
Chapter 15

Search-Based Software Project Management

Filomena Ferrucci, Mark Harman, and Federica Sarro

Abstract Project management presents the manager with a complex set of related

optimisation problems. Decisions made can more profoundly affect the outcome of

a project than any other activity. In the chapter, we provide an overview of Search-

Based Software Project Management, in which search-based software engineering

(SBSE) is applied to problems in software project management. We show how

SBSE has been used to attack the problems of staffing, scheduling, risk, and effort

estimation. SBSE can help to solve the optimisation problems the manager faces,

but it can also yield insight. SBSE therefore provides both decision making and

decision support. We provide a comprehensive survey of search-based software

project management and give directions for the development of this subfield

of SBSE.

15.1 Introduction

Software Project Management includes several activities critical for the success of a

project (e.g., cost estimation, project planning, quality management). These activ-

ities often involve finding a suitable balance between competing and potentially

conflicting goals. For example, planning a project schedule requires to minimise the

project duration and the project cost, and to maximise the product quality. Many of

these problems are essentially optimisation questions characterised by competing

F. Ferrucci

DISTRA, University of Salerno, Salerno, Italy

e-mail: fferrucci@unisa.it

M. Harman • F. Sarro (*)

CREST, Department of Computer Science, University College London, London, UK

e-mail: mark.harman@ucl.ac.uk; f.sarro@ucl.ac.uk

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_15, © Springer-Verlag Berlin Heidelberg 2014

373

mailto:fferrucci@unisa.it
mailto:mark.harman@ucl.ac.uk
mailto:f.sarro@ucl.ac.uk

goals/constraints and with a bewilderingly large set of possible choices. So finding

good solutions can be hard.

Search-based software engineering seeks to reformulate software engineering

problems as search-based optimisation problems and applies a variety of meta-

heuristics based on local and global search to solve them (such as Hill Climbing,

Tabu Search, and Genetic Algorithms). These meta-heuristics search for a suitable

solution in a typically large input space guided by a fitness function that expresses

the goals and leads the exploration into potentially promising areas of the search

space.

Though the term Search-Based Software Engineering (SBSE) was coined by

Harman and Jones in 2001 to cover the application of computational search and

optimisation across the wide spectrum of software engineering activities (Harman

and Jones 2001), there were already pockets of activity on several specific software

engineering problems prior to the introduction of the term SBSE. One such topic

was search-based software project management, the topic of this chapter. In

particular, there was work on search-based project scheduling and staffing by

Chang (1994), Chang et al. (1994, 1998) and Chao et al. (1993), and on search-

based software development effort estimation by Dolado (2001) and Shukla (2000).

Figure 15.1 shows the number of papers published on the use of search-based

approaches for Software Project Management. We can note that the first work

aiming at optimising project scheduling and staffing appeared in 1993, while in

2000 the SBSE community started investigating search-based approaches also for

software development effort estimation.

This chapter provides a comprehensive review of techniques, results and trends

published in relevant papers. We discuss the effectiveness of search-based

approaches for supporting project managers in many activities and provide sugges-

tions for future research directions.

SB Software Project
Management

SB Project Scheduling
and Staffing

SB Software Development
Effort Estimation

N
um

be
r

of
 P

ap
er

s

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

10

20

30

40

50

60

Fig. 15.1 Number of relevant publications on the use of search-based approaches for software

project management from 1993 to 2013 [source Zhang (2013)]

374 F. Ferrucci et al.

The rest of the chapter is organised as follows. Section 15.2 reports on the main

features of the most popular search-based techniques used in the context of search-

based software project management. Section 15.3 introduces the problems of

scheduling and staffing and building predictive models with special focus on

software development effort estimation providing a description of search-based

approaches proposed in the literature and the empirical studies carried out to assess

their effectiveness. Future research directions are described in Sect. 15.4.

Section 15.5 concludes the chapter.

15.2 Search-Based Software Engineering

Software engineering, like other engineering disciplines, is concerned with optimi-

sation problems: we seek to build systems that are better, faster, cheaper, more

reliable, flexible, scalable, responsive, adaptive, maintainable, and testable; the list

of objectives for the software engineer is a long and diverse one, reflecting the

breadth and diversity of applications to which software is put. The space of possible

choices is enormous and the objectives many and varied. Search-based software

engineering (SBSE) is an approach to software engineering in which search-based

optimisation algorithms are used to identify optimal or near optimal solutions and

to get insight. Thus, in SBSE an SE problem (e.g., test case generation) is treated as

a search or optimization problem whose goal is to find the most appropriate solution

conforming to some adequacy criteria (e.g., maximising the code coverage). Rather

than constructing test cases, project schedules, requirements sets, designs, and other

software engineering artifacts, SBSE simply searches for them.

The search space is the space of all possible candidate solutions. This is typically

enormous, making it impossible to enumerate all solutions. Moving from conven-

tional software engineering to SBSE basically requires choosing a representation of

the problem and defining a suitable fitness function to determine how good a

solution is. Typically, a software engineer will have a suitable representation for

his/her problem, because one cannot do much engineering without a way to

represent the problem in hand. Furthermore, many problems in software engineer-

ing have a rich and varied set of software metrics associated with them that

naturally form good initial candidates for fitness functions (Harman and Clark

2004).

With these two ingredients, it becomes possible to implement search-based

optimisation algorithms. These algorithms use different approaches to locate opti-

mal or near-optimal solutions. However, they are all essentially a search through

many possible candidate instances of the representation, guided by the fitness

function, which allows the algorithm to compare candidate solutions according to

their effectiveness at solving the problem in hand. Many techniques have been used,

including local search techniques, such as Hill Climbing (HC), and global tech-

niques, such as Genetic Algorithm (GA) and Genetic Programming (GP).

15 Search-Based Software Project Management 375

Despite the local maximum problem, HC is a simple technique that is both easy

to implement and surprisingly effective (Harman et al. 2002; Mitchell and

Mancoridis 2002); these aspects make it a popular first choice among search-

based techniques. GA belongs to the larger class of evolutionary algorithms

(EAs) (Holland 1975), which loosely model evolutionary searches for fit individ-

uals. GP (Koza 1992) is another form of evolutionary technique that has proved

very useful in SBSE for project management.

A comprehensive review of the overall field of SBSE can be found in the work of

Harman et al. (2012b). In that overall SBSE survey, the reader can find a more

detailed explanation of the algorithms used in SBSE. There is also a tutorial on

SBSE (Harman et al. 2010), in which the reader can find a gentle introduction to the

entire area. The SBSE survey (Harman et al. 2012b) and tutorial (Harman

et al. 2010) cover the whole area of SBSE and, as a result, has little time and

space available for each subtopic. The present survey focuses on the results, trends,

techniques, and achievements in SBSE for project management. Though there have

been many surveys on other subareas of SBSE, including, testing (McMinn 2004;

Yoo and Harman 2012), design (Räihä 2010), and requirements (Zhang et al. 2008),

there has been no previous survey on SBSE for project management.

15.3 Search-Based Software Project Management

In this section, we provide an overview of the work on search-based software

project management, in which SBSE is applied to support project managers for

time management (Sect. 1.3.3), cost management (Sect. 1.3.4), quality management

(Sect. 1.3.5), human-resource management (Sect. 1.3.6) and risk management

(Sect. 1.3.8).

The first application of SBSE to software project management has been pro-

posed for project scheduling and resource allocation. Figure 15.2 provides a generic

schematic overview of SBSE approaches to project planning. Given in input

information about work packages (e.g., cost, duration, dependencies) and staff

skills, the search-based approaches search for an optimal work package ordering

and staff allocation guided by a single or multi-objectives fitness function. A natural

goal for a search-based approach to project management is to find project plans that

minimise the completion time of the project. Another goal that has been taken into

account is to minimise the risks associated with the development process (e.g.,

delays in the project completion time, or reduced budgets available).

Figure 15.2 also highlights one of the important limitations of the approach: it

relies on simulation of the likely course of the project, given the guiding project

configuration parameters (effectively, the search space). Moreover, the formulation

of search-based project management problem does not always model the reality of

software projects (e.g., many papers do not have a realistic representation of skill

and/or risk). However, there is evidence to suggest that this uptake in making the

formulation of the search-based project management problem more realistic

376 F. Ferrucci et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec6
http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec7
http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec8
http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec9
http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec11

[see e.g., Antoniol et al. (2004, 2005), Luna et al. (2012)] and oriented towards

human aspects (see Chap. 4) is already taking place.

SBSE techniques also have a natural application in predictive modelling

(Harman 2010a). Software development effort estimation is one of the areas in

which this search-based predictive modelling approach has been most widely

investigated (Ferrucci et al. 2010d). The use of search-based approaches in this

context has been twofold: they can be exploited to build effort estimation models or

to enhance the use of other effort estimation techniques (Sarro 2011). In the first

case, the problem of building an estimation model is reformulated as an optimisa-

tion problem where the search-based method builds many possible models—

exploiting past projects data—and tries to identify the best one, that is, the one

providing the most accurate estimates. In the second case, search-based methods

can be exploited in combination with other estimation techniques to improve

critical steps of their application (e.g., features subset selection or the identification

of critical parameters) aiming to obtain better estimates.

Staff Allocation Work Package
Ordering

Search Based Optimization Techniques

Skills of Staff

Skills Required by
Work Packages

Skills Information

Cost Estimates

Duration Estimates

Dependencies
between Work

Packages

Work Packages
Information

Simulator Fitness Function

Fig. 15.2 A generic search-based project management scheme (Harman et al. 2012b)

15 Search-Based Software Project Management 377

http://dx.doi.org/10.1007/978-3-642-55035-5_4

Many empirical studies were carried out in this field showing that search-based

techniques are not only as effective as widely used effort estimation methods [see,

e.g., Ferrucci et al. (2010a)] but also their use can significantly improve the

accuracy of other data-driven effort estimation techniques [see, e.g., Corazza

et al. (2013)]. Moreover, there is evidence that the use of search-based approaches

can help to yield insight into open problems, such as the choice of a reliable

measure to compare different estimation models [see, e.g., Ferrucci et al. (2010c),

Lokan (2005)]. Furthermore, search-based approaches only have been used to

obtain exact prediction (i.e., one point estimate for a project); however, they can

be exploited to investigate prediction uncertainty and risk of inaccurate prediction

by means of using sensitivity analysis or multi-objective optimisation, as success-

fully done in other fields of SBSE [see e.g., Harman et al. (2009)].

Figure 15.3 shows the key ideas developed so far for search-based project

management. In Sects. 15.3.1, 15.3.2, 15.3.3 and 15.3.4, we discuss the studies

that have been carried out on the use of search-based approaches for project

planning and staffing, while in Sect. 15.3.5 we discuss the main studies on

search-based effort estimation. Open challenges and future work are reported in

Sect. 15.4.

SBSE has also been used to build predictive models to support project managers

in other estimation tasks, namely, quality prediction and defect prediction. In

particular, Azar (2010) considers approaches to improve predictive models of

software quality using SBSE. Liu and Khoshgoftaar (2001) apply GP to quality

prediction, presenting two case studies of the approach. This GP approach has been

extended, refined and further explored in (Khoshgoftaar et al. 2003; Liu and

Khoshgoftaar 2003, 2004; Khoshgoftaar and Liu 2007). In all these works,

GP-evolved predictors are used as the basis for decision support. Bouktif

et al. (2002, 2004, 2006) exploit GA and SA for quality prediction for software

projects. Other authors have used a combination of GA and GP techniques for

estimation as a decision support tool for software managers. Jarillo et al. (2011) and

Afzal et al. (2014) apply GA and GP for predicting the number of defects and

estimating the reliability of the system. Others exploit GA to search for a suitable

configuration of support vector machines to be used for inter-release fault predic-

tion (Di Martino et al. 2011; Sarro et al. 2012a).

15.3.1 Early Work on Search-Based Software Project
Planning and Staffing

Chang et al. (Chang 1994; Chang et al. 1994, 1998, 2001; Chao et al. 1993)

introduced the software project management net (SPM-Net) approach for project

scheduling (Sect. 1.3.3) and resource allocation (Sect. 1.3.6). This was the first

work on search-based software project management in the literature. The work is

evaluated on simulated data, constructed synthetically to mimic the properties of

378 F. Ferrucci et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec6
http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec9

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
16

20
15

20
17

SB
 f

or
 p

ro
je

ct
 s

ch
ed

ul
in

g
an

d
re

so
ur

ce
 a

llo
ca

ti
on

(C
ha

o
19

93
)

SB
 c

om
bi

ne
d

w
it
h

M
L

 f
or

 s
of

tw
ar

e
ef

fo
rt

 e
st

im
at

io
n

(S
hu

kl
a

20
00

)

(D
ol

ad
o

20
01

)

(K
ir
so

pp
 e

t
al

.
20

02
)

(A
nt

on
io

l
et

 a
l.

20
04

)

(L
ok

an
 2

00
5)

SB

fo
r

an
al

ys
in

g
co

m
m

un
ic

at
io

n
ov

er
he

ad
 i
n

so
ft

w
ar

e
pr

oj
ec

t

SB
 f

or
 i
nt

er
ac

ti
ve

 o
pt

im
iz

at
io

n
in

 p
ro

je
ct

 m
an

ag
em

en
t

(D
i
P
en

ta
 e

t
al

.
20

07
)

(S
ha

ck
el

fo
rd

 2
00

7) M
O

E
A

 f
or

 h
an

dl
in

g
so

ft
w

ar
e

pr
oj

ec
t

un
ce

rt
ai

nt
y

(G
ue

or
gu

ie
v

et
 a

l.
20

09
)

SB
 f

or
 b

ui
ld

in
g

pr
ed

ic
ti
on

 m
od

el
s

ba
se

d
on

 d
if
fe

re
nt

fi
tn

es
s

fu
nc

ti
on

s
in

 s
of

tw
ar

e
ef

fo
rt

 e
st

im
at

io
n

M
O

E
A

 f
or

 t
ra

in
in

g
en

se
m

bl
e

m
od

el
s

in
 s

of
tw

ar
e

ef
fo

rt
es

ti
m

at
io

n

M
O

E
A

 f
or

 b
ui

ld
in

g
pr

ed
ic

ti
ve

 m
od

el
s

in
 s

of
tw

ar
e

ef
fo

rt
es

ti
m

at
io

n

SB
 f

or
 W

eb
 e

ff
or

t
es

ti
m

at
io

n

R
un

ti
m

e
an

al
ys

is
 o

f
SB

 p
ro

je
ct

 s
ch

ed
ul

in
g

SB
 s

of
tw

ar
e

pr
oj

ec
t

m
an

ag
em

en
t

to
ol

SB
 f

or
 d

yn
am

ic
 a

da
pt

io
n

in
 s

of
tw

ar
e

pr
oj

ec
t

m
an

ag
em

en
t

(F
er

ru
cc

i
et

 a
l.

20
10

b)

(S
ty

la
no

u
et

 a
l.

20
12

)

(M
in

ku
 e

t
al

.
20

12
)

(M
in

ku
 e

t
al

.
20

12
)

(F
er

ru
cc

i
et

 a
l.

20
11

)

(F
er

ru
cc

i
et

 a
l.

20
10

)

(X
ia

o
et

 a
l.

20
10

)

M
O

E
A

 f
or

 o
ve

rt
im

e
pl

an
ni

ng
 i
n

so
ft

w
ar

e
pr

oj
ec

t
m

an
ag

em
en

t

(F
er

ru
cc

i
et

 a
l.

20
13

)

SB
 f

or
 b

ui
ld

in
g

pr
ed

ic
ti
on

 m
od

el
s

in
 s

of
tw

ar
e

ef
fo

rt
es

ti
m

at
io

n SB
 f

or
 f

ea
tu

re
 s

ub
se

t
se

le
ct

io
n

in
 s

of
tw

ar
e

ef
fo

rt
es

ti
m

at
io

n

SB
 f

or
 p

ro
je

ct
 m

an
ag

em
en

t
in

 p
re

se
nc

e
of

 a
ba

nd
on

m
en

t,
re

w
or

k,
 e

rr
or

 a
nd

 u
nc

er
ta

in
ty

(K
ip

er
 e

t
al

.
20

07
)

SB
 f

or
 t

ra
in

in
g

pr
ed

ic
ti
ve

 m
od

el
s

ba
se

d
on

 d
if
fe

re
nt

ac
cu

ra
cy

 m
ea

su
re

s
in

 s
of

tw
ar

e
ef

fo
rt

 e
st

im
at

io
n

SB
 f

or
 h

an
dl

in
g

so
ft

w
ar

e
ri
sk

F
ig
.
15

.3
K
ey

id
ea
s
d
ev
el
o
p
ed

fo
r
se
ar
ch
-b
as
ed

so
ft
w
ar
e
p
ro
je
ct

m
an
ag
em

en
t

15 Search-Based Software Project Management 379

real software projects and to evaluate the properties of the algorithms used. One of

the enduring problems researchers concerned with project management face is the

lack of available real-world project data. It remains a common problem to this day.

At about the same time as the term SBSE was introduced to the mainstream

software engineering community, Aguilar-Ruiz et al. (2001, 2002) were also

experimenting with computational search as a means of managing and investigating

software project management activities. The goal was to provide rules to the

manager to help guide the process of project management. As with the work of

Chang et al., a simulation of the project was used to evaluate the search.

This concept of a software project simulation has remained prevalent throughout

the history of work on project management (Chap. 17). To evaluate a fitness for a

proposed project plan, it is necessary to run a simulation of the course of the project

in order to obtain an assessment of the fitness of the proposed plan. Of course, this

raises additional issues as to the validity of the simulation. One of the advantages of

the SBSE approach, more generally, is that it can operate directly on the engineer-

ing material (i.e., the software) in question. This is an aspect of SBSE that is unique

to the software engineering domain and not shared by any other application of

computational search to other engineering disciplines (Harman 2010b). However,

for search-based project management, the familiar issues that arise in computa-

tional search for other engineering disciplines arise here also for software engi-

neering (Harman 2010a). We have to be aware that our model of reality and our

simulation of that model are both important players in the overall computation of

fitness and thereby impact the results obtained; errors in the model or the simulation

may feed through into poor quality solutions found by the search.

15.3.2 Minimising Software Project Completion Times

A natural step for a search-based approach to project management is to focus on

techniques that find project plans that minimise the completion time of the project

(Sect. 1.3.3). Like all project managers, software project managers are concerned

with timely product delivery. In highly competitive software engineering applica-

tion domains, time to market can be a key determinant of the ultimate success of a

product.

Antoniol et al. (2004, 2005) applied GAs, HC and SA to the problem of staff

allocation to work packages with the aim of reducing project completion time.

At the same time, Alba and Chicano (2005, 2007) also applied search algorithms

to software projects. They combined several different objectives for optimisation of

project management into a single weighted sum and optimise for this weighted sum.

The approach was evaluated on a set of problems generated by an instance

generator. Subsequently, this work was extended to handle multiple objectives

using a Pareto optimisation approach (Chicano et al. 2011).

The work of Antoniol et al. (2004, 2005) targeted a massive maintenance

project, in which work packages were compressible by the allocation of additional

380 F. Ferrucci et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_17
http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec6

staff. This principle of compressible work packages runs contrary to Brooks’

famous law (Brooks 1975). That is, adding more staff to a late project simply

makes the project even later. Following Brooks’ law, we may not, in general,

assume that a work package of two person-months will take one month to complete

should we choose to allocate two people to it. In the most extreme case, the

additional communication overheads may mean that the work package takes longer

to complete with two people than with one.

However, in some cases, it is realistic to assume that the duration of a work

package can be derived by dividing the person-months needed for the package by

the number of engineers working on it. This can only be applied within reason, even

where the linearity can be assumed to hold; a two person-month work package may

not be completed in under an hour by allocating one thousand engineers to it!

However, linearity may apply for a reasonably useful range of values, where the

tasks are highly mechanised or where they are specified in detail and prescriptive.

Such work packages may be found in such massive maintenance tasks such as those

studied in Antoniol et al. (2004, 2005). They may also be found in situations where

software engineering activities are outsourced and therefore more highly specified

for this reason.

Many authors have simplified their models of software projects by implicitly or

explicitly assuming linearity (effectively denying Brooks’ law). Where the linearity

assumption cannot be justified and we assume that Brooks’ law applies, we can still

use SBSE; we simply require a richer model. We can also use SBSE to explore the

impact of Brooks’ law on the software project planning process. Antoniol

et al. (2005) introduced an approach to investigating Brooks’ law with different

models of communication overhead to explore the influence of nonlinearity on

project planning.

More intricate models may be required to adequately capture the true behaviour

of the project once it commences. Another example of an important aspect of

software engineering projects is the tendency for aspects of the project to be

reworked. Software is so flexible that it is often considered easy to reassign or

reimplement a component. This can lead to headaches for the project manager, who

would prefer, perhaps, to schedule his or her project on the basis of known

completion times.

To make the formulation of the search-based project management problem more

realistic, Antoniol et al. (2004) introduced models of the project management

problem that account for reworking and abandonment of work packages. In this

way, we can enrich our models of the eventual software project process to cater for

more real-world assumptions. This may make the overall model more realistic and

the simulation, thereby, more reliable. Unfortunately, it also makes the model more

complex and consequently it becomes harder to explain the outcomes to the users.

Care is thus required that the model does not become such a Byzantine work of

intricate beauty that its findings become simultaneously impenetrable to the deci-

sion maker; this area of SBSE is primarily concerned with decision support, rather

than decision making (Harman et al. 2012b). Insights that accrue to the decision-

maker rely critically on accessibility of explanations.

15 Search-Based Software Project Management 381

Much of the previous work on search-based project management (Aguilar-Ruiz

et al. 2001; Alba and Chicano 2005, 2007; Chang 1994; Chang et al. 1994, 1998,

2001; Chao et al. 1993; Minku et al. 2012, 2013) has used synthetic data. This can

be achieved in a disciplined and controlled manner. For example, Alba and Chicano

(2007) used a systematic instance generator to create synthetic software project data

concerning work package estimated effort. This approach to the construction of

synthetic data allows for experimental control of the evaluation under ‘laboratory

conditions’. Such experimental control has been argued to be an important aspect of

SBSE that complements empirical analysis on real-world case studies (Harman

et al. 2012a). Antoniol et al. (2005) applied their search-based algorithms to real-

world data from a large Y2K maintenance project, providing empirical evidence

about search-based project management that complements (but does not replace the

need for) the experimental data from other studies.

Many other approaches and formulations have been introduced for the software

project management problem. For example, Alvarez-Valdes et al. (2006) applied

Scatter Search to the problem of minimising project duration. Hericko et al. (2008)

used a gradient-based optimisation method to optimise project team size while

minimising project effort. Chen and Zhang (2013) used an Ant Colony Optimisa-

tion (ACO) approach. Kang et al. (2011) optimised the scheduling of human

resource allocations by using a variant of SA, taking into account individual and

team constraints based on the literature and interviews with experts in the industry,

and by employing real data to validate their proposal. Rahman et al. (2010) also

reported on an empirical analysis carried out exploiting real data on the use of both

GA and a greedy approach that makes the locally optimal choice at each stage to

assign developer to tasks and bug fixing activities. Different aspects of the man-

agement also focused on the allocation of staff (Barreto et al. 2008; Kapur

et al. 2008) and the provision of decision support (Cortellessa et al. 2008).

Di Penta et al. (2011) provided a recent evaluation of search-based techniques for

scheduling and staffing for software project management assessed on real-world

examples in the style of detailed empirical evaluations using nonsynthetic data.

Their work covers single and multiple objective formulations, catering for

conflicting project objectives, schedule fragmentation and developer expertise.

Results are presented for HC, SA and GAs and applied to two real-world software

projects.

15.3.3 Risk-Based Approach

All software projects suffer from risk (Sect. 1.3.8). Risks can be categorised as

product risks and process risks. Risks to the product concern the possibility that

there may be flaws in the product that make it less attractive to customers, while

process risks concern the problems that may cause delays in the project completion

time, or reduced budgets available forcing compromise.

382 F. Ferrucci et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec11

Kiper et al. (2007) were concerned with the problem of technical risks, seeking

to find those verification and validation activities that could be deployed to reduce

risks subject to budget. This work can be categorised as a product risk; it seeks to

reduce the chance that the product will exhibit a risk of faults or other low quality.

Gueorguiev et al. (2009) concerned process risk, focusing on the chances that

misestimating the effort required for a work package might lead to overruns which

would adversely affect the completion time of the project. The effects of overruns

are not immediately obvious since they can affect the critical path, making previ-

ously less important work packages become more important for the overall project

completion time.

Jiang et al. (2007) proposed an approach that extracts personnel risk information

from historical data and integrates risk analysis into project scheduling performed

with GA. A rescheduling mechanism is designed to detect and mitigate potential

risks along with the software project development. However, the proposed

approach has not been empirically validated.

Xiao et al. (2013) presented a search-based risk mitigation planning method

based on GA for project portfolio management. Their results showed that with

various risk mitigation actions and project objective settings, different plans can be

effectively obtained, thus providing decision support for managers.

15.3.4 Overtime Planning

Effort estimation and planning of projects are hard problems that can be supported

by decision support tools. Where these tools are inadequate or the project encoun-

ters unexpected ‘mission creep’, the consequences can be highly detrimental for the

software engineers working on the project and the products they produce. Typi-

cally, the only remaining solution open to the project manager is to fall back on the

allocation of overtime. However, unplanned overtime results in bad products, as has

been repeatedly demonstrated in the literature (Akula and Cusick 2008; Nishikitani

et al. 2005). It also has harmful effects on the engineers forced into such punitive

working practices (see, e.g., Kleppa et al. 2008). The spectre of the ‘death march

project’ (Yourdon 1997) hangs over many software engineering activities, largely

as a result of the inability to plan for and manage the deployment of overtime. More

thorough overtime planning is not only beneficial to the software engineers who

have to undertake the work (Beckers et al. 2008), there is also evidence that it

produces better products when used in agile team (Mann and Maurer 2005).

Motivated by these observations, Ferrucci et al. (2013) introduced a multi-

objective formulation of the project overtime planning for software engineering

management. The approach is able to balance trade-offs between project duration,

overrun risk and overtime resources for three different risk assessment models. It is

applicable to standard software project plans, such as those constructed using the

critical path method, widely adopted by software engineers and implemented in

many tools. To analyse the effectiveness of the approach, they reported an

15 Search-Based Software Project Management 383

empirical study on six real-world software projects, ranging in size from a few

person-weeks to roughly four person-years.

The experiments reveal that the approach was significantly better than standard

multi-objective search in 76 % of experiments and was significantly better than

random search in 100 % experiments. Moreover, it always significantly

outperformed standard overtime planning strategies reported in the literature.

Furthermore, the Pareto fronts obtained by the proposed approach can yield action-

able insights into project planning trade-offs between risk, duration, and overtime

using different risk assessment models. Software engineers can exploit this infor-

mation when making decisions about software project overtime planning.

15.3.5 Software Development Effort Estimation

Software development effort estimation concerns with the prediction of the effort

needed to develop a software project. Such an effort is usually quantified as person-

hours or person-months. Development effort is considered as one of the major

component of software costs, and it is usually the most challenging to predict

(Sect. 3.1). In the last few decades, several methods have been proposed to support

project managers in estimating software development effort (Briand andWieczorek

2002). In particular, data-driven methods exploit data from past projects to estimate

the effort for a new project under development (typical methods are linear regres-

sion and case-based reasoning). These data consist of information about some

relevant factors (named cost drivers) and the effort actually spent to develop the

projects. Usually a data-driven method tries to explain the relation between effort

and cost drivers building an estimation model (equation) that is used to predict the

effort for a new project. Also search-based methods have been used to build effort

estimation models by formulating the problem as an optimisation problem that aims

to identify the best model, that is, the one providing the most accurate estimates. In

the following, we highlight some key problems in the use of SBSE for effort

estimation and how they have been addressed and assessed.

Dolado (2001) was the first to employ GP to automatically derive equations for

estimating development effort and he observed a similar or better prediction than

regression equations. Based on these encouraging results, other investigations have

been carried out comparing search-based approaches with other techniques pro-

posed in the literature. Most of the studies are based on GP, and only more recently

other search-based techniques such as Tabu Search (Ferrucci et al. 2010a, b) and

multi-objective evolutionary approaches (Ferrucci et al. 2011; Minku and Yao

2012, 2013) have been employed.

As for the setting of these techniques, usually a trial-and-error process has been

employed carrying out a validation process with different settings and selecting the

one providing the best results (Ferrucci et al. 2010d). This practice is time-

consuming and it has to be repeated every time new data are used, thus limiting

the adoption of search-based approaches by practitioners. A heuristic approach has

384 F. Ferrucci et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_3#Sec1

been instead exploited in (Ferrucci et al. 2010c) and empirically analysed in (Sarro

2013). The heuristic approach was originally suggested in (Doval et al. 1998) to set

population size and number of generations of a GP for software clustering. In

particular, given a project dataset containing V features, they set the number of

iterations to 10 V and stop the search after 1,000 V iterations or if the fitness value

of the best solution does not change in the last 100 V iterations. Thus, such

heuristics adapts the search process to the size of the problem under investigation.

Sarro (2013) extended the same heuristics to work also with Tabu Search

(TS) (setting to V the length of Tabu List) and assessed its effectiveness by

comparing it with respect to the use of five different configurations characterised

by very small, small, medium, large, and very large number of solutions. The results

obtained by exploiting GP and TS on seven public datasets highlighted that the

considered heuristics is suitable to set both techniques since it provided comparable

or superior prediction accuracy with respect to the ones obtained with the other

configurations. Moreover, TS and GP configured by using the heuristics are much

faster than the configurations obtained using other settings. This allowed saving

time and computational resources without affecting the accuracy of the estimation

models built with TS and GP, so the use of the heuristics has been revealed a cost-

effective way to set these techniques on the considered datasets.

Another crucial design choice for search-based approaches is the definition of

the fitness function that indicates how a solution is suitable for the problem under

investigation driving the search towards optimal solutions. For the effort estimation

problem, the fitness function should be able to assess the accuracy of estimation

models.

It is worth noting that several different accuracy measures have been proposed in

the literature for assessing the effectiveness/accuracy of effort prediction models,

such as the mean of absolute error (MAE), the mean of squared error (MSE) the

mean and median of magnitude of relative error (MMRE and MdMRE, respec-

tively), the mean and median of magnitude of estimate relative error (MERE and

MdEMRE, respectively) and the prediction at level k [Pred(k)] (Conte et al. 1986)

(Kitchenham et al. 2001). Usually they represent a cumulative measure of the error/

residual, that is, the difference between actual effort and predicted effort (e.g.,

MAE, MSE), or of the relative error with respect the actual (e.g., MMRE, MdMRE)

or the estimated effort (e.g., MEMRE, MdEMRE); or a percentage of the cases

where the considered error is less of a chosen threshold, e.g., Pred(25).

Among them, the MMRE (Conte et al. 1986) represents the most widely used

measure for assessing effort estimation proposals, thus it is not surprising that it has

been also the most used fitness function in the study employing search-based

techniques. Nevertheless, MMRE reliability has been questioned by several

researchers [e.g., Kitchenham et al. (2001), Shepperd and MacDonell (2012)] and

has been shown that it does not select the best model among competing ones.

Presently, there does not exist a unique measure universally accepted as the best

way to assess the estimation accuracy of effort models. On the other hand, each

proposed measure focuses the attention on a specific aspect. As a matter of fact,

Pred(25) measures how well an effort model performs, while MMRE measures

15 Search-Based Software Project Management 385

poor performance; MMRE is more sensitive to overestimates and MEMRE to

underestimates. Thus, it could be argued that the choice of the criterion for

assessing predictions and establishing the best model can be a managerial issue.

So, a project manager could prefer to use Pred(25) as the criterion for judging the

quality of a model, while another might prefer to use another criterion, just, for

example, MMRE to better control overestimates, or, to get a more reliable assess-

ment, another could jointly employ several evaluation criteria covering different

aspects of model performances (e.g., underestimating or overestimating, success or

poor performance).

Based on this consideration, search-based methods represent an opportunity due

to their flexibility. Indeed, they allow the use as fitness function of any measure able

to evaluate some properties of interest, thus allowing a project manager to select

his/her preferred accuracy measure so that the search for the model is driven by

such a criterion. Moreover, search-based techniques can take into account not only

single evaluation criteria but also multiple ones, considering some algebraic expres-

sions of basic measures [e.g., Pred(25)/MMRE] (Ferrucci et al. 2010c) or exploiting

more sophisticated approaches based on multi-objective optimisation (Ferrucci

et al. 2011; Minku and Yao 2012, 2013; Sarro et al. 2012b).

Different fitness functions have been employed in the studies carried out so far.

They highlighted that such a choice can affect the performance of the obtained

models: each fitness function is able to guide towards estimation models with better

accuracy in terms of the selected criterion, but some of them can degrade the other

summary measures (Burgess and Lefley 2001; Ferrucci et al. 2010c; Lokan 2005;

Sarro 2013). Thus, project managers should be aware of this effect and should take

care to select the right evaluation criterion as fitness function.

Another aspect that is important for project managers (both for trust on the

solution proposed by an estimation technique and for improving the data collection

process of current projects) is concerned with the transparency of the proposed

solution. Search-based approaches produce transparent solutions because the pre-

diction model is an algebraic expression that makes explicit any information about

the contribution of each variable in the model (this is not always the case for other

estimation techniques, e.g., neural networks).

Nevertheless, due to the variable length of the expression tree, some proposed

GP approaches [e.g., Dolado (2001), Burgess and Lefley (2001), Lefley and

Shepperd (2003)] produced unclear expressions that need to be simplified. To

improve the transparency of solutions, an evolutionary computation method,

named Grammar Guided Genetic Programming (GGGP), was proposed by Shan

et al. (2002) that exploited grammars to impose syntactical constraints and incor-

porate background knowledge. Another approach to simplify the transparency of

solutions provided by GP was exploited in (Ferrucci et al. 2010c) based on the use

of trees of fixed depth and crossover and mutation operators that preserved the

syntactic structure.

As for the empirical studies, industrial datasets have been widely used in effort

estimation studies. They come from a single company [e.g., Desharnais (Menzies

et al. 2012)] or from multiple companies [e.g., Tukutuku (Ferrucci et al. 2010a)]

386 F. Ferrucci et al.

and are related to both software and web projects. The criteria used to evaluate the

accuracy of the obtained estimates are all based on summary measures, in particular

MMRE and Pred(25). To make the comparison more reliable, some studies

complemented the analysis with graphical tools (boxplot of residuals) and statistical

tests.

As a general result of these studies, we can conclude that search-based tech-

niques behave consistently well obtaining estimation accuracy comparable or better

than other widely used estimation techniques, such as the ones based on Manual

StepWise Regression (MSWR) or Case-Based Reasoning (CBR). Recently, it has

also been highlighted that TS outperformed GP since it turns out to be more

efficient, while preserving the same accuracy (Sarro 2013).

Search-based methods have also been used in combination with other estimation

techniques [see, e.g., Braga et al. (2008), Faheem et al. (2008)], such as some

Machine Learning (ML) techniques, aiming to obtain better estimates. Indeed, as

reported in several studies, ML approaches have the potential as techniques for

software development effort estimation; nevertheless, their accuracy strongly

depends on an accurate setting of these methods [see, e.g., Song et al. (2013)]. As

an example, to use CBR we have to choose among many similarity measures,

number of analogies, and analogy adaption strategies (Mendes 2009), while to

employ Support Vector Regression (SVR) we have to set several parameters

depending also on the employed kernel function exploited to deal with nonlinear

problems (Cortes and Vapnik 1995).

There are no general guidelines on how to best configure these techniques since

the appropriate setting often depends on the characteristics of the employed dataset.

An examination of all possible values for configuration parameters of each tech-

nique is often not computationally affordable, as the search space is too large, also

due to the interaction among parameters, which often cannot be separately

optimised. Another aspect that can influence the accuracy of estimation techniques

is the quality of input features, thus a Feature Subset Selection (FSS) is usually

recommended to select a subset of relevant features to be used in the model

construction process.

To address both the above-mentioned problems, the use of search-based

approaches has been proposed and investigated. In the following, we first discuss

four works conceived to select a suitable configuration for some estimation tech-

niques, namely neural network, CBR and SVR, and then we discuss four works that

exploited GAs to address the FSS problem.

Shukla (2000) was the first to propose a GA to configure Neural Network

(NN) predictor in order to improve its estimation capability. In particular, GA

had to find suitable weights for NN layer connections guided by a fitness function

that minimises MSE values. The empirical study based on two public datasets, that

is, COCOMO and Kemerer (Menzies et al. 2012), showed that GA+NN provided

significantly better prediction than common used AI-oriented methods, such as

CARTX and Quick Propagation trained NN. Similarly, Papatheocharous and

Andreou (2009) enhanced the use of artificial neural networks by using a genetic

algorithm. Their results showed that using GA to evolve the network architectures

15 Search-Based Software Project Management 387

(both input and internal hidden layers) reduced the Mean Relative Error (MRE)

produced by the output results of each network.

Chiu and Huang (2007) applied GA to CBR to adjust the reused effort obtained

by considering different similarity distances (i.e., Euclidean, Minkowski, and

Manhattan distances) between pairs of software projects. The result obtained on

two industrial datasets revealed that the proposed GA improved the estimations

of CBR.

To automatically select suitable SVR settings, Corazza et al. (2010, 2013)

proposed and assessed an approach based on the use of TS. A total of 21 datasets

were employed and several benchmarks were taken into account. The results

revealed that the combination of TS and SVR significantly outperformed all the

other techniques, showing that the proposed approach represents a suitable tech-

nique for software development effort estimation.

The first work that proposed the use of a search-based approach to address the

FSS problem in the context of effort estimation was the one of Kirsopp et al. (2002).

They employed Hill Climbing to select the best set of project features to be used

with CBR. The combined approach was evaluated on an industrial dataset of

407 observations and the results showed that it performed better than random

feature selection and forward sequential selection.

Li et al. (2009) proposed a GA to simultaneously optimise the selection of the

feature weights and projects to be used with CBR. The empirical results employing

four datasets [two industrial (Menzies et al. 2012) and two artificial (Li et al. 2009)]

showed that the use of GA+CBR provided significantly better estimations

than CBR.

GA was also used to improve the accuracy of an effort estimation model built by

combining social choice (voting rules were used to rank projects determining

similar projects) and analogy-based approaches (Koch and Mitlöhner 2009). In

particular, GA was employed to find suitable weights to be associated to the project

attributes. The results revealed that the proposed approach provided the best value

for Pred(25), but worse MMRE values with respect to other techniques (LR, ANN,

CART, COCOMO and Grey Relational Analysis).

Huang et al. (2008) integrated a GA to Grey Relational Analysis to find the best

fit of weights for each software effort driver. The experimental results showed

comparable (COCOMO dataset) and better accuracy (Albrecht dataset) with respect

to CBR, CART, and ANN.

15.4 Possible Directions for Future Work on Search-Based
Project Management

In this section, we outline several directions for future work in search-based project

management, highlighting promising areas that emerge for the analysis of trends

within this subfield of SBSE.

388 F. Ferrucci et al.

15.4.1 Iterative Optimisation

Several authors have suggested and adopted interactive evolution (Harman 2007b)

design-based (Simons and Parmee 2008, 2012) and comprehension-based (Harman

2007a) software engineering tasks. However, only one attempt has been made to

apply this technique, which can incorporate human expert knowledge directly into

fitness computation, in project management (Shackelford and Corne 2001). Since a

software project management task is inherently human-centric, it would be natural

to explore the use of interactive evolution as a technique for ensuring that the

project manager’s expertise is accounted for in software project management

(Shackelford 2007). The difficulty, as with all interactive evolution, lies in finding

a way in which the manager can influence the computation of fitness without

overburdening him/her with request for ‘fitness assessment’.

It is also an open challenge as to how this judgment can be best incorporated into

fitness. For example, the manager may be aware that certain individuals cannot

work together, that certain work packages are more critical or that some depen-

dence can be broken to make project more ‘parallelisable’. This information cannot

simply be requested from the manager at the outset of the optimisation process;

there is too much of it, and much of the information is implicit. Rather, we need to

make the whole process of using search-based project management tools more

interactive, so that the manager is able to ‘realise’ that they know something of

importance at the specific point in the optimisation process at which it applies and

to introduce this domain knowledge into the overall planning process in a natural

and seamless way.

15.4.2 Dynamic Adaptive Optimisation

In order to maximise the value of interactive solutions to project management, we

need dynamic adaptive approaches to SBSE (Harman et al. 2012a). As an example,

effective resource scheduling is complicated by different disruptions, such as

requirements changes, bug fixing, or staff turnover, and dynamic resource sched-

uling can help address such potentially disruptive events (Xiao et al. 2010a, 2013).

If solutions can be computed in real time and presented to the decision-maker in an

intuitive form, then the decision-maker can ask on-the-fly ‘what if’ questions to

help decide on key project commitments. In an ideal world, the decision-maker

would interact with the tool, exploring the possible implications of the decisions,

with the optimisation continuing to provide updated best-so-far solutions as the

decision-maker interacts. This may require fundamentally different approaches to

the algorithms and formulations that underlie search-based software project

management.

15 Search-Based Software Project Management 389

15.4.3 Multi-objective Optimisation

It has been argued that in order to better match real-world scenarios, SBSE should

move from a single objective paradigm to a multi-objective paradigm (Harman

et al. 2007, 2012b). Indeed, more recent SBSE work has followed a more multi-

objective style of approach, touching many application areas including require-

ments (Finkelstein et al. 2008, 2009; Zhang et al. 2007), testing (Everson and

Fieldsend 2006; Harman 2011; Harman et al. 2007b), refactoring (Harman and

Tratt 2007) and also, not least, project management (Ferrucci et al. 2011, 2013;

Gueorguiev et al. 2009; Minku and Yao 2012, 2013; Rodriguez et al. 2011; Sarro

et al. 2012b; Stylianou and Andreou 2013). Most problems in software engineering

involve multiple competing objectives, and this is an observation most keenly felt

in project management. Much of the future work on SBSE for project management

is likely to focus on decision support in complex multi-objective problem spaces.

15.4.4 Co-evolution

In co-evolutionary computation, two or more populations of solutions evolve

simultaneously with the fitness of each depending upon the current population of

the other. Co-evolution can be either cooperative or competitive. In competitive

evolution, two (or more) populations of candidate solutions compete with each

other for supremacy, the fitness of one depending on the other, such that improve-

ments in one population tend to lead to lower fitness in the other. This is analogue to

the wellknown ‘predator-prey’ model of evolutionary biology, and it has found

application in SBSE work on testing (Adamopoulos et al. 2004) where predators are

test cases and programs and their faults are the prey on which the test cases feed.

However, co-evolution need not always follow a predator-prey model; it can

also be a cooperative, symbiotic process, just as often occurs in nature. In this

cooperative co-evolutionary model, several populations, all of which have distinct

fitness functions, nevertheless depend on one another, without necessarily being in

conflict. This is a natural model for project management, in which we seek, for

example, a mutually supportive allocation of staff to teams and, simultaneously, an

allocation of teams to work packages. Ren et al. (2011) explore the cooperative

co-evolutionary model of search-based project management. The close fit between

project management objectives and co-evolutionary models makes this a natural

choice and one that deserves more attention.

390 F. Ferrucci et al.

15.4.5 Software Project Benchmarking

One of the enduring problems researchers concerned with project management face

is the lack of available real world project data. It remains a common problem to this

day, especially for project planning and staffing. Indeed, despite there existing both

publicly available (Menzies et al. 2012) and private (ISBSG 2013) repositories of

real project data for software project estimation, repositories containing informa-

tion for project planning are not available. The promising results achieved in

search-based project management may lead to the false impression that these

techniques are readily available for industrial application, whereas many papers

just use synthetic data, do not model skill or have a realistic representation of skill

and/or risk. Previous work on software planning and staffing often relies on

simulation of the likely course of the project rather than real data to assess the

performance of the proposed approaches. Indeed, datasets of real-world projects are

scarce; effort data are seldom ever made public not to mention skill and other kind

of employee’s details (e.g., percentage of overhead, abilities to self-adapt to new

project, management style, team leaders or soft skill). Despite researchers making

some effort to employ real data and to deal with a more human-centric problem

(Chap. 4), to collect more real data on software projects and to make it publicly

accessible still remains an open important challenge.

15.4.6 Confident Estimates

Obtaining exact time and effort estimates in software project management is

impossible due not only to the inherently nature of estimates, but also to incom-

plete, uncertain and/or noisy input used as the basis of the estimates. Rather than

generating exact estimates, it would be beneficial to introduce some level of

uncertainty and measure its effect on the management process. As an example,

sensitivity analysis can be a very useful means of determining the vulnerability of

an estimate to particular assumptions and the level of confidence that can be placed

in that estimate and the promising results obtained by using search-based

approaches to assess software project uncertainty make us confident that these

techniques can be a key instrument to support this kind of analysis [see, e.g.,

Harman et al. (2009)].

Elsewhere, Harman (2007a) highlighted four future directions for the use of

search-based approaches to obtain more confident predictive modelling that we

want herein recall:

1. Incorporation of risk into predictive models

2. More effective measurement of cost

3. More reliable models (even at the expense of predictive power; trading median

accuracy for reduced variance over iterated predictions)

4. Sensitivity analysis to determine which aspects are more important

15 Search-Based Software Project Management 391

http://dx.doi.org/10.1007/978-3-642-55035-5_4

15.4.7 Decision Support Tools

Despite the promising results highlighted in the research papers, the use of search-

based approaches for project management is still in the development/research stage.

To the best of our knowledge, only one tool for project management based on

search-based approaches has been recently proposed (Stylianou et al. 2012). We

believe that to transfer the most successful methods into practice we need to

develop them as freely available decision support tools. Indeed, this will allow an

extensive evaluation of the interface between the technical aspects on which

the research has been focused and other related socio-technical issues for imple-

mentation and exploitation, such as user interface, ease of use, human-computer

interaction, and decision support. Moreover, this will allow us also to get feedback

from practitioners on the usefulness and cost/effectiveness of the proposed

approaches.

15.5 Conclusions

SBSE has proved widely applicable across many fields of software engineering

activities. In those software engineering activities closely associated with the

software product, SBSE has tended to be used as a means of finding good solutions,

guided by a fitness function. By contrast, its role in the earlier phases of the software

development cycle, more associated with the establishment of plans and processes,

has tended to be subtler. In particular, for software project management, SBSE has

tended to be used to provide decision support rather than to seek a single solution.

This is a naturally exploratory and multi-objective scenario. As we have seen,

search-based techniques have potential to support software project managers,

with predictions, analysis of potential scenarios and the optimised configuration

of process parameters. The review of trends in this chapter demonstrates that this is

an active and growing field.

References

Adamopoulos K, Harman, M, Hierons RM (2004) How to overcome the equivalent mutant

problem and achieve tailored selective mutation using co-evolution. In: Proceedings of the

6th conference on genetic and evolutionary computation, pp 1338–1349

Afzal W, Torkar R, Feldt R, Gorschek T (2014) Prediction of faults-slip-through in large software

projects: an empirical evaluation. Software Qual J 22:51–86. doi:10.1007/s11219-013-9205-3

Aguilar-Ruiz JS, Ramos I, Riquelme JC, Toro M (2001) An evolutionary approach to estimating

software development projects. Inf Softw Technol 43(14):875–882

Aguilar-Ruiz JS, Riquelme JC, Ramos I (2002) Natural evolutionary coding: an application to

estimating software development projects. In: Proceedings of the 4th conference on genetic

and evolutionary computation

392 F. Ferrucci et al.

http://dx.doi.org/10.1007/s11219-013-9205-3

Akula B, Cusick J (2008) Impact of overtime and stress on software quality. In: Proceedings of the

4th international symposium on management, engineering, and informatics

Alba E, Chicano F (2005) Management of software projects with GAs. In: Proceedings of the 6th

metaheuristics international conference, pp 1152:1-6

Alba E, Chicano F (2007) Software project management with GAs. Inf Sci 177(11):2380–2401

Alvarez-Valdes R, Crespo E, Tamarit JM, Villa F (2006) A scatter search algorithm for project

scheduling under partially renewable resources. J Heuristics 12(1–2):95–113

Antoniol G, Di Penta M, Harman M (2004) A robust search-based approach to project manage-

ment in the presence of abandonment, rework, error and uncertainty. In: Proceedings of the

10th international symposium on the software metrics, pp 172–183

Antoniol G, Di Penta M, Harman M (2005) Search-based techniques applied to optimization of

project planning for a massive maintenance project. In: Proceedings of the 21st IEEE interna-

tional conference on software maintenance, pp 240–249

Azar D (2010) A genetic algorithm for improving accuracy of software quality predictive models:

a search-based software engineering approach. Int J Comput Intell Appl 9(2):125–136

Barreto A, Barros M de O, Werner CM (2008) Staffing a software project: a constraint satisfaction

and optimization-based approach. Comput Oper Res 35(10):3073–3089

Beckers DG, van der Linden D, Smulders PG, Kompier MA, Taris TW, Geurts SA (2008)

Voluntary or Involuntary? control over overtime and rewards for overtime in relation to fatigue

and work satisfaction. Work Stress 22(1):33–50

Bouktif S, Kégl B, Sahraoui H (2002) Combining software quality predictive models: an evolu-

tionary approach. In: Proceedings of the international conference on software maintenance,

pp 385–392

Bouktif S, Azar D, Precup D, Sahraoui H, Kégl B (2004) Improving rule set based software quality

prediction: a genetic algorithm based approach. J Object Technol 3(4):227–241

Bouktif S, Sahraoui H, Antoniol G (2006) Simulated annealing for improving software quality

prediction. In: Proceedings of the 8th conference on genetic and evolutionary computation,

pp 1893–1900

Braga PL, Oliveira ALI, Meira SRL (2008) A GA-based feature selection and parameters

optimization for support vector regression applied to software effort estimation. In: Proceed-

ings of the ACM symposium on applied computing, pp 1788–1792

Briand L, Wieczorek I (2002) Software resource estimation. Encyclopedia Softw Eng

2:1160–1196

Brooks FP Jr (1975) The mythical man month: essays on software engineering. Addison-Wesley

Publishing Company, Reading, MA

Burgess CJ, Lefley M (2001) Can genetic programming improve software effort estimation: a

comparative evaluation. Inf Softw Technol 43(14):863–873

Chang CK (1994) Changing face of software engineering. IEEE Softw 11(1):4–5

Chang CK, Chao C, Hsieh S-Y, Alsalqan Y (1994) SPMNet: a formal methodology for software

management. In: Proceedings of the 18th international computer software and applications

conference, p 57

Chang CK, Chao C, Nguyen TT, Christensen M (1998) Software project management net: a new

methodology on software management. In: Proceedings of the 22nd international computer

software and applications conference, pp 534–539

Chang CK, Christensen MJ, Zhang T (2001) Genetic algorithms for project management. Ann

Softw Eng 11(1):107–139

Chao C, Komada J, Liu Q, Muteja M, Alsalqan Y, Chang C (1993) An application of genetic

algorithms to software project management. In: Proceedings of the 9th international advanced

science and technology, pp 247–252

Chen WN, Zhang J (2013) Ant colony optimization for software project scheduling and staffing

with an event-based scheduler. IEEE Trans Softw Eng 39(1):1–17

15 Search-Based Software Project Management 393

Chicano F, Luna F, Nebro AJ, Alba E (2011) Using multi objective metaheuristics to solve the

software project scheduling problem. In: Proceedings of the 13th conference on genetic and

evolutionary computation, pp 1915–1922

Chiu NH, Huang S (2007) The adjusted analogy-based software effort estimation based on

similarity distances. J Syst Softw 80(4):628–640

Conte D, Dunsmore H, Shen V (1986) Software engineering metrics and models. The Benjamin/

Cummings Publishing Company, Redwood City, CA

Corazza A, Di Martino S, Ferrucci F, Gravino C, Sarro F, Mendes E (2010) How effective is Tabu

search to configure support vector regression for effort estimation?. In: Proceedings of the 6th

international conference on predictive models in software engineering, pp 4:1-10

Corazza A, Di Martino S, Ferrucci F, Gravino C, Sarro F, Mendes E (2013) Using Tabu search to

configure support vector regression for effort estimation. Empir Softw Eng 18(3):506–546

Cortellessa V, Marinelli F, Potena P (2008) An optimization framework for “build-or-buy”

decisions in software architecture. Comput Oper Res 35(10):3090–3106

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

Di Martino S, Ferrucci F, Gravino C, Sarro F (2011) A genetic algorithm to configure support

vector machines for predicting fault-prone components. In: PROFES 2011. Lecture notes in

computer science, vol 6759. Springer, Heidelberg, p 247

Di Penta M, Antoniol G, Harman M, Qureshi F (2007) The effect of communication overhead on

software maintenance project staffing: a search-based approach. In: Proceedings of the 23rd

IEEE international conference on software maintenance, pp 315–324

Di Penta M, Antoniol G, Harman M (2011) The use of search-based optimization techniques to

schedule and staff software projects: an approach and an empirical study. Softw Pract Exp 41

(5):495–519

Dolado JJ (2001) On the problem of the software cost function. Inf Softw Technol 43(1):61–72

Doval D, Mancordis SB, Mitchell S (1998) Automatic clustering of software system using a

genetic algorithm. In: Proceedings of the 9th international workshop software technology and

engineering practice, pp 73–81

Everson RM, Fieldsend JE (2006) Multiobjective optimization of safety related systems: an

application to short-term conflict alert. IEEE Trans Evol Comput 10(2):187–198

Faheem A, Bouktif S, Serhani A, Khalil I (2008) Integrating function point project information for

improving the accuracy of effort estimation. In: Proceedings of the international conference on

advanced engineering computing and applications in sciences, pp 193–219

Ferrucci F, Gravino C, Mendes E, Oliveto R, Sarro F (2010a) Investigating Tabu search for Web

effort estimation. In: Proceedings of the 36th EUROMICRO conference on software engineer-

ing and advanced applications, pp 350–357

Ferrucci F, Gravino C, Oliveto R, Sarro F (2010b) Estimating software development effort using

Tabu search. In: Proceedings of the 12th international conference on enterprise information

systems, vol 1. pp 236–241

Ferrucci F, Gravino C, Oliveto R, Sarro F (2010c) Genetic programming for effort estimation: an

analysis of the impact of different fitness functions. In: Proceedings of the 2nd international

symposium on search based software engineering, pp 89–98

Ferrucci F, Gravino C, Oliveto R, Sarro F (2010d) Using evolutionary based approaches to

estimate software development effort. In: Chis M (ed) Evolutionary computation and optimi-

zation algorithms in software engineering: applications and techniques. IGI Global, Hershey,

PA, pp 13–28

Ferrucci F, Gravino C, Sarro F (2011) How multi-objective genetic programming is effective for

software development effort estimation? In: Proceedings of the 3rd international symposium

on search based software engineering. Lecture notes in computer science, vol 6956. Springer,

Heidelberg, pp 274–275

Ferrucci F, Harman M, Ren J, Sarro F (2013) Not going to take this anymore: multi-objective

overtime planning for software engineering projects. In: Proceedings of the 35th IEEE inter-

national conference on software engineering, pp 462–471

394 F. Ferrucci et al.

Finkelstein A, Harman M, Mansouri S. A, Ren J, Zhang Y (2008) “Fairness Analysis” in

requirements assignments. In: Proceedings of the 16th IEEE international requirements engi-

neering conference, pp 115–124

Finkelstein A, Harman M, Mansouri SA, Ren J, Zhang Y (2009) A search based approach to

fairness analysis in requirement assignments to aid negotiation, mediation and decision

making. Requir Eng 14(4):231–245

Gueorguiev S, Harman M, Antoniol G (2009) Software project planning for robustness and

completion time in the presence of uncertainty using multi objective search-based software

engineering. In: Proceedings of the genetic and evolutionary computation conference,

pp 1673–1680

Harman M (2007a) The current state and future of search-based software engineering. In: Pro-

ceedings of the conference on future of software engineering, pp 342–357

Harman M (2007b) Search-based software engineering for program comprehension. In: Proceed-

ings of the 15th IEEE international conference on program comprehension, pp 3–13

Harman M (2010a) The relationship between search-based software engineering and predictive

modelling. In: Proceedings of the 6th international conference on predictive models in software

engineering, pp 1

Harman M (2010b) Why the virtual nature of software makes it ideal for search-based optimiza-

tion. In: Proceedings of the 13th international conference on fundamental approaches to

software engineering, pp 1–12

Harman M (2011) Making the case for MORTO: multi objective regression test optimization. In:

Proceedings of the 1st international workshop on regression testing, pp 111–114

Harman M, Clark JA (2004) Metrics are fitness functions too. In: Proceedings of the 10th

international symposium on software metrics, pp 58–69

Harman M, Jones BF (2001) Search-based software engineering. Inf Softw Technol 43

(14):833–839

Harman M, Tratt L (2007) Pareto optimal search-based refactoring at the design level. In:

Proceedings of the 9th conference on genetic and evolutionary computation, pp 1106–1113

Harman M, Hierons R, Proctor M (2002) A new representation and crossover operator for search-

based optimization of software modularization. In: Proceedings of the 4th conference on

genetic and evolutionary computation, pp 1351–1358

Harman M, Lakhotia K, McMinn P (2007) A multi-objective approach to search-based test data

generation. In: Proceedings of the 9th conference on genetic and evolutionary computation,

pp 1098–1105

Harman M, Krinke J, Ren J, Yoo S (2009) Search-based data sensitivity analysis applied to

requirement engineering. In: Proceedings of the 11th conference on genetic and evolutionary

computation, pp 1681–1688

Harman M, McMinn P, Teixeira de Souza J, Yoo S (2010) Search-based software engineering:

techniques, taxonomy, tutorial. LASER Summer School 2010, pp 1–59

Harman M, Burke E, Clark JA, Yao X (2012a) Dynamic adaptive search-based software engi-

neering. In: Proceedings of the 6th IEEE international symposium on empirical software

engineering and measurement, pp 1–8

Harman M, Mansouri A, Zhang Y (2012b) Search-based software engineering: trends, techniques

and applications. ACM Comput Surv 45(1):11–75

Hericko M, Zivkovic A, Rozman I (2008) An approach to optimizing software development team

size. Inf Process Lett 108(3):101–106

Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann

Arbor, MI

Huang SJ, Chiu NH, Chen LW (2008) Integration of the grey relational analysis with genetic

algorithm for software effort estimation. Eur J Oper Res 188(3):898–909

ISBSG (2013) Data repository. Available at http://www.isbsg.org

15 Search-Based Software Project Management 395

http://www.isbsg.org/

Jarillo G, Succi G, Pedrycz W, Reformat M (2011) Analysis of software engineering data using

computational intelligence techniques. In: Proceedings of the 7th international conference on

object oriented information systems, pp 133–142

Jiang H, Chang CK, Xia J, Cheng S (2007) A history-based automatic scheduling model for

personnel risk management. In: Proceedings of the 31st computer software and application

conference, pp 361–364

Kang D, Jung J, Bae DH (2011) Constraint-based human resource allocation in software projects.

Softw Pract Exp 41(5):551–577

Kapur P, Ngo-The A, Ruhe G, Smith A (2008) Optimized staffing for product releases and its

application at chartwell technology. J Softw Maint Evol Res Pract 20(5):365–386

Khoshgoftaar TM, Liu Y (2007) A multi-objective software quality classification model using

genetic programming. IEEE Trans Reliab 56(2):237–245

Khoshgoftaar TM, Liu Y, Seliya N (2003) Genetic programming-based decision trees for software

quality classification. In: Proceedings of the 15th international conference on tools with

artificial intelligence, pp 374–383

Kiper JD, Feather MS, Richardson J (2007) Optimizing the V&V process for critical systems. In:

Proceedings of the 9th conference on genetic and evolutionary computation, p 1139

Kirsopp C, Shepperd MJ, Hart J (2002) Search heuristics, case-based reasoning and soft- ware

project effort prediction. In Proceedings of the genetic and evolutionary computation confer-

ence, pp 1367–1374

Kitchenham B, Pickard LM, MacDonell SG, Shepperd MJ (2001) What accuracy statistics really

measure. IEEE Proc Softw 148(3):81–85

Kleppa E, Sanne B, Tell GS (2008) Working overtime is associated with anxiety and depression:

the Hordaland health study. J Occup Environ Med 50(6):658–666

Koch S, Mitlöhner J (2009) Software project effort estimation with voting rules. Decis Support

Syst 46(4):895–901

Koza JR (1992) Genetic programming: on the programming of computers by means of natural

selection. MIT Press, Cambridge, MA

Lefley M, Shepperd MJ (2003) Using genetic programming to improve software effort estimation

based on general data sets. In: Proceedings of the 5th genetic and evolutionary computation

conference, pp 2477–2487

Li YF, Xie M, Goh TN (2009) A study of project selection and feature weighting for analogy based

software cost estimation. J Syst Softw 82(2):241–252

Liu Y, Khoshgoftaar TM (2001) Genetic programming model for software quality classification.

In: Proceedings of the 6th IEEE international symposium on high-assurance systems engineer-

ing: special topic: impact of networking, pp 127–136

Liu Y, Khoshgoftaar TM (2003) Building decision tree software quality classification models

using genetic programming. In: Proceedings of the 5th genetic and evolutionary computation

conference, pp 1808–1809

Liu Y, Khoshgoftaar T (2004) Reducing overfitting in genetic programming models for software

quality classification. In: Proceedings of the 8th IEEE international symposium on high

assurance systems engineering, pp 56–65

Lokan C (2005) What should you optimize when building an estimation model? In: Proceedings of

the 11th IEEE international symposium on metrics, pp 34

Luna F, Chicano JF, Alba E (2012) Robust solutions for the software project scheduling problem: a

preliminary analysis. Int J Metaheuristic 2(1):56–79

Mann C, Maurer F (2005) A case study on the impact of scrum on overtime and customer

satisfaction. In: Agile development conference, pp 70–79

McMinn P (2004) Search-based software test data generation: a survey. Softw Test Verif Reliab 14

(2):105–156

Mendes E (2009) Web cost estimation and productivity benchmarking. software engineering,

vol 5413, Lecture notes in computer science. Springer, Heidelberg, pp 194–222

396 F. Ferrucci et al.

Menzies, T, Caglayan B, Kocaguneli E, Krall J, Peters F, Turhan B (2012) The PROMISE

repository of empirical software engineering data. http://promisedata.googlecode.com

Minku LL, Yao X (2012) Software effort estimation as a multi-objective learning problem. ACM

Trans Softw Eng Methodol 22(4):35:1–35:32

Minku LL, Yao X (2013) An analysis of multi-objective evolutionary algorithms for training

ensemble models based on different performance measures in software effort estimation. In:

Proceedings of the 9th international conference on predictive models in software engineering,

pp 8:1–8:10

Minku LL, Sudholt D, Yao X (2012) Evolutionary algorithms for the project scheduling problem:

runtime analysis and improved design. In: Proceedings of the genetic and evolutionary

computation conference, pp 1221–1228

Minku LL, Sudholt D, Yao X (2013) Improved evolutionary algorithm design for the project

scheduling problem based on runtime analysis. IEEE Trans Softw Eng 40:83–102.

doi:10.1109/TSE.2013.52

Mitchell BS, Mancoridis S (2002) Using heuristic search techniques to extract design abstractions

from source code. In: Proceedings of the genetic and evolutionary computation conference,

pp 1375–1382

Nishikitani M, Nakao M, Karita K, Nomura K, Yano E (2005) Influence of overtime work, sleep

duration, and perceived job characteristics on the physical and mental status of software

engineers. Ind Health 43(4):623–629

Papatheocharous E, Andreou SA (2009) Hybrid computational models for software cost predic-

tion: an approach using artificial neural networks and genetic algorithms, vol 19, Lecture notes

in business information processing. Springer, Heidelberg, pp 87–100

Rahman MM, Sohan SM, Maurer F, Ruhe G (2010) Evaluation of optimized staffing for feature

development and bug fixing. In: Proceedings of the ACM-IEEE international symposium on

empirical software engineering and measurement, p 42

Räihä O (2010) A survey on search-based software design. Comput Sci Rev 4(4):203–249

Ren J, Harman M, Di Penta M (2011) Cooperative co-evolutionary optimization on software

project staff assignments and job scheduling. In: Proceedings of the 3rd international sympo-

sium on search based software engineering, pp 127–141

Rodriguez D, Ruiz M, Riquelme JC, Harrison R (2011) Multiobjective simulation optimisation in

software project management. In: Proceedings of the 13th conference on genetic and evolu-

tionary computation, pp 1883–1890

Sarro F (2011) Search-based approaches for software development effort estimation. In: Pro-

ceedings of the 12th international conference on product-focused software development and

process improvement (doctoral symposium), pp 38–43

Sarro F (2013) Search-based approaches for software development effort estimation. Ph.D. thesis,.

University of Salerno, Italy. http://www0.cs.ucl.ac.uk/staff/F.Sarro/

Sarro F, Di Martino S, Ferrucci F, Gravino C (2012a) A further analysis on the use of genetic

algorithm to configure support vector machines for inter-release fault prediction. In: Pro-

ceedings of the 27th annual ACM symposium on applied computing, pp 1215–1220

Sarro F, Ferrucci F, Gravino C (2012b) Single and multi objective genetic programming for

software development effort estimation. In: Proceedings of the 27th annual ACM symposium

on applied computing, pp 1221–1226

Shackelford MRN (2007) Implementation issues for an interactive evolutionary computation

system. In: Proceedings of the genetic and evolutionary computation conference,

pp 2933–2936

Shackelford MRN, Corne DW (2001) Collaborative evolutionary multi-project resource schedul-

ing. In: Proceedings of the congress on evolutionary computation, vol 2. pp 1131–1138

Shan Y, McKay RI, Lokan CJ, Essam DL (2002) Software project effort estimation using genetic

programming. In: Proceedings of international conference on communications circuits and

systems, pp 1108–1112

15 Search-Based Software Project Management 397

http://promisedata.googlecode.com/
http://dx.doi.org/10.1109/TSE.2013.52
http://www0.cs.ucl.ac.uk/staff/F.Sarro/

Shepperd MJ, MacDonell SJ (2012) Evaluating prediction systems in software project estimation.

Inf Softw Technol 54(8):820–827

Shukla KK (2000) Neurogenetic prediction of software development effort. Inf Softw Technol 42

(10):701–713

Simons CL, Parmee IC (2008) User-centered, evolutionary search in conceptual software design.

In: Proceedings of the IEEE congress on evolutionary computation, pp 869–876

Simons CL, Parmee IC (2012) Elegant object-oriented software design via interactive evolution-

ary computation. IEEE Trans Syst Man Cybern Part C Appl Rev 42(6):1797–1805

Song L, Minku LL, Yao X (2013) The impact of parameter tuning on software effort estimation

using learning machines. In: Proceedings of the 9th international conference on predictive

models in software engineering

Stylianou C, Andreou AS (2013) A multi-objective genetic algorithm for intelligent software

project scheduling and team staffing. Intell Decis Technol 7(1):59–80

Stylianou C, Gerasimou S, Andreou AS (2012) A novel prototype tool for intelligent software

project scheduling and staffing enhanced with personality factors. In: Proceedings of the 24th

international conference on tools with artificial intelligence, pp 277–284

Xiao J, Osterweil LJ, Wang Q, Li M (2010a) Dynamic resource scheduling in disruption-prone

software development environments. In: Proceedings of the 13th conference on fundamental

approaches to software engineering, pp 107–122

Xiao J, Osterweil LJ, Wang Q, Li M (2010b) Disruption-driven resource rescheduling in software

development processes. In: New modeling concepts for today’s software processes. Lecture

notes in computer science, vol 6195. Springer, Heidelberg, pp 234–247

Xiao J, Osterweil LJ, Chen J, Wang Q, Li M (2013) Search-based risk mitigation planning in

project portfolio management. In: Proceedings of the 2013 international conference on soft-

ware and system process, pp 146–155

Yoo S, Harman M (2012) Regression testing minimization, selection and prioritization: a survey.

Softw Test Verif Reliab 22(2):67–120

Yourdon E (1997) Death March: the complete software developer’s guide to surviving ‘mission

impossible’ projects. Prentice-Hall, Upper Saddle River, NJ

Zhang Y (2013) SBSE paper repository. http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

Zhang Y, Harman M, Mansouri SA (2007) The multi-objective next release problem. In: Pro-

ceedings of the 9th conference on genetic and evolutionary computation, pp 1129–1137

Zhang Y, Finkelstein A, Harman M (2008) Search-based requirements optimisation: existing work

and challenges. In Proceedings of the 14th international conference on requirements engineer-

ing: foundation for software quality, pp 88–94

Biography Filomena Ferrucci is professor of software engineering and software

project management at University of Salerno (Italy). Her main research interests

include software metrics, effort estimation, search-based software engineering,

empirical software engineering, and human-computer interaction. She has been

program co-chair of the International Summer School on software engineering.

Mark Harman is professor of software engineering in the Department of Computer

Science at University College London where he directs the Centre for Renewable

Energy Systems Technology (CREST). He is widely known for work on source

code analysis and testing and was instrumental in the founding of the field of

search-based software engineering (SBSE), the topic of this chapter. Since its

inception in 2001, SBSE has rapidly grown to include over 1,000 authors, from

300 institutions spread over 40 countries.

398 F. Ferrucci et al.

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

Federica Sarro is a Research Associate working in the CREST centre, Department

of Computer Science, University College London. Her main research areas are

empirical software engineering and search-based software engineering with spe-

cific interest in project management, software development effort estimation and

fault prediction. She has also been working on functional metrics for sizing

software products and human-computer interaction. Her recent research interests

include app store analysis and automatic program repair.

15 Search-Based Software Project Management 399

	Chapter
15: Search-Based Software Project Management
	15.1 Introduction
	15.2 Search-Based Software Engineering
	15.3 Search-Based Software Project Management
	15.3.1 Early Work on Search-Based Software Project Planning and Staffing
	15.3.2 Minimising Software Project Completion Times
	15.3.3 Risk-Based Approach
	15.3.4 Overtime Planning
	15.3.5 Software Development Effort Estimation

	15.4 Possible Directions for Future Work on Search-Based Project Management
	15.4.1 Iterative Optimisation
	15.4.2 Dynamic Adaptive Optimisation
	15.4.3 Multi-objective Optimisation
	15.4.4 Co-evolution
	15.4.5 Software Project Benchmarking
	15.4.6 Confident Estimates
	15.4.7 Decision Support Tools

	15.5 Conclusions
	References

