
Chapter 11

Agile Project Management

Tore Dybå, Torgeir Dingsøyr, and Nils Brede Moe

Abstract Agile software development represents a new approach for planning and

managing software projects. It puts less emphasis on up-front plans and strict

control and relies more on informal collaboration, coordination, and learning.

This chapter provides a characterization and definition of agile project management

based on extensive studies of industrial projects. It explains the circumstances

behind the change from traditional management with its focus on direct supervision

and standardization of work processes, to the newer, agile focus on self-managing

teams, including its opportunities and benefits, but also its complexity and chal-

lenges. The main contribution of the chapter is the four principles of agile project

management: minimum critical specification, autonomous teams, redundancy, and

feedback and learning.

11.1 Introduction

A software project can be seen as a collection of activities that create an identifiable

outcome of value. In its simplest form, project management consists of planning,

executing, and monitoring these activities (see Chap. 1). However, the high costs

and failure rates of software projects continue to engage researchers and practi-

tioners, and despite several advances, the effective management of software pro-

jects is still a critical challenge.

This challenge has led to extensive interest in agile software development in the

past decade (Dingsøyr et al. 2012). A number of methods have emerged that

describe practices for development phases at the team, project, and organizational

T. Dybå (*) • T. Dingsøyr • N.B. Moe

SINTEF, Trondheim, Norway

e-mail: tore.dyba@sintef.no; torgeird@sintef.no; nilsm@sintef.no

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_11, © Springer-Verlag Berlin Heidelberg 2014

277

http://dx.doi.org/10.1007/978-3-642-55035-5_1
mailto:tore.dyba@sintef.no
mailto:torgeird@sintef.no
mailto:nilsm@sintef.no


levels (Abramson et al. 2010). Scrum is the method that most clearly addresses

software project management (Schwaber and Beedle 2001).

In agile software development, developers work in teams with customers that

represent the system’s users. The features to be implemented in each development

cycle are jointly decided by the customer and the rest of the development team.

Augustine et al. (2005) describes the role of the software project manager as one of

facilitating and working with a team in making project-related decisions.

Our objective in this chapter is to provide software project managers with a set of

principles for handling the complexity and uncertainty inherent in agile software

projects. The rest of this chapter is organized as follows: Sect. 11.2 describes

challenges and recent developments in software project management. Section 11.3

explains the role of self-managing software teams, while Sect. 11.4 discusses the

leadership of such teams. Section 11.5 describes the importance of feedback and

learning. Finally, Sect. 11.6 presents a set of principles for agile project manage-

ment, while Sect. 11.7 concludes the chapter.

11.2 Software Project Management

Managing the unique and complex processes that constitute a project involves the

implementation of specific management activities. In software development, as in

most other businesses, there has been a tendency toward standardizing these

activities by means of formalized, generic project management methodologies

like, PRINCE2,1 which was developed and championed by the UK government.

Although there is a global conception of the project management phenomenon,

there is no unified theory of project management (Garel 2013) or well-defined

measures of project success (see Chaps. 2 and 5).

11.2.1 Traditional Project Management

Traditional project management largely derives from the linear structure and

discrete, mechanical views of the systems engineering and quality disciplines of

the 1950s and 1960s. Basically, traditional project management views development

as a linear sequence of well-defined activities such as requirements, design, coding,

and testing. It assumes that you have almost perfect information about the project’s

goal and expected solution. As a consequence, it does not easily accommodate for

deviations in scope, schedule, or resources.

Hardware development seemed to fit well into the traditional approach. How-

ever, due to its intangible nature, software was not equally well understood and, as a

1www.prince-officialsite.com

278 T. Dybå et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_2
http://dx.doi.org/10.1007/978-3-642-55035-5_5
http://www.prince-officialsite.com/


consequence, software development did not fit well into the same approach. To

counter this, the term “software engineering” was coined at the historic NATO

conference in Garmisch-Partenkirchen in 1968 as a solution to these problems in

software development, implying the need for software development to be based on

the principles and practices seen in engineering.

Thus, the point of departure for most of the subsequent efforts in addressing the

problems in software development has been to treat the entire task of software

development as a process that can be managed through engineering methods. Hoare

(1984), for example, considered the “rise of engineering” and the use of “mathe-

matical proof” in software development as a promise to “transform the arcane and

error-prone craft of computer programming to meet the highest standards of a

modern engineering profession.” Likewise, Lehman (1989) focused on reducing

uncertainty in the development process through the “engineering of software.”

Humphrey (1989) recognized that the key problems in software development are

not technological, but managerial in nature (see also Chap. 1). Consequently, he

developed a framework for managing and improving the software process, which

was later known as “The Capability Maturity Model for Software” (CMM). Con-

sistent with the views of software engineering, the CMM, and its successor CMMI,

is rooted in the engineering tradition, emphasizing predictability and improvement

through the use of statistical process control. Humphrey (1989) formulated his

fundamental view in this way: “If the process is not under statistical control,

sustained progress is not possible until it is.”

As these examples from some of the most influential academic leaders within the

software community show, software development and software project manage-

ment are strongly rooted in the rationalistic traditions of engineering. Indeed, most

of the writings to date can be seen to have antecedents in the industrial models

devised by Frederic Winslow Taylor and Henry Ford, and also in the model of

bureaucracy described by Max Weber.

Contemporary project management methodologies, like PRINCE2, are stan-

dardized, process-driven project management methodologies, which build on this

engineering tradition and that contrast with reactive and adaptive methods such as

Scrum. What many seem to forget, is that the acronym PRINCE stands for “PRoject

IN Controlled Environment.” It should not come as a surprise then that it does not fit

equally well within the environment in which many, if not most, software projects

operate.

11.2.2 Challenges of Software Project Management

Although there are several challenges with traditional project management princi-

ples, two are especially important for the management of software projects: com-

plexity and uncertainty. Project complexity means that the many different actions

and states of the software project and its environmental parameters interact, so the

effects of actions are difficult to assess (Pich et al. 2002). In complex software

11 Agile Project Management 279

http://dx.doi.org/10.1007/978-3-642-55035-5_1


projects, an adequate representation of all the technological, organizational, and

environmental states that might have a significant influence on the project’s out-

come of value, or of the causal relationships, is simply beyond the capabilities of

the project team.

Most of the classic problems of developing software derive from this essential

complexity and its exponential increase with size; for example, it is estimated that

for every 25 % increase in problem complexity, there is a 100 % increase in

complexity of the software solution (Woodfield 1979). A further challenge is that

the information needed to understand most software problems depends upon one’s

idea for solving them. The kind of problems that software projects deal with tend to

be unique and difficult to formulate and solutions tend to evolve continually as

developers gain a greater appreciation of what must be solved (Nerur and

Balijepally 2007).

Adding to the complexity of the problem and its solution is the fast-changing and

highly uncertain environment, for example, market turbulence and changes in

customer requirements and project goals. It is necessary therefore to accept that

our assumptions and predictions about future events will, by nature, be uncertain.

When managing software projects, we need to be extremely cautious of extrapo-

lating past trends or relying too heavily on past experience. Trends peter out, and

the future is full of unexpected developments as well as unpredictable human

behavior. The greater the uncertainty inherent in a project, the more the team

have to move from traditional approaches that are based on a fixed sequence of

activities to approaches that allow to redefine the activities—or even the structure

of the project plan—in midcourse (De Meyer et al. 2002). Therefore, as the project

complexity and uncertainty increase, managers need to go beyond traditional risk

management; adopting roles and techniques oriented less toward planning and more

toward flexibility and learning.

11.2.3 From Traditional to Agile Project Management

The position taken in this chapter regarding software project management is

strongly influenced by socio-technical theory (Trist 1981). Its central conception

is that organizations are both social and technical systems, and that the core of the

software organization is represented through the interface between the technical

and human (social) system. From an engineering perspective, however, the world is

composed of problems whose existence is distinct from the methods, tools, and

practices of software development. The technical rationality behind this worldview

emphasizes “objective truths” and global “best practices” at the expense of local

context and expertise. An important aspect of socio-technical theory, however, is

the belief that there may be many optimal solutions—or best ways—to a specific

problem, since the “joint optimization” of a particular technical and human system

can be implemented in several ways that can be equally efficient. We therefore

280 T. Dybå et al.



reject the assumption that complexity, uncertainty, and change can be controlled

through a high degree of formalization

At its core, agile project management is about managing the impact of com-

plexity and uncertainty on a project, recognizing

• The need for a dramatically shorter time frame between planning and execution

• That planning an action does not provide all the details of its implementation

• That creativity and learning are necessary to make sense of the environment

Agile project management is based on the same principles found in the Agile

Manifesto.2

Therefore, unlike the linear sequence of well-defined activities of traditional

project management, agile project management is characterized by short cycles of

iterative and incremental delivery of product features and continuous integration of

code changes. Agile project management introduces changes in management roles

as well as in practices. Scrum, for example, defines three roles in software projects:

development team members, a facilitator, and a product owner. A typical work

environment for an agile team is shown in Fig. 11.1.

The task of the facilitator is to organize meetings of the development team and to

make sure that the team addresses any obstacles they encounter. The task of the

product owner is to prioritize what is to be developed. Apart from that, the team

should be self-managed. In practice, however, many companies also appoint a

project manager to assist a product owner in working on requirements and to handle

other matters than those directly related to software development, such as internal

and external reporting.

Fig. 11.1 The work environment of an agile development team

2 http://agilemanifesto.org/

11 Agile Project Management 281

http://agilemanifesto.org/


However, the introduction of agile development does not change the fundamen-

tal knowledge required to develop software, but it does change the nature of

collaboration, coordination, and communication in software projects. Moving

from traditional to agile project management implies a shift in focus from extensive

up-front planning to the crucial decisions that are made during the execution of the

project. Most importantly, moving from traditional to agile development implies

dealing with complexity and unpredictability by relying on people and their crea-

tivity rather than on standard processes (Dybå 2000; Conboy et al. 2011), and thus

moving from command and control to shared decision-making and self-

management in software teams.

11.3 Self-Managing Software Teams

Teams are the fundamental organizational unit through which software projects are

executed. A team structure brings business and process knowledge together with

design and programming skills. However, three challenges characterize the effec-

tiveness of software teams (Faraj and Sambamurthy 2006). First, the expertise

required for the completion of software tasks is distributed across team members

who must find effective ways of collaboration, knowledge sharing, and problem

solving. Second, software projects need a combination of formal and informal

modes of control with appropriate expertise in knowing how to exercise the

appropriate combinations of control strategies during the execution of the project.

Finally, software projects are characterized by varying levels of task uncertainty

and coordination challenges. As a result, the software teams must be capable of

dealing with the resulting ambiguity of their project tasks.

In accordance with contemporary perspectives, we conceptualize the software

team as embedded in a multilevel system of individual-, team-, and organizational-

level aspects (Kozlowski and Ilgen 2006; Moe et al. 2009). This conceptualization

is important in our effort to make actionable recommendations on agile software

management.

With the introduction of agile software development, self-managing software

teams have become widely recommended. While organizing software development

in self-managing teams has many advantages such as increased productivity,

innovation, and employee satisfaction, it is not enough to put individuals together

and expect that they will automatically know how to work effectively in such

teams. Succeeding with managing agile teams requires a full understanding of

how to create and maintain self-managing teams.

One can argue that leading self-managing teams is more challenging than

leading traditional teams, because the project manager needs to enable shared

leadership (the opposite of centralized leadership), shared decision-making, shared

mental models, and a constant learning and improvement process. This takes time.

What makes the leadership of such teams even more difficult is the fact that

software development teams are typically formed anew for each project, depending

282 T. Dybå et al.



on project requirements and who is available (Constantine 1993). It is extremely

rare for an entire team to move from one project to another.

Self-managing teams are also known as autonomous or empowered teams.

While self-managing teams represent a radically new approach to planning and

managing software projects, the notion of self-management is not new; research in

this area has been conducted since Eric Trist and Ken Bamforth’s study of self-

regulated coal miners in the 1950s (Trist and Bamforth 1951).

Self-management can be understood as a strategy for learning and improving a

software team itself since it can directly influence team effectiveness, improvement

work, and innovation. Self-management has also been found to result in more

satisfied employees, lower turnover, and lower absenteeism (Cohen and Bailey

1997). Others also claim that self-managing teams are a prerequisite to the success

of innovative projects (Takeuchi and Nonaka 1986), especially the innovative

software projects (Hoegl and Parboteeah 2006). Furthermore, having team mem-

bers cross-trained to do various jobs increases functional redundancy, and thus the

flexibility of the team in dealing with personnel shortages. Even though there are

several studies on the benefits of self-managing teams, there is substantial variance

in research findings regarding the consequences of such teams on such measures as

productivity, turnover, and attitudes (Guzzo and Dickson 1996).

Self-managing teams offer potential advantages over traditionally managed

teams because they bring decision-making authority to the level of operational

problems and uncertainties and thus increase the speed and accuracy of problem

solving. Companies have implemented such teams to reduce costs and to improve

productivity and quality. However, effective self-managing units cannot be created

simply by exhorting democratic ideals, by tearing down organizational hierarchies,

or by instituting one-person-one-vote decision-making processes (Hackman 1986).

Hackman identified five general conditions that appear to foster and support self-

management:

• Clear, engaging direction

• An enabling performing unit structure

• A supportive organizational context

• Available, expert coaching

• Adequate resources

To succeed with creating and maintain a self-managing agile team, the project

manager must enable all these conditions.

Understanding the different levels of autonomy is also important for being able

to succeed as an agile project manager. An agile team needs autonomy on both the

team and the individual levels (Moe et al. 2008). The project manager must ensure

that

• The team has authority to define work strategies and processes, project goals,

and resource allocation

• All team members jointly share decision authority (what group tasks to perform

and how to carry them out)

• A team member must have some freedom in carrying out the assigned task

11 Agile Project Management 283



The conflict between individual and team autonomy is one main reason why it is

challenging to establish well-functioning agile teams. If individuals are indepen-

dent and mostly focus on their own schedule and implementation of their own tasks,

there will be less interaction between the group members, which will threaten the

teamwork effectiveness. However the self-managing team may end up controlling

group members more rigidly than they do under traditional management styles,

which will reduce the motivation for the individual team member. The question is

then: How can an agile project manager balance team level autonomy and individ-

ual level autonomy in agile software teams? This is especially challenging when

development is done in market-driven agile projects with fixed scope and deadlines.

11.4 Team Leadership

Most models of team effectiveness recognize the critical role of team leadership.

However, examining the extensive literature on leadership theories is beyond the

scope of this chapter. Still, a relatively neglected issue in the current literature is

what leaders should actually be doing to enhance team effectiveness (Kozlowski

and Bell 2003). Many leadership theories focus on leading individuals rather than

leading in a team context. In this section, we examine the functional role of team

leaders and discuss leadership and decision-making in the context of self-managing

teams. A recent focus group study on agile practitioners shows that planning,

shielding the team from interruptions, agreeing on a work process, ensuring ade-

quate resources, and setting up a working technical infrastructure are seen as

important aspects of team leadership (Dingsøyr and Lindsjørn 2013).

In a self-managing team, members have responsibility not only for executing the

task but also for monitoring, managing, and improving their own performance

(Hackman 1986). Furthermore, leadership in such teams should be diffused rather

than centralized (Morgan 2006). Shared leadership can be seen as a manifestation

of fully developed empowerment of a team (Kirkman and Rosen 1999). When the

team and the team leaders share the leadership, it is transferred to the person with

the key knowledge, skills, and abilities related to the specific issues facing the team

at any given moment (Pearce 2004). While the project manager maintains the

leadership for project management duties, the team members lead when they

possess the knowledge that needs to be shared during different phases of the project

(Hewitt and Walz 2005).

11.4.1 Shared Decision Making

Product- and project-level decisions in a software company can be considered at the

strategic, tactical, and operational levels (Aurum et al. 2006). In traditional devel-

opment decision-making is governed by the hierarchical command and control

284 T. Dybå et al.



structure, while in agile development team empowerment and shared decision-

making is encouraged at all levels (Fig. 11.2). In most organizations, you will

find a mixture of these two ways of making decisions. In an agile product company,

strategic decisions are primarily related to product and release plans, which may

require creativity and opportunistic inputs, and should be based on an accurate

understanding of the current business process and a detailed knowledge of the

software product. Tactical decisions in such companies involve the project man-

agement view, where the aim is to determine the best way to implement strategic

decisions, that is, to allocate the resources. On the other hand, operational decisions

in an agile company are about implementation of product features and the process

of assuring that specific tasks are carried out effectively and efficiently (Moe

et al. 2012).

Adaptability is essential in agile teams since strategic decisions are made

incrementally while important tactical and operational decisions are delayed as

much as possible, in order to allow for a more flexible response to last minute

feedback from the market place. Because the self-managing team is responsible for

solving operational problems and uncertainties, this increases the speed and accu-

racy of problem solving, which is essential when developing software.

While there are several benefits with shared decision-making in agile teams,

there also exist some challenges. First, the shared decision-making approach, which

involves stakeholders with diverse backgrounds and goals, is more problematic

than the traditional approach where the project manager is responsible for most of

the decisions (Nerur et al. 2005). Also, despite the benefits of shared decision-

making, cohesion has been indicated as a source of ineffective or dysfunctional

decision-making; perhaps the most noted problem associated with team cohesion is

groupthink. Finally, it is important to understand that not every decision must be

made jointly with equal involvement by every team member, rather the team can

also delegate authority to individuals or subgroups within the team. The challenge

is to understand which team member is supposed to be involved in which decisions.

In agile software development, one important forum for shared decision-making

is the standup meeting because it is about coordinating and planning the daily work.

St
ra

te
gi
c

D
es

ic
io

ns

O
pe

ra
tio

na
l

D
ec

isi
on

s
Te

ch
ni

ca
l

D
ec

isi
on

s

Team 

Management/
Product owner

Traditional Agile

St
ra

te
gi
c

D
es

ic
io

ns

O
pe

ra
tio

na
l

D
ec

isi
on

s
Te

ch
ni

ca
l

D
ec

isi
on

s

Fig. 11.2 Traditional and agile models of decision-making (Moe et al. 2012)

11 Agile Project Management 285



The meeting is supposed to be short, and the purpose of the meeting is to improve

communication, highlight and promote quick decision-making, and identify and

remove impediments.

The daily meeting is a place where the agile software team members use their

experience to make decisions in a complex, dynamic, and real-time environment.

To understand the effect of decision making in such a complex environment with

time pressure, the theory of naturalistic decision making (NDM) (Meso et al. 2002)

is useful. NDM postulates that experts can make good decisions under difficult

conditions, such as time pressure, uncertainty, and vague goals, without having to

perform extensive analyses and compare options. The experts are able to do so by

employing their experience to recognize problems that they have previously

encountered and for which they already developed solutions. Experts use their

experience to form mental simulations of the problem currently being encountered

and use these simulations to suggest appropriate solutions.

There are certain implications of viewing daily meetings as an NDM process.

First, the agile project manager needs to make sure that employees are trained to

develop domain-specific expertise and collaborative teamwork skills. Second,

because NDM relies on highly trained experts, the agile project manager needs to

make sure the team consists of experts, not novices. If there are novices in the team,

the agile project manager needs to determine how to move the novices through the

stages until they become experts. Third, to make teams perform effective decision-

making processes in such meetings, the project manager needs to make sure the

team members have developed a shared mental model; that is, they must have a

shared understanding of who is responsible for what and of the information and

requirements needed to solve the tasks (Lipshitz et al. 2001).

11.4.2 Escalation of Commitment

One major source of error in decision-making is escalation of commitment (Stray

et al. 2012). Escalating situations happen when decision-makers allocate resources

to a failing course of action (Staw 1976). It is a general phenomenon that is

particularly common in software projects due to their complex and uncertain

nature. Keil et al. (2000), for example, found that 30–40 % of all software projects

experience escalation of commitment.

Several studies have shown that decision-makers tend to invest additional

resources in an attempt to justify their previous investments (Bazerman

et al. 1984). Because groups have the capacity of employing multiple perspectives

when making decisions, one might believe that escalating commitment situations

should occur less frequently in agile teams than in traditional teams. However,

several studies show that when having group decision-making, escalating tenden-

cies will occur more often and will be more severe than in individual decision-

making due to group polarization and conformity pressures (Whyte 1993).

286 T. Dybå et al.



To avoid situations of escalating commitment in agile projects, it is important to

make sure that the team meetings do not become a place for defending decisions

(Stray et al. 2012). Not only do the teams need to watch their internal process, they

also need to consider which non-team members are allowed to participate or

observe the team meetings. If team members start to defend their decisions or

give detailed reports of what they have done because people outside the team are

present in, for example, the daily meetings, we advise that these people outside the

team do not participate on a regular basis.

Early signs of escalation in, for example, the daily meeting such as rationalizing

continuation of a chosen course of action, and when team members start giving

detailed and technical descriptions of what they have done since last meeting, must

be taken seriously. Further, when the team becomes aware of the signs of escalating

commitment, this needs to be addressed in the retrospective meetings (see next

section).

11.5 Feedback and Learning

Agile software development is a type of knowledge work (see Chap. 7) where

feedback and learning is particularly important. In order to adapt to changes in

technology and customer requirements and to reduce the risk in development, agile

development methods rely on frequent feedback loops both within the development

team and with external stakeholders. The focus on having a “shippable product”

leads to feedback on technical problems, and the demonstration of the product at the

end of iterations leads to feedback on the developed functionality. The feedback

represents opportunities for learning, which can lead to changes in product and

personal skills, as well as changes in the development process.

With the focus in agile development on “working software” and “individuals and

interactions,” knowledge is managed in a very different manner than in traditional

software development. Traditional development has often focused on managing

explicit knowledge in the form of written lessons learned in knowledge repositories

and documented procedures in electronic process guides (see Chap. 7). Agile

methods focus on managing knowledge orally, which means that dialogue is the

main method of transfer (Bjørnson and Dingsøyr 2008). Von Krogh et al. write that

“it is quite ironic that while executives and knowledge officers persist in focusing

on expensive information-technology systems, quantifiable databases, and mea-

surement tools, one of the best means for knowledge sharing and creating knowl-

edge already exists within their companies. We cannot emphasize enough the

important part conversations play” (von Krogh et al. 2000).

A well-known theory of learning that focuses on feedback is Argyris and

Schön’s theory of single- and double-loop learning (Argyris and Schön 1996).

Double-loop learning is distinguished from single-loop learning in that it concerns

the underlying values. If an agile team repeatedly changes practices without solving

their problems, this is a sign that they have not understood the underlying causes of

11 Agile Project Management 287

http://dx.doi.org/10.1007/978-3-642-55035-5_7
http://dx.doi.org/10.1007/978-3-642-55035-5_7


their problem and is practicing single-looped learning. Lynn et al. (1999) argue that

learning has a direct impact on cycle time and product success, and have identified

two factors that are central for learning: capturing knowledge, and a change in

behavior based on the captured knowledge. Practices that must be in place for this

to happen are, among others, recording and reviewing information, have goal

clarity, goal stability, and vision support.

There are, however, often challenges in agile teams to make use of opportunities

for learning. A study by Stray et al. (2011) reports that many teams spend little time

reflecting on how to improve how they work and they do not discuss obvious

problems. Some of the teams that carry out regular retrospective meetings struggle

to convert their analysis into changes in action. Among those who try to remedy

identified problems actively, several give up after seeing little change.

Learning is challenging but crucial. A stream of research has established that

teams who have shared mental models about product, tasks, and process work more

effectively. Further, developing overlapping knowledge, sometimes referred to as

knowledge redundancy, is critical in turbulent environments where people need to

work on tasks assigned by priority rather than competence of team members. In the

following, we discuss some of the main arenas for feedback and learning in agile

development: the project kick-off and retrospectives after iteration and release.

11.5.1 Agile Project Kick off

Kick-off is one of the most used tools of project management (Besner and Hobbs

2008). Typical activities in a kick-off meeting are describing a vision for the

project, establishing roles, project stakeholders, and planning the project. A vision

or overall goals of the project will usually be defined by the customer, what is

referred to as the product owner in Scrum. Further, in agile methods, the team is

seen as a self-managing team, with one person facilitating the work of the team.

Thus, the only internal roles are the team facilitator and team members. However,

companies often also appoint a project manager, especially in multi team projects.

The project stakeholders are usually represented by one product owner, but can also

be other people from the customer who have an interest in the product to be

developed, or other development projects, for example, when sharing a common

technical infrastructure. A picture from a project kick-off is shown in Fig. 11.3.

As for planning the project, one important decision is the duration of an iteration.

If there are frequent changes in customer requirements or technology, this calls for

shorter iterations, while a more stable environment calls for longer iterations.

Normally an agile team will make a rough plan for several iterations and a detailed

plan for the next one. The detailed plan can be made at the kick-off by making a

product owner give priorities to the set of features that is to be developed. The

features are estimated, for example, using the technique planning poker, which

facilitates a discussion between team members on what tasks must be performed to

develop a feature. The team then commits to what they will be able to deliver in the

288 T. Dybå et al.



first iteration. The “plan” for the team is then a list of prioritized features, and who

is to perform the tasks of developing the features is decided on during the iteration.

What is important in the kick-off meeting to enable feedback and learning? From

studies of shared mental models, we know that teams need to establish shared

knowledge on a number of areas to function effectively. Shared mental models

comprise knowledge of the tasks, technology, team members’ skills, and interac-

tions. The planning poker technique is one way to improve shared mental models.

Estimation discussions can provide knowledge of tasks at hand, the technology

used in development, as well as demonstrating team member skills (Fægri 2010).

Planning poker is carried out as follows: Every individual is given a set of

playing cards with values loosely in a Fibonacci sequence, usually 0, 1, 2, 3, 5, 8,

13, 20, 40, and 1. For each task, individuals decide on a card that represents the

amount of work; this can be in number of hours or relative to a standard task. All

team members show their cards, and the person with the highest and lowest

estimates is asked to explain their reasoning. The process is repeated until consen-

sus, or if consensus is unlikely a number is set based on majority vote or average of

votes. If there is much divergence, it might also be necessary to decompose a task

into smaller tasks that are easier to estimate. See Chap. 3 for a further discussion of

estimation, and there are also some studies available on the use of planning poker as

an estimation technique (Molokken-Ostvold et al. 2008).

Finally, that everyone has a clear image of team interaction is accomplished by

having clear work processes. Agile methods are simple and easy to remember,

which makes it easy to function as a shared mental model.

Fig. 11.3 Project kick off with development team, team facilitator, and customer responsible

11 Agile Project Management 289

http://dx.doi.org/10.1007/978-3-642-55035-5_3


11.5.2 The Retrospective

A retrospective (or postmortem review (Birk et al. 2002) or post-iteration workshop

(Outi 2006)) is a collective learning activity after an iteration or release (Dingsøyr

2005). The main motivation is to reflect on what happened in order to improve

future practice—for the individuals that have participated in the project and possi-

bly also for the organization as a whole.

Researchers in organizational learning use the term “reflective practice”

(Dybå et al. 2014), which is “the practice of periodically stepping back to ponder

on the meaning to self and others in one’s immediate environment about what has

recently transpired. It illuminates what has been experienced by both self and

others, providing a basis for future action” (Raelin 2001). This involves uncovering

and making explicit results of plans, observation, and achieved practice. It can lead

to understanding of experience that has been overlooked in practice. Kerth argues

that a retrospective can help members of a community to understand the need for

improvement and motivate them to change. The retrospective helps the community

to become “master of its software process” (Kerth 2001). In addition, retrospectives

are claimed to foster learning, growth, and participant maturity, and provides an

opportunity to celebrate success. Derby and Larsen further suggest that retrospec-

tives lead to improved productivity, capability, quality, and capacity; the purpose is

“whole-team learning” (Derby and Larsen 2006).

A typical agile retrospective will be conducted with activities to gather data,

generate insight, and make decisions (ibid). To gather data, exercises such as

plotting important events on a timeline or just brainstorming on “what went well”

and “what could be improved” are typical. Insights are generated by analysis of the

material, through use of fishbone diagrams, structuring of data and prioritization

(see Fig. 11.4). Decisions about changes are made on this basis and are planned as

tasks in the next iteration.

Although retrospectives today is a very common practice, there has been little

research on this topic. Most works concentrate on describing approaches to conduct

retrospectives, with little focus on the effects. However, in a survey on essential

practices in research and development companies, “learning from post-project

audits” were found to be one of the most promising practices to yield competitive

advantage (Menke 1997).

Kransdorff (1996) criticizes postmortems because people participating do not

have an accurate memory, which can lead to disputes. He suggests collecting data

during the project, for example, through short interviews, in an effort to get more

objective material.

290 T. Dybå et al.



11.5.3 Visualizing Project Status

Many teams use visual boards, kanbans,3 or “information radiators” as a central

element for collaboration, coordination, and communication (Sharp and Robinson

2010). A board usually displays tasks on cards, and the placement of cards on a

board shows their status. Teams have found that such boards make meetings

efficient. Participants point at cards on the board to show what team members

work on, and the board shows progress in the project.

Physical artifacts are easy to refer to, easy to annotate, and hard to ignore (Sharp

et al. 2006). A physical board makes it easier to limit the amount of information

unlike an electronic system, which is often the alternative. Such boards can help

giving teams a shared mental model of the project status, importance of tasks, and

how ready the product is for delivery.

A visual board can be set up quickly by placing a board in a relevant location,

deciding on how to organize the board, and supplying cards to put on the board.

Find a location, which is visible both for the development team and for others who

have interest in the work of the team. The board could be placed with other visual

information the team is using, for example, a burndown4 chart, which shows the

remaining work in this phase.

The board should show important information about status and progress of the

work of the team. This can be done by dividing the board into relevant phases that

Fig. 11.4 A retrospective in a development team with a group of developers structuring the results

of a brainstorming session

3A kanban is a visual card system for organizing production according to demand, central in lean

production.
4 A burndown chart shows the estimated remaining work in an iteration, and is updated daily when

teams use the Scrum development process.

11 Agile Project Management 291



work tasks go through. Typical phases include “to do,” “analysis,” “development,”

“review,” “integration test,” and “ready for deployment test,” as shown in Fig. 11.5.

If your team has particular problems, for example, if it is unclear for developers

whether a task is completed or not, you can add a phase for checking that either

another developer or an external person agrees that the task is completed. Some also

choose to mark problems in the project either through putting tasks in an area for

problems or by marking tasks with a different color.

Physical artifacts like the card represent tokens of responsibility, and moving

artifacts have been found to give more insight than electronic manipulation tools

(Sharp et al. 2006), which is the alternative many teams use. A visual board makes it

easy to discover common problems in a project like: tasks do not get completed,

important tasks are not done, and if too many tasks are started at the same time.

11.6 Principles of Agile Project Management

A fundamental property of software is its nonphysical form; software code is

essentially a large set of abstract instructions possessing unlimited complexity,

flexibility, and revisability. Software exhibits nonlinear behavior and does not

Fig. 11.5 Example visual board with areas for tasks “todo,” “analysis,” “development,” “review,”

“integration test,” and “ready for deployment test”

292 T. Dybå et al.



conform to laws of nature. One consequence is that it is inherently hard to build

models of software that allow accurate reasoning about the system’s qualities

(Fægri et al. 2010). Agile project management addresses these basic properties of

software and breaks away from the linear sequence of well-defined activities of

traditional project management. It shifts focus from up-front planning to execution.

In doing so, agile project management moves from traditional command and

control structures to shared decision-making, self-management, and learning in

software teams to deal with the complexity and unpredictability of the problem-

solving activities of software projects.

Based on our extensive experience and studies of a multitude of agile projects

during the last decade (Moe et al. 2009, 2010; Moe et al. 2012; Dybå and Dingsøyr

2008; Šmite et al. 2010; Dingøyr et al. 2012; Dingsøyr et al. 2010; Dybå 2011), we

offer the following set of socio-technical principles of agile project management

(see Table 11.1).

11.6.1 Minimum Critical Specification

This principle has two aspects; the first is that no more should be specified than is

absolutely essential; the second requires that the team identify what is critical to

overall success. This means that the system requirements should be precise about

what has to be done, but not about how to do it, and that the use of rules, standards,

and predefined procedures is kept to an absolute minimum. Focus should be on the

larger system requirements and boundary conditions, leaving as many design

decisions as possible to those closest to the work.

Understanding “the problem” that the system is intended to address is one of the

keys to project success. Therefore, this principle is oriented toward the analysis and

problem understanding that will help the project’s stakeholders to focus on the

nature of the overall problems and issues and come to some agreement about what

these really are. It will also help the software team to understand the problems—

rather than what they perceive as being the “problem”—the system is supposed to

solve.

Table 11.1 Principles of agile project management

Minimum critical

specification

No more should be specified than is absolutely essential and critical to

overall success

Autonomous teams Autonomous teams are responsible for managing and monitoring their

own processes and executing tasks

Redundancy Team members should be skilled in more than one function

Feedback and learning Feedback and learning are integral to project execution and the project’s

interaction with the environment

11 Agile Project Management 293



Additionally, complex and turbulent environments require software projects to

be highly adaptable. Thus, specifying more than is needed closes options that

should be kept open for as long as possible.

Successfully dealing with this principle requires that the project establishes

shared mental models about the problem and its solution, as well as about tasks,

technology, team member skills, and interactions. The project’s kick-off meeting is

crucial for achieving this.

11.6.2 Autonomous Team

This principle is based on the premise that autonomous, or self-managing, teams are

a prerequisite for the success of innovative software projects. Such teams offer

potential advantages over traditionally managed teams because they bring decision-

making authority to the level of operational problems and uncertainties and thus

increase the speed and accuracy of problem solving.

Members of autonomous teams are responsible for managing and monitoring

their own processes and executing tasks. They typically share decision authority

jointly, rather than having a centralized decision structure where one person makes

all the decisions or a decentralized decision structure where team members make

independent decisions.

However, there are important individual and organizational barriers and chal-

lenges to successfully applying autonomous teams in software development (Moe

et al. 2009). Misalignment between team structure and organizational structure can

be counterproductive, and attempts to implement autonomous teams can cause

frustration for both developers and management. Shared resources, organizational

control, and specialist culture are the most important barriers that need to be

effectively dealt with in order to succeed.

Furthermore, autonomy at the team level may conflict with autonomy at the

individual level; when a project as a whole is given a great deal of autonomy, it does

not follow that the individual team members are given high levels of individual

autonomy. It is a danger, therefore, that the self-managing team may end up

controlling team members more rigidly than they do under traditional management

styles. Thus, it is imperative to ensure that individual developers have sufficient

control over their own work and over the scheduling and implementation of their

own tasks.

For autonomous teams to thrive, it is thus necessary to build trust and commit-

ment in the whole organization, avoiding any controls that would impair creativity

and spontaneity. The team’s need for continuous learning, not the company’s need

for control, should be in focus. So, make sure that both the organization and the

teams know and respect the project’s objective.

294 T. Dybå et al.



11.6.3 Redundancy

This principle is concerned with the overlap in individuals’ knowledge and skills in

order to create common references for people’s creation of new knowledge; as the

level of redundancy increases within the team, individuals will find it easier to share

new knowledge and the project will be able to coordinate its work more effectively

Therefore, this principle implies that each member of the team should be skilled in

more than one function so that the project becomes more flexible and adaptive,

which allows a function to be performed in many ways utilizing different people.

Having such redundancy, with team members cross-trained to do various jobs,

increases the project’s functional redundancy and thus the flexibility of the team in

dealing with personnel shortages. Redundancy is also critical in turbulent environ-

ments where people need to work on tasks assigned by priority rather than the

competence of team members.

A particular challenge, however, is that individual specialization, high levels of

proficiency, and the ability to solve more complex problems are often more

important motivations for people than to seek overlapping knowledge. It is essen-

tial, therefore, with a greater focus on redundancy at the organizational level

surrounding the project; rather than viewing redundancy as unnecessary and inef-

ficient, the organization must appreciate both generalists and specialists to build

redundancy into its projects.

11.6.4 Feedback and Learning

Without feedback and learning, agile project management is not possible. The focus

on project execution rather than on up-front planning in agile projects, leads to an

intertwinement of learning and work, and of problem specification and solution.

Viewing the software project as an open system that is continuously interacting

with its environment also points to the importance of feedback and learning.

The complexity and unpredictability of software problems are typical of

“wicked” problems (Rittel and Webber 1973; Yeh 1991), which are difficult to

define until they are nearly solved. For such problems, requirements cannot be

completely specified until most of the system is built and used. At the same time,

the system cannot be built without specifying what is to be built. Furthermore, the

problem is never really solved as improvements can always be made.

To deal with and manage software problems, therefore, the activities of require-

ments, design, coding, and testing have to be performed in an iterative and incre-

mental way, which focuses on ongoing improvement of output value rather than on

single delivery. The project should allow overlapping and parallel activities in a

series of steps, making feedback and continual learning an internalized habit to

reach a desirable result.

11 Agile Project Management 295



Together, these principles lay the foundation for successfully planning, execut-

ing, and monitoring the activities of a software project while allowing openness to

define the details in each individual case according to the project’s specific context.

11.7 Conclusions

The principles of agile project management have the potential to provide organi-

zations and systems with emergent properties. However, organizations should be

cautious in embracing these principles or in integrating them with existing prac-

tices. Agile management methods are ideal for projects that exhibit high variability

in tasks, in the skills of people, and in the technology being used. They are also

appropriate for organizations that are more conducive to innovation than those built

around bureaucracy and formalization. Software organizations should, therefore,

carefully assess their readiness before treading the path of agility.

The challenge in managing agile software projects is to find the balance between

upfront planning and learning. Planning provides discipline and a concrete set of

activities and contingencies that can be codified, executed, and monitored. Learning

permits adapting to unforeseen or chaotic events. The two require different man-

agement styles and project infrastructure. Projects with low levels of complexity

and uncertainty allow more planning, whereas projects with high levels of com-

plexity and uncertainty require a greater emphasis on learning. Openness to learn-

ing is new to many software companies. But it is obvious from the many spectacular

project failures that the time has come to rethink some of the traditions in software

project management.

Agile project management has currently caught interest for small and co-located

projects. However, in the future, agile project management might also solve some

of the important challenges facing large-scale and global projects (see Chap. 12).

The issues raised in this chapter are instrumental in making this move from

traditional to agile project management; or in the words of Louis Pasteur: “chance

favors only the prepared mind.”

References

Abramson P, Oza N, Siponen MT (2010) Agile software development methods: a comparative

review. In: Dingsøyr T, Dybå T, Moe NB (eds) Agile software development. Current research

and future directions. Springer, Berlin, pp 31–59

Argyris C, Schön DA (1996) On organizational learning II: theory method and practise. Addison

Wesley, Reading, MA

Augustine S, Payne B, Sencindiver F, Woodcock S (2005) Agile project management: steering

from the edges. Commun ACM 48(12):85–89

Aurum A,Wohlin C, Porter A (2006) Aligning software project decisions: a case study. Int J Softw

Eng Knowl Eng 16(6):795–818

296 T. Dybå et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_12


Bazerman MH, Giuliano T, Appelman A (1984) Escalation of commitment in individual and

group decision making. Organ Behav Hum Perform 33:141–152

Besner C, Hobbs B (2008) Project management practice, generic or contextual: a reality check.

Proj Manage J 39:16–33

Birk A, Dingsøyr T, Stålhane T (2002) Postmortem: never leave a project without it. IEEE Softw

19(3):43–45, Special issue on knowledge management in software engineering

Bjørnson FO, Dingsøyr T (2008) Knowledge management in software engineering: a systematic

review of studied concepts and research methods used. Info Softw Technol 50(11):1055–1168.

doi:10.1016/j.infsof.2008.03.006

Cohen SG, Bailey DE (1997) What makes teams work: group effectiveness research from the shop

floor to the executive suite. J Manage 23(3):239–290

Conboy K, Coyle S, Wang X, Pikkarainen M (2011) People over process: key challenges in agile

development. IEEE Softw 28(4):48–57

Constantine LL (1993) Work organization: paradigms for project management and organization.

Commun ACM 36(10):35–43

De Meyer A, Loch CH, Pich MT (2002) Managing project uncertainty: from variation to chaos.

MIT Sloan Management Review Winter 2002:60–67

Derby E, Larsen D (2006) Agile retrospectives: making good teams great. The Pragmatic Book-

shelf, Raleigh, NC

Dingsøyr T (2005) Postmortem reviews: purpose and approaches in software engineering. Info

Softw Technol 47(5):293–303

Dingsøyr T, Lindsjørn Y (2013) Team performance in agile development teams: findings from

18 focus groups. In: Baumeister H, Weber B (eds) Agile processes in software engineering and

extreme programming, vol 149. Springer, Berlin, pp 46–60

Dingsøyr T, Dybå T, Moe NB (2010) Agile software development: current research and future

directions. Springer, Berlin

Dingsøyr T, Nerur S, Balijepally V, Moe NB (2012) A decade of agile methodologies: towards

explaining agile software development. J Syst Softw 85(6):1213–1221. doi:10.1016/j.jss.2012.

02.033

Dybå T (2000) Improvisation in small software organizations. IEEE Softw 17(5):82–87

Dybå T (2011) Special section on best papers from XP2010. Info Softw Technol 53(5):507–508

Dybå T, Dingsøyr T (2008) Empirical studies of agile software development: a systematic review.

Info Softw Technol 50(9–10):833–859. doi:10.1016/j.inf-sof.2008.01.006

Dybå T, Maiden N, Glass R (2014) The reflective software engineer: reflective practice. IEEE

Softw 31(4):32–36

Fægri TE (2010) Adoption of team estimation in a specialist organizational environment. In:

Sillitti A, Martin A, Wang X, Whitworth E (eds) 11th international conference on agile

software development, Trondheim, Norway, 1–4 June 2010. Springer, pp 28–42

Fægri TE, Dybå T, Dingsøyr T (2010) Introducing knowledge redundancy practice in software

development: experiences with job rotation in support work. Info Softw Technol 52(10):1118–

1132

Faraj S, Sambamurthy V (2006) Leadership of information systems development projects. IEEE

Transact Eng Manage 53(2):238–249

Garel G (2013) A history of project management models: from pre-models to the standard models.

Int J Proj Manage 31(5):663–669

Guzzo RA, Dickson MW (1996) Teams in organizations: recent research on performance and

effectiveness. Annu Rev Psychol 47:307–338

Hackman JR (1986) The psychology of self-management in organizations. In: Pallack MS, Perloff

RO (eds) Psychology and work: productivity, change, and employment. American Psycholog-

ical Association, Washington, DC

Hewitt B, Walz D (2005) Using shared leadership to foster knowledge sharing in information

systems development projects. In: Walz D (ed) Proceedings of the 38th Hawaii international

conference on system sciences (HICCS), pp 1–5

11 Agile Project Management 297

http://dx.doi.org/10.1016/j.infsof.2008.03.006
http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1016/j.inf-sof.2008.01.006


Hoare CAR (1984) Programming: sorcery or science? IEEE Softw 1(2):5–16

Hoegl M, Parboteeah P (2006) Autonomy and teamwork in innovative projects. Hum Resour

Manage 45(1):67

Humphrey WS (1989) Managing the software process. Addison-Wesley, Reading, MA

Keil M, Mann J, Rai A (2000) Why software projects escalate: An empirical analysis and test of

four theoretical models. MIS Q 24(4):631–664

Kerth NL (2001) Project retrospectives: a handbook for team reviews. Dorset House Publishing,

New York

Kirkman BL, Rosen B (1999) Beyond self-management: antecedents and consequences of team

empowerment. Acad Manage J 42(1):58–74

Kozlowski SWJ, Bell BS (2003) Work groups and teams in organizations In: Borman WC, Ilgen

DR, Klimoski RJ (ed) Handbook of psychology (vol 12): industrial and organizational psy-

chology. Wiley-Blackwell, New York, pp 333–375

Kozlowski SWJ, Ilgen DR (2006) Enhancing the effectiveness of work groups and teams. Psychol

Sci Public Inter 7:77–124

Kransdorff A (1996) Using the benefits of hindsight - the role of post-project analysis. Learn Organ

3(1):11–15

Lehman MM (1989) Uncertainty in computer applications and its control through the engineering

of software. Softw Maint Res Pract 1(1):3–27

Lipshitz R, Klein G, Orasanu J, Salas E (2001) Taking stock of naturalistic decision making. J

Behav Decis Mak 14(5):331–352

Lynn GS, Skov RB, Abel KD (1999) Practices that support team learning and their impact on

speed to market and new product success. J Prod Innov Manag 16:439–454

Menke MM (1997) Managing R&D for competitive advantage. Res Technol Manage 40(6):40–42

Meso P, Troutt MD, Rudnicka J (2002) A review of naturalistic decision making research with

some implications for knowledge management. J Knowl Manage 6(1):63–73

Moe NB, Dingsøyr T, Dybå T (2008) Understanding self-organizing teams in agile software

development. In: 19th Australian conference on software engineering, pp 76–85

Moe NB, Dingsøyr T, Dybå T (2009) Overcoming barriers to self-management in software teams.

IEEE Softw 26(6):20–26

Moe NB, Dingsøyr T, Dybå T (2010) A teamwork model for understanding an agile team: a case

study of a Scrum project. Info Softw Technol 52(5):480–491

Moe NB, AurumA, Dybå T (2012) Challenges of shared decision-making: a multiple case study of

agile software development. Info Softw Technol 54(8):853–865

Molokken-Ostvold K, Haugen NC, Benestad HC (2008) Using planning poker for combining

expert estimates in software projects. J Syst Softw 81(12):2106–2117. doi:10.1016/j.jss.2008.

03.058

Morgan G (2006) Images of organizations. Sage, Thousand Oaks, CA

Nerur S, Balijepally V (2007) Theoretical reflections on agile development methodologies - the

traditional goal of optimization and control is making way for learning and innovation.

Commun ACM 50(3):79–83

Nerur S, Mahapatra R, Mangalaraj G (2005) Challenges of migrating to agile methodologies.

Commun ACM 48(5):72–78

Outi S (2006) Enabling software process improvement in agile software development teams and

organisations. VTT Publications, Espoo

Pearce CL (2004) The future of leadership: combining vertical and shared leadership to transform

knowledge work. Acad Manage Exec 18(1):47–57

Pich MT, Loch CH, De Meyer A (2002) On uncertainty, ambiguity, and complexity in project

management. Manage Sci 48(8):1008–1023

Raelin JA (2001) Public reflection as the basis of learning. Manage Learn 32(1):11–30

Rittel HWJ, Webber MM (1973) Dilemmas in a general theory of planning. Policy Sci 4:155–169

Schwaber K, Beedle M (2001) Agile software development with Scrum. Prentice Hall, Upper

Saddle River

298 T. Dybå et al.

http://dx.doi.org/10.1016/j.jss.2008.03.058
http://dx.doi.org/10.1016/j.jss.2008.03.058


Sharp H, Robinson H (2010) Three ‘C’s of agile practice: collaboration, co-ordination and

communication. In: Dingsøyr T, Dybå T, Moe NB (eds) Agile software development: current

research and future directions. Springer, Berlin, p 13

Sharp H, Robinson H, Segal J, Furniss D (2006) The role of story cards and the wall in Xp teams: a

distributed cognition perspective. In: Agile. Minneapolis, MN. IEEE Computer Society, pp

65–75

Šmite D, Moe NB, Ågerfalk PJ (2010) Agility across time and space: implementing agile methods

in global software projects. Springer, Berlin

Staw B (1976) Knee-deep in the big muddy: a study of escalating commitment to a chosen course

of action. Organ Behav Hum Perform 16(1):27–44

Stray VG, Moe NB, Dingsøyr T (2011) Challenges to teamwork: a multiple case study of two agile

teams. In: Sillitti A, Hazzan O, Bache E, Albaladejo X (eds) Agile processes in software

engineering and extreme programming, vol 77. Lecture Notes in Business Information

Processing, pp 146–161

Stray VG, Moe NB, Dybå T (2012) Escalation of commitment: a longitudinal case study of daily

meetings. In: Wohlin C (ed) Agile processes in software engineering and extreme program-

ming. Lecture Notes in Business Information Processing. Springer, Berlin, pp 153–167. doi:10.

1007/978-3-642-30350-0_11

Takeuchi H, Nonaka I (1986) The new product development game. Harv Bus Rev 64:137–146

Trist E (1981) The evolution of socio-technical systems: a conceptual framework and an action

research program. Occasional paper no 2. Ontario quality of working life centre, Toronto, ON

Trist E, Bamforth KW (1951) Some social and psychological consequences of the longwall

method of coal—getting. Hum Relat 4(1):3–38. doi:10.1177/001872675100400101

von Krogh G, Ichijo K, Nonaka I (2000) Enabling knowledge creation. Oxford University Press,

New York

Whyte G (1993) Escalating commitment in individual and group decision making: a prospect

theory approach. Organ Behav Hum Decis Process 54(3):430–455

Woodfield SN (1979) An experiment on unit increase in problem complexity. IEEE Trans Softw

Eng 5(2):76–79

Yeh RT (1991) System development as a wicked problem. Int J Softw Eng Knowl Eng 1(2):117–

130

Biography Tore Dybå received his MSc in Electrical Engineering and Computer

Science from the Norwegian Institute of Technology and the Dr. Ing. in Computer

and Information Science from the Norwegian University of Science and Technol-

ogy. He is a chief scientist at SINTEF ICT and an adjunct professor at the

University of Oslo. He has 8 years of industry experience from Norway and

Saudi Arabia. His research interests include evidence-based software engineering,

software process improvement, and agile software development. He is the author or

coauthor of more than 100 refereed publications appearing in international journals,

books, and conference proceedings. He is editor of the Voice of Evidence column in

IEEE Software and a member of the editorial boards of Journal of Software

Engineering Research and Development and Information and Software

Technology.

Torgeir Dingsøyr works with software process improvement and knowledge man-

agement projects as a senior scientist at SINTEF Information and Communication

Technology. In particular, he has focused on agile software development through a

number of case studies, coauthored the systematic review of empirical studies,

coedited the book Agile Software Development: Current Research and Future

11 Agile Project Management 299

http://dx.doi.org/10.1007/978-3-642-30350-0_11
http://dx.doi.org/10.1007/978-3-642-30350-0_11
http://dx.doi.org/10.1177/001872675100400101


Directions, and coedited the special issue on Agile Methods for the Journal of

Systems and Software. He wrote his doctoral thesis on Knowledge Management in
Medium-Sized Software Consulting Companies at the Department of Computer and
Information Science, Norwegian University of Science and Technology, where he is
now adjunct associate professor.

Nils Brede Moe works with software process improvement, agile software devel-

opment and global software development as a senior scientist at SINTEF Informa-

tion and Communication Technology. His research interests are related to

organizational, socio-technical, and global/distributed aspects. His main publica-

tions include several longitudinal studies on self-management, decision-making

and teamwork. He wrote his thesis for the degree of Doctor Philosophiae on From
Improving Processes to Improving Practice —Software Process Improvement in
Transition from Plan-driven to Change-driven Development. Nils Brede Moe is
also holding an adjunct position at Blekinge Institute of Technology.

300 T. Dybå et al.


	Chapter 11: Agile Project Management
	11.1 Introduction
	11.2 Software Project Management
	11.2.1 Traditional Project Management
	11.2.2 Challenges of Software Project Management
	11.2.3 From Traditional to Agile Project Management

	11.3 Self-Managing Software Teams
	11.4 Team Leadership
	11.4.1 Shared Decision Making
	11.4.2 Escalation of Commitment

	11.5 Feedback and Learning
	11.5.1 Agile Project Kick off
	11.5.2 The Retrospective
	11.5.3 Visualizing Project Status

	11.6 Principles of Agile Project Management
	11.6.1 Minimum Critical Specification
	11.6.2 Autonomous Team
	11.6.3 Redundancy
	11.6.4 Feedback and Learning

	11.7 Conclusions
	References


