences among the projects in the three forking reasons of personal differences
among the developer teams, technical differences (addition of new functionality)
and more community-driven development. The personal differences representa-
tive project was identifiable, and so was the date it forked, with a month accu-
racy. The novelty of the approach was in applying the temporal analysis rather
than static analysis, and in the temporal visualization of community structure.
We showed that this approach shed light on the structure of these projects and
reveal information that cannot be seen otherwise.

References

1. Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing
the evolutionary behavior of interaction graphs. ACM Trans. Knowledge Discovery
Data 3(4), Article 16, 36 p. (2009)

2. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for explor-
ing and manipulating networks. Presented at the Int. AAAI Conf. on Weblogs and
Social Media (2009)

3. Bezrukova, K, Spell, C.S., Perry, J.L.: Violent Splits Or Healthy Divides? Coping
With Injustice Through Faultlines. Personnel Psychology 63(3) (2010)

4. Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Latent social structure
in open source projects. In: Proc. of the 16th ACM SIGSOFT Int. Symposium on
Foundations of Software Engineering, pp. 24–35. ACM, New York (2008)

5. Brandes, U.: A Faster Algorithm for Betweenness Centrality. Journal of Mathe-
matical Sociology 25(2), 163–177 (2001)

6. Ford, L.R., Folkerson, D.R.: A simple algorithm for finding maximal network flows
and an application to the Hitchcock problem. Canadian Journal of Mathematics 9,
210–218 (1957)

7. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw: Pract. Exper. 21(11), 1129–1164 (1991)

8. Hannemann, A., Klamma, R.: Community Dynamics in Open Source Software
Projects: Aging and Social Reshaping. In: Petrinja, E., Succi, G., El Ioini, N.,
Sillitti, A. (eds.) OSS 2013. IFIP AICT, vol. 404, pp. 80–96. Springer, Heidelberg
(2013)

9. Howison, J., Crowston, K.: The perils and pitfalls of mining SourceForge. In: Pro-
ceedings of the Int. Workshop on Mining Software Repositories (MSR 2004), pp.
7–11 (2004)

10. Howison, J., Inoue, K., Crowston, K.: Social dynamics of free and open source team
communications. In: Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G.
(eds.) Open Source Systems. IFIP, vol. 203, pp. 319–330. Springer, Boston (2006)

50 A. Azarbakht and C. Jensen

11. Howison, J., Conklin, M., Crowston, K.: FLOSSmole: A collaborative repository
for FLOSS research data and analyses. Int. Journal of Information Technology and
Web Engineering 1(3), 17–26 (2006)

12. Kuechler, V., Gilbertson, C., Jensen, C.: Gender Differences in Early Free and Open
Source Software Joining Process. In: Hammouda, I., Lundell, B., Mikkonen, T.,
Scacchi, W. (eds.) OSS 2012. IFIP AICT, vol. 378, pp. 78–93. Springer, Heidelberg
(2012)

13. Kunegis, J., Sizov, S., Schwagereit, F., Fay, D.: Diversity dynamics in online net-
works. In: Proc. of the 23rd ACM Conf. on Hypertext and Social Media, USA
(2012)

14. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: Proc. of the SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining (2005)

15. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of
community structure in large social and information networks. In: Proc. of the 17th
Int. Conf. on World Wide Web (WWW 2008). ACM (2008)

16. Noack, A.: Energy models for graph clustering. J. Graph Algorithms Appl. 11(2),
453–480 (2007)

17. Nyman, L.: Understanding code forking in open source software. In: Proc. of the
7th Int. Conf. on Open Source Systems Doctoral Consortium, Salvador, Brazil
(2011)

18. Nyman, L., Mikkonen, T., Lindman, J., Fougère, M.: Forking: the invisible hand of
sustainability in open source software. In: Proc. of SOS 2011: Towards Sustainable
Open Source (2011)

19. Robles, G., González-Barahona, J.M.: A comprehensive study of software forks:
Dates, reasons and outcomes. In: Hammouda, I., Lundell, B., Mikkonen, T., Scac-
chi, W. (eds.) OSS 2012. IFIP AICT, vol. 378, pp. 1–14. Springer, Heidelberg
(2012)

20. Sowe, S., Stamelos, L., Angelis, L.: Identifying knowledge brokers that yield soft-
ware engineering knowledge in OSS projects. Information and Software Technol-
ogy 48, 1025–1033 (2006)

21. Torres, M.R.M., Toral, S.L., Perales, M., Barrero, F.: Analysis of the Core Team
Role in Open Source Communities. In: 2011 Int. Conf. on Complex, Intelligent and
Software Intensive Systems (CISIS), pp. 109–114. IEEE (2011)

22. Zachary, W.: An information flow model for conflict and fission in small groups.
Journal of Anthropological Research 33(4), 452–473 (1977)

Analyzing the Relationship between the License

of Packages and Their Files in Free and Open
Source Software

Yuki Manabe1, Daniel M. German2,3, and Katsuro Inoue3

1 Kumamoto University, Japan
2 University of Victoria, Canada

3 Osaka University, Japan

Abstract. Free and Open Source Software (FOSS) is widely reused to-
day. To reuse FOSS one must accept the conditions imposed by the
software license under which the component is made available. This is
complicated by the fact that often FOSS packages contain files from
many licenses. In this paper we analyze the source code of packages in
the Fedora Core Linux distribution with the goal of discovering the rela-
tionship between the license of a source package, and the license of the
files it contains. For this purpose we create license inclusion graphs. Our
results show that more modern reciprocal licenses such as the General
Public License v3 tend to include files of less licenses than its previous
versions, and that packages under an Apache License tend to contain
only files under the same license.

1 Introduction

One way of reducing software development cost is to reuse components. To-
day Free and Open Source Software (FOSS) has become a common and viable
source of components that are ready to be reused. It is possible to find many
components from open source project hosted by open source project hosting site
such as SourceForge.net1, Google Code2 and GitHub3. In addition, users can use
software component retrieval system such as SPARS-J[1] and Oholo code4.

The relationship between licenses is complex. It is not trivial to understand
when a file with one license can be reused inside a package of another license.
Some authors of licenses provide guidelines that try to clarify this; for example,
the Free Software Foundation tries to clarify the relationship between the Gen-
eral Public License and other licenses [2]. However, there is a lack of empirical
evidence that shows the relationship between the license of the package and the
license of the files it contains.

1 sourceforge.net
2 code.google.com
3 github.com
4 ohloh.net

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 51–60, 2014.
c© IFIP International Federation for Information Processing 2014

sourceforge.net
code.google.com
github.com
ohloh.net

52 Y. Manabe, D.M. German, and K. Inoue

In this paper we describe an empirical study that investigates how different
software licenses are reused as white-box components in the software packages
found in Fedora, a popular Linux distribution. We show the relationships be-
tween the licenses of packages, and the licenses of its files. Our goal is to assist
developers, license compliance officers and lawyers in understanding how licenses
are actually used.

The contributions of this paper are:

– An empirical study of how the relationship between the license of a package
and the license of the files it contains (white-box reuse).

– The definition of License Inclusion Graphs that show the licenses that are
used inside a packages of a given license.

– The license inclusion graphs from Fedora version 19 for the most popular
licenses.

2 Background

The monetary cost of reusing a FOSS component can be zero, but it requires
the user to read and accept its FOSS license. In general a software license is
a set of permissions that the intellectual property owner grants to the user of
the software after a set of conditions have been satisfied (these conditions could
be, for example, the payment of a fee). A FOSS license is a software license
where the permissions granted include the right to make derivative works of the
software and further redistribute those works in exchange to the acceptance of
certain conditions (see [3] for a detail description of FOSS licenses, and [4] for
a formalization of grants and conditions). For example, the original X11/MIT
license grants permissions to “deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so”; the only condition it places to grant those
rights is “The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.”

When developers built software by reusing FOSS, either by linking to them or
by copying their source code, they have to satisfy the conditions of each of their
licenses [4]. Fig. 1 illustrates this problem. In this scenario, the main source code
of the project is developed under license A. It reuses two libraries by linking to
them (reused as components–i.e. black-box reuse) each under license B and C.
To complicate things further source code files from another component (under
License D) has been copied into the project. The problem becomes, what license
can be used to release the new software system that is compatible with the license
of the source code (A) the copied source code (D) and the linked components
(B and C). This is not always an easy to answer question, especially when the
newly created project reuses many components. For example, Scacchi et. al. [5]
examine Google Chrome and showed that it uses 27 components and libraries
under 14 different licenses.

Analyzing the Relationship between the Licenses in FOSS 53

���������

	��
��������������� �����������

�����������������

��������

��������

��������

��������

������

������

����������	
�����������������
�

������������	�����	
�
����������	����

�������	��

�����	

��������

�����

������

���������

Fig. 1. Example of the challenges of reuse of various licenses. In this example, the code
has been developed under license C, but some of the source code was copied from a
component with license D. Later this code was compiled and linked with components
under license A and B. Can the resulting product be licensed under license A, B, C, D
or other license?.

Another problem is the proliferation of licenses. The Open Source Initiative5,
the body responsible for the definition of Open Source, has approved 69 licenses
as open source [6] and BlackDuck claims that the Black Duck Knowledge Base
includes data related to over 2200 licenses[7]

Previous research has studied license incompatibility. Alspaugh et. al. pro-
posed a model of licensing terms represented by a tuple 〈actor, modality, action,
object, license〉 and an approach to calculate conflicts of rights and obligations
that they implemented on ArchStudio4, a software traceability tool. German et.
al. shows integration pattern to solve conflicts of license[4]. However, solving li-
cense conflicts is not an easy task since it requires legal background. Also, most
of the literature regarding license compatibility has focused on the Free Soft-
ware Foundation licenses (the different versions of the General Public License
—GPL— and the Lesser General Public License –LGPL).

In general, files are expected to contain licensing information in them, em-
bedded in the comments of the file. This licensing information describes one or
more licenses under which the file is “open-sourced”. For this paper we analyzed
as a corpus of FOSS the source packages of the Fedora Core 19 distribution. A
FOSS system is usually represented in Fedora as a “source” package. A source
package is a collection of files, including source code and documentation from
where binaries are created.

5 opensource.org

opensource.org

54 Y. Manabe, D.M. German, and K. Inoue

Table 1. Names of common open source licenses and their abbreviations as used in
this article

Abbrev. Name

Apache Apache Public License
BSD4 Original BSD, also known as BSD with 4 clauses
BSD3 BSD4 minus advertisement clause
BSD2 BSD3 minus endorsement clause
CPL Common Public License
CDDLic Common Development and Distribution License
EPL Eclipse Public License
GPL General Public License
LibraryGPL Library General Public License (also known as LGPL)
LesserGPL Lesser General Public License (successor of the Library

GPL, also known as LGPL)
X11/MIT Original license of X11 released by the MIT

Fedora documents the license of every source package. We call this the declared
license of the package. This information is intended to inform the user of the
package of the legal obligations acquired when using it. This information is
usually created manually by inspecting the documentation of the software [8].
Fedora restricts what licenses packages can have in order to be included in the
distribution, but this list is fairly comprehensive, currently including 253 different
FOSS licenses[9].

Table 1 shows the most common license names and the abbreviation used in
this paper. This paper uses a suffix v<number> as means to specify a version
of that license; for example, GPLv2 means GPL version 2. If the license name
is followed by “+” then the file can be used under such license or newer versions
of it; for example GPLv2+ means the file can be used under the terms of the
GPLv2 or the GPLv3 (including future versions of the license).

3 License Inclusion

Any FOSS package is licensed under at least one FOSS license, and each of its
source code files is expected to be licensed under a FOSS license too. Ideally
every file should explicitly indicate its license, although it is not uncommon to
find files without a license.

If a software package is of a given license, it does not mean that all the files
that compose it are also of the same license. For example, it is widely accepted
that files under the MIT/X11 license is included in software that is licensed under
any other license, as long as the minimal requirements of MIT/X11 license are
satisfied (see above). We call this relationship the inclusion of one license into
another license. In this case, it means that the MIT/X11 license is included in
packages under the GPLv2. Using the inclusion relationship, we can compute
the licensing inclusion graph of a given collection of software packages as
follows:

Analyzing the Relationship between the Licenses in FOSS 55

– Create a node for each of the licenses of packages.
– Create a node for each license found in files.
– For every file f in a package p, we create a directed edge license(f) →

license(p).

We then define the license inclusion graph of a package license as the
subgraph that ends in a given package license. All the edges in the graph which
share a single destination node and come from different nodes with the same
license are merged into a single edge. We put the number of the merged edges
as the weight of this new edge.

For example, assume that a package in GPLv3 includes 10 source files in
BSD2. This relation is represented as a graph including two nodes “BSD2” and
“GPLv3” and a single edge from “BSD2” to “GPLv3” with weight 10.

4 Empirical Study

We conducted an case study of FOSS software packages. Its goal is to answer
the question What are the inclusion relationships between licenses of packages
and licenses of source code?

4.1 Subject

For this study we used the 2484 source packages in Fedora Core 196. Each
package includes an archive of source files and one or more spec files. The spec
files provide metadata of the source package including its license.

4.2 Methodology

To answer the research question we created the license inclusion graphs of pack-
age licenses found in Fedora, using the following procedure: First we extracted
for each package its declared license, and the license of its files as follows:

1. We extracted its declared license from its spec file.
2. For each source code file in the package, we identified its license(s). For this

step we used Ninka7, a license identification tool with a reported accuracy of
93% [10]. Only 2,013 packages have at least one source code file. The median
number of files per package is 60 files, average 748.5, and maximum 125,400.

Ninka is not able to identify the license of all files. Frequently this is be-
cause Ninka does not know the way a specific project licenses its files. In that
case, Ninka reports “Unknown”. In 62.2% of the packages, at least one file was
“Unknown” (i.e. in 37.8% of the packages, Ninka identified the licenses of all
the files). The distribution of the proportion of “Unknown” files had median of
2.7%, with a 3rd quartile of 25%. This meant that we had incomplete licensing

6 ftp:///ftp.iij.ad.jp/pub/linux/fedora/releases/19/Fedora/source/SRPMS/
7 ninka.turingmachine.org

ftp:///ftp.iij.ad.jp/pub/linux/fedora/releases/19/Fedora/source/SRPMS/
ninka.turingmachine.org

56 Y. Manabe, D.M. German, and K. Inoue

information of packages with high ratio of “Unknown”. For this reason we de-
cided to remove from the study packages that had a proportion of 50% or more
“Unknown” files (328 packages–16% of the total).

Some packages contain more than one spec file. If the licenses of the spec
files of a package were different, that meant that some files in the package were
distributed under one license, and some under another. For that reason we re-
moved packages with spec files with different licenses. This resulted in another
210 packages being removed from our study.

In total, we kept for our analysis 1,475 packages with at least one source code
file, for total of different 511,308 files.

The abbreviation names of licenses in Fedora are different than the names used
in Ninka. To make both lists comparable we created an equivalence table. An
excerpt of this table is shown in Table 2. The complete table can be found in the
replication package (available at http://www.dbms.cs.kumamoto-u.ac.jp/∼
y-manabe/replication package/index.html/). Table 3 shows the most fre-
quently found declared licenses in packages. Table 4 shows the number most
frequently licenses in source files.

With this information we created the license inclusion graphs of the distribu-
tion, and from it the license inclusion graph of the most common licenses.

Table 2. Excerpts from conversion table of license names between Fedora and Ninka

Declared license of package (Fedora Name) License in file (Ninka Name)

ApacheSoftwareLicense Apachev2
ASLv2 Apachev2
BSDwithadvertising BSD4
EPL EPLv1
LGPLv2 LibraryGPLv2
LGPL2.1 LesserGPLv2.1
PHP phpLicV3.01

4.3 Results

Due to space limitations we only show the subgraphs of the most common li-
censes. The rest are available in the replication package. Figure 2 shows the
file-to-package licensing subgraphs for the different versions of the General Pub-
lic License. The number of package in each source file license node means how
many packages have files under the license. The sum of the number of packages
in source file is often larger than that in package license node because many
packages include license not under same license but under various license. As
it can be observed, there is no apparent inconsistency: all licenses of the files
(the left node) can be relicensed as the license on the packages (the right node).
What is apparent is that the GPLv3+ reuses fewer licenses.

http://http://www.dbms.cs.kumamoto-u.ac.jp/~y-manabe/replication_package/index.html/
http://http://www.dbms.cs.kumamoto-u.ac.jp/~y-manabe/replication_package/index.html/

Analyzing the Relationship between the Licenses in FOSS 57

Table 3. Number of packages under
each license more than 10 packages)

License name Packages

GPLv2+ 338
LGPLv2+ 205
X11mit 154
GPL+ or Artistic 109
BSD 91
GPLv3+ 63
ASL 2.0 50
GPLv2+ and GFDL 48
GPLv2 44
GPLv2+ and LGPLv2+ 30
LGPLv2 28
LGPLv2+ and GPLv2+ 19
LGPLv3+ 16
EPL 16

Table 4. Most common licenses used
by source files

License Name Src Files

NONE 111311
EPLv1 70004
GPLv2+ 48063
Unknown 32874
LibraryGPLv2+ 32745
GPLv3+ 29041
BSD3 25570
Apachev2 22099
LesserGPLv2.1+ 21733
BSD2 19844
X11mit 15365
GPLv2-classPathExcep 14509
GPLv2 13958
CPLv1 12060

Figure 3 shows the subgraph for the most commonly found permissive licenses.
The LesserGPLv2+ shows two main inconsistencies: the use of the GPLv2+
and the GPLv3+. We inspected the files that created this inconsistency, and in
most cases, they were in directories that contained the name “test” or “demo”,
suggesting they were testing and sample programs (most of them very small). It
is interesting that these packages would be under the LesserGPL, but the test
and demo files under the GPL.

Fedora does not distinguish between the BSD2 and the BSD3, labelling both
BSD, as shown in the diagram. In both the BSD and the X11/MIT, the pro-
portion of files without a license is higher than other licenses (> 30%). The
“GPL+ or Artistic” is a license that is used mainly for Perl and its modules. It
is interesting that most of the files in this graph have no license, or the license
“License Same as Perl”. This is likely because the template for the creation of
a module in Perl uses this license. Notice that in this license, as well as the
two Apache, no other license is used. These communities (Perl and Apache) do
not seem to reuse code under other licenses. Packages under Apache have the
simplest graphs: most files (> 90%) contain the given license, and in the case of
Apachev2, only 1.5% of files are under another license. For Apachev1.1 all its
files are under the same license.

5 Limitations and Threats to Validity

With respect to the threat of internal validity, in this paper we didn’t consider
how source files were used. We focused on only relations between a source package
and source files included in it. However, not all source files in a package are used
in building software. Therefore, we may extract the relations between packages
and unused source files. We believe this effect is small.

58 Y. Manabe, D.M. German, and K. Inoue

LibraryGPLv2+
12 pkgs

3730 files

GPLv2
44 pkgs

23602 files

15.8%
GPLv2+

29 pkgs
9776 files

41.4%
None
36 pkgs

3383 files

14.3%X11mit
9 pkgs

406 files

1.7%
GPLv2
29 pkgs

1828 files 7.7%

Unknown
29 pkgs

2264 files

9.6%

BSD3
7 pkgs

354 files

1.5%

LesserGPLv2.1+
11 pkgs
399 files

1.7%

Other
18 pkgs
585 files

2.5%

LibraryGPLv2
9 pkgs

877 files

3.7%

None
230 pkgs
8113 files

GPLv2+
338 pkgs

42274 files

19.2%
GPLv2,GPLv2+

17 pkgs
460 files

1.1%Unknown
126 pkgs
2700 files

6.4%
GPLv2+
310 pkgs

26167 files 61.9%

Other
94 pkgs

2131 files

5.0%

GPLv2
29 pkgs
576 files

1.4%

LesserGPLv2.1+
45 pkgs
953 files

2.3%

LibraryGPLv2+
81 pkgs

1174 files

2.8%

Other
34 pkgs
418 files

GPLv3+
63 pkgs

14682 files

2.8%None
50 pkgs

2452 files

16.7%
GPLv2+

24 pkgs
728 files 5.0%

LibraryGPLv2+
8 pkgs

285 files

1.9%

GPLv3+
58 pkgs

10477 files

71.4%

Unknown
30 pkgs
322 files

2.2%

Fig. 2. License inclusion subgraphs for different versions of the GPL

Regarding construction validity, we used Ninka to identify the license of each
source file. The quality of the data extracted depends heavily on Ninka’s license
detection quality. In our previous work [10] we reported that Ninka is accurate
in 93% of files. We believe this is enough to represent the most common rela-
tionships between licenses. To identify the license of software packages we used
the spec files created by the Fedora Project. Our study depends on the accu-
racy of this information. German et. al. [11] observed that this data is manually
generated and an mostly correct. There were very few cases, however, where a
package had upgraded to a new license, but the license in the spec file was not
updated.

Regarding external validity, we only used source packages in Fedora19. Our
results are affected by the selection bias of the Fedora Core Project. To make
sure that licenses are comprehensively represented it is necessary to analyze
other repositories of FOSS. We plan to do this for future work.

6 Related Work

German et.al[11]. studied license compatibility in software packages by identi-
fying licenses of source packages and source files in them. They found that in
general, identifying the license of a package from its source code is not a trivial

Analyzing the Relationship between the Licenses in FOSS 59

None
168 pkgs
5195 files

LesserGPLv2+
205 pkgs

32900 files

15.8%LesserGPLv2.1+
139 pkgs

11509 files

35.0%
Unknown

103 pkgs
2196 files

6.7%
GPLv3+

5 pkgs
1101 files 3.3%

Other
67 pkgs

1141 files

3.5%

GPLv2+
53 pkgs
375 files

1.1%

LibraryGPLv2
6 pkgs

1285 files

3.9%

LibraryGPLv2+
98 pkgs

10098 files

30.7%

openSSLvar1
1 pkgs

287 files

BSD
91 pkgs

27317 files

1.1%
None
77 pkgs

8575 files

31.4%
Other
39 pkgs
731 files

2.7%

BSD3
54 pkgs

10982 files

40.2%

BSD2
25 pkgs

2972 files

10.9%

Unknown
55 pkgs

2686 files

9.8%

X11mit
19 pkgs

1084 files

4.0%

kerberos
1 pkgs

652 files

X11mit
154 pkgs

16746 files

3.9%
None

117 pkgs
6280 files

37.5%

X11mit
107 pkgs
7592 files

45.3%

Unknown
79 pkgs

1562 files

9.3%

Other
22 pkgs
660 files

3.9%

Apachev1.1
2 pkgs

148 files
Apachev1.1

2 pkgs
148 files

100.0%

Apachev2
48 pkgs

14358 files

Apachev2
50 pkgs

15860 files

90.5%

Other
16 pkgs
207 files

1.3%

None
22 pkgs

1295 files

8.2%

Other
5 pkgs
10 files

GPL+ or Artistic
109 pkgs
3161 files

0.3%

None
103 pkgs
1602 files 50.7%

Unknown
97 pkgs
372 files

11.8%

SameAsPerl
54 pkgs

1177 files

37.2%

Fig. 3. License inclusion subgraphs of permissive licenses

problem. Our work is an extension to theirs, as we use similar data. The differ-
ence is that we focused on the relationships between licenses and not packages.

Stewart et.al [12] addressed the impact of licenses on software projects.
Alspaugh et. al [13] have analyzed the requirements that licensing imposes on
software. Scacchi et. al [5] have looked into the impact of licenses in the evolution
of FOSS software.

7 Conclusions

In this paper we extracted the relationship between the licenses of packages and
the licenses of the files are composed of in the Fedora Core 19 distribution. We
visualize this information using license inclusion graphs. These graphs show that
the different variants of the General Public License are more likely to include
other licenses, while licenses such as the Apache tend to contain files only under
the same license and they are better at stating the license of their files.

As future work, we would like to analyze the build systems of packages to
determine which files are actually part of the binaries. We would like to also

60 Y. Manabe, D.M. German, and K. Inoue

explore the licensing relationships between packages, and repeat this study in
other collections of FOSS.

Acknowledgements. This work is supported by Japan Society for the Pro-
motion of Science, Grant-in-Aid for Young Scientists (B) (No.24700029), Grant-
in-Aid for Scientic Research (S) Collecting, Analyzing, and Evaluating Software
Assets for Effective Reuse (No.25220003), and by an Osaka University Interna-
tional Collaboration Research Grant.

References

1. Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M., Kusumoto, S.: Ranking
significance of software components based on use relations. IEEE Trans. Softw.
Eng. 31, 213–225 (2005)

2. Foundation, F.S.: Various licenses and comments about them,
http://www.gnu.org/licenses/license-list.en.html

3. Rosen, L.: Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall (2004)

4. German, D.M., Hassan, A.E.: License integration patterns: Addressing license mis-
matches in component-based development. In: Proc. ICSE 2009, pp. 188–198 (2009)

5. Scacchi, W., Alspaugh, T.A.: Understanding the role of licenses and evolution in
open architecture software ecosystems. Journal of Systems and Software 85(7),
1479–1494 (2012)

6. Open Source Initiative: Open source licenses,
http://opensource.org/licenses/index.html

7. Black Duck Software: Black duck knowledge base,
http://www.blackducksoftware.com/products/knowledgebase

8. Callaway, T.: Fedora: Licensing guidelines (2011),
https://fedoraproject.org/wiki/Packaging:LicensingGuidelines?rd=

Packaging/LicensingGuidelines

9. Callaway, T.S.: Fedora: Software licenses (2013), https://fedoraproject.org/

wiki/Licensing:Main?rd=Licensing#SoftwareLicenses

10. German, D.M., Manabe, Y., Inoue, K.: A sentence-matching method for automatic
license identification of source code files. In: Proc. ASE 2010, pp. 437–446 (2010)

11. German, D.M., Di Penta, M., Davies, J.: Understanding and auditing the licensing
of open source software distributions. In: Proc. ICPC 2010, pp. 84–93 (2010)

12. Stewart, K.J., Ammeter, A.P., Maruping, L.M.: Impacts of license choice and or-
ganizational sponsorship on user interest and development activity in open source
software projects. Info. Sys. Research 17, 126–144 (2006)

13. Alspaugh, T., Asuncion, H., Scacchi, W.: Intellectual property rights requirements
for heterogeneously-licensed systems. In: Proc. RE 2009, pp. 24–33 (September
2009)

http://www.gnu.org/licenses/license-list.en.html
http://opensource.org/licenses/index.html
http://www.blackducksoftware.com/products/knowledgebase
https://fedoraproject.org/wiki/Packaging:LicensingGuidelines?rd=Packaging/LicensingGuidelines
https://fedoraproject.org/wiki/Packaging:LicensingGuidelines?rd=Packaging/LicensingGuidelines
https://fedoraproject.org/wiki/Licensing:Main?rd=Licensing#SoftwareLicenses
https://fedoraproject.org/wiki/Licensing:Main?rd=Licensing#SoftwareLicenses

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 61–69, 2014.
© IFIP International Federation for Information Processing 2014

Adapting SCRUM to the Italian Army:
Methods and (Open) Tools

Franco Raffaele Cotugno and Angelo Messina

Stato Maggiore dell’Esercito Italiano, Italy

Abstract. Many software-related technologies, including software development
methodologies, quality models, etc. have been developed due to the huge
software needs of the Department of Defense (DoD) of the United States.
Therefore, it is not surprising that the DoD is promoting open source software
and agile approaches into the development processes of the defense
contractors1. The quality of many open source product has been demonstrated
to be comparable to the close source ones and in many cases even higher and
the effectiveness of agile approaches has been demonstrated in many industrial
settings. Moreover, the availability of the source code makes open source
products attractive for obvious reasons (e.g., security, long term maintenance,
etc.). Following this trend, also the Italian Army has started using open source
software and promotes its usage into the development processes of its
contractors, also promoting agile approaches in many contexts focusing on the
SCRUM methodology. This paper provides an overview of the SCRUM
development process adopted by the Italian Army for the development of
software systems using open source technologies.

1 Introduction

Software systems are becoming larger and larger requiring an increasing amount of
resources in terms of effort and budget. In particular, in the military environment
where the reliability of systems is of paramount importance, software costs and the
length of the development cycles represent rising challenges. To reduce costs and
development cycles, Open Source Software (OSS) and Agile Methods (AMs) are
opportunities that can be investigated even is such environment.

Considering the development process, AMs have been demonstrated their ability in
delivering quality software on time focusing on the value from the point of view of the
customer [7, 8, 9]. For this reason, in many cases, AMs are able to satisfy the customer
needs and create a strong and trusted relationship with the development team [15]. In
particular, SCURM have been selected in many contexts for its focus on agile project
management [16].

Traditionally, OSS is characterized by informal development processes, unstable
teams, and different levels of quality [10, 11, 12], therefore adopting OSS may be
considered risky. However, in many cases, OSS development is supported by software

1 DoD Open Source Software (OSS) FAQ available at:
 http://dodcio.defense.gov/OpenSourceSoftwareFAQ.aspx

62 F.R. Cotugno and A. Messina

companies (both large and small) and OSS projects are no more interesting only to
enthusiasts and volunteers [6]. These aspects increase the interest in a business use of
OSS.

Software companies often use different popular models such as the Capability
Maturity Model (CMMI) [1] to assess the level of quality of their development
process. However, OSS projects can hardly adopt CMMI, because it is too complex,
requires extensive efforts to be used, and does not take into account the characteristics
of OSS. For these reasons simpler and more suitable models appeared in the last few
years such as the QualiPSo OMM [14], QualiPSo MOST [18], OSMM [2, 3], QSOS
[4], OpenBRR [5], etc. Such models focus on different aspects of the production:
QualiPSo OMM deals with the quality of the production process, while all the others
focus mainly on the quality of the final product. Such models can be used to evaluate
OSS and decide if such products can be used in different contexts.

The rest of the paper is organized as follows: Section 2 presents some related work;
Section 3 discusses how AMs and OSS can be used in the military environment;
finally, Section 4 draws the conclusions and presents future work.

2 Related Work

AMs and SCRUM, in particular, have been demonstrated to be very successful in
defense projects [17] helping the military to manage in a new way complex projects
that need to adapt quickly to continuously changing environments. AMs are used to
address such problems allowing developers to ship working versions of the needed
systems reducing the costs and delivering quickly.

During the last 10 years, several open source assessment methodologies have been
proposed. Most of them focus mainly on the assessment of the product and do not offer
enough metrics to obtain a detailed assessment of the quality of the development
process [13].

The first proposed assessment methodology is the Open Source Maturity Model
(OSMM) proposed by Cap Gemini [2]. It is the first attempt to standardize the usually
ad-hoc assessment approaches of open source projects. The methodology allows the
evaluation of 12 product related characteristics and 15 user related characteristics. This
way the authors of the methodology allowed a personalized assessment approach based
on specific user needs of the FLOSS product.

One year later Navica proposed its own assessment method also called the Open
Source Maturity Model (OSMM) [3]. This method is more compact than the one
proposed by Cap Gemini. Navica's method is more interesting for our research because
it contains some elements that allow a partial assessment of the development process.
The method requires the assessment of six project related characteristics. The
following four requires some information about the development process: support,
documentation, training, and professional services.

In 2004, the Qualification and Selection of Open Source Software (QSOS) [4]
method was proposed by a group of OSS developers, users, and enthusiasts. This
method has been released with an open source license, allowing an open adoption
without any restrictions. The methodology allows an iterative assessment approach.
During the first iteration, the number of tools to evaluate are restricted, during the

 Adapting SCRUM to the Italian Army: Methods and (Open) Tools 63

second iteration, their number is additionally limited and so on, until we reach the last
stage where we obtain the tool that scores best.

Open Business Readiness Rating (OpenBRR) [5] was specifically designed to allow
the assessment of OSS tools that are mature enough to be used by industry. The
method was proposed in 2005 and its authors reused many elements introduced in
previous OSS assessment methods. The OpenBRR method contains also a few
process-oriented elements such as: quality, security, support, documentation, adoption,
community, professionalism, and others.

QualiPSo OMM [14] and QualiPSo MOST [18, 19] have been proposed by the
QualiPSo consortium in 2009 as two complementary methodologies to assess both the
development process (OMM) and the product (MOST). QualiPSo OMM has been
designed to be compatible with CMMI allowing companies already using CMMI to
implement OMM in an easy way. Moreover, it focuses on different aspects of the
development process analyzing it from three points of view: users (consumers of OSS),
developers (producers of OSS), and system integrators. Based on such profiles, the
methodology provides customized sets of characteristics that require evaluation.
QualiPSo MOST has been designed in conjunction to the QualiPSo OMM
methodology but focusing on the assessment of the product quality. Most of the
assessment criteria defined in MOST can be automated, simplifying the assessment
process.

3 Assessing Quality through QualiPSo OMM and MOST

The idea and the structure of OMM and MOST are inspired by the CMMI even if they
have been designed specifically to be lightweight and focused on OSS development.

OMM defines three maturity levels (basic, intermediate, and advanced). Each level
includes a set of characteristics that need to be assessed. The characteristics are the
following:

1. Product Documentation (PDOC)

2. Popularity of the Software Product (REP)

3. Use of Established and Widespread Standards (STD)

4. Availability and Use of a (product) Roadmap (RDMP)

5. Quality of Test Plan (QTP)

6. Relationship between Stakeholders (Users, Developers, etc.) (STK)

7. Licenses (LCS)

8. Technical Environment (Tools, OS, Programming Language,
Development Environment) (ENV)

9. Number of Commits and Bug Reports (DFCT)

10. Maintainability and Stability (MST)

11. Contribution to FLOSS Product from SW Companies (CONT)

12. Results of Assessment of the Product by 3rd Party Companies (RASM)

64 F.R. Cotugno and A. Messina

OMM is organized in three levels. Each level includes the characteristics at the
lower levels.

The basic level includes:

• Product Documentation (PDOC)

• Use of Established and Widespread Standards (STD)

• Quality of Test Plan (QTP)

• Contribution to FLOSS Product from SW Companies (CONT)

• Licenses (LCS)

• Technical Environment (Tools, OS, Programming Language, Dev
Environment.) (ENV)

• Number of Commits and Bug Reports (DFCT)

• Maintainability and Stability (MST)

The intermediate level adds:

• Popularity of the Software Product (REP)

• Availability and Use of a (product) Roadmap (RDMP)

• Relationship between Stakeholders (Users, Developers, etc.) (STK)

• Results of Assessment of the Product by 3rd Party Companies (RASM)

The advanced level includes all the characteristics identified in the basic and
intermediate level and adds deepness requiring more details for each characteristic.

The model has been designed to be used in different industrial context from the
points of view of the users, the integrators, and the developers. Therefore, it can be
used in almost any situation in which OSS is needed [14].

As a complementary methodology, MOST provides the tools to access the quality of
the code of OSS. MOST have been designed with the same goals and methodologies of
OMM and defines a specific set of characteristics for the evaluation of open source
code. [TODO]

4 AMs and OSS in the Military Environment

AMs are designed to support changing requirements through the implementation of an
incremental development approach and the close interaction with the customer. In
these approaches, the customer becomes part of the development team allowing a
better understanding of the problem and a faster development of a system that is able to
satisfy user requirements. In the military environment, software systems are very
complex and applying AMs is a challenge. Among the available AMs, SCRUM seems
to fit better the environment due to its focus on project management with changing
requirements.

SCRUM divides the project activities into short iterations named sprints that are
able to produce a deployable (even if partial) system able to be fully tested by the

 Adapting SCRUM to the Italian Army: Methods and (Open) Tools 65

customer to provide fast feedback and fix the potential problems or requirements
misunderstandings.

A SCRUM team includes several actors: a Product Owner (PO), a SCRUM Master
(SM), and a Development Team (DT). To adopt SCRUM to develop software systems
through a close collaboration between the Italian Army and external contractors, the
SCRUM team should be organized in the following way:

• Product Owner: he provides the vision of the final product to the team. He
guides the development defining the requirements of the product and the
related priorities. Therefore, he is the main responsible for the success or
failure of the project. His availability to answer questions from the DT and the
SM has a significant impact on the development since he is the keeper of the
knowledge about the final product. For these reasons, he needs to be a
member of the Army with a wide knowledge about the system under
development and a clear vision on the expected results. Moreover, he should
be able to involve in the testing of the system the people that will use the final
system in real operations. Due to the complexity of the role and the wide
knowledge needed, the PO is supported by a specific Support Team that
includes people from the Army and people from the contractors with deep
knowledge about the systems under development and the adopted
technologies. The composition of such Support Team will change based on
the specific challenges of each sprint. The main role of this team is to help the
PO in the definition of the functional and non-functional requirements
(including security issues, compliance to standards, usability, performance,
etc.). The contribution of the Support Team is very important in particular at
the beginning of the project during the definition of the Product Backlog and
during the re-prioritization activities required in case of relevant changes in
the Backlog. Moreover, in specific conditions related to the technical
complexity of a sprint, the Army personnel of the Support Team could take
the role of PO just for the duration of the specific sprint. In this way, the PO
will be able to guide the development of a large and complex system that can
be hardly managed by a single person and require a wide set of skills and
knowledge at different levels of granularity. The PO participates actively in
the team in the development and in promoting team building activities in
conjunction with the SM.

• SCRUM Master: he is an expert in the usage of the SCRUM methodology
and has a central role in the SCRUM Team coaching the DT and helping in
the management of the Product Backlog. The SM helps the DT to address
problems in the usage and adaptation of the SCRUM methodology to the
specific context in which the team works. Moreover, he leads the continuous
improvement that is expected from any agile team. An additional duty of the
SM is to protect the DT from any external interferences and lead the team in
the removal of obstacles that may prevent the team to become more
productive. The SM is selected among the personnel of the IT department of
the Army. The SM and the PO have to collaborate closely and continuously to
clarify requirements and get feedback. In the Army implementation of
SCRUM, the SM has a stronger role focusing on supporting the team in
focusing on the requirements and priorities defined by the PO.

66 F.R. Cotugno and A. Messina

• Development Team: as any SCRUM development team, people belonging to
the team are together responsible for the development of the entire product
and there are no specialists focusing on limited areas such as design, testing,
development, etc. All the members of the team contribute to the entire
production. The DT is self-organized and decides without any external
constraints how to organize and execute the Sprint Backlog (the selected part
of the Product Backlog that has been identified to be executed in a sprint)
based on the priorities defined by the PO on the Product Backlog. The DT
usually includes between 4 and 10 people, all expert software developers. In
this case, the team includes people form the Army and the contractors, even if
the contribution of the contractors is predominant. In the pilot project, the
team includes 4 people from a contractor and 2 people from the Army, in
subsequent projects we expect to be able to replicate such unit to manage
more sprints in parallel.

The SCRUM methodology is not a one-size-fits-all approach in which all the details
of the process are pre-defined and the development team have to stick with it without
any modification. On the contrary, SCRUM defines a high-level approach and a state
of mind for the team promoting change management and flexibility in the work
organization aimed at satisfying the customer needs. As all the other AMs, SCRUM
defines values, principles, and practices focused on close collaboration, knowledge
sharing, fast feedback, tasks automation, etc.

The SCRUM development process starts from a vision of the PO. Such vision is a
wide and high-level definition of the problem to address that will be refined and
narrowed during the development through the Backlog Grooming. The Backlog
Grooming is an activity that takes place during the entire development process
focusing on sharpening the problem definition, pruning redundant and/or obsolete
requirements, and prioritizing the Backlog. Moreover, in this phase, the PO defines the
scenarios and the criteria used to test the (and accept) the user stories.

Ones defined the Product Backlog, during the Planning Meeting, the PO and the
customers/stakeholders define the detailed user stories assigning them a priority that
are used to organize the single sprints. During the sprint planning phase, the PO and
the DT agree on the objectives of the sprint. The DT decompose features in the
Backlog into detailed tasks. Such list of tasks becomes the Sprint Backlog that will be
implemented during the sprint execution producing the (incremental) shippable
product. At the end of each sprint, a sprint review takes place to verify the progress of
the project comparing it to the expectations. The results of the review are used to adapt
the Product Backlog modifying, removing, and adding requirements. This activity is
very important for the success of a project and involves all the member of the SCRUM
Team and the interested stakeholders. Additionally, other SCRUM Teams could join
the meeting if the project requires the collaboration of more teams. This activity is very
important to align the teams with the stakeholders and to manage the project properly
even if changes happen. The Product Backlog is dynamic, changing continuously
collecting all the requirements, issues, ideas, etc. and should not be considered in a
static way, it is designed to support the variability of the environment.

After the Sprint Review, there is the Sprint Retrospective in which the PO, the SM,
and the DT analyze together the sprint just finished to evaluate its effectiveness and to
identify problems and opportunities to improve.

 Adapting SCRUM to the Italian Army: Methods and (Open) Tools 67

In the specific context of the Army, the SCRUM Team should be organized in the
following way:

1. The PO defines the Product Backlog that, based on the specific objective of
the sprint, may include:

a. High-level views (e.g., Operational Views) describing the functional
properties from the operational point of view that can be easily
shared and discussed with the operational units.

b. A natural language description of the user stories of the items of the
Product Backlog

2. Based on the Backlog, the PO identify the proper people to include in the
Support Team. At this level, only candidate people are identified but no actual
assignment is performed because the assignment is performed at each sprint
based on the specific competences needed.

3. Once defined the Backlog, the DT defines the Sprint Backlog and the PO
assign specific people to the Support Team selecting them from the pool
identified at the beginning and satisfying the needs of the current sprint.

4. After these activities, the DT can start the execution of the sprint. Once the
development activities are completed (including all the functional and non-
functional testing), the current design documents can be generated
automatically through tools for code reverse engineering. Such documentation
will be used at the beginning of the subsequent sprint.

5. At the end of the execution, a review is performed involving the entire
SCRUM team and the stakeholders (mainly from the operational units) able to
assess the usability of the system in the real context.

6. At the end of the sprint, a retrospective takes place involving the PO, the SM,
and the DT. Such activity focuses on improving the effectiveness of the team
through process improvement strategies and evaluating new approaches.

In the context of the Army, testing has a very important role due to several
constraints:

• Testing at development level: testing activities performed by the
development team in the development environment and in a specific testing
environment with the same characteristics of the deployment environment.
Such activities are the traditional ones performed in any Agile team.

• Testing at operating unit level: testing activities performed by the operating
units in limited (but real) environments to verify the actual effectiveness of
the developed systems in training and real operating environments.

• Testing at certification level: testing activities performed to verify the
compliance of the developed systems to the national and international
(NATO) standards that are needed for authorizing the usage of the systems in
national and joint NATO operations.

68 F.R. Cotugno and A. Messina

5 Conclusions and Future Work

In this paper, we have presented an overview of the usage of QualiPSo OMM and
MOST for the evaluation of the quality of OSS and SCRUM for addressing the
development needs of the Italian Army. This is just an initial step for providing a
comprehensive analysis on how OSS and AMs can be used in such environment
reducing costs and increasing the effectiveness of the development teams.

References

1. Amoroso, E., Watson, J., Marietta, M., Weiss, J.: A process-oriented methodology for
assessing and improving software trustworthiness. In: 2nd ACM Conference on Computer
and Communications Security (1994)

2. Duijnhouwer, F.-W., Widdows, C.: Capgemini Expert Letter Open Source Maturity
Model, Capgemini (2003)

3. Goldman, R., Gabriel, R.P.: Innovation Happens Elsewhere - Open Source as Business
Strategy. Morgan Kaufmann, Boston (2005)

4. Atos Origin, Method for Qualification and Selection of Open Source Software (QSOS),
http://www.qsos.org

5. Wasserman, A., Pal, M., Chan, C.: Business Readiness Rating Project, BRR Whitepaper
(2005), http://www.openbrr.org/wiki/images/d/da/
BRR_whitepaper_2005RFC1.pdf

6. Dueñas, C.J., Parada, H.A., Cuadrado, G.F., Santillán, M., Ruiz, J.L.: Apache and Eclipse:
Comparing Open Source Project Incubators. IEEE Software 24(6) (November/December
2007)

7. Sillitti, A., Succi, G.: Requirements Engineering for Agile Methods. In: Aurum, A.,
Wohlin, C. (eds.) Engineering and Managing Software Requirements. Springer (2005)

8. Janes, A., Remencius, T., Sillitti, A., Succi, G.: Managing Changes in Requirements: an
Empirical Investigation. Journal of Software: Evolution and Process 25(12), 1273–1283
(2013)

9. Di Bella, E., Fronza, I., Phaphoom, N., Sillitti, A., Succi, G., Vlasenko, J.: Pair
Programming and Software Defects – a large, industrial case study. IEEE Transaction on
Software Engineering 39(7), 930–953 (2013)

10. Di Bella, E., Sillitti, A., Succi, G.: A multivariate classification of open source developers.
Information Sciences 221, 72–83 (2013)

11. Scotto, M., Sillitti, A., Succi, G.: Open Source Development Process: a Review,
International Journal of Software Engineering and Knowledge Engineering. World
Scientific 17(2), 231–248 (2007)

12. Jermakovics, A., Sillitti, A., Succi, G.: Exploring collaboration networks in open-source
projects. In: Petrinja, E., Succi, G., El Ioini, N., Sillitti, A. (eds.) OSS 2013. IFIP AICT,
vol. 404, pp. 97–108. Springer, Heidelberg (2013)

13. Petrinja, E., Sillitti, A., Succi, G.: Comparing OpenBRR, QSOS, and OMM Assessment
Models. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey, G.R., Noll, J.
(eds.) OSS 2010. IFIP AICT, vol. 319, pp. 224–238. Springer, Heidelberg (2010)

14. Petrinja, E., Nambakam, R., Sillitti, A.: Introducing the Open Maturity Model. In: 2nd
Emerging Trends in FLOSS Research and Development Workshop at ICSE 2009,
Vancouver, BC, Canada, May 18 (2009)

 Adapting SCRUM to the Italian Army: Methods and (Open) Tools 69

15. Sillitti, A., Ceschi, M., Russo, B., Succi, G.: Managing Uncertainty in Requirements: a
Survey in Plan-Based and Agile Companies. In: 11th IEEE International Software Metrics
Symposium (METRICS 2005), Como, Italy, September 19-22 (2005)

16. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press (2004)
17. Crowe, P., Cloutier, R.: Evolutionary Capabilities Developed and Fielded in Nine Months.

CrossTalk: The Journal of Defense Software Engineering 22(4), 15–17 (2009)
18. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: An investigation of the users’

perception of OSS quality. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M.,
Madey, G.R., Noll, J. (eds.) OSS 2010. IFIP AICT, vol. 319, pp. 15–28. Springer,
Heidelberg (2010)

19. Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: An empirical investigation of perceived
reliability of open source java programs. In: 27th Symposium on Applied Computing
(SAC, Riva del Garda, Italy (2012)

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 70–75, 2014.
© IFIP International Federation for Information Processing 2014

Applying the Submission Multiple Tier (SMT) Matrix
to Detect Impact on Developer Interest on Open Source

Project Survivability

Bee Bee Chua

University of Technology, Sydney

Abstract. There is a significant relationship between project activity and
developer interest on Open Source (OS) projects. Total project activity
submission count number can be an indicator for gauging developer interest.
The higher the project activity submission of a project is, the larger developer
interest in a project. My paper proposed that applying a Submission Multiple
Tier (SMT) matrix can detect the impact of developer interest on project
activity. Results showed more volume of OS projects with low project activity
than high. Activity submission results also showed that developers are more
likely to review than correct projects, with the first priority to find and fix bugs.
Further research is needed to determine the impact of project activity type on
developer motivation to contribute, participate and support OS projects.

1 Introduction

For any Open Source (OS) software to survive, appropriate OS infrastructure must be
in place. These include the viability of project activities increases, high quality codes
must produce, quality and qualifying peer developer networks expandable and OS
models adoption are strategies for building an effective infrastructure OS for projects.

Developer support and collaboration is vitally important for maintaining an OS
project’s survivability, especially if the project is new. Project activity is crucial to
survival. Making project activity viable is important as OS coordinators and sponsors
can monitor project activity performance, including growth, reptutation and status.

This paper introduces the Submission Multiple Tier (SMT) matrix, which is based
on a structured, hierachical tier for detecting submission pattern similarity over
multiple project activities. The aim of the SMT is to allow possible detection of
developer interest by activity type and project population. The SMT can assist OS
coordinators and sponsors by: detecting projects with low survival difficulty based on
the low submission counts from project activities; and identifying specific project
activity interests of OS developers by the high submission counts.

The SMT was constructed to provide a summary of a total project number on each
project acitvity by submission tier, so that OS spon sors and resource planning
coordinators can provide better OS infrastructure support (for instance, developing a
network strategy to increase developer interest on a particular project activity with
extremely high number of unfixed bugs.

 Applying the SMT Matrix to Detect Impact on Developer Interest 71

This paper is divided into five sections: section 2 discusses existing literature on
OS infrastructure to support survivability, particularly project activity and developer
interest; section 3 introduces the SMT and outlines the procedures for applying
the SMT on a Sourceforge.net dataset; section 4 presents results; and section 5
conclusions and future work.

2 Open Source Infrastructure: Project Activity and Developer
Interest

A number of studies have investigated OS variables for survival analysis, focusing on
programming languages, licences, developer interest, operating systems and end user
interest [1-10]. Studies [4-11] also used these variables to measure other project
performance outcomes, such as successability, popularity, efficiency and
effectiveness. They are essential variables for supporting OS infrastructure.

Good infrastructure is essential for OS project survival. The term ‘infrastructure’ is
defined as “an underlying base or foundation especially for an organization or
system” [11]. In this paper, infrastructure is classified as basic or advanced. Basic
infrastructure is essential components needed to develop and support OS software
(OSS), such as programming languages, licences, operating systems and developers,
whereas advanced infrastructure refers to activities positively or negative influencing
basic components of OS programs, projects and products. An example of an advanced
OS infrastructure is project activity status, which influences developer interest and
impacts project download. In addition to a high OSS adoption rate, project activity
and high developer interest are vital infrastructure components to enable project
survival.

Current OS literature discusses how project activity can be used to predict project
success and popularity [3,4,9,10]; however, there is minimal work analysing this
variable from a survivability perspective. My research showed non-surviving projects
were physically removed from an OS server, irrespective of project activity. This was
in contrast to the study by Samoladas [12] that did not emphasise zero project activity
for non-surviving projects, instead classifying project activity status as inactive. As a
result their analysis on non-surviving projects showed an absence of zero project
activity, which is a crucial variable to consider.

3 Methods

The following procedures were followed to analyse project activity submissions and
classify projects by survival status.

1. Sourceforge was chosen as it is the world’s largest repository of OS projects, with
over 100,000 projects and over a million registered users [13,14]. Sourceforge.net
data dump files for 2010 and 2012 were downloaded (“stats_project_all”). Each
file had 13 standard variables on download: project ID, number of developers,
number of submissions opened and closed on bugs, support, patch, artefact and
task. However only 10 standard variables were related to project activity and were
selected for data review, creating 9 columns for the Multiple Submission Multiple
Tier (SMT) Structure (Table 1).

72 B.B. Chua

Table 1. Submission Tier Matrix Structure

Variable
Type

Activity Description

Nominal Bugs opened, support opened,
patch opened, artefact opened, task
opened

Number of submission
opened

Nominal Bugs closed, support closed, patch
closed, artefact closed, task closed

Number of bugs opened

Nominal Submission Tier 1 to 6 Submission Tier 1 to 6

2. Data were cleaned to remove blank submissions or projects with zero bug
submissions opened, leaving 89,002 projects in 2010 and 89,916 in 2012. In 2010,
submissions closed totalled 73,016 and for 2012, 66,777. Each project had up to
five project activities (bug, support, patch, artefact and task). The project activity
submission ranges varied.

3. The projects were then classified as surviving or non-surviving using the SMT.
Project ID was used as the key identifier at both time points. If the same project
number was present in 2010 and 2012 then it confirmed the project had survived
(hosting) and had not been removed from the Sourceforge database. If a 2010
project ID had no corresponding 2012 project ID and zero bug submissions
opened (a value marked with ‘0’) then we confirmed the project was deleted, i.e.,
no longer hosting. By 2010, 435 non-surviving projects had been deleted and
archived in Sourceforge. These projects were examined further to determine the
relationship between developer size and project activity. Table 2 shows non-
surviving projects against project activity. Figure 1 shows effect of activity on
developer size of non-surviving projects.

Table 2. Non-surviving Projects Against Project
Activity

* Bug, support, artefact, patch, task.

No. of
Developers

Projects
with

Activity
Submissions

*

Projects
With No
Activity

Submissions
*

0 1 0
1 6 411
2 7 6
3 1 1
7 1 0

15 1 0

Fig. 1. Developer Size and Project
Activity

4. The project total was counted for each activity case for 2010 and 2012, based on
their submission number and per SMT tier in section 4.

 Applying the SMT Matrix to Detect Impact on Developer Interest 73

4 Results

Project Activities for Open Submissions Tiers

Table 3 illustrates the opened submissions pattern of multiple project activities,
showing open submission tiers, total project count for each tier, project activities for
2010 and 2012 and project activity performance in terms of change between 2010 and
2012. Each project activity cell shows the project total number. The highest project
population was bug submissions opened (26,453 projects in 2010 and 26,636 projects
in 2012). Submission tier 1 had the lowest submission count (1–10 submissions), with
bugs, support and patch being the three most active project activities in 2010 and
2012: bugs 26,453 (yr10) and 26,636 (yr12); support 17,053 (yr10) and 17,055
(yr12); patch 7402 (yr10) and 7112 (yr12). Projects in this tier could have a high
source code quality and, as a result, low active project activity submission by
developers for bugs, support, patch, artefact and task

Table 3. SMT Results for Open Submissions

Project Activities Closed Submission Tiers

Table 4 displays six closed submissions tiers, one total project for each tier and ten
other project activities for 2010 and 2012. The cells show total projects for each
project activity closed submission. Closed bug submissions were the most active
(19,258 closed in 2010 and 22,752 in 2012), with 1395 in 2010 and 1665 in 2012 for
artefact submissions closed, and 449 and 454 respectively in 2010 and 2012 for task
submission closed (see Table 4).

Table 4. SMT on Submissions Closed

 Submission Tier

 Bug
Submission

Opened 2010

 Bug
Submission

Opened 2012

 Support
Submission

Opened
2010

 Support
Submission

Opened 2012

 Patch
Submission

Opened 2010

 Patch
Submission

Opened
2012

 Artefact
Submission

Opened 2010

 Artefact
Submission

Opened 2012

 Task
Submission

Opened 2010

 Task
Submission

Opened 2012

Tier 1 1-10 26453 26636 17053 17055 7402 7112 7140 3049 1133 1335

Tier 2 11-100 6751 6719 5030 4983 4363 4636 4607 6156 1371 1338

Tier3 101-1000 1477 1495 1211 1205 1378 1413 1391 1813 1243 3771

Tier4 1001-10,000 128 132 99 105 167 174 168 344 374 372

Tier5 10,001-100,000 2 2 5 8 9 10 9 15 38 38
Total projects for each
project activity 34811 34984 23398 23356 13319 13345 13315 11377 4159 6854

 Submission
Tier

 Bug
Submission
Closed 2010

 Bug
Submission
Closed 2012

 Support
Submission
Closed 2010

 Support
Submission
Closed 2012

 Patch
Submission
Closed 2010

 Patch
Submission
Closed 2012

 Artefact
Submission
Closed 2010

 Artefact
Submission
Closed 2012

 Task
Submission
Closed 2010

 Task
Submission
Closed 2012

Tier 1 1-10 19258 22752 9558 10398 3766 3049 1395 1665 449 454

Tier 2 11-100 6165 6215 3934 4050 3592 6156 2239 2067 750 677

Tier3 101-1000 24476 1723 1158 1161 1646 1813 1680 1603 854 807
Tier4 1001-
10,000 171 177 135 138 264 344 432 288 366 1162
Tier5 10,001-
100,000,0 1 5 3 5 10 15 18 18 18 35
Tier 6 100,001-
100,0000 0 0 0 0 0 0 1 0 1 0
Total projects
for each project
activity 50071 30872 14788 15752 9278 11377 5765 5641 2438 3135

74 B.B. Chua

For tier 1, opened and closed submissions were similar and had the highest project
populations. There were more opened than closed tier 1 bug submissions, suggesting
developers were more interested in reporting bugs than correcting them. This could be
due to developers finding it easier to report than correct during review, as no solution
is required. The tier 2 project population ranged from 2000 to 6500 closed
submissions: 6165 projects in 2010 and 6215 projects in 2012 for closed bug
submissions; 3934 and 4050 in 2010 and 2012 respectively for closed support
submissions; 3592 and 6156 for closed patch submissions; 2239 and 2067 for closed
artefact submissions; and 750 projects in 2010 and 677 projects in 2012 for closed
task submissions.

5 Conclusions and Future Work

For the SMT matrix, three common survival patterns for project activity were found
from the two submission patterns: 1) projects survive with a minimum of one project
activity submission; 2) the most activity submissions – either open or closed – are bug
submissions; and 3) more submissions can positively influence project survival from
the support perspective. The submission patterns also revealed that many projects
have very low project activity submissions and that developers review more than
correct, motivated by project type rather than project activity. We plan to extend our
work by investigating project submission based on project activity to confirm
survivability to 5, 10 and 15 years. We will also validate the SMT on other OS
repositories.

References

1. Hars, A., Ou, S.: Working for free? – motivations of participating in open source projects.
In: Proceedings of the 34th Annual Hawaii International Conference on Systems Sciences
(2001)

2. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology 11(3), 309–346 (2002)

3. Crowston, K., Howison, J., Annabi, H.: Information systems success in free and open
source development: Theory and measures. Software Process and Practice 11(2), 123–148
(2006)

4. Midha, V., Palvia, P.: Factors affecting the success of open source software. The Journal
of Systems and Software 85(4), 895–905 (2012)

5. Chen, S.: Determinants of survival of open source software: An empirical study. Academy
of Information and Management Sciences Journal 13(2), 119–128 (2010)

6. Lee, H.W., Kim, S.T., Gupta, S.: Measuring open source software success. Journal of
Omega 37(2), 426–438 (2009)

7. Choi, N.J., Chengalur-Smith, S.: An exploratory study on the two new trends in open
source software: End-users and service. In: Proceedings of the 42nd Hawaii International
Conference on System Sciences (2009)

8. Wang, J.: Survival factors for free open source software projects: A multi-stage
perspective. European Management Journal 30(1), 352–371 (2012)

 Applying the SMT Matrix to Detect Impact on Developer Interest 75

9. Subramaniam, C., Sen, R., Nelson, M.L.: Determinants of open source software project
success: A longitudinal study. Journal of Decision Support Systems 2(46), 576–585 (2009)

10. Ghapanchi, A.H., Aurum, A.: Competency rallying in electronic markets: Implications for
open source project success. Journal of Electronic Markets 22(2), 11–17 (2012)

11. http://en.wikipedia.org/wiki/SourceForge
12. Samoladas, I., Angelis, L., Stamelos, I.: Survival duration on the duration of open source

projects. Journal of Software and Information Technology 52(9), 902–922 (2010)
13. Christley, S., Madey, G.: Analysis of Activity in the Open Source Software Development

Community. In: Proceedings of the 40th Hawaii International Conference on System
Sciences (2007)

14. http://www.sourceforge.net/

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 76–79, 2014.
© IFIP International Federation for Information Processing 2014

FOSS Service Management and Incidences

Susana Sánchez Ortiz and Alfredo Pérez Benitez

University of Informatics Sciences (UCI), Road to San Antonio de los Baños,
Km 2½, Torrens, Havana, Cuba

{ssanchez,apbenitez}@uci.cu

Abstract. The Free Open Source Software (FOSS) solutions have been
reaching a high demand, usage and global recognition, not only in the
development of applications for companies and institutions also in the
management of services and incidents. With the upswing of Information
Technology (IT), the development of tools that enable the reporting of problems
and incidents on any organization or company is necessary. Every day you need
more applications, software generally, that make easier the user’s actions. This
paper describes the need to use these tools and recount the development of a
web application that allows the management of reports and incidents from users
of Nova, the GNU/Linux Cuban distribution.

Keywords: FOSS, service management and incidences.

1 Introduction

The services of Information Technology (IT) are more and more complex, which
means that their management is most needed to remain efficient. In recent years IT
have begun to rely on technological tools and Service Level Agreements(SLAs),
which has allowed the development of a more efficient work, streamline their
processes and transactions and have information for decision-making in real time.

In order to improve support and management in the area of information have been
developed in the world the Systems and Service Management Incidents; technologies
that manage incidents and routine requests for new services. These systems provide a
set of interrelated components, which owe their existence to the needs of IT services
and the human factor that has been increasingly demanding quality management. In
Cuba, this subject has not been materialized on a large scale in all enterprises and
institutions. The University of Informatics Sciences (UCI) has not been exempt of this
situation, this affects their important change process, starring Free Open Source
Software (FOSS) solutions. Because the importance of the migration process and the
need to maintain with maximum efficiency the functioning of all the girded areas in
the process, it has become necessary to have tools to support it.

In Cuba has been developed the GNU/Linux distribution Nova oriented to novice
users who are facing a migration process from Microsoft Windows to GNU/Linux.
Once the operating system provides its services in the country, it is impossible that

 FOSS Service Management and Incidences 77

their developers give support to all the questions raised by the users, considering that
in many cases these concerns can be clarified or solved using new technologies.

In correspondence to the problem presented, the work will be focused on the
presentation of the NovaDesk web application, its features and functionalities.

2 Development

2.1 Technologies of Incidences and Services Management

In order to develop a system to manage the incidents that could present a user in its
work with Nova was developed an investigation about the management of services
and incidents and associated technologies.

The Office of Government Commerce in the United Kingdom [1] defines the
management of services as a set of specialized organizational capabilities which
provide value to customers in the form of services. The services provide value to
customers and facilitate achieve their objectives at less cost and less risk, because the
responsibility is assumed by the contracted company [1]. Some of the technologies of
services management and incidences are the Service Desk, Help Desk and Call
Center. The Call Center can be defined as a place where telephone communications
are concentrated in a company [2]. A Help Desk is a part of the technical support
group established by an organization to keep their computers running efficiently [3].

The Service Desk have been perceived traditionally as a group of specialists who
collect everything and who, hopefully, have the appropriate technical skills to answer
practically any questions or complaints. As is represented in Information Technology
Infrastructure Library (ITIL) [4], this discipline of Service Desk has evolved to the
point that can be executed with a high degree of efficacy [5]. Differs from a Call
Center or Help Desk in order that it have a larger scope and is more focused on the
customer, because it is responsible to facilitate the integration of business processes
on IT infrastructure [5]. One of the most important processes developed by the
Service Desk is the management of incidents. For this reason the Service Desk should
be supported by Help Desk technology that performs this type of management by
excellence.

2.2 Development of NovaDesk

After completed the study of the technologies discussed above and considering that
ITIL proposes the use of the Service Desk was decided that this would be the
technology to be used. It was then performed an investigation of the open source tools
that allow the services management and incidences. It was presented the problem of
the low existence of open source applications based on this technology. So the system
was initially developed in the Help Desk OneOrZero (v1.8). But the base technology
was changed due to several setbacks among which were that the last version of this
system (v2.5.1) did not allow it to be used freely.

Due to the amount of skills and to be containers of features that make possible the
implementation of the processes and be able to satisfy greatly shortcomings identified

78 S.S. Ortiz and A.P. Benitez

in OOZ three options were selected: IRM Information Resource Manager, GLPI and
ExoPHPDesk. It was made a comparison and concludes that the most suited to the
needs expressed was GLPI.

GLPI is the Information Resource-Manager with an additional Administration-
Interface. It has enhanced functions to make the daily life for the administrators
easier, like a job-tracking-system with mail-notification and methods to build a
database with basic information about your network-topology. GLPI is under the GPL
license. The principal functionalities of the application are the precise inventory of all
the technical resources and management and the history of the maintenance actions
and the bound procedures [6].

GLPI has a group of characteristics [6] among which are: multi-entities and multi-
users management; multiple authentication system (local, LDAP, AD) and multiple
servers; permissions and profiles system; complex search module; export system in
PDF, CSV, SLK, PNG and SVG; management of problems; tracking requests opened
using web interface or email; SLA with escalation (customizable by entity);
Assignment of interventions demands to the technicians; statistics reports by month,
year, total in PNG, SVG or CSV; management of a basic system of knowledge
hierarchical. Furthermore, this system has a large number of advantages among which
include: reducing costs, optimizing resources, rigorous management of licenses, high
quality, satisfying usability and security.

2.3 Functionalities of NovaDesk

Besides the features of GLPI, NovaDesk has a group of features among which are:
chat room for technicians, which allows exchanging problems and solutions between
them; email notification of monitoring incidents; improved attention through user’s
chat; edition of chat conversations that provide solutions for uploading to the
knowledge base; statistical monitoring of time spent in chat; management reporting
assignment; account registration, introducing obligatory and optional fields for the
user; password recovery for registered users; user validation; display data from the
hardware which users are working through a query of the OCS inventory database and
management of the fields of incidence, allowing to adapt to the infrastructure of the
organization.

NovaDesk also has an expert system that allows the management of its knowledge
base. This system has several functions within which are: manage rules and questions
of expert system; manage and identify the category of the problems; fill the
knowledge base; identify problems; show answers and solutions of problems; send the
solutions of problems by email and in the case in which the expert system does not
identify the problem proceed to register as a new incident.

After implemented the expert system has been developed an analysis of their
behavior that consisted of verification, validation and evaluation. This process allow
to check that the behavior of the expert system is similar to the behavior of a human
expert and because of this, the expert system can diagnose the problems presented by
users in their work with Nova at the same way that would be performed by a human
expert.

 FOSS Service Management and Incidences 79

2.4 Importance of Services Management and Incidences with NovaDesk

There are a large number of issue tracking system and bug tracking system like
Bugzilla, Jira, Redmine, Mantis, WebIssues. When comparing NovaDesk with these
tools, it demonstrates that all are at the same level.

The development of NovaDesk has allowed the management of incidents presented
by the users to interact with Nova. It has enabled this process more pleasant and
accessible to the user, because it can clarify their doubts in different ways, either
using the chat, the expert system or recording a new incident. It is also a tool that has
been customized for this function and adapts to all companies and Cuban institutions
that wish to face a process of migration to free and open source software. NovaDesk
also uses the Apport [7] service of the operating system and enables automatic report
generation with the information provided, classifying this information on the category
of the report and automatically assigning this incident to the group of developers of
Nova.

3 Conclusions

NovaDesk provides great benefits to users of Nova, because it enables them to make
reports related to deficiencies and disagreements. The purpose of this tool has been to
optimize the system functionalities based on the registered incidents and give
immediate response to the users concerns. The added features and the change of OOZ
by GLPI are the basis for achieving the maximum expression of the processes
proposed in ITIL, the implementation of a future Service Desk. The expert system
constitutes a way for users to be able to solve the most common problems that can
presented without the dependency of a human expert.

References

1. OGC ITIL v3- Estrategia del servicio. 1a publicación. Reino Unido: TSO (The Stationery
Office). ISBN: 978 011 331158 3 (2009)

2. Babylon Team. Definición de Call Center, http://diccionario.babylon.com/
3. mmujica. Tecnología de Información: Help Desk,

http://mmujica.wordpress.com/2008/10/09/help-desk
4. IT Management Fundamentals - ITIL - What is ITIL? (2013),

http://itil.osiatis.es/ITIL_course/it_service_management/
it_management_fundamentals/what_is_itil/what_is_itil.php

5. Panorama IT. Service Desk,
http://www.panoramait.com/ItileISO20000_ServiceDesk.aspx

6. GLPI - Gestionnaire libre de parc informatique (2013),
http://www.glpi-project.org/spip.php?article53

7. Apport - Ubuntu Wiki (2014), https://wiki.ubuntu.com/Apport

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 80–82, 2014.
© IFIP International Federation for Information Processing 2014

Open-Source Software Entrepreneurial
Business Modelling

Jose Teixeira1 and Joni Salminen2

1 University of Turku (UTU), Finland
Turku Centre for Computer Science (TUCS), Finland

jose.teixeira@utu.fi
http://www.jteixeira.eu

2 Turku School of Economics (TSE), Finland
joni.salminen@tse.fi

Abstract. This poster aims to facilitate business planning of bootstrapping en-
trepreneurs who are developing a high-tech business by open-source approach.
It draws on scholarly works on business modelling and open-source software to
provide a practical tool for entrepreneurs establishing a business by open-source
approach. Built on top of established business modelling frameworks, the
Open-Source Software Entrepreneurial Business Modelling (OSS_EBM) can be
a useful strategic management and entrepreneurial tool. It enables strategists
and entrepreneurs to describe, design, challenge, invent, brainstorm, pivot, ana-
lyze and improve upon open-source business models.

1 Introduction

The open-source software community has already established itself as a valuable
source of innovation [1–3]. However, how to make money with open-source software
remains an interesting question intriguing both researchers and practitioners [4–6].
This paper draws on research on business modelling [7–9] and open-source software
[6], [10–14] to provide a practical tool for bootstrapping entrepreneurs developing a
high-tech business by open-source approach. Built on top of other previously
established business modelling frameworks [8], [9], the Open-Source Software
Entrepreneurial Business Modelling (OSS_EBM) is a conceptual tool that aims to be
useful in entrepreneurial planning and strategic management of open source ventures.
Specifically tailored for the high-tech software business, the OSS_EBM framework
enables high-tech strategists and entrepreneurs to describe, design, challenge, invent,
brainstorm, pivot, analyze and improve open-source business models. This poster
targets mostly practitioners interested in setting up a business with the help of open-
source technology. Our earlier work reveals there is a need for better tools of business
planning among open source ventures [15].

 Open-Source Software Entrepreneurial Business Modelling 81

2 Methods

The method of OSS_EBM is to turn earlier scholarly works to practice in the format
of a visual canvas. Exploiting the success of the Business Model Canvas [8], the
popular business modelling framework was customized for the specificities of the
high-tech software business and complemented with “platform thinking” and
ecosystem features from the VISOR framework [9]. Moreover, the fusion of the two
previously mentioned business modelling frameworks was complemented with open-
source research knowledge on software licensing [12–13] and business models [4–6].
The OSS_EBM framework is thereby a simple multi-disciplinary combination of
research in business models and open-source software, turned into a visual canvas in
the purpose of guiding practitioners in setting up an open-source based business.

We are currently in this process of testing how the tool can best be applied by
entrepreneurs. Earlier versions of the OSS_EBM framework were introduced in an e-
commerce university course targeting both master and doctoral students. Moreover,
this framework was presented at two events of early-stage startup business incubators.
Four workshops and free consultation were conducted with startup teams interested in
developing a software business by open-source approach. Feedback was collected
informally from bootstrap entrepreneurs, serial entrepreneurs and other personnel of
the incubators; leading to some changes on the OSS_EBM framework till date.
Modifying the tool further is currently underway.

3 Finding, Implications and Future Work

So far, practitioners’ impressions on the relevance of the OSS_EBM framework vary
widely. Most recognized the value of this framework, for being specifically tailored
for the high-tech software business; however, most users of the OSS_EBM
framework still report difficulties in understanding how their business ideas can
generate monetary results with open-source software. Even if the framework does not
help all its users in developing a business by open-source approach, all users claimed
to have learned to a large extent about open-source software after using the
framework. We wish then that the OSS_EBM framework will continue developing
while helping high-tech entrepreneurs develop, or at least consider developing,
businesses by open-source approach. In particular, more thorough action research
studies are on the way; guiding and observing focal startups in the use of this tool.
Our ultimate goal is to offer technology-minded founders a useful tool for managing
the wide selection of business model components, including revenue models, and for
crafting the right combination in their particular case.

References

[1] Henkel, J.: Selective revealing in open innovation processes: The case of embedded
Linux. Research Policy 35(7), 953–969 (2006)

[2] Lerner, J., Tirole, J.: The open source movement: Key research questions. European Eco-
nomic Review 45(4), 819–826 (2001)

82 J. Teixeira and J. Salminen

[3] Weber, S.: The success of open source, vol. 368. Cambridge University Press (2004)
[4] West, J., Gallagher, S.: Challenges of open innovation: the paradox of firm investment in

open source software. RD Management 36(3), 319–331 (2006)
[5] Hecker, F.: Setting up shop: the business of Open-Source software. IEEE Software 16(1),

45–51 (1999)
[6] Wasserman, T.: Building a Business on Open Source Software (2009),

http://works.bepress.com/tony_wasserman/3/ (accessed November 14,
2013)

[7] Osterwalder, A., Pigneur, Y., Tucci, C.L.: Clarifying business models: Origins, present,
and future of the concept. Communications of Association for Information Sys-
tems 16(1), 1–25 (2005)

[8] Osterwalder, A., Pigneur, Y.: Business Model Generation: A Handbook for Visionaries,
Game Changers, and Challengers. Wiley (2010)

[9] Sawy, O.A.E., Pereira, F.: Business Modelling in the Dynamic Digital Space: An Ecosys-
tem Approach. Springer (2013)

[10] Aksulu, A., Wade, M.: A comprehensive review and synthesis of open source research.
Journal of Association for Information Systems 11(11), 576–656 (2010)

[11] Crowston, K., Wei, K., Howison, J., Wiggins, A.: Free/Libre open-source software de-
velopment: What we know and what we do not know. ACM Computing Surveys
CSUR 44(2), 7 (2012)

[12] Lindman, J., Rossi, M., Paajanen, A.: Matching open source software licenses with corre-
sponding business models. IEEE Software 28(4), 31–35 (2011)

[13] Lindman, J.: Not Accidental Revolutionaries: Essays on Open Source Software Produc-
tion and Organizational Change. Aalto University, School of Economics, Department of
Information and Service Economy (2011)

[14] Salminen, J., Teixeira, J.: Fool’s Gold? Developer Dilemmas in a Closed Mobile Appli-
cation Market Platform. In: Järveläinen, J., Li, H., Tuikka, A.-M., Kuusela, T. (eds.)
ICEC. LNBIP, vol. 155, pp. 121–132. Springer, Heidelberg (2013)

[15] Teixeira, J., Salminen, J.: Open-Source as Enabler of Entrepreneurship Ambitions
Among Engineering Students – A Study Involving 20 Finnish Startups. In: Proceedings
of the International Conference on Engineering Education 2012, Research reports 38,
pp. 623–629. Turku University of Applied Sciences (2012)

Towards Understanding of Structural Attributes

of Web APIs Using Metrics Based on API Call
Responses

Andrea Janes, Tadas Remencius, Alberto Sillitti, and Giancarlo Succi

Free University of Bozen-Bolzano, Bolzano, Italy
{andrea.janes,tadas.remencius,alberto.sillitti,giancarlo.succi}@unibz.it

Abstract. The latest trend across different industries is to move to-
wards (open) web APIs. Creating a successful API, however, is not easy.
A lot depends on consumers and their interest and willingness to work
with the exposed interface. Structural quality, learning difficulty, design
consistency, and backwards compatibility are some of the important fac-
tors in this process. The question, however, is how one can measure and
track such attributes. This paper presents the beginnings of a measure-
ment framework for web APIs that is based on the information readily
available both to API providers and API consumers - API call responses.
In particular, we analyze the tree-based hierarchical structure of JSON
and XML data returned from API calls. We propose a set of easy-to-
compute metrics as a starting point and describe sample usage scenarios.
These metrics are illustrated by examples from some of the popular open
web APIs.

1 Introduction

More and more businesses are taking advantage of the so-called API Economy
every day. Powered by the (open) web APIs, this new way of doing business [1]
offers a number of exciting opportunities [2], such as getting additional value of
your company’s business assets and fostering innovation from third-parties [3] -
all at a very low cost1.

The number of available web APIs has been increasing in a rapid manner.
For example, the registry of open web APIs at programmableweb.com [4] shows
close to exponential growth rate (Figure 1).

In principle, a web API can be implemented both as a proprietary and as
an open-source software application, yet, conceptually, it represents a middle-
ground between these two models. The code of the API or at least the source of
the data/services it exposes is typically hidden from the API consumers, giving
protection to the API provider and maintaining its ownership of the valuable
business assets. The exposed API interface, on the other hand, becomes the open

1 Compared to normal effort and investment needed to enact new business initiatives,
such as development of new products/features or starting marketing campaigns for
reaching new markets.

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 83–92, 2014.
c© IFIP International Federation for Information Processing 2014

84 A. Janes et al.

Fig. 1. Open web API growth rate, as extracted from programmableweb.com [4]

pseudo-code that is generally available [1] to third-parties to use and extend as
they please. For example, consumers can combine APIs from different providers
to offer completely new products with very little effort required. It’s a model
that follows a win-win approach, enabling both providers and consumers to get
benefits from the exposed API while maintaining a certain degree of separation
and independence from each other. Success of one side means greater chances of
success for the other. This makes the risk of one of the parties abusing the work
of the other much lower.

As one could expect, however, the API Economy comes with its own set of
challenges and difficulties [2], [5]. One of those is how to create a successful API.
This includes being able to attract API consumers and providing the right level
of help and support so that they remain satisfied. Bad interface design can make
the API very difficult to learn and to use, thereby hindering its adoption. Failing
to maintain backwards compatibility or introducing breaking changes can not
only make existing consumers abandon the API but can also prevent arrival of
new ones, because of the damage to the reputation of the provider.

From the technical (development) side, implementation of web APIs is not
much different from implementation of other type of software solutions. In fact,
because the code of the API is a black-box to consumers, the way how it is
actually implemented is not that important - what matters is that it works
according to current expectations.

The API interface, on the other hand, becomes the visible meta code that re-
ally matters. Its structure has direct impact on API complexity, maintainability
(i.e., providing backwards-compatibility) and easiness to learn and use. Unfor-
tunately, there are yet no established metrics that would allow to measure and
understand the APIs based on their exposed interface. Our work is aimed to
facilitate progress in this direction.

In the following sections, we describe a set of relatively simple metrics that
could be used as a starting point in API analysis. While it is still too early to
say how beneficial these metrics could be in practice, one can already get a sense

Towards Understanding of Structural Attributes of Web APIs 85

of their potential applicability to different situations. The examples provided in
the paper come from our analysis of some of the popular open web APIs2.

1.1 Web APIs

The term web API can be somewhat confusing to the old-school programmers
who are used to the original notion of the API (i.e., as a library of functions,
methods, and/or classes written for a specific programming language). In the
context of the API Economy this term becomes more of a meta concept. The
part that stays the same is that the API is still a collection of functionalities.
However, it is no longer tied to a specific programming language and its purpose
is to expose business assets as opposed to facilitation of reuse of the existing
code. Here are the definitions that we use:

Definition 1 (API Economy). An economy in which companies expose their
(internal) business assets or services in the form of (web) APIs to third parties
with the goal of unlocking additional business value.

Definition 2 (Web API). A software interface that exposes certain business
assets to other parties (systems and/or people) over the web.

Definition 3 (API Call). An HTTP request to the web API and a correspond-
ing response.

Web APIs can generally be executed using a web browser and their output
typically is in a human-readable form. In particular, REST [6] and REST-like3

APIs that use XML or JSON format are dominating the market (Table 1).

Table 1. Most used protocols and response formats4

Format APIs % Protocol APIs %

XML or JSON 8882 81.08% REST-like 7771 70.94%

XML 6047 55.20% SOAP 2135 19.49%

JSON 5176 47.25% not specified 1086 9.91%

XML and JSON 2341 21.37% JavaScript 594 5.42%

not specified 1843 16.82%

Total APIs: 10955

2 Based on the list of popular APIs from programmableweb.com [4],
http://www.programmableweb.com/apis/directory/1?sort=mashups

3 Following loose adherence to REST.
4 Based on data extracted from programmableweb.com [4]

http://www.programmableweb.com/apis/directory/1?sort=mashups

86 A. Janes et al.

1.2 JSON and XML Based Responses

JSON is a data format that has been gaining a lot of popularity in recent years.
One of the main reasons for its quick spread is that it is very easy to transform
data from an XML structure to a JSON one and visa-versa. As a result, a number
of web APIs support both output formats (Table 1).

JSON and XML enable representation of hierarchical semi-structured data.
As such, every response to a request could be represented as a tree. An API as
whole could then be seen as a tree composed of all call trees. This is the basis
of our approach to the analysis of the API structure.

1.3 Our Approach

Our current strategy is to focus solely on the response part of API calls. The
structure of call requests is generally much simpler and shorter and, therefore,
has less impact on the resulting API. That said, however, we do have plans for
incorporating request analysis in the future.

We also consider only the structure of the response and not the actual values
contained within. Analyzing actual data could have its uses, in particular when
it comes to testing, but again, we felt that it was important to focus on the
structural aspects of the APIs first. This has a side benefit, as it means that
data does not need to be present during the analysis, eliminating information
security and privacy concerns.

The results of our ongoing research can be followed and freely accessed at
our website [7]. We provide an open web API implementing analysis and metric
computation [8,9], as well as a web GUI interface that is built on top of that
API. We encourage any interested readers to visit our site and contribute with
feedback, ideas, and suggestions.

2 Measurement Framework

Our analysis of API structure is based on three directions: (1) computation of
tree-based metrics, (2) computation of node-name-based (semantic) metrics, and
(3) visualization of APIs and API calls.

2.1 Objectives

It is difficult to predict all possible uses for the metrics in advance. Nevertheless,
we have several general objectives that serve as our guideline:

– Evaluate how difficult it is to learn and/or use the given API.
– Understand what the problems in the current design of the API are.
– Evaluate API consistency and backwards-compatibility.
– Understand how one API differs from another and what the impact of those

differences is.

Towards Understanding of Structural Attributes of Web APIs 87

2.2 Metrics

As described in the previous section, at the moment we use only the structure
of call responses as our analysis target. As such, when we analyze an API we
include only those calls that have output in the form of XML or JSON. We also
consider only the typical responses to calls, disregarding special cases, like errors
and exceptions. The latter typically have a very different structure from normal
responses and their inclusion into analysis is left for future research.

We do consider different call responses based on variations in request param-
eters, but only when there is a structural difference present (e.g., when different
request parameters result in different type of data returned).

It is common for responses to contain sets of elements of the same type. The
same request might result in a different number of items returned depending
on the context (e.g., the user who makes the request, current amount of data,
etc.). From the structural point of view we do not care how many items are
returned as long as they all are of the same type. For this reason, every request
is first sanitized by merging sibling nodes that have exactly the same structure
(see Figures 2 and 3). This means that no matter the amount of actual data
returned, the resulting response representation stays the same.

Fig. 2. JSON response and its visualization as a tree (black rectangles represent meta
nodes). API: PayPal, API call: GET
https://api.sandbox.paypal.com/v1/payments/capture/8F148933LY9388354

2.3 Basic Tree Metrics

Every tree can be characterized by some simple metrics that reflect on its di-
mensions and/or shape.

One simple way to look at the size of a tree is to count the number-of-nodes
(structural elements) it contains.

A related metric is the number-of-unique-nodes. Unique in this context means
having a different node name from those that were counted before. This measure
shows the richness of structure in terms of node variety. Used in conjunction
with normal node count (e.g., as a ratio) it can be employed to identify the

https://api.sandbox.paypal.com/v1/payments/capture/8F148933LY9388354

88 A. Janes et al.

Fig. 3. Visualization of the call tree after merging matching subtrees (left), displayed
with some of the call metrics (right). API: PayPal, API call: GET
https://api.sandbox.paypal.com/v1/payments/capture/8F148933LY9388354

presence of dominant node names, which might be an indication of duplicated
values or overloaded naming (e.g., semantically different data parts given the
same names).

Another way of looking at the size of a tree is to consider its node topology.
We use three metrics for that purpose: tree-depth, tree-breadth, and number-of-
children-per-node.

Tree-depth is the length of the path from the root of the tree to its furthest
leaf.

Tree-breadth is the maximum number of nodes on one level of the tree. The
level is the distance of a node from the root (i.e., the root node is at level 0, its
child nodes at level 1, and so on).

When depicted visually, depth represents the height of the tree shape and
breadth - the width.

The last metric we use is the number-of-children-per-node. It is computed as
an average, though minimum and maximum values per tree might also offer
valuable insights. This metric shows how much nodes tend to branch.

2.4 API Metrics

We employ two ways of computing API-wide metrics. The first one is based
on the aggregation of metrics computed for each API call. This usually means
computing average, minimum, and maximum values.

The second approach is to combine all call trees into one big API tree (see
Figure 4 for an example of an API tree visualization) and compute the metrics
defined in the previous subsection. This is performed in two steps:

1. We introduce a virtual root node and add all call trees as child nodes.
2. We merge sibling nodes that have the same structure. This way two or more

calls might get combined into one subtree.

The merging step has two parameters that can be adjusted based on the
desired effect. The first one determines whether to do the merge when a single

https://api.sandbox.paypal.com/v1/payments/capture/8F148933LY9388354

Towards Understanding of Structural Attributes of Web APIs 89

Fig. 4. Visualization of the API trees: left - Twitter API, right - Bing Maps API

element is compared to a list of elements of the same type as that element. Our
default strategy is to execute the merge. This is because a single node can be
seen as a list containing just one element (that node). In the situations when
the multiplicity of nodes (i.e., one vs. many relationship) is considered to be
important, such nodes can be left separate.

The second parameter is the merge factor. By default, we do the merge only
when the structure of siblings matches exactly. However, this criteria can be
relaxed using the similarity measure (described later in the paper). The motiva-
tion for merging similar but not exactly the same subtrees comes from the fact
that some APIs have optional fields that are only returned if the appropriate
values are present or if a specific parameter was added to the request.

2.5 Node-Name-Based (Semantic) Analysis

A different approach to analyzing API structure is to focus on the actual names
of the nodes. These names are normally not given at random and represent
semantics of the structure.

The simplest set of metrics of this type is the count-of-each-named-node. It can
be computed for individual calls and for the whole API. The most frequent and
the least frequent names are usually of most interest. Outlier values, in terms
of name frequency, might indicate bad design or names that require special
attention in the help manual or in the API reference.

A more advanced form of analysis is to consider which node names go together
and how often. For example, one can count the occurrences of different node
pairings when they appear as siblings (nodes that have the same parent node).

2.6 Similarity-Based Metrics

A known problem in the analysis of tree-based data is how to compare two trees.
A common way of computing the similarity between trees is to use the so-called
edit-based distance [10]. It can be expressed as the minimum number of edit
operations required in order to convert one tree to the other.

Such similarity measure can also be used for comparing API responses, but
it has one major disadvantage, besides being complex and computationally in-
tensive. It considers the number of required edits but does not consider their

90 A. Janes et al.

location (does not account for the significance of the hierarchy). In the case of
the API response structure, we feel that the differences on the higher level of
the tree (closer to the root) should have more impact. At the same time, we do
not need a measure with the perfect precision. It is enough that we can tell ex-
actly when two trees are the same, and to express their similarity in a somewhat
intuitive manner in other cases. For this purpose we have devised the following
similarity metric.

We consider that the similarity of two trees can be described by similarities
among their subtrees, where each subtree has the same impact, independently
from its size. So, if there are 5 subtrees across both trees, the impact of each
would be 20%. However, we also want to account for the names of the root
nodes, otherwise two trees that have the same root names but totally different
subtrees would have a similarity of 0. There are different possibilities here in
terms of how much weight we could give to the matching of such roots. It all
depends on the point of view. It could be a fixed ratio, like 33% or 50%, but
that would set the fixed minimum value for trees with matching roots. Therefore
we feel that a weight related to the impact of one subtree is better fitting. At
this point we simply use the weight of 1.0 - the same impact as that of a single
subtree. When the root names do not match the trees are considered not similar
and get the score of 0. The exception to this rule are the unnamed nodes from
JSON - elements and lists ({} and []) - they are counted as matching but are
not considered to impact similarity by themselves (impact weight of 0).

The detailed steps to compute the similarity are shown below:

1. Check if the names of the roots match or if both are meta nodes. If not, the
similarity is 0. Otherwise proceed to the analysis of subtrees (step 2).

2. Take the tree that has fewer subtrees (TS; LTS - the number of subtrees of
TS). For each subtree i (i = 1, ..., LTS) of TS compute the similarity with
subtrees of the other tree (TL; LTL - the number of subtrees of TL). Memorize
the highest similarity Si (take the first one if multiple similarities match;
stop the checks if a similarity of 1.0 - an exact match - is found) and remove
the corresponding subtree of the tree TL from further computations, unless
no similar subtrees are found (when maximum similarity Si was 0). In the
latter case just memorize the value (0) and proceed to the next subtree. Once
all subtrees from TS are processed, combine the memorized impacts (step 3).

3. If the names of the roots matched, compute the final similarity score thusly:

S =

⎛
⎝1 + 2 ·

LTS∑
i=0

Si

⎞
⎠÷ (1 + LTS + LTL) . (1)

Otherwise (in the case of meta nodes), the roots are considered to have no
impact:

S =

⎛
⎝2 ·

LTS∑
i=0

Si

⎞
⎠÷ (LTS + LTL) . (2)

Towards Understanding of Structural Attributes of Web APIs 91

The resulting value of the similarity ranges from 0.0 (not similar) to 1.0 (exactly
the same).

Besides using this metric directly to compare two API calls and as a criteria
for merging sibling nodes (as described in the previous sections), we also use it
to build the API similarity matrix (see Figure 5 for an example).

Fig. 5. Color-coded similarity matrices for the Twillio (left) and Wikipedia (right)
APIs. Colors have the following mapping to the similarity scores: red - 0 (not at all
similar), yellow - (0.0-0.5] (somewhat similar), green - (0.5, 1.0] (very similar)

API similarity matrix is the matrix containing similarities between every
two calls of the API. Such matrix can be used to determine which calls could
be grouped together (e.g., in the API manual, for better comprehension) or to
verify if existing groupings are consistent.

Table 2. Examples of API similarity scores computed on different APIs

API Number of Calls Similarity Score

PayPal 19 0.2966

Twillio 94 0.2263

Twitter 78 0.1104

NASA 9 0.3723

Wikipedia 154 0.1726

BingMaps 24 0.9041

Salesforce 26 0.0644

We call the average of all similarities from the matrix, computed excluding
self-similarities (i.e., a call compared to itself), the similarity score of the API.
It represents the general consistency of the response structure within that API
(see Table 2 for examples).

The similarity metric can also be used to analyze version evolution and the
amount of structural changes (impact on backwards-compatibility) for an API
call. It can also be applied for comparison of two different APIs (Figure 3).

92 A. Janes et al.

Table 3. Examples of similarity scores computed between pairs of APIs

PayPal Twitter NASA Twillio Wikipedia Salesforce

PayPal 0.2966 0.0145 0 0.0003 0 0.0223

Twitter 0.0145 0.1104 0.0035 0.0033 0.004 0.0102

3 Conclusion

Although the metrics presented here have been tested on a set of open web APIs
and appear to highlight certain differences in the call response structure, their
practical value has yet to be properly evaluated.

Nevertheless, we hope that this paper will give ideas and motivation to other
researchers and practitioners, and help in establishing a deeper body of knowl-
edge regarding web APIs, their design, and their evolution throughout the API
lifecycle.

References

1. Gat, I., Remencius, T., Sillitti, A., Succi, G., Vlasenko, J.: API Economy: Playing
the Devil’s Advocate. Cutter IT Journal 26(9), 6–11 (2013)

2. Gat, I., Succi, G.: A Survey of the API Economy. Cutter Consortium Agile Product
& Project Management Executive Update 14(6) (2013),
http://www.cutter.com/content-and-analysis/resource-centers/

agile-project-management/sample-our-research/apmu1306.html

3. Clark, J., Clarke, C., De Panfilis, S., Granatella, G., Predonzani, P., Sillitti, A.,
Succi, G., Vernazza, T.: Selecting components in large cots repositories. Journal of
Systems and Software 73(2), 323–331 (2004)

4. programmableweb.com, http://www.programmableweb.com/
5. Remencius, T., Succi, G.: Tailoring ITIL for the Management of APIs. Cutter IT

Journal 26(9), 22–29 (2013)
6. Fielding, R.T.: Architectural styles and the design of network-based software ar-

chitectures. Ph.D. dissertation, University of California, Irvine (2000)
7. apiwisdom.com, http://www.apiwisdom.com/
8. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A relational approach to software

metrics. In: Proceedings of the 2004 ACM Symposium on Applied Computing,
pp. 1536–1540. ACM (2004)

9. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A non-invasive approach to product
metrics collection. Journal of Systems Architecture 52(11), 668–675 (2006)

10. Bille, P.: A survey on tree edit distance and related problems. Theoretical Com-
puter Science 337(1), 217–239 (2005)

http://www.cutter.com/content-and-analysis/resource-centers/agile-project-management/sample-our-research/apmu1306.html
http://www.cutter.com/content-and-analysis/resource-centers/agile-project-management/sample-our-research/apmu1306.html
http://www.programmableweb.com/
http://www.apiwisdom.com/

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 93–102, 2014.
© IFIP International Federation for Information Processing 2014

Open Source Mobile Virtual Machines:
An Energy Assessment of Dalvik vs. ART

Anton B. Georgiev, Alberto Sillitti, and Giancarlo Succi

Free University of Bozen Bolzano (UNIBZ) Piazza Domenicani 3
39100 Bolzano, Italy

{anton.georgiev}@stud-inf.unibz.it,
{Alberto.Sillitti,Giancarlo.Succi}@unibz.it

Abstract. Dalvik Virtual Machine is Open Source Software and an important
part of the Android OS and its better understanding and energy optimization
can significantly contribute to the overall greenness of the mobile environment.
With the introduction of the OSS solution, named Android Runtime (ART) an
attempt of performance and energy consumption optimization was made. In this
paper we investigate and compare the performance of the Dalvik virtual and
ART from energy perspective. In order to answer our research questions we
executed a set of benchmarks in identical experimental setup for both runtimes,
while measuring the energy spent and percentage of battery discharge. The
results showed that in most of the use case scenarios Ahead-Of-Time
compilation process of ART is overall more energy efficient than the Just-In-
Time one of Dalvik.

1 Introduction

Dalvik was the virtual machine that Google created to use in Android, its mobile
Operating System. For 7 years it evolved alongside with other modules of Android.
Dalvik made use of Just-In-Time compiler as a suitable solution for devices with
space limitations, characteristic of the first generation devices equipped with Android
OS. With the growth of computational power, storage space, display size and
embedded sensors, these limitations become less restrictive. This enabled the
Operating System developers to seek performance optimizations and better UI
responsiveness by introducing new virtual machine. ART stands for Android runtime
and it was introduced as a new feature available in version 4.4 of the Android
Operating System. It was an optional feature in that release because it was in
experimental phase, and its inclusion was triggered by the need of having feedback
from both users and developers.

In this paper we designed and executed an experiment to analyze how the new
ART affects the overall energy consumption. We based our study on the execution of
several benchmarks.

The rest of this paper is organized as follows: section 2 introduces Android OS
virtual machine; section 3 comments related work; section 4 describes the

94 A.B. Georgiev, A. Sillitti, and G. Succi

methodology and environment created to carry out our experimentation; section 5
presents and analyzes the data collected during the benchmarks’ executions and
section 6 identifies directions for future work and draws the conclusions.

2 Android OS and Its Virtual Machines

The Android Operating System is an open source operative platform for managing
mobile devices. Its open nature allows researchers to analyze its structure and internal
organization, facilitating a richer analysis and offering better development
possibilities [1,2].

Android is organized in different layers to place the services and applications
according to specific requirements and necessities. It is based upon a customized
version of the Linux kernel, which acts as the abstraction layer between the hardware
and the software. On top of the kernel there is a set of Open Source C/C++ libraries.
In the topmost part of the stack the Android apps reside [3]. These apps are
programmed in Java programming language. Such programs are compiled into .dex
(Dalvik Executable) files, which are in turn zipped into a single .apk file on the
device. Android’s dex files is created by automatically translating compiled
applications written in the Java programming language; the Java compiler (javac) then
produces Java bytecode. The dex compiler (dex) then translates java bytecode to a
Dalvik bytecode; and Dalvik bytecode is then executed by a virtual machine called
Dalvik (DVM) [3].

With the advancement of the mobile devices, it was reached a level where the
storage space is relatively big Android developers decided to introduce new virtual
machine called Android runtime (ART). It is an alternative of the Just-In-Time
compiler, which was part of the Android OS since version 2.2 [4].

With the release of ART Google aimed to improve the GUI responsiveness, to
shorten the loading time of the mobile applications and to optimize the execution time
and energy consumption of its system. However it has not been discussed what would
be eventual implication at user level, for instance an additional use of resources or and
additional energy tall

The goal of this work is to analyze the performance of Dalvik and ART from
energy point of view.

With the purpose to reach this goal, we defined two research questions:

R.Q.1 Are there any differences between Dalvik and ART in terms of energy

efficiency?

R.Q.2 How big is the difference between the two FOSS technologies from the
energy perspective?

In order to answer our research questions we executed a set of benchmarks in the

same experimental setups for both Dalvik and ART, measuring the energy spent and
percentage of battery discharge.

 Open Source Mobile Virtual Machines: An Energy Assessment of Dalvik vs. ART 95

3 Related Work

The Open Source nature of the Android OS in combination with mobile area triggered
the interest of many enthusiasts to benchmark and measure the performance of both
Dalvik and ART. Since ART was introduced in version 4.4 of the Android OS there
are just a few articles [5, 6]. Based on their results one can conclude that even in
experimental phase, there are use cases (e.g. floating point calculations) where ART
performs better than Dalvik.

In contrast with ART, Dalvik was part of Android since the beginning. During the
years of Android OS evolution there were series of studies analyzing its virtual
machine. Some of them offer a special focus on assessing the performance of Java
and C implementations, conduct a comparison between them [7, 8]. Other work [9]
presented a review of the energy consumption of an Android implementation in
comparison with the same routine in Angstrom Linux.

In a wider scope there are several research publications than were found during our
literature survey dealing with the problem of power consumption in a smartphone.
The work of Olsen and Narayanaswami [10] presents and Operating System’s power
management scheme, named PowerNap, which aims to improve the battery life of
mobile device by putting the system in more efficient low power state. The authors of
another research publication [11] analyzed the power consumption of a mobile device
and measured not only the overall energy spent, but also the exact break down by the
device’s main hardware components. In another track, analyzing component specific
energy characterization is an aim for the authors [12], which used a software tool
named CharM to survey and collect parameters, exposed by the Operating System.
The presented results showed that CPU, the OLED display and the WiFi interface are
the elements that are taking the highest tall from the device battery when stressed.

For the purposes of our open source experimental setup, we needed a state of the
art analysis of the mobile software based energy measurement. After surveying the
literature in the area we discovered a set of applications which implements profiling
techniques that analyze the source code. With these tools at hand you can obtain very
detailed information about what are the routines and system calls that have a major
contribution to the energy utilization [13]. Building an energy model using hardware
measurement is another approach that is used in this area [14, 15, 16, 17, 18].

4 Data Collection

4.1 Benchmarks

To explore all the differences between the two runtimes we selected several
Benchmarking apps from Google play. These software products will guaranteed a fair
comparison, because they are executing the same set of instruction in identical
sequence each time they perform their benchmark. The benchmark applications
utilized on our experimentation were:

96 A.B. Georgiev, A. Sillitti, and G. Succi

• AndEBench [19] – it is an app providing standardized method, which is
industry-accepted for evaluating Android OS performance.

• Antutu Benchmark [20] – is a benchmark tool, which includes – CPU, GPU,
RAM, I/O tests with the option to compare your results with popular Android
OS devices

• GFXBench 3.0 [21] – is a comprehensive benchmark and measurement tool,
with cross-platform and cross-API capabilities. It measures graphics
performance alongside with render quality and long-term performance
stability of the device. We selected to include two of the available Low-Level
tests – basic ALU and its 1080p off-screen variation.

• Pi Benchmark [22] – calculates Pi up to the 2.000.000 digits of precision. For
our experiment we were execution this benchmark with load of 500.000 digits.

• Quadrant Standard Edition [23] – is an application, which requires Internet
connection to compute the results and doesn’t work on device without GPU. It
stresses the CPU, GPU and performs I/O operations.

• RL Benchmark: SQLite [24] – determines how much time you need to process
a number of SQL queries.

• Vellamo Mobile Benchmark [25] – evaluates the web browser performance of
the device including scrolling and zooming, 3D graphics, video and memory
read/write performance.

With these benchmarks we also made sure that we exercise different components

that may impact the execution and the overall user experience while using an
app.

4.2 Experimental Setup

Our experimental setup used two software tools to collected information regarding the
energy consumption of the executed benchmarks:

• A Custom version of PowerTutor [13] to measure the energy spent in Joules.
The samples were collected after every single benchmark execution.

• CharM [charm] – to read the battery percentage spent. CharM is a tool that
surveys battery discharge cycle. It collects the date in a background process,
and is implemented with negligible energy footprint. We used it to collect
date more relevant to the end user, as one would normally check the
remaining battery percentage on his device. The readings were acquired after
the complete cycle of benchmark executions was over.

Before each measurement phase we were resetting the PowerTutor and CharM
instances to assure that the benchmark application will start its energy consumption
from 0. The battery of the phone was fully charged and left to cool down to assure
that the settings for each test are as identical as possible. For reproducibility purposes
we repeated each test 30 times.

 Open Source Mobile Virtual Machines: An Energy Assessment of Dalvik vs. ART 97

Our test bed options were limited, because ART was experimentally introduced
only for Android 4.4 compatible devices. We selected a Google® HTC Nexus 4TM

device and all the results presented in this paper are according to its capabilities and
specification. The phone has the latest stock Android version (4.4.2), without any
account information in order to prevent background synchronization with remote
servers, which can affect our measurements. The device is equipped with a quad-core
Snapdragon S4 Pro APQ8064 processor running at 1.5 GHz, 2 GB RAM and 2100
mAh battery.

5 Data Analysis

5.1 Data Interpretation

After executing all the benchmark series we collected more than 500 samples for both
virtual machines. Table 1 shows the average energy consumption in Joules of 30
cycles for each benchmark. Column two contains readings associated with Dalvik
virtual machine, while column three contains the ART ones.

Table 1. Summary of the energy spent per benchmark application in Joules

Benchmark Name Dalvik ART
AndEBench [b1] 88.36 J 115.18 J
Antutu Benchmark [b2] 265.66 J 265.18 J
GFXBench 3.0 [b3] 90.50 J 90.50 J
Pi Benchmark [b4] 217.40 J 92.68 J
Quadrant Standard Edition [b5] 77.56 J 67.62 J
RL Benchmark:SQLite [b6] 51.46 J 29.30 J
Vellamo Mobile Benchmark [b7] 293.18 J 284.10 J

The energy spent to complete each computational job varies largely due to the
nature of the selected benchmarks. Some of them like Antutu Benchmark [20] and
Vellamo Mobile Benchmark [25] considerably higher energy consumption than the
rest of the experiments.

By the graphics shown in Figure 1, with the exception of AndEBench, ART
performed equally or better in comparison with Dalvik. We have the biggest
difference in the Pi Benchmark where the newer virtual machine was more than two
times efficient in comparison with its predecessor.

In Table 2 is summarized the average of the percentage that was discharge from the
battery during one benchmark series (i.e. the execution of a benchmark for 30 times).
The readings were collected using CharM application.

98 A.B. Georgiev, A. Si

Fig.

Table 2. Summary of the

Benchmark

AndEBench
Antutu Benc
GFXBench
Pi Benchma
Quadrant St
RL Benchm
Vellamo Mo

The plots of the remai

selected experiment can be
the battery level indicator th
of each experimental task.

5.2 Research Questions

R.Q.1 Are there any diffe
terms of energy efficiency?

After analyzing the colle
difference in the energy spe
that we had exactly the sam
Dalvik and ART.

R.Q.2 How big is the dif
perspective?

illitti, and G. Succi

1. Arithmetic mean of the energy spent

e percentage of battery discharge per benchmark application

Name Dalvik ART

h 32 % 45 %
chmark 57 % 57 %
3.0 30 % 30 %

ark 55 % 36 %
tandard Edition 35 % 31 %

mark:SQLite 11 % 6 %
obile Benchmark 74 % 61 %

ining battery level after each benchmark execution
e seen on Figure 2. The figure presents information ab
hat the end user will see on his screen after the complet

s Revisited

erences between FOSS virtual machines Dalvik and ART

ected results it is evident that in almost all cases we h
ent between the two virtual machines. The only benchm
me reading was GFXBench 3.0 with 90.50 Joules for b

ifference between the two FOSS technologies from ene

per
bout
tion

T in

have
mark
both

ergy

 Open Source Mobile Virtu

Readings in Table 1 sh
AndEBench, we have advan
remaining 6 benchmarks, e
efficiency for the ART vir
Antutu Benchmark) to 124.7

Fig. 2. Battery discha

6 Future Work an

6.1 Directions for Futu

Possible continuation of the
executions on different test
also from tablets, smart TV

ual Machines: An Energy Assessment of Dalvik vs. ART

how that out of seven benchmarks only in one, nam
ntage of 26.82 Joules for the Dalvik virtual machine. In
excluding GFXBench 3.0, we always have better ene
rtual machine with average savings from 0.48 Joules (
72 Joules (for Pi Benchmark).

arge level after benchmark execution in Dalvik and ART

nd Conclusions

ure Work

e work presented in this paper is to replicate the benchm
t beds. Collecting samples not only from smart phones,
Vs and others Android embedded device will deepen

99

mely
the

ergy
(for

mark
but
our

100 A.B. Georgiev, A. Sillitti, and G. Succi

understanding of the energy performance in the Operating System. Reproducing the
described experiments using hardware measurement tools instead of software will
provide additional verification of the previously generated data. Moreover we also
foresee to increase the granularity of the collected measurements [26], so in the future
we can analyze in greater details the relationship between the code execution and the
corresponding energy consumption.

6.2 Conclusions

In this work we presented and analyzed data collected from set of selected
benchmarks in order to analyze how the new Android runtime affects the overall
energy consumption of the device under test. These benchmarks were selected with
the goal of stressing different components that may impact the execution and the
overall user experience while using an app. The results showed that replacing a Just-
In-Time compiler with virtual machine with Ahead-Of-Time compilation process
would optimize the energy utilization for five out of seven scenarios exercised using
our experimental setup.

Optimizing the performance of a mobile device and by doing so reducing the
energy consumption is of a great importance for the future development of the mobile
environment. Having a strong requirement for autonomy provokes not only the
mobile hardware specialists, but also software developers to seek for a solution that
will increase the battery life. If they omit the energy consumption factor while
designing their products, they could not only decrease the user satisfaction, but in a
long term they might significantly contribute to environmental pollution by increasing
the battery garbage.

References

[1] Di Bella, E., Sillitti, A., Succi, G.: A multivariate classification of open source
developers. Information Sciences 221, 72–83 (2013)

[2] Kovács, G.L., Drozdik, S., Succi, G., Zuliani, P.: Open source software for the public
administration. In: Proceedings of the 6th International Workshop on Computer Science
and Information Technologies (2004)

[3] Ehringer, D.: The Dalvik Virtual Machine Architecture (March 2010),
http://davidehringer.com/software/android/
The_Dalvik_Virtual_Machine.pdf (retrieved November 4, 2013)

[4] Dalvik (software). In Wikipedia (software) (December 1, 2013),
http://en.wikipedia.org/wiki/Dalvik_(software)
(retrieved December 2, 2013)

[5] Toombs, C.: Meet ART, Part 2: Benchmarks - Performance Won’t Blow You Away
Today, But It Will Get Better (November 12, 2013),
http://www.androidpolice.com/2013/11/12/meet-art-part-2-
benchmarks-performance-wont-blow-away-today-will-get-better/
(retrieved December 1, 2013)

 Open Source Mobile Virtual Machines: An Energy Assessment of Dalvik vs. ART 101

[6] Toombs, C.: Meet ART, Part 3: Battery Life Benchmarks - Not Good, But Not Too Bad
(January 22, 2014), http://www.androidpolice.com/2014/01/22/
meet-art-part-3-battery-life-benchmarks-not-good-but-not-
too-bad/ (retrieved January 26, 2014)

[7] Cargill, D.A., Radaideh, M.: A practitioner report on the evaluation of the performance of
the C, C++ and Java compilers on the OS/390 platform. In: Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software, pp. 40–45
(2000)

[8] Corsaro, A., Schmidt, D.: Evaluating Real-Time Java Features and Performance for Real-
time Embedded Systems. In: Proceedings of the Eighth IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 90–100 (2002)

[9] Kundu, T.K., Kolin, P.: Android on Mobile Devices: An Energy Perspective. In:
Proceedings of the 2010 10th IEEE International Conference on Computer and
Information Technology, pp. 2421–2426 (2010)

[10] Olsen, C.M., Narayanaswami, C.: PowerNap: An efficient power management scheme
for mobile devices. IEEE Trans. on Mobile Computing 5(7), 816–828 (2006)

[11] Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In: USENIX
Annual Tech. Conf., pp. 21–34 (2010)

[12] Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: A Method for Characterizing Energy
Consumption in Android Smartphones. In: Proceedings of the 2nd International
Workshop on Green and Sustainable Software (GREENS 2013), in connection with ICSE
2013, pp. 38–45 (2013)

[13] Zhang, L., Tiwana, B., Qian, Z., Wang, Z.: Accurate online power estimation and
automatic battery behavior based power model generation for smartphones. In: 8th Intl.
Conf. on HW/SW Codesign and System Synthesis, pp. 105–114 (2010)

[14] Wonwoo, J., Chulko, K., Chanmin, Y., Donwon, K., Hojung, C.: DevScope: a
nonintrusive and online power analysis tool for smartphone hardware components. In: 8th
Intl. Conf. on HW/SW Codesign and System Synthesis, pp. 353–362 (2012)

[15] Yoon, C., Kim, D., Jung, W., Kang, C., Cha, H.: AppScope: application energy metering
framework for Android smartphone using kernel activity monitoring. In: USENIX
Annual Technical Conference (2012)

[16] Pathak, A., Hu, Y., Zhang, M.: Where is the energy spent inside my app? Fine grained
energy accounting on smartphones with Eprof. In: 7th ACM European Conference on
Computer Systems, EuroSys 2012, pp. 29–42 (2012)

[17] Corral, L., Sillitti, A., Succi, G., Strumpflohner, J., Vlasenko, J.: DroidSense: A mobile
tool to analyze software development processes by measuring team proximity. In: Furia,
C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 17–33. Springer, Heidelberg
(2012)

[18] Corral, L., Sillitti, A., Succi, G., Garibbo, A., Ramella, P.: Evolution of mobile software
development from platform-Specific to web-Based multiplatform paradigm. In:
Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, pp. 181–183. ACM (October 2011)

[19] EEMBC, AndEBench (Version 1605) (2014),
https://play.google.com/store/apps/
details?id=com.antutu.ABenchMark&hl=en (retrieved)

[20] AnTuTu, Antutu Benchmark (Version 4.1.7),
https://play.google.com/store/apps/
details?id=com.eembc.coremark (retrieved)

102 A.B. Georgiev, A. Sillitti, and G. Succi

[21] Kishonti Ltd. GFXBench 3.0 3D Benchmark (Version 3.0.4) (2014), from
https://play.google.com/store/apps/
details?id=com.glbenchmark.glbenchmark27 (retrieved)

[22] Markovic, S.D.: PI Benchmark (Version 1.0) (2014),
https://play.google.com/store/apps/details?id=
rs.in.luka.android.pi (retrieved)

[23] Aurora Softworks, Quadrant Standard Edition (Version 2.1.1) (2014),
https://play.google.com/store/apps/details?id=
com.aurorasoftworks.quadrant.ui.standard (retrieved)

[24] RedLicense Labs, RL Benchmark: SQLite (Version 1.3) (2014),
https://play.google.com/store/apps/details?id=
com.redlicense.benchmark.sqlite (retrieved)

[25] Qualcomm Connected Experiences, Inc., Vellamo Mobile Benchmark (Version 2.0.3)
(2014), https://play.google.com/store/apps/
details?id=com.quicinc.vellamo (retrieved)

[26] Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A non-invasive approach to product
metrics collection. Journal of Systems Architecture 52(11), 668–675 (2006)

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 103–106, 2014.
© IFIP International Federation for Information Processing 2014

Improving Mozilla’s In-App Payment Platform

Ewa Janczukowicz1,2, Ahmed Bouabdallah2, Arnaud Braud1,
Gaël Fromentoux1, and Jean-Marie Bonnin2

1 Orange Labs, Lannion, France
{ewa.janczukowicz,arnaud.braud,gael.fromentoux}@orange.com

2 Institut Mines-Telecom / Telecom Bretagne,
Université européenne de Bretagne, Cesson sévigné, France

{ahmed.bouabdallah,jm.bonnin}@telecom-bretagne.eu

Abstract. Nowadays, an in-app payment mechanism is offered in most existing
mobile payment solutions. However, current solutions are not flexible and
impose certain restrictions: users are limited to predefined payment options and
merchants need to adapt their payment mechanisms to each payment provider
they use. Ideally mobile payments should be as flexible as possible to be able to
target various markets together with users’ spending habits. Mozilla wants to
promote an open approach in mobile payments by offering a flexible, easily
accessible solution. This solution is analyzed, its shortcomings and possible
improvements are discussed leading to an original proposal.

1 Introduction

Smartphones have changed the way mobile payments work. Marketplaces with
applications have become an essential element of the mobile payment ecosystem.
They have changed users’ spending patterns and got especially specialized in micro-
payments [1]. There are multiple application stores that offer in-app payment
functionalities, like Google’s or Apple’s solutions. However they are mostly wall-
gardened, so clients and developers need to have an account set up with the imposed
payment provider. The system is easier to control since there are no unauthorized
third parties, but at the same time it becomes very limited.

PaySwarm and Mozilla have chosen a more open approach, in order to implement
platforms based on open standards and accessible to multiple payment providers. So
far some limiting implementation choices are imposed, but these projects are still
under development. Mozilla’s idea of a payment platform seems to be the most open
and flexible. This approach is beneficial for new and emerging markets, since
different payment methods can be introduced.

This paper focuses on Mozilla’s payment solution. Firstly, it is presented and
analyzed. Secondly, its limits and possible improvements are discussed. Finally a
solution is proposed and analyzed.

104 E. Janczukowicz et al.

2 Mozilla’s In-App Payment Platform

In-app payments are supported by Mozilla, that encourages providing a possibility of
previewing an app or installing its basic version for free [2]. It also gives the
possibility of implementing different marketplaces and working with different
payment providers, thus it would be possible to target various markets and to address
the needs of all users no matter the payment method [3].

Mozpay is a payment solution implemented in Firefox OS v.1.0 [4, 5]. Mozilla
offered a WebPayment API that, via the mozpay function, allows web content to
perform a payment [6]. Figure 1 shows the existing call flow.

Fig. 1. Mozpay based call flow

PP implements the WebPaymentProvider API [7]. The payment flow is managed
from PP’s server inside the trusted user interface (UI), limited to whitelisted domains.
The whitelist is preregistered in the user agent and is controlled by Mozilla or
whoever builds the OS. So far there is only one PP, created by Mozilla [2].

AS contains all application logics, manages the payment token and assures
delivering goods to the user. It is assumed that to set up payments, a developer is
already registered within PP (e.g. Firefox Marketplace Developer Hub), they have
exchanged information like: financial details, application key and secret.

CA allows buying digital goods as one of its features.
The payment token contains all the essential information concerning a good being

purchased. It is sent between all three parties throughout the payment process.
The purchase flow given below is based on Mozilla’s payment provider example.

1. A user by clicking the “Buy” button requests a payment token from AS.
2. AS generates and signs the payment token, later sends it to CA.
3. CA forwards the token by calling the mozpay API [3]. If PP is whitelisted a

trusted UI is opened, the user authenticates and the purchasing flow starts.

 Improving Mozilla’s In-App Payment Platform 105

4. Postback (success) or chargeback (error) are tokens with additional fields
(e.g. transaction ID) that inform AS about the payment result.

5. When AS receives a postback (or a chargeback) it acknowledges it.
6. In case of successful payment the purchased good is sent to the user.

The mozpay function has been proposed to be abandoned due to too rigid end-to-
end transaction flows by imposing the payment token mechanism. Exposing payment
provider primitives was suggested as an improvement. Payment providers would
manage their own payment flows by providing JavaScript files to developers and by
using a trusted UI with access restricted to whitelisted domains [8]. It can be seen on
Figure 2 where the calls 1 and 2 from Figure 1 are replaced by a JS file.

3 Proposed Solution

In existing solution in order to access a trusted UI payment providers had to be
whitelisted by Mozilla. It was impossible to add a new one between the Firefox OS
versions. The improvement of exposing payment primitives does not solve this issue,
since the access to trusted UI remains restricted to whitelisted domains [8].

A certification mechanism is a possible improvement that could replace a
predefined whitelist. The solution is presented in Figure 2.

Fig. 2. Proposed solution

Instead of the mozpay method, PP’s JS file is included within CA. PP also
provides a certificate with a URL needed to launch the trusted UI. When the Firefox
OS receives a request to start the payment, it calls TP and verifies the certificate. If
the verification is successful it uses the provided URL to open the trusted UI and the
payment process begins. We assume there are no attacks on application integrity.

The proposed architecture allows changing the list of authorized payment providers
without the need of redistributing the whole operating system every time a new player
enters the business value chain. Instead of a central entity that controls the whitelist,

106 E. Janczukowicz et al.

there may be several trusted parties. As a result the number of payments providers
would increase, so they would compete and transaction fees would become more
beneficial. This also gives clients and app developers more freedom to choose a
payment option. More universal system would give the possibility of efficiently
targeting specific markets and clients’ spending habits. There are a lot of factors to
consider: different type of clients (illiterate, cash-challenged, without credit cards)
and national regulations (taxes, currency). Additionally, well-known, open standards
would facilitate the development process.

The drawback of the solution is that payment providers would need to adapt their
flows in order to assure certificate management. Security aspects need to be studied,
although an advantage of certificates is that they are widely implemented and trusted.

4 Conclusion

In-app payments are used more often but the widely used application stores or
payment providers have implemented a walled-garden approach. Mozilla wants to
change the way in-app payments work by offering a platform that is open and that
targets new markets while not imposing strict business models. The version
implemented so far has several limits. One of the biggest limitations is a whitelist of
authorized payment providers that is currently shipped with the devices. The proposed
solution solves this problem by offering a certification system that would manage
payment providers. As a result Mozilla’s solution can become more flexible and be
able to meet most of participating players’ requirements.

References

[1] Copeland, R.: Telco App Stores – friend or foe? In: IEEE 14th International Conference on
Intelligence in Next Generation Networks (ICIN 2010), Berlin, Germany, October 11-14
(2010)

[2] https://developer.mozilla.org/docs/Mozilla/Marketplace/
Marketplace_Payments (accessed November 27, 2013)

[3] https://hacks.mozilla.org/2013/04/introducing-navigator-
mozpay-for-web-payments/ (accessed November 28, 2013)

[4] https://developer.mozilla.org/en-US/Firefox_OS (accessed November
29, 2013)

[5] Janczukowicz, E.: Firefox OS Overview. Telecom Bretagne Research Report RR-2013-04-
RSM (November 2013)

[6] https://wiki.mozilla.org/WebAPI/WebPayment (accessed November 28,
2013)

[7] https://wiki.mozilla.org/WebAPI/WebPaymentProvider (accessed
November 28, 2013)

[8] https://groups.google.com/forum/#!msg/mozilla.dev.webapi/
cyk8Nz4I-f4/5er6JojC3TsJ (accessed November 13, 2013)

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 107–110, 2014.
© IFIP International Federation for Information Processing 2014

A Performance Analysis of Wireless Mesh Networks
Implementations Based on Open Source Software

Iván Armuelles Voinov, Aidelen Chung Cedeño, Joaquín Chung, and Grace González

Research Center for Information and Communication Technologies,
University of Panama, Republic of Panama

{iarmuelles,achung,jchung,ggonzalez}@citicup.org

Abstract. Wireless mesh networks (WMNs) have emerged as a promising
technology, capable of provide broadband connectivity at low cost. Implemen-
tations based on Open Source Software of these networks offer advantages for
providing broadband networking communications in scenarios where cabling is
too expensive or prohibitive such as rural environments. In this paper we
evaluate the performance of small scale wireless mesh WMN routing protocols
for WMNs: B.A.T.M.A.N. Advanced and the 802.11s standard. We also com-
pare an OpenFlow controller implemented over the WMN, verifying their
bandwidth, datagram loss and jitter.

Keywords: Open Source Software for research and innovation, Wireless Mesh
Networks, OpenFlow, OpenWRT, network performance.

1 Introduction

Providing telecommunication services to difficult access areas (such as rural envi-
ronments) is still difficult due to the lack of appropriate or inexpensive infrastructure.
In this context, Wireless Mesh Networks (WMN) are an attractive solution for these
scenarios due to their lower deployment costs and ease of expansion. WMNs could be
used in community networks, home networking, video surveillance and emergen-
cy/disaster situations [1]. However, WMNs face several restrictions such as low-end
equipment, single wireless channel and interferences, which degrade the overall per-
formance of the network, and impose many drawbacks to even current and standard
Internet's services. In this paper we evaluate the performance of WMN implementa-
tions based on Open Source Software for multimedia service transport. In our case,
WMNs based on layer 2 routing protocol raise as a suitable and optimal connectivity
choice, as any layer 3 addressing protocol could be used on top, either IPv4 or IPv6.
Hence, we compare IEEE 802.11s standard [2] against Better Approach To Mobile
Adhoc Networking Advanced protocol (B.A.T.M.A.N.) [3]. Also, we compare these
two protocols with the OpenFlow protocol [4], which is used to control the forward-
ing tables of switches, routers and access points from a remote server, leveraging
innovative services over the network such as access control, network virtualization,
mobility, network management and visualization. The paper is organized as follows:

108 I.A. Voinov et al.

in Section 2, we describe the implementation of our testbed. In Section 3, we
describe the test and show the results obtained. Finally, in Section 4, we describe our
conclusions.

2 Testbed Implementation

The testbed consisted of a small scale WMN composed by four wireless routers. The
experiments were conducted inside a small laboratory, because this indoor environ-
ment is very similar to the conditions of a real home networking scenario (Fig 1). All
the wireless routers used in this testbed were TP-Link TL-WR1043ND v1.8, with four
LAN ports of 1 Gbit/s Ethernet, one WAN port of 1 Gbit/s Ethernet, and one 802.11n
wireless interface that works in the 2.4 GHz frequency band. We replaced the firm-
ware of the wireless routers with the open firmware OpenWRT [5], which is a very
well-known Linux distribution for embedded devices. OpenWRT supports WMN
with routing protocols like OLSR, B.A.T.M.A.N. and the new standard for WMN
networks 802.11s. For the experiments we used the OpenWRT Backfire 10.03.1,
which comes with 802.11s support by default. To evaluate B.A.T.M.A.N. Advanced,
was necessary to install the batman-adv package. For the experiments with OpenFlow
we compiled OpenWRT with a package called Pantou that supports the OpenFlow
protocol. The OpenFlow controller used in the experiments was POX, which is a con-
troller based on NOX for rapid deployments of SDNs using Python. A list of all the
components of the testbed and used tools based on Open Source Software is shown in
the table 1.

3 Performance Evaluation

Our experiment had three scenarios, the first one was a WMN composed by four MP
configured with the 802.11s standard. The second scenario was the same four MP but
using the batman-adv protocol. The last one was the four MP connected to an
OpenFlow controller using an out of band network for control and a data network ,
i.e, a wired network for the control signaling, due to a limitation of the hardware se-
lected . The tests were conducted in a low interference environment, which maintains
the optimum conditions for VoIP traffic (packet loss should not exceed 1%, the max-
imum delay should <150 ms and jitter must be kept below 20 ms). For our study we
took measurements using Iperf either in UDP and TCP mode. Every UDP test was
maintained for 300 seconds and repeated ten times, while the TCP test where main-
tained for 180 seconds and repeated five times. Every test was made for one hop, two
hops, three hops and four hops, for both scenarios.

In the UDP test we found that for one and two hops the maximum throughput was
higher in the Batman-adv scenario. This is because in the Batman-adv implementa-
tion, the wireless interfaces synchronize at 802.11n (transmission rates up to 300
Mbit/s). On the other hand, the implementation of 802.11s only synchronizes at

 A Performance Analysis of Wireless Mesh Networks Implementations 109

Fig. 1. WMN implementation

Table 1. Tools based on Open Source Software for WMN implementation and their evaluation

Name Supported Platform Features

OpenWRT Wide variety of wire-
less routers

Allows you to customize the applications on the wire-
less router. It implements routing protocols such as
OLSR and BATMAN. It can be adapted to work with
IPv6 and supports 802.11s. OpenWrt is the framework
to build an application without having to build a com-
plete firmware around it.

Pantou Linksys and TP-Link
Wireless Router

Implementation of the OpenFlow protocol for the
OpenWRT firmware

NOX/POX Linux OpenFlow controller based on Python and C + +
Mininet Linux Allows you to create scalable software defined networks

within a single PC.
Insider Linux and Windows Locate wireless networks and measures the intensity of

their signals.
Iperf Linux and Windows Creates TCP and UDP data flows to measure the

behaivor of the network with respect to some QoS pa-
rameters.

Wireshark Linux and Windows Protocol analyzer used for analyzing and solving prob-
lems in communication networks

802.11g (54 Mbit/s). For the OpenFlow scenario, the data network is based on a
802.11s WMN, where the mesh interfaces are controlled by OpenFlow. We did not
get results for OpenFlow at three and four hops because Iperf did not show the report.
The reason is the default behavior of the OpenFlow switch, it cannot send a packet
through the incoming port. However, in a WMN this behavior is valid in a node act-
ing as a relay. This behavior caused a large amount of errors and Iperf did not show a
report. As a matter of fact, batman-adv is able to achieve higher throughput at three
hops, but at the expense of a higher percentage of packet loss and jitter. Finally, at
four hops the throughput of batman-adv is again greater than the throughput of
802.11s, and OpenFlow was not able to pass traffic correctly. Batman-adv has an
overall greater throughput, albeit at three hops 802.11s shows a better performance.
The control signaling of OpenFlow have a low impact in the performance of the
WMN routing protocol.

In the jitter measurements we found that for all hops Batman-adv had a greater jit-
ter than the 802.11s standard, however the maximum value is still below the 20 ms
permitted for a good VoIP call. The results for three and four hops are missed because
the same reason of the UDP throughput test. The jitter for one hop was greater than
the jitter for two hops, for all the three protocols. This is because at one hop the test

110 I.A. Voinov et al.

was conducted using a PC for the Iperf server and one of the wireless routers as the
Iperf client, which have a lower computing power.

With respect to the loss, it was determined that batman-adv has a higher percentage
of lost datagrams than 802.11s until the third hop, while sending UDP traffic. At the
fourth hop, 802.11s had too many errors and duplicated packets, so the results report-
ed by Iperf were unreliable. The same behavior was observed for OpenFlow at three
and four hops. We made tests sending TCP traffic to measure the maximum through-
put allowed. Batman-adv obtained greater throughput than the 802.11s standard and
OpenFlow. Since TCP has mechanisms for detecting and correcting errors, the
throughput of batman-adv at three hops is greater than the throughput of 802.11s and
OpenFlow in this case, regarding the results obtained in UDP. Besides, for all the
cases batman-adv showed the best performance of the three protocols under study.

4 Conclusion

From the results of this experience we can conclude that both layer 2 routing proto-
cols implemented with Open Source Software for WMNs have advantages and disad-
vantages. The B.A.T.M.A.N. Advanced protocol achieves higher transmission rates
than 802.11s, but at the expense of a higher percentage of datagram loss. However,
the throughput of the WMN is not an impediment for services such as videoconfer-
ence; the current video codecs allow high quality videos with lower bandwidth re-
quirements. Besides, the 802.11s showed a lower jitter than batman-adv, which is
better for real-time communications. 802.11s is an IEEE standard, consequently many
equipments in the future will support this protocol. Also, 802.11s is more secure be-
cause it does not have a SSID field in the frame, so it cannot be easily sniffed. Finally,
802.11s has support for multicast inherently. Regarding OpenFlow, the architecture
based on a control network separated from the data network (as proposed by Dely et
al. in [4]) shows an acceptable performance compared to the 802.11s standard.
The in-band control approach is not recommended for WMN deployments for rural
communities, due to its bad performance.

References

[1] Akyildiz, I.F.: A survey on wireless mesh networks. IEEE Communications Maga-
zine 43(9), S23–S30 (2005)

[2] IEEE Standard for Information Technology–Telecommunications and information ex-
change between systems–Local and metropolitan area networks–Specific requirements
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) speci-
fications Am. IEEE Std 802.11s-2011, pp. 1–372 (2011)

[3] Seither, D., Konig, A., Hollick, M.: Routing performance of Wireless Mesh Networks: A
practical evaluation of BATMAN advanced. In: 2011 IEEE 36th Conference on Local
Computer Networks (LCN), pp. 897–904 (2011)

[4] Dely, P., Kassler, A., Bayer, N.: OpenFlow for Wireless Mesh Networks. In: 2011 Pro-
ceedings of 20th International Conference on Computer Communications and Networks
(ICCCN), pp. 1–6 (2011)

[5] OpenWrt, https://openwrt.org/

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 111–112, 2014.
© IFIP International Federation for Information Processing 2014

Use of Open Software Tools for Data Offloading
Techniques Analysis on Mobile Networks

José M. Koo, Juan P. Espino, Iván Armuelles, and Rubén Villarreal

Research Center for Information and Communication Technologies,
University of Panama, Republic of Panama

{jkoo,jp.espino,ivan.armuelles,rvillarreal}@citicup.org

Abstract. This research aims to highlight the benefits of using free software
based tools for studying a LTE mobile network with realistic parameters. We
will overload this LTE network and offload it through data offloading
techniques such as small cells and WiFi offload. For this research, discrete-
event open software network simulator ns3 will be implemented. Ns3 is a
network simulator based on the programming language C++, and has all the
necessary libraries to simulate an LTE and WiFi network.

Keywords: Data Offloading, WiFi, LTE, small cells, ns3, OSS for research and
education.

1 Introduction

In the past few years, demand on data transfer by mobile users has rapidly increased.
Among many reasons, we can mention the rapid development of technologies which
have enabled users to access higher transfer speed which in turn, enable them, for
example, to make better quality video calls, download high quality videos, upload
more files and such. On the other hand, social networks have boosted the total
amount of data which traverse mobile networks. Because of this, mobile networks
undergo a cicle of ever-increasing data rates to support the growing demand of users.
This is why the capacity of mobile networks is slowly reaching its limit, and this
simply leads to a degradation of the quality of customer service. According to [1], by
2018, 15.9EB (1EB = 1018 bytes) of monthly traffic is expected to be generated by
mobile devices. There are a few techniques which allow mobile service providers to
increase their mobile network capacity, nonetheless, the most efficient one is
frequency reuse, which is posible by reducing the size of the cell.

Among those techniques, there is “data offloading” which seeks a way to offload
those users who are in the mobile network and relocate them to another network, in this
case, the Internet. This way, both, those who get to stay in the mobile network and
those who have been relocated, will perceive an improvement in their quality of service.

Among the variants of data offloading techniques, we have small cells and WiFi
offload. Small cells are low-powered base stations mainly designed for Small-Office-
Home-Office (SOHO) use. Small cells are compatible with current mobile
communication technologies such as 4G and backward compatible with 2G and 3G.

112 J.M. Koo et al.

On the other hand, we have WiFi offload, which is based on wireless Access point
routers, through which the mobile user can connect and web-surf, make calls, among
others. WiFi is considered a small cell as well, however, differ from them by the fact
that WiFi operates in the unlicensed frequency spectrum.

It is necessary to evaluate the offload capacity that both techniques may offer,
however, evaluation by hardware or non-open source software might be unviable, so
the use of free open software tools is essential in our work.

2 Objectives

The objectives of our work are:
- Conduct a study with realistic parameters of a LTE network.
- Demonstrate that small cells and WiFi offload Access Points as data

offloading techniques, reduce the load of a congested macrocell and compare
the efficiency of small cells and WiFi Access Points and analyze their
behaviour in tandem.

3 Methodology

To make this Project, the discrete-event open software network simulator ns3 will be
used. Ns3 runs in a Linux environment and has both, LTE and WiFi libraries, which
are necessary to simulate the proposed mobile network. Ns3 LTE libraries were
developed by the Technical Telecommunication Center of Catalunya (CTTC) under
the LENA Project. Our Project will consist of four (4) simulation scenarios which are
summarized in Fig. 1.

Small cells

AP WiFi

Macro celda

Escenario de Simulación

Fig. 1. Simulation scenarios and its components

References

[1] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013-2018,
Cisco

[2] SmallCellForum, http://www.smallcellforum.org
[3] ns3, http://www.nsnam.org

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 113–122, 2014.
© IFIP International Federation for Information Processing 2014

Crafting a Systematic Literature Review
on Open-Source Platforms

Jose Teixeira and Abayomi Baiyere

TUCS - Turku Centre for Computer Science,
University of Turku,

Finland
{jose.teixeira,abayomi.baiyere}@utu.fi

Abstract. This working paper unveils the crafting of a systematic literature re-
view on open-source platforms. The high-competitive mobile devices market,
where several players such as Apple, Google, Nokia and Microsoft run a plat-
forms-war with constant shifts in their technological strategies, is gaining in-
creasing attention from scholars. It matters, then, to review previous literature
on past platforms-wars, such as the ones from the PC and game-console indus-
tries, and assess its implications to the current mobile devices platforms-war.
The paper starts by justifying the purpose and rationale behind this literature re-
view on open-source platforms. The concepts of open-source software and
computer-based platforms were then discussed both individually and in unison,
in order to clarify the core-concept of “open-source platform” that guides this
literature review. The detailed design of the employed methodological strategy
is then presented as the central part of this paper. The paper concludes with pre-
liminary findings organizing previous literature on open-source platforms for
the purpose of guiding future research in this area.

Keywords: Open-source, FLOSS, Platforms, Ecosystems, R&D Management.

1 Introduction

1.1 Purpose and Rationale

The mobile devices market has been extremely competitive within the last five years.
Apple, Google, Nokia and Microsoft among others played a very dynamic platforms-
war, seeking control over the distribution of software and content to mobile hardware
devices such as smartphones, netbooks and computer-tablets. The open-source
software plays an important role in this platforms-war. As an indication - Apple
reveals that open-source is a key part of its ongoing software strategy [1] and Google
claims to lead the development of the Android platform by open-source approach [2].
On other hand, Nokia decided to give-up open-source software by closing down
Symbian and Meego [3] and adopting Microsoft Windows Phone for its smart-phone
strategy [4]. Yet another player; Hewlett-Packard, made big shifts on its technological
strategy by abandoning WebOS, a mobile platform also based in open-source software
components, after investing millions on its development[5].

114 J. Teixeira and A. Baiyere

An increasing number of researchers within the Information Systems (IS) field
have addressed the ongoing mobile platforms-war from multiple perspectives. Mian et
al. reported some implications of the open-source phenomenon on the ongoing plat-
forms-war by studying the technological strategies employed by Apple, Google and
Nokia [6]. From an innovation studies perspective, Eaton et al. explored the paradox-
ical relationship between control and generativity of innovation in digital ecosystem
by having Apple and Google as units of analysis [7]. Building on th boundary objects
theory and innovations networks literature, Ghazawneh and Henfridsson developed a
process perspective of third-party development governance through boundary re-
sources by studying the Apple’s iPhone developer program [8]. From software archi-
tecture and licensing perspectives, Anvaari and Jansen evaluated the architectural
openness of five different mobile platforms concluding that Google's Android and
Nokia's Symbian were the most open platforms [9].

Evidently, the mobile platforms-war is gaining attention from the IS research
community. However behind the vogue, it is important to assess how this emergent
mobile platforms-war is different from previous platforms-wars covered by previous
decades of published literature. This raises the following questions: Is the literature
from previous platforms-wars, such as in PC and the game-console industries address-
ing this current war between Apple, Android, Microsoft and others?

For addressing this and other questions, we decided to execute a systematic
literature review on open-source platforms, embracing a need for more and better
documented literature reviews on the IS field[10]. This paper addresses the call from
von Brocke et al. for the publication of two versions of the same literature review
[11]. One that contains all the major findings, to be published later; and another that
outlines the literature search process. This current paper addresses the latter.
Subsequently, we discuss the concepts of open-source software and computer-based
platforms followed by the employed methodology based on established guidelines on
how to conduct a systematic literature review in the IS field.

1.2 On the Evolving Open-Source Phenomenon

There is a consensus of four freedoms expressed by Stallman [12] which laid the
foundation of the open-source phenomenon [12]:

• The freedom to run the program, for any purpose.
• The freedom to study how the program works and change it so it does your

computing as you wish.
• The freedom to redistribute copies so you can help your neighbor.
• The freedom to distribute copies of your modified versions to others.

For the good of the open-source community, the Open Source Initiative (OSI) was
founded by Bruce Perens and Eric Raymond in 1998 to develop and maintain a more
commonly agreed open-source definition, based on the social contract from the
Debian Linux distribution [13]. Moreover, the OSI open-source definition introduced
a novel connection between open-source software and standards [14].

 Crafting a Systematic Literature Review on Open-Source Platforms 115

According to Perens, open-source concerns not only software source code but also
the distribution terms of software, as visible in the previous FSF and OSI free and
open-source software definitions [15]. Both Stallman's and OSI definitions address
very well the public with both expertise in software development and software license
agreements, however general public could reveal difficulties in understanding the
open-source term.

To position the open-source software concept used in this review with a mapping
of Stallman's and OSI definitions, we propose three open-source criteria. First, the
blue-print availability (software source-code is available upon request); Second, ex-
plicit intellectual propriety licenses not restricting users free-software freedoms
(Software license empowers user rights); and thirdly, the compliance with standards
(the software privileges the use of standards that enable interoperability).

1.3 On Computer-Based Platforms

The platform term is conceptually abstract and is widely used across many fields.
Within this research, the platform term maps the concept of computer-based platform
as previous addressed by Morris, Ferguson, Bresnahan, Greenstein and West [16]–
[18]. As argued by West [18], platform consists of an architecture of related standards,
controlled by one or more sponsoring firms [18]. The architectural standards typically
encompass a processor, operating system (OS), associated peripherals, middleware,
applications, etc. Platforms can be seen as systems of technologies that combine core
components with complementary products and services habitually made by a variety
of firms (complementors). Jointly the platform leader and its complementors form an
“ecosystem” for innovation, that increases platform's value and it consequent users’
adoption [19]

For example, the once leading Japanese video games industry, operate by develop-
ing the hardware consoles and its peripherals while providing a programmable soft-
ware platform that allows others to develop games on top of their systems. The attrac-
tion of more game developers to the platform means more games and an increase of
value for the final users (video game players). High-tech firms competing in a high-
networked economy must adopt platform based strategies versus product based strat-
egies, due to the difficulty of satisfying an increasing complex consumer demand
[20]. In the development of certain complex systems, an “all in house” strategy might
not be economically feasible, organizations must adopt “platform-thinking” and focus
efforts on the highest value-adding components of the platform, making it open and
attractive to all possible participants.

Within this research, the authors address literature on open-source computer-based
platforms: meaning computer-based platforms that not only integrate open-source
software components, but also provide a set of publicly available open-source com-
ponents. Prominent examples can be the Google's Android, Apple iOS and Nokia
Maemo platforms empowering mobile devices. For instance, all the vendors integrate
the WebKit open-source web browser engine into their platforms while providing
their modified WebKit versions in open-source manners. It is important to note
that, within this reviews context, computer-based platforms combine hardware and

116 J. Teixeira and A. Baiyere

software but can also be pure-software platforms. Krishnamurthy and Tripathi [22]
and Teixeira [23] studied platforms structured over pure software artefacts. Platforms
leaders provide and set the boundaries of their technological-core and provide addi-
tional development mechanisms that allow third-parties to complement while adding
value to the overall platform under network effects.

2 Research Methodology and Design

After clarifying the core-concepts of “open-source software” and “computer-based
platforms” we present the methodology used for the review in this section.

2.1 Research Goals and Methodological Base

Primarily and most importantly, by conducting this structured literature review the
authors aim to provide an aggregated vision of what is well known within the
academia regarding open-source platforms. The underlying research questions are:

• RQ1: What are the seminal works bridging open source and platforms?
• RQ2: Does the literature from previous platforms-wars, such as in the PC

and the game-console industries, address this current mobile-platforms war between
Apple, Android, Microsoft and others?

• RQ3: What is the seminal literature to be taken into account by researchers
and practitioners addressing the ongoing mobile platforms-war?

• RQ4: Which previous research findings can't be generalized for such novel
and contemporary scenario?

This review considers methodological guidelines provided by Webster and Watson

[10], Järvinen [23], von Brocke et. al. [11] and Okoli and Schabram [24]. Transparen-
cy and rigour in documenting the literature review process, the use of a systematic
and future reproducible procedure; were some of the base-pillars of this review. Sim-
ple and common available software tools, like spreadsheet software (LibreOffice),
citation manager (Zotero), graph visualization software (Graphviz) and a mind-
mapping tool (Xmind) eased the literature review process.

The literature review process started in November 2010, the final set of articles
were retrieved on March 2011 and were carefully read and analyzed while taking in
account the different methodological guidelines on conducting a literature review.

2.2 Design and Research Basis

After reading the literature review guides and analyzing a small set of systematic
review articles published in the IS field, the authors decided to follow closely the
literature review design from von Brocke and Theresa [25]. As in [25], the authors
made use of Emerald, EBSCO and ProQuest ABI/Inform databases of general
journals and conferences; plus the use of Google books index on published books;

 Crafting a Systematic Literature Review on Open-Source Platforms 117

and finally the use of the eLibrary system from the Association of Information
Systems (AIS) as a database indexing more specific journals and conferences within
IS field.

The authors decided to complement von Brocke and Theresa research basis by in-
cluding the Volter national database that indexes books within a large national librar-
ies network. The following Table 1 summaries the database sources from where the
literature was collected. All databases were accessed using authors host University
Internet proxy even if accessed remotely.

Table 1. Database sources used for conducting the literature review

Source Type Website http://
Emerald General journals and conferences emeraldinsight.com
EBSCO General journals and conferences web.ebscohost.com
ProQuest ABI/ Inform General journals and conferences search.proquest.com
Google books Published books books.google.com
Volter database Published books volter.linneanet.fi
AIS eLibrary IS journals and conferences aisel.aisnet.org

For retrieving literature that aggregates both knowledge on open-source and com-

puter-based platforms, previous knowledge of the authors reinforced by discussions
within the academic circle influenced the choice of the keywords for the search. Ad-
dressing the open-source term, the keywords “open source”, “open-source”, “OSS”,
“FLOSS” and “libre” were used. Moreover, for capturing relevant literature within
computer-based platforms the keywords “platform”, “platforms”, “platform-based”,
“eco system”, “eco systems”, “eco-system” and “eco-systems” were employed. The
decision to use several keywords increased the amount of relevant literature included
in the review.

The authors discarded publications that were not relevant to the IS field after a
careful content analysis. Most of the publications discarded did not fit with this pa-
pers adopted definitions of open-source and platforms. The authors documented and
tabulated each discarded publication item while building associated exclusion criteria.
The search was limited to peer-reviewed publications; several published books and
journal articles were discarded because they did not clearly meet this criterion. The
search was also limited to research expressed in the English-language.

The research basis (α) was defined by searching, within the mentioned source da-
tabases, for publication items with both open-source and platforms keywords on their
titles. An initial set of fifteen publications were defined as the starting point for our
research. The fifteen publications included books, two conference proceedings and
the remaining were serial journals. After an extensive analysis of the research basis,
the authors decided to extend the research (β) by searching for articles with keywords
capturing open-source on their titles and with keywords capturing platforms on the
abstract. A total of 360 new publications were identified with this first research exten-
sion. For future research, the authors consider the possibility of extending the research
to include other publications with platforms on the title and open-source on the
abstract.

118 J. Teixeira and A. Baiyere

The following Table 2 gives an overview on how the captured research publica-
tions were retrieved by each of the six source databases. A considerable number of
collisions, publications indexed more by different databases, was encountered. Books
and dissertation databases were not considered in our research extension because
books databases do not support queries addressing a possible book abstract.

Table 2. Number of captured research publications per database source

 EME EBS PQA GOB VOL IAS
α (title CONTAINS (open-source AND
platforms))

0 3 5 6 0 1

β ((title CONTAINS open-source) AND
(abstract CONTAINS platforms)

1 24 318 QNS QNS 2

Total captured items per database source 1 27 323 6 0 3

2.3 Extraction and Categorization of Literature

In order to provide both a quantitative and qualitative overview of relevant research of
open-source platforms within the Informations Systems field, the authors extracted
and categorized the literatures according to their meta-description and content. The
authors first conducted a simpler categorization of the literature without looking at its
full content. Some of the retrieved articles were discarded by its meta-description (i.e.
after reading the abstract). After reading each articles meta-description, the authors
moved afterwards to a more demanding phase, where the deep reading of each papers
content enabled the extraction and categorization of research on open-source
platforms.

For the first step, content independent information was extracted and categorized
by using meta-descriptions of each captured paper. Not all non-content information
was available within the used sources databases, requiring visits to the different pub-
lishers Internet resources. For each paper found, a manual citation analysis was made
using both the http://scholar.google.com and the http://www.isiknowledge.com web
resources. The authors decided to keep track of each captured research paper price, if
applicable: both the payment amount charged by the publisher to download the paper
and the yearly subscription rate, all for later arguing on the cost of this literature
review.

For the second step, and in order to provide a qualitative overview of the literature
review, the authors delved into the articles content. This started an ongoing demand-
ing analysis of each captured paper, identifying key information such as research
questions, methodology, outlined future research, research propositions, theoretical
implications, implications for practice, key references, among other content infor-
mation. After full paper reading and using spreadsheets, the authors systematically
retrieved for each paper, information about the research questions being addressed;
their triggers and motivations, implications for theory and practice, methodology and
philosophical standings, perceived theoretical and empirical relevance, etc. For the
very specific context of this literature review the authors also captured for each item
what are the research related industry verticals and platforms being studied. For each

 Crafting a Systematic Literature Review on Open-Source Platforms 119

paper, the authors complemented the collected information in a spreadsheet with two
to three slides containing the message of each paper,

After the content analysis, the authors made the transition from author to concept-
centric approach as suggested by Webster and Watson [10]. A long concept matrix
was developed for mapping the analyzed publication items with key concepts that
emerged during the literature review process, e.g. the concepts of “Community of
Practice” [26] and “Sense of Community” [27]. Relationships between these key
concepts were then mapped using diagram tools (i.e Graphviz and Xmind) providing
a theoretical overview1 of previous research in open-source platforms.

3 Preliminary Findings

As previously mentioned, this literature review is still a work in progress. So far, the
meta-description analysis of the retrieved 360 articles is completed. However; just
170 of the articles has been fully read and content-analyzed. This literature review is
aimed to be systematic, rigorous and exhaustive which turned out to be a slow process
lasting several years. In this section, we present our preliminary findings by revisiting
the initial research questions and outlining future research.

3.1 Revisiting the Research Questions

The first research question was “What are the seminal works on open-source
platforms?”. Based on a citation analysis of the retrieved publications on Google
and Thomson Reuters services; and by its recurrence within the articles analyzed so
far, the authors proposes: The economic works of Economides and Katsamakas[29];
the open-source adoption studies of Dedrick and West[14]; [30] and the R&D
management strategy work of West[18]; as seminal works on open-source platforms.

Our second research question inquired “if research addressing the current mobile-
platforms takes in consideration literature from previous platforms-wars?” The third
and related initial research question is “What is the seminal literature to be taken in
account by researchers and practitioners addressing the ongoing mobile platforms-
war?” After reviewing ad-hoc emergent literature on the novel mobile-platforms war
such as: Basole's visualization in a converging mobile ecosystem[31]; Eaton et al.
description of the paradoxical relationship between control and generativity on Apple
and Google ecosystems[7] ; or the innovation study from Remneland-Wikhamn et al.
on the iPhone and Android mobile platforms; we claim that emergent research ad-
dressing the current mobile-platforms is not considering, or exploiting previous semi-
nal works on open-source platforms, as it often should.

Out last initial research question inquired if previous research findings, on previous
platforms-wars, can be generalized to the current mobile platforms-war, scenario.
Previous seminal works from Economides, Katsamakas, Dedrick and West [14], [18],
[29], [30] assume a scenario where open-source is an alternative strategy for low-cost

1 Theoretical overview within Gregor's nature of theory in information systems research [28].

120 J. Teixeira and A. Baiyere

players, with reduced market-share, against more successful corporations enjoying a
quasi-monopoly situation. Using researchers own words:

“When a system based on an open source platform with an independent
proprietary application competes with a proprietary system, the proprietary
system is likely to dominate the open source platform industry both in terms of
market share and profitability. This may explain the dominance of Microsoft in the
market for PC operating systems.” in [29]

“On the other hand, Microsoft’s proprietary platform strategies continued to be
successful” in [18]

“The most important driver of adoption was cost ” in [14]

“The major factors are cost, perceived reliability, compatibility ...” in [30]

Tables turned: First of all, open-source is no longer associated with low-cost prod-
ucts within the current mobile platforms-war. Moreover, the traditional proprietary
software players, such as Microsoft and Blackberry, are currently struggling with
residual sales on the mobile devices market [32]. Apple, Google and Google Android
partners are effectively dominating the market, while charging more for their high-
end devices than their competitors[33], all with strategies that esteem open-source
software[1], [2].

3.2 Future Research

When contrasting previous literature on older “platforms-wars”, such as the ones from
the PC and game-console industries, with the current and under-studied mobile
platforms-war, we empirically notice that many of the market players remain the same
(Microsoft and Apple). There is a scenario of convergence: same firms push for
similar technological standards across different platforms, i.e. Microsoft Windows
within X-box, Surface Tablets, PC, Netbooks and Mobile phones. This convergence
between industries remains unexplored by academia. Interesting research questions
dealing with the implications of such convergence remain unexplored, i.e “should
firms concentrate on one platform-war or run several platform-wars in parallel?

References

[1] Apple, “Apple | Open Source” (December 06, 2012),
http://www.apple.com/opensource/ (accessed December 06, 2012)

[2] Android, “Welcome to Android” (December 06, 2012),
http://source.android.com/ (accessed December 06, 2012)

[3] TheGuardian, “Nokia closes Symbian to the world” (November 29, 2010),
http://www.guardian.co.uk/technology (accessed December 06, 2012)

[4] Nokia “Nokia and Microsoft announce plans for a broad strategic partnership to build a
new global ecosystem» Nokia – Press” (February 11, 2011),
http://press.nokia.com/2011/02/11/ (accessed December 06, 2012)

 Crafting a Systematic Literature Review on Open-Source Platforms 121

[5] HP Financial news, “HP Investor Relations” (December 06, 2012),
http://h30261.www3.hp.com/ (accessed December 06, 2012)

[6] Mian, S.Q., Teixeira, J., Koskivaara, E.: Open-Source Software Implications in the Com-
petitive Mobile Platforms Market. In: Skersys, T., Butleris, R., Nemuraite, L., Suomi, R.
(eds.) I3E 2011. IFIP AICT, vol. 353, pp. 110–128. Springer, Heidelberg (2011)

[7] Eaton, B., Elaluf-Calderwood, S., Sørensen, C., Yoo, Y.: Dynamic structures of control
and generativity in digital ecosystem service innovation: the cases of the Apple and
Google mobile app stores. London School of Economics and Political Science (2011)

[8] Ghazawneh, A., Henfridsson, O.: Governing third-party development through platform
boundary resources. In: ICIS Proceedings, pp. 1–18 (2010)

[9] Anvaari, M., Jansen, S.: Evaluating architectural openness in mobile software platforms.
In: Proceedings of the Fourth European Conference on Software Architecture: Compan-
ion Volume, pp. 85–92 (2010)

[10] Webster, J., Watson, R.: Analyzing the past to prepare for the future: Writing a literature
review. MIS Quarterly 26, 13–23 (2002)

[11] von Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.: Recon-
structing the Giant: On the Importance of Rigour in Documenting the Literature Search
Process, Verona, pp. 2206–2217 (2009)

[12] Stallman, R.: The GNU manifesto (1985)
[13] Debian, “Debian Social Contract (version 1.1)” (1997),

http://www.debian.org/social_contract#guidelines (accessed March
29, 2011)

[14] Dedrick, J., West, J.: An exploratory study into open source platform adoption. In: Pro-
ceedings of the 37th Annual Hawaii International Conference on System Sciences, p. 10
(2004)

[15] Perens, B.: The Open Source Definition. In: Open Sources: Voices from the Open Source
Revolution, 1st edn., p. 280. O’Reilly Media, Inc. (1999)

[16] Ferguson, C.H., Morris, C.R.: Computer Wars: How the West Can Win in a Post-IBM
World. Times Books New York, NY (1993)

[17] Bresnahan, T.F., Greenstein, S.: Technological Competition and the Structure of the
Computer Industry. The Journal of Industrial Economics 47(1), 1–40 (1999)

[18] West, J.: How open is open enough?: Melding proprietary and open source platform
strategies. Research Policy 32(7), 1259–1285 (2003)

[19] Gawer, A., Cusumano, M.A.: How companies become platform leaders. MIT/Sloan
Management Review 49 (2008)

[20] Hagiu, A.: Japan’s High-Technology Computer-Based Industries: Software Platforms
Anyone? RIETI Column (October 19, 2004)

[21] Teixeira, J.: Open-Source Technologies Realizing Social Networks: A Multiple Descrip-
tive Case-Study. In: Hammouda, I., Lundell, B., Mikkonen, T., Scacchi, W. (eds.) OSS
2012. IFIP AICT, vol. 378, pp. 250–255. Springer, Heidelberg (2012)

[22] Krishnamurthy, S., Tripathi, A.K.: Monetary donations to an open source software plat-
form. Research Policy 38(2), 404 (2009)

[23] Järvinen, P.: On developing and evaluating of the literature review. In: The 31st Infor-
mation Systems Research Seminar in Scandinavia, Workshop 3 (2008)

[24] Okoli, C., Schabram, K.: A guide to conducting a systematic literature review of infor-
mation systems research (2010)

[25] von Brocke, J., Theresa, S.: Culture in Business Process Management: A Literature Re-
view. Business Process Management Journal 17(2) (2011)

122 J. Teixeira and A. Baiyere

[26] Lave, J., Wenger, E.: Situated learning: Legitimate peripheral participation. Cambridge
University Press (1991)

[27] Chavis, D.M., Hogge, J.H., McMillan, D.W., Wandersman, A.: Sense of community
through Brunswik’s lens: A first look. J. Community Psychol. 14(1), 24–40 (1986)

[28] Gregor, S.: The nature of theory in information systems. Mis Quarterly 30(3), 611–642
(2006)

[29] Economides, N., Katsamakas, E.: Two-sided competition of proprietary vs. open source
technology platforms and the implications for the software industry. Management Sci-
ence 52(7), 1057–1071 (2006)

[30] Dedrick, J., West, J.: Why firms adopt open source platforms: a grounded theory of inno-
vation and standards adoption. In: Proceedings of the Workshop on Standard Making: A
Critical Research Frontier for Information Systems, pp. 236–257 (2003)

[31] Basole, R.C.: Visualization of interfirm relations in a converging mobile ecosystem.
Journal of Information Technology 24(2), 144–159 (2009)

[32] Gartner, “Smartphone Sales Accounted for 55 Percent of Overall Mobile Phone Sales,”
http://www.gartner.com/ (accessed November 21, 2013)

[33] iPhone 5S vs. Galaxy S4 And The Rest: Your Guide To Buying The Right Smartphone,
http://www.huffingtonpost.com/2013/09/19/ (accessed November 21,
2013)

Considerations Regarding the Creation of a

Post-graduate Master’s Degree in Free Software

Sergio Raúl Montes León1,2, Gregorio Robles2,
Jesús M. González-Barahona2, and Luis E. Sánchez C.1

1 Research Group GSyA, Universidad de las Fuerzas Armadas (ESPE-L),
Latacunga, Ecuador

smontes@espe.edu.ec, luisenrique@sanchezcrespo.org
2 Universidad Rey Juan Carlos, Madrid, España

{grex,jgb}@gsyc.urjc.es

Abstract. Free software has gained importance over the last few years,
and can be found in almost any sphere in which ‘software processes’
are important. However, even when universities and higher education
establishments include subjects concerning free programming and tech-
nologies in their curriculums, their graduates tend to attain limited tech-
nological, organisational and philosophical knowledge that limits them
as regards their participation in, management and development of free
software projects. This gap in skills and knowledge has recently led to
a series of post-graduate studies whose objective is to offer students the
possibility of acquiring competencies that will allow them to become ex-
perts in free software. This paper presents a study concerning the offers
for post-graduate studies in free software that currently exist, with the
intention of creating similar post-graduate studies in Ecuador.

1 Introduction

In the present-day world, society is developed on the basis of information tech-
nology, and software has a particularly important function in this, thus demons-
trating that humanity’s knowledge has evolved by means of computing. For this
knowledge to be within everyone’s reach, the use of free software is essential.
Free software can, moreover, currently be found in a multitude of environments,
if not in all of them, and has come to be of prime importance over the last few
years [5].

European and South American governments have now created laws and de-
crees for the use of free software [1], which in Ecuador consists of Decree 1014.
The need to train personnel who are qualified in the sphere of free software is
therefore being investigated. The European Union has recommended that re-
search should be carried out in this sphere, since it alleges that the habitual lack
of knowledge as regards code does not permit the auditing of real functioning,
which could seriously compromise the security of some countries, thus leaving
them in the hands of companies that create private programmes [3].

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 123–132, 2014.
c© IFIP International Federation for Information Processing 2014

124 S.R. Montes León et al.

We should also mention that free software attracts the attention of companies
and public administrations throughout the world, and it is in this way that coun-
tries such as Spain, Brazil, Mexico, Venezuela, Columbia, Peru, Chile, Argentina
and, essentially, Ecuador foment its use and development [4],What is more, many
large technological companies such as IBM, Apple, Facebook or Google support
the free software movement by both freeing some of their star products, such
as WebKit, MySQL, Android, and participating in the development of projects
such as Eclipse and Linux, among others [6].

Even when universities and higher education establishments include free tech-
nologies in their curriculums, their graduates normally lack the training needed
to be able to carry out the tasks that are necessary to successfully participate in
a free software project [2]. It is therefore common for universities to teach pro-
gramming. However, although this is one vital requirement as regards providing
code, it is not the only one, since to be able to take part in a free software pro-
ject it is also necessary to have knowledge of development tools (e.g. the version
system), conventions (such as sending code) and even organisational skills (who
to ask).

The existence of this knowledge gap is the reason why university graduates
must therefore supplement their knowledge by means of auto-didactic learning.
This gap in curriculums has therefore led to the emergence of proposals for post-
graduate studies that will allow students to acquire the skills and knowledge
needed to become experts in free software. This type of studies includes not only
technological aspects, but also the management of projects, business models and
even philosophical aspects.

This paper is organised as follows: the methodology used in this research is
described in Section 2, while Section 3 shows a study carried out in order to create
a post-graduate course in free software in Ecuador. The results of the analysis
of post-graduate courses offered by some possible universities are presented in
Section 4, while our conclusions and future work are shown in Section 5.

2 Methodology

Much of the research that is carried out considers a literature review, although
the eventual objective is not the review in itself, but rather that it constitutes
a technique that can be used to understand the state-of-the-art of the theme
being tackled. What is more, a state-of-the art study constitutes the basis for
the formulation of proposals of greater reach.

Computing disciplines, of which software is one, are very recent in comparison
to other science disciplines, signifying that there are no methodologies with which
to guide the development of systematic reviews in them, Kitchenhan [7], therefore
proposed a method with which to carry out systematic [10] reviews that is based
on the guidelines developed for medical research which were adapted to be used
by a team of researchers in the sphere of software engineering.

In this research, the systematic review has been carried out by using the
Google Scholar search engine to search for references to ‘Master’s degrees in Free

Considerations Regarding the Creation of a Post-graduate Master’s Degree 125

Software’. The results and information obtained from its websites are shown in
the following sections.

3 Post-Graduate Studies in Free Software

According to the Royal Academy for the Spanish Language, a Master’s degree
is a post-graduate course in a particular speciality, while a post-graduate course
is a cycle of specialisation studies that take place after graduation.

The Higher Education Organic Law of Ecuador1, in Art. 120, defines it as
follows: “it is an academic degree which seeks to broaden, develop and explore
in greater depth a discipline or specific area of knowledge. It provides people
with the tools that will enable them to explore the field of knowledge in greater
depth, both theoretically and instrumentally”.

3.1 Openings for Professionals with Master’s Degrees in Free
Software

A Master’s degree in Free Software provides professionals with capacities in
the four areas defined in the professional capacities profile report generic to ICT
created by the Career-Space2 [9] consortium that are necessary to carry out their
activities as regards all that is related to the use, application and development
of In each of the areas, the qualification re-enforces the following professional
roles:

– Technicians in communications software development.

– Software project managers.

– Communication network designers.

– Application programmers.

– Software engineers.

– Information technology business consultants.

– Electonics business consultants.

– Business analysts.

– Information strategy management consultants.

– Systems implementation technicians.

– Integration systems technicians.

– Project managers ITC.

1 LOES by its acronym in Spanish: http://www.utelvt.edu.ec/LOES_2010.pdf
2 Career Space is a consortium that is formed of eleven ICT companies and analyses
the need to provide professionals with capacities in this sphere
http://www.space-careers.com/

http://www.utelvt.edu.ec/LOES_2010.pdf
http://www.space-careers.com/

126 S.R. Montes León et al.

3.2 Existing Free Software Master’s Degrees

The Internet has been used to search for academic offers of Master’s degrees in
Free Software in Europe and South America [8]. It has thus been possible to find
the following university entities, which offer the following studies3:

– Official Master’s degree in Free Software from the Universidad Rey Juan
Carlos4 (Madrid, Spain),

– Official Master’s degree in Free Software from the Universitat Oberta de
Catalunya (Open University of Catalonia)5 (UOC) (Catalonia, Spain),

– Master’s degree in Open Code Software from the University Institute of
Lisbon6 (ISCTEC, Lisbon, Portugal),

– Master’s degree in Free Software Engineering (MISWL) from the Polytechnic
Senior Lleida7 (Lleida, Spain),

– Master’s degree in Free Software from the Autonomous University of Buca-
ramanga8 (UNAB, Bucaramanga, Colombia),

– Master’s degree in Free Software from the Autonomous University of
Chihuahua9 (UNACHI, Chihuahua, Mexico),

– Master’s degree in Free Software from the University of Extremadura10

(Extremadura, Spain),
– and the Master’s degree in Software Open Source Management from the
University of Pisa11 (Pisa, Italy).

3.3 Analysis of Existing Master’s Degrees in Free Software

Having identified the Master’s degrees in Free Software, we shall now go on to
investigate each one in detail using the publicly provided information from their
websites. Table 1 provides a summary of the most important qualititive aspects
of these Master’s degrees, which are classified in the following manner:

– Country: This refers to the country in which the Master’s degree is offered.
– Modality: This refers to the mode of studies, such as (Physical presence,
Virtual).

3 Please note that this study is not intended to be complete, but is rather a repre-
sentative sample of Master’s degrees in Free Software. The authors would like to
apologise for any other initiative that has been omitted from this study.

4 http://master.libresoft.es. This Master’s degree is also offered in conjunction
with the Igalia company in Galicia

5 http://estudios.uoc.edu/es/masters-universitarios/software-libre/
6 http://iscte-iul.pt/cursos/mestrados/10702/apresentacao.aspx
7 http://www.udl.cat/estudis/masters_cast/programario_libre.html
8 http://www.unab.edu.co/portal/page/portal/UNAB/

programas-academicos/software-libre-virtual?programa=MSOL
9 http://www.uach.mx/investigacion y posgrado/2010/10/28/

maestria en software libre/
10 http://www.eweb.unex.es/eweb/msl/index.html
11 http://www.master.netseven.it/index.php?page=/master/home

http://master.libresoft.es
http://estudios.uoc.edu/es/masters-universitarios/software-libre/
http://iscte-iul.pt/cursos/mestrados/10702/apresentacao.aspx
http://www.udl.cat/estudis/masters_cast/programario_libre.html
http://www.unab.edu.co/portal/page/portal/UNAB/programas-academicos/software-libre-virtual?programa=MSOL
http://www.unab.edu.co/portal/page/portal/UNAB/programas-academicos/software-libre-virtual?programa=MSOL
http://www.uach.mx/investigacion_y_posgrado/2010/10/28/maestria_en_software_libre/
http://www.uach.mx/investigacion_y_posgrado/2010/10/28/maestria_en_software_libre/
http://www.eweb.unex.es/eweb/msl/index.html
http://www.master.netseven.it/index.php?page=/master/home

Considerations Regarding the Creation of a Post-graduate Master’s Degree 127

– Duration: Length of time that the Master’s degree course lasts.
– Professionals: Towards which type of professionals the Master’s degree is
oriented, such as: Information and Communication Technologies (ICT), Ge-
neral (any professional with a university degree).

– Credits: This refers to the ECTS.
– Placements: This refers to whether or not the student is required to partici-
pate in an industrial placement during the Master’s degree.

– Final Project: This refers to whether or not the student is required to produce
an end-of-degree project.

– Options: This refers to whether or not the Master’s degree contains optional
subjects.

– Agreement: This refers to whether or not the Master’s degree is carried out
via agreements with other universities.

– NK: This refers to the fact that Nothing is Known about the aspect in
question, and no information is provided on the website.

Table 1. Comparison of Universities Offering Master’s degrees in Free Software

Comparison of Universities Offering Master’s degrees in Free Software
Universities

URJC UOC ISTEC U Lleida UNAB UNACHI Extremadura U Pisa
Country Spain Spain Portugal Spain Colombia Mexico Spain Italy
modality Presence Virtual Presence Presence Virtual Presence Presence Presence
Duration 1 year 1 year 1 year 2 year 2 year NK 1 year 1 year
Professional General General ICT ICT ICT ICT ICT ICT
Credits 60 60 60 60 43 NK 60 60
Practices yes no no yes no Nk Nk Nk
Final Project yes yes no yes yes Nk Nk Nk
Electives yes yes no no no Nk Nk Nk
Agreement UOC no UOC no UOC Nk Nk Nk

The students for whom the Master’s degrees are intended are those with a
technical professional profile (ICT), since the objective of these degrees is to
study technology and skills in greater depth, thus supposing that the students
will already be knowledgeable as regards programming and engineering. Two
exceptional cases are those of the Master’s degrees offered by the URJC12 and
the UOC, since these universities have broadened their curriculums to include
any type of entrance profile and offer, on the one hand level 0 subjects in order
to allow students to attain the previous requirements for the subjects, and on
the other a wide range of subjects including those with a socio-technical element,
such as communication management, business models, etc

There are Master’s degrees which are taught both in the students’ physical
presence or virtually, although in the cases in which the students are actually
present, we have observed the use of an e-learning environment (generally Mood-
le13), which has led us to conclude that this type of teaching is, to a great extent,

12 http://master.libresoft.es
13 http://www.moodle.org

http://master.libresoft.es
http://www.moodle.org

128 S.R. Montes León et al.

backed up with on-line elements. The URJC explicitly states that its Master’s
degree is considered to be a form of blended learning, since many of the course
activities are carried out virtually, and the students’ physical presence is limited
to that required by law.

The majority of the Master’s degrees are designed to last one or two years, alt-
hough this is initially delimited by the students’ dedication. This signifies that the
most interesting column in the table is that which indicates the ECTS14 credits
that the student must exceed to obtain the degree. One ECTS credit is obtained
after an average of 25 hours’ work by each student, including classes in which they
are physically present, the preparation needed for these classes, the tasks and ac-
tivities carried out, exam preparation, and even the exams themselves. It will thus
be observed that, in general, Master’s degree students must exceed 60 ECTS cre-
dits, which is equivalent to a year’s work by the student. The academic years may
therefore be longer or shorter, depending on the amount of time available to the stu-
dent. The universities offer various possibilities in order to adapt to the students.
The Master’s degree at the URJC can therefore be obtained by solely attending
classes on Fridays – rather than Thursdays and Fridays – throughout a single aca-
demic year. The subjects that take place on Thursdays in even academic years are
moved to Fridays in the odd academic years, and vice versa. This facilitates the
students’ participation, since they are from professional environments, signifying
that their time is always limited. Another example is the UOCwhich allows its stu-
dents, who are generally professionals with families, to take the course at their own
pace, choosing 10 or 15 ECTS per course.

The design of the Master’s course curriculums may differ as regards certain
characteristics. We have therefore investigated three of these elements:

– The need to go on industrial placements. On some Master’s courses, the stu-
dents must show that they have had experience in professional environments
related to free software. They are therefore required to go on industrial pla-
cements at companies in the sector at which they gain experience. At some
universities agreements have not only been reached with software compa-
nies, but also with foundations, thus allowing the students to carry out the
practical element of the course in foundation projects.

– The realisation of an end-of-degree project. In order to obtain the degree
it is compulsory to produce an end-of course work which is, if possible, a
research work that is carried out by the student under the supervision of
a tutor. This work must be presented in the form of a report and must be
publicly defended in front of a committee.

– Options: The Master’s degree curriculums may offer a series of subjects from
which the students may choose. These options allow the student to specialise,
and are therefore highly advantageous. However, their drawback is that they
only make sense if there are a considerable amount of students enrolled on
the course.

14 ECTS (European Credit Transfer System) (BOE 2003). ECTS credits are established
by measuring the amount of work that the student has carried out both inside and
outside the classroom to pass a subject.

Considerations Regarding the Creation of a Post-graduate Master’s Degree 129

Table 2. Curricular Planning of Free Software Master’s Degree (URJC)

Name of subject Description of Minimum Content Type ECTS Seminars Character

Introduction to free software Introduction, motivations, definition and
history of free software. Introduction to
legal, economic, social and technological
framework of free software

theorist 3 1o obligatory

Legal aspects of free software Intellectual property, legal aspects, licen-
ces

theorist 3 1o obligatory

Economic aspects of free soft-
ware

Introduction to economic aspects of soft-
ware, types of business models, business
plans and case studies.

theorist 3 1o obligatory

Developers and their motiva-
tions

Profile of developers, motivations, roles
and leadership in free software. Evolution
of participation and integration program-
mes in projects

theorist-practical 3 1o obligatory

Free software development.
Tools

Development environments, version con-
trol systems, defect and task manage-
ment in free software projects. IDEs and
collaborative tools. Case studies specific
to free software project development

practical 3 1o obligatory

Free software project evalua-
tion

Introduction to software quality. Light
evaluation methodologies. Project infor-
mation extraction tools, quality evalua-
tion atomisation and specific case studies

practical 3 1o obligatory

Case studies I - II Free projects, including themes related to
technological, organisational, legal, eco-
nomic and governmental themes

seminary 9 1o y 2o obligatory

Free software Project manage-
ment

Introduction to free software Project
creation, Infrastructure, communication
and management of community elements

theorist 3 2o obligatory

Advanced free software deve-
lopment

Advanced tools and advanced technical
aspects of free software development.

practical 3 2o elective

System integration Introduction to systems administration,
storage, networks, security and virtuali-
sation with free software

practical 3 2o elective

Free software instalment Instalment of free software. Free softwa-
re in desktops and servers. Cost analyses,
requirements and study of infrastructure
deployment using free software

theorist 3 2o elective

Free software communities Free software communities from the em-
pirical viewpoint, data collection tools,
database management. Introduction to
the evolution of software and the study
of free software communities. Specific ca-
se studies

practical 3 2o elective

Industrial placements Industrial placements at companies practical 12 1o y 2o obligatory

End-of-degree project Development of Project focused on free
software

Project 12 1o y 2o obligatory

Finally, we have observed that many universities have recognised agreements
with the Open University of Catalonia (UOC). This allows students to begin
their studies by being physically present and then, if necessary, change to the
UOC, which is completely on-line.

3.4 Curricular Design

The Master’s degree curriculums are organised in a series of subjects. It is in-
teresting to note, as will be shown below, that there is a great similarity in the
Master’s degrees studied as regards the contents that are offered. This is be-
cause there have been many cases of close collaboration among the universities
that offer a Master’s degree in free software when designing their curriculums.
The Master’s degree that has been in existence for the longest period of time,
which is that offered by the Open University of Catalonia since 2003, is therefore
assessed by professors from the URJC. Since this was the first Master’s degree
on this theme, and owing to other universities’ agreements with the UOC, it is
possible to find this general schema in other Master’s degrees.

This paper shows the curricular design of the Master’s degree offered by the
URJC, which is divided into subjects of 3 ECTS (75 hours’ worth of dedication

130 S.R. Montes León et al.

per student), while that of the UOC has subjects of 5 ECTS (125 hours per
student). This signifies that the Master’s degree from the URJC, although it
has the same content as that of the UOC, is atomised to a greater degree, thus
permitting us to show the contents on offer in a better manner.

Table 2 shows the subjects in the Master’s degree at the Universidad Rey Juan
Carlos, together with a description of contents, the amount of ECTS credits, the
semester in which they are taught, and whether the subjects are obligatory or
optional. In order for this degree to be awarded the title of University Master’s
degree (the official title of the European Higher Education Area – EHEA – and
therefore valid in all the countries in the OECD), its course design had to be
approved by the Spanish ANECA agency (National Agency for the Evaluation
of Quality and Accreditation).

According to their type, the subjects can be classified as: (i) theoretical: sub-
jects taught with the purpose of the students acquiring knowledge; (ii) practical:
subjects which are focused on the acquisition of technological skills, with a highly
practical structure; (iii) seminaries: A cycle of talks, generally given by speakers
invited from the free software community, at which the students can gain first-
hand experience of the reality of the movement; and (iv) ohers: The practicum
and final work of the Master’s degree, explained previously.

The Master’s degree contains four optional subjects, of which two must be cho-
sen. Two itineraries are therefore recommended: (a) Technological, which consists
of the subjects Systems integration and Advanced free software development, and
is intended for those students who wish to develop a more technological profile;
and (b) Management, which consists of the subjects Free software installation
and Free software communities, and is intended for those students who prefer to
specialise in community management and consultation tasks at an organisational
and deployment level.

4 Analysis and Results

The analysis carried out has allowed us to conclude that, as is shown in Table 3
the Master’s degrees in free software offered by other universities share a schema
similar to that of the Universidad Rey Juan Carlos.

As will be noted, there are various common contents, although some subjects
are only offered by the URJC and are of two types: (a) The Case Studies I
and Case Studies II eminaries which, owing to their idiosyncratic nature, only
take place at the URJC, and (b) Subjects with which the URJC has research
experience, as is the case of Free software Project evaluation or Developers and
their motivations. In order to cover these subjects, the other Master’s degrees are
inclined to offer technological subjects related to GNU/Linux systems adminis-
tration, web application development or databases. Table 3 shows a comparison
of the universities that currently offer a Master’s degree in free software with
regard to the URJC’s schema of subjects.

Considerations Regarding the Creation of a Post-graduate Master’s Degree 131

Table 3. Analysis of Universities’ Subjects with Regard to the URJC

Analysis of Universities’ Subjects with Regard to the URJC
Subject URJC UOC ISTEC U LLEIDA UNAB UNACHI
Introduction to free software yes yes yes yes yes NK
Legal aspects of free software yes yes yes yes yes NK
Economic aspects of free software yes yes yes yes yes NK
Developers and their motivations yes no no no no NK
Free software development. Tools yes yes yes yes yes NK
Free software project evaluation yes no no no no NK
Case studies I yes no yes yes yes NK
Free software Project management yes yes no yes no NK
Case studies II yes no yes yes yes NK
Prácticum yes yes yes yes no NK
End-of-degree project yes yes yes yes yes NK
Advanced free software development yes yes yes yes yes NK
System integration yes yes no yes yes NK
Free software instalment yes yes yes yes yes NK
Free software communities yes no no no no NK

5 Conclusions and Future Work

This paper presents a study of the offers that are currently available as regards
post-graduate studies in the field of free software. It begins by arguing why it
is important to have experts in free software at present, and by explaining that
students finish their university studies without having attained the knowledge
and skills needed by the free software industry and community. Universities
and higher education establishments therefore have the possibility of teaching
these aspects by offering post-graduate degrees that are oriented towards those
professional profiles that wish to specialise in the area of free software [8].

Various European and South American post-graduate initiatives have been
found, and the degree of affinity as regards the content of their curriculums is
shown in Table 3, principally with regard to historic and organisational matters.
The curricular schema of the Universidad Rey Juan Carlos has therefore been
used, which provides details of: the existence of a general curriculum, along with
the materials available that facilitate the tasks of those universities that wish to
offer a Master’s degree in free software.

As will be observed in the section in Table 1 entitled ‘Analysis of existing
Master’s degrees in free software’, the research has not located any Master’s
degrees of this kind in English-speaking countries.

This research will continue to review whether professional university graduates
who have taken post-graduate degrees in free software have more possibilities of
obtaining employment. We shall also verify the evolution that the universities
offering Master’s degrees in free software have undergone.

Acknowledgements. This work has been funded by the Spanish Government
with the SobreSale project (TIN2011-28110), by the Comunidad de Madrid with
the Red de Excelencia eMadrid (S2009/TIC-1650), by the Prometeo Project of
the Ministry of Higher Education Science, Technology and Innovation of the

132 S.R. Montes León et al.

Republic of Ecuador, and by the SIGMA-CC project (Ministerio de Economı́a y
Competitividad and Fondo Europeo de Desarrollo Regional FEDER, TIN2012-
36904).

References

1. Alves, A., Stefanuto, G., Castro, P., Pessôa, M.: Brazilian public software and
quality, pp. 413–415 (2010)

2. Bouckaert, R.R., Frank, E., Hall, M.A., Holmes, G., Pfahringer, B., Reutemann, P.,
Witten, I.H.: Weka—experiences with a java open-source project. J. Mach. Learn.
Res. 11, 2533–2541 (2010)

3. Bouras, C., Filopoulos, A., Kokkinos, V., Michalopoulos, S., Papadopoulos, D.,
Tseliou, G.: Guidelines for the procurement of free and open source software in
public administrations, pp. 29–36 (2012), cited By (since 1996)

4. Chan, A.: Coding free software, coding free states: Free software legislation and
the politics of code in peru. Anthropological Quarterly 77(3), 531–545 (2004)

5. Haick, B., Klautau, A.: Free software tools for IT management and processes or-
ganization, vol. 1, pp. 219–223 (2013)

6. Honda, M., Kobayashi, M., Nagumo, M., Kawakatsu, Y.: Android software plat-
form development at fujitsu. Fujitsu Scient. and Tech. J. 49(2), 238–244 (2013)

7. Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Niazi,
M., Linkman, S.: Systematic literature reviews in software engineering - a tertiary
study. Information and Software Technology 52(8), 792–805 (2010)

8. Montes-León, S.R.: Propuesta para la creación de un máster en software libre en
la escuela politécnica del ejército extensin latacunga en ecuador. Trabajo fin de
máster, Universidad Rey Juan Carlos, España (Septiembre 2012)

9. Space, C.: Perfiles de capacidades profesionales genéricas de las tic. Centro Europeo
para el desarrollo de la formación profesional (Junio 2001)

10. vonWangenheim, C.G., Hauck, J.C.R., Salviano, C.F., vonWangenheim, A.: Syste-
matic literature review of software process capability/maturity models. In: Procee-
dings of International Conference on Software Process Improvement and Capabity
Determination (SPICE), Pisa, Italy (2010)

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 133–142, 2014.
© IFIP International Federation for Information Processing 2014

Lessons Learned from Teaching Open Source Software
Development

Becka Morgan1 and Carlos Jensen2

1 Western Oregon University, Monmouth, OR, USA
morganb@wou.edu

2 Oregon State University, Corvallis, OR, USA
cjensen@eecs.oregonstate.edu

Abstract. Free/Open Source Software allows students to learn valuable real
world skills and experiences, as well as a create a portfolio to show future em-
ployers. However, the learning curve to joining FOSS can be daunting, often
leading newcomers to walk away frustrated. Universities therefore need to find
ways to provide a structured introduction to students, helping them overcome
the barriers to entry. This paper describes two courses taught at two universi-
ties, built around a Communities of Practice model, and the lessons learned
from these. Suggestions and insights are shared for how to structure and evalu-
ate such courses for maximum effect.

Keywords: Free/Open Source Software, Education, FOSS.

1 Introduction

Free/Open Source Software (FOSS) is an increasingly important part of the compu-
ting eco-system [1]. Teaching students how to participate in FOSS projects not only
provides them with meaningful and highly marketable hands-on experience, it also
potentially helps ensure FOSS communities have enough qualified developers to draw
from to meet their needs. Supporting a growing and vital FOSS eco-system requires
us to grow the pool of potential contributors. While working things out from first
principles by yourself has been the traditional way of learning how to contribute to
FOSS, this is a very inefficient model, and unlikely to meet growing needs.

Newcomers to FOSS often have a difficult time finding an entry point into a pro-
ject. Barriers to entry include documentation that is incomplete and/or not up to date,
no response from community members when questions are asked, and the need to
learn a new set of tools in order to participate[2]. While braving the learning process
and overcoming the many obstacles on your own is seen as a badge of courage,
we believe there is ample room for improvement, and a need for a guided and more
structured learning experience.

Beyond the economic/market arguments, as educators we have a duty to look to-
wards the needs of our students, and how to best prepare them for the jobs of tomor-
row. Experience with, and the ability to participate in FOSS development is becoming

134 B. Morgan and C. Jensen

a critical skill, as companies increasingly adopt FOSS[3], and even when not using
FOSS, look for FOSS experience in their hiring. According to David Heinemeyer
Hansson, a partner at the software development firm 37signals, “Open source is a
golden gift to the hiring process of technical people. It reduces the risk enormously by
allowing you to sample candidates over a much longer period of time” [4].

As FOSS projects give students a unique way of developing real-world skills and ex-
perience, as well as providing prospective employers with tangible proof of their skills,
it is important for universities to develop class-room models to teach more students how
to participate in FOSS. Some universities have been experimenting with such courses,
and this paper describes two different approaches to teaching students how to navigate
the joining process and contribute to a FOSS project. One instructor focused on build-
ing on a collaborative “communities of practice” model, while the other on a more tradi-
tional classroom model. This paper compares and contrasts the two models different
models, each used twice at different universities. It discusses the outcomes, lessons
learned, and provides guidance to those contemplating developing their own courses on
this topic.

2 Related Work

Work has been done looking at how to incorporate FOSS into CS curriculum, and
even how to use FOSS projects as a way of recruiting students looking to have more
real-world impact. One such effort is the Humanitarian FOSS project (HFOSS) [15].
This curriculum focuses on creating enthusiasm and engagement around participation
in HFOSS, primarily among non-traditional CS students. Through this effort they
seek to provide compelling use-cases and activities that will motivate a wide range of
student groups, and be able to effectively leverage diverse backgrounds and experi-
ences to solve real-world problems [9, 16].

The HFOSS project has also influenced other curriculum efforts, most notably the
“Professors Open Source Summer Experience” (POSSE), sponsored by Redhat [5].
This effort is aimed at teaching college professors about FOSS, about FOSS tools, and
how to introduce FOSS into their curriculum. This paper focuses on lessons learned
from using the “go it alone” model, then incorporates information gained from attend-
ing POSSE to outline an improved curricular model designed to support students in
overcoming the barriers to entry. In addition, there have been a number of efforts
designed to produce curriculum around FOSS, such as the Teaching Open Source web
community [6], which shares curriculum online. We build on both lessons and mate-
rials from POSSE, as well as our own personal experiences.

There is a preponderance of literature written about FOSS looking at who already
contributes. Surveys have been conducted to look at who is participating in FOSS [7,
8, 9]. This provides us with a look at the demographics of contributors. There is also
research into the motivation of FOSS developers [10, 11, 12, 13] looking at why de-
velopers volunteer time to work on FOSS projects. Additionally there is a body of
work that considers the “newbie” experiences approaching and joining FOSS projects
[14, 15, 16], a great deal of which focuses on the lack of diversity within FOSS

 Lessons Learned from Teaching Open Source Software Development 135

developer populations and ways to affect change [15, 17, 18]. What is lacking from
this body of work is a robust foundation for creating a pedagogical approach for cur-
riculum that supports a platform for “newbies” to become involved.

To address this issue, both instructors decided to build on the Communities of
Practice (CoP) theory, though to different degrees. Efforts aimed at supporting diver-
sity in CS classrooms often builds on, implicitly or explicitly, the CoP framework
(e.g. pairs programming [19, 20] and peer mentoring [21]). Research shows that
women often turn away from CS, at least in part, because they are not shown what
they can do with their knowledge in real life [22]. What they lack is the introduction
to the CoP that they are joining.

Wenger defines communities of practice as “groups of people who share a concern
or a passion for something they do and learn how to do it better as they interact regu-
larly” [23]. This mirrors the FOSS way of doing things, and could serve as a theoreti-
cal framework for designing effective interventions. Wenger goes on to describe
“three dimensions of the relation by which practice is the source of coherence of a
community” [24]. These three dimensions are:
1. Mutual Engagement – practice exists in the relationships between people, devel-

oped as they engage in practice, whose meanings are negotiated with one another.
Diversity is important in this engagement as each person brings different skills and
competency to the practice.

2. Joint Enterprise – the enterprise the community is engaged in is defined by nego-
tiation. The enterprise is thus defined by participants as it develops. This gives
each participant a deep feeling of ownership of the enterprise and accountability to
the community.

3. Shared Repertoire – as the enterprise is negotiated shared resources are developed.
This includes artifacts, and routines, words, tools, stories, symbols, actions and
concepts that are negotiated over time [24].

CS courses have traditionally focused on individual achievement and competition
rather than cooperation, which does not reflect industry models, more focused on
group accomplishments and team work [25]. The use of techniques such as pairs pro-
gramming, a cooperative model of learning and development, has been proven bene-
ficial [19]. Technical careers often rely on teamwork, and many companies use agile
methods and extreme or pair programming.

Research conducted by POSSE participants has shown that it is both possible to
teach students to participate in FOSS in a classroom setting, and that students find
participating in Humanitarian FOSS (HFOSS) projects especially rewarding [26]. It is
important now to create a body of literature that addresses the specific approaches that
lead to success, failures and lessons learned, in order to provide a robust platform
from which to develop more specific curriculum.

3 Learning Objectives and Pedagogic Approach

This paper details the experiences of two instructors teaching two independent cours-
es in FOSS development at two separate universities over the course of two years.

136 B. Morgan and C. Jensen

The courses were taught using slightly different pedagogical styles, one providing
more structure and guidance, as well as having a strong emphasis on in-class
collaboration (Course A), and the second (Course B) following a more free-form in-
dividual-based structure. Both courses were built around the concept of building a
CoP in the class, though to different degrees.

The goals of the two courses were the same: Providing students with the cultural
and technical background to make a first contribution to a FOSS project, and the abil-
ity to identify future opportunities for contribution. The approach to meeting these
goals was to provide a guided and structured process for navigating a joining process
typically fraught with uncertainty and pitfalls. That said each instructor tailored the
objectives to suit their target audience and class structure.

Course A was taught twice over two consecutive years at a small teaching universi-
ty. Students in the first year course had junior and senior standing in Computer Sci-
ence. A total of twenty-nine students were enrolled in the course. Students all worked
on the same FOSS project and worked in teams to facilitate contribution. In the se-
cond year the course was opened up to upper class undergraduates in information
systems and graduate students in management and information systems. There were a
total of nine undergraduates and five students in the Masters program. Lessons were
more guided and contributions were considered more broadly based on lessons
learned from year one.

Course series B was taught twice over two consecutive years at a research universi-
ty. The course was primarily offered to seniors and juniors in Computer Science, and
followed a more traditional course model, where students picked their own projects to
work on, and each student was responsible for their own coursework. There were
twenty-four students in year one, and nineteen in year two.

Students were given some guidance in picking a project (more so in year 2 than
year 1, when the lessons learned from the first year students were shared with the 2nd
year students). This guidance was largely centered on specific projects to avoid
or join, and organizational issues to look out for (active bug-tracker, up to date
documentation, welcoming IRC/mailing list, etc.)

Both courses were designed to achieve the similar learning outcomes as follows:
1. Knowledge -

(a) Give a definition of FOSS
(b) Discuss the history of FOSS
(c) Identify where to get answers to questions about Ubuntu. (A only)

2. Comprehension -
(a) Explain the socio-political and technical workings of a FOSS project (B only)
(b) Identify and summarize the workings of FOSS tools

3. Application
(a) Map a generic path for joining an FOSS
(b) Make use of FOSS tools (e.g., version control, bug tracker, IRC)

4. Analysis
(a) Identify a project to contribute to (B only)
(b) Identify potential resources and key stakeholders (B only)
(c) Identify areas of participation using current skills (A only)

 Lessons Learned from Teaching Open Source Software Development 137

(d) Separate research of the areas discovered to be addressed by individual group
members (A only)

5. Synthesis
(a) Assemble individual research into a plan to gain entry into an aspect of Ubuntu

(A only)
(b) Devise a plan as a group to contribute, using additional input from Ubuntu

mentors (A only)
(c) Make three contributions to a project (B only)

6. Evaluation
(a) Explain to other groups how to complete tasks in one area of the Ubuntu pro-

ject (A only)
(b) Document contribution, and present to class (B only)

4 Course Design

4.1 Course A

Course A was designed around cooperative learning. The Ubuntu project was chosen
for all students to work on to remove uncertainty and facilitate in-class collaboration.
Ubuntu is a community that is known to be welcoming, has extensive documentation,
and the availability of mentors. In addition to mentors, students also had access to
weekly meetings of Ubuntu contributors and a prerelease Global Jam toward the end
of the term. The Global Jam is an Ubuntu coordinated event uniting community
members worldwide to improve the Ubuntu project. Students had several choices for
how to contribute, including documentation, design, development, bug triage, and
testing. Students were assigned to groups based on their area of interest. Each student
had a mentor assigned to them.

As a co-operative classroom the course was taught in a lab, giving students ample
hands-on experience. There were no lectures in this course; rather time was spent in
discussion. If a group hit a barrier they could not overcome, they either sought help
from other groups, mentors or the instructor. The term was divided with the beginning
focused on history and culture, both of FOSS in general and Ubuntu specifically,
followed by an introduction of tools used in FOSS, including IRC, version control,
and bug-trackers. This work was used as the foundation for contribution.

After the first four-week introduction, students began to focus on contributions. As
a starting point all students were assigned to bug triage, documentation, or testing.
Students were required to make at least one contribution to the Ubuntu project.
Groups worked to gather information from the Ubuntu documentation and their men-
tors to complete this assignment. Students were assessed based on participation in
their team (30%), attendance (30%), and contributions to Ubuntu (40%). The final
piece took into consideration the difficulty of the contribution. Fixing a bug title did
not carry as much weight as testing code or creating quick lists (a dropdown menu in
Ubuntu Unity giving quick access to common tasks for applications).

138 B. Morgan and C. Jensen

4.2 Course B

Course B was designed to more closely mirror the typical lecture-based classroom
experience, as well as give students more flexibility in what they wanted to get in-
volved in. Self-motivation, the desire to scratch your own itch, is an important part of
what drives FOSS contributors. This freedom of course comes at a cost; there are no
guarantees that students won’t pick hostile or non-productive projects, and the guid-
ance and support that they can receive from the rest of the class and instructor are
limited because each project is likely to differ in terms of tools used, customs, and
availability of documentation. We chose to use this structure for this class because
the student population was deemed to be more mature and experienced, and thus
potentially better able to deal with potential setbacks.

Despite the divergence in projects, and that each student worked independently,
there was an important social component, building on the CoP theory. There were
weekly oral status reports before the whole class, and more lengthy bi-weekly experi-
ence reports and discussions. Students shared their progress, lessons learned, and
pitfalls encountered, and gave each other advice on how to proceed. This helped build
shared repertoire, and mutual engagement, key components to a CoP.

Lectures were based on materials from The Cathedral and the Bazaar [27] and
Producing Open Source Software [28]. Most of the lecture time was aimed at
providing students with the required background, including an understanding of pro-
cess, and the tools used in FOSS. A lot of the technical material was front-loaded to
get students up and running quickly, and the second half of the course was designed
around discussions of open problems in FOSS and speakers talking about their
projects.

Students were evaluated through a midterm and final exam focusing on the histori-
cal, political and licensing frameworks of FOSS (30% total grade). They had small
assignments distributed through the early part of the term aimed at helping them get
familiar with the organization of a particular project, and the tools used in said project
(org overview and mapping of resources; use of IRC and mailing lists; and code
repository and bug tracking). This accounted for 20% of their grade.

The remaining 50% was distributed over 3 contributions of the students choosing
to their project of choice (bug report, documentation, testing or code patch, no more
than 2 of any one). Contributions had to be accompanied by a report reflecting the
importance of the work, and the process followed to create and submit it to their pro-
ject. Students had bi-weekly project reports and updates to their classmates, which
kept everyone up-to-date, and helped disseminate best practices and pitfalls.

Because of the short duration of a term and the long review process associated with
many projects, contributions were graded by the amount of effort and whether the
process was adequate rather than whether the contribution was ultimately accepted.
Acceptance was nice, but not always achievable to a true novice on the first try.

 Lessons Learned from Teaching Open Source Software Development 139

5 Results

The final analysis of course A showed that in year one 25 out of 30 students (83%)
made some contribution to the project. Out of those 25 students 16 (53% of the total)
made more than five contributions of varying degrees of difficulty. Additionally 3 out
of 5 women and 4 of 6 non-white were part of the groups thathad the highest perfor-
mance levels. Analysis of year two shows that 11 out of 14 students (79%) made con-
tributions to the project and of those 11 students 5 (45%, of the total) made more than
five contributions. Given the difference in skill sets due to the mix of CS, IS and MIS,
the level of contribution was not considered in year two.

Course B similarly had a high degree of success, with 19 of the 24 students com-
pleting their three contributions in a satisfactory manner in year one (79.2% of stu-
dents), and 17 of 19 students (89.5% of students) in the second year. Of those who did
not complete all three assignments, all completed at least one contribution in year one,
and two in year two. For the second year, student evaluations indicated that this was
one of the most worthwhile courses the students had completed, and more than half
the students indicated that they intended to continue working on the project they had
chosen. For the first year, evaluations were mixed, primarily due to frustration with
the projects they had selected and issues of non-responsiveness and lacking or mis-
leading documentation, and fewer than a quarter of students expressed an interest in
continuing their work on the projects after the end of the class.

6 Discussion and Lessons Learned

While it is difficult to objectively evaluate the effectiveness of the courses we de-
signed, other than in terms of meeting their learning objectives, we judge them to
have been a success. Joining a FOSS project for the first time is a very time-
consuming and uncertain process, and for most students, either course helped them
successfully navigate the learning process in a very limited amount of time.

As should be evident from the description of the courses presented, a significant
amount of the learning was still self-directed; the students had to figure out what to do
for themselves. What the course did provide was a social and technical context for
doing so. The class gave them a goal, helped explain some of the organizational and
cultural issues they were previously unfamiliar with, and the understanding that this
process is difficult, and that it is OK to be lost. With this context, the students were
largely able to navigate the process with some minimal support and encouragement.

Though we only have anecdotal evidence to support this, we found that the social
context, the CoP framework that we sought to build, was immensely valuable. While
many students initially were reluctant to admit problems or failures, and indeed would
likely have struggled in silence with these until they succeeded or gave up, by the
midpoint of the course there was a definitive feeling of camaraderie among the stu-
dents. They shared their frustrations with each other openly, and were able to offer
advice and coaching to each other unprompted. Forming in-class teams or not does
not seem to have been a factor for success or failure.

140 B. Morgan and C. Jensen

That said, we did experience some significant problems in our courses. The open-
ness of course A (make any number of contributions of any kind) coupled with the
size of the Ubuntu project turned out to be a significant obstacle. As a result students
reported being overwhelmed and unable to find a place to begin. It is worth noting
that students who interacted with their mentors and each other on a regular basis
found it easier to contribute to the project. It became apparent that the course needed
more structure and direction. Students also needed to be taught how to use their men-
tors to gather information. Just providing mentorship did not ensure that students
knew what to ask or how to get started talking to their mentors.

Course B was in some ways more open than Course A, but students were directed
to either smaller projects, projects they already had experience with, or projects that
had an established mentor network. The expectations in terms of contributions were
better defined however. Fewer students reported being overwhelmed as a result.

Because of the openness of course A, evaluation was difficult. Grades were based
on participation, contribution, and attendance. The difficulty evaluating students
stemmed from not having clear guidelines and expectations. This, coupled with the
lack of structure and overwhelming size of the project, pointed to a solution that
would address all three problems. Using a smaller project written in a language stu-
dents had experience with would provide students with a more moderate learning
curve. The course needed assignments to provide the means to gain access to the pro-
ject, but also as a means to evaluate students’ work. Course B on the other hand
turned out to be much easier to evaluate, and the exams and minor assignments helped
students feel less worried about their grades.

The end result of using Ubuntu was the realization that the project was too large.
Although there were many places to participate, and the community was very wel-
coming, most of the students reported being overwhelmed with the documentation of
the project. While the documentation was exhaustive, the sheer volume made it diffi-
cult for students to find answers to their questions and a place to start. Fifteen out of
twenty-seven students listed being overwhelmed by the amount of documentation
and/or finding an entry point into the project because it was so large.

Not picking a project for students however led to more work for the instructor, and
some additional uncertainty among students early in the term, but in the second year
we developed guidelines for selecting better projects, and students were more devoted
to their tasks.

These courses will continue at both universities, and the curriculum is available
for others seeking to adopt or design their own curriculum <links to be shared after
review>.

7 Conclusions

Using FOSS in higher education serves both the students – by providing real
world experience, as well as the FOSS community – by growing a pool of potential
developers. Courses that emphasize hands-on experience and the completion of real
contributions to real FOSS projects were able to achieve a very high success rate.

 Lessons Learned from Teaching Open Source Software Development 141

Following a CoP model, whether strictly or loosely interpreted, contributed to this
success, and helped students overcome the confusion and frustration of dealing with
an often unstructured learning challenge.

References

1. Deshpande, A., Riehle, D.: The total growth of open source. Open Source Dev. Communi-
ties Qual., 197–209 (2008)

2. Shibuya, B., Tamai, T.: Understanding the process of participating in open source commu-
nities. In: ICSE Workshop on Emerging Trends in Free/Libre/Open Source Software
Research and Development, FLOSS 2009, pp. 1–6 (2009)

3. Trapasso, E., Vujanic, A.: Accenture Newsroom: Investment in Open Source Software Set
to Rise, Accenture Survey Finds (2010)

4. Hansson, D.H.: Reduce the risk, hire from open source (2005),
http://www.loudthinking.com/arc/000505.html

5. Ellis, H.J., Chua, M., Hislop, G.W., Purcell, M., Dziallas, S.: Towards a Model of Faculty
Development for FOSS in Education

6. Teaching Open Source,
http://teachingopensource.org/index.php/Main_Page

7. Ghosh, R.A., Glott, R., Krieger, B., Robles, G.: Free/libre and open source software: Sur-
vey and study. Maastricht Economic Research Institute on Innovation and Technology,
University of Maastricht, The Netherlands (June 2002)

8. David, P.A., Waterman, A., Arora, S.: FLOSS-US: the free/libre/open source software
survey for 2003. Stanf. Inst. Econ. Policy Res. (2003),
http://www.Stanf.Edu/group/floss-Us (accessed September 20, 2004)

9. Lakhani, K., Wolf, B., Bates, J., DiBona, C.: The boston consulting group hacker survey.
Boston Consult. Group (2002)

10. Hars, A., Ou, S.: Working for free? Motivations of participating in open source projects.
In: Proceedings of the 34th Annual Hawaii International Conference on System Sciences,
p. 9 (2001)

11. Hertel, G., Niedner, S., Herrmann, S.: Motivation of software developers in Open Source
projects: an Internet-based survey of contributors to the Linux kernel. Res. Policy 32,
1159–1177 (2003)

12. Roberts, J.A., Hann, I., Slaughter, S.A.: Understanding the motivations, participation, and
performance of open source software developers: A longitudinal study of the apache pro-
jects. Manag. Sci. 52, 984 (2006)

13. Ye, Y., Kishida, K.: Toward an understanding of the motivation of open source software
developers. In: Proceedings of the 25th International Conference on Software Engineering,
pp. 419–429 (2003)

14. King, S., Kuechler, V., Jensen, C.: Joining Free/Open Source Software Communities An
Analysis of Newbies’ First Interactions on Project Mailing Lists. Presented at the 2011
44th Hawaii International Conference on System Sciences, January 1 (2011)

15. Kuechler, V., Gilbertson, C., Jensen, C.: Gender Differences in Early Free and Open
Source Software Joining Process. In: Hammouda, I., Lundell, B., Mikkonen, T., Scacchi,
W. (eds.) OSS 2012. IFIP AICT, vol. 378, pp. 78–93. Springer, Heidelberg (2012)

16. Park, Y.: Supporting the learning process of open source novices: an evaluation of code
and project history visualization tools (2008)

142 B. Morgan and C. Jensen

17. Byfield, B.: Sexism: Open Source Software’s Dirty Little Secret - Datamation,
http://www.datamation.com/osrc/article.php/3838186/
Sexism-Open-Source-Softwares-Dirty-Little-Secret.htm

18. Levesque, M., Wilson, G.: Women in software: Open source, cold shoulder. Softw. Dev.
(February 20, 2005), URL Consult.,
http://www.Sdmagazine.Com/documents/s=9411 (2004)

19. McDowell, C., Werner, L., Bullock, H.E., Fernald, J.: Pair programming improves student
retention, confidence, and program quality. Commun. ACM 49, 90–95 (2006)

20. Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., Balik, S.: Improv-
ing the CS1 experience with pair programming. ACM SIGCSE Bulletin, 359–362 (2003)

21. Cohoon, J.M.G., Gonsoulin, M., Layman, J.: Mentoring computer science undergraduates.
Hum. Perspect. Internet Soc. Cult. Psychol. Gend. 4, 199–208 (2004)

22. Margolis, J., Fisher, A.: Unlocking the clubhouse. MIT Press (2002)
23. Wenger, E.: Communities of practice: A brief introduction (2006) (retrieved October 1,

2008)
24. Wenger, E.: Communities of practice: Learning, meaning, and identity. Cambridge Univ.

Pr. (1998)
25. Howell, K.: The experience of women in undergraduate computer science: what does the

research say? ACM SIGCSE Bull. 25, 1–8 (1993)
26. Morelli, R., Tucker, A., Danner, N., De Lanerolle, T.R., Ellis, H.J., Izmirli, O., Krizanc,

D., Parker, G.: Revitalizing computing education through free and open source software
for humanity. Commun. ACM 52, 67–75 (2009)

27. Raymond, E.S.: The cathedral and the bazaar: musings on Linux and open source by an
accidental revolutionary. O’Reilly & Associates, Inc. (2001)

28. Producing Open Source Software, http://producingoss.com/

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 143–146, 2014.
© IFIP International Federation for Information Processing 2014

A Successful OSS Adaptation and Integration
in an e-Learning Platform: TEC Digital

Mario Chacon-Rivas1 and Cesar Garita2

1 TEC-Digital,
Costa Rica Institute of Technology (TEC), Cartago, Costa Rica

machacon@itcr.ac.cr
2 Computing Research Center, School of Computer Science,

Costa Rica Institute of Technology (TEC), Cartago, Costa Rica
cesar@itcr.ac.cr

Abstract. E-learning projects in many universities are focused on adapting or
installing a software platform to upload teaching materials and sometimes to
open discussion forums. However, it is totally possible to extend the learning
management system (LMS) as a complete service platform for students and
instructors including more advanced services. This paper shows the progressive
integration of services and applications in TEC Digital as the open source
e-learning platform of the Costa Rica Institute of Technology. This integration
experience could be used as a case of study for other universities.

1 Introduction

In 2008, the Costa Rica Institute of Technology (TEC) started a project called TEC
Digital to renew its LMS (Learning Management System) platform. The general
objective of TEC Digital was to incorporate ICT in the development of teaching
activities at TEC [1]. One of the main requirements then was that it should be open
source [2]. Thus, the open source strategy that guides the architecture of TEC Digital,
offers a high degree of extensibility which has led to the development of novel tools
in the areas of instructional design, m-learning, adaptive learning, business
intelligence, usability, and competence management, among others.

This paper shows the progressive integration of services and applications in the
TEC Digital e-learning platform. This work could be used as case of study for other
universities facing the problem of integrating e-learning technologies using OSS.

2 Related Work

During the last two decades, many papers can be found concerning the comparison
and adoption of LMS in universities [3][4]. There are different justifications for
adopting one LMS or the other, based on given technical criteria [5]. In particular,
there are several studies about Free/Libre Open Source Software (FLOSS) adoption in
public sector and in e-learning. For instance Rossi et al, in [6], enumerated several

144 M. Chacon-Rivas and C. Garita

individual, technological, organizational and environmental factors to be considered
in OSS adoption. Also, in [7] the FLOSS community presents a useful study of
adoption models and myths around open source solutions. In [8], a comparative
analysis is presented regarding FLOSS LMS, and one of the main conclusions is that
despite technical functionalities, the final decision is greatly affected by end user
needs.

In terms of open source LMS architecture approaches, there are several works fo-
cusing on extensibility and service integration. In [9], an extendable open source ar-
chitecture of e-learning systems is presented, based on core components and optional
extensions. In [10], a service-oriented architecture for LMS is discussed to support
interoperability between LMS and different systems and databases. The architecture
of TEC Digital follows these principles of extensibility and interoperability in order to
support the development of novel components, as described in the next section.

3 Integrating Services in TEC Digital

The process of adaptation and integration of the full e-learning system at TEC has
involved the following main tasks or stages:

(1) Adoption of .LRN LMS within the university.
(2) Integration of internal information sources into .LRN.
(3) Integration of complementary services and applications.
(4) Development of novel complementary components.
These tasks are briefly explained in the following subsections.

3.1 Adopting .LRN

In TEC, the adoption of the LMS was based on a comparison study between different
platforms such as Moodle, Sakai and .LRN. In the end, .LRN was selected mostly due
to its virtual community management, portal creation and interface design. The main
issues compared against those LMS included: technical staff, interface design,
adaptability to our internal organization, community use and development support.
Once the LMS was chosen, a pilot plan was started involving a group of instructors
from a few schools. Then, in 2009 .LRN was officially adopted as institutional
platform and it has been consolidated through daily use.

3.2 Integration of Internal Information Sources

It is very common that universities have the LMS installed on one platform and the
administrative and academic information located on other different platforms. In TEC
case, the academic and administrative information systems are based on a Microsoft
platform. The .LRN architecture is based on open source solutions including
PostgreSQL, OpenACS, AOLServer. In order to integrate information services

 A Successful OSS Adaptation and Integration in an e-Learning Platform: TEC Digital 145

from the internal university sources (e.g. student admission and registration
department), a service-oriented architecture was implemented. This integration
architecture allowed the addition of several features and tools such as: automatic users
account creation from registry database, student/instructor profiles, and communities
matching the internal organization.

3.3 Integration of Services and Applications

The TEC academic community requires several services and applications offered by
third parties to support teaching and regular activities. Some of those services are:
Web2Project, Munin, Limesurvey, CmapServer, OJS, GIT, Dspace. The integration of
these components has been mostly done using OpenLDAP and integrating some
functions internally into the LMS.

3.4 Development of Novel Components

Besides integrating existing services and components, TEC Digital has the objective
of complementing (improving) the LMS platform with some advanced functionalities
or tools for students and teachers as well as university managers and collaborators.
Some of the components developed “in-house” that have been successfully integrated
with .LRN include: Instructional Design Generator (course planning), Mobile Course
(app for course information access), and Learning Activities Manager (evaluation).
Please notice that the adoption and integration of the services and components
described in this section, demands a highly extensible system architecture, based on
well-defined layers, web services and protocols.

Through the described services and components, TEC digital manages around
12125 students, 1026 instructors, 148 virtual communities, 4481 courses, and 8500
user accesses by day.

4 Conclusions

Some of the major benefits for our university generated by TEC Digital open source
solutions include: reduced software license costs, seamless integration of university
systems, capacity building in open source solutions and perhaps, the biggest benefit of
OSS investment is that the organization is the “owner” of its products and solutions.

On the other hand, there are some considerations regarding the use of OSS that
should not be underestimated: the use of OSS in an organization and in particular at
universities, must be carefully planned in several dimensions; the technical skills re-
quired for technicians supporting OSS platform can be different than in other plat-
forms; the use of OSS does not mean no investment, the organization must invest in
support, adaptation, integration and others, and finally, the definition and coordination
of the technical team can be quite complex.

146 M. Chacon-Rivas and C. Garita

References

[1] Garita, J.A., Alpízar, I., Chacón-Rivas, M.: OpenACS/dotLRN integration with ITCR
platform. In: 8th OpenACS/dotLRN Conference, Cartago, Costa Rica, pp. 27–35 (2009)

[2] Garita, C., Chacón-Rivas, M.: TEC Digital: A case study of an e-learning environment
for higher education in Costa Rica. In: Proceedings of ITHET 2012. IEEE Proceedings
ITHET, pp. 1–6 (2012)

[3] Ozkan, S., Koseler, R.: Multi-Dimensional Evaluation of E-Learning Systems in the
Higher Education Context: An Empirical Investigation of a Computer Literacy Course.
Presented at the 39th ASEE/IEEE Frontiers in Education Conference, pp. 1–6

[4] Aberdour, M.: Open Source Learning Management Systems. In: EPIC (2007)
[5] Moreno, P., Cerverón, V.: Plataforma tecnológica para potenciar los procesos de

enseñanzaaprendizaje: desarrollo en la Universitat de València basado en software libre
y colaborativo. In: Proc: SIIE 2006. VIII Simposio Internacional de Informática
Aplicada a la Enseñanza (2006)

[6] Rossi, B., Russo, B., Succi, G.: Free/Libre Open Source Adoption in the Public Sector:
Current State and Lessons Learnt

[7] FLOSSMetrics project, http://flossmetrics.org/ (accessed October 13,
2010)

[8] Fernandes, S., Cerone, A., Barbosa, L., Papadopoulos, P.: FLOSS in Technology-
Enhanced Learning,
http://mlab.csd.auth.gr/index.php/gr/publications?view=
publication&task=show&id=44 (accessed January 24, 2014)

[9] Khan, M.A., UrRehman, F.: An Extendable Open Source Architecture of e-Learning
System

[10] Jabr, M.A., Omari, H.K.: E-learning management system using service oriented archi-
tecture. J. Comput. Sci. 6(3), 285 (2010)

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 147–152, 2014.
© IFIP International Federation for Information Processing 2014

Smart TV with Free Technologies in Support
of Teaching-Learning Process

Eugenio Rosales Rosa, Abel Alfonso Fírvida Donéstevez,
Marielis González Muño, and Allan Pierra Fuentes

University of Informatics Sciences, School 1, Free Software Center
San Antonio de los Baños Highway, Km 2 ½, Torrens, Boyeros, Havana, Cuba

{erosales,aafirvida,mmuno,apierra}@uci.cu,
http://www.uci.cu

Abstract. The digital divide created between Cuba and the rest of the world has
forced us to use alternative technologies in order to preserve and strengthen the
achievements of the Revolution in the field of education. One of the actions
undertaken in this regard consists of making audiovisual equipment and media
become a supplementary element of the teacher’s educational work, and thus
ensuring the rational use of the aforesaid media. This paper shows how to use a
new trend of information technology and communications, using hybrid or
smart TVs. This low-cost solution for low energy consumption, conceived as
part of the educational process at all levels of the Island, provides some tech-
nical aspects and also shows, in the outline, some other ideas for incorporating
this technology into the teaching-learning process. The results of laboratory
tests are likewise shown.

1 Introduction

The birth of Information and Communication Technologies (ICT) has brought about
deep changes in the structure of teaching aids, by adding some new tools and
changing the existing, more traditional methods and techniques. These changes have
also influenced the way of using teaching aids, since they have contributed to the
optimization of newer techniques involved in the process of learning, granting more
access to it (Bravo, 2004).

Television is one of those teaching aids which have since long transformed educa-
tion inside and outside the school. By the early Seventies, cartoons made for children
in the Soviet Union played a major educational part, and the year 1985 would see the
emergence of Discovery Channel in the United States, thus becoming the first
worldwide learning channel.

In Cuba television sets are used as teaching aids since 1961, when they were first
use during the literacy campaign was on its way. Later on, by the year 1968, a series
of televised programs was conceived with the aim of supporting classes in elementary
and high schools.

148 E.R. Rosa et al.

During the 2000 – 2001 school year, the initiative of using television as a teaching
aid was taken up again and in some elementary, junior and senior high schools, a
television set was used for every 100 students. At that time, the materials for teaching
students only reached the audience as part of other programs broadcast by the national
Cubavisión channel. All along the 2001 - 2002 school year, each of the 9970 schools
(Cuba, 2010) received a TV set per classroom. The total figure of televisions reached
the number of 109.117 and they came along with some other 40.858 video cassette
players (VICENT, 2005). This major boost for education was firmly intended to
extend the range of teachers’ options to enrich their classes, by replacing expensive
teaching aids with audio-visual materials in a more interactive way. Two more
learning channels were conceived, with the purpose of broadcasting televised classes
and educational multimedia that would back up the teaching process.

The University of Computer Sciences (UCI) was inaugurated in the year 2002.
Within the university, as part of the back-up equipment and of the upgrading of the
educational system, at least two TV sets and a computer were placed in each
classroom, as well as other devices allowing the connection with the aforementioned
machines. Different television channels were opened for the broadcast of televised
classes, consultation and other educational materials. Besides, there was a website
that granted access to any of those resources at anytime from a computer.

From what has been said, one can conclude that since the economic situation of the
country is not at its best, it would be advisable to look for cheaper alternatives (so as
to be able to replace and/or repair the computers in case of damage) and a lower
energy consumption (to grant a rational use) for the technologies used in classrooms
all over the country.

And then? How could a teaching aid based on ICT be used as a supplement to the
teaching process and be likewise as cheap and energy-saving?

The aim of the present research is to design a teaching aid based on ICT, using
low-cost and energy-saving elements that can be used as a supplement to the teaching
process.

2 Smart Television

A smart television (STV) is made up by a television designed to process and store
data like a normal computer, allowing users to watch their favorite programs by
request, without being overwhelmed by the flood of repetitive TV commercials.
Instead, commercials appear in the guise of inserted messages or gadgets or over the
broadcast itself. This kind of equipment may also take in games, applications and be
able to interact with Internet through the e-mail, instant messages or Web surfing
(Kovach, 2010).

2.1 Background

By the year 2010, the enterprises like Google, Intel and Sony got together to
announce to the world the news about a revolutionary appliance, the smart television,

 Smart TV with Free Technologies in Support of Teaching-Learning Process 149

a technological novelty based on digital television. Yet, the social object for which
STV were designed is much distant from the conception of a didactic teaching aid. Its
introduction in Cuban schools may be favorable for the teaching-learning process
because of the following reasons:

• The STV is a technological evolution of video cassette players, computers and
televisions presently used at all levels of instruction in the country.

• The educational software would be easily inserted in the learning process as
didactic materials.

• The STV would facilitate the use of the network and grant access to Internet in
order to get information and the didactic resources.

• It could be put into service using low-cost and energy saving components.

The new potential of smart televisions is due to the inclusion, in their circuits, of
small computers like the ones used in mobile phones, tablets or even in portable
computers. There are several transnational companies which are presently developing
this kind of TV; among them are the world-known LG, Google and Samsung. There
are also important projects for Free and Open Code Software (FOSS) which have
switched from desk computers to television sets, such as GNU/Linux Ubuntu and
even some others which had initially foreseen a foray into this kind of media like the
Android project.

On the other hand, there are some hardware projects whose aim is to have small
computers plugged in to the television. These would be extremely cheap since they
don’t even come with a chassis. Most likely, there isn’t any other solution as popular
as Raspberry Pi. Its manufacturer describes it as: (…) a computer whose size is that of
a credit card that is plugged in to a TV and a keyboard. It’s a PC that can do many a
thing like a desk PC: spreadsheets, text processing and games. It can also play high-
definition videos (Raspberry Pi, 2011).

After Raspberry Pi started marketing computers the size of a card, several other
brands have arisen, having a higher quality with regards to the processing potential
and other technical features. Among the most promising ones, being in the core of the
present research, are Odroid and APC 8750, these two have an outstanding feature:
they are sold with the operating Android system already installed. In response to the
primary goal set by this research, the use of the Raspberry Pi board was decided,
mainly because it is cheaper than the two other options and presents an output device
for the RCA video which is at the same time the standard input of television since the
late Fifties.

A chart showing a comparison of the abovementioned boards is found below:

Table 1. Comparison of boards

Board Price CPU RAM Video
R. Pi (B) $35 700 MHz 512MB HDMI/RCA
Odroid (U2) $89 1.7GHz 2GB HDMI
APC (8750) $49 800 MHz 512 MB HDMI/VGA

150 E.R. Rosa et al.

2.2 Operating System

Since the year 2008, different free and/or open code projects have intended to provide
an operating system for both types of devices. By the late 2009, Google released the
first version of Android’s operating system, which was backed up by the giant Internet
transnational company and by Open Handset Alliance (OHA)1. Since 2010, the home
page of Android’s developers has announced that they are working on the transfer of
this platform on to televisions.

Curiously, for Android, it was decided to have the architecture of a conventional
GNU/Linux distribution changed. Why? Any GNU/Linux distribution has in its de-
fault settings some applications developed by using programming languages such as
Perl, Python, Bash y C/C++, and also developed by using different graphic libraries
like Ncurses, Gtk+ and/or Qt. This diversity causes a certain inefficiency that is not
perceived or is just in any case of minor importance in a desk computer or telephone
with limited resources. Standardizing development technologies (Java y C/C++)
brought about the birth of powerful tools like SDKs and IDEs integrations like
Eclipse, an incomparable phenomenon in the world of FOSS.

These tools have also given rise to some applications for Android in the last four
years, surpassing the number of applications of any GNU / Linux distribution. There-
fore, for the present research we propose the use of Android’s operating system, for its
maturity, and for it has a large number of applications and a version for Raspberry Pi.

2.3 Known Results

The STV has more interactive elements than presentations or slideshow based on
static images do, since it can even contain live videos. For classes and teachers
working in the field of information and communication, the television is a good
chance to use educational applications.

It is advisable that the physical duration of the object ranges from 10 to 20 minutes.
On its own side, the length of the student’s learning period does not have a definite
pattern, because it depends on her/his own skills (FONDEF-APROA, 2005).

Applications for the STV are compared, in this case, to the objects of learning,
since the structure of an application for Android (the operating system chosen) en-
sures all the good practices that have been previously described. Besides, these appli-
cations make the use of templates easier, as well as the television’s design, since they
save time and resources while generating objects and putting them into sequence in a
similar learning context. The use of templates is favorable for the design of the object
and also for the process of understanding of the contents by the students, who will
rely on a standard-format object (FONDEF-APROA, 2005).

1 Association of 84 companies whose aim is to develop a platform that allows users to interact

with mobile systems in a better and cheaper way (Open Handset Alliance), among its
members are to be found: LG, Aser, ASUS, ALCATEL, ZTE, Huawey, DELL, Fujitsu, HTC,
Samsung, inter alia.

 Smart TV with Free Technologies in Support of Teaching-Learning Process 151

Below, a chart shows a comparison of the energy consumed by some teaching aids:

Table 2. Energy comparison among teaching aids

 Components’ Power (W)

Audiovisual aids Television Computer Monitor Video/DVD Total

Use of video/DVD 75 - - 20 95
Use of computer 75 300 60 - 435
Smart television 75 4 - - 79

3 Conclusions

At the completion of the present research, a smart television set was designed, being
able to work as a teaching aid and having the following features:

• Low production cost, since it can be manufactured by placing a 35 USD
computer in the interior of the TV sets which are already in use in classrooms all
over the country.

• Low energy consumption, since this brand-new device would only consume 4W
more than a regular TV set.

• Lined up with the latest developments of information and telecommunication
technologies, it would use Android as the fastest-expanding and most profitable
operating system at present.

• Also lined up with the most recent information and telecommunication trends in
education, it would propose the use of applications as subjects of study.

As from now on, this team will focus on introducing some samples of the teaching
aid in real classrooms, in order to validate its proposal and to put this technology in
service all over the nation as soon as possible.

Furthermore, the thread of software and hardware components used by the afore-
said system will be followed closely, since production costs tend to be lower all the
time and it is likely that newer technologies will arise, making STV cheaper and more
rational for Cuban education.

References

Ávila, M.A.A.: Diez preguntas sobre el ahorro de energía eléctrica (2010),
 http://www.cubasolar.cu/biblioteca/energia/Energia33/HTML/

articulo03.htm (retrieved March 30, 2013)
Bravo, J.L.R.: Los Medios De Enseñanza: Clasificación, Selección y Aplicación. Revista Pixel-

Bit 24 (2004), http://www.sav.us.es/pixelbit/pixelbit/articulos/
n24/n24art/art2409.htm (retrieved)

Oficina Nacional de Estadisticas de Cuba, Anuario Estadístico de Cuba 2010 (2010),
 http://www.one.cu/aec2010.htm (retrieved March 29, 2013)

152 E.R. Rosa et al.

Fondef-Aproa, Manual De Buenas Practicas Para El Desarrollo (2005),
 http://www.aproa.cl/1116/articles-68370_recurso_1.pdf (retrieved)
Kovach, S.: What Is A Smart TV? - Business Insider (December 8, 2010),
 http://www.businessinsider.com/what-is-a-smart-tv-2010-12

(retrieved March 29, 2013)
Linux Infra Red Control. (n.d.). How to connect an IR receiver to an audio card,
 http://www.lirc.org/ir-audio.html (retrieved March 29, 2013)
ODROID | Hardkernel (2012),
 http://www.hardkernel.com/renewal_2011/products/prdt_info.php

(retrieved March 29, 2013)
Raspberry Pi | An ARM GNU/Linux box for $25. Take a byte! (2011),
 http://www.raspberrypi.org/ (retrieved March 29, 2013)
Vicent, M.: Revolución en las aulas de Cuba | Edición impresa | EL PAÍS (Abril 2005),
 http://elpais.com/diario/2005/04/04/educacion/

1112565605_850215.html (retrieved)

Barriers Faced by Newcomers to Open Source

Projects: A Systematic Review

Igor Steinmacher1, Marco Aurélio Graciotto Silva1, and Marco Aurélio Gerosa2

1 DACOM, UTFPR Campo Mourao, PR, Brazil
{igorfs,magsilva}@utfpr.edu.br
2 IME, USP Sao Paulo, SP, Brazil

gerosa@ime.usp.br

Abstract. To remain sustainable, some open source projects need a
constant influx of new volunteers, or newcomers. However, the newcom-
ers face different kinds of problems when onboarding to a project. In this
paper we present the results of a systematic literature review aiming at
identifying the barriers that a newcomer can face when contributing to
an Open Source Software project. We identified and analyzed 21 studies
that evidence this kind of problem. As a result we provide a hierarchical
model that relies on five categories of barriers: finding a way to start,
social interactions, code issues, documentation problems and newcom-
ers’ knowledge. The most evidenced barriers are newcomers’ previous
technical skills, receiving response from community, centrality of social
contacts, and finding the appropriate way to start contributing. This
classification provides a baseline for further researches related to new-
comers onboarding.

1 Introduction

Some open source software (OSS) communities composed of volunteers from
different parts of the globe contributing and collaborating. According to Qureshi
and Fang [14], motivate, engage, and retain new developers is the way to promote
a sustainable amount of developers in a project. However, newcomers often face
difficulties and obstacles when onboarding to a project [8]. This obstacles can
lead newcomers to give up their collaboration. Therefore, a major challenge for
OSS projects is to provide ways to support the joining of newcomers.

To reduce these problems, newcomers generally post questions and request
help to choose their tasks in forums and mailing list or send emails to develop-
ers who have central roles in the project (e.g. owners, project leaders) [13,22].
However, receiving replies that do not offer guidance or unpolished answers can
result in newcomers to give up contributing [18]. Given this scenario, it is impor-
tant to understand the OSS newcomers needs. This understanding may enable
the creation of mechanisms and tools to offer a better support for newcomers.

The objective of this research is to identify the barriers faced by newcomers
when onboarding to OSS projects. Onboarding is the stage in which an outsider
decides to contribute to a project. Onboarding is highly impacted by a steep
learning curve as well as reception and expectation breakdowns [17].

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 153–163, 2014.
c© IFIP International Federation for Information Processing 2014

154 I. Steinmacher, M.A.G. Silva, and M.A. Gerosa

In this paper, the methodology chosen to collect these issues is the Systematic
Literature Review. From the best of our knowledge, there is no study that di-
rectly focused on problems or barriers encountered by newcomers of Open Source
Software projects. On the other hand, several articles report these barriers as
a side product of the studies. Thus, knowledge is spread across the literature.
This study main contribution is aggregating the barriers evidenced by different
studies and creating a model with them.

2 Research Method

To perform our systematic review, we defined the following question: What are
the barriers that influence newcomers’ onboarding to OSS projects? By answer-
ing this question, we aim to capture the barriers that a newcomer can face when
contributing to an OSS project. We are not interested in newcomers’ motivation
to join a project, but in the issues they can face after deciding to contribute.

After using different synonyms and combinations to refine our search, the
query presented below was used to retrieve the studies from the following digital
libraries: ACM, IEEE, Scopus and Springer Link. These libraries were selected
because they index the most relevant venues of computer sciences, mostly written
on English, they support searching using boolean expression and provide access
to the complete text of the paper. We also consulted specialists for conferences,
workshops, journals, and websites that could provide relevant studies for our
research. However, no new source was added after their advices.

((OSS OR “Open Source” OR “Free Software” OR FLOSS OR FOSS) AND
(newcomer OR “joining process” OR newbie OR “new developer” OR “new contributor” OR “new
member” OR “new committer” OR novice OR beginner OR “potential participant” OR retention
OR joiner OR onboarding))

For each selected paper obtained from digital libraries, we conducted snowball
sampling checking if the authors of the selected studies published other relevant
studies not retrieved from the Digital Libraries. We checked their profiles in
ACM, IEEE, DBLP, and personal homepages (when available).

We considered for selection the papers that were available for download, writ-
ten in English, that dealt with newcomers onboarding in open source software
projects, that presented experimental results, and that were published in jour-
nals or workshop/conference proceedings.

Subsequent to the definition of the primary studies list, the researchers read
the full documents. To classify the barriers we followed an “inductive coding” ap-
proach [21], which is widely applied in qualitative studies of different knowledge
areas. In this kind of approach, the evaluator identifies text segments that con-
tain meaningful units and creates a label for a new category to which the text
segment is assigned. Afterwards, connections between the codes are identified
and they are grouped according to their properties to represent categories.

The results of the selection and screening are as follows. After running the
query on the digital libraries systems, we got 291 candidate papers. For each pa-
per, title, abstract and keywords were analyzed by two independent researchers.

Barriers Faced by Newcomers to OSS Projects 155

In a consensus meeting, we came to 33 candidate papers. We checked other pa-
pers published by the authors of these 33 candidate studies, finding 20 other
candidate papers. After analyzing the abstract of these papers we selected 9 rel-
evant papers, coming to a total of 42 candidate papers. After further analysis,
a total of 21 papers were considered relevant to this review and were considered
to extract relevant data.

3 Barriers Faced by Newcomers

The main purpose of this systematic review was to find what are the barriers
faced by newcomers to open source projects reported by the literature. For each
selected study, we analyzed any barrier reported that was empirically identified
or evaluated. We extracted the barriers from the selected studies, and organized
them as a hierarchy of barriers, as shown in Figure 1. The figure presents five cat-
egories: Social Interactions, Finding a Way to Start, Documentation Problems,
Code Issues, and Newcomers’ Knowledge.

Fig. 1. Hierarchical map of barriers found in the literature

In the Figure 1 it is also possible to observe the number of studies that offer
evidences for each barrier. The studies were conducted with different projects and
different number of projects analyzed. In the following sections we will discuss
the barriers found and the evidences that support the problem.

3.1 Social Interactions

This category represents the barriers related to the way newcomers interact with
the community, including who are the members they exchange messages, the
size of their contact network, how they communicate and how the community
communicate with them.

156 I. Steinmacher, M.A.G. Silva, and M.A. Gerosa

Socializing with Project Members. The study conducted by [9] highlights
the influence of social and political organization for newcomers willing to become
a core developer. The author analyzes mailing list discussions and conduct an in-
depth analysis of the socialization of a successful developer. He emphasizes the
need to build an identity in the project: “what the newcomer has to learn is how
to participate and how to build an identity that will help get his ideas accepted
and integrated.” Other authors also report the importance of socializing with
central members. For example, Bird [2] quantitatively analyzed mailing lists and
report that “the social network measure, indegree, . . . had a significant effect on
immigration.”

All studies that analyzed the centrality/importance of the contacts found that
the closer the newcomer is to the center of the community, the more successful
the newcomer is. However, the newcomer usually does not choose who will answer
her questions. So, when the most appropriate community members receive the
newcomers, the chance of retention is higher.

Receiving (Timely and Proper) Response. The answers received from
the community play an important role during newcomers onboarding. There
are evidences of this barrier in seven studies found in this review. Some of
them [11,24,22,19] report only the impact of receiving a (timely) response from
the community as a barrier. Other researchers [16,18,20] also report the impact
of the content of responses (properness).

One of the studies that analyze the impact of the answer contents found
that “almost all non-returning newcomers can be attributed to not receiving a
response or receiving a condescending response” [16]. Regarding the studies that
analyze the timely response, [11] analyzed mailing list archives and found that
“nearly 80% of newbie posts received replies, and that receiving timely responses,
especially within 48 hours, was positively correlated with future participation.”

We can see that community social skills can influence newcomers’ decision to
contribute to the project. Generally, newcomers demand attention and friendly
hands to start contributing. We understand that core members need to stop their
main tasks to receive newcomers with no guarantee that they will contribute.
However, a good reception can be crucial to retain more newcomers.

Sending a Correct/Meaningful Message. [16] reported a problem related to
newcomers’ communication behavior. By analyzing the history of a support fo-
rum they found that “the newcomers who used informative subject lines for their
first message improved chances of getting responses as well as getting their prob-
lems solved by the community . . . if the newcomer does not post comprehensible
messages or uses a language that the forum responders do not understand. . . .”
Therefore, newcomers who want to be welcomed by the community should focus
on the quality of their community-oriented initial interactions.

Finding Mentorship/Expertise. Easiness to find an expert or a mentor is
also evidenced in some studies [4,6]. Cubranic et al. [6] report that “It can be

Barriers Faced by Newcomers to OSS Projects 157

difficult for newcomers to join such groups [OSS projects] because it is hard to
obtain effective mentoring.” To alleviate it, Canfora et al. [4] proposed a tool
that recommends mentors to newcomers. They evaluated the tool by surveying
some project members and found that mentoring is important to newcomers.

Mentorship is presented as be a good way to help newcomers. However, its
actual applicability need to be studied in deep. It is not clear if this kind of policy
can be applied in OSS communities, as it depends on experienced volunteers to
do this specific task.

3.2 Finding a Way to Start

This category represents the barriers related to difficulties that newcomers face
when trying to find the right place to start contributing.

Finding Appropriate Issue/Task. Finding the appropriate task to work
on was classified as a barrier. Park and Jensen [13] reported that “. . . subjects
expressed a need for information specific to newcomers, for instance, how to get
involved and become active (e.g. communication channels, available sources of
information for starters, etc.), what to contribute to (e.g. open issues, required
features, sample tasks to start with), and working practices.”

Von Krogh et al. [22] also report on this issue. They found that “in 56.7%
of the cases members of the community encouraged the new participants to find
some part of the software architecture to work on that would match with their
specialized knowledge. In only 16.7% of the cases new participants were both
encouraged to join and given specific technical tasks to work on.” This occurs
because, according to their interviews, the community expects new participants
to find their own task to work on instead of receiving a specific piece of work.

Communities point of view is that newcomers should be able to find the most
appropriate task themselves, as reported by [22]. However, other researches show
that the projects should give special attention to this issue [1,5,13].

Finding the Correct Artifacts to Fix an Issue. When the newcomer find
a task to work on, another issue can impact his contribution: how to find the
correct artifacts. Cubranic et al. [6] proposed Hipikat, a tool that recommends
artifacts that are relevant to a task that a newcomer is trying to perform. When
conducting an experiment with Eclipse project, they found that “newcomers can
use the information presented by Hipikat to achieve results comparable in quality
and correctness to those of more experienced members of the team.”

Newcomers really need support on finding code artifacts related to the chosen
task, as projects’ structure/architecture are not always trivial and straightfor-
ward. So, projects would benefit from tools like Hipikat to support newcomers
first steps, as evidenced by the study conducted by Cubranic et al. [6].

3.3 Code Issues

This category comprises the barriers that are related to the source code of the
products. To contribute a newcomer usually needs to change existing source

158 I. Steinmacher, M.A.G. Silva, and M.A. Gerosa

code. Therefore, it is necessary for the newcomers to have enough knowledge
about the code to start their contributions.

Dealing with Code Complexity/Instability. Some studies focus on how
code complexity can affect the newcomers to OSS projects. Studying Source-
Forge projects Midha et al. [12] show that “cognitive [code] complexity has a
strong negative influence on the number of contributions from new developers.”
Stol et al. [20] highlight some complaints of newcomers about project struc-
ture/architecture of Open Source projects.

Understanding the Project Structure/Architecture. Stol et al. [20] high-
light some complaints of newcomers about project structure of OSS projects. One
subject reported that “the hierarchy of the source code directory was counter in-
tuitive for someone with little architecting experience.” Cubranic and Murphy [7]
also present an issue faced during their experiment: “We also had reports of a
pair missing a relevant suggestion because they lacked knowledge about the overall
structure of the system...”

Park and Jensen [13] analyzed “the potential benefits of information visualiza-
tion in supporting newcomers through a controlled experiment.” They reported
that “providing visual information such as the class diagrams or dependency
views . . . would help new developers understand the structure of existing code
and find problems to work on.”

The main complain regarding code is that its structure is hard to understand,
and learning it would take too much time. The use of visualization [13], or even
artifact recommendation tools [6] can alleviate this problem.

Setting up Local Workspace. The feedback obtained by Stol et al. [20]
evidenced that newcomers have difficulties when setting up their environment.
They reported some obstacles, for example: “a challenge was that some [subjects]
did not have any experience or knowledge on checking out source code from the
version control system.” To welcome newcomers, the communities should provide
easy access to tutorials and step-by-step cookbooks on how to obtain the code,
setup up and build a local workspace.

3.4 Documentation Problems

Project documentation was also explored by some studies. Newcomers need to
learn technical and social aspects of the project to contribute. Thus, problems
related to documentation were recurrently reported.

Outdated Documentation. Steinmacher et al [19] report some issues faced
by newcomers regarding outdated information: “We can see many demotivating
facts that occurred in this case: ... outdated information in the issue tracker made
the developers waste time on an already existent feature and on checking each
issue they pick to address...” Stol et al.[20] also report issues regarding outdated

Barriers Faced by Newcomers to OSS Projects 159

documentation. They report that the subjects “... were uncertain whether the
available diagrams were still up to date and relevant for the current version
of the software... Another reported challenge was the uncertainty whether the
available documentation was up to date for the current version of the software.”
Finding outdated documentation can make the newcomer gave up onboarding.
So, documentation provided by projects must be up-to-date enough to support
new developers.

Information Overload. [13,7] conduct experiments to assess the benefits that
tools that support dealing with information overload can bring to newcomers.
Cubranic et al.[7,6] presents a tool called Hipikat that aims at recommending
source code artifacts that should be related to the issue a newcomer is working
on. Park and Jensen [13] evaluate the use visualization tools to alleviate problems
with overload and report that “[the tools] provided more efficient ways to handle
large amounts of data and understand dependencies in source code, reducing the
learning curve and information overload experienced...” A rich documentation
is essential for newcomers trying to understand the projects. However, just pro-
viding a bunch of documentation leads to information overload. So, the project
should provide easy ways to find this documentation.

Code Comments not Clear. In addition to outdated information and infor-
mation overload, Stol et al. [20] report a problem related code comments. “It
was reported that the code was not very well documented, which made it more
difficult to understand the source code.”

3.5 Newcomers‘ Previous Experience

This category comprises the barriers related to the experience of the newcomers
regarding the project and the way they show this experience when joining the
projects.

Lacking of Process and Practices. We found just one study presenting
evidence of learning project practices as a barriers that can hinder the newcomers
onboarding. The study conducted by Schilling et al. [15] found that previous
knowledge regarding the project practices influence newcomer first steps. They
report that “familiarity with the coordination practices of the project team has
a strong association with the time they spend on their projects after GSoC.”

Lacking of Domain Expertise. Von Krogh et al. [22] claim that “ feature gifts
by newcomers emerge from the newcomers prior domain knowledge and user ex-
perience.” In the study conducted by Stol et al. [20], the subjects “reported their
unfamiliarity with the domain to be a hindrance.” So, newcomers who present
previous domain knowledge have more chances to have a successful onboarding
and to be well received by the community.

160 I. Steinmacher, M.A.G. Silva, and M.A. Gerosa

Lacking of Technical Expertise. Schilling et al. [15] reported that “. . . level
of practical development experience is strongly associated with their continued
permanence.” Some studies report sending messages or patches to mailing list
or issue tracker presenting previous technical skills can benefit the newcomer
when joining. Stol et al. [20] evinced that “when newcomers mentioned that they
had already tried some options to fix their problem and have put efforts to look
for a solution in the forums . . . then the responders were quick to respond and
were very helpful.”

Ducheneaut [9] reports that “expertise is not enough to become a core member
in Python: one also has to create material artifacts. . . ” Bird et al. [2] also inves-
tigate the impact of sending patches when start the contribution and found that
“demonstrated skill level via patch submission plays an important role in Python
and Postgres.” All studies evidence that the newcomer who wish to contribute
must check if the technical skills required for a given task or project match with
their skills. Newcomers can be proactive and search for the required background,
but the project must also provide ways for a newcomer to search which tasks fit
to his technical profile.

3.6 Summary

Considering the model defined in the Figure 1, based upon barriers identified
by using inductive coding through out the selected studies, we can summarize
the evidences for each barrier as shown in Table 1. The category more throughly
studied is social interaction, accounting for 13 studies while the others range
from 8 to 9 related studies each.

Due to the nature of the approach to establish the model, there is at least
one paper associated with a barrier. Considering the most studied one, we found
that the most evidenced barriers are newcomers’ previous technical experience,
from Previous Experience category, and aspects regarding social network char-
acteristics and response reception, from Social Interaction category.

Table 1. Studies that evidence each barrier

Category Barrier Studies

Finding a Way
to Start

Finding appropriate task/issue [1,5,13,22]
Finding the correct artifacts to fix an issue [6]

Newcomers’
Previous

Knowledge

Lacking of Domain expertise [22,20]
Lacking of Previous Technical Experience [3,2,16,24,9,22,15]
Lacking of Knowledge on processes and practices [15]

Code Issues
Dealing with code complexity/instability [3,12]
Understanding architecture/code structure [6,13,20]
Setting up Local Workspace [20]

Documentation
Problems

Outdated documentation [19,20]
Code comments not clear [20]
Information overload [6,13,20]

Social
Interactions

Socializing with project members [3,2,10,23,24,9,14]
Receiving (timely and proper) response [11,16,24,22,18,20,19]
Sending a correct/meaningful message [16,24]
Finding Help - Mentor/Expert [4,6,19]

Barriers Faced by Newcomers to OSS Projects 161

4 Threats to Validity

This review may have missed some papers that address barriers encountered by
newcomers to OSS projects, since we did not search into every possible source
and some relevant papers may not contain the chosen terms. To reduce bias, we
contacted some specialists in OSS domain. We adjusted the criteria to cover all
relevant papers that were of our knowledge and conducted pilot studies.

Most part of the studies analyzed do not present as main focus analyzing the
newcomers needs or the problems they face during their first steps. The papers
that aim to analyze newcomers obstacles and problems focus on very specific
problems. We know that it would be hard – or even impossible – to identify
every problem that can affect newcomers. However, keeping the analysis to just
some specific problems restricts the value of the outcomes and their applicability.

The findings of this review may have also been affected as the classification
is a human process and it is based on some subjective criteria. In particular,
the terms of the area do not have a common definition among all studies. The
problems were classified based on inductive coding approach, which also relies on
manual classification. To reduce interpretation bias related to human process,
this review involved two researchers cross checking each paper for inclusion,
and a third researcher responsible for reviewing and discussing the information
generated after each step.

5 Conclusion

In this paper we identified 21 studies that evidence barriers that can hinder
newcomers’ onboarding in OSS projects. We aggregated the barriers evidenced
across the literature in a single place. By using an inductive coding approach to
organize the barriers, we proposed a model that relies on five categories: finding
a way to start, social interactions, code issues, documentation problems and
newcomers’ knowledge. This model is the main contribution of this systematic
review.

As a result of this classification we found that the most evidenced barriers are
newcomers’ lack of previous technical experience, receiving improper response
from community, socializing with project members and finding the appropriate
task/issue. This classification provides a baseline for further researches related
to newcomers onboarding.

As future work we aim to conduct qualitative studies to confirm the barriers
evidenced by the literature. We are conducting some interviews with OSS ex-
perienced developers and newcomers to verify what are the main barriers faced
by newcomers from their perspective. We plan to refine the classification model
based on the results of the interviews. Additionally, based on this model it is
possible to propose strategies to offer a better support for newcomers, and study
how these mechanisms can benefit newcomers.

162 I. Steinmacher, M.A.G. Silva, and M.A. Gerosa

Acknowledgements. The authors thank Fundacao Araucaria and CNPq (pro-
cess 477831/2013-3) for the financial support. Marco Gerosa receives a grant
from the CNPq and FAPESP. Igor Steinmacher receives grant from CAPES
(BEX 2038-13-7).

References

1. Ben, X., Beijun, S., Weicheng, Y.: Mining developer contribution in open source
software using visualization techniques. In: 3rd Intl. Conf. on Intelligent System
Design and Engineering Applications (ISDEA), pp. 934–937 (2013)

2. Bird, C.: Sociotechnical coordination and collaboration in open source software.
In: 2011 27th IEEE Intl. Conf. on Software Maintenance, pp. 568–573. IEEE CS
(2011)

3. Bird, C., Gourley, A., Devanbu, P., Swaminathan, A., Hsu, G.: Open borders?
immigration in open source projects. In: 4th Intl. Workshop on Mining Software
Repositories, p. 6 (2007)

4. Canfora, G., Di Penta, M., Oliveto, R., Panichella, S.: Who is going to mentor
newcomers in open source projects. In: Proceedings of the ACM SIGSOFT 20th
Intl. Symposium on the Foundations of Soft. Eng., FSE 2012, Cary, NC (2012)

5. Capiluppi, A., Michlmayr, M.: From the cathedral to the bazaar: An empirical
study of the lifecycle of volunteer community projects. In: Feller, J., Fitzgerald, B.,
Scacchi, W., Sillitti, A. (eds.) Open Source Development, Adoption and Innovation.
IFIP, vol. 234, pp. 31–44. Springer, Heidelberg (2007)

6. Cubranic, D., Murphy, G., Singer, J., Booth, K.: Hipikat: a project memory for
software development. IEEE Transactions on Soft. Eng. 31(6), 446–465 (2005)

7. Cubranic, D., Murphy, G.C.: Hipikat: recommending pertinent software develop-
ment artifacts. In: 25th Intl. Conf. on Soft. Eng., pp. 408–418 (2003)

8. Dagenais, B., Ossher, H., Bellamy, R.K.E., Robillard, M.P., de Vries, J.P.: Moving
into a new software project landscape. In: 32nd Intl. Conf. on Soft. Eng., vol. 1,
pp. 275–284 (2010)

9. Ducheneaut, N.: Socialization in an open source software community: A socio-
technical analysis. Comput. Supported Coop. Work 14(4), 323–368 (2005)

10. He, P., Li, B., Huang, Y.: Applying centrality measures to the behavior analysis of
developers in open source software community. In: 2nd Intl. Conf. on Cloud and
Green Computing (CGC), pp. 418–423 (November 2012)

11. Jensen, C., King, S., Kuechler, V.: Joining free/open source software communities:
An analysis of newbies’ first interactions on project mailing lists. In: 44th Intl.I
Intl. Conf. on System Sciences (HICSS), pp. 1–10 (January 2011)

12. Midha, V., Palvia, P., Singh, R., Kshetri, N.: Improving open source software
maintenance. Journal of Computer Information Systems 50(3), 81–90 (2010)

13. Park, Y., Jensen, C.: Beyond pretty pictures: Examining the benefits of code visual-
ization for open source newcomers. In: 5th Intl. Workshop on Visualizing Software
for Understanding and Analysis, pp. 3–10 (September 2009)

14. Qureshi, I., Fang, Y.: Socialization in open source software projects: A growth
mixture modeling approach. Org Res. Meth. 14(1), 208–238 (2011)

15. Schilling, A., Laumer, S., Weitzel, T.: Who will remain? an evaluation of actual
person-job and person-team fit to predict developer retention in floss projects. In:
45th Intl. Conf. on System Sciences (HICSS), pp. 3446–3455. IEEE CS (2012)

Barriers Faced by Newcomers to OSS Projects 163

16. Singh, V.: Newcomer integration and learning in technical support communities
for open source software. In: 17th Intl. Conf. on Supporting Group Work, GROUP
2012, pp. 65–74. ACM (2012)

17. Steinmacher, I., Gerosa, M.A., Redmiles, D.: Attracting, onboarding, and retain-
ing newcomer developers in open source software projects. In: Workshop: Global
Software Development in a CSCW Perspective (2014)

18. Steinmacher, I., Wiese, I., Chaves, A.P., Gerosa, M.A.: Why do newcomers abandon
open source software projects? In: Intl. Workshop on Coop. and Human Aspects
of Soft. Eng., (CHASE) (June 2013)

19. Steinmacher, I., Wiese, I., Gerosa, M.A.: Recommending mentors to software
project newcomers. In: 3rd Intl. Workshop on Recommendation Systems for Soft.
Eng (RSSE), pp. 63–67 (June 2012)

20. Stol, K.-J., Avgeriou, P., Babar, M.A.: Identifying architectural patterns used in
open source software: approaches and challenges. In: 14th Intl. Conf. on Evaluation
and Assessment in Soft. Eng., Swinton, UK, pp. 91–100. BCS (2010)

21. Thomas, D.R.: A general inductive approach for analyzing qualitative evaluation
data. American Journal of Evaluation 27(2), 237–246 (2006)

22. Von Krogh, G., Spaeth, S., Lakhani, K.R.: Community, joining, and specialization
in open source software innovation: A case study. Res Policy 32(7), 1217–1241
(2003)

23. Zhou, M., Mockus, A.: Does the initial environment impact the future of developers.
In: 33rd Intl. Conf. on Soft. Eng (ICSE), pp. 271–280 (May 2011)

24. Zhou, M., Mockus, A.: What make long term contributors: Willingness and op-
portunity in oss community. In: 34th Intl. Conf. on Soft. Eng (ICSE), pp. 518–528
(June 2012)

Does Contributor Characteristics Influence

Future Participation? A Case Study on Google
Chromium Issue Tracking System

Ayushi Rastogi and Ashish Sureka

Indraprastha Institute of Information Technology, Delhi
{ayushir,ashish}@iiitd.ac.in

Abstract. Understanding and measuring factors influencing future par-
ticipation is relevant to organizations. This information is useful for plan-
ning and strategic decision-making. In this work, we measure contributor
characteristics and compute attrition to investigate their relationship by
mining Issue Tracking System. We conduct experiments on four year
data extracted from Google Chromium Issue Tracking System. Experi-
mental results show that the likelihood of future participation increases
with increase in relevance of role in project and level of participation in
previous time-interval.

1 Introduction

Contributors leaving project incurs significant direct and indirect costs [1] [2][4][5]
thereby making it critical to retain existing contributors [6]. A data-driven
approach to study future participation helps overcome challenges in existing
practices by providing objectivity and transparency. In this work, we examine
contributor characteristics namely role of participation and amount of work done
as a measure of predicting future participation. We present an approach that uses
statistical measures to classify contributors based on contribution into three mu-
tually exclusive sets namely non-core team, loose core team and tight core team.
Also we define attrition as a function of participation in two consecutive time
intervals and study attrition rate for four roles (reporter, owner, commenter and
cc’ed-contributor (cc’ed)) and three classes of contributors. We conduct exper-
iments on Google Chromium Issue Tracking System (GC-ITS) dataset1. The
dataset is extracted for four consecutive years and observations are recorded
quarterly (3 months). In Issue Tracking Systems contributors play various roles.
However, for this work we focus on four roles namely reporter, owner, commenter
and cc’ed. These roles are associated with various stages of bug fixing lifecycle.
Reporter reports the issue. Issue is fixed by owner in collaboration with com-
menters participating via threaded discussion forum. Owner may also request
participation by cc’ing contributors. Contributors cc’ed are called for to serve
specific request in issue.

1 https://code.google.com/p/chromium

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 164–167, 2014.
c© IFIP International Federation for Information Processing 2014

https://code.google.com/p/chromium

Contributor Characteristics and Future Participation 165

Table 1. Role based individual contribution pattern

Role Mean Std Min Max .25Q .5Q .75Q .9Q .95Q .99Q Skew
Own 24.8 038.1 1 000559 3 10 32 67 94 172.1 003.8
Rep 02.9 008.8 1 000476 1 01 02 04 11 040.0 013.5
CC 20.0 051.4 1 001315 1 04 20 59 92 190.2 009.7
Com 14.0 422.9 1 119803 1 01 02 07 30 239.0 129.9

2 Empirical Analysis

Class of Contribution. Research shows that open source projects follow
Pareto Distribution [3] that is 20% of contributors do 80% of work. However,
our experimental results do not communicate the same. Table 1 shows that
in GC-ITS contribution pattern is highly skewed for four roles. This observa-
tion demands statistical and data-driven approach to classify contribution of
contributors. In Algorithm 1. we classify each contributor in one of the three
mutually exclusive classes namely non-core team, loose core team and tight core
team based on contribution. Non-Core Team (NCT) includes contributors who
join project to address some specific issue they encountered. Loose Core Team
(LCT) includes dedicated contributors with substantial contribution and Tight
Core Team (TCT) includes contributors with relatively large contribution (with
respect to LCT).

The input to the Algorithm 1. is contribution of contributors where each con-
tributor plays at least one of the four roles. The output is contribution class of
contributors calculated for all time-intervals. We measure the contribution for
the role of owner, reporter and cc’ed as the total number of issues participated
in time-interval defined quarterly. Similarly, for commenter we measure contri-
bution in terms of total number of comments in time-interval. Further to ensure
homogeneity for cross comparison we range normalize contribution in each role
for all time-intervals on a scale of 1-100 (refer Equation 1). We then append
the scores for four roles of contributor for a time-interval to create a structure.
All missing values are assigned a negligibly small value (0.0001). We generate
cumulative score that measures contribution in terms of relevance of role (weight
of owner (WO) > weight of reporter (WR) > weight of cc’ed (WCC) > weight
of commenter (WCm)) as WO=0.5, WR=0.25, WCC=0.125 and WCm=0.125.
The choice of weight depends on specific requirements and may vary for indi-
viduals. Assuming that participation in one role is independent of participation
in other roles, we use weighted Geometric Mean to generate cumulative score
(refer to Equation 2).The score generated ranges from 100 (highest) to approx-
imately 0.0001 (negligible or no contribution). Next we find relative relevance
of contribution that is the number of standard deviations datum is related to
mean. We calculate Z-Score (refer to Equation 3). If value of Z is less than 0,
it indicates that contributor is part of NCT. If value of Z is greater than 1 it
defines TCT. Likewise value of Z greater than equal to 0 and less than equal to
1 implies LCT. We calculate contribution class for all time-intervals and return
set of contributors for each class for each time-interval.

166 A. Rastogi and A. Sureka

Algorithm 1. Algorithm to Identify Contribution Class
Require: struct{Owner O, Reporter R, CC’ed CC, Commenter Com} Contributor Con[]
Ensure: ConClass[][3]
1: procedure ContributionClass(Con)
2: for all Time-Interval Tt do
3: Normalize contribution using Range Normalization [1-100]

Yi =
(100 − 1) × Xi

Max(X) − Min(X)
(1)

4: Calculate weighted Geometric Mean where wO > wR > wCC >= wCom and sum(wO +
wR + wCC + wCom) =1

Score(S) = OwO × RwR × CCwCC × ComwCom (2)

5: Calculate Z-Score

Z =
S − μ

σ
(3)

6: if Z < 0 then
7: ConClassTt [1] ← Con[Z< 0] � Non-Core Team

8: else if Z > 1 then
9: ConClassTt [2] ← Con[Z > 1] � Tight Core Team

10: else
11: ConClassTt [3] ← Con[Z >= 0 && Z <= 1] � Loose Core Team

12: end if
13: ConClass[Tt] ← ConClassTt

14: end for
15: return ConClass
16: end procedure

Attrition Rate. In this study, we believe that the contributor has left the
project if duration of inactivity exceeds one time-interval (in this case measured
quarterly). Thus Attrition Rate (AR) for time-interval Tt measures (in percent-
age) the fraction of contributors who left the project in time-interval Tt to the
total number of contributors who participated in time-interval Tt and its pre-
ceding time-interval Tt−1 .

Graphical Analysis of the Relationship between Contributor Char-
acteristics and Future Participation. In Figure 1 horizontal axis of the
plot represents consecutive time-intervals (measured quarterly) and vertical axis
shows attrition rate. Colored lines (refer to legend) present attrition rate for con-
tributors and their roles. We observe that contributor attrition rate (irrespective
of roles as shown in black) fluctuates from 27% to 47%. Also we observe marked
difference in attrition patterns for four roles. We see minimum attrition rate for
owner (shown in blue) and maximum for reporter (shown in red). This follows the
intuition that not every contributor can own issues. Figure 2 compares attrition
rate of three classes of contributors namely non-core team, loose core team and
tight core team (refer Algorithm 1.) across four years. We see in Figure 2 that
the attrition rate for LCT and TCT ranges from 3% to 10% which is relatively
less than the attrition rate for NCT (ranges between 27% and 43%). It indicates

Contributor Characteristics and Future Participation 167

A
tt

ri
ti
o

n
 R

a
te

 (
%

)

Contributor Reporter Owner CC'ed Commenter

2
0

0
9

−
0

4
:0

6

2
0

0
9

−
0

7
:0

9

2
0

0
9

−
1

0
:1

2

2
0

1
0

−
0

1
:0

3

2
0

1
0

−
0

4
:0

6

2
0

1
0

−
0

7
:0

9

2
0

1
0

−
1

0
:1

2

2
0

1
1

−
0

1
:0

3

2
0

1
1

−
0

4
:0

6

2
0

1
1

−
0

7
:0

9

2
0

1
1

−
1

0
:1

2

2
0

1
2

−
0

1
:0

3

2
0

1
2

−
0

4
:0

6

2
0

1
2

−
0

7
:0

9

2
0

1
2

−
1

0
:1

2

0

10

20

30

40

50

Time Interval(s)

Fig. 1. Attrition rate of maintainers for
four years

A
tt

ri
ti
o

n
 R

a
te

 (
%

)

25

30

35

40

45

Non Core Team Loose Core Team Tight Core Team

2
0

0
9

−
0

4
:0

6

2
0

0
9

−
0

7
:0

9

2
0

0
9

−
1

0
:1

2

2
0

1
0

−
0

1
:0

3

2
0

1
0

−
0

4
:0

6

2
0

1
0

−
0

7
:0

9

2
0

1
0

−
1

0
:1

2

2
0

1
1

−
0

1
:0

3

2
0

1
1

−
0

4
:0

6

2
0

1
1

−
0

7
:0

9

2
0

1
1

−
1

0
:1

2

2
0

1
2

−
0

1
:0

3

2
0

1
2

−
0

4
:0

6

2
0

1
2

−
0

7
:0

9

2
0

1
2

−
1

0
:1

2

4

5

6

7

8

9

Time Interval(s)

Fig. 2. Comparison of attrition rates for
contribution classes for four years

that retention in project is directly related to degree of involvement in project.
Also interestingly after initial fluctuations, attrition rate of TCT is higher than
attrition rate of LCT indicating that TCT contributes relatively large however
sporadically.

Acknowledgement. The work presented in this paper is supported by TCS
Research Fellowship for PhD students awarded to the first author. The au-
thor would like to acknowledge Dr. Pamela Bhattacharya for useful insights and
inputs.

References

1. Colazo, J., Fang, Y.: Impact of license choice on open source software develop-
ment activity. Journal of the American Society for Information Science and Tech-
nology 60(5), 997–1011 (2009)

2. Izquierdo-Cortazar, D., Robles, G., Ortega, F., Gonzalez-Barahona, J.M.: Using
software archaeology to measure knowledge loss in software projects due to developer
turnover. In: HICSS 2009, pp. 1–10. IEEE (2009)

3. Robles, G., Gonzalez-Barahona, J.M.: Contributor turnover in libre software
projects. In: Open Source Systems, pp. 273–286. Springer, Heidelberg (2006)

4. Robles, G., Gonzalez-Barahona, J.M., Herraiz, I.: Evolution of the core team of
developers in libre software projects. In: MSR 2009. IEEE (2009)

5. Schilling, A., Laumer, S., Weitzel, T.: Together but apart: how spatial, temporal
and cultural distances affect floss developers’ project retention. In: Computers and
People Research, pp. 167–172. ACM (2013)

6. Yu, Y., Benlian, A., Hess, T.: An empirical study of volunteer members’ perceived
turnover in open source software projects. In: HICSS 2012, pp. 3396–3405 (2012)

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 168–171, 2014.
© IFIP International Federation for Information Processing 2014

A Layered Approach to Managing Risks in OSS Projects

Xavier Franch1, Ron Kenett2, Fabio Mancinelli3, Angelo Susi4, David Ameller1,
Ron Ben-Jacob2, and Alberto Siena4

1 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
2 KPA, Raanana, Israel
3 XWiki, Paris, France

4 Fondazione Bruno Kessler (FBK), Trento, Italy
{franch,dameller}@essi.upc.edu, {ron,ronb}@kpa-group.com,

fabio.mancinelli@xwiki.com, {susi,siena}@fbk.eu

Abstract. In this paper, we propose a layered approach to managing risks in
OSS projects. We define three layers: the first one for defining risk drivers by
collecting and summarising available data from different data sources, includ-
ing human-provided contextual information; the second layer, for converting
these risk drivers into risk indicators; the third layer for assessing how these in-
dicators impact the business of the adopting organisation. The contributions are:
1) the complexity of gathering data is isolated in one layer using appropriate
techniques, 2) the context needed to interpret this data is provided by expert in-
volvement evaluating risk scenarios and answering questionnaires in a second
layer, 3) a pattern-based approach and risk reasoning techniques to link risks to
business goals is proposed in the third layer.

Keywords: OSS, Open Source, Risk Management, Layered Model.

1 Introduction

Translating dynamics of a complex system into focused management insights has
been a challenge in various application domains [1]. In this paper we focus on
organisations adopting, integrating and maintaining open source software (OSS)
components in order to reduce time to market, introduce innovation and overcome
development bottlenecks. Several companies have been observed to understand which
are the main risks and risks indicators related to this OSS-related activities that are
perceived by technical and business managers [2].

We propose a three layered approach: 1) the first layer focuses on collecting and
summarising available data from different data sources, including human-provided
contextual information; 2) the second layer, converts these data risk drivers into risk
indicators [3] and 3) the third layer assesses how these indicators impact into the
business of the adopting organisation. Key methodological as well as theoretical ques-
tions need to be answered to derive risk related insights from measurable data as de-
scribed in [4][5] such as, the indicators to define for measuring risk events, how to
operationalise an indicator into one or more specific metrics for measurement and the
predictive ability of measurements related to risks events needs to be validated.

 A

2 A Layered Appr

Here we describe the three
we are proposing in the EU

2.1 Layer 1: Raw Data

In this layer we deal with
determines the risk drivers.
the characteristics of the O
ber of open bugs, Forum po
the other hand, other measu
evolution, e.g. changes in
relationships between them

The data sources are co
trackers and forums, amon
because of: 1) data source
community, 2) values that c
ty to do so, 3) values that ar

2.2 Layer 2: Risk Indic

In this layer we define the
linking these risks to the po
tors are variables extracted
project measurements and
expert assessment. Several
three of them: 1) risk indi
some criteria such as Main
coming from the aforement
Community cohesion; 3) co
pend on the objective of the

Here Statistical Analysis
ploited to determine values

A Layered Approach to Managing Risks in OSS Projects

roach to Risk Management

layered approach to risk management in OSS projects t
U project RISCOSS [6], see Fig. 1.

a and Risk Driver Measures

h data collected from OSS communities and projects t
 The data has a twofold nature. On the one side it refer

OSS components developed by the communities, e.g. Nu
osts per day, Mails per day, Amount of documentation.
ures highlight the structure of the community in terms of
its roles and members and in the quality and quantity
 mainly via social network analysis techniques [7].

ommunity repositories, versioning systems, mail lists, b
ng others. Human intervention may be eventually nee
es that may be unavailable for a particular component
can eventually be calculated but require a dedicated act
re not directly accessible or are very costly to compute.

cators and Risk Model

e set of indicators of possible risks and models that all
ossible objectives of the adopting organisation. The indi

via the OSS community data analysis obtained from O
OSS community measurements as described before or
categories of indicators can be observed. Here we refe

icators related to OSS projects can be grouped follow
ntainability; 2) risk indicators related to the communi
tioned community measures, e.g. Community activeness
ontextual risk indicators, elicited from experts, mainly
e organisation, e.g. OSS business strategy.
s, Bayesian Networks and Social Network Analysis are
of risk. In particular:

Fig. 1. The 3-layered approach

169

that

that
rs to
um-
On

f its
y of

bug
eded
t or
tivi-

low
ica-

OSS
via

er to
wing
ities
s or
de-

ex-

170 X. Franch et al.

• Statistical analysis of data from OSS communities allows determining the trends
and distributions of data.

• Bayesian networks are used to link the community data gathered from the commu-
nity data sources and the community risk metrics to the risk indicators and the
community risk indicators using data generated by experts’ assessment based on
their experience in OSS adoption and community context.

• The community measures can be also analysed via Social Network Analysis tech-
niques in order to understand the structure and evolution of the OSS community.

All the risk indicators will contribute to the definition of a risk model. This model
allows the representation of the possible causes of risks, basically the risk indicators,
and of their connection to the possible risk events for the adopter organisation. More-
over, the model also allows representing the impact that the possible risk events have
on the strategic and business goals of the organisation.

2.3 Layer 3: Business Goals

Business goals describe which are the aims of the organization that adopts OSS. They
are impacted by several kind of risks we summarise into four categories: 1) Strategic
risks, mainly related to the company’s strategy and plan, such as Pricing Pressure,
failures in comply Regulation, Industry or sector downturn, or Partner issues; 2) Op-
erational risks such as poor capacity management or cost overrun; 3) Financial risks
such as assets lost, debts or accounting problems; 4) Hazard risks related to, for ex-
ample, macroeconomic conditions or to political issues. Also in this case Bayesian
networks may be used in order to link concepts from the two layers.

2.4 Modelling the Layers

Business goals are included in models that represent the ecosystem that blends to-
gether communities, OSS adopting organizations and other key actors. The key rela-
tionships between these actors are represented through dependencies in goal-oriented
models expressed in the i* language [8], which allow representing, and reasoning
about, business goals and business processes. Reasoning is based upon different tech-
niques, and in our layered context, we are particularly interested in bottom-up evalua-
tion, since the leaves are directly linked to the risk model.

A typical model will include the two fundamental actors of the OSS ecosystems,
the Community and the Adopter, and how they depend on each other; some of their
internal goals and activities, and their further AND/OR decompositions. We have then
the risk model with the risk event (e.g., Risk of difficulty in code refinement) that “im-
pacts” one of the activities of the Adopter (e.g., Bug Report) and that is propa-gated
up to the higher level activities. The risk event is identified via the measurement and
statistical analysis of the behaviour of the community and on the expert intervention
that can rate the evidence of a risk indicator via the Bayesian Networks.

 A Layered Approach to Managing Risks in OSS Projects 171

3 Conclusions and Future Work

The RISCOSS framework is designed to face with the problem of risk management in
OSS related projects in a holistic way, allowing to pass smoothly from the dimension
of the measures to those related to the decision-making in contexts where several
technical and business constraints are present.

We believe that the approach can give an effective way of overcoming problems
related the adoption phase. In particular, the huge volume and potential heterogeneity
of the data is isolated into a layer collecting the available and potential new tech-
niques suited for this problem; the correct interpretation in the context of the adopting
organization is made also with the help of experts that can evaluate specific scenarios
of risks; a pattern-based approach and risk reasoning techniques is proposed in the
third layer that can help in linking risks to business goals.

Several points have to be addressed in the following years of the project. We plan to
refine the approach clearly defining the boundaries of the layers and adding to each one
of the layers the suitable techniques for data reasoning. An important point here is that
of developing the approach in such a way to be adapted to the needs of the particular
organisation that should be able to also feed in a contextual way the necessary data to
effectively exploit the approach. Also we plan to integrate better our results to those
coming from projects with related aims, as FLOSSMetrics (http://flossmetrics.org/),
QualiPSO project (http://qualipso.org/), QualOSS (http://www.qualoss.eu/) and
OSSMETER (http://www.ossmeter.eu/).

Acknowledgments. This work is a result of the RISCOSS project, funded by the EC
7th Framework Programme FP7/2007-2013 under the agreement number 318249.

References

1. Harel, A., Kenett, R.S., Ruggeri, F.: Modeling Web Usability Diagnostics on the basis of
Usage Statistics. In: Statistical Methods in eCommerce Research, Wiley (2009)

2. Li, J., Conradi, R., Slyngstad, O., Torchiano, M., Morisio, M., Bunse, C.: A State-of-the-
Practice Survey of Risk Management in Development with Off-the-Shelf Software Compo-
nents. IEEE Trans. Software Eng. 34(2) (2008)

3. Kenett, R.S., Baker, E.: Process Improvement and CMMI for Systems and Software: Plan-
ning, Implementation, and Management. Taylor and Francis, Auerbach Pub. (2010)

4. Ligaarden, O.S., Refsdal, A., Stolen, K.: ValidKI: A Method for Designing Key Indicators
to Monitor the Fulfillment of Business Objectives. In: BUSTECH 2011 (2011)

5. Wallace, L., Keil, M.: Understanding software project risk: a cluster analysis. Inf. Man-
age. 42(1) (2004)

6. Franch, X., Susi, A., Annosi, M.C., Ayala, C., Glott, R., Gross, D., Kenett, R., Mancinelli,
F., Ramsamy, P., Thomas, C., Ameller, D., Bannier, S., Nili Bergida, N., Blumenfeld, Y.,
Bouzereau, O., Costal, D., Dominguez, M., Haaland, K., López, L., Morandini, M., Siena,
A.: Managing Risk in Open Source Software Adoption. In: ICSOFT 2013 (2013)

7. Salter-Townshend, M., White, A., Gollini, I., Murphy, T.B.: Review of statistical network
analysis: models, algorithms and software. Statistical Analysis & Data Mining 5(4) (2012)

8. Yu, E.S.K.: Modelling strategic relationships for process reengineering. PhD thesis, Univer-
sity of Toronto, Toronto, Ont., Canada (1995)

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 172–175, 2014.
© IFIP International Federation for Information Processing 2014

A Methodology for Managing FOSS Migration Projects

Angel Goñi1, Maheshwar Boodraj2, and Yordanis Cabreja1

1 Universidad de las Ciencias Informáticas (UCI),
Carretera a San Antonio de los Baños,

Km. 2 ½. Torrens, Municipio de La Lisa. La Habana, Cuba
{agoni,ycabreja}@uci.cu

2 Mona School of Business and Management,
The University of the West Indies,
Mona, Kingston 7, Jamaica, W.I.

maheshwar.boodraj@uwimona.edu.jm

Abstract. Since 2005, the Free Software Center (CESOL) at the University of
Information Science (UCI) in Havana, Cuba, has conducted several free and
open source software (FOSS) migration projects for various organizations. The
experience gained from these projects enabled the creation of a FOSS
Migration Methodology which documented how the technical elements of a
project of this kind should be executed. Despite the usefulness of this
methodology, the projects that have been undertaken experienced difficulties
that were, in most cases, directly related to their management. This research
aims to improve the methodology and minimize management-related challenges
thereby improving the quality of migration projects. The proposed methodology
was applied in a project that ran in a higher education organization and the
results prove that the methodology enhanced the quality of the migration
project.

1 Introduction

The development of free and open source software (FOSS) and its advantages over
the closed model that is prevalent today[1] have served as a catalyst for many
organizations, including regional and national governments, to adopt FOSS. In 2005,
the Cuban government decided to undertake the process of nationwide adoption of
open source technologies. The implementation of different projects, in several Cuban
organizations had made it possible to develop the Cuban Migration Guide[2], a
document to govern and guide the process. This document was used in several public
sector agencies to facilitate orderly and gradual migration. The number of projects
executed[3] by the Free Software Center (CESOL) in Havana, Cuba, made possible
the creation of a FOSS Migration Methodology[4] based on the most important guides
released in Europe[5], Brazil[6], Peru[7], and Venezuela. It documented best practices
and provided guidance for the team of specialists that would be involved in the
project.

 A Methodology for Managing FOSS Migration Projects 173

2 FOSS Migration Methodology

The FOSS Migration Methodology proposes several steps and workflows that meet
the objective of efficient work organization and makes communication easier between
members of the migration team and managers of the target organization. These stages
and workflows can be seen in Figure 1.

Fig. 1. Phases and workflows of the FOSS Migration Methodology

In 2012, several internal workshops were conducted at CESOL, in which team
members shared their experiences regarding migration. The most common problems
outlined were:

• Low executive commitment in the target organization;
• Unclear expectations of the target organization;
• Low staff participation in the target organization; and
• Late generation of project documentation.

These problems pointed to different areas of project management, which prompted a
review of the migration methodology and project documentation, taking into account
the following two critical project management challenges described in the
literature[8-10]:

• Processes belonging to technology migration and training are properly identified
while management processes are ignored; and

• Project management is performed as an isolated task and done experientially.

In several cases, the Migration Plan contained more technical details instead of
focusing on planning elements. This created a voluminous document (over 100
pages), making it highly unreadable and limiting its usefulness for managers of the
target organizations. The FOSS Migration Methodology and the migration guides[11]
initially ignored the elements of project management, which necessitated the
introduction of workflows (Beginning of the project and End of the project) to
compensate for the lack of structured project management. To address the problems

174 A. Goñi, M. Boodraj, and Y. Cabreja

mentioned above, the FOSS Migration Methodology was improved by introducing
project management elements that were originally overlooked. These elements were
based on the Project Management Body of Knowledge – Fourth Edition (PMBOK
Guide)[9]. During the improvement of this methodology, several changes were made
to the FOSS Migration Methodology including the modified use of some of the
processes proposed by PMBOK Guide. The migration project was split into two main
phases: diagnostic phase and technology migration phase. The Human Resource
Management and Procurement Management knowledge areas were removed in the
final methodology because the migration team members were hired and trained by
CESOL, and the purchase and acquisition of technology were done by the target
organizations and were outside of the scope of the migration projects.

Several Integration Management processes were added: Develop diagnostic report,
Plan consultancy, Plan migration, Develop migration plan, Execute consultancy, and
Execute migration. Additionally, the Develop project management plan process was
substituted with the Develop migration plan process. In Scope Management, the
following processes were added: Gather hardware and software information, Analyze
project feasibility, Migrate network services, Migrate workstations, and Train users.
The initiating process Create diagnostic schedule was added in time management,
along with the unification of all the planning processes into Develop schedule. Hence,
the methodology adapts much of the project management processes from the PMBOK
Guide to the particular characteristics of migration projects. It also omits unnecessary
processes and adds others that complement the FOSS migration activities.

3 Results and Evaluation

In order to evaluate the impact of the improved FOSS Migration Methodology, the
methodology was applied to a FOSS migration project of a higher education
institution which had 202 staff members, 120 workstations, and 2 servers. The
purpose of the FOSS migration was to improve project efficiency while attaining high
levels of user satisfaction. The efficiency of the project was measured in duration (in
days) of the two main phases of the migration: the diagnostic phase and the
technology migration phase.

The diagnostic phase was completed in 16 days - almost half of the average
duration recorded in the schedule of several previous projects. These results support
the heavy redesigning of the processes involved in this phase and the introduction of
the consultancy report as the main deliverable of this stage[11]. The technology
migration phase was finished in 58 days, which was significantly less than that
obtained in previous comparable undertakings. However, there are many external
factors that could have affected these results and the authors cannot decisively
ascertain how much of the reduction in time could be directly attributed to the
improved FOSS Migration Methodology. Two surveys were conducted in order to
measure users’ satisfaction with the results of the migration project. One was
administered to managers and the other to staff. Six managers of the entity were
surveyed, representing 100% of senior management. Four of them were satisfied, one

 A Methodology for Managing FOSS Migration Projects 175

was neutral and another was dissatisfied with the migration results. In the case of
staff, 30 teachers were surveyed, representing 55% of the academic staff involved in
the migration. The results showed twenty satisfied, four neutral and four dissatisfied.

4 Conclusions

This research was conducted to improve the FOSS Migration Methodology to
minimize management-related challenges and improve the quality of migration
projects. The improved FOSS Migration Methodology, which adopts a process-based
approach from the PMBOK Guide, was applied in a project that ran in a higher
education organization and the results prove that the methodology enhanced the
quality of the migration project. Specifically, the improved methodology provided
increased efficiency resulting from shorter activity durations, higher levels of
management and staff satisfaction, enhanced communication from more timely and
comprehensive documentation, and improved project management guidance.

References

1. Raymond, E.S.: The Cathedral & the Bazaar, p. 258. O’Reilly Media, Sebastopol (2001)
2. Paumier, R., Pérez, Y.: Guía Cubana Para La Migración a Swl, La Habana, Cuba (2007)
3. Goñi, A.: Experiencias de la migración a NOVA del área docente de la facultad 10 de la

UCI, La Habana, Cuba: Centro Coordinador para la Formación y el Desarrollo del Capital
Humano del Ministerio de la Informática y las Comunicaciones (2009)

4. Pérez, Y., Méndez, J., Goñi, A.: Metodología cubana de migración a Código Abierto, La
Habana, Cuba (2012)

5. Hnizdur, S.: Directrices IDA de migración a software de fuentes abiertas. European
Communities, Surrey, United Kingdom (2003)

6. Brasileño, G., Libre, G.: Referencia de Migración para Software Libre del Gobierno
Federal, G.d.T.M.p.S. Libre, Brasilia, Brasil (2004)

7. INEI, Guía para la Migración de Software Libre en las Entidades Públicas. Instituto
Nacional de Estadística e Informática, Lima (2002)

8. CMMI, CMMI® for Services, Version 1.3. Software Engineering Institute, Pittsburgh
(2010)

9. PMI, Guía de los Fundamentos para la Dirección de Proyectos. Project Management
Institute, Inc., Pennsylvania (2008)

10. IPMA, ICB IPMA Competence Baseline Version 3, Nijkerk, The Netherlands (2006)
11. Goñi, A.: Metodología para la gestión de proyectos de Consultoría en Migración a

Tecnologías de Software Libre y Código Abierto, p. 106. Universidad de las Ciencias
Informáticas (2012)

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 176–180, 2014.
© IFIP International Federation for Information Processing 2014

The Agile Management of Development Projects
of Software Combining Scrum, Kanban and Expert

Consultation

Michel Evaristo Febles Parker* and Yusleydi Fernández del Monte

University of Informatics Sciences (UCI), Havana. Cuba, 537-8372531
{mfparker,ydelmonte}@uci.cu

Abstract. At the University of Informatics Sciences (UCI), Havana, Cuba, it is
found The Center of Free Solutions of Software (CESOL) who has an
informatic project named "Auditing of Source Code" (ACF). This project has as
objective to develop an open source software solution to auditing the source
code of several software solutions with an agile projects management. In the
present investigation have been showed the experiences obtained in the mixed
application of two methods of agile projects management; Kanban and Scrum,
together with the method Judgment of Expert, during the stage of construction
of the lifecycle of ACF, when it is was performed a quality auditing by
specialists of the CALISOFT company. In the auditing were detected several
errors and to resolve them was necessary to estimate efforts, time and to revalue
the lifecycle of the project. Moreover, the investigation show how this method
can be used as a guide for young project managers for a correct planification
and how can be used as a personal organizational method.

Keywords: Scrum, Kanban, Agile management of projects.

1 Introduction

The Methods of agile software project management are guides for planning and
control thereof. Currently several software development methodologies are focused
on this style. The free software applications by the need to respond quickly to the
constant changes in its requirements, technology and its short development period, are
who most use them. In the Department of Operating System of the center CESOL, are
developed open source software solutions using free tools and agile methodologies,
organized in various development projects. Besides, the UCI is working with a view
to improving the quality of his process of development up to Level 2 of CMMI. To
check the correct execution of the model, audits and reviews are performed to the
projects by the company specialists CALISOFT, the institution responsible for
validating the quality of the process. ACF is a project that belong to the center
CESOL, where a system to auditing the source code of software systems is made
using an agile management and free software tools to develop. The present

* Corresponding author.

 The Agile Management of Development Projects 177

investigation shows the experiences gained during the combined application of the
methods of agile project management, Kankan and Scrum, along with expert
judgment method during the construction phase of the life cycle of the ACF project
which was audited quality. Therefore the objective of this investigation is to show the
experiences gained during the combined application of the agile methods project
management, Scrum and Kankan, along with expert judgment, to achieve a pleasant
management of a computer project.

2 Discussion

The agile management of projects is a management able to adapt and respond to new
requirements and changes dictated by the environment [1] .Inside of this model are
found the agile methodologies of development of software, that seek the early
delivery of incremental software [2], among which are Extreme Programming (XP),
Adaptive Software Development (ASD), Open Unified Process (OpenUp), Kanban
and Scrum. Scrum is a process that apply regularly a set of best practices for working
collaboratively. [3] Divide the team into small specialized groups managed by
themselves, dividing the work into a list of small tasks or requirements for
deliverables. Sort the list by priority and estimated the relative effort of each element
[4]. Kanban is used to monitor the progress of work in the context of a production line
and is currently used for agile project management, often with Scrum (known as
Scrumban) [5].

CMMI is a model that is not focused on the principles of agile development. It is
an adaptable guide to raise the quality level of the software development process of an
entity. Particularly in the UCI there is a project called Programa de mejora, currently
at version 3.4, in order to adapt CMMI to the different development centers that exist
in it; lightening the documentation as possible, in order to fulfill model without
making conflict with the environments of agile development. Particularly the case
study is an example of a stage of the life cycle of the ACF project where was used the
estimation method in view of solving the macro task "Fix no conformities identified
during the audit quality", conformed by small subtasks.

2.1 How to Combine Both Methods?

It starts with a set of tasks or requirements (the term is to taste) to perform. Then it
proceeds to prioritize tasks using various criteria defined by the person responsible for
managing the process. These may be important for the customer, the level of
complexity, the amount of resources required for the implementation and the
dependency among the requirements. The criteria should not be less than three. Each
task is evaluated using these criteria according to a metric that can also be defined by
the person who manage the application of the method, preferably [1-5], [1-10] and [5-
10]. After evaluating each task, the values obtained for each criterion are added
together and this is the value to use as a criterion for prioritizing tasks, sorting them in
descending leaving those with highest numerical value as the first to be executed. In
the event that the comparison test match, you can optionally choose the order that
those tasks will have between them. Later proceeds to define the time duration of the

178 M.E.F. Parker and Y.F. del Monte

tasks. To make this process intervals are defined from the values obtained as a result
of the comparison test; intervals can also be defined optionally. These intervals are
associated durations for tasks. In the interval where the criterion of value is within,
the time corresponding to the interval is associated to the task. The times are defined
using analogies of old tasks, expert consultation, experience and personal judgment.

2.2 Experiences in the Combined Use of Both Methods

In June 2013 the ACF project was audited by specialists CALISOFT where a set of
non-conformances that must be resolved in the shortest time as possible for the
project were consistent with the quality model and resume its planning in the shortest
possible time too. The initial group of tasks to be performed was as follows:

1-Perform document "Technical project", 2- Perform document "Project plan", 3-
Perform document "Glossary of terms", 4-Perform document "Validation of the
requirements", 5-Perform document “Plan of iteration”, 6-Perform document "Work
item list", 7-Perform document “Use case specification”, 8-Perform document “Use
case model, 9-Perform document "Specification of the requirements", 10-Perform
document “Vision”, 11-Perform document of architecture, 12-Perform document "Art
state of the product to develop", 13-Perform document "List of risks" and 14-Perform
document "Requirements of support".

The criteria defined for determining priority were complexity (task difficulty), size
(effort needed to accomplish the task), importance (importance to the project) and the
interest (interest of the project team of to execute the task), being the metric used 1-5.
The result of the prioritization was the following list of tasks: Tasks 1, 2, 3, 4, 5 and 6
with priority 20; task 7 with priority 18; tasks 8, 9,10,11 and 12 with priority 17; task
13 priority 13 and task 14 with priority 12. The estimation of time intervals defined
initially were: the tasks with priority [20] will last 3 days, with priority [19-18] will
last 2 days and with priority [1-17] will last one day, which estimate a total of 29
days. Splitting the time between the number of workers on the project who is three, is
obtained as a result approximately 9.7 days. To restrict the number of tasks was taken
into account that two person on the team had the ability to perform two tasks
simultaneously, for that reason was defined a working limit of 5 tasks for the columns
Assigned, Developing and Reviewing.

Table 1. View of the Kanban board at the end of the first day of work, it can see that the task 3
was completed on the first day

Task list Assigned In development In review Finished % of execution

8,9,10,11,12,13,14 2,5,6,7 1,4 3 7%

The second day, during a review of the remaining tasks was determined reassess
the priority of task 9, leaving with a score of 20 therefore ascends to be the first task
to execute.

 The Agile Management of Development Projects 179

Table 2. View of the Kanban board at the end of the second day of work

Task list Assigned In development In review Finished % of execution

10,11,12,13,14 2,9,8 1,5,6,7 3,4 14%

At the end of the third day of work, the tasks 2 and 10 were assigned and the tasks
9 and 8 upgraded to review. An active risk1 in the ACF project is the lack material
resources and eventually in the stage in question was materialized, affecting the
implementation of task 11. Therefore, as corrective action was determined to
eliminate the task 11 of the board because at that time do not had the necessary
resources to execute it.

Table 3. View of the Kanban board at the end of the fourth day of work

Task list Assigned In development In review Finished % of execution

11 2,12,13,14 1,5,6,7 3,4,9,8,10 35,7%

Table 4. View of the Kanban board at the end of the fifth day of work

Task list Assigned In development In review Finished % of execution

 2 1,5,6 3,4,9,8,10,12,13,14,11,7 71,4%

At the end of the sixth day of work the task 2 entered into development and tasks
1, 5, 6 and 2 into review when the seventh day finished, on both days the percentage
of implementation was 71.4%. On the eighth day all tasks were completed for a 100%
of execution.

3 Lessons Learned

It is possible reassess the task duration by increasing or decreasing their priority
based on the new that arises in the development of software. The feedback
determine that for this case, the future tasks that are similar to the first 6 and number
9, the duration should be 8 days, which represents over five days than estimated. For
the tasks of 2 days, must add them one day and the tasks of 1 day behaved as
estimated, allowing it to update the initial estimates.

It can be estimated and reassign tasks at the moment, allowing time to mitigate
the risks that may exist. During process execution task 9 was prioritized again,
flexibly changing the allocation of the task by a need of the development team.
Following the realization of a risk associated with the project, task 11 was removed as
a corrective measure.

In the prioritizing the tasks influence the characteristics of the team in terms of
their skills and behaviors. The meetings of checking allow analysis of the
performance of tasks and receive feedback from the experiences of the entire team to
make adjustments to improve the planning, estimation and execution.

180 M.E.F. Parker and Y.F. del Monte

Allows to analyze in short term, the trends of the development team and take
steps to improve. Allows to know the speed of the work team and for inexperienced
project leaders to estimate and to update that estimate at the same time that the project
it is running.

It can work objectively by prioritizing tasks. The prioritization of the requirements
allows to obtain a list of work focused on the key elements to achieve the project
objectives; because each time a task is completed the final product evolves.

4 Conclusions

The investigation arrived at four conclusions. The first is that was showed the
experiences gained during the joint implementation of Kanban and Scrum are
detailed, along with the expert consultation to achieve a pleasant management in the
project ACF. As a second conclusion, is that the combination of these methods allows
a more precise estimate of the work, mainly for inexperienced project leaders and
ordinary people. The third conclusion is that with his application the project can
quickly reach his objectives that the product evolves in each review, that the planning
be flexible and analyzes the existence of risks, his mitigation and that the entire work
team participate in the management of the project. The fourth conclusion is that
Scrum and Kanban complement themselves, by the characteristics of an agile
environment there will always be changes in the requirements or the tasks during the
development process, being necessary to insert them in that process. The board of
Kanban by him selves, describes the workflow very well, join it with the prioritized
list of SCRUM, the possibility of Kanban to modify the tasks without having to wait
for the next iteration and a workflow guided by goals, demonstrate why is best to use
them together.

References

1. Palacios, J.: Agile project management: basics concepts: conceptos básicos (2006),
http://www.navegapolis.net/files/s/NST-003_01.pdf

2. Pressman, R.: Software engineering, 6th edn., ch. 4 Agile Development, p. 77. McGraw-Hill
3. Schwaber, K., Sutherland, J.: The Scrum Guide (2013),

https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/
2013/Scrum-Guide-ES.pdf#zoom=100

4. Kniberg, H., Skarin, M.: Kanban and Scrum – getting the best of both (2010)
5. Garzás, J.: What is the Kanban method for project management (November 2011),

https://eventioz.com.ar/e/el-metodo-kanban-creando-un-cambio-
evolutivo-exito

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 181–190, 2014.
© IFIP International Federation for Information Processing 2014

An Exploration of Code Quality in FOSS Projects

Iftekhar Ahmed, Soroush Ghorashi, and Carlos Jensen

School of Electrical Engineering and Computer Science
Oregon State University, Corvallis, OR, USA

{ahmed,cjensen}@eecs.oregonstate.edu
ghorashs@onid.oregonstate.edu

Abstract. It is a widely held belief that Free/Open Source Software (FOSS)
development leads to the creation of software with the same, if not higher
quality compared to that created using proprietary software development
models. However there is little research on evaluating the quality of FOSS
code, and the impact of project characteristics such as age, number of core
developers, code-base size, etc. In this exploratory study, we examined 110
FOSS projects, measuring the quality of the code and architectural design using
code smells. We found that, contrary to our expectations, the overall quality of
the code is not affected by the size of the code base, but that it was negatively
impacted by the growth of the number of code contributors. Our results also
show that projects with more core developers don’t necessarily have better code
quality.

Keywords: Code Quality, Success Metrics, FOSS, Open Source Software.

1 Introduction

Free/Open Source Software (FOSS) is associated with collaborative development
model bringing developers together from different geographical locations to create
cost effective and efficient software. The adoption of FOSS is growing; Walli et al.
found that, out of the 512 U.S. companies surveyed, 87% of them used FOSS [43].
Another survey in 2007 also found that not only does FOSS have a significant market
share, but that this development model in many cases produces the more reliable and
highest performing software option [45].

The quality of FOSS software has been subject to debate. Though some studies
have argued for that FOSS projects can produce high-quality code [33, 36, 6], critics
often point to the lack of formal project management practices and requirements as
roadblocks to reliably achieving high software quality [35]. That said, the FOSS
community has developed its own methods of quality assurance and quality control
[33], and researchers have shown that FOSS projects produce more secure code due
to peer-review and the openness of the code [15]. Despite this controversy, there is a
lack of large-scale empirical studies of objective code quality .

Evaluating the quality of software can be a difficult task because there are a large
number of properties that could be evaluated [16, 44], such as functionality,

182 I. Ahmed, S. Ghorashi, and C. Jensen

adherence to specifications, security, usability, etc. [18, 6]. It is not clear that these
factors, even when combined, would give an adequate definition of quality. As a
result many researchers have used different project characteristics as a substitute
measure of the quality of a project, including longevity [13], operational software
characteristics [31], number of open bugs [5], etc. None of these properties measure
code quality directly (e.g. open bug reports is at best an indirect measure, as it is
confounded by the size of the code base and the quality and extent of testing). One
could argue that in the absence of requirements and objective definitions of quality,
the more objective measure to focus on would be the quality of the code itself.

We decided to examine the quality of FOSS source code using two types of code
smells: implementation level code smells and design level code smells, two objective
measures of code quality. A code smell is not an error or problem in itself, but rather a
set of heuristics for identifying poor coding practices or code structure, often
associated with poor maintainability, bugs, or inefficiencies [19]. This definition
refocuses code quality to the maintainability and efficiency of the code.

We used existing code-smell detection tools to analyze implementation level code
smells (focusing on violations of standard coding practices), and design level smells
(focusing on higher-level issues associated with architectural decisions), and see if
there were interactions between these and other project characteristics. In this paper
we sought to answer the following questions:

• What impact do project characteristics such as longevity, size of code base
and number of developers have on the low-level quality of the code?

• What impact do project characteristics such as longevity, size of code base
and number of developers have on the quality of design-level decisions?

The outline of this paper is as follows. We review related work in FOSS
development model. Next we describe our research methodology. Then we present
our findings followed by the discussion, and finally outline future work and
conclusion.

2 Background

Two of most important characteristics of the FOSS development model, for the
purposes of this paper, are the distributed development process and the reliance on
unpaid developers. These two factors can have an important effect on software quality
because they lead to decentralization and difficulty compelling developers to take
specific actions. That said, these characteristics are not indicative of a lack of quality;
there are plenty of examples of outstanding FOSS projects, such as Linux, Apache,
Gnome, Mozilla, etc.

Most FOSS research is focused on these successful and popular projects [27, 34],
while ignoring the many smaller FOSS projects that fail to reach this level of quality,
popularity, or success. While a core reason for failure can be a lack of interest or
volunteers [40], some suggest that lack of management is a major cause [38].

One key to the success of FOSS is that source code availability allows faster
evolution and higher quality because of parallel development and the theory that

 An Exploration of Code Quality in FOSS Projects 183

having more eyes on the code identifies more bugs quickly [32]. Because of this, as
Stamelos et al. [39] found, mature FOSS code is generally of good quality.

Many metrics have been used to define the success of an information system (IS)
such as a FOSS project. Delone and McLean’s IS success model is perhaps the most
cited [8, 9, 7]. In this model they identify six measures of success, with system quality
being the most important measure for user satisfaction and adoption [22].

Looking beyond FOSS, Boehm et al. [3] and Gorton and Liu [14] among many
software engineering researchers, have explored different measures for software
quality; including completeness, usability, testability, maintainability, reliability,
efficiency and etc. that are all relevant to our analysis.

Code smells are symptoms of problems in the source code, and an indicator of
where refactoring is needed [11]. This in turn has been associated with errors [23] and
code maintainability problems [11]. Researchers have come up with different types of
code smells depending on their type of impact [25]. The identification of code smells
is typically done during development, testing, and maintenance.

Many approaches have been proposed for code smell detection, such as metric
based [20] and meta-model based [28]. Metric based measures show that code smells
impact software quality [24]. Most of the code smell detection tools are based on
metrics analysis [20]. This static analysis based approach has its drawbacks. Fowler
and Beck claimed that “No set of metrics rivals informed human intuition” [11] when
it comes to deciding whether an instance of a code smell should be refactored.

3 Methodology

Our goal was to analyze the impact of different project characteristics on the overall
quality of code, measured using coding practice violations and design level code
smells. We wanted to see if project characteristics such as longevity, number of core
developers, the size of the developer community, the frequency of code changes, and
size of the code base were correlated with the quality of the resulting code. This could
shed valuable light on prevalent assumptions about the evolution of FOSS projects,
and prescribed best practices.

We sought to perform an analysis of representative FOSS projects, but we also
wanted to control for as many external factors as possible. One such factor was the
programming language used. We decided to restrict our study to Java for two reasons:
First, Java is one of the most popular languages (according to Github [12] and the
Tiobe index [41]). Second, the number and robustness of Source Code Analysis
(SCA) and code smell detection tools for Java compared to other languages.

For code smell detection we built on the work of Fontana et al [10] and selected the
InFusion [17] toolset. To identify the standard coding practice violations, we used
“Codepro Analytix” [4] which uses a set of 643 rules collected from textbooks of java
such as The Elements of Java Style [42] and Effective java [2].

We used the 110 most popular Java projects hosted on Github [12]. Popularity was
measured using the number of stars given to projects, a product of the number of
users who liked the project and chose to get updates about it. Core developers in this

184 I. Ahmed, S. Ghorashi, and C. Jensen

paper are defined as the group of contributors that contribute major portions of the
commits and also act as reviewers for patches submitted by others. Table 1 gives an
overview of the key characteristics of the projects in our dataset.

Table 1. Summary of the project characteristics

 Min Max Median Average Stddev
File count 480 462,846 22,811 51,270.0 74,354.5
LOC 701 968,287 45,564 10,702.1 175,146.2
of commits 20 120,947 555 2,880.7 11,891.5
Age (days) 5 5,485 910 1,086.0 905.8
of core developers 1 44 3 6.1 7.6
of contributors 1 225 25 43.7 47.2
Popularity (stars) 695 7,252 1,011 1,376.5 987.8
Total design code smells 0 4,981 28 231.7 645.3
Total coding violations 18 4,894 921 1,074.1 908.9

 In the second phase we analyzed the projects to check if project characteristics
contributed towards specific design issues. We categorized code smells into broader
categories, as suggested by the code smell literature [25]. Our categories were:
Bloater, Object oriented abusers, Coupler, Dispensables, Encapsulators and Others.

• Bloaters are smells that leads the code to balloon so that it cannot be effectively
handled. This includes data clumps, large class, long method, long parameter list
and primitive obsession [25].

• Object oriented abusers are smells that do not fully exploit the advantages of
object-oriented design. Some of the smells include Switch statements, parallel
inheritance hierarchies, and alternative classes with different interfaces [29].

• The Coupler category contains smells related to high coupling between objects, in
defiance of good object oriented design principles. Smells in this category include
feature envy and inappropriate intimacy [29].

• The Dispensable category contains smells such as the lazy class, data class and
duplicate codes [29].

• The Encapsulators category contains smells that deal with data communication or
encapsulation, and includes message chain and middleman smells [29].

• Others is an aptly named catch-all category.

Two researchers independently performed this categorization. Inter-rater agreement
was calculated using Cohen's Kappa. As the categorization was straightforward and
there were only 6 categories, we achieved a Cohen-Kappa score of 0.90 after the first
round of coding. According to Landis and Koch [19], Cohen-Kappa score greater than
.85 indicates almost perfect agreement between coders.

4 Results

We calculated correlation coefficient between the number of low-level smells and the
project characteristics mentioned earlier. None of these showed a Pearson Correlation
Coefficient greater than 0.50, meaning that there was no strong linear correlation
between any of the single properties and overall low-level code quality.

Next we used linear reg
of files or other variables
Popularity and Number of c

Table 2. Quality indicat

Title
File count
LOC
of core developers
of contributors
Age (Days)
*R-Squared

To answer our second r
number of design level sm
that there was a strong lin
smells and the number of co

Next we used linear reg
of files or other variables re
Number of contributors and

Table 3. Quality indicato

Title
File count
of core developers
of commits
Age (Days)
of lines deleted
*R-Squared

Fig. 1. Pe

An Exploration of Code Quality in FOSS Projects

gression analysis with the intercept set to zero (abse
s results in zero code violations). Our model discar
commits as significant factors (see Table 2).

tor of the linear model for measuring low-level code smells

Estimate Std. Error t va
-0.4401 0.1996 -2.2
0.3233 0.1549 2.0

-0.6321 0.2715 -2.3
0.8408 0.2020 4.1
0.4563 0.1506 3.0
0.4735

esearch question we checked for correlations between
mells and the project characteristics. Surprisingly we fou
ner relationship between the number of design level c
ore developers (Pearson Correlation Coefficient = 0. 73)

gression analysis with the intercept set to zero (abse
esults in zero code violations). Our model discarded LO

d Popularity as significant factors (see Table 3).

or of the linear model for measuring design level code smells

Estimate Std. Error t va
0.14303 0.10169 1.4
0.49993 0.08675 5.7
0.16490 0.7962 2.0

-0.13961 0.08079 -1.7
0.13450 0.07667 1.7

0.5349

ercentage occurrence of code smell categories

185

ence
rded

alue
205
087
328
162
030

the
und
ode
).

ence
OC,

alue
406
763
071
728
754

186 I. Ahmed, S. Ghorashi, and C. Jensen

Figure 1 shows the mapping of design-level code smells into the six high-level
categories discussed in our methodology section. We found that Couplers and
Bloaters are the most common design-oriented code smells (solid bars), with 39.52%
and 35.47% of all occurrences respectively. However, when we look at the percentage
of projects that have at least one of these smells we see a much more even distribution
(striped bars).

5 Discussion

The linear regression models that we found have R-squared values of 0.4735 and
0.5349 for low-level smells and design-oriented smells respectively. This means that a
handful of project factors can account for roughly 50% of the variance in the sample.
We also found that for the design smells, there was a strong correlation between the
number of core developers and smells.

Looking at the data we see few interesting things standing out. For low level smells
we were not surprised to see a correlation between the size of the code base or the
number of contributors on one hand, and the number of smells on the other. This was
expected; the more complex the code and the more coders there are, the harder it is to
curate the code effectively, thus allowing more code smells to manifest. We also
expected file count and number of core developers to have a positive effect on code
quality, as the first leads to better organization, and the second better curating and
supervision.

What was somewhat surprising was to see that the age of the code-base had a
negative effect on code quality. One would expect the code to improve over time, but
it appears as if this is not necessarily the case. It is likely that the urge to add new
features, or the turnover of programmers outweigh any refactoring and fine-tuning
performed by the community.

For high-level, or design oriented smells, we found that file count, number of
commits and number of core developers actually led to an increase in the number of
smells. Most of these correlations make sense. While the number of files help manage
the low-level complexities of the code, adding files makes it harder to maintain the
high-level conceptual design. Likewise, while adding core developers help projects
stay on top of low-level code reviews, but hinders the high-level design vision. Too
many cooks do seem to spoil he broth.

Unexpectedly we found that age did decrease the number of design smells, which
means that though age is associated with more low-level smells, it is also associated
with fewer design smells. It may be that over time, refactoring is more often aimed at
removing design flaws rather than low-level coding convention violations.

Turning to the last part of our analysis, we find support for our interpretation of the
results; the code smell categorization gives us a deeper understanding of the
underlying causes for code smells. Coupler was the most common code smell, and
represents the smells that causes high coupling between objects [29]. This might be an
indication of a lack of adherence to object oriented design principles. We can
hypothesize that, this type of ad hoc change happens due to the lack of knowledge

 An Exploration of Code Quality in FOSS Projects 187

about the design decisions of the project and due to low adoption rate of modeling and
design tools in FOSS community [33].

Bloaters were the second most common code smell, and represent smells that lead
the code to grow out of control, and is often caused by small changes and additions to
the code [29]. Bloating is associated with centralized control structures using object-
oriented languages, and Arisholm et al. identified that novice developers perform
better with centralized control styles [1]. So it’s most likely that novice developers
turned contributors are pushing these changes. This potentially raises a question about
quality assurance in FOSS.

In our analysis we have used the total number of coding standard violations and
code smells as the indicator of FOSS projects quality. Identified regression models
indicate that the number of core developers is correlated with quality of the FOSS
project. This is in line with the findings of Sen et al., who found that number of
developers reflect the “healthiness” of a FOSS project [37]. Contrary to one of the
findings of Sen et al. we didn’t find any strong relationship between the popularity of
a project and the quality of the project. This can be explained by the “lurking”
phenomenon that is prevalent in online communities [30] up to 90% [26]. The
“lurkers” are members of the community, who do not participate in any activity
except watching, so it make sense that they have little impact on the actual quality of
the code. Further empirical analysis is required to identify the actual contribution of
lurking towards this observation to make any concluding remarks on this topic.

6 Limitations

It’s always difficult to generalize a diverse movement such as FOSS. While we tried
to ensure diversity amongst the projects we selected, there were limitations to our
methodology and selection criteria. We list the most important here:

Our analysis was of 110 FOSS projects, which though a reasonable sample, is
small compared to a population of 375,486 projects. Though we selected the projects
based on popularity we did not consider the application domain of the selected
projects. During the data collection, we also did not exclude folders that were not
directly related to the functionality of the system itself (test folders, contribution
folders, demo folders, etc.).

7 Conclusion

We were able to show that there is a correlation between a number of important
factors such as the longevity, the number of developers, and code-base size on one
side, and the number of low-level code smells on the other. This implies that as
projects grows and ages, the quality of the code decreases, unless counteracted by a
larger group of core contributors to curate submissions. However, we also found that
increasing the number of core developers negatively affects the higher-level design of
the code. It is therefore important to carefully balance the size of the core group.

188 I. Ahmed, S. Ghorashi, and C. Jensen

Acknowledgements. We would like to thank the Oregon State University HCI group
for their input and feedback on the research.

References

1. Arisholm, E., Sjoberg, D.I.: Evaluating the effect of a delegated versus centralized control
style on the maintainability of object-oriented software. IEEE Transactions on Software
Engineering 30(8), 521–534 (2004)

2. Bloch, J.: Effective java. Addison-Wesley Professional (2008)
3. Boehm, B.W., Brown, J.R., Lipow, M.: Quantitative evaluation of software quality. In:

Proc. 2nd International Conference on Software Engineering, pp. 592–605 (1976)
4. CodePro Analytix, https://developers.google.com/

java-dev-tools/codepro/doc/
5. De Groot, A., Kügler, S., Adams, P.J., Gousios, G.: Call for quality: Open source software

quality observation. In: Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G.
(eds.) Proc.Open Source Systems. IFIP, pp. 57–62. Springer, Boston (2006)

6. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: An Investigation of the
Users’ Perception of OSS Quality. In: Ågerfalk, P., Boldyreff, C., González-Barahona,
J.M., Madey, G.R., Noll, J. (eds.) OSS 2010. IFIP Advances in Information and
Communication Technology, vol. 319, pp. 15–28. Springer, Heidelberg (2010)

7. DeLone, W.H., McLean, E.R.: Information Systems Success Revisited. In: Proc. of the
35th Hawaii International Conference on System Sciences (2002)

8. DeLone, W.H., McLean, E.R.: The DeLone and McLean Model of Information Systems
Success: A Ten-Year Update. Journal of Management Information Systems, 9–30 (2003)

9. DeLone, W.H., McLean, E.R.: Information Systems Success: The Quest for the Dependent
Variable. Information Systems Research, 60–95

10. Fontana, F.A., Mariani, E., Morniroli, A., Sormani, R., Tonello, A.: An experience report
on using code smells detection tools. In: Software Testing, Verification and Validation
Workshops (ICSTW), pp. 450–457 (2011)

11. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Professional (1999)

12. Github, https://github.com
13. Golden, B.: Making Open Source Ready for the Enterprise, The Open Source Maturity

Model. Extracted From Succeeding with Open Source. Addison-Wesley Publishing
Company (2005)

14. Gorton, I., Liu, A.: Software Component Quality Assessment in Practice: Successes and
Practical Impediments. In: Proc. of the 24th International Conference on Software
Engineering, pp. 555–558. IEEE Computer Society

15. Hoepman, J.H., Jacobs, B.: Increased security through open source. Communications of
the ACM 50(1), 79–83 (2007)

16. Sommerville, I.: Software Engineering. Pearson Education Limited, Essex (2001)
17. InFusion, http://www.intooitus.com/inFusion.html
18. Jung, H.W., Kim, S.G., Chung, C.S.: Measuring software product quality: A survey of

ISO/IEC 9126. IEEE Software 21(5), 88–92 (2004)
19. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data.

Biometrics 33, 159–174 (1977)
20. Lanza, M., Marinescu, R.: Object-oriented metrics in practice: using software metrics to

characterize, evaluate, and improve the design of object-oriented systems. Springer (2006)

 An Exploration of Code Quality in FOSS Projects 189

21. Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: Predicting OSS trustworthiness on the basis
of elementary code assessment. In: Proc. of ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, p. 36 (2010)

22. Lee, S.Y.T., Kim, H.W., Gupta, S.: Measuring open source software success. Proc.
Omega 37(2), 426–438 (2009)

23. Li, W., Shatnawi, R.: An empirical study of the bad smells and class error probability in
the post-release object-oriented system evolution. Journal of Systems and Software 80(7),
1120–1128 (2007)

24. Marinescu, R.: Detecting design flaws via metrics in object-oriented systems. In: 39th
International Conference and Exhibition on Technology of Object-Oriented Languages and
Systems, TOOLS 39, pp. 173–182 (2001)

25. Marticorena, R., López, C., Crespo, Y.: Extending a taxonomy of bad code smells with
metrics. In: Proc.7th ECCOP International Workshop on Object-Oriented Reengineering
(WOOR), p. 6 (2006)

26. Mason, B.I.: Issues in virtual ethnography. In: Proc. of Ethnographic Studies in Real and
Virtual Environments: Inhabited Information Spaces and Connected Communities, pp. 61–
69. Edinburgh (1999)

27. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology 11, 309–346 (2002)

28. Moha, N., Rezgui, J., Guéhéneuc, Y.-G., Valtchev, P., El Boussaidi, G.: Using FCA to
suggest refactorings to correct design defects. In: Yahia, S.B., Nguifo, E.M., Belohlavek,
R. (eds.) CLA 2006. LNCS (LNAI), vol. 4923, pp. 269–275. Springer, Heidelberg (2008)

29. Mäntylä, M.: Bad smells in software-a taxonomy and an empirical study. Helsinki
University of Technology (2003)

30. Nonnecke, B., Preece, J.: Lurker Demographics: Counting the Silent. In: Proc. CHI 2000,
pp. 73–80 (2000)

31. Rating, B.R.: Business readiness rating for open source, http://openbrr.org
32. Raymond, E.: The cathedral and the bazaar. Knowledge, Technology & Policy 12(3),

23–49 (1999)
33. Robbins, J.: Adopting open source software engineering (OSSE) practices by adopting

OSSE tools. In: Perspectives on Free and Open Source Software, pp. 245–264 (2005)
34. Koch, S., Schneider, G.: Effort, cooperation and coordination in an open source software

project: GNOME. Information Systems Journal 12(1), 27–42 (2002)
35. Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K.: Understanding free/open

source software development processes. Software Process: Improvement and
Practice 11(2), 95–105 (2006)

36. Schmidt, D.C., Porter, A.: Leveraging open-source communities to improve the quality &
performance of open-source software. In: Proc. of the 1st Workshop on Open Source
Software Engineering (2001)

37. Sen, R., Subramaniam, C., Nelson, M.L.: Open source software licenses: Strong-copyleft,
non-copyleft, or somewhere in between? Decision Support Systems 52(1), 199–206 (2011)

38. Senyard, A., Michlmayr, M.: How to have a successful free software project. In:
Proceedings of the 11th Asia-Pacific Software Engineering Conference, pp. 84–91. IEEE
Computer Society, Busan (2004)

39. Stamelos, I., Angelis, L., Oikonomou, A., Bleris, G.L.: Code quality analysis in open
source software development. Information Systems Journal 12(1), 43–60 (2002)

40. Subramaniam, C.: Determinants of open source software project success: A longitudinal
study. Decision Support Systems 46, 576–585 (2009)

190 I. Ahmed, S. Ghorashi, and C. Jensen

41. Tiobe, http://www.tiobe.com/index.php/content/paperinfo/
tpci/index.html

42. Vermeulen, A. (ed.): The Elements of Java (TM) Style, vol. 15. Cambridge University
Press (2000)

43. Walli, S., Gynn, D., Rotz, V.: The Growth of Open Source Software in Organization
(2005), http://dirkriehle.com/wp-content/uploads/2008/03/
wp_optaros_oss_usage_in_organizations.pdf

44. Wennergren, D.M.: Clarifying Guidance Regarding Open Source Software, OSS (2009),
http://dodcio.defense.gov/Portals/0/Documents/FOSS/
2009OSS.pdf

45. Wheeler, D.: Why Open Source Software/Free Software (OSS/FS,FOSS, or FLOSS)?
Look at the Numbers (2007), http://www.dwheeler.com/oss_fs_why.html

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 191–194, 2014.
© IFIP International Federation for Information Processing 2014

Polytrix: A Pacto-Powered Polyglot Test Matrix

Max Lincoln and Fernando Alves

ThoughtWorks Brazil
Av. Gov. Agamenon Magalhães, 4779, 12º andar

Empresarial Isaac Newton
Ilha do Leite, Recife - PE

50070 160 - Brazil

Abstract. We have created a polyglot test framework named Polytrix to compare,
benchmark, and independently verify a suite of open-source OpenStack SDKs
that each target a different programming language. The framework validates
sample code from each SDK against a shared test scenario to validate that each
SDK correctly implements a given scenario. It uses Pacto for integration contract
testing between the SDKs and the OpenStack services, and generates test reports
that help compare and document each SDK. It is designed so interactive training
materials can be generated in future versions.

1 Introduction

OpenStack was founded by Rackspace Hosting and NASA in July 2011 as an open-
source system for building public and private clouds[1]. Since then, it has grown into
a global open-source initiative, with contributions from more than 1800 engineers and
168 companies[2], and users in more than 132 countries[3]. Rackspace has continued
to be an major contributor to OpenStack throughout the latest (Havana) release[4],
and is also a major contributor to many projects that have grown around OpenStack.
These other projects include OpenStack SDKs. These SDKs fall into two groups[5]:

OpenStack SDKs: only support clouds built with OpenStack (including OpenStack
private clouds as well as public clouds from Rackspace, HP, and IBM)

Multi-cloud SDKs: support OpenStack in addition to other clouds

OpenStack has not officially selected supported SDKs, but Rackspace supports
OpenStack SDKs written in .net (openstack.net), php (php-opencloud), python
(pyrax) and go (gophercloud) as well as multi-cloud SDKs written in java (Apache
jclouds), node.js (pkgcloud) and ruby (fog)[6]. The three multi-cloud SDKs are each
governed by a different organization.

The OpenStack wiki does make the requirements of an SDK clear:

1. A set of language bindings that provide a language-level API for accessing
OpenStack in a manner consistent with language standards.

2. A Getting Started document that shows how to use the API to access
OpenStack powered clouds.

192 M. Lincoln and F. Alves

3. Detailed API reference documentation.
4. Tested sample code that you can use as a "starter kit" for your own

OpenStack applications.
5. SDKs treat OpenStack as a blackbox and only interact with the REST/HTTP

API.
6. Must be sustainable.
7. License must be compatible with Apache License v2.

The quality and completeness of SDKs can be difficult to assess, especially as the
number of SDKs grows. The OpenStack wiki states: "What constitutes an official
OpenStack SDK has not been determined. This is an area the needs more work."

This paper outlines a test framework and documentation generator codenamed
Polytrix (Polyglot Testing Matrix) that assesses SDKs and produces documentation
that may help them achieve officially supported status.

2 Solution Overview

Polytrix[7] was using Ruby’s RSpec[8] testing language, the Pacto[9] integration
contract testing library, and the Docco[10] documentation generator. Since we are
testing many different languages, we needed a generic way to update dependencies
before running tests. We used the GitHub 'script/bootstrap' pattern[11] to keep things
language agnostic. Once each project was bootstrapped, the Polytrix invokes each
test. We run a Pacto server in the background to act as a test stub, mock or spy[12],
capturing and validating calls made to services against their expectations that are
defined in files referred to as “Pacto contracts”.

Figure 1 shows the flow of a Polytrix test. We first launch Pacto as a server so it
can accept requests over HTTP from the SDKs (step 1). Then we locate (step 2) and
execute (step 3) the code sample for each SDK. The test environment is configured so
calls from the SDKs to OpenStack are proxied through Pacto (step 4). Pacto will
validate each request and forward it to the real service (step 5), or could return a
stubbed response for fast feedback. Validation includes checking the structure of each
request and response against json-schema[13] defined in the “Pacto Contract”, as well
as checking for expected HTTP headers. Once the sample code finishes executing, we
check that it executed without errors (step 6). We then compare our test expectations
against the actual interactions observed by Pacto, making sure that the expected
services were called with appropriate data (step 7). If necessary, we could query
OpenStack to check the final state (step 8), but step 7 is usually sufficient. Finally, we
instruct Pacto to teardown any resources created during testing by sending deletion
requests to counteract any creation requests that were detected during the test (step 8).

The role that Pacto fills is similar to that of the CC helper used by Codecademy's
Submission Correctness Tests. The primary difference is that the CC helper validates
locally invoked functions, why Pacto validates the invocation of remote services.
This similarity makes it possible to enhance the test suite to work as an interactive
online programming course for the SDK, similar to how CS Circles[14] or
Codecademy teach general programming.

 Polytrix: A Pacto-Powered Polyglot Test Matrix 193

Fig. 1. Polytrix Testing Sequence

Once the test is complete, we generate documentation from the test metadata and
extract additional documentation from the code samples using Docco[10], a tool
inspired by Literate Programming[15].

3 Tutorial and Future Work

In the tutorial we will demonstrate how Polytrix can help projects like OpenStack
assess multiple SDKs by:

• Collecting and displaying sample code for common scenarios in a central
location so that the completeness and consistency with language standards of
language-level bindings can be reviewed.

• Testing code samples, including verifying that they interact with as expect
with REST/HTTP APIs.

• Generating Getting Started Guides and Starter Kit documentation from the
test suite.

We will also discuss how Polytrix can be adapted to validate user input instead of pre-
written code samples in order to create an interactive online programming course for
the SDK.

References

1. ‘rCloud’ Is Your Cloud: The OpenStack Journey - The Official Rackspace Blog.
Rackspace Hosting, http://www.rackspace.com/blog/
rcloud-is-your-cloud-the-openstack-journey/

194 M. Lincoln and F. Alves

2. Stackalytics | OpenStack community contribution in all releases,
http://stackalytics.com/?release=all (last modified January 31, 2014,
accessed January 31, 2014)

3. Home » OpenStack Open Source Cloud Computing Software,
http://www.openstack.org/ (last modified January 31, 2014, accessed January
31, 2014)

4. Who Built Havana. OpenStack Summit (2013)(November 8, 2013) (print)
5. SDKs - OpenStack, https://wiki.openstack.org/wiki/SDKs (last modified

January 31, 2014, accessed January 31, 2014)
6. Rackspace Developer Center, http://developer.rackspace.com/ (last modified

February 02, 2014, accessed February 02, 2014)
7. rackerlabs/polytrix, https://github.com/rackerlabs/polytrix (last

modified February 04, 2014)
8. Chelimsky, D.: The RSpec book: behaviour-driven development with RSpec, Cucumber,

and Friends, Pragmatic, Lewisville, Tex (2010)
9. thoughtworks/pacto, https://github.com/thoughtworks/pacto (last modified

February 03, 2014)
10. jashkenas/docco, https://github.com/jashkenas/docco

(last modified February 04, 2014)
11. Bootstrapping consistency, http://wynnnetherland.com/linked/

2013012801/bootstrapping-consistency (last modified January 28, 2014)
12. Meszaros, G.: xUnit Test Patterns: Refactoring Test Code. Pearson Education, vol. 1

(2007) ISBN 9780132797467
13. IETF, JSON Schema: core definitions and terminology, draft (2013),

http://tools.ietf.org/html/draft-zyp-json-schema-04
14. Pritchard, D., Vasiga, T.: CS Circles: An In-Browser Python Course for Beginners.

arXiv:1209.2166 [cs] (2012)
15. Knuth, D.E.: Literate Programming. Comput. J. 27, 97–111 (1984)

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 195–198, 2014.
© IFIP International Federation for Information Processing 2014

Flow Research SXP Agile Methodology
for FOSS Projects

Gladys Marsi Peñalver Romero, Lisandra Isabel Leyva Samada,
and Abel Meneses Abad

University of Informatics Sciences (UCI), Roar of San Antonio de los Baños.
Km 2 1/2. Tor-rens. Havana, Cuba

gmpenalver@uci.cu

Abstract. This paper aims to explain a procedure that takes into account the
different research processes carried out in developing an open-source, allowing
control and management. This study is the SXP methodology applied in this
type of project was carried out, allowing the validity of the basis of this
research.

Keywords: methodology SXP, open-source, production, research, software.

1 Introduction

University of Informatics Sciences (UCI) has six faculties and several development
centers which in turn are composed of productive projects. Each center specializes in
a different line of development, and of them the Free Software Center (CESOL) is
dedicated to the creation of the Cuban operating system (Department of Operating
Systems (OS)) and migration processes lead to open source applications, from a mo-
del of integration of training, research and postgraduate (Department of Comprehen-
sive Immigration Services, Counseling and Support (SIMAYS)).The process of mi-
grating to open source companies is one of the most important services in addition to
counseling, consulting, training and support offered, and to expedite the work of spe-
cialists have developed applications that automate many of the processes governing
the service provided, raising the quality and quick response customer service. For
those products SXP agile methodology created to develop projects with more speed
and quality expected by the end user applies.

The great need for each project was implemented in less than one year, with
frequent deliveries, with teams of no fewer than 10 members, where self-management
and the ability of each of the members of the development team were some of the
reasons why this methodology is used during the life cycle of these projects.

Although its application has fulfilled its main objective, did not include artifacts,
and activities that define the research process that occurs when developing software,
thus resulting in the need to integrate him a workflow process to collect research in
the various projects, defining artifacts, activities and roles in order to obtain higher
quality products, competitive, and I could control and disseminate knowledge that
occurs during software development.

196 G.M.P. Romero, L.I.L. Samada, and A.M. Abad

2 Development

When starting a project already has how to carry out the development process,
although at the beginning an entire previous research, which identifies the object of
study, the current domestic and international situation is realized, which is framed in
the first phase of any project; and it is the same theory that is followed in SXP.

2.1 Development Methodology SXP

SXP is a Cuban hybrid agile [1], which is premised on avoiding duplication of efforts
and customer integration into the development team which ensures no need for
extensive documentation, and thus is well recorded which will be used in a future re-
use. Behold the good practices of the agile methodologies XP and SCRUM, besides
the quality guidelines defined by Calisoft, which is the entity responsible for
monitoring the status of each of the projects that are developed in the centers of
development of the UCI and model CMMi quality. It is divided into four phases
which form the basis of the structure of your project file, these are: Planning,
Definition, Development, Delivery and Maintenance. Each of these phases is made up
of a number of activities which are generating artifacts documenting the process and
guide the development of the products.

2.2 ¿Where the Investigative Work Reflected SXP?

In the Planning-Definition phase is where the vision is established, the expectations
are set and securing project financing is done. However not considered a research-
oriented approach, because it is not spoken any time of writing the research project or
research tasks that are thought to develop as a result of the production process,
although this element should lead to torque software development process. When
starting the development cycle, where the implementation of the product is made, also
carried hand research, which can be very intense according to the different technical
aspects to be analyzed in order to define the most sensible when developing. A final
product is obtained nothing but the study documented, being within the knowledge of
the researcher. Sometimes it happens that other projects need this information when
developing, and not have them accessible, they should start their research from
scratch, which impacts the product development time. So we can conclude that given
the number of projects being developed, despite being guided by the methodology
SXP lose the opportunity to document the wealth of research that systematically deve-
lop them. Which is knowledge that is generated and that in turn runs the risk of being
lost with time, showing scientific activity affected by this situation. As it became
necessary to develop a research stream with the inquiry process that takes place
during the production of the software, allowing it to monitor and disseminate the
knowledge produced.

 Flow Research SXP Agile Methodology for FOSS Projects 197

2.3 Flow Research with Artifacts and SXP Role for Methodology

The methodology has a workflow that contains a number of artifacts that enables the
control and management of research. This research stream will not be located in a
specific phase, because its location will be chosen by the working group for each of
the projects. Although it is recommended that some of the artifacts begin construction
in early stage (Planning - Definition). Below are by each of the evidence gathering
activity that takes place in the workflow:

Artifact Research Development Plan (IDP) is a document that reflected the initial
da-planning to develop investigative activities, and should be done by the Research
Manager, taking into account the characteristics defined for this role.

Artifact State of the Art, is a deliverable that will be developed after a preliminary
investigation, so it is proposed that has its beginnings in the planning phase -
definition, which does not mean they can not come changes in the remaining phases.
This device may involve different roles of the development team in its preparation
should not only be developed by the Research Manager.

Artifact Research Report suggests that develops in the development stage and that's
where you are getting the results of investigations carried out. This device may
involve different roles of the development team in its preparation should not only be
developed by the Research Manager.

Role: Research Manager

• Person responsible to manage all the research tasks that develop.
• It is responsible for planning the development of research, verify compliance

and quality of them.
• It is responsible for the preparation of PDI.
• It need not have computer skills, but if some domain of Research

Methodology.

2.4 Valoración de la Propuesta

This method is novel because there is no documentation on the pervasive culture of
research conducted during the development of software.

Although some productive research projects managed without defining roles
artifacts or take responsibility for the control and dissemination of the same. It must
be emphasized that this research stream can be implemented not only by the SXP
methodology, but may be included in any other software methodologies analyzed in
this research considering the stage of development that is more convenient when
incorporate it. The artifacts can be applied to any research task running on a
productive project because it meets the adjustable parameters to their characteristics.
With the implementation of this proposal fails to meet four key fundamentals: First,
the problem of the organization of research in productive projects is solved, and
second, the basis for publication are encouraged, in addition to the socialization of
knowledge produced in software development, third, a favorable economic impact is

198 G.M.P. Romero, L.I.L. Samada, and A.M. Abad

obtained in projects, reusing the basis of research to accelerate the development of
future products and finally, the training of human resources for software production is
favored.

3 Conclusions

In general we can draw the following conclusions:
Insertion flow enables research documenting the research tasks in the production of

FOSS projects, it includes new artifacts and roles to software development
methodology analyzed (SXP).

The knowledge gained in studies for re- use in new developments is guaranteed,
and that serve as a basis for specialists who are interested in such projects.

Controls the research tasks in productive projects, raising the engagement of
specialists to exchange knowledge and scientific-technical work.

It encourages collaborative work between developers and members of development
teams, because centralizing research in a repository can be accessed

PDI, State of the Art and Research Report: Quality control and documentation of
the investigative work done, with the inclusion of artifacts is guaranteed.

References

1. Romero, P., Marsi, G.: Metodología ágil para proyectos de software libre, SXP (2008)
2. Calderín, A., Yenin, I.: Procedimiento para el control de tareas investigativas en la produc-

ción de software en la UCI. Pág.61 Panorama IT
3. Raycel, C.F., Susel, G.P.: Propuesta de un expediente, para los proyectos productivos del

Polo de Software Libre, de la Facultad 10. Pág. 34 (2008)
4. Galán, F.J., Cañete, J.M.: Qué se Entiende en España por Investigación en Ingeniería del

Software (2005)
5. Genova, G., Llorens, J., Nuviola, J.: Métodos abductivos en Ingeniería del Software (2005)
6. Galán, G.F.J., Miguel, C.J.: Qué se Entiende, en España, por Investigación en Ingeniería del

Software?
7. Rafael, M.: Metodología de desarrollo de software (2010)

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 199–201, 2014.
© IFIP International Federation for Information Processing 2014

How to Support Newcomers Onboarding
to Open Source Software Projects

Igor Steinmacher1 and Marco Aurélio Gerosa2

1 DACOM – UTFPR Campo Mourao – PR – Brazil
igorfs@utfpr.edu.br

2 IME – USP Sao Paulo – SP - Brazil
gerosa@ime.usp.br

Abstract. While onboarding an open source software (OSS) project,
contributors face many different barriers that hinder their contribution, leading
in many cases to dropout. Many projects leverage the contribution of outsiders
and the sustainability of the project relies on retaining some of these
newcomers. In this research, we aim at understanding the barriers that hinder
onboarding of newcomers to OSS projects, by means of different empirical
approaches, and proposing a set of strategies that can be used to support the first
step of newcomers.

1 Introduction

Open Source Software (OSS) communities are generally self-organized and dynamic,
counting with contributions of volunteers spread all over the globe. These
communities demand a high influx of newcomers to keep alive [1]. According to
Qureshi and Fang [2], motivate, engage and retain developers is a way to foster a
sustainable amount of developers in a project. However, newcomers face difficulties
and obstacles when they start interacting to the project, resulting in a high dropout
rate [5]. Newcomers need to learn both social and technical aspects of the project,
exploring mailing lists, wikis, issue trackers and source code repositories [3].

In a previous study [6], some developers who tried to onboard in two well-known
OSS projects reported the obstacles they faced. Developers indicated that the lack of
awareness and guidance during the course of their first steps (setup and choosing the
right mean to start) discouraged further contributions. Therefore, a major challenge
for OSS projects is to provide ways to support the onboarding of newcomers.

The goal of this research is to explore the barriers faced by newcomers to onboard
to OSS projects and analyzing which strategies can be used to support newcomers to
overcome these barriers. The overall question to be answer in this thesis is: “How to
support the onboarding of newcomers in OSS projects?” To guide answering this
question, some specific research questions were defined for this thesis:

• What are the barriers faced by newcomers when onboarding OSS projects?
• What are the forces that influence the joining and retention of developers in

OSS projects?
• What strategies can be used to help newcomers?

200 I. Steinmacher and M.A. Gerosa

2 Research Design

The research of this thesis uses different empirical methods to answer the research
questions defined. This research is a result of the combination of systematic literature
reviews, interviews, case study and experiments. The research design is composed of
three phases and some studies, as presented in Figure 1, described below:

• Warm Up. This phase consists of one case study (S1) conducted in order to
motivate the problem addressed by this thesis and to investigate whether absence
of response, politeness, usefulness or the author of answers influence the
onboarding of newcomers in an OSS project.

• Phase I – Find Barriers. This phase is composed of three studies that objective
to raise what are the barriers that hinder newcomers onboarding to OSS projects.
We will empirically gather the barriers from the literature (S2), by means of
Systematic Literature Review, and from the OSS community (S3), using
interviews with project members and feedbacks from newcomers. The results
obtained in the systematic review and in the qualitative analysis will be
confirmed by means of a survey to be administered with OSS community
members (S4).

• Phase II – Proposing Support to Newcomer Onboarding. In this phase, the
goal is to consolidate the barriers that hinder newcomers onboarding to OSS and
map them to proposed strategies that can support newcomers overcoming them.
We plan to propose solutions based on: (i) suggestions and studies that emerged
during Phase I; (ii) systematic review on awareness mechanisms (S5); and (iii)
state-of-the-practice, by analyzing the strategies that some projects currently
adopt to support newcomers.

Based on the results of the survey conducted during Phase I, we will select a subset
with the most relevant barriers to further explore in this phase. We plan to design and
conduct a controlled experiment to assess the effectiveness of using the proposed
solutions to the selected barriers (S6).

Fig. 1. Research Design

 How to Support Newcomers Onboarding to Open Source Software Projects 201

3 Preliminary Results

In order to situate our problem and delimit the scope of this thesis, we analyzed the
existent literature and proposed a model [4] that represents the stages (onboarding and
contributing) that are common to and the forces that are influential to newcomers
being drawn or pushed away from a project.

We conducted a case study [5] to analyze newcomers dropout reasons. We
collected five years of communication of the list of emails from developers and
discussions from the task manager (Jira). There was no indication that the number of
responses influences the withdrawal. We found evidence that receiving inadequate
answers affects the decision of newcomers to abandon the project

We also collected feedback from some developers that tried to contribute to two
OSS projects [6]. The developers reported some demotivating facts: unanswered
emails, outdated documentation, outdated issues that resulted in waste of time and
flaming threads.

We conducted a systematic literature review aiming at identifying the barriers
faced by newcomers to OSS projects. As a result, we provided a hierarchical model
that relies on five categories: social interactions, newcomers’ previous knowledge,
finding a way to start, documentation problems, and code issues. Some barriers that
hinder newcomers to OSS were also identified using a qualitative analysis on data
obtained from newcomers and members of OSS projects. The results enabled us to
create a model composed of 38 problems, grouped into seven different categories.

Acknowledgements. The authors thank CAPES (BEX 2038-13-7) and CNPq
(process 477831/2013-3) for the financial support. Marco Gerosa receives a grant
from the CNPq and FAPESP.

References

[1] Park, Y., Jensen, C.: Beyond pretty pictures: Examining the benefits of code visualization
for Open Source newcomers. In: 5th Intl. Workshop on Visualizing Software for
Understanding and Analysis, pp. 3–10 (2009)

[2] Qureshi, I., Fang, Y.: Socialization in Open Source Software Projects: A Growth Mixture
Modeling Approach. Org. Res. Methods. 14(1), 208–238 (2011)

[3] Scacchi, W.: Understanding the requirements for developing open source software
systems. Software, IEE Proceedings 149(1), 24–39 (2002)

[4] Steinmacher, I., Gerosa, M.A., Redmiles, D.: Attracting, Onboarding, and Retaining
Newcomer Developers in Open Source Software Projects. In: Workshop on Global
Software Development in a CSCW Perspective (2014)

[5] Steinmacher, I., Wiese, I., Chaves, A.P., Gerosa, M.A.: Why do newcomers abandon open
source software projects? In: Intl. Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE), pp. 25–32 (2013)

[6] Steinmacher, I., Wiese, I.S., Gerosa, M.A.: In: 2012 Third Intl. Workshop on
Recommendation Systems for Software Engineering (RSSE), pp. 63–67 (2012)

The Census of the Brazilian Open-Source

Community

Gustavo Pinto1 and Fernando Kamei1,2

1 Federal University of Pernambuco, Recife, PE, Brazil
ghlp@cin.ufpe.br

2 Federal Institute of Sertão Pernambucano, Ouricuri, PE, Brazil
fernando.kenji@ifsertao-pe.edu.br

Abstract. During a long time, software engineering research has been
trying to better understand open-source communities and uncover two
fundamental questions: (i) who are the contributors and (i) why they
contribute. Most of these researches focus on well-known OSS projects,
but little is known about the OSS movement in emerging countries. In
this paper, we attempt to fill this gap by presenting a picture of the
Brazilian open-source contributor. To achieve this goal, we examined
activities from more than 12,400 programmers on Github, during the
period of a year. Subsequently, we correlate our findings with a survey
that was answered by more than 1,000 active contributors. Our results
show that exists an OSS trend in Brazil: most part of the contributors are
active, performing around 30 contributions per year, and they contribute
to OSS basically by altruism.

Keywords: OSS, Github, Brazilian OSS Community.

1 Introduction

The idea of Open Source Software (OSS) has gained more and more attention in
the last years. OSS is usually developed by an internet-based community of pro-
grammers, without necessarily being paid by an institution. These programmers
often rely on code hosting websites to share their contributions. Nowadays, a
number of code hosting websites are available, such as SourceForge and Github.
A unique characteristic of these websites is that they provide a collaborative
environment with a high degree of social transparency. This makes program-
mers’ contributions much more visible and traceable. In Github, for example,
one can easily access programmers’ personal information through a public inter-
face, which otherwise it might be difficult, or even impossible, to find elsewhere.

Over the last decade, some researchers have studied open-source communities
and contributions [5,13,14], although only few of them are regarding the open-
source community in those websites [3,9]. Hitherto, however, there is a lack
in the literature of comprehensive studies targeting the Brazilian open-source
community. By the beginning of the 21th century, with a population size of
200 millions, Brazil is South America’s most influential country, an economic

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 202–211, 2014.
c© IFIP International Federation for Information Processing 2014

The Census of the Brazilian Open-Source Community 203

giant and one of the world’s biggest democracies. Moreover, Brazil has also
been a hotbed of open source activities in recent years. Government agencies,
private industry and universities have been teaching and implementing open
source solutions, creating local centers of knowledge and gain expertise around
open source in the country.

Nonetheless, besides the huge open-source investments made in Brazil, few is
known about the Brazilian open-source contributor. We argue that it is an impor-
tant question because, for example, if there is a lack of open-source programmers
in one region, the government could create better incentives for software com-
panies in there. On the other hand, if there is a huge number of experienced
contributors, software companies could open more opportunities in that loca-
tion. In this paper we conducted a comprehensive study to understand who is
this contributor, and why (s)he contributes to OSS. To achieve this goal, we
extracted data from more than 12,000 Brazilian users on Github. In addiction,
we conducted a survey comprising only the active contributors, that is: the con-
tributor that has performed at least one commit in a year. With this data, we
are able to uncover these three main research questions:

RQ1: Who is the Brazilian open-source contributor? We found out
that most of the Brazilian open-source contributor are male, have between 20-30
years, are currently enrolled in an undergrad course, have between 2 to 5 years
of professional software experience, and 2 to 5 years of OSS contribution. Most
of them perform around 30 commits per year, but 20.35% of the contributors
perform 80.32% of the contributions. Also, we observed that they are basically
formed by hobbyist, instead of programmers being paid by software companies.

RQ2: Do the Brazilian contributions to open-source increase over
the time? We have found out an existing open-source trend in Brazil. We
noticed an increment of over 15% in the absolute number of contributions in
one year. However, we also observed that these contributions are not related to
more work done by the same users. In fact, the great number of contributors
performing few contributions is the reason of this increment.

RQ3: Why do Brazilian programmers contribute to OSS? We found
out more than forty motivational factors that motivate users to contribute to
OSS. The most common were to help the community and to improve the
software that they use with 19.40% and 17.75%, respectively. Moreover, the
majority of the Brazilian OSS community are not motivated by self-marketing
but by altruism.

2 Study Design

In this section we present our research questions and our research approach.

2.1 Research Questions

The goal of the study is to better understand the Brazilian open-source commu-
nity. For this purpose, we elicited three research questions.

204 G. Pinto and F. Kamei

– RQ1: Who is the Brazilian open-source contributor?
– RQ2: Do the Brazilian open-source contributions increase over the time?
– RQ3: Why do Brazilian programmers contribute to OSS?

In order to address the research questions, we conducted a two-phase research,
adopting a sequential mixed-method approach. In Phase 1, we collected data
about Brazilian users on Github (see Section 2.2). After that, on Phase 2, we
performed a survey targeting only the active users (see Section 2.3).

2.2 Phase 1 – Mining Github

We used Github data as provided through the GHTorrent project 1, an off-line
mirror of the data offered through the Github API. Up to September 2013,
more than 2 million users and 5 millions projects were collected. We then have
performed a query on the GHTorrent database, searching through the name of
the 26 Brazilian capitals and their states. We also considered the capital of the
country. Thus, we have searched users in 53 locations.

After this process, we found a total of 12,485 users. After that, we then have
used the Github API to gather more information about these users, and we
observed that almost 1,000 of these users have closed their accounts. Also, we
manually removed false-positive users, that is, users that location name is similar
to the Brazilian ones, but actually the location is located in a different country.
Therefore, the population of this study consist of 11,411 Github users. Our data
comprise the period of October 2012 to September 2013.

2.3 Phase 2 – Survey

The questionnaire used in this work was based on the recommendations of
Kitchenham et al. [7], following the phases prescribed by the authors: planning,
creating the questionnaire, defining the target audience, evaluating, conducting
the survey, and analyzing the results. The questionnaire has 10 questions and was
structured to limit responses to multiple-choice, Likert scales (responses given
in a scale), and also free-forms. After defining all questions on the questionnaire,
we obtained feedback iteratively and clarified and rephrased some questions and
explanations. This feedback was obtained from analysis and discussion with a
group of specialists and also from one pilot of the survey. Together with the in-
structions of the questionnaire, we included some simple examples as an attempt
to clarify our intent.

Our target population is formed by programmers that have performed at
least one commit to an open-source software during the analyzed period. After
we identified these users, we sent them an email inviting to participate. Over a
period of 20 days, we obtained 1,039 responses, resulting in a 16.68% of response
rate. This response rate is more than trice higher than the response rates found
in software engineering surveys [6]. The complete list of questions and their
answers are available at the companion website2.

1 http://ghtorrent.org/
2 http://bit.ly/Brazilian_OSS

http://ghtorrent.org/
http://bit.ly/Brazilian_OSS

The Census of the Brazilian Open-Source Community 205

3 Study Results

This section presents our results organized by the research questions.

3.1 Who Is the Brazilian Open-Source Contributor?

We started with a population of 11,411 Github users. However, not all all of
them are active: during the period of Oct 2012 – Sep 2013, the majority part
of the users (6,228 or 54.57% of them) have performed at least one commit. We
consider these users as our active group. Hereafter, the analysis of this study
will only encompass this group.

The Brazilian open-source community is also more active than the overall
Github community (23.38% of the Github users are active). Still, our survey
data show that this number of active users was not expected. On average, the
respondents believe that only 12% of the population is active (SD: 23.12) and
most of them (37.34%) believe that the contributors perform only 5 to 20 con-
tributions per year. Moreover, our data show that most of the respondents are
male (97.48% of them), have between 20 and 30 years (66.92%), and are cur-
rently enrolled in an undergrad course (36.36%). The participants experience in
professional software development is mostly between 2 to 5 years (28.86%). The
open-source experience is mostly between 2 to 5 years (36.36%), and then be-
tween 1 and 2 years (35.58%). On average, the respondents have contributed to
open-source using three different programming languages (3rd Quartile = 5, max
= 14). We then analyzed the correlation between the age and number of pro-
gramming languages used using Pearson Correlation [8]. For Pearson |r| < 0.3
indicates small correlation, 0.3 > |r| < 0.5 indicates medium correlation, and
|r| > 0.5 indicates strong correlation. We then found out a small correlation
(r = 0.05702044), which suggests that the age is not related to the number of
programming languages used. On the other hand, we found out a strong corre-
lation between age and professional experience (r = 0.5636623) and a medium
correlation between age and OSS experience (r = 0.4440954), which is fairly
similar to the results found by Morrison et al. [12].

An important property is the programming language used. Most of the con-
tributions were done using JavaScript (15.88%), PHP (12%), C (11.58%), Java
(11.04%), Python (10.43%), Ruby (9.52%), ShellScript (7.40%) and C++ (6.17%).
Others languages have 16.60% of contributions. Most of the contributions are
done using dynamic languages (60.04% of them) and also object oriented lan-
guages (45.81%) instead of functional languages (2.19%) or mixed programming
languages (21.07%). One reason to this is because most of the Brazilian un-
dergrad courses still rely on well-known programming languages, such as C and
Java, in their basic courses. Also, Brazil has a number of strong open-source com-
munities. For example, we have one of the largest Java User Group of the world,
and one of the most active JavaScript, PHP and Ruby communities in Latin
America. As reported elsewhere [2], open-source communities play an important
role in the education of novice programmers.

206 G. Pinto and F. Kamei

Moreover, the number of contributions per user is generally less than 30 per
year (3rd Quartile = 50, max = 4,795, mean = 14, Stand. Dev. = 177). The
reason of this huge standard deviation is due to the high number of outliers
(11.70% of the total). The outliers are consisted by users that have performed
more than 120 contributions in one year. The Figure 1 shows the distribution of
the contributions per user over the year.

of contributions

of

 u
se

rs

0 50 100 150 200

0
10

00
25

00

Fig. 1. The number of contributions per user over a year. We have limited the number
contributions up to 200 to increase the readability of the figure.

As we can see, most of the active users are low actives (65.59%), performing
less than 20 commits per year. On the other hand, we have observed that the
Pareto’s Laws fits perfectly in our data: 20.35% of the active users perform
80.32% of the contributions. Furthermore, the number of projects contributed
per user is generally less than 5 (95% percentile: 12, 90% percentile: 6, 80%
percentile: 3), with a median of 3. We have also observed that they spent on
average less than 1 day per month working on open-source projects. Our data
show that 8.73% of them do contributions every month, and only 2.47% of them
do contributions every week. With this data, we can assume that the Brazilian
open-source contributor is basically formed by hobbyist, instead of programmers
being paid by software companies.

Finally, we mapped the user based on their regions. Brazil is divided into
five geopolitical regions. The North includes seven states and it includes the
Brazilian part of the Amazon rainforest. It is sparsely populated, and its economy
is based on plant and mineral exploration. The Northeast includes nine states,
an arid climate, and an economy based on agriculture, mainly sugarcane. The
population is concentrated in a few large cities in the coast. The Midwest
includes three states and Brasilia, the capital of Brazil. Sparsely populated,
its economy is based on large farms agriculture and livestock. The Southeast
includes four states, and it is the most developed region of Brazil. The population
is distributed into very large metropolitan areas such as São Paulo and Rio
de Janeiro, and mid-size cities. The economy is based on a strong and diverse
industry, services, agriculture and livestock. Finally, the South includes three
states, and its economy is based on automobile and textile, livestock and small

The Census of the Brazilian Open-Source Community 207

Table 1. The Distribution of programmers in the Brazilian geopolitical regions

Region 1st Quartile Median 3rd Quartile S. D. Histogram

North

Age (years) 20 to 30 20 to 30 30 to 40 0.72

Education (degree) Undergrad (ongoing) Undergrad Specialization 1.26

Software Experience (years) 2 to 5 5 to 8 5 to 8 1.40

OSS Experience (years) 1 to 2 2 to 5 2 to 5 1.03
Northeast

Age (years) 20 to 30 20 to 30 30 to 40 0.70

Education (degree) Undergrad (ongoing) Undergrad Specialization 1.23

Software Experience (years) 2 to 5 2 to 5 5 to 8 1.05

OSS Experience (years) 1 to 2 2 to 5 2 to 5 1.01
Midwest

Age (years) 20 to 30 20 to 30 30 to 40 0.61

Education (degree) Undergrad (ongoing) Undergrad Undergrad 1.04

Software Experience (years) 2 to 5 5 to 8 8 to 12 1.26

OSS Experience (years) 1 to 2 2 to 5 5 to 8 1.14
Southeast

Age (years) 20 to 30 20 to 30 30 to 40 0.65

Education (degree) Undergrad (ongoing) Undergrad Undergrad 1.16

Software Experience (years) 2 to 5 5 to 8 8 to 12 1.24

OSS Experience (years) 1 to 2 2 to 5 5 to 8 1.07
South

Age (years) 20 to 30 20 to 30 20 to 30 0.55

Education (degree) Undergrad (ongoing) Undergrad Undergrad 1.08

Software Experience (years) 2 to 5 5 to 8 8 to 12 1.21

OSS Experience (years) 1 to 2 2 to 5 5 to 8 1.13

farm agriculture. Table 1 shows the user distribution per geopolitical region by
age, education, professional software experience, and open-source experience.

We can see a number of interesting findings in the above table. First, as
expected, we observed that the professional software experience is related to the
OSS experience (the more professional experience, the more OSS experience).
We attest this finding by running a Person Correlation (r = 0.5654273). Second,
there is no correlation between age and the geopolitical region. Most of the
respondents have between 20 to 30 years with little standard deviation in all
regions. Third, as not expected, education degree is not related to open-source
contribution (r = 0.2257393). Only the north and the northeast regions have
more than 25% of their contributors holding a specialization degree. Nonetheless,
the north group has only 15 samples (northeast has 137), and this sample size
might represent a bias of the north population. Finally, we observed that most
part of the contributions (62.38% of them) came from the southeast region.
That is expected, due to its huge population size, as well as a whole range of
universities and software companies located there.

208 G. Pinto and F. Kamei

3.2 Do the Brazilian Open-Source Contributions Increase over the
Time?

We now examine the contributions on a monthly basis. During the analyzed
period, we found more than 354,000 commits performed by 6,228 users in more
than 98,000 projects. Figure 2 shows the number of commits per user per month.

3.
5

4.
5

5.
5

C
om

m
its

 P
er

 U
se

r

10/12 12/12 2/13 4/13 6/13 8/13

Fig. 2. The evolution of the absolute number of commits divided by the total of users

Firstly, the above picture shows that the contributions are increasing in ab-
solute number – about 15.08% of increment during the analyzed period. One
might think that the increment of contributions is because the active users are
working more hard, and then they are performing more contributions. Nonethe-
less, we have observed that the peaks of contributions are due more users are
willing to perform contributions in those months. Also, we have observed that
the number of users that performs contributions in a month is about 25% of the
overall active users. However, it does not mean that the same group of users will
perform contributions every month. As we stated earlier, only 8% of the active
users do contributions every month. Moreover, we observed that this number
of users performing contributions per month can vary greatly. For instance, in
August/2013, the month the received the highest number of contributors, the
total of contributor is 25% bigger than December/2013, the month the received
the lowest number of contributors.

Then, the absence of contributors is reason behind the low number of contri-
butions in December and March. In December, besides be summer break in the
universities, Brazil commemorates Christmas and New Year. So, usually, gov-
ernment and private industry provide one week off during this period. Moreover,
the carnival, a big Brazilian holiday, occurred in March/2013. And again, during
this period of time, universities and companies usually provide two, three days
off. With this result we can assume that exists an open-source contribution trend
in Brazil, and the contributors are willing to perform few contributions during
their free time, but not on holidays.

The Census of the Brazilian Open-Source Community 209

3.3 Why do Brazilian Programmers Contribute to OSS?

Finally, as an attempt to understand why the Brazilian programmers do con-
tributions to OSS, we analyzed the results of our last survey question: “Why
do you contribute to OSS?”. It was not a required question, but 81% of the
respondents answered it. After the mining process, we found out more than 40
categories. Due to space constrains, we only describe most interesting ones.

The most common motivation factor was to help to the community with
19.40% of the answers. Some respondents said that “To help people that have the
same problem”, and “[My OSS contribution is] my 50 cents of contribution to
the world”, and “I use a lot of OSS projects, so I do contributions to help some-
one else”. We observed that the OSS spirit is very strong among respondents.
Some of them believe that their contributions are not only about software, but
a social contribution as well. This factor is related to the social aspects of the
Open source philosophy, which has 10.88% of the answers. As an respondent
described: “Basically due to the OSS philosophy. I like the way of code sharing
and I believe that it might improve my knowledge of [...]”. On the other hand,
some respondents do contributions because they want to improve the software
that they use (17.75% of them). Most of these contributions are related to (i)
fix simple problems or to (ii) implement new features. These findings are related
to the work of Gousios [4], which found out that most of the contributions are
consisted of a few lines of code. Then they advice contributors seeking to add a
particular feature or fix to “keep it short”.

Some respondents do contributions because they believe that they have to
give back the help received once (17.63%). As a respondent said that “Ret-
ribution, because I learned a lot from OSS communities [...]”. Another moti-
vation factor is to improve their programming skills (15.02%), which may
happen during some code revision sections, and also improve their human capital
by learning things besides programming. Then, the contributor might learn new
concepts and good practices. However, despite the personal interest, we found
out that only few respondents do contributions just to improve their own cur-
riculums (6.27%) or to gain visibility and reputation on the community
(4.49%). Due to the few number of respondents that have stated it as the main
reason of their contributions, we assume that the majority part of the Brazilian
OSS community are not motivated by self-marketing but by altruism and the
fulfilment that arises from writing programs that other persons might use.

4 Related Work

There is a number of researches done regarding the Brazilian IT community,
such as the Computer Science scientific production [1], the adoption of agile
methods [11], the opportunities for women in IT jobs and education [10], among
others. However, to the best of our knowledge, there is no study regarding the
Brazilian open-source community in the literature.

Nonetheless, there are several studies regarding personal aspects of open-
source communities. One study [5] investigated motivation aspects of 141 kernel

210 G. Pinto and F. Kamei

developers. The authors revealed various motivational forces that contribute to a
person’s willingness to engage to OSS, both at the community level as well as the
team level. In a similar study, Roberts et al. [13] develop a theoretical model re-
lating the motivations, participation, and performance of OSS developers. They
have reported a number of findings, including that developers’ motivations are
not independent but rather are related in complex ways. Also, they found out
that different motivations have an impact on participation in different ways. In
another study, Wang et al. [14] described a set of evolution metrics for evaluat-
ing open-source software (OSS) and community (OSC). They then measure the
evolution of OSS and OSC together, and they showed that the Ubuntu success
is due to the growth and maturation of its community.

Our work differs from the state of the art in two key ways. First, none of the
above studies try to correlate their data using more than one data source. We
argue that it is important because not always what the respondent say is true.
We can then minimize this problem by double checking our findings in the two
data sources. Second, to the best of our knowledge, it is the largest population
size found in open-source studies. We believe that it is an important aspect,
mainly because the use of large samples can increase precision and then reduce
bias.

5 Conclusion

In this work we presented an empirical study concerning the Brazilian open-
source contributor. We have analyzed an entire year of software development on
Github, and we also conducted a survey with the active contributors. With the
results of this mixed approach, we observed that: (i) the Brazilian open-source
community is active. We have found that more than 54% of the population
have performed at least one commit in a year. Nonetheless, as the Pareto’s Law
suggests, 20.35% of the users have performed 80.32% of the contributions; also,
(ii) there is an open-source trend in Brazil. We noticed an increment of over
15% in the absolute number of contributions in one year, although about 24%
of the active users perform commits monthly, and only 8% of them are active
every month; and finally (iii) altruism is the main motivation, instead of self-
marketing aspects. As a future work, we plan to understand the OSS adoption in
other countries, and then, correlate our data with them. We also intent to collect
more temporal data, as well as to gather information from other code hosting
websites. Finally, we plan to investigate what are the reasons of open-source
adoption in Brazil and South America as well.

References

1. Arruda, D., Bezerra, F., Neris, V., Toro, P., Wainera, J.: Brazilian computer science
research: Gender and regional distributions. Scientometrics 79(3), 651–665 (2009)

2. Bagozzi, R., Dholakia, U.: Open source software user communities: A study of
participation in linux user groups. Management Science 52(7) (2006)

The Census of the Brazilian Open-Source Community 211

3. Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J.: Social coding in github: transparency
and collaboration in an open software repository. In: Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work, ACM (2012)

4. Gousios, G., Pinzger, M., Deursen, A.: An exploration of the pull-based software
development model. Submitted to the ICSE 2014 (September 2013)

5. Hertel, G., Niedner, S., Herrmann, S.: Motivation of software developers in open
source projects: an internet-based survey of contributors to the linux kernel. Re-
search Policy 32(7), 1159–1177 (2003)

6. Kitchenham, B., Pfleeger, S.: Personal opinion surveys. In: Guide to Advanced
Empirical Software Engineering, pp. 63–92. Springer, Heidelberg (2008)

7. Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., Emam, K., Rosen-
berg, J.: Preliminary guidelines for empirical research in software engineering. IEEE
Trans. Softw. Eng. 28(8), 721–734 (2002)

8. Lin, L.: A Concordance Correlation Coefficient to Evaluate Reproducibility. Bio-
metrics 45(1), 255–268 (1989)

9. McDonald, N., Goggins, S.: Performance and participation in open source software
on github. In: CHI 2013 Extended Abstracts on Human Factors in Computing
Systems, CHI EA 2013, pp. 139–144. ACM (2013)

10. Medeiros, C.: From subject of change to agent of change: Women and it in brazil.
In: Proceedings of the International Symposium on Women and ICT: Creating
Global Transformation, CWIT 2005, ACM (2005)

11. Melo, C., Santos, V., Katayama, E., Corbucci, H., Prikladnicki, R., Goldman, A.,
Kon, F.: The evolution of agile software development in brazil. Journal of the
Brazilian Computer Society 19(4), 523–552 (2013)

12. Morrison, P., Murphy-Hill, E.: Is programming knowledge related to age? an ex-
ploration of stack overflow. In: Proceedings of the 10th Working Conference on
Mining Software Repositories, IEEE Press (2013)

13. Roberts, J., Hann, I., Slaughter, S.: Understanding the motivations, participation,
and performance of open source software developers: A longitudinal study of the
apache projects. Manage. Sci. 52(7), 984–999 (2006)

14. Wang, Y., Guo, D., Shi, H.: Measuring the evolution of open source software sys-
tems with their communities. SIGSOFT Softw. Eng. Notes (November 2007)

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 212–215, 2014.
© IFIP International Federation for Information Processing 2014

Cuban GNU/Linux Nova Distribution
for Server Computers

Eugenio Rosales Rosa, Juan Manuel Fuentes Rodríguez,
Abel Alfonso Fírvida Donéstevez, and Dairelys García Rivas

University of Informatics Sciences, School 1, Free Software Center
San Antonio de los Baños Highway,

Km 2 ½, Torrens, Boyeros, Havana, Cuba
{erosales,jfuentesr,aafirvida,dgrivas}@uci.cu

http://www.uci.cu

Abstract. This article presents the novelties offered by the new version of GNU
/ Linux Nova distribution in its server edition, exposing the new features such
as network attached storage, distributed files system, charge balance for Post-
greSQL database servers and thin clients, as well as the basic features of a stan-
dard server. All these developments are obtained from the integration with the
server management platform Zentyal designed to facilitate the work of the end
users of the variant of this Cuban distribution.

1 Introduction

After Informatics Havana 2009 event, Revolution Commandant Ramiro Valdés
decided to implement an edition of the GNU/Linux Nova Cuban Distribution to
migrate the country servers. A server oriented operating system must maximize the
conditions of ICTs use in State Central Management Organisms (OACE) under
technological sovereignty, security, socio-adaptability y sustainability principles [1].
For this reason, Nova development team releases that same year the first Cuban
Server Distribution. This first version didn’t count with a graphic interface to allow
the administrator to easily and efficiently configure the system, so it was hard to
manage the different services.

Besides, the fact that the administrator had to write directly in the configuration
files might bring services errors, which often become fatal.

According to this situation, Nova team members wanted to facilitate servers
management through a comfortable graphic interface, which could be also intuitive
and highly reduce the occurrence of services errors on its next version.

Therefore, are proposed as objectives for this work:

• Integrate to Cuban Server Distribution a graphic interface for services
management.

• Provide and develop a group of services as modules to the administration
interface.

 Cuban GNU/Linux Nova Distribution for Server Computers 213

2 Development Methodology

OpenUP was used as software development methodology, because embraces a
pragmatic and agile philosophy that centers on software development collaborative
nature and allows more freedom because the model can be extended with part of other
models, to face a wide variety of project types. It is a condensed process but is quite
complete, with easy application to small and medium projects and easier to learn for
smaller development teams. It is applied with an iterative and incremental focus
inside a structured live cycle.

Management Platform: As a centralized management platform was used Zentyal, a
unified open source network server created for small and medium enterprises (SMBs).
It can act managing network infrastructure, as gateway to Internet, managing security
threats, as office server, as unified communications server or a combination of them
[2]. Besides, Zentyal includes a development framework to facilitate the development
of new UNIX based services [3]. Even with all its options Zentyal does not have some
services that are necessary in new informatics environments in the country, as
SAN1/NAS2 infrastructure and thin clients or no-disk machines. Fundamentally to
these modules has been guided the work of the product developers.

Network Attached Storage Module: NAS is the name given to a storage technology
dedicated to share the storage capacity of a computer (server) with personal
computers or client servers through a network, using an optimized operating system to
give access with Microsoft Common Internet File System (CIFS), NFS, FTP or TFTP
protocols. NAS communications protocols are based in files, so the client requests the
entire file to the server and handles it locally, that´s why they are oriented to
information stored in small size and huge amount files. Using NAS provides some
advantages as: capacity of sharing units, less cost, using the same network
infrastructure with a simpler management. A plugin was implemented to Zentyal for
adding support for implementing storage services on network via NAS, using ZFS3,
which is a file system developed by Sun Microsystems for their operating system
Solaris. It has a 128 bits capacity (264 times a 64 bits file system capacity) [4]. For its
implementation was necessary to add native support to Nova kernel.

Distributed Files System Module: Another product oriented to storage servers is the
files systems cluster module, that allows to have multiple disks, even computers
together in a cluster that is accessed through the network by client computers as a
simple shared resource [5]. This method is even cheaper than NAS as thus can be
implemented with outdated hardware already present in the country's institutions.

1 Acronym of Storage Attached Network.
2 Acronym of Network Attached Storage.
3 Acronym of Zettabyte File System.

214 E.R. Rosa et al.

PostgreSQL Charge Balance Module: PostgreSQL is one of the free databases
managers most used generally in the world and particularly in Cuba. It’s common for
a poor network infrastructure not to have powerful machines on which to mount this
manager to be robust and reliable at all times. Nova Server provides an interface for
PostgreSQL charge balancing that interacts directly with pgpool-II tool [6] and allows
reducing the connection overcharge, and improve overall system performance;
managing multiple PostgreSQL servers and reducing charge on them.

Thin Clients Suite Module: Nova has several ways of configuring thin clients, from
the tedious manual configuration of all necessary services, to Osplugger: a native
development that allows administration and configuration of most of this service
related components. This tool, integrated with Zentyal, using LTSP module will allow
Nova Server to gradually become the ideal suite for thin clients environments in the
country, allowing Cuban operating system to be inserted gradually on network
environments dominated nowadays by Windows Server or even other GNU / Linux
distributions.

Antivirus Module: Zentyal by default uses ClamAV4 antivirus, which is an anti-virus
toolkit specifically designed to scan e-mail attachments in a MTA5. It has been said by
MIC that "For virus protection, antivirus programs produced in the country will be
used, or other officially approved for its use in the country, up to date." According to
this, it has been developed a module for managing files and email through SavUnix6.

Known Results: Once made and analyzed the proposed solution, GNU / Linux Nova
Cuban Server Distribution was developed, and its integration with Zentyal, has made a
GUI for telematic services management and to get a native product capable of deciding
on it. It will be helpful for Cuban SMBs in the free software migration process that
takes place in the country, as for an advanced alternative for network managers for
convenient, simple and intuitive work. Being developed in Cuba contributes to its
technological sovereignty, because it was possible to incorporate Nova Server’s team
as members and contributors of Zentyal development international community. It has
also been established a direct and effective communication with the developers of the
Cuban company Segurmatica Antivirus, managing to incorporate to the solution, a
Cuban anti-virus, maintaining a constant and effective collaboration between both
parties. This way not only has been possible to maintain a close relationship of
collaborative development, but to give visibility to the project in the international
framework. It has been possible to deploy thin clients on a smaller scale (10) in the
University of Informatics Sciences (UCI) library and on a larger scale (64), in the MIC,
working properly. Below is a table that reflect aspects that give validity to using
Zentyal in Nova.

4 Clam Antivirus: http://www.clamav.net/
5 Acronym of Mail Transport Agent.
6 Cuban antivirus solution.

 Cuban GNU/Linux Nova Distribution for Server Computers 215

Table 1. Tool comparison

 Windows Webmin YaST Zentyal

Operating system Windows GNU/Linux openSUSE Nova

License CAL BSD GPL GPL

Usage easiness High Low Medium High

Executionmode Local Local Local Local

Security Low Medium High High

3 Conclusions

Nova Server is a project that has been gaining strength and is destined to be one of the
products with more acceptance from Nova family, given its high levels of adaptation
to the requirements of the Cuban enterprise informatization.

The development of new modules for its management system not only allows new
features, but after reviewing the knowledge gained in its development, people can
think of a sovereign software where decisional capacity and response times to errors
are minimized, including compensation of this knowledge to the international
community that can gain merits and recognition for Nova.

References

[1] Pierra Fuentes, A.: Distribución cubana de GNU/Linux: soberanía tecnológica, seguridad,
criollo. Master Thesis, University of Information Sciences (UCI), Havana, Cuba (2011)

[2] eBox Technologies. Documentación de Zentyal 3.0 (2012),
http://doc.zentyal.org/es/index.html

[3] Zentyal Module Development Tutorial (2012), http://trac.zentyal.org/
wiki/Documentation/Community/Document/Development/Tutorial

[4] Zettabyte File System, ZFS (2012), http://ylvy.net/blog/?p=467
[5] Montero, P., Misael, A.: Clúster de servidores web para aplicaciones desarrolladas sobre

software libre que soportan altos niveles de concurrencia. Thesis project to qualify for the
title of Engineer in Computer Science, University of Information Sciences (UCI), Havana,
Cuba (2008)

[6] Sabater, J.: Replicación y alta disponibilidad de postgreSQL con pgpool-II (2008),
http://linuxsilo.net/articles/postgresql-pgpool

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 216–217, 2014.
© IFIP International Federation for Information Processing 2014

A Study of the Effect on Business Growth by Utilization
and Contribution of Open Source Software in Japanese

IT Companies

Tetsuo Noda and Terutaka Tansho

Shimane University, Japan
nodat@soc.shimane-u.ac.jp, tansho@riko.shimane-u.ac.jp

Abstract. To analyze how OSS effects business growth both through simple
use and by deeper engagement as a stakeholder in OSS community, we did
questionnaire research to Japanese IT companies in 2012 and 2013. We analyze
the progress of utilization and contribution of OSS, and the impact on business
growth indicators by them.

1 Introduction

It has become commonplace for business enterprises to use OSS in their business
activities. As a result, utilization of OSS only for cost reduction has become no longer
a factor of obtaining the competitive advantages for them. The logic we understand as
framing this such engagement is that the competitive edge that comes from technical
advantages delivered by using OSS, and - using the same logic - it is therefore
indispensable for them to contribute or participate in the development process of OSS.
To verify this hypothesis, we questioned utilization and contribution of OSS, and
business indicators to Japanese IT companies in 2012 and 2013.

2 Correlation between Utilization and Contribution of OSS

First, the correlations between utilization and contribution of companies in many OSS
technology types are not shown in both years. As for these OSS technologies,
Japanese IT companies are still “free riders.” On another front, the correlation
between Ruby and Ruby on Rails in this context is shown. And those of Other
Languages between Apache and Databases technologies are also shown.

Table 1. Correlations between utilization and contribution of OSS

contribution
utilization

Linux Apache Databases Ruby O.L. RoR

Linux .136 -.002 .004 .128 .083 .110
Apache .151 .135 .054 .149 .125 .111
Databases .050 -.016 .052 .132 .098 .105
Ruby .031 -.013 .007 .324** .114 .351**
Other Languages .144 .161* .189* .099 .272** .140
Ruby on Rails .087 .086 .065 .331** .159 .420**

Survey Results in 2012 (n=191)

contribution
utilization

Linux Apache Databases Ruby O.L. RoR

Linux .062 .009 -.013 .080 .032 .037
Apache .072 .048 .012 .095 .013 .033
Databases .136 .086 .106 .083 .082 .043
Ruby .098 .057 .044 .461** .164 .320**
Other Languages .139 .114 .144 .208* .217* .257**
Ruby on Rails .180* .141 .129 .400** .239* .343**

Survey Results in 2013 (n=146)

Spearman's rank correlation coefficient ** 1% level of significance, * 5% level of significance

 Effect on Business Growth by Utilization and Contribution of OSS 217

3 Effect on Business Growth by OSS Utilization and
Contribution

From the survey result in 2012, the subsequent period prospect of sales growth rate is
impacted by utilization of OSS. At the same time, the survey result in 2013 shows that
the present period of sales growth rate is impacted. It turns out that the sales growth
rate prediction by utilization of OSS expected from the reference fiscal year appears
in the following fiscal year.

Table 2. Correlations between business growth and utilization of OSS

 Growth Rate of Sales

(present period)

Prospect of Sales

Growth Rate

(subsequent period)

Growth of Employee

Number

 (present period)

Prospect of Employee

Number’s Growth Rate

(subsequent period)

Linux .191** .245** .207** .133
Apache .167* .220** .079 .066
Databases .131 .222** .026 .067
Ruby .135 .214** .063 .113
Other Languages .098 .176* .052 .092
Ruby on Rails .055 .178* .061 .068

Survey Results in 2012 (n=191)

 Growth Rate of Sales

(present period)

Prospect of Sales

Growth Rate

(subsequent period)

Growth of Employee

Number

 (present period)

Prospect of Employee

Number’s Growth Rate

(subsequent period)

Linux .302** .194* .159 .091
Apache .189* .113 .129 .071
Databases .306** .219* .201* .134
Ruby .207* .148 .149 .106
Other Languages .237** .125 .164 .053
Ruby on Rails .171* .098 .132 .044

Survey Results in 2013 (n=146)

Spearman's rank correlation coefficient ** 1% level of significance, * 5% level of significance

Table 3. Correlations between business growth and contribution of OSS

 Growth Rate of Sales

(present period)

Prospect of Sales

Growth Rate

(subsequent period)

Growth of Employee

Number

 (present period)

Prospect of Employee

Number’s Growth Rate

(subsequent period)

Linux -.091 .007 -.032 -.089
Apache -.031 .021 -.092 -.127
Databases -.036 .092 -.083 .020
Ruby .052 .047 .072 .058
Other Languages .019 .057 -.029 .002
Ruby on Rails .034 .075 .018 .049

Survey Results in 2012 (n=191)

 Growth Rate of Sales

(present period)

Prospect of Sales

Growth Rate

(subsequent period)

Growth of Employee

Number

 (present period)

Prospect of Employee

Number’s Growth Rate

(subsequent period)

Linux .001 -.003 .108 .219*
Apache .023 .018 .054 .215*
Databases -.029 -.018 .071 .182*
Ruby .000 -.053 .054 .115
Other Languages .051 -.025 .127 .206*
Ruby on Rails .004 -.039 .046 .135

Survey Results in 2013 (n=146)

Spearman's rank correlation coefficient ** 1% level of significance, * 5% level of significance

The contribution of OSS communities has an insignificant effect on sales growth.

But he survey result in 2013 shows that the prospect of employee number’s growth
rate (subsequent period) is impacted by contribution of OSS. Japanese IT companies
tend to expect direct sales growth by OSS practical use, and they might also expect
contribution to the development process of OSS leads to the increase of employee,
personnel training, and personnel adoption.

Reference

1. Noda, T., Tansho, T., Coughlan, S.: Effect on business growth by utilization and
contribution of open source software in japanese IT companies. In: Petrinja, E., Succi, G.,
El Ioini, N., Sillitti, A. (eds.) OSS 2013. IFIP Advances in Information and Communication
Technology, vol. 404, pp. 222–231. Springer, Heidelberg (2013)

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 218–225, 2014.
© IFIP International Federation for Information Processing 2014

USB Device Management in GNU/Linux Systems

Edilberto Blez Deroncelé, Allan Pierra Fuentes,
Dayana Caridad Tejera Hernández, Haniel Cáceres Navarro,

Abel Alfonso Fírvida Donestévez, and Michel Evaristo Febles Parker

University of Informatic Science, Free Software Center,
Road to San Antonio de los Baños, 2 ½ Km, Torrens, La Havana, Cuba

{eblez,apierra,dtejera,hcaceres,aafirvida,mfparker}@uci.cu
http://www.uci.cu

Abstract. Protecting the access to USB ports has the same priority for informa-
tion security than firewalls and antivirus software. Nowadays there are some
tools that allow us to monitor and regulate the access to USB devices, but all of
them are distributed under proprietary licenses. This work presents an applica-
tion that solves the mentioned problem: ¿How controlling the access to USB
mass storage devices in GNU/Linux Operating Systems?

1 Introduction

One of the most important advantages of devices guided by USB industrial standard is
the access easiness to every kind of computer that provides its usage. Theoretically
this can be an advantage to the enterprises, except for the fact that concepts “security”
and “access” are completely opposite in the Security Information area.

After the creation of the Universal Serial Bus, at the beginning of 90s, the
development of technologies around of USB devices has been constantly evolving.
The most recently versions of this kind of devices have increase its storage capacity,
which implies the improvement of its performance and the decrease of its height.

So, with USB devices user can count with an easy means of transport, to store
information while maintaining its availability. Anyway, the easy access of these
devices to computers and the sensitivity of the information handled by them, can
bring a set of disadvantages and vulnerabilities, both for end users and businesses.
Deliberate or accidental users can:

• Remove critical data.
• Exhibit confidential information.
• Introduce malicious code that can affect the entire corporate network.
• Transferring inappropriate or offensive hardware company material.
• Make personal copies of company information and intellectual property.
• Connect portable devices and consequently distract workers during working

hours.

In an attempt to control these threats, companies began to prohibit use in workstations
of USB devices for personal use. However, practice indicates that trusting on

 USB Device Management in GNU/Linux Systems 219

voluntary compliance by users is not enough. The best way to monitor and regulate
access, and maintain control of these devices has been by placing technological
barriers.

Migration to open source technologies and open standards in the companies has
found barriers in this regard. The protection of information and the USB ports of
computers was made in companies using proprietary applications like "MyUSBOnly",
"GFI EndPointSecurity" and others. How it has not been found a similar application
in the field of free software. This research persues the goal of present a tool similar
behavior but to enviroments GNU/Linux. The version we have today in GNU/Linux
specifically Cuban GNU/Linux is the Unix Smart Blocker for Universal Serial Bus,
USB2 1.0 tool, which is the application shown in this paper.

2 Contents

A technological barrier to the uncontrolled use of USB devices in a company is the
solution proposed in this research. The application USB2 1.0 will allow controlling
and restricting the use of USB devices on computers that use GNU operating systems.

The code of the application currently in development can be located https://
github.com/editoblezd/usbsecurity-dev

2.1 Methodology

During this research were used scientific methods: analysis-synthesis, historical
analysis and experimental one, which allow us the foundations for the development of
the application.

By Analysis-synthesis method were studied the most used technologies nowadays
to identify its main features; which were the basis for the design and implementation
of the first version of USB2 1.0. Some of them were: control of USB ports via a
database with authorized devices and alerting users to the authorization or not of new
devices.

Historical analysis method allows us to study the evolution of this kind of
application and as a result, to identify the need that existed in the distributions of
GNU/Linux for a tool to control access to USB storage devices. University of
Informatics Sciences (UCI) users and the free software community were the main
samples for this research.

The experimental method allowed testing the correction of the functionalities
implemented with main samples.

The development of the application was useful to the user community GNU/Linux,
because is an alternative to protect users from data loss, data robbery, or other
negative consequences of the use of USB mass storage devices. Once developed the
tool, safety levels in environments GNU increased and hence the users' trust in free
operating systems.

220 E.B. Deroncelé et al.

2.2 Results and Discussion

Some of the tools used to control USB devices are: USB Blocker, Device Lock, GFI
EndPoint, MyUSBOnly, Endpoint Protector 4 and USB Over Network Server; but
most used are the first five.

The freeware software USB Blocker created by NetWrix Corporation, is an
interesting centralized locker that allows controlling access to the computers on a
network using enabled USB devices. It locks different kinds of mass storage devices,
such as removable hard disks, iPods and others [1].

USB Blocker can control the access of authorized or unauthorized devices,
functioning as a mean of protecting security control malware, viruses or loss of
sensitive information for the corporate network where is used. Unlike other solutions,
does not require installation on each computer on the network, functioning as an
integral network control system. Its main disadvantage is that in addition to be
proprietary is conceived only for Windows systems.

Device Lock allows defining which users can access to specific ports and devices
on a computer. Its management can be made using group policies in an Active
Directory domain, creating a console for administration [2]. But, like USB Blocker, is
available only for Windows platforms NT/2000/XP/Vista/7 and Windows Server
2003/ 2008, and is proprietary. Among the main features that can be managed with
Device Lock are: users or groups access control, a whitelist of devices regardless of
where they connect, ports auditing and integration of TrueCrypt and PGP Whole Disk
encryption.

GFI EndPoint is another powerful tool that has among its main functions: group-
based protection control, granular access control , support for various kinds of
portable devices, logging user activity in SQL Server , the agent protection with
increased security, control of portable storage with Unicode support and the event log
[3].

MyUSBOnly provides the least amount of functionalities, but it is the most used by
companies and end users. Allows quick and easy way to protect USB ports and set a
password to access them. Requires Microsoft Windows 2000, XP, 2003, Vista, 7 or
2008 [4] as operating system.

All these applications are developed for Microsoft Windows operating systems
which makes slower the migration process of companies to free software.

Currently, the tool Endpoint Protector 4, brand development some guidelines for
tool described in this paper. Although this tool solves the problem posed in this
investigation, but it is not distributed under GPL license, which becomes a obstacle
for GNU environments.

The Endpoint Protector 4 Web administration and reporting console offers a
complete overview of the device activity on your computers, whether you work with
Windows, Mac or Linux platforms. The enterprise will be able to define access
policies per user/computer/device and authorize devices for certain user or user
groups. Thus, the company will stay productive while maintaining control over the
device fleet use.[5]

 USB Device Management in GNU/Linux Systems 221

The tool presented in this paper aims to be fast, efficient and simple. It has good
acceptance by Cuban users and is compatible with GNU/Linux systems and is
distributed under GPLv3.0 License. The application libraries are distributed under the
LGPL v3.0 license. USB2 1.0 increases safety levels required in Cuba and its usage
can be included in the safety regulations must have any cuban institution under
Resolution No.127/2007 [6].

2.3 Development Technology

For the development of the application was used C, as the programming language,
using glibc libraries and gtk +-2.0 for interfaces. Was used vim as Integrated
Development Environment and to store information in the database is used squlite3
library.

USB2 1.0 1.0 has incorporated a default graphical user interface in text mode. The
tool, developed as a library, provides the necessary tools so you can build a graphical
interface for different environments.

2.4 Recognition of the Device in the Computer

Udev is the device manager for the Linux kernel. Essentially this device handles
devices nodes that are regularly can be found in /dev directory. This is the successor
of devfs and hotplug, so it handles /dev directory and all actions taken in user space
when devices are added and subtracted in the computer.

How udev by default is active for all systems that use the version 2.6.x of the
kernel or upper, is used to recognize devices in the system. In the process of
connecting or disconnecting a device to the system, udevd demon executed by udev
receives a uevent released by kernel indicating that an action of adding or
disconnecting a device has been captured.

Sysfs is a virtual file system that provides the Linux kernel v2.6. Exports
information about devices and drivers from the kernel device model to userspace and
also allows to set its parameters. When a device is attached to the system, in addition
to the information stored by udev in its database, the kernel enclosed information
necessary for its work in the virtual/sys directory.

Among the possibilities of udev are its rules. These rules have a syntax that allows
both read attributes of a device and change others, depending on the type of attribute.
A set of rules decide what action needs to be done with obtained data. What rule will
do, probably, will be to name the device, to create the appropriate device file, and run
the program that has been set to activate the device.

Rules can associate a unique name to a device, but can also call an external
program to give more information about the device; so that can obtained a more
specific name. Most of the rules that come by default in the system are stored in
/lib/udev/rules.d/.

By using these rules is performed a device recognition and are selected only
storage devices to manage access to the system. The attributes that are granted to
allow uniquely identify devices and thus can control them.

222 E.B. Deroncelé et al.

The device recognition is an important phase in its access control process system to
the system. If this action is performed successfully can be achieved the authorization
of only those devices that have been previously authorized by the administrator or
superuser.

The rule would look like this:

#Regla para usbsecurity1.0
ACTION=="remove",GOTO="disk_usb_end"
SUBSYSTEM!="block", GOTO="disk_usb_end"
Para importar información de los padres.
ENV{DEVTYPE}=="partition",IMPORT{parent}="ID_*"
#Ignorar discos floppy
KERNEL=="fd*",ENV{UDISKS_PRESENTATION_HIDE}="1"
KERNEL=="sd*[!0-
9]|sr*",ENV{ID_SERIAL}!="?*",SUBSYSTEMS=="usb",IMPORT{pr
ogram}="usb_id --export %p"
#Ejecutar un programa al conectar dispositivos USB.
KERNEL=="sd?",ACTION=="add",ENV{ID_BUS}=="usb",SUBSYS
TEM=="block",SUBSYSTEMS=="usb",PROGRAM!="/usr/sbin/usbse
curity /dev/%k", ENV{UDISKS_PRESENTATION_HIDE}="1"
ENV{DEVTYPE}=="disk", KERNEL!="sd*|sr*",
ATTR{removable}=="1", GOTO="disk_usb_end"
LABEL="disk_usb_end"

As can be seen when a storage device is connected, this is the action is ACTION =
"add", the "usbclient" program is executed passing the name of the device node
recognized by the kernel as argument. This program performs device access check
tasks and returns true or false depending on whether the device is not authorized to
access the computer or if it is respectively. In case of been authorized, the rule does
not reach its end and the device goes through the normal connection and removes
process. Otherwise does not allow accessing the computer by removing the device
node so that can not do access device to the system even with the root password.

2.5 Verification of Access Permission

For verification of system access, is necessary to know several device attributes such
as serial number. For getting such attributes are used programs already offered by
udev as usb_id which exports device information to the udev environment variables,
in this case specifically are exported the attributes with udev format and the order:

IMPORT{program}="usb_id --export %p", escrita en la regla
de udev si es que otro programa no la han importado ya. La
sección que comprende esta orden ejecuta de forma general:
USB devices use their own serial number
KERNEL=="sd*[!0-9]|sr*",
ENV{ID_SERIAL}!="?*",SUBSYSTEMS=="usb",
IMPORT{program}="usb_id --export %p"

 USB Device Management in GNU/Linux Systems 223

Once imported to this information can access this in the written program usbsecurity.c
using the function: g_getenv(ENV_SERIAL), which returns the serial number of the
device. In addition is needed to know what type of device it is, this is if it is a partition
or a disk. That is obtained through the g_getenv(ENV_DEVTYPE) function which
reads this environment variable.

Once imported this information, application checks if the serial device is already
registered in its database, thus deciding the return value. This return value depends on
whether the device is finally shown to the user or not.

2.6 Managing Devices

The application has a graphical user interface with which the devices are managed, a
new device can be added to the database, can be deleted and modified its identifier
too. By default when a device is connected and it is not authorized is recorded in the
database but is not authorized. In the ID field is set by default Not allowed, which
means that although this is not registered can not access the system until you can not
change the ID.

Adding a Device

To add a device must be connected to the computer and if it is not authorized, will
show the user a notification to let him know the current state of the device. To
authorize a system, administrator must access the management interface for the
device approval process.

In this interface the administrator must change the default identifier that takes the
device, to authorize it. If, however, you will not change this ID after log all devices
that still have the original identifier will be deleted from the database. Once the device
is authorized it will be mounted automatically in the file system of the operating
system. Once the device is authorized, is launched to the user a notification informing
the changes.

Sorting an Authorized Device Identifier

The process of modifying the device ID, performs in the same way that of adding a
device to the system. The difference lies in that the device is already authorized in the
system and as a first step the administrator or super user had to change the default
identifier.

Removing a Device

To remove the device, simply must be selected in the administration interface and
click the button to the elimination. After acceptance of the confirmation message, the
device will be removed from the database and will automatically unauthorized use in
the system.

Activity Logging

Internally the system, in addition to the information displayed in the Admin GUI,
store other attributes in system logs. When any activity, both connection authorization
and de-authorization is performed, is stored information relating to this as time, date,

224 E.B. Deroncelé et al.

and user who performed the action and the serial number of the device. This helps
finding events if an abnormality arises, to find the root of the problem. It is important
to note that how this valuable information is stored, it can be known information
about any device that attempts performing any action, which ensures an extra level of
security, in this case the detection.

3 Conclusions

USB Unix Smart Blocker 1.0 provides another point of support for the growing
process of migration to open source platforms. With this version of the product the
administrators of workstations will be able to control the access of USB devices,
increasing levels of security for enterprises.

From the economic point of view, for a country like Cuba, paying for software
licenses over 600,000 workstations migration process is a rather high figure. USB
Unix Smart Blocker 1.0 is distributed under GPL license, besides being a value-
added product to the Cuban distribution of GNU / Linux Nova, used as the main
distribution in the migration process of the country.

The architecture used in the development of the application allows for future
expansion and scalability of it. What provides companies with a tool adaptable to the
conditions they need.

USB2 1.0 has arrived as a free alternative in GNU/Linux systems to monitor and
control USB devices.

4 Recommendations

It is recommended:

1. To expand the number of devices that are supported by this tool, to have
control of these.

2. To use this tool to protect your USB ports, measure as important as installing
a firewall and antivirus program maintenance. USB2 1.0 makes easy the
protection of this critical part of your PC or laptop.

References

1. Alejandro, J.: USB Blocker, eficiente bloqueador de acceso USB para red (2009),
http://www.acercadeinternet.com/usb-blocker-eficiente-
bloqueador-de-acceso-usb-para-red/ (accessed: October 29th, 2012)

2. PYME. DeviceLock, control total sobre los USB en la empresa (2010),
http://www.tecnologiapyme.com/software/devicelock-control-
total-sobre-los-usb-en-la-empresa (accessed: October 29th, 2012)

3. GFI Endpointsecurity. Feature (2006), http://www.gfi.com/usb-device-
control#features (accessed: October 29th, 2012)

 USB Device Management in GNU/Linux Systems 225

4. MYUSBONLY. System Requirements (2012), http://www.myusbonly.com/
usb-security-control-device-protection/ (accessed: October 29th, 2012)

5. Endpoint Protecor 4 (2013), http://www.endpointprotector.com/products/
endpoint_protector#1 (accessed: December 26th, 2013)

6. Ministerio De La InformáTica y Las Comunicaciones. Resolucion No. 127 (2007) (ac-
cessed: October 29th, 2012)

PROINFODATA: Monitoring a Large Park

of Computational Laboratories

Cleide L.B. Possamai, Diego Pasqualin, Daniel Weingaertner, Eduardo Todt,
Marcos A. Castilho, Luis C.E. de Bona, and Eduardo Cunha de Almeida

Centro de Computação Cient́ıfica e Software Livre,
Departamento de Informática - Universidade Federal do Paraná

{cleide,dpasqualin,danielw,todt,marcos,bona,eduardo}@inf.ufpr.br

Abstract. This paper briefly presents a model for monitoring a large,
heterogeneous and geographically scattered computer park. The data
collection is performed by a software agent. The collected data are sent
to the central server over the Internet, and stored by the storage system.
An on-line portal makes up the visualization system, featuring charts,
reports, and other tools for assessing the state of the park. This system
is currently monitoring circa 150,000 machines.

1 Introduction

Digital inclusion is a major challenge of modern society. The Brazilian govern-
ment has made large investments in equipment and infrastructure to grant access
to information and communication technologies. With the success of installing
laboratories in a large territory, arises another challenge: to monitor such giant
park, ensuring that all investment meets its social and economic objectives. Aim-
ing to solve this problem, it is necessary to define a model and implementation
of IT solutions that enable the monitoring, in an easy and transparent way.

2 System Description

The proposed system has three independent modules: i) Data Collection System;
ii) Data Storage System; and iii) Visualization System.

2.1 Data Collection

The collection module gathers data from computers spread over the country. A
client-server scheme is adopted. The agent implements the client Web Service,
collecting the information from the source machine and storing it locally in XML
format, connecting to the central server and sending the data. The central server
collects this data from all agents, storing them in a database and also providing
authentication methods and secure connections.

The implementation of the Web Service client was done in C due to perfor-
mance issues and minimization of the number of packages that must be sent,

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 226–229, 2014.
c© IFIP International Federation for Information Processing 2014

PROINFODATA: Monitoring a Large Park of Computational Laboratories 227

since in many regions of Brazil the quality of internet connection is poor. The
Web Service server is an Apache Axis because it contains the base protocols and
safety extensions implemented. Due to the large amount of machines, the server
does not maintain the connection states of the clients.

The computers are distributed by the ministry of education with Linux
Educational (http://linuxeducacional.c3sl.ufpr.br/), with the monitoring agent
installed. Since schools may install another operating system or distribution, the
agent has been designed to work across major operating systems and
distributions.

In Linux-based systems, data collection was developed using Shell Script lan-
guage, whereas on machines with Windows operating system, data collection
was developed using the Python programming language. In order prevent the
server from being overloaded, each agent sends the inventory at random times,
distributing the total load along all the day. The data collected by the agent are
the identifier code of schools, type of machine, network usage and inventory.

2.2 Storage System

This module uses a typical storage architecture for large-scale data (Data Ware-
house - DW), oriented to read operations that favors the analysis of large volumes
of data. A DW architecture consists of three stages: loading, storing and reading
data. This division increases the overall performance of the system where dif-
ferent operations (i.e. writing, reading) are directed to different structures. This
also adds versatility, so that it is possible to replace one technology by another
without impact on the rest of the system, e.g., through the use of new technolo-
gies that may further improve data read performance, e.g., MapReduce [3], and
C-Store [4].

The three stages are divided in two separate databases: a temporary data
database (Staging Area) and a database of historical records (Data Warehouse).

The Staging Area is a database that receives connections from the web server
to write data collected during the day. This database has its data deleted after
the consolidation of daily data held by DW. The Data Warehouse is a database
responsible for storing all historical data. DW reads and consolidates the data
from the staging area, once a day, starting at predefined times.

The Data Mart is a subset of DW, summarized and optimized for reading
operations [1]. These subsets are determined according to the interest of the
consultations. The goal of DMs is to increase the overall performance by creating
specific structures for each universe of reports, such as inventory, availability,
audit, and network usage. The database was implemented using technology based
on open source, in our case, with the management database system (RDBMS)
PostgreSQL (postgresql.org). What makes Data Warehouse a high performance
system is that the information is joined in a database in a dimensional way [2],
reducing the use of join operations in queries.

228 C.L.B. Possamai et al.

2.3 Visualization System

The visualization system is composed of a web portal, which is in turn sub-
divided into a server and a client. The web server is responsible for receiving
and processing requests, fetching the requested data from the database (Data
Marts), and returning the report or graph to the client. The client application
is the web portal itself, viewed through a browser and responsible for presenting
an interface that facilitates the search and visualization of monitored data.

The proposed model is based on a multilevel grouping of monitored machines,
for example, arranged by geographic location and institution. The visualization
system has in the first level an overview of the machine park, showing the total
number of monitored machines, or any other aggregation meaningful to the ad-
ministrator. A second level provides information classified by federation States.
Selecting in a third level, the user can view data from a specific city and at the
last level the machines are displayed individually.

The first version was developed with the Pentaho (www.pentaho.com) tool,
but due to the lack of some desirable native features, like caching, resulting in a
noticeable slowness in requisitions answers, it was replaced by the Play Frame-
work (www.playframework.com) with the Highcharts (www.highcharts.com).

3 Experimental Results

All the tools used in the project are open source software, as well as the final
product delivered (http://git.c3sl.ufpr.br). The result of the implementation can
be seen in the portal http://proinfodata.c3sl.ufpr.br.

Figure 1 presents the visualization of availability information of the com-
puter park for a region (a) and for a federation State (b). The pie chart shows
global information, whilst the bar chart groups the data by region, and the line
chart shows the history of the last six months. When selecting a city, a report
containing the data from all machines of monitored schools within that city is
generated.

Currently, the number of monitored computers with Linux Educacional is
139,045, with Windows is 246, and with other systems is 4,323, summing up to
143,614 machines. The staging/dw model was tested with approximately 200,000
connections per day, writing data individually and in parallel.

4 Discussion and Conclusions

The results show that the proposed model and the subsequent implementation
are effective and allow the administrator to manage the set of laboratories dis-
tributed over the country, based on a system that is optimized to support the
giant number of clients that should send status information to a central server.
The hierarchical approach makes easy to the user to locate the information
needed. The color codes used to identify the groups of machines according to
the time elapsed since the last contact make easy to recognize problems such

PROINFODATA: Monitoring a Large Park of Computational Laboratories 229

(a) (b)

Fig. 1. Data about availability grouped by Region (a) and State (b)

failures and machines that were not yet put into operation. According to the
Data Mart model, the information of individual machines is consolidated calcu-
lating a priori, once a day, subtotals for cities, States and regions, accelerating
the responsiveness of the system to user queries. One fundamental characteris-
tic is that the system is open source, allowing code inspection and assurance of
privacy about personal data. As future work, it could be added artificial intelli-
gence modules able to find anomalous behaviours and to generate alarms to the
administrator. Also, since the system is modular and designed to be platform
independent there are few obstacles to continuous improvements.

References

1. Designing data marts for data warehouses. ACM Trans. Softw. Eng.
Methodol. 10(4), 452–483 (2001)

2. Bellatreche, L., Woameno, K.Y.: Dimension table driven approach to referential par-
tition relational data warehouses. In: Proceedings of the ACM Twelfth International
Workshop on Data Warehousing and OLAP, DOLAP 2009, pp. 9–16. ACM, New
York (2009)

3. Lämmel, R.: Google’s mapreduce programming model – revisited. Science of Com-
puter Programming 70(1), 1–30 (2008)

4. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M.,
Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik,
S.: C-store: A column-oriented dbms. In: Proceedings of the 31st International Con-
ference on Very Large Data Bases, VLDB 2005, pp. 553–564. VLDB Endowment
(2005)

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 230–231, 2014.
© IFIP International Federation for Information Processing 2014

Book Locator: Books Manager

Dairelys García Rivas

University of Informatics Sciences, School 1, Free Solutions Center,
San Antonio de los Baños Highway, Km 1 ½,

Torrens, Boyeros, La Habana, Cuba. CP: 19370
dgrivas@uci.cu

http://www.uci.cu/

Abstract. After performing a study of digital books organizing tools, it's ob-
served that these don't count on a multi platform integration, and those who do,
don’t count on the elements pursued in the investigation. It is decided then to
proceed to the implementation of a book organizer software, taking an initial
requirements list from the studied tools, following the guidelines of the collabo-
rative and open source development. It has been developed to its version 4.1,
which after going through different development processes, detecting mistakes
and adding new functionalities that join to the requirements list, it’s fully
functional.

1 Introduction

With the increasing use of information technologies and Internet, it becomes
increasingly common to use digital documents to save the information. Books are not
an exception; since the growth of these technologies, people have tended to favor
digital reading. This is also linked to the development of mobile devices, which
allows transporting digital books. Because of this, today is much more convenient to
use an Ebook Reader1, since they can carry thousands of books simultaneously in a
confined space; plus the cost of digital books is much lower than physical books.

For this situation, there have been programs that allow reading these documents, in
different platforms and to various formats, being most common the PDF format.
These programs, however, have characteristics that prevent people working with them
on multiple operating systems. Taking into account the characteristics of these
applications, summarized in Table 1: Comparison of locating books programs, will be
possible to decide the most appropriate program for working on multiple platforms.

1.1 Known Results

The intended result is based on a layered architecture, in this case two layers. It uses a
presentation layer to handle all the elements involved in the generation of system
views (Add, Delete, Advanced) and the warning and error messages. The other layer

1 A term that refers both to an electronic device used to read books in digital format.

 Book Locator: Books Manager 231

Table 1. Comparing books locating programs

Name Language Platform Special features Supported
formats

mCatalog English Windows - All
Alexandria English Linux Used mainly in Ubuntu, gets

broken sometimes
All

Calibre Spanish Linux,
Windows,
OS X

Disorganized graphic interface All

FBReader Spanish,
English

Linux,
Windows

Mainly designed for mobile
devices

Epub, html, mobi,
palmDoc, zTxt

Tellico Spanish,
English

Linux
(KDE)

Can't work properly in Ubuntu
and with GTK interfaces

All

used focuses on controlling access to data, validating the data before inserting it into
the database and also performs queries to it, returning the results to the presentation
layer.

In the main menu, there are available the options "Add book", "Delete book", "Edit
book", "Advanced Search" and "Exit". The latter option terminates the application
execution. In the "DB" menu are the database management options (" Create new
BD", "Insert / Remove Language", "Insert / Remove Format" , "Insert / Remove
genre") and in the "Utilities" menu are other utilities that the user might need
("Amount of read books", "To read books list", "Genre / Format / Language most
read" and "Credits").

The interface also has a tab panel, where you can find all the books inserted, sorted
in alphabetical order or by the author who wrote it. When double-clicked on the
author's name, the names of the books he has written will be displayed. At the top of
the window you there is a search by book name or by the name of the author who
wrote it; in each case the results are shown in the panel tab. On the right side you can
see the book information once you have selected in the left tab. In the bottom of the
window there is a text element to be updated with interesting facts the author, as the
total number of books out there, or how many books he has written an author if you
select it on your tab.

The program has been tested by a group of developers of the Operating Systems
Department in Cesol Center, Faculty 1. They have positive opinions regarding its
functionality and support multiple platforms. The views on this have varied depending
on the personal tastes of the users and the features that they want to have in a
program. These recommendations have been reported to be taken into account for
future releases, and it has been proposed to be inserted in the repository of the Cuban
GNU / Linux distribution, Nova.

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 232–233, 2014.
© IFIP International Federation for Information Processing 2014

Automation of Agricultural Irrigation System
with Open Source

Bladimir Jaime Pérez Quezada and Javier Fernández

Faculty of Computer Science, Electronics and Communication,
Universidad de Panamá, Panamá

bladimir.perezq@gmail.com,
fernanj@yahoo.com

Abstract. In this present job, we seek to develop a prototype of an automated
agricultural irrigation system, monitored and controlled remotely. For that, we
will use inexpensive tools, flexibility and support such as Arduino, XBee and
Android. Arduino and XBee, will be responsible of the automating the system.
Android will achieve the remote monitoring and control from anywhere in the
world where there is cellular service and Internet. In this way we can give the
farmer the comfort and security that he don´t get with a manually controlled
system.

Keywords: Arduino, ADK, Android, XBee.

1 Introduction

At present irrigation systems, the vast majority are operated manually, requiring close
attention of the farmer. Basically the farmer decides with your experience, the period
and the moment to watering the crop. Because of this, will can have common prob-
lems caused by humans, such as forget turn on and turn off the system at the time
considered. This causes direct problems with the crop such as, excess of water in the
crop or drying by lack thereof, in addition to a higher energy consumption of the sys-
tem and higher consumption of water resources that is as important to national and
international level. All this lowers productivity, causing economic losses to farmers.
Having an automated system, we seek to resolve these errors, increasing production,
save on energy consumption and minimize the decline in productivity, as the farmer
will not has that stay aware constantly of the cultivation, because the system will be
Stringer and it will take the required decisions [2].

2 Methods and Materials

To develop our agricultural irrigation we focus on aspects such as: open source,
scalability, open to future research and implementations. The tools used in our
research are:

 Automation of Agricultural Irrigation System with Open Source 233

─ Arduino Mega ADK. Integrates one USB host that work directly with Android
devices and it will be responsible of take the decisions pertinent of the irrigation
system.

─ Android. Will show the details of the system to the user and serve as link to the
Internet to upload data to the cloud system of Google Drive.

─ XBee. Modem based on ZigBee wireless communication protocol. Developed and
backed by the company Digi International. Will maintain communication with the
Arduino Mega ADK, sending the soil moisture data.

─ Soil Moisture Sensor. Soil moisture sensor of resistive type, whose operating
principle is based on the conductivity, which will vary depending on the moisture
present in the soil [1].

3 Expected Results

Get an agricultural irrigation system low cost, that can be implemented in real crops,
offering the water required by cultivation. That the user has the same monitoring both
on the site as remotely via the Internet through a computer or mobile device. Further-
more, the user can control the system remotely via SMS, as shown in Figure 1.

With this research, we want to help the farmer get a better production and mini-
mize waste.

Fig. 1. Functional diagram of the system

References

1. Schugurensky, C., Capraro, F.: Control Automático de Riego Agrícola con Sensores
Capacitivos de Humedad de Suelo, aplicaciones en Vid y Olivo, Universidad Nacional de
San Juan, Argentina. Instituto de Automática, INAUT (2007)

2. Varela, R.V., Rivas, C.R., Aréchiga, R.S.: Automatización de un sistema de riego. Revista
Digital de la Universidad Autónoma de Zacatecas, Universidad Autónoma de Zacatecas,
Enero, Abril. Unidad Académica de Ingeniería Eléctrica (2007)

When Are OSS Developers More Likely

to Introduce Vulnerable Code Changes?
A Case Study

Amiangshu Bosu1, Jeffrey C. Carver1, Munawar Hafiz2,
Patrick Hilley3, and Derek Janni4

1 University of Alabama
2 Auburn University
3 Providence College

4 Lewis & Clark College
asbosu@ua.edu,carver@cs.ua.edu,munawar@auburn.edu,philley@friars.

providence.edu,derekjanni@lclark.edu

Abstract. We analyzed peer code review data of the Android Open
Source Project (AOSP) to understand whether code changes that in-
troduce security vulnerabilities, referred to as vulnerable code changes
(VCC), occur at certain intervals. Using a systematic manual analysis
process, we identified 60 VCCs. Our results suggest that AOSP develop-
ers were more likely to write VCCs prior to AOSP releases, while during
the post-release period they wrote fewer VCCs.

Keywords: Open Source, OSS, FOSS, security, vulnerability.

1 Motivation

The presence of a security vulnerability in a widely used software, like Android,
can be critical. Therefore, project management will be able to make informed
decisions on allocating scarce security experts, if they can predict ‘where’, and
‘when’ vulnerable code changes (VCC) are more likely to be introduced. Most of
the prior studies [1,2] on vulnerability prediction considered the ‘where’ aspects.
To investigate the ‘when’ aspects, this study analyzes 60 VCCs from the Android
Open Source Project (AOSP) to determine when AOSP developers are more
likely to introduce VCCs.

2 Study Design

The AOSP project uses the Gerrit code review system for changes submitted to
the main project branch. Qe mined 18,110 changes from Aug. 09 - May 13. Using
an empirically built and validated set of keywords, we identified 741 potential
VCCs. Using a two step manual analysis process, we determined that 60 changes
were VCCs. Figure 1 overviews our approach.

We hypothesized that: “developers introduce more vulnerabilities early in a
project when it is less mature and developers are less focused on security”.

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 234–236, 2014.
c© IFIP International Federation for Information Processing 2014

When OSS Developers Are More Likely to Introduce Vulnerabilities 235

Fig. 1. Research Method

3 Results and Conclusion

The red line in Figure 2 shows that for AOSP, project age does not seem to
be the cause of VCCs. Similarly, the gray line in Figure 2 shows that the ratio
of VCCs/total changes also does not seem to describe a pattern for introduc-
tion of VCCs. As neither of these factors explained the pattern, we conducted
exploratory analysis on another factor, release cycle (vertical green lines in Fig-
ure 2). It seems that the release cycle may be able to partially explain the
introduction of VCCs. The number of VCCs was generally increasing prior to a
release and decreasing after a release (although the pattern does not hold in all
cases). These results suggest that further study of VCC introduction patterns
is needed across more projects. There appear to be factors other than age and
total number of changes that may predict when VCCs are introduced. As further
research identifies these factors, we can provide more concrete advice to project
managers regarding when to emphasize security testing.

Fig. 2. Number of VCCs identified during code review over 45 months

Acknowledgment. This research is supported by NC State Science of Security
lablet.

236 A. Bosu et al.

References

1. Meneely, A., Williams, L.: Secure open source collaboration: an empirical study of
linus’ law. In: Proc. 16th ACM Conf. on Comp. and Comm. Security, pp. 453–462
(2009)

2. Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.: Predicting vulnerable software
components. In: Proc. 14th ACM Conf. Comp. and Comm. Security, pp. 529–540
(2007)

Author Index

Abad, Abel Meneses 195
Ahmed, Iftekhar 181
Alves, Fernando 191
Ameller, David 168
Armuelles, Iván 111
Armuelles Voinov, Iván 107
Azarbakht, Amir 41

Baiyere, Abayomi 113
Ben-Jacob, Ron 168
Bonnin, Jean-Marie 103
Boodraj, Maheshwar 172
Bosu, Amiangshu 31, 234
Bouabdallah, Ahmed 103
Braud, Arnaud 103

Cabreja, Yordanis 172
Cáceres Navarro, Haniel 218
Carver, Jeffrey C. 31, 234
Castilho, Marcos A. 226
Cedeño, Aidelen Chung 107
Chacon-Rivas, Mario 143
Chua, Bee Bee 70
Chung, Joaqúın 107
Cotugno, Franco Raffaele 61

de Almeida, Eduardo Cunha 226
de Bona, Luis C.E. 226
Deroncelé, Edilberto Blez 218

Espino, Juan P. 111

Febles Parker, Michel Evaristo 176, 218
Fernández, Javier 232
Fernández del Monte, Yusleydi 176
F́ırvida Donéstevez, Abel Alfonso 147,

212, 218
Franch, Xavier 168
Fromentoux, Gaël 103
Fuentes, Allan Pierra 147, 218
Fuentes Rodŕıguez, Juan Manuel 212

Gallegos, Mario 1
Garćıa Rivas, Dairelys 212, 230
Garita, Cesar 143

Georgiev, Anton B. 93
German, Daniel M. 51
Gerosa, Marco Aurélio 153, 199
Ghorashi, Soroush 181
Goñi, Angel 172
González, Grace 107
González-Barahona, Jesús M. 1, 123
González Muño, Marielis 147

Hafiz, Munawar 234
Hammouda, Imed 21
Hannemann, Anna 11
Hilley, Patrick 234

Inoue, Katsuro 51
Izquierdo-Cortázar, Daniel 1

Janczukowicz, Ewa 103
Janes, Andrea 83
Janni, Derek 234
Jensen, Carlos 41, 133, 181

Kamei, Fernando 202
Kenett, Ron 168
Klamma, Ralf 11
Koo, José M. 111

Leyva Samada, Lisandra Isabel 195
Liiva, Kristjan 11
Lincoln, Max 191

Manabe, Yuki 51
Mancinelli, Fabio 168
Messina, Angelo 61
Montes León, Sergio Raúl 123
Morgan, Becka 133

Noda, Tetsuo 216

Ortiz, Susana Sánchez 76

Pasqualin, Diego 226
Peñalver Romero, Gladys Marsi 195
Pérez Benitez, Alfredo 76
Pérez Quezada, Bladimir Jaime 232
Pinto, Gustavo 202
Possamai, Cleide L.B. 226

238 Author Index

Rastogi, Ayushi 164
Remencius, Tadas 83
Robles, Gregorio 1, 123
Rosales Rosa, Eugenio 147, 212

Salminen, Joni 80
Sánchez C., Luis E. 123
Siena, Alberto 168
Sillitti, Alberto 83, 93
Silva, Marco Aurélio Graciotto 153
Steinmacher, Igor 153, 199
Succi, Giancarlo 83, 93

Sureka, Ashish 164
Susi, Angelo 168
Syeed, M.M. Mahbubul 21

Tansho, Terutaka 216
Teixeira, Jose 80, 113
Tejera Hernández, Dayana Caridad 218
Todt, Eduardo 226

Villarreal, Rubén 111

Weingaertner, Daniel 226

	Preface
	Organization
	Table of Contents
	Open Source Visualization and Reporting
	Code Review Analytics: WebKit as Case Study
	1 Introduction, Motivation and Goals
	2 The Code Review Process, and Its Traces
	2.1 Code Review: Is It Possible to Follow It in Detail?
	2.2 Traces

	3 Methodology
	3.1 Data Sources and Data Retrieval
	3.2 Cleaning and Organizing the Data

	4 Analysis Over Time
	5 Discussion and Threats to Validity
	6 Conclusions
	References

	Navigation Support in Evolving Open-SourceCommunities by a Web-Based Dashboard
	1 Introduction
	2 Related Research
	3 Study Settings
	4 Navigator for OSS Community: Evaluation Results
	4.1 Survey of OSS Developers
	4.2 Bioinformatics OSS Developers
	4.3 Discovered Weaknesses

	5 Conclusions and Future Work
	References

	Who Contributes to What?Exploring Hidden Relationships between FLOSSProjects
	1 Introduction
	2 Study Design
	2.1 Data Source
	2.2 Data Collection
	2.3 Data Processing
	2.4 Data Analysis
	2.5 Program Verification

	3 Result Analysis
	4 Conclusions
	References

	How Do Social Interaction Networks InfluencePeer Impressions Formation? A Case Study
	1 Introduction
	2 Research Method
	2.1 Project Selection
	2.2 Data Collection
	2.3 Data Analysis

	3 Social Network Metrics
	4 Results
	4.1 Network Size
	4.2 Network Model
	4.3 Network Centralization

	5 Conclusion
	References

	Drawing the Big Picture:Temporal Visualization of DynamicCollaboration Graphs of OSS Software Forks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Phase 1: Data Collection
	3.2 Phase 2: Creating Communication Graphs
	3.3 Phase 3: Temporal Visualization and Temporal EvolutionAnalysis

	4 Results and Discussion
	4.1 Kamailio Project
	4.2 Amarok Project
	4.3 Asterisk Project

	5 Conclusion
	References

	Open Source in Business Modeling
	Analyzing the Relationship between the Licenseof Packages and Their Files in Free and OpenSource Software
	1 Introduction
	2 Background
	3 License Inclusion
	4 Empirical Study
	4.1 Subject
	4.2 Methodology
	4.3 Results

	5 Limitations and Threats to Validity
	6 Related Work
	7 Conclusions
	References

	Adapting SCRUM to the Italian Army: Methods and (Open) Tools
	1 Introduction
	2 Related Work
	3 Assessing Quality through QualiPSo OMM and MOST
	4 AMs and OSS in the Military Environment
	5 Conclusions and Future Work
	References

	Applying the Submission Multiple Tier (SMT) Matrix to Detect Impact on Developer Interest on Open Source Project Survivability
	1 Introduction
	2 Open Source Infrastructure: Project Activity and Developer Interest
	3 Methods
	4 Results
	5 Conclusions and Future Work
	References

	FOSS Service Management and Incidences
	1 Introduction
	2 Development
	2.1 Technologies of Incidences and Services Management
	2.2 Development of NovaDesk
	2.3 Functionalities of NovaDesk
	2.4 Importance of Services Management and Incidences with NovaDesk

	3 Conclusions
	References

	Open-Source Software Entrepreneurial Business Modelling
	1 Introduction
	2 Methods
	3 Finding, Implications and Future Work
	References

	Open Source in Mobile and Web Technologies
	Towards Understanding of Structural Attributesof Web APIs Using Metrics Based on API CallResponses
	1 Introduction
	1.1 Web APIs
	1.2 JSON and XML Based Responses
	1.3 Our Approach

	2 Measurement Framework
	2.1 Objectives
	2.2 Metrics
	2.3 Basic Tree Metrics
	2.4 API Metrics
	2.5 Node-Name-Based (Semantic) Analysis
	2.6 Similarity-Based Metrics

	3 Conclusion
	References

	Open Source Mobile Virtual Machines: An Energy Assessment of Dalvik vs. ART
	1 Introduction
	2 Android OS and Its Virtual Machines
	3 Related Work
	4 Data Collection
	4.1 Benchmarks
	4.2 Experimental Setup

	5 Data Analysis
	5.1 Data Interpretation
	5.2 Research Questions Revisited

	6 Future Work and Conclusions
	6.1 Directions for Future Work
	6.2 Conclusions

	References

	Improving Mozilla’s In-App Payment Platform
	1 Introduction
	2 Mozilla’s In-App Payment Platform
	3 Proposed Solution
	4 Conclusion
	References

	A Performance Analysis of Wireless Mesh Networks Implementations Based on Open Source Software
	1 Introduction
	2 Testbed Implementation
	3 Performance Evaluation
	4 Conclusion
	References

	Use of Open Software Tools for Data Offloading Techniques Analysis on Mobile Networks
	1 Introduction
	2 Objectives
	3 Methodology
	References

	Open Source in Education and Research
	Crafting a Systematic Literature Review on Open-Source Platforms
	1 Introduction
	1.1 Purpose and Rationale
	1.2 On the Evolving Open-Source Phenomenon
	1.3 On Computer-Based Platforms

	2 Research Methodology and Design
	2.1 Research Goals and Methodological Base
	2.2 Design and Research Basis
	2.3 Extraction and Categorization of Literature

	3 Preliminary Findings
	3.1 Revisiting the Research Questions
	3.2 Future Research

	References

	Considerations Regarding the Creation of aPost-graduate Master’s Degree in Free Software
	1 Introduction
	2 Methodology
	3 Post-Graduate Studies in Free Software
	3.1 Openings for Professionals with Master’s Degrees in FreeSoftware
	3.2 Existing Free Software Master’s Degrees
	3.3 Analysis of Existing Master’s Degrees in Free Software
	3.4 Curricular Design

	4 Analysis and Results
	5 Conclusions and Future Work
	References

	Lessons Learned from Teaching Open Source Software Development
	1 Introduction
	2 Related Work
	3 Learning Objectives and Pedagogic Approach
	4 Course Design
	4.1 Course A
	4.2 Course B

	5 Results
	6 Discussion and Lessons Learned
	7 Conclusions
	References

	A Successful OSS Adaptation and Integration in an e-Learning Platform: TEC Digital
	1 Introduction
	2 Related Work
	3 Integrating Services in TEC Digital
	3.1 Adopting .LRN
	3.2 Integration of Internal Information Sources
	3.3 Integration of Services and Applications
	3.4 Development of Novel Components

	4 Conclusions
	References

	Smart TV with Free Technologies in Support of Teaching-Learning Process
	1 Introduction
	2 Smart Television
	2.1 Background
	2.2 Operating System
	2.3 Known Results

	3 Conclusions
	References

	Development Processes of Open Source Products
	Barriers Faced by Newcomers to Open SourceProjects: A Systematic Review
	1 Introduction
	2 Research Method
	3 Barriers Faced by Newcomers
	3.1 Social Interactions
	3.2 Finding a Way to Start
	3.3 Code Issues
	3.4 Documentation Problems
	3.5 Newcomers‘ Previous Experience
	3.6 Summary

	4 Threats to Validity
	5 Conclusion
	References

	Does Contributor Characteristics InfluenceFuture Participation? A Case Study on GoogleChromium Issue Tracking System
	1 Introduction
	2 Empirical Analysis
	References

	A Layered Approach to Managing Risks in OSS Projects
	1 Introduction
	2 A Layered Approach to Risk Management
	2.1 Layer 1: Raw Data a and Risk Driver Measures
	2.2 Layer 2: Risk Indicators and Risk Model
	2.3 Layer 3: Business Goals
	2.4 Modelling the Layers

	3 Conclusions and Future Work
	References

	A Methodology for Managing FOSS Migration Projects
	1 Introduction
	2 FOSS Migration Methodology
	3 Results and Evaluation
	4 Conclusions
	References

	The Agile Management of Development Projects of Software Combining Scrum, Kanban and Expert Consultation
	1 Introduction
	2 Discussion
	2.1 How to Combine Both Methods?
	2.2 Experiences in the Combined Use of Both Methods

	3 Lessons Learned
	4 Conclusions
	References

	Testing and Assurance on Open Source Projects
	An Exploration of Code Quality in FOSS Projects
	1 Introduction
	2 Background
	3 Methodology
	4 Results
	5 Discussion
	6 Limitations
	7 Conclusion
	References

	Polytrix: A Pacto-Powered Polyglot Test Matrix
	1 Introduction
	2 Solution Overview
	3 Tutorial and Future Work
	References

	Flow Research SXP Agile Methodology for FOSS Projects
	1 Introduction
	2 Development
	2.1 Development Methodology SXP
	2.2 ¿Where the Investigative Work Reflected SXP?
	2.3 Flow Research with Artifacts and SXP Role for Methodology
	2.4 Valoración de la Propuesta

	3 Conclusions
	References

	How to Support Newcomers Onboarding to Open Source Software Projects
	1 Introduction
	2 Research Design
	3 Preliminary Results
	References

	Global Impact on Open Source Communities and Development
	The Census of the Brazilian Open-SourceCommunity
	1 Introduction
	2 Study Design
	2.1 Research Questions
	2.2 Phase 1 – Mining Github
	2.3 Phase 2 – Survey

	3 Study Results
	3.1 Who Is the Brazilian Open-Source Contributor?
	3.2 Do the Brazilian Open-Source Contributions Increase over theTime?
	3.3 Why do Brazilian Programmers Contribute to OSS?

	4 Related Work
	5 Conclusion
	References

	Cuban GNU/Linux Nova Distribution for Server Computers
	1 Introduction
	2 Development Methodology
	3 Conclusions
	References

	A Study of the Effect on Business Growth by Utilization and Contribution of Open Source Software in Japanese IT Companies
	1 Introduction
	2 Correlation between Utilization and Contribution of OSS
	3 Effect on Business Growth by OSS Utilization and Contribution
	Reference

	Case Studies and Demonstrations of Open Source Projects
	USB Device Management in GNU/Linux Systems
	1 Introduction
	2 Contents
	2.1 Methodology
	2.2 Results and Discussion
	2.3 Development Technology
	2.4 Recognition of the Device in the Computer
	2.5 Verification of Access Permission
	2.6 Managing Devices

	3 Conclusions
	4 Recommendations
	References

	PROINFODATA: Monitoring a Large Parkof Computational Laboratories
	1 Introduction
	2 System Description
	2.1 Data Collection
	2.2 Storage System
	2.3 Visualization System

	3 Experimental Results
	4 Discussion and Conclusions
	References

	Book Locator: Books Manager
	1 Introduction
	1.1 Known Results

	Automation of Agricultural Irrigation System with Open Source
	1 Introduction
	2 Methods and Materials
	3 Expected Results
	References

	When Are OSS Developers More Likelyto Introduce Vulnerable Code Changes?A Case Study
	1 Motivation
	2 Study Design
	3 Results and Conclusion
	References

	Author Index

