
Chapter 6

Model-Based Quality Management

of Software Development Projects

Jens Heidrich, Dieter Rombach, and Michael Kläs

Abstract Managing the quality of artifacts created during the development process

is an integral part of software project management. Software quality models capture

the knowledge and experience regarding the quality characteristics of interest, the

measurement data that can help to reason about them, and the mechanisms to use

for characterizing and assessing software quality. They are the foundation for

managing software quality in projects in an evidence-based manner. Nowadays,

coming up with suitable quality models for an organization is still a challenging

endeavor. This chapter deals with the definition and usage of software quality

models for managing software development projects and discusses different chal-

lenges and solutions in this area. The challenges are: (1) There is no universal

model that can be applied in every environment because quality is heavily depen-

dent on the application context. In practice and research, a variety of different

quality models exists. Finding the “right” model requires a clear picture of the goals

that should be obtained from using the model. (2) Quality models need to be

tailored to company specifics and supported by corresponding tools. Existing

standards (such as the ISO/IEC 25000 series) are often too generic and hard to

fully implement in an organization. (3) Practitioners require a comprehensive set of

techniques, methods, and tools for systematically specifying, adapting, and apply-

ing quality models in practice. (4) In order to create sustainable quality models,

their contribution to the organizational goals must be clarified, and the models need

to be integrated into the development and decision-making processes.

J. Heidrich (*) • M. Kläs

Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

e-mail: jens.heidrich@iese.fraunhofer.de; Michael.Klaes@iese.fraunhofer.de

D. Rombach

Technische Universität Kaiserslautern, Kaiserslautern, Germany

Fraunhofer Institute for Experimental Software Engineering (IESE), Fraunhofer-Platz 1, 67663

Kaiserslautern, Germany

e-mail: rombach@informatik.uni-kl.de; dieter.rombach@iese.fraunhofer.de

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_6, © Springer-Verlag Berlin Heidelberg 2014

125

mailto:jens.heidrich@iese.fraunhofer.de
mailto:Michael.Klaes@iese.fraunhofer.de
mailto:rombach@informatik.uni-kl.de
mailto:dieter.rombach@iese.fraunhofer.de

6.1 Introduction

When it comes to managing and controlling software development projects, three

dimensions are typically addressed (assuming a defined functionality and project

scope): cost, time, and quality. A variety of measurement-based approaches have

been developed in recent years for managing and controlling projects in terms of

these three aspects. However, while well-established measures exist to quantify

cost and schedule aspects (such as those described in Chaps. 3 and 4), quality is a

less tangible concept. As a consequence, it is still a challenge today to objectively

measure software quality in early stages of the development process. Yet, being

able to manage and control software quality is an integral part of professional

project management (PMI 2008).

The difficulties become obvious when we take the definition of quality as being

the “totality of characteristics of an entity that bear on its ability to satisfy stated and

implied needs” (ISO 8402 1995). On the one hand, software systems are becoming

ever more complex (e.g., in terms of size, algorithms, and interfaces) and hetero-

geneous (e.g., in terms of development platforms and languages). This makes it

more difficult to systematically analyze their quality. On the other hand, quality is

heavily dependent on the application domain, the stakeholders, the usage context,

and the specific project environment. For example,

• Application domain: Safety-critical systems (such as automobiles or power

plants) require far different quality characteristics than information systems

(such as accounting software or web applications)

• Stakeholders: A top-level manager of an organization probably has a different

understanding of the term “software quality” than technical software develop-

ment personnel

• Usage context: Different mechanisms need to be considered when trying to

predict the final software quality at early stages of the development process

compared to measuring the actual quality of a software design or component

• Project context: Having contractor-subcontractor relationships in a project

requires a detailed understanding of what quality of externally delivered artifacts

is actually needed compared to doing in-house development only

Depending on these aspects, different characteristics are important, and different

techniques, methods, and tools have to be used as part of the software development

process to guarantee a certain level of quality.

Software quality models are a means for defining and operationalizing the term

“software quality.” The typical approach is to refine the abstract term into more

concrete subconcepts down to a level of detail where concrete metrics and indica-

tors can be assigned. Depending on the structure of such a model, mechanisms for

evaluating/assessing software quality are included. They support the stakeholders

of a quality model in interpreting the measurement data (e.g., by defining thresholds

distinguishing between acceptable and not acceptable quality) and in aggregating

126 J. Heidrich et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_3
http://dx.doi.org/10.1007/978-3-642-55035-5_4

the results in order to allow them to come up with an evaluation/assessment of the

different quality characteristics of interest.

One of the most popular and extensive software quality models is published in

the ISO/IEC standard 9126-1 (2001) and the corresponding standard for software

product evaluation ISO/IEC 14598-1 (1999). It distinguishes three different views

on product quality:

• Internal Quality describes the characteristics of intermediate artifacts of the

development process required to satisfy internal quality requirements.

• External Quality describes externally visible quality characteristics of artifacts

of the development process required to satisfy external quality requirements.

They typically specify the quality of the product delivered to the customer.

• Quality in Use defines quality characteristics from the perspective of a user,

which are of importance when the software product that was delivered to the

customer is actually used.

The assumption underlying the definition of these views is that having high-

quality processes helps to obtain artifacts with good internal quality; creating

artifacts with high internal quality supports achieving a final product with good

external quality; and a product of high external quality leads to good user experi-

ence with the product, that is, good quality in use (ISO/IEC 9126-1 2001).

For all three views on software quality, the standard provides models defining a

breakdown structure of quality into subconcepts. For example, internal and external

quality is broken down into functionality, reliability, usability, efficiency, main-

tainability, and portability. Each of these high-level quality characteristics is broken

down into corresponding subcharacteristics. The models for internal and external

quality essentially comprise the same quality characteristics, but use different

metrics for actually measuring product quality in the end.

Recently, the successor to these two standards has been published, the ISO/IEC

25000 “Software Product Quality Requirements and Evaluation (SQuaRE)”

(ISO/IEC 25000-1 2005), which comprises a whole series of standards related to

quality management addressing models for product quality (external and internal

quality) and quality in use (2501n series), measuring product quality (2502n series),

and evaluating/assessing product quality (2504n series). Moreover, standards have

been added that address how to define and systematically derive quality require-

ments, that is, nonfunctional requirements of software products (2503n series).

The ISO/IEC standards specify a set of quality models that try to be generic

enough to be applicable for all kinds of software systems. Indeed, models proposed

to be universal, such as those described in the ISO/IEC standards, stay on a high-

level of abstraction, making it difficult to instantiate and apply them. In literature, a

variety of more specific software product quality models can be found for different

application domains, stakeholders, usage purposes, and project environments (Kläs

et al. 2009). However, in practice, it is quite difficult to sustainably apply these

models for managing the quality of the outcome of a software development project

(Wagner et al. 2010b) (overview):

6 Model-Based Quality Management of Software Development Projects 127

• Challenge 1: There is no universal quality model that can be applied in every

environment. In practice and research, a variety of different quality models

exists. Finding the “right” model requires a clear picture of the goals that should

be obtained from using the model in a software development project. Goals may

range from getting a common understanding of important quality characteristics

when specifying requirements to determining the maintainability of the source

code to getting early indicators for potentially failing performance or reliability

targets. In order to quantitatively manage the fulfillment of the nonfunctional

requirements of a product under development, having the right model is essen-

tial. Otherwise, there is a high risk of a lot of effort being spent on collecting data

of limited use for the success of the project

• Challenge 2: Quality models need to be tailored to company specifics and

supported by corresponding tools. Existing standards (such as the ISO/IEC

25000 series or the predecessor ISO/IEC 9126) are too generic and hard to

fully implement in an organization. Moreover, it is difficult to come up with

reliable measures and evaluation criteria. Nevertheless, quality models as pro-

posed in respective standards may be a good starting point. However, if models

are not further tailored, there is a high risk that either the models will not find all

quality issues, which will in turn lead to bad product quality, or the models will

find too many issues, which will be hard to prioritize and comprehensively

address in the project

• Challenge 3: Cost-effective application of quality models requires a compre-

hensive framework to facilitate their specification, adaptation, and practical

usage for software product evaluation/assessment. Without such a framework

that can be used right out of the box, more effort will typically be spent on

thinking about how to construct and implement such quality models from scratch

than on actually thinking about the content of the models itself and about how

product quality can effectively be managed in a development project

• Challenge 4: In order to create quality models that are sustainably used for

decision-making, their contribution to and value for the organizational goals

have to be clarified, and the models need to be integrated into development and

decision-making processes (e.g., by defining appropriate quality gates). Without

this integration effort, model-based quality management remains a project-

specific effort largely dependent on the mechanisms the project manager wants

to use for managing product quality. In order for models to be used effectively,

the organization as a whole needs to implement a framework to think about

software quality and how this contributes to their overall strategy across multiple

development projects

This chapter deals with the definition and usage of software quality models for

monitoring and controlling the quality of artifacts produced during the software

development life cycle. It discusses the different challenges mentioned above in

more detail and illustrates solutions based upon first-hand experience from different

industrial applications.

128 J. Heidrich et al.

Figure 6.1 gives an overview of the content of this chapter and embeds it into the

context of project and quality management. The order in which companies are

typically confronted with the introduced challenges determines the order of the

subsequent sections: Sect. 6.2 deals with the selection of suitable quality models for

a specific organization (Challenge 1), Sect. 6.3 deals with a process for building

custom-tailored models that can be used for evaluating product quality during the

software and system development process (Challenge 2), Sect. 6.4 introduces a

recently finalized, comprehensive framework for specifying and applying quality

models in practice (Challenge 3), and Sect. 6.5 deals with integrating quality

models into organizational goals and strategies (Challenge 4). Section 6.6 summa-

rizes the chapter and gives an outlook to future work.

6.2 Selecting the Right Quality Models

In practice and research, a variety of different quality models exists that is designed

for different application domains, stakeholders, usage contexts, and project envi-

ronments. The difficult question is: Which quality models are relevant and can be

applied in a given environment? To answer this question, a clear picture of the

underlying goal to be achieved by a quality model is required. In order to state this

goal more precisely, some key questions have to be answered, such as

• Which artifacts of the development process should be analyzed (e.g., require-

ments document, architecture, design, or code)?

Section 6.5
Assure strategic

alignment

Section 6.2
Identify and select

Organizational
Goals

Project
Management

Quality
Management

Existing
Quality Models

Organizational
Quality Model

Section 6.3
Quality modeling

Section 6.4 Framework and implementation

provideuse

Upper-level
Management

Involved
Decision Makers

QM-related
Artifacts

improve

Fig. 6.1 Overview of the structure of Chap. 6

6 Model-Based Quality Management of Software Development Projects 129

http://dx.doi.org/10.1007/978-3-642-55035-5_6

• For which purpose should the model be used (e.g., measuring the product quality

of some artifacts or predicting the quality of the final software product delivered

to the customer)?

• Which quality characteristics are of interest (e.g., quality in general or some

subcharacteristics, such as maintainability or reliability)?

• Which stakeholders want to use the analysis results (e.g., project managers,

suppliers, developers)?

• In which environment and context is the model to be applied (e.g., in the

development of safety-critical embedded systems or web-based services)?

A systematic literature review and state-of-the-practice survey (Kläs et al. 2009)

revealed 79 product quality models1 ranging from general standards related to

software product quality, such as IEEE 1061 (1998), ISO/IEC 9126-1 (2001),

ISO/IEC 25000-1 (2005), IEC 61508-1 (2010), ISO/IEC 14598-1 (1999), or

ISO/IEC 15939 (2007) via domain-specific standards such as MISRA (1995),

ECSS (1996), or UKMD (1997) to quality models from academic research, such

as Cavano and McCall (1978), Boehm (1978), Dromey (1998), or Avizienis

et al. (2001). It is beyond the scope of this chapter to discuss these models in

general. However, for illustrating purposes, Fig. 6.2 gives an overview of the

quality models identified and their year of creation, distinguishing between official

and de facto standards, models that are actually applied in practice, and models

having a more scientific background. Furthermore, it separates models addressing

quality in general (dark gray boxes) from models addressing specific quality

characteristics (light gray boxes).

If a suitable quality model or a set of quality models needs to be identified, a

classification scheme is needed for distinguishing among the different types of

existent models. The scheme presented in Kläs et al. (2009) discusses the following

dimensions:

(a) Structural components: How is the quality model structured? What structural

components are supported? For example, models can include structures for

refining quality characteristics, for measuring quality characteristics, for eval-

uating measurement data, for aggregating results, etc.

(b) Quality modeling goal: What is the goal addressed by the quality model? In

particular, who will use the model, for which purpose, to address which aspects

of quality, and on what kinds of artifacts?

(c) Model instantiation: Does the quality model only prescribe a structure for

specifying quality models (called metamodel) or does it also include an instan-

tiation of that structure [i.e., a specific quality model such as those described in

ISO/IEC 25010 (2011)?]

1A product quality model is a conceptual or mathematical model addressing one or more relevant

characteristics of certain types of work products (such as requirements, design, code, documen-

tation, or the final product) with the objective of better understanding and dealing with these

characteristics (e.g., by specifying or quantifying them or correlating them with others).

130 J. Heidrich et al.

(d) Method for instantiation/adaptation: Is a procedure provided to instantiate

the provided metamodel or adopt/tailor the presented quality model to specific

needs?

(e) Dissemination: What is the degree of dissemination of the quality model? For

example, is it only used in a scientific context, is there some evidence that it is

actually applied in practice, or is it an official or de facto standard?

(f) Tool support: Is the quality model tool-supported in terms of specifying and

adapting the model as well as actually applying the model to software products?

Measurement
information

model ISO 25000
SQuaRE

Wake’s
maintainability

model

BBN

Rechenberg’s
complexity
measure

Neumann’s quality
decomposition for ES

Enhanced
Usability
Model

Defect Content
Estimations

Malaiya’s QM
of test

coverage

Boehm

McCall
Factor Criteria

Metric

DGQ - ITG

COQAMO
Constructive

QUAlity MOdel

Davis’ QM
for SRS

SEI
Quality

Attributes

FALCON
Quality

Prediction

Rana’s generic
QM

Quality model
analysis program

CQM

QMOOD

Metrics for
COTS-based

systems
Fuzzy Feature
Space-based

QM

Rawashdeh’s
QM for COTS

Quality metrics
for KADS

Swarup’s QM
for safety

Agile Software
Metrics

Oman’s
maintainability

metrics

Avizienis’ QM
of Dependability

GEQUAMO

St
an

da
rd

A
pp

lie
d

Sc
ie

nt
if
ic

General Quality
Focus

Specific Quality
Focus

1980 1990 1995 2000 2005 2010

COSMICMISRA-C

Function
Points

EN 60601-1-4IEEE STD
982.1-1988

IEEE STD
1061 - 1998

ISO 9126 -
ISO 14598

ECSS
Dependability

MISRA-C++

RAMS
(EN50126) IEC 61508

FURPS

Capture-/
Recapture

Quality prediction
Porter’s

classification
trees

ODC

DFM

Regression
trees

COQUALMO

McCabe

FURPS +

MOOSE
CAME

WinWin System
QARCC

Knowledge Base

Dromey

PROFESsoftware
QM

SQUID

ISO 9126
extension

ASPIRE for
NFR

Systemic
quality
model

QualOSS

Wagner’s
integrated QM

PM for
FLOSS - ITS

Defect
Density
Metrics

Activity-based
Maintainability

QM

Maintainability
model for

control units
HyDEEP

Technical
Topic

Classification

Multi-objective
quality

classification

CART

Schneidewind’s
quality prediction

SW Reliability
Growth Model

Factor
Criteria
Metric

EMERALD
Factor

strategy QM
for OOD

Fig. 6.2 Quality model landscapes

6 Model-Based Quality Management of Software Development Projects 131

For example, there may exist commercial tool support, only prototypical tool

support, or no tool support at all.

Based on the work in Kläs et al. (2009), the following subsections give further

insights into what structural components of models look like (dimension a), discuss

the specification of quality modeling goals (dimension b), and describe quality

model landscapes as a means for systematically selecting suitable models (based on

dimensions a–f).

6.2.1 Structural Components

Figure 6.3 depicts a graphical illustration of typical structural components of

quality models. Mainly depending on the application purpose, different components

are required by different quality models.

In general, two different parts of a model can be distinguished. The left side

shows components related to the quality focus; that is, the quality characteristics of

interest. The right side shows the components related to so-called variation factors,

that is, factors that explain variances when analyzing quality characteristics. For

example, the maintainability of a piece of software (as one characteristic in the

quality focus) may be influenced by the experience of the developers or the amount

of reuse that was performed (as two potential variation factors).

The relationships between quality focus characteristics and variation factors may

be expressed qualitatively or quantitatively. For example, a quality model may

specify that developers with higher experience produce software that is easier to

maintain (quantitative expression), or it may specify that by increasing the average

experience of the developers by 1year, maintenance costs can be reduced by 10 %

(quantitative expression). Most quality models rely on qualitative relationships or

do not specify variation factors at all. The reason for that is that in order to be able to

make such statements, a very thorough understanding of the impact relationships is

required. From building cost estimation (Trendowicz et al. 2006) and defect

prediction models (Kläs et al. 2010b) (prediction), we know that the variation

factors themselves and especially the quantitative relationships highly depend on

the particular organization for which such a model is built.

The quality focus may be further refined by a breakdown structure of concepts

(typically quality characteristics). For example, ISO/IEC 25010 refines maintain-

ability into modularity, reusability, analyzability, modifiability, and testability.

These subconcepts may then be quantified using concrete metrics that can be

used for actually measuring the subconcepts. For example, ISO/IEC 25021

(2012) defines concrete metrics for measuring the subconcepts of maintainability.

In addition, a quality model may define evaluation criteria for interpreting the

measurement data and evaluating/assessing the concepts of interest. For example,

ISO/IEC 25040 (2011) defines a quality evaluation reference model and guide.

Finally, a quality model may specify a procedure for aggregating the evaluation

132 J. Heidrich et al.

results of the measurement data, resulting in an overall statement regarding the

main concept (across the different refinement levels). For example, if a unique

evaluation scale is defined for all concepts, the aggregation may be as simple as the

weighted average across the results of all relevant subconcepts, or it may make use

of advanced techniques from the field of multi-criteria decision analysis (MCDA)

(Trendowicz et al. 2009).

Variation factors can be refined, quantified, evaluated, and aggregated in a

similar way as the quality focus (e.g., the concept of developer experience can be

refined into domain and programming experience and can be quantified by the

respective years of professional experience).

In Sect. 6.3, we present the creation of an example quality model for assessing

maintainability, which is a good illustration of the structural components discussed

above (Fig. 6.2).

A quality model may be characterized according to the structural components

supported by the model. This gives valuable information about what can actually be

accomplished in practice when using the model. For example, if a model does not

specify evaluation rules, it is possible to measure quality characteristics, but it is not

possible to evaluate/access the product’s quality (which can be perfectly alright

depending on the goals related to the use of the model).

6.2.2 Quality Model Goal

Kläs et al. (2009) use the Goal-Question-Metric paradigm (GQM) (Basili

et al. 1994a) as a schema for specifying the goals related to using a quality

model. The GQM approach is a de facto standard for defining goal-oriented

Quality Focus

Aggregation
Method

Refinement

Quantified
Impact

+/-

f(.)

Qualitative
Impact

Metrics

Evaluation
Criteria

Sub Concept

Concept

Metrics

Evaluation
Criteria

Sub Concept

Aggregation
Method

Refinement

Metrics

Evaluation
Criteria

Sub Concept

Concept

Metrics

Evaluation
Criteria

Sub Concept

Variation Factors

≤ ≤ ≤ ≤

Fig. 6.3 Conceptual elements of quality models [cf. Kläs et al. (2009)]

6 Model-Based Quality Management of Software Development Projects 133

measurement programs. It supports organizations in clearly specifying measure-

ment goals and systematically deriving metrics from these goals. The GQM goal

template distinguishes five parameters that can easily be reused for specifying

quality modeling goals:

• Object: Specifies the object that is analyzed by the quality model, for example,

one or several types of artifacts from the development process, such as require-

ments specifications, design documents, or code (or parts thereof)

• Purpose: Specifies the usage purpose for which the quality model is built, such

as characterization, understanding, evaluation, prediction, or improvement

• Quality focus: Specifies which quality characteristics are analyzed, for instance,

product quality in general or certain quality characteristics as defined by ISO

25010, such as maintainability, reliability, or usability

• Viewpoint: Specifies the stakeholders interested in the results obtained by

applying the quality model, for example, a quality manager (for assuring product

quality at certain milestones of the development process) or a developer (for

identifying quality issues and improving the quality of the affected artifacts)

• Context: Specifies the organizational scope of the quality model and the appli-

cation domain covered by the quality model, for example, the model might focus

on software developed in a certain business unit or on artifacts created for a

certain class of projects; the model may be constructed for the domain of

embedded software systems, management and information systems, or web

applications

Figure 6.4 illustrates potential usage purposes of quality models (based upon

typical GQM purposes) in connection with the structural components of a quality

model needed for supporting these purposes:

1. Specify: The model is only used for specifying the term “product quality” by

refining it into subqualities. Such models specially help to structure quality

requirements or issues and define a common understanding of quality. For

example, ISO/IEC 25010 defines a breakdown structure of quality

characteristics

2. Measure: The model is used for quantifying quality characteristics by using

metrics. For example, an organization wants to determine a baseline for software

product quality based on the measures defined in ISO/IEC 25022

3. Monitor: The model is used for identifying trends in quality-related figures and

making sure that a certain level is maintained by monitoring measurement data

(values of metrics) over time. For example, an organization wants to make sure

that the interface complexity of software components does not increase

4. Assess: The model is used for assessing/evaluating the quality of dedicated

artifacts by checking that quality requirements are fulfilled. For example, it is

checked that the application’s response time is less than 2 s

5. Control: The model is used for assessing product quality periodically or at

certain points of the development process. For example, product complexity is

checked against a defined threshold every week

134 J. Heidrich et al.

6. Improve: The model is used for improving quality characteristics by manipu-

lating and controlling variation factors that have an impact on these character-

istics. For example, coding guidelines (as a variation factor) are introduced to

increase maintainability (as a quality characteristic)

7. Manage: The model is used for managing product quality over time by control-

ling product quality periodically or at certain points of the development process

and making use of variation factors if quality requirements are not fulfilled. For

example, involving more experienced developers (as a known variation factor) if

the design of the system has some significant quality issues

8. Estimate: The model is used for estimating quality characteristics by making

use of variation factors (e.g., because the quality characteristics cannot be

measured directly). For example, Capture-Recapture models estimate the num-

ber of remaining defects by using the information about the number of joint

defects found by different reviewers of the same artifact (Petersson et al. 2004)

9. Predict: The model is used to predict quality characteristics in the future, based

on variation factors that can be measured earlier. For example, this is the

principle of cost estimation models, but also of models that try to predict the

number of defects in a delivered software product at early stages of the devel-

opment process, such as Kläs et al. (2010b) (prediction). Where estimation

models are used to determine the present but unknown state of a quantity such

as the number of defects in the currently investigated artifact, prediction models

make statements about the future, such as the prospective performance of the

final product based on the analyzed design documentation

+/-+/-

t t1 t2

f(.)f(.)

(1) Specify

(2) Measure (3) Monitor

(5) Control

(7) Manage

(9) Predict

(4) Assess

(6) Improve

(8) Estimate

Evaluation
criteria

Single Point in Time Across Time

QF

QF

QF

QF

QF QF

QF QF

QF

Variation factor
concept

VF

Metrics

QF QF

VF

Quality focus
concept

QF

Qualitative
impact

+/-

Quantified
impact

f(.)

Refinement

QF
QF

QF

VF

VF VF

≥

≥

≥
≥

≥

≥

Fig. 6.4 Application purposes of quality models [cf Kläs et al. (2009)]

6 Model-Based Quality Management of Software Development Projects 135

6.2.3 Quality Model Landscapes

Quality model landscapes make use of the classification scheme described at the

beginning of this section to provide an overview of available quality models and to

allow selecting those models that best fit the needs of an organization. An organi-

zation specifies its needs in terms of analyzing software product quality by filling in

the classification scheme and thinking about the structural components needed, the

goals related to using the quality model, and the other dimensions mentioned above.

The landscapes presented in this chapter are based on the work described in Kläs

et al. (2009) and combine the results of a literature review and a survey targeting

practitioners and their experiences with quality models (Wagner et al. 2010a)

(survey).

For example, the quality model overview diagram (Fig. 6.2), which was intro-

duced in the beginning of this section, illustrates a simple quality model landscape

visualizing three dimensions: (1) the creation date of the model (from the context

information of field b of the classification scheme); (2) whether quality in general is

addressed or a specific aspect (from the quality focus information of b); and (3) the

dissemination of the models (from field e of the scheme).

Table 6.1 shows another quality model landscape illustrating the number of

quality models identified in a systematic literature review and presented in Fig. 6.2

according to two other dimensions: (1) the usage purpose and (2) the main quality

focus addressed as mentioned in the model descriptions. For example, if an

organization wants to estimate the number of defects, seven potential models are

of interest. As can be seen in the table, most of the models from the survey deal with

product quality in general and support the specification, measurement, or assess-

ment of product quality. Models considering the defect-proneness of products are

mainly estimation or prediction models.

6.3 Building Custom-Tailored Quality Models

This section deals with how to build a custom-tailored quality model in practice.

First, general strategies and the high-level construction process are shown. After-

ward, the detailed steps for constructing a concrete model are illustrated.

There are two contrary strategies that can be followed: (1) An existing quality

model may be selected (such as the one from ISO/IEC 25000) and applied or (2) a

new custom-tailored model is built from scratch that exactly fits the needs of an

organization. In this section, we will first discuss these two extremes and then

explain why and how to combine these strategies to overcome their limitations.

The advantage of the first strategy is that a set of predefined quality character-

istics and metrics is available that were elicited based on the knowledge and

experience of experts from other organizations and institutions. The disadvantage

is that existing quality models are often quite abstract and therefore hard to use out

136 J. Heidrich et al.

T
a
b
le

6
.1

Q
u
al
it
y
m
o
d
el
s
co
v
er
in
g
d
if
fe
re
n
t
u
sa
g
e
p
u
rp
o
se
s
an
d
q
u
al
it
y
fo
cu
s
[c
f.
T
re
n
d
o
w
ic
z
et

al
.
(2
0
0
9
)]

G
en
er
al

D
ef
ec
ts

D
ep
en
d
ab
il
it
y

F
u
n
ct
io
n
al
it
y

M
ai
n
ta
in
ab
il
it
y

P
o
rt
ab
il
it
y

R
el
ia
b
il
it
y

S
af
et
y

U
sa
b
il
it
y

S
p
ec
if
y

2
0

4
1

2
4

1

M
ea
su
re

1
6

1
2

2
1

M
o
n
it
o
r

1
2

1

A
ss
es
s

1
3

2
1

C
o
n
tr
o
l

1
1

Im
p
ro
v
e

7
2

2
1

M
an
ag
e

4
1

E
st
im

at
e

2
7

P
re
d
ic
t

4
5

1
3

6 Model-Based Quality Management of Software Development Projects 137

of the box. For example, the metrics proposed for the ISO/IEC 25000 series are very

hard to implement in an organization. Another disadvantage is that the more

detailed existing models were created for a certain context and cannot be trans-

ferred to a different context that easily. For example, a quality model that was

designed for embedded systems cannot be directly transferred to and applied to

information systems.

The advantage of the second strategy is that the model ideally fits the specific

needs of an organization and can be designed in such a way that it integrates already

available measurement data and data collection tools and fits into the organizational

and development processes. The disadvantage is that guidance is needed for

building up a meaningful quality model; therefore, expert knowledge and experi-

ence are needed. Moreover, this is a labor-intensive process and involves experts

experienced in model building as well as experts of the corresponding organization

the model is being built for. According to Wagner et al. (2010a) (survey), more than

70 % of 125 respondents of a survey employ company-specific models (either

developed from scratch or tailored on the basis of company-specific requirements).

Kitchenham et al. (1997) propose a combination of these two strategies to

overcome this gap by first choosing the most appropriate existing quality model

and, then reusing this model or parts thereof for defining a custom-tailored model.

Figure 6.5 illustrates a process for developing a company-specific quality model

based on the Quality Improvement Paradigm (QIP) (Basili et al. 1994b):

1. Characterize: Define the scope and application environment in which the

organization wants to use the quality model

2. Set goals: Define the quality modeling goals (using the goal parameters intro-

duced in the previous section), analyze the suitability of existing models with

respect to these goals, select the most appropriate quality model if existent, and

then adapt the model to the specific needs of the organization or build the model

from scratch if no existing model could be found

3. Choose process: Define a measurement plan containing a list of metrics and

additional data about who is responsible for collecting this data at which point in

time of the development process. Define mechanisms/processes for data collec-

tion, processing, and visualization as well as corresponding tool support. The

latter includes integrating the usage of the quality models at predefined stages of

the development process

4. Execute: Apply the quality model to artifacts of the development process,

collect measurement data, and assess/evaluate product quality based on evalu-

ation guidelines

5. Analyze: Analyze and validate the assessment results and check the validity of

the quality model

6. Package: Improve the quality model, if needed, and initiate actions for improv-

ing the software product quality, if needed

The following sections give a practical usage example of the process as

described above based upon a real industrial application. For reasons of

138 J. Heidrich et al.

confidentiality, the original quality modeling goals, the quality model itself, as well

as the analysis results have been carefully modified.

Additional industry-related lessons learned from building custom-tailored qual-

ity models following the process shown above can also be found in Lampasona

et al. (2012).

6.3.1 Characterize: Define Environment and Scope

The first step is about defining the scope and application environment in which the

organization wants to use the quality model. Our example organization develops

safety-critical systems. In recent years, more and more functionality has been

implemented as software. However, software is usually developed by external

suppliers and delivered to the system manufacturer as an integrated unit containing

the software as well as the hardware (processors, controllers, memory, etc.) the

software runs on. The manufacturer has to integrate all these delivered units into an

overall system and ensure that they can communicate with each other. The scope of

the quality model has been defined as focusing on the software components

developed by external suppliers and their integration into the overall system.

6.3.2 Set Goals: Define Goals and Build Quality Model

The second step is about defining the quality modeling goals, analyzing the

suitability of existing models with respect to these goals, selecting the most

appropriate quality model, and adapting the model to the specific needs of the

1 Characterize
Define environent for QM
Define scope of QM

2 Set Goals
Define QM goals
Analyze suitability of existing QM
Define / adapt / tailor QM
Set Baselines

3 Choose Process
Define measurement plan
Set up data collection mechanisms
Set up database (warehouse)
Set up data processing and visualization

4 Execute
Start measuring quality

Fill database
Assess Products

5 Analyze
Analyze data

Validate assessment results
Check QM

6 Package
Correct / adapt QM

Initiate product improvement actions

Fig. 6.5 Developing custom-tailored quality models

6 Model-Based Quality Management of Software Development Projects 139

organization. The major organizational goal behind the usage of the quality model

is the reduction of maintenance costs. This should be achieved by ensuring that the

software components are of high quality in order to reduce problems during

integration, testing, and rework. For this reason, the main goal related to software

development is to improve the maintainability of a software component delivered

by external suppliers. For assessing/evaluating the quality of the software delivered,

a quality model is used.

The quality modeling goal is as follows:

• Object: Software components delivered (mainly code and interfaces)

• Purpose: Evaluation/assessment

• Quality focus: Maintainability

• Viewpoint: Quality manager and external supplier

• Context: Construction of safety-critical embedded systems

Based on this goal specification, ISO 25010 was used as a reference quality

model. However, it was decided to establish custom-tailored metrics and

corresponding evaluation rules for measuring and assessing quality characteristics

of interest. The tailoring was performed by external quality modeling experts based

on a series of workshops and interviews. First, structured interviews with domain

experts from the organization were performed, and an initial quality model based on

ISO 25010 was created. After that, the model was reviewed and discussed with a

broader group of stakeholders (quality managers and suppliers) for achieving a

basic consensus among the experts.

An overview of the model obtained is presented in Fig. 6.6. Basically, the quality

model created consisted of two parts: one part containing quality characteristics

directly related to maintainability and another part containing variation factors

influencing maintainability. The main focus should be on analyzability and adapt-

ability. As a consequence, only these two quality characteristics were refined

following the classical GQM approach in order to determine metrics that fit these

characteristics. For each characteristic, a few metrics were assigned, grouped into

different technical topics. For example, analyzability is measured based on the

coupling of internal software components. Coupling is measured using standard

metrics such as Fan-In (ingoing relationships), Fan-Out (outgoing relationships),

and Coupling between Objects (CBO) (Dörr et al. 2004). The variation factor part

of the model contains, for example, metric groups related to the logical and physical

partitioning/distribution of the software functionality that cannot be influenced by

the pure software component, such as a high coupling with other units and the

software components of those units. In our example, this cannot be influenced by

the external software supplier and becomes part of the variation factor model.

Each metric, group of metrics, quality characteristic, and variation factor has a

certain weight that defines how important the respective element is with regard to

the parent element. Evaluation rules (employing simple mathematical functions)

provide a mapping between measurement values and an evaluation scale. After-

ward, a weighted sum is calculated for the groups, quality characteristics, and

variation factors considered. The top-level grades make statements about the

140 J. Heidrich et al.

maintainability of the delivered software components and external factors that may

explain variations between the quality characteristics.

There are several options regarding how to define evaluation rules, such as

Trendowicz et al. (2009), and create a mapping function. The difficult part lies in

identifying meaningful thresholds for distinguishing between good and bad values.

An organization may retrieve values from literature. However, these values nor-

mally need to be adapted for the specific usage context. Therefore, most organiza-

tions building quality models create their own database of measurement values and

perform some statistical analysis on these values in order to find realistic values and

thresholds.

The assessment scale for quality characteristics was defined from 1¼ very bad

maintainability, 2¼ bad, 3¼ neither good nor bad, 4¼ good, to 5¼ very good

maintainability. The assessment scale for variation factors was defined from

1¼ very negative influences on maintainability, 2¼ negative influences, 3¼ no

influences, 4¼ positive influences, to 5¼ very positive influences on maintainabil-

ity. For example, if maintainability was rated with 4 and the variation factors were

rated with 2, the software component provided good maintainability despite the fact

that there was a negative influence.

6.3.3 Choose Process: Set Up Data Collection and Analysis

Step 3 is about defining a measurement plan as well as mechanisms/processes for

data collection, processing, and visualization as well as corresponding tool support.

Table 6.2 presents the measurement plan (Differding 2001) that was created for the

quality model, gives a list of all metrics, and defines the range of measurement

Metric
Group

Quality Focus
Area

Variation Factor
Area

Metric

Weights

3 3

QF: Maintainability

% Load1

ES 3: Load

Size1

ES 1: Physical
Partitioning

Fan-In1

Fan-Out1
Size1

ES 2: Logical
Partitioning

Fan-In1

Fan-Out1

1 1

EQ 1: Impact on
Analyzability

1

EQ 2: Impact on
Adaptability

1 1

VF: Impact on
Maintainability

Nesting Depth1

S 4: Nesting

% Generated1

S 5: Code
Generation

Fan-In1

S 3: Coupling

1

1

Fan-Out

CBO

% Documented1

S 1: Documentation

LOC / Function1

S 2: Internal Complexity

1 McCabe

1 2 1 1 1

Q 1: Analyzability

1 1 12

Q 2: Adaptability

Fig. 6.6 Example quality model for maintainability

6 Model-Based Quality Management of Software Development Projects 141

values, the point in time of the development process when the data should be

collected (and analyzed), the data source, and who is responsible for data collection.

A questionnaire was created to get manual measurement data from external

suppliers. Moreover, a static code analysis tool was used for extracting code

metrics. Due to confidentiality reasons, the code was analyzed on the suppliers’

side, and only the measurement values were exchanged. Moreover, interface data

was extracted from the configuration database of the organization (containing an

overview of all units provided by the suppliers and their interfaces). The organiza-

tion decided to store all data in a relational database for further analysis and

visualization. Figure 6.7 gives an overview of the general procedure for collecting

and analyzing the data at certain quality gates of the organization’s development

process:

• Raw measurement data is collected from different artifacts of the development

process (in our case, basically code and interface data) based upon the metrics

defined in the quality model. This process is driven by the data collection

resources mentioned in the measurement plan. The raw measurement data is

stored in a database

• Afterward the measured artifacts are evaluated on the basis of the evaluation

rules defined in the quality model. An assessment report is created containing the

results of the evaluation. This process is driven by experts for the quality model

(typically people from the quality management part of the organization and/or

external measurement experts)

• The assessment results are discussed with the relevant stakeholders, in this

example the suppliers and the responsible project manager of the organization.

A list of countermeasures is created for coping with the weaknesses identified in

the quality assessment. The succeeding quality assessment, conducted after the

next quality gate of the development process, will check whether the defined

Table 6.2 Measurement plan

ID Range Collection time Data source Resource

% Documented % Quality Gates Static Code Analyzer Supplier

LOC/Function R Quality Gates Static Code Analyzer Supplier

Average McCabe R Quality Gates Static Code Analyzer Supplier

Fan-In N Quality Gates Static Code Analyzer Supplier

Fan-Out N Quality Gates Static Code Analyzer Supplier

CBO N Quality Gates Static Code Analyzer Supplier

Nesting Depth N Quality Gates Static Code Analyzer Supplier

% Generated % Quality Gates Static Code Analyzer Supplier

Physical Size N Quality Gates Interface Data Manufacturer

Physical Fan-In N Quality Gates Interface Data Manufacturer

Physical Fan-Out N Quality Gates Interface Data Manufacturer

Logical Size N Quality Gates Interface Data Manufacturer

Logical Fan-In N Quality Gates Interface Data Manufacturer

Logical Fan-Out N Quality Gates Interface Data Manufacturer

% Load % Quality Gates Questionnaire Supplier

142 J. Heidrich et al.

countermeasures had the intended effect and probably make some adjustments,

so that an overall feedback loop is created

6.3.4 Execute: Use the Quality Model for Evaluation/
Assessment

Step 4 is about applying the quality model to artifacts of the development process,

collecting measurement data, and assessing/evaluating product quality based upon

evaluation guidelines. The maintainability quality model was applied to 20 already

delivered software components of different external suppliers of the organization.

Measurement data was collected according to plan, the data was mapped to the

evaluation scale described above, aggregated according to the defined weightings in

the quality model, and finally, the quality of the delivered software components was

analyzed by means of pairwise comparison. In order to avoid comparing apples and

oranges, only meaningful comparisons were selected.

The main purpose of the first application of the quality model was to execute a

proof of concept and calibrate the model for future usage. To define reliable

baselines, more software components would have to be analyzed to allow sound

statistical analyses. An example comparison of two software components can be

found in Table 6.3. As can be seen from the table, SC1 was evaluated as having

good maintainability (4.0 on a scale from 1 to 5) despite having a slightly negative

influence on maintainability resulting from the external variation factors (2.5). In

contrast, SC2 was evaluated as having poor maintainability (1.75) while having a

slightly positive influence on maintainability (3.5). The same argument is generally

true for both of the quality subcharacteristics analyzability and adaptability.

Data Collector

Counter
Measures

Development
Artifact

Model Expert

Stakeholders Results Discussion
and Reactions

Role

Artifact

Activity

Quality Evaluation /
Assessment

Data Collection and
Validation

Feedback
Loop

Raw Data

Quality
Assessment Result

Quality Model
(including

assessment rules)

Quality Management
 System

Fig. 6.7 Making use of models for quality assessments

6 Model-Based Quality Management of Software Development Projects 143

6.3.5 Analyze: Analyze Evaluation/Assessment Results

Step 5 is about analyzing and validating the assessment results and checking the

validity of the quality model. For this purpose, the assessment results were com-

pared with expert statements from the organization regarding the actual maintain-

ability of the software components in practice. The experts gave pairwise ratings

about which software component is actually better in terms of maintainability. The

quality model rated the software components in the same way as the experts in 90 %

of all cases. For the 10 % of failed ratings, the organization observed a significant

difference in the requirements implemented in the software component. Because of

the limited number of data points, no general statement about the validity of the

quality model could be made at that point in time.

6.3.6 Package: Define Improvement Actions

Step 6 is about improving the quality model if needed and initiating actions for

improving software product quality. In our example case, the analysis results were

discussed in a workshop, and feedback to the data collection resources was pro-

vided. The evaluation results of the software components were traced back to

concrete metric results (e.g., high coupling, complexity) and corresponding

improvement actions have been launched for refactoring the components. Further-

more, based on this discussion, the following improvement actions were defined for

the future use of the quality model in the organization:

• Increase the number of analyzed software components and cluster them

according to the different types of units to improve the interpretability of the

results

• Analyze the distribution of measurement values in the database to establish more

reliable baselines/thresholds for the different clusters identified

• Focus on automatic data collection to reduce data collection effort

• Set up means for dealing with missing data to increase the robustness of the

quality model

Table 6.3 Example results

comparing software

components SC1 and SC2

SC1 SC2

Quality focus area

QF: Maintainability 4.00 1.75

– Q1: Analyzability 3.50 2.00

– Q2: Adaptability 4.50 1.50

Variation factor area

VF: impact on maintainability 2.50 3.50

– EQ1: impact on analyzability 2.00 4.00

– EQ2: impact on adaptability 3.00 3.00

144 J. Heidrich et al.

6.4 Specification and Application of Quality Models

The previous sections illustrated how to select an appropriate quality model and

how to adapt and make use of such a model in practice for systematically analyzing

the quality of software products. However, there is little tool support available for

specifying, customizing, and applying these models. This makes it hard and very

effort-consuming to develop complete and consistent quality models. A compre-

hensive framework is needed for the cost-efficient specification, adaptation, and

practical usage of quality models. This problem was addressed in the Quamoco

research project, which aimed at creating a “Quality Standard for Software-

Intensive Systems” (Wagner et al. 2012).

The major motivation was the lack of a mandatory, applicable, and tool-

supported quality standard for software development comparable to standards in

other industries. A large number of different quality models addressing different

goals exist (as seen in Sect. 6.2). However, the existing models are hard to use

because the abstraction level is often too high, and it is difficult to come up with

reliable and collectable measures. Moreover, adapting/tailoring the models to the

specific needs is an effort-consuming process. There is also a lack of reliable

evaluation criteria and little support for the meaningful aggregation of quality

assessment results, which inhibits meaningful comparisons and benchmarking.

The Quamoco approach implemented the idea of balanced quality models,

which means that detailed but highly adaptable core models are provided together

with a fine-grained customization process (Kläs and Münch 2008). In Quamoco, the

core consists of a quality base model comprising quality characteristics, metrics,

and evaluation rules that are essential for all kinds of software-intensive systems.

Based on this base model, different domain-specific extensions were created

together with appropriate domain experts from various industries (e.g., for infor-

mation systems, embedded systems, custom software development, etc.). These

domain-specific quality models can be customized to the specific needs of an

organization (or a part of an organization) using the Quamoco tool suite.

The tool suite supports a user in selecting an appropriate domain-specific model

and tailoring this model to the specific needs of the organization by removing or

modifying existing parts or adding completely new entities to the model. Further-

more, all models have default connections to measurement instruments actually

collecting and analyzing the data and feeding the analysis results back into the

model. Figure 6.8 shows a screenshot of the Quamoco quality model editor (down-

loadable from http://www.quamoco.de). As general quality models tend to become

complex, visualization support is essential to get an overview of the quality

characteristics addressed and the relationships modeled. The figure shows a sun-

burst (Stasko 2013) diagram visualizing the model structure of the Quamoco base

quality model (which is available at http://www.quamoco.de), together with the

evaluation results for an analyzed system. The right part of the sunburst shows the

hierarchy of quality characteristics.

6 Model-Based Quality Management of Software Development Projects 145

http://www.quamoco.de/
http://www.quamoco.de/

The left side comprises the measured product-related factors (variation factors)

in the model. Each quality characteristic is impacted by different product-related

factors; the lines visible in the figure indicate all product-related factors impacting

the quality characteristic Resource Utilization (the right hand-side target of all

visible lines). The information pane next to the sunburst shows the results of the

selected quality characteristic for the system under evaluation (Log4J, a Java-based

logging mechanism). The color encoding of the sunburst diagram indicates the

evaluation results of quality characteristics and technical factors (from “green”

equaling no quality issues to “red” equaling many quality issues). Furthermore, the

tool supports tracing down the identified quality issues to concrete findings in the

analyzed artifacts.

The major outcomes of the Quamoco project can be summarized as domain-

independent as well as domain-specific quality models, an approach for tailoring

these models to the specific needs of an organization, a method for assessing the

quality of software products, and, finally, tool support for the specification and

application of quality models.

The sections below provide additional insights into the metamodel used for the

specification of quality models and the approach taken for evaluating/assessing

software product quality.

Fig. 6.8 Quamoco quality modeling tool suite

146 J. Heidrich et al.

6.4.1 The Quamoco Quality Metamodel

The underlying metamodel used for the specification of Quamoco quality models is

quite generic, with the intent being sufficient expressiveness to model quality in

diverse environments with different perceptions on quality (Kläs et al. 2010a)

(meta-models). An overview exemplified by an excerpt of the domain-specific

model for embedded systems (Mayr et al. 2012) can be seen in Fig. 6.9. The left

side illustrates the structural components of the metamodel. The right side illus-

trates these structural components with excerpts from the quality model for embed-

ded systems.

• Abstract Factors: An abstract factor can describe any concept (e.g., quality

characteristic or variation factor) that is considered in a quality model. In the

embedded systems model, four types of factors are distinguished:

– Technical Factors define technical properties of entities that are independent

of the programming language (such as having “valid pointer references”).

– ISO Quality Aspects describe ISO 25000 quality characteristics (such as

“reliability” or “functional” correctness)

– Requirements describe quality requirements impacted by technical factors

(such as “avoiding wrong and invalid references”)

– Goals describe technical goals related to quality requirements (such as having

“safe software systems”)

• Entity and Property: A factor may further be described by an entity and a

property it refers to. For example, the technical factor “reference validity of

G: Safety QA: Reliability QA: Suitability

influences

refines

refines

influences

influencesinfluences by

refined by

AF: Abstract
Factor

TF: Technical
Factor

QA: ISO Quality
Aspect

Entity Property

M: Measure

E: Evaluation

G: Goal

R: Requirement

R: Avoid wrong
and invalid
references

R: Avoid out of
bound access

TF: Reference
Validity @ Source

Code

QA: Functional
Correctness

TF: Reference
Validity @ Pointer

Access

TF: Reference
Validity @

Assignment Statement

TF: Reference
Validation @ ...

M: PC-lint
604

M: PC-lint
674

M: PC-lint
733

M: ...

measures

Fig. 6.9 The Quamoco metamodel for embedded systems, [cf. Mayr et al. (2012)]

6 Model-Based Quality Management of Software Development Projects 147

assignment statements” addresses the entity “assignment statement” (as part of a

source code) and the property “reference validity.”

• “Refined by” Relationship: A factor can be refined into subfactors. However, a

factor can only be refined by factors of the same type. For example, the quality

aspect “suitability” is refined by the quality aspect “functional correctness.”

Refinement, abstract factor, entity, and property elements together implement

the refinement concept (cf. Sect. 6.2.1).

• “Influenced by” Relationship: The relation states whether a factor positively or

negatively influences another one and provides a textual justification for this

relationship. However, impacts can only be modeled between factors of different

types. For example, the technical factor “valid pointer references” influences the

requirement “avoiding wrong and invalid references.” The impact elements add

the possibility to specify quality relationships as introduced in Sect. 6.2.1

• Measure: Factors can be quantified by measures. A measure is actually

implemented by measurement instruments, which in turn are provided by mea-

surement tools. For example, the technical factor “reference validity of assign-

ment statements” is measured by the measure “PC-lint 604,” which is provided

by the “PC-lint” tool. In general, a measure may be implemented by different

tools. For example, the popular measure “lines of source code” is implemented

by all static code analysis tools. If subjective measurement data needs to be

collected and no measurement tool is available, a manual measurement instru-

ment (e.g., a certain questionnaire that needs to be filled in manually) can be

assigned to the measure. Measure elements implement the quantification con-

cept (cf. Sect. 6.2.1)

• Evaluation: Factors are evaluated by evaluation rules describing how to assess

the factor on a certain evaluation scale. Factors that have no metrics assigned to

them cannot be evaluated in the model. For example, the evaluation rule for the

technical factor “reference validity of assignment statements” describes how to

interpret and aggregate the measurement data provided by all measures assigned

to the factor. Evaluation elements therefore provide implementation for both the

general evaluation and the aggregation concepts as introduced in Sect. 6.2.1

The metamodel allows implementation of all conceptual structures needed to

specify, measure/monitor, assess/control, and improve/manage quality (cf. Fig. 6.3):

It also allows making a clear distinction between the quality characteristics of

interest and all factors having an impact on them. By offering the opportunity to

formulate arbitrary hierarchies of factors and relationships between different fac-

tors, the model allows the definition of different views/perspectives, such as

combining a technical/developer view (requirements and technical goals) with a

customer/manager (quality aspects) view in one comprehensive model. Further-

more, it allows for explicitly specifying the impact relationship between different

factor hierarchies and expressing basic causal relationships.

148 J. Heidrich et al.

6.4.2 The Quamoco Quality Evaluation

The main objective of a quantitative quality evaluation is to have an easy-to-

understand, evidence-based (measurement-based), and reliable (repeatable) rating

of the quality of software products. For that purpose, the measurement values need

to be normalized and mapped to a uniform evaluation scale. Quamoco uses values

between 0 and 1 as an internal evaluation scale, but supports different interpretation

models, which can be defined based on the given context. The default interpretation

model maps the evaluation results between 0 and 1 on a scale based upon the

German school grade system. The mapping between evaluation results and grades

was defined and checked for plausibility for Java-based systems using the evalua-

tion results for more than 100 analyzed open source systems (Wagner et al. 2012).

The evaluation procedure employs multicriteria decision analysis (MCDA)

techniques and is illustrated in Fig. 6.10. The procedure for determining evaluation

rules (assuming that the remaining parts of a quality model are specified) is as

follows (Trendowicz et al. 2009):

• Weighting: Quantify the importance of each factor relative to other factors of

the same refinement and/or impact hierarchy

• Scoring: Collect measurement data for all leaf factors of the hierarchy

• Evaluation: Define so-called utility functions that map the measurement values

to the evaluation scale with values between 0 and 1. Note that for most measures,

some sort of normalization is required to allow defining that utility function

• Aggregation: Aggregate the evaluation results provided by the utility functions

by computing a weighted sum (which is again a value between 0 and 1)

U = 0.44

U(F1) = 0.4 U(F2) = 0.5

M1 = 6.0

W1 = 0.6 W2 = 0.4

M23 = 2.0

1.0

0.0
1.0

M23 – Comments Density

0.0 3.02.0

0.5

10.0

1.0

0.0

U
til

ity
 (

F
1)

U
til

ity
 (

F
2)

0.0 20.0

veto

0.4

6.0

M1 – Cyclomatic Complexity

A
ss
es
sm
en
t

1

Utility

2

4

5

6

3

0 0.30 0.50 0.67 0.81 0.92

Worst

Best

1.0

0.44

QA:
Maintainability

Software Code

TF1: Code
Complexity

TF2: Code
Doc. Level

M: Cyclomatic
Complexity

M: Comments
Density

Fig. 6.10 Quality assessment example

6 Model-Based Quality Management of Software Development Projects 149

• Interpretation: Map the aggregated evaluation results to an interpretation scale

(e.g., school grades)

The Quamoco models come with predefined evaluation rules calibrated on the

basis of a survey on the most relevant quality characteristics, the experience of

numerous software quality professionals involved in creating the model, and

thresholds calculated on the basis of more than 100 software projects. Although

the model results were confirmed by experts on five open source software products

(Wagner et al. 2012), it is strongly recommended to perform additional calibration

activities on organization-specific data before using the model.

6.5 Strategic Usage of Quality Models

The last section deals with how to support decision-making based on the outcomes

from applying quality models and how this contributes to higher-level organiza-

tional goals and strategies. GQM+Strategies®2 (Basili et al. 2010) is a measurement

planning and analysis approach that provides a framework and notation to help

organizations develop/package their operational, measurable business goals, select

strategies for implementing them, communicate these goals and strategies through-

out the organization and translate these goals into lower-level goals and strategies

down to the level of projects, assess the effectiveness of their strategies at all levels

of the organization, and recognize the achievement of their business goals. The

output of the GQM+Strategies® approach is a detailed and comprehensive model

that defines all the elements necessary for a measurement program.

GQM+Strategies® makes the business goals, strategies, and corresponding lower-

level goals explicit.

In the past, a variety of approaches have been developed covering different

aspects of linking activities related to IT services and software development to

upper-level goals of an organization and demonstrating their business value, such as

the Business Motivation Model (OMG 2010), Practical Software and Systems

Measurement (USDoD 2003), Balanced Scorecards (Kaplan and Norton 1992),

Information Technology Infrastructure Library (ITIL) (OGC 2002), Control Objec-

tives for Information and Related Technology (COBIT)® (ISACA 2007), or the

Sarbanes-Oxley Act (SOX 2002). The aim of GQM+Strategies® is not to replace

these approaches, but rather to close the existing gaps with respect to linking goals,

their implementation, and the measurement data needed to evaluate goal

attainment.

Figure 6.11 illustrates the basic concepts of the approach. The left side describes

a hierarchy of organizational goals and strategies. Organizational goals define a

target state the organization wants to achieve within a given time frame (e.g.,

2 Registered trademark of the Fraunhofer Institute for Experimental Software Engineering,

Germany and the Fraunhofer USA Center for Experimental Software Engineering, Maryland.

150 J. Heidrich et al.

improved customer satisfaction or reduced rework costs). Strategies are possible

approaches for achieving a goal within the environment of the organization.

Context factors and assumptions provide the rationale for the refinement hierarchy.

Context factors represent all kinds of factors the organization knows for sure,

whereas assumptions are estimated unknowns, that is, what is believed to be true

but needs to be reevaluated over time.

GQM graphs define how to measure whether a goal has been accomplished and

whether a strategy has been successful. Following the classic GQM approach

(Basili et al. 1994a), goals are broken down into concrete metrics. Interpretation

models are used for objectively evaluating goals and strategies.

Figure 6.12 and Table 6.4 illustrate excerpts of an example GQM+Strategies®

model focusing on the goals and strategies hierarchy and highlighting some mea-

surement data that is collected for evaluating the achievement of organizational

goals. On the lowest level, one strategy (DS-S) of the highlighted branch may

actually be to build and introduce software product quality models for, e.g.,

software reliability. The use of these quality models at different quality gates of

the software development process will in turn help to decrease the number of

defects that slip to later stages of the process (DS-G) by finding potential reliability

issues as early as possible. Less defect slippage is related to improving the quality

assurance activities of organization X (PR-S), which is a strategy for improving the

reliability of the IT products of organization X (PR-G). Improved IT products

(NC-S1) will in turn attract more customers to use the IT-based services of

company X (NC-G).

The entire model provides an organization with a mechanism for not only

defining measurement consistent with larger, upper-level organizational concerns,

but also for interpreting and rolling up the resulting measurement data at each level.

Having this chain of arguments also supports an organization in demonstrating the

values of software-related improvement initiatives, such as the systematic usage of

software product quality models. The impact of these models can be evaluated

directly in terms of an organization’s higher-level goals and make the benefits

measurable for it. More industry-related lessons learned from making strategic use

Goal+Strategies Element GQM Graph

influences

realized
by a
set of

influences

< measures
achievement

of

> made
measurable

through

Context/
Assumption

Organizational
Goal

Strategy

made measurable through

Measurement
Goal

Question

Question

Metrics

Metrics

Metrics

Interpretation Model

refined refined

Fig. 6.11 The GQM+Strategies® grid metamodel

6 Model-Based Quality Management of Software Development Projects 151

NC-G: Increased
number of
customers

CI-G: Improved
custom. interaction

process

IQ-G: Improved
information

quality of IS

NC-S1: Improve
IT products

CI-S: Provide more
complete and

consistent inform.

FF-G: Delivered
new features and

fixes faster

PR-G: Improved
reliability of

products

PP-G: Increased
productivity of

dev. projects

DS-G: Decreased
defects slipped

FF-S: Increase
productivity of

dev. projects

PR-G: Improve
QA activities

PP-S: Introduce
agile development

DS-S: Build and
introduce a quality
model for reliability

IQ-S: Increase IT
support of cust.

process

NC-S2: Improve
custom. interaction

processes

PR-G: Improve reliability of products

0

500

1000

1500

2000

Complaints (Products)

NC-G: Increase number of customers

0

5000

10000

2011
Q1

2011
Q2

2011
Q3

2011
Q4

2012
Q1

2012
Q2

2012
Q3

2012
Q4

Customers (Insurance)

DS-G: Decrease defects slipped

-40
-20

0
20
40
60

Defect Flow Model (Release R)

Requirements

Design

Coding

Integration

Operation

CA12

CA1

CA2 CA3

CA4

Organizational
Goal Strategy CA Context or Assumtion

CA5 CA6 CA7

CA8 CA9

CA10 CA11

Fig. 6.12 Example GQM+Strategies® grid

Table 6.4 Overview of context and assumption

ID Type Description

CA1 Context Company X provides banking and insurance services. X has a lot of cus-

tomers in the banking area, but only few in the insurance area

CA2 Assumption The quality of the IT products has to be improved

CA3 Assumption The quality of the customer interaction processes has to be improved

CA4 Context The services of X are built upon an Enterprise information system (IS) that is

composed of different software components

CA5 Context Customers complain that it takes too long to deliver new features and to fix

existing bugs

CA6 Context Customers complain that the IT products are not reliable

CA7 Context Customers complain about issues related to customer interaction

CA8 Assumption The delay of existing projects is mainly responsible for the inability to

deliver new features and bug fixes faster

CA9 Context Customers complain about inconsistent and incomplete information during

their interaction with company X

CA10 Context According to the experience from the recently run pilot project, agile

development principles will be able to speed up software development

CA11 Context According to the analysis of the defect data, too many defects appear in the

design and coding stage

CA12 Context Not all services of X are completely IT supported; some have to be provided

manually, which decreases information quality

152 J. Heidrich et al.

of quality models employing the GQM+Strategies® approach can be found in Basili

et al. (2013).

6.6 Conclusions and Future Work

This chapter gave an overview of the challenges and potential solutions for sys-

tematically managing the quality of software products. Controlling the quality of all

artifacts created during the software development process is one crucial task of

professional project management (PMI 2008). Quality models support an organi-

zation in general and project managers in particular in objectively evaluating and

assessing software product quality through the use of measurement. Knowledge and

experience regarding critical quality characteristics and indicators for measuring

and evaluating these characteristics are captured in these models.

The chapter highlighted four challenges when dealing with quality models in

practice and proposed solutions developed in recent years. First, there is no

universal quality model that can be applied everywhere. A variety of quality models

exists, and mechanisms such as the proposed classification scheme and quality

model landscapes are needed to identify the “right” model based on a clear picture

of the goals that should be obtained from using the model.

Second, it is essential to tailor quality models to company specifics. Existing

standards are often too generic and hard to fully implement in an organization. A

structured process, such as the six-step process proposed, is needed to develop

custom-tailored quality models. This also allows for collecting the measurement

data needed and to focus data analysis and interpretation on the quality character-

istics of interest.

Third, in practice, it is an effort-consuming process to specify and apply quality

models because no proven standard techniques, methods, and tools are available.

The Quamoco approach described above provides a well-defined metamodel for the

specification of quality models and comes with tool-supported, domain-specific

models, which can be customized to the specific needs of an organization.

Fourth, in order to create quality models that are sustainably implemented in an

organization, the link and contribution to organizational goals need to be clarified.

As illustrated by the GQM+Strategies® approach, the data provided from applying

software product quality models can be used directly for guiding improvement

actions and decision-making.

In the future, software projects will be faced with new challenges that need to be

mastered from a practitioner’s point of view if an organization wants to provide

products with the right level of quality in order to defend and further expand its

position on the market. In order to manage future projects successfully, processes

and quality assurance mechanisms must handle ever shorter business and technol-

ogy life cycles and must permit flexible adaptation. Introducing agile development

principles is one potential approach allowing for more flexibility (as discussed in

Chap. 11). Software products and systems are increasingly being developed in a

6 Model-Based Quality Management of Software Development Projects 153

http://dx.doi.org/10.1007/978-3-642-55035-5_11

distributed manner in heterogeneous environments. Chapters 9, 10, and 12 highlight

some further challenges and solution approaches for managing global software and

IT projects. This is particularly true for cyberphysical systems, where organizations

from different domains work together on an integrated solution, each with its own

special requirements regarding the integration of different processes and quality

management mechanisms. As a consequence, software product quality models must

be easy to adapt to new quality requirements on the one side. On the other side, they

must be able to address very heterogeneous quality requirements from different

domains, which probably use different development processes, and to integrate all

these aspects into a comprehensive model. From a researcher’s point of view, one

major challenge lies in providing empirically proven quality models that can be

successfully applied in dedicated domains with known effects. Future work will

focus on coping with these aspects.

Acknowledgments The research leading to these results was partially supported by the ARTE-

MIS Joint Undertaking under grant agreement no. 269335, the research project Quamoco (grant

01IS08023), and from the German Federal Ministry of Education and Research (BMBF).

References

Avizienis A, Laprie JC, Randell B (2001) Fundamental concepts of dependability

Basili V, Caldiera G, Rombach D (1994a) Goal, question metric paradigm. Encyc Softw Eng

1:528–532 (John Wiley and Sons)

Basili V, Caldiera G, Rombach D (1994b) The experience factory. Encyc Softw Eng 1:469–476

(John Wiley and Sons)

Basili V, Heidrich J, Lindvall M, Münch J, Regardie M, Rombach D, Seaman C, Trendowicz A

(2010) Linking software development and business strategy through measurement. IEEE

Comput 43(4):57–65

Basili V, Lampasona C, Ocampo A (2013) Aligning corporate and IT goals and strategies in the oil

and gas industry. In: Proceedings of the 14th international conference on product-focused

software process improvement, lecture notes in computer science, vol 7983. Springer,

New York, pp 184–198

Boehm BW (1978) Characteristics of software quality. North-Holland, Amsterdam

Cavano JP, McCall JA (1978) A framework for the measurement of software quality. In: Pro-

ceedings of the software quality assurance workshop on functional and performance issues.

ACM, New York, pp 133–139

Differding C (2001) Reuse of measurement plans based on process and quality models. In:

Proceeding of 3rd international workshop on advances in learning software organizations

(LSO). Springer, pp 207–221

Dörr J, Trendowicz A, Kolb R, Punter T, Kerkow D, König T, Olsson T (2004) Quality models for

non-functional requirements. Fraunhofer IESE Report No. 010-04/E

Dromey GR (1998) Software product quality: theory, model and practice. Griffith University,

Brisbane, Australia

ECSS-Q-30A (1996) Space product assurance: dependability

IEC 61508-1 (2010) Functional safety of electrical/electronic/programmable electronic safety-

related systems

IEEE 1061 (1998) Software quality metrics methodology

154 J. Heidrich et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_9
http://dx.doi.org/10.1007/978-3-642-55035-5_10
http://dx.doi.org/10.1007/978-3-642-55035-5_12

ISACA (2007) Control objectives for information and related technology (CoBIT®). Retrieved

04 12 2007, from www.isaca.org

ISO 8402 (1995) Quality management and quality assurance – vocabulary

ISO/IEC 14598-1 (1999) Information technology software product evaluation

ISO/IEC 15939 (2007) Systems and software engineering measurement process

ISO/IEC 25000-1 (2005) Software product quality requirements and evaluation (SQuaRE)Guide

to SQuaRE

ISO/IEC 25010 (2011) SQuaRE system and software quality models

ISO/IEC 25021 (2012) SQuaRE quality measure elements

ISO/IEC 25040 (2011) SQuaRE evaluation process

ISO/IEC 9126-1 (2001) Software engineering product quality - part 1

Kaplan R, Norton D (1992) The balanced scorecard - measures that drive performance. Harv Bus

Rev 71

Kitchenham BA, Linkman S, Pasquini A, Nanni V (1997) The SQUID approach to defining a

quality model. Softw Qual Control 6(3):211–233

Kläs M, Münch J (2008) Balancing upfront definition and customization of quality models. In:

Proceedings of the workshop on software quality modeling and assessment (SQMB 2008),

Munich, Germany, pp 26–30

Kläs M, Heidrich J, Münch J, Trendowicz A (2009) CQML Scheme: a classification scheme for

comprehensive quality model landscapes. In: Proceedings of the 35th EUROMICRO confer-

ence (SEAA 2009). IEEE Computer Society, pp 243–250

Kläs M, Lampasona C, Nunnenmacher S, Wagner S, Herrmannsdörfer M, Lochmann K (2010a)

How to evaluate meta-models for software quality? In: Proceedings of the joint international

conferences on software measurement. IWSM/MetriKon/Mensura, Shaker, pp 443–462

Kläs M, Elberzhager F, Münch J, Hartjes K, von Graevemeyer O (2010b) Transparent combina-

tion of expert and measurement data for defect prediction – an industrial case study. In:

Proceedings of the 32nd international conference on software engineering (ICSE 2010),

Cape Town, South Africa, pp 119–128

Lampasona C, Heidrich J, Basili V, Ocampo A (2012) Software quality modeling experiences at

an oil company. In: Proceedings of the 6th international conference on empirical software

engineering and measurement (ESEM), 20–21, pp 243–246

Mayr A, Plösch R, Kläs M, Lampasona C, Saft M (2012) A Comprehensive code-based quality

model for embedded systems - systematic development and validation by industrial projects.

In: Proceedings of the 23rd international symposium on software reliability engineering

(ISSRE 2012), Dallas, TX

MISRA Report 5 (1995) Software metrics office of government commerce (2002). The IT

Infrastructure Library (ITIL) Service Delivery, The Stationary Office London

Object Management Group (2010) The business motivation model (BMM) V. 1.1. Retrieved 06 08

2010, from www.omg.org

Office of Government Commerce (OGC) (2002) The IT infrastructure library (ITIL) service

delivery. The Stationary Office, London

Petersson H, Thelin T, Runeson P, Wohlin C (2004) Capture–recapture in software inspections

after 10 years research––theory, evaluation and application. J Syst Softw 72(2):249–264

Project Management Institute (2008) A guide to the project management body of knowledge

(PMBOK® Guide), 4th edn. Project Management Institute

Sarbanes-Oxley Act (2002) Public Law No. 107-204, 116 Stat. 745, Codified in sections of 11, 15,

18, 28, and 29 in United States Code, July 30

Stasko J (2013) Sun burst. Retrieved 29 01 2013, from www.cc.gatech.edu/gvu/ii/sunburst

Trendowicz A, Heidrich J, Münch J, Ishigai Y, Yokoyama K, Kikuchi N (2006) Development of a

hybrid cost estimation model in an iterative manner. In: Proceedings of the 28th international

conference on software engineering (ICSE 2006), Shanghai, China, pp 331–340

6 Model-Based Quality Management of Software Development Projects 155

http://www.isaca.org/
http://www.omg.org/
http://www.cc.gatech.edu/gvu/ii/sunburst

Trendowicz A, Kläs M, Lampasona C, Münch J, Körner C, Saft M (2009) Model-based product

quality evaluation with multi-criteria decision analysis. In: Proceedings of the joint interna-

tional conferences on software measurement (IWSM/MetriKon/Mensura), Shaker, pp 3–20

United Kingdom Ministry of Defense (1997) Def Stan 00-55 requirements for safety related

software in defense equipment

US Department of Defense and US Army (2003) Practical software and systems measurement: a

foundation for objective project management, v. 4.0c, from www.psmsc.com

Wagner S, Lochmann K, Winter S, Göb A, Kläs M, Nunnenmacher S (2010a)

Software quality in practice survey results. Retrieved 03 06 2014, from

http://mediatum.ub.tum.de/doc/1110601/1110601.pdf

Wagner S, Broy M, Deißenböck F, Kläs M, Liggesmeyer P, Münch J, Streit J (2010b)

Softwarequalitätsmodelle. Praxisempfehlungen und Forschungsagenda, Informatik Spektrum

33(1):37–44 (Springer)

Wagner S, Lochmann K, Heinemann L, Kläs M, Trendowicz A, Plösch R, Seidl A, Goeb A, Streit

J (2012) The Quamoco product quality modeling and assessment approach. In: Proceedings of

the 34th international conference on software engineering (ICSE 2012), Zurich, Switzerland,

pp 1133–1142

Biography Jens Heidrich graduated from the University of Kaiserslautern, Ger-

many, with a Diploma degree in Computer Science and received his doctoral degree

from the same university in 2008. He is head of the Process Management division at

the Fraunhofer Institute for Experimental Software Engineering (IESE) in Kaisers-

lautern, Germany, and a lecturer at the University of Kaiserslautern, Germany. He

is a member of the German Informatics Society and part of the managing committee

of the section “Software Measurement.”

Dieter Rombach studied mathematics and computer science at the University of

Karlsruhe, Germany, and obtained his Ph.D. in Computer Science from the Uni-

versity of Kaiserslautern, Germany in 1984. Since 1992, he has held the Software

Engineering Chair in the Department of Computer Science at the University of

Kaiserslautern. In addition, he is the founding and executive director of the Fraun-

hofer Institute for Experimental Software Engineering IESE in Kaiserslautern,

Germany.

Michael Kläs graduated from the University of Kaiserslautern, Germany, with a

German Diploma degree in Computer Science in 2005 and started working at the

Fraunhofer Institute for Experimental Software Engineering IESE thereafter. He

works on subjects concerning goal-oriented measurement, modeling and assessing

quality, as well as defect prediction and cost estimation. His current research

interests focus on early quality prediction and aligning large-scale technology

evaluation endeavors.

156 J. Heidrich et al.

http://www.psmsc.com/
http://mediatum.ub.tum.de/doc/1110601/1110601.pdf

	Chapter 6: Model-Based Quality Management of Software Development Projects
	6.1 Introduction
	6.2 Selecting the Right Quality Models
	6.2.1 Structural Components
	6.2.2 Quality Model Goal
	6.2.3 Quality Model Landscapes

	6.3 Building Custom-Tailored Quality Models
	6.3.1 Characterize: Define Environment and Scope
	6.3.2 Set Goals: Define Goals and Build Quality Model
	6.3.3 Choose Process: Set Up Data Collection and Analysis
	6.3.4 Execute: Use the Quality Model for Evaluation/Assessment
	6.3.5 Analyze: Analyze Evaluation/Assessment Results
	6.3.6 Package: Define Improvement Actions

	6.4 Specification and Application of Quality Models
	6.4.1 The Quamoco Quality Metamodel
	6.4.2 The Quamoco Quality Evaluation

	6.5 Strategic Usage of Quality Models
	6.6 Conclusions and Future Work
	References

