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Abstract. Classification on spatial data is different from classical classification 
in that spatial context must be taken into account. In particular, the validation 
criterion functions should incorporate both classification accuracy and spatial 
accuracy. However, direct combination of the two accuracies is cumbersome, 
due to their different subjects and scales. To circumvent this difficulty, we 
develop a new criterion function that indirectly incorporates spatial accuracy 
into classification accuracy-based functions. Next, we formally introduce a set 
of ideal properties that an appropriate criterion function should satisfy, giving a 
more meaningful interpretation for the relative significance coefficient in the 
weighted scheme. Finally, we compare the proposed new criterion function 
with existing ones on a large data set for 1980 US presidential election. 
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1 Introduction 

Spatial data mining [1,2] is an important component of data mining. In the case of 
spatial contextual classification, the class label of each site is not only determined by 
the local attributes, but is affected by its neighbors as well. For example, besides the 
house itself, the house price is also affected by the neighborhoods. Thus, we need to 
pay special attention to spatial context in both the model construction (training) phase 
and the model testing (validation) phase. 

In this paper, we focus on a crucial component in the test phase, the validation 
criterion functions, which are used to evaluate the estimated class labeling against the 
true class labeling [3–5]. Appropriate validation criteria for geospatial data should 
capture both classification and spatial accuracies. However, traditional classification 
accuracies, such as classification rate, discard spatial information. One straightforward 
means of disambiguating the definition of a good multi-objective solution is to assign the 
accuracies different weights before combining them together. For instance, given 
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classification accuracy C and spatial accuracy S, the weighted scheme gives (1 − α)C + 
αS, where α is the relative significance coefficient, determined by the user according to 
his preference. However, because C is usually a classification rate-like measure with unit 
of percentage and S is a distance measure with unit of length,  direct combination is 
cumbersome and can be even meaningless, due to their totally different subjects and 
scales. Besides, spatial accuracy computation is usually expensive, which involves 
nearest neighbor search and distance evaluation. To circumvent this difficulty, we 
propose a new criterion function that, instead of evaluating near neighbor distance values, 
approximates distance rankings using contiguity matrix. Its effectiveness is validated on a 
real-world database. 

Table 1. Notations in the criterion functions 

notation Description 
a1 number of actual class 1 sites 
a0 number of actual class 0 sites, n=a1+a0 
p1 number of predicted class 1 sites 
p0 number of predicted class 0 sites, n=p1+p0 

a1 a1 ≡ z, actual vector for class 1,a1=aT 
1 a1   

a0 a0 ≡ 1-z,actual vector for class 0,a0= aT 
0 a0 

p1 p1 ≡ Z
∧ ,predicted vector for class 1,p1=pT 

1 p1 
p0 p0 ≡ 1-

∧
Z ,predicted vector for class 0, p0=pT 

0 p0 

 

Fig. 1. CA vs ADNP. “A” denotes actual (class 1) site. “P” denotes predicted (class 1) site. 

Overview. The rest of the paper is organized as follows. Section 2 introduces related 
work. Section 3 presents new criterion function. Section 4 discusses the ideal 
properties. Empirical results are reported in Section 5. Finally, Section 6 concludes 
this paper with some remarks.  

2 Related Work 

Geospatial classification problem can be informally described as follows. Given a 

spatial framework of n sites, where each site si has a class label zi ∈ {0,1} (we focus 

on binary classification in this paper) and a vector of explanatory attributes xi, we 

need to construct a classification model to predict the class label. The class label of 
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each site is not only determined by its own attributes, but also affected by its 

neighbors. The neighbor relationship N is often encoded in a contiguity matrix W for 

which W(i,j))> 0 if sites si and sj are neighbors, W(i,j)=0 otherwise. In this paper, we 

focus on how to evaluate the similarity between the estimated binary class labeling  

1ˆ ˆ ˆz [ ,..., ]nz z≡ and the true binary class labeling 1z [ ,..., ]nz z≡  .To ease the 

following  discussion, we first introduce the relevant notations in Table1, where 1 is 

a n-D vector of 1’s.  
In classification, the most popular criterion is probably the classification accuracy, 

CA. As defined in Eq. (1), it simply computes the fraction of data that is correctly 
classified.  

1 1 0 0p a p aT T

CA
n

+≡                                (1) 

For location prediction, however, spatial accuracy has to be considered and CA alone 
is not enough. See Fig. 1 for an example, where CA cannot distinguish the two 
predicted class labelings in Fig. 1a and b. Suppose we are interested in the sites of 
class 1, e.g., the location of gold mine. Domain scientist may prefer Fig.1b where 
predicted 1 locations are near actual 1 locations. In the case of gold mine, it is a 
reasonable expectation that even if we cannot accurately predict the real locations of 
gold mine, our predicted ones are not far away from them. 

Along this line, as defined in Eq. (2), Reference [6] proposed a new measure, 
Average Distance to Nearest Predicted (class 1) location from actual (class 1) location 
(ANDP )  

  ))(( ii
Ss

sNP,sd
a

ADNP
i


∈

≡
1 1

1                               (2)  

where S1 denotes the set of 1 sites,
1{ : [ ] 1}is a i =  , ( )iNP s denotes the nearest 

predicted 1 site from si and ( , ( ))i id s NP s  denotes the distance between them. 

However, sometimes ADNP alone can lead to very low CA (see Fig. 1c) and always 
encourages more predicted 1 sites. In the extreme case where all sites are predicted 1, 
ADNP =0, a perfect but useless prediction. 

3 Approximate Distance Ranking Function 

Hence, for geospatial classification, a good criterion function should combine both 
classification accuracy and spatial accuracy ADNP. Reference[7] utilized the 
weighted scheme to define a new function M0 as 

'0 1M CA ADNPα α≡ − +( )
                                                 

(3) 
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where α is a relative significance coefficient, ADNP’  = exp(−ADNP ) is normalized to 

[0,1].  
However, while the normalization step is necessary, it is hard to select the appropriate 

normalization functions [8]. For instance, it is difficult to justify the use of exp(x) 

over
min

max min

x −
−

 , which may be domain-dependent or even dataset dependent. Besides, 

the computation of ADNP is not trivial, which involves nearest neighbor search and 
distance evaluation. In the worse case, both time and space complexities are is O(n2). 

To trade accuracy for efficiency, we develop an approximate distance ranking 
function, which does not require finding nearest neighbors or computing distance. The 
motivation is as follows. What we care most is the relative ranking of estimated class 
labelings evaluated with ADNP , rather than the absolute distance values. We observe 
that the ranking can be approximated by utilizing the contiguity matrix W containing 
the neighborhood information for each site. The accuracy is not sacrificed much if 
sites are evenly distributed and there are predicted 1 sites in the neighborhood of 
every misclassified 1 site. Furthermore, W is a sparse matrix for which we only store 
those non-zero elements and thus a lot of storage space is saved.  

For ease of expression, let q ≡ a1∧p0, where a1 and p0 are treated as boolean 

vector and ∧ is bit-AND operator. q[i]=1 iff si is a 1 site but predicted 0.  

1

1 1 1
T

M CA
a

α α≡ − + − q q
( ) ( )                            (4) 

Function M1 is defined in Eq. (4). Instead of computing the average distance for those 
sites that are actually 1 but predicted 0, we just count those sites, in the hope that a 
smaller number of such sites would lead to a smaller distance.  

4 Ideal Properties 

To compare the various criterion functions for geospatial classification validation, we 
propose a series of ideal properties that a criterion functions must satisfy. In Eq. (3), 
the user-defined significance coefficient α is still confusing. In the ideal properties, 
we will give α a more meaningful interpretation. 

In the proposed ideal properties, α is determined by the user and is typically small, 
e.g., 0.05. It provides a meaningful threshold, based on which we decide which measure, 
CA or ADNP, should be emphasized. If the absolute difference in CA is greater than α, 
the hypothesis with larger CA is favored, because a much larger CA often means a larger 
ADNP. If the absolute difference in CA is less than α, we ignore the slight difference in 
CA and favor the hypothesis with greater ADNP, i.e., spatial accuracy matters. Let 
y , 1ŷ  , 2ŷ  denote the actual class labeling and two predicted class labelings, 

respectively. Let ˆ( , )i iCA CA≡ y y , 1ˆ( , )iADNP ADNP≡ y y  , where i=1,2. In detail, an ideal 

criterion function M combining CA and ADNP should satisfy the following properties.  
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1. If |CA1 −CA2|>α, the estimation with larger CA is favored.  

2. If |CA1 −CA2|≤α, the estimation with larger ADNP is favored. 

5 Experimental Evaluation 

In this section, we first introduce the experimental setting. Then we use a large real-
world election dataset to compare the criterion functions. 

Table 2. Comparison of criterion functions 

 Comparison with M0 Comparison with ideal properties 

criterion M1 M0 M1 

Rand 0.9958 0.6824 0.6865 
Pearson 0.9913 0.3606 0.3637 

5.1 Experimental Setting 

As for the classification model, we select Spatial Autoregression Model (SAR) [9]. 
With the output from SAR, ˆ ( 1)iP Z= =y , we try 101 cutoff probability (threshold) 

values of θ sampled evenly at a constant interval 0.01 in [0,1], and transform ŷ   to 

class labeling as ˆˆ[ ] 1 [ ]z i y i θ= ↔ >  . To emphasize the impact of spatial accuracy 
ADNP , we set α =0.2 for all criterion functions containing α as the coefficient. As for 
the similarity measure to compare the validation criterion functions, we use the 
pairwise ranking. In detail, given the true class labeling and a set of estimated class 
labelings, all possible pairs of estimates are taken and it is determined, whether they 
are treated in the same manner by two criterion functions. With these statistics, we 
can compute Rand index and Pearson coefficient. As for the dataset, we select a large 
real-world dataset for 1980 US presidential election results covering 3107 counties 
[9]. In the original regression problem, income, home ownership and population with 
college degrees are used to predict voting rate. We transform the original continuous 
target variable y to binary as z =1 if y> avg(y), z =0 otherwise. 

5.2 Empirical Results 

As we discussed previously, what we care most is the capability of M1 to approximate 
the pairwise ranking of M0, rather than the raw distance values or normalized values 
of ADNP. The left part of Table 2 reports their performance in terms of Rand index 
and Pearson coefficient. Apparently, both measures indicate a high resemblance.  

The right part of Table 2 also gives the comparison with ideal properties. Although 
M0 employs the weighted scheme to explicitly incorporate ADNP and thus appears to 
satisfy the ideal properties (also specified in ADNP ) best, it is not the best in either 
Rand index or Pearson coefficient. On the contrary, M1 becomes the best in this case, 
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which justifies the simplifying assumptions we made to develop these approximate 
functions. Again, this confirms the usefulness and advantage of our proposed criterion 
functions to approximate ranking in ADNP . 

6 Concluding Remarks 

In geospatial classification validation, both classification accuracy and spatial 
accuracy must be taken into account. However, conventional criterion functions use 
the weighted scheme to directly combine the two accuracies, which are of different 
subjects and scales. In this paper, by leveraging the contiguity matrix that encodes the 
neighborhood relationship, we proposed an approximate distance ranking function 
that approximates the pairwise ranking of ADNP. It not only circumvents the 
difficulty in the direct weighted scheme, but also leads to smaller time and space 
complexity. Finally, its effectiveness was demonstrated on a large election dataset.  

For the future work, we plan to investigate the relationship between CA and ADNP 
.We will also develop training procedures that specialize in optimizing the proposed 
criterion functions. 

 
Acknowledgments. This work is supported by NSFC (No. 61100136) and SPIIERG 

(No. 2012B091100295). 

References 

1. Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice-Hall (2002) 
2. Chun, Y., Griffith, D.: Spatial Statistics and Geostatistics: Theory and Applications for 

Geographic Information Science and Technology. SAGE (2013) 
3. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model 

selection. In: Proceedings of the 14th International Joint Conference on Artificial 
Intelligence, pp. 1137–1143 (1995) 

4. Kim, J.: Estimating classification error rate: Repeated cross-validation, repeated hold-out 
and bootstrap. Computational Statistics & Data Analysis 53(11), 3735–3745 (2009) 

5. Schiavo, R.A., Hand, D.J.: Ten more years of error rate research. International Statistical 
Review 68(3), 295–310 (2000) 

6. Shekhar, S., Schrater, P., Raju, W.R., Wu, W., Chawla, S.: Spatial contextual classification 
and prediction models for mining geospatial data. IEEE Transactions on Multimedia 4(2), 
174–188 (2002) 

7. Chawla, S., Shekhar, S., Wu, W.: Predicting locations using map similarity (PLUMS): A 
framework for spatial data mining. In: Proceedings of the International Workshop on 
Multimedia Data Mining, pp. 14–24 (2000) 

8. Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. 
Pattern Recognition 38, 2270–2285 (2005) 

9. LeSage, J.P.: Bayesian estimation of spatial autoregressive models. International Regional 
Science Review 20, 113–129 (1997) 


	Approximate Distance Ranking-Based Validation
for Spatial Contextual Classification:
A Case Study of Election Data

	1 Introduction
	2 Related Work
	3 Approximate Distance Ranking Function
	4 Ideal Properties
	5 Experimental Evaluation
	5.1 Experimental Setting
	5.2 Empirical Results

	6 Concluding Remarks
	References




