
Transactions on
Aspect-Oriented
Software
Development XI

 123

LN
CS

 8
40

0

Shigeru Chiba · Éric Tanter
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e Eric Bodden Shahar Maoz
Jörg Kienzle Guest Editors

Lecture Notes in Computer Science 8400
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Shigeru Chiba Éric Tanter
Eric Bodden Shahar Maoz Jörg Kienzle (Eds.)

Transactions on
Aspect-Oriented
Software
Development XI

13

Editors-in-Chief

Shigeru Chiba
The University of Tokyo, Tokyo, Japan
E-mail: chiba@acm.org

Éric Tanter
University of Chile, Santiago, Chile
E-mail: etanter@dcc.uchile.cl

Guest Editors

Eric Bodden
Technical University of Darmstadt, Darmstadt, Germany
E-mail: eric.bodden@ec-spride.de

Shahar Maoz
Tel Aviv University, Tel Aviv, Israel
E-mail: maoz@cs.tau.ac.il

Jörg Kienzle
McGill University, Montreal, Canada
E-mail: joerg.kienzle@mcgill.ca

ISSN 0302-9743 (LNCS) e-ISSN 1611-3349 (LNCS)
ISSN 1864-3027 (TAOSD) e-ISSN 1864-3035 (TAOSD)
ISBN 978-3-642-55098-0 e-ISBN 978-3-642-55099-7
DOI 10.1007/978-3-642-55099-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014936185

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Editorial

Welcome to Volume XI of the Transactions on Aspect-Oriented Software
Development. This volume has two special sections on Runtime Verification and
Analysis and on the Best Papers of AOSD 2013.

The first section, guest edited by Eric Bodden and Shahar Maoz, has two
excellent papers. It highlights runtime verification as a killer application of
aspect-orientation. The second section has five papers and is guest edited by
Jörg Kienzle, who was Program Committee Chair of the Modularity:aosd 2013
conference held in Fukuoka, Japan. Modularity:aosd 2013 (AOSD 2013 in short)
constituted a premier forum for researchers and practitioners to present their
work and discuss technical challenges on advanced software modularity and, in
particular, aspect-oriented software development. Although the conference pro-
ceedings is already a collection of high-quality papers in this area, which are
available from ACM digital library, this special section collects longer versions
of the best papers presented at the conference.

We thank all the guest editors for soliciting submissions, running review
processes, and collecting final versions within such a short period. We are pleased
to publish this special issue in a timely fashion. We also thank the editorial board
members for their continued guidance and input on the policies of the journal,
the reviewers for volunteering a significant amount of time despite their busy
schedules, and the authors who submitted papers to the journal.

February 2014 Shigeru Chiba
Éric Tanter

Editors-in-Chief

Guest Editors’ Foreword

Special Section on Runtime Verification and Analysis

This special section of TAOSD assembles novel contributions that link together
the fields of Aspect-Oriented Software Development and Runtime Verification
and Analysis. For more than a decade, researchers and practitioners have won-
dered about a so-called “killer application” for aspect-oriented programming
(AOP). Runtime verification (RV) has turned out to be one of the most con-
vincing use cases for AOP. Runtime verification tools typically instrument a
program under test with an oracle, defined through a high-level specification
language such as a temporal logic or model-based formalism. Prior to the ad-
vent of AOP, all of those tools resorted to manual program instrumentation, on
source code, bytecode or machine code. This made tools and approaches hard to
understand, compare, compose and prove correct. Since then, the advent of AOP
has radically changed the way in which tools for RV and dynamic analysis are
developed. Nowadays, many tools instrument programs by generating aspects
from domain-specific textual descriptions or visual models, or use a program-
ming model based on AOP concepts. But research results also flow in the other
direction: requirements for RV and dynamic analysis tools have led to novel AOP
language constructs improving the performance, modularity and maintainability
of the analysis code. This special section presents two thoroughly peer-reviewed
papers that give a high-quality example of the synergies that exist between these
important fields of research.

February 2014 Éric Bodden
Shahar Maoz
Guest Editors

Guest Editor’s Foreword

Special Section on the Best Papers of AOSD 2013

This special section of TAOSD gathers revised and extended versions of the best
papers presented at Modularity:aosd 2013, the 12th International Conference
on Modularity and Aspect-Oriented Software Development. The papers were
selected based on their evaluation by the Modularity:aosd 2013 Program Com-
mittee, of which I served as Program Committee Chair. The authors of the top
five papers were invited to submit a revised and extended version of their work.
Each revised paper was evaluated both by a member of the Modularity:aosd
2013 PC and by an external reviewer, in order to ensure that the extensions
were relevant, consistent, substantial and well-integrated. Four articles were ac-
cepted after only one round requesting a minor revision, one paper went through
two rounds of revision. Since two of the papers are co-authored by editors-in-
chief of the journal, all the reviewing was handled exclusively by myself without
involvement of the editors-in-chief.

As a result of the constructive effort of both authors and reviewers, this issue
is a high-quality snapshot of current state-of-the-art research related to modular-
ity, covering topics as varied as formal methods and type systems, static analysis
approaches for software architectures, model-driven engineering and model com-
position, as well as aspect-oriented programming, event-driven programming,
and reactive programming.

February 2014 Jörg Kienzle
Guest Editor

Editorial Board

Mehmet Akşit University of Twente, The Netherlands
Shigeru Chiba The University of Tokyo, Japan
Siobhán Clarke Trinity College Dublin, Ireland
Robert Filman Google, USA
Wouter Joosen Katholieke Universiteit Leuven, Belgium
Shmuel Katz Technion-Israel Institute of Technology, Israel
Gregor Kiczales University of British Columbia, Canada
Gary T. Leavens University of Central Florida, USA
Karl Lieberherr Northeastern University, USA
Mira Mezini Darmstadt University of Technology, Germany
Ana Moreira New University of Lisbon, Portugal
Harold Ossher IBM Research, USA
Klaus Ostermann University of Marburg, Germany
Awais Rashid Lancaster University, UK
Douglas C. Schmidt Vanderbilt University, USA
Mario Südholt Ecole des Mines de Nantes, France

Éric Tanter University of Chile, Chile

Table of Contents

Runtime Verification and Analysis

Run-Time Assertion Checking of Data- and Protocol-Oriented
Properties of Java Programs: An Industrial Case Study 1

Frank S. de Boer, Stijn de Gouw, Einar Broch Johnsen,
Andreas Kohn, and Peter Y.H. Wong

Event Modules: Modularizing Domain-Specific Crosscutting RV
Concerns . 27

Somayeh Malakuti and Mehmet Akşit

Best Papers of AOSD 2013

Method Slots: Supporting Methods, Events, and Advices by a Single
Language Construct . 70

YungYu Zhuang and Shigeru Chiba

Modularity and Dynamic Adaptation of Flexibly Secure Systems:
Model-Driven Adaptive Delegation in Access Control Management 109

Phu H. Nguyen, Gregory Nain, Jacques Klein,
Tejeddine Mouelhi, and Yves Le Traon

Effective Aspects: A Typed Monadic Embedding of Pointcuts
and Advice . 145

Ismael Figueroa, Nicolas Tabareau, and Éric Tanter

Modular Specification and Checking of Structural Dependencies 193
Ralf Mitschke, Michael Eichberg, Mira Mezini,
Alessandro Garcia, and Isela Macia

Towards Reactive Programming for Object-Oriented Applications 227
Guido Salvaneschi and Mira Mezini

Author Index . 263

Run-Time Assertion Checking of Data- and
Protocol-Oriented Properties of Java Programs:

An Industrial Case Study

Frank S. de Boer1,2, Stijn de Gouw1,2,
Einar Broch Johnsen3, Andreas Kohn4, and Peter Y.H. Wong4

1 CWI, Amsterdam, The Netherlands
2 Leiden University, The Netherlands

3 University of Oslo, Norway
4 Fredhopper B.V., Amsterdam, The Netherlands

Abstract. Run-time assertion checking is one of the useful techniques
for detecting faults, and can be applied during any program execu-
tion context, including debugging, testing, and production. In general,
however, it is limited to checking state-based properties. We introduce
SAGA, a general framework that provides a smooth integration of the
specification and the run-time checking of both data- and protocol-
oriented properties of Java classes and interfaces. We evaluate SAGA,
which combines several state-of-the art tools, by conducting an industrial
case study from an eCommerce software company Fredhopper.

1 Introduction

Run-time assertion checking is one of the most useful techniques for detecting
faults, and can be applied during any program execution context, including
debugging, testing, and production [7]. Compared to program logics, run-time
assertion checking emphasizes executable specifications. Assertions in general are
clearly not executable in the sense that one cannot decide whether they hold (in
the presence of unbounded quantification). As a result, for run-time assertion
checking one has to restrict the class of assertions to executable ones. Whereas
program logics are generally applied statically to cover all possible execution
paths, which is in general undecidable, run-time assertion checking is a fully
automated, on-demand validation process which applies to the actual runs of
the program.

By their very nature, assertions are state-based in that they describe proper-
ties of the program variables, e.g. fields of classes and local variables of meth-
ods. In general, assertions as supported for example by the Java programming
language or the Java Modeling Language (JML) [3] cannot be used to specify
the interaction protocol between objects, in contrast to other formalisms such
as message sequence charts and UML sequence diagrams. Consequently, exist-
ing state-of-the-art program logics for Java are not suited for proving protocol

S. Chiba et al. (Eds.): Transactions on AOSD XI, LNCS 8400, pp. 1–26, 2014.
© Springer-Verlag Berlin Heidelberg 2014

2 F.S. de Boer et al.

properties. Moreover state-based assertions cannot be used to specify interfaces
since interfaces do not have a state1.

The main contribution of this paper is twofold. First, we introduce SAGA
(Software trace Analysis using Grammars and Attributes), a run-time checker
that provides a smooth integration of the specification and the run-time check-
ing of both data- and protocol-oriented properties of Java classes and interfaces.
SAGA combines four different components: a state-based assertion checker, a
monitoring tool, a meta-programming tool, and a parser generator. Aspect-
oriented programming is tailored for monitoring, and in contrast to transforma-
tions source of Java code or debugger-based solutions [9] it is designed for high
performance applications and supports the monitoring of precompiled libraries
for which no source code is available. The tool can be used for run-time check-
ing of any Java program, which requires specific support for the main features
listed in Table 1, as discussed in more detail in the following section. Secondly,
we evaluate SAGA by conducting an industrial case study from the eCommerce
software company Fredhopper.

Table 1. Supported features

Constructors
Inheritance
Dynamic Binding
Overloading
Static Methods
Access Modifiers

The basic idea underlying SAGA is the representation of message sequences as
words of a language generated by a grammar. Grammars allow, in a declarative
and highly convenient manner, the description of the protocol structure of the
communication events. However, the question is how to integrate such grammars
with the run-time checking of assertions, and how to describe the data flow of a
message sequence, i.e., the properties of the data communicated. We propose a
formal modeling language for the specification of sequences of messages in terms
of attribute grammars [14]. Attribute grammars allow the high-level specification
of the data-flow of message sequences (e.g., their length) in terms of user-defined
attributes of non-terminals. SAGA supports the run-time checking of assertions
about these attributes (e.g., that the length of a sequence is bounded). This
involves parsing the generated sequences of messages. These sequences them-
selves are recorded by means of a fully automated instrumentation of the given
program by AspectJ2.

1 JML uses model variables for interface specifications. However, a separate represents
clause is needed for a full specification, and such clauses can only be defined once
an implementation has been given (and is not implementation independent).

2 www.eclipse.org/aspectj

www.eclipse.org/aspectj

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 3

2 The Modeling Framework

Abstracting from implementation details (such as field values of objects), an
execution of a Java program can be represented by its global communication his-
tory: the sequence of messages corresponding to the invocation and completion of
(possibly static) methods. Similarly, the execution of a single object can be rep-
resented by its local communication history, which consists of all messages sent
and received by that object. The behavior of a program (or object) can then be
defined as the set of its allowed histories. Whether a history is allowed depends
in general both on data (the contents of the messages, e.g. parameter and return
values of method calls) and protocol (the order between messages). The question
arises how such allowed sets of histories can be defined conveniently. In this sec-
tion we show how attribute grammars provide a powerful and declarative way
to define such sets. We use the interface of the Java BufferedReader (Figure 1)
as a running example to explain the basic modeling concepts. In particular, we
formalize the following property:

The BufferedReader may only be closed by the same object which cre-
ated it, and reads may only occur between the creation and closing of
the BufferedReader.

interface BufferedReader {
void close();
void mark(int readAheadLimit);
boolean markSupported();
int read();
int read(char[] cbuf, int off, int len);
String readLine();
boolean ready();
void reset();
long skip(long n);

}

Fig. 1. Methods of the BufferedReader Interface

As a naive first step one might be tempted to define the behavior of
BufferedReader objects simply in terms of ‘call-m(T)’ and ‘return-m(T)’
messages of all methods ‘m’ in its interface, where the parameter types T are
included to distinguish between overloaded methods (such as read). However,
interfaces in Java contain only signatures of provided methods: methods where
the BufferedReader is the callee. Calls to these methods correspond to mes-
sages received by the object. In general the behavior of objects also depends on
messages sent by that object (i.e., where the object is the caller), and on the par-
ticular constructor (with parameter values) that created the object. Moreover,

4 F.S. de Boer et al.

it is often useful to select a particular subset of method calls or returns, instead
of using calls and returns to all methods (a partial or incomplete specification).
Finally, in referring to messages it is cumbersome to explicitly list the parameter
types. A communication view addresses these issues.

2.1 Communication View

A communication view is a partial mapping which associates a name to each mes-
sage. Partiality makes it possible to filter irrelevant events and message names
are convenient in referring to messages.

Suppose we wish to specify that the BufferedReader may only be closed
by the same object which created it, and that reads may only occur between
the creation and closing of the BufferedReader. This is a property which must
hold for the local history of all instances of java.util.BufferedReader. The
communication view in Figure 2 selects the relevant messages and associates
them with intuitive names: open, read, and close.

local view BReaderView grammar BReader.g
specifies java.util.BufferedReader {
BufferedReader(Reader in) open,
BufferedReader(Reader in, int sz) open,
call void close() close,
call int read() read,
call int read(char[] cbuf, int off, int len) read

}

Fig. 2. Communication view of a BufferedReader

All return messages and call messages methods not listed in the view are fil-
tered. Note how the view identifies two different messages (calls to the overloaded
read methods) by giving them the same name read. Though the above communi-
cation view contains only provided methods (those listed in the BufferedReader
interface), required methods (e.g., methods of other interfaces or classes) are also
supported. Since such messages are sent to objects of a different class (or inter-
face), one must include the appropriate type explicitly in the method signature.
For example consider the following message:

call void C.m() out

If we would additionally include the above message in the communication view,
all call-messages to the method m of class C sent by a BufferedReader would
be selected and named out. In general, incoming messages received by an ob-
ject correspond to calls of provided methods and returns of required methods.
Outgoing messages sent by an object correspond to calls of required methods

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 5

and returns of provided methods. Incoming call-messages of local histories never
involve static methods, as such methods do not have a callee.

Besides normal methods, communication views can contain signatures of con-
structors (i.e., the messages named open in our example view). Incoming calls
to provided constructors raise an interesting question: what would happen if
we select such a message in a local history? At the time of the call, the object
has not even been created yet, so it is unclear which BufferedReader object
receives the message. We therefore only allow return-messages of provided con-
structors (clearly required constructors do not pose the same problem, and con-
sequently we allow selecting both calls and returns to required constructors),
and for convenience omit return. Alternatively one could treat constructors like
static methods, disallowing incoming call-messages to constructors in local his-
tories altogether. However, this makes it impossible to express certain properties
(including the desired property of the BufferedReader) and has no advantages
over the approach we take.

Java programs can distinguish methods of the same name only if their parame-
ter types are different. Communication views are more fine-grained: methods can
be distinguished also based on their return type or their access modifiers (such as
public). For instance, consider a scenario with suggestively named classes Base
and three subclasses Sub1, Sub2, and Sub3, all of which provide a method m. The
return type of m in the Base, Sub1 and Sub2 classes is the class itself (i.e., Sub1
for m provided by Sub1). In the Sub3 class the return type is Sub1. To monitor
calls to m only with return type Sub1, simply include the following event in the
view:

call Sub1 C.m() messagename

Local communication views, such as the one above, selects messages sent
and received by a single object of a particular class, indicated by ‘specifies
java.util.BufferedReader’. In contrast, global communication views select mes-
sages sent and received by any object during the execution of the Java program.
This is useful to specify global properties of a program. In addition to instance
methods, calls and returns of static methods can also be selected in global views.
Figure 3 shows a global view which selects all returns of the method m of the
Ping class or interface or any of its subclasses, and all calls of the Pong class (or
interface) or its subclasses. Note that communication views do not distinguish
instances of the same class (e.g., calls to ‘Ping’ on two different objects of class
‘Ping’ both get mapped to the same terminal ‘ping’). Different instances can be
distinguished in the grammar using the built-in attributes ‘caller’ or ‘callee’.

In contrast to interfaces of the programming language, communication views
can contain constructors, required methods, static methods (in global views)
and can distinguish methods based on return type or method modifiers such as
‘static’, or ‘public’. See Table 1 for a list of supported features.

6 F.S. de Boer et al.

global view PingPong grammar pingpong.g {
return void Ping.m() ping,
call void Pong.m() pong

}

Fig. 3. Global communication view

2.2 Grammars

Context-free grammars provide a convenient way to define the protocol behav-
ior of the allowed histories. The context-free grammar underlying the attribute
grammar in Figure 4 generates the valid histories for BufferedReader, describ-
ing the prefix closure of sequences of the terminals ‘open’, ‘read’, and ‘close’
as given by the regular expression (open read* close). In general, the message
names form the terminal symbols of the grammar, whereas the non-terminal
symbols specify the structure of valid sequences of messages. In our approach, a
communication history is valid if and only if it and all its prefixes are generated
by the grammar.

For a justification of this approach, see the next discussion section. While
context-free grammars provide a convenient way to specify the protocol structure
of the valid histories, they do not take data such as parameters and return values
of method calls and returns into account. Thus the question arises how to specify
the data-flow of the valid histories. To that end, we extend the grammar with
attributes. Each terminal symbol has built-in attributes named caller, callee and
the parameter names for respectively the object identities of the caller, callee and
actual parameters. Terminals corresponding to method returns additionally have
an attribute result containing to the return value. In summary, the (built-in) at-
tributes of terminals are determined from the method signatures. Non-terminals
have user-defined attributes to define data properties of sequences of terminals.
However, the attributes themselves do not alter the language generated by the
attribute grammar, they only define properties of data-flow of the history. We
extend the attribute grammar with assertions to specify properties of attributes.
For example, in the attribute grammar in Figure 4 a user-defined synthesized
attribute ‘c’ for the non-terminal ‘C’ is defined to store the identity of the object
which closed the BufferedReader (and is null if the reader was not closed yet).
Synthesized attributes define the attribute values of the non-terminals on the
left-hand side of each grammar production, thus the ‘c’ attribute is not set in
the productions of the start symbol ‘S’.

The assertion allows only those histories in which the object that opened
(created) the reader is also the object that closed it. Throughout the paper the
start symbol in any grammar is named ‘S’. For clarity, attribute definitions are
written between parentheses ‘(’ and ‘)’ whereas assertions over these attributes
are surrounded by braces ‘{’ and ‘}’.

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 7

S ::= open C1 {assert (open.caller == null || open.caller == C1.c ||
C1.c == null);}

| ε
C ::= read C1 (C.c = C1.c;)

| close S (C.c = close.caller;)
| ε (C.c = null;)

Fig. 4. Attribute Grammar which specifies that ‘read’ may only be called in between
‘open’ and ‘close’, and the reader may only be closed by the object which opened it

Assertions can be placed at any position in a production rule and are evalu-
ated at the position they were written. Note that assertions appearing directly
before a terminal can be seen as a precondition of the terminal, whereas post-
conditions are placed directly after the terminal. This is in fact a generalization
of traditional pre- and post-conditions for methods as used in design-by-contract:
a single terminal ‘call-m’ can appear in multiple productions, each of which is fol-
lowed by a different assertion. Hence different preconditions (or post-conditions)
can be used for the same method, depending on the context (grammar produc-
tion) in which the event corresponding to the method call/return appears.

Attribute grammars in combination with assertions cannot express protocol
that depend on data. Such protocols are common, for instance, the method next
of an Iterator may not be called if directly hasNext was called directly before
and returns false. To express protocols depending on data we consider attribute
grammars enriched by conditional productions [18]. In such grammars, a pro-
duction is chosen only when the given condition (a boolean expression over the
inherited attributes) for that production is true. Hence conditions are evaluated
before any of the symbols in the production are parsed, before synthesized at-
tributes of the non-terminals appearing in the production are set and before
assertions are evaluated. In contrast to assertions, conditions in productions af-
fect the parsing process. The Worker.g grammar in the case study contains a
conditional production for the ‘T’ non-terminal.

2.3 Discussion

We now briefly motivate our choice of attribute grammars extended by assertions
as specifications and discuss its advantages over alternative formalisms.

Instead of context-free grammars, we could have selected push-down automata
to specify protocol properties (formally these have the same expressive power).
Unfortunately push-down automata cannot handle attributes. An extension of
push-down automata with attributes results in a register machine. From a user
perspective, the declarative nature and higher abstraction level of grammars
(compared to the imperative and low-level nature of automata) makes them
much more suitable than automata as a specification language. In fact, a push-
down automaton which recognizes the same language as a given grammar is an
implementation of a parser for that grammar.

8 F.S. de Boer et al.

Both the BufferedReader above and the case study use only regular grammars.
Since regular grammars simplify parsing compared to context-free grammars, the
question arises if we can reasonably restrict to regular grammars. Unfortunately
this rules out many real-life use cases. For instance, the following grammar in
EBNF specifies the valid protocol behavior of a stack:

S ::= (push S pop ?)*

It is well known that the language generated by the above grammar is not
regular, so regular grammars (without attributes) cannot be used to enforce the
safe use of a stack. It is possible to specify the stack using an attribute which
counts the number of pushes and pops:

S ::= S1 push (S.cnt = S1.cnt + 1)
| S1 pop (S.cnt = S1.cnt − 1){assert S.cnt >= 0; }
| ε (S.cnt = 0)

The resulting grammar is clearly less elegant and less readable: essentially it en-
codes (instead of directly expresses, as in the grammar above) a protocol-oriented
property as a data-oriented one. The same problem arises when using regular
grammars to specify programs with recursive methods. Thus, although theoreti-
cally possible, we do not restrict to regular grammars for practical purposes.

Ultimately the goal of run-time checking safety properties is to prevent unsafe
ongoing behavior. To do so, errors must be detected as soon as they occur and
the monitor must immediately terminate the system: it cannot wait until the
program ends to detect errors. In other words, the monitor must decide after
every event whether the current history is still valid. The simplest notion of
a valid history (one which should not generate any error) is that of a word
generated by the grammar. One way of fulfilling the above requirement, assuming
this notion of validity, is to restrict to prefix-closed grammars. Unfortunately, it
is not possible to decide whether a context-free grammar is prefix-closed. The
following lemmas formalize this result:

Lemma 1. Let LM be the set of all accepting computation histories3 of a Turing
Machine M. Then the complement LM is a context-free language.

Proof. See [20].

Lemma 2. It is undecidable whether a context-free language is prefix-closed.

Proof. We show how the halting problem for M (which is undecidable) can be
reduced to deciding prefix-closure of LM . To that end, we distinguish two cases:

1. M does not halt. Then LM is empty so LM is universal and hence prefix-
closed.

3 A computation history of a Turing Machine is a sequence C0#C1#C2# . . . of con-
figurations Ci. Each configuration is a triple consisting of the current tape contents,
state and position of the read/write head. Due to a technicality, the configurations
with an odd index must actually be encoded in reverse.

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 9

2. M halts. Then there is an accepting history h ∈ LM (and h /∈ LM). Extend
h with an illegal move (one not permitted by M) to the configuration C,
resulting in the history h#C. Clearly h#C is not a valid accepting history,
so h#C ∈ LM . But since h /∈ LM , LM is not prefix-closed.

Summarizing, M halts if and only if LM is not prefix-closed. Thus if we could
decide prefix-closure of the context-free language (lemma 1) LM , we could decide
whether M halts.

Since prefix-closure is not a decidable property of grammars (not even if they
don’t contain attributes) we propose the following alternative definition for the
valid histories. A communication history is valid if and only if it and all its
prefixes are generated by the grammar. Note that this new definition naturally
fulfills the above requirement of detecing errors after every event. And further-
more, this notion of validity is decidable assuming the assertions used in the
grammar are decidable. As an example of this new notion of validity, consider
the following modification of the above grammar:

T ::= S {assert S.cnt >= 0; }
S ::= S1 push (S.cnt = S1.cnt + 1)

| S1 pop (S.cnt = S1.cnt − 1)
| ε (S.cnt = 0)

Note that the history push pop is a word generated by this grammar, but not its
prefix pop, which as such will generate an error (as required). Note that thus in
general invalid histories are guaranteed to generate errors. On the other hand,
if a history generates an error all its extensions are therefore also invalid.

Observe that our approach monitors only safety properties (‘prevent bad be-
havior’), not liveness (‘something good eventually happens’). This restriction is
not specific to our approach: liveness properties in general cannot be rejected
on any finite prefix of an execution, and monitoring only checks finite prefixes
for violations of the specification. Most liveness properties fall in the class of
the non-monitorable properties [2, 19]. However it is possible to ensure liveness
properties for terminating programs: they can then be reformulated as safety
properties. For instance, suppose we want to guarantee that a method void m()
is called before the program ends. Introduce the following global view:

global view livenessM {
call void C.m() m,
return static void C.main(String[]) main

}

The occurence of the ‘main’ event (i.e., a return of the main method of the
program) signifies the program is about to terminate. Define the EBNF grammar
S ::= ε | m | m+ main

10 F.S. de Boer et al.

(where ’+’ stands for one or more repetitions). This grammar achieves the desired
effect since the only terminating executions allowed are those containing m. In
local views a similar effect is obtained by including the method finalize instead
of main.

3 Tool Architecture

In this section we describe the tool architecture of the run-time assertion checker.
The checker integrates four different components: a state-based assertion checker,
a parser generator, a monitoring tool, and a general tool for meta-programming.
These components are traditionally used for very diverse purposes and normally
do not need to interact with each other. We investigate requirements needed
to achieve a seamless integration, motivated by describing the workflow of the
run-time checker. Finally, we instantiate the components with actual tools and
evaluate them.

3.1 Workflow

A user starts executing a Java class with a main statement. Suppose that during
execution, a method listed in a communication view is called. The history should
be updated to reflect the addition of the method call. Thus the question arises
how to represent the history. A meta-program generates for each message in
the communication view a class (subsequently called ‘token classes’) containing
the following fields: the object identitities of the caller and callee, the actual
parameter values, and for return messages additionally a field result to store
the return value. The history can then be represented as a Java List of instances
of token classes.

Next, the monitoring tool should update the history whenever a call or
return listed in a view occurs. Thus the monitoring tool should be capable of ex-
ecuting user-defined code directly before method calls and directly after method
returns. Moreover, it must be able to read the identity of the callee, caller, and
parameters/return-value.

After the history is updated the SAGA must decide whether it still satisfies
the specification (the attribute grammar). Observe that a communication history
can be seen as a sequence of tokens (in our setting: communication events). Since
the attribute grammar together with the assertions generate the language of
all valid histories, checking whether a history satisfies the specification reduces
to deciding whether the history can be parsed by a parser for the attribute
grammar, where moreover during parsing the assertions must evaluate to true.

Therefore the parser generator creates a parser for the given attribute gram-
mar. Since the history is a list of token class objects, the parser must support
parsing streams of user-defined token types. As the (user-defined) attributes
of non-terminals in the grammar are defined in terms of built-in attributes of
terminals (recall those are for example, actual parameter values), and clearly
the built-in attributes are Java objects, the user-defined attributes must also be

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 11

Java objects. Consequently the target language for the parser generator must
be Java, and it must support executing user-defined Java code to define the
attribute value in rule actions. The use of Java code to define attribute values
ensures they are computable. Furthermore, assertions are allowed in-between
any two (non)-terminals, thus the parser generator should support user-defined
actions between arbitrary grammar symbols. Once the parser is generated, it is
triggered whenever the history of an object is updated.

During parsing, the state-based assertion checker proceeds to evaluate the
assertions in the grammar on the newly computed attribute values. The result is
either a parse or assertion error, which indicates that the current communication
history has violated the specification in the attribute grammar, or a parse tree
with new attribute values.

3.2 Implementation

In this section we instantiate each of the four different components (meta-
programming, monitoring tool, parser generator, and state-based run-time as-
sertion checker) with a state-of-the art tool. We report on our experiences with
the particular tools and discuss the extent to which the previously formulated
requirements are fulfilled.

Rascal [13] is a powerful tool-supported meta-programming language tailored
for program analysis, program transformation, and code generation. We have
written a Rascal program of approximately 600 lines in total which generates the
token class for each message in the view, and generates glue code to trigger the
AspectJ and parser at the appropriate times. Overall our experience with Rascal
was quite positive: its powerful parsing, pattern matching, and transforming
concrete syntax features were indispensable in the implementation of SAGA.

As the parser generator we tested ANTLR [17], a state-of-the-art parser gen-
erator. It generates fast recursive descent parsers for Java, has direct support
for both synthesized and inherited attributes, it supports grammars in EBNF
form and most importantly allows a custom stream of token classes. It even sup-
ports conditional productions: such productions are only taken during parsing
whenever an associated Boolean expression (the condition) is true. Attribute
grammars with conditional productions express protocols that depend on data,
and typically are not context-free. The worst-case time complexity any parser
ANTLR generates is quadratic in the number of tokens to parse. The main draw-
backs of ANTLR are that it can only handle LL(*) grammars4, and its lack of
support for incremental parsing, though support for incremental is planned by
the ANTLR developers. An incremental parser computes a parse tree for the
new history based on the parse trees for prefixes of the history. In our setting,
since the attribute grammar specifies invariant properties of the ongoing behav-
ior, a new parse tree is computed after each call/return, hence parse trees for
all prefixes of the current history can be exploited for incremental parsing [11].
4 A strict subset of the context-free grammars. Left-recursive grammars are not LL(*).

A precise definition can be found in [17].

12 F.S. de Boer et al.

We have not been able to find any Java parser generator which supported general
context-free grammars and incremental parsing of attribute grammars.

We have tested two state-based assertion languages: standard Java assertions
and the Java Modeling Language (JML). Both languages suffice for our pur-
poses. JML is far more expressive than the standard Java assertions, though
its tool support is not ready for industrial usage. In particular, the last stable
version of the JML run-time assertion checker dates back over 8 years, when
for example generics were not supported yet. The main reason is that JML’s
run-time assertion checker only works with a proprietary implementation of the
Java compiler, and unsurprisingly it is costly to update the propietary compiler
each time the standard compiler is updated. This problem is recognized by the
JML developers [4]. OpenJML5, a new pre-alpha version of the JML run-time
assertion checker integrates into the standard Java compiler, and initial tests
with it provided many valuable input for real industrial size applications. See
the Sourceforge tracker for the kind of issues we have encountered when using
OpenJML.

Fig. 5. SAGA Tool Architecture

Aspects. AspectJ is tailored for monitoring. It can intercept method calls and
returns conveniently with pointcuts, and weave in user-defined code (advices)
which is executed before or after the intercepted call. In our case the pointcuts
correspond to the calls and returns of the messages listed in the communication
view. The advice consists of code which updates the history. The code for the
aspect is generated from the communication view automatically by the Rascal
5 jmlspecs.sourceforge.net

jmlspecs.sourceforge.net

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 13

meta-program. Advice is woven into Java source code, byte code, or at class
load-time fully automatically by AspectJ. We use the inter-type declarations of
AspectJ to store the local history of an object as a field in the object itself.
This ensures that whenever the object goes out of scope, so does its history
and consequently reduces memory usage. Clearly the same does not hold for
global histories, which are stored inside a separate Aspect class. Figure 6 shows
a generated aspect. The second and third lines specify the relevant method. The
fourth line binds variables (‘clr’, ‘cle’, ...) to the appropriate objects. The fifth
line ensures that the aspect is applied only when Java assertions are turned on.
Assertions can be turned on or off for each communication view individually.
The fifth line contains the advice that updates the history. Note that since the
event came was defined in a local view, the history is treated as a field of the
callee (and will not persist in the program indefinitely but rather is garbage
collected as soon as callee object itself is).

/∗ call int read(char[] cbuf, int off, int len); ∗/
before(Object clr, BufferedReader cle, char[] cbuf, int off, in len):
(call(int *.read(char[], int, int))
&& this(clr) && target(cle) && args(cbuf, off, len)
&& if(BReaderHistoryAspect.class.desiredAssertionStatus())) {
cle.h.update(new call_push(clr, cle, cbuf, off, len));

}

Fig. 6. Aspect for the event ‘call int read(char[] cbuf, int off, int len)’

We have investigated two alternatives for the monitoring component not based
on aspect-oriented programming: Rascal and Sun’s implementation of the Java
Debugging Interface. With Rascal one can weave advice by defining a transfor-
mation on the actual Java source code of the program to test. This requires
a full Java grammar (which must be kept in sync with the latest updates to
Java). To capture the identity of the callee, parameter values and return value
of a method, one only needs to transform that particular method (i.e., locally).
But inside the method there is no way to access the identity of the caller. Java
does offer facilities to inspect stack frames, but these frames contain only static
entities, such as the name of the method which called the currently executing
method, or the type of the caller, but not the caller itself. To capture the caller,
a global transformation at all call-sites is needed (and in particular one needs to
have access to the source code of all clients which call the method). The same
problem arises in monitoring calls to required methods. Finally, it proved to
quickly get very complex to handle all Java features. We wrote an initial ver-
sion of a weaver in Rascal which already took over 150 lines (over half of the
full checker at the time) without supporting method calls appearing inside ex-
pressions, inheritance and dynamic binding. This approach is also unsuitable for

14 F.S. de Boer et al.

black-box testing where only byte code is available (limiting the applicability of
the tool). In summary, it is possible to implement monitoring by defining a code
transformation in Rascal, but this rules out black-box testing and quickly gets
complex due to the need for a full (up to date) Java grammar and the complexity
of the full Java language.

The Sun debugger is part of the standard Java Development Kit, hence main-
tenance of the debugger is practically guaranteed. The debugger starts the origi-
nal user program in a separate virtual machine which is monitored for occurences
of MethodEntryEvent (method calls) and MethodExitEvent (method returns).
Whenever such an event occurs the debugger can execute an event handler. How-
ever accessing the values of the parameters and return value of events is difficult,
one has to use low-level StackFrames. As a major disadvantage, we found that
the debugger is very slow (an order of magnitude slower than AspectJ), in fact it
was responsible for the majority of the overhead of the run-time checker. Finally,
in contrast to AspectJ it not possible to add fields to objects, thus local histories
never go out of scope, even if the object itself is already long destroyed.

In summary, the use of aspect-oriented programming greatly improved per-
formance compared to the debugger-based solution and was much simpler than
implementing our own weaver with code transformations, especially to handle
intricate language features.

4 Case Study

Fredhopper provides the Fredhopper Access Server (FAS). It is a distributed
concurrent object-oriented system that provides search and merchandising ser-
vices to eCommerce companies. Briefly, FAS provides to its clients structured
search capabilities within the client’s data. Each FAS installation is deployed to
a customer according to the FAS deployment architecture (See Figure 7).

FAS consists of a set of live environments and a single staging environment. A
live environment processes queries from client web applications via web services.
FAS aims at providing a constant query capacity to client-side web applications.
A staging environment is responsible for receiving data updates in XML for-
mat, indexing the XML, and distributing the resulting indices across all live
environments according to the Replication Protocol. The Replication Protocol is
implemented by the Replication System. The Replication System consists of a
SyncServer at the staging environment and one SyncClient for each live envi-
ronment. The SyncServer determines the schedule of replication, as well as its
content, while SyncClient receives data and configuration updates according to
the schedule.

Replication Protocol
The SyncServer communicates to SyncClients by creating Worker objects. Work-
ers serve as the interface to the server-side of the Replication Protocol. On the
other hand, SyncClients schedule and create ClientJob objects to handle commu-
nications to the client-side of the Replication Protocol. When transferring data

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 15

Live
Environment

Live
Environment

Data and Config
Updates

Configurations
changes

Staging
Environment

Data
Manager

Internet
...

Client-side
Web App

Client-side
Web App

Client-side
Web App

Data updates Live
Environment... Load

balancer

Fig. 7. An example FAS deployment

between the staging and the live environments, it is important that the data re-
mains immutable. To ensure immutability without interfering the read and write
accesses of the staging environment’s underlying file system, the SyncServer cre-
ates a Snapshot object that encapsulates a snapshot of the necessary part of
the staging environment’s file system, and periodically refreshes it against the
file system. This ensures that data remains immutable until it is deemed safe
to modify it. The SyncServer uses a Coordinator object to determine the safe
state in which the Snapshot can be refreshed. Figure 8 shows a UML sequence
diagram concerning parts of the replication protocol with the interaction be-
tween a SyncClient, a ClientJob, a Worker, a SyncServer, a Coordinator, and a
Snapshot. The diagram also shows a Util class that provides static methods for
writing to and reading from Stream. The figure assumes that SyncClient has al-
ready established connection with a SyncServer and shows how a ClientJob from
the SyncClient and a Worker from a SyncServer are instantiated for interaction.
For the purpose of this paper we consider this part of the Replication Protocol
as a replication session.

4.1 Specification

In this section we show how to modularly decompose object interaction behavior
depicted by the UML sequence diagram in Figure 8 using SAGA. Figure 9 shows
the corresponding interfaces and classes, note that we do not consider SyncClient
as our interest is in object interactions of a replication session, that is after
ClientJob.start() has been invoked.

16 F.S. de Boer et al.

Fig. 8. Replication interaction

The protocol descriptions and specifications considered in this case study
have been obtained by manually examining the behavior of the existing imple-
mentation, by formalizing available informal documentations, and by consulting
existing developers on intended behavior. Here we first provide such informal
descriptions of the relevant object interactions:

– Snapshot: at the initialization of the Replication System, refresh should be
called first to refresh the snapshot. Subsequently the invocations of methods
refresh and clear should alternate.

– Coordinator: neither of methods start and finish may be invoked twice in
a row with the same argument, and method start must be invoked before
finish with the same argument can be invoked.

– Worker: establish must be called first. Furthermore, reg may be called if
the input argument of establish is not “LIST” but the name of a specific
replication schedule, and that reg must take that name as an input argu-
ment. When the reg method is invoked and before the method returns, the
Worker must obtain the replication items for that specific replication sched-
ule via method items of the Snapshot object. The Snapshot object must be
obtained via method snapshot of its SyncServer, which must be obtained
via the method server. It must notify the name of each replication item to

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 17

interface Snapshot {
void refresh();
void clear();
List<Item> items(String sn);
}

interface Worker {
void establish(String sn);
List<Item> reg(String sn);
void transfer(Item item);
SyncServer server();
}

interface SyncServer {
Snapshot snapshot();
}

interface Coordinator {
void start(Worker t);
void finish(Worker t);
}

class Util {
static void write(String s) { .. }
}

Fig. 9. Interfaces of Replication System

its interacting SyncClient. This notification behavior is implemented by the
static method write of the class Util. The method reg also checks for the
validity of each replication item and so the method must return a subset of
the items provided by the method items. Finally transfer may be invoked
after reg, one or more times, each time with a unique replication item, of
type Item, from the list of replication items, of type List<Item>, returned
from reg.

Figure 10 specifies communication views. They provide partial mappings from
message types (method calls and returns) that are local to individual objects to
grammar terminal symbols. Note that the specification of the Worker’s behavior
is modularly captured by two views: WorkerHistory and WorkerRegHistory.
The view WorkerHistory exposes methods establish, reg, and transfer. Us-
ing this view we would like to capture the overall valid interaction in which
Worker is the callee of methods, and at the same time the view helps ab-
stracting away the implementation detail of individual methods. The view
WorkerRegHistory, on the other hand, captures the behavior inside reg. Ac-
cording to the informal description above, the view projects incoming method
calls and returns of reg, outgoing method calls to server and items, as well as
the outgoing static method calls to write.

We now define the abstract behavior of the communication views, that
is, the set of allowable sequences of interactions of objects restricted
to those method calls and returns mapped in the views. Each local
view also defines the file containing the attribute grammar, whose termi-
nal symbols the view maps method invocations and returns to. Specifi-
cally, Figure 11 shows the attribute grammars Snapshot.g, Coordinator.g,
Worker.g and WorkerReg.g for views SnapshotHistory, CoordinatorHistory,
WorkerHistory and WorkerRegHistory respectively.

18 F.S. de Boer et al.

local view SnapshotHistory
grammar Snapshot.g
specifies Snapshot {
call void refresh() rf,
call void clear() cl
}

local view CoordinatorHistory
grammar Coordinator.g
specifies Coordinator {
call void start(Worker t) st,
call void finish(Worker t) fn
}

local view WorkerHistory grammar Worker.g
specifies Worker {
call void establish(String sn) et,
call List<Item> reg(String sn) rg,
return List<Item> reg(String sn) is,
call void transfer(Item item) tr
}

local view WorkerRegHistory grammar WorkerReg.g
specifies Worker {
call List<Item> reg(String sn) rg,
return List<Item> reg(String sn) is,
return Snapshot SyncServer.snapshot() sp,
call List<Item> Snapshot.items(String sn) ls,
return List<Item Snapshot.items(String sn) li,
call static void Util.write(String s) wr
}

Fig. 10. Communication Views

The simplest grammar Snapshot.g specifies the interaction protocol of Snap-
shot. It focuses on invocations of methods refresh and clear per Snapshot ob-
ject. The grammar essentially specifies the regular expression (refresh clear)∗.

The grammar Coordinator.g specifies the interaction protocol of Coordina-
tor. It focuses on invocations of methods start and finish, both of which take
a Worker object as the input parameter. These method calls are mapped to ter-
minal symbols st and fn, while their inherited attribute is a HashSet, recording
the input parameters, thereby enforcing that for each unique Worker object as
an input parameter only the set of sequences of method invocations defined by
the reqular expression (start finish)∗ is allowed.

The grammar Worker.g specifies the interaction protocol of Worker It focuses
on invocations and returns of methods establish, reg and transfer. The gram-
mar specifies that for each Worker object, establish must be first invoked, then
followed by reg, and then zero or more transfer, that is, the regular expression
(establish reg transfer∗). We use the attribute definition of the grammar
to ensure the following:

– The input argument of establish and reg must be the same;
– reg can only be invoked if the input argument of establish is not “LIST”;

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 19

S ::= ε | rf T
T ::= ε | cl S

(a) Snapshot.g

S ::= T (T.ts = new HashSet();)
T ::= ε | st {assert ! T.ts.contains(st.t);}

(T.ts.add(st.t);) T1 (T1.ts = T.ts;)
| fn {assert T.ts.contains(fn.t);}

(T.ts.remove(fn.t);) T1 (T1.ts = T.ts;)
(b) Coordinator.g

S ::= ε | et T (T.d = et.sn;)
T ::= ε | {!"LIST".equals(T.d);}? rg {assert rg.sn.equals(T.d);} U
U ::= ε | is V (V .m = new ArrayDeque(is.result);)
V ::= ε | tr {assert V .m.peek().equals(tr.item);}

(V .m.pop();) V1 (V1.m = V .m;)
(c) Worker.g

/*S accepts call to Worker.reg() and, records */
/*the input schedule name, also S allows */
/*arbitary calls to SyncServer.snapshot() and Util.write() */
S ::= ε | wr S | sp S | rg T (T.d = et.sn;)

/*T accepts and stores the return */
/*snapshot object from SyncServer.snapshot() */
T ::= ε | sp V (V .d = T.d; U.s = sp.result;)

/*U ensures call items() is called on the same snapshot object */
/*U ensures the replication items for the correct schedule */
/*are retrieved */
U ::= ε | ls {assert ls.callee.equals(U.s);

assert ls.sn.equals(U.d);} V (V .s = U.s;)

/*V records replication items and their name returned from item() */
V ::= ε | li W (W.is = new HashSet(li.result);

W.ns = new HashSet();
for (Item i :W.is) { W.ns.add(i.name()); })

/*W ensures all replication items are processed */
W ::= ε | wr (W.ns.remove(wr.s);) W1 (W1.ns =W.ns; W1.is =W.is;)

| is {assert W.is.containsAll(is.result);
assert W.ns.isEmpty();} X

X ::= ε | sp X | rg X

(d) WorkerReg.g

Fig. 11. Attribute Grammars

20 F.S. de Boer et al.

– The return value of reg is a list of Item objects such that transfer is invoked
with each of Item in that list from position 0 to the size of that list.

The grammar WorkerReg.g specifies the behavior of the method reg
of Worker. It focuses on the invocations and returns of method reg of
Worker as well as the outgoing method calls and returns of Util.write and
SyncServer.snapshot and Snapshot.items. At the protocol level the grammar
specifies the regular expression (snapshot items write∗) inside the invocation
method reg. We use attribute definition to ensure the following:

– Snapshot.items must be called with the input argument of reg and it must
be called on the Snapshot object that is identical to the return value of
SyncServer.snapshot;

– The static method Util.write must be invoked with the value of Item.name
for each Item object in the Collection returned from Snapshot.items;

– The returned list of Item objects from reg must be a subset of that returned
from Snapshot.items.

Notice that methods Util.write and SyncServer.snapshot may be invoked
outside of the method reg. However, this particular behavioral property does
not specify the protocol for those invocations. The grammar therefore abstracts
from these invocations by allowing any number of calls to Util.write and
SyncServer.snapshot before and after reg.

4.2 Experiment

We applied SAGA to the Replication System. The current Java implementation
of FAS has over 150,000 lines of code, and the Replication System has approxi-
mately 6400 lines of code, 44 classes, and 5 interfaces.

We have successfully integrated the SAGA into the quality assurance process
at Fredhopper. The quality assurance process includes automated testing that
includes automated unit, integration, and system tests as well as manual accep-
tance tests. In particular system tests are executed twice a day on instances of
FAS on a server farm. Two types of system tests are scenario and functional
testing. Scenario testing executes a set of programs that emulate a user and
interact with the system in predefined sequences of steps (scenarios). At each
step they perform a configuration change or a query to FAS, make assertions
about the response from the query, etc. Functional testing executes sequences of
queries, where each query-response pair is used to decide on the next query and
the assertion to make about the response. Both types of tests require a running
FAS instance and as a result we may leverage SAGA by augmenting these two
automated test facilities with run-time assertion checking using SAGA.

To integrate of SAGA with the system tests, we employ Apache Maven tool6,
an open source Java-based tool for managing dependencies between applications
and for building dependency artifacts. Maven consists of a project object model
6 maven.apache.org

maven.apache.org

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 21

(a) Violating histories

class WKImpl extends Thread
implements Worker {
final Coordinator c;
WKImpl(Coordinator c) {
this.c = c; }

public void run() {
try { .. c.start(this); ..
} finally {
c.finish(this); .. }}}

(b) WKImpl

Fig. 12. Incorrect behavior

(POM), a set of standards, a project lifecycle, and an extensible dependency
management and build system via plug-ins. We use its build system to auto-
matically generate and package the parser/lexer of attribute grammars as well
as aspects from views and grammars. We expose the packaged aspects, parser,
and lexer to FAS instance on the server farm and employ Aspectj using load-
time weaver for monitoring method calls/returns during the execution of FAS
instances on the server farm. Table 2 shows the number of join point matches
during the execution of 766 replication sessions over live client data. Figure 13
shows the exection time of the 766 replication sessions with and without the
integration of SAGA in milliseconds. Despite the fact that we cannot control
the exact flow of control of the replication sessions (due to dependence on user
input), the graph clearly shows that the integration of SAGA has minimal per-
formance impact on the execution time.

Table 2. Join point matches in 766 replication sessions

Join point Terminal Match
call static write wr 247446
return snapshot sp 3061
call transferItem tr 1101
return reg (WorkerHistory) is 765
return reg (WorkerRegHistory) is 765
call establish et 766
call reg (WorkerHistory) rg 765
call reg (WorkerRegHistory) rg 765
return items li 765
call start st 766
call finish fn 766
call items ls 765
call refresh rf 766
call clear cl 766

22 F.S. de Boer et al.

15000

20000

25000

30000

With SAGA

Without SAGA

0

5000

10000

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

52
1

54
1

56
1

58
1

60
1

62
1

64
1

66
1

68
1

70
1

72
1

74
1

76
1

Fig. 13. Comparison of the execution time (milliseconds) of the replication sessions
with and without the integration of SAGA

During this session we have found an assertion error at join point call finish
due to the condition T.ts.contains(fn.t) not being satisfied at non-terminal
T of the grammar Coordinator.g. Specifically, the implementation of Worker
(WKImpl) that invoke finish before start. Figure 12(a) shows the sequence di-
agram automatically generated from the output of SAGA on the invalid histories
causing the assertion error. Figure 12(b) shows part of the implementation of
WKImpl. It turns out that in the run method of WKImpl, the method start is
invoked inside a try block while the method finish is invoked in the correspond-
ing finally block. As a result when there is an exception being thrown by the
execution preceding the invocation of start inside the try block, for example a
network disruption, finish would be invoked without start being invoked.

5 Conclusion

We developed SAGA, a run-time checker which fully automatically checks
properties of both the protocol behavior and data-flow of message sequences
in a declarative manner. We identified the different components of SAGA and
evaluated SAGA on an industrial case study of the eCommerce company Fred-
hopper. The results of this case study show the feasability of our method for
run-time verification in industrial practice (it has already led to the integration
of SAGA into the software lifecycle at Fredhopper), in contrast to methods for
static verification which require both an in-depth knowledge of the case study
and the underlying theorem prover. A beta version of SAGA can be found on
http://www.cwi.nl/~cdegouw.

Related Work. A preliminary version of a prototype of our tool containing some
of the basic underlying ideas was presented at the workshop Formal Techniques

http://www.cwi.nl/~cdegouw

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 23

for Java-Like Programs 2010 and appeared in its informal proceedings7. In the
current paper we apply and evaluate a new version to an industrial case study
and succesfully integrate SAGA into the quality assurance process of Fredhopper.
Based on this application and evaluation we extended our framework to support
a more general class of grammars to specify data-dependent protocol behavior.
Furthermore, The new version features a tighter integration of attribute grammars
and assertions. Finally the support for the features listed in Table 1 is new.

There exist many other interesting approaches to monitoring message se-
quences, none of which address their integration with the general context of
run-time assertion checking. Consequently, all the other approaches only allow
a combination of a very restricted class of data-oriented properties and protocol
properties. For example, Martin et al. [15] introduce a Program Query Language
(PQL) for detecting errors in sequences of communication events. PQL was up-
dated last in 2006 and does not support user-defined properties of data. Allan
et al. [1] develop an extension of AspectJ with a history-based language fea-
ture called Tracematches that enables the programmer to trigger the execution
of extra code by specifying a regular pattern of events in a computation trace.
The underlying pattern matching involves a binding of values to free variables.
Nobakht et al. [16] monitors calls and returns with the same Java Debugger
Architecture we have also evaluated in the implementation section. The debug-
ger is very slow compared to aspect-oriented approaches. Their specification
language is equivalent in expressive power to regular expressions. Because the
grammar for the specifications is fixed, the user cannot specify a convenient
structure themselves, and data is not considered. Chen et al. [5] present Java-
MOP, a run-time monitoring tool based on aspect-oriented programming which
uses context-free grammars to describe properties of the control flow of histories.
However, properties on the data-flow are predefined built-in functions (basically
AspectJ functions such as a ‘target’ to bind the callee and ‘this’ to bind the
caller, comparable to built-in attributes of terminals in our setting). This limits
the expression of data properties. Though, to circumvent this limitation one may
hack general properties into the tool implementation. In contrast, our approach
supports a general methodology to introduce systematically user-defined prop-
erties, by means of attributes of non-terminals. Furthermore, SAGA supports
conditional productions which are essential to specify protocols dependent on
data in a declarative manner. Finally, JavaMOP does not directly support the
specification of local histories (i.e., monitoring the messages sent and received
by a single object). LARVA is developed by Colombo et al. [8]. The specification
language has an imperative flavor: users define a finite state machine to define
the allowed history (i.e., one has to ‘implement’ a regular expression themselves).
It is not possible to directly express context-free protocols. Data properties are
supported, though in a limited manner, by enriching the state machine with con-
ditions on method parameters or return values. It is not possible to specify a local

7 Available in the ACM Digital Library with the title "Prototyping a tool environment
for run-time assertion checking in JML with communication histories", authored by
Frank S. de Boer, Stijn de Gouw and Jurgen Vinju

24 F.S. de Boer et al.

history of a single object. DeLine and Fähndrich [10] propose a statically check-
able typestate system for object-oriented programs. Typestate specifications of
protocols correspond to finite state machines (assertions are not considered in
their approach), thus for example a stack cannot be properly specified.

To the best of our knowledge, no other approach integrates protocol-oriented
properties into existing state-based assertion languages. The integration does not
involve an extension of the syntax and semantics of the assertion language itself.
As an important consequence, no change in the implementation of the state-
based assertion checker is needed, in contrast to the following works. Cheon and
Perumandla present in [6] an extension of the JML compiler with call sequence
assertions. Call sequence assertions are regular expressions (proper context-free
grammars cannot be handled) over method names and the data sent in calls
and returns is not considered. Protocol properties (call sequence assertions) are
handled separately from data properties, and as such are not integrated into the
general context of (data) assertions. The proposed extension to call sequence
assertions involves changing the existing JML-compiler (in particular, both the
syntax and the semantics of JML assertions are extended), whereas in our test
suite integrating with JML consists only of a simple pre-processing stage. Con-
sequently in our approach no change in the JML-compiler is needed, and new
versions of the JML-compiler are supported automatically, as long as they are
backwards compatible. Hurlin [12] presents an extension of the previous work to
handle multi-threading, which however is not supported by run-time verification
(instead it discusses static verification). As in the previous work, an integration
of protocol properties with assertions is not considered. Trentelman and Huis-
man [21] describe a new formalism extending JML assertions with Temporal
Logic operators. A translation for a subset of the Temporal Logic formulae back
to standard JML is described, and as future work they intend to integrate their
extension into the standard JML-grammar which requires a corresponding new
compiler.

Future Work. SAGA visualizes the offending history of a Java program that
violates the given attribute grammar in the form of a UML sequence diagram.
For industrial applications the histories (and consequently the corresponding
diagram) can get very large, even when projecting away irrelevant events with
the communication view. In such cases we found it is very useful to (further)
filter events from the diagram, focussing on a specific part of the diagram. For
instance, only showing all events in which a particular object was involved. The
sequence diagram editor used by SAGA provides preliminary support for filtering
using low-level UNIX system-based utilities grep and sed, but more high-level
solutions specifically tailored for sequence diagrams would be even more useful.
Furthermore, for debug purposes it would be convenient to visualize the current
contents of the heap.

Another line of future work concerns offline monitoring. Offline monitoring
serializes and stores the history of a running program in a file. This file is checked
later for correctness, possibly on a different computer. This allows companies to
enable monitoring production code deployed at clients with little performance

Run-Time Assertion Checking of Data- and Protocol-Oriented Properties 25

penalty: the histories can be checked on dedicated computers at the company
instead of at the client. A potential disadvantage of off line monitoring is that
it is not possible anymore to stop a running system directly after the attribute
grammar is violated (or inspect the content of the heap at that time).

Acknowledgements. We wish to express our gratitude to Behrooz Nobakht
for his help on the integration with the Java debugger and Jurgen Vinju for the
helpful discussions and major contributions to our Rascal tool.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L.J., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to aspectj. In: OOPSLA, pp. 345–364 (2005)

2. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010)

3. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. International Journal
on Software Tools for Technology Transfer 7(3), 212–232 (2005)

4. Chalin, P., James, P.R., Karabotsos, G.: JML4: Towards an industrial grade IVE
for java and next generation research platform for JML. In: Shankar, N., Woodcock,
J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 70–83. Springer, Heidelberg (2008)

5. Chen, F., Rosu, G.: MOP: an efficient and generic runtime verification framework.
In: OOPSLA, pp. 569–588 (2007)

6. Cheon, Y., Perumandla, A.: Specifying and checking method call sequences of java
programs. Software Quality Journal 15(1), 7–25 (2007)

7. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion check-
ing in software development. ACM SIGSOFT Software Engineering Notes 31(3),
25–37 (2006)

8. Colombo, C., Pace, G.J., Schneider, G.: Larva — safer monitoring of real-time Java
programs (tool paper). In: SEFM, pp. 33–37 (2009)

9. de Boer, F.S., de Gouw, S.: Run-time verification of black-box components
using behavioral specifications: An experience report on tool development. In:
Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 128–133.
Springer, Heidelberg (2013)

10. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004)

11. Hedin, G.: Incremental attribute evaluation with side-effects. In: Hammer, D. (ed.)
CCHSC 1988. LNCS, vol. 371, pp. 175–189. Springer, Heidelberg (1989)

12. Hurlin, C.: Specifying and checking protocols of multithreaded classes. In: ACM
Symposium on Applied Computing (SAC 2009), pp. 587–592. ACM Press (2009)

13. Klint, P., van der Storm, T., Vinju, J.: Rascal: a domain specific language for
source code analysis and manipulation. In: Walenstein, A., Schupp, S. (eds.) Pro-
ceedings of the IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM 2009), pp. 168–177 (2009)

14. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems The-
ory 2(2), 127–145 (1968)

26 F.S. de Boer et al.

15. Martin, M., Livshits, B., Lam, M.S.: Finding application errors and security flaws
using PQL: a program query language. In: OOPLSLA (2005)

16. Nobakht, B., Bonsangue, M.M., de Boer, F.S., de Gouw, S.: Monitoring method
call sequences using annotations. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010.
LNCS, vol. 6921, pp. 53–70. Springer, Heidelberg (2012)

17. Parr, T.: The Definitive ANTLR Reference. Pragmatic Bookshelf (2007)
18. Parr, T.J., Quong, R.W.: Adding semantic and syntactic predicates to LL(k): pred-

LL(k). In: Fritzson, P.A. (ed.) CC 1994. LNCS, vol. 786, pp. 263–277. Springer,
Heidelberg (1994)

19. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
FM, pp. 573–586 (2006)

20. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company
(1997)

21. Trentelman, K., Huisman, M.: Extending JML specifications with temporal logic.
In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 334–348.
Springer, Heidelberg (2002)

Event Modules

Modularizing Domain-Specific Crosscutting RV Concerns

Somayeh Malakuti1 and Mehmet Akşit2

1 Software Technology Group, Technical University of Dresden, Germany
somayeh.malakuti@tu-dresden.de

2 Software Engineering Group, University of Twente, The Netherlands
m.aksit@utwente.nl

Abstract. Runtime verification (RV) facilitates detecting the failures of
software during its execution. Due to the complexity of RV techniques,
there is an increasing interest in achieving abstractness, modularity, and
compose-ability in their implementations by means of dedicated linguis-
tic mechanisms. This paper defines a design space to evaluate the existing
domain-specific languages for implementing RV techniques, and identifies
the shortcomings of a representative set of these languages with respect
to the design space. This paper advocates the need for a language com-
position framework, which offers the necessary mechanisms to achieve
abstractness, modularity, and compose-ability in the implementation of
domain-specific crosscutting concerns such as the concerns of RV tech-
niques. We explain event modules as novel linguistic abstractions for
modular implementation of domain-specific crosscutting concerns. This
paper discusses the implementation of event modules in the EventRe-
actor language, and illustrates the suitability of event modules to imple-
ment RV techniques by means of two complementary examples.

Keywords: runtime verification, domain-specific languages, aspect-
orientation, event-based modularization, event-based composition.

1 Introduction

Runtime verification (RV) [1] aims at checking software against its desired prop-
erties while the software is executed, e.g., during testing or after it is deployed.
Depending on the result of the verification process, various actions may be car-
ried out such as notification, suspending execution, fault recovery, etc. In this
paper, the term RV technique refers to the program that implements the func-
tionality of the runtime verification, and the term base software refers to the
software that is being verified by such a technique.

To apply RV techniques to real-world complex base software, there is a need
for suitable implementation mechanisms/frameworks that ease the implementa-
tion of these techniques for industrial practitioners. One may argue that RV tech-
niques can be implemented directly as an integral part of the base software in
the same general-purpose language (GPL) as the base software. However, this re-
quires programmers to have extensive knowledge about suitable algorithms and

S. Chiba et al. (Eds.): Transactions on AOSD XI, LNCS 8400, pp. 27–69, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

28 S. Malakuti and M. Akşit

mechanisms to implement RV techniques in a GPL. Moreover, the implementa-
tion of both base software and RV techniques can easily become complex and hard
to comprehend. This is because RV techniques usually crosscut [2] the base soft-
ware, meaning that they need to interact with various different parts of the base
software to collect the necessary information and/or to heal them from failures.

The aforementioned problems in implementing RV techniques motivate
language designers to seek suitable linguistic constructs for implementing RV
techniques. A close look at the literature [3–14], lets us observe that achiev-
ing abstractness, modularity, and compose-ability is of interest in the im-
plementation of RV techniques. The abstractness requirement is addressed by
providing suitable domain-specific languages (DSLs) for implementing RV tech-
niques. The modularity requirement is addressed by providing means to modu-
larize individual concerns of RV techniques from each other and from the base
software. The compose-ability requirement is addressed by providing suitable op-
erators to compose individually modularized RV concerns with each other and
with the base software under the specified constraints.

Although several RV DSLs have been introduced in the literature and this
trend seems to be continuing, they fall short of fulfilling the abstractness, mod-
ularity, and compose-ability requirements. To be able to identify the source of
their shortcomings, this paper identifies the concerns that typically appear in
RV techniques, defines a design space for the RV DSLs, and evaluates a repre-
sentative set of current RV DSLs with respect to this design space.

To overcome the identified shortcomings, this paper identifies characteristic
features of RV techniques, and introduces Event Composition Model, which
offers event modules as novel linguistic abstractions to achieve abstractness,
modularity, and compose-ability in the implementation of domain-specific cross-
cutting concerns such as the concerns that exist in RV techniques. This paper
explains EventReactor as a language composition framework that implements
Event Composition Model, and by means of two examples, shows the suitability
of EventReactor for implementing various kinds of RV techniques.

In this paper we extend our previous work [15, 16] in the following ways:

– We study a large number of RV DSLs and derive a conceptual model for RV
techniques.

– We present a mind map of the design space for RV DSLs which facilitates
the comparison of current RV DSLs.

– We evaluate a representative set of RV DSLs and identify their shortcomings
in fulfilling abstractness, modularity, and compose-ability in the implemen-
tation.

– We define a new version of Event Composition Model, in which domain-
specific concerns can be modularized and composed better.

– We present its implementation, EventReactor, which covers the design space.
– We demonstrate the suitability of EventReactor to achieve abstractness,

modularity, and compose-ability in the implementation by means of two
comprehensive examples.

– We present our evaluation of the runtime overhead of EventReactor.

Modularizing Domain-Specific Crosscutting RV Concerns 29

This paper is organized as follows: Section 2 elaborates on the problem state-
ment; Section 3 discusses the requirements for an RV language composition
framework and explains Event Composition Model. Sections 4 and 5 explain the
EventReactor language and its runtime behavior, respectively. Section 6 illus-
trates the expressiveness of event modules by means of an example. Section 7
discusses the runtime overhead of EventReactor, and Sections 8 and 9 outline
the discussion and future work, respectively.

2 Problem Statement

While RV techniques can be implemented in a GPL and can manually be applied
to the base software during the software development process, there is an increas-
ing interest to have DSLs [3–14] for this matter so that the implementation of RV
concerns become more abstract and declarative, and the implementation effort
is reduced. A closer look at the existing RV DSLs lets us observe three require-
ments that are typically considered important in the design of these DSLs: a)
abstractness, b) modularity, and c) compose-ability of implementations.

The abstractness requirement indicates that suitable domain-specific con-
structs are needed to implement various kinds of concerns that appear in RV
techniques in a declarative, concise, and abstract manner; this is in fact one of
the main goals of adopting DSLs instead of GPLs.

In the literature [17], a module is defined as a reusable software unit with
well-defined interfaces, which encapsulates its implementation. The modularity
requirement indicates that a language must facilitate representing individual
concerns that appear in an RV technique as individual modules with well-defined
interfaces. The interfaces express the information that the modules provide and
require from the other modules for the purpose of runtime verification. The
internal implementation of these modules, which is expressed in a DSL, must be
encapsulated. If a language falls short to provide a one-to-one mapping between
a concern of interest and the modules of a program, the implementation of the
concern scatters across and tangles with the implementation of other concerns
in the program [18]. Scattering and tangling are well-known problems in the
aspect-oriented community [2], which reduce the modularity and increase the
complexity of programs.

The compose-ability requirement means that a language must offer suitable
mechanisms to compose individually modularized RV concerns with each other
so that the target RV technique is achieved. The example composition mecha-
nisms are explicit method invocation, implicit invocation by means of events, and
inheritance. The composition may be constrained, and the constraints must also
be modularized and programmed in their DSLs. There are plenty of legacy soft-
ware systems whose functionality must be extended with RV. Thus modularity
and compose-ability must also be considered from the perspective of separating
the implementation of RV concerns from the base software and composing these
two into an executable system.

30 S. Malakuti and M. Akşit

To be able to identify the degree to which the aforementioned requirements
are fulfilled by the current RV DSLs, in this section we first identify the typical
concerns that appear in RV techniques, derive a design space for RV DSLs, and
accordingly, we identify the shortcomings of a representative set of RV DSLs.
Finally, we illustrate the shortcomings by means of an example.

2.1 Typical Concerns in RV Techniques

Our comprehensive study on the current RV techniques and DSLs [3–14, 19, 20],
reveals that four kinds of concerns typically appear in RV techniques: Base Soft-
ware, Observation, Verification, and Action. Figure 1 represents the interactions
among these concerns.

– Base Software is the software whose correctness must be ensured by an RV
technique.

– Observation is the concern that abstracts the necessary information for the
purpose of runtime verification from the base software. This information can
be, for example, the invocation of a method, the value of a variable that is
updated, etc.

– Verification is the concern that checks the expected and/or unexpected prop-
erties of the base software; for this matter, it receives the necessary infor-
mation from the base software. The verification of the specified properties
results in new information, for example, indicating whether the properties
are satisfied or violated.

base
information

verification
information

adaptation
information

base
information

Fig. 1. Typical concerns in RV techniques

– Action represents what needs to be performed as the result of verification.
Typical examples are diagnosing the causes of failure and recovering the
base software from failures [19, 20]. Actions are triggered by the verification
concerns, and may exchange information with the base software, for example,
for the purpose of recovery.

As Figure 1 shows, in general, RV concerns have a crosscutting [2] nature.
For example, the observation concerns may crosscut the base software to receive
the information from various places in the base software. Likewise, actions may

Modularizing Domain-Specific Crosscutting RV Concerns 31

crosscut the base software, for example, if they need to apply modifications to
multiple places in the base software.

Not only the execution of the base software be verified, but also the execution
of the verification concerns and actions. For this purpose, the notion of base
software can be extended to include verification concerns and actions; higher-
level verification concerns can, then, observe and manipulate the execution of
this extended base software. Such hierarchal organizations are quite common in
adaptive control systems, for example, where multiple levels of control systems
can be stacked on each other.

2.2 A Design Space for RV DSLs

The degree to which the abstractness, modularity, and compose-ability require-
ments are fulfilled by the current RV DSLs differs per language. To establish a
basis for the comparison of these languages, in Figure 2, we represent a set of
possible alternatives in designing a language for implementing an RV Concern.

Fig. 2. Design Space of RV DSLs

In Figure 2, the dimension fixed means that the implementation of an RV
Concern is fixed in an RV DSL, or it is not possible at all to implement the con-
cern by the available constructs of the RV DSL; the opposite is programmable. If
an RV Concern is programmable, there are two possibilities in its abstractness :
domain-specific and general-purpose. The former means that there are dedicated
domain-specific constructs to implement the RV Concern, and the latter means
that the RV DSL adopts the elements of a GPL for this matter, which natu-
rally reduces the abstractness of implementations. If there are domain-specific
constructs, they can either be dependent on or independent of the language in
which the base software is implemented. RV DSLs usually have limited expres-
sion power; this is mainly because they provide constructs that are dedicated
to a particular problem domain, a particular problem representation technique,
and/or a particular solution technique. The dimension expressivity indicates that

32 S. Malakuti and M. Akşit

the set of offered domain-specific constructs by an RV DSL can be predefined
or it can be extendable with new constructs. Supporting a predefined set of
constructs may limit the possibility to program various different kinds of RV
concerns in an RV DSL.

As the dimension modularity shows, a programmable RV concern may be
modularized from other RV concerns and the base software; the opposite is tan-
gled, meaning that the implementation of a concern is not well separated from
the implementation of other concerns. The dimension compose-ability indicates
that an RV DSL must offer suitable composition operators so that individual
RV concerns can be composed with each other to form the target RV technique.
An RV DSL can either fix the available composition operators, or it can make
them programmable by offering suitable linguistic constructs for this matter.

2.3 Shortcomings of the Existing RV DSLs w.r.t the Design Space

In this part, we evaluate a representative set of RV DSLs with respect to the
design space that is shown in Figure 2. The evaluation is performed for the
linguistic constructs that an RV DSL offers for defining the specification of ob-
servation, verification, and action concerns.

Table 1. The design space applied to the specification of observation concern

Fixed Programmable

Abstractness Modularity Compose-ability

DS GP Tangled Mod. Fixed Prog.

Language Dep. Expressivity

Dep. Indep. Pred. Prog.

MaCS + + + +

PQL + + + +

Polymer + + + +

JavaMOP + + + +

RMOR + + + +

Trace-
matches

+ + + +

E-Chaser + + + +

TraceContract + + +

JASS +

APP +

Spec# +

Temporal
Rover

+

Modularizing Domain-Specific Crosscutting RV Concerns 33

Specification of Observation Concerns: An RV DSL may offer dedicated
constructs to specify the information that must be abstracted from the base
software. This information can be in form of events and/or data values. As Ta-
ble 1 shows, MaCS [3], PQL [11], Polymer [12], JavaMOP [4], Tracematches [13],
RMOR [5], and E-Chaser [10] offer a predefined set of dedicated linguistic con-
structs for this matter. Among these languages, only the constructs offered by
E-Chaser are independent of the language of base software.

TraceContract [14], is an internal DSL [21] which makes use of the libraries
offered by the Scala programming language. In TraceContract, the observable
information is defined as events, and new kinds of events can be defined. However,
as it is inherent for internal DSLs, the specifications are dependent on the GPL
in which the internal DSLs are defined. JASS [6], APP [9], Temporal Rover [7],
and Spec# [8] do not offer any construct to define the specification of observation
concerns. In these languages, the verification concerns and actions are embedded
in the base software, and refer to the variables defined within the base software.

Along the modularity dimension, MaCS facilitates modularizing the specifi-
cations through so-called PEDL (Primitive Event Definition Language) specifi-
cations. In JavaMOP, PQL, and Tracematches, the specification of observation
concerns is separated from the base software; however, these specifications are
tangled with the verification concerns and actions within one module. Polymer
facilitates the modularization of specifications by offering so-called action mod-
ules, which closely resemble Java classes. In RMOR, the specification of observa-
tion concerns can be expressed separately from the specification of verification
concerns and actions. E-Chaser facilitates the modularization of specification
by means of the so-called superimposition specifications. In TraceContract, the
specifications can be modularized using the modularization mechanism offered
by Scala.

With respect to the compose-ability dimension, MaCS facilitates compos-
ing primitive fields and variables via Boolean operators. Tracematches adopts
the pointcut language of AspectJ [22] to express the specification of observa-
tion concerns, and supports Boolean operators to compose pointcut expressions.
Similarly, RMOR offers a pointcut language similar to the one in AspectJ or
AspectC [23], and supports Boolean operators to compose pointcut expressions.
JavaMOP extends the pointcut language of AspectJ with two new predicates;
AspectJ pointcuts can be composed with each other via Boolean operators; the
JavaMOP-specific predicates can be composed with each other and with AspectJ
ones via the conjunction operator. The other languages do not offer constructs
for programming the abstracted information with each other.

Specification of Verification Concerns (Properties): As Table 2 shows,
all investigated RV DSLs offer dedicated formalisms to specify the properties
to be verified. Among these, JavaMOP, E-Chaser, and TraceContract are pro-
grammable with new kinds of formalism. Only MaCS, E-Chaser, RMOR, and
Tracematches facilitate specifying the verification concerns independently from

34 S. Malakuti and M. Akşit

Table 2. The design space applied to the specification of verification concerns

Fixed Programmable

Abstractness Modularity Compose-ability

DS GP Tangled Mod. Fixed Prog.

Language Dep. Expressivity

Dep. Indep. Pred. Prog.

MaCS + + + +

PQL + + + +

Polymer + + + +

JavaMOP + + + +

RMOR + + + +

Trace-
matches

+ + + +

E-Chaser + + + +

TraceContract + + +

JASS + + + +

APP + + + +

Spec# + + + +

Temporal
Rover

+ + + +

the language of base software. JavaMOP is also in this category, except for its
raw specifications, which are programmed in the Java language.

MaCS offers a dedicated language, called MEDL (Meta Event Definition Lan-
guage), for the modular specification of verification concerns; however, the com-
position of verification concerns with observation concerns and actions is tangled
in MEDL specifications. Polymer does not have a clear distinction between the
specification of verification concerns and actions; together they are considered
as security policy, and are tangled within one module. In PQL, JavaMOP, and
Tracematches also the specification of verification concerns is tangled with the
specification of observation concerns and actions. RMOR facilitates modulariza-
tion of specifications. TraceContract and E-Chaser facilitate modularizing the
specification of verification concerns from the specification of observation con-
cerns; however, the specification of actions remains tangled with the specification
of verification concerns. In JASS, APP, Spec#, and Temporal Rover, the speci-
fications of verification concerns are tangled within the base software.

Along the dimension of compose-ability, PQL facilitates programming the
composition of properties by means of so-called sub-queries ; a complex property
is the composition of a set of smaller properties expressed as sub-queries. Poly-
mer treats the specifications of policies as Java objects and offer so-called policy
combinators to compose multiple policies with each other; new policy combi-
nators can be programmed. In TraceContract, properties can be composed in
a hierarchical manner through invoking a dedicated function with a variable

Modularizing Domain-Specific Crosscutting RV Concerns 35

length argument list; properties are provided as arguments to this function.
Spec# supports inheritance operator to compose the specifications. The other
evaluated languages do not facilitate the composition of verification concerns
with each other.

Table 3. The design space applied to the specification of actions

Fixed Programmable

Abstractness Modularity Compose-ability

DS GP Tangled Mod. Fixed Prog.

Language Dep. Expressivity

Dep. Indep. Pred. Prog.

MaCS + + +

PQL + + + +

Polymer + + + +

JavaMOP + + +

RMOR + + +

Trace-
matches

+ + +

E-Chaser + + + +

TraceContract + + +

JASS + + +

APP + + +

Spec# +

Temporal
Rover

+ + + +

Specification of Actions: As Table 3 shows, MaCS, JavaMOP, RMOR, Trace-
matches, JASS, APP, and Temporal Rover adopt the constructs of the language
in which the base software is implemented to express the actions. PQL and
Polymer offer a predefined set of dedicated constructs for this matter, which
are dependent on the Java language. E-Chaser supports a method invocation as
the action, and this is specified independently from the language of base soft-
ware. Spec# does not offer dedicated constructs for the specification of actions;
it raises an exception if the verification fails. TraceContract by default reports
the error trace, but it is also possible to program desired actions in the Scala
language.

From the perspective of modularity, in all DSLs except MaCS and RMOR
the specifications of actions are tangled with the specification of verification con-
cerns. From the perspective of compose-ability, PQL offers a predefined operator,
i.e., the sequential composition of specifications. Polymer facilitates composing
multiple actions by means of policy combinators. E-Chaser does not facilitate
the composition of actions. In the languages in which actions are expressed in a
GPL, actions can be composed with each other using the adopted GPL.

36 S. Malakuti and M. Akşit

2.4 Illustration of the Shortcomings

Since the existing RV DSLs do not span the full design space, the abstractness,
modularity, and compose-ability requirements cannot be fulfilled in the imple-
mentation of RV techniques if these languages are adopted. In this section, we
illustrate these shortcomings by the example of a document-editing software to
which runtime verification must be applied.

The document-editing software has the three core modules Authentication,
DocumentManager, and Storage. These provide the functionality to authenti-
cate users, to edit a document, and to save its contents on the file system,
respectively. Authentication and DocumentManager are implemented in Java,
and Storage is implemented in C. Figure 3 shows a UML sequence diagram
that depicts the sequence of causally dependent invocations that handle a save
request issued by the user. Here, the user first logs in to the system, by invoking
the method login on the object anAuthentication. Then, eventually, s/he starts
a save operation by invoking the method save on the object aDocumentManager
of type DocumentManager. Subsequently, the functions open, write, and finally
close are invoked on Storage. The user eventually logs out from the application.
For the sake of brevity, we omitted the objects that facilitate inter-language
communication. We assume that each user modifies one document at a given
time, and that the request to modify the document is handled in one causal
thread of execution that spans across anAuthentication, aDocumentManager,
and Storage.

Assume that we would like to verify the sequence of invocations depicted in
Figure 3, to ensure that a request to save a document by an authenticated user
eventually results in storing the document on the file system. There are two kinds
of failure. First, the save request is issued by an un-authenticated user. Second,
after invocation of save by an authenticated user, any of the other invocations
does not occur in the specified order before the user logs out. As recovery actions,
we would like to first log an error message and then prevent the execution of the
method whose invocation violates the specified sequence.

We consider two possibilities for implementing the aforementioned runtime
check using the available RV DSLs: (a) using a single RV DSL, and (b) using a
different RV DSL for each base implementation language.

If we would like to adopt a single RV DSL, the linguistic constructs of the RV
DSL must be sufficiently abstract to express runtime behavior of base programs
implemented in various different languages. As Table 1 shows, only E-Chaser fa-
cilitates abstracting information from the base software implemented in different
languages. However, as we show in [10], E-Chaser cannot preserve the modular-
ity of specifications for the base software implemented in multiple languages.
Moreover, it cannot verify the causal-dependency of the invocations that span
across modules implemented in different languages.

Alternatively, we would like to use a different RV DSL for each language envi-
ronment. To implement the running example, we use JavaMOP for the Java part

Modularizing Domain-Specific Crosscutting RV Concerns 37

anAuthentication aDocumentManager Storage

login

save
open

write

close

aUser

logout

Fig. 3. The sequence of method invocations to save a document

and RMOR for the C part. Listing 1 shows an excerpt of the JavaMOP
specification, which defines that the three events login, logout, and save

must be abstracted from instances of the Java classes Authentication and
DocumentManager. The events login and logout represent the state changes
after the execution of the methods login and logout on instances of the class
Authentication. The event save represents the state change before the execu-
tion of the method save on instances of the class DocumentManager. The regular
expression in line 8 indicates that somewhere between the occurrence of login
and logout (i.e., only when the user is authenticated), the event save may oc-
cur. The specification in lines 9 to 12 indicates that an error message must be
shown if the verification of the regular expression fails, and the execution of the
corresponding method must be prevented.

1 event login after(Authentication a) :
2 execution(∗ Authentication.login()) && target(a) {}
3 event logout after(Authentication a) :
4 execution(∗ Authentication.logout()) && target(a) {}
5 event save before(DocumentManager d) :
6 execution(∗ DocumentManager.save()) &&
7 target(d) {}
8 ere : (login save∗ logout)∗
9 @fail {

10 System.err.println(”Problem in saving the document!”);
11 SKIP;
12 }

Listing 1. A specification of the Java part

Listing 2 shows an excerpt of the RMOR specification, which defines that the
three events open, write, and close must be abstracted from the C module
Storage. The specification of the state machine in lines 4 to 7 indicates that
when the event open occurs, a transition to the state Opening must take place,

38 S. Malakuti and M. Akşit

which expects the event write to be the next event that occurs. If the event
write or any other event occurs in the state Opening, there will be a transition
to the built-in state error, which indicates that this is an unexpected event.

1 event open = before execution(Storage.c:open);
2 event write = before execution(Storage.c:write);
3 event close = before execution(Storage.c:close);
4 initial state Opening {when open −> Opening; when write−>error;/∗...∗/}
5 live state Opening {when write −> Writing;/∗...∗/}
6 live state Writing {when close −> Closing;/∗...∗/}
7 live state Closing {/∗...∗/}

Listing 2. A specification of the C part

With the state-of-the-art RV DSLs, the specifications are lacking abstractness
because they are dedicated to one GPL. This prevents us from specifying the
desired properties of the base software in a correct way. For example, we need
to specify that the sequence of events specified in lines 4 to 7 of Listing 2 must
occur after the event save specified in Listing 1. However, this can neither be
specified in JavaMOP nor in RMOR; consequently, we have to provide a third
DSL dedicated for expressing the compositions of these specifications, which
can be a costly task. It is therefore preferable that an RV DSL offers linguistic
constructs that are sufficiently abstract to deal with software implemented in
various languages.

Since the adopted specification languages make use of the elements of a GPL,
we were obliged to sacrifice the modularity of specifications by splitting them
based on the implementation language of base software; in our example, the
specification of sequence of events is divided in two modules. As a consequence,
compose-ability of specifications is reduced since there is no standard linguistic
mechanism for composing the specifications that are expressed in various RV
DSLs.

3 Towards an RV Language Composition Framework

The shortcomings of the current RV DSLs in expressing, modularizing, and com-
posing diverse kinds of RV techniques may consequently oblige software engineers
to design and implement new RV DSLs. However, the design and implementa-
tion of a new RV DSL from scratch requires extensive knowledge of language
design, and may be a time-consuming task. Moreover, the existing RV DSLs
share several abstractions, unfortunately, without sharing an implementation.

To ease the design and implementation of RV DSLs, we advocate the need for
a language composition framework, which offers the necessary linguistic mecha-
nisms to define new DSLs while providing the mechanisms to achieve modularity
and compose-ability in the implementation of domain-specific crosscutting con-
cerns. To this aim, this section first identifies the characteristic features of RV
concerns that must be respected by such a framework. Afterwards, it explains

Modularizing Domain-Specific Crosscutting RV Concerns 39

Event Composition Model that is a base model for such a framework, and dis-
cusses its suitability for this matter.

3.1 Characteristic Features of RV Concerns

A closer look at the model depicted in Figure 1 and the languages discussed in
the previous section reveals the following characteristic features of RV concerns.

First, the interactions among the concepts of RV techniques have by nature
a transient characteristic, meaning that the changes in the states of a concern
drive the other concerns. For example, the verification concerns observe the
changes that occur in the states of the base software, and verify the state changes
of interest against the specified properties of the base software. Various RV
techniques may require to consider various kinds of state changes; examples are
a time-out value, and an invocation of a method on an object. This implies
that an RV language composition framework must facilitate defining open-ended
kinds of state changes in the base software as well as in RV concerns.

Second, it is not easy or even possible to foresee all kinds of concerns that
appear in the RV techniques of today or in future. For example, some techniques
require to specify and verify the sequence of method invocations in the base
software, whereas some others may require to specify and verify the properties
of operating system processes. The steady development of new RV DSLs that
support new kinds of formalisms to specify the properties is a consequence of this.
Therefore, as the second requirement, we claim that an RV language composition
framework must facilitate implementing open-ended kinds of RV concerns such
that the specifications are modular.

Third, although Figure 1 shows a fixed hierarchy of concerns, in a general
case, the kinds of compositions cannot be fixed. For example, an RV technique
itself may be considered as the base software whose behavior must be checked
at runtime, a specification may be composed of multiple sub-specifications, etc.
This indicates that an RV language composition framework must facilitate im-
plementing open-ended kinds of compositions.

Finally, due to the increasing number of multi-language software systems (e.g.,
embedded software) to which RV techniques must be applied, an RV language
composition framework must support open-ended sets of base languages.

3.2 Event Composition Model

In [15, 16], we introduced Event Composition Model as a model, which respects
the aforementioned characteristic features. In this section, we explain a revised
version of this model whose concepts are shown in Figure 4 via a UML class
diagram.

At a high level of abstraction, Event Composition Model considers the exe-
cution Environment as a set of Events and Event Modules. In software systems,
events typically represent changes in the states of interest and are means for
abstracting the execution trace of programs. As the class Event Type shows,

40 S. Malakuti and M. Akşit

Fig. 4. Event Composition Model

events are typed entities; Base Event Type and Reactor Event Type are two
main specializations. The former represents the events that occur in the base
software, and the latter represents the events that are published by so-called
event modules that will be explained in the subsequent paragraphs. Event Com-
position Model does not fix the event types and events; new kinds of application
and/or domain-specific event types and events can be defined in the language
composition framework.

As the class Attribute in Figure 4 shows, each event type defines a set of
attributes for events; these are means to keep the abstracted information from
the execution trace of software. The attributes are classified into Static and
Dynamic. The former includes the set of attributes whose values do not change
and are known at the time an event is defined in the framework. The latter
defines the set of attributes whose values are known when an event is published
during the execution of software. For example, for an event that corresponds to
the invocation of a method, the name and the value of parameters can be defined
as static and dynamic attributes of the event, respectively.

Event Composition Model considers name, publisher, returnflow, thread, and
stacktrace as predefined attributes. These attributes respectively specify the
unique name of an event in the framework, the publisher of the event, and the
changes that must be applied to the flow of execution of the publisher after an
event is successfully processed, the thread of execution in which the event is pub-
lished, and a report of the active stack frames at the time the event is published.
For the reactor events, the attribute inner keeps a reference to the input event
being processed by an event module. More application and/or domain-specific
attributes can be defined for each type of event.

Event Composition Model introduces Event Module as a means to modularize
a group of related events and the reactions to them. In software engineering, a
module is usually considered as a referable entity with well-defined interfaces.

Modularizing Domain-Specific Crosscutting RV Concerns 41

Two kinds of interfaces, known as input and output, are typically considered
for a module. The former defines the services that a module requires from its
context; the latter specifies the services that a module provides to its context.
A module also has an implementation part, which is bound to its interfaces
to provide the specified interfaces. Modules promote encapsulation by utilizing
interfaces as their interaction points with their context.

As Figure 4 shows, event modules adhere to the above definition of modules
in the following ways. An event module is identifiable and referable by its unique
name. An event module has an Input Interface, an implementation – which is
termed as Reactor Chain–, and an Output Interface; these elements are bound
to each other.

The input interface of an event module specifies the set of events of interest
to which the event module must react. Event Composition Model does not fix
the semantics for selecting the events of interest and for binding them to the
input interface of an event module. One important difference between the input
interface of modules in programming languages and the input interface of event
modules is that in programming languages input interfaces are invoked explicitly,
whereas in event modules invocations are implicit. The explicit invocation means
that programmers write code for invoking the input interface of a module. In
contrast, implicit invocation [24] means that there is no need for such code, and
when an event of interest occurs, the corresponding event module is activated
by the language composition framework.

Figure 4 shows that the implementation of an event module contains a set of
Reactors and Variables. Each reactor processes (a subset of) the events specified
in the input interface of the event module. Reactors are typed entities; a Reactor
Type is a domain-specific type that defines the semantics in processing the events
of interest.

Reactors can be composed with each other within a reactor chain. Such reac-
tors can exchange information among each other via the variables defined within
the corresponding reactor chain. While processing an input event, a reactor may
publish new events, which are termed as reactor events. Via the attribute inner
a reference to the input event being processed by the reactor is maintained.

The output interface of an event module defines the set of events that are
published by the event module to its context. To be able to process events,
event modules are instantiated during the execution of software based on some
Instantiation Strategy; the strategies can be programmed according to the ap-
plication/domain demands.

3.3 Motivations to Adopt Event Composition Model

Event Composition Model respects the characteristic features of RV concerns
identified in Section 3.1 in the following ways. Events are means to implement
the transient nature of RV concerns. Various kinds of RV concerns can uni-
formly be implemented and modularized as event modules. The support for
domain-specific reactor types facilitates expressing the RV concerns of interest

42 S. Malakuti and M. Akşit

at a higher abstraction level in their DSL. Open-ended kinds of RV concerns can
be programmed because Event Composition Model is open-ended with respect
to event types, events, reactors, reactor types, event modules, and instantiation
strategies.

Fig. 5. Modularizing RV concerns via event modules

The events in the output interface of an event module can further be specified
as the input interface of other event modules, this facilitates composing event
modules with each other and defining the composition constraints via event
modules. Open-ended kinds of compositions can be programmed according to
the application and/or domain requirements. Event modules only interface with
the base software in terms of events. Regardless of the implementation language,
events are a universal principle in the execution of all software systems; and
Event Composition Model does not constrain the kinds of events to be supported.
Therefore, Event Composition Model is open-ended with respect to the supported
base languages.

There is an analogy between the concepts of Event Composition Model and
the ones in the aspect-oriented languages. Here, events correspond to join points,
and event modules correspond to aspects. Since multiple events can be selected
via the input interface of an event module, and such events may be published
by various publishers, event modules can be adopted to modularize crosscutting
concerns. The support for domain-specific reactor types facilitate expressing such
concerns in their DSLs.

Figure 5 shows an example way of implementing RV concerns via event mod-
ules. Here, the input interface of the event module verification selects the events

Modularizing Domain-Specific Crosscutting RV Concerns 43

of interest that are published by the base software. These events are provided to
the reactor chain, which implements the functionality of the verification. If the
verification fails, the result is published as a reactor event, which is bound to
the output interface of verification. This event is received by the input interface
of the event module action, which depending on the kinds of action may collect
more events from the base software. Composition constraints among the modules
can further be defined and modularized via event modules.

4 The EventReactor Language Composition Framework

EventReactor is a language composition framework that provides dedicated
linguistic constructs to implement the concepts of Event Composition Model.
In [15, 16], we explain an earlier version of EventReactor by means of an exam-
ple RV technique. This paper proposes a new version of EventReactor that offers
linguistic constructs to modularly define event types and events. In addition, it
facilitates the explicit definition of the output interface of event modules so
that the boundary of event modules are more explicit in the specifications. The
new version of EventReactor supports programmable instantiation strategies of
event modules based on event attributes; this gives flexibility to programmers
to specify the desired strategies. In the following, we make use of our illustrative
example to explain EventReactor language. For the sake of brevity, some details
are eliminated; the full implementation of the example can be downloaded from
the website of EventReactor1.

4.1 Specification of Event Types and Events

Event types are data structures that define a set of static and dynamic at-
tributes for events. EventReactor provides four built-in event types EventType,
BaseEventType, ReactorEventType, and MethodBased; it also offers a dedicated
language to define custom event types modularly.

Complying with Figure 4, the built-in event type EventType is the super
type of all other event types, and BaseEventType, ReactorEventType are two
specializations that define the specified attributes in Figure 4. For the attribute
returnflow, EventReactor currently supports the following values: Continue
means that the flow of execution must not be changed; Exit means that the
execution of program must terminate; Return means that the flow of execution
must return to the publisher.

The event type MethodBased represents the state changes corresponding to
the invocation and execution of methods in the base program, as it is supported
by the current aspect-oriented languages [22]. Listing 3 shows the definition of
the event type MethodBased, which extends the type BaseEventType (Line 1)
and thereby inherits all its attributes. In addition to the inherited attributes, this
type declares further static context attributes (Lines 3–5) and dynamic context

1 http://sourceforge.net/projects/eventreactor/

http://sourceforge.net/projects/eventreactor/

44 S. Malakuti and M. Akşit

attributes (Lines 7–8). The static attributes define the kind of event (i.e., before
invocation, before execution, after invocation, after execution), the signature
of the method, and the module in which the method is defined. The dynamic
attributes define the arguments of the method and the target object in which
the method is executed.

1 eventtype MethodBased extends BaseEventType{
2 staticcontext:
3 kind : MethodBasedEvents;
4 signature : String;
5 module : String;
6 dynamiccontext:
7 args : Object [];
8 target : Object;
9 }

Listing 3. The specification of MethodBased

EventReactor offers a dedicated language to programmers to define the events
of interest modularly. For this matter, programmers must specify its unique
name, its event type, and the values of the static attributes defined by the
event type. For the built-in method-based events, the compiler of EventReactor
extracts the relevant information from the base software, and automatically cre-
ates event definitions in this language. The compiler adopts the same approach
as the Compose* compiler [25] to support multiple base language (e.g., as Java,
C, and .Net languages) that adhere to the abstract language model provided by
Compose*.

Listing 4 shows an example of an event definition that is generated by the
EventReactor compiler. The event is MethodBased (Line 1) and represents the
state change after invocation and immediately before the execution (Line 3) of
the method save (Line 4) defined in the class DocumentManagement (Line 5).

1 event saveDocumentManager instanceof MethodBased{
2 staticcontext:
3 kind = MethodBasedEvents.BeforeExecution;
4 signature = ”public void save(java.lang.String, java.lang.Object)”
5 module = ”public class DocumentManagement extends java.lang.Object”
6 }

Listing 4. The specification of a method-based event

To publish an event, it is necessary to initialize its dynamic attributes and
inform the runtime environment of EventReactor of the event. The API of Event-
Reactor offers two routines for this matter. In the first one, the information about
the event is provided as a comma-separated list of attributes and their values.
This API is useful if the base software is implemented in a language other than
Java. The second API is useful if the events are published from a Java program.

Modularizing Domain-Specific Crosscutting RV Concerns 45

In this case, EventReactor generates Java classes from the specification of events,
whose instances represent events.

Listing 5 shows an example code for publishing the saveDocumentManager

event. First, an instance of the generated class saveDocumentManager is con-
structed (Line 1). Next, the dynamic context attributes are set (Lines 2–3). And
finally, the event object is published to the EventReactor runtime (Line 4).

1 saveDocumentManager event = new saveDocumentManager();
2 event.initializeDynamicAttribute(”publisher”, aDocumentManager);
3 // initialize other dynamic attributes, e.g., the current thread
4 EventReactor.publish(event);

Listing 5. Publishing a method-based event

For the method-based events the EventReactor compiler instruments the base
program to publish the defined events. To publish EventReactor events from base
software written in a language other than Java, Java-JNI2 is used to access the
runtime environment of EventReactor.

4.2 Specification of RV Concerns

EventReactor offers eventpackage as a means to package the specification of RV
concerns. The elements defined within an event package can be referred to by
their fully qualified name. Like any other programming language, programmers
decide how the implementations must be packaged.

1 eventpackage ObservationConcern{
2 selectors
3 save = {E | isBeforeExecution(E, M),
4 isMethodWithName(M,’save’),
5 isModuleWithName(C,’DocumentManager’),
6 isDefinedIn(M, C)};
7 open = ...
8 write = ...
9 close = ...

10 login = ...
11 logout = ...
12 failure = {E | isEventWithName(E, ’violated’),
13 isEventModuleWithName(EM, ’∗.Verification’),
14 isPublishedBy(E, EM)};
15 }

Listing 6. Specification of observation concern

2 See homepage of Java-JNI: http://download.oracle.com/javase/1.5.0/docs/
guide/jni/spec/jniTOC.html

http://download.oracle.com/javase/1.5.0/docs/guide/jni/spec/jniTOC.html
http://download.oracle.com/javase/1.5.0/docs/guide/jni/spec/jniTOC.html

46 S. Malakuti and M. Akşit

As Listing 6 shows, the events of interest are selected by means of queries in the
Prolog language. In lines 3–6, the Prolog expression specifies that the method-
based events E, which correspond to the state change after the invocation and
immediately before the execution of the method ‘‘save’’ defined in the class
‘‘DocumentManager’’, must be selected. The other base events that must be
verified are selected likewise in lines 7–11. Lines 12–14 specify that the event
violated, which is published by the event module Verification, is another
event of interest to be selected.

A modular implementation of the verification concern is provided in Listing 7
via the event module Verification. As Figure 4 shows, an event module must
have an input interface, which must be bound to a set of events of interest defined
in the framework. Lines 3–5 define the input interface, which is bound to the
named selectors defined in the event package ObservationConcern.

In EventReactor, the instantiation strategy can be specified as a comma-
separated list of event attributes. Such a specification indicates that a distinct
instance of the event module must be created for each distinct combination of
the values of the specified attributes. If no instantiation strategy is specified,
the event module will be instantiated in a singleton manner. Line 6 of Listing 7
indicates that the event module must be instantiated per thread.

Line 7 binds the reactor chain Verify to the input interface, and defines
the property to be verified as a regular expression over the input events, which
is passed to the Verify reactor chain. The event violated is specified as the
output interface of the event module in line 8; this event is published from within
the reactor chain if any of the input events does not occur in the specified order.

1 eventpackage VerificationConcern{
2 eventmodules
3 Verification := {ObservationConcern.login, ObservationConcern.logout,
4 ObservationConcern.save, ObservationConcern.open,
5 ObservationConcern.write, ObservationConcern.close}
6 {’thread’}
7 <− Verify(’(login (save open write+ close)∗ logout)∗’)
8 −> {violated : ReactorEventType};
9 }

Listing 7. An event module for the verification concern

In EventReactor, reactor chains are defined separately from event module to
facilitate reusing them in multiple event modules. Reuse is further increased by
the possibility to parameterize reactor chains. An example of a parameterized
reactor chain is given in Listing 8, which shows the reactor chain Verify used in
the event module discussed above. The chain consists of a single reactor named
as regexp of the type RegularExpression. As for reactor chains, reactors can
be parametric. This is shown in line 3, in which the parameter regformula is
assigned to the reactor’s parameter expression.

Modularizing Domain-Specific Crosscutting RV Concerns 47

1 reactorchain Verify(regformula: String){
2 reactors
3 regexp: RegularExpression = { reactor.expression = regformula; };
4 }

Listing 8. A reactor chain for the verification concern

In addition to the verification concerns, recovery actions can also be defined
via event modules. Listing 9 defines the event package RecoveryConcern in
which the event module Recovery is defined. Here, the event failure, which
is published by the event module Verification and selected in Listing 6, is
specified as the input interface of the event module Recovery. The instantiation
strategy "publisher" indicates that individual instances of the event module
must be created for individual instances of the event module Verification that
publishes the events violated. The reactor chain Recover as the implementation
of the event module; the event module does not publish any event as its output
interface.

1 eventpackage RecoveryConcern{
2 eventmodules
3 Recovery := {ObservationConcern.failure} {”publisher”} <− Recover() −> { };
4 }

Listing 9. An event module for the recovery concern

Listing 10 defines the reactor chain Recover in which two reactors logger and
preventer are defined of the types Log and ForceReturn, respectively. Since the
reactor logger is first in the chain, it processes the input event first. Afterwards
the event is processed by preventer, which suppresses the further execution of
the base method whose execution has caused the failure. The runtime behavior
of running example in processing events is explained in Section 5.

1 reactorchain Recover(){
2 reactors
3 logger: Log = {reactor.message = ’An error has occurred!’;};
4 preventer: ForceReturn;
5 }

Listing 10. A reactor chain for the recovery concern

4.3 Implementation of Reactor Types

Reactor types are means to encapsulate the functionality for processing input
events and publishing output events. Each reactor type is defined via a so-called
reaction class and a specification of meta information. The reaction class, which
is implemented in Java, provides the functionality of reactor type in processing
input events. The specification of meta information defines the name of the

48 S. Malakuti and M. Akşit

reactor type, the name of its reaction class, the name and type of reactor events
that are published by the reactor type, and the parameters of the reactor type.
Listing 11 shows the specification of the reactor type RegularExpression.

Listing 12 shows the implementation of the class RegExpClass. Each action
class must extend the class ReactorAction that is provided by EventReactor,
and must implement two methods initialize and execute. The former is exe-
cuted when the corresponding reactor is instantiated, the latter is executed when
the corresponding reactor receives an event to process. These methods can access
the instances of the corresponding reactor, reactor chain, and event module via
their argument context.

1 reactortype RegularExpression {
2 reaction = RegExpClass;
3 events = {violated : ReactorEventType};
4 parameters = {expression : String};
5 }

Listing 11. The specification of the RegularExpression reactor type

1 public class RegExpClass extends ReactorAction {
2 Automaton automaton;
3 @Override
4 public void initialize(Context context) throws Exception {
5 String expression = this.getParameters(”expression”);
6 automaton = //parse the regular expression and create the automaton
7 // ...
8 }
9 @Override

10 public void execute(Event event, Context context) throws Exception {
11 boolean failed = automaton.check(event);
12 if (failed == true) {
13 violated result = new violated();
14 result.initializeDynamicAttribute(”inner”, event);
15 result.initializeDynamicAttribute(”publisher”, context.eventmodule);
16 // ...
17 EventReactor.publish(violated);
18 }
19 }
20 }

Listing 12. The action class for the reactor type RegularExpression

In Listing 12, the method initialize parses the regular expression provided
via the parameter expression, and it creates an automaton according to the
algorithm presented in [26]. The method executemakes use of the generated au-
tomaton to verify event against the regular expression formula, and concludes
the success or failure of the verification. As lines 13–17 show, if the verifica-
tion fails, it creates a reactor event and publishes it. Here, the attribute inner is

Modularizing Domain-Specific Crosscutting RV Concerns 49

initialized with event whose processing causes the reactor event be published.
The corresponding event module is specified as the publisher, and other dynamic
attributes can be initialized likewise.

For the sake of brevity, this paper does not show the implementation of the
reactor types Log and ForceReturn. In short, the reactor type Log reports a
message on the screen when it receives an event to process. The message is
passed to the reactor type as a parameter. The reactor type ForceReturn pre-
vents the invocation or the execution of a method to proceed. For this matter,
it checks whether the input event is of the type MethodBased and has the value
BeforeInvocation or BeforeExecution in its attribute kind. If so, it assigns
the value Flow.Return to the attribute returnflow of the input event. As ex-
plained in Section 5, the runtime environment of EventReactor changes the flow
of execution accordingly. If ForceReturn receives a reactor event to process, it
traverses the chain of causally dependent events via the attribute inner of the
reactor event until it reaches to an event of the type MethodBased, and performs
the aforementioned operation.

5 Runtime Event Processing in EventReactor

As explained in [15, 27], the specifications of event types, events, reactor types,
event packages, and reactor chains are input to the EventReactor compiler, which
performs various checks on the specifications to ensure their correctness. The
compiler can also identify method-based events in a program. For this matter, the
program must be provided as input; as the output, the program is instrumented
with so-called notifier code, which implements the functionality to publish events
to the runtime environment of EventReactor, and to get the results back when
the event is processed.

In object-oriented programs, objects are regarded as standard publishers.
Upon the creation of an object of interest, a notifier is bound to the object. In
non-object-oriented programs, software files are regarded as standard publishers
to which a notifier is bound at compile time. At runtime, a notifier assigns a
unique identifier to the corresponding file to be used as the unique identifier of
the publisher for the corresponding method-based events. If an event module
publishes events as its output interface, a notifier is bound to the event mod-
ule upon the instantiation of event module. For the programmer-defined events,
programmers must implement the functionality to publish the events using the
interface provided by EventReactor.

As explained in Section 4, an event is defined with a unique name, a set of
static and dynamic attributes. The name and the static attributes of events are
fixed, and cannot be changed when an event is published to the runtime environ-
ment. As a result, the selectors that query events based on their name and/or
static attributes can be evaluated at compile time, and the events that form
the results of each selector can be tagged. The EventReactor compiler maintains
these tags and the information about the specifications in a repository, which
is used by the runtime environment to process events. In the following subsection,

50 S. Malakuti and M. Akşit

we first explain the algorithm adopted by EventReactor to process runtime
events. Second, we illustrate the runtime behavior of our running example. We
will discuss the runtime overhead of EventReactor in Section 7.

5.1 The Execution Semantics of EventReactor

The runtime environment of EventReactor makes use of Algorithm 1 to receive
events and process them in a synchronous way. As line 1 shows, first it is checked
whether the event is known in the language; this check is performed by matching
the unique name of the event against the unique name of events that are defined
in the language. If the event does not match any defined event, the runtime envi-
ronment ignores it. Otherwise, as line 3 shows, the runtime environment retrieves
the set of selectors to which this event matches, using the tags generated by the
compiler. If the event matches multiple selectors, the runtime environment con-
siders a random order among the selectors. As line 4 shows, for each selector,
the set of event modules that refer to the selector in their input interface is re-
trieved. If there are multiple event modules referring to the selector, the runtime
environment considers a random order for the event modules, unless their order
is specified by the programmer using the keyword precede [15]. Lines 5 to 12
deal with the instantiation of each event module. To maintain a reference to the
instantiated event modules, the runtime environment of EventReactor creates a
so-called event module table for each specified event module. An event module
table resembles a relational database table [28], with two columns col reference
and col index. The latter keeps a reference to a distinct instance of the corre-
sponding event module, and the former is the primary key in the table. If the
event module is specified to be instantiated as singleton, there will be only one
row in this table. Otherwise, there will be one row for each distinct combination
of attributes that form the instantiation strategy of the event module. In this
case, the distinct combination of attributes that form the instantiation strategy
are used for indexing.

Line 5 of Algorithm 1 retrieves the corresponding table of an event module;
if there is no such table, it means that it is the first time that the event module
is instantiated. In this case, line 7 creates a table for the event module. Line 9
retrieves the corresponding instance of the event module based on the specified
instantiation strategy for the event module. If there is no instance, line 11 creates
one and inserts it in the event module table. In line 13 to 28, the event is
provided to the corresponding instance of the event module to be processed. For
each specified reactor in the implementation of the event module, line 14 checks
whether the event is of interest; as it is shown in Listing 18 in page 58, each
reactor can specify the set of events to which it reacts. If the event is of interest,
the reactor starts executing.

In lines 15 to 20 show that while executing, a reactor may publish reactor
events; this causes the execution of the reactor to be suspended until the reactor
event is processed. Line 17 checks whether a reactor event matches any of the
events specified in the output interface of the corresponding event module. If so,

Modularizing Domain-Specific Crosscutting RV Concerns 51

Algorithm 1. Process(event, repository)

1 e ← Match(event, repository.DefinedEvents);
2 if e �= null then
3 foreach selector in e.MatchedSelectors do
4 foreach eventmodule in selector.MatchedEventModules do
5 table ← repository.GetTable(eventmodule);
6 if table = null then
7 table ← repository.CreateTable(eventmodule);
8 end
9 instance ←table.GetInstance(eventmodule);

10 if instance = null then
11 instance ←table.CreateRow(eventmodule);
12 end
13 foreach reactor in instance.ReactorChain do
14 if reactor.Match(e) then
15 while reactor.Action not terminated do
16 reactorevent ← reactor.Action.Execute(e);
17 if Match(instance.OutputInterface, reactorevent) then
18 Publish (reactorevent);
19 end

20 end

21 end
22 if e.returnflow = Exit then
23 Terminate Program;
24 end
25 if e.returnflow = Return then
26 Return To Publisher;
27 end

28 end

29 end

30 end

31 end

in line 18 the notifier bound to the event module publishes the event to the run-
time environment of EventReactor. Consequently, the event becomes available
to be processed with the same algorithm.

While processing an input event, among other dynamic attributes, a reactor
may change the value of the attribute returnflow. If the execution of the re-
actor terminates successfully, the runtime environment checks the value of this
attribute, and changes the flow of execution accordingly. If the value is Exit, the
execution of the program terminates. If the value is Return, it means that the
event processing must not proceed with the other reactors or event modules, and
the flow of execution must return to the publisher. For the method-based events,
when the flow of execution returns to the publisher, the notifier bound to the
publisher prevents the invocation and/or the execution of a method to proceed
if the value return is specified for returnflow.

52 S. Malakuti and M. Akşit

5.2 An Illustration of the Runtime Behavior

Figure 6 shows the runtime view of our illustrative example. Here, anAuthentica-
tion, aDocumentManager, and Storage are the application modules of interest to
which the notifiers Notifier(A), Notifier(D), and Notifier(S) are bound. If any of
the events of interest occurs during the execution of the base program, instances
of the event modules Verification and Recovery are created and managed by
Runtime Environment. Since the event module Verification publishes an event
as its output interface, the notifier Notifier(V) is bound to it so that the event
can be provided to the Runtime Environment.

Notifier(D) Notifier(S)

Repository

o

save

open
write
close

Notifier(V)

otifier(D) Notifier(S)

epository

otifier(otifier(

ave sa

open o
write w
close c

Notifier(V)
Runtime

Environment

Runtime element of
EventReactor

Application element

Data store

Flow of control/data

Recovery

logger preventer

Recover

Verification

regexp

Verify

Notifier(A)

login
logout

Notifier(A) otifier(

ogin lo
ogout lo

Fig. 6. A runtime view of the illustrative example

In runtime verification, we always need to specify when a verification must
start and when it must terminate. In our example, we assumed that the events
login and logout always occur and perform as the start and end point of the
verification. Assume for example that in the causal thread of execution t a user
invokes the method login on the object anAuthentication. Before the execu-
tion of this method, Notifier(A) informs the Runtime Environment of an event
representing the corresponding state change. According to the specification in
Listing 7, this event is of interest and is part of the input interface of the event
module Verification.

Since there is no event module table named VerificationConcern.Verification,
the Runtime Environment creates one. Afterwards, it inserts one row in this
table, inserts the value t in the column col index, creates a new instance of
the event module to which Notifier(V) is bound, and inserts a reference to the

Modularizing Domain-Specific Crosscutting RV Concerns 53

created instance in the column col reference. Suppose that the user wishes to
save a document by invoking the method save on aDocumentManager, which
consequently Notifier(D) publishes the corresponding event to the Runtime En-
vironment. There is already an event module table named as VerificationCon-
cern.Verification, which means it is not the first time that an event of interest
for the event module Verification is processed. Here, the Runtime Environment
retrieves the row whose col index matches t ; there is one row, and the event is
provided to the corresponding instance of the event module to be processed.

Assume that instead of the function open, the function write is invoked on
Storage, and the corresponding event is published to the Runtime Environment
by Notifier(S). Similar to the previous case, the event is provided to the corre-
sponding instance of the event module to be processed. Since the event violates
the expected sequence of events, the reactor regexp publishes the reactor event vi-
olated, which is be bound to the event violated specified in the output interface of
the event module Verification, and is published to the Runtime Environment by
Notifier(V). Consequently, the Runtime Environment creates an event module
table named as RecoveryConcern.Recovery. The Runtime Environment inserts
the unique identifier of the corresponding instance of the event module Verifica-
tion in the column col index, creates an instance of the event module Recovery,
and provides the event to it. The instance of the reactor logger receives the event,
and reports the specified error message on the screen, afterwards the instance of
the reactor preventer prevents the execution of the method write on Storage.

If another user initiates a save operation in another causal thread of execution,
a new sequence of causally dependent events must be verified. Therefore, a new
row is created in the table VerificationConcern.Verification and a new instance
of the event module Verification is created for this matter.

6 Illustration of the Expressiveness of Event Modules

As we explained in Section 3.1, it is generally not possible to fix the kinds of
base concerns whose properties must be expressed, and the kinds of RV concerns.
This amplifies the need for supporting open-ended kinds of RV concerns by an
RV DSL. Otherwise, programmers have to provide workaround implementations
using the available constructs in an RV DSL, and as we illustrate in [15, 16], such
workarounds tend to be very complex, barely modular, little compose-able and
at lower levels of abstraction. The current RV DSLs, however, do not support
open-ended kinds of RV concerns. These languages typically support objects or
source files as the publisher of events, and only support verifying the temporal
properties of a group of events [4, 13, 11].

To illustrate the need for supporting open-ended kinds of RV concerns, this
section makes use of Recoverable Process [20] as an example RV technique. Recov-
erable Process aims at making processes fault-tolerant by monitoring processes
to detect their failures, and by either restarting a single failed process (called the

54 S. Malakuti and M. Akşit

local recovery strategy) or a group of semantically related processes, including
the failed one (called global recovery strategy).

In [15], we provide an example implementation of Recoverable Process in an
existing RV DSL, and explain in details the problems regarding the modularity,
compose-ability, and abstractness of implementations, which arise due to the
lack of support for open-ended kinds of RV concerns. In [27] we also explained
the shortcomings of current GPLs in implementing Recoverable Process in a
modular way. This section explains a possible implementation of Recoverable
Process in EventReactor, and discusses the suitability of the constructs offered
by EventReactor to preserve the modularity, compose-ability, and abstractness
of implementations.

6.1 Recoverable Process by Example

Figure 7 is a UML class diagram representing the concerns in Recoverable Pro-
cess. AppProcess represents a child process, and has the attributes pid, name,
status, init, and kill. The attribute pid is the unique identifier of the child process,
which is generated by the operating system. The attribute name is the developer-
specified name of the child process. The attribute status is the execution state
of the child process, which can either be running, terminated, or under-recovery.
The attributes init and kill are the methods that create or kill the child process,
respectively. The events initiated and killed, which are shown as operations in
the figure, occur if the child process is created or killed, respectively.

Parent
ProcessManager

+restart()

RecoveryUnit
-processes
+notify()

AppProcess
- p i d
-name
-status
- i n i t
- k i l l
+initiated()
+killed()

 1

 1..*

restarts

notifies

 *
 1

executes

*1
executes

 *

 1

Fig. 7. The concerns of Recoverable Process

The concern RecoveryUnit represents a group of child processes that must be
recovered together. RecoveryUnit detects the failures in the corresponding child
processes, and publishes an event to the concern ProcessManager to inform
of the failures. Consequently, ProcessManager recovers the corresponding child

Modularizing Domain-Specific Crosscutting RV Concerns 55

processes by changing their status to under-recovery, restarting them, and setting
their status back to running. The concern Parent represents the parent process
of AppProcess. It creates the child processes, and publishes the event initiated
for each of them.

Assume for example that we would like to apply Recoverable Process to an
example media-player software to make its processes fault-tolerant. An abstract
block diagram of the media-player software is shown in Figure 8. The software is
structured around the five processes Runner, UserInterface, MPCore, Audio and
Video, which execute the modules Main, GUI, Core, Libao, and Libvo, respec-
tively. The nesting of blocks shows that the parent process Runner has spawned
the other processes as children. The arrows in the figure represent the messages
that are exchanged among processes. With a global recovery strategy, the child
processes Core, Audio, Video, User Interface can be restarted as a group. When
local recovery is applied, the processes can be restarted individually.

User Interface MPCore Audio Video User Interface MPCore A di Video PCore Audio VideoPCore Audioser Interface M

Runner

Process

Inter-process communication

Fig. 8. An abstract block diagram of the media-player software

6.2 Recoverable Process in EventReactor

Defining and Publishing Events: As the concern AppProcess in Figure 7
shows, two events initiated and killed must be defined for each child process of
interest. Listing 13 shows the specification of the event type ChildProcessEv-
ent. Here, the attributes PID and parent represent the unique identifier of the
child process and its parent. The events MPCoreInitiated and MPCoreKilled

are defined of the type ChildProcessEvent to represent the initialization and
destruction of the child process MPCore. The other events of interest are de-
fined likewise. The media-player software is changed such that these events are
published when a child process is initiated or killed.

56 S. Malakuti and M. Akşit

1 eventtype ChildProcessEvent extends BaseEventType{
2 dynamiccontext:
3 PID : long;
4 parent : long;
5 }
6 event MPCoreInitiated instanceof ChildProcessEvent{}
7 event MPCoreKilled instanceof ChildProcessEvent{}

Listing 13. The specification of the event type ChildProcessEvent

In this example, the parent process is the only publisher of events of interest;
consequently, the runtime environment of EventReactor is executed in the parent
process by its main thread of execution. For each child process of interest, we
extend the media-player software with a class that defines two methods: one for
initiating the child process, and one for killing it. From within these methods,
the events that are defined for the child process are published to the runtime
environment of EventReactor. The media-player software is also changed such
that the parent process invokes these methods when needed. Listing 14 shows
an example of such a class for the child process MPCore, in which two methods
initMPCore and killMPCore are defined.

1 public class MPCoreClass{
2 void initMPCore() {
3 ...
4 int processID = \\ create the child process MPCore
5 ...
6 MPCoreInitiated event = new MPCoreInitiated();
7 event.initializeDynamicAttribute(”publisher”, parentPID);
8 event.initializeDynamicAttribute(”thread”,CurrentThread.ID);
9 event.initializeDynamicAttribute(”stacktrace”,CurrentThread.stacktrace);

10 event.initializeDynamicAttribute(”PID”,processID);
11 event.initializeDynamicAttribute(”parent”, parentPID);
12 EventReactor.publish(event);
13 }
14 void killMPCore(){...}
15 }

Listing 14. An excerpt of MPCoreClass

Defining Auxiliary Information: As Figure 7 shows, the concern AppProcess
has two attributes init and kill, which represent the methods that are used by
the media-player software to create or kill a child process, respectively. The nec-
essary information about these methods must also be defined in EventReactor.
The compiler of EventReactor is extendable with new kinds of specifications,
providing that suitable generators are provided to translate them into Prolog
facts and queries. Using the feature of EventReactor, we provide a specification
language to define the methods that must be invoked to construct or destroy a
process. Listing 15 shows an excerpt of such specifications.

Modularizing Domain-Specific Crosscutting RV Concerns 57

1 Method void initMPCore() In Class MPCoreClass
2 Method void killMPCore() In Class MPCoreClass

Listing 15. An excerpt of the specification to define methods

Defining Reactor Types: We provide React and RestartProcess, whose
specification is depicted in Listing 16. The sole function of React is to publish
a reactor event when it receives an event to process. The name of the reac-
tor event must be provided as an argument to the reactor type. The reactor
type RestartProcess restarts a group of child processes that is specified as
the parameter of the reactor type. This reactor type publishes the reactor event
succeeded of the type RecoveryResult if it successfully restarts a child process;
otherwise, it publishes the reactor event failed of the type RecoveryResult.

1 reactortype React {
2 reaction = ReactClass;
3 events = { parameters.name : ReactorEventType};
4 parameters = {name : String};
5 }
6 reactortype RestartProcess {
7 reaction = RestartProcessClass;
8 events = { succeeded : RecoveryResult, failed: RecoveryResult};
9 parameters = {processes : List};

10 }
Listing 16. The specification of the reactor types

Defining the Concern AppProcess: Listing 17 defines the event package
MPCoreProcessPackage in which necessary data are selected and event modules
are defined to represent the child process MPCore. In lines 3–8, we select the
events indicating construction and destruction of MPCore, and the methods
whose execution causes the construction and destruction of this child process.

Lines 10–12 define the event module MPCoreProcess to represent the child pro-
cessMPCore. Here, the events selected by e inited and e killed are grouped as
the input interface of the event module. The reactor chain AppProcessImpl takes
the selected events and methods as its arguments. As the output interface, the
event module publishes the events inited and killed. Since there is only one
child process as MPCore in the media-player software, the event module is spec-
ified to be instantiated in a singleton manner. The other child processes must be
defined likewise.

Listing 18 defines the reactor chain AppProcessImpl implementing the func-
tionality of the concern AppProcess. Here, the parameters pinit and pkill

represent the methods that create or kill a child process, respectively. The param-
eters pinited and pkilled represent the events indicating that a child process
is initiated or killed, respectively. The variables in the reactor chain correspond
to the attributes of AppProcess in Figure 7.

58 S. Malakuti and M. Akşit

1 eventpackage MPCoreProcessPackage{
2 selectors
3 e inited = {E | isEventWithName(E, ’MPCoreInitiated’)};
4 e killed = {E | isEventWithName(E, ’MPCoreKilled’)};
5 m init = {M | isMethodWithName (M, ’initMPCore’),
6 isClassWithName (C, ’MPCoreClass’), isDefinedIn(M, C)};
7 m kill = {M | isMethodWithName (M, ’killMPCore’),
8 isClassWithName (C, ’MPCoreClass’), isDefinedIn(M, C)};
9 eventmodules

10 MPCoreProcess := {e inited, e killed} <−
11 AppProcessImpl (m init, m kill, e inited, e killed) −>
12 {inited: ReactorEventType, killed: ReactorEventType};
13 }

Listing 17. Modular representation of MPCore

1 reactorchain AppProcessImpl (pinit:Method,pkill:Method,pinited:Event,pkilled:Event)
2 {
3 variables
4 init : Method = pinit;
5 kill : Method = pkill;
6 pid : Integer;
7 status : String;
8 reactors
9 reportInitiated : React = (event.name == pinited.name) =

10 { status = ’running’; pid = event.PID; reactor.name = ’inited’; };
11 reportKilled : React = (event.name == pkilled.name) =
12 { status = ’terminated’; pid = −1; reactor.name = ’killed’;};
13 }

Listing 18. Implementing AppProcesss

Lines 9–10 define the reactor reportInitiated of type React, which only
processes the input events represented by pinited. In the body of this reactor,
reactor chain’s attribute status is set to the value ‘‘running’’, pid is assigned
the unique identifier of the created process, and the value ‘‘inited’’ is specified
as the name of the event that will be published by the reactor. The reactor
reportKilled is defined analogously with the difference that no valid process
ID exists.

At runtime, when the child process MPCore is created in the media player
software, the event MPCoreInitiated is published. EventReactor will retrieve
the singleton instance of the AppProcessImpl reactor chain and pass the event
to the reactor ReportInitiated. Since the event is of interest, the reactor assigns
the specified values to the variables defined in the reactor chain, and publishes
the reactor event inited. Afterwards, the event MPCoreInitiated is received by
the reactor ReportKilled, but the reactor ignores it because it is not of interest.

Modularizing Domain-Specific Crosscutting RV Concerns 59

Defining the Concern RecoveryUnit : Listing 19 defines the event package
GRUnit in which an event module is defined to represent a recovery unit for the
global recovery of the media-player software. This recovery unit must group all
the child processes, and it must report a failure when the child process MPCore
is killed.

To this aim, lines 3–5 of Listing 19 select the event killed that is in the
output interface of the event module MPCoreProcess, and name it as e killed

in the event package. Lines 6–9 select the event modules MPCoreProcess, Audio,
Video, UserInterface. Lines 11–13 define the event module GlobalRU with the
implementation RecoveryUnitImpl. The list of selected child processes (repre-
sented as event modules) is passed to the reactor chain RecoveryUnitImpl. The
event module publishes a reactor event named failure as its output interface.
Listing 20 defines a recovery unit for the local recovery of the child process
UserInterface.

1 eventpackage GRUnit {
2 selectors
3 e killed = {E | isEventWithName(E, ’killed’),
4 isEventModuleWithName (EM, ’∗.MPCoreProcess’),
5 isPublishedBy(E, EM)};
6 em mpcore = {EM | isEventModuleWithName (EM, ’∗.MPCoreProcess’)};
7 em audio = ...
8 em video = ...
9 em ui = ...

10 eventmodules
11 GlobalRU := {e killed} <−
12 RecoveryUnitImpl ({em mpcore, em ui, em audio, em video})
13 −> {failure : ReactorEventType};
14 }

Listing 19. Modular representation of the global recovery unit

1 eventpackage LRUnit{
2 selectors
3 e uikilled = {E | isEventWithName(E, ’killed’),
4 isEventModuleWithName (EM, ’∗.UIProcess’),
5 isPublishedBy(E, EM)};
6 em ui = {EM | isEventModuleWithName (EM, ’∗.UIProcess’)};
7 eventmodules
8 LocalRU := {e uikilled} <− RecoveryUnitImpl({em ui})
9 −> {failure : ReactorEventType};

10 }
Listing 20. Modular representation of a local recovery unit

Listing 21 defines the reactor chain RecoveryUnitImpl to implement the func-
tionality of the concern RecoveryUnit. The reactor chain receives the list of cor-
responding child processes in its parameter processLst and stores them in the

60 S. Malakuti and M. Akşit

variable processes. The reactor reportFailure is defined of type React. The
name of the reactor event that will be published by reportFailure is specified
as ’failure’.

1 reactorchain RecoveryUnitImpl (processLst: List) {
2 variables
3 processes : List = processLst;
4 reactors
5 reportFailure : React = { reactor.name = ’failure’; };
6 }

Listing 21. Implementing RecoveryUnit

Defining the Concern ProcessManager : Listing 22 defines the event pack-
age ProcessManagers, in which event modules are defined to represent the con-
cern ProcessManager of Recoverable Process. Lines 3–10 select the recovery
units of interest and the events published by them. Lines 12–14 define the event
module RestartAll. It takes the events selected by e global failure as input
interface and binds the reactor chain ProcessManagerImpl to it. The value of the
attribute processes that is defined in the implementation of GlobalRU is passed
as the argument. As output, this event module publishes either succeeded or
failed. The event module RestartUI is defined likewise in lines 15–17.

1 eventpackage ProcessManagers{
2 selectors
3 em global = {EM | isEventModuleWithName (EM, ’∗.GlobalRU’)};
4 em local = {EM | isEventModuleWithName (EM, ’∗.LocalRU’)};
5 e global failure = {E | isEventWithName(E, ’failure’),
6 isEventModuleWithName (EM, ’∗.GlobalRU’),
7 isPublishedBy(E, EM)};
8 e local failure = {E | isEventWithName(E, ’failure’),
9 isEventModuleWithName (EM, ’∗.LocalRU’),

10 isPublishedBy(E, EM)};
11 eventmodules
12 RestartAll := {e global failure} <−
13 ProcessManagerImpl(em global.processes)
14 −> {succeeded: RecoveryResult, failed: RecoveryResult};
15 RestartUI := {e local failure} <−
16 ProcessManagerImpl(em local.processes)
17 −> {succeeded: RecoveryResult, failed: RecoveryResult};
18 }

Listing 22. Modular representation of process managers

Listing 23 implements the functionality to restart a set of child processes
that is specified by the parameter processes. At runtime, if the event failure
is published by the event module GlobalRU and/or LocalRU, the reactor Restart

Modularizing Domain-Specific Crosscutting RV Concerns 61

is informed of the event, and restarts the child processes that form the recovery
unit. For this matter, the reactor retrieves the necessary information about the
methods that kill and re-initialize a child process from the attributes init and
kill of the corresponding instance of AppProcessImpl, and invokes them.

1 reactorchain ProcessManagerImpl(processes: List){
2 reactors
3 restart : RestartProcess = {reactor.processes=processes};
4 }

Listing 23. Implementing ProcessManager

Defining an Application-Specific Composition Strategy: The event mod-
ules in Listings 19 and 20 both specify the child process UserInterface as an
element of their recovery unit. Assume that at runtime, the child process MP-
Core fails. As a consequence the global recovery kills and re-initializes the child
processes Audio, Video, UserInterface. When the child process UserInterface is
killed for the global recovery, the event failure, which is specified in lines 8–10
of Listing 22, is detected and the child process UserInterface is re-initialized for
the local recovery. As a result, there will be two processes running as UserInter-
face.

To overcome the above problem, we want to specify a composition of global
and local recovery with each other with the following semantics: If global re-
covery is being executed on a group of processes, these processes must not be
recovered locally. Listing 24 defines the event package RecoveryConstraint in
which this constraint is specified. The desired constraints among the event mod-
ules RestartAll and RestartUI are defined in the part constraints of the
event package. In line 6, the operator ignore, which is a predefined composition
operator in EventReactor, indicates that the event module em RestartUI must
ignore the events that are published during the execution of the event module
em RestartAll.

1 eventpackage RecoveryConstraint{
2 selectors
3 em restartAll = {EM | isEventModuleWithName (EM, ’∗.RestartAll’)};
4 em restartUI = {EM | isEventModuleWithName (EM, ’∗.RestartUI’)};
5 constraints
6 ignore(em restartUI, em restartAll);
7 }

Listing 24. Representing recovery constraints

More complex semantics can be defined as event modules, and dedicated
reactor types can be defined for their implementation. For example, assume
that if the global recovery fails to re-initialize UserInterface, the local recov-
ery must still try to do so. Listing 25 defines the event module Coordinator for

62 S. Malakuti and M. Akşit

this matter. As explained before, the reactor type RestartProcess publishes
the event succeeded if it successfully restarts a process; otherwise it publishes
the event failed. The name of the child process is maintained in the attribute
processName of these events. Lines 3–5 select the event failed that is published
by the event module RestartAll. Line 6 selects the event module UIProcess.
Line 8 defines the event module Coordinator with e failure as its input inter-
face, and the reactor chain CoordinatorImpl as its implementation. The argu-
ment ‘‘UserInterface’’ of the reactor chain indicates the name of the child
process of interest, and the argument em ui represents the child process.

Listing 26 defines the reactor chain CoordinatorImpl, which receives the
name of the child process of interest and a reference to the event module rep-
resenting it as its parameters. In the body of the reactor chain, we reuse the
reactor type RestartProcess to define the reactor restart. This reactor only
processes those events whose attribute processName is equal to failedProcess.
In the body of the reactor, the parameter process is assigned to the parameter
processes of the reactor. At runtime, if the event module RestartAll pub-
lishes the event failed for the child process UserInterface, the event module
coordinator will be instantiated, and the reactor chain CoordinatorImpl will
restart the child process.

1 eventpackage Coordination{
2 selectors
3 e failure = {E | isEventWithName (E, ’failed’),
4 isEventModuleWithName (EM, ’∗.RestartAll’),
5 isPublishedBy(E, EM)};
6 em ui = {EM | isEventModuleWithName (EM, ’∗.UIProcess’)};
7 eventmodules
8 Coordinator := {e failure}<− CoordinatorImpl (’UserInterface’, em ui)−>{ };
9 }
Listing 25. Modular representation of the application-specific composition strategy

1 reactorchain CoordinatorImpl (failedProcess, process) {
2 reactors
3 restart : RestartProcess = (event.processName ==failedProcess)
4 {reactor.processes = {process};}
5 }

Listing 26. Implementing the application-specific composition strategy

7 Performance Evaluation

Inevitably, EventReactor imposes overhead on the base program that is interact-
ing with it. The sources of this overhead are mainly: a) the operation to match
a published event with an event defined in EventReactor, b) the operation to
retrieve the selectors that match the event, c) the operation to lookup the cor-
responding instance of event modules or instantiate the event module if there is

Modularizing Domain-Specific Crosscutting RV Concerns 63

no instance available, and d) the operation to process the event by the corre-
sponding reactors. As explained earlier in this section, in the current version of
EventReactor, selectors can only query events based on their static attributes.
Since, the values of these attributes are known at compile time, the matching
between selectors and events is performed at compile time, and the compiler pro-
vides the information about this match for the runtime environment. This helps
to reduce the runtime overhead imposed by EventReactor. The time to process
the event by reactors depends on the complexity of the function performed by
the reactors.

To evaluate the runtime overhead added by EventReactor, we ran two example
scenarios on a 2.00 GHz Intel Core 2, with 3GB RAM running the JVM version
1.6.0 under Mac OS X 10.6.8. The first scenario illustrates how the runtime
overhead varies if the number of events to be processed varies. We assume that
there is one thread of execution in which the events login, save, open, write,
close, and logout are published and their order of occurrence is verified using
the event module Verification. We assume that the number of times that this
sequence of events occurs varies from 1 to 500 times, which means publishing 6
to 30,000 events. We executed this scenario 6 times; to avoid the initialization
overhead that is imposed in the first iteration, we discarded the results of the
first execution. Figure 9 shows the average measured time to process the events,
which has a linear growth with the goodness of fit R2 = 0.99964. Here, the X-axis
and Y-axis show the number of events and the processing time in milliseconds,
respectively.

Fig. 9. The runtime overhead in processing events in a single-threaded case

In our running example, distinct instances of the event module Verification
must be created for each thread of execution in which the specified events are
published. To measure the overhead imposed to lookup instances of this event
module, in the second scenario, we assume that there are multiple threads of
executions in which the aforementioned sequence of events occurs 500 times.
Again, we executed this scenario 6 times and show the average of the last 5 runs

64 S. Malakuti and M. Akşit

Fig. 10. The runtime overhead in processing events in a multi-threaded case

in Figure 10. Here, the X-axis and Y-axis show the number of threads and
the processing time in milliseconds, respectively. This measurement shows that
the time for processing the events is also linear in the number of threads,
with the goodness of fit R2 = 0.99527.

8 Discussion

As for the theoretical aspects of runtime verification, it is important to provide
suitable means for industrial programmers to implement and adopt RV tech-
niques. To this aim, various RV DSLs have been introduced in the literature.
To implement RV techniques at an abstraction level that is close to the domain
of interest, and to increase the comprehensibility and the reusability of imple-
mentations, we claimed that the abstractness, modularity, and compose-ability
requirements must be fulfilled in the implementations. According to the com-
parison provided in this paper, the current RV DSLs fall short in this matter.

To prevent designing and implementing an RV DSL from scratch, this paper
discussed that there is an inevitable need for a language composition framework,
which provides the necessary means to define new DSLs, and to implement
domain-specific crosscutting concerns (e.g. the RV concerns) in a modular and
compose-able way. This paper identified four requirements that must be fulfilled
by such a framework, explained Event Composition Model as a base model
for such a framework, and discussed its implementation in the EventReactor
language.

In Event Composition Model, event modules and events are means for the
modularization and composition of concerns, respectively. A set of predefined
event types and events is provided, where user-defined ones are also supported.
This has been shown in Listing 4 and 13. Necessary information can be ab-
stracted from the publisher via event attributes, which are also programmable.
Individual event types and events are defined modularly; this facilitates defining
reusable libraries of them.

Primitive information can be observed and abstracted from the base software
through Prolog queries. To increase the reusability of specifications, these queries
can be defined in separate event packages. More complex observation semantics

Modularizing Domain-Specific Crosscutting RV Concerns 65

can be defined over such primitive information via event modules. Since events
can be observed from the base software implemented in various languages, it is
possible to define the specifications of RV concerns abstractly from the imple-
mentation of the base software in a modular way. This is shown in Listings 6
and 7.

We represented that individual verification concerns and actions can be pro-
grammed and modularized via event modules. By means of events, these modules
can flexibly be composed and their composition constraints can be programmed
and modularized as event modules; this is shown for example in Listing 25. In
both examples in this paper, we showed that due to the uniform representa-
tion of RV concerns as event modules, there is no limit in the number of levels
in the event module hierarchy. This provides the necessary basis to implement
hierarchal adaptive techniques.

Where it is possible to define libraries of reusable event modules, the reusabil-
ity is increased further by separating the specification of reactor chains from
event modules. This facilitates defining libraries of reactor chains and reusing
them as the implementation of various event modules; Listing 17 shows an ex-
ample.

A finer-grained modularity is achieved by means of domain-specific reactor
types, which modularize the implementation of individual verification concerns
and/or actions. Listings 23 and 26 show an example reuse of the reactor type
RestartProcess. The reusability is increased further by supporting parametric
reactor chains and reactor types.

The kinds of actions that can/must be applied at runtime is being studied in
both runtime verification [29] and self-adaptive communities [30]. The kinds of
actions cannot be anticipated, and are in general domain-specific. For example,
in [29], a study is performed on the security domain, which results in four kinds
of automaton named as: truncation automata which can only terminate appli-
cations, suppression automata which can terminate applications and suppress
individual actions, insertion automata which can terminate and insert, and edit
automata which combines the powers of suppression and insertion automata. In
the domain of energy optimization, others kinds of actions such as changing the
operational states of hardware devices can be considered.

Each of the above-mentioned actions require a dedicated focus, to identify
their contextual interaction and algorithms; this is out of scope of this paper.
Nevertheless, by means of our illustrative examples, we discussed how the ac-
tions that are typically considered by the current RV DSLs can be programmed
in EventReactor via reactor types. For example, the reactor type ForceReturn

implements the functionality to suppress the invocation or execution of an in-
dividual method. The reactor type RestartProcess can be regarded as an
implementation of the edit automata, in which the execution of a child pro-
cess is suppressed by destroying the process, and is afterwards restarted by
invoking a method. The necessary contextual information can be specified and
queries via event attributes, auxiliary information, and/or via event modules.
For example, as Listing 22 shows, the necessary information about the child

66 S. Malakuti and M. Akşit

processed that must be restarted is provided as arguments to the reactor chain
ProcessManagerImpl; these arguments refer to the instances of the event module
AppProcess representing the child processes. The necessary information about
the methods that must be invoked for the construction and destruction of the
child processes, is defined as the auxiliary information in Listing 15, and is
maintained in the variables init and kill (see Listing 18) of the corresponding
instances of AppProcess.

9 Future Work

The EventReactor language provides dedicated constructs to implement the con-
cepts of Event Composition Model. In the version presented in this paper, events
can be queried based on their static attributes. Nevertheless, in the same way,
it is possible to extend the query language to facilitate event selection based on
the dynamic attributes. Supporting this feature while maintaining low runtime
overhead is our future direction.

Runtime verification of parametric properties is in general a challenging is-
sue [13, 4]. There are various strategies to deal with parameter binding in the
specifications [13]; one example is to associate individual instances of verification
modules to each individual group of correlated events. The correlation informa-
tion can be abstracted from the base software via the attributes of the events. By
means of programmable event attributes and programmable instantiation strat-
egy for events modules, EventReactor provides the necessary basis to support
parametric properties. For example, one may define a dedicated attribute in the
events of interest, which has the same value in each set of correlated events. Ac-
cordingly, as for the instantiation strategy of the event module, one can specify
that distinct instances of the event module must be created for each distinct
value of this attribute.

In the literature, various kinds of correlations are studied, whose detection
can be automated by the compiler. Examples are the correlation between a con-
structor and constructed objects, the correlation between a composite object
and its part objects. As future work, we would like to extend both the event
specification language and the compiler of EventReactor to express these corre-
lations and automate their detection. In addition, we would like to evaluate the
suitability of EventReactor for verifying a set of parametric properties, which
are studied in the literature.

Since there is an analogy between the concepts of Event Composition Model
and the ones in the aspect-oriented languages, the EventReactor language can be
regarded as a language composition framework for aspect-oriented DSLs. There
are already several aspect-oriented language composition frameworks [31, 32],
with the similar goals as Event Composition Model. However, they fall short in
supporting some or all of our requirements open-ended kinds of events, open-
ended kinds of DSLs and base languages, and open-ended kinds of composition
strategies. Consequently, the abstractness, modularity, and compose-ability re-
quirement cannot be achieved in the implementation of RV concerns through

Modularizing Domain-Specific Crosscutting RV Concerns 67

these frameworks. As future work, we will investigate more along this line, and
employ Event Composition Model and EventReactor as the base for implement-
ing aspect-oriented DSLs.

The set of predefined events, which can automatically be detected in the
base software, is currently limited to method-based events. Some aspect-oriented
languages already facilitate detecting a larger set of events, such as occurrence
of exception. The same techniques can be adopted in EventReactor language,
which we consider as future work.

Event Composition Model does not fix possible implementation of its con-
cepts. For example, in the current implement of EventReactor, reactors are
composed with each other within a reactor chain in a sequential manner. A
language may also implement parallel composition of reactors. Likewise, a lan-
guage may support more complex predicate-based instantiation strategy of event
modules. As future work, we would like to extend EventReactor to support other
alternative implementation of the concepts of Event Composition Model.

We would also like to adopt the EventReactor language to implement other
kinds of techniques, such as self-adaptive software systems, which have sim-
ilar characteristics as RV techniques. Implementing energy-optimization con-
cerns [33] and necessary adaptation actions are our current focus.

Acknowledgements. The authors thank Dr. Christoph Bockisch and the
anonymous reviewers for their valuable feedbacks on this paper.

References

1. Khurshid, S., Sen, K. (eds.): RV 2011. LNCS, vol. 7186. Springer, Heidelberg (2012)
2. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier,

J.M., Irwin, J.: Aspect-Oriented Programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

3. Easwaran, A., Kannan, S., Sokolsky, O.: Steering of Discrete Event Systems: Con-
trol Theory Approach. Electron. Notes Theor. Comput. Sci. 144, 21–39 (2006)

4. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An Overview of the MOP
Runtime Verification Framework. International Journal on Software Techniques for
Technology Transfer, 249–289 (2011)

5. Havelund, K.: Runtime verification of C programs. In: Suzuki, K., Higashino, T.,
Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 7–22.
Springer, Heidelberg (2008)

6. Bartetzko, D., Fischer, C., Moller, M., Wehrheim, H.: Jass - Java with Assertions.
Electronic Notes in Theoretical Computer Science 55(2), 1–15 (2001)

7. Drusinsky, D.: The Temporal Rover and the ATG Rover. In: Havelund, K., Penix,
J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg
(2000)

8. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview, pp. 49–69. Springer (2004)

9. Rosenblum, D.S.: Towards a Method of Programming with Assertions. In: Pro-
ceedings of the 14th International Conference on Software Engineering, ICSE 1992,
Melbourne, Australia, pp. 92–104. ACM (1992)

68 S. Malakuti and M. Akşit

10. Malakuti, S., Bockisch, C., Akşit, M.: Applying the Composition Filter Model for
Runtime Verification of Multiple-Language Software. In: Proceedings of the 20th
IEEE International Conference on Software Reliability Engineering, ISSRE 2009,
pp. 31–40. IEEE Press, Piscataway (2009)

11. Martin, M., Livshits, B., Lam, M.S.: Finding Application Errors and Security Flaws
Using PQL: A Program Query Language. SIGPLAN Not. 40, 365–383 (2005)

12. Bauer, L., Ligatti, J., Walker, D.: Composing Expressive Runtime Security Policies.
ACM Trans. Softw. Eng. Methodol. 18 (2009)

13. Pavel, C.A., Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S.,
Moor, O.D., Sereni, D., Sittampalam, G., Tibble, J.: Adding Trace Matching with
Free Variables to AspectJ. In: OOPSLA, pp. 345–364 (2005)

14. Barringer, H., Havelund, K.: TraceContract: A scala DSL for trace analysis.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011)

15. Malakuti, S.: Event Composition Model: Achieving Naturalness in Runtime En-
forcement. PhD thesis, University of Twente (2011)

16. Malakuti, S., Akşit, M.: Evolution of Composition Filters to Event Composition.
In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC
2012, pp. 1850–1857. ACM (2012)

17. Parnas, D.L.: On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM 15, 1053–1058 (1972)

18. Akşit, M.: Separation and Composition of Concerns. ACM Computing Surveys 28
(1996)

19. Sozer, H., Abreu, R., Akşit, M., van Gemund, A.J.: Increasing System Availability
with Local Recovery Based on Fault Localization. In: International Conference on
Quality Software, pp. 276–281 (2010)

20. Sozer, H.: Architecting Fault-Tolerant Software Systems. PhD thesis, University of
Twente (2009)

21. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
22. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An

overview of aspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072,
pp. 327–353. Springer, Heidelberg (2001)

23. AspectC, http://www.cs.ubc.ca/labs/spl/projects/aspectc.html
24. Steimann, F., Pawlitzki, T., Apel, S., Kästner, C.: Types and Modularity for Im-

plicit Invocation with Implicit Announcement. ACM Trans. Softw. Eng. Methodol.
20(1), 1:1–1:43 (2010)

25. de Roo, A., Hendriks, M., Havinga, W., Durr, P., Bergmans, L.: Compose*: A
Language- and Platform-Independent Aspect Compiler for Composition Filters. In:
International Workshop on Academic Software Development Tools and Techniques
(2008)

26. Hopcroft, J.E., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley (2000)

27. Malakuti, S., Akşit, M.: Event-Based Modularization of Reactive Systems. In: Con-
current Objects and Beyond. LNCS (2013) (to appear)

28. Riordan, M.: Designing Relational Database Systems. Microsoft Press (1999)
29. Ligatti, J., Bauer, L., Walker, D.: Edit Automata: Enforcement Mechanisms for

Run-Time Security Policies. International Journal of Information Security 4, 2–16
(2005), doi:10.1007/s10207-004-0046-8

30. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.): Soft-
ware Engineering for Self-Adaptive Systems. LNCS, vol. 5525. Springer, Heidelberg
(2009)

http://www.cs.ubc.ca/labs/spl/projects/aspectc.html

Modularizing Domain-Specific Crosscutting RV Concerns 69

31. Havinga, W., Bergmans, L., Akşit, M.: Prototyping and Composing Aspect Lan-
guages: Using an Aspect Interpreter Framework. In: Vitek, J. (ed.) ECOOP 2008.
LNCS, vol. 5142, pp. 180–206. Springer, Heidelberg (2008)

32. Tanter, É.: An Extensible Kernel Language for AOP. In: Proceedings of the Work-
shop on Open and Dynamic Aspect Languages (ODAL) (2006)

33. Malakuti, S., te Brinke, S., Bergmans, L., Bockisch, C.: Towards Modular Resource-
Aware Applications. In: Proceedings of the 3rd International Workshop on Vari-
ability & Composition (VariComp 2012), pp. 13–17. ACM, New York (2012)

Method Slots: Supporting Methods, Events,

and Advices by a Single Language Construct

YungYu Zhuang and Shigeru Chiba

The University of Tokyo
http://www.csg.ci.i.u-tokyo.ac.jp/

Abstract. To simplify the constructs that programmers have to learn
for using paradigms, we extend methods to a new language construct, a
method slot, to support both the event-handler paradigm and the aspect
paradigm. A method slot is an object’s property that can keep more
than one function closure and be called like a method. We also propose
a Java-based language, DominoJ, which replaces methods in Java with
method slots, and explains the behavior ofmethod slots and the operators.
Then we evaluate the coverage of expressive ability of method slots by
comparing DominoJ with other languages in detail. The feasibility of
method slots is shown as well by implementing a prototype compiler and
running a preliminary microbenchmark for it.

Keywords: aspect-oriented programming, event-driven programming.

1 Introduction

The event-handler paradigm has been recognized as a useful mechanism in a
number of domains such as user interface, embedded systems, databases [33],
and distributed programming. The basic idea of the event-handler paradigm is
to register an action that is automatically executed when something happens. At
first it was introduced as techniques and libraries [7,29,27] rather than supported
at language level. Recently, supporting it at language level is a trend since a
technique such as the Observer pattern [7] cannot satisfy programmers’ need.
The code for event triggers and observer management scatters everywhere. To
address the issues, supporting events by a language construct is proposed in a
number of languages [17,3,22,6,13,9]. Implicit invocation languages [8] might be
classified into this category.

On the other hand, the aspect paradigm [14] is proposed to resolve crosscut-
ting concerns, which cannot be modularized by existing paradigms such as object
orientation. Although the aspect paradigm and the event-handler paradigm are
designed for different scenarios, the constructs introduced for them are similar
and can work as each other from a certain point of view.

In order to simplify the language constructs programmers have to learn, we
borrow the idea of slots from Self [31] to extend the method paradigm in Java. In
Self, an object consists only of slots [24], which may contain either a value or a
method. In other words, there is no difference between fields and methods since a

S. Chiba et al. (Eds.): Transactions on AOSD XI, LNCS 8400, pp. 70–108, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Supporting Methods, Events, and Advices by a Single Language Construct 71

method is also an object and thus can be kept in a field. We extend the slot and
bring it to Java-like languages by proposing a new language construct named
method slot. A method slot is an object’s property that can keep more than
one closure at the same time. We also present a Java-based language named
DominoJ, where all methods in plain Java are replaced with method slots, to
support both the event-handler paradigm and the aspect paradigm.

Our contributions presented in this paper1 are two fold. First, we propose a
new language construct, a method slot, to extend the method paradigm. Sec-
ond, we introduce method slots to a Java-based language named DominoJ, and
demonstrate how to use for the event-handler paradigm and the aspect paradigm.

2 Motivation

With the evolution of software, more and more programming paradigms are de-
veloped for various situations. During programmers’ life, they are always learn-
ing new paradigms and thinking about which ones are most suitable for the
job at hand. For example, the event-handler paradigm is widely adopted by
GUI frameworks [32,18,25]. When we write GUI programs with modern GUI
libraries, we usually have to write a number of handlers for different types of
events. The AWT [25] of Java is a typical example. If we want to do something
for mouse events occurring on a button, we have to prepare a mouse listener
that contains handler methods for those mouse events, and register the listener
to the specified button object. A GUI program can be regarded as a composite
of visual components, events, and handlers. The visual components and han-
dlers are main logic, and events are used for connecting them. Indeed we have
been familiar with using the event-handler paradigm for GUI programs, but it
is far from our first “hello world” program. We are told to carefully consider the
total execution order when users’ input is read. If the event-handler paradigm
is used, we can focus on the reaction to users’ input rather than the order of
users’ input. Whether the mouse is clicked first or not does not matter. Another
example is the aspect paradigm. Aspect-oriented programming is developed to
modularize crosscutting concerns such as logging, which cannot be modularized
by using only object-oriented programming. With the aspect paradigm, cross-
cutting concerns can be gathered up in an aspect by advices. At the same time,
programmers cannot check only one place for understanding the behavior of a
method call since advices in other places are possibly woven together. It also
takes effort to get familiar with the aspect paradigm since it is quite different
from our other programming experience.

To use a paradigm, just learning its concept is not enough. After program-
mers got the idea of a paradigm, they still have to learn new language constructs
for the paradigm. Some paradigms like the aspect paradigm are supported with
dedicated language constructs since the beginning because they cannot be rep-
resented well by existing syntax. On the other hand, although other paradigms
like the event-handler paradigm have been introduced at library level for a long

1 This paper is an extension to the one we presented at Modularity:AOSD2013.

72 Y. Zhuang and S. Chiba

time, there are still good reasons for reintroducing them with direct support at
language level [17,22,9]. Maybe one reason is that events are complicated in par-
ticular when we are not users but designers of a library. Besides GUI libraries, the
event-handler paradigm is also implemented in a number of libraries for several
domains such as simple API for XML [30] and asynchronous socket program-
ming. Some techniques such as the Observer pattern [7] used in those libraries
cannot satisfy the needs of defining events and tend to cause code scattering and
tangling. Supporting paradigms by language constructs is a trend since it makes
code more clear and reusable. Furthermore, a language supported paradigm may
have associated static checks.

However, learning language constructs for a paradigm is never easy, especially
for powerful paradigms like the aspect paradigm. Moreover, the syntax is usually
hard to share with other paradigms. Even though programmers got familiar with
the language constructs for a paradigm, they still have to learn new ones for
another paradigm from the beginning. Given that all language constructs we
need can be put into a language together, they look too complex and redundant.
How to pick up the best language to implement a program with all the required
paradigms is always a difficult issue. This motivates us to find out an easy,
simple, and generic language construct supporting multiple paradigms.

If we look into the language constructs for the event-handler paradigm and
the aspect paradigm, there is a notable similarity between them. Both of them
introduce a way to define the effect of calling specified methods. The differences
are where the reactions are and what the reactions are targeted at. Listing 1
is a piece of code in EScala2 [9], which is a typical event mechanism, showing
how to define a moved event for the setPosition method in the Shape class. Here
we specify that refresh method on a Display object should be executed after
setPosition method is executed. As shown in Listing 2, the reaction can also be
represented in AspectJ [26], the most well-known aspect-oriented language.

By comparing the two pieces of code, we can find that pointcuts are close to
events and advices can work as the += operator for handlers. They both refresh
the display when the specified method is executed, but there is a significant dif-
ference between them. In EScala version, one Display object is mapped to one
Shape object and the refresh action is performed within the Shape object. On the
other hand, in AspectJ version there is only one Display object in the whole pro-
gram and the refresh action is in UpdateDisplay, which is completely separated
from Display and Shape. From the viewpoint of the event-handler paradigm,
such behavior is an interaction between objects, so the reaction is defined in-
side the class and targeted at object instances; the encapsulation is preserved.
From the viewpoint of the aspect paradigm, it is important to extract the re-
action for the obliviousness since it is a different concern cutting across several
classes. So the reactions are grouped into a separate construct and targeted
at the class. Although the two paradigms are developed from different points
of view, the language constructs used for them are quite similar. Furthermore,
both the paradigms depend on the most basic paradigm, the method paradigm,

2 The syntax follows the example in EScala 0.3 distribution.

Supporting Methods, Events, and Advices by a Single Language Construct 73

Listing 1. Defining a reaction in EScala

1 class Display() {
2 def refresh() {
3 System.out.println("display is refreshed.")
4 }
5 }
6 class Shape(d: Display) {
7 var left = 0; var top = 0
8 def setPosition(x: Int, y: Int) {
9 left = x; top = y

10 }
11 evt moved[Unit] = afterExec(setPosition)
12 moved += d.refresh
13 }
14 object Test {
15 def main(args: Array[String]) {
16 val d = new Display()
17 val s = new Shape(d)
18 s.setPosition(0, 0)
19 }
20 }

since both events and pointcuts cause the execution of a method-like construct.
This observation led us to extend the method paradigm to support both the
event-handler paradigm and the aspect paradigm. To a programmer, there are
too many similar language constructs for different paradigms to learn, so we
assume that the integration and simplification are always worth doing.

3 DominoJ

We extend methods to a new language construct named a method slot, to sup-
port methods, events, and advices. We also show our prototype language named
DominoJ, which is a Java-based language supporting method slots and fully
compatible with plain Java.

3.1 Method Slots

Although methods and fields are different constructs in several languages such
as C++ and Java, there is no difference between them in other languages like
JavaScript. In JavaScript, a method on an object (strictly speaking, a function
closure) is kept and used as other fields. Figure 1 shows a Shape object s, which
has two fields: an integer field named x and a function field named setX. We use
the following notation to represent a closure:
〈return type〉 (〈parameter list〉) -> { 〈statements〉 }

| 〈variable binding list〉
where the variable binding list binds nonlocal variables in the closure. The value
stored in field setX is a function closure whose return type and parameter type
are void and (int), respectively. The variable this used in the closure is bound to s
given by the execution context. When we query the field by s.setX, the function

74 Y. Zhuang and S. Chiba

Listing 2. Defining a reaction in AspectJ

1 public class Display {
2 public static void refresh() {
3 System.out.println("display is refreshed.");
4 }
5 }
6 public class Shape {
7 private int left = 0; private int top = 0;
8 public void setPosition(int x, int y) {
9 left = x; top = y;

10 }
11 }
12 public aspect UpdateDisplay {
13 after() returning:
14 execution(void Shape.setPosition(int, int)) {
15 Display.refresh();
16 }
17 }
18 public class Test {
19 public static void main(String[] args) {
20 Shape s = new Shape();
21 s.setPosition(0, 0);
22 }
23 }

������������	
�� ����	

��

������ �	��
void (int nx) -> { this.x = nx; }

| this = s

Fig. 1. In JavaScript, both an integer and a function are fields on an object

closure is returned. When we call the field by s.setX(10), the function closure is
executed.

We extend this field in JavaScript to keep an array of function closures rather
than just one function closure. As shown in Figure 2, the extended field named
a method slot can keep more than one function closure. DominoJ replaces a
method with a method slot in plain Java. All method-like declarations and calls
are referred to method slots. A method slot is a closure array and is an object’s
property like a field. Like functions or other fields, method slots are typed and
statically specified when they are declared. The type of method slot includes its
return type and parameter types. All closures in it must be declared with the
same type.

Listing 3 shows a piece of sample code in DominoJ. It looks like plain Java,
but here setX is a method slot rather than a method. The syntax of method slot
declaration is shown below:

〈modifier〉* 〈return type〉 〈identifier〉 “(” 〈parameter list〉? “)” 〈throws〉?
(〈default closure〉 | “;”)

Supporting Methods, Events, and Advices by a Single Language Construct 75

������������	
�� ����	

��

�������	�� �	��
void (int nx) -> { target.update(nx); }

| target = o

void (int nx) -> { this.x = nx; }
| this = s

Fig. 2. A method slot is an extended field that can keep more than one function closure

The default closure is similar to the method body in Java except it is optional.
The modifiers can be public, protected, or private for specifying the visibility of the
method slot. This ensures that the access to the method slot can be controlled
as the methods in plain Java. The modifier static can be specified as well. Such
static method slots are kept on the class objects so can be referred using the
class name like calling the static method in plain Java. The modifier abstract
can also be used to specify that the method slot should be implemented by the
subclasses. A method slot can be another kind of “abstract” by being declared
without a default closure:

public void setX(int nx);

Unlike the modifier abstract, this declaration means that the method slot is
an empty field and its behavior depends on the closures added to it later. In
Listing 3, the method slot setX has a default closure, so the following function
closure will be created and inserted into setX automatically when a Shape object,
s, is instantiated:

void (int nx) -> { this.x = nx; }

| this = s

Now there is only one closure in the method slot setX. If we add another closure
to setX, the object may look like the s object in Figure 2. How to add such a
closure to a method slot will be demonstrated in the next subsection.

A method slot can also be declared with the modifier final to specify that
it cannot be overridden in the subclasses. Although fields are never overridden
in either prototype-based languages like JavaScript or class-based languages like
Java, method slots can be overridden in subclasses. Declaring a method slot with
the same signature overrides but does not hide the one in the superclass. When
a method slot is queried or called on an object, the overriding method slot is
selected according to the actual type of the object. It is also possible to access
the overridden method slot in the superclass through the keyword super. Note
that method slots must be declared within a class and cannot be declared as
local variables. Thus the usage of this and super in the default closure are the
same as in a Java method, which refer to the owning class and its superclass,
respectively. Constructors are method slots as well, and super() is allowed since
it calls the overridden constructor.

76 Y. Zhuang and S. Chiba

Listing 3. A sample code in DominoJ

1 public class Shape {
2 private int x;
3 public void setX(int nx) {
4 // default closure
5 this.x = nx;
6 }
7 }
8 public class Observer {
9 private int count;

10 public void update(int i) {
11 this.count++;
12 }
13 public static void main(String[] args) {
14 Shape s = new Shape();
15 Observer o = new Observer();
16 s.setX += o.update;
17 s.setX(10);
18 }
19 }

Listing 4. The algorithm of calling a method slot

1 ; call a methodslot
2 (define (call-methodslot object slotname args)
3 (let* ((methodslot (get-field object slotname (get-type args)))
4 (return_type (get-return-type methodslot)))
5 (let execute-closures ((closures (get-closures methodslot))
6 ($retval (cond ((boolean? return_type) #f)
7 ((number? return_type) 0)
8 (else ’()))))
9 (if (null? closures)

10 $retval
11 (let (($retval (execute-a-closure (car closures) args)))
12 (execute-closures (cdr closures) $retval))))))

When a method slot is called by () operator, the closures in it are executed
in order. The arguments given to the method slot are also passed to its closures.
The return value returned by the last closure is passed to the caller (if it is
not the void type). A closure can use a keyword $retval to get the return value
returned by the preceding closure in the method slot. If the closure is the first
one in the method slot, $retval is given by a default value (0, false, or null). If the
method slot is empty, the caller will get the default value and no exception is
thrown. It is reasonable since the empty state is not abnormal for an array and
just means that nothing should be done for the call at that time. The behavior
of a method slot can be dynamically modified at runtime, while still statically
typed and checked at compile time. How to call a method slot is described in
Scheme as shown in Listing 4.

Supporting Methods, Events, and Advices by a Single Language Construct 77

Table 1. The four operators for method slots

Operator Description

= add a new function closure and remove the others from the method slot.
^= insert a new function closure at the beginning of the array.
+= append a new function closure to the end of the array.
-= remove function closures calling the method slot at the right-hand side.

3.2 Operators for Method Slots

DominoJ provides four operators for manipulating the closures in a method slot:
=, ^=, +=, and -=, as shown in Table 1. These operators are borrowed from C#
and EScala, and are the only different syntax from Java. It is possible to add
and remove a function closure to/from a method slot at runtime.

Their operands at both sides are method slots sharing the same type. Those
operators except -= create a new function closure calling the method slot at the
right-hand side, and add it to the method slot at the left-hand side. The method
slot called by the function closure will get the same arguments which are given
to the method slot owning the function closure. In other words, a reference to
the method slot at the right-hand side is created and added to the method slot
at the left-hand side. The syntax of using the operators to bind two method slots
is shown below:

〈expr〉“.”〈methodslot〉 〈operator〉 〈expr〉“.”〈methodslot〉“;”
where 〈expr〉 can be any Java expression returning an object, or a class name if
the following 〈methodslot〉 is static. When the binding statement is executed at
runtime, the 〈expr〉 at both sides will be evaluated according to current execution
context and then given to the operator. In other words, the 〈expr〉 at the right-
hand side is also determined at the time of binding rather than the time of
calling. The object returned by the 〈expr〉 at the left-hand side helps to find out
the method slot at the left-hand side, where we want to add or remove the new
function closure. The object got by evaluating the 〈expr〉 at the right-hand side
is attached to the new function closure as a variable target, which is given to the
new function closure along with the execution context at the time of calling. For
example, the binding statement in Line 16 of Listing 3 creates a new function
closure calling the method slot update on the object o by giving target = o, and
appends it to the method slot setX on the object s.

void (int nx) -> { target.update(nx); }

| target = o

Then the status of the s object will be the same as the one shown in Figure 2.
When the slot setX on the object s is called as Line 17 in Listing 3, the default
closure and the slot update on the object o are sequentially called with the same
argument: 10. Note that all closures in a method slot get the same execution
context except the side effects caused by the preceding closures in the array of
that method slot, where this refers to the object owning the method slot, and
therefore, the callee method slot in target must be accessible from the caller

78 Y. Zhuang and S. Chiba

Listing 5. The algorithms of the four operators

1 ; operator =
2 (define (assign-closure methodslot object slotname)
3 (let ((closure ‘(call-methodslot ,object ,slotname args)))
4 (set-closures methodslot closure)))
5
6 ; operator ˆ=
7 (define (insert-closure methodslot object slotname)
8 (let ((closure ‘(call-methodslot ,object ,slotname args)))
9 (set-closures methodslot (append closure (get-closures methodslot)))))

10
11 ; operator +=
12 (define (append-closure methodslot object slotname)
13 (let ((closure ‘(call-methodslot ,object ,slotname args)))
14 (set-closures methodslot (append (get-closures methodslot) closure))))
15
16 ; operator -=
17 (define (remove-closure methodslot object slotname)
18 (let ((closure ‘(call-methodslot ,object ,slotname args)))
19 (set-closures methodslot (remove (lambda (x) (equal? x closure))
20 (get-closures methodslot)))))

method slot in this. With proper modifiers, a method slot cannot call and be
called without any limitation. The behavior avoids breaking the encapsulation
in object-oriented programming.

The -= operator removes function closures calling the method slot at the
right-hand side from the method slot at the left-hand side. It is also possible to
remove the default closure from a slot by specifying the same method slots at
both sides:

s.setX -= s.setX;

Operators manipulate the default closure only when the method slots at both
sides are the same one, otherwise operators regard the right-hand side as a
closure calling that method slot. Note that the default closure is never destroyed
even when it is removed. The algorithms of the four operators are described in
Scheme in Listing 5.

Although a method slot at the right operand of the operators such as += must
have the same type that the left operand has, there is an exception. If a method
slot takes only one parameter of the Object[] type and its return type is Object or
void, then it can be used as the right operand whatever the type of the method
slot at the left operand is. Such a method slot can be used as a generic method
slot. The type conversion when arguments are passed is implicitly performed.
Listing 6 shows how to check the type of two method slots in Scheme.

DominoJ allows binding method slots to constructors by specifying class name
instead of the object reference and giving the keyword constructor as the method
slot at the left-hand side. For example,

Shape.constructor += Observer.init;

means that creating a closure calling the static method slot init on the class
object Observer and appending to the constructor of Shape. Here the return

Supporting Methods, Events, and Advices by a Single Language Construct 79

Listing 6. The algorithm of checking the types

1 ; is same type
2 (define (same-type? l_methodslot r_methodslot)
3 (and (equal? (get-return-type l_methodslot)
4 (get-return-type r_methodslot))
5 (equal? (get-parameter-types l_methodslot)
6 (get-parameter-types r_methodslot))))
7
8 ; is generic type
9 (define (generic-type? l_methodslot r_methodslot)

10 (and (equal? (get-parameter-types r_methodslot)
11 "Object[]")
12 (if (equal? (get-return-type l_methodslot)
13 "void")
14 (equal? (get-return-type r_methodslot)
15 "void")
16 (equal? (get-return-type r_methodslot)
17 "Object"))))

type of init should be void, and the parameter types must be the same as the
constructor. Note that the closures appended to the constructor cannot block the
object creation. This design ensures that the clients will not get an unexpected
object, but additional objects can be created and bound to the new object. For
example, in the default closure of init, an instance of Observer can be created
and its update can be bound to the method slot setX of the new Shape object.
Using constructor at the right-hand side is not allowed.

Since Java supports method overloading, some readers might think the syntax
of method slots have ambiguity but that is not true. For example, the following
expression does not specify parameter types:

s.setX += o.update;

If setX and/or update are overloaded, += operator is applied to all possible com-
binations of setX and update. Suppose that there are setX(int), setX(String),
update(int), and update(String). += operator adds update(int) to setX(int), up-
date(String) to setX(String). If there is update(Object[]), it is added to both
setX(int) and setX(String) since it is generic. It is possible to introduce addi-
tional syntax for selecting method slots by parameters, but the syntax will be
more complicated. Listing 7 is the algorithm in Scheme for picking up and bind-
ing two method slots by operators.

Since a language supporting the aspect paradigm must provide a way to re-
trieve runtime context, for example, AspectJ provides pointcut designators and
reflection API for that purpose, DominoJ provides three keywords to retrieve the
information about the caller at runtime in the default closure of a method slot.
The owner object and the default closure of the method slot at the left-hand
side of an operator can be got by using the keywords in the default closure of
the method slot at the right-hand side. Unlike AspectJ, which extends the set
of pointcut designators available in the language, DominoJ extends the set of
special variables such as this and super. In DominoJ a call to the method slot can
be regarded as a sequence of method slot calls among objects since a method
slot may contain closures calling other method slots. When a method slot is

80 Y. Zhuang and S. Chiba

Listing 7. The algorithm of binding method slots

1 ; bind methodslots by operators
2 (define (bind-methodslots operator l_object l_slotname r_object r_slotname)
3 (let ((l_methodslots (get-fields l_object l_slotname))
4 (r_methodslots (get-fields r_object r_slotname)))
5 (for-each
6 (lambda (l_methodslot)
7 (for-each
8 (lambda (r_methodslot)
9 (if (or (same-type? l_methodslot r_methodslot)

10 (generic-type? l_methodslot r_methodslot))
11 (cond ((equal? operator "=")
12 (assign-closure l_methodslot r_object r_slotname))
13 ((equal? operator "ˆ=")
14 (insert-closure l_methodslot r_object r_slotname))
15 ((equal? operator "+=")
16 (append-closure l_methodslot r_object r_slotname))
17 ((equal? operator "-=")
18 (remove-closure l_methodslot r_object r_slotname)))))
19 r_methodslots))
20 l_methodslots)))

explicitly called by an expression in a certain default closure, the method slots
bound to it by operators are implicitly called by DominoJ. Programmers can get
the preceding objects in the call sequence. In the default closure, i.e. the body
of method slot declaration, the caller object can be got by the keyword $caller.
It refers to the object where we start the call sequence by the expression. The
predecessor object, in other words, the object owning the preceding method slot
in the call sequence, can also be got by the keyword $predecessor. It refers to the
object owning the closure calling the current method slot whether explicitly or
implicitly. Taking the example of Figure 2, suppose that we have a statement
calling s.setX in the default closure of the method slot test in another class Client:

public class Client {

public void test(Shape s) {

s.setX(10);

}

}

If test on an object instance of this class, for example c, is executed, the relation-
ship between the objects c, s, and o can be described as shown in Figure 3. Note
that calling other method slots explicitly by statements in the default closure of
test, setX, or update will start separate call sequences. In Figure 3, using $caller
in the default closure of setX and update both returns the object c since there is
only one caller in a call sequence. However, the predecessor objects of s and o are
different. Using $predecessor in the default closure of setX returns the object c,
but using $predecessor in the default closure of update returns the object s. Note
that both the apparent types of $caller and $predecessor are Object because the
caller and the predecessor are determined at runtime. If the current method slot
is called in a static method slot, $caller or $predecessor will return the class object
properly. The special method call proceed in AspectJ is introduced in DominoJ

Supporting Methods, Events, and Advices by a Single Language Construct 81

������������	
�� ����	

������	��
��

�������	
������

������	
�����	��	�������

�����
����	
���	�

�����	��	��������

�����
����	
��� ��	���	�������	
�����

����
��	�����	��	���	�������

�������� ���	
�� ����

������	�� ��
�

{ System.out.println($precedessor==$caller);
: }

�������� ���	
����������

������	�� ����
�
{ System.out.println($precedessor==$caller);

: }

Fig. 3. The keywords $caller and $predecessor

as well. The keyword proceed can be used to call the default closure of the pre-
ceding method slot. In Figure 3, calling proceed in the default closure of update
on o will execute the default closure of setX on s since s.setX is the preceding
method slot of o.update. If there is no preceding method slot for the current one,
calling proceed will raise an exception.

4 Evaluation

To show the feasibility of DominoJ and measure the overheads caused by method
slots, we implemented a prototype compiler3 of DominoJ built on top of Jas-
tAddJ [28]. The source code in DominoJ can be compiled into Java bytecode
and run by Java virtual machine. In the following microbenchmark, the standard
library is directly used without recompilation due to the performance concern.
All methods in the standard library can be called as method slots which have
only the default closure, but cannot be modified by the operators.

4.1 The Implementation

The DominoJ compiler is a source-to-source compiler which translates Domi-
noJ code to plain Java code and then compiles it into Java bytecode. However,
implementing the compiler is not easy since closures are not supported by the
current Java version (Java 7). In the DominoJ compiler we use the well-known
means of the Java language such as inner classes to represent the closures.

Closure Representations in Java. To emulate closures in Java, a naive im-
plementation is using Java reflection. The compiler could generate the code to

3 The prototype compiler of DominoJ is available from the project webpage:
http://www.csg.ci.i.u-tokyo.ac.jp/projects/dominoj/

82 Y. Zhuang and S. Chiba

record the target objects and the method names, and use the reflection API to
invoke the methods at runtime. For example, adding a closure calling o.update
to s.setX could be represented as adding a pair (o, ”update”), which an object
instance of the class Pair<Object, String>, to the array for s.setX. When s.setX
is called, all the pair stored in the array will be iterated and the methods such
as o.update can be invoked by the reflection API. It is not surprising that the
overheads are not small. Another idea is to define an interface like Callable then
a closure can be represented by an object instance of a class implementing the
interface. This class is generated by the compiler for every closure. Such an ob-
ject can be stored in the array for a method slot, and the method inherited from
the interface, which contains the method call such as o.update, can be called
when the object is iterated.

The DominoJ Compiler. The performance of DominoJ code is determined by
how the closures are represented and executed at runtime. Using Java reflection
is a naive solution, but the overheads are not negligible. Suppose that we have
a method slot setX in DominoJ:

public class Shape {

:

public void setX(int nx) {

: // the default closure

}

}

then the compiler will generate the following Java code in Shape: an array field
setX$slot and a method setX for iterating the elements in the array setX$slot. In
other words, calling a method slot in DominoJ is translated to calling a method
in Java to iterate and invoke the elements in an array as follows:

// Java code generated by the compiler

public void setX(int nx) {

Iterator iter = setX$slot.iterator();

while(iter.hasNext()) {

: // invoke a method

}

}

If we use the reflection API to invoke the methods in the iteration, the array
setX$slotmust store the target objects and the method names for invoking them:

// Java code generated by the compiler

public class Shape {

public ArrayList<Pair<Object, String>> setX$slot

= new ArrayList<Pair<Object, String>>();

:

}

Supporting Methods, Events, and Advices by a Single Language Construct 83

where each element in the array setX$slot holds the target object and the method
name. Furthermore, the default closure of setX in DominoJ is translated into a
method setX$impl in Java, which contains the statements in the default closure.
When an object of Shape, for example s, is instantiated, a pair (this, ”setX$impl”)
is appended to the array setX$slot by default. Suppose that we have another
method slot update, the parameter types of which is the same as setX:

public class Observer {

:

public void update(int i) { ... }

}

Then the following binding:

s.setX += o.update;

where o is an object of Observer, is translated into:

// Java code generated by the compiler

s.setX$slot.add(new Pair<Object, String>(o, "update"));

When s.setX is called, the pairs (this, ”setX$impl”) and (o, ”update”) will be got
in order. Here we show the code of setX again for demonstrating how to invoke
the methods using the reflection API:

// Java code generated by the compiler

public void setX(int nx) {

Class[] pars = new Class[1];

pars[0] = Integer.TYPE;

Object[] args = new Object[1];

args[0] = nx;

Iterator<Pair<Object, String>> iter = setX$slot.iterator();

while(iter.hasNext()) {

Pair<Object, String> pair = iter.next();

Object obj = pair.getFirst();

String mname = pair.getSecond();

Class c = obj.getClass();

Method m = c.getMethod(mname, pars);

m.invoke(o, args);

}

}

where the Class array pars is used to specify the parameter types for finding
the correct method, (int) in this example, since there may be several overloaded
methods. The Object array args, which contains the arguments given to setX. In
this example the only argument nx, an int, is autoboxed in an Integer instance
and put into args. Obviously the cost of finding and invoking a method using the

84 Y. Zhuang and S. Chiba

reflection API is not low. A possible improvement is storing Method instances
instead of the method names, so that we can avoid spending time on finding the
Method instance when a method slot is called. However, the cost of invoking a
Method is still quite high.

The idea used in our prototype compiler is using an interface to simulate the
function closure in JavaScript:

// Java code used by the compiler

public interface Closure {

public Object exec(Object[] args);

}

Then for each method slot the compiler can declare a field, which is an anony-
mous class implementing Closure. For example, the field update$closure is de-
clared in Observer for calling update:

// Java code generated by the compiler

public class Observer {

:

public Closure update$closure = new Closure() {

public Object exec(Object[] args) {

this.update((Integer)args[0]);

return null;

}

}

}

Note that the individual element in the array args, the arguments to exec, is
typecast properly before giving update. If update is a generic method slot, in
other words the only parameter of which is Object[], the array args will be directly
given to update:

this.update(args);

then in the default closure of update programmers need to check the type of
each element in the array using instanceof and typecast them if it is necessary.
Furthermore, in this example we simply return null in exec since the return type
of setX is void. The array for the method slot setX, setX$slot, is now an array of
Closure rather than an array of the pair (Object, String):

// Java code generated by the compiler

public class Shape {

public ArrayList<Closure> setX$slot = new ArrayList<Closure>();

:

}

Supporting Methods, Events, and Advices by a Single Language Construct 85

The binding statement we discussed above is now translated into:

s.setX$slot.add(o.update$closure);

Similarly, a field setX$impl$closure for calling the method setX$impl, which con-
tains the statements in the default closure of setX, is declated in Shape as well:

// Java code generated by the compiler

public class Shape {

:

public Closure setX$impl$closure = new Closure() {

public Object exec(Object[] args) {

this.setX$impl((Integer)args[0]);

return null;

}

}

}

In the constructor of Shape the following line is added for appending
setX$impl$closure to setX$slot by default:

// Java code generated by the compiler

this.setX$slot.add(this.setX$impl$closure);

When the method slot setX is called, all Closure instances in the array are iterated
and their exec methods are called with args, the Object array containing the
arguments given to the method slot setX, in this example only nx:

// Java code generated by the compiler

public void setX(int nx) {

Object[] args = new Object[1];

args[0] = nx;

Iterator<Closure> iter = setX$slot.iterator();

while(iter.hasNext()) {

Closure c = iter.next();

c.exec(args);

}

}

The iteration is similar to the reflection version, but the code for invoking a
method using the reflection API is replaced with a call to the exec method in
Closure. In other words, we need more memory to hold the Closure instances,
but the overheads of method slots can be reduced to the cost of calling the exec
method.

86 Y. Zhuang and S. Chiba

�

�

�

�

�

��

��

��

��

��

�
�
�
��
�
�
��
	
�
��

�
�
�
�
�
�
��
�

�
��
��
�
�
�
�
��
�
��
�
�
�
�
�
��
�
��
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��������	
��������������
		�����������

�	
	

������

�����������

��������������

Fig. 4. The average time of continuously calling a method in Java and DominoJ

4.2 Microbenchmark

In order to measure the overheads of method slots, we executed a simple program
and compared the average time per method call in DominoJ and in plain Java.
The method we measure is named test, which calculates sin(π/6) by expanding
Taylor series up to 100th order a number of times according to the argument as
shown below:

private double x = 3.141592653589793 / 6;

private double result = 0;

public void test(int count) {

for(int i=0; i<count; i++) {

double sum = x;

double n = x;

double d = 1;

for(int j=3; j<100; j+=2) {

n *= - x*x;

d *= (j-1)*j;

sum += n/d;

}

result = sum;

}

}

Figure 4 shows the results of continuously calling test(10) and calculating the
average execution time of calling test(10) every 1000 times of calls until the total
amount of calls reaches 30000. For example, the first values we calculate are the
average of execution time of 1st 1000th calls in Java and in DominoJ, and the
second values are the ones of 1001st 2000th.

Supporting Methods, Events, and Advices by a Single Language Construct 87

The program was compiled by our prototype compiler and run on the JVM
of OpenJDK 1.7.0 25 and Intel Core i7 (2.67GHz, 4 cores) with 8GB memory.
The result of the naive implementation using the reflection API we mentioned
in Section 4.1 is also shown for comparison. After the optimization is sufficiently
applied by the JIT compiler, the overhead is negligible (2955ns against 2932ns)
although it is initially about 34% (9124ns against 6833ns). On the other hand,
the overheads of the reflection version is about 20% (3516ns against 2932ns)
after the optimization.

To measure the performance of an operation on method slots such as assigning
a closure to a method slot using = operator, we repeated the operation and
calculated the average time as follows:

long start = System.nanoTime();

for(int j=0; j<1000; j++) {

s.setX = o.update;

}

long estimated = System.nanoTime() - start;

System.out.println(estimated/1000);

We also measured other operations by adding one more statement, which uses
the other operators such as += operator after the assignment:

:

for(int j=0; j<1000; j++) {

s.setX = o.update;

s.setX += o.update;

}

:

Figure 5 shows the result of running such programs 100 times. According to
the average time of the operations in the four programs, we can calculate the
time of the four operations: the = operation takes 427ns, the ^= operation takes
483ns, the += operation takes 275ns, and the -= operation takes 726ns. The -=

operation might be even slower when the number of closures in the method slot
is large since it takes time to check every closure in the array. It is reasonable
that the += operation is the fastest one since it simply appends to the array,
while the = operation have to clear the array and the ^= operation inserts to
the beginning of the array; the performance is relevant to how the method slots
are implemented. Finding a more efficient technique to implement method slots
is included in our future work. For example, using other structures instead of
ArrayList to store the closures or using the new JVM instruction invokedynamic
to emulate the closures might be possible solutions to improve the performance
of DominoJ code.

4.3 Method Slots and Design Patterns

Method slots extend themethod paradigm to support the event-handler paradigm
and the aspect paradigm,while still preserving the original behavior in themethod

88 Y. Zhuang and S. Chiba

�

���

���

���

���

����

����

����

��	
�� ����
��� ����
��� ����
���

�
�
�
��
�
�
��
�	
�
�

��
�

��
�
��
�
�
�

�
�
��
�

�

��
��
�
�

�
�

�
�

���������	

Fig. 5. The average time of using the operators for method slots

paradigm. In DominoJ, if the operators for method slots are not used, the code
works as in plain Java. In other words, a Javamethod can be regarded as a method
slot that has only the default closure.

We could regard the inheritance in object-oriented programming as an event
mechanism with default bindings. A method declaration in the superclass is an
event declaration, and its implementation is the handler bound to the event by
default. If the method is overridden in a subclass, the overriding implementa-
tion automatically replaces the overridden one and becomes the only handler for
the event. In other words, the call to a method on an object is an event, and
the method implementation selected by the polymorphism is the handler. The
binding from the handler to the event in the inheritance is a one-to-one rela-
tion and predefined. Method slots extend the default binding in object-oriented
programming to allow the binding of more than one handler to an event.

We have also analyzed how method slots can be applied to “GoF” design
patterns [7], and classify the patterns into four groups as shown in Table 2.
Furthermore, we implemented the sample code in the GoF book in Java and
DominoJ, and compared them with respect to the four modularity criteria bor-
rowed from [10], and a new criterion named noninheritance, which means that
method slots can be used as an alternative to the inheritance solution or not.
This might remind readers of the mixin. As an alternative to the inheritance
both the mixin and method slots allow to execute an implementation in another
class or object for a method call at runtime. However, in several mixin mecha-
nisms both fields and methods are included, but a binding between method slots
do not involve fields. The comparison is shown in Table 3, where the number
of lines of code is listed as well. Note that for the patterns in group III we ig-
nore the comparision on the number of lines of code since in group III method
slots do not act a major role as in group I and group II. In this table the local-
ity means the code of defining the relation can be gathered up, the reusability
means the pattern code can be abstracted and thus reusable, the composition
means the code do not get complicated when applying multiple relationships
to the same class, and the unpluggability means it is easy to apply or remove

Supporting Methods, Events, and Advices by a Single Language Construct 89

the pattern. The operators for method slots can be used to cause the execu-
tion of a method slot on another object when a specified method slot is called.
In general such mixin behavior helps to gather up similar implementations in
a class and can be an alternative to the polymorphism. Furthermore, the pat-
tern code for propagating events can be expressed by the bindings, which can
be gathered up in one place for the locality. For several patterns such as the
Chain of Responsibility pattern, the event implementation is almost eliminated
and thus the code tangling caused by the composition can be avoided. If the
pattern code can be totally eliminated, reusing it is quite easy since there is no
need to implement the pattern every time. It is also possible to make the code
easy to plug or unplug for several patterns such as the Proxy pattern since the
pattern is applied by a binding rather than passing a different object. However,
unlike the polymorphism the switch between different implementations must be
manually managed. As to the numbers of lines of code in Java and in DominoJ,
basically there are no significant difference since the explicit triggers for events
are removed but the bindings for describing the event propagations are added.
However, for several patterns such as the Observer pattern the pattern code
of which is totally eliminated. On the other hand, using the mixin behavior in
several patterns such as the Factory Method pattern takes additional lines of
bindings to switch the implementations. Below we discuss the four groups by
showing concrete examples.

Table 2. Method slots can be applied to design patterns

Pattern Name Description and Consequences

I
Adapter, Chain of Responsibility,
Composite, Decorator, Facade, Me-
diator, Observer, Proxy

Implicitly propagate events among objects by the bindings.
GOOD: The bindings can be gathered up in one place.
BAD: The method slots which handle the same event must
share the same type.

II
Abstract Factory, Bridge, Builder,
Factory Method, State, Strategy,
Template Method, Visitor

Change class behavior at runtime without inheritance.
GOOD: A solution to avoid multiple inheritance.
BAD: Unlike the polymorphism the switch between imple-
mentations have to be manually managed.

III
Command, Flyweight, Interpreter,
Iterator, Prototype

Replace inheritance part in the logic.
GOOD: Provide an alternative for the inheritance part.
BAD: Not helpful except the inheritance part.

IV Memento, Singleton Not applicable

The key idea of the patterns in group I can be considered event propagation—
from the outer object to the inner object, or among colleague objects. Using
method slots can avoid code scattering caused by the pattern code since event
implementation is eliminated. Code tangling caused by combining multiple pat-
terns can be eased as well. The following example is an example of the Chain
of Responsibility pattern. In a graphical user interface library a widget such as
a button may need a hotkey for showing help. When users are confused with
the label of the button, they can press the F1 key to get a pop-up description,
which explains the meaning in detail. To implement the help event in Java, the
Chain of Responsibility pattern can be used in Widget, the base class for all
widgets, as shown in Listing 8. Here we assume that the method handleHelp will
be called when users press the F1 key on a widget object. Every subclass of

90 Y. Zhuang and S. Chiba

Table 3. The benefit of applying DominoJ to design patterns

Modularity Properties #Lines of Sample Code

Pattern Name Locality Reusability Composition Unpluggability Non-inheritance in Java in DominoJ

I

Adapter
√

51 48
Chain of Responsibility

√ √ √ √ √
� 38 28

Composite
√ √ √ √

� 41 16
Decorator

√ √ √
26 20

Facade
√

� 34 53
Mediator

√ √
68 49

Observer
√ √ √ √ √

� 71 32
Proxy

√ √
� 47 61

II

Abstract Factory
√

�
√

� 41 58
Bridge

√
�

√
� 58 64

Builder
√

�
√

� 55 69
Factory Method

√
�

√
� 67 97

State
√

66 69
Strategy

√ √ √
� 36 28

Template Method
√ √

� 31 45
Visitor

√ √ √
63 69

III

Command
√

�

Ignored
Flyweight

√
�

Interpreter
√

�
Iterator

√
�

Prototype
√

�

IV
Memento

Same implementation for Java and DominoJ
Singleton

The
√

mark means that DominoJ has better modularity than Java when implementing the pattern.
The � mark means that AspectJ does not provide such modularity when implementing the pattern, while DominoJ does.

the Widget class should override the handleHelp method to implement its own
behavior for the help event, and return a boolean value to indicate whether the
help event is handled or not. In the Widget class a default implementation is
given: propagating the help event to the successor in the chain of responsibility.
The successor is kept as a private field and set to its container in the constructor
as shown in Line 2-5. If no successor is set, false is returned. When a subclass of
Widget such as Button class overrides the handleHelp method, it must explicitly
call super.handleHelp for executing the default implementation to propagate the
help event to its successor. In DominoJ, the operator += can be used to describe
such behavior as shown in Listing 9. Note that in Line 10 the keyword $retval
is used to check if the help event is handled by the predecessor, and the explicit
call super.handleHelp is removed from all subclasses. It makes the code clear,
especially when there are several chain of responsibility for different events in
the Widget class. Using DominoJ can avoid the tangling caused by pattern code.

Method slots can also be used to improve the transparency to clients. In a
class-based object-oriented language such as Java, it is not allowed to change the
class membership of objects as discussed in [4]. Suppose that two classes Student
and Employee are given to model the students and the employees in a university.
If now a student has graduated and employed by the university, we cannot
continue using the original Student object. We have to create a new Employee
object according to the original Student object and update all references to
the object in clients. A solution is using method slots to implement the Proxy
pattern for the Student example. In the Proxy pattern usually the clients are
aware of the existence of the proxy object. For example, in order to control the
access to Student, giving a proxy class Employee, which owns a reference to its
original Student object, then the clients have to use the proxy object instead of
the original Student object. In DominoJ the behavior of a Student object such
as getInfo can be replaced if it is public:

s.getInfo = e.getInfo;

Supporting Methods, Events, and Advices by a Single Language Construct 91

Listing 8. The Chain of Responsibility pattern example in Java

1 public class Widget {
2 private Widget successor = null;
3 public Widget(Widget container) {
4 successor = container;
5 }
6 public boolean handleHelp() {
7 if(successor == null) return false;
8 return successor.handleHelp();
9 }

10 :
11 }
12 public class Button extends Widget {
13 public boolean handleHelp() {
14 : //return true if it can offer help ,otherwise return super.handleHelp()
15 }
16 }

Listing 9. The Chain of Responsibility pattern example in DominoJ

1 public class Widget {
2 public Widget(Widget container) {
3 this.handleHelp += container.handleHelp;
4 }
5 public boolean handleHelp();
6 :
7 }
8 public class Button extends Widget {
9 public boolean handleHelp() {

10 if($retval) return true;
11 : // return true if it is handled here , otherwise return false
12 }
13 }

where s is a Student object and e is its proxy, an Employee object. Then the
clients of s may continue using the reference to s. When s.getInfo is called, the
method slot getInfo on its proxy object will be executed for access control. In
other words, it is possible to make the clients unaware of plugging or unplugging
the proxy.

The patterns in group II use the inheritance to alter the class behavior at
runtime. Different implementation for a method slot call can be added to the
method slot instead of overriding in subclasses. In that sense, method slots can
be used as an alternative to the polymorphism. Although method slots are not
perfect replacement for the inheritance, it is convenient in particular when pro-
grammers are forced to choose between two superclasses due to single inheritance
limitation. For example, Listing 10 shows an example of the Template Method
pattern in Java. By taking advantage of inheritance, the drawing border step
in the class View can be deferred to its subclass FancyView by overriding the
method drawBorder. However, unlike mixin or multiple inheritance, in the sub-
class FancyView we cannot reuse the implementation of other classes due to the
single inheritance limitation in Java. For example, the implementation of draw-
Border in FancyView may be the same as the one in another class FancyPrint,

92 Y. Zhuang and S. Chiba

Listing 10. The Template Method pattern example in Java

1 public class View {
2 public void display () {
3 drawBorder();
4 drawContent();
5 }
6 public void drawBorder() {
7 System.out.println ("View: drawBorder");
8 }
9 public void drawContent() {

10 System.out.println ("View: drawContent");
11 }
12 }
13 public class FancyView extends View {
14 public void drawBorder() {
15 System.out.println ("Fancy: drawBorder");
16 }
17 }

which is neither a subclass of View nor a subclass of FancyView. In this case
we cannot extract the common part of FancyView and FancyPrint into a new
class Fancy. In DominoJ such mixin behavior is possible by using the operator
=. As shown in Listing 11 we move the drawBorder implementation to a new
class Fancy and let FancyView own a reference to a Fancy object. Then in the
constructor of FancyView we can forward the call to its method slot drawBorder
to the one in the Fancy object it refers (Line 22). With DominoJ a subclass can
still benefit from another class by the binding as using the mixin. It helps to
modularize the code when we want to extract parts of the implementation in
the subclass. Programmers can decide to use mixin or inheritance for a feature
depending on the design.

Another example we want to show here is the State pattern, which allows an
object to alter its behavior by switching between the state objects. Using Domi-
noJ the state transitions can be modularized in another class as using AspectJ
[10]. Suppose that we have three state classes for the Queue class: QueueEmpty,
QueueNormal, and QueueFull. In Java the state transition code scatters across
the state classes, for example the transition from QueueEmpty to QueueNormal
is checked and performed in the insert method of QueueEmpty class as shown
in Listing 12. In DominoJ all transitions can be gathered up in another class
UpdateQueueState as shown in Listing 13. The class UpdateQueueState keeps all
the state objects (Line 2-4) and manages the transitions such as emptyToNormal
(Line 6-11). For example, the transition emptyToNormal is performed after the
method slot insert on the object empty is executed as shown in Line 16. Note
that the method slots emptyToNormal and insert share the same type.

The patterns classified under group III also use the inheritance as a part
of their pattern code, so programmers may use method slots or not depending
on the situation. For example, the intent of the Command pattern is wrapping
the requests in objects in order to pass around clients, and inheritance is used
for overriding the behavior of a request. Suppose that we want to implement a
document editor, which allows users to open a document, edit its content, and

Supporting Methods, Events, and Advices by a Single Language Construct 93

Listing 11. The Template Method pattern example in DominoJ

1 public class View {
2 public void display () {
3 drawBorder();
4 drawContent();
5 }
6 public void drawBorder() {
7 System.out.println ("View: drawBorder");
8 }
9 public void drawContent() {

10 System.out.println ("View: drawContent");
11 }
12 }
13 public class Fancy {
14 public void drawBorder() {
15 System.out.println ("Fancy: drawBorder");
16 }
17 }
18 public class FancyView extends View {
19 Fancy fancy;
20 public FancyView() {
21 fancy = new Fancy();
22 this.drawBorder = fancy.drawBorder;
23 }
24 }

copy a paragraph. First we declare an abstract class Command, which has a
method slot execute, to model the commands supported in the editor:

public abstract class Command {

:

public void execute();

}

Then we can implement the individual commands such as OpenCommand and
CopyCommand by extending the Command class. In the subclasses we can declare
necessary parameters and override execute to define the behavior for individual
commands. For example, the implementation of OpenCommand looks like this:

public class OpenCommand extends Command {

private File file = null;

:

public void execute() {

file = getFileFromUser();

}

}

Here, the user has to select a file and then the path in the field file will be
stored when its execute is called. By creating the command objects, the requests
from users can be wrapped and passed to other UI components. The function-
alities such as undo and redo can also be implemented easily. In group III the
inheritance is not the core of the pattern code, but helps the implementation.

94 Y. Zhuang and S. Chiba

Listing 12. The State pattern example in Java

1 public class Queue {
2 private QueueState state = new QueueEmpty();
3 public void setState (QueueState s) {
4 state = s;
5 };
6 public boolean insert(Object o) {
7 return state.insert(this , o);
8 }
9 :

10 }
11 public class QueueState {
12 public boolean insert(Queue q, Object o) {
13 return false;
14 };
15 :
16 }
17 public class QueueEmpty extends QueueState {
18 public boolean insert(Queue q, Object o) {
19 QueueNormal nextState = new QueueNormal();
20 q.setState (nextState);
21 return nextState.insert(q, o);
22 }
23 :
24 }

As the example of the Template Method pattern shown above in group II, the
inheritance can be replaced with the mixin by using method slots. Again, using
the mixin is not always a good choice and it depends on programmers’ design
decision.

As to the patterns in group IV, DominoJ is not helpful in dealing with object
creation as what AspectJ does in [10]. The reason is that DominoJ does not sup-
port intertype declaration and cannot stop the object creation. Further details
of this analysis is available in [34].

4.4 The Event-Handler Paradigm

There are three important metrics to evaluate an event mechanism. First, the
amount of explicit triggers in a program depends on whether the events can be
implicit or not. Second, if dynamic binding is not provided, it is not possible to
change the handler at runtime. Third, event composition helps the abstraction
though it is not absolutely necessary. In an event mechanism the three properties
are determined by how the bindings between the event and the handler are
presented.

To evaluate how DominoJ works for the event-handler paradigm, first we ana-
lyze the bindings between the event and the handler in a typical event mechanism
like EScala, and compare them with DominoJ. In languages directly supporting
the event-handler paradigm, events are usually introduced as fields, which are
separate from methods. In order to associate fields with methods, there are three
types of binding between events (fields) and handlers (methods). The ways used
for each type of binding are usually different in an event mechanism, and also

Supporting Methods, Events, and Advices by a Single Language Construct 95

Listing 13. The State pattern example in DominoJ

1 public class UpdateQueueState {
2 private QueueEmpty empty = new QueueEmpty();
3 private QueueNormal normal = new QueueNormal();
4 private QueueFull full = new QueueFull();
5 private Queue queue = null;
6 public boolean emptyToNormal(Object o) {
7 normal.insert (o);
8 queue.setState (normal);
9 return $retval ;

10 }
11 :
12 public void setup(Queue q) {
13 queue = q;
14 queue.setState (empty);
15 empty.insert += this.emptyToNormal;
16 :
17 }
18 }

different between event mechanisms. Table 4 shows the ways provided by EScala.
The corresponding DominoJ syntax for the three types of binding is also listed,
but actually there is only slot-to-slot binding in DominoJ since only method
slots are involved in the event-handler paradigm. Every method slot can play
an event role and a handler role at the same time. Listing 14 shows how to use
DominoJ for the event-handler paradigm for the shape example mentioned in
Section 2. Below we will discuss what the three types of binding are, and explain
how DominoJ provides the same advantages with the simplified model.

The event-to-handler binding is the most trivial one since it means what action
reacts to a noteworthy change. Whether supporting the event-handler paradigm
by languages or not, in general the event-to-handler binding is dynamic and
provided in a clear manner. For example, in the Observer pattern an observer
object can call a method on the subject to register itself; in C# and EScala, +=
operator and -= operator are used to bind/unbind a method to a special field
named event. In addition to the two operators, DominoJ provides ^= operator
and = operator to make it easier to manipulate the array of handlers. In C#
and EScala, the handlers for an event can be only appended sequentially and
removed individually, but in DominoJ, programmers can use = operator to empty
the array directly without deducing the state at runtime. Using ^= operator along
with += operator also makes design intentions more clear since a closure can be
inserted at the beginning without popping and pushing back.

The second one is the event-to-event binding that enables event composition
and is not always necessary but greatly improves the abstraction. In a modern
event mechanism, event composition should be supported. EScala allows pro-
grammers to define such higher-level events to make code more readable. An
event-to-event binding can be simulated by an event-to-handler binding and a
handler-to-event binding, but it is annoying and error-prone. In DominoJ, it is
also possible to define a higher-level event by declaring a method slot without
a default closure. Then operators += and ^= can be used to attach other events
like what the operator ‖ in EScala does. Other operators in EScala such as &&

96 Y. Zhuang and S. Chiba

Table 4. The roles and bindings of the event-handler paradigm in EScala and DominoJ

Type EScala DominoJ

ro
le Event field (evt)

method slot
Handler method

b
in

d
in

g

Event-to-Handler
+= +=

-= -=

Event-to-Event

|| +=, ^=

&&

use Java expression in
the default closure of
method slots

\
filter

map

empty

any

Handler-to-Event

afterExec +=

beforeExec ^=

imperative explicit trigger is possible

and map are not provided in DominoJ, but the same logic can be represented
by statements in another handlers and attached by += operator. For example, in
Listing 1 we can declare a new event adjusted that checks if left and top are the
same as the arguments given to setPosition using the operator && in EScala:

evt adjusted[Unit] = afterExec(setPosition)

&& ((left,top) != _._1)

adjusted += onAdjusted

where _._1 refers to the arguments given to setPosition and onAdjusted is the
reaction. In DominoJ, we can declare a higher-level event adjusted and perform
the check in another method slot checkAdjusted:

public void adjusted(int x, int y);

public void checkAdjusted(int x, int y) {

if(!(x==left && y==top)) adjusted(x, y);

}

and then bind them as follows:

setPosition += checkAdjusted;

adjusted += onAdjusted;

Although the expression in DominoJ is not rich and declarative as in EScala,
they can be used to express the same logic. In addition, the event-to-event bind-
ing in EScala is static, so that the definition of a higher-level event in EScala
cannot be changed at runtime. On the other hand, it is possible in DominoJ
since the slot-to-slot binding is totally dynamic.

The last one is handler-to-event binding, which is also called an event trigger
or an event definition. It decides whether an event trigger can be implicit or
not. In the Observer pattern and C#, an event must be triggered explicitly, so

Supporting Methods, Events, and Advices by a Single Language Construct 97

Listing 14. Using DominoJ for the event-handler paradigm

1 public class Display {
2 public void refresh(int x, int y) {
3 System.out.println("display is refreshed.");
4 }
5 }
6 public class Shape {
7 private int left = 0; private int top = 0;
8 public void setPosition(int x, int y) {
9 left = x; top = y;

10 }
11 public Shape(Display d) {
12 this.setPosition += d.refresh;
13 }
14 }
15 public class Test {
16 public static void main(String[] args) {
17 Display d = new Display();
18 Shape s = new Shape(d);
19 s.setPosition(0, 0);
20 }
21 }

that the trigger code is scattering and tangling. EScala provides two implicit
ways and an explicit way: after the execution of a method, before the execution
of a method, or triggering an event imperatively. In DominoJ, an event can be
triggered either implicitly or explicitly. A method slot can not only follow the
call to another method slot but also be imperatively called. More precisely, there
is no clear distinction between the two triggering ways. In EScala, afterExec and
beforeExec are provided for statically binding an event to the execution of a
method while DominoJ provides += operator and -= operator for dynamically
binding a method slot to the execution of another method slot. This sounds like
that a method slot has two predefined EScala-like events for the default closure,
but it is not correct. In DominoJ’s model the only event is the call to a method
slot, and the default closure is also a handler like the other closures calling other
method slots. This feature makes the code more flexible since the execution order
of all handlers can be taken into account together. As to the encapsulation, in
EScala the visibility of explicit events follows its modifiers, and the implicit
events are only visible within the object unless the methods they depend on
are observable. On the other hand, the encapsulation in DominoJ relies on the
visibility of method slots. The design is simpler but limits the usage because a
public method slot is always visible as an event to other objects.

There is one more important difference between EScala and DominoJ. In
DominoJ, a higher-level event can be declared or not according to programmers’
design decision. In order to explain the difference, we use a tree graph to rep-
resent the execution order in the shape example by regarding setPosition as the
root. As shown in Figure 6, we use rectangles, circles, and rounded rectangles
to represent methods, events, and method slots, respectively. When a node is
called, the children bound by beforeExec or ^= must be executed first, followed
by the node itself and the children bound by afterExec or +=. Figure 6 (a) is the
execution order of Listing 1, and Figure 6 (b) is the one of Listing 14. In the

98 Y. Zhuang and S. Chiba

�����������

	�
	���

����

�������	
�������������������������
��������������������������	�����

��������	

��

�����������

	�
	���

�����������

	�
	���

����

��

��

��

����������������� ����������������� ������������������������

Fig. 6. The execution order of the shape example in EScala and DominoJ

DominoJ version, the event moved is eliminated and its child refresh is bound to
setPosition directly since we do not need additional events in such simple case.
DominoJ is easier and simpler to apply the event-handler paradigm when events
are not complicated but used everywhere. In EScala, events must be created
since methods cannot be bound to each other directly. However, such events are
still necessary if we want to keep the abstraction. In that case, method slots can
be used as the events in EScala by declaring them without a default closure.
For example, the event moved in Line 11 of Listing 1 can be translated into the
following statements:

public void moved();

setPosition += moved;

Figure 6 (c) is another DominoJ version, which has the higher-level event as the
EScala version. In DominoJ, programmers can choose between the simplified one
and the original one depending on the situation.

Note that the number of lines of Listing 14 is one line longer than Listing 1
because the syntax of Scala looks more compact than Java. In Java the con-
structor and the fields used inside a class must be declared explicitly while they
are omitted in Scala. In Listing 14 the constructor takes two more lines than
Listing 1. If we do not take this into account, the EScala version is one line
longer than the DominoJ version due to additional event declaration.

The line of code can also be analyzed according to Table 4. With regard to
the roles, additional event declarations are necessary in EScala while they are
combined into one declaration in DominoJ as we discussed above. For the event-
to-handler binding, both the operators provided by EScala and DominoJ take
one line. For the event-to-event binding, the operators provided by EScala can
be written in the same line, but in DominoJ += operator and ^= operator cannot
be merged into one line. In that case the code in DominoJ is longer than the
EScala one. For example, a higher-level event changed can be defined by three
events resized, moved, and clicked:

evt changed[Unit] = resized || moved || clicked

Supporting Methods, Events, and Advices by a Single Language Construct 99

but in DominoJ they must be defined as follows:

resized += changed;

moved += changed;

clicked += changed;

That is why the expression in EScala is richer but complicated. Introducing
appropriate syntax sugar to DominoJ to allow to put operators in one line is also
possible, but we think it makes the design complicated. However, in this example
we can also find passing the event value in EScala takes effort. In EScala, as far as
we understand, only a value is kept in an event field. If we want to gather up the
arguments x and y given to setPosition, and then pass to moved and changed, we
need to declare additional classes such as Point and declare the events with the
new type rather than Unit4. The additional classes increase the number of lines
as well. For the handler-to-event binding, afterExec and beforeExec in EScala
can define an anonymous event and share the same line of an event-to-handler
binding. To sum up, in DominoJ the event declarations may be eliminated and
thus the number of lines of source code can be reduced. On the other hand,
the number of code of DominoJ version is longer when translating a complex
EScala expression composed of a number of operators since DominoJ has less
primitive syntax. DominoJ makes code clear because each method slot has a
name explicitly, and each line for binding only defines the relation between two
method slots.

4.5 The Aspect Paradigm

DominoJ can be used to express the aspect paradigm as well. In order to discuss
language constructs concretely, we compare DominoJ with the most representa-
tive aspect-oriented language—AspectJ. The call to a method slot is a join point,
and other method slots can be bound to it as advices. Note that aspect-oriented
programming is broader as discussed in [14] and not restricted to the AspectJ
style, which is the point-advice model. In AspectJ the important features such as
around advices, the obliviousness, and intertype declaration that an event mech-
anism cannot provide are all supported by constructs. In this subsection first we
analyze the necessary elements in the point-advice model in order to compare
the constructs provided by AspectJ and DominoJ. Then we use DominoJ to
rewrite the shape example in Listing 2 and discuss the differences.

Since the purpose of the aspect paradigm is to modularize the crosscutting
concerns, we need a method-like construct to contain the code piece, a way
to attach the method-like construct to a method execution, and a class-like
construct to group the method-like construct. In AspectJ, the class-like construct
is the aspect construct, the method-like construct is the advice body, and the
way of attaching is defined by the pointcut and advice declaration. In DominoJ,
the method slot and the class construct in plain Java are used and only operators

4 In EScala, declaring events with Unit type means that no data are passed [9].

100 Y. Zhuang and S. Chiba

for method slots are introduced for attaching them. The method slots bound by
+= operator or ^= operator are similar to after/before advices, respectively. The
method slots bound by = operator are similar to around advices and proceed can
be used to execute the original method slot. It is expected that DominoJ cannot
cover all expression in AspectJ since DominoJ’s model is much simpler. For
example, in DominoJ intertype declaration and the reflection are not provided.
According to the three elements, Table 5 lists the mapping of language constructs
in AspectJ and DominoJ.

Table 5. The mapping of language constructs for the aspect paradigm in AspectJ and
DominoJ

Construct AspectJ DominoJ

grouping aspect class

code piece advice body
method slot body

(default closure)

pointcut and
advice declaration

after returning and execution += and $retval

before and execution ^=

around =

this $caller

target $predecessor

args by parameters

In AspectJ programmers need to understand the special instance model for
the aspect construct, but in DominoJ the class construct is reused. Although
the instances of the construct for grouping need to be managed manually, there
is no need to learn the new model and keywords like issingleton, pertarget, and
percflow. In DominoJ programmers can create an instance of the aspect-like class
and attach its method slots to specified objects according to the conditions at
runtime. If the behavior of issingleton is preferred, programmers can declare all
fields including method slots in the aspect-like class as static since static method
slots are supported by DominoJ. The shape example of AspectJ in Section 2 can
be rewritten by DominoJ as shown in Listing 15. Here the class UpdateDisplay is
the aspect-like class. In Line 14, we attach the advice refresh in a static method
slot init, so all Shape objects will share the class object of UpdateDisplay. Fur-
thermore, we let init be executed after the constructor of Shape, so that we can
avoid explicitly attaching refresh every time a Shape object is created. Moreover,
we do not have to modify the constructor of Shape. If we need to count how
many times setPosition is called for each Shape and thus pertarget is preferred,
we can rewrite the class UpdateDisplay as shown in Listing 16. Every time a
Shape object is created, a UpdateDisplay object is created for it implicitly. Note
that the object ud will not be garbage-collected since its method slot count is
attached to another method slot.

In DominoJ, there is no difference between methods and advices while in
AspectJ they are different constructs. Although an advice in AspectJ can be
regarded as a method body, it cannot be directly called. If the code of an advice

Supporting Methods, Events, and Advices by a Single Language Construct 101

Listing 15. Using DominoJ as the aspect paradigm

1 public class Display {
2 public static void refresh(int x, int y) {
3 System.out.println("display is refreshed.");
4 }
5 }
6 public class Shape {
7 private int left = 0; private int top = 0;
8 public void setPosition(int x, int y) {
9 left = x; top = y;

10 }
11 }
12 public class UpdateDisplay {
13 public static void init() {
14 ((Shape)$predecessor).setPosition += Display.refresh;
15 }
16 static { Shape.constructor += UpdateDisplay.init; }
17 }
18 public class Test {
19 public static void main(String[] args) {
20 Shape s = new Shape();
21 s.setPosition(0, 0);
22 }
23 }

Listing 16. Rewrite UpdateDisplay for pertarget

1 public class UpdateDisplay {
2 private int total = 0;
3 public void count(int x, int y) {
4 total++;
5 }
6 public static void init() {
7 UpdateDisplay ud = new UpdateDisplay();
8 ((Shape)$predecessor).setPosition += ud.count;
9 }

10 static { Shape.constructor += UpdateDisplay.init; }
11 }

is reusable, in AspectJ we must move it to another method but in DominoJ it
is not necessary.

The pointcut and advice declaration in AspectJ and DominoJ are similar but
not the same. First, what they target at is different. AspectJ is class-based while
DominoJ is object-based. In other words, what AspectJ targets at are all object
instances of a class and its subclasses but what DominoJ targets at are individual
object instances. However, it is possible to emulate the class-based behavior in
DominoJ by the code attaching to the constructor of a class as shown in Line
16 of Listing 15. Second, unlike AspectJ that has call and execution pointcut,
in DominoJ only execution pointcut is supported. This limits the usage but
reduces the complexity. In fact, the relation between advices is quite different in
AspectJ and DominoJ. In AspectJ an advice is attached to methods and cannot
be directly attached to a specific advice, but in DominoJ a method slot is not
only an advice but also a method. For example, if we need another advice for
checking the dirty region in Listing 2, we may prepare an aspect CheckDirty
containing this advice as shown in Figure 7 (a). However, the advice can only

102 Y. Zhuang and S. Chiba

be attached to setPosition. In DominoJ, the advice can be attached to either
setPosition or init as shown in Figure 7 (b).

The behavior of proceed in AspectJ and DominoJ is also a little different. The
proceed in DominoJ should be used only along with = operator since it calls
the default closure in the preceding method slot rather than the next closure. The
root cause of the difference is the join point model: what DominoJ adopts is the
point-in-timemodel while the oneAspectJ adopts is the region-in-timemodel [15].
In other words, in AspectJ the arrays of the three types of advices are separate,
but in DominoJ there is only one array. If += operator or ^= operator are used af-
ter using = operator to attach a method slot containing proceed, the behavior is
not as expected as in AspectJ. Figure 8 shows an example of around advices in
AspectJ and DominoJ. In AspectJ, the around advices localCache and memCache
are attached to queryData in order. In DominoJ, we can do it similarly:

queryData = localCache;

localCache = memCache;

then using proceed in memCache and localCache will call the default closure of
their preceding method slot, localCache and queryData, respectively. Another
difference is that the args pointcut and the wildcard used in call and execution
pointcuts in AspectJ are not supported in DominoJ. Method slots are simply
matched by their parameters. If the overloading is not taken into account, the
operators in DominoJ only select one method slot in one line statement.

As for the number of lines, the two versions are about the same. Comparing
them line by line might not make much sense since there is no simple translation
between DominoJ and AspectJ.

4.6 Summary of the Coverage

In the previous subsections we have discussed what a language must have for
the event-handler paradigm and the aspect paradigm by comparing with EScala
and AspectJ, respectively, from the viewpoint of constructs. In this subsection
we summarize the significant characteristics of the two paradigms and discuss
the support in DominoJ as shown in Table 6. In addition to being used for the
event-handler paradigm and the aspect paradigm, DominoJ allows programmers
to use both paradigms together.

For the event-handler paradigm, there are three significant properties: implicit
events, dynamic binding, and event composition. DominoJ supports them all by
method slots and only four operators. Rewriting a complex expression of event
composition in EScala is also possible though it takes more lines. Introducing
additional syntax may resolve the issue but it also complicates the model. As
a result of regarding method slot calls as events, giving an event a different
visibility from the method slots it depends on is not supported by DominoJ.

The aspect paradigm of AspectJ has three important features that cannot be
provided by the event-handler paradigm: around advices, the obliviousness, and
inter-type declaration. In DominoJ what the around advices in AspectJ does

Supporting Methods, Events, and Advices by a Single Language Construct 103

�����

�����������

����	�
�����

	
����

�����

�����������

����	�
�����

����

�����
��	�

�����

�������	
����������������������	���
������������������������	�����

������������������ �����������������

�

������
��	�

	
����

Fig. 7. Adding another advice to the shape example in AspectJ and DominoJ

�������	�� �������	�

�������	��
���
����

�������	���������

������ �������	�

����
���
����

����������� { :
proceed(); }

{ :
proceed(); }

{ :
proceed(); }

{ :
proceed(); }

�������	
���	����� ������������	�����

�����
�����
�������	
�������������

	����
�����
��� �������	�	���

��	���	
	��	�	
��	��������
		�

����	��
��	���	
	�

Fig. 8. Calling proceed in AspectJ and DominoJ

Table 6. A summary of the significant characteristics of the two paradigms and the
support in DominoJ

the Event-handler paradigm DominoJ

implicit events yes

dynamic binding yes

event composition yes

the Aspect paradigm DominoJ

around advices yes

the obliviousness yes

inter-type declaration no

can be archived by assigning a closure calling another method slot using the =

operator. DominoJ also supports the obliviousness in AspectJ by using the class
construct as the aspect construct and attaching a method slot to a constructor
of the target class. In the method slot attached to the constructor, programmers
can further attach advices to the method slots at the target class. However, the
intertype declaration in AspectJ is not available in DominoJ. A possible solution
is introducing a default method slot for undefined fields in a class like Smalltalk’s
doesNotUnderstand or what the no-applicable-method does in CLOS.

4.7 Event-Handler vs. Aspect

Although the event-handler paradigm and the aspect paradigm are developed for
resolving different issues, their implementation are almost the same, especially
from the viewpoint of virtual machine. They both allow programmers to specify

104 Y. Zhuang and S. Chiba

�������

	
����

������

����������	

���������	

������������

����

��������������������	�
���
�

��������
��

Fig. 9. The design decision of EScala, AspectJ, and DominoJ

which code pieces should be executed after/before the execution of a method.
The only difference is the model of specifying and executing the code pieces.
First, the behavior of the event-handler paradigm used in EScala is object-based,
while the behavior of the aspect paradigm is class-based. Second, in the aspect
paradigm used in AspectJ the obliviousness is an important property, but in
the event-handler paradigm the non-obliviousness is expected. Obviously, it is
impossible to support the contradictory properties at the same time unless we
give both constructs into one language. If we just put constructs for the two
paradigms into one language, for example providing all syntax of EScala and
AspectJ in a new language, it makes the code compilcated and programmers
have to learn all of them; it is not what we want to do. Our goal is to make all
available by a single construct and let programmers decide how to use it, so we
have to choose between object-based behaviors and class-based behaviors, the
obliviousness and the non-obliviousness.

The design decisions of EScala, AspectJ, and DominoJ are shown in Figure 9.
DominoJ chooses object-based behaviors and the obliviousness since we believe
this design is most flexible—the class-based behaviors can be emulated by writ-
ing the bindings in the constructors and a method slot can be private if the
obliviousness is not expected. In this sense, DominoJ can be regarded as either
an object-based AOP language or an event mechanism. It does not matter how
we call DominoJ since it is just a naming, but here we want to bring up the dis-
cussion on the similarities between the event-handler paradigm and the aspect
paradigm.

5 Related Work

The delegation introduced by C# [17] allows programmers to declare an event,
define its delegate type, and bind a corresponding action to the event. Event
composition is also supported by adding a delegate to two or more events. Al-
though the delegate interface hides the executor from the caller, implicit events
are not supported. The event must be triggered manually when the change hap-
pens. However, C# is able to emulate DominoJ using an unusual programming
style: declaring an additional event for every method and always triggering the

Supporting Methods, Events, and Advices by a Single Language Construct 105

event rather than the method. From the point of view, a delegate is very similar
to a method slot except the operator += in C# copies the handlers in the event
but does not create a reference to the event. However, as in EScala, events and
methods are still separate language constructs. Supporting by only one construct
means that programmers do not need to decide between using such an unusual
style or a normal style at the design stage whether newer modules might regard
those methods as events or not. Furthermore, it is annoying that event fields
and methods in C# cannot share the same name. Another disadvantage is that
we have to ensure that there is at least one delegate for the event before trig-
gering it. Otherwise it will raise an exception. This is not reasonable from the
viewpoint of the event mechanism since it just means no one handles the event.
In DominoJ no handlers for an event does not raise an exception and the one
that triggers an event on a method slot is unaware of handlers.

There are a number of research activities on the integration of object-oriented
programming and aspect-oriented programming. Those research use a single dis-
patch mechanism to unify OOP and AOP and reveal that the integration makes
the model clearer, reusable, and compositable. Delegation-based AOP [11,23]
elegantly supports the core mechanisms in OOP and AOP by regarding join
points as loci of late binding. The model proposed in [12] provides dedicated ab-
stractions to express various object composition techniques such as inheritance,
delegation, and aspects. The difference is that DominoJ integrates the event-
handler paradigm and the aspect paradigm based on OOP. Another difference
is that we propose a new language construct rather than a machine or language
model, which makes it compatible with existing object-oriented languages such
as Java. Other work such as FRED [21], composition filters [1], predicate dis-
patching [5], and GluonJ [2] can also be regarded as such integration work.

The method combination in Flavors and CLOS makes related methods easy to
combine but not override. By default the combined method in Flavors first calls
the before methods in the order that flavors are combined, following by the first
primary method, then the after methods in the reverse order. The return value
of the combined method is supplied by the primary method, while the return
values of the before and after methods are ignored. Similarly, CLOS provides a
standard method combination for generic functions. For a generic function call,
all applicable methods are sorted before execution in the order the most specific
one is first. Besides the primary, before, and after methods, CLOS provides the
around methods and call-next-method for the primary and around methods. From
the viewpoint of method combination, the default closure of a method slot looks
like a primary method that can be dynamically added to other method slots as
a before or after method, and even as an around method by assigning to the
target method slot then using proceed as call-next-method. It is also easier to
express the method combination as a hierarchy in DominoJ.

With regard to the event mechanism, several research activities are devoted to
event declaration. Ptolemy [22] is a language with quantified and typed events,
which allows a class to register handlers for events, and also allows a handler to be
registered for a set of events declaratively. It has the ability to treat the execution

106 Y. Zhuang and S. Chiba

of any expression as an event. The event model in Ptolemy solves the problems
in implicit invocation languages and aspect-oriented languages. EventJava [6]
extends Java to support event-based distributed programming by introducing
the event method, which are a special kind of asynchronous method. Event
methods can specify constraints and define the reaction in themselves. They can
be invoked by a unicast or broadcast way. Events satisfying the predicate in event
method headers are consumed by a reaction. Context-aware applications can be
accommodated easily by the mechanism. Both the researchers make events clear
and expressive, but they do not support implicit events, which is one of the
most significant properties as an event mechanism, whereas DominoJ supports it.
Moreover, all events in their model are class-based, so that events for a specified
object have to be filtered in the handlers. The binding in DominoJ is object-
based, so it can describe the interaction between objects more properly.

On the other hand, several research support the event-handler paradigm upon
the aspect paradigm. ECaesarJ [19] introduces events into aspect-oriented lan-
guages for context-handling. The events can be triggered explicitly by method
calls or defined by pointcuts implicitly. EventCJ [13] is a context-oriented pro-
gramming language that enables controlling layer activation modularly by in-
troducing events. By declaring events, we can specify when and which instance
layer is activated. It also provides layer transition rules to activate or deactivate
layers according to events. EventCJ makes it possible to declaratively specify
layer transitions in a separate manner. Comparing with DominoJ, using events
in the two languages may beak modular reasoning since their event models rely
on the pointcut-advice model. Furthermore, events are introduced as a separate
construct from methods.

Flapjax [16] proposes a reactive model for Web applications by introduc-
ing behaviors and the event streams. Flapjax lets clients use the event-handler
paradigm by setting data flows. The handlers for an event can be registered in an
implicit way. However, unlike other event mechanisms, it requires programmers
to use a slightly different event paradigm. The behavior of DominoJ is more sim-
ilar to the typical event mechanism while it has the basic ability for the aspect
paradigm as well.

Fickle [4] enables re-classification for objects at runtime. Programmers can
define several state classes for a root class, create an object at a certain state, and
change the membership of the object according to its state dynamically. With
re-classification, repeatedly creating new objects between similar classes for an
existing object can be avoided. Both Fickle and DominoJ allow to change the
class membership of an object at runtime, so other objects holding the identity of
the object can be unaware of the changes. The difference is that Fickle focuses
on the changes between states while DominoJ focuses on the effect of calling
specified methods. Fickle provides better structural ability such as declaring
new fields in state classes. However, if the relation between states is not flat and
cannot be separated clearly, programmers still have to maintain the same code
between state classes. The common code to only part of states can be gathered

Supporting Methods, Events, and Advices by a Single Language Construct 107

up into one class in DominoJ. Furthermore, DominoJ is easier to use for the
event-handler paradigm.

The lambda expressions [20] will be introduced in Java 8 as a new feature to
support programming in a multicore environment. With the new expression,
declaring anonymous classes for containing handlers can be eliminated. The
lambda expression of Java 8 is a different construct from methods but method
slots can be regarded as a superset of methods.

6 Conclusions

We discussed the similarity between the language constructs for the event-
handler paradigm and the aspect paradigm, which motivates us to propose a
new language construct, named method slot, to support both the paradigms. We
presented how a method slot is introduced as a language construct in a Java-
based language, DominoJ. We then discussed how method slots can be used
for the two paradigms and the coverage of expressive ability. Although the ex-
pression of method slots is not as rich as other languages, it is much simpler
and able to express most functionality in the two paradigms. We also showed
its feasibility by implementing a prototype compiler and running a preliminary
microbenchmark.

References

1. Bergmans, L., Aksit, M.: Composing crosscutting concerns using composition fil-
ters. Commun. ACM 44(10), 51–57 (2001)

2. Chiba, S., Igarashi, A., Zakirov, S.: Mostly modular compilation of crosscutting
concerns by contextual predicate dispatch. In: OOPSLA 2010, pp. 539–554. ACM
(2010)

3. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.:
Ambient-oriented programming in AmbientTalk. In: Thomas, D. (ed.) ECOOP
2006. LNCS, vol. 4067, pp. 230–254. Springer, Heidelberg (2006)

4. Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., Giannini, P.: Fickle: Dy-
namic object re-classification. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS,
vol. 2072, pp. 130–149. Springer, Heidelberg (2001)

5. Ernst, M., Kaplan, C., Chambers, C.: Predicate dispatching: A unified theory of
dispatch. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 186–211. Springer,
Heidelberg (1998)

6. Eugster, P., Jayaram, K.R.: EventJava: An extension of Java for event correlation.
In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 570–594. Springer,
Heidelberg (2009)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley
(1994)

8. Garlan, D., Jha, S., Notkin, D., Dingel, J.: Reasoning about implicit invocation.
In: SIGSOFT 1998/FSE-6, pp. 209–221. ACM (1998)

9. Gasiunas, V., Satabin, L., Mezini, M., Núñez, A., Noyé, J.: EScala: modular event-
driven object interactions in Scala. In: AOSD 2011, pp. 227–240. ACM (2011)

108 Y. Zhuang and S. Chiba

10. Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ.
In: OOPSLA 2002, pp. 161–173. ACM (2002)

11. Haupt, M., Schippers, H.: A machine model for aspect-oriented programming. In:
Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 501–524. Springer, Heidelberg
(2007)

12. Havinga, W., Bergmans, L., Aksit, M.: A model for composable composition op-
erators: expressing object and aspect compositions with first-class operators. In:
AOSD 2010, pp. 145–156. ACM (2010)

13. Kamina, T., Aotani, T., Masuhara, H.: EventCJ: a context-oriented program-
ming language with declarative event-based context transition. In: AOSD 2011,
pp. 253–264. ACM (2011)

14. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

15. Hansen, K.A., Endoh, Y.: A fine-grained join point model for more reusable aspects.
In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 131–147. Springer,
Heidelberg (2006)

16. Meyerovich, L.A., Guha, A., Baskin, J., Cooper, G.H., Greenberg, M., Bromfield,
A., Krishnamurthi, S.: Flapjax: a programming language for Ajax applications. In:
OOPSLA 2009, pp. 1–20. ACM (2009)

17. Microsoft Corporation. C# language specification
18. Microsoft Corporation. Messages and message queues
19. Núñez, A., Noyé, J., Gasiūnas, V.: Declarative definition of contexts with poly-

morphic events. In: COP 2009, pp. 2:1–2:6. ACM (2009)
20. Oracle Corporation. OpenJDK: Project Lambda,

http://openjdk.java.net/projects/lambda/
21. Orleans, D.: Incremental programming with extensible decisions. In: AOSD 2002,

pp. 56–64. ACM (2002)
22. Rajan, H., Leavens, G.T.: Ptolemy: A language with quantified, typed events. In:

Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 155–179. Springer, Heidelberg
(2008)

23. Schippers, H., Janssens, D., Haupt, M., Hirschfeld, R.: Delegation-based semantics
for modularizing crosscutting concerns. In: OOPSLA 2008, pp. 525–542. ACM
(2008)

24. Smith, R.B., Ungar, D.: Programming as an experience: The inspiration for Self. In:
Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952, pp. 303–330. Springer, Heidelberg
(1995)

25. Sun Microsystems. Abstract Window Toolkit,
http://java.sun.com/products/jdk/awt/

26. The AspectJ Project, http://www.eclipse.org/aspectj/
27. The Boost Project. Boost.Signals, http://www.boost.org/libs/signals/
28. The JastAdd Project. JastAddJ: The JastAdd Extensible Java Compiler,

http://jastadd.org/web/jastaddj/
29. The Qt Project. Signals & Slots, http://qt-project.org/doc/signalsandslots
30. The SAX project. Simple API for XML, http://www.saxproject.org/
31. The Self project, http://selflanguage.org/
32. The X.Org project. Xlib in X Window System, http://www.x.org/
33. Widom, J., Finkelstein, S.J.: Set-oriented production rules in relational database

systems. In: SIGMOD 1990, pp. 259–270. ACM Press (1990)
34. Zhuang, Y., Chiba, S.: Applying DominoJ to GoF Design Patterns. Technical re-

port, Dept. of Math. and Comp., Tokyo Institute of Technology (2011)

http://openjdk.java.net/projects/lambda/
http://java.sun.com/products/jdk/awt/
http://www.eclipse.org/aspectj/
http://www.boost.org/libs/signals/
http://jastadd.org/web/jastaddj/
http://qt-project.org/doc/signalsandslots
http://www.saxproject.org/
http://selflanguage.org/
http://www.x.org/

Modularity and Dynamic Adaptation

of Flexibly Secure Systems:
Model-Driven Adaptive Delegation

in Access Control Management

Phu H. Nguyen, Gregory Nain, Jacques Klein,
Tejeddine Mouelhi, and Yves Le Traon

Interdisciplinary Centre for Security, Reliability and Trust (SnT)
University of Luxembourg

4 rue Alphonse Weicker, L-2721 Luxembourg
{phuhong.nguyen,gregory.nain,jacques.klein,

tejeddine.mouelhi,yves.letraon}@uni.lu

Abstract. Model-Driven Security (Mds) is a specialized Model-Driven
Engineering (Mde) approach for supporting the development of secure sys-
tems.Model-Driven Security aims at improving the productivity of the de-
velopment process and quality of the resulting secure systems, withmodels
as the main artifact. Among the variety of models that have been stud-
ied in aModel-Driven Security perspective, one canmention access control
models that specify the access rights. So far, these models mainly focus on
static definitions of access control policies, without taking into account the
more complex, but essential, delegation of rights mechanism. Delegation
is a meta-level mechanism for administrating access rights, which allows
a user without any specific administrative privileges to delegate his/her
access rights to another user. This paper gives a formalization of access
control and delegation mechanisms, and analyses themain hard-points for
introducing various advanced delegation semantics inModel-Driven Secu-
rity. Then, we propose a modular model-driven framework for 1) specify-
ing access control, delegation and the business logic as separate concerns;
2) dynamically enforcing/weaving access control policies with various del-
egation features into security-critical systems; and 3) providing a flexibly
dynamic adaptation strategy.Wedemonstrate the feasibility and effective-
ness of our proposed solution through the proof-of-concept implementa-
tions of different component-based systems running on different adaptive
execution platforms, i.e. OSGi and Kevoree.

Keywords: Model-driven security, model-driven engineering, MDE,
model composition, delegation, access control, dynamic adaptation, OSGi,
Kevoree.

1 Introduction

Software security is a polymorphic concept that encompasses different viewpoints
(hacker, security officer, end-user) and raises complex management issues when

S. Chiba et al. (Eds.): Transactions on AOSD XI, LNCS 8400, pp. 109–144, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

110 P.H. Nguyen et al.

considering the ever-increasing complexity and dynamism of modern software.
In this perspective, designing, implementing and testing software for security
is a hard task, especially because security is dynamic, meaning that a security
policy can be updated at any time and that it must be kept aligned with the
software evolution. As one of the key concerns in software security, managing
access control to critical resources requires the dynamic enforcement of access
control policies. Access control policies stipulate actors access rights to internal
resources and ensure that users can only access the resources they are allowed
to in a given context. A sound methodology supporting such security-critical
systems development is extremely necessary because access control mechanisms
cannot be “blindly” inserted into a system, but the overall system development
must take access control aspects into account. Critical resources could be accessi-
ble to wrong (or even malicious) users because of a small error in the specification
or in the implementation of the access control policy.

Several design approaches like [24] [4] have been proposed to enable the en-
forcement of classical security models, such as Role-Based Access Control (Rbac)
[12] [32]. These approaches bridge the gap from the high-level definition of an
access control policy to its enforcement in the running software, automating the
dynamic deployment of a given access control policy. Although such a bridge is
a prerequisite for the dynamic administration of a given access control policy, it
is not sufficient to offer the advanced administration instruments that are nec-
essary to efficiently manage access control. In particular, delegation of rights is
a complex dimension of access control that has not yet been addressed by the
adaptive access control mechanisms. User delegation is necessary for assigning
permissions from one user to another user. An expressive design of access control
must extensively take into account delegation requirements.

Delegation models based on Rbac management have been characterized as se-
cure, flexible and efficient access management for resource sharing, especially in
a distributed environment. Flexible means that different subjects for delegation
should be supported, i.e. delegation of roles, specific permissions or obligations.
Also, different features of delegation should be supported, like temporary and re-
current delegation, transfer of role or permissions, delegation to multiple users,
multi-step delegation, revocation, etc. However, the addition of flexibility for
delegation must come with mechanisms to make sure that the security policy
of the system is securely consistent. And last but not least, the administration
of delegations must remain simple to be efficient. Thus, delegation is a com-
plex problem to solve and to our best knowledge, there has been no complete
approach for both specifying and dynamically enforcing access control policies
by taking into account various features of delegation. Having such an expres-
sive security model is crucial in order to simplify the administrative task and
to manage collaborative work securely, especially with the increase in shared
information and distributed systems.

Based on previous work [24], in this paper we propose a new Modular Model-
Driven Security solution to easily and separately specify 1) the business logic
of the system without any security concern using a Domain Specific Modeling

Model-Driven Adaptive Delegation in Access Control Management 111

Language (Dsml) for describing the architecture of a system in terms of com-
ponents and bindings; 2) the “traditional” access control policy using a Dsml
based on a Rbac-based metamodel; 3) an advanced delegation policy based on
a Dsml dedicated to delegation management. In this third Dsml, delegation
can be seen as a “meta-level” mechanism which impacts the existing access con-
trol policies similarly as an aspect can impact a base program. The security
enforcement is enabled by leveraging automated model transformation/compo-
sition (from security model to architecture model). Consequently, in addition
to [24], an advanced model composition is required to correctly handle the new
delegation features. In this paper, we claim that delegation needs to be clearly
separated from access control because a delegation policy impacts access control
rules. Therefore, delegation and access control are not at the same level and
should be separated. This separation involves an advanced model composition
approach to dynamically know, at any time, what is the set of new access con-
trols that has to be considered, i.e. the “normal” access control rules as well as
the access control rules modified by the delegation rules. From a more techni-
cal point of view, the security enforcement is dynamically done via automated
model transformation/composition (from security model to architecture model)
and the dynamic reconfiguration ability of modern adaptive execution platforms.

This paper is an extension of our earlier paper [28] which was presented at
the conference Modularity: AOSD’13. The remainder of this paper is organized
as follows. Section 2 presents the background on access control, delegation, and
the security-driven model-based dynamic adaptation. Formal definitions of our
access control model and formalisms of advanced delegation features are given
in detail. Section 3 describes a running example. It will be used throughout
the paper to show the diverse characteristics of delegation and illustrate the
various aspects of our approach. In Section 4, we first give an overview of our
approach. Then, we formalize our delegation mechanisms based on Rbac and
show how our delegation metamodel can be used to specify expressive access
control policies that take into account various features of delegation. Based on the
delegation metamodel, we describe our model transformation/composition rules
used for transforming and weaving security policy into an architecture model.
This section ends with a discussion of several strategies for dynamic adaptation
and evolution of security policy. Section 5 describes how our approach has been
applied and evaluated in the development of three different systems running on
two different adaptive execution platforms. Next, related work is presented in
Section 6. Finally, Section 7 concludes the paper and discusses future work.

2 Background

This section introduces the main concepts which are used in this paper. First,
formal definitions of Access Control and Delegation policies are presented. Based
on these definitions, some key advanced delegation features are introduced for-
mally. We keep all the definitions here generic so that they can be mapped into
different security models like Role-Based Access Control (Rbac), Organization-
Based Access Control (Orbac) [16], Discretionary Access Control (Dac) [19],

112 P.H. Nguyen et al.

etc. These definitions also provide the basis for deriving mutation operators that
can be used for testing delegation policy enforcement [29]. Then, a brief summary
of previous work on dynamic security policy enforcement [24] is given.

2.1 Access Control

Access Control [14] is known as one of the most important security mechanisms.
It enables the regulation of user access to system resources by enforcing access
control policies. A policy defines a set of access control rules which expresses:
who has the right to access a given resource or not, and the way to access it, i.e.
which actions a user can access under which conditions or contexts.

Definition 1 (Access Control). Let U be a set of users, P be a set of per-
missions and C be a set of contexts. An access control policy AC is defined as
a user-permission-context assignment relation: AC ⊆ U × P × C. A user u is
granted permission p in a given context c if and only if (u, p, c) ∈ AC.

Additional details about contexts are given in next Section 2.2.

2.2 Delegation

In the field of access control, delegation is a very complex but important aspect
that plays a key role in the administration mechanism [5]. A software system
which supports delegation should allow its users without any specific administra-
tive privileges to grant some authorizations. Delegation of rights allows a user,
called the delegator, to delegate his/her access rights to another user, called the
delegatee. By this delegation, the delegatee is allowed to perform the delegated
roles/permissions on behalf of the delegator [9]. The delegator has full respon-
sibility and accountability for the delegated accesses since he/she provides the
accesses to the resources to other users, who are not initially authorized by the
access control rules to access these resources.

A delegation policy can be considered as an administration-related security
policy that is built on top of an access control policy. It is composed of delegation
rules that can be specified at two levels: master-level and user-level. Basically, a
delegation policy is twofold:

1. It specifies who has the right to delegate which permission (for accessing
to a given resource/action/subject) to whom, and in which context. We call this
kind of rule master-level delegation rule as such a rule is normally defined by
security officers. For example, a security officer can define a rule to specify that
the head of a department at a university can only delegate the permission of
updating personnel accounts to a professor.

Definition 2 (Master-level Delegation Policy). Let U be a set of users, P
be a set of permissions and C be a set of contexts. A master-level delegation
policy MLD is defined as a user-user-permission-context assignment relation:
MLD ⊆ U×U×P ×C with the following meaning. A delegation of a permission
p from a user u1 to a user u2 in a given context c is allowed if and only if
(u1, u2, p, c) ∈ MLD.

Model-Driven Adaptive Delegation in Access Control Management 113

2. It specifies who delegates to whom which permission, and in which context.
We call this kind of rule user-level delegation rule as these rules are mostly
defined by normal users. Note that user-level delegation rules must conform
to master-level delegation rules. For example, Bill (the head of department)
delegates his permission of updating personnel accounts to Bob (a professor)
during his absence.

Definition 3 (User-level Delegation Policy). Let U be a set of users, P be
a set of permissions and C be a set of contexts. A user-level delegation policy
ULD is defined as a user-user-permission-context assignment relation: ULD ⊆
U × U × P × C with the following meaning. A user u2 has a permission p by
delegation from a user u1 in a given context c if and only if (u1, u2, p, c) ∈ ULD.
It can be seen that all the delegations in ULD conform to the rules defined in
the MLD. In other words, every delegation at the user-level can only be created
if it conforms to the delegation rules defined at the master-level.

Context. A context is a condition or a combination of conditions in which
an access control/delegation rule is active, i.e. enforced in the running system.
Cuppens et al. discuss five different kinds of contexts in [10]. These kinds of con-
texts include temporal context, spatial context, user-declared context, prerequi-
site context and provisional context. Temporal delegation is delegation within
a time constraint, for example delegation is active for two days, or delegation
is active for the time the delegator is on vacation. The spatial context relies
on the delegator/delegatee’s location, e.g. a delegated permission is only active
when the delegatee is at office. User-declared context is related to the purpose of
the delegator/delegatee, e.g. a delegator may state that his/her delegatee can-
not further delegate his/her permissions to someone else. Prerequisite context
allows delegation when some precondition is satisfied and the provisional con-
text depends on the previous actions that delegator/delegatee has performed on
the system. Moreover, it is possible for a security rule to have a complex con-
text, which is a composition of contexts. Our security model supports context
composition using conjunction &, disjunction ⊕, and negation .̄

Note that every access control rule and delegation rule defined in this paper
is always associated with a context c. By default, if not specified explicitly, a
context c is at least composed of a condition, called Default, i.e. always true.

2.3 Advanced Delegation Features

Delegation is a powerful and very useful way to augment access control policy
administration. On one hand, it allows users to temporarily modify the access
control policy by delegating access rights. By delegation, a delegatee can per-
form the delegated job, without requiring the intervention of the security officer.
On the other hand, the delegator and/or some specific authorized users should
be supported to revoke the delegation either manually or automatically. In both
cases, the administrative task can be simplified and collaborative work can be

114 P.H. Nguyen et al.

managed securely, especially with the increase in shared information and dis-
tributed systems [1]. However, the simpler the administrative task can be, the
more complex features of delegation have to be properly specified and enforced in
the software system. To the best of our knowledge, there is no approach for both
specifying and dynamically enforcing access control policies taking into account
all delegation features like temporary delegation, transfer delegation, multiple
delegation, multi-step delegation, etc.

In this section, we define the most well-known complex delegation features and
formally specify them w.r.t. the definitions of access control and delegation poli-
cies. In the following definitions, we use pre, body and post to respectively specify
the state of the policy before changing, the state while it is being changed by the
function (the delegation rule is being enforced) and the state after changing.

Monotonicity of Delegation. Monotonicity of delegation refers to whether
or not the delegator can still use the permission while delegating it [9]. If the
delegator can still use the permission while delegating it, the delegation is called
grant delegation. Of course, the delegatee can use the permission while it is
delegated to him. This is monotonic because available authorizations (in the
set AC) are increased due to successful delegation operations. Again, note that
every delegation can only be performed if and only if it satisfies the master-level
delegation policy.

Definition 4 (Grant Delegation). grantDelegation(u1, u2, p, c) : −
pre (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧ (u1, u2, p, c) ∈ MLD
body AC := AC ∪ {(u2, p, c)}; ULD := ULD ∪ {(u1, u2, p, c)} end
post (u1, p, c) ∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD

Vice versa, if the delegator can not use the permission while delegating it, the
delegation is called transfer delegation. As such, this is non-monotonic because
available authorizations (in AC) are not increased due to successful delegation
operations.

Definition 5 (Transfer Delegation). transferDelegation(u1, u2, p, c) : −
pre (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧ (u1, u2, p, c) ∈ MLD
body AC := AC \ {(u1, p, c)}; AC := AC ∪ {(u2, p, c)}; ULD := ULD ∪
{(u1, u2, p, c)} end
post (u1, p, c) /∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD

Temporary Delegation. This is also a very common feature of delegation
needed by users. When revocation is handled automatically, the delegation is
called temporary. In this case, the delegator specifies the temporal conditions in
which this delegation applies: only at a given time, after or before a given time,
or during a given time interval. The temporal conditions may correspond to a
day of the week, or to a time of the day, etc. If the temporal context is not used,
the delegation needs to be revoked manually.

Model-Driven Adaptive Delegation in Access Control Management 115

Definition 6 (Temporary Delegation). Let c be a given context of a dele-
gation (either grant delegation or transfer delegation). A delegation is specified
as temporary if its context c is associated with a time constraint. The delegation
will only be active while the time constraint is satisfied.

For example, if the context is vacation period, a delegator Bill could have an
associated delegation rule with the following context:

c := c&vacation period(startDate, endDate)
where vacation period(startDate, endDate) : −
startDate ≤ endDate ∧ afterDate(startDate) ∧ beforeDate(endDate)

Here, afterDate(date) returns true iff date is equal or later than the current
date. Similarly, beforeDate(date) returns true iff date is equal or earlier than
the current date.

Multiple Delegation. A permission can be delegated to more than a delegatee
at a given time. However, the number of times that a permission is concurrently
delegated have to be controlled. Multiple delegation refers to the maximum
number of times that a permission can be delegated at a given time.

Definition 7 (Multiple Delegation). Let Nm be the maximum number of
times that a permission can be concurrently delegated. Nm is predefined by the
security officer. The number of concurrent delegations in which the same role or
permission is delegated at a given time, in a given context cannot exceed Nm.

We introduce a counting function to count the number of delegations of a
permission which is delegated by a delegator in a given context. The number
returned by this function is always updated according to the change in the
delegation policy, i.e. the number of delegation rules related to permission p.

countDelegation(u, p, c) := |{(u, v, p, c) | ∀v ∈ U : (u, v, p, c) ∈ ULD}|
If the number of concurrent delegations of the same permission at a given time,

in a given context has not exceeded Nm, then this permission is still allowed to
be delegated.

grantDelegation(u1, u2, p,
c&countDelegation(u1, p, c) < Nm) : − pre (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧
(u1, u2, p, c) ∈ MLD ∧ countDelegation(u1, p, c) < Nm

body AC := AC ∪ {(u2, p, c)}; ULD := ULD ∪ {(u1, u2, p, c)} end
post (u1, p, c) ∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD

Multi-step Delegation. This characteristic refers to the maximum number of
steps (Ns, normally specified by a security officer) that a permission p can be
re-delegated, counted from the first delegator of this permission. So if Ns = 0
that means the permission p can not be re-delegated anymore.

Definition 8 (Multi-step Delegation). Let Ns ≥ 0 be the maximum number
of steps that a permission p can be re-delegated. A permission p can only be
delegated iff Ns > 0.

116 P.H. Nguyen et al.

First, let us define a helper function that returns the number of times a
permission p is re-delegated in a given context c. stepCounter(u0, p, c) := Ns

where u0 is the first delegator of p in the delegation chain: u0 delegates p to ...
in a given context c; ... re-delegates p to u1 in context c; and u1 re-delegates p
to u2 in context c. Here, “...” is the users in the middle of the delegation chain,
u1 is the current last delegatee of this chain, and u2 is the next delegatee if
stepCounter(u1, p, c) ≥ 1.

If there exists a predefined maximum number of steps Ns for a permission p
as described above, the delegation is specified as following.

grantDelegation(u1, u2, p, c
&stepCounter(u1, p, c) ≥ 1) : −
pre(u1, p, c)∈AC∧(u2, p, c) /∈AC∧(u1, u2, p, c)∈MLD∧stepCounter(u1, p, c)≥ 1
body AC :=AC∪{(u2, p, c)}; ULD :=ULD∪{(u1, u2, p, c)}; stepCounter(u2, p, c)
:= stepCounter(u1, p, c)− 1 end
post (u1, p, c) ∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD

Delegation Revocation. Delegation supports a revocation feature in which a
delegation can be revoked and permissions are returned to the original user.

Definition 9 (Delegation Revocation). Delegation revocation is the ability
for any delegation can be manually revoked by authorized users.

The revocation of a grant delegation means to deny access of the delegatee to
the delegated permission.

Definition 10. revokeGrantDelegation(u1, u2, p, c) : −
pre (u1, p, c) ∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD
body AC := AC \ {(u2, p, c)}; ULD := ULD \ {(u1, u2, p, c)} end
post (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧ (u1, u2, p, c) /∈ ULD

The permission to be revoked is deleted from the access rights of the delegatee.
To revoke a transfer delegation, it is not only to deny access of the delegatee
to the delegated permission but also to re-grant access to the delegator who is
temporarily not having this access.

Definition 11. revokeT ransferDelegation(u1, u2, p, c) : −
pre (u2, p, c) ∈ AC ∧ (u1, p, c) /∈ AC ∧ (u1, u2, p, c) ∈ ULD
body AC :=AC\{(u2, p, c)}; AC :=AC∪{(u1, p, c)}; ULD :=ULD\{(u1, u2, p, c)}
end
post (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧ (u1, u2, p, c) /∈ ULD

We have presented formal definitions of access control, delegation and various
delegation features. These definitions are generic (at the conceptual level) so that
they can be mapped into different security models like Rbac, Orbac, Dac, etc.
Section 4 shows how these formal concepts can be implemented (based on Rbac)
using Mde techniques.

Model-Driven Adaptive Delegation in Access Control Management 117

2.4 Security-Driven Model-Based Dynamic Adaptation

In [24], the authors have proposed to leverage Mde techniques to provide a
very flexible approach for managing access control. The different steps of this
approach are summed up in Figure 1. On one hand, access control policies are
defined by security experts, using a Dsml, which describes the concepts of ac-
cess control, as well as their relationships. On the other hand, the application
is designed using another Dsml for describing the architecture of a system in
terms of components and bindings. This component-based software architecture
only contains the business components of the application, which encapsulate
the functionalities of the system, without any security concern. Then, the au-
thors define mappings between both Dsmls describing how security concepts
are mapped to architectural concepts. These mappings are used to fully gener-
ate an architecture that enforces the security rules. When the security policy
is updated, the architecture is also updated. Finally, the proposed technique
leverages the notion of models@runtime [21] in order to keep the architectural
model (itself synchronized with the access control model) synchronized with the
running system. This way, the running system can be dynamically updated in
order to reflect changes in the security policy. Only users who have the right to
access a resource can actually access this resource.

Business
Architecture

Model

Security Enforced
Architecture Model

Security
Policy

Context
Information

Middleware platform

Running System Monitoring Framework

Adaptive
Security
Model

+
(2) Composition

The security policy is
composed with the

business architecture

(1) Reasoning
depending on the context
the appropriate access
control rules are selected
from the security model

(3) Adaptation
The running system is
safely and automatically
reconfigured

(4) Notification
The monitoring
framework triggers
reasoning by
notifying relevant
changes

(5) Evolution
At any time the
security model can
be updated

Models at runtime

Fig. 1. Overview of the Model-Driven Security Approach of [24]

118 P.H. Nguyen et al.

3 A Running Example

In this section, we give a motivating example which will be used throughout the
paper for describing the diverse characteristics of delegation and illustrating the
various aspects of our approach.

Let us consider a Library Management System (Lms) providing library ser-
vices with security concerns like access control and delegation management.
There are two types of user accounts: personnel accounts (director, secretary,
administrator and librarian) are managed by an administrator; and borrower
accounts (lecturer and student) are managed by a secretary. The director of the
library has the same accesses as a secretary, but additionally, he can also con-
sult the personnel accounts. The librarian can consult the borrower accounts.
A secretary can add new books in the Lms when they are delivered. Lecturers
and students can borrow, reserve and return books, etc. In general, the library
is organized with the following entities and security rules.

Roles (users): access rights (e.g. working days)
Director (Bill): consult personnel account, consult, create, update and delete
borrower account.
Secretary (Bob and Alice): consult, create, update and delete borrower ac-
count, add book.
Administrator (Sam and Tom): consult, create, update and delete personnel
account.
Librarian (Jane and John): consult borrower account, find book by state, find
book by keyword, report a book damaged, report a book repaired, fix a book.
Lecturer (Paul) and Student (Mary): find book by keyword, reserve, borrow
and return book.

Resources and actions to be protected
Personnel Account: consult, create, update and delete personnel account.
Borrower Account: consult, create, update and delete borrower account.
Book: report a book damaged, report a book repaired, borrow a book, deliver
a book, find book by keyword, find book by state, fix a book, reserve a book,
return a book.

In this organization, users may need to delegate some of their authorities
to other users. For instance, the director may need the help of a secretary to
replace him during his absence. A librarian may delegate his/her authorities to
an administrator during a maintenance day.

It is possible to only specify role or action delegations by using the Dsml
described in [24]. For instance, a role delegation rule can be created to specify
that Bill, the director (prior to his vacation) delegates his role to Bob, one of
his secretaries. But it is impossible for Bill to define whether or not Bob can
re-delegate the director role to someone else (in case Bob is also absent for some
reason). The role delegation of Bill to Bob is also handled manually: it is enforced
when Bill creates the delegation rule and only revoked when Bill deletes this

Model-Driven Adaptive Delegation in Access Control Management 119

rule. There is no way for Bill to define a temporary delegation where its active
duration is automatically handled. Obviously the Dsml described in [24] is not
expressive enough to specify complex characteristics of delegation.

There are many delegation situations that should be supported by the system.
We give some delegation situations of the LMS as follows:
1. The director (Bill) delegates his role to a secretary (Bob) during his vaca-
tion (the delegation is automatically activated at the start of his vacation and
revoked at the end of his vacation).
2. A secretary (Alice) delegates her task/action of create borrower account to a
librarian (Jane).
3. A secretary (Bob) transfers his role to an administrator (Sam) during main-
tenance day. In case of a transfer delegation, the delegator temporarily loses
his/her rights during the time of delegation.
4. The role administrator is not delegable.
5. The permission of deleting borrower account is not delegable.
6. The director can delegate, on behalf of a secretary, the secretary’s role (or
some his/her permitted actions) to a librarian (e.g. during the secretary’s ab-
sence).
7. If a librarian empowered in role secretary by delegation is no longer able to
perform this task, then he/she can delegate, again, this role to another librarian.
8. The secretary empowered in role director by delegation is not allowed to del-
egate/transfer, again, this role to another secretary.
9. A secretary is allowed to delegate his/her role to a librarian only and to one
librarian at a given time.
10. A secretary is allowed to delegate his/her task of book delivery to a librarian
only and scheduled on every Monday.
11. Bill can delegate his role and permitted actions only to Bob
12. Bob is not allowed to delegate his role.
13. Alice is not allowed to delegate her permitted action of book delivery.
14. Users can always revoke their own delegations.
15. The director can revoke users from their delegated roles.
16. A secretary can revoke librarians empowered in secretary role by delegation,
even if he/she is not the creator of this delegation (e.g. the creator is the director
or another librarian).

This running example shows the two levels of delegation rules as defined in the
previous section: user-level (rules defined by a user: e.g. situations 1, 2, 3) and
master-level (rules defined by a security officer: e.g. 4, 5, 6). Obviously, delegation
rules at user-level have to conform to rules at master-level. For example, the
security officer can define that users of role director are able to delegate on
behalf of users of role secretary. Then at user-level, Bill (director) can create
a delegation rule to delegate, on behalf of Alice, her role (secretary) to Jane
(librarian).

120 P.H. Nguyen et al.

4 Model-Driven Adaptive Delegation

4.1 Overview of Our Approach

In our approach, as noted in Section 2, delegation is considered as a “meta-level”
mechanism which impacts the existing access control policies, like an aspect can
impact a base program. We claim that to handle advanced delegation rules, an
ideal solution is to logically separate the delegation rules from the access control
policy, each being specified in isolation, and then compose/weave them together
to obtain a new access control policy (called active security policy) reflecting
the delegation-driven policy (Figure 2). We present our metamodel (Dsml) for
specifying delegation based on Rbac in Section 4.2.

The separation of concerns is not only between delegation and access
control, but also between the security policy and the business logic of the system.
Figure 3 presents a wider view of the overall approach. In order to enforce a secu-
rity policy for the system, the core business architecture model of the system is
composed with the active security policy previously obtained. The architecture
model is expressed in another Dsml, called architecture metamodel (an architec-
ture modeling language described in [24]). The idea is to reflect security policy
into the system at the architecture level. Section 4.3 defines transformation rules
to show how security concepts are mapped into architectural concepts.

Access
control

metamodel

Access
control
policy

Active
security
policy

conforms to (

depending on both
the context and the
delegation rules, the
appropriate access

control rules are
selected

and delegation
models

Fig. 2. Delegation impacting Access Control

Model-Driven Adaptive Delegation in Access Control Management 121

Access
control

metamodel

Access
policy

Architecture
metamodel

Base
model

Security-
enforced

architecture
model

Self
adaptation

Adaptive execution platform

M2 M1 M0

Fig. 3. Overview of our approach

The security-enforced architecture model obtained above is a pure architecture
model which by itself reflects how the security policy is enforced in the system.
Our model-driven framework to reflect security policy at the architecture model
is generic, meaning that from the security-enforced architecture model of the
system, it is possible to enforce security policy for running systems on differ-
ent execution platforms. In Section 5, we show how our approach is applied for
two different adaptive execution platforms, i.e. OSGi [33] and Kevoree [13]1. It
is important to note that the security-enforced architecture model is not used
for generating the whole system but only the proxy components. These proxy
components can be adapted and integrated with the running system at runtime
to physically enforce the security policy. The adaptation and integration can
be done by leveraging the runtime adaptation mechanisms provided by modern
adaptive execution middleware platforms. The approach of possibly generating
proxy components overcomes some main limitations of [24]. Section 4.4 is dedi-
cated to discuss our strategy for adaptation and evolution of the secure systems.

4.2 Delegation Metamodel

Our metamodel, displayed in Figure 4, defines the conceptual elements and their
relationships that can be used to specify access control and delegation policies

1 www.kevoree.org, last access October 2013.

www.kevoree.org

122 P.H. Nguyen et al.

which are defined in Section 2. Because the delegation mechanism is based on
Rbac, we first explain the main conceptual elements of role-based access control.
Then, we show how our conceptual elements of delegation, based on the Rbac
conceptual elements, can be used to specify various delegation features which
are defined in Section 2.

Fig. 4. The Delegation metamodel

As shown in Figure 4, the root element of our metamodel is the Policy. It
contains Users, Roles, Resources, Rules and Contexts. Each user has one role.
A security officer can specify all the roles in the system, e.g. admin, director,
etc., via the Role element. In order to specify an access control policy, the secu-
rity officer should have defined in advance the resources that must be protected
from unauthorized access. Each resource contains some actions which are only
accessible to authorized users. These protections are defined in rules: permission
rules and delegation rules. Permission rules are used to specify which actions are
accessible to users based on their roles. That means, without delegation rules or
user-specific access control rules, every user is able to access the actions associ-
ated with his/her role only. Delegation rules are used to specify which actions
are accessible to users by delegation. There are two basic types of delegation:

– Role delegation: When users empowered in role(s) delegated by other
user(s), they are allowed to access not only actions associated with their
roles but also actions associated with the delegated role(s).

– Action delegation: Instead of delegating their roles, users may want to
delegate only some specific actions associated with their roles.

Another important aspect of our access control and delegation framework is
the notion of context which has been introduced in Section 2.2. It can be seen

Model-Driven Adaptive Delegation in Access Control Management 123

from our metamodel that every permission/delegation rule is associated with a
context. A rule is only active within its context. The concept of context actually
provides our model with high flexibility. Security policies can be easily adapted
according to different contexts.

The full metamodel for specifying delegation is displayed in Figure 4. It de-
picts the features that are supported by our delegation framework. All delega-
tion management features are developed based on two basic types of delegation
mentioned above. In the following, we show how the delegation features can be
specified, w.r.t. our metamodel. In other words, this is how the formal definitions
in Section 2 are actually implemented.

– Temporary delegation: This is one of the most common types of delega-
tion used by users. It describes when the delegation starts to be active and
when it ends. The delegator can specify that the delegated role/action is
authorized only during a given time interval, e.g. situation 1 of the running
example in Section 3. Actually, this can be specified using the recurrence of
delegation described below, but we want to define it separately because of
its common use.

– Monotonicity (Transfer of role or permissions): A property isMono-
tonic can be used to specify if a delegation is monotonic or non-monotonic.
The former (isMonotonic = true) specifies that the delegated access right is
available to both the delegator and delegatee after enforcing this delegation.
As defined in Section 2, this delegation is called a grant delegation. The lat-
ter (isMonotonic = false) means the delegated role/action is transferred to
the delegatee, and the delegator temporarily loses his rights while delegating,
e.g. situation 3. In this case, the delegation is called a transfer delegation.

– Recurrence: It refers to the repetition of the delegation. A user may want
to delegate his role to someone else for instance every week on Monday.
Recurrence defines how the delegation is repeated over time. It is similar to
what is implemented in calendar system and more precisely the icalendar
standard (RFC24452). It has several properties; the startDate and endDate
are the starting and ending dates of the recurrence. In addition, the startDate
defines the first occurrence of the delegation. The frequency indicates one
of the three predefined types of frequency, daily, weekly or monthly. The
occurrences is the number of times to repeat the delegation. If the occurrences
is for instance equals to 2 it means that it should only be repeated twice even
when the endDate is not reached. An example of this delegation is situation
10 of the running example.

– Delegable roles/actions: These kinds of delegation define which roles or
actions can be delegated and how (master-level). A policy officer can specify
that a role can only be delegated/transferred to specific role(s), e.g. situation
9. If no delegationTarget is defined for a role, this role cannot be delegated/-
transferred, e.g. situation 4. If a role or action (isDelegable = false) is not
delegable, it should never be included in a delegation rule. Moreover, a role
can also be delegated by a user not having this role but his/her own role is

2 http://www.rfc-editor.org/info/rfc2445

http://www.rfc-editor.org/info/rfc2445

124 P.H. Nguyen et al.

specified as can delegate on behalf of a user in this role (canDelegateOnBe-
halfOf = true), e.g. situation 6.

– Multiple delegations: It should be possible to define the max number of
concurrent delegations in which the same role or action can be delegated
at a given time (master-level delegation rule). The properties maxConcur-
rentRoleDelegations and maxConcurrentActionDelegations define how many
concurrent delegations of the same role/action can be granted, e.g. situation
9. Moreover, it is possible to define for each specific user a specific maximum
number of concurrent delegations of the same role/action: maxRoleDelega-
tions and maxActionDelegations.

– User-specific delegation rights: All user-specific elements are used to
define more strict rules for a specific user rather for his/her role. There are
other user-specific delegations than maxRoleDelegations and maxActionDel-
egations. It is possible to define that a specific user is allowed to delegate his
role/permitted action(s) or not (canDelegate = true or false), e.g. situation
12. The property isNonDelegableAction specifies an action that a specific
user cannot delegate, e.g. situation 13. Moreover, the security officer can
define to which explicit user(s) only (explicitDelegatee) a user can delegate/-
transfer his role to, e.g. situation 11.

– Multi-step delegation: It provides flexibility in authority management,
e.g. situations 7, 8. The property redelegationDepth is used to define whether
or not the role/action of a delegation can be delegated again. When a creator
creates a new delegation, he/she can specify how many times the delegated
role/action can be re-delegated. If the redelegationDepth = 0, it means that
the role/action cannot be delegated anymore, e.g. situation 8. If the redele-
gationDepth > 0, it means the role/action can be delegated again and each
time it is re-delegated, the redelegationDepth is decreased by 1.

– Revocations: All users can revoke their own delegations, e.g. situation 14.
Security officer may set canRevokeAllDelegations = true for a role with a
super revocation power in such a way that a user empowered in this role can
revoke all delegations, e.g. situation 15. Moreover, a role can also be defined
such that every user empowered in this role can revoke any delegation from
this role (canRevokeAllDelegationsOfThisRole = true), even he/she is not
the delegator of the delegation, e.g. situation 16.

Moreover, each possible instance of the security policy has to satisfy all nec-
essary validation condition expressed as OCL invariants. For example, we can
make sure that no delegation is out of target, meaning that delegatee’s role has
to be a delegation target of delegator’s role:

context Delegation inv NoDelegationOutOfTarget:
self.delegator.role.delegationTarget −>exists (t | t = self.delegatee.role)

Or to check that for every user, the number of concurrent role delegations
cannot be over its thresholds:

context User inv NoRoleDelegationOverMax: RoleDelega-
tion.allInstances −>select (d | d.delegator = self) −>size() ≤
self.role.maxConcurrentRoleDelegations and RoleDelegation.allInstances
−>select (d | d.delegator = self) −>size() ≤ self.maxRoleDelegations

Model-Driven Adaptive Delegation in Access Control Management 125

Other examples are to restrict the value of the redelegationDepth must not be
negative, or startDate cannot be later than endDate:

context Delegation inv NonNegativeDeleDepth: self.redelegationDepth
≥ 0

context Duration inv ValidDates: self.startDate ≤ self.endDate

4.3 Transformations/Compositions

After specifying a security policy by the Dsml described in Section 4.2, it is cru-
cial to dynamically enforce this policy into the running system. Transformations
play an important role in the dynamic enforcement process. Via model trans-
formations, security models containing delegation rules and access control rules
are automatically transformed into component-based architecture models. Note
that instances of security models and architecture models are checked before and
after model transformations, using predefined OCL constraints.

The model transformation is executed according to a set of transformation
rules. The purpose of defining transformation rules is to correctly reflect security
policy at the architectural level. Based on transformation rules, security policy
is automatically transformed to proxy components, which are then integrated to
the business logic components of the system in order to enforce the security rules.
The metamodel of component-based architecture can be found in [24] and an
instance of it can be seen in Figure 7. We first describe the transformation that
derives an access control model according to delegation rules (step 1), and then
describe another transformation to show how security policy can be reflected
at the architecture level (step 2). Moreover, we also show an alternative way of
transformation that combines two steps into one.

Adapting Role-Based Access Control policy model to reflect delega-
tion (step 1): Within the security model shown in Figure 2, delegation rules
are considered as “meta-level” mechanisms that impact the access control rules.
The appropriate access control rules and delegation rules are selected depending
on the context information and/or the request of changing security rules com-
ing from the system at runtime. According to the currently active context (e.g.
WorkingDays), only in-context delegation rules and in-context access control
rules of the security model (e.g. rules that are defined with context = Working-
Days) are taken into account to derive the active security policy model (Figure
2). Theoretically, we could say that delegation rules impact the core Rbac el-
ements in the security model in order to derive a pure Rbac model (without
any delegation and context elements) which conforms to a “pure” metamodel of
Rbac (Figure 5). Delegation elements of a security policy model are transformed
as follows:

A.1: Each action delegation is transformed into a new permission rule. The
subject of the permission is user (delegatee) object. The set of actions of the
permission contains the delegated action.

126 P.H. Nguyen et al.

Fig. 5. A pure Rbac metamodel

A.2: Each role delegation is transformed as follows. First, a set of actions
associated to a role is identified from the permissions of this role. Then, each
action is transformed into a permission like transforming an action delegation
described above.
A.3: A temporary delegation is only taken into account in the transformation
if it is in active duration defined by the start and end properties. In fact, when
its active duration starts the (temporary) action/role delegation is transformed
into permission rule(s) as described above. When its active duration ends the
temporary delegation is removed from the policy model.
A.4: If an action delegation is of type transfer delegation (monotonic), then it
is transformed into a permission rule and a prohibition rule. The subject of the
permission is the user -delegatee object. The set of actions of the permission con-
tains the delegated action. The subject of the prohibition is the user -delegator
object. The set of actions of the prohibition contains the delegated action.
A.5: If a role delegation is of type transfer delegation, then it is also transformed
into a permission rule and a prohibition rule. The subject of the permission is
the user -delegatee object. The set of actions of the permission contains the del-
egated actions. The delegated actions here are the actions associated with this
role. The subject of the prohibition is the user -delegator object. The set of ac-
tions of the prohibition also contains the delegated actions.
A.6: If a delegation rule is defined with a recurrence, based on the values set
to the recurrence, the delegation rule is only taken into account in the transfor-
mation within its fromDate and untilDate, repeated by frequency and limited
by occurrences. In other words, only active (during recurrence) delegation rules
are transformed.
A.7: (User-specific) If a user is associated with any non-delegable action,
the action delegation containing this action and this user (as delegator) is not
transformed into a permission rule. Similarly, if a user is specified as he/she
cannot delegate his/her role/action, no role/action delegation involving this
user is transformed.

Model-Driven Adaptive Delegation in Access Control Management 127

A.8: (Role/action-specific) Any delegation rule with a non-delegable role/ac-
tion will not be transformed. In fact, a delegation rule is only transformed if it
satisfies (at least) both user-specific and role/action-specific requirements.
A.9: Only a role delegation to a user (delegatee) whose role is in the set of
delegationTarget will be considered in the transformation.
A.10: Before any delegation is taken into account in the transformation, it has to
satisfy the requirements of max concurrent action/role delegations. Note
that the user-specific values have higher priorities than the role-specific values.
A.11: A delegation is only transformed if its redelegationDepth > 0. When-
ever a user empowered in a role/an action by delegation re-delegates this role/ac-
tion, the newly created delegation is assigned a redelegationDepth = the
previous redelegationDepth - 1.

After transforming all delegation rules, we obtain a pure Rbac model which
reflects both the delegation model and access control model. This pure Rbac
model is then transformed into a security-enforced architecture model as de-
scribed next.

Transformation of Security Policy to Component-Based Architecture
(step 2): The transformation rules are defined below. The goal is to transform
every security policy model (pure Rbac model obtained in step 1) which con-
forms to the metamodel shown in Figure 5 to a component-based architecture
model which conforms to the metamodel described in [24]. However, both the
security policy model and the base model provided by a system designer are used
as inputs for the model transformation/composition. Via a graphical editor, the
security designer must define in advance how the resource elements in the policy
model are related to the business components in the base model. Figure 6 shows
how each action in the policy can be mapped to the Java method in the business
logic.

Because the base model already conforms to the architecture metamodel, we
now only focus on transforming the security policy model into the security-
reflected architecture model. As we know, this transformation/composition pro-
cess will also weave the security-reflected elements into the base model in order
to obtain the security-enforced architecture model.

The core elements of Rbac like resource, role, and user are transformed fol-
lowing these transformation rules. All the transformation rules make sure that
the security policy is reflected at the architectural level.

R-A.1: Each resource is transformed into a component instance, called a re-
source proxy component. According to the relationship between the resource
elements in the policy model and the business components in the base model,
each resource proxy component is connected to a set of business components
via bindings. To be more specific, each action of a resource element is linked
to an operation of a business component (Figure 6). By connecting to business
components, a resource proxy component provides and requires all the services
(actions) offered by the resource.
R-A.2: Each role is also transformed into a role proxy component. According to
the granted accesses (permission rules associated with this role) to the services

128 P.H. Nguyen et al.

Fig. 6. Mapping Resources to Business Logic Components

provided by the resources, the corresponding role proxy component is connected
to some resource proxy component(s) (Figure 7). A role proxy component is
connected to a resource proxy component by transforming granted accesses into
ports and bindings. Each (active) access granted to a role is transformed into a
pair of ports: a client port associated with the role proxy component, a server
port associated with the resource proxy component, and a binding linking these
ports.
R-A.3: Each user element defined in the policy model is also transformed into
a user proxy component. Because each user must have one role, each user proxy
component is connected to the corresponding role proxy component. However,
each user may have access to actions associated to not only his/her role but
also to actions associated to other roles by delegation. Thus, each user proxy
component may connect to several role proxy components. The connection is
established by transforming each access granted to a user into a pair of ports: a
client port associated with the user proxy component, a server port associated
with the corresponding role proxy component (providing the access/port), and
a binding linking these ports (Figure 7). Actually, the granted accesses are cal-
culated not only from permission rules but also from prohibition rules. Simply,
the granted accesses that equal permissions exclude prohibitions.

In our approach, revocation of a delegation simply consists in deleting the
corresponding delegation rule. In this way, the revocation is reflected at the ar-
chitectural level and physically enforced in the running system. Moreover, both
the delegator and delegatee elements will be removed if these users are not
involved in any delegation rules. As described above, user elements are trans-
formed into proxy components. However, it is important to stress that only users
involved in delegation rules (e.g. Bill, Bob and Sam in Figure 7) are created in
the security policy model and transformed into proxy components. Users who
are not involved in any delegation rules (e.g. Jane and Mary in Figure 7), are
manipulated as session objects which directly access the services offered by the
corresponding role proxy components.

Model-Driven Adaptive Delegation in Access Control Management 129

Fig. 7. Architecture reflecting security policy before and after adding a delegation rule
(bold lines)

Two steps described above are two separate model transformations that are
mainly used to explain how delegation can be considered as a “meta-level” mech-
anism for administrating access rights. The first model transformation is to
transform a delegation-driven security model into a pure Rbac model. The sec-
ond model transformation is to transform the Rbac model into an architecture
model. In fact, these two steps could be done in only one model transforma-
tion that directly transforms the delegations, the access control policy and the
business logic model into an architecture model reflecting the security policy.
However, this alternative way (described in the following) has the disadvantage
of losing the intermediate security model (the active security policy) that could
be useful for traceability purpose.

An Alternative Way Using only One Transformation: In this approach,
we have to define different transformation rules to transform directly every se-
curity policy model which conforms to the metamodel, shown in Figure 4, to a
component-based architecture model which conforms to the architecture meta-
model described in [24]. Core elements of Rbac like resources, roles and users
are transformed following these transformation rules:
R-B.1: Each resource is transformed into a component instance, called a re-
source proxy component (already presented).

130 P.H. Nguyen et al.

R-B.2: Each role also is transformed into a role proxy component (already
presented). The only difference here is that the context has to be taken into
account (in the step 2 of transformation mentioned earlier, no context existed
because context was already dealt with in the step 1). Because every permission
is associated with a context, we only transform permissions with the context that
is active at the moment.
R-B.3: Each user element defined in the policy model is also transformed into
a user proxy component. However, the connection (via bindings) from a user
proxy component to the role proxy component(s) is not only dependent on the
user’s role but also delegation rules that the corresponding user involved in. The
transformation of delegation rules is presented below.

All the transformation rules above make sure that access control rules are
reflected at the architecture level. However, the delegation rules will impact
this transformation process in order to derive the security-enforced architecture
model reflecting both access control and delegation policy. Delegation elements
of a policy model are transformed as follows:
R-B.4: Each action involved in an action delegation is transformed into a
pair of ports and a binding. A client port (representing the required action) is
associated with the user (delegatee) proxy component. The binding links the
client port to the corresponding server port (representing the same action pro-
vided) that associated with the role proxy component reflecting the role of the
delegator.
R-B.5: Each role delegation is transformed in a similar way as action del-
egation. First, a set of actions associated to a role can be identified from the
permissions of this role. Then, each action in the set is transformed into a pair
of ports and a binding as transforming an action delegation.
R-B.6: A temporary delegation is only transformed into bindings if it is still
in active duration defined by start and end properties.
R-B.7: If a delegation is of type transfer delegation, then both user ele-
ments (delegator and delegatee) are transformed into delegator and delegatee
proxy components as described above. The delegator proxy component is not
connected to the corresponding role proxy component because he/she already
transfered his/her access rights to the delegatee. Figure 7 shows a change in the
architecture when Bill transfers his role to Bob.
R-B.8: If a delegation is defined with a recurrence, based on the values set to
recurrence, the delegation rule is only active during the recurrence (similar to
A.6).
R-B.9: If a user is associated with any non-delegable action, the delegation
of this action is not taken into account while doing the transformation. Simi-
larly, if a user is specified as he/she can not delegate his/her role/action, no
delegation requested by this user will be transformed.
R-B.10: Only a role delegation to a user (delegatee) whose role is in the set of
delegationTarget will be consider in the transformation.
R-B.11: Before any delegation is taken into account in the transformation, it
has to satisfy the requirements of max concurrent action/role delegations.

Model-Driven Adaptive Delegation in Access Control Management 131

Note that the user-specific values have higher priorities than the role-specific
values.
R-B.12:A delegation is only transformed if its redelegationDepth> 0. When-
ever a user empowered in a role/an action by delegation re-delegates this role/ac-
tion, the newly created delegation is assigned a redelegationDepth = the
previous redelegationDepth - 1.

By taking into account delegation rules while transforming access control rules
of policy model into security-enforced architecture model, both delegation and
access control rules are reflected at the architecture level.

4.4 Adaptation and Evolution Strategies

The model transformation/composition presented in Section 4.3 ensures that
the security policies are correctly and automatically reflected in an architectural
model of the system. The key steps to support delegation (i.e. specifications and
transformations) are already presented in Sections 4.2 and 4.3. The last step
consists in a physical enforcement of the security policy by means of a dynamic
adaptation of the running system. In this section, our adaptation and evolution
strategies are discussed.

Adaptation. The input for the adaptation process is a newly created security-
enforced architecture model (Figure 8). First, this new architecture model is
validated using invariant checking [22]. This valid architectural model actually
represents the new system state the runtime must reach to enforce the new se-
curity policy of the system. According to the classical MAPE control loop of
self-adaptive applications, our reasoning process performs a comparison (using
EMFCommpare) between the new architecture model (target configuration) and
the current architecture model (kept synchronized with the running system) [23].
This process triggers a code generation/compilation process, and also generates a
safe sequence of reconfiguration commands [22]. Actually, the code generation/-
compilation process is only triggered if there are new proxy components, e.g.
new user proxy components involved in delegation, that need to be introduced
into the running system. The dynamic adaptation of the running system is pos-
sible thanks to modern adaptive execution platforms like OSGi [33] or Fractal
[8], and most recently Kevoree [13], which provide low-level APIs to reconfig-
ure a system at runtime. The running system is then reconfigured by executing
the safe sequence of commands, compliant to the platform API, issued by the
reasoning process. In an optimized model@runtime platform like Kevoree, all
we need to do is to provide the reconfiguration script (Kevoree script) for the
platform. The reasoning process is taken care of by the platform. In fact, the
generation/compilation phase if needed could be time-consuming. However, this
phase has no impact on the running system, which remains stable until being
adapted by executing the reconfiguration script. Thus, the actual adaptation
phase lasts for only several milliseconds.

132 P.H. Nguyen et al.

Architecture
metamodel

Security-
enforced

architecture
model

Current
architecture

model

Code+script
generation

Running system

Adaptive execution platform

M2 M1 M0

Model
comparison

Model diff

Script

Platform-specific
reconfiguration
commands

Model diff
metamodel

Fig. 8. Overview of our adaptation strategy

In [24], the adaptation is entirely based on executing platform-specific recon-
figuration scripts specifying which components have to be stopped and which
components and/or bindings should be added and/or removed. This results in
several limitations regarding delegation mechanisms:
L.1: Using only reconfiguration scripts implies to create all the potentially
needed ports (used for bindings between user proxy components) beforehand.
But all the combinations of users, roles, resources, actions could lead to a com-
binatorial explosion and make it infeasible for implementation.
L.2: In [24], the delegation between users are reflected using bindings connecting
one user proxy component to another. But this approach is not suitable for sup-
porting complex delegation features. For example, a transfer delegation will be
reflected by adding bindings between the delegator and delegatee but removing
bindings between delegator and the corresponding role proxy component. Con-
sequently both delegator and delegatee cannot access the resource, which does
not correctly reflect a transfer delegation.

L.1 can be solved by the automatic re-generation of proxy components
and bindings between them according to changes in the architectural model.
Moreover, as mentioned in Section 4.3, only users involved in a delegation are
transformed into user proxy components with necessary ports and bindings. In
this way, only required ports and bindings are created dynamically. L.2 is solved
by our model transformation approach. All complex delegation features are

Model-Driven Adaptive Delegation in Access Control Management 133

considered as “meta-level” mechanisms that impact access control rules. In this
way, a transfer delegation will be reflected by adding bindings between the del-
egatee and the corresponding delegated role proxy component, but removing
bindings between delegator and the corresponding role proxy component.

Our adaptation strategy could take more time than simply running a reconfig-
uration script because of the generation and compilation time of newly generated
proxy components. But the process of generating and compiling new proxy com-
ponents does not in fact harm the performance because each proxy component
is very light-weight and only necessary proxy components are generated (see
Section 5). Moreover, for each specific security policy, it is possible to think in
advance and prepare as many proxy component types as possible. This strategy
could make the generation/compilation phase unnecessary for most of the cases,
except some major evolution of the business logic and/or the security policy.

Evolution. In [24], the evolution of the security policy is not totally dealt
with. It is possible to run a reconfiguration script to reflect changes like adding,
removing and updating rules. But adding a new user, role or resource requires the
generation and compilation of new proxy components, which is impossible using
only reconfiguration scripts. Thus, our strategy of automatically generating and
compiling proxy components (see Section 5) is more practical w.r.t. evolution.

Another important aspect of evolution relates to the addition, removal or
update of resources and actions in the business logic. The base architecture model
can be updated with changes in the business logic, e.g. when a new resource is
added. On the other side, security officers can manually update the mappings
(Figure 6) following changes of resources/actions in the base architecture model.
By composing the security model with the base architecture model as described
earlier, the security policy is evolved together with the business logic of the
system.

5 Implementation and Evaluation

This section shows how the steps described in Figure 3 have been implemented.
In order to prove that our approach is generic, we target two different adaptive
execution platforms: OSGi (Section 5.1) and Kevoree (Section 5.2). Figure 9
shows that our metamodels and model-to-model transformation/composition are
generic, i.e. independent of execution platforms. Only the adaptation process
(e.g. the reconfiguration script) and the running system are platform-specific.
We evaluate our proof-of-concept implementations and discuss the results in
Section 5.3. The description of three case studies used in our experiments are
given below. The business logic of these case studies are the same for the OSGi
and Kevoree adaptive execution platforms.

To evaluate the feasibility of our approach, we have applied it on three differ-
ent Java-based case studies, which have also been used in our previous research
work on access control testing [25]:
1) LMS: as described in our running example.

134 P.H. Nguyen et al.

Access
Control

metamodel

Access
Control
policy

Architecture
metamodel

Base
model

Model
composition

Security-
enforced

architecture
model

Platform-
specific

adaptation

000
Running system

Proxy
Components Proxy OSGi

bundles

OSGi/Equinox platform
validation

change/evolution

evolution

evolution

M2 M1 M0

test

Proxy
components Proxy

components Business logic
OSGi bundles

Delegation
metamodel

Delegation
policy

Active
security
policy

tamodel policy

Model
transformation

test

conforms to (cft)

cft

cft

cft

cft

Kevoree script
Kevoree platform

Running
system

Fig. 9. OSGi and Kevoree as adaptive execution platforms

2) VMS3: The Virtual Meeting System offers simplified web conference ser-
vices. The virtual meeting server allows the organization of work meetings on
a distributed platform. When connected to the server, a user can enter (exit) a
meeting, ask to speak, eventually speak or plan new meetings. There are three
resources (Meeting, Personnel Account, User Account) and six roles (Adminis-
trator, Webmaster, Owner, Moderator, Attendee and Non-attendee) defined for
this system with many access control rules, and delegation situations between
the users of each role.
3) ASMS: The Auction Sale Management System allows users to buy and sell
products online. Each user in the system has a profile including some personal
information. Users wanting to sell a product (sellers) are able to start a new auc-
tion by submitting a description of the product, the starting and ending date of
the auction. There are five resources (Sale, Bid, Comment, Personnel Account,
User Account) and five roles (Administrator, Moderator, Seller, Senior Buyer,
and Junior Buyer) defined for this system, also with many access control rules,
and delegation situations between users of each role.

Table 1 provides some information about the size of these three systems
(the number of classes, methods and lines of code). In terms of security policies,

3 For more information about VMS (server side), please refer to
http://franck.fleurey.free.fr/VirtualMeeting.

http://franck.fleurey.free.fr/VirtualMeeting

Model-Driven Adaptive Delegation in Access Control Management 135

Table 1. Size of each system in terms of source code

Classes # Methods # LOC

LMS 62 335 3204

VMS 134 581 6077

ASMS 122 797 10703

Table 2. Security rules defined for each system

AC rules # Delegations Total

LMS 23 4 27

VMS 36 8 44

ASMS 89 8 97

Table 2 shows the number of access control (AC) rules and delegation rules defined
for each system, used in our experiments.

All these systems are designed as component-based systems. The business
components of each system contain the business logic, e.g. Book Service com-
ponent, Personnel Account component, Meeting, Sale, Authenticate component,
Data Access Object components, etc. To enable dynamic security enforcement
for a system, the resources (components that have to be controlled) are spec-
ified in the base model, and mapped to the resources of the security policies.
Our metamodels are applicable for different systems without any modification
or adaptation. The structure of delegation and access control policies for all
case studies is the same, only roles, users, resources, actions are specific to each
case study. The proxy components are automatically generated and synchronized
with the security policy model via model transformations and reconfiguration at
runtime. The model-to-model transformation and model-to-text transformation
(code generation) can be implemented correspondingly using transformation en-
gines like Kermeta [26] (or ATL4), and Xpand [18].

5.1 OSGi (Equinox) as the Target Adaptive Execution Platform

As shown in Figure 9, once we obtain the security-enforced architecture model
from the previous steps, we have to reflect this security enforcement in the run-
ning system. In case we use Equinox5 as the target execution platform, all com-
ponents (business logic components and proxy components) are implemented as
OSGi bundles (Spring Dynamic Modules) [30]. In OSGi service platforms, there
are two ways to declare and bind services via interfaces (ports): declaring/bind-
ing exported services in Spring osgi-context.xml files, or in the source code by
overriding the method start of BundleActivator class of OSGi bundle. Here we
show the code for the sake of simplicity but in practice, the declaration of services

4 http://www.eclipse.org/atl/
5 http://www.eclipse.org/equinox/

http://www.eclipse.org/atl/
http://www.eclipse.org/equinox/

136 P.H. Nguyen et al.

and bindings can be configured in Xml files which means no need to recompile
code to change the bindings. Once the services are made available, they can be
called from other services. For example, the code snippet in Listing 1.1 shows
how the deleteBorrowerAccountService of a proxy component of Role Director
is bound to the exported service reference of the deleteBorrowerAccountService
of the BorrowerAccountResource proxy component (lines 1-8). The lines 12-20
show that this Role Director can also access to consultPersonnelAccount of Per-
sonnelAccountResource.

1 Se r v i c eRe f e r enc e [] refIdeleteBorrowerAccount DIRECTOR =
bundleContext . g e tSe r v i c eRe f e r ence s (

lms . proxy . i n t e r f a c e s . IdeleteBorrowerAccount . c l a s s
3 . getName () , ” (host=BorrowerAccountResource) ”) ;

lms . proxy . i n t e r f a c e s . IdeleteBorrowerAccount
serverIdeleteBorrowerAccount DIRECTOR = (lms . proxy . i n t e r f a c e s
. IdeleteBorrowerAccount) bundleContext

5 . g e tSe r v i c e (refIdeleteBorrowerAccount DIRECTOR [0]) ;

7 myDIRECTORService
. s e tde l e teBor rowerAccountServ i ce (

serverIdeleteBorrowerAccount DIRECTOR) ;
9

. . .
11

Se r v i c eRe f e r enc e [] refIconsultPersonnelAccount DIRECTOR =
bundleContext . g e tSe r v i c eRe f e r ence s (

13 lms . proxy . i n t e r f a c e s . I consu l tPer sonne lAccount . c l a s s
. getName () , ” (host=PersonnelAccountResource) ”) ;

15 lms . proxy . i n t e r f a c e s . I consu l tPer sonne lAccount
serverIconsultPersonnelAccount DIRECTOR = (lms . proxy .
i n t e r f a c e s . I consu l tPer sonne lAccount) bundleContext

. g e tSe r v i c e (refIconsultPersonnelAccount DIRECTOR [0]) ;
17

myDIRECTORService
19 . s e tconsu l tPer sonne lAccountServ i ce (

serverIconsultPersonnelAccount DIRECTOR) ;

Listing 1.1. Services and Bindings in the Director proxy component

As mentioned before, all the proxy components are very lightweight compo-
nents. Every method of proxy components only contains the redirecting call to
another service that (directly/indirectly) calls to the real method in the business
logic. The code snippet in Listing 1.2 shows that a call to the deleteBorrower-
Account method (line 1) of a proxy component of Role Director actually is
redirected to call the deleteBorrowerAccount method (line 3) of the Borrower-
AccountResource proxy component that already was made available previously
(lines 1-8, Listing 1.1). Similarly, the consultPersonnelAccount method (line 7)
contains a call to the consultPersonnelAccount method (line 10) of the Person-
nelAccountResource proxy component that already was made available previ-
ously (lines 12-20, Listing 1.1).

Model-Driven Adaptive Delegation in Access Control Management 137

1 pub l i c void deleteBorrowerAccount(
lms . bo . user . BorrowerAccount borrowerAccount) throws

BSException {
3 deleteBorrowerAccountServ ice . deleteBorrowerAccount(

borrowerAccount) ;
}

5 . . .

7 pub l i c lms . bo . user . PersonnelAccount consul tPersonnelAccount (
lms . bo . user . User per sonne l) throws BSException {

9 r eturn consu l tPer sonne lAccountServ i ce
. consul tPersonnelAccount (per sonne l) ;

11 }
Listing 1.2. Redirecting the method calls in the Director proxy component

Fig. 10. Bob is delegated by Bill 5 permissions, e.g. consult personnel account

The adaptation process is directed by a generated reconfiguration script that
is specific for Equinox adaptive execution platform. The reconfiguration script is
executed in order to reflect the change of the policy from the model level to the
running system, e.g. a new delegation rule is active. Figure 10 shows a new del-
egation rule has been enforced in the running system so that Bob (Secretary) is
delegated the permission to consult personnel account by Bill (Director). This
means after enforcing this delegation rule, there exists a connection from the port
consultPersonnelAccount of the User proxy component Bob, via corresponding
Role and Resource proxy components, to the real method consultPersonnelAc-
count in the business logic.

138 P.H. Nguyen et al.

5.2 Kevoree as the Target Adaptive Execution Platform

In case we use Kevoree as the target execution platform, all components (business
logic components and proxy components) are implemented as Kevoree compo-
nent instances [13]. The adaptation process is driven by a generated reconfigu-
ration Kevoree script. The Kevoree script orchestrates the adaptation process of
the running system by adding, removing component instances, binding the ser-
vice ports between proxy components. An example of the configuration of proxy
components (the 3-layer architecture) is shown in Figure 7. In order to explain
how the proxy components are implemented, let us take a look at the Director
Role proxy component. This Role proxy component is representative as it is be-
tween the User layer and the Resource layer (Figure 7). It can be seen that this
Director Role proxy component provides the ports (services) to the User proxy
components and also requires the ports (services) of the Resource proxy compo-
nents. The code snippet in Listing 1.3 shows the ports required and provided by
the Director Role proxy component. The required ports are bound to the cor-
responding ports provided by the BorrowerAccountResource proxy component
and the PersonnelAccountResource proxy component. The provided ports are to
be bound by the ports required by the corresponding User proxy components.

Once the corresponding User proxy component calls the service provided by
the port “deleteBorrowerAccountIn” (line 8, Listing 1.3), the method delete-
BorrowerAccount (line 3, Listing 1.4) in the Director Role proxy component is
executed that in turn calls the service provided by the port “deleteBorrowerAc-
countOut” (line 5, Listing 1.4. In fact this port is provided by the BorrowerAc-
countResource proxy component that finally calls to the corresponding method
of deleteBorrowerAccount in the business logic code.

1 @Requires ({
@RequiredPort (name=”deleteBorrowerAccountOut ” , type =

PortType .SERVICE, className = IDeleteBorrowerAccount . c l a s s ,
op t i ona l = true) ,

3 @RequiredPort (name = ”consul tPersonnelAccountOut” , type =
PortType .SERVICE, className = Iconsu l tPer sonne lAccount . c l a s s

, op t i ona l = true) ,
. . .

5 })

7 @Provides ({
@ProvidedPort (name=”deleteBorrowerAccountIn” , type =

PortType .SERVICE, className =
9 IDeleteBorrowerAccount . c l a s s) ,

@ProvidedPort (name = ” consul tPersonne lAccountIn ” , type =
PortType .SERVICE, className = Iconsu l tPer sonne lAccount . c l a s s)
,

11 . . .
})

Listing 1.3. The ports required and provided by the Director Role proxy component

Model-Driven Adaptive Delegation in Access Control Management 139

@Override
2 @Port (name = ”deleteBorrowerAccountIn” , method = ”

deleteBorrowerAccount”)
pub l i c void deleteBorrowerAccount(BorrowerAccount borrowerAccount

) throws BSException {
4

IDeleteBorrowerAccount deleteBorrowerAccountPort =
getPortByName (”deleteBorrowerAccountOut ” ,
IDeleteBorrowerAccount . c l a s s) ;

6
deleteBorrowerAccountPort . deleteBorrowerAccount (
borrowerAccount) ;

8 }

Listing 1.4. Redirecting the method call in the Director Role proxy component in
Kevoree

There are three main advantages of using Kevoree over OSGi as the execution
platform. First, all we need to provide for the platform is the Kevoree reconfig-
uration script saying how to adapt the system. The Kevoree execution platform
takes care of the necessary adaptation order for the running system according
to changes. In case of using OSGi, we have to take care of the adaptation or-
der manually. Secondly, the model@runtime environment of Kevoree makes it
easier for implementing our model driven framework. In Kevoree, we can use
the Kevoree framework itself to manage the security policy models. Thirdly, the
way of declaring ports and bindings in Kevoree are very close to the concepts of
ports and bindings described in our 3-layer architecture (Figure 7). This makes
it very convenient to implement the running systems in Kevoree.

Table 3. Performance of weaving Security Policies using Kermeta and ATL

Rules Kermeta 1.4.1 Kermeta 2.0.6 ATL 3.2.1

LMS 27 4s 1.836s 0.048s

VMS 44 7s 2.161s 0.055s

ASMS 97 18s 2.834s 0.140s

5.3 Evaluation and Discussion

There are two kinds of response time we would like to measure in our case
studies: the authorization mechanism and the dynamic adaptation according to
changing security policies. The experiments were performed on Intel Core i7
CPU 2.20 GHz with 2.91 GB usable RAM running on Windows 7. The number
of security rules defined for each system in our experiments is indicated in Table
2. Because all our access control and delegation rules are transformed into proxy
components reflecting our security policy, response times to an access request
only depends on method calls between these proxy components and business
components (Figure 7). Unsurprisingly, response time to every resource access

140 P.H. Nguyen et al.

is a constant, only about 1 millisecond, because the access is already possible or
not by construction. In other words, our 3-layered architecture reflecting security
policy enables very quick response, independently from the number of access
control and delegation rules.

For experimenting with performance of adapting the running system, we have
implemented the model transformation/composition rules using not only Ker-
meta but also ATL. Regarding the adaptation process, Table 3 shows results
of each case study for performing the model transformations of security poli-
cies mentioned in Table 2, using Kermeta 1.4.1, Kermeta 2.0.6 and ATL 3.2.1
correspondingly. Note that these model-to-model transformations are generic,
platform-independent w.r.t the implementation platform of the running system.
Thus, the same model-to-model transformations are used in both cases of imple-
mentation platform, i.e. OSGi and Kevoree. At first, we used Kermeta 1.4.1 to
implement our model transformations. However, the performance of using Ker-
meta 1.4.1 shown in Table 3 was disappointing. It took more than 18 seconds
to weave 97 security rules in case of the ASMS. To know if this performance
problem is inherently linked to our approach or simply linked to the use of Ker-
meta 1.4.1, we decided to also implement our model transformations using ATL
3.2.1. Our experiments show that the implementation using ATL 3.2.1 is much
more efficient. We can conclude that the initial performance issue was due to
Kermeta 1.4.1. Then, we have tried to use Kermeta 2.0.6 which is the latest
version of Kermeta at this moment, compiled to byte code, which means much
better performances. As can be seen from Table 3, the results of using Kermeta
2.0.6 are better compared to using Kermeta 1.4.1.

Note that the transformation, code generation and compilation are performed
“offline” meaning that the running system is not yet adapted. The actual adapta-
tion happens when the newly compiled proxy components are integrated into the
running system to replace the current proxy components. This actual adaptation
process takes only some milliseconds by using the low-level APIs to reconfigure
a system at runtime provided by the modern adaptive execution platforms, i.e.
OSGi [33] and Kevoree [13]. Right after the new proxy components are up and
running, the new security policy is really enforced in the running system.

6 Related Work

There is substantial work related to delegation as an extension of existing access
control models. Most researchers focused on proposing models solely relying on
the Rbac formalism [32], which is not expressive enough to deal with all delega-
tion requirements. Therefore, some other researchers extended the Rbac model
by adding new components, such as new types of roles, permissions and relation-
ships [2,34,1,9,27]. In [5], the authors proposed yet another delegation approach
for role-based access control (more precisely for Orbac model) which is more
flexible and comprehensive. However, no related work has provided a model-
driven approach for both specifying and dynamically enforcing access control
policies with various delegation requirements. Compared to [24], we extend the

Model-Driven Adaptive Delegation in Access Control Management 141

model-based dynamic adaptation approach of [24] with some key improvements.
More specifically, we propose a new Dsml for delegation management, but also
new composition rules to weave delegation in an Rbac-based access control
policy. In addition, we present a new way (by generating proxy) to implement
the adaptation of the security-enforced architecture of the system. Indeed, we
provide an extensive support for delegation as well as co-evolution of security
policy and security-critical system. That means our approach makes it possible
to deeply modify the security policy (e.g. according to evolution of the security-
critical system) and dynamically adapt the running system, which is often in-
feasible using the other approaches mentioned above.

In addition, several researchers proposed new flexible access control models
that may not include delegation, but allow a flexible and easy to update policy.
For instance, Bertino et al. [6] proposed a new access control model that allows
expressing flexible policies that can be easily modified and updated by users to
be adapted to specific contexts. The advantage of their model resides in the abil-
ity to change the access control rules by granting or revoking the access based
on specific exceptions. Their model provides a wide range of interesting features
that increase the flexibility of the access control policy. It allows advanced ad-
ministrative functions for regulating the specification of access controls rules.
More importantly, their model supports delegation, enabling users to temporar-
ily grant other users some of their permissions. Furthermore, Bertolissi et al.
proposed Debac [7] a new access control model based on the notion of event
that allows the policy to be adapted to distributed and changing environments.
Their model is represented as a term rewriting system [3], which allows specify-
ing changing and dynamic access control policies. This enables having a dynamic
policy that is easy to change and update.

As far as we know, no previous work tackled the issue of enforcing adaptive
delegation. Some previous approaches were proposed to help modelling more
general access control formalisms using Uml diagrams (focusing on models like
Rbac or MAC). Rbac was modelled using a dedicated Uml diagram template
[17], while Doan et al. proposed a methodology [11] to incorporate MAC in Uml
diagrams during the design process. All these approaches allow access control
formalisms to be expressed during the design. They do not provide a specific
framework to enable adaptive delegation at runtime. Concerning the approaches
related to applying Mde for security, we can cite Umlsec [15], which is an exten-
sion of Uml that allows security properties to be expressed in Uml diagrams. In
addition, Lodderstedt et al. [20] propose Secureuml which provides a method-
ology for generating security components from specific models. The approach
proposes a security modelling language to define the access control model. The
resulting security model is combined with the Uml business model in order to
automatically produce the access control infrastructure. More precisely, they use
the Meta-Object facility to create a new modelling language to define Rbac poli-
cies (extended to include constraints on rules). They apply their technique in
different examples of distributed system architectures including Enterprise Java
Beans and Microsoft Enterprise Services for .NET. Their approach provides a

142 P.H. Nguyen et al.

tool for specifying the access control rules along with the model-driven devel-
opment process and then automatically exporting these rules to generate the
access control infrastructure. However, they do not directly support delegation.
Delegation rules should be taken into account early and the whole system should
be generated again to enforce the new rules. Our approach enables supporting
directly the delegation rules and dynamically enforcing them by reconfiguring
the system at runtime.

7 Conclusion and Future Work

In this paper, we have proposed an extensive Model-Driven Security approach
for adaptive delegation in access control management. By giving a formalization
of access control and delegation mechanisms, we introduced various advanced
delegation features that would provide secure, flexible, and efficient access con-
trol management. It has been shown that these advanced delegation features can
be specified using our delegation Dsml. Our Dsml supports complex delegation
characteristics like temporary, recurrence delegation, transfer delegation, multi-
ple and multi-step delegation, etc. We have also shown that revocation can be
dealt with in a simple manner. Another main contribution of this paper is our
adaptive delegation enforcement in which delegation is considered as a “meta-
level” mechanism that impacts the access control rules. A complete model-driven
framework has been proposed to enable dynamic enforcement of delegation and
access control policies that allows the automatic configuration of the system ac-
cording to the changes in delegation/access control rules. Moreover, our frame-
work also enables an adaptation strategy that better supports co-evolution of
security policy and business logic of the system. The model-driven framework
proposed in this paper can be applied for securing (distributed) systems running
on different adaptive execution platform like OSGi (Equinox), or an optimized
models@runtime framework such as Kevoree. Our approach has been validated
via three different case studies with consideration of performance and extensi-
bility issues.

In this paper, we only focus on the delegation of rights, further work will
also be dedicated to the delegation of obligations and the support for usage
control [31]. Usage control is called the next generation of access control with
more flexible access management mechanisms that we would adopt our current
approach for. We have not dealt with this idea yet in this paper, but keep it
for our future work. Moreover, revocation mechanism in our current approach
has not been completely taken into account, i.e. without options of strong/weak
revocation. Besides, in order to complete the framework, we also propose an
approach for testing delegation policy enforcement. In this direction, we continue
working on the extension of testing delegation policy enforcement via mutation
analysis [29].

Acknowledgments. We would like to thank the anonymous referees for their
comments and suggestions. This work is supported by the Fonds National de la
Recherche (FNR), Luxembourg, under the MITER project C10/IS/783852.

Model-Driven Adaptive Delegation in Access Control Management 143

References

1. Ahn, G.-J., Mohan, B., Hong, S.-P.: Towards secure information sharing using
role-based delegation. J. Netw. Comput. Appl. 30(1), 42–59 (2007)

2. Barka, E., Sandhu, R.: Role-based delegation model/hierarchical roles (RBDM1).
In: Proceedings of the 20th Annual Computer Security Applications Conference,
ACSAC 2004, pp. 396–404. IEEE Computer Society (2004)

3. Barker, S., Fernández, M.: Term rewriting for access control. In: DBSec,
pp. 179–193 (2006)

4. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: From UML models
to access control infrastructures. ACM Trans. Softw. Eng. Methodol. 15(1), 39–91
(2006)

5. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N., Bouhoula, A.: A del-
egation model for extended RBAC. Int. J. Inf. Secur. 9(3), 209–236 (2010)

6. Bertino, E., Jajodia, S., Samarati, P.: A flexible authorization mechanism for re-
lational data management systems. ACM Trans. Inf. Syst. 17(2), 101–140 (1999)

7. Bertolissi, C., Fernández, M., Barker, S.: Dynamic event-based access control as
term rewriting. In: DBSec, pp. 195–210 (2007)

8. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.: The Fractal com-
ponent model and its support in Java. Software Practice and Experience, Special
Issue on Experiences with Auto-adaptive and Reconfigurable Systems 36(11-12),
1257–1284 (2006)

9. Crampton, J., Khambhammettu, H.: Delegation in role-based access control. In-
ternational Journal of Information Security 7(2), 123–136 (2008)

10. Cuppens, F., Cuppens-Boulahia, N.: Modeling contextual security policies. Inter-
national Journal of Information Security 7(4), 285–305 (2007)

11. Doan, T., Demurjian, S., Ting, T.C., Ketterl, A.: MAC and UML for secure soft-
ware design. In: FMSE 2004: Proceedings of the 2004 ACM Workshop on Formal
Methods in Security Engineering, pp. 75–85. ACM (2004)

12. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. 4(3),
224–274 (2001)

13. Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O., Plouzeau, N., Jézéquel,
J.-M.: An Eclipse Modelling Framework Alternative to Meet the Models@Runtime
Requirements. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MOD-
ELS 2012. LNCS, vol. 7590, pp. 87–101. Springer, Heidelberg (2012)

14. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. Database Syst. 26(2), 214–260 (2001)

15. Jürjens, J.: UMLsec: Extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002)

16. Kalam, A.A.E., Baida, R.E., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte,
Y., Miege, A., Saurel, C., Trouessin, G.: Organization based access control. In: Pro-
ceedings of IEEE 4th International Workshop on Policies for Distributed Systems
and Networks, POLICY 2003, pp. 120–131 (2003)

17. Kim, D.-K., Ray, I., France, R.B., Li, N.: Modeling role-based access control us-
ing parameterized UML models. In: Wermelinger, M., Margaria-Steffen, T. (eds.)
FASE 2004. LNCS, vol. 2984, pp. 180–193. Springer, Heidelberg (2004)

18. Klatt, B.: Xpand: A closer look at the model2text transformation language. Lan-
guage (10/16/2008) (2007)

144 P.H. Nguyen et al.

19. Lampson, B.W.: Protection. SIGOPS Oper. Syst. Rev. 8(1), 18–24 (1974)
20. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Lan-

guage for Model-Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

21. Morin, B., Barais, O., Jézéquel, J.-M., Fleurey, F., Solberg, A.: Models@ Run.time
to support dynamic adaptation. Computer 42(10), 44–51 (2009)

22. Morin, J.-M.B., Barais, O., Nain, G., Jézéquel: Taming dynamically adaptive sys-
tems with Models and Aspects. In: ICSE 2009: 31st International Conference on
Software Engineering (May 2009)

23. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.-M., Solberg, A., Dehlen, V.,
Blair, G.S.: An aspect-oriented and model-driven approach for managing dynamic
variability. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 782–796. Springer, Heidelberg (2008)

24. Morin, B., Mouelhi, T., Fleurey, F., Le Traon, Y., Barais, O., Jézéquel, J.-
M.: Security-driven model-based dynamic adaptation. In: Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, ASE
2010, pp. 205–214. ACM (2010)

25. Mouelhi, T., Traon, Y.L., Baudry, B.: Transforming and selecting functional test
cases for security policy testing. In: Proceedings of the 2009 International Con-
ference on Software Testing Verification and Validation, ICST 2009, pp. 171–180.
IEEE Computer Society (2009)

26. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving executability into object-
oriented meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)

27. Na, S., Cheon, S.: Role delegation in role-based access control. In: Proceedings of
the Fifth ACM Workshop on Role-based Access Control, RBAC 2000, pp. 39–44.
ACM (2000)

28. Nguyen, P.H., Nain, G., Klein, J., Mouelhi, T., Le Traon, Y.: Model-driven adaptive
delegation. In: Proceedings of the 12th Annual International Conference on Aspect-
Oriented Software Development, Modularity: AOSD 2013, pp. 61–72. ACM (2013)

29. Nguyen, P.H., Papadakis, M., Rubab, I.: Testing delegation policy enforcement via
mutation analsysis. In: Proceedings of the Workshop on Mutation Testing @ the
Sixth IEEE International Conference on Software Testing, ICST 2013, pp. 61–72.
IEEE (2013)

30. Rubio, D.: Pro Spring dynamic modules for OSGi service platforms (2009)
31. Sandhu, R., Park, J.: Usage control: A vision for next generation access control.

In: Gorodetsky, V., Popyack, L.J., Skormin, V.A. (eds.) MMM-ACNS 2003. LNCS,
vol. 2776, pp. 17–31. Springer, Heidelberg (2003)

32. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29(2), 38–47 (1996)

33. O. The OSGi Alliance. OSGi service platform core specification, release 4.1(2007)
34. Zhang, X., Oh, S., Sandhu, R.: PBDM: a flexible delegation model in RBAC.

In: Proceedings of the Eighth ACM Symposium on Access Control Models and
Technologies, SACMAT 2003, pp. 149–157. ACM (2003)

Effective Aspects: A Typed Monadic Embedding
of Pointcuts and Advice

Ismael Figueroa1,2,�, Nicolas Tabareau2, and Éric Tanter1,��

1 PLEIAD Laboratory
University of Chile, Santiago, Chile

{ifiguero,etanter}@dcc.uchile.cl
http://pleiad.cl

2 ASCOLA Group
INRIA – Nantes, France

nicolas.tabareau@inria.fr

Abstract. Aspect-oriented programming (AOP) aims to enhance modularity and
reusability in software systems by offering an abstraction mechanism to deal with
crosscutting concerns. However, in most general-purpose aspect languages as-
pects have almost unrestricted power, eventually conflicting with these goals. In
this work we present Effective Aspects: a novel approach to embed the point-
cut/advice model of AOP in a statically typed functional programming language
like Haskell. Our work extends EffectiveAdvice, by Oliveira, Schrijvers, and
Cook; which lacks quantification, and explores how to exploit the monadic setting
in the full pointcut/advice model. Type soundness is guaranteed by exploiting the
underlying type system, in particular phantom types and a new anti-unification
type class. Aspects are first-class, can be deployed dynamically, and the pointcut
language is extensible, therefore combining the flexibility of dynamically typed
aspect languages with the guarantees of a static type system. Monads enables us
to directly reason about computational effects both in aspects and base programs
using traditional monadic techniques. Using this we extend Aldrich’s notion of
Open Modules with effects, and also with protected pointcut interfaces to external
advising. These restrictions are enforced statically using the type system. Also,
we adapt the techniques of EffectiveAdvice to reason about and enforce control
flow properties. Moreover, we show how to control effect interference using the
parametricity-based approach of EffectiveAdvice. However, this approach falls
short when dealing with interference between multiple aspects. We propose a
different approach using monad views, a recently developed technique for han-
dling the monad stack. Finally, we exploit the properties of our monadic weaver to
enable the modular construction of new semantics for aspect scoping and weav-
ing. These semantics also benefit fully from the monadic reasoning mechanisms
present in the language. This work brings type-based reasoning about effects for
the first time in the pointcut/advice model, in a framework that is both expressive
and extensible; thus allowing development of robust aspect-oriented systems as
well as being a useful research tool for experimenting with new aspect semantics.

Keywords: aspect-oriented programming, monads, pointcut/advice model, type-
based reasoning, modular reasoning.

� Funded by a CONICYT-Chile Doctoral Scholarship.
�� Partially funded by FONDECYT project 1110051.

S. Chiba et al. (Eds.): Transactions on AOSD XI, LNCS 8400, pp. 145–192, 2014.
© Springer-Verlag Berlin Heidelberg 2014

146 I. Figueroa, N. Tabareau, and É. Tanter

1 Introduction

Aspect-oriented programming languages support the modular definition of crosscutting
concerns through a join point model [19]. In the pointcut/advice mechanism, crosscut-
ting is supported by means of pointcuts, which quantify over join points, in order to
implicitly trigger advice [48]. Such a mechanism is typically integrated in an existing
programming language by modifying the language processor, may it be the compiler
(either directly or through macros), or the virtual machine. In a typed language, intro-
ducing pointcuts and advices also means extending the type system, if type soundness
is to be preserved. For instance, AspectML [7] is based on a specific type system in
order to safely apply advice. AspectJ [18] does not substantially extend the type system
of Java and suffers from soundness issues. StrongAspectJ [8] addresses these issues
with an extended type system. In both cases, proving type soundness is rather involved
because a whole new type system has to be dealt with.

In functional programming, the traditional way to tackle language extensions, mostly
for embedded languages, is to use monads [27]. Early work on AOP suggests a strong
connection to monads. De Meuter proposed to use them to lay down the foundations of
AOP [26], and Wand et al. used monads in their denotational semantics of pointcuts and
advice [48]. Recently, Tabareau proposed a weaving algorithm that supports monads
in the pointcut and advice model, which yields benefits in terms of extensibility of
the aspect weaver [38], although in this work the weaver itself was not monadic but
integrated internally in the system. This connection was exploited in recent preliminary
work by the authors to construct an extensible monadic aspect weaver, in the context
of Typed Racket [14], but the proposed monadic weaver was not fully typed because of
limitations in the type system of Typed Racket.

This work proposes Effective Aspects: a lightweight, full-fledged embedding of as-
pects in Haskell, that is typed and monadic.1 By lightweight, we mean that aspects
are provided as a small standard Haskell library. The embedding is full-fledged be-
cause it supports dynamic deployment of first-class aspects with an extensible point-
cut language—as is usually found only in dynamically typed aspect languages like
AspectScheme [11] and AspectScript [45] (Sect. 3).

By typed, we mean that in the embedding, pointcuts, advices, and aspects are all stat-
ically typed (Sect. 4), and pointcut/advice bindings are proven to be safe (Sect. 5). Type
soundness is directly derived by relying on the existing type system of Haskell (type
classes [47], phantom types [21], and some recent extensions of the Glasgow Haskell
Compiler). Specifically, we define a novel type class for anti-unification [32,33], which
is key to define safe aspects.

Finally, because the embedding is monadic, we derive two notable advantages over
ad hoc approaches to introducing aspects in an existing language. First, we can di-
rectly reason about aspects and effects using traditional monadic techniques. In short,

1 This work is an extension of our paper in the 12th International Conference on Aspect-
Oriented Software Development [39]. We mainly expand on using types to reason about aspect
interference (Section 7). In addition, we provide a technical background about monadic
programming in Haskell (Section 2). The implementation is available, with examples, at
http://pleiad.cl/EffectiveAspects

http://pleiad.cl/EffectiveAspects

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 147

we can generalize the interference combinators of EffectiveAdvice [28] in the context
of pointcuts and advice (Sect. 6). And also we can use non-interference analysis tech-
niques such as those from EffectiveAdvice, and from other advanced mechanisms, in
particular monad views [35] (Sect. 7). Second, because we embed a monadic weaver,
we can modularly extend the aspect language semantics. We illustrate this with several
extensions and show how type-based reasoning can be applied to language extensions
(Sect. 8). Sect. 9 discusses several issues related to our approach, Sect. 10 reviews re-
lated work, and Sect. 11 concludes.

2 Prelude: Overview of Monadic Programming

To make this work self-contained and to cater to readers not familiar with monads,
we present a brief overview of the key concepts of monadic programming in Haskell
used throughout this paper. More precisely, we introduce the state and error monad
transformers, and the mechanisms of explicit and implicit lifting in the monad stack.

The reader is only expected to know basic Haskell programming and to understand
the concept of type classes. As a good tutorial we suggest [20]. Readers already familiar
with monadic programming can safely skip this section.

2.1 Monads Basics

Monads [27,46] are a mechanism to embed and reason about computational effects
such as state, I/O, or exception-handling in purely functional languages like Haskell.
Monad transformers [22] allow the modular construction of monads that combine sev-
eral effects. A monad transformer is a type constructor used to create a monad stack
where each layer represents an effect. Monadic programming in Haskell is provided
by the Monad Transformers Library (known as MTL), which defines a set of monad
transformers that can be flexibly composed together.

A monad is defined by a type constructor m and functions >>= (called bind) and
return. At the type level a monad is a regular type constructor, although conceptually
we distinguish a value of type a from a computation in monad m of type m a. Monads
provide a uniform interface for computational effects, as specified in the Monad type
class:

class Monad m where
return :: a → m a
(>>=) ::m a → (a → m b) → m b

Here return promotes a value of type a into a computation of type m a, and >>= is
a pipeline operator that takes a computation, extracts its value, and applies an action to
produce a new computation. The precise meanings for return and >>= are specific to
each monad. The computational effect of a monad is “hidden” in the definition of >>=,
which imposes a sequential evaluation where the effect is performed at each step. To
avoid cluttering caused by using >>= Haskell provides the do-notation, which directly

148 I. Figueroa, N. Tabareau, and É. Tanter

translates to chained applications of >>=. The x ← k expression binds identifier x with
the value extracted from performing computation k for the rest of a do block.2

A monad transformer is defined by a type constructor t and the lift operation, as
specified in the MonadTrans type class:

class MonadTrans t where
lift ::m a → t m a

The purpose of lift is to promote a computation from an inner layer of the monad stack,
of type m a, into a computation in the monad defined by the complete stack, with type
t m a. Each transformer t must declare in an effect-specific way how to make t m an
instance of the Monad class.

2.2 Plain Monadic Programming

To illustrate monadic programming we first describe the use of the state monad trans-
former StateT , denoted as ST, whose computational effect is to thread a value with
read-write access.

newtype ST s m a = ST (s → m (a, s))
evalST :: ST s m a → s → m a

A ST s m a computation is a function that takes an initial state of type s and returns
a computation in the underlying monad m with a pair containing the resulting value
of type a, and a potentially modified state of type s . The evalST function evaluates a
State s m a computation using an initial state s and yields only the returning com-
putation m a. In addition, functions getST and putST allow to retrieve and update the
state inside a computation, respectively3.

getST ::Monad m ⇒ ST s m s
getST = ST $ λs → return (s , s)

putST ::Monad m ⇒ s → ST s m ()
putST s ′ = ST $ λ → return ((), s ′)

Note that both functions get the current state from some previous operation (>>= or
evalST). The difference is that getST returns this value and keeps the previous state
unchanged, whereas putST replaces the previous state with its argument.

Example Application. Consider a mutable queue of integers with operations to enqueue
and dequeue its elements. To implement it we will define a monad stack M1, which
threads a list of integers using the ST transformer on top of the identity monad I (which
has no computational effect). We also define runM 1, which initializes the queue with
an empty list, and returns only the resulting value of a computation in M1.

2 x ← k performs the effect in k , while let x = k does not.
3 Note the use of $, here and throughout the rest of the paper, to avoid extra parentheses.

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 149

type M1 = ST [Int] I
runM 1 ::M1 a → a
runM 1 c = runI $ evalST c []

The implementation of the queue operations using M1 is simple, we just enqueue ele-
ments at the end of the list and dequeue elements from the beginning.

enqueue1 :: Int → M1 ()
enqueue1 n = do queue ← getST

putST $ queue ++ [n]

dequeue1 ::M1 Int
dequeue1 = do queue ← getST

putST $ tail queue
return $ head queue

Handling Error Scenarios. The above implementation of dequeue1 terminates with a
runtime error if it is performed on an empty queue, because tail fails when applied
on an empty list. To provide an error-handling mechanism we use the error monad
transformer ErrorT , denoted as ET.

newtype ET e m a = ET m (Either e a)
runET ::Monad m ⇒ ET e m a → m (Either e a)

The type Either e a represents two possible values: a Left e value or a Right a value.
In this case the convention is that a Left e value is treated as an error, while a Right a
value is considered a successful operation. Then, the throwET and catchET operations
can be defined to raise and handle exceptions.

throwET ::Monad m ⇒ e → ET e m a
throwET e = ET $ return (Left e)

catchET ::Monad m ⇒ ET e m a → (e → ET e m a) → ET e m a
m ‘catchET‘ h = ET $ do a ← runET m

case a of
Left err → runET (h err)
Right val → return (Right val)

Observe that catchET is intended to be used as an infix operator, where the first ar-
gument is the protected expression that would be inside a try block in Java, while the
second argument is the exception handler.

Combining State and Error-Handling Effects. To implement a queue with support for
exceptions we first define a new monad stack M2 that combines both effects (using
Strings as error messages):

type M2 = ST [Int] (ET String I)
runM 2 c = runI $ runET $ evalST c []

150 I. Figueroa, N. Tabareau, and É. Tanter

Then we define the enqueue2 operation as before, but using M2:

enqueue2 :: Int → M2 ()
enqueue2 n = do queue ← getST

putST $ queue ++ [n]

However, the straightforward definition of dequeue2 fails with a typing error:

dequeue2 ::M2 Int
dequeue2 = do queue ← getST

if null queue
then throwET "Queue is empty" -- typing error
else do putST $ tail queue

return $ head queue

The problem is that throwET returns a computation whose type is (ET String I) Int ,
but the return type of dequeue2 is (ST [Int] (ET String I)) Int .

Explicit Lifting in the Monad Stack. Using lift we can reuse a function intended for an
inner layer on the stack, like throwET. The number of lift calls corresponds to the dis-
tance between the top of the stack and the inner layer of the stack. Hence for dequeue2
we need only one call to lift :

dequeue2 ::M2 Int
dequeue2 = do queue ← getST

if null queue
then (lift ◦ throwET) "Queue is empty"
else do putST $ tail queue

return $ head queue

Although we managed to implement a queue with support for both effects, this is not
satisfactory from a software engineering point of view. The reason is that plain monadic
programming and explicit liftings produce a strong coupling between functions and
particular monad stacks, hampering reusability and maintainability of the software.

2.3 Polymorphism on the Monad Stack

To address the coupling of functions with particular monad stacks and to expand the
notion of monads as a uniform interface for computational effects, the MTL defines
a set of type classes associated to particular effects. This way, monadic functions can
impose constraints in the monad stack using these type classes instead of relying on
a specific stack. These class constraints can be seen as families of monads, making a
function polymorphic with respect to the concrete monadic stack used to evaluate it.

State Operations. The MonadState type class, denoted as SM, defines the interface for
state-related operations, and ST is the canonical instance of this class.4

4 Expression m → s denotes a functional dependency [17], which means that the type of m
determines the type of s , allowing a more precise control of type inference.

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 151

class Monad m ⇒ SM s m | m → s where
get ::m s
put :: s → m ()

Error-Handling Operations. The MonadError type class, denoted as EM, defines the
standard interface for error-handling operations, with ET as its canonical instance.

class Monad m ⇒ EM e m | m → e where
throwError :: e → m a
catchError ::m a → (e → m a) → m a

Implicit Lifting in the Monad Stack. Going back to our example of the integer queue,
the implementation using class contraints now is as follows:

enqueue :: (Monad m, SM [Int] m) ⇒ Int → m ()
enqueue n = do queue ← get

put $ queue ++ [n]

dequeue :: (Monad m, SM [Int] m,EM String m) ⇒ m Int
dequeue = do queue ← get

if null queue
then throwError "Queue is empty"
else do put $ tail queue

return $ head queue

Observe that the functions are defined in terms of an abstract monad m, which is
required to be an instance of SM, for insertions; and both SM and EM for retrieving
values. Also note that lift is not required to use throwError in dequeue . The reason
is that using type classes, like SM or EM, an operation is automatically routed to the
first layer of the monad stack that is instance of the respective class. The MTL defines
implicit liftings between its transformers, by defining several class instances for each of
them. Because of this, M2 is instance of both SM and EM.

The major limitation of implicit liftings is that it only chooses the first layer of a
given effect. Consequently, when more than one instance of the same effect are used,
e.g. two state transformers to hold the state of a queue and a stack, the parts of the
program that access inner layers must use explicit lifting.

Explicit and implicit lifting are the standard mechanism in Haskell to handle the
monad stack. The mechanism used to handle the monad stack directly determines the
expressiveness of the type-based reasoning techniques, and other properties like mod-
ularity and reusability of components. This is discussed in detail in Sect. 6 and 7; in
particular we show that the standard mechanism falls short to deal with interference
of multiple aspects. Then we use monad views, a recent mechanism for managing the
monad stack developed by Schrijvers and Oliveira [35], to propose another approach to
address this situation.

152 I. Figueroa, N. Tabareau, and É. Tanter

3 Introducing Aspects

The fundamental premise for aspect-oriented programming in functional languages is
that function applications need to be subject to aspect weaving. We introduce the term
open application to refer to a function application that generates a join point, and con-
sequently, can be woven.

Open Function Applications. Opening all function applications in a program or only a
few selected ones is both a language design question and an implementation question.
At the design level, this is the grand debate about obliviousness in aspect-oriented pro-
gramming. Opening all applications is more flexible, but can lead to fragile aspects and
unwanted encapsulation breaches. At the implementation level, opening all function
applications requires either a preprocessor or runtime support.

For now, we focus on quantification—through pointcuts—and opt for a conservative
design in which open applications are realized explicitly using the # operator: f # 2
is the same as f 2, except that the application generates a join point that is subject to
aspect weaving. We will come back to obliviousness in Sect. 9.3, showing how different
answers can be provided within the context of our proposal.

Monadic Setting. Our approach to introduce aspects in a pure functional programming
language like Haskell can be realized without considering effects. Nevertheless, most
interesting applications of aspects rely on computational effects (e.g., tracing, memo-
ization, exception handling, etc.). We therefore adopt a monadic setting from the start.
Also, as we show in Sect. 6 and 7, this allows us to exploit the approach of EffectiveAd-
vice [28] and other monadic reasoning mechanisms in order to perform type-based rea-
soning about effects in presence of aspects.

Illustration. As a basic example, recall the enqueue function (Sect. 2.3) and consider
the uniqueAdv advice, which enforces that the argument is only passed to proceed if
it is not already present in the underlying list l (e.g., to avoid repeated elements when
representing a set using a list);

uniqueAdv proceed arg = do l ← get
if elem arg l

then return ()
else proceed arg

Then, in program we deploy an aspect that reacts to applications of enqueue. This is
specified using the pointcut pcCall enqueue.

program n m = do deploy (aspect (pcCall enqueue) uniqueAdv)
enqueue # n
enqueue #m
showQueue

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 153

Evaluating program 1 2 returns a string representation "[1,2]" with both elements,
whereas program 1 1 returns "[1]" with only one element. Indeed, both results are as
expected. As shown in this example, aspects consist of a pointcut/advice pair and are
created with aspect , and deployed with deploy .

Our development of AOP simply relies on defining aspects (pointcuts, advices), the
underlying aspect environment together with the operations to deploy and undeploy
aspects, and open function application. The remainder of this section briefly presents
these elements, and the following section concentrates on the main challenge: properly
typing pointcuts and ensuring type soundness of pointcut/advice bindings.

3.1 Join Point Model

The support for crosscutting provided by an aspect-oriented programming language
lies in its join point model [24]. A join point model is composed by three elements: join
points that represents the (dynamic) steps in the execution of a program that aspects can
affect, a means of identifying join points—here, pointcuts—and a means of effecting at
join points—here, advices.

Join Points. Join points are function applications. A join point JP contains a function of
type a → m b, and an argument of type a. The monad m denotes the underlying com-
putational effect stack. Note that this means that only functions that are properly lifted
to a monadic context can be advised. In addition, in order for pointcuts to be able to rea-
son about the type of advised functions, we require the functions to be PolyTypeable5.

data JP m a b = (Monad m,PolyTypeable (a → m b)) ⇒ JP (a → m b) a

From now on, we omit the type constraints related to PolyTypeable (the
PolyTypeable constraint on a type is required each time the type has to be inspected
dynamically; exact occurrences of this constraint can be found in the implementation).

Pointcuts. A pointcut is a predicate on the current join point. It is used to identify join
points of interest. A pointcut simply returns a boolean to indicate whether it matches
the given join point.

data PC m a b = Monad m ⇒ PC (∀a′ b′.m (JP m a′ b′ → m Bool))

A pointcut is represented as a value of type PC m a b. Types a and b are used
to ensure type safety, as discussed in Sect. 4.1. The predicate itself is a function with
type ∀a′ b′.m (JP m a′ b′ → m Bool), meaning it has access to the monad stack.
The ∀ declaration quantifies on type variables a′ and b′ (using rank-2 types) because a
pointcut should be able to match against any join point, regardless of the specific types
involved (we come back to this in Sect. 4.1).

5 Haskell provides the Typeable class to introspect monomorphic types. PolyTypeable is an
extension that supports both monomorphic and polymorphic types.

154 I. Figueroa, N. Tabareau, and É. Tanter

Pointcut Language. We provide two basic pointcut designators, pcCall and pcType , as
well as logical pointcut combinators, pcOr , pcAnd , and pcNot . A pointcut pcType f
matches all open applications to functions that have a type compatible with f (see Sect.
4.1 for a precise definition), and a pointcut pcCall f matches all open applications to f .

pcType f = PC (typePred (polyTypeOf f))
where typePred t = return $ λjp → return (compareType t jp)

pcCall f = PC (callPred f (polyTypeOf f))
where callPred f t = return $ λjp → return (compareFun f jp ∧

compareType t jp)

In both cases we use the polyTypeOf function (provided by PolyTypeable) to obtain
the type representation of function f , and compare it to the type of the function in the
join point using compareType . Additionally, to implement pcCall we require a notion
of function equality6. This is used in compareFun to compare the function in the join
point with the given function f . Note that in pcCall we also need to perform a type
comparison, using compareType . This is because a polymorphic function whose type
variables are instantiated in one way is equal to the same function but with type variables
instantiated in some other way (e.g. id :: Int → Int is equal to id :: Float → Float).

Users can define their own pointcut designators. For instance, we can define control-
flow pointcuts like AspectJ’s cflow (described in Sect. 8.1), data flow pointcuts [23],
pointcuts that rely on the trace of execution [9] (Sect. 7.1), etc.

Advice. An advice is a function that executes in place of a join point matched by a
pointcut. This replacement is similar to open recursion in EffectiveAdvice [28]. An
advice receives a function (known as the proceed function) and returns a new function
of the same type (which may or may not apply the original proceed function internally).
We introduce a type alias for advice:

type Advice m a b = (a → m b) → a → m b

For instance, the type Monad m ⇒ Advice m Int Int is a synonym for the
type Monad m ⇒ (Int → m Int) → Int → m Int . For a given advice of type
Advice m a b, we call a → m b the advised type of the advice.

Aspects. An aspect is a first-class value binding together a pointcut and an advice.
Supporting first-class aspects is important: it makes it possible to support aspect fac-
tories, separate creation and deployment/undeployment of aspects, exporting opaque,
self-contained aspects as single units, etc. We introduce a data definition for aspects,
parameterized by a monad m (which has to be the same in the pointcut and advice):

data Aspect m a b c d = Aspect (PC m a b) (Advice m c d)

We defer the detailed definition of Aspect with its type class constraints to Sect. 4.2,
when we address the issue of safe pointcut/advice binding.

6 For this notion of function equality, we use the StableNames API, which relies on pointer
comparison. See Sect. 9.1 for discussion on the issues of this approach.

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 155

3.2 Aspect Deployment

Aspect Environment. The list of aspects that are deployed at a given point of time
is known as the aspect environment. To be able to define the type AspectEnv as an
heterogenous list of aspects, we use an existentially quantified7, data EAspect that hides
the type parameters of Aspect :8

data EAspect m = ∀a b c d .EAspect (Aspect m a b c d)
type AspectEnv m = [EAspect m]

This environment can be either fixed initially and used globally [24], as in AspectJ,
or it can be handled dynamically, as in AspectScheme [11]. Different scoping strategies
are possible when dealing with dynamic deployment [40]. Because we are in a monadic
setting, we can pass the aspect environment implicitly using a monad. An open function
application can then trigger the set of currently deployed aspects by retrieving these
aspects from the underlying monad.

There are a number of design options for the aspect environment, depending on the
kind of aspect deployment that is desired. Following the Reader monad, we can pro-
vide a fixed aspect environment, and add the ability to deploy an aspect for the dynamic
extent of an expression, similarly to the local method of the Reader monad. We can
also adopt a state-like monad, in order to support dynamic aspect deployment and un-
deployment with global scope. In this paper, without loss of generality, we go for the
latter.

The AT Monad Transformer. Because we are interested in using arbitrary computational
effects in programs, we define the aspect environment through a monad transformer
(Sect. 2.1), which allows the programmer to construct a monad stack of effects. The AT

monad transformer is defined as follows:

newtype AT m a = AT (ST (AspectEnv (AT m)) m a) deriving (Monad)

To define the AT transformer we reuse the ST data constructor, because the AT trans-
former is essentially a state transformer (Sect. 2.2) that threads the aspect environment.
Using the GeneralizedNewtypeDeriving extension of GHC, we can automatically de-
rive AT as an instance of Monad . We also define a proper instance of MonadTrans (not
shown here), and implicit liftings for the standard monad transformers of the MTL.9

Observe that the aspect environment is bound to the same monad AT m, in order to
provide aspects with access to open applications.

7 In Haskell an existentially quantified data type is declared using ∀ before the data constructor.
8 Because we cannot anticipate a fixed set of class constraints for deployed aspects, we left the

type parameters unconstrained. Aspects with ad hoc polymorphism have to be instantiated
before deployment to statically solve each remaining type class constraint (see Sect. 9.2 for
more details).

9 In the rest of the paper we use the same technique to define our custom monad transformers,
hence we omit the deriving clauses and standard instance definitions, like MonadTrans .

156 I. Figueroa, N. Tabareau, and É. Tanter

Dynamic Aspect Deployment. We now define the functions for dynamic deployment,
which simply add and remove an aspect from the aspect environment:

deploy , undeploy :: EAspect (AT m) → AT m ()
deploy asp = AT $ λaenv → return ((), asp : aenv)
undeploy asp = AT $ λaenv → return ((), deleteAsp asp aenv)

Finally, in order to extract the computation of the underlying monad from an AT

computation we define the runAT function, with type Monad m ⇒ AT m a → m a
(similar to evalST in the state monad transformer), that runs a computation in an empty
initial aspect environment. For instance, in the initial example of the enqueue function,
we can define a client as follows:

client n m = runI (runAT (program n m))

3.3 Aspect Weaving

Aspect weaving is triggered through open applications, i.e., applications performed with
the # operator, e.g., f # x .

Open Applications. We introduce a type class OpenApp that declares the # operator.
This makes it possible to overload # in certain contexts, and it can be used to declare
constraints on monads to ensure that the operation is available in a given context.

class Monad m ⇒ OpenApp m where
(#) :: (a → m b) → a → m b

The # operator takes a function of type a → m b and returns a (woven) function
with the same type. Any monad composed with the AT transformer has open application
defined:

instance Monad m ⇒ OpenApp (AT m) where
f # a = AT $ λaenv → do

(woven_f , aenv ′) ← weave f aenv aenv (newjp f a)
run (woven_f a) aenv ′

An open application results in the creation of a join point, newjp f a, that represents
the application of f to a. The join point is then used to determine which aspects in the
environment match, produce a new function that combines all the applicable advices,
and apply that function to the original argument.

Weaving. The function to use at a given point is produced by the weave function:

weave ::Monad m ⇒ (a → AT m b) → AspectEnv (AT m) →
AspectEnv (AT m) → JP (AT m) a b → m (a → AT m b,AspectEnv (AT m))

weave f [] fenv = return (f , fenv)
weave f (asp : asps) fenv jp =

case asp of EAspect (Aspect pc adv) →

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 157

do (match , fenv ′) ← apply_pc pc jp fenv
weave (if match

then apply_adv adv f
else f)

asps fenv ′ jp

The weave function is defined recursively on the aspect environment. For each as-
pect, it applies the pointcut to the join point. It then uses either the partial application
of the advice to f if the pointcut matches, or f otherwise10, to keep on weaving on the
rest of the aspect list. This definition is a direct adaptation of AspectScheme’s weav-
ing function [11], and is also a monadic weaver [38] that supports modular language
extensions (in Sect. 8 we show how to exploit this feature).

Applying Advice. As we have seen, the aspect environment has type AspectEnv m,
meaning that the type of the advice function is hidden. Therefore, advice application
requires coercing the advice to the proper type in order to apply it to the function of the
join point:

apply_adv :: Advice m a b → t → t
apply_adv adv f = (unsafeCoerce adv) f

The operation unsafeCoerce of Haskell is (unsurprisingly) unsafe and can yield seg-
mentation faults or arbitrary results. To recover safety, we could insert a runtime type
check with compareType just before the coercion. We instead make aspects type safe
such that we can prove that the particular use of unsafeCoerce in apply_adv is always
safe. The following section describes how we achieve type soundness of aspects; Sect. 5
formally proves it.

4 Typing Aspects

Ensuring type soundness in the presence of aspects consists in ensuring that an advice
is always applied at a join point of the proper type. Note that by “the type of the join
point,” we refer to the type of the function being applied at the considered join point.

4.1 Typing Pointcuts

The intermediary between a join point and an advice is the pointcut, whose proper typ-
ing is therefore crucial. The type of a pointcut as a predicate over join points does not
convey any information about the types of join points it matches. To keep this informa-
tion, we use phantom type variables a and b in the definition of PC :

data PC m a b = Monad m ⇒ PC (∀a′ b′.m (JP m a′ b′ → m Bool))

10 apply_pc checks whether the pointcut matches the join point and returns a boolean and a
potentially modified aspect environment. Note that apply_pc is evaluated in the full aspect
environment fenv , instead of the decreasing (asp : asps) argument.

158 I. Figueroa, N. Tabareau, and É. Tanter

A phantom-type variable is a type variable that is not used on the right-hand side of
the data-type definition. The use of phantom type variables to type embedded languages
was first introduced by Leijen and Meijer to type an embedding of SQL in Haskell [21];
it makes it possible to “tag” extra type information on data. In our context, we use it to
add the information about the type of the join points matched by a pointcut: PC m a b
means that a pointcut can match applications of functions of type a → m b. We call this
type the matched type of the pointcut. Pointcut designators are in charge of specifying
the matched type of the pointcuts they produce.

Least General Types. Because a pointcut potentially matches many join points of differ-
ent types, the matched type must be a more general type. For instance, consider a point-
cut that matches applications of functions of type Int → m Int and Float → m Int .
Its matched type is the parametric type a → m Int . Note that this is in fact the least
general type of both types.11 Another more general candidate is a → m b, but the least
general type conveys more precise information. As a concrete example, below is the
type signature of the pcCall pointcut designator:

pcCall ::Monad m ⇒ (a → m b) → PC m a b

Comparing Types. The type signature of the pcType pointcut designator is the same as
that of pcCall :

pcType ::Monad m ⇒ (a → m b) → PC m a b

However, suppose that f is a function of type Int → m a. We want the pointcut
pcType f to match applications of functions of more specific types, such as Int →
m Int and Int → m Char . This means that compareType actually checks that the
matched type of the pointcut is more general than the type of the join point.

Logical Combinators. We use type constraints in order to properly specify the matched
type of logical combinations of pointcuts. The intersection of two pointcuts matches
join points that are most precisely described by the principal unifier of both matched
types. Since Haskell supports this unification when the same type variable is used, we
can simply define pcAnd as follows:

pcAnd ::Monad m ⇒ PC m a b → PC m a b → PC m a b

For instance, a control flow pointcut matches any type of join point, so its matched
type is a → m b. Consequently, if f is of type Int → m a, the matched type of
pcAnd (pcCall f) (pcCflow g) is Int → m a.

Dually, the union of two pointcuts relies on anti-unification [32,33], that is, the
computation of the least general type of two types. Haskell does not natively support
anti-unification. We exploit the fact that multi-parameter type classes can be used to

11 The term most specific generalization is also valid, but we stick here to Plotkin’s original
terminology [32].

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 159

define relations over types, and develop a novel type class LeastGen (for least general)
that can be used as a constraint to compute the least general type t of two types t1 and
t2 (defined in Sect. 5):

pcOr :: (Monad m,LeastGen (a → b) (c → d) (e → f)) ⇒
PC m a b → PC m c d → PC m e f

For instance, if f is of type Int → m a and g is of type Int → m Float , the matched
type of pcOr (pcCall f) (pcCall g) is Int → m a.

The negation of a pointcut can match join points of any type because no assumption
can be made on the matched join points:

pcNot ::Monad m ⇒ PC m a b → PC m a′ b′

Observe that the type of pcNot is quite restrictive. In fact, the advice of any aspect
with a single pcNot pointcut must be completely generic because the matched type
corresponds to fresh type variables. The matched type of pcNot can be made more
specific using pcAnd to combine it with other pointcuts with more specific types.

Open Pointcut Language. The set of pointcut designators in our language is open. User-
defined pointcut designators are, however, responsible for properly specifying their
matched types. If the matched type is incorrect or too specific, soundness is lost.

Constraining Pointcuts to Specific Types. A pointcut cannot make any type assumption
about the type of the join point it receives as argument. The reason for this is again the
homogeneity of the aspect environment: when deploying an aspect, the type of its point-
cut is hidden. At runtime, then, a pointcut is expected to be applicable to any join point.
The general approach to make a pointcut safe is therefore to perform a runtime-type
check, as was illustrated in the definition of pcCall and pcType in Sect. 3.1. However,
certain pointcuts are meant to be conjoined with others pointcuts that will first apply a
sufficient type condition.

In order to support the definition of pointcuts that require join points to be of a given
type, we provide the RequirePC type:

data RequirePC m a b = Monad m ⇒
RequirePC (∀a′ b′.m (JP m a′ b′ → m Bool))

The definition of RequirePC is similar to that of PC , with two important differences.
First, the matched type of a RequirePC is interpreted as a type requirement. Second, a
RequirePC is not a valid stand-alone pointcut: it has to be combined with a standard
PC that enforces the proper type upfront. To safely achieve this, we overload pcAnd12:

pcAnd :: (Monad m,LessGen (a → b) (c → d)) ⇒
PC m a b → RequirePC m c d → PC m a b

12 The constraint is different from the previous constraint on pcAnd . This is possible thanks to
the recent ConstraintKinds extension of GHC.

160 I. Figueroa, N. Tabareau, and É. Tanter

In this case pcAnd yields a standard PC pointcut and checks that the matched type of
the PC pointcut is less general than the type expected by the RequirePC pointcut. This
is expressed using the constraint LessGen , which, as we will see in Sect. 5, is based on
LeastGen .

To illustrate, let us define a pointcut designator pcArgGT for specifying pointcuts
that match when the argument at the join point is greater than a given n (of type a
instance of the Ord type class):

pcArgGT :: (Monad m,Ord a) ⇒ a → RequirePC m a b
pcArgGT n = RequirePC $ return (λjp →
return (unsafeCoerce (getJpArg jp) � n))

The use of unsafeCoerce to coerce the join point argument to the type a forces us to
declare theOrd constraint on a when typing the returned pointcut as RequirePC m a b
(with a fresh type variable b). To get a proper pointcut, we use pcAnd , for instance to
match all calls to enqueue where the argument is greater than 10:

pcCall enqueue ‘pcAnd ‘ pcArgGT 10

The pcAnd combinator guarantees that a pcArgGT pointcut is always applied to a
join point with an argument that is indeed of a proper type: no runtime type check is
necessary within pcArgGT , because the coercion is always safe.

4.2 Typing Aspects

The main typing issue we have to address consists in ensuring that a pointcut/advice
binding is type safe, so that the advice application does not fail. A first idea to ensure
that the pointcut/advice binding is type safe is to require the matched type of the point-
cut and the advised type of the advice to be the same (or rather, unifiable):

-- wrong!
data Aspect m a b = Aspect (PC m a b) (Advice m a b)

This approach can however yield unexpected behavior. Consider this example:

idM x = return x

adv ::Monad m ⇒ Advice (Char → m Char)
adv proceed c = proceed (toUpper c)

program = do deploy (aspect (pcCall idM) adv)
x ← idM # ’a’
y ← idM # [True,False,True]
return (x , y)

The matched type of the pointcut pcCall idM is Monad m ⇒ a → m a. With
the above definition of Aspect , program passes the typechecker because it is possible
to unify a and Char to Char . However, when evaluated, the behavior of program is
undefined because the advice is unsafely applied with an argument of type [Bool], for
which toUpper is undefined.

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 161

The problem is that during typechecking, the matched type of the pointcut and the
advised type of the advice can be unified. Because unification is symmetric, this suc-
ceeds even if the advised type is more specific than the matched type. In order to address
this, we again use the type class LessGen to ensure that the matched type is less general
than the advice type:

data Aspect m a b c d = (Monad m,LessGen (a → m b) (c → m d)) ⇒
Aspect (PC m a b) (Advice m c d)

This constraint ensures that pointcut/advice bindings are type safe: the coercion per-
formed in apply_adv always succeeds. We formally prove this in the following section.

5 Typing Aspects, Formally

We now formally prove the safety of our approach. We start briefly summarizing the
notion of type substitutions and the is less general relation between types. Note that
we do not consider type class constraints in the definition. Then we describe a novel
anti-unification algorithm implemented with type classes, on which the type classes
LessGen and LeastGen are based. We finally prove pointcut and aspect safety, and
state our main safety theorem.

5.1 Type Substitutions

In this section, we summarize the definition of type substitutions and introduce formally
the notion of least general type in a Haskell-like type system (without ad-hoc polymor-
phism). Thus, we have types t ::= Int ,Char , . . . , t1 → t2, T t1 . . . tm, which de-
note primitive types, functions, and m-ary type constructors, in addition to user-defined
types. We consider a typing environment Γ = (xi : ti)i∈N that binds variables to types.

Definition 1 (Type Substitution, from [31]). A type substitution σ is a finite mapping
from type variables to types. It is denoted [x1 �→ t1, . . . , xn �→ tn], where dom(σ) and
range(σ) are the sets of types appearing in the left-hand and right-hand sides of the
mapping, respectively. It is possible for type variables to appear in range(σ).

Substitutions are always applied simultaneously on a type. If σ and γ are substitu-
tions, and t is a type, then σ ◦ γ is the composed substitution, where (σ ◦ γ)t = σ(γt).
Application of substitution on a type is defined inductively on the structure of the type.

Substitution is extended pointwise for typing environments in the following way:
σ(xi : ti)i∈N = (xi : σti)i∈N. Also, applying a substitution to a term t means to
apply the substitution to all type annotations appearing in t.

Definition 2 (Less General Type). We say type t1 is less general than type t2, denoted
t1 � t2, if there exists a substitution σ such that σt2 = t1. Observe that � defines a
partial order on types (modulo α-renaming).

Definition 3 (Least General Type). Given types t1 and t2, we say type t is the least
general type iff t is the supremum of t1 and t2 with respect to �.

162 I. Figueroa, N. Tabareau, and É. Tanter

1 class LeastGen ′ a b c σin σout | a b c σin → σout

2 -- Inductive case: The two type constructors match,
3 -- recursively compute the substitution for type arguments ai ,bi .
4 instance (LeastGen ′ a1 b1 c1 σ0 σ1, . . . ,
5 LeastGen ′ an bn cn σn−1 σn,
6 T c1 . . . cn∼c)
7 ⇒ LeastGen ′ (T a1 . . . an) (T b1 . . . bn) c σ0 σn

8 -- Default case: The two type constructors don’t match, c has to be a variable,
9 -- either unify c with c′ if c′ 	→ (a, b), or extend the substitution with c 	→ (a, b)

10 instance (Analyze c (TVar c),
11 MapsTo σin c′ (a, b),
12 VarCase c′ (a, b) c σin σout)
13 ⇒ LeastGen ′ a b c σin σout

Fig. 1. The LeastGen ′ type class. An instance holds if c is the least general type of a and b.

5.2 Statically Computing Least General Types

In an aspect declaration, we statically check the type of the pointcut and the type of
the advice to ensure a safe binding. To do this we encode an anti-unification algorithm
at the type level, exploiting the type class mechanism. A multi-parameter type class
R t1 . . . tn can be seen as a relation R on types t1 . . . tn, and instance declarations as
ways to inductively define this relation, in a manner very similar to logic programming.

The type classes LessGen and LeastGen used in Sect. 4 are defined as particular
cases of the more general type class LeastGen′, shown in Fig. 1. This class is defined in
line 1 and is parameterized by types a, b, c, σin, and σout. Note that σout is functionally
dependent on a, b, c, and σin; and that there is no where keyword because the class
declares no operations. Both σin and σout denote substitutions encoded at the type
level as a list of mappings from type variables to pairs of types. We use pairs of types
in substitutions because we have to simultaneously compute substitutions from c to a
and from c to b.

To be concise, lines 4-7 present a single definition parametrized by the type con-
structor arity but in practice, there needs to be a different instance declaration for each
type constructor arity.

Proposition 1. If LeastGen′ a b c σin σout holds, then substitution σout extends σin

and σoutc = (a, b).

Proof. By induction on the type representation of a and b.
A type can either be a type variable, represented as TV ar a, or an n-ary type con-

structor T applied to n type arguments13. The rule to be applied depends on whether
the type constructors of a and b are the same or not.

(i) If the constructors are the same, then the rule defined in lines 4-7 computes
(T c1 . . . cn) using the induction hypothesis that σici = (ai, bi), for i = 1 . . . n. The

13 We use the Analyze type class from PolyTypeable to get a type representation at the type
level. For simplicity we omit the rules for analyzing type representations.

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 163

component-wise application of constraints is done from left to right, starting from sub-
stitution σ0 and extending it to the resulting substitution σn. The type equality constraint
(T c1 . . . cn) ∼ c checks that c is unifiable with (T c1 . . . cn) and, if so, unifies them.
Then, we can check that σnc = (a, b).

(ii) If the type constructors are not the same the only possible generalization is a type
variable. In the rule defined in lines 10-13 the goal is to extend σin with the mapping
c �→ (a, b) such that σoutc = (a, b), while preserving the injectivity of the substitution
(see next proposition). ��
Proposition 2. If σin is an injective function, and LeastGen′ a b c σin σout holds,
then σout is an injective function.

Proof. By construction LeastGen′ introduces a binding from a fresh type variable to
(a, b), in the rule defined in lines 10-13, only if there is no type variable already mapping
to (a, b)—in which case σin is not modified.

To do this, we first check that c is actually a type variable (TV ar c) by checking its
representation using Analyze. Then in relation MapsTo we bind c′ to the (possibly
inexistent) type variable that maps to (a, b) in σin. In case there is no such mapping,
then c′ is None.

Finally, relation V arCase binds σout to σin extended with {c �→ (a, b)} in case
c′ is None, otherwise σout = σin. It then unifies c with c′. In all cases c is bound to
the variable that maps to (a, b) in σout, because it was either unified in rule MapsTo
or in rule V arCase. The hypothesis that σin is injective ensures that any preexisting
mapping is unique. ��
Proposition 3. If σin is an injective function, and LeastGen′ a b c σin σout holds,
then c is the least general type of a and b.

Proof. By induction on the type representation of a and b.
(i) If the type constructors are different the only generalization possible is a type

variable c.
(ii) If the type constructors are the same, then a = T a1 . . . an and b = T b1 . . . bn.

By Proposition 1, c = T c1 . . . cn generalizes a and b with the substitution σout. By
induction hypothesis ci is the least general type of (ai, bi).

Now consider a type d that also generalizes a and b, i.e. a � d and b � d, with as-
sociated substitution α. We prove c is less general than d by constructing a substitution
τ such that τd = c.

Again, there are two cases, either d is a type variable, in which case we set τ =
{d �→ c}, or it has the same outermost type constructor, i.e. d = Td1 . . . dn. Thus
ai � di and bi � di; and because ci is the least general type of ai and bi, there exists
a substitution τi such that τidi = ci, for i = 1 . . . n.

Now consider a type variable x ∈ dom(τi) ∩ dom(τj). By definition of α, we
know that σout(τi(x)) = α(x) and σout(τj(x)) = α(x). Because σout is injective
(by Proposition 2), we deduce that τi(x) = τj(x) so there are no conflicting mappings
between τi and τj , for any i and j. Consequently, we can define τ =

⋃
τi and check

that τd = c. ��

164 I. Figueroa, N. Tabareau, and É. Tanter

Definition 4 (LeastGen type class). To compute the least general type c for a and b,
we define:

LeastGen a b c � LeastGen′ a b c σempty σout, where σempty is the empty
substitution and σout is the resulting substitution.

Definition 5 (LessGen type class). To establish that type a is less general than type b,
we define:

LessGen a b � LeastGen a b b

5.3 Pointcut Safety

We now establish the safety of pointcuts with relation to join points.

Definition 6 (Pointcut match). We define the relation matches(pc, jp), which holds
iff applying pointcut pc to join point jp in the context of a monadm yields a computation
m True.

Definition 7 (Safe user-defined pointcut). Given a join point term jp and type envi-
ronment Γ , a user-defined pointcut is safe if:
Γ � pc : PC m a b
Γ � jp : JP m a′ b′

Γ � matches(pc, jp)
implies that a′ → m b′ � a → m b.

Now we prove that the matched type of a given pointcut is more general than the join
points matched by that pointcut.

Proposition 4. Given a join point term jp and a pointcut term pc, and type environment
Γ ; and that if pc is user-defined, then it is safe (according to Definition 7). Then, if
Γ � pc : PC m a b
Γ � jp : JP m a′ b′

Γ � matches(pc, jp)
then a′ → m b′ � a → m b.

Proof. By induction on the matched type of the pointcut.

– Case pcCall : By construction the matched type of a pcCall f pointcut is the type of
f . Such a pointcut matches a join point with function g if and only if: f is equal to
g , and the type of f is less general than the type of g . (On both pcCall and pcType
this type comparison is performed by compareType on the type representations of
its arguments.)

– Case pcType: By construction the matched type of a pcType f pointcut is the type
of f . Such a pointcut only matches a join point with function g whose type is less
general than the matched type.

– Case pcAnd on PC PC : Consider pc1 ‘pcAnd ‘ pc2. The matched type of the com-
bined pointcut is the principal unifier of the matched types of the arguments—which
represents the intersection of the two sets of join points. The property holds by the
induction hypothesis applied to pc1 and pc2.

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 165

– Case pcAnd on PC RequirePC : Consider pc1 ‘pcAnd ‘ pc2. The matched type of
the combined pointcut is the type of pc1 and it is checked that the type required by
pc2 is more general so the application of pc2 will not yield an error. The property
holds by induction hypothesis on pc1.

– Case pcOr : Consider pc1 ‘pcOr ‘ pc2. The matched type of the combined pointcut
is the least general type of the matched types of the argument, computed by the
LeastGen constraint—which represents the union of the two sets of join points.
The property holds by induction hypothesis on pc1 and pc2.

– Case pcNot : The matched type of a pointcut constructed with pcNot is a fresh type
variable, which by definition is more general than the type of any join point. ��

5.4 Advice Type Safety

If an aspect is well-typed, then the advised type of the advice is more general than the
matched type of the pointcut:

Proposition 5. Given a pointcut term pc, an advice term adv , and a type environment
Γ , if
Γ � pc : PC m a b
Γ � adv : Advice m c d
Γ � (aspect pc adv) : Aspect m a b c d
then a → m b � c → m d.

Proof. Using the definition of Aspect (Sect. 4.2) and because Γ � (aspect pc adv) :
Aspect m a b c d, we know that the constraint LessGen is satisfied, so by Definitions 4
and 5, and Proposition 1, a → m b � c → m d. ��

5.5 Safe Aspects

We now show that if an aspect is well-typed, then the advised type of the advice is more
general than the type of join points matched by the corresponding pointcut:

Theorem 1 (Safe Aspects). Given the terms jp, pc, and adv representing a join point,
a pointcut and an advice respectively, given a type environment Γ ; and assuming that
if pc is a user-defined pointcut, then it is safe (according to Definition 7). Then, if
Γ � pc : PC m a b
Γ � adv : Advice m c d
Γ � (aspect pc adv) : Aspect m a b c d
and
Γ � jp : JP m a′ b′

Γ � matches(pc, jp)
then a′ → m b′ � c → m d.

Proof. By Proposition 4 and 5 and the transitivity of �. ��

166 I. Figueroa, N. Tabareau, and É. Tanter

module Fib (fib, pcFib) where
import AOP

pcFib = pcCall fibBase ‘pcAnd ‘ pcArgGT 2

fibBase n = return 1

fibAdv proceed n = do f1 ← fibBase # (n − 1)
f2 ← fibBase # (n − 2)
return (f1 + f2)

fib ::Monad m ⇒ m (Int → m Int)
fib = do deploy (aspect pcFib fibAdv)

return $ fibBase #

Fig. 2. Fibonacci module

Corollary 1 (Safe Weaving). The coercion of the advice in apply_adv is safe.

Proof. Recall apply_adv (Sect. 3.3):

apply_adv :: Advice m a b → t → t
apply_adv adv f = (unsafeCoerce adv) f

By construction, apply_adv is used only with a function f that comes from a join
point that is matched by a pointcut associated to adv . Using Theorem 1, we know that
the join point has type JP m a′ b′ and that a′ → m b′ � a → m b. We note σ the
associated substitution. Then, by compatibility of substitutions with the typing judge-
ment [31], we deduce σΓ � σadv : Advice m a′ b′. Therefore, (unsafeCoerce adv)
corresponds exactly to σadv, and is safe. ��

6 Open and Protected Modules, with Effects

This section illustrates how we can exploit the monadic embedding of aspects to en-
code Open Modules [2] extended with effects. Additionally, we present the notion of
protected pointcuts, which are pointcuts whose type places restrictions on admissible
advice. We illustrate the use of protected pointcuts to enforce control flow properties of
external advice, reusing the approach of EffectiveAdvice [28].

6.1 A Simple Example

We first describe a simple example that serves as the starting point. Figure 2 describes a
Fibonacci module, following the canonical example of Open Modules. The module uses
an internal aspect to implement the recursive definition of Fibonacci: the base function,
fibBase , simply implements the base case; and the fibAdv advice implements recur-
sion when the pointcut pcFib matches. Note that pcFib uses the user-defined pointcut
pcArgGT (defined in Sect. 4.1) to check that the call to fibBase is done with an argu-
ment greater than 2. The fib function is defined by first deploying the internal aspect,
and then partially applying # to fibBase . This transparently ensures that an application

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 167

module MemoizedFib (fib) where
import qualified Fib
import AOP

memo proceed n =
do table ← get

if member n table
then return (table ! n)
else do y ← proceed n

table ′ ← get
put (insert n y table ′)
return y

fib = do deploy (aspect Fib.pcFib memo)
Fib.fib

Fig. 3. Memoized Fibonacci module

of fib is open. The fib function is exported, together with the pcFib pointcut, which can
be used by an external module to advise applications of the internal fibBase function.
Figure 3 presents a Haskell module that provides a more efficient implementation of
fib by using a memoization advice. To benefit from memoization, a client only has to
import fib from the MemoizedFib module instead of directly from the Fib module.

Note that if we consider that the aspect language only supports the pcCall pointcut
designator, this implementation actually represents an open module proper. Preserv-
ing the properties of open modules, in particular protecting from external advising of
internal functions, in presence of arbitrary quantification (e.g., pcType , or an always-
matching pointcut) is left for future work. Importantly, just like Open Modules, the ap-
proach described here does not ensure anything about the advice beyond type safety. In
particular, it is possible to create an aspect that incorrectly calls proceed several times,
or an aspect that has undesired computational effects. Fortunately, the type system can
assist us in expressing and enforcing specific interference properties.

6.2 Protected Pointcuts

In order to extend Open Modules with effect-related enforcement, we introduce the no-
tion of protected pointcuts, which are pointcuts enriched with restrictions on the effects
that associated advice can exhibit. Simply put, a protected pointcut embeds a combi-
nator that is applied to the advice in order to build an aspect. If the advice does not
respect the (type) restrictions expressed by the combinator, the aspect creation expres-
sion simply does not typecheck and hence the aspect cannot be built. A combinator is
any function that can produce an advice:

type Combinator t m a b = Monad m ⇒ t → Advice m a b

The protectPC function packs together a pointcut and a combinator:

168 I. Figueroa, N. Tabareau, and É. Tanter

protectPC :: (Monad m,LessGen (a → m b) (c → m d)) ⇒
PC m a b → Combinator t m c d → ProtectedPC m a b t c d

A protected pointcut, of type ProtectedPC , cannot be used with the standard aspect
creation function aspect . The following pAspect function is the only way to get an
aspect from a protected pointcut (the constructor PPC is not exposed):

pAspect ::Monad m ⇒ ProtectedPC m a b t c d → t → Aspect m a b c d
pAspect (PPC pc comb) adv = aspect pc (comb adv)

The key point here is that when building an aspect using a protected pointcut, the com-
binator comb is applied to the advice adv . We now show how to exploit this extension
of Open Modules to restrict control flow properties, using the proper type combinators.
The next section describes how to control computational effects.

6.3 Enforcing Control Flow Properties

Rinard et al. present a classification of advice in four categories depending on how they
affect the control flow of programs [34]:

– Combination: The advice can call proceed any number of times.
– Replacement: There are no calls to proceed in the advice.
– Augmentation: The advice calls proceed exactly once, and it does not modify the

arguments to or the return value of proceed .
– Narrowing: The advice calls proceed at most once, and does not modify the argu-

ments to or the return value of proceed .

In EffectiveAdvice [28], Oliveira and colleagues show a type-based enforcement of
these categories, through advice combinators (Fig. 4). These combinators fit the gen-
eral Combinator type we described in Sect. 6.2, and can therefore be embedded in
protected pointcuts. Observe that no combinator is needed for combination advice, be-
cause no interference properties are enforced. Replacement advice is advice that has no
access to proceed . Augmentation advice is represented by a pair of before/after advice
functions, such that after has access to the argument, the return value, and an extra
value optionally exposed by the before function. A narrowing advice is in fact the com-
bination of both a replacement advice and an augmentation advice, where the choice
between both is driven by a runtime predicate.

As an illustration, observe that memoization is a typical example of a narrowing
advice: the combination of a replacement advice (“return memoized value without pro-
ceeding”) and an augmentation advice (“proceed and memoize return value”), where
the choice between both is driven by a runtime predicate (“is there a memoized value
for this argument?”). Therefore, it is now straightforward for the Fib module to expose
a protected pointcut that restricts valid advice to narrowing advice only:

module Fib (fib, ppcFib) where
ppcFib = protectPC pcFib narrow
. . .

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 169

type Replace m a b = (a → m b)
replace :: Replace m a b → Advice m a b
replace radv proceed = radv

type Augment a b c m = (a → m c, a → b → c → m ())
augment ::Monad m ⇒ Augment a b c m → Advice m a b
augment (before, after) proceed arg =

do c ← before arg
b ← proceed arg
after arg b c
return b

type Narrow m a b c = (a → m Bool ,Augment m a b c,Replace m a b)
narrow ::Monad m ⇒ Narrow m a b c → Advice m a b
narrow (p, aug , rep) proceed x =

do b ← p x
if b then replace rep proceed x

else augment aug proceed x

Fig. 4. Replacement, augmentation and narrowing advice combinators (adapted from [28])

memo :: (SM (Map a b) m,Ord a) ⇒ Narrow a b () m
memo = (pred , (before , after), rep) where

pred n = do {table ← get ; return (member n table)}
before = return ()
after n r = do {table ← get ; put (insert n r table)}
rep x = do {table ← get ; return (table ! n)}

Fig. 5. Memoization as a narrowing advice (adapted from [28])

The protected pointcut ppcFib embeds the narrow type combinator. Hence, only
advice that can be statically typed as narrowing advice can be bound to that pointcut. A
valid definition of the memo advice is given in Fig. 5. Note that the protected pointcut is
only restrictive with respect to the control flow effect of the advice, but not with respect
to its computational effect: any monad m is accepted.

Finally, note that this approach is not limited to the four categories of Rinard et
al.; custom kinds of advice can be defined in a similar way. For instance, we consider
adaptation advice as a weaker version of narrowing where the advice is allowed to
modify the arguments to proceed. The implementation is straightforward:

type Adaptation a b c m = (a → a, a → m c, a → b → c → m ())
adapt ::Adaptation a b c m → Advice m a b
adapt (adapter , before, after) proceed arg =
augment (before , after) proceed (adapter arg)

A relevant design choice is whether the adapter function is pure or is allowed to per-
form effects. This choice affects which properties can be statically checked based on

170 I. Figueroa, N. Tabareau, and É. Tanter

the type of the advice. Allowing effects is more expressive, but it is source of potential
interferences, in addition to advices and pointcuts. The next section describes how to
control effect interference between these components.

7 Controlling Effect Interference

The monadic embedding of aspects also enables reasoning about computational effects.
We are particularly interested in reasoning about effect interference between compo-
nents of a system: aspects, base programs, and combinations thereof. To do this, in
Section 7.1 we first show how to adapt the non-interference types defined in Effec-
tiveAdvice [28], which distinguish between aspect and base computation. The essence
of this technique is to use parametricity to forbid components from making assumptions
about some part of the monad stack. Then, because components must work uniformly
over the restricted section of the stack, they can only utilize effects available in the
non-restricted section.

However, this approach falls short when considering several aspects in a system,
because aspects (and base programs) can still interfere between them. In Section 7.2
we show how a refinement of the technique can be used to address this situation, but
that unfortunately is impractical because it requires explicit liftings and strongly cou-
ples components to particular shapes of the monad stack—hampering modularity and
reusability.

Finally, we show in Section 7.4 a different approach to enforce non-interference
based on monad views [35], a recently developed mechanism for handling the monad
stack, which is summarized in Section 7.3.

7.1 Distinguishing Aspect and Base Computation

To illustrate the usefulness of distinguishing between aspect and base computation,
consider a Fibonacci module where the internal calls throw an exception when given a
negative integer as argument. In that situation, it is interesting to ensure that the external
advice bound to the exposed pointcut cannot throw or catch those exceptions.

Following EffectiveAdvice [28], we can enforce an advice to be parametric with
respect to a monad used by base computation, effectively splitting the monad stack into
two. To this end we define the NIAT (NI stands for non-interference) type:

newtype NIAT t m a = NIAT (ST (AspectEnv (NIAT t m)) (t m) a)

Observe that NIAT splits the monad stack into an upper part t , with the effects avail-
able to aspects; and a lower part m, with the effects available to base computation. We
extend other definitions (weave , deploy , etc.) accordingly.

Note that NIAT is a proper monad, but not a monad transformer. This is because the
MonadTrans class is designed for a type constructor t that is applied to some monad
m, but NIAT takes two types as arguments. We could define the partial application
NIAT t as a monad transformer, but this is inconvenient because explicit lift operations
would skip the upper layer of the stack14. However, for allowing explicit lifting into

14 Because we would lift from m to (NIAT t) m .

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 171

NIAT we need an operation to transform a computation from t m into an NIAT t m
computation. To this end we provide the niLift operation as follows:

niLift ::Monad (t m) ⇒ t m a → NIAT t m a
niLift ma = NIAT $ ST $ λaenv → do

a ← ma
return (a, aenv)

Effect Interference and Pointcuts. The novelty compared to EffectiveAdvice is that we
also have to deal with interferences for pointcuts. But to allow effect-based reasoning
on pointcuts, we need to distinguish between the monad used by the base computation
and the monad used by pointcuts. Indeed, in the interpretation of the type PC m a b,
m stands for both monads, which forbids to reason separately about them. To address
this issue, we need to interpret PC m a b differently, by saying that the matched
type is a → b instead of a → m b. In this way, the monad for the base computation
(which is implicitly bound by b) does not have to be m at the time the pointcut is
defined. To accommodate this new interpretation with the rest of the code, very little
changes have to be made15. Mainly, the types of pcCall , pcType and the definition of
Aspect :

pcCall , pcType ::Monad m ⇒ (a → b) → PC m a b

data Aspect m a b c d = (Monad m,LessGen (a → b) (c → m d)) ⇒
Aspect (PC m a b) (Advice m c d)

Note how the definition of Aspect forces the monad of the pointcut computation to
be unified with that of the advice, and with that of the base code. The results of Sect. 5
can straightforwardly be rephrased with these new definitions.

Typing Non-interfering Pointcuts and Advices. Using rank-2 types [30] we can restrict
the type of pointcuts and advices. The following types synonyms guarantee that non-
interfering pointcuts (NIPC) and advices (NIAdvice) only use effects available in t .

type NIPC t a b = ∀m.(Monad m,MonadTrans t) ⇒
PC (NIAT t m) a b

type NIAdvice t a b = ∀m.(Monad m,MonadTrans t) ⇒
Advice (NIAT t m) a b

By universally quantifying over the type m of the effects used in the base com-
putation, these types enforce, through the properties of parametricity, that pointcuts
or advices cannot refer to specific effects in the base program. We can define aspect
construction functions that enforce different (non-)interference patterns, such as non-
interfering pointcut NIPC with unrestricted advice Advice, unrestricted pointcut PC
with non-interfering advice NIAdvice , etc.

15 The implementation available online uses this interpretation of PC m a b.

172 I. Figueroa, N. Tabareau, and É. Tanter

module FibErr (fib, ppcFib) where
import AOP

pcFib = pcCall fibBase ‘pcAnd ‘ pcArgGT 2

ppcFib = protectPC pcFib niAdvice

fibBase n = return 1

fibAdv proceed n = do f1 ← errorFib # (n − 1)
f2 ← errorFib # (n − 2)
return (f1 + f2)

fib = do deploy (aspect pcFib fibAdv)
return errorFib

errorFib :: (MonadTrans t ,EM String m) ⇒ Int → NIAT t m Int
errorFib n = if n < 0

then (niLift ◦ lift ◦ throwError)“Error : negative argument ′′

else fibBase # n

Fig. 6. Fibonacci with error

Enforcing Non-interference. Coming back to Open Modules and protected pointcuts,
to enforce non-interfering advice we need to define a typed combinator that requires an
advice of type NIAdvice:

niAdvice :: (Monad (t m),Monad m) ⇒
NIAdvice t a b → Advice (NIAT t m) a b

niAdvice adv = adv

Observe that the niAdvice combinator is computationally the identity function, but it
does impose a type requirement on its argument. Using this combinator, a module can
expose a protected pointcut that enforces non-interference with base effects.

Fibonacci Module with Error Handling. We now define a Fibonacci module (Fig. 6)
where base functions fibBase and fibAdv raise an exception when given a negative
argument.16 The exception is raised on monad m that corresponds to base computation,
and which is required to be an instance of EM. The definition of ppcFib enforces that
external advice cannot manipulate exceptions in m, because it uses the niAdvice advice
combinator. The drawback is that because we are using an effect in an inner layer of the
stack, we need to use explicit lifting to satisfy the expected type.

Non-interfering Base Computation. Symmetrically, we can check that a part of the
base code cannot interfere with effects available to aspects by using the type synonym
NIBase , which universally quantifies over the type t of effects available to the advice:

type NIBase m a b = ∀t .(Monad m,MonadTrans t ,Monad (t m)) ⇒
a → NIAT t m b

16 We do not use an error-checking argument on purpose, for the sake of illustration. We use such
an aspect in Sect. 7.2 where we consider the issues of multiple effectful aspects.

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 173

Reasoning about Pointcut Interference. Another use of effect reasoning can be done
at the level of pointcuts. Indeed, in the monadic embedding of aspects, we allow for
effectful pointcuts. For example, we can define a sequential pointcut combinator [10]
pcSeq pc1 pc2, that matches first pc1 and then pc2:

pcSeq :: (SM Bool m) ⇒ PC m a b → PC m c d → PC m c d
pcSeq (PC mpc1) (PC mpc2) =
PC $ do pc1 ← mpc1

pc2 ← mpc2
return $ λjp → do b ← get

if b then pc2 jp
else do b′ ← pc1 jp

put b′

return False

As expressed in the SM Bool m constraint, the pointcut requires a boolean state in
which to store the current point of its matching behavior: False (resp. True) means
pc1 (resp. pc2) is to be matched. Consequently, any base program that modifies this
state will alter the behavior of the pointcut. This situation can be avoided by using the
non-interfering base computation type NIBase , just described above.

7.2 Interference between Multiple Aspects

NIAT only distinguishes between base and aspect computation. Although useful, this
implies that interference between aspects is still possible because all of them will share
the same upper part of the monad stack. A similar situation happens with base programs
and the lower part of the monad stack.

To illustrate this issue, consider a Fibonacci module program that uses the memo
advice to improve the performance, and also uses a checkArg advice that throws an
exception when given a negative argument (instead of a base code check as in Fig. 6). In
this setting, checkArg could update the cache with incorrect values, either accidentally
or intentionally; or conversely, memo could throw arbitrary exceptions, even with a
non-negative argument.

Finer-Grained Splitting of the Monad Stack. Following the idea used in NIAT, to en-
force non-interference between memo and checkArg we need to split the monad stack
into the monad for base computation m, and two upper layers t1 and t2. The idea is
to assign to each aspect a unique layer in the stack, and to use parametricity to ensure
non-interference. To this end we define the NIAT2 monad, which splits the monad stack
as described. We also consider niLift2, which serves the same role as niLift .

newtype NIAT2
t1 t2 m a =

NIAT2 (ST (AspectEnv (NIAT2 t1 t2 m)) (t1 (t2 m)) a)

Again, we extend other definitions properly (weave, etc.). Using rank-2 types, the fol-
lowing type synonyms guarantee that non-interfering pointcuts and advices access can

174 I. Figueroa, N. Tabareau, and É. Tanter

only access the effect available in the first layer L1, which corresponds to t1; or in the
second layer L2, which corresponds to t2.

type NIPCL1 t1 a b = ∀t2 m.(Monad m,MonadTrans t1,
MonadTrans t2) ⇒ PC (NIAT2 t1 t2 m) a b

type NIPCL2 t2 a b = ∀t1 m.(Monad m,MonadTrans t1,
MonadTrans t2) ⇒ PC (NIAT2

t1 t2 m) a b

type NIAdviceL1 t1 a b = ∀t2 m.(Monad m,MonadTrans t1,
MonadTrans t2) ⇒ Advice (NIAT2

t1 t2 m) a b

type NIAdviceL2 t2 a b = ∀t1 m.(Monad m,MonadTrans t1,
MonadTrans t2) ⇒ Advice (NIAT2

t1 t2 m) a b

Non-interference Combinators. To enforce non-interference properties we need to de-
fine advice combinators, as we did with niAdvice . Again, we can enforce different
non-interference patterns, by defining as many construction functions as required. We
describe the advice combinators niAdviceL1 and niAdviceL2 that enforce that aspects
work exclusively with the effect provided by the first and second layer, respectively.

niAdviceL1 :: (Monad m,MonadTrans t1,MonadTrans t2) ⇒
NIAdviceL1 t1 a b → Advice (NIAT2 t1 t2 m) a b

niAdviceL1 adv = adv

niAdviceL2 :: (Monad m,MonadTrans t1,MonadTrans t2) ⇒
NIAdviceL2 t2 a b → Advice (NIAT2

t1 t2 m) a b
niAdviceL2 adv = adv

Now we define the monad stack S that provides the state and error-handling effects.

type S = NIAT2 (ET String) (ST (Map Int Int)) I

Then, we define the new fibonacci function using the checkArgL1
andmemoL2 advices,

which operate on the first and second layer of the monad stack, respectively.

fibMemoErr :: Int → S Int
fibMemoErr n = do deploy (aspect pcFib (niAdviceL2 memoL2))

f ← fib
deploy (aspect (pcCall f) (niAdviceL1 checkArgL1

))
f # n

The implementation of checkArgL1
is as follows:

checkArgL1
proceed arg =

if arg < 0
then (niLift2 ◦ throwError) "Error: negative argument"
else proceed arg

And similarly, we define memoL2 :

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 175

memoL2 proceed n =
do table ← niLift2 $ lift $ get
if member n table
then return (table ! n)
else do y ← proceed n

table ′ ← niLift2 $ lift $ get
(niLift2 ◦ lift ◦ put) (insert n y table ′)
return y

Note that checkArgL1
is applied on calls to the external fibonacci function f , while

memoL2 is applied to the internal calls of the Fibonacci module, exposed by pcFib .
While an improvement over the binary base/aspect approach of EffectiveAdvice,

illustrated in Section 7.1, this approach has two major drawbacks. First, it is not scal-
able because we need a different NIATn

monad to support a setting with n mutually
exclusive effects for aspects. Second, it is necessary to use explicit lifting in the imple-
mentation of advice. The reason is that we are explicitly using an effect from a layer
at an arbitrary position in monad stack. Because we need to preserve parametricity to
enforce non-interference, an advice cannot make any assumptions on the monad trans-
formers that compose the stack. In particular, it cannot assume that the transformers
support implicit liftings from the inner layers of the stack. In fact, in the presence of
implicit lifting the layer from which an effect comes depends on the concrete monad
stack used. These issues hamper modularity and reusability of aspects. In general, there
is a tension between implicit lifting—designed to make a layer provide several effects
at once—and splitting the monad stack with one aspect/effect per layer. In Section 7.4
we address these issues by using monad views [35].

7.3 Interlude: Monad Views

Monad views, recently developed by Schrijvers and Oliveira [35], are a technique for
handling the monad stack, which extends and complements the standard mechanisms
of explicit and implicit liftings (Section 2). Monad views provide robust support for
accessing the effects of the monad stack without being coupled to a particular stack
layout. Views are denoted using �, and are an instance of the View type class that
defines the from operation. Additionally, we use bidirectional views, denoted with the
	
 type operator. In addition to from , a bidirectional view supports the to operation.

from :: (Monad m,Monad n,View (�)) ⇒ n � m → n a → m a
to :: (Monad m,Monad n) ⇒ n 	
 m → m a → n a

In short, given two monads n and m, a view n � m transforms computations from n
to m, and a bidirectional view n 	
 m can also transform computations from m to n .

View-Specific Operations. Views are first-class values, hence they can be used as argu-
ments. For instance, consider the functions getv and putv defined in [35]:

getv :: (Monad m, SM s n,View (�)) ⇒ (n � m) → m s
getv v = from v $ get

176 I. Figueroa, N. Tabareau, and É. Tanter

putv :: (Monad m, SM s n,View (�)) ⇒ (n � m) → s → m ()
putv v = from v ◦ put

Given an initial monad m and a view n � m, getv returns a computation m s from an
arbitrary state layer n . Conversely, putv puts a new value into state layer n .

Creating Views. Schrijvers and Oliveira propose the construction of views using struc-
tural and nominal masks, which are applied onto the layers of a monad stack [35].

– A structural mask is a bit-like mask applied to the monadic stack in order to hide
the layers that conflict with implicit lifting. Such a mask is created by concatenating
unary masks for each layer using the ::: type operator:17 � indicates a visible layer
and � a hidden layer.

– A nominal mask refers to layers of the stack using names instead of relative posi-
tions. This is done with the tag monad transformer T. Given an arbitrary type Tag ,
the layer TTag labels a particular position of the monad stack using type Tag . An
example of a tagged monad stack (for some types Tag1 and Tag2) is:

type M = T
Tag1 (ST Int (TTag2 ET String I))

where the ST layer is labeled with Tag1 and the ET layer is labeled with Tag2.
For inspecting tagged monad stacks, the type class n �Tag m exposes a monad
n representing the layer of the stack m tagged with type Tag . It also provides the
structure operation to obtain the view between n and m associated to t :

class (Monad m,Monad n) ⇒ n �Tag m where
structure :: View (�) ⇒ Tag → (n � m)

7.4 Beyond the Aspect/Base Distinction

Monad views enable a different approach to enforce non-interference. The idea is that
aspects will be generic with respect to the effects they require using type class con-
straints, assuming exclusive access to a monad stack with those effects. To avoid non-
interference, client code uses a concrete monad stack and transforms each advice into a
view-specific advice where the aspect only sees the sections of the monad stack that it
is allowed to access.

For instance, the memo advice described in Fig. 3 requires access to a dictionary to
store the precomputed results. This is explicit in the (inferred) type of the advice:

memo :: (Monad m,Ord a, SM (Map a b) m) ⇒ Advice m a b

In a similar way we define checkArg , which requires access to an error effect:

checkArg :: (Monad m,Num a,EM String m) ⇒ Advice m a b
checkArg proceed arg =
if arg < 0

then throwError“Error : negative argument ′′

else proceed arg

17 We follow the graphical notation used in [35].

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 177

ErrorT
String

AOT
StateT

Map Int Int
IdentityS1

ErrorT
String

AOT
StateT

Map Int Int
Identityv1 = S1 + ::: :::

ErrorT
String

AOT
StateT

Map Int Int
Identityv2 = S1 + ::: :::

Fig. 7. Applying structural masks to the monad stack S1

Arbitrarily Splitting the Monad Stack with Views. Observe now that the advice does
not depend on the specific position of an effect in the monad stack. The novelty with
respect to using implicit liftings is that we can assign to each aspect a virtual view of
the monad stack that only contains the effect available to them. To assign a part of the
monad stack to an advice we define the withView function:

withView :: (Monad n,Monad m) ⇒ n 	
 m → Advice n a b → Advice m a b
withView v adv proceed arg = from v $ adv (λa → to v (proceed a)) arg

This function transforms an advice from a restricted monad n to an advice in the “com-
plete” stack m, using a bidirectional view provided as argument. We require a bidirec-
tional view because we need to lift the proceed function, with type a → n b into an
equivalent function with type a → m b—which by construction performs effects only
on n . Then, because evaluation of the restricted advice yields a computation n b, we
use the from operation to lift it into a computation m b.

Observe that partially applying withView with a given view yields a function of
type Advice n a b → Advice m a b, which fits with the notion of advice combinators
(Sect. 6.2). Therefore, it is possible to export protected pointcuts that expose a particular
section of the monad stack to external advice. Additionally, we can define functions to
transform join points and pointcuts, in a similar way to withView .

Using Structural Masks. Consider a concrete monad stack S1 which holds the required
state and error effects.

type S1 = AT (ET String (ST (Map Int Int) I))

Then, we define the fibonacci function as follows:

fibMemoErr ′ n = do deploy (aspect pcFib (withView v1 memo))
f ← fib
deploy (aspect (pcCall f) (withView v2 checkArg))
f # n

where v1 = � :::� :::�
v2 = � :::� :::�

178 I. Figueroa, N. Tabareau, and É. Tanter

We define views v1 and v2 using structural masks. Both allow access to AT, allowing
AOP-specific operations into advice (e.g., deploying aspects). Besides that, v1 exposes
only the ST transformer, whereas v2 only allows accessing to the ET transformer. Fig-
ure 7 depicts how views v1 and v2 define new virtual monad stacks, by applying struc-
tural masks to S1. Note that structural masks can be applied only to monad transformers,
but not the monad at the bottom of the stack.

It is clear that now aspects do not need to perform explicit liftings and are not coupled
to a particular monad stack. However, these issues are present when constructing views
using nominal masks. Changes to the monad stack that is used to run client code need
to be reflected in (potentially many) client functions that use structural masks.

Using Nominal Masks. A more flexible approach that is not coupled to any particular
monad stack is to use nominal masks to tag each effect required by aspects. Then client
code can use the tags to directly access the effects and properly transform the advices.
Consider a monad stack S2, where the state and error layers are tagged:

data StateTag
data ErrorTag

type S2 = AT (TErrorTag (ET String (TStateTag (ST (Map Int Int) I))

The stack is tagged at the type level, therefore we define two singleton types (with
no data constructors), namely StateTag and ErrorTag , to use as arguments for the T

monad transformer.
The fibonacci function implemented using nominal masks is:

fibMemoErr ′′ :: ∀m n1 n2.(Monad m,
n1 �StateTag (AT m), SM (Map Int Int) n1,
n2 �ErrorTag (AT m),EM String n2)
⇒ Int → AT m Int

fibMemoErr ′′ n = do deploy (aspect pcFib (withView v1 memo))
f ← fib
deploy (aspect (pcCall f) (withView v2 checkArg))
f # n

where v1 = structure StateTag :: n1 	
 m
v2 = structure ErrorTag :: n2 	
 m

In contrast to the previous definition, we need to use explicit type annotations be-
cause using nominal masks can lead to ambiguity in type inference18. Observe that we
assume a monad m that is tagged with two singleton types StateTag and ErrorTag .
We use � to expose these layers as monads n1 and n2 respectively, and we constrain
these monads to expose the corresponding effects. Therefore, by using nominal masks
we can independently evolve the definition of S2, as long as we keep the tagged layers
expected by fibMemoErr ′′ (satisfying both the tag name and the required effect).

18 The ∀m n1 n2 annotation is required to use the type variables in the scope of a do expression.

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 179

Perspectives on Using Views. The content of the do expression is the same using struc-
tural or nominal masks. In fact it is possible to define a more generic function that takes
views v1 and v2 as argument. Because views are first-class values, there is a wide design
space on how to use them to control aspect interference. For example, aspects can be
defined directly using � constraints as required.

On the other hand, programmers must carefully define the views that are provided
to each advice, because the typechecker cannot distinguish between intentional and
accidental sharing of effects.

Controlling effect interference between aspects is a well-known and widely
researched area in the AOP community. The two approaches presented in this sec-
tion show that the concrete mechanism used to manage the monad stack determines
the expressiveness of type-based reasoning techniques. We believe that the problem
of assigning exclusive access to effects in the monadic stack originates from the fact
that the monad stack is public and transparent to all components in a system. We con-
jecture that a mechanism that statically controls access to effects, while being flexible
for developers ought to be devised, and indeed is a line of future work that transcends
aspect-oriented programming. An additional line of future work is the connection be-
tween monad views and MRI [29] (a framework for monadic reasoning that extends
EffectiveAdvice [35]), which is based on parametricity and considers only implicit and
explicit lifting.

As a final remark, in a setting with an unrestricted deploy operation the restrictions
on advice must be applied at each particular aspect deployment. This makes it diffi-
cult to establish global properties about advice in a system (which may require external
static analysis). This can be solved with a custom AT-like monad transformer that pro-
vides a more restricted deployment mechanism.

8 Language Extensions

The typed monadic embedding of aspects supports modular extensions of the aspect
language. The simplest extension is to introduce new user-defined pointcuts. More in-
terestingly, because the language features a monadic weaver [38], we can modularly
implement new semantics for aspect scoping and weaving. In addition, all language ex-
tensions benefit from the type-based reasoning techniques described in this paper—to
the best of our knowledge, this is a novel contribution of this work. In this section we
describe the following developments:

– A user-defined pcCflow pointcut designator.
– Secure weaving, in which a set of join points can be hidden from advising.
– Privileged aspects that can see hidden join points from a secure computation.
– Aspect weaving with execution levels [41].
– An example of type-based reasoning in the semantics of execution levels.

8.1 Cflow Pointcut

An interesting illustration of extending the language with user-defined pointcuts is the
case of control flow checks. Essentially, implementing the pcCflow pointcut requires a

180 I. Figueroa, N. Tabareau, and É. Tanter

way to track join points emitted during program execution. This tracking mechanism
can be implemented modularly using a state monad transformer that holds a stack of
join points, and an aspect that matches every join point, stores it in the stack, and then
proceeds to obtain the result, which is returned after popping the stack. This corresponds
to the stack-based implementation of cflow described in [24].

Join Point Stack. To do this, we first define a join point stack as a list of existentially-
quantified join points, EJP , just like we did to define the aspect environment as a list
of homogeneous EAspect values (Sect. 3.1).

data EJP = ∀a b m.Monad m ⇒ EJP (JP m a b)
type JPStack = [EJP]

Then, to collect the join points into a JPStack we define the JPT monad transformer,
reusing the implementation of the standard ST transformer:

newtype JPT m a = JPT (ST JPStack m a)

In addition, to support a polymorphic monad stack we define the JPM type class as
follows, and declare JPT as an instance.

class Monad m ⇒ JPM m where
getJPStack ::m JPStack
pushJPStack :: EJP → m ()
popJPStack ::m ()

instance Monad m ⇒ JPM (JPT m) where . . .

Defining pcCflow . Given the definitions above, the implementation of pcCflow is very
similar to that of pcCall (Sect. 3.1).19

pcCflow :: JPM m ⇒ (a → m b) → PC m c (m ′ d)
pcCflow f = return (λ → do
jpStack ← getJPStack
return $ any (λejp → compareFunEJP f ejp ∧ compareTypeEJP f ejp)

jpStack

Here compareFunEJP checks the equality of the function bound to the join point and
function f ; and compareTypeEJP checks that the type of f is more general than the
type of the join point. Function any returns whether any element of jps satisfies a given
predicate. We can define the pcCflowbelow pointcut in a similar way.

Maintaining the Join Point Stack. Now it remains to define the aspect that maintains
the join point stack. We first define the pcAny pointcut, which matches all functions
applications and pushes the corresponding join point into the stack.

19 Note that, as discussed in Sect. 4.1, we specifically declare that the matched type of the pointcut
is in a different monad m ′.

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 181

pcAny :: JPM m ⇒ PC m a b
pcAny = PC $ return $ λjp → do pushJPStack (EJP jp)

return True

Note that the definition of pcAny preserves type soundness (Sect. 4.1) because its
matched type is given by two fresh type variables a and b, and hence is the most general
type possible. Next, we define collectAdv as an advice that performs proceed , pops the
stack and returns the result.

collectAdv proceed arg = do result ← proceed arg
popJPStack
return result

Finally, we define the maintainJpStack aspect as follows.

maintainJpStack :: JPM m ⇒ Aspect m a (m b) a b
maintainJpStack = aspect pcAny collectAdv

This approach is inefficient because we are matching and storing all join points,
instead of only those that can be queried in existing uses of pcCflow . Alternative opti-
mizations can be defined, for example putting in the stack only relevant join points, or
a per-flow deployment that allows using a boolean instead of a stack [24].

A consequence of not defining pcCflow as a primitive pointcut is that we need to
ensure that evaluation of maintainJpStack occurs before than any other advice. Oth-
erwise, control flow pointcuts from other aspects will have incorrect information to
determine whether to execute the advice. This can be implemented directly in a custom
AT transformer that takes a list of priority aspects and ensures they are always evaluated
first during weaving.

8.2 Secure Weaving

For security reasons it can be interesting to protect certain join points from being ad-
vised. To support such a secure weaving, we define a new monad transformerAS

T, which
embeds an (existentially quantified) pointcut that specifies the hidden join points, and
we modify the weaving process accordingly (not shown here).

data EPC m = ∀a b.EPC (PC m a b)

data A
S
T m a = A

S
T (AspectEnv (AS

T m)
→ EPC (AS

T m)
→ m (a, (AspectEnv (AS

T m),EPC (AS
T m))))

This can be particularly useful when used with the pcCflow pointcut to protect the
computation that occurs in the control flow of critical function applications. For in-
stance, we can ensure that the whole control flow of function f is protected from advis-
ing during the execution of program p , assuming a function runAS

T, similar to runAT

(Sect. 3.2):

runAS
T (EPC (pcCflow f)) p

182 I. Figueroa, N. Tabareau, and É. Tanter

8.3 Privileged Aspects

Hiding some join points to all aspects may be too restrictive. For instance, certain “sys-
tem” aspects like access control should be treated as privileged and view all join points.
Another example is the aspect in charge of maintaining the join point stack for the
sake of control flow reasoning (used by pcCflow). In such cases, it is important to be
able to define a set of privileged aspects, which can advise all join points, even those
that are normally hidden in a secure computation. The implementation of a privileged
aspects list is a straightforward extension to the secure weaving mechanism described
above.

8.4 Execution Levels

Execution levels avoid unwanted computational interference between aspects, i.e. when
an aspect execution produces join points that are visible to others, including itself [41].
Execution levels give structure to execution by establishing a tower in which the flow of
control navigates. Aspects are deployed at a given level and can only affect the execu-
tion of the underlying level. The execution of an aspect (both pointcuts and advices) is
therefore not visible to itself and to other aspects deployed at the same level, only to as-
pects standing one level above. The original computation triggered by the last proceed
in the advice chain is always executed at the level at which the join point was emitted.
If needed, the programmer can use level-shifting operators to move execution up and
down in the tower.

The monadic semantics of execution levels are implemented in the ELT monad
transformer (Fig. 8). The Level type synonym represents the level of execution as an
integer. ELT wraps a run function that takes an initial level and returns a computation
in the underlying monad m, with a value of type a and a potentially modified level.
As in the AT transformer, the monadic bind and return functions are the same as in
the state monad transformer. The private operations inc, dec, and at are used to de-
fine the user-visible operations current , up, down , and lambda_at . In addition to level
shifting with up and down , current reifies the current level, and lambda_at creates a
level-capturing function bound at level l . When such a function is applied, execution
jumps to level l and then goes back to the level prior to the application [41].

The semantics of execution levels can be embedded in the definition of aspects them-
selves, by transforming the pointcut and advice of an aspect at deployment time, as
shown in Fig. 9.20 This is done by functions pcEL and advEL. pcEL first ensures that
the current execution level lapp matches ldep , the level at which the aspect is deployed.
If so it then runs the pointcut one level above. Similarly, advEL ensures that the advice
is run one level above, with a proceed function that captures the deployment level.

Example. Figure 10 defines a generic logging advice, logAdv , which appends the argu-
ment and result of advised functions to the log21. In program , we deploy an aspect that

20 For simplicity, in Sect. 3.2 we only described the default semantics of aspect deployment;
aspect (un)deployment is actually defined using overloaded (un)deployInEnv functions.

21 Using the tell function of the MonadWriter class (denoted WM), which is not described in
Sect. 2, but which essentially is a state monad with append-only access.

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 183

1 type Level = Int
2 newtype ELT m a = ELT (ST Level m a)

3 -- primitive operations
4 inc = ELT $ λl → return ((), l + 1)
5 dec = ELT $ λl → return ((), l − 1)
6 at l = ELT $ λ → return ((), l)

7 -- user-visible operations
8 current = ELT $ λl → return (l , l)
9 up c = do {inc; result ← c; dec; return result }

10 down c = do {dec; result ← c; inc; return result }
11 lambda_at f l = λarg → do n ← current
12 at l
13 result ← f arg
14 at n
15 return result

Fig. 8. Execution levels monad transformer and level-shifting operations

deployInEnv (Aspect (pc :: PC (AT (ELT m)) tpc) adv) aenv =
let
pcEL ldep = (PC $ return $ λjp → do

lapp ← current
if lapp ≡ ldep then up $ runPC pc jp

else return False) :: PC (AT (ELT m)) tpc

advEL ldep proceed arg = up $ adv (lambda_at proceed ldep) arg
in do l ← current

return EAspect (Aspect (pcEL l) (advEL l)) : aenv

Fig. 9. Redefining aspect deployment for execution levels semantics. An aspect is made level-
aware by transforming its pointcut and advice.

intercepts all calls to showM (the monadic version of show) where the argument is of
type Int (we require a type annotation for the pointcut because showM is a bounded
polymorphic function—see Sect. 9.2 for details).

The evaluation of the program depends on the instantiation of the monad stack M .
In a setting without execution levels, advising showM with logAdv triggers an infi-
nite loop because logAdv internally performs open applications of showM , which are
matched by the same aspect. Using the execution level semantics, evaluation terminates
because the join point emitted by the advice is not visible to the aspect itself.

Interestingly, explicit open applications limit the possibilities of unwanted advising.
More obliviousness, e.g., through partial application of#, makes it harder to track down
these issues (we come back to obliviousness in Sect. 9.3). Nevertheless, identifying the
source of the regression is not sufficient per se: in our example, if it is necessary for
logAdv to use open applications (so that other aspects can intervene), there is not much
that can be done to avoid regression.

184 I. Figueroa, N. Tabareau, and É. Tanter

showM a = return (show a)

logAdv proceed a = do argStr ← showM # a
tell ("Arg: "++ argStr)
result ← proceed a
return result

program n = runM $ do
deploy (aspect (pcCall (showM :: → Int → M String)) logAdv)
showM # n

Fig. 10. A program that loops unless execution levels are used

Beyond Execution Levels. Execution levels adds a topological dimension to the com-
position of aspects into a system. However, their tower-like structure may be too re-
stricted for certain scenarios, for instance for dynamic analyses aspects [43]. Recently,
Tanter et al. proposed programmable membranes [44] as a generalization of execution
levels. We have developed a prototype implementation of membrane semantics in Ef-
fective Aspects [12], using the same approach of converting pointcuts and advices at
deployment time. However, instead of passing the current level of execution (an inte-
ger), we maintain the bindings between membranes (a graph) using a state monad.

8.5 Reasoning about Language Extensions

The above extensions can be implemented in an dynamically typed language such as
LAScheme [41]. However, it is challenging to provide any kind of reasoning about
effects due to the dynamic nature of the language.

Enforcing Non-interference in Language Extensions. We can combine the monadic in-
terpretation of execution levels with the management of effect interference (Sect. 7) in
order to reason about level-shifting operations performed by base and aspect compu-
tations. For instance, it becomes possible to prevent aspect and/or base computation to
use effects provided by the ELT monad transformer, thus ensuring that the default se-
mantics of execution levels is preserved (and therefore that the program is free of aspect
loops [42]). For this we must consider a concrete monad stack that has the AT and ELT

transformers on top:

type AELT m = AT ELT m

Observe that this monad stack is general with respect other effects it may contain. Then,
we simply define an advice combinator that forbids access to the ELT layer, which
provides the level-shifting operations.

levelAgnosticAdv = withView (� :::� :::�)

This mask hides the layer with the execution-level-related effects, but allows access to
AT at the top, and to the rest of the stack. Then to ensure level agnostic advice we just
redefine program to use this combinator, in a suitable monad stack M :22

22 We use the WriterT transformer (WT), which is the canonical instance of WM.

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 185

type M = AELT (WT String I)
runM c = runI $ runWT $ runELT (runAT c) 0

program n = runM $ do
deploy (aspect (pcCall (showM :: → Int → M String))

(levelAgnosticAdv logAdv))
showM # n

If more advanced use of execution levels is required, this contraint can be explicitly
relaxed in the AT or ELT monad transformer, thus stressing in the type that it is the
responsibility of the programmer to avoid infinite regression.

Using Types to Enforce Weaving Semantics. The type system makes it possible to spec-
ify functions that can be woven, but only within a specific aspect monad. For instance,
suppose that we want to define a critical computation, which must only be run with
secure weaving for access control. The computation must therefore be run within the
A

S
T monad transformer with a given pointcut pc_ac (ac stands for access control).
To enforce the use of AS

T with a specific pointcut value would require the use of a
dependent type, which is not possible in Haskell. This said, we can use the newtype
data constructor together with its ability to derive automatically type class instances, to
define a new type A

AC
T that encapsulates the A

S
T monad transformer and forces it to be

run with the pc_ac pointcut:

newtype A
AC
T m a = A

AC
T (AS

T m a) deriving (Monad ,OpenApp, . . .)

runSafe (AAC
T c) = runAS

T (EPC pc_ac) c

Therefore, we can export the critical computation by typing it appropriately:

critical ::Monad m ⇒ A
AC
T m a

Because the A
AC
T constructor is hidden in a module, the only way to run such a

computation typed as A
AC
T is to use runSafe. The critical computation is then only

advisable with secure weaving for access control.

9 Discussion

We now discuss a number of issues related to our approach: how to define a proper no-
tion of function equality, how to deal with overloaded functions, and finally, we analyze
the issue of obliviousness.

9.1 Supporting Equality on Functions

Pointcuts quantify about join points, and a major element of the join point is the function
being applied. The pcType designator relies on type comparison, implemented using
the PolyTypeable type class in order to obtain representations for polymorphic types.
The pcCall is more problematic, as it relies on function equality, but Haskell does not
provide an operator like eq? in Scheme.

186 I. Figueroa, N. Tabareau, and É. Tanter

A first workaround is to use the StableNames API that allows comparing functions
using pointer equality. Unfortunately, this notion of equality is fragile. StableNames
equality is safe in the sense that it does not equate two functions that are not the same,
but two functions that are equal can be seen as different.

The problem becomes even more systematic when it comes to bounded polymor-
phism. Indeed, each time a function with constraints is used, a new closure is created
by passing the current method dictionary of type class instances. Even with optimized
compilation (e.g., ghc -O), this (duplicated) closure creation is unavoidable and so
StableNames will consider different any two constrained functions, even if the passed
dictionary is the same.

To overcome this issue, we have overloaded our equality on functions with a special
case for functions that have been explicitly tagged with a unique identifier at creation
(using Data.Unique). This allows us to have a robust notion of function equality but it
has to be used explicitly at each function definition site.

9.2 Advising Overloaded Functions

From a programmer’s point of view, it can be interesting to advise an overloaded func-
tion (that is, the application of all the possible implementations) with a single aspect.
However, deploying aspects in the general case of bounded polymorphism is problem-
atic because of the resolution of class constraints. Recall that in order to be able to
type the aspect environment, we existentially hide the matched and advised types of
an aspect. This means that all type class constraints must be solved statically at the
point an aspect is deployed. If the matched and advised types are both bounded poly-
morphic types, type inference cannot gather enough information to statically solve the
constraints. So advising all possible implementations requires repeating deployment of
the same aspect with different type annotations, one for each instance of the involved
type classes.

To alleviate this problem, we developed a macro using TemplateHaskell [36]. The
macro extracts all the constrained variables in the matched type of the pointcut, and
generates an annotated deployment for every possible combination of instances that
satisfy all constraints. In order to retain safety, the advised type of an aspect must be
less constrained than its matched type. This is statically enforced by the Haskell type
system after macro expansion.

9.3 Obliviousness

The embedding of aspects we have presented thus far supports quantification through
pointcuts, but is not oblivious: open applications are explicit in the code. A first way
to introduce more obliviousness without requiring non-local macros or, equivalently, a
preprocessor or ad hoc runtime semantics, is to use partial applications of #. For in-
stance, the enqueue function can be turned into an implicitly woven function by defin-
ing enqueue ′ = enqueue #. This approach was used in Fig. 2 for the definition of
fib. It can be sufficient in similar scenarios where quantification is under control. Other-
wise, it can yield issues in the definition of pointcuts that rely on function identity, be-
cause enqueue ′ and enqueue are different functions. Also, this approach is not entirely

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 187

satisfactory with respect to obliviousness because it has to be applied specifically for
each function.

De Meuter proposes [26] to use the binder of a monad to redefine function applica-
tion. His approach focuses on defining one monad per aspect, but can be generalized to
a list of dynamically deployed aspects as presented in Sect. 3.2. For this, we can redefine
the monad transformer AT to make all monadic applications open transparently:

instance Monad m ⇒ Monad (AT m) where
return a = AT $ λaenv → return (a, aenv)
k >>= f = do x ← k

f # x

This presentation improves obliviousness because any monadic application is now an
open application, but it suffers from a major drawback: it breaks the monadic laws.
Indeed, left identity and associativity

-- Left identity:
return x >>= f = f x
-- Associativity:
(m >>= f)>>= g = m >>= (λx → f x >>= g)

can be invalidated, depending on the current list of deployed aspects. This is not
surprising as AOP allows one to redefine the behavior of a function and even to redefine
the behavior of a function depending on its context of execution. Breaking monadic
laws is not prohibited by Haskell, but it is very dangerous and fragile; for instance,
some compilers exploit the laws to perform optimizations, so breaking them can yield
incorrect optimizations.

9.4 Technical Requirements of Our Model

The current implementation of Effective Aspect uses several extensions of the GHC
Haskell compiler (see the details at http://plead.cl/effectiveaspects).
Nevertheless, we believe that the anti-unification algorithm at the type level (Section 4.1)
is the essential feature that would be required to make our approach work on other lan-
guages. A potential line of work is to port Effective Aspects to Scala, which has some
likeness to Haskell and also has monads, and investigate what kind of issues arise in the
process.

10 Related Work

The earliest connection between aspects and monads was established by De Meuter in
1997 [26]. In that work, he proposes to describe the weaving of a given aspect directly
in the binder of a monad. As we have just described above (Sect. 9.3), doing so breaks
the monad laws, and is therefore undesirable.

188 I. Figueroa, N. Tabareau, and É. Tanter

Wand et al. [48] formalize pointcuts and advice and use monads to structure the
denotational semantics; a monad is used to pass the join point stack and the store around
evaluation steps. The specific flavor of AOP that is described is similar to AspectJ, but
with only pure pointcuts. The calculus is untyped. The reader may have noticed that we
do not model the join point stack in this paper. This is because it is not required for
a given model of AOP to work. In fact, the join point stack is useful only to express
control flow pointcuts. In our approach, this is achieved by specifying a user-defined
pointcut designator for control flow, which uses a monad to thread the join point stack
(or, depending on the desired level of dynamicity, a simple control flow state [24]).
Support for the join point stack does not have to be included as a primitive in the core
language. This is in fact how AspectJ is implemented [24,15].

Hofer and Osterman [16] shed some light on the modularity benefits of monads and
aspects, clarifying that they are different mechanisms with quite different features: mo-
nads do not support declarative quantification, and aspects do not provide any support
for encapsulating computational effects. In this regard, our work does not attempt at
unifying monads and aspects, contrary to what De Meuter suggested. Instead, we ex-
ploit monads in Haskell to build a flexible embedding of aspects that can be modularly
extended. In addition, the fully typed setting provides the basis for reasoning about
monadic effects.

The notion of monadic weaving was described by Tabareau [38], where he shows that
writing the aspect weaver in a monadic style paves the way for modular language ex-
tensions. He illustrated the extensibility approach with execution levels [41] and level-
aware exception handling [13]. The authors then worked on a practical monadic aspect
weaver in Typed Racket [14]. However, the type system of Typed Racket turned out
to be insufficiently expressive, and the top type Any had to be used to describe point-
cuts and advices. This was the original motivation to study monadic weaving in Haskell.
Also in contrast to this work, prior work on monadic aspect weaving does not consider a
base language with monads. In this paper, both the base language and the aspect weaver
are monadic, combining the benefits of type-based reasoning about effects (Sect. 6) and
modular language extensions (Sect. 8)—including type-based reasoning about language
extensions.

Haskell has already been the subject of AOP investigations using the type class sys-
tem as a way to perform static weaving [37]. AOP idioms are translated to type class
instances, and type class resolution is used to perform static weaving. This work only
supports simple pointcuts, pure aspects, and static weaving, and is furthermore very
opaque to modular changes as the translation of AOP idioms is done internally at com-
pile time.

The specific flavor of pointcut/advice AOP that we developed is directly inspired
by AspectScheme [11] and AspectScript [45]: dynamic aspect deployment, first-class
aspects, and extensible set of pointcut designators. While we have not yet developed the
more advanced scoping mechanisms found in these languages [40], we believe there
are no specific challenges in this regard. The key difference here is that these languages
are both dynamically typed, while we have managed to reconcile this high level of
flexibility with static typing.

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 189

In terms of statically typed functional aspect languages, the closest proposal to ours
is AspectML [7]. In AspectML, pointcuts are first-class, but advice is not. The set
of pointcut designators is fixed, as in AspectJ. AspectML does not support: advising
anonymous functions, aspects of aspects, separate aspect deployment, and undeploy-
ment. AspectML was the first language in which first-class pointcuts were statically
typed. The typing rules rely on anti-unification, just like we do in this paper. The major
difference, though, is that AspectML is defined as a completely new language, with a
specific type system and a specific core calculus. Proving type soundness is therefore
very involved [7]. In contrast, we do not need to define a new type system and a new
core calculus. Type soundness in our approach is derived straightforwardly from the
type class that establishes the anti-unification relation. Half of section 5 is dedicated to
proving that this type class is correct. Once this is done (and it is a result that is inde-
pendent from AOP), proving aspect safety is direct. Another way to see this work is as
a new illustration of the expressive power of the type system of Haskell, in particular
how phantom types and type classes can be used in concert to statically type embedded
languages.

Aspectual Caml [25] is another polymorphic aspect language. Interestingly, Aspec-
tual Caml uses type information to influence matching, rather than for reporting type
errors. More precisely, the type of pointcuts is inferred from the associated advices, and
pointcuts only match join points that are valid according to these inferred types. We
believe this approach can be difficult for programmers to understand, because it com-
bines the complexities of quantification with those of type inference. Aspectual Caml
is implemented by modifying the Objective Caml compiler, including modifications to
the type inference mechanism. There is no proof of type soundness.

The advantages of our typed embedding do not only lie within the simplicity of
the soundness proof. They can also be observed at the level of the implementation.
The AspectML implementation is over 15,000 lines of ML code [7], and the Aspectual
Caml implementation is around 24,000 lines of Objective Caml code [25]. In contrast,
our implementation, including the execution levels extension (Sect. 8), is only 1,600
lines of Haskell code. Also, embedding an AOP extension entirely inside a mainstream
language has a number of practical advantages, especially when it comes to efficiency
and maintainability of the extension.

Finally, reasoning about advice effects has been studied from different angles. For
instance, harmless advice can change termination behavior and use I/O, but no more [6].
A type and effect system is used to ensure conformance. Translucid contracts use grey
box specifications and structural refinement in verification to reason about control ef-
fects [5]. In this work, we rather follow the type-based approach of EffectiveAdvice
(EA) [28], which also accounts for various control effects and arbitrary computational
effects. A limitation of EA is its lack of support quantification. A contribution of this
work is to show how to extend this approach to the pointcut/advice mechanism. The
subtlety lies in properly typing pointcuts. An interesting difference between both ap-
proaches is that in EA, it is not possible to talk about “the effects of all applied advices”.
Once an advice is composed with a base function, the result is seen as a base function
for the following advice. In contrast, our approach, thanks to the aspect environment and

190 I. Figueroa, N. Tabareau, and É. Tanter

dynamic weaving, makes it possible to keep aspects separate and ensure base/aspect
separation at the effect level even in presence of multiple aspects. We believe that this
splitting of the monad stack is more consistent with programmers expectations.

11 Conclusion

We develop a novel approach to embed aspects in an existing language. We exploit
monads and the Haskell-type system to define a typed monadic embedding that sup-
ports both modular language extensions and reasoning about effects with pointcut/ad-
vice aspects. We show how to ensure type soundness by design, even in presence
of user-extensible pointcut designators, relying on a novel-type class for establishing
anti-unification. Compared to other approaches to statically typed polymorphic aspect
languages, the proposed embedding is more lightweight, expressive, extensible, and
amenable to interference analysis. The approach can combine Open Modules and Ef-
fectiveAdvice, and supports type-based reasoning about modular language extensions.

Acknowledgments. This work was supported by the INRIA Associated team REAL.
We thank the anonymous reviewers from the AOSD’13 conference and from this jour-
nal, and we also thank Tom Schrijvers for all his useful feedback.

References

1. In: Proceedings of the 11th Workshop on Foundations of Aspect-Oriented Languages (FOAL
2012), Potsdam, Germany. ACM Press (March 2012)

2. Aldrich, J.: Open modules: Modular reasoning about advice. In: Gao, X.-X. (ed.) ECOOP
2005. LNCS, vol. 3586, pp. 144–168. Springer, Heidelberg (2005)

3. In: Proceedings of the 7th ACM International Conference on Aspect-Oriented Software
Development (AOSD 2008), Brussels, Belgium. ACM Press (April 2008)

4. In: Proceedings of the 9th ACM International Conference on Aspect-Oriented Software
Development (AOSD 2010), Rennes and Saint Malo, France. ACM Press (March 2010)

5. Bagherzadeh, M., Rajan, H., Leavens, G.T., Mooney, S.: Translucid contracts: Expressive
specification and modular verification for aspect-oriented interfaces. In: Proceedings of the
10th ACM International Conference on Aspect-Oriented Software Development (AOSD
2011), Porto de Galinhas, Brazil. ACM Press (March 2011)

6. Dantas, D.S., Walker, D.: Harmless advice. In: Proceedings of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2006), Charleston,
South Carolina, pp. 383–396. ACM Press (January 2006)

7. Dantas, D.S., Walker, D., Washburn, G., Weirich, S.: AspectML: A polymorphic aspect-
oriented functional programming language. ACM Transactions on Programming Languages
and Systems 30(3), Article No. 14 (May 2008)

8. De Fraine, B., Südholt, M., Jonckers, V.: StrongAspectJ: flexible and safe pointcut/advice
bindings. In: AOSD 2008 [3], pp. 60–71

9. Douence, R., Fradet, P., Südholt, M.: Trace-based aspects. In: Filman, R.E., Elrad, T., Clarke,
S., Akşit, M. (eds.) Aspect-Oriented Software Development, pp. 201–217. Addison-Wesley,
Boston (2005)

10. Douence, R., Motelet, O., Südholt, M.: A formal definition of crosscuts. In: Matsuoka, S.
(ed.) Reflection 2001. LNCS, vol. 2192, pp. 170–186. Springer, Heidelberg (2001)

Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice 191

11. Dutchyn, C., Tucker, D.B., Krishnamurthi, S.: Semantics and scoping of aspects in higher-
order languages. Science of Computer Programming 63(3), 207–239 (2006)

12. Figueroa, I., Tabareau, N., Tanter, É.: Taming aspects with monads and membranes. In:
Proceedings of the 12th Workshop on Foundations of Aspect-Oriented Languages (FOAL
2013), Fukuoka, Japan, pp. 1–6. ACM Press (March 2013)

13. Figueroa, I., Tanter, É.: A semantics for execution levels with exceptions. In: Proceedings of
the 10th Workshop on Foundations of Aspect-Oriented Languages (FOAL 2011), Porto de
Galinhas, Brazil, pp. 7–11. ACM Press (March 2011)

14. Figueroa, I., Tanter, É., Tabareau, N.: A practical monadic aspect weaver. In: Proceedings of
the 11th Workshop on Foundations of Aspect-Oriented Languages (FOAL 2012), pp. 21–26
(2012)

15. Hilsdale, E., Hugunin, J.: Advice weaving in AspectJ. In: Lieberherr, K. (ed.) Proceedings of
the 3rd ACM International Conference on Aspect-Oriented Software Development (AOSD
2004), Lancaster, UK, pp. 26–35. ACM Press (March 2004)

16. Hofer, C., Ostermann, K.: On the relation of aspects and monads. In: Proceedings of AOSD
Workshop on Foundations of Aspect-Oriented Languages (FOAL 2007), pp. 27–33 (2007)

17. Jones, M.P.: Type classes with functional dependencies. In: Smolka, G. (ed.) ESOP 2000.
LNCS, vol. 1782, pp. 230–244. Springer, Heidelberg (2000)

18. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview
of aspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–353.
Springer, Heidelberg (2001)

19. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997.
LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

20. Learn you a haskell website (2013), http://learnyouahaskell.com/
21. Leijen, D., Meijer, E.: Domain specific embedded compilers. In: Ball, T. (ed.) Proceedings

of the 2nd USENIX Conference on Domain-Specific Languages, pp. 109–122 (1999)
22. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In: Proceed-

ings of the 22nd ACM Symposium on Principles of Programming Languages (POPL 95),
San Francisco, California, USA, pp. 333–343. ACM Press (1995)

23. Hansen, K.A., Kawauchi, K.: Dataflow pointcut in aspect-oriented programming. In: Ohori,
A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 105–121. Springer, Heidelberg (2003)

24. Hansen, K.A., Kiczales, G., Dutchyn, C.: A compilation and optimization model for aspect-
oriented programs. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 46–60. Springer,
Heidelberg (2003)

25. Masuhara, H., Tatsuzawa, H., Yonezawa, A.: Aspectual Caml: an aspect-oriented functional
language. In: Proceedings of the 10th ACM SIGPLAN Conference on Functional Program-
ming (ICFP 2005), Tallin, Estonia, pp. 320–330. ACM Press (September 2005)

26. Meuter, W.D.: Monads as a theoretical foundation for aop. In: International Workshop on
Aspect-Oriented Programming at ECOOP, p. 25. Springer (1997)

27. Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92
(1991)

28. Oliveira, B.C.D.S., Schrijvers, T., Cook, W.R.: EffectiveAdvice: discplined advice with ex-
plicit effects. In: AOSD 2010 [4], pp. 109–120

29. Oliveira, B.C.D.S., Schrijvers, T., Cook, W.R.: MRI: Modular reasoning about interference
in incremental programming. Journal of Functional Programming 22, 797–852 (2012)

30. Peyton Jones, S., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference for
arbitrary-rank types. Journal of Functional Programming 17(1), 1–82 (2007)

31. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge (2002)
32. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5, 153–163 (1970)

http://learnyouahaskell.com/

192 I. Figueroa, N. Tabareau, and É. Tanter

33. Reynolds, J.C.: Transformational systems and the algebraic structure of atomic formulas.
Machine Intelligence 5, 135–151 (1970)

34. Rinard, M., Salcianu, A., Bugrara, S.: A classification system and analysis for aspect-oriented
programs. In: Proceedings of the 12th ACM Symposium on Foundations of Software Engi-
neering (FSE 12), pp. 147–158. ACM Press (2004)

35. Schrijvers, T., Oliveira, B.C.: Monads, zippers and views: virtualizing the monad stack. In:
Proceedings of the 16th ACM SIGPLAN Conference on Functional Programming (ICFP
2011), Tokyo, Japan, pp. 32–44. ACM Press (September 2011)

36. Sheard, T., Jones, S.P.: Template meta-programming for haskell. SIGPLAN Not. 37(12), 60–
75 (2002)

37. Sulzmann, M., Wang, M.: Aspect-oriented programming with type classes. In: Proceedings
of the Sixth Workshop on Foundations of Aspect-Oriented Languages (FOAL 2007), Van-
couver, British Columbia, Canada, pp. 65–74. ACM Press (2007)

38. Tabareau, N.: A monadic interpretation of execution levels and exceptions for AOP. In: Tan-
ter, É., Sullivan, K.J. (eds.) Proceedings of the 11th International Conference on Aspect-
Oriented Software Development (AOSD 2012), Potsdam, Germany. ACM Press (March
2012)

39. Tabareau, N., Figueroa, I., Tanter, É.: A typed monadic embedding of aspects. In: Kinzle, J.
(ed.) Proceedings of the 12th International Conference on Aspect-Oriented Software Devel-
opment (AOSD 2013), Fukuoka, Japan, pp. 171–184. ACM Press (March 2013)

40. Tanter, É.: Expressive scoping of dynamically-deployed aspects. In: AOSD 2008 [3],
pp. 168–179

41. Tanter, É.: Execution levels for aspect-oriented programming. In: AOSD 2010 [4], pp. 37–48
42. Tanter, É., Figueroa, I., Tabareau, N.: Execution levels for aspect-oriented programming:

Design, semantics, implementations and applications. Science of Computer Programming
(2013) (available online)

43. Tanter, É., Moret, P., Binder, W., Ansaloni, D.: Composition of dynamic analysis aspects. In:
Proceedings of the 9th ACM SIGPLAN International Conference on Generative Program-
ming and Component Engineering (GPCE 2010), Eindhoven, The Netherlands, pp. 113–122.
ACM Press (October 2010)

44. Tanter, É., Tabareau, N., Douence, R.: Taming aspects with membranes. In: Proceedings of
the 11th Workshop on Foundations of Aspect-Oriented Languages (FOAL 2012) [1], pp. 3–8

45. Toledo, R., Leger, P., Tanter, É.: AspectScript: Expressive aspects for the Web. In: AOSD
2010 [4], pp. 13–24

46. Wadler, P.: The essence of functional programming. In: Proceedings of the 19th ACM Sym-
posium on Principles of Programming Languages (POPL 1992), Albuquerque, New, Mexico,
USA, pp. 1–14. ACM Press (January 1992)

47. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceedings of the
16th ACM Symposium on Principles of Programming Languages (POPL 1989), Austin, TX,
USA, pp. 60–76. ACM Press (January 1989)

48. Wand, M., Kiczales, G., Dutchyn, C.: A semantics for advice and dynamic join points
in aspect-oriented programming. ACM Transactions on Programming Languages and
Systems 26(5), 890–910 (2004)

Modular Specification and Checking

of Structural Dependencies

Ralf Mitschke1, Michael Eichberg1, Mira Mezini1, Alessandro Garcia2,
and Isela Macia2

1 Technische Universität Darmstadt
{mitschke,eichberg,mezini}@informatik.tu-darmstadt.de

2 Pontifical Catholic University of Rio de Janeiro
{afgarcia,ibertran}@inf.puc-rio.br

Abstract. Checking a software’s structural dependencies is a line of re-
search on methods and tools for analyzing, modeling, and checking the
conformance of source code w.r.t. specifications of its intended static
structure. Existing approaches have focused on the correctness of the
specification, the impact of the approaches on software quality and the
expressiveness of the modeling languages. However, large specifications
become unmaintainable in the event of evolution without the means to
modularize such specifications. We present Vespucci, a novel approach
and tool that partitions a specification of the expected and allowed de-
pendencies into a set of cohesive slices. This facilitates modular reasoning
and helps individual maintenance of each slice. Our approach is suited
for modeling high-level as well as detailed low-level decisions related to
the static structure and combines both in a single modeling formalism.
To evaluate our approach, we conducted an extensive study spanning 9
years of the evolution of the architecture of the object-relational mapping
framework Hibernate.

Keywords: Software Architectures, Modularity, Scalability, Structural
Dependency Constraints, Static Analysis.

1 Introduction

A documented software architecture is an acknowledged success factor for the
development of large, complex systems [1]. Traditionally, architecture descrip-
tion languages (ADLs) have been used to specify the architecture and verify its
properties. Generally, this process has been detached from coding. The architec-
ture specification has been considered as a means to prescribe the structure of
the code resulting from programming or to eventually generate a first skeleton
of that code. However, as systems evolve over time, due to new requirements
or corrections, the implemented architecture starts to diverge from the intended
architecture [2–4] — resulting in architecture erosion [5].

To combat architecture erosion, several approaches have emerged that focus on
structural dependencies [6–9] and whose proponents argue for automated check-
ing of architecture specifications w.r.t. the static structure of the source code.

S. Chiba et al. (Eds.): Transactions on AOSD XI, LNCS 8400, pp. 193–226, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

194 R. Mitschke et al.

These approaches generally allow to group1 source code elements into building
blocks — cohesive units of functionality in the software system — and to specify
in which way a building block is allowed to statically depend on which other
building block. The specification formalisms in these approaches vary and can
be summarized as: (i) a flat graph with building blocks as nodes and allowed
dependencies as edges [7]; (ii) a matrix notation with building blocks in rows/-
columns and their dependencies in the cells [8]; (iii) a graph with hierarchical
nodes and component-connector style ports to manage internal/external depen-
dencies [6]; (iv) a textual specification of access restrictions on target building
blocks [9].

Such specifications are used either analytically [7] — to analyze already writ-
ten code for conformance with an intended static structure — or constructively
[6, 9] to enforce the code’s compliance with the specification of the static struc-
ture continuously during development. Constructive approaches were proven to
help developers in realizing the intended architecture. Several case studies [10–
12] show that constructive approaches can prevent structural erosion [13, 14].

Though current approaches have proven to be valuable, they all share the
property that a single monolithic specification is used and – as in case of a
monolithic software system — a monolithic description of the structure does not
scale and becomes unmaintainable once the software reaches a certain complex-
ity. Sangal et al. [8] explicitly try to solve the maintainability and scalability
issues using a special notation called dependency structure matrices (DSMs).
However, we believe that the problem is not so much the notation. The root
of the problem is the monolithic nature of the specifications. Based on some
preliminary experience with modeling the architecture of real systems, such as
Hibernate [15], we doubt that any such approach can scale, even with compact
notations such as dependency structure matrices. As a result, typically only the
highest level of components and/or libraries is considered [9, 13]; requiring dif-
ferent notations and tools for different levels of the design. This precludes a
seamless design at various granularity levels.

In this paper, we argue that modeling a software’s static structure should
consist of multiple views, that focus on different parts and on different levels
of detail. We take the position that like programming languages, architecture
modeling languages in general should support modularity and scoping mecha-
nisms to support modular reasoning about different architectural concerns and
information hiding to facilitate evolution.

Accordingly, we propose a novel modeling approach and tool, called Vespucci,
that allows to separate the specification of a software’s static structure into
multiple complementary views, called slices throughout this paper. Each slice
can be reasoned over in separation. Multiple slices can express different views on
the same part of the software and each slice can be evolved individually. Hence,
evolution of large scale specifications consisting of several slices is facilitated by
distributing work to systematically update the architecture in a modular fashion.
The proposed approach is at least as expressive as existing models for structural

1 Using, e.g., regular expressions over classes or source files.

Modular Specification and Checking of Structural Dependencies 195

rules. Hence, the strong utility of these rules (as shown in [13, 14]) is retained.
Yet, we enhance the modularity of the specification language. Contrary to a
monolithic specification of previous models, our approach has the benefit that
individual concerns can remain stable. Stable parts can be modularized into
different slices to be separated from architectural “hot-spots,” i.e., slices that
require frequent changes during the evolution.

The contributions of this paper are:

– A first approach toward the specification of a software’s structural depen-
dencies that supports a modularized specification by means of individual
slices.

– A new approach for modeling a software’s structural dependencies that com-
bines the advantages of hierarchical and graph-based modeling approaches
to enable reasoning over a software’s static structure at different abstraction
levels.

– Discussion of an implementation of the proposed approach that enables the
specification and checking of a software’s structural dependencies.

The remainder of the paper is organized as follows. In Sec. 2, we briefly in-
troduce the Hibernate framework [15], which we use to illustrate concepts of
the proposed approach and to evaluate its effectiveness. Section 3 introduces
Vespucci’s specification language. In Sec. 4 we present an in-depth evaluation
of Vespucci. After that, we discuss related work in Sec. 5. Finally, we give a
summary and discuss future work.

2 Architecture of Hibernate

As part of the development of Vespucci, we did a comprehensive analysis of
the architecture of the object-relational mapping framework Hibernate [15]. We
provide a short overview of Hibernate and its architecture in this section since
we will refer to it to discuss and motivate various features of Vespucci.

We chose Hibernate as it is a large, mature, widely adopted software system,
which has been continually updated and enhanced. We reengineered the archi-
tecture of the core of Hibernate in version 1.0.1 (July 2002) and played back its
evolution until version 3.6.6 (July 2011)2. During this time the core grew from
2 000 methods in over 255 classes organized in 18 packages to 17 700 methods in
over 1 954 classes in 100 packages.

In the following, the major building blocks of Hibernate’s architecture are
presented. A building block is a logical grouping of source code elements that
provide a cohesive functionality, independent of the program’s structuring, e.g.,
in packages or classes. The scope of a building block depends on the consid-
ered abstraction level and ranges from a few source code elements up to several
hundreds. For example, Hibernate’s support for different SQL dialects is repre-
sented by one top-level building block with many source code elements that is
further structured into smaller building blocks for elements that abstract over
the support for concrete dialects and those that actually implement the support.

2 Hibernate 4.0 was released after the case study.

196 R. Mitschke et al.

Table 1. Overview of Hibernate 1.0

Top-level Building Block 2
L
B
u
il
d
in
g

B
lo
ck
s

C
la
ss
es

co
n
ta
in
ed

E
le
m
en

ts
co
n
ta
in
ed

R
el
a
ti
o
n
to

P
a
ck
a
g
es

Cache 4 6 60 ≡
CodeGeneratorTool 0 9 68 ⊂
ConnectionProvider 3 5 51 ≡
DatabaseActions 3 9 59 ⊂
DataTypes 10 37 410 ≡
DeprecatedLegacy 2 2 6 ⊂
EJBSupport 0 1 22 ≡
HibernateORConfiguration 2 2 39 ×
HibernateORMapping 12 33 389 ≡
HQL (Hibernate Query Language) 3 9 130 ≡
IdentifierGenerators 4 12 92 ≡
MappingGeneratorTool 0 19 233 ⊂
PersistenceManagement 6 35 674 ×
PropertySettings 0 1 43 ×
Proxies 0 3 23 ⊂
SchemaTool 2 5 34 ⊂
SessionManagement 6 10 312 ×
SQLDialects 3 12 119 ≡
Transactions 2 4 37 ≡
UserAPI 9 9 63 ×
UtilitiesAndExceptions 2 33 235 ×
XMLDatabinder 0 2 21 ×

The architectural model of Hibernate 1.0 consists of the 22 top-level building
blocks shown in Table 1. Of these 22 top-level building blocks, 16 were further
structured. In total, we identified 73 second-level building blocks. Given the size
of Hibernate 1.0, we did not analyze lower levels. On average each top-level
building block already only contains 11 classes and the 2nd level building blocks
consist of even fewer classes. The key figures of the architecture are given in
Table 1. In the following, we discuss those elements of the architecture that
are most relevant when considering the modeling of architectures. The complete
architecture can be downloaded from the project’s website [16].

For Hibernate 1.0 nine of the building blocks have a one-to-one mapping to
a package (cf. Table 1 – Relation to Packages ≡). Six building blocks map to a
subset (⊂) of the code of some non-cohesive package. For example, the package
cirrus.hibernate.impl contains classes for creating proxies as well as classes
related to database actions. These sets of classes have no interdependencies and
belong to different building blocks. The source code elements of the remaining
building blocks are spread across several packages (×). For example, the code
related to session handling is spread across two packages in version 1.0.

Modular Specification and Checking of Structural Dependencies 197

Overall, the architecture features several well modularized building blocks,
such as the Cache, HQL or Transactions building blocks, which are only cou-
pled with at most three other building blocks. The number of well-modularized
building blocks with few dependencies is, however, small. The majority of Hiber-
nate’s functionality belongs to building blocks that exhibit high coupling, such
as PersistenceManagement, SessionManagement, and DataTypes.

3 The Vespucci Approach

In this section, we first describe the four major parts Vespucci [16] consists of:
(1) a declarative source code query language to overlay high-level abstractions
over the source code, (2) an approach that enables the modular, evolvable, and
scalable modeling of an application’s structural dependencies, and (3) a formal-
ism as well as (4) a tool for checking the consistency between the modeled and
the implemented dependencies. After that, we present the different modeling ap-
proaches supported by Vespucci. Finally, we discuss how the proposed approach
facilitates the evolution of the specification and the underlying software and how
it supports large(r) scale software systems.

3.1 High-Level Abstractions over Source Code

Vespucci is concerned with modeling and controlling structural dependencies at
the code level. But, it does so at a high-level of abstraction.

Ensembles are Vespucci’s representation of high-level building blocks of an
application whose structural dependencies are modeled and checked. Specifically,
Vespucci’s ensembles are groups of source code elements, namely type, method,
and field declarations. The definition of an ensemble involves the specification of
source code elements that belong to it by means of source code queries. We refer
to the set of source code elements that belong to an ensemble as the ensemble’s
extent.

The visual notation of an ensemble is a box with a name label. For example,
Fig. 1 shows two ensembles, one called SessionManagement and one called HQL.
Vespucci explicitly predefines the so-called empty ensemble that never matches
any source elements and is depicted using a simple gray box (). The empty
ensemble supports some common modeling tasks, e.g., to express that a utility
package should not have any dependencies on the rest of the application’s code.

The source code query language is only introduced by example in the
following paragraphs, since it is not the primary focus of this paper, which is
rather on modularity mechanisms for modeling structural dependencies. In fact,
the approach as a whole is parameterized by the query language, in the sense
that the modularization mechanisms can be reused with other more expressive
query languages and more sophisticated query engines. For a more systematic
definition of the current query language, the interested reader is referred to the
website of the project [16].

The query language provides a set of basic predicates that can select individ-
ual fields or methods, entire classes, packages, or source files. Predicates take

198 R. Mitschke et al.

quoted parameters, which filter respective code elements by their signature, e.g.,
the predicate package(’cirrus.hibernate.helpers’) selects code elements in
Hibernate’s helpers package, using the package name as the filter. The query
defines the Utilities ensemble, which we have used in modeling Hibernate’s struc-
tural dependencies.

In the above example, source code elements are precisely specified by their
fully qualified signature. Furthermore, wildcards (“*”) can be used to abstract
over individual predicate parameters. For example, the field predicate below
selects fields with an arbitrary name (the second parameter is “*”) that are
declared in classes with the simple name Hibernate and where the name of
the field’s type ends with the suffix Type. We have used the query to define an
ensemble called TypeFactory which serves as a factory for Hibernate’s built-in
types.

field(’*.Hibernate’,’*’,’*Type’)

Queries can be composed using the standard set theoretic operations (union,
intersection, difference), or by passing a query as an argument to a type parame-
ter of another query. This form of composition is useful to reason over inheritance
for selecting all sub-/supertypes of a given type. For example, consider the query:

class_with_members(subtype+(’Dialect’))

It uses the basic predicate class_with_members, which selects a class and
all it’s members. Since the predicate expects a type to be selected, we can in-
stead pass a sub-query. The subtype+ query returns the transitive closure of
all subtypes of the class Dialect. Hence, the example query selects all classes
(and their members) that are a subtype of the class Dialect. In Hibernate these
represent all supported SQL dialects – the shown query actually defines the
ensemble ConcreteDialects.

As already mentioned, the query language is interchangeable. What is in-
teresting about the use of the source query language as an ingredient of our
approach is that it enables modeling structural dependencies at a high-level of
abstraction. Furthermore, it supports the definition of ensembles that cut across
the modular structure of the code, e.g., TypeFactory cuts across the class-based
decomposition of code. This enables feature-based control of structural depen-
dencies.

Vespucci provides an ensemble repository that stores the definitions of all
ensembles. It serves as a project-wide repository and provides the starting point
for modeling an application’s intended structural dependencies. Capturing all
ensemble definitions in a single repository serves two purposes. First, it enables a
model of intended structural dependencies to be modularized with the guarantee
that all modules refer to the same extension for a particular ensemble. Second, it
allows modules to pose global constraints quantifying over all defined ensembles
(see the discussion about global constraints in the following section).

Modular Specification and Checking of Structural Dependencies 199

3.2 Modeling Structural Dependencies

Dependency slices are Vespucci’s mechanism to support the modularized spec-
ification of an application’s structural dependencies. A slice captures one or more
specific design decisions, by expressing one or more constraints over ensemble
interdependencies, e.g., which ensemble(s) is (are) allowed to use a certain other
ensemble.

For illustration, Fig. 1 shows an exemplary slice, which governs dependen-
cies to source code elements that implement the Hibernate query language,
represented by the HQL ensemble. Specifically, it states that elements pertain-
ing to HQL may be used ONLY by those pertaining to the SessionManagement
ensemble. The circle attached to the arrow pointing to HQL states this as a
global property, i.e., for all ensembles in the ensemble repository, this is the only
dependency on HQL’s elements that is allowed.

Fig. 1. Dependency Rule for Hibernate Query Language

Figure 2 shows another example slice that states that source code elements
pertaining to SQLDialects are only allowed to be used by PersistenceManage-
ment’s or SessionsManagement’s source code elements.

Fig. 2. Users of SQL Dialects

There can be an arbitrary number of slices in a model of structural depen-
dencies and the set of ensembles referred to in different slices may also overlap.
Deciding about the number/kind of slices, in which one breaks down the spec-
ification of an application’s structural dependencies is a matter of modeling
methodology, as we elaborate on in section 3.5. Yet, we envision the default
strategy to be one in which each slice is used to express allowed and expected
dependencies from the perspective of a single ensemble; this strategy was suc-
cessfully used in the majority of the slices defined in our case study and is shown
in most of the examples found in this paper. For the purpose of reasoning over
which dependencies are (not) allowed for an ensemble, the visual notation fea-
tures arrow symbols that are shown next to the ensemble that is constrained3.

3 For this paper the visual models were compressed to save space. Hence the distinction
may not be as obvious as it is when you use the Vespucci tool.

200 R. Mitschke et al.

For example, by looking at Fig. 1 we can reason about all dependencies that
are allowed for HQL and looking at Fig. 2 we can reason about all dependencies
that are allowed for SQLDialects.

Ensembles that participate in a slice but which have no arrow symbols next
to their box are not constrained. For example, both slices refer to SessionMan-
agement, but make no statement w.r.t. its allowed dependencies. From these two
slices we can see that SessionManagement’s source code elements are allowed to
depend on both SQLDialect’s and HQL’s source code elements. However, Session-
Management and PersistenceManagement are not constrained.
Constraint types are classified into two basic categories: constraints that are
defined w.r.t. the allowed and those w.r.t. the not-allowed dependencies. Con-
straints on allowed dependencies are further classified as Outgoing and Incom-
ing Constraints and Local and Global Constraints. In addition Vespucci allows
to formulate expected dependencies, i.e., dependencies whose presence architects
actually require in the source code. The rationale for distinguishing between the
above types of constraints relates to enabling modular reasoning about indi-
vidual architectural concerns. Modular reasoning fosters scalability by allowing
each slice to be understood as a single unit of comprehension, and also fosters
evolvability as each slice can be adapted without the need to refer to other slices.
We elaborate on the role that different constraint types play with these respects
in the following section. Here, we exclusively focus on explaining the meaning of
these different constraints.

An incoming constraint restricts the set of source code elements that may use
the elements of a particular ensemble (target ensemble). Incoming constraints are
denoted by the symbol “−>” shown next to the target ensemble (cf. Fig. 1, Fig. 2).
For example, the constraint in Fig. 1 restricts source code dependencies where
the target element belongs to HQL: the source of the dependency must belong
to SessionManagement; source code dependencies from and to the source code
elements belonging to SessionManagement are — w.r.t. that slice — unrestricted.

An outgoing constraint restricts the set of source code elements on which
code elements of a specific ensemble (source ensemble) may depend. Outgoing
constraints are visually denoted by the symbol “>−” shown next to the source
ensemble. For example, the slice in Fig. 3 features two outgoing constraints;
from ConnectionProvider to PropertySettings, respectively to UtilitiesAndExcep-
tions. Outgoing constraints only affect code elements of their source ensemble.
Hence, the slice in Fig. 3 governs the dependencies of code elements involved in
providing connections (captured by the ConnectionProvider ensemble). They may
only use generic functionality (captured by the UtilitiesAndExceptions ensemble),
or functionality for getting and setting properties (captured by PropertySettings).
The targets of the constraint (PropertySettings and UtilititiesAndExceptions) can
— w.r.t. the slice in Fig. 3 — depend on any other ensemble.

Global constraints quantify over all defined ensembles. Visually they are de-
noted by a “◦” attached to a constraint. All constraints considered in the exam-
ples so far were global. For example, the constraint shown in Fig. 1 affects code
elements that belong to any ensemble defined in the repository of Hibernate,

Modular Specification and Checking of Structural Dependencies 201

Fig. 3. Constraints on the Connection Provider

even if not referred to by the slice, e.g., ConnectionProvider or PropertySettings
in Fig. 3. Code elements of the latter ensembles are not allowed to depend on
elements in HQL.

Global constraints are hard constraints w.r.t. the addition of new ensem-
bles into the architecture. Whenever new ensembles are defined in the ensemble
repository, they are included when checking a global constraint. The purpose is
to provide tight control over the evolution of some part of the overall architec-
ture. If a new ensemble has dependencies that violate a global constraint, then
architects can asses whether the violation needs to be removed from the code or,
whether the currently defined architectural rules are too narrow. The essential
point is that an architect has assessed the situation and no uncontrolled erosion
of the software’s structure occurs.

Local constraints quantify only over ensembles that are referenced in one par-
ticular slice. Visually, they are characterized by the lack of the “◦” symbol. Fig-
ure 4 depicts local constraints on the implementation of Hibernate’s support for
different SQL dialects (e.g., “Oracle SQL”,“DB2 SQL”). Each dialect is realized
by implementing a common interface. Elements of this interface are captured by
the AbstractDialect ensemble. Support for specific dialects is captured by Con-
creteDialects. The TypeNameMap ensemble captures code elements involved in
implementing a specialized dictionary for mapping database type names to a
common set of names. The defined constraints specify that only code pertaining
to ConcreteDialects is allowed to depend on code pertaining to AbstractDialect
and code in the latter is only allowed to depend on TypeNameMap’s code. Fur-
thermore, neither source code elements of AbstractDialect nor TypeNameMap are
allowed to depend on elements of ConcreteDialects due to the incoming constraint
between the empty ensemble and ConcreteDialects. However, the constraints of
the slice in Fig. 4 do not restrict in any way code elements belonging to ensem-
bles that are not referenced by this slice, e.g., code pertaining to HQL (slice in
Fig. 1) could use code pertaining to ConcreteDialects.

Local constraints provide tight control over the evolution of source code w.r.t.
the scope of the ensembles referenced in a slice. Their purpose is to capture local-
ized rules that reason only over a part of all the dependencies in the architecture,
e.g., as in Fig. 4 where only dependencies pertaining to the implementation of
multiple SQL dialects are considered. The implementation details of involved
ensembles can change (and respectively their extensions), but the changes are
guaranteed to adhere to the specified allowed/expected dependencies. The rest of
the architecture can evolve independently, i.e., new ensembles and dependencies
can be introduced as long as they do not violate the localized rules.

Expected constraints communicate that some dependencies in the source code
must exist and guarantee the consistencyw.r.t. what is actually used. For example,

202 R. Mitschke et al.

Fig. 4. Supporting Multiple SQL Dialects

Hibernate uses a logging API from the Apache project. Logging is a crosscutting
concern and, hence, the library is allowed to be used by any ensemble. However, we
can communicate that at least ensembles that provide core functionality, such as
PersistenceManagementor SessionManagementmust use the logging. If any of these
ensembles stop using the logging API, Vespucci marks the respective ensembles as
suspicious. The actual problems then require careful investigation, e.g., is logging
not used at all or is a different logging API used. Furthermore, we treat dependen-
cies as expected for ensembles that are explicitly allowed to use one another due
to a local/global incoming or outgoing constraint. For example, in Fig. 2 we have
explicitly allowed PersistenceManagement to use SQLDialects. Hence, if there is no
concrete dependency in PersistenceManagement’s code to SQLDialects’ code the
constraint is suspicious and can either be removed, or indicates further problems
in the code base.
Different kinds of dependencies can be constrained individually by annotat-
ing constraints. The kinds of dependencies are those that can be found in Java
code (e.g., Field Read Access, Field Write Access, Inherits, Calls, Creates,...; a
complete reference is available online [16]); by default, all kinds of dependencies
are constrained and no further annotation of a constraint is necessary. Depen-
dency kinds are important when documenting detailed design choices.

For example, Fig. 5 restricts only dependencies of the create kind (i.e., object
creations) to the ConcreteConnectionProviders; only the ConnectionProviderFac-
tory is allowed to create new connection providers. All other dependencies are
allowed for all ensembles, hence clients may use the created provider, e.g., by
calling its methods. The range of possible applications is broad, e.g., one can
also disallow classes from throwing particular exceptions, while allowing their
methods to catch them.
Nesting of ensembles is also enabled in Vespucci to reflect part-whole rela-
tionships. The information about child/parent relationships between ensembles
is stored in the global repository. For illustration consider that the slice shown in
Fig. 4 actually models the internal architecture of Hibernate’s support for SQL

Fig. 5. Restricting Connection Provider Creation to a Factory

Modular Specification and Checking of Structural Dependencies 203

Fig. 6. (Sub-)Ensembles of SQL Dialects

dialects. One can express this relation by making the ensembles referred to in
Fig. 4 children of the SQLDialects ensemble, as shown in Fig. 6.

The extension of an ensemble that has inner ensembles is the union of the
extension of its inner ensembles; i.e., an ensemble with inner ensembles does not
define its own query to match source elements, but instead reuses the queries of
its inner ensembles. Hence, the semantics of nesting is that constraints defined for
parent ensembles implicitly apply to source code elements of all their children,
e.g., constraints defined for SQLDialects in the slice in Fig. 2 apply to all its
children ensembles.

Constraints that cross an ensemble’s border are disabled in Vespucci for keep-
ing the semantics simple. Due to slices, this can be done without loss of ex-
pressivity. If an architect needs to define a constraint between two ensembles
that do not have the same ancestor ensemble, it is always possible to specify the
constraint in a new slice that just refers to the directly relevant ensembles.

With hierarchical modeling, architects can distinguish between ensembles that
are involved in the architectural-level modeling of dependencies (SQLDialects)
and those involved in modeling decisions at lower design levels (ensembles in
Fig. 4). In the following sections we discuss how the combination of slices and
hierarchies facilitates the incremental refinement of a software’s architecture and
is advantageous in case of software evolution.

3.3 Constraint Enforcement and Formal Semantics

In the following, we first describe – at the conceptual level – how the structural
dependencies in the source code are checked against the modeled dependencies
in Vespucci. Afterwards, we present the formal semantics of the Vespucci model
and discuss several underlying design decisions.

Conceptually, checking of structural dependencies consists of the following
two major steps: First, for each ensemble its extension is calculated together
with the set of dependencies related to its extension. Self-dependencies, i.e.,
source code dependencies, where the source and target elements belong to the
same ensemble are filtered out. Furthermore, dependencies from and to source
code elements that do not belong to any ensemble are ignored. The calculated
ensemble extensions and the actual dependencies in the source code are then
used to calculate the set of dependencies between ensembles, i.e., to lift the
original source code dependencies to the level of ensembles. Note that lifting the
dependencies to the level of ensembles yields a clean and simple semantics, while
— effectively — the dependencies between source code elements are checked.

204 R. Mitschke et al.

The rationale behind the decision to ignore dependencies to source code ele-
ments that do not belong to any ensemble is that dependencies to an application’s
essential libraries and frameworks are most often not of architectural relevance
and should not clutter the overall specification. Nevertheless, it is always pos-
sible to create an ensemble that covers some fragment of a fundamental library
to restrict its usage. E.g., while it generally does not make sense to restrict the
usage of the JDK, it may still be useful to restrict the usage of some API, such
as the java.util.logging API, because the project as a whole uses a different
API for logging and it has to be made sure that no one accidentally uses the
default logging API. One possibility to model such a decision is to create a global
incoming constraint from an empty ensemble to the ensemble representing the
java.util.logging API.

The second step when checking structural dependencies is to perform the actual
checking of the defined dependency constraints. To facilitate checking and reason-
ing, the underlying model is defined such that it facilitates modular architecture
specifications. This means that each slice can be checked in isolation without con-
sidering constraints of other slices. To check a slice, Vespucci iterates over all en-
sembles of the slice and verifies that no existing dependency between two ensembles
violates a defined constraint. For example, to check the compliance of an applica-
tion’s source codewith the slice in Fig. 3, Vespucci effectively checks that the target
of all code dependencies, starting at a code element in ConnectionProvider, either
belongs to PropertySettings or to UtilitiesAndExceptions.

The Vespucci model of checking slices in isolation has three important prop-
erties. First, the guarantees given in one slice are not affected by other slices. For
illustration consider the the set of users of SQL-Dialects as modeled by the slice
shown in Fig. 2. The original architect who defined the slice expressed the system-
wide constraint that only SessionManagement and PersistenceManagement may
use SQL-Dialects. Now, even if another architect would define constraints w.r.t.
SQL-Dialects that are less restrictive, the constraints expressed by the first archi-
tect are still in effect since the slices are checked in isolation. Second, Vespucci’s
slices are open to refinements, i.e., architects can further restrict the allowed
usages defined in other slices. This is for example relevant to formulate at a high
level that SessionManagement and PersistenceManagementmay use SQL-Dialects,
yet formulate at a detailed level that SQL-Dialects has internal ensembles which
may not be used. Third, it is possible that two slices define “contradicting” con-
straints. E.g., in one slice an ensemble A is only allowed to access ensemble B and
in a second slice A is only allowed to access C. However, we are not checking for
such contradictions. Indeed checking the model for contradictions is in general
impossible since slices can have overlapping extents and the overlap cannot be
determined by simply analyzing the queries in an automated manner. Neverthe-
less, it is possible to check for inconsistencies w.r.t. the target software system,
i.e., by explicitly computing extents. But, the checking process will remain com-
plex and time consuming since hierarchical refinements (as exemplified above)
must also be considered. Since such a check was not relevant during our case
studies we currently do not support it.

Modular Specification and Checking of Structural Dependencies 205

Basic Definitions for Formal Checking. The fundamental data-structures
used by Vespucci are defined as follows (cf. Table 2):

The set of source code elements (S): It contains all classes, methods and
field declarations. Each declaration is uniquely identified by its fully qualified
name and signature.
For example, the method boolean isOpen() defined by the type Session,
has the id: cirrus.hibernate.Session.isOpen():boolean

The set of dependency kinds (K): It contains the identifiers for all kinds
of structural dependencies that can occur in Java programs, e.g., calls,
creates, inherits, etc.

The set of source code dependencies (D): It contains triples consisting of
two source code elements where the first element is the source of a depen-
dency and the second element is the target of the respective dependency, the
third element describes the kind of the dependency.

The set of identifiers of all ensembles (I): Each ensemble is uniquely
identified by its fully qualified name which describes the path from the root
ensemble to the current ensemble in the ensemble hierarchy. For example,
the ensemble AbstractDialect is fully qualified as SQLDialects.AbstractDialect.

The multimap for the ensemble hierarchy (H): It stores the parent-child
relationships between ensembles. For each non-root ensemble e it contains
an entry (p, e) where p is the parent ensemble.

From the parent-child relationships we deduce the set of descendants for each
ensemble. The descendants are computed as the transitive closure over H, i.e.,
we take H as a directed graph with edges (eu, ev) ∈ H. The descendants of

Table 2. Definition of Ensembles, Source Code Mappings, and Dependencies

Source code elements S

Dependency kinds K

Dependencies between
source code elements

D ⊆ S× S× K

Ensemble identifiers I

Ensemble children H ⊆ I× I

Ensemble descendants
H∗ ⊆ I× I

= { (ean, edes) | there exists a path p from ean to edes inH}
Ensemble extents E ⊆ I× S

Dependencies between
ensembles

D↑ ⊆ I× I× K

= { (es, et, k) | es, et ∈ I ∧ k ∈ K ∧ ∃(cs, ct, k) ∈ D

∧ ∃(es, cs) ∈ E ∧ ∃(et, ct) ∈ E ∧ es �= et

∧ (es, et) /∈ H∗ ∧ (et, es) /∈ H∗}

206 R. Mitschke et al.

an ensemble are then all sub-ensembles to which a path exists in H, where a
path is a non-empty sequence {e1, e2, ..., en} such that (e1, e2) ∈ H ∧ (e2, e3) ∈
H . . . ∧ (en−1, en) ∈ H , and all ei in the sequence are distinct. This set is later
used during dependency lifting.

For each ensemble we compute its extent – the set of source code elements
that belong to the ensemble – by evaluating its source code query. The calculated
extents are stored in the set E which contains tuples of source code ensemble
identifiers and source code elements. For example, if m represents the method
isOpen, the tuple (SessionManagement,m) is a member of E.

The lifted dependencies are represented as the set D↑ and are triples consisting
of a source and target ensemble together with the kind of the dependency. The
lifting is determined based on the found source code dependencies (D). We omit
all dependencies to an ensemble’s ancestors, descendants, and itself to facilitate
comprehension and checking. Furthermore, no slice must contain two ensembles
that are in a parent–child relationship and the extent of an ensemble that is not
a leaf ensemble is always equal to the union of the extents of all child ensembles.

Checking Structural Dependencies w.r.t. Slices. In the following, we for-
mally describe how the structural dependencies in the source code are checked
against the constraints defined in the slices. Table 3 lists the sets and definitions
used during the checking of slices. All slices can be uniquely identified via an id
m from the set M (Architectural Slices). The checking process is based on the
ensembles used in the slice m — stored in the set Lm; a subset of all ensemble
identifiers — and the constraints defined in the slice m — stored in the set Cm.

A concrete constraint is then a quadruple of (i) a constraint type, e.g.,
local incoming (the set T contains all types supported by Vespucci), (ii) the
source ensemble and (iii) the target ensemble of the constraint (both from I) to-
gether with (iv) the kind of the dependency that is being constrained (from K).
To check the structural dependencies, the constraints are first normalized such
that one quadruple is created for each kind of constrained dependency, e.g., if
all kinds of dependencies are not allowed (as used in Figs. 1-4) then the set Cm

contains one entry for each kind of dependency, i.e., a call, field read, etc. As a
concrete example, if we give the slice in Fig. 1 the identifier HQL, then CHQL

contains the quadruples:
(global incoming, SessionMangement,HQL, call),
(global incoming, SessionMangement,HQL, field read), etc.

From the constraints defined in a slice we deduce two sets: (i) dependencies
between ensembles that are not allowed, denoted asNm, and (ii) dependencies be-
tween ensembles that are expected, denoted as Xm. A structural violation of the
dependencies found in the analyzed source code w.r.t. the slicem is then defined as
Vm and determined as follows: If there exists a not-allowed dependency in Nm and
the set of lifted dependencies (D↑) contains the same element, a violation is identi-
fied. I.e., the dependency in the source code that resulted in the lifted dependency
is a violation. Vice versa, if there exists an expected dependency in Xm and the
set of lifted dependencies (D↑) does not contain such a dependency we also found
a violation. Note that we keep a reference to the original dependency (from D) for

Modular Specification and Checking of Structural Dependencies 207

Table 3. Checking Structural Consistency of Dependency Slices

Dependency slice identifiers M

Ensembles in slice m ∈ M Lm ⊆ I

Constraint types T

Constraints in slice m ∈ M Cm ⊆T× Lm × Lm × K

Not allowed ensemble de-
pendencies in slice m ∈ M

Nm ⊆ I× I× K

Expected ensemble depen-
dencies in slice m ∈ M

Xm ⊆ I× I× K

Structural violations in slice
m ∈ M

Vm = {d | d ∈ Nm ∧ d ∈ D↑} ∪ {d | d ∈ Xm ∧ d /∈ D↑}

All structural violations V =
⋃

m∈M

Vm

every lifted dependency (inD↑) to easily generate errormessages that reference the
source code element that leads to a violation. Finally, the set of all violations V is
a union over all violations Vm found in all slicesm ∈ M .

The sets of not allowed and expected dependencies (Nm and Xm) are derived
as depicted in Table 4, which is described next. In essence, the derivation of these
sets discriminates between the different types of constraints. For example, the
set Nm is a union over five different sets; one for each different type of constraint,
i.e., not allowed, global/local incoming and global/local outgoing (the sets are
defined in this order in Table 4). In the following we describe the derivation of the
sets for global − /local incoming in detail. The sets for global − /local outgoing
are symmetric, i.e., the former constrain a target ensemble et and the latter a
source ensemble es.

To simplify the formulas for not allowed dependencies, we use an auxiliary set
C+
m that represents all ensembles that are allowed to use the target of an in-

coming constraint or the source of an outgoing constraint (w.r.t. the constraints
defined in slice m). For incoming constraints C+

m allows dependencies in the
following cases: (i) A global or local constraint is defined between the source
and target ensemble, and (ii) for global constraints all descendants of a source
ensemble are also allowed to use the target ensemble. The special treatment of
descendants is necessary — though it slightly complicates the checking process
— because the descendants’ extents overlap with the extents of their ancestors
and, hence, share many dependencies. For illustration consider the global con-
straint in Fig. 1. The ensemble SessionManagement has several descendants, e.g.,
ConcreteSession or SessionFactory that have their own extents. Some of these
descendants have dependencies to HQL and, thus, must be allowed to use HQL.
In fact, the global constraint on the parent SessionManagement states that we
know some internal source code elements (contained also in descendants) are

208 R. Mitschke et al.

Table 4. Derivation of Not Allowed and Expected Ensemble Dependencies

C+
m = {(allowed incoming, es, et, k) | es, et ∈ Lm, k ∈ K∧

(local incoming, es, et, k) ∈ Cm ∨
(∃e ∈ Lm ∧ (global incoming, e, et, k) ∈ Cm ∧ ((e, es) ∈ H∗ ∨ (es = e))

)}
∪ {(allowed outgoing, es, et, k) | es, et ∈ Lm, k ∈ K∧

(local outgoing, es, et, k) ∈ Cm ∨
(∃e ∈ Lm ∧ (global outgoing, es, e, k) ∈ Cm ∧ ((e, et) ∈ H∗ ∨ (et = e))

)}
Nm = {(es, et, k) | es ∈ I, et ∈ I, k ∈ K ∧ ∃(not allowed, es, et, k) ∈ Cm}

∪ {(es, et, k) | es ∈ I, et ∈ Lm, k ∈ K∧
∃e ∈ Lm. (global incoming, e, et, k) ∈ Cm ∧ (allowed incoming, es, et, k) �∈ C+

m}
∪ {(es, et, k) | es ∈ Lm, et ∈ Lm, k ∈ K∧

∃e ∈ Lm. (local incoming, e, et, k) ∈ Cm ∧ (allowed incoming, es, et, k) �∈ C+
m}

∪ {(es, et, k) | es ∈ Lm, et ∈ I, k ∈ K∧
∃e ∈ Lm. (global outgoing, es, e, k) ∈ Cm ∧ (allowed outgoing, es, et, k) �∈ C+

m}
∪ {(es, et, k) | es ∈ Lm, et ∈ Lm, k ∈ K∧

∃e ∈ Lm. (local outgoing, es, e, k) ∈ Cm ∧ (allowed outgoing, es, et, k) �∈ C+
m}

Xm = {(es, et, k) | es, et ∈ I, k ∈ K ∧ ∃(expected, es, et, k) ∈ Cm∨
∃(global incoming, es, et, k) ∈ Cm ∨ ∃(local incoming, es, et, k) ∈ Cm∨
∃(global outgoing, es, et, k) ∈ Cm ∨ ∃(local outgoing, es, et, k) ∈ Cm}

allowed to use HQL. Yet, at this level of abstraction, we do not model which
particular code elements are allowed to have the dependencies. This treatment
of descendants ensures that hierarchies have an identical semantics for a “flat”
ensemble with a larger extent and an ensemble subdivided by descendants. In
other words, if we would model SessionManagement with an extended query
(that includes the code elements of all descendants), but without descendants,
we do specify the same constraint. Note that the distinction is necessary only
for global constraints, because these constraints quantify over all ensembles and,
hence, also over the descendants. Note further that no special treatment is nec-
essary for the target of the incoming constraint (e.g., HQL), since the target
contains all code elements of all descendants. I.e., we implicitly constraint the
usage of any code element contained in any descendant. Allowed dependencies
for outgoing constraints are reflected in C+

m accordingly with source and target
ensembles reversed.

For the derivation of not allowed dependencies (Nm) we distinguish five
cases. First, if a not allowed constraint exists from some ensemble es to an-
other ensemble et, then corresponding dependencies are not allowed. Second, if
a global incoming constraint exists to et, all other source ensembles of the project
are not allowed to use et, unless they are explicitly allowed, which means a respec-
tive entry can be found in the set C+

m. Third, constraints of type local incoming

Modular Specification and Checking of Structural Dependencies 209

have a similar semantics to those for global incoming, with the difference that the
target of a disallowed dependency must be in the set Lm, i.e., the set of ensembles
used in the slice m, and not in I, the set of all ensembles. Note that for slices
using mixed declarations of global and local constraints no special treatment is
required. In this case, the set of ensembles that are not allowed to use the target
(et) due to global incoming constraints is a superset of the set deduced due to
local incoming; since I ⊇ Lm. The fourth and fifth case treat global and local
outgoing constraints accordingly (again with the source and target ensembles
reversed).

For the derivation of expected dependencies (Xm) we also distinguish five
cases. First, constraints of type expected specify that there exists at least one
lifted dependency from the ensemble es to the ensemble et. For the other four
cases — global − /local incoming and global − /local outgoing — we also check
that at least one lifted dependency from the ensemble es to the ensemble et exists.
The rationale is that these cases list ensembles that are specifically allowed to use
another ensemble and that it is dubious that they are included in the list if there
are no dependencies in the source code. The semantics for expected dependencies
again treats hierarchies such that the behavior is identical whether an ensemble
has child ensembles or not. In contrast to the not allowed dependencies we require
no special treatment of descendants in the checking process.

3.4 Tool Support

Vespucci supports the following tasks: (i) defining the mapping between ensem-
bles and code, as well as analyzing the mapping for consistency when the soft-
ware evolves, (ii) modeling of dependency constraints, (iii) checking the actual
implementation against the modeled constraints and reporting violations. The
modeling of constraints (ii) is supported by a graphical editor for the definition
of slices as shown in section 3.2 and is not further discussed. The support for
the other tasks is described next.

Mappings between the source code and the ensembles are defined in the query
language introduced in Section 3.1. In the following, we present the use of the
query language in more detail and in particular how Vespucci supports the adap-
tation of the queries during the evolution of Hibernate’s structure. The latter
is especially important to ensure a meaningful, comprehensive specification that
takes all source code elemants into consideration.

The evolution of the Cache ensemble is a good example candidate to present
Vespucci’s support. This ensemble changed four times during our study of the
evolution of Hibernate. Initially, the Cache ensemble contained all classes in the
cirrus.hibernate.cache package. The initial mapping was adapted in version
1.2.3 to the query depicted in Fig. 8. In this version the class CacheEntry was
created, but it was a member of the general impl package though conceptually
belonging to the caching concern. Thus, the class was not captured by the original
query. To identify classes, such as CacheEntry, Vespucci has a specialized view
(cf. Fig. 7) that shows all code elements that currently do not belong to any
ensemble.

210 R. Mitschke et al.

Fig. 7. View of Elements that do not belong to any Ensemble

After identifying that CacheEntry belongs to the Cache ensemble we extended
the original query to include the class. The query can either be directly edited
in the respective editor or changed via drag and drop of code elements onto
ensembles. Using the drag and drop functionality extends (or creates) a query
such that all respective code elements will be in the extent of the ensemble.
For illustration the extended query is shown in Fig. 8. Keywords of the query
language are highlighted. In Fig. 8 the package sub-query was already in the
initial model for Hibernate. The class_with_members query for the CacheEntry
class was created using drag and drop.

Fig. 8. Query Editor showing the Adapted Query for the Cache Ensemble (in Hibernate
1.2.3)

The code belonging to the Cache ensemble was refactored by the Hibernate
developers in a later version (3.0). In that version, cache entries with different
behaviors were introduced as separate classes and all of those were put into the
package hibernate.cache.entries. These code changes led to warnings that
the respective packages contain unmapped elements and that the current sub-
query for CacheEntry does not select any elements. Thus, we immediately saw
that the code was changed w.r.t. our previous assumptions about the implemen-
tation of the caching functionality.

In summary, both mechanisms for detecting changes, i.e., support for identi-
fying unmapped elements and queries that select no elements, are important to
help the architect to maintain the mapping between source code elements and
ensembles. The view on empty queries is in particular useful for fine-grained
ensembles in lower levels of the hierarchy. These ensembles typically consisted of
only a few classes in our study and naming patterns were not always sufficient
to formulate a query encompassing all classes. Hence, some classes were enumer-
ated by fully qualified names and when these classes were refactored the view on
empty queries provided the information which queries needs to be maintained.
Note that making Vespucci aware of refactorings would also help to alleviate

Modular Specification and Checking of Structural Dependencies 211

this situation, i.e., if Vespucci would be refactoring aware, the queries/ensem-
bles that are affected could be identified and presented to the user. In some
cases it would be possible to automatically adapt a query when a class’ name is
refactored. Yet, IDE refactoring tools can still be circumvented by developers.
Hence, support for checking the consistency of the mapping is indispensable for
a tool for structural dependency checking.

The implementation of Vespucci’s dependency checker (iii) is integrated into
the Eclipse IDE and checking is done as part of Eclipse’s incremental build pro-
cess. In general, checking is done against the constraints defined in all slices and
is always performed for an entire Eclipse project. This includes the compiled
source code of the project as well as the used libraries. Additionally, Vespucci
supports checking of individual slices to facilitate the modeling of the depen-
dency constraints. When checking is enabled, any violation of a constraint in
the checked slices is reported in Eclipse’s “Problems View.” After every change,
the code is re-analyzed and the “Problems View” is updated. The checking is
done incrementally ([17]) and is efficient enough for (at least) mid-sized projects
such as Hibernate.

Fig. 9. A Violation of the Dependency Rule for Hibernate Query Language (Reported
in Hibernate Version 1.2.3)

Figure 9 depicts an example of a violation that was reported when checking
our model of Hibernate against the source code of the version 1.2.3. The actual
violation in the code is indicated via an error marker that can be used to navigate
to the respective line in the source code. The error message lists the source and
target ensemble , the code elements, e.g., methods with names and containing
class, as well the dependency that violates a constraint, e.g., method A “calls”
method B. In addition to marking the code elements, a summary of all violations
per source/target ensemble pair is shown as a warning. The summary facilitates
a quick overview in case that many code elements in the source and target
ensemble have violations. Furthermore, the summaries are marked as warnings
of the actual slices in which the violation was detected and can be used to
navigate to the particular slice.

Vespucci furthermore supports the explicit documentation of acknowledged vi-
olations. This supports architecture reviews as well as gradually refactoring of an
existing code base toward the intended architecture. In the latter scenario, docu-
mented violations are used to guide the refactoring efforts of developers. Note that
the typicalworkflowofVespucci is to enable checking against the architecturewhile
developing the code. Hence, dependencies that violate the intended design are ide-
ally removed immediately during development.Yet, the above scenarios for reviews
and gradual refactoring are supported as well. Figure 10 illustrates how the slice

212 R. Mitschke et al.

fromFig. 1wasmodified to document the violation shown inFig. 9. The violation is
marked as a dependency with a warning sign. If the intended refactoring is already
clear, it can be outlined in a comment in the slice. Documented violations are also
removed from the general error reporting and can be reviewed in a different view.

Fig. 10. Documenting a Violation in a Slice for Subsequent Refactoring

3.5 On Modeling Methodology

Breaking down the architecture of a system into multiple slices comes with a new
set of modeling decisions. Figure 11 schematically shows four principal ways to
model the architecture of a hypothetical system consisting of four ensembles
(boxes labeled 1 to 4) with Vespucci. In (A), all constraints are modeled in a
single model, i.e., Vespucci is used with a single slice (dashed box around the
ensembles) In (B), the model makes use of hierarchical structuring – specifically,
ensembles 1 and 2 are nested into an ensemble 1&2. In (C), the model makes use
of slicing; specifically, per ensemble one slice is defined that models all structural
dependency constraint w.r.t. that ensemble. This includes all incoming and all
outgoing dependencies. However, slicing at other granularity levels is conceivable
(see below). In (D), the model makes use of both slices and hierarchies, which is
the expected typical usage of Vespucci.

In general, the structural dependency model of a system in Vespucci consists
of an arbitrary number of slices. It is a matter of modeling decisions – taken
by the architect – in how many slices she breaks down the overall architec-
tural specification. As part of this process, a trade-off is to be made between (i)
creating (large(r)) slices that capture several architectural rules related to mul-
tiple ensembles that conceptually belong together and (ii) creating one slice per
ensemble that just captures the architectural rules related to that ensemble. In
the former case cohesiveness is fostered while in the latter case (local) compre-
hensibility of the architecture and evolvability of the specification is fostered.

In the Hibernate case study, as a rule of thumb, each high-level slice focused
on design decisions concerning one ensemble. For instance, the slices in Fig. 1 and
Fig. 3 focus on specific design decisions related exclusively to allowed incoming
dependencies to HQL, respectively allowed outgoing dependencies of Connection-
Provider. Internal dependencies for ensembles with nested sub-ensembles were in
general related to a small set of ensembles and hence captured in a single slice,
as e.g., in Fig. 4, where the internals of SQLDialects were captured.

Modular Specification and Checking of Structural Dependencies 213

(A) Flat Single Model (B) Hierarchical Model

1 2

3 4

1 2

3 4

1 & 2

(C) Sliced Model (D) Sliced Hierarchical Model

1 2

4

1 2

4

1 2

4

1 & 2

3 4

1 2

3 4 3 4

1 2

3 4

1 & 2

Fig. 11. Alternative Architectural Models of Dependencies

The one-slice-per-high-level-ensemble strategy for breaking down specifica-
tions is just a first approximation. For reasons of better managing complexity
and evolvability as well as understandability, it may make sense to chose more
fine-grained or coarse-grained strategies. One such strategy is to split the speci-
fication of incoming and outgoing dependencies of an ensemble, if those are too
complex or evolve in different ways. On the other hand, slices of related ensem-
bles may be merged, when their separated specifications are too simple to justify
separate slices or hard to understand in isolation.

One may criticize that a specification becomes complex with an increasing
number of slices. However, a single specification that controls the dependencies to
the same degree is no less complex and includes all information that are captured
in the slices. For example, if internal dependencies are controlled, they need to
be specified and maintained in a single specification as well. The focus here is to
make a case for enabling the architects to break down specifications of structural
dependencies in several modules that are more manageable w.r.t. scalability and
evolvability and can be reasoned over in isolation. Hence, slices also facilitate
distribution of work, such that large architectures can be maintained by a team
rather than a single architect.

Per ensemble slicing of the dependency model may also impair understand-
ability of dependencies pertaining to several modules. A view of the dependencies
for multiple ensembles (in contrast to their individual constraints) can be ad-
vantageous for the exploration of the architecture, e.g., if one wants to follow
transitive dependencies such as the path of communication from ensemble A to
B. Note that if such a path is relevant to the architect, it can also be encoded as
a slice. A second scenario for global comprehension is to find all slices in which
an ensemble participates. This can be supported by a simple analysis over the
defined slices.

214 R. Mitschke et al.

All the above said, systematically deriving guidelines for structuring architec-
tural decisions into slices and distributing the work is a matter of performing
comprehensive studies and is out of the scope of this paper.

3.6 Scalability and Evolvability

Vespucci enables architects to reason about architectural decisions concerning
structural dependencies of a set of ensembles in isolation, while treating the
rest of the system as a black-box, and to do so in a top-down manner. This is
due to (1) Vespucci’s support for breaking down the specification into slices, (2)
mechanisms for expressing structural rules via a constraint system, (3) a scoping
mechanism that enables to quantify locally or globally over the set of affected
ensembles, and (4) Vespucci’s support for enabling the hierarchical organization
of specifications. The latter is a traditional mechanism to govern complexity [18]
and will for this reason not be further considered in the following discussion.

Support for modular reasoning. Slices enable the architect to focus on constraints
that concern individual ensembles or a set of strongly related ensembles. This
makes it possible to isolate a small set of related architectural decisions from the
rest for the purpose of modularly reasoning about them, while treating the rest
as a black-box.

This fosters scalability by reducing the number of ensembles and constraints
that need to be considered at once: Each slice in Fig. 11 (C) contains less ensem-
bles and constraints than the model in Fig. 11 (A). One may argue that slicing
actually increases the overall number of elements (ensembles/constraints) —
since some of them are mentioned in multiple slices. However, as they represent
the same abstractions in all slices, the overall number of elements that need to
be understood remains the same as in the model A.

Consider for illustration the slice depicted in Fig. 2. It expresses that only
SessionManagement and PersistenceManagement may use SQLDialects with the
minimum amount of explicitly mentioned ensembles and constraints. No rules
governing dependencies between SessionManagement and PersistenceManagement,
respectively between those and other ensembles, are specified. The slice in Fig. 2
models architectural constraints from the perspective of SQLDialects. Dependen-
cies between SessionManagement and PersistenceManagement or between those
and other ensembles are irrelevant from this perspective and are, thus, left un-
specified. Further, we do not explicitly enumerate all ensembles that are not
allowed to depend on SQLDialects.

Vespucci’s constraint system for modeling dependencies and the way checking
for architecture compliance operates (see previous section) is key to the con-
ciseness of specifications. Slices are checked in isolation. The constraint system
interprets the lack of a constraint in a slice as “don’t care” in the sense that the
presence or absence of code dependencies is ignored. E.g., potential dependen-
cies between SessionManagement and PersistenceManagement are ignored when
checking compliance with the rules defined by the slice shown in Fig. 2. They may
well be the subject of specification in other slices to be reasoned on separately.

Modular Specification and Checking of Structural Dependencies 215

The role played in this respect by our distinction of incoming and outgoing
constraints needs to be highlighted here. It is the use of the incoming constraints
in Fig. 2 that enables us to talk about constraints from the perspective of SQL-
Dialects – excluding from consideration any further dependencies in which, e.g.,
SessionManagementmay engage. Incoming/outgoing constraints are “unilateral”
– they belong to one ensemble. Without this distinction, we would be left with
“bilateral” constraints; mentioning one such constraint that affects SessionMan-
agement would require to mention all other constraints affecting SessionManage-
ment; hence, making it impossible to slice specifications.

The ability to abstract over any dependencies that are not explicitly con-
strained comes in also very handy when handling ensembles that are expected to
be ubiquitously used, e.g., Hibernate‘s Utilities ensemble. Such ensembles would
typically contribute a significant amount of complexity to architectural spec-
ifications, if the specification approach requires to explicitly mention allowed
dependencies. By using a constraint system this complexity can be avoided. The
specification would make no mention of dependencies to Utilities, in order to
leave it unconstrained.

The ability to state a constraint that affects arbitrary many ensembles with-
out having to enumerate those explicitly is due to the ability to make global
statements. Ensembles that are not explicitly mentioned in a slice are reasoned
over by global constraints, e.g., the slice shown in Fig. 2 implicitly states that all
other ensembles mentioned in Fig. 1, 2, 3, and many more, are not allowed to use
SQL Dialects. This specification is much smaller compared to enumerating this
fact for all other ensembles constituting the rest of Hibernate. The latter would
be necessary, if Vespucci only had allowed and not-allowed constraints and no
distinction between local and global scopes.

Support for evolution. Due to slicing, architectural models also become easier
to extend. First, slices remain stable in case of extensions that do not affect
their ensembles/constraints. Second, affected slices are easier to identify. Finally,
existing global constraints automatically apply to new ensembles.

Consider for illustration the following scenario that occurred during the evo-
lution of Hibernate from version 1.0 to version 1.2.3. In this step, a new ensemble
— called Metadata — to represent Hibernate’s new support for metadata was
introduced. This change was accommodated mostly incrementally. First, the
specification as a whole was extended incrementally by introducing a new slice,
referring to the ensembles that Metadata is allowed to use and be used from.
Second, the set of existing slices that eventually required revision was restricted
to those modeling the dependencies of ensembles referred to in the new Metadata
slice. For example, the slice that defined constraints for DataTypes was refined
to enable the usage by Metadata. Slices that modeled unrelated architectural
decisions, e.g., those governing dependencies of ConnectionProvider (cf. Fig. 3),
did not require any reviewing. Yet, previously stated global constraints carry
over to the new ensemble, ensuring for example that it does not unintentionally
use SQLDialects (slice in Fig. 2); the usage of non-constrained ensembles, e.g.,
Utilities, is also granted automatically.

216 R. Mitschke et al.

The way the mapping between ensembles and source code is modeled has an
effect on the stability of the model in face of evolution of the system. Here we hit
a variant of the well-known “fragile pointcut problem”. One way to mitigate this
problem is by using stable abstractions in the source code queries. However, this
is not always feasible; in our case study we had to adapt queries as the system
evolved. Here, the tool support provided by Vespucci offered some help to identify
changes in the source code by: a) showing elements that do not belong to an
ensemble, b) showing (sub-)queries with empty results, and c) specifying that a
list of ensembles should be non-overlapping (i.e., to prevent accidental matches).
Even so we are aware that better source code query technology and tool support
for it is needed; in this paper, we focus on the modularity mechanisms on top of
the query language.

4 Evaluation

In this section, we evaluate quantitatively the effectiveness of Vespucci’s mech-
anisms to modularize the specification of a software’s intended structure. This
evaluation is performed from two complementary perspectives: (a) reduction of
complexity, which is measured as the number of ensembles and constraints, and
(b) facilitating architecture maintainability during system evolution. As a basis
we use the re-engineered architecture of Hibernate (c.f. Sec. 2), which allows us
to study an architecture of a size that is representative for mid- to large-scale
projects. We also give a critical discussion of the broader applicability of our
results and of threats to the validity of our study at the end of the section.

The goal of our evaluation is to assess the modularization mechanisms of
Vespucci and not the accuracy of architectural violation control. Therefore, even
though Vespucci is targeted at continuous architecture conformance checking,
the identification of architecture violations is not the purpose of our quantitative
evaluation. Nevertheless, it is important to highlight that in terms of enforcing
conformance, Vespucci is at least as capable as related approaches [6–9, 19–21].

4.1 Scalability

We first analyze the reduction in complexity when reasoning about an architec-
ture specification. This analysis was performed by comparing the architecture
of Hibernate 1.0 modeled in the four principal ways schematically depicted in
Fig. 11 and outlined in the previous section. The model with both slices and
hierarchies (Fig. 11, D) was the primary model produced during our study of
Hibernate. The other three models were produced to measure the complexity
reduction for the different mechanisms (hierarchies, slices, combination of both).

Scalability with regard to the number of ensembles We first compare different
mechanisms w.r.t. the number of ensembles referenced by isolated dependency
rules. The baseline is a single monolithic specification with a total of 79 en-
sembles, modeled by following Fig. 11 (A). The other three models Fig. 11

Modular Specification and Checking of Structural Dependencies 217

0 5 10 15
0

20
40
60

collapsed parent (by #)

#
en

s.
a
ft
er

co
ll
a
p
si
n
g

(B) hierarchy

0 20 40 60
0

20
40
60

slice (by #)

#
en

s.
/
sl
ic
e

(C) slices

0 5 10 15 20
0

20
40
60

slice (by #)

#
en

s.
/
sl
ic
e

(D) hierarchy & slices

Fig. 12. Comparison of ensemble reduction w.r.t. hierarchies and architectural slices
(Hibernate 1.0)

(B-D) are quantified in the diagrams in Fig. 12. The y-axis of all three diagrams
denominates the number of ensembles referenced per architectural model.

The diagram on the top left shows reduction in complexity for hierarchical
structuring only. The model is a single specification, but high-level ensembles
may be collapsed to reduce the overall number of ensembles to consider at once.
The x-axis denominates the number of collapsed ensembles ordered by the num-
ber of their sub-ensembles. The values on the y-axis show how many ensembles
are referenced after collapsing an enclosing ensemble, i.e., the enclosing ensemble
is referenced instead of all its children. The values are accumulated, since mul-
tiple ensembles can be collapsed together. For example, in a model with the top
five most complex high-level ensembles collapsed, the architect has to consider
41 ensembles at once. When collapsing all ensembles in the hierarchy, we are left
with 22 top level ensembles, hence hierarchical structuring reduces the number
of ensembles to approx. 27% of the total (22 of 79).

The diagram in the top right of Fig. 12 shows the number of ensembles per
slice when using only slices (no hierarchies). The x-axis denominates the mod-
eled slices in the decreasing complexity order (decreasing number of referenced
ensembles). Almost all slices refer to less than 27% of the ensembles (12% on
average). The exemption are the three first slices that capture rules for the
following building blocks (of central importance) (i) persisting classes, (ii) per-
sisting collections, and (iii) the interface to Hibernate’s internal data types. The
combination of both mechanisms (diagram on the bottom left of Fig. 12), yields
a much smaller number of slices (x-axis), since it focuses on the top-level build-
ing blocks. In addition, the combined approach features slightly smaller slices;
on average each slice references only 9% of the total number of ensembles.

218 R. Mitschke et al.

0 5 10 15
0

200

400

600

collapsed parent (by #)

#
co
n
st
r.

a
ft
er

co
ll
a
p
si
n
g

(B) hierarchy

0 20 40 60
100
101
102

slice (by #)

#
co
n
st
r.
/
sl
ic
e

(C) slices

0 5 10 15 20
100
101
102

slice (by #)

#
co
n
st
r.
/
sl
ic
e

(D) hierarchy & slices

Fig. 13. Comparison of constraint reduction w.r.t. hierarchies and architectural slices
(Hibernate 1.0)

Scalability with regard to the number of constraints. In the following, we compare
how much each mechanism reduces the number of constraints used in isolated
dependency rules. The comparison is similar to the comparison regarding the
number of ensembles and the numbers are shown in Fig. 13. The x-axis is orga-
nized in the same manner as in Fig. 12. The y-axis denominates the number of
constraints that are referenced in each architectural model.

The y-axis for hierarchical structuring (top left diagram in Fig. 13) shows the
total number of constraints after collapsing an enclosing ensemble. The num-
ber includes (i) constraints that are abstracted away, since they are internal to
the enclosing ensemble (cf. Fig. 11 B; 1&2) and (ii) constraints that are ab-
stracted away, since several constraints at the low level are subsumed by a single
constraint at the high level (cf. Fig. 11 B; 1&2 to 4). Both internal and exter-
nal constraints contribute approx. half of the reduction in constraints (external
slightly outweighs internal). As in the evaluation for ensembles, the y-values for
the hierarchical composition (B) are accumulated, since we can use several hier-
archical groupings together. For the architectural models using slices (C,D) the
number of constraints is simply the number of constraints modeled in one slice.

The baseline (A) consists of 705 constraints in a single specification. If we
consider the hierarchical model and collapse all enclosing ensembles, approx. 2/3
of the constraints are removed (down to 214, last value in the top-left diagram
in Fig. 13)). In comparison, slices (diagram in the top right of Fig. 13) show less
than 5% of the total number of constraints and 1,3% on average (9 of 705) per
slice. The combination of slices and hierarchical structuring (bottom left diagram
in Fig. 13) features slightly smaller slices; on average 0.9% (6.5 constraints) of
the total of 705 constraints modeled.

Modular Specification and Checking of Structural Dependencies 219

Scalability with regard to the number of slices. To control the architecture of Hi-
bernate we have modeled top-level slices comparable to Fig. 11 (D) and slices for
the internal constraints of the 16 ensembles that are further structured; totaling
to 35 slices. Thus, the overall number of slices is smaller than the overall num-
ber of ensembles (79) and remains manageable. Note that in these models we do
not use the total of the 705 constraints. First, three ensembles at the top level
(SessionManagement, PersistenceManagement, and UserAPI) have no slice (and
no constraints), for the reason of being used by and/or using almost all other
ensembles. Note that this applies only to the mentioned top-level ensembles. In
Hibernate many ensembles require session functionality and, hence, use Session-
Management. PersistenceManagement on the other hand uses data from many
other ensembles to fulfill it’s functionality. However, the high coupling points
to deficiencies in the modularization of the software system and it is conceiv-
able to reduce the coupling. Second, the modeled top-level constraints subsume
several constraints on the internal ensembles. We found the control provided
by the top-level constraints mostly sufficient during the evolution of Hibernate.
Hence, we modeled detailed constraints only in few cases to further our under-
standing of the dependencies between selected ensembles. This was done, for
example, to more carefully control that only the sub-ensembles that represent
SessionManagement’s interfaces are used by other ensembles.

Summary. In this study the hierarchical structuring included 22 ensembles and
215 constraints (both approx. 1/3 of the total). Slices are much smaller; we have
to collapse the first seven enclosing ensembles of the hierarchy to reduce the
number of ensembles to 35, the number referenced in the most complex slice
(persisting classes). Collapsing all ensembles still references 5 times more con-
straints than the number referenced in the slice for persisting classes. Hence, the
modeling approach based on slices scales much better by reducing each slice to
9.5 ensembles and 9 constraints on average. The combination of both mecha-
nisms produces the best results by reducing each slice to 7.1 ensembles and 6.5
constraints on average, which means that a typical slice in the Hibernate model
had about 7 ensembles and 6 to 7 constraints. Thus especially the number of
constraints that need to be reasoned over at once remains manageable and in-
cludes on average only 3% of the constraints of the model using hierarchical
structuring, with a maximum of 16 constraints, or 7% of the constraints in the
single hierarchical model.

4.2 Evolvability

To evaluate the effectiveness of Vespucci in supporting architecture evolution
we have compared a single model with hierarchies (Fig. 11, B) to slices with
hierarchies (Fig. 11, D). The results are summarized in Table 5. The first three
Columns show the analyzed version, its release year, and the number of LoC as
an estimate for the size. Columns four and five characterize the architecture evo-
lution in terms of ensembles and their queries. Overall, the number of ensembles
has doubled. Column six shows the total number of slices in each version. We

220 R. Mitschke et al.

followed the methodology of one slice per ensemble – hence, the number of slices
roughly follows the number of ensembles, with the exception of those ensembles
that were not constrained (c.f. Sec. 4.1). Column seven shows that on average
33% of all slices (1/3 of the architecture specification) remained stable w.r.t.
the previous version. The least stable revisions were the first and the last one.
In the first revision, Hibernate was close to its inception phase, hence requiring
more adaptations to its features. The last revision was the most extensive in
terms of the timespan covered. The last three columns compare the complexity
involved in performing the required updates of the architecture specifications.
Columns eight and nine show the average, resp. maximal number of ensembles
per slice, whose dependencies were updated, in the approach using slicing. The
last column shows how many dependencies were updated in the single hierarchi-
cal model. On average only 4% to 6% of the number of dependencies updated
in the single model were reviewed per slice (the maximum ranging between 7%
and 15%). This reduction in complexity of the updates per slice is comparable
with the reduction of the number of constraints between (B) and (D) in Fig. 13.

The numbers indicate that the maintenance of individual slices is much easier
than the evolution of the single architecture model and confirm what is qualita-
tively discussed in the previous section.

Table 5. Analysis of the Evolution of Hibernate’s Architecture

Dependencies
reviewed
using:

Release
YearVersion LoC #

E
n
se
m
b
le
s

(T
o
p
-L
ev
el
)

A
d
d
ed

/
R
em

ov
ed

E
n
se
m
b
le
s

#
S
li
ce
s
(T

o
p
-L
ev
el
)

S
ta
b
le

S
li
ce
s

S
li
ce
s
(A

v
g
.)

S
li
ce
s
(M

a
x
.)

S
in
g
le

M
o
d
el

1.0 2002 14703 22 n/a 19 n/a n/a n/a n/a
1.2.3 2003 27020 26 +5 / -1 23 4 (21%) 2.4 6 61
2.0 2003 22876 28 +5 / -3 25 12 (52%) 1.9 6 40
2.1.6 2004 44404 30 +2 / -0 27 9 (36%) 2.6 6 38
3.0 2005 79248 36 +9 / -3 33 8 (30%) 4.5 8 118
3.6.6 2011 106133 39 +3 / -0 36 9 (27%) 5.0 11 87

4.3 Threats to Validity

We identify two threats to the construct validity of our study. First, the re-
verse engineering of Hibernate’s architecture was primarily performed by this
paper’s authors, i.e., not by the original Hibernate developers. Hence, the re-
sulting architecture design may not accurately reflect Hibernate’s real/intended
architecture, which may lead to inconsistencies in the results. To mitigate this
threat, the architectural model was created by three people — one student, one

Modular Specification and Checking of Structural Dependencies 221

PhD candidate and one post-doctoral researcher — that together have many
years of experience on object-relational mapping frameworks. Further, we ex-
tensively studied the available documentation to make sure that the model is
true to Hibernate’s architecture. Yet, it is likely that a different group would
reverse engineer a different architectural model. But, it is unlikely that the ar-
chitecture would be such different that our evaluation would become invalid. A
second threat to construct validity is that other architects may modularize the
architecture specification differently, resulting in a different number and scope
of slices. However, the approach that we followed — roughly creating one slice
per top-level ensemble — has proven to be useful and can at least be considered
as one reasonable approach.

Threats to conclusion validity in our study could be related to the number
of ensembles and architectural constraints involved in our analysis. We tried
to mitigate this threat by considering an architectural model of a significant
complexity. Our analysis concerned an architectural model that involved 79 en-
sembles, more than 700 architectural constraints and 35 architectural slices for
Hibernate 1.0.

The main issue that threatens the external validity of our study is that it
involved a single software system. To mitigate this threat we have used a well-
known medium-size framework, which has been designed by taking into consid-
eration guidelines and good practices. These characteristics allow us to analyze
the benefits of Vespucci when modeling architecture designs of well-modularized
software systems. In addition, we have discussed the properties of Hibernate’s
architecture that influence the results and compared them to other studies. How-
ever, we are aware that more studies involving other systems should be performed
in the future. All our findings should be further tested in repetitions or more
controlled replications of our study.

5 Related Work

Closely related to Vespucci are approaches that support checking the confor-
mance between code and architectural constraints on static dependencies [6–
9, 19–21]. The key difference is that none of the above approaches (nor other
related work) offers the ability to modularize the architecture description into
arbitrary many slices. They rather require a self-contained monolithic specifica-
tion of the architecture, which does not support the kind of black-box reasoning
enabled by slices (cf. Sec. 3.6). In the following, we discuss the above approaches
separately; a summary of their support for the features elaborated in Sec. 3 is
presented in Table 6.

Reflexion Models (RM) [7] pioneered the idea of encoding the architecture
via a declarative mapping to the source code. RM is an analytical approach that
uses the modeled system architecture to generate deviations between source
code and planned architecture, which is reviewed by the architect. The RM
approach is not a constraint system, but rather requires the specification of the
complete set of valid dependencies. Omission of dependencies is interpreted as

222 R. Mitschke et al.

“no dependency is allowed”. Other approaches extend RM by (i) incorporating
hierarchical organization [19], (ii) visual integration into the Eclipse IDE [12]
and (iii) extending the process to continuously enforce compliance of structural
dependencies between a planned architecture and the source code [13].

Sangal et al. [8] discuss the scalability issue of architecture descriptions and
propose a hierarchical visualization method called design structure matrices
(DSMs), which originates from the analysis of manufacturing processes. The
key advantage is the notation (matrices) that facilitates identification of archi-
tectural layers via a predominance of dependencies in the lower triangular half
of the matrix. DSM features a very verbose constraint system. For example,
exemptions on lower level ensembles are encoded by the order in which rules
are declared, e.g., by first allowing PersistenceManagement to use SQLDialects
and then disallowing the use of ConcreteDialects. While effective, this approach
requires a carefully crafted sequences of constraints. The work on DSM culmi-
nated in a commercial tool called Lattix, which has since evolved and gained a
classification system for dependencies similar to our dependency kinds.

Table 6. Comparison with the State of the Art

R
efl

ex
io
n

M
o
d
-

el
s
(R

M
)
[7
]

H
ie
ra
rc
h
ic
a
l

R
M

[1
9
]

D
S
M

[8
]

L
o
g
E
n
/
V
is
E
n
[6
]

D
C
L
[9
]

V
es
p
u
cc
i

Architectural slices - - - - - �
Constraint system1 - - + +++/-2 ++ +++
Hierarchies - � � � - �
Dependency Kinds - - (�) - � �
1 - (non existent) to +++ (very expressive)
2 LogEn is very expressive; VisEn does not offer a constraint system

In previous work [6] we proposed an approach to continuous structural depen-
dency checking; integrated into an incremental build process. As in Vespucci, we
referred to conceptual building blocks as ensembles. However, the specification
of architectural constraints has been completely revised for Vespucci. Previously
we have defined LogEn; a first order logic DSL, that integrated query language
and constraint specification. However, the meaning of a violation, i.e., a con-
straint, is defined by the end-user, which is complex in first order logic. Hence,
we provided a visual notation (VisEn), which is less complex, but focuses on
documenting the architecture and hence is not a constraint system, but requires
explicit modeling of all dependencies. The focus of this work was on the efficient
incrementalization of the checking process, hence slicing architecture specifica-
tions into manageable modular units was not supported.

Modular Specification and Checking of Structural Dependencies 223

Terra et al. [9] propose a dependency constraint language (DCL) that facilitates
constructive checking of constraints on dependencies; discrimination of dependen-
cies by kind is also supported. DCL offers a textual DSL for specifying constraints.
DCL’s constraint system is closest to Vespucci’s, and can express the not-allowed,
expected and incoming constraints. Yet, it lacks outgoing constraints and a scop-
ing mechanism such as global/local constraints, which goes hand in hand with the
lack of support for slicing specifications intomodular units. The language supports
no inherent hierarchical structure in the architecture.

A number of commercial tools have been documented (c.f. [21]) for checking
dependency among modules and classes using implementation artifacts, e.g.,
Hello2Morrow Sotograph [22]. However, the scope of these tools is limited; they
are only able to expose violations of “certain” architectural constraints such as
inter-module communication rules in a layered architecture. That is, they do not
provide means for expressing system constraints.

In [20] the authors propose a technique for documenting a system’s architecture
in source code (based on annotations) and checking conformance of code with the
intended architecture. The representation of the actual architecture in the source
code is hierarchical, however, they do not support slicing of specifications in mod-
ular units and the modular architectural reasoning related to it.

Languages specialized on software constraints like SCL [23], LePUS3 [24],
Intensional Views [25], PDL [26] and Semmle .QL [27] can be used to check
detailed design rules e.g., related to design patterns [28]. However, they are
not expressive enough for formulating architectural constraints in a way that
allows to abstract over irrelevant constraints, when reasoning about a part of
the architecture in isolation.

In [29] authors introduce a technique to identify modules in a program called
concept analysis. A concept refers to a set of objects that deal with the same
information. The authors observed that, in certain cases, there is an overlap
among concept partitions. The notion of slice in Vespucci could be considered as
conceptually close to the notion of concept overlapping since Vespucci supports
the grouping of ensembles that are ruled by the same design decisions. Other
than that slices and concepts are different in the way they are defined and used.
Concepts emerge while slices are explicitly modeled. Moreover, use case slices
[30] are also related to our notion of slices, but focus on the modularization of
the scattered and tangled implementation of use cases.

In [31] the authors discuss foundations and tool support for software architecture
evolution by means of evolution styles. Basically, an evolution style is a common
pattern how software architectures evolve. This case study complements our work
by helping to identify evolution styles w.r.t. a software’s structural architecture.
The evolvability of a software that is developed in a commercial context is also dis-
cussed by Breivold et al. [32]. They propose a model that — based on a software’s
architecture— evaluates the evolvability of the software. Based on our experience,
the model also applies to open-source software, such as Hibernate. Aoyama [33]
presents several metrics to analyze software architecture evolution. He made the
general observation that discontinuous evolution emerges between certain periods

224 R. Mitschke et al.

of successive continuous evolution. Our case-study confirms this observation. We
observed that some parts of Hibernate evolved continuously, while in other parts
the evolution was disruptive. Using our modular architecture conformance check-
ing approach architects can focus on continuous and disruptive slices individually.

6 Summary and Future Work

In this paper, we proposed and evaluated Vespucci, an approach to modular
architectural modeling and conformance checking. The key distinguishing fea-
ture of Vespucci is that it enables to break down specification and checking
into an arbitrary number of models, called architectural slices, each focussing on
rules that govern the structural dependencies of subsets of architectural build-
ing blocks, while treating the rest of the architecture as a black box. Vespucci
features an expressive constraint system to express architectural rules and also
supports hierarchical structuring of architectural building blocks.

To evaluate our approach, we conducted an extensive study of the Hibernate
framework, which we used as a foundation for a qualitative evaluation, highlight-
ing the impact of Vespucci’s mechanisms on managing architectural scalability
and evolvability. We also quantified the degree to which Vespucci can (a) reduce
the number of ensembles and constraints that need to be considered at once,
and (b) facilitates architecture maintainability during system evolution. For this
purpose, we played back the evolution of Hibernate’s structure. The results con-
firm that Vespucci’s is indeed effective in managing complexity and evolution
of large-scale architecture specifications. However, given that we have only done
one extensive case study so far, we need to carry out further case studies before
final conclusions on the scalability of the approach can be made.

In future work, we will explore how IDE support can help to “virtually merge”
slices into a virtual global architectural model and to automatically create “on-
demand” slices to help architects to plan a software’s evolution. Obviously,
further empirical studies are needed to better understand the benefits and limi-
tations of Vespucci. New studies need to be designed to asses the impact of the
approach on architect’s productivity and on software quality. In this respect it
would be interesting to study the effect of modularization w.r.t. enlarged control,
i.e., the modularization allows to efficiently maintain an architecture containing
more ensembles, which provides tighter control over the source code.

References

1. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, Upper Saddle River (1996)

2. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., Mockus, A.: Does code de-
cay? assessing the evidence from change management data. IEEE Trans. Softw.
Eng. 27(1) (2001)

3. Godfrey, M.W., Lee, E.H.S.: Secrets from the monster: Extracting mozilla’s soft-
ware architecture. In: COSET (2000)

Modular Specification and Checking of Structural Dependencies 225

4. MacCormack, A., Rusnak, J., Baldwin, C.Y.: Exploring the structure of complex
software designs: An empirical study of open source and proprietary code. Manage.
Sci. 52 (2006)

5. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes 17(4) (1992)

6. Eichberg, M., Kloppenburg, S., Klose, K., Mezini, M.: Defining and continuous
checking of structural program dependencies. In: ICSE (2008)

7. Murphy, G.C., Notkin, D., Sullivan, K.: Software reflexion models: bridging the
gap between source and high-level models. SIGSOFT Softw. Eng. Notes 20 (1995)

8. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. In: OOPSLA (2005)

9. Terra, R., Valente, M.T.: A dependency constraint language to manage object-
oriented software architectures. Softw.: Practice and Experience 39(12) (2009)

10. Herold, S.: Checking architectural compliance in component-based systems. In:
SAC (2010)

11. Knodel, J., Muthig, D., Haury, U., Meier, G.: Architecture compliance checking -
experiences from successful technology transfer to industry. In: CSMR (2008)

12. Knodel, J., Muthig, D., Naab, M., Lindvall, M.: Static evaluation of software ar-
chitectures. In: CSMR (2006)

13. Rosik, J., Le Gear, A., Buckley, J., Ali Babar, M.: An industrial case study of
architecture conformance. In: ESEM (2008)

14. Wong, S., Cai, Y., Kim, M., Dalton, M.: Detecting software modularity violations.
In: ICSE (2011)

15. Bauer, C., King, G.: Hibernate in Action. Manning Publications Co. (2004)
16. Vespucci, http://www.opal-project.de/vespucci_project
17. Eichberg, M., Kahl, M., Saha, D., Mezini, M., Ostermann, K.: Automatic incre-

mentalization of prolog based static analyses. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 109–123. Springer, Heidelberg (2007)

18. Simon, H.A.: The architecture of complexity. In: Proceedings of the APS (1962)
19. Koschke, R., Simon, D.: Hierarchical reflexion models. In: WCRE (2003)
20. Abi-Antoun, M., Aldrich, J.: Static extraction and conformance analysis of hierar-

chical runtime architectural structure using annotations. In: OOPSLA (2009)
21. de Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: A

survey. Journal of Systems and Software 85(1) (2012)
22. Hello2Morrow Sotograph, http://www.hello2morrow.com/products/sotograph

(accessed October 2012)
23. Hou, D., Hoover, H.J.: Using scl to specify and check design intent in source code.

IEEE Trans. Softw. Eng. 32(6) (2006)
24. Gasparis, E., Nicholson, J., Eden, A.H.: Lepus3: An object-oriented design descrip-

tion language. Diagrams (2008)
25. Mens, K., Kellens, A., Pluquet, F., Wuyts, R.: Co-evolving code and design with

intensional views. Comput. Lang. Syst. Struct. 32(2-3) (2006)
26. Morgan, C., De Volder, K., Wohlstadter, E.: A static aspect language for checking

design rules. In: AOSD (2007)
27. de Moor, O., Sereni, D., Verbaere, M., Hajiyev, E., Avgustinov, P., Ekman, T.,

Ongkingco, N., Tibble, J.: .QL: Object-Oriented Queries Made Easy. In: Lämmel,
R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 78–133.
Springer, Heidelberg (2008)

28. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

http://www.opal-project.de/vespucci_project
http://www.hello2morrow.com/products/sotograph

226 R. Mitschke et al.

29. Siff, M., Reps, T.: Identifying modules via concept analysis. 25(6), 749–768 (1999)
30. Jacobson, I., Ng, P.W.: Aspect-Oriented Software Development with Use Cases.

Addison-Wesley (2004)
31. Garlan, D., Barnes, J., Schmerl, B., Celiku, O.: Evolution styles: Foundations and

tool support for software architecture evolution. In: WICSA/ECSA (2009)
32. Breivold, H., Crnkovic, I., Eriksson, P.: Analyzing software evolvability. In: COMP-

SAC (2008)
33. Aoyama, M.: Metrics and analysis of software architecture evolution with discon-

tinuity. In: IWPSE (2002)

Towards Reactive Programming
for Object-Oriented Applications

Guido Salvaneschi and Mira Mezini

Software Technology Group
Technische Universität Darmstadt

lastname@informatik.tu-darmstadt.de

Abstract. Reactive applications are difficult to implement. Traditional solutions
based on event systems and the Observer pattern have a number of inconve-
niences, but programmers bear them in return for the benefits of OO design.
On the other hand, reactive approaches based on automatic updates of depen-
dencies – like functional reactive programming and dataflow languages – provide
undoubted advantages but do not fit well with mutable objects.

In this paper, we provide a research roadmap to overcome the limitations of
the current approaches and to support reactive applications in the OO setting.
To establish a solid background for our investigation, we propose a conceptual
framework to model the design space of reactive applications and we study the
flaws of the existing solutions. Then we highlight how reactive languages have
the potential to address those issues and we formulate our research plan.

Keywords: Reactive Programming, Functional-reactive Programming, Object-
oriented Programming, Incremental Computation.

1 Introduction

Most contemporary software systems are reactive: Graphical user interfaces need to re-
spond to the commands of the user, embedded software needs to react to the signals
of the hardware and control it, and a distributed system needs to react to the requests
coming over the network. While a simple batch application just needs to describe the
algorithm for computing outputs from inputs, a reactive system must also react to the
changes of the inputs and update the outputs correspondingly. Moreover, there are more
tight constraints on computation time, because reactive systems work in real-time and
need to react quickly – within seconds or even milliseconds. When the reactive behav-
ior involves non-trivial computations or large amounts of data, various optimization
strategies, such as caching and incremental updating, need to be employed.

Object-oriented programming does not provide specific mechanisms for implement-
ing reactive behavior, with two consequences. First, reactive behavior is usually en-
coded by using the Observer design pattern, whose drawbacks have been extensively
highlighted in literature [13,54,52]. For example, the code responsible for update of
outputs is usually tangled with the code changing the inputs. As a result, it becomes dif-
ficult to understand the computational relations between inputs and outputs and, thus,

S. Chiba et al. (Eds.): Transactions on AOSD XI, LNCS 8400, pp. 227–261, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

228 G. Salvaneschi and M. Mezini

the intended behavior of the system. Second, the update functionality with the neces-
sary strategies to achieve the desired performances must be implemented manually for
each application. Such optimizations, however, introduce a lot of additional complexity,
so that it becomes an act of balance between complexity and efficiency.

Various approaches aim to address different aspects of these issues. Event-driven
programming (EDP) creates inversion of control to enable modularization of the update
code [64,34,28]. Aspect-oriented programming (AOP) enables complete separation of
the update concern, by specifying in the aspects the points where the update needs to be
triggered [41,67,62,8]. The above approaches fit well with mutable objects, but retain
some of the problems related to a programming style based on inversion of control,
similar to the well-discussed problems of the Observer design pattern.

Declarative reactive approaches, most notably functional-reactive programming
(FRP) [26] and reactive languages, like FrTime [13], Flapjax [54], and Scala.React [52],
completely automate the update process. The developer specifies only how a changing
value is computed from other values, and the framework ensures that the computed
value is automatically updated whenever the inputs are changed. It is, however, not
clear whether they can obsolete manual implementation of update code. FRP and re-
active languages deal with update of primitive values, and may be too inefficient since
they do not provide incremental update of complex structures. Incremental update is
provided by other approaches such as LiveLinq [50], but they are limited to specific
data structures. Also, declarative approaches based on the functional paradigm do not
offer the advantages of typical object-oriented designs, including modularization and
component reuse.

In summary, the current state of the affairs is rather disappointing: Developers imple-
ment reactive applications in the comfortable world of objects, at the cost of relying on
programming models whose limitations have been known for a longtime. On the other
hand, alternatives based on reactive programming offer an appealing solution, but do
not succeed because they do not provide the necessary flexibility and do not integrate
with the OO design.

In this paper, we propose a research roadmap to fill the gap between OO design and
reactive approaches. Our vision is that the concepts developed by FRP and dataflow
programming can be integrated with object-orientation to provide dedicate support for
reactive applications in mainstream languages. This goal is challenging because reactive
abstractions have been explored mainly in the functional setting or in special domains,
like reactive data structures. The analysis presented in this paper provides a solid back-
ground and the first steps in our research plans are already ongoing. Our initial effort is
the development of RESCALA [69], a programming language that integrates events and
behaviors a la FRP. Thanks to the conversions between events and signals, with RES-
CALA, reactive abstractions can be easily introduced in OO reactive applications. Our
experiments show a significant improvement in the design of reactive software using
the functionalities of RESCALA.

In summary, we provide the following contributions:

– We characterize the design space of reactive applications and discuss the strategies
that can be applied to implement reactivity.

Towards Reactive Programming for Object-Oriented Applications 229

– To understand the practical impact of each update strategy, we analyze the imple-
mentation of reactive behavior in several real-world OO applications. Our analysis
highlights the drawbacks of traditional abstractions.

– We analyze the existing language solutions for reactive systems. We underline their
limitations, and the key achievements to take into account in further research.

– We propose a research roadmap which addresses the issues found in the current
approaches and has the ultimate goal of combining objects and reactive abstractions
in a flexible and efficient language.

The paper is structured as follows. In Section 2, we analyze the design space of
reactive software. In Section 3, we present an empirical evaluation of real-world OO
reactive applications. Section 4 outlines a possible alternative and discusses other re-
search solutions. Section 5 presents our research roadmap. This paper is an extension
of previous work from the same authors [70,68].

2 Design Space in OO Languages

In reactive systems, the outputs of the program need to be updated based on changes
of inputs and time. The ways of achieving this goal are however very diverse. In this
section, we overview the possible update strategies and discuss the rationale of choosing
them.

To make the discussion more clear, in Figure 1, we show a model of a reactive soft-
ware: The outputs provided to the clients (the objects a and e) must reflect the current
state of the inputs of the application (objects b, c, and d) according to certain trans-
formations f and g. Objects can be composed: For example, the object a contains the
references a1 and a2 to other objects (e.g. by storing them in fields). Dashed arrows
model dependencies: Output objects are computed from certain input objects. To clar-
ify how the model applies, consider a weighted graph used to compute a derived graph.
The derived graph is composed of references to the edges exceeding a MIN weight value.
In the model of Figure 1 the basic graph can be represented by the b object that contains
the references b1, b2, and b3 to the edges. The derived graph can be represented by a
and contains the references a1 and a2 to the edges. Finally, f is the transformation that
produces the derived graph a from the basic graph b by filtering the edges according to
the MIN value, modeled by the c object. For each update strategy, we show in a Java-like
language how the dependent graph is obtained.

2.1 On-Demand Recomputation

The most straightforward approach is to recompute the output values each time they
are needed. For example, when they are requested by the user to generate a report,
or when she refreshes a view. Similarly, in real-time computer games and simulation
applications, it is common to recompute outputs automatically at certain intervals of
time or simply as often as possible. In OO design, the typical example of this approach
are methods returning values computed from the state of the object each time these
methods are called.

230 G. Salvaneschi and M. Mezini

Fig. 1. A model of reactive behavior among objects

The distinguishing aspect of on-demand recomputation is that, after the evaluation,
the output is discarded. For example, in Figure 1, every time a client requests a, a is
recomputed and b is evaluated to calculate a. Figure 2(a) shows the on-demand re-
computation strategy applied to the graph example: Every time the getDerivedGraph

method is called, the dependent graph is computed from scratch by filtering all the edges
(Line 6) and it is returned to the client.

The advantage of this approach is that it is simple to carry out, because the developer
just needs to implement procedures computing the outputs from inputs. It also guaran-
tees that the values are always computed from the current state of the program, and thus
are always consistent with their inputs. The approach is also memory efficient, because
only the inputs need to be stored, but not the outputs or any intermediate computation.

2.2 Caching

Recomputing outputs every time they are requested may be too inefficient, especially
in the cases when the computations are expensive or need to deal with large amounts of
data. Caching a computed result is a general optimization strategy that avoids repeating
the computation. In the model of Figure 1, caching is obtained by saving a and e,
letting them available for more than one client access. A typical design is to introduce
a field for storing the computation results. The method that computes the dependent
value is modified to return the value of the field if it is valid, and to compute and save
the result otherwise. Figure 2(b) shows an implementation of the caching strategy: The
derivedGraph is maintained in a field (Line 3) and returned only if valid, otherwise, the
dependent graph is recomputed. When an edge is added to the base graph, the derived
graph is invalidated (Line 17).

The cached values are valid only as long as the inputs of the computation do not
change. When the inputs change, the cached value must be either recomputed, or inval-
idated and recomputed at the next request. The latter approach is more efficient when
the computed value is used not so frequently, but it is also slightly more complicated.
A major issue is to detect changes of the inputs and decide which cached values need
to be invalidated. A straightforward approach is to invalidate all cached values after the
change of every input. An efficient solution is to analyze the actual dependencies be-
tween inputs and outputs, and, after a change to an input, update only the outputs that
depend on it – as we explain hereafter.

Towards Reactive Programming for Object-Oriented Applications 231

1 class Graph {
2 Edge [] edges;

3

4 getDerivedGraph(){
5 Graph g = new Graph();

6 for (Edge edge : edges){
7 if (edge.weight > MIN)

8 g.add(edge);

9 }
10 return g;

11 }
12 ...

13 }
14

15

16

17

18

19

(a)

1 class Graph {
2 Edge [] edges;

3 Graph derivedGraph;

4 boolean valid;

5

6 getDerivedGraph(){
7 if (!valid){
8 derivedGraph=new Graph();

9 for (Edge edge : edges){
10 if (edge.weight > MIN)

11 derivedGraph.add(edge);

12 } }
13 return derivedGraph;

14 }
15 addEdge(Edge e){
16 edges.add(e);

17 valid = false;

18 } ...

19 }

(b)

Fig. 2. On-demand recomputation (a) and caching with invalidation (b)

2.3 Tracking Dependencies

Instead of updating all outputs after a change to an input, the programmer can rather
update only the outputs that actually depend on the changed input. For example, in
Figure 1, a change in c requires an update of a, but e is still valid and should not
be recomputed. A finer-grained tracking of dependencies can take into account that
a only depends on the elements among b1, b2, and b3 that exceed MIN. Figure 3(a)
shows an implementation of dependency tracking with caching: The dependent graph
is maintained in a field, and it is updated only when one of the edges with weight greater
than MIN is added, i.e., the logic keeps track of the edges on which the derived graph
depends. Figure 3(b) shows an implementation of dependency tracking with on-demand
recomputation. In this case, the dependent graph is recomputed on every client request.
The knowledge about dependencies is maintained by keeping edges in an ordered list
(Line 2). In this way, the computation of the dependent graph can be performed by
evaluating only a subset of the edges of the base graph. The evaluation is interrupted
when it encounters an edge that is not part of the dependencies (Line 9).

Although tracking dependencies may seem straightforward, implementing this
strategy in practice is usually not easy. The programmer needs a precise knowledge of
computational relations between outputs and inputs. The dataflow of an application
is usually not explicit in imperative code, and a careful code analysis is required to
reconstruct it. Moreover, the actual dataflow of an application may depend on dynamic
conditions (e.g., dynamic type of a variable in case of subtype polymorphism) and thus

232 G. Salvaneschi and M. Mezini

1 class Graph {
2 Edge [] edges;

3 Graph derivedGraph;

4

5 getDerivedGraph(){
6 return derivedGraph;

7 }
8 addEdge(Edge e){
9 edges.add(e);

10 if (e.weight > MIN)

11 derivedGraph.add(edge);

12 } ...

13 }

(a)

1 class Graph {
2 List<Edge> orderedEdges;

3

4 getDerivedGraph(){
5 derivedGraph = new Graph();

6 for(Edge edge:orderedEdges){
7 if(edge.weight > MIN)

8 derivedGraph.add(edge);

9 else break;

10 }
11 return derivedGraph;

12 } ...

13 }

(b)

Fig. 3. Tracking dependencies with caching (a) and tracking with on-demand recomputation (b)

may be impossible to know statically. Developers must implement the update function-
ality that corresponds to the detected computational dependencies: After a change of
each different input, the update of the corresponding outputs must be called. This may
introduce a substantial amount of additional code. The update functionality may also
cause modularity problems, because, when implemented in a straightforward way, it
may introduce undesired dependencies from inputs to outputs. To avoid such depen-
dencies, the programmer may employ various callback mechanisms (e.g., the Observer
pattern), but this further increases the complexity of the implementation.

2.4 Update Incrementalization

Completely recomputing a cached value each time it is invalidated may be too expen-
sive, especially if this value is a complex data structure, such as an array or a graph. A
common optimization, in that case, is to update the cached value incrementally depend-
ing on the changes of the input. In the model of Figure 1, update incrementalization is
an optimization of the functions f and g. This kind of optimization applies in presence
of caching: to make updates incremental, the entity to update must be available to re-
ceive the changes. Figure 4(a) shows an example of update incrementalization: When
a change occurs, the derived graph is not recomputed from scratch but it is modified
gradually by adding only the edges that satisfy the condition (Line 13).

The similarity between Figure 3(a) and Figure 4(a), deserves more discussion.
In contrast to Figure 3(a), where the dependencies are tracked to notify a change
to the dependent graph only when needed, in Figure 4(a) the dependent graph is
always notified of the change, regardless of the weight of the added edge (Figure 4(a),
Line 7). Of course, the edge is added to the dependent graph only if the condition on
the weight is satisfied. Figure 3(a) shows that caching with dependency tracking already

Towards Reactive Programming for Object-Oriented Applications 233

1 class Graph {
2 Edge [] edges;

3 DerivedGraph derivedGraph;

4

5 addEdge(Edge e){
6 edges.add(e);

7 derivedGraph.add(e);

8 } ...

9 }
10 class DerivedGraph

11 extends Graph {
12 addEdge(Edge e){
13 if (e.weight > MIN)

14 this.add(e);

15 } ...

16 }
17

18

19

(a)

1 class Graph {
2 Edge [] edges;

3 Graph derivedGraph;

4 Changes [] changes;

5

6 getDerivedGraph(){
7 applyChanges();

8 return derivedGraph;

9 }
10 applyChanges(){
11 /∗ Update derivedGraph

12 based on changes.

13 Clean added and removed ∗/
14 }
15 addEdge(Edge e){
16 edges.add(e);

17 changes.add(new Add(e));

18 } ...

19 }

(b)

Fig. 4. Update incrementalization (a) and change accumulation (b)

implies some form of incrementality because the dependent graph has to be main-
tained (caching) and updated selectively (dependency tracking). However, these strate-
gies are conceptually independent, as shown in Figure 4(b), where dependency tracking
is demonstrated without caching. The similarity between Figure 3(a) and Figure 4(a)
shows that the strategies analyzed in this section are often coupled and isolating them
for the sake of the explanation leads to artificial examples: Dependency tracking and in-
crementalization typically appear together in applications – the former being necessary
to support the latter.

Incremental update requires more fine-grained analysis of the changes to the inputs.
It is not sufficient to detect that a certain input has changed, but it is also necessary to
get precise information about the change. In addition, the programmer must design al-
gorithms to update the value incrementally after different kinds of changes to the inputs.
For example, in case the derived graph is the Minimum Spanning Tree of the original
graph, specific domain knowledge in graph theory is required to implement the update
algorithm incrementally.

2.5 Accumulating Changes

Accumulating changes is an optimization of the computation of outputs from inputs
(i.e., an optimization of f and g in the model of Figure 1). Changes are stored and
applied to a cached output, so caching is subsumed by this strategy.

234 G. Salvaneschi and M. Mezini

Accumulating changes also implies the incrementalization of the update. Indeed, in-
crementalization is required to combine the existing object with the incoming changes.
Accumulation allows one to arbitrarily choose when to apply the stored changes. One
extreme is every time a change occurs (no accumulation), the other is every time the
client requests the output. If the update of a value is postponed until the client request,
this strategy avoids redundant updates of rarely requested values. Yet, combining a lot of
accumulated changes is more expensive and the response time increases. In some cases,
like in databases, the update is postponed until the end of some logical transaction in
the inputs. Figure 4(b) shows an example of change accumulation. The changes to the
base graph are accumulated in the changes array (Line 4). When the client requests the
derived graph, the changes are applied and the derived graph is returned (Lines 6–8).

Updating a value after accumulating changes is usually more complicated than up-
dating a value after each primitive change, because it requires more sophisticated data
structures to describe the accumulated changes and more sophisticated algorithms to
implement the update. As a result, this strategy increases memory consumption. How-
ever, accumulating changes also offers opportunities for optimization. For example,
some changes can cancel each other. Nevertheless, a complex domain-specific logic is
usually required to take advantage of such cases.

3 Case Studies

To analyze the design issues of OO reactive software, we inspected four reactive Java
applications. Our goal is not to develop a systematic empirical study on OO reactive
software. Instead, we want to provide a solid background for our research by surveying
concrete examples of how reactive features impact OO software design. Due to space
reasons, we show only a summary of our analysis. The interested reader can find more
details in the technical report [65].

The case studies are of different sizes and cover different kinds of software (two
desktop applications, a mobile application, and a library) as well as a variety of external
sources of reactive behavior, like network messages, data sampling, values from sensors
and user input. Figure 5 summarizes the main metrics of each application.

The SWT Text Editor (the StyledText widget) implements a text editor in the pop-
ular SWT library used by the Eclipse IDE [23]. The application reacts to the insertion
of characters and to the formatting commands from the user.

The FreeCol Game [32] is an open-source turn-based strategy game. The AI of the
game controls the opponent players, so the application reacts to the user and the AI.
Updates concern the game model and the map in the GUI.

Apache Jmeter [45] supports the performance assessment of several server types
(e.g., HTTP). The user specifies a test plan by adding graphical elements to a panel.
First, the application must react to changes in the test plan. Additionally, the application
is reactive to network events, as the results of the test are visualized in real-time.

The AccelerometerPlay Android application is one of the example applications pro-
vided by the Android platform [3]. It displays a set of particles rolling on the screen. The
inclination of the device is detected by the accelerometer and the particles are updated
accordingly.

Towards Reactive Programming for Object-Oriented Applications 235

Case study LOC Types Cycl. Compl. LOC/Method Methods/Type Fields/Type

SWT Text Editor 9,227 48 4.77 17.39 10.64 4.75

FreeCol Game 170,597 1,175 2.60 10.67 5.77 2.11

Apache JMeter 90,704 1,081 1.84 8.39 7.19 2.13

AccelerometerPlay 460 4 2.00 10.73 4.00 8.00

Fig. 5. Main metrics for the case studies

3.1 Design Choices in the Case Studies

Different design choices concerning reactive behavior are motivated in the case studies
by the design, size, and kind of software. Our analysis clearly indicates that different
applications are better “served” by different points in the design space depicted in Sec-
tion 2.

The SWT text editor adopts caching and dependency tracking to achieve good per-
formance. It is a typical example of an object with an internal state, which changes in
the process of interacting with the user. The editor is implemented in the conventional
event-driven style and it is highly optimized to ensure low reaction time. To this end,
a lot of fields are used to cache intermediate values, and a complex logic takes care of
updating values only when needed.

The FreeCol game lies at the opposite side of the design space and mostly adopts
the on-demand recomputation strategy. Since the game behavior is inherently complex,
the major issue is managing complexity to keep the development time and the stability
of the game within reasonable limits. So, design decisions reducing or at least limiting
complexity are favored. A substantial part of the code implements computations of
values that are used in the user interface or for AI decision making. Almost all of these
values are computed every time they are requested by the user or by the AI.

In the AccelerometerPlay application particle positions are recomputed on-demand
every time the screen is refreshed, and incrementalization is applied to efficiently update
the positions after conflict resolution. The logic is summarized in Figure 6: Position up-
date comes first, then conflicts with the screen border and conflicts among particles are
resolved. Finally, the particles are displayed. Since the application must react quickly,
the update logic is based on imperative changes and an iterative algorithm is used for
conflict resolution.

JMeter is optimized to make the GUI fast and reactive, changing it in response both
to the user and the test events. Due to the different nature of these sources of change,
the optimization strategies slightly differ. Caching is used for graphic widgets when
the same graphic interface is associated to multiple elements in the test plan and can
be reused when the user switches from one element to the other. Incrementalization is
applied to optimize updates of graphs and statistics displaying the results of an ongoing
test.

236 G. Salvaneschi and M. Mezini

Fig. 6. The logic of the AccelerometerPlay application

3.2 Problem Statement

Our analysis revealed several design issues. We argue that these problems – commented
hereafter – are not due to bad choices by the programmers. Instead, as we explain in
Section 3.3, they are the consequence of the design limitations and the trade-offs im-
posed by OO language abstractions.

Code Complexity. Manually caching intermediate values requires an accurate logic
that is responsible to perform the updates and maintain consistency. Performances in-
crease, but the application becomes more complex. In the SWT text editor, the presence
of a lot of fields in each class (70 mutable fields in the worst case) makes reasoning
on the behavior of the application really hard, since computations depend on previ-
ous state. In addition, the update logic for enabling reactivity pervades a considerable
part of the application. For example, the StyledText class includes 11 “addListener”
methods, 11 “removeListener” methods, and 18 “handleEvent” methods. Moreover, the
event-handling code includes anonymous classes created on the fly, which also expose
callback methods. Finally, since values are separated from their update logic, local rea-
soning is impossible and understanding the application behavior requires inspecting a
lot of code.

On the other hand, on-demand recomputation, like in the FreeCol game, clearly sim-
plifies the logic of the application: As values are generated only when required, the
behavior is not hidden by the code that maintains the dependencies.

Hidden Design Intent. The AccelerometerPlay application is an example of how re-
active functionalities can hide the design intent of the developer. Although it is quite
simple (less than 500 LOC), the reactive logic is spread all over the code and a concep-
tual model like the one in Figure 6 must be harvested from the system of callbacks and
events. The origin of this complexity is that the design intent of each update strategy is
not explicit in the implementation. For example, certain values are functionally depen-
dent on other values but the design does not express this aspect. Only a careful analysis
of the code reveals that a field is never changed directly, but updated after the changes
of other fields. To reconstruct the intended computational dependencies, the developer
must analyze all the update code scattered across the application. Our analysis revealed
that computational dependencies are quite common in complex applications. For exam-
ple, we determined that in the StyledText class of the SWT text editor, about half of
the 70 mutable fields are not freely changeable, but store values functionally dependent
on other fields. Despite that, all fields are declared in the same way and identifying de-
pendent fields requires to reverse engineer the logic of the application, which is lost in
the callbacks.

Towards Reactive Programming for Object-Oriented Applications 237

100 101 102 103 104 105 106

99.5%
97.9%
92.1%
62.2%
40.3%
33.9%
31.6%
23.2%
20.8%
13.5%
13.5%
13.3%
12.7%
12.1%
12.1%
10.4%
9.6%
5.2%
3.7%
2.8%

Calls / Value

Cost

100 101 102 103 104 105 106

14.7%
10.2%
2.6%
2.0%
2.5%
2.3%
1.7%
1.0%
0.8%
0.8%
0.7%
0.7%
0.6%
0.6%
0.6%
0.5%
0.3%
0.3%
0.3%
0.3%

Calls / Value

Cost

Fig. 7. Redundancy of the most expensive methods in the FreeCol game and the SWT text editor

Redundant Computations. The major advantage of on-demand computation is to
keep the design simple. However, the overhead that is observed when this design choice
is prevalent can be relevant.

We used a profiler and instrumentation via AspectJ to count the potentially redundant
calls of the most time-consuming methods in the case studies. The computations after
which the returned value does not change (for the same parameters) are potentially
redundant. The impact of the design choices on redundancy can be seen in Figure 7.
It compares the level of redundancy in the 20 most expensive methods of the FreeCol
game and of the SWT text editor, which lie at the opposite positions in the design space.
Redundancy is measured as the number of calls per different observed values, i.e., if a
method is called 10 times in total and only 2 different input values and return values
are observed, the redundancy is 5. The SWT text editor (right), thanks to its complex
logic, shows values of redundancy which are substantially lower. We devoted further
investigation to the potential optimizations in the FreeCol game, which largely adopts
on-demand recomputation. The results for the methods with higher relative time are
shown in Figure 8 (the percentages in the first column do not sum to 100% because
methods can be nested). For example, we discovered that the most expensive method
(99.57% of the time) has 80% of potentially redundant calls, i.e., the computed value
changes only in ∼26% of the method calls (Figure 8).

Scattering and Tangling of Update Code. When values are intermediately cached,
they must be updated in every point of the application where the inputs of the compu-
tation are changed. This leads to scattering of the update code.

To evaluate code scattering in the case studies, we considered the places where a
field is directly written except the initialization. Figure 9 shows which percentage (y)
of fields is updated in x places for each application. The analysis shows that most of the
fields are updated only a few times, but the distribution has a heavy tail, i.e., there is a
consistent number of fields that are updated in many places. Not surprisingly, the SWT
text editor, which adopts the caching strategy and is highly complex, has the highest
number of fields updated in several places. In the SWT text editor, setters are not used
extensively, presumably because they are supposed to be used by the clients of the

238 G. Salvaneschi and M. Mezini

Relative Time Call / Value Average Change Calls Time

99.57% 5.1 0.2650007264 14,798 76,705

97.98% 5.0 0.2672708364 14,732 75,821

92.13% 1.4 3.8125 29 36,216,475

62.20% 85.0 0.0009699462 8,507,562 83

40.35% 176.5 0.0038796778 5,437,321 84

33.97% 5,697.2 0 28,378,977 13

31.60% 344,846.8 0.1260744986 13,360,833 26

23.23% 2.2 0.0018647649 2,971,606 89

20.82% 201.8 0.0260969848 10,367,994 22

13.56% 1,041.0 0 1,579,745 97

13.56% 1.0 0 5,626 27,471
13.30% 17.3 0.6696185286 6,482 23,392

12.71% 1,241.2 0 1,206,869 120

12.13% 61.9 0 5,451 25,371

12.13% 1.0 0 5,451 25,365

10.49% 571,769.7 0 22,149,669 5

Fig. 8. Redundancy analysis for most expensive methods in the Freecol game

library but are avoided inside the library for efficiency reasons. Even so, since it is a best
practice to implement setters and getters to encapsulate state, we repeated the analysis
for setter methods in Figure 10. With the exception of the AccelerometerPlay appli-
cation which is too small to suffer from scattering and tangling issues, we found that
update scattering is extremely common. For example, in the FreeCol game, in JMeter
and in the SWT text editor, respectively, only 38.4%, 46.0%, and 30.7% of the fields is
updated in just one place. In the worst case, a field was updated in 96 places!

Error-Proneness and Code Repetitions. When the updates of the dependencies are
managed manually, it is often hard for developers to understand when to trigger an
update. For this reason, programmers code in a defensive way and introduce an update
even when not necessary. For example, in the JMeter application we found cases
in which selecting a GUI with the cursor triggers a sequence of four updates of the
interface even before the user changes any value. Yet, update errors are not the only in-
convenience that manual updates can cause. When update functionalities are complex,
managing consistency by hand can easily lead to code repetitions because the same up-
date pattern is cloned in many places. We evaluated the occurrence of code similarities
in the case studies; the results are in Figure 11. The numbers in the table show that

Towards Reactive Programming for Object-Oriented Applications 239

Fig. 9. Percentage of fields against number of different update places for that field

Fig. 10. Percentage of setter methods against number of different call places for that setter

for applications of significant size, even when the update functionalities are carefully
designed, like in the case of the SWT text editor, it is hard to keep the code clean.

3.3 Lesson Learned from the Case Studies

In this section, we summarize the major results from the case studies. A crucial observa-
tion is that, in OO applications, reactive entities are separated from the code responsible
to keep them updated. This has two bad consequences. First, the dependencies are not
explicit, so the design rationale of the application is hard to grasp even for trivial cases.
Second, updates are scattered across the application and tangle the rest of the code.

Unfortunately, modularization of update code is hard to achieve in the OO style, be-
cause dependencies must be imperatively updated every time an input value is changed

240 G. Salvaneschi and M. Mezini

Application Similarities Similarities / LOC

SWT Text Editor 29 0.00314

FreeCol Game 281 0.00106

Apache Jmeter 381 0.00420

AccelerometerPlay 0 0

Fig. 11. Code repetitions

– which can occur in several places of the application. Furthermore, manually analyz-
ing dependencies and writing corresponding update code is error-prone; certain depen-
dencies may be overlooked and consequently the programmers can fail to update all
functionally dependent values. Therefore, values are often updated defensively without
precise knowledge of whether it is actually necessary.

Manually written update code also produces a maintenance problem, because there
are no automatic checks ensuring the consistency of the update code with the actual de-
pendencies of the computation. In addition, each time the computational dependencies
are changed, the developer must correctly update the update functionality to reflect the
current state of the dependencies! Errors of such a manual maintenance activity may
remain undetected for a longtime; forgetting to update a certain value usually does not
lead to a crash, and a redundant update may even not cause any visible effects at all,
only inefficiency.

Importantly, in our analysis, we observe a clear trade-off between efficiency and
complexity. To keep the design simple, programmers accept the cost of on-demand
recomputation and potential redundancy. For example, intermediate caching via object
fields highly complicates the application because the update logic must be implemented
manually. In conclusion, keeping the design simple has a high cost in performance. In
some cases, like the FreeCol game, there is a wide space for potential optimization.
However, this is not easy to achieve, because the computations involve complicated
algorithms and depend on various different inputs.

4 Analysis of Advanced Languages

In this section, we discuss some advanced language concepts to support reactive appli-
cations. For each approach, we analyze the problems it addresses and its limitations.
We start the discussion with functional reactive approaches, as they provide interesting
insights as how to overcome the problems discussed in the previous section and are the
source of inspiration for our planned research, a roadmap of which is presented in the
following section.

4.1 Reactive Languages

Reactive languages are based on ideas developed in functional-reactive program-
ming, introduced by Elliott [26] to model time-changing values as dedicated language

Towards Reactive Programming for Object-Oriented Applications 241

abstractions. More contemporary incarnations of the concept are integrated in recent
reactive languages such as FrTime [13], Flapjax [54], and Scala.React [52]. To make the
argumentation more concrete, in Figure 12, we show an example of Flapjax, a dataflow
language that overcomes several limitations of reactive design based on inversion of
control. Our considerations can be substantially generalized to FrTime and Scala.React.
The functionality presented in Figure 12 consists of displaying the elapsed time since
the user clicked on a button in a Web page.

Flapjax supports behaviors, i.e., reactive abstractions that model time-changing val-
ues (named with a final “B” in the code snippet). For example, the value nowB is a be-
havior that represents the current time updated every second. Behaviors can be sampled
to obtain “traditional” values via the valueNow function: startTm is the initial instant
of the simulation. In addition, behaviors can be combined with events: In Line 3, the
snapshot function captures the instant value of the nowB behavior every time the click

event of the reset button occurs. As a result, clickTmsB always contains the time of
the previous click (or startTm before any click event). elapsedB keeps the value of the
time elapsed from the last click, and insertValueB updates the value in the graphic
every time the elapsedB value changes (Line 6). The crucial aspect of the reactive se-
mantics is that a declaration like the one in Line 5 expresses a constraint rather than a
statement. The example shows how the language creates implicit dependencies among
time-changing values. The general idea is that when the programmer defines a con-
straint a=f(b) and b is a time-changing value, the framework automatically detects the
dependency of a on b and is responsible for performing the updates automatically. In
Line 5, when either nowB or clickTmsB changes, the value of elapsedB is automatically
updated. So, whenever the programmer accesses elapsedB, she sees the updated value.
Reactive languages provide abstractions to compose time-changing values and com-
bine them with event streams. Eventually, time-changing values are bound to the GUI
which automatically reflects the changes. The reader interested in more details can refer
to [54].

Automatic dependency tracking addresses several issues highlighted in the case stud-
ies. The application is simplified, because the programmer does not shoulder the burden
of keeping dependent values consistent (Section 3.2). As a consequence, the errors that
can derive from forgetting the updates are automatically avoided (Section 3.2). The up-
date code, which captures the behavior of a program entity, is modularized with the
entity, allowing local reasoning and avoiding scattering and tangling with the rest of the
application (Section 3.2). In contrast to callbacks, which return void, reactive behaviors
can be easily composed. Software is much more readable because the design intention
of the programmer is explicit and direct modeling of relations among objects enforces
a more declarative style (Section 3.2). Finally, reactive languages automatically derive
dependencies and perform only necessary updates (Section 3.2).

In summary, reactive languages are an appealing solution to the issues identified for
OO languages. In particular, since updates are performed by the runtime and do not
add complexity to the application logic, they have the potential of solving the trade-
off between efficiency and simplicity described in Section 3.3. Nevertheless, there are
some crucial issues that prevent their broader adoption.

242 G. Salvaneschi and M. Mezini

1 var nowB = timerB(1000);

2 var startTm = nowB.valueNow();

3 var clickTmsB = $E("reset", "click").snapshotE(nowB)

4 .startsWith(startTm);

5 var elapsedB = nowB − clickTmsB;

6 insertValueB(elapsedB, "curTime", "innerHTML");

7

8 <body onload="loader()">
9 <input id="reset" type="button" value="Reset"/>

10 <div id="curTime"> </div>
11 </body>

Fig. 12. Automatic dependency tracking in Flapjax

Functional Flavor and Immutability. Reactive languages impose a functional style,
while OO programming features an imperative style. When a lot of code already ex-
ists, a functional refactoring of the entire application is in general not acceptable.
Some computations are cumbersome to express functionally, while retaining accept-
able performance and algorithmic clarity. For example, the conflict resolution algo-
rithm in the AccelerometerPlay application is expressed in an imperative style using
for loops, sequences of imperative statements to detect the conflicts, and imperative
updates of the particles positions. The AccelerometerPlay application is also an exam-
ple of performance-critical software. Conflicts among potentially hundred of particles
must be solved in a sufficiently short time that the movement appears fluid to the user.
Expressing the resolution algorithm in functional style with somewhat acceptable per-
formance, would involve accumulative recursion: Functions in this style are rather hard
to understand and, yet, probably not as efficient as encodings based on loops and im-
perative updates.

A consequence of the functional flavor of reactive languages is that they are effective
with primitive values, but do not fit well with mutable objects. Strategies for incremen-
tal computation are highly application-specific and a framework can hardly address the
problem in a domain-agnostic way. Therefore, there is no way to automatically incre-
mentalize object updates. So, reactive languages recompute the dependent object every
time the base object changes. To clarify this point, consider the expression
list2 = list1.filter(x>10), an instance of the case a=f(b) – discussed previously
– where a and b are list2, respectively list1 and f is the filter function for the
given predicate. The expression establishes a dependency between list1 and list2 via
filter. In our case, each time object list1 changes, the filter operator produces a
new list2 object. Instead, imperative approaches update the mutable dependent object
in-place, which is more efficient and preserves the object identity. For example, the
SWT text editor employs mutable data structures to efficiently store the inserted text.

These observations are symptoms of a more general problem in reactive languages:
The update strategy is hardcoded in the reactive framework, so only a point in the de-
sign space described in Section 2 is available to the programmer. As a consequence,
efficiency might be an issue even for trivial cases.

Towards Reactive Programming for Object-Oriented Applications 243

Design of Complex Systems. So far, we defended the mutability of OO. Another,
even more important reason, why we do not want to abandon the OO style is that it
has established itself as the paradigm of choice for complex applications, for reasons
related to design clarity and evolvability. A first remark is about modeling: Objects are
effective in modeling complex systems because they reproduce the interaction of real-
world entities. For example, the hundreds of simulation elements used by the FreeCol
game are conveniently represented by objects.

Objects enable the development of large applications by modularizing rather large
pieces of functionalities while abstracting over implementation details. For example,
all the SWT widgets are ready-to-use components, but at the same time open for fu-
ture modifications via subtype polymorphism: E.g., the SWT text editor uses a default
implementation for the text container, but clients can provide a custom container by
implementing a proper interface.

OO also supports reuse by class inheritance. This aspect is crucial in libraries which
are developed incrementally, e.g., the StyledText class is part of an inheritance hier-
archy of depth 7. Another key requirement of complex systems is runtime variability.
Objects address this issue via dynamic polymorphism. For example, the simulation ele-
ments in JMeter are treated uniformly and late bound depending on the user decisions.
In the SWT library, a text editor can be used wherever a generic widget is expected.

4.2 Functional-Reactive Programming

As already discussed, functional-reactive programming has been introduced in the sem-
inal paper [26]. Further approaches refined and extended the concept, mostly focusing
on the formal semantics of continuous time [59]. This leads to an elegant formalization
with a denotational semantics in which behaviors are modeled as functions from time
to values [26].

The first FRP implementations were pull-based, i.e., reactive values are pulled peri-
odically by the reactive runtime to update the entities depending on them, e.g. a graphic
animation. This approach corresponds to our on-demand recomputation (Sec. 2.1) ex-
cept that the runtime performs the requests, while in Sec. 2.1 we expect that the client
request a result when needed. Note that this model is different from reactive languages
like FrTime, Scala.React and Flapjax which are push-based: The dependency graph is
updated only when a reactive value changes. Push-pull FRP [27] is an attempt of a
mixed model that leverages the efficiency advantages of push-based implementations.
However, exploring the trade-offs between those models and evaluating their impact in
practice is still an open problem (Section 5.4).

FRP has been successfully applied to several practical scenarios, including coor-
dinating robots [43], network switches programming [31], and wireless sensor net-
works [58]. Current work focuses on optimization and safety guarantees enforced by
the type system. For example, Krishnaswami et al. [49] use linear types to control allo-
cation of new nodes in the dependency graph and avoid memory leaks.

244 G. Salvaneschi and M. Mezini

4.3 Observer and Event-Driven Programming

The Observer pattern enables decoupling the code that changes a value from the code
that updates the values depending on it. The Observer pattern has a number of draw-
backs that have been extensively analyzed by researchers. The main points of criticism
are summarized hereafter; the interested reader can refer to [54,52] for a detailed dis-
cussion. First, with the Observer pattern, applications are harder to understand because
the natural order of dependencies is inverted. A lot of boilerplate code is introduced to
correctly implement the pattern. Another problem is that, since callbacks do not return
a type but perform imperative updates on the objects state, reactions do not compose.
Finally, the notification to the observers is triggered in an imperative fashion and can
be easily scattered and tangled with the rest of the application. Interestingly, many of
these points of criticism clearly emerged in our case studies.

Event-based languages like C# [14], Ptolemy [64], EScala [34], JEScala [74], and
EventJava [28] directly support events and event composition as language constructs.
These languages reduce the boilerplate code introduced by the Observer pattern and
provide advanced features like quantification over events, event combination, and im-
plicit events. Event-based languages integrate well with the imperative paradigm: The
callback defines all the operations required for the update of the object state. As a result,
this approach preserves object identity – opposed to functional solutions which neces-
sarily compute a different object – and supports efficient fine-grained changes of the
updated object.

The main drawback of event-based programming is that a significant amount of re-
active dependencies are still modeled by encoding them in a programmatic way, rather
than being supported by the language. The update functionality must be designed and
implemented explicitly in the callback method. Caching must be managed manually, de-
ciding a proper policy and coding it in the callback as well. Similar considerations apply
for any optimization strategy. For example, accumulation of changes must be entirely
implemented by the programmer. Another issue is that, since all the update functional-
ity must be coded manually, consistency is not automatically guaranteed. Instead, the
developer must take care of correctly notifying all the entities which are functionally
dependent. This leads to error-prone code with the risk of notifying too rarely, breaking
functional dependency, or too often, defensively inserting unnecessary updates. Finally,
non-functional design choices are hard-coded in the callback implementation: The de-
veloper has no option to choose among different non-functional trade-offs discussed in
Section 2, such as caching or incremental updates.

4.4 Aspect-Oriented Programming

In the context of reactive applications, AOP can be used to intercept objects modifica-
tions and keep dependent entities updated. Since AOP supports proper modularization
of crosscutting concerns, the update functionalities are separated from the code of the
object. For example, the Observer pattern can be implemented in a modular way by
using AOP techniques [41]. Other researchers proposed AOP languages to modular-
ize complex relations among objects [67,62]. AOP integrates well with the impera-
tive style and the mutability of object’s state. A point of criticism is that AspectJ-like

Towards Reactive Programming for Object-Oriented Applications 245

pointcut-advice models, which dominate AOP design, can potentially break OO mod-
ularity. Nevertheless, it has been shown that pointcuts can be integrated with an event
system preserving OO-style modular reasoning [34].

Finally, many limitations of event-based programming hold for AOP, too. Most no-
ticeably, updates must be performed explicitly in the aspect code and dependencies are
not automatically tracked as in reactive languages. In addition, composition of reac-
tive behaviors is not easy to obtain, since aspects interactions are complex to master
compared to expression composition in functional programming.

4.5 Reactive Collections

Reactive collections define functional dependencies among data structures (often
expressed via SQL-like queries). The crucial point is that the framework keeps the de-
pendent structures automatically updated when the basic ones change. Efficient incre-
mental updates have been investigated by the database research community for a long
time in the context of the view maintenance problem [12]. More recently, researchers
introduced these solutions into programming languages, intercepting the updates via
AspectJ [76] or using code generation techniques [66] to trigger the updates on the
dependencies. Off-the-shelf libraries include LiveLinq [50] and Glazed Lists [37].

Reactive data structures share some design advantages with reactive languages.
Computational dependencies are expressed explicitly, so the application is easier to
read: Queries describe the functional relations between program entities in a declarative
manner. Update functionalities are automatically derived – with little or no additional
complexity. The framework is in charge of keeping the functional dependencies speci-
fied by the query constantly up to dated. Finally, reactive collections implement efficient
update of various reusable operators by using incremental changes and caching to avoid
redundant computation.

The main limitation of reactive data structures is that the approach is restricted to a
specific domain – changing collections. These frameworks provide out-of-the-box reac-
tive data structures, but they do not support automatic update of other types of objects.
Another issue is that reactive collections do not automatically detect all computational
dependencies, but only exploit a set of predefined ones. In general, it is not possible
to specify a generic expression and leave the framework the responsibility of track-
ing all the dependencies. For example, the predicate in a filter operator (Section 4.1)
is not part of the dependencies mechanism, so any change to the predicate remains
undetected. Apart from providing custom indexes to speedup certain queries, reactive
collections rely on hard-coded non-functional design choices depending on the inter-
nal implementation. The programmer cannot fine-tune the update strategy or customize
the caching behavior. Finally, most of these frameworks come in a very relational fla-
vor. This further limits their integration with OO languages in which they are usually
embedded.

4.6 Constraint-Based Languages

Constraint-based languages, like Kaleidoscope [33] integrate constraints among
variables into OO languages. The focus of constraint-based languages is on expressing

246 G. Salvaneschi and M. Mezini

relations among time-changing values in the program. However, this can lead to a rather
different programming model compared to traditional OO or functional programming.
For example, Kaleidoscope supports constraints that the framework attempts to enforce
according to a priority ranking. Clearly, prioritizing constraints introduces a semantics
that is likely unexpected for programmers, because some constraints can be never sat-
isfied.

In contrast to reactive languages, that focus on composition of time-changing
values, constraint-based languages focus on relations among values. As such,
constraint-based languages typically neither support combinators for time-changing
values nor integrate time-changing values and events. One-way constraints have
proved effective in the scope of graphical interfaces: The Lisp-based Garnet [56] and
Amulet [57] graphical toolkits support automatic constraint resolution to relieve the
programmer from manual updates of the view. The design of one-way constraints is
similar to the basic functionalities of reactive languages as supports the same limita-
tion w.r.t. state and the OO model. In contrast to most reactive langauges, Garnet and
Amulet also support cyclic constraints. A constraint in a cycle is evaluated at most once.
If it is asked to evaluate a second time in the same constraint resolution phase, it simply
reevaluates to the previous value.

SuperGlue [53] is an OO language that supports behaviors at the component level.
Similarly to constraint-based languages, behaviors in SuperGlue are declarative con-
straints used to connect (glue) software components. A prioritization mechanism simi-
lar to the one of Kaleidoscope is also available. A peculiar aspect of SuperGlue is that
constraints can include quantification over sets of time-changing values. Quantification
is expressed using types to refer to a set of variables. It worth noticing that quantification
has been independently explored by different approaches to reactive programming as a
mean to decouple software components. Examples include AOP, event-based languages
like Ptolemy and constraint-based languages like SuperGlue.

4.7 Synchronous Dataflow Languages

In synchronous dataflow languages like Lucid [63], the program defines a network in
which a synchronous signal propagates and triggers the computations in the nodes. Lus-
tre [38,11] and SIGNAL [35] are examples of dataflow languages fostering a declarative
style in which program and specification coincide. In those languages absence of cycles
is enforced by construction to avoid inconsistencies. Esterel [4] is a similar approach
but fosters has a more imperative style. In Esterel, cycles are checked by the com-
piler and rejected statically. Synchronous dataflow languages address the problem of
specifying, programming and verifying reactive real-time systems. They enforce a pro-
gramming model where the reaction time of the systems is virtually zero (synchrony
hypothesis). In practice, the reactive system must be proved fast enough compared to
the environment. For this reason, synchronous dataflow languages are usually compiled
into easily verifiable models, e.g., finite state machines. Guarantees of real-time and
memory-bound execution are provided at the cost of limiting the language expressively.
A common example of such limitations is relinquishing higher-order behaviors.

A related family of languages are graphical languages like LabVIEW [46] for data
acquisition (e.g., from an external board), signal elaboration and industrial control,

Towards Reactive Programming for Object-Oriented Applications 247

and Simulink [17] used for system simulation especially in control theory. The ap-
plication domain of those languages makes the dataflow computational model par-
ticularly suitable and the graphical approach simplifies the use by non-programmers.
Researchers have already explored synergies between graphical languages and syn-
chronous dataflow languages. Tripakis et al. propose a method to translate Simulink
to Lustre [73]. This approach allows model-based development of embedded systems
software with Simulink, the de facto standard of many industrial applications domains.
On the other hand, the advantages of Lustre are preserved, including formal semantics
and static analysis, verification, and controller synthesis tools.

4.8 Self-adjusting Computation

Self-adjusting computation [2] studies the automatic derivation of incremental pro-
grams from batch ones. This solution adopts an algorithmic approach, focusing on
reducing the computational complexity of the incremental application. Self-adjusting
computation has been introduced in the functional setting [2]. More recent approaches
focus on applying similar concepts to imperative languages [1,39] and low-level lan-
guages like those used in stack-based abstract machines [40].

In contrast to reactive languages, which focus on explicitly modeling time-changing
values using proper language abstractions, self-adjusting computation focuses on deriv-
ing an incremental version of a batch algorithm. More generally, self-adjusting compu-
tation aims at speeding up algorithms by taking advantage of incrementality. However,
self-adjusting computation does not provide new abstractions to express time-changing
values. As a result, it is not clear how incremental programs can be integrated into
existing applications (e.g., by interfacing time-changing values with events) nor how
incremental programs can support modular composition. Instead, reactive languages in-
tentionally enforce a programming model that supports time-changing values and their
composition to achieve better design. Despite the different focus, we envisage impor-
tant synergies between the two approaches. In particular, the solutions explored by self-
adjusting computation can be applied to generic computations, solving in an automated
way the problem described in Section 2.4. For this reason, this technique can be used to
incrementalize the updates performed in reactive languages.

Recent work on self-adjusting computation merges ideas from incremental comput-
ing and programming models for Big Data, like MapReduce [18]. Incoop [5] is an in-
cremental MapReduce framework. When Incoop detects changes to the input dataset it
obtains the result of the computation through a fine-grained update of previous results.
A fundamental feature of Incoop is that it is transparent to the user, i.e., the application
is not different from a traditional MapReduce interface and all the incrementalization is
done under the hood.

4.9 Complex Event Processing

Complex event processing (CEP) is about performing queries over time-changing
streams of data. Event streams are combined and correlated to define complex events
triggered when a correlation condition is satisfied. Typical application scenarios include
intrusion detection [16], stock trading [19], and power management [78].

248 G. Salvaneschi and M. Mezini

CEP has similarities with databases. Event streams in CEP can be thought as time-
changing database tables which are updated every time a new event occurs (i.e., a new
entry in the table is added). In contrast to database software, where data change rel-
atively rarely and the user triggers the evaluation of queries over the existing data, in
CEP, data change dynamically and the queries must be reactively evaluated upon data
arrival. Queries are expressed in terms of time windows to correlate only the events that
are included in a given time frame [16]. Because of the similarity between recognizing
an event pattern and deciding whether a word belongs to a formal language, the seman-
tics of event correlation is often expressed in terms of finite state automata. This is the
case, e.g., of SASE [77], Cayuga [19] and TESLA [15].

Similarly to reactive languages, CEP operates on event streams and CEP query lan-
guages are usually very declarative. CEP systems support a semantics that includes
time, and is in general more expressive than the semantics of event-based languages,
like EScala, supporting only event combination. In contrast to event-based languages,
CEP systems are typically implemented as separate applications accessed through a
proper interface. For this reason, CEP query languages are usually specified as strings
– a state of the affairs that is similar to databases and SQL queries. As such, they do not
take advantage of in-language integration, including safety guarantees from the com-
piler and integration with other language abstractions, as reactive languages do.

5 A Research Roadmap

In this section, we present a research roadmap for embedding direct support of reactive
applications in object-oriented programming languages. The milestones in the roadmap
are ordered from the basic ones – which are ongoing, like the integration of reactive ab-
stractions into an event model, to more elaborate ones – which address complex systems
that require automatic adaptation. Beside language design, we plan to work on the im-
provement of the performance of reactive languages. Previous work mostly focused on
language abstractions, with less attention to optimization or performance assessment.
It must be noted that the high overhead of current reactive languages is also among the
factors that limit the spreading of this technology.

5.1 Integration with Event-Based Programming

Languages with support for event-based programming do make an important step for-
ward in more directly supporting reactive behavior in an imperative object model. As
such, they are an ideal starting point for our research. Yet, as argued, they lack the
capability of declaratively expressing reactive computations dependent on changing
values. In summary, both events and reactive expressions are needed. Events support
fine-grained updates of mutable objects. Reactive abstractions capture reactive compu-
tations in a compact and declarative way.

Hence, a first step in our plan is to seamlessly integrate reactive abstractions into
object-oriented event systems. This goal requires the design of the interface between
the reactive abstractions and the abstractions for imperative events, such that they can

Towards Reactive Programming for Object-Oriented Applications 249

be treated uniformly in computations and become composable. Such interface is fun-
damental to support a mixed programming approach and gradual migration of existing
software to a more functional and declarative style.

A further step is to integrate reactive abstractions in other aspects of the language.
For example, collections must react to changes of the contained elements. It has been
shown that changes can be suitably provided to the clients via an event-based interface1.
Similarly, reactive abstractions can be conveniently used in data structures to model
properties which are functionally dependent on other values (e.g., the size or the head
of a list, both functionally dependent on the content of the list). The result is a library of
reactivity-enabled data structures, which expose certain values as reactive abstractions.

This work is currently ongoing in the incarnation of RESCALA (ReactiveEScala), a
language which integrates the advanced event system of EScala [34] and time-changing
values in the style of Scala.React [52]. Our experiments show that with RESCALA the
design of reactive applications is improved according to several metrics, including num-
ber of composable abstractions and removed callbacks [69].

5.2 Integration with Object-Oriented Design

Reactive languages provide abstractions to represent time-changing values. For sim-
plicity, we assume the Flapjax terminology established in Section 4.1 and we refer to
these abstractions as behaviors. Behavior values are bound to expressions that capture
the dependencies over other values. For example, in Figure 12, Line 5, the elapsedB

value is bound to the behavior expression nowB-clickTmsB. It is unclear, however, how
behaviors should integrate with OO design.

We believe that behaviors should be part of the interface of an object and clients
should attach to public behaviors to build complex reactive expressions. Private behav-
iors should instead model functionally dependent values that are consumed only inside
the object. Clearly, object encapsulation should be supported to hide implementation
details from clients. These results can be trivially achieved by applying visibility mod-
ifiers to behaviors, but the next steps in the integration with OO design require more
investigation.

An open question is whether behavior expressions can be reassigned. A negative
answer leads to a design more similar to method bodies in most OO languages: They
are statically defined at development time and at runtime can only be executed. On the
contrary, modifiable behaviors imply a design similar to fields that can be accessed by
getter and setter methods. In that case, behavior expressions would be changeable. Since
behavior expressions capture the dependencies over other application entities, allowing
their reassignment introduces a potentially excessive degree of dynamicity, especially
if behavior expressions can be reassigned from outside the object. Nevertheless, in a
large application, it can happen that the dependencies of a long-lived component are
not known when the component is instantiated and, depending on the evolution of the
system, must be assigned during its lifetime.

1 For example, the .NET framework provides the
System.Collections.ObjectModel.ObservableCollection<T> class which exposes to
the clients the PropertyChanged and the CollectionChanged events.

250 G. Salvaneschi and M. Mezini

While in the existing literature behaviors are usually assigned and not modified later,
this mostly seems due to accidental circumstances rather than justified by design con-
siderations. First, the use cases provided in literature are mostly small examples in
which reassignment is not really needed. Second, the functional flavor of the exist-
ing solutions presumably favors single assignment. Third, reassignment complicates
the reactive model both from an implementation and a semantic standpoint, so non re-
assignment has been favored also for the sake of simplicity. As a result, we still lack a
broad discussion of these issues that concretely justifies the preference for a model or
the other.

Another open issue concerns inheritance. Should it be possible to override a reac-
tive value with a new dependency expression or refer to the overridden one via super?
Intuitively, this seems desirable, but the consequences on the propagation model need
careful investigation as well as the expected benefits. A final consideration is about
polymorphism. We envisage a scenario in which reactive entities are late bound – like
objects – and the dynamic type of the reactive value captures the dependencies over the
other entities of the application.

In summary, while reactive abstractions have been applied in the context of OO lan-
guages before, previous approaches focused on reactive fragments that only superfi-
cially challenge OO design. Consequently, we still lack a systematic investigation of
the interaction between OO features and reactive abstractions. A starting point for our
work is [44] which focuses on the specific scenario of an application in a functional
reactive style interfacing with an OO graphic library.

5.3 Efficient Reactive Expressions

Reactive languages enable to define arbitrary constraints on dependencies between ob-
jects and leave the framework shouldering the recomputation of the dependent objects.
However, as shown in Section 4.1, current approaches enforce immutability and recom-
pute dependent objects every time, which negatively impacts efficiency. On the other
hand, reactive collections (Section 4.5) overcome this problem by applying advanced
strategies such as update incrementalization for a predefined set of operators.

Unfortunately, optimizations are provided out-of-the-box for built-in operators and
are not at the fingertips of end developers. As discussed in Section 2.4, in certain cir-
cumstances, only domain knowledge enables the developer to provide a mechanism that
supports incremental updates. Hence, a predefined set of operators is not sufficient.

Motivated by the above observations, a fundamental step in our research roadmap is
to design a framework that combines the open approach of reactive languages, which
support arbitrary reactive computations, with the efficiency of built-in reactive data
structures. This solution overcomes the frustrating state of the art, where efficient reac-
tive data structures and reactive languages are separate worlds. We will follow two lines
of research.

As a first step toward this goal, we aim at bringing efficient built-in operators to
reactive abstractions. We will provide a variety of efficient operators that seamlessly
operate on reactive collections and reactive abstractions. Highly efficient libraries will
be designed along the lines of [76,66], but integrated with the abstractions of existing
reactive languages. For example, by allowing behavior-like expressions in the predicate

Towards Reactive Programming for Object-Oriented Applications 251

of a filter operator or by modeling the result of the reactive operators as behaviors. Pre-
defined operators must cover the most common applicative scenarios such as collections
and relational operations.

The second step of research will aim at reconciling the openness of reactive lan-
guages with efficient reactive operators. This is only possible if the optimization of
generic computations is available to application developers. Optimizing a particular
step of a reactive computation process must be handy: Providing a faster version of a
reactive computation must be as easy as – say – overriding an existing method.

Our idea is to separate the creation of dependent objects, which is performed
from scratch, from the maintenance of objects. In the default case, both creation
and maintenance are accomplished by complete recomputation, i.e. by applying the
function that relates basic and derived objects, for example filter in the list2 =

list1.filter(x>10) expression. However, the programmer can provide refinements
for the maintenance case. Those refinements can be implemented by imperative al-
gorithms or by taking advantage of domain-specific knowledge to efficiently update
dependent objects. In this way, efficient event-based computations that apply the opti-
mization principles well-known from the OO context can be conveniently hidden behind
high level operators expressed in a functional style. Reactive objects are then connected
by those operators to compose constraints. To further open the framework, the program-
mer should be able to refine existing operators with a more efficient version when better
performance is needed. Finally, late binding can be leveraged to obtain the dynamic se-
lection of the best operator (i.e., the best refinement for a set of types).

A second line of research concerns optimizations that must take into account a
broader scope than single operators. For example, considerable performance improve-
ment in relational expressions comes from reordering by anticipating selections and
deferring joins. In addition, those optimizations must be performed, at least partially,
at runtime, to allow cross-module analysis. Deeply embedded DSLs come with power-
ful interfaces to support custom optimizations for DSL expressions embedded into the
host languages. For example, in LINQ, the developer is provided with the raw compiler
output in the form of an – internally untyped – expression tree. Scala-virtualized [55]
employs a similar approach, but fosters more typing guarantees. We will investigate
the applicability of these techniques to optimizing reactive expressions. However, these
mechanisms are quite low-level, optimizations are hard to perform and require highly
specialized skills. It has been reported that building a LINQ provider for the RavenDB
database took more time than building the database [24]. Also, they do not support dy-
namic optimizations. We will opt for hiding the complexity of those techniques behind
higher level abstractions.

5.4 Propagation Model

To enforce the constraints defined by the user, reactive languages keep a runtime model
of the dependencies in the application. Usually, this model is a directed graph in which
a change in a node triggers an update over the transitive closure of the dependency re-
lation. Reactive languages mostly enforce a push propagation model in which changes
are proactively applied to dependents in the graph [13,54]. However, also lazy mod-
els with invalidation of the cached values and on-demand recomputation have been

252 G. Salvaneschi and M. Mezini

proposed [52]. The propagation of the changes along the graph has a considerable per-
formance impact.

Optimization techniques regarding the propagation model have been already pro-
posed. For example, lowering is a technique that applies static analysis to collapse sev-
eral reactive nodes in the graph into one [9]. As a result, the computation is moved
from the reactive model to the usual (and more efficient) call-by-value system. The
Yampa FRP framework employs a similar approach but merges the computations at
runtime [59]. Based on the above observations, one research direction that we plan to
follow concerns optimizations related to the propagation model.

First, alternative graph constructions can lead to observationally equivalent reactive
models. Consequently, performance considerations can guide the choice. For example,
as noted in [9], always collapsing the computations can lead to poor performance in cer-
tain cases. Consider the following code snippet from [9]. A time-consuming operation
depends on an operation whose output rarely changes. The second operation, instead,
depends on a frequently changing value:

(time-consuming-op

(infrequently-changing-op frequent-emitter))

Consider the case in which this code results in three nodes: A source node
frequent-emitter, an infrequently-changing-op node which depends on the first
one, and a time-consuming-op node, which depends on infrequently-changing-op.
Every time frequent-emitter emits a new value, infrequently-changing-op is
executed. Since the outcome of infrequently-changing-op rarely changes,
time-consuming-op is executed just a few times. Instead, if
infrequently-changing-op and time-consuming-op are collapsed into the same
node, time-consuming-op is executed at the same rate frequent-emitter changes its
value. This effect is even more significant in languages like Scala.React, which apply
collapsing of computations as the principal composition mechanism. In summary,
collapsing should not be accepted or refused in its entirety. Code analysis or dynamic
techniques must be applied to detect in which case each solution leads to the best
results.

A second aspect of the propagation model that needs further investigation is the
choice of a push-based implementation that is adopted by most reactive languages. Ac-
cording to the design space presented in Section 2, this solution favors caching over on-
demand recomputation. The choice is motivated by a constraint: A push-based solution
is necessary to guarantee that possible side effects in the reaction are really performed.
However, change propagation does not always involve side effects. An optimization
should explore the space between caching and on-demand recomputation and provide
a convenient compromise. For example, reactive data structures dynamically switch to
a caching strategy when the requests exceed a threshold [76].

This solution is quite simple and does not consider factors like the current machine
load. For example, if the load is low, it may be convenient to recompute cached re-
active values even if they are rarely requested. On the other hand, with heavy load,
this strategy can further degrade the performances without providing significant bene-
fits. More advanced approaches relying on concepts from control systems need to be

Towards Reactive Programming for Object-Oriented Applications 253

investigated. The latter have been, e.g., explored for parallel data structures to pro-
vide the best performance adapting to different machines, configurations, and work-
loads [22].

Finally, update propagation models are common to both reactive languages and
event-based systems. The former use these models to propagate updates across depen-
dencies, the latter to trigger dependent events [34]. Since these mechanisms are more
and more used in programming languages, an obvious question is if those function-
alities should be supported at the VM level. In previous work, starting from similar
considerations, we investigated dedicated VM support for AOP [7]. Research work on
runtime environments which natively support the concept of reactive memory was re-
cently carried out at the OS level [20]. Implementing a similar approach in a managed
environment which specifically supports propagation of changes across reactive entities
is still a research challenge.

A second research direction is optimization by design. This approach is enabled by
making the performance implications of the language abstractions explicit and leaving
the choice in the hands of the programmer. Current reactive languages focus on ex-
pressivity rather than performance. In practice, the programmer has no clear control of
how performance is affected by the design choices. Unlike reactive languages, dataflow
languages, like Esterel and LUSTRE, intentionally limit the expressive power of the
available abstractions to achieve memory and time-bound execution. Attempts to limit
expressivity to improve performances have already been done in the reactive languages
community. For example, real-time FRP [75] is a time-bound and space-bound subset
of FRP. However, real-time FRP is a closed language [48], i.e., it is not embedded in
a larger general-purpose language, which considerably limits the applicability of this
approach.

In summary, programmers face a black-or-white choice: Relinquish performance for
expressivity or abdicating abstraction for efficiency. Instead, reactive languages should
incorporate reactive primitives that, at the cost of a reduced expressive power, have a
high-performance profile. Static analysis or a dedicated static type system can ensure
that those primitives are not combined with the rest of the reactive system in a way that
cancels the performance improvement.

A starting point is to implement lexically scoped dependencies. In current reactive
approaches, reactive dependencies are established dynamically. When, during the eval-
uation of an expression, a reactive value is found, the value is inserted in the dependency
graph. This approach introduces considerable overhead. In fact, the evaluation is slowed
down by the process of double-liking-dependent values with their dependencies. Sim-
ilarly, when the value of a node changes, it must be unlinked from the nodes depend-
ing on it. This behavior is required to keep the graph updated, since dependencies can
change dynamically. For example, the value of the expression if(a) b else c depends
on either b or c on the bases of a. As a consequence, the structure of the graph is not
fixed but must be continuously restructured to capture the current dependencies [52]. In
contrast, lexically scoped dependencies are fixed. This results in regions in which the
graph structure does not change, avoiding the computations required to keep the graph
updated and improving performances.

254 G. Salvaneschi and M. Mezini

5.5 Seamless Integration of Reactive Programming

Current reactive programming solutions show different degrees of automation in
tracking computational dependencies. In languages like Scala.React, the user speci-
fies time-changing values – signals, in Scala.React terminology – and binds them to
a reactive expression. During the evaluation of the reactive expression, when a time-
changing value is encountered, it is added to the set of values the signal depends on.
Time-changing values are identified by a special type, e.g. Var[Int], which is used by
the framework to recognize them and establish the correct dependencies. Flapjax and
FrTime are more flexible and support transparent programming [13]: when a function
receives a reactive value as an actual parameter, the function is transparently lifted to
an equivalent function that produces a time-changing value. Function lifting is adopted
in most implementations of functional-reactive programming (e.g., [25]). However, all
these approaches require that the programmer identifies the primitive reactive values
manually, by assigning them a special type.

The solutions discussed so far have several disadvantages. First, they are error-prone.
Developers can forget to mark some dependencies as reactive. In that case, dependent
values are not correctly updated when a change occurs. Second, reactivity must be
planned in advance by identifying all the sources of reaction. Also, this approach does
not support a gradual migration to a reactive style: existing applications require consid-
erable effort to manually identify all the sources of change and wrap them with reactive
types. An approach that automatically identifies the values a reactive value depends on
can solve the aforementioned issues. In such a solution, when an expression marked as
reactive is evaluated, it implicitly adds to its dependencies all the values that are read
during the evaluation. When a change in one of those values occurs, the expression is
automatically reevaluated.

A similar approach has been investigated by Ostermann et al. [60] in the context of
advanced AOP languages. In [60], the authors present Alpha, a statically typed AOP
language that demonstrates the role of an expressive pointcut mechanism in enhancing
software modularity. In Alpha, pointcuts are Prolog [72] logic queries. Due to the ex-
pressive power of the pointcut language, it is possible to define a pointcut that captures
all the write operations to the fields that were evaluated during a previous computa-
tion. In this way, when one of these values changes, the computation can be triggered
again to obtain the new result. Alpha is an experimental language based on an ad hoc
interpreter. An open problem is to make such a functionality efficiently available in
mainstream languages. A first approach requires to implement a static analyzer that
detects all the fields read inside a control flow. Write accesses to those fields are then
intercepted to detect any change.

Beside efficient implementation, seamless integration of reactive programming re-
quires to investigate some methodological aspects. For example, it can be an invaluable
resource to refactor existing software to a reactive style. However, if the computation
is repeated every time that an input changes, side effects are played again – a behavior
that is typically undesired. For this reason, the migration to reactive programming also
requires to refactor the application to move side effects out of signal expressions.

Towards Reactive Programming for Object-Oriented Applications 255

1 a = 1

2 b := 2∗a
3 c := 3∗a
4 d := b + c

5

6 a = 2 // b=4,c=6,d=10

7

(a)

b

a

c

d

(b)

b

a c

d
M1 M2

(c)

Fig. 13. A reactive program (a). The associated dependency graph (b). A possible distribution of
the dependency graph over different hosts (c).

5.6 Distribution

Reactive applications include a wide class of distributed systems, like publish-subscribe
systems [29], tuple spaces [36], and message-oriented middleware [42]. These systems
typically use inversion of control to decouple the components of the application. As
a result, they suffer from the shortcomings of the Observer pattern mentioned in Sec-
tion 4.3. Our research roadmap includes exploring the use of reactive abstractions in
the distributed setting. As a first step, we plan to make behaviors available remotely.
Remote reactive objects are then similar to remote objects in Java RMI: clients can
publish and lookup them through a public registry. In this scenario, the components in
the distributed system expose time-changing behaviors to other components and build
reactive computations by composing remote behaviors.

A sound design of such system is challenging. Reactive languages like Flapjax,
FrTime or Scala.React organize the reactive values in a dependency graph in which
each reactive object is connected to the objects it depends on. When a value in the
graph changes, the change is transitively propagated to all the dependents to update
them. The update order is controlled to enforce consistency properties in the propaga-
tion of the changes among behaviors. Consider the code in Figure 13(a) where a,b,c
and d are behaviors and := denotes a constraint among behaviors (not an assignment).
When a changes, b, c, and d must be recomputed according to the dependency graph in
Figure 13(b). If the evaluation order is a-b-d-c, d must be recomputed again to reflect the
last change of c. Consequently, the expression that computes d is unnecessarily evalu-
ated twice. More seriously, d is assigned an intermediate value – reflecting the change of
b but not yet of c – that is spurious and only due to the propagation mechanism. Tempo-
rary inconsistencies of the propagation system during the propagation are referred to as
glitches. Reactive languages typically enforce the absence of glitches (glitch-freedom)
by updating the graph in topological order [51,13]. For example, the update order b-c-d
guarantees glitch freedom.

Current reactive languages enforce glitch-freedom only on single hosts, but incon-
sistencies can still arise when inter-host communication is involved. Ensuring glitch-
freedom in a distributed setting is not easy because the dependency graph is distributed

256 G. Salvaneschi and M. Mezini

over different machines. In Figure 13(c) the graph spans over the machines M1 and
M2. In this case, the propagation order is likely to be a-b-d-c-d because propagation
on a single machine is probably faster than the one over the network, i.e., the message
a->b is delivered before a->c. Applying the existing (local) algorithms to the distributed
environment would require to pause the computation in all hosts and guide the change
propagation across the distributed graph according to the topological order. However,
this solution is clearly inefficient and requires a centralized manager that schedules the
updates across the distributed system.

We envisage the following research directions. A first step consists of avoiding se-
quential updates in the graph. We plan to develop an algorithm for distributed reactive
programming that maximizes the degree of parallelism among the hosts in the recom-
putation of the dependent nodes: independent nodes can be updated in parallel. This
problem concerns parallelism in the same propagation phase along the graph. Another
aspect concerns the parallelization of several update phases initiated by different hosts.
A starting point is to consider the reactive values in the distributed reactive system as
shared values in a concurrent system. An implementation can leverage distributed soft-
ware transactional memories [71], which have been proved to efficiently scale up to
large-scale clusters [6].

Web applications are a special case of distributed systems where only a client and a
server interact. We expect that the implementation of a glitch-free propagation system
can be optimized leveraging this simplification. For example, Javascript client-side code
is single threaded, which greatly reduces the conflicts that can show up in the access to
shared reactive objects.

Another research direction concerns the integration of the middleware that provides
reactive programming with existing enterprise containers. In those systems, developers
adopt conventions on the structure of certain objects and the container automatically
enforces certain properties for them. For example, Enterprise Java Beans are automat-
ically persisted by the container. We envisage a scenario in which, in a similar way,
certain objects are automatically updated by the container thanks to the changes that
propagate across the distributed dependency system.

Finally, an open research question is to find a balance in the trade-off between the
properties enforced by the propagation system and performance. For example, in an en-
vironment where communications are not reliable, it can be reasonable to increase the
efficiency of the propagation system at the cost of introducing glitches. The implemen-
tation of distributed reactive programming by Carreton et. al. [10] is a contribution in
this direction focusing on mobile networks in the context of pervasive systems. In that
framework, since the network can be extremely unreliable and hosts can experience
temporary lack of connectivity, loose coupling is favored over safety and the propaga-
tion system in not glitch-free by design.

5.7 Evaluation

To make sure that our research leads to concrete results, we plan to continuously eval-
uate how it progresses. Evaluating language design is not easy, because design quality
is hard to capture with synthetic metrics and design choices have long-term effects
which are hard to predict. For example, the impact of programmers’ experience or the

Towards Reactive Programming for Object-Oriented Applications 257

maintainability of large systems can be evaluated only when a considerable number of
projects have been developed. As a consequence, we believe that a priori reasoning and
careful analysis of the available options remain fundamental steps [47]. Nevertheless,
where applicable, we plan to perform objective evaluations of our results.

Performance can be evaluated effectively by running benchmarks. For example, for-
mer studies compared the performance of OO programming (Java) with the mixed
OO-functional style (Scala) in the context of parallel applications and multicore envi-
ronments [61]. We believe that similar experiments can evaluate the performance impact
of reactive abstractions compared to the traditional solutions for reactive applications.

Other aspects of the language design can be evaluated by using software metrics.
Common metrics include coupling and cohesion, lines of code, number of operations
and others [30]. We plan to adopt this approach to evaluate our design choices in the
advanced state of our research, when studies can comprise several artifacts. Other re-
searchers already used metrics to validate language design choices in reactive appli-
cations. Recently, the combined use of synthetic metrics and manual inspection (to
investigate specific issues) was successfully applied to evaluate event quantification in
software product lines [21].

Acknowledgments. This work is supported in part by the European Research Coun-
cil, grant No. 321217 and by the German Federal Ministry of Education and Research
(Bundesministerium für Bildung und Forschung, BMBF) under grant No. 16BY1206E
“Sinnodium”.

References

1. Acar, U.A., Ahmed, A., Blume, M.: Imperative self-adjusting computation. In: Proceedings
of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, pp. 309–322. ACM, New York (2008)

2. Acar, U.A., Blelloch, G.E., Harper, R.: Adaptive functional programming. ACM Trans. Pro-
gram. Lang. Syst. 28(6), 990–1034 (2006)

3. Android developers web site, http://developer.android.com/index.html
4. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design, semantics,

implementation. Science of Computer Programming 19(2), 87–152 (1992)
5. Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U.A., Pasquin, R.: Incoop: MapReduce for in-

cremental computations. In: Proceedings of the 2nd ACM Symposium on Cloud Computing,
SOCC 2011, pp. 7:1–7:14. ACM, New York (2011)

6. Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for large
scale clusters. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2008, pp. 247–258. ACM, New York (2008)

7. Bockisch, C., Kanthak, S., Haupt, M., Arnold, M., Mezini, M.: Efficient control flow quantifi-
cation. In: Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications, OOPSLA 2006, pp. 125–138. ACM,
New York (2006)

8. Bodden, E., Shaikh, R., Hendren, L.: Relational aspects as tracematches. In: Proceedings of
the 7th International Conference on Aspect-oriented Software Development, AOSD 2008,
pp. 84–95. ACM, New York (2008)

http://developer.android.com/index.html

258 G. Salvaneschi and M. Mezini

9. Burchett, K., Cooper, G.H., Krishnamurthi, S.: Lowering: a static optimization technique for
transparent functional reactivity. In: Proceedings of the 2007 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-based Program Manipulation, PEPM 2007, pp. 71–80.
ACM, New York (2007)

10. Lombide Carreton, A., Mostinckx, S., Van Cutsem, T., De Meuter, W.: Loosely-coupled
distributed reactive programming in mobile ad hoc networks. In: Vitek, J. (ed.) TOOLS 2010.
LNCS, vol. 6141, pp. 41–60. Springer, Heidelberg (2010)

11. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative language for real-
time programming. In: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL 1987, pp. 178–188. ACM, New York (1987)

12. Ceri, S., Widom, J.: Deriving production rules for incremental view maintenance. In: Pro-
ceedings of the 17th International Conference on Very Large Data Bases, VLDB 1991,
pp. 577–589. Morgan Kaufmann Publishers Inc., San Francisco (1991)

13. Cooper, G.H., Adsul, B.: Embedding dynamic dataflow in a call-by-value language. In: Ses-
toft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 294–308. Springer, Heidelberg (2006)

14. Microsoft Corporation. C# language specification. version 3.0 (2007),
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx

15. Cugola, G., Margara, A.: TESLA: a formally defined event specification language. In: Pro-
ceedings of the Fourth ACM International Conference on Distributed Event-Based Systems,
DEBS 2010, pp. 50–61. ACM, New York (2010)

16. Cugola, G., Margara, A.: Processing flows of information: From data stream to complex
event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012)

17. Dabney, J.B., Harman, T.L.: Mastering SIMULINK 4, 1st edn. Prentice Hall PTR, Upper
Saddle River (2001)

18. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

19. Demers, A., Gehrke, J., Hong, M., Riedewald, M., White, W.: Towards expressive publish/-
Subscribe systems. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopou-
los, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896,
pp. 627–644. Springer, Heidelberg (2006)

20. Demetrescu, C., Finocchi, I., Ribichini, A.: Reactive imperative programming with dataflow
constraints. In: Proceedings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA 2011, pp. 407–426. ACM,
New York (2011)

21. Dyer, R., Rajan, H., Cai, Y.: An exploratory study of the design impact of language fea-
tures for aspect-oriented interfaces. In: 11th International Conference on Aspect-Oriented
Software Development, AOSD 2012 (March 2012)

22. Eastep, J., Wingate, D., Agarwal, A.: Smart data structures: an online machine learning ap-
proach to multicore data structures. In: Proceedings of the 8th ACM International Conference
on Autonomic Computing, ICAC 2011, pp. 11–20. ACM, New York (2011)

23. Eclipse IDE Web site, http://www.eclipse.org/
24. Eini, O.: The pain of implementing LINQ providers. Queue 9(7), 10:10–10:22 (2011)
25. Elliott, C.: Functional implementations of continuous modeled animation. In: Palamidessi,

C., Meinke, K., Glaser, H. (eds.) ALP 1998 and PLILP 1998. LNCS, vol. 1490, pp. 284–299.
Springer, Heidelberg (1998)

26. Elliott, C., Hudak, P.: Functional reactive animation. In: Proceedings of the Second ACM
SIGPLAN International Conference on Functional Programming, ICFP 1997, pp. 263–273.
ACM, New York (1997)

27. Elliott, C.M.: Push-pull functional reactive programming. In: Proceedings of the 2nd ACM
SIGPLAN Symposium on Haskell, Haskell 2009, pp. 25–36. ACM, New York (2009)

http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx
http://www.eclipse.org/

Towards Reactive Programming for Object-Oriented Applications 259

28. Eugster, P., Jayaram, K.R.: EventJava: An extension of Java for event correlation. In:
Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 570–594. Springer, Heidelberg
(2009)

29. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of publish/sub-
scribe. ACM Comput. Surv. 35(2), 114–131 (2003)

30. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares, S.,
Ferrari, F., Khan, S., Filho, F.C., Dantas, F.: Evolving software product lines with aspects: an
empirical study on design stability. In: Proceedings of the 30th International Conference on
Software Engineering, ICSE 2008, pp. 261–270. ACM, New York (2008)

31. Foster, N., Harrison, R., Freedman, M.J., Monsanto, C., Rexford, J., Story, A., Walker, D.:
Frenetic: a network programming language. In: Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2011, pp. 279–291. ACM, New
York (2011)

32. FreeCol game Web site, http://www.freecol.org/
33. Freeman-Benson, B.N.: Kaleidoscope: mixing objects, constraints, and imperative program-

ming. In: OOPSLA/ECOOP 1990, pp. 77–88. ACM, New York (1990)
34. Gasiunas, V., Satabin, L., Mezini, M., Núñez, A., Noyé, J.: EScala: modular event-driven

object interactions in Scala. In: AOSD 2011, pp. 227–240. ACM, New York (2011)
35. Gautier, T., Le Guernic, P., Besnard, L.: SIGNAL: A declarative language for synchronous

programming of real-time systems. In: Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274,
pp. 257–277. Springer, Heidelberg (1987)

36. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7(1),
80–112 (1985)

37. Glazed Lists Web site, http://www.glazedlists.com/
38. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow programming

language LUSTRE. Proceedings of the IEEE 79(9), 1305–1320 (1991)
39. Hammer, M.A., Acar, U.A., Chen, Y.: CEAL: a C-based language for self-adjusting compu-

tation. In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, pp. 25–37. ACM, New York (2009)

40. Hammer, M.A., Neis, G., Chen, Y., Acar, U.A.: Self-adjusting stack machines. In: Proceed-
ings of the, ACM International Conference on Object-oriented Programming Systems Lan-
guages and Applications, OOPSLA 2011, pp. 753–772. ACM, New York (2011)

41. Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ.
In: Proceedings of the 17th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA 2002, pp. 161–173. ACM, New York
(2002)

42. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java message service. Sun Mi-
crosystems Inc., Santa Clara (2002)

43. Hudak, P., Courtney, A., Nilsson, H., Peterson, J.: Arrows, robots, and functional reactive
programming. In: Jeuring, J., Jones, S.L.P. (eds.) AFP 2002. LNCS, vol. 2638, pp. 159–187.
Springer, Heidelberg (2003)

44. Ignatoff, D., Cooper, G.H., Krishnamurthi, S.: Crossing state lines: Adapting object-oriented
frameworks to functional reactive languages. In: Hagiya, M. (ed.) FLOPS 2006. LNCS,
vol. 3945, pp. 259–276. Springer, Heidelberg (2006)

45. JMeter developers Web site, http://jakarta.apache.org/jmeter/index.html
46. Johnson, G.W.: LabVIEW Graphical Programming: Practical Applications in Instrumenta-

tion and Control, 2nd edn. McGraw-Hill School Education Group (1997)
47. Kiczales, G., Mezini, M.: Separation of concerns with procedures, annotations, advice and

pointcuts. In: Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 195–213. Springer, Hei-
delberg (2005)

http://www.freecol.org/
http://www.glazedlists.com/
http://jakarta.apache.org/jmeter/index.html

260 G. Salvaneschi and M. Mezini

48. Kieburtz, R.B.: Implementing closed domain-specific languages (Abstract of invited talk).
In: Taha, W. (ed.) SAIG 2000. LNCS, vol. 1924, pp. 1–2. Springer, Heidelberg (2000)

49. Krishnaswami, N.R., Benton, N., Hoffmann, J.: Higher-order functional reactive program-
ming in bounded space. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2012, pp. 45–58. ACM, New York
(2012)

50. LiveLinq Web site,
http://www.componentone.com/SuperProducts/LiveLinq/

51. Maier, I., Odersky, M.: Deprecating the Observer Pattern with Scala.react. Technical report
(2012)

52. Maier, I., Rompf, T., Odersky, M.: Deprecating the Observer Pattern. Technical report (2010)
53. McDirmid, S., Hsieh, W.C.: SuperGlue: Component programming with object-oriented sig-

nals. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 206–229. Springer, Heidel-
berg (2006)

54. Meyerovich, L.A., Guha, A., Baskin, J., Cooper, G.H., Greenberg, M., Bromfield, A., Krish-
namurthi, S.: Flapjax: a programming language for Ajax applications. In: Proceeding of the
24th ACM SIGPLAN Conference on Object-oriented Programming Systems Languages and
Applications, OOPSLA 2009, pp. 1–20. ACM, New York (2009)

55. Moors, A., Rompf, T., Haller, P., Odersky, M.: Scala-virtualized. In: Proceedings of the ACM
SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation, PEPM 2012,
pp. 117–120. ACM, New York (2012)

56. Myers, B.A., Giuse, D.A., Dannenberg, R.B., Kosbie, D.S., Pervin, E., Mickish, A., Zan-
den, B.V., Marchal, P.: Garnet: Comprehensive support for graphical, highly interactive user
interfaces. Computer 23(11), 71–85 (1990)

57. Myers, B.A., McDaniel, R.G., Miller, R.C., Ferrency, A.S., Faulring, A., Kyle, B.D., Mick-
ish, A., Klimovitski, A., Doane, P.: The Amulet environment: New models for effective user
interface software development. IEEE Trans. Softw. Eng. 23(6), 347–365 (1997)

58. Newton, R., Morrisett, G., Welsh, M.: The Regiment Macroprogramming System. In: 6th
International Symposium on Information Processing in Sensor Networks, IPSN 2007, pp.
489–498 (2007)

59. Nilsson, H., Courtney, A., Peterson, J.: Functional reactive programming, continued. In: Pro-
ceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell 2002, pp. 51–64. ACM,
New York (2002)

60. Ostermann, K., Mezini, M., Bockisch, C.: Expressive pointcuts for increased modularity. In:
Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 214–240. Springer, Heidelberg (2005)

61. Pankratius, V., Schmidt, F., Garreton, G.: Combining functional and imperative program-
ming for multicore software: An empirical study evaluating Scala and Java. In: 2012 34th
International Conference on Software Engineering (ICSE), pp. 123–133 (2012)

62. Pearce, D.J., Noble, J.: Relationship aspects. In: Proceedings of the 5th International Confer-
ence on Aspect-oriented Software Development, AOSD 2006, pp. 75–86. ACM, New York
(2006)

63. Pouzet, M.: Lucid Synchrone, version 3. Tutorial and reference manual. Université Paris-
Sud, LRI (April 2006)

64. Rajan, H., Leavens, G.T.: Ptolemy: A language with quantified, typed events. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 155–179. Springer, Heidelberg (2008)

65. http://www.stg.tu-darmstadt.de/media/st/
publications/oo_reactive_report.pdf

66. Rothamel, T., Liu, Y.A.: Generating incremental implementations of object-set queries. In:
Proceedings of the 7th International Conference on Generative Programming and Component
Engineering, GPCE 2008, pp. 55–66. ACM, New York (2008)

http://www.componentone.com/SuperProducts/LiveLinq/
http://www.stg.tu-darmstadt.de/media/st/publications/oo_reactive_report.pdf
http://www.stg.tu-darmstadt.de/media/st/publications/oo_reactive_report.pdf

Towards Reactive Programming for Object-Oriented Applications 261

67. Sakurai, K., Masuhara, H., Ubayashi, N., Matsuura, S., Komiya, S.: Association aspects. In:
Proceedings of the 3rd International Conference on Aspect-oriented Software Development,
AOSD 2004, pp. 16–25. ACM, New York (2004)

68. Salvaneschi, G., Drechsler, J., Mezini, M.: Towards distributed reactive programming. In:
De Nicola, R., Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 226–235.
Springer, Heidelberg (2013)

69. Salvaneschi, G., Hintz, G., Mezini, M.: REScala: Bridging between object-oriented and func-
tional style in reactive applications. In: Proceedings of the 13th International Conference on
Aspect-Oriented Software Development, AOSD 2014. ACM, New York (2014)

70. Salvaneschi, G., Mezini, M.: Reactive behavior in object-oriented applications: an analysis
and a research roadmap. In: Proceedings of the 12th Annual International Conference on
Aspect-oriented Software Development, AOSD 2013, pp. 37–48. ACM, New York (2013)

71. Shavit, N., Touitou, D.: Software transactional memory. Distributed Computing 10(2),
99–116 (1997)

72. Sterling, L., Shapiro, E.: The art of Prolog: advanced programming techniques, 2nd edn. MIT
Press, Cambridge (1994)

73. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink to Lustre.
ACM Trans. Embed. Comput. Syst. 4(4), 779–818 (2005)

74. Van Ham, J.M., Salvaneschi, G., Mezini, M., Noyé, J.: JEScala: Modular coordination with
declarative events and joins. In: Proceedings of the 13th International Conference on Aspect-
Oriented Software Development, AOSD 2014. ACM, New York (accepted for publication,
2014)

75. Wan, Z., Taha, W., Hudak, P.: Real-time frp. In: Proceedings of the Sixth ACM SIGPLAN
International Conference on Functional Programming, ICFP 2001, pp. 146–156. ACM, New
York (2001)

76. Willis, D., Pearce, D.J., Noble, J.: Caching and incrementalisation in the Java query language.
In: Proceedings of the 23rd ACM SIGPLAN Conference on Object-oriented Programming
Systems Languages and Applications, OOPSLA 2008, pp. 1–18. ACM, New York (2008)

77. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In:
Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2006, pp. 407–418 (2006)

78. Xiao, Y., Li, W., Siekkinen, M., Savolainen, P., Yla-Jaaski, A., Hui, P.: Power management
for wireless data transmission using complex event processing. IEEE Trans. Comput. 61(12),
1765–1777 (2012)

Author Index

Akşit, Mehmet 27

Chiba, Shigeru 70

de Boer, Frank S. 1
de Gouw, Stijn 1

Eichberg, Michael 193

Figueroa, Ismael 145

Garcia, Alessandro 193

Johnsen, Einar Broch 1

Klein, Jacques 109
Kohn, Andreas 1

Macia, Isela 193
Malakuti, Somayeh 27
Mezini, Mira 193, 227
Mitschke, Ralf 193
Mouelhi, Tejeddine 109

Nain, Gregory 109
Nguyen, Phu H. 109

Salvaneschi, Guido 227

Tabareau, Nicolas 145
Tanter, Éric 145
Traon, Yves Le 109

Wong, Peter Y.H. 1

Zhuang, YungYu 70

	Editorial
	Guest Editors’ Foreword
	Guest Editor’s Foreword
	Editorial Board
	Table of Contents
	Runtime Verification and Analysis
	Run-Time Assertion Checking of Data- andProtocol-Oriented Properties of Java Programs:An Industrial Case Study
	1 Introduction
	2 The Modeling Framework
	2.1 Communication View
	2.2 Grammars
	2.3 Discussion

	3 Tool Architecture
	3.1 Workflow
	3.2 Implementation

	4 Case Study
	4.1 Specification
	4.2 Experiment

	5 Conclusion
	References

	Event ModulesModularizing Domain-Specific Crosscutting RV Concerns
	1 Introduction
	2 Problem Statement
	2.1 Typical Concerns in RV Techniques
	2.2 A Design Space for RV DSLs
	2.3 Shortcomings of the Existing RV DSLs w.r.t the Design Space
	2.4 Illustration of the Shortcomings

	3 Towards an RV Language Composition Framework
	3.1 Characteristic Features of RV Concerns
	3.2 Event Composition Model
	3.3 Motivations to Adopt Event Composition Model

	4 The EventReactor Language Composition Framework
	4.1 Specification of Event Types and Events
	4.2 Specification of RV Concerns
	4.3 Implementation of Reactor Types

	5 Runtime Event Processing in EventReactor
	5.1 The Execution Semantics of EventReactor
	5.2 An Illustration of the Runtime Behavior

	6 Illustration of the Expressiveness of Event Modules
	6.1 Recoverable Process by Example
	6.2 Recoverable Process in EventReactor

	7 Performance Evaluation
	8 Discussion
	9 Future Work
	References

	Best Papers of AOSD 2013
	Method Slots: Supporting Methods, Events,and Advices by a Single Language Construct
	1 Introduction
	2 Motivation
	3 DominoJ
	3.1 Method Slots
	3.2 Operators for Method Slots

	4 Evaluation
	4.1 The Implementation
	4.2 Microbenchmark
	4.3 Method Slots and Design Patterns
	4.4 The Event-Handler Paradigm
	4.5 The Aspect Paradigm
	4.6 Summary of the Coverage
	4.7 Event-Handler vs. Aspect

	5 Related Work
	6 Conclusions
	References

	Modularity and Dynamic Adaptationof Flexibly Secure Systems:Model-Driven Adaptive Delegationin Access Control Management
	1 Introduction
	2 Background
	2.1 Access Control
	2.2 Delegation
	2.3 Advanced Delegation Features
	2.4 Security-Driven Model-Based Dynamic Adaptation

	3 A Running Example
	4 Model-Driven Adaptive Delegation
	4.1 Overview of Our Approach
	4.2 Delegation Metamodel
	4.3 Transformations/Compositions
	4.4 Adaptation and Evolution Strategies

	5 Implementation and Evaluation
	5.1 OSGi (Equinox) as the Target Adaptive Execution Platform
	5.2 Kevoree as the Target Adaptive Execution Platform
	5.3 Evaluation and Discussion

	6 Related Work
	7 Conclusion and Future Work
	References

	Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice
	1 Introduction
	2 Prelude: Overview of Monadic Programming
	2.1 Monads Basics
	2.2 Plain Monadic Programming
	2.3 Polymorphism on the Monad Stack

	3 Introducing Aspects
	3.1 Join Point Model
	3.2 Aspect Deployment
	3.3 AspectWeaving

	4 Typing Aspects
	4.1 Typing Pointcuts
	4.2 Typing Aspects

	5 Typing Aspects, Formally
	5.1 Type Substitutions
	5.2 Statically Computing Least General Types
	5.3 Pointcut Safety
	5.4 Advice Type Safety
	5.5 Safe Aspects

	6 Open and Protected Modules, with Effects
	6.1 A Simple Example
	6.2 Protected Pointcuts
	6.3 Enforcing Control Flow Properties

	7 Controlling Effect Interference
	7.1 Distinguishing Aspect and Base Computation
	7.2 Interference between Multiple Aspects
	7.3 Interlude: Monad Views
	7.4 Beyond the Aspect/Base Distinction

	8 Language Extensions
	8.1 Cflow Pointcut
	8.2 SecureWeaving
	8.3 Privileged Aspects
	8.4 Execution Levels
	8.5 Reasoning about Language Extensions

	9 Discussion
	9.1 Supporting Equality on Functions
	9.2 Advising Overloaded Functions
	9.3 Obliviousness
	9.4 Technical Requirements of Our Model

	10 RelatedWork
	11 Conclusion
	References

	Modular Specification and Checkingof Structural Dependencies
	1 Introduction
	2 Architecture of Hibernate
	3 The Vespucci Approach
	3.1 High-Level Abstractions over Source Code
	3.2 Modeling Structural Dependencies
	3.3 Constraint Enforcement and Formal Semantics
	3.4 Tool Support
	3.5 On Modeling Methodology
	3.6 Scalability and Evolvability

	4 Evaluation
	4.1 Scalability
	4.2 Evolvability
	4.3 Threats to Validity

	5 Related Work
	6 Summary and Future Work
	References

	Towards Reactive Programming for Object-Oriented Applications
	1 Introduction
	2 Design Space in OO Languages
	2.1 On-Demand Recomputation
	2.2 Caching
	2.3 Tracking Dependencies
	2.4 Update Incrementalization
	2.5 Accumulating Changes

	3 Case Studies
	3.1 Design Choices in the Case Studies
	3.2 Problem Statement
	3.3 Lesson Learned from the Case Studies

	4 Analysis of Advanced Languages
	4.1 Reactive Languages
	4.2 Functional-Reactive Programming
	4.3 Observer and Event-Driven Programming
	4.4 Aspect-Oriented Programming
	4.5 Reactive Collections
	4.6 Constraint-Based Languages
	4.7 Synchronous Dataflow Languages
	4.8 Self-adjusting Computation
	4.9 Complex Event Processing

	5 A Research Roadmap
	5.1 Integration with Event-Based Programming
	5.2 Integration with Object-Oriented Design
	5.3 Efficient Reactive Expressions
	5.4 PropagationModel
	5.5 Seamless Integration of Reactive Programming
	5.6 Distribution
	5.7 Evaluation

	References

	Author Index

