
Chapter 14

Inner Source Project Management

Martin Höst, Klaas-Jan Stol, and Alma Oručević-Alagić

Abstract Software development organizations are continuously looking for better

ways to manage their projects. An emerging approach to achieve this is Inner

Source, which refers to the adoption of Open Source development practices within

the confines of an organization. With an Inner Source approach, individuals, teams,

and departments within an organization can start software projects, very similar to

the Open Source model. This affects the way projects are managed in a variety of

ways. Firstly, it will affect strategic aspects such as a software sourcing strategy that

includes decisions on which software can be “Inner-Sourced.” Secondly, at the

tactical level, organizations should choose an appropriate Inner Source adoption

model that suits the goals and scope of the organization. Finally, it will affect the

operational aspects of a project, for example, in the way different people across a

whole organization can access the source code and make improvements. Further-

more, Inner Source makes communication much more transparent. While Inner

Source offers a variety of potential benefits to an organization, there are also a

number of challenges to address. This chapter discusses how the introduction of

Inner Source may affect conventional software developing environments and

especially how it affects software project management aspects. Based on our

studies and those presented in the literature, it outlines a number of benefits of

Inner Source as well as a number of challenges and some suggestions as to how they

can be addressed.

M. Höst (*) • A. Oručević-Alagić

Department of Computer Science, Lund University, Lund, Sweden

e-mail: martin.host@cs.lth.se; alma.orucevic-alagic@cs.lth.se

K.J. Stol

Lero—The Irish Software Engineering Research Centre, University of Limerick, Limerick,

Ireland

e-mail: klaas-jan.stol@lero.ie

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_14, © Springer-Verlag Berlin Heidelberg 2014

343

mailto:martin.host@cs.lth.se
mailto:alma.orucevic-alagic@cs.lth.se
mailto:klaas-jan.stol@lero.ie


14.1 Introduction

The use of Open Source Software (OSS) in industry has seen an unprecedented

growth during the last decade. Both the use of OSS development tools, such as

Eclipse, and the inclusion of OSS components (e.g., the Apache web server1) and

software frameworks (e.g., the Struts framework2) has increased. OSS refers to

software that is distributed under an Open Source license,3 which permits that the

software’s source code is freely available to anyone to change to his or her needs

(while respecting the conditions of the license). Successful OSS projects are often

developed by a large number of disparate, geographically spread, developers

around the world, as outlined in Chap. 10.

The perceived success of OSS projects, and the ability to manage distributed

development, has resulted in efforts to introduce Open Source development prin-

ciples inside companies; this phenomenon is called “Inner Source” (Stol et al. 2014)

though other terms have been used, such as “Corporate Open Source” (Gurbani

et al. 2006) and “Progressive Open Source” (Dinkelacker et al. 2002). Stol

et al. (2011) defined Inner Source as follows:

Definition: Inner Source: The leveraging of Open Source Software development practices
within the confines of a corporate environment. As such, it refers to the process of
developing software at an organization that has adopted OSS development practices.

Motivations for adopting this way of working include the inherent support for

distributed development and the potential to increase software reuse and quality due

to an increased availability, openness and transparency of the software, and an

implied invitation to anyone in an organization to join development or contribute

otherwise (Gaughan et al. 2009).

There are, however, a number of key differences between conventional in-house

development and Open Source development. For example, Open Source projects

typically do not have the same budget constraints and lead-time limitations that are

typical issues for project management in traditional projects. Therefore, Inner

Source initiatives always lead to a tailoring of Open Source development practices

to fit a corporate context. The objective of this chapter is to present an overview of

Inner Source development, and identify implications for typical project manage-

ment issues.

The remainder of this chapter proceeds as follows:

• Section 14.2 outlines what Inner Source is by positioning it in the software

development landscape with respect to other strategies. This section also pre-

sents a number of motivations, outlining why organizations adopt Inner Source.
Furthermore, this section presents different adoption models as well as a number

of new management roles that may emerge as a result of adopting Inner Source.

1 http://httpd.apache.org/.
2 http://struts.apache.org/.
3 http://opensource.org/licenses/index.html.

344 M. Höst et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_10
http://httpd.apache.org/
http://struts.apache.org/
http://opensource.org/licenses/index.html


• Section 14.3 presents a framework that identifies a number of key themes related

to project management in which Inner Source and conventional project man-

agement approaches can differ. This framework serves as a “lens” for the

remainder of the chapter, which presents two case studies.

• Section 14.4 presents the case studies that we conducted at two organizations.

The first case study presents an analysis of how well an organization’s current

project management approach aligns with an Open Source development

approach. This case study provides insights into some of the key changes that

an organization may need to make in terms of project management issues, and as

such represents a scenario prior to adopting Inner Source. The second case study
presents an analysis of an organization that has adopted Inner Source for several

years and discusses a number of project management challenges as well as

approaches to how those challenges were addressed. As such, this case presents

a scenario after adopting Inner Source.

• Section 14.5 discusses the findings of the two case studies presented in

Sect. 14.4, as well as a number of implications for practice. Based on this, we

present a number of recommendations for Inner Source project management. In

this section, we also propose a number of new directions for future research.

14.2 Inner Source

This section presents an overview of Inner Source. We outline what Inner Source is

by positioning it in terms of openness of the software product and software process
(Sect. 14.2.1). This is followed by a discussion of why organizations would want to

adopt Inner Source (Sect. 14.2.2). Section 14.2.3 discusses Inner Source adoption

models, and Sect. 14.2.4 discusses a number of Inner Source project management

roles.

14.2.1 Positioning Inner Source as a Strategy

As outlined above, the term Inner Source refers to the adoption of OSS develop-

ment practices within an organization’s boundaries. It is informative to discuss the

implications of this in relation to other trends in the software landscape, such as

open-sourcing (Ågerfalk and Fitzgerald 2008; Oručević-Alagić and Höst 2010), so

as to clearly define the scope of this chapter. Inner Source can be characterized by

two features: (1) the development process is opened up to the whole developer

community within an organization; and (2) the resulting product is proprietary, and
access to its source code is limited by an organization’s boundaries. Figure 14.1

presents a typology using these two characteristics as dimensions.

14 Inner Source Project Management 345



We refer to “conventional” development as proprietary software development,

using a closed process, and a resulting closed product. A closed process in this

context refers to the fact that there is no “open” development community in which

developers can join as new members and start contributing to the development

process as they see fit. Instead, in conventional software development, teams are

predefined and often organized in a hierarchical fashion. The product is also closed,

in that the source code is only accessible by the project team and not publicly

available.

Open Source Software is at the other end in both dimensions, with an open

process and an open product. A typical OSS project has an open process that

welcomes new contributors (see also Chap. 13). In fact, an Open Source project’s

very success depends on how many developers it can attract. The product is open as
well as the source code is necessarily available so as to comply with the require-

ments of an OSS license.

Products that are open but with a closed process is what we label “controlled

Open Source Software.” Such OSS projects comply formally with an OSI-approved

Open Source license,4 and as such are formally “Open Source.” However, in

practice, the development process is not open and the product’s development is

tightly controlled by one organization (or possibly a consortium), or a limited

number of individuals. One such example is the Lua programming language,5

which is designed, implemented, and maintained by a team of three researchers.

Lua’s source code is freely available under the MIT license. Ideas and suggestions

are welcome in the project (and some of the project’s key features originated from

1. Traditional
proprietary
software

2. Inner Source
software

Cl
os
ed

O
pe
n

3. “Controlled
Open Source
Software”

4. Open Source
software

O
pen

ClosedPr
oc
es
s

(”
co
mmun

ity
 b
ou

nd
ar
ies

”)

Product

(source code, license)

Fig. 14.1 Typology of

open and closed software

based on process and
product dimensions

4As of August 2013, there are 70 OSI-approved licenses.
5 http://www.lua.org.

346 M. Höst et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_13
http://www.lua.org/


such suggestions), but write-access (or “commit-access”) to the source code repos-

itory cannot be “earned” by others and is limited to the three original implementers

(Ierusalimschy 2008). We note that controlled OSS is different from sponsored
OSS, in which organizations contribute (“sponsor”) code or other contributions or

resources (Capiluppi et al. 2012). Sponsored OSS projects have an open process,

where new developers are welcome to contribute, which differentiates it from

“controlled” OSS.

Inner Source, then, is characterized by an open process, and a closed product. In
this context, the process is only “open” to one organization (or a consortium of

partners or subcontractors), and not to anyone outside the organization

(or consortium). In principle, anyone in the organization is free to submit contri-

butions. The resulting product, however, is still closed, in that it is proprietary and

has no Open Source license. Licensing, while a common concern for organizations

that wish to adopt OSS (Stol and Babar 2010), is therefore not a concern in Inner

Source.

The typology in Fig. 14.1 is, of course, a simplification, a snapshot of reality at

any one time and organizations may engage in more than one of the four scenarios.

For example, there is an increasing involvement of organizations in sponsored

Open Source (mentioned above), and products and services are increasingly

based on such projects.

Over time, an organization may change its software sourcing strategy and move

to another scenario within Fig. 14.1. For example, organizations may open source
their product (Oručević-Alagić and Höst 2010), opening both the process and the

product. This is, for example, what Netscape Corp. did in the late 1990s with their

Netscape Navigator, from which the Mozilla web browser project emerged.

Involvement of organizations may vary greatly, from being an “industry-led”

project (Capiluppi et al. 2012) to total withdrawal of their involvement in the

project. In a scenario where an organization is opening up its product from an

Inner Source setting, we no longer speak of Inner Source, but of open-sourcing, and

the resulting product becomes Open Source (Ågerfalk and Fitzgerald 2008;

Oručević-Alagić and Höst 2010).

14.2.2 Motivations and Benefits of Inner Source

Organizations may adopt Inner Source for a variety of reasons and offers a number

of benefits to organizations (Gaughan et al. 2009). We discuss some of these below:

• Improved reuse. An internal repository or “forge” that hosts Inner Source

projects can provide a good starting point for projects, and as such increase

reuse within the organization (Dinkelacker et al. 2002; Lindman et al. 2008;

Vitharana et al. 2010).

• Improved quality. Inner Source projects can benefit from “Linus’s Law,”

whereby a large community of developers peer review contributions. Since

14 Inner Source Project Management 347



contributions are under large-scale scrutiny, contributors may be aware of their

reputation and be motivated to write “good” code (Dinkelacker et al. 2002;

Riehle et al. 2009).

• Rapid developer redeployment. Since developers are familiar with a standard

set of common tools and infrastructure used within an Inner Source setting, as

well as with the available software on the internal forge, developers can be more

easily transferred to other projects or products (Dinkelacker et al. 2002). This in

turn will also reduce time-to-market, as project start-up time can be reduced.

• Increased awareness. An open environment facilitates an increased awareness

of the software that is developed within an organization (Lindman et al. 2008,

2013).

• Open innovation. Besides an increased awareness among developers, a more

open development environment may also support the concept of Open Innova-

tion (Morgan et al. 2011; Lindman et al. 2013).

• Large developers pool. Open collaboration on software projects facilitates a

large developer pool, thereby broadening the expertise of the developer com-

munity (Wesselius 2008; Riehle et al. 2009).

• Increased development speed. Given a larger development community, devel-

opment of Inner Source projects may benefit from an increased development

speed (Dinkelacker et al. 2002). A single team may not have enough capacity to

implement all required functionality (Wesselius 2008). This in turn also supports

a faster time-to-market.

The degree to which these benefits can be achieved will depend on how

successful an Inner Source initiative is. While the benefits listed here have been

reported in the extant literature, Inner Source as a field of research is still in its

nascent phase, and precise predictions as to the extent to which benefits can be

achieved cannot be given.

An important consideration for any organization with software as a product

(or part thereof) is the strategic “make-or-buy” decision, or the sourcing strategy.

Van der Linden et al. (2009) presented a “decision map,” which distinguishes

differentiating software (software that provides unique business value) and com-
modity software, such as operating systems, database systems and compilers.

According to this decision map, outsourcing “differentiating” software is consid-

ered unwise, since this is the (usually relatively small) part of a product that offers a

competitive advantage. Commodity software, on the other hand, should typically

not be built in- house, as this would waste costly resources. No organization should

develop its own database system or operating system; these are commodities and

should be acquired elsewhere. Inner Source, then, could be one strategy toward

commodification. It is a suitable approach to develop software that is considered

sufficiently valuable to develop in-house, while delivering functionality needed by

different stakeholders.

One important software architectural strategy within which commodification of

software is common is a software product line (Van der Linden 2009). Software

product lines typically consist of a common platform on the one hand and a number

348 M. Höst et al.



of derived applications that are based on that platform. Van der Linden (2009)

discussed how Inner Source can help to overcome a number of bottlenecks that are

common in product lines, such as the dependencies of an application on the

platform. Development of the platform may lag behind development of a

platform-based application, possibly delaying its delivery to the market. Van der

Linden (2009) reported that Inner Source adoption at Philips Healthcare has led to a

reduction of the time-to-market of at least 3 months.

14.2.3 Inner Source Adoption Models

Organizations can adopt Inner Source in different ways. In fact, each Inner Source

implementation must be tailored to the specific context of an organization

(Gaughan et al. 2009). Various factors may influence how an organization imple-

ments its Inner Source initiative, such as its product domain, whether or not it is

subject to any legal regulations, and an organization’s size. However, despite this

variety, Gurbani et al. (2010) identified two main models of Inner Source adoption:

the infrastructure-based model and the project-specific model. These are briefly

discussed below.

14.2.3.1 Infrastructure-Based Model

The infrastructure-based model is the simplest model. In this setting, an organiza-

tion facilitates Inner Source projects by providing the necessary infrastructure such
as code repositories, bulletin board software, and mailing list servers. These tools

enable project teams and individual developers to host an Inner Source project, very

similar to how individuals can publish their software on one of the public code

repositories, such as SourceForge.net. SAP (Riehle et al. 2009), Hewlett-Packard

(Dinkelacker et al. 2002), and Nokia (Lindman et al. 2008) are organizations that

have adopted this model.

14.2.3.2 Project-Specific Model

The project-specific Inner Source model is a more strategic approach and builds on

the infrastructure-based model. In this setup, there is one dedicated division (project

team or product group) that takes responsibility for development, maintenance, and

support of an Inner Source project, referred to as a shared asset. This division is

sometimes referred to as the “core team,” similar to a core team in an OSS project.

The project-specific model focuses on strategic reuse of the shared asset. A key

responsibility of the core team is to provide ongoing support to customers of the

Inner Source project. Since this requires dedicated resources to sustain the Inner

Source initiative, an organization may have to choose carefully which projects

14 Inner Source Project Management 349



receive such resources, in terms of budgets and person-years. Case studies of the

project-specific model have been reported for Philips Healthcare (Wesselius 2008)

and Alcatel-Lucent (Gurbani et al. 2006, 2010).

14.2.3.3 Comparison of Inner Source Models

Stol et al. (2011) presented a comparison of the two Inner Source models, summa-

rized in Table 14.1. This comparison is based on observations from the current

literature on Inner Source, and as such, these characteristics are not prescriptive.

Organizations may have Inner Source projects that have characteristics of both

models.

In the infrastructure model, all four characteristics in Table 14.1 are rather

optional and casual, whereas for the project-specific model they are strategic and

critical. For example, reuse in the infrastructure-based model is opportunistic and

ad hoc, whereas in a project-specific model, reuse is a strategic goal. As a result,

support is essential in the project-specific model, and typically one can observe a

special organizational unit (i.e., a core team) that takes responsibility of the shared

asset that is managed as an Inner Source project.

14.2.4 Inner Source Project Management

Open Source style development is often misinterpreted as a “chaotic” or

“unmanaged” approach to software development, while it is better characterized

as “self-organizing.” Common Open Source governance models range from highly

centralized, typically led by a “benevolent dictator for life” such as the Linux

Kernel, to decentralized ones, such as GNU Linux. In between those two mentioned

models sits a council-like governance model that is used, for example, in the

Table 14.1 Key differences between infrastructure-based and project-specific inner

Characteristic Infrastructure-based Project-specific

Software reuse Opportunistic and ad hoc. Optimize for

sharing maxi- mum number of projects

Strategically planned. Optimize

for sharing critical assets

Support Optional, depends on success of project Essential for project success.

Needs organizational support

and funding

Owner/

maintainer

Individual or team who created the project Central “core team.” Needs orga-

nizational support

Type of inner

source

software

Discrete software packages, such as utilities

(e.g., XML parser), compilers, shells

Critical asset that plays an

important role for the

organization

Source models (adapted from Stol et al. 2011)

350 M. Höst et al.



Apache project. Hence, just as successful Open Source projects can have an

extensive “management layer,” so too do Inner source projects need management.

Little is written on project management in Inner Source projects. A notable

exception is a study by Gurbani et al. (2010), which identifies a number of roles that

emerged in Alcatel-Lucent’s Inner Source project. The diagram in Fig. 14.2 pre-

sents our analysis of their presentation of these roles. In the remainder of this

chapter, we assume that an organization consists of one or more organizational
units, such as departments, teams, or business divisions.

It is important to emphasize that these roles emerged within the core team at one

organization and are not prescriptive for an Inner Source initiative. They do,

however, provide a useful reference model for organizational roles in Inner Source.

We describe these roles briefly.

A liaison has the overall responsibility for the shared asset and oversees the

activities performed by the core team. The liaison also interacts with the organiza-

tion’s internal customers (i.e., different organizational units) about, for example,

feature requests. The liaison works closely with the shared asset’s chief architect;
the chief architect can be compared to a typical OSS project’s benevolent dictator,

who has strong technical skills and whose key responsibility is strategic road

mapping and maintaining the shared asset’s architectural integrity.

A support team (Gurbani et al. (2010) refer to them as construction, verification
and load bring-up engineers) provides operational support to the business units.

Issue Tracker

Release
advocateFeature

advocate

LiaisonO
rg

an
iz

at
io

na
l 
U

ni
t

Developers

O
rganizational U

nit

Developers

Delivery
advocate

Organizational Unit

Developers

Core Team

Developers

Chief
architect

Project
manager

Support team

Fig. 14.2 Roles of an Inner Source core team (based on Gurbani et al. 2010)

14 Inner Source Project Management 351



This includes release management tasks, verification, documentation, and writing

release notes. A project manager has overall project management responsibility,

which includes release planning, project monitoring, and process compliance. A

release advocate takes responsibility for a specific release and interacts closely with
the organizational units so as to assess the potential impact of the release on the

organizational units’ products that integrate the shared asset. A delivery advocate is
assigned to an organizational unit that becomes a new customer of the shared asset,

so as to assist in integrating the component into a product. Gurbani et al. (2010)

pointed out that an organizational unit might have specific tools, which complicates

the task of integrating the shared asset. The delivery advocate also assists in

ensuring that contributions from the organizational unit fit within the shared asset’s

overall architecture. Finally, a feature advocate is responsible for seeing a partic-

ular feature to completion.

14.3 A Framework for Understanding Project

Management in Inner Source

Inner Source and project management are both complex and multifaceted topics

with wide scopes and comprising many different aspects. One goal of this chapter is

to identify key aspects of project management that are affected by adopting Inner

Source. In order to define the focus of our study, we defined a framework based on a

number of aspects that we consider important for understanding project manage-

ment in Inner Source. The remainder of this chapter uses the framework to structure

the results of our analysis. We derived this framework from a number of sources

that have addressed the topic of project management in detail, which we briefly

outline below.

Much has been written on project management in general, but also in a software

engineering context as exemplified in this book. An important source is the Project

Management Body of Knowledge (PMBOK) (Duncan 2013). This is a general

guide to project management without a specific focus on software development. It

includes an extensive range of factors, or topics, which are listed in the first column

of Table 14.2. However, not all topics are related to Inner Source, which is why PM-

BOK is not an optimal instrument to focus our study.

Besides the project management field, the software engineering field also has a

“body of knowledge,” called SWEBOK (Abran and Moore 2004). SWEBOK is an

ongoing project, currently in its third version, and “accepted knowledge” of the

software engineering field. Similar to PMBOK, SWEBOK defines a number of

themes, listed in the second column of Table 14.2. While all are specific to software

engineering, not all themes are relevant to project management. Hence, SWEBOK

would not be an optimal choice as a framework either.

In addition to these two potential sources, various books have been written on

software project management (SPM), such as that by Hughes and Cotterell (2009).

352 M. Höst et al.



This source includes all factors from both PMBOK and the “Software Engineering

Management” part of SWEBOK; the third column in Table 14.2 lists the themes

discussed by Hughes and Cotterell. However, while all themes identified by Hughes

and Cotterell are relevant to project management and software engineering, not all

are relevant to Inner Source. In order to define a sound framework, we identified

four key themes that encompass the relevant topics from the three sources listed in

Table 14.2. These are

1. Process management: This includes deciding in detail what development

process to use during the project. In many cases, this is done by tailoring an

organization-level process model to a project-specific process model that fits the

constraints and requirements of a specific project.

2. Project planning: This includes traditional planning activities such as activity

planning, effort estimation, and resource allocation.

3. Monitoring and taking actions: This includes activities for monitoring and

control, as well as activities related to risk management.

4. Human issues: This includes issues related to human resources, people man-

agement, and activities that support a healthy team climate.

These themes are used to structure the remainder of this chapter. We describe the

themes in further detail below. This section ends with an overview of a number of

key concerns of project management in Inner Source that require attention.

14.3.1 Process Management

Process management is concerned with selecting, tailoring, and aligning a suitable

software development process for a project. That is, it is a “high level” and often

Table 14.2 Themes discussed in various sources relating to project management

PMBOK SWEBOK

SPM textbook (Hughes and Cotterell

2009)

– Integration management

– Scope management

– Time management

– Cost management

– Quality management

– Human resource man-

agement

– Communications man-

agement

– Risk management

– Procurement manage-

ment

– Stakeholder

management

– Initiation and scope defini-

tion

– Software project planning

– Software project enactment

– Review and evaluation

– Closure

– Software engineering

measurement

– Project evaluation and program

management

– Selection of appropriate project

approach

– Software effort estimation

– Activity planning

– Risk management

– Resource allocation

– Monitoring and control

– Managing contracts

– Managing people in software envi-

ronments

– Working in teams

– Software quality

14 Inner Source Project Management 353



organization-wide project management activity. Since the use of heterogeneous

processes may also be an issue in conventional software development contexts, one

could argue there is little difference with an Inner Source approach. There is no

single “conventional process” and no single Open Source process that is used in

Inner Source. Therefore, there is no single way of, for example, adopting and

tailoring processes in any of the cases. Each Open Source project has its own set

of practices and customs that have emerged over time. However, as outlined in

Chap. 13, there are a number of common characteristics. Likewise, an Inner Source

initiative is also tailored to an individual organization. Section 14.2.3 discusses the

two major Inner Source adoption models, which is the first major difference

between Inner Source initiatives. Furthermore, each initiative is shaped by the

context and constraints of the organization. For example, Philips Healthcare

develops a Software Product Line (SPL) for their medical equipment, whereby

the SPL platform is managed as an Inner Source project (van der Linden 2009). As

such, the company is subject to regulations set forth by the Food and Drug

Administration (FDA) in the United States. One implication of this is that the

process needs to be traceable, and regulatory bodies (such as the FDA) conduct

audits regularly to inspect the process.

Even though there are many different development methods, making it difficult

to identify common characteristics, we discuss a number of common questions that

may arise in relation to process management.

Two types of processes are of interest in this respect. First, there is the process

that is selected for development of an Inner Source project. Second, there are the

processes that are used by the customer teams that wish to integrate (or use) the

Inner Source project, and possibly contribute to it. This potentially large variety in

customer projects means that there may be a range of different processes that

interact with an Inner Source project’s process. Some customer projects may follow

a strictly stage-gated model (e.g., waterfall), whereas others follow more iterative

approaches such as Agile methods (e.g., Scrum). When customer projects wish to

contribute to the shared asset, they must consider the alignment of their own process

and the process used by the core team that develops the shared asset. A

misalignment of such processes may result in problems when the shared asset is

integrated, or worse, when a customer team misses a product release deadline (Stol

et al. 2011).

There are also requirements regarding the process for an Inner Source project.

This process must be formal and sufficiently rigorous to fulfill the requirements of a

product and its evolution, that is, handle contributions from a variety of sources in

an efficient way. It must also be aligned to other processes at the organizational

level, which are not necessarily adapted to this way of working. That is, the process

must resemble an Open Source process with its mechanisms for evaluating contri-

butions, widely available and accessible information, selecting among candidate

changes in a timely manner, etc., and at the same time adhere to the typical

organizational level process requirements that are characterized by milestones

and deadlines. Conflicts may arise between a general organizational process and

an Inner Source process (Riehle et al. 2009).

354 M. Höst et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_13


Customers of an Inner Source project may use a variety of processes, which is

why it is difficult to outline general guidelines as to how these should be aligned. In

one case study, Lindman et al. (2008) found that they are typically agile. However,

one type of required process tailoring relates to contributions to an Inner Source

project. Contributors must adhere to the requirements of an Inner Source process

prescribed by the core team, and the level of formality enforced by the core team

must be taken into consideration.

14.3.2 Project Planning

Project planning includes traditional activities such as activity planning, effort

estimation, and resource allocation, but also more general activities and tasks

such as coordination of development activities and prioritization of different imple-

mentation alternatives.

There are many planning activities of a more general nature that are important

for Inner Source management. For example, Gurbani et al. (2006) emphasized that

the core team must have a long-term vision of the evolving shared asset. Since

many projects may become dependent on the shared asset and future changes, it is

important to be able to foresee the need of different projects and to be able to

communicate the project vision.

It is also important to understand that contributing projects may not be as

focused on general solutions as the core team must be. It is natural that contributing

projects are more focused on the specific development of their project and consider

the Inner Source product as only one part of their project. This means that a core

team must coordinate the development schedules from different contributing teams,

and as much as possible, minimize the risk of duplicate work. This may involve in

some cases the prioritization and to some extent negotiation of requirements from

different projects. Long-term planning also includes evolution planning and

distinguishing general development from customer-specific changes (Gurbani

et al. 2006). Gurbani et al. (2010) suggested that this required a “full time project

manager.” Product evolution planning can be supported by keeping a list of

candidate changes, and trying to find common themes among future changes.

14.3.3 Monitoring and Taking Actions

This part of project management describes how managers can follow up work and

progress, and based on that take actions with the objective to correct for deviations

between plans and expectations, and actual progress.

As in the previous section, this text focuses on the monitoring carried out by an

Inner Source coordinator, i.e., core team, and not on the monitoring carried out by

the contributing projects.

14 Inner Source Project Management 355



One important type of monitoring is that of quality assurance of contributions.

An Inner Source coordinator may carry out this quality assurance when code is

contributed, but this may prove to be a bottleneck (Gurbani et al. 2006). One

suggested benefit of Inner Source is to have “truly independent” peer review as

an effect from a large community who have access to the code (Linus’s Law).

An Inner Source coordinator can also track features during development and

compare to the vision of the evolving code. If there are differences, which in some

way means that future contributions will not be accepted, they can be identified as

soon as possible.

14.3.4 Human Issues

The fourth and last theme of our framework is that of human issues and is based on

some of the observations that have been reported in the Inner Source literature. One

aspect of human issues that has been addressed by Gurbani et al. (2006) concerns

the fact that different contributing projects may have processes that are different

from the way that contributions are managed by the core team. This includes, for

example, how contributions are inspected.

An increased transparency of the development process that is necessary to

facilitate Inner Source may introduce friction (Gaughan et al. 2009; Melian and

Mähring 2008). Developers may experience an increased openness of the process as

a “fish-bowl,” and an increased pressure on performance. They may also see the

openness as a threat to their unique competence and skill set since more people now

may work on the same code with the same type of problem. It may require staff to

develop new skills with respect to communication and interaction. These aspects

may not be a problematic in all Inner Source initiatives, but cognizance of such

potential issues may help address such issues before they arise and escalate.

There are also some positive aspects of this nature. Other developers may

experience an open environment as very positive and rewarding. Others may see

the open environment and the possibility to voluntarily contribute as a means for

professional improvement or as a way to demonstrate their expertise, and thereby

rewarding. Such rewards may positively affect developers’ motivation, a topic that

is discussed in more detail in Chap. 10.

14.3.5 Summary

Table 14.3 summarizes some of the tension points related to the four project

management themes presented above, that may arise as a result of introducing

Inner Source. For example, if there is a focus on applying an available process in

conventional development, a difference in Inner Source is that there are now a

number of processes in organizational units that must be aligned. In conventional

356 M. Höst et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_10


development, there are a number of well-known methods for project planning,

while in Inner Source there is a need to plan and synchronize different initiatives

from organizational units that will encourage contributions. This also means that

monitoring must concern several organizational units, for example, with respect to

what each will contribute and how this is aligned to the shared asset as a whole.

Finally, a number of human issues need to be considered as well.

14.4 Case Studies

In this section, two industry case studies are presented in order to illustrate project

management issues in Inner Source. Organizations that wish to adopt Inner Source

need to understand their current project management approach so that they can

assess the extent to which this aligns with an Open Source development approach.

We conducted a case study at one organization that had a strong interest in adopting

Inner Source, to illustrate such an assessment of Inner Source alignment prior to

adoption. This is presented in Sect. 14.4.1.

Whereas the first case study presents potential project management tension

points that may arise prior to, or during adoption of Inner Source, we also conducted

a case study at an organization with an established track record in Inner Source

adoption. This second case study sheds light on a number of actual challenges in

Table 14.3 Comparison of traditional project management and potential tension points in Inner

Source

Element Traditional project management Key difference in inner-source

Process

management

Enforce common processes Top-level

coordination enforcement.

Alignment of different processes may

be challenging

Project

planning

Predefined, well-organized, use of

planning tools (e.g., Gantt charts)

to “predict” delivery. Project costs

more easily predicted and calcu-

lated (Gaughan et al. 2007)

Planning of “chaotic” OSS style pro-

ject may be unnerving. Costing of

Inner Source shared asset is more

difficult

Monitoring and

taking

actions

Standard methods for following up

progress of projects. Traditional

punish/reward model

Follow up of more high-level attributes

like plan for future releases

Human issues Option to deliver “good enough” code

as it is not visible to most people

Typically no encouragement of initia-

tives to contribute (maybe volun-

tary) to work outside own project

Hierarchical business organization

(Gaughan et al. 2007)

Contributions or code may be in an

“embarrassing” state (Dinkelacker

et al. 2002)

Conflicts OSS style (ego) strong per-

sonalities; “bullying” by techno-

logical experts who take ownership

Opening up code may face objections

from developers who fear losing

their job

Employees may resist change

(Gaughan et al. 2007)

14 Inner Source Project Management 357



Inner Source project management and how those issues have been addressed. This

case study is presented in Sect. 14.4.2.

14.4.1 A Case Study of Inner Source Alignment

The first case study was conducted in a multinational software and hardware

company, based in Sweden (hereafter referred to as “ToolSoft”). ToolSoft has

been using Open Source software in its products and has been involved with

large Open Source communities. The goal of the case study was to understand

the alignment of ToolSoft’s development practices with the Open Source develop-

ment practices. Therefore, a first step was to identify a set of software development

practices that are typical for Open Source development and compare them to the

current development practices in the company. In order to do this, practices typical

for Open Source development were identified by analyzing the most important

aspects of the Open Source projects hosted under the Apache project. The identified

practices were also validated by studying Fogel (2005) on how to run a successful

Open Source project. The identified practices are listed in Table 14.4. After the

comparison was made, the data was interpreted in the light of the aspects of the

framework presented in Sect. 14.3, according to which the results are also presented

in this chapter.

Traditional development practices are closely related to conventional software

project management (SPM) discussed in more detail in Sect. 14.3. Traditional SPM

is analyzed through its main features: process management, project planning,

monitoring and taking actions, and human issues. In order to understand how

Open Source development practices identified in this case study can be applied

within a conventional SPM context, the four features of the traditional SPM are

further examined through the framework presented in Table 14.4, which outlines a

number of aspects specific to Open Source development.

14.4.1.1 Process Management

The process management aspect of software project management is closely related

to the Open Source infrastructure aspect. An infrastructure portal (or “forge”) hosts

information about Open Source development practices including a community

guide and information on source code repositories, development roadmap, etc.

All individual projects developed by a community need to comply with the infra-

structure aspects, just like any specific project developed within a more traditional

environment needs to comply with process management defined on the organiza-

tion level.

In this study, we found that ToolSoft’s development practices are mostly aligned

with Open Source practices with respect to the infrastructure aspects. However,

some of the content hosted under the infrastructure portal was found to be

358 M. Höst et al.



incomplete and out of date. In an Open Source setting, up-to-date information

hosted under the portal is crucial for understanding how a project operates, for

example, what the project goals are, current issues and bug tracking, rules of

conduct, developers guide, and documentation. In a traditional setting, much of

this information is disseminated through different channels, either through inter-

personal communication, unarchived electronic communication, or a project’s

specific documentation. What can happen in practice, is that different projects

working on the same parts of software do not synchronize documentation, or a

task of completing documentation is not given a sufficient priority, and resulting in

outdated documentation.

14.4.1.2 Project Planning

The project planning aspect of traditional software project management deals with

identification of activity, effort estimation, and resources allocation. In an Open

Source community, an activity or task is identified through a transparent commu-

nication process, for example, a community participant identifies a new feature to

be implemented or reports a bug through an open online forum or email list. The

proposed activity is then further discussed and assessed among community partic-

ipants. Any community participant can decide to work on a task. Hence, there may

be multiple community participants working on the same activity. This is a very

different approach to resource allocation from a traditional planning approach,

where a resource is assigned to an activity, rather than a resource being able to

assign him/her self to the activity. Even though effort estimates are normally

provided for activities in an Open Source realm, a time constraint of an activity is

not normally enforced in the same sense as in a more traditional closed source

environment.

14.4.1.3 Monitoring and Taking Actions

The transparent communication aspect of Open Source development ensures that

many individuals look at the way a product is being developed, and thus, the “many

Table 14.4 Open Source development practices considered in analyzing ToolSoft’s software

development practices

Aspect Category Element

Infrastructure Product info Features, documentation, FAQ, news road map, security

Code access Download location, binary package, release notes

Community

guide

Community overview, community roles, coding conventions,

commit conventions, building and testing, debugging, mail-

ing lists, bugs/issues, releases

Communication Standardized Message, channel, norm

Management Meritocracy Role, promotion, authority

14 Inner Source Project Management 359



eyeballs” effect (Linus’s Law) often found in Open Source can be related to the

monitoring and taking actions aspect of the traditional software project manage-

ment. In Open Source development, the monitoring aspect is steered through a

transparent process where participants provide feedback on actions taken.

In this case study, we found that the communication characteristics observed in

ToolSoft have a high level of misalignment with Open Source practices. As

employees were seated closely to each other within the office plan, people tended

to favor informal meetings and discussions over electronic communication. This

way, the communication process is not transparent, or traceable, and may have to be

repeated by different community members. Open source communities use elec-

tronic forms of communication that facilitate transparent and traceable discussions.

Transparent discussions enable relevant participants and decision makers to get

involved, which may help in resolving issue in a timely fashion. Archived discus-

sions can be referenced in order to understand why certain decisions were taken in

the past or to find out how similar issues were resolved. Implementing transparent

and archived communication archives could improve efficiency in ToolSoft by

ensuring that relevant resources are involved on time by creating searchable

problem/resolution archives and by decreasing the amount of time spent in repet-

itive and less efficient ways of communication.

14.4.1.4 Human Issues

The transparent nature of communication in Open Source development helps in

understanding how the project functions, the importance of contributors’ roles, and

thus, ensures that the participant roles are assigned in a meritocratic way. A

community guide defines the rules of engagement within the community, especially

in terms of online communication norms. Open Source communities have recog-

nized the importance of friendly, standardized, and efficient communication in

overall project success (Fogel 2005). Hence, the community guide and open

communication aspects are related to the human issues feature of software project

management.

Our assessment of the management aspect showed alignment of the defined roles

in ToolSoft and Open Source development practices, but in practice the roles in

ToolSoft exhibit overlapping characteristics. For example, we found that software

architects sometimes took on responsibilities of project leads. Such overlapping and

conflicting roles can decrease the overall process and product efficiency. One

example of this is sacrificing some aspect of a product’s technical maturity to

meet a deadline.

14.4.1.5 Conclusion

In this case study, we found that implementing some characteristics of typical Open

Source practices while retaining a more traditional software development approach

360 M. Höst et al.



in terms of communication and project management may hinder the potential

efficiency of Inner Source. In order to better understand the actual effects of a

transition to Inner Source and Open Source practices, more research is needed. This

would increase understanding of benefits and drawbacks of Inner Source in an

organization, and potentially offer ways to tailor practices to closed development

environment with a limited number of resources and projects having a time

constraint as a critical attribute.

14.4.2 A Case Study of Project-Specific Inner Source

The second case study was conducted at an organization that we refer to as

“GlobalSoft.” GlobalSoft is a multinational organization in a regulated domain.

GlobalSoft has adopted a number of OSS development practices and augmented

their conventional mechanism for project management. Some of this case study’s

findings were previously reported by Stol et al. (2011); the results presented in this

section focus in particular on project management issues, taking into consideration

the four themes introduced in Sect. 14.3.

The GlobalSoft organization consists of a number of business units. Each

business unit is specialized in a specific domain for which they develop products.

Each business unit has therefore highly specialized expertise and in-depth knowl-

edge of these technologies.

Figure 14.3 shows a representation of the key elements of the Inner Source

initiative at GlobalSoft. The figure shows that a core team develops and releases

versions of the shared asset. The core team consists of architects and developers, as

well as a support team (similar to what is depicted in Fig. 14.2). The core team can

work closely with business units in so-called collaborative development projects, to

develop a new (or enrich an existing) component, which is then integrated back into

the shared asset. Effectively, these collaborative development projects include a

feature advocate from the business unit. A steering committee defines a roadmap

and decides which features are implemented. Business units integrate, and possibly

customize the shared asset. As new companies are acquired, they become part of the

organization as new business units, and any software that is brought in is scrutinized

for potential reuse.

While Inner Source offers many potential benefits (as discussed in Sect. 14.2), it

may also introduce new challenges, which are sometimes similar to those asso-

ciated with using OSS in product development (Stol et al. 2011). The remainder of

this section presents a number of challenges related to project management and how

they were addressed by the GlobalSoft.

14 Inner Source Project Management 361



14.4.2.1 Process Management

A key concern in process management was finding agreement on the software

development processes to be used. In the last two decades, GlobalSoft acquired

many companies in the same domain, which have become business units. Besides

each organization’s unique culture, an organization may also have a set of

established development processes to which they are accustomed.

One challenge that this study revealed was a misalignment of the software

development life cycles at the business units and the core team. Business units

want to focus exclusively on differentiating, value-adding functionality, and prefer

that common functionality shared by different products be implemented by the core

team. To that end, business units could send their requirements to the core team,

which would then implement a certain module or component. However, the inte-

gration tests were performed by the requesting business unit; the core team did not

build actual products and as a result did not do any integration tests, and as such did

not find any problems in using the new functionality. By the time a business unit

was ready to integrate the new component and identify problems (e.g., missing

functionality or lack of attention for quality attributes such as performance), the

core team had focused their attention to new tasks. As a result, little support in terms

of defect fixing could be expected, which was a burden for the business unit that

was trying to deliver a product to the market on time.

In order to prevent such problems, GlobalSoft adopted the concept of so-called

collaborative development projects. This can be considered a hybrid solution of

“pure” OSS style defect fixing by noncore developers, but with close involvement

GlobalSoft

Design,
maintains,
releases

Acquired
Business
Division

Collaborative
development

Sends contributions to

Integrates
and customizes

Becomes
business
division

Brings in

Investigates
for reuse

Decides on features

Results in

Participates
in

Participates
in

Shared
Asset

New/enriched
component

Acquired
software

Core Team Business
Devision

Steering
Committee

Fig. 14.3 Conceptual model of Inner Source in the GlobalSoft organization (adapted from Stol

et al. 2011)

362 M. Höst et al.



of the core team. In practice, this resulted in temporary, virtual teams that work

together on either a new component or to enrich an existing component.

14.4.2.2 Project Planning

As outlined in Sect. 14.3, project planning relates to activities such as activity

planning, effort estimation, resource allocation, but also includes feature prioriti-

zation. Many of these topics seem nonexistent in OSS projects, since in Open

Source developers self-select tasks that they feel they can do, or they feel need to

be done. This self-organizing feature of OSS style development is more difficult to

combine in commercial software development, where schedules need to be met and

budgets need to be respected.

At GlobalSoft, a steering committee developed a roadmap that outlined the

future development plans of the shared asset. The steering committee had repre-

sentatives from the business divisions as well as from the core team. This way, input

was received from both the supplier side as well as from the customer side, which

ensured that (1) the core team better understood what was needed by the business

divisions (i.e., the shared asset’s users) and (2) the business divisions could align

their own roadmap of future product evolution with the shared asset on which they

based their product.

One issue we found in this case study is that the development capacity of the core

team was a bottleneck. This was due to the fact that the core team developed a

platform that was used by many different business units, each with many feature

requests. This bottleneck was in fact one of the motivations to adopt OSS devel-

opment principles. Business divisions can—at their own cost—request develop-

ment of certain features, but this “solution” is rather limited, given the restricted

capacity of the core team.

14.4.2.3 Monitoring and Taking Actions

The case study organization used commonly used infrastructure offered by Collab.

Net.6 This includes common infrastructure such as a mailing list, a wiki, and an

issue tracker, which facilitated knowledge sharing, community interaction, and

tracking of issues. As developers encountered difficulties, the mailing list provided

a means to ask questions and share knowledge. Architects of the core team monitor

these lists regularly and provide feedback where possible.

As outlined above, the organization had grown significantly over time, as

companies were acquired that became new business units. As a result of this, the

scope of the shared asset (the product line platform used as a foundation for most

products) was evolving. Instead of a static scope (with a fixed set of features and use

6www.collab.net

14 Inner Source Project Management 363

http://www.collab.net/


cases), the shared asset’s scope was dynamic. As the new business units became

new customers of the shared asset, new use cases had to be considered, so that the

new business unit could also benefit from the platform. This could either be done by

porting the existing product to GlobalSoft’s platform or to rebuild the new business

unit’s software using the platform as a foundation.

14.4.2.4 Human Issues

There are a number of human issues to consider in Inner Source project manage-

ment. A key challenge in building an internal, organization-wide and interactive

community is getting developers to contribute. Without active members who

answer questions of other people in the community, an Inner Source initiative

may not become very successful.

A key factor that should be considered is building an environment in which all

parties involved become supportive of the Inner Source program (Stol et al. 2014).

In particular, incentives should be clear to each development group so that any

potential tension between the core team (i.e., supplier) and the business divisions

(i.e., customers) is prevented. Business divisions need to see clear benefits from

actively participating in the community in order to prevent a “them versus us”

atmosphere. This involves clearly communicating—and demonstrating—potential

benefits. Some business divisions were more receptive of GlobalSoft’s Inner Source

initiative than others.

Similar to what can be observed in Open Source communities, we found that

typically there was an evolution—or a “learning curve”—in involvement in

GlobalSoft’s Inner Source community. Usually this started with using some com-

ponents of the product line’s platform (similar to an OSS product’s users). As more

parts of a product’s application were migrated to the new platform (i.e., the shared

asset at GlobalSoft), a business unit would increase its interaction with the core

team. At some point, a business unit could decide to use components that are in

development (rather than a released snapshot version) to benefit from the latest

available functionality, and a business unit could want to contribute certain func-

tionality that they required (comparable to OSS users (or “lurkers,” even) who

become contributors). In GlobalSoft, this process worked better for some business

units than for others. In particular, business divisions that actively followed the core

team closely in their development had significantly fewer problems than those who

treated the core team as a traditional “black box” software supplier.

As outlined above, GlobalSoft acquired a large number of other companies over

time, each of which brought in their own software and systems. In many cases, these

systems would have a different architecture than GlobalSoft’s product line. One of

our findings is that GlobalSoft took a conscious approach to sit together with the

people who designed and developed the newly acquired systems. It was felt

important to come to an understanding about the design rationale for the different

systems, and to find agreement on how a new business division’s software could

make use of the shared asset. Respect for the acquired company’s culture is

364 M. Höst et al.



important in this context, rather than prescribing and requiring conformance to

GlobalSoft’s existing architecture. It was felt that a close collaboration, understand-

ing of each other’s software assets, and identifying how to let the different systems

grow toward each other would yield much better results (in both the technical

aspect as well as in “goodwill”) than enforcing GlobalSoft’s architecture.

14.5 Discussion and Future Work

This section continues the discussion on differences between conventional devel-

opment and Inner Source development. In particular, the objective is to discuss how

introducing Inner Source affects software project management. It is important to

understand that each Inner Source initiative must be tailored to the context of an

organization so as to consider the various constraints an organization may have to

address (e.g., regulated environments) as well as the organizational culture.

The decision to introduce a strategy such as Inner Source is always based on a

trade-off. On one hand, there are a number of perceived advantages such as

increased reuse and transparent communication. However, challenges may arise

as well. A key issue is to recognize that the different organizational units that work

with an Inner source core team are likely to use different development processes,

which can result in significant coordination challenges. The case study of

GlobalSoft illustrated how such process-misalignment manifested. To overcome

such issues, new coordination mechanisms can be required, or existing organiza-

tional governance mechanisms can be adjusted so as to better plan development of a

shared asset, and facilitate synchronization of development processes—in the case

of GlobalSoft, a new collaborative development mechanism emerged.

Challenges may also arise on the operational level for developers, who work in

the various organizational units and who contribute to development of a shared

asset. An increased transparency of the process in general and the visibility of the

contributed code may also result in tension points. For example, whereas code

contributions used to be limited in visibility to a developer’s project team members,

all project artifacts can now be scrutinized by an organization’s global developer

community. Some people may also see the electronic communication that is

typically used in an Open Source environment as over-formalized. This would

also result in a fully transparent (and archived) communication throughout an

organization. This may mean that some people would prefer to have informal

meetings instead of using, for example, mailing lists.

One strategy to address several of the challenges is to start with a code asset that

is already used by several projects, and then gradually introducing the concept for

other and new assets. We argue that it is an advantage to start with a part of the code

and the organization where the change is seen as positive, that is, in line with

creating a “short-term win” (Kotter 1996).

The key observations from the case studies are summarized in Table 14.5. The

results in the table suggest a few steps to take in transforming from a conventional

14 Inner Source Project Management 365



development approach to Inner Source. For example, an infrastructure for manag-

ing information needs to be used more extensively, and process synchronization

mechanisms such as collaborative development projects can be adopted to over-

come process misalignment issues.

How to carry out the introduction of Inner Source will vary across organizations

and heavily depend on contextual factors. We argue that it is important to identify

what gains are considered important and focus on those one at a time. It is also

important to identify what challenges may arise and to prepare mitigating actions to

overcome them.

Concerning process management, an important part of Inner Source manage-

ment is to align different processes in different organizational units. This is also

reflected in the importance of monitoring of different development initiatives in

different organizational units. Conventional project management is still taking

place in contributing organizational units, while an important part of Inner Source

management concerns coordination of initiatives. All management levels in an

organization should also be aware of the potential human issues that can affect

the introduction of Inner Source. That is, introducing Inner Source will mean a

number of changes at the tactical and operational levels when it comes to synchro-

nizing development activities in different business units in the organization. This is

also a basis for increasing reuse between business units, which by many is seen as

an important goal of introducing Inner Source.

Table 14.5 Key findings of the two case studies

Theme ToolSoft GlobalSoft

Process

management

Project portal that facilitates “self-

management” may exist but may

not be used fully

– Collaborative development projects

to overcome process misalignment

Project

management

Higher degree of engagement of all

project participants through trans-

parent communication process to

deliver high-quality software prod-

ucts up to users’ specifications can

be expected

– Steering committee is useful to

gather organization-wide input and

synchronize efforts

– Extra “purchasing” of critically

needed software development pos-

sible but limited to capacity of core

team

Monitoring and

taking

actions

Establish transparent and archived

communication to identify and

resolve issues more efficiently

– Dynamic scope of shared asset due to

new required use cases

Human issues Facilitate friendly communication

atmosphere and to promote based

on merit to build a healthy organi-

zation culture needed

– Need clear incentives so as to engage

people

– Learning curve may be steep due to

novelty of approach

– Respect for developers and organi-

zations’ cultures is key to success-

ful collaboration

366 M. Höst et al.



14.5.1 Future Work

As mentioned in this chapter, Inner Source is an emerging approach to software

development. Although the first studies on this topic were published in the early

2000s, the field is still in its nascent phase, and more research is necessary to better

understand how benefits (outlined in Sect. 14.2) can be achieved. We conclude this

chapter by outlining a number of directions for future work.

• While different Inner Source adoption models exist (Gurbani et al. 2010), further

studies of how organizations embrace Open Source development practices will

be a welcome addition to the literature.

• While there exist a few reports of how Inner Source supports the development of

a software product line (Van der Linden 2009), there are a few studies of reuse of

Inner Source components. Such studies do exist in an Open Source context (e.g.,

Capiluppi et al. 2011), which can be used as a template to design studies of reuse

of Inner Source components.

• In this chapter, Inner Source has been compared to traditional project manage-

ment aspects. Further research can include comparison of Inner source and

management in Agile projects.

• Quantitative studies to better understand how certain benefits can be achieved.

Such studies typically identify dependent and independent variables, and can

identify the relationship between those variables so as to be able to “predict”

how a certain benefit can be achieved.

Acknowledgments The authors wish to thank Brian Fitzgerald for useful feedback on an earlier

draft of this chapter. This work was conducted within the ITEA2-SCALARE project, supported by

Vinnova and Enterprise Ireland, and further by Science Foundation Ireland grant 10/CE/I1855 to

Lero— the Irish Software Engineering Research Centre (http://www.lero.ie), and by the Industrial

Excellence Center EASE—Embedded Applications Software Engineering (http://ease.cs.lth.se).

References

Abran A, Moore JW (2004) Guide to the software engineering body of knowledge. IEEE

Ågerfalk PJ, Fitzgerald B (2008) Outsourcing to an unknown workforce: exploring open-sourcing

as a global sourcing strategy. MISQ 32(2):385–409

Capiluppi A, Stol K, Boldyreff C (2011) Software reuse in open source: a case study. Int J Open

Source Softw Process 3(3):10–35

Capiluppi A, Stol K, Boldyreff C (2012) Exploring the Role of Commercial Stakeholders in Open

Source Software Evolution. In: Hammouda I et al (eds) OSS 2012, IFIP AICT 378, pp 178–200

Dinkelacker J, Garg PK, Miller R, Nelson D (2002) Progressive open source, 24th international

conference on software engineering (ICSE), Orlando, FL, pp 177–184

Duncan WR (2013) A guide to the project management body of knowledge (PMBOK®guide), 5th
edn. Project Management Institute (PMI), Newtown Square

Fogel K (2005) Producing open source software: how to run a successful free software project.

O’Reilly Media, Sebastopol

14 Inner Source Project Management 367

http://www.lero.ie
http://ease.cs.lth.se


Gaughan G, Fitzgerald B, Morgan L, Shaikh M (2007) An examination of the use of inner source

in multinational corporations: a preliminary framework to understand inner source software

development. In: Proceedings 1st OPAALS conference, pp 48–60

Gaughan G, Fitzgerald B, Shaikh M (2009) An examination of the use of Open Source software

processes as a global software development solution for commercial software engineering. In:

35th Euromicro conference on software engineering advanced applications (SEAA), pp 20–27

Gurbani VK, Garvert A, Herbsleb JD (2006) A case study of a corporate open source development

model. In: 28th international conference on software engineering, pp 472–481

Gurbani VK, Garvert A, Herbsleb JD (2010) Managing a corporate open source software asset.

Commun ACM 53(2):155–159

Hughes B, Cotterell M (2009) Software project management. McGraw-Hill, New Delhi

Ierusalimschy R (2008) Lua Mailing List, reply of Roberto Ierusalimschy, one of the developers of

Lua, Friday, 27 June. http://lua-users.org/lists/lua-l/2008-06/msg00407.html

Kotter J (1996) Leading change. Harvard Business Review Press, Boston

Lindman J, Rossi M, Marttiin P (2008) Applying open source development practices inside a

company. In: Russo B, Damiani E, Hissam S, Lundell B, Succi G (eds) Open source develop-

ment, communities and quality. Springer, New York

Lindman J, Riepula M, Rossi M, Marttiin P (2013) Open source technology in intra-organisational

software development–private markets or local libraries. In: Ericsson Lundstrom J, Wiberg M,

Hrastinski S, Edenius M, Ågerfalk PJ (eds) Managing open innovation technologies. Springer,

Berlin

Melian C, Mähring M (2008) Lost and gained in translation: adoption of open source software

development at Hewlett-Packard. In: Russo B, Damiani E, Hissam S, Lundell B, Succi G (eds)

Open source development, communities and quality. Springer, New York

Morgan L, Feller J, Finnegan P (2011) Exploring inner source as a form of intra-organisational

open innovation. In: Proceedings European conference on information systems

Oručević-Alagić A, Höst M (2010) A case study on the transformation from proprietary to open

source software. In: Boldyreff C, González-Barahona JM, Madey GR, Noll J,Ågerfalk PJ (eds)
Open source software: new horizons. Springer, Boston

Riehle D, Ellenberger J, Menahem T, Mikhailovski B, Natchetoi Y, Naveh B, Odenwald T (2009)

Open collaboration within corporations using software forges. IEEE Softw 26(2):52–58

Stol K, Babar MA (2010) Challenges in using open source software in product development: a

review of the literature. 3rd workshop on emerging trends in FLOSS research and develop-

ment, co-located with international conference on software engineering, pp 17–22

Stol K, Babar MA, Avgeriou P, Fitzgerald B (2011) A comparative study of challenges in

integrating open source software and inner source software. Inf Softw Technol 53(12):1319–

1336

Stol K, Avgeriou P, Babar MA, Lucas Y, Fitzgerald B (2014) Key factors for adopting inner

source. ACM Trans Softw Eng Methodol 23(2)

Van der Linden F (2009) Applying open source software principles in product lines. Upgrade 10

(2):32–41

Van der Linden F, Lundell B, Marttiin P (2009) Commodification of industrial software: the case

for open source. IEEE Softw 26(4):77–83

Vitharana P, King J, Chapman HS (2010) Impact of internal open source development on reuse:

participatory reuse in action. J Manage Inf Syst 27(2):277–304

Wesselius J (2008) The bazaar inside the cathedral: business models for internal markets. IEEE

Softw 25(3):60–66

Biography Martin Höst is a Professor in Software Engineering at Lund University,

Sweden. He received an M.Sc. degree from Lund University in 1992 and a Ph.D.

degree in Software Engineering from the same university in 1999. His main

368 M. Höst et al.

http://lua-users.org/lists/lua-l/2008-06/msg00407.html


research interests include software process improvement, software quality, risk

analysis, and empirical software engineering.

Klaas-Jan Stol is a researcher with Lero—the Irish Software Engineering Research

Centre. He holds a PhD in software engineering from the University of Limerick.

His research interests include contemporary software development methods and

strategies, including Inner Source, Open Source, crowdsourcing, and agile and lean

methods, as well as research methodology and theory building in software engi-

neering. In a previous role, he was a contributor to an Open Source project.

Alma Oručević-Alagić is a Ph.D. student at Lund University, Sweden. She received

an M.Sc. degree in Software Engineering from the University of St. Thomas,

St. Paul, Minnesota in 2002, and a Technical Licentiate degree in 2013 from

Lund University. Her research interests include Open Source, Inner Source, and

Network Analysis of software development communities.

14 Inner Source Project Management 369


	Chapter 14: Inner Source Project Management
	14.1 Introduction
	14.2 Inner Source
	14.2.1 Positioning Inner Source as a Strategy
	14.2.2 Motivations and Benefits of Inner Source
	14.2.3 Inner Source Adoption Models
	14.2.3.1 Infrastructure-Based Model
	14.2.3.2 Project-Specific Model
	14.2.3.3 Comparison of Inner Source Models

	14.2.4 Inner Source Project Management

	14.3 A Framework for Understanding Project Management in Inner Source
	14.3.1 Process Management
	14.3.2 Project Planning
	14.3.3 Monitoring and Taking Actions
	14.3.4 Human Issues
	14.3.5 Summary

	14.4 Case Studies
	14.4.1 A Case Study of Inner Source Alignment
	14.4.1.1 Process Management
	14.4.1.2 Project Planning
	14.4.1.3 Monitoring and Taking Actions
	14.4.1.4 Human Issues
	14.4.1.5 Conclusion

	14.4.2 A Case Study of Project-Specific Inner Source
	14.4.2.1 Process Management
	14.4.2.2 Project Planning
	14.4.2.3 Monitoring and Taking Actions
	14.4.2.4 Human Issues


	14.5 Discussion and Future Work
	14.5.1 Future Work

	References


