
Günther Ruhe · Claes Wohlin Editors

Software Project
Management in a
Changing World

Software Project Management in a Changing World

ThiS is a FM Blank Page

Günther Ruhe • Claes Wohlin

Editors

Software Project
Management in a
Changing World

Editors
Günther Ruhe
University of Calgary
Calgary, AB
Canada

Claes Wohlin
Blekinge Institute of Technology
Karlskrona
Sweden

ISBN 978-3-642-55034-8 ISBN 978-3-642-55035-5 (eBook)
DOI 10.1007/978-3-642-55035-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014949137

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

When the software field was growing up, the software being developed dealt mainly

with relatively stable applications. These involved relatively stable business and

scientific applications and software involved in controlling relatively stable hard-

ware devices. As experiences in defining requirements for hardware devices found

that design solutions would often become requirements and overconstrain the

solution space, the software field followed the hardware field in postponing the

design until the requirements were completely and consistently defined. This led to

the dominance of the sequential, top-down, requirements-first, reductionist water-

fall approach used to define, develop, and manage software projects.

One of my jobs at TRW in 1976–1977 was to lead a project to formalize this

approach into a set of corporate software development policies and standards.

These were inculcated in the company via training materials, courses, and a

40-question equivalent of the California driver’s-license test that TRW software

developers needed to pass. We also highlighted this material in a public relations

campaign to show our mastery of software development and management.

This worked very well for a while, but by the early 1980s the assumption of

stable, predetermined requirements began to lose its validity. In particular, graphic-

user-interactive (GUI) terminals began to become economically viable. Users much

preferred this way of operating, but our requirements engineers found that (1) it was

hard to specify graphic layouts in requirement documents and (2) it was hard to get

users to define how they wanted to interact. We encountered the IKIWISI syn-

drome: “I can’t tell you how I want it, but I’ll know it when I see it.”

Our more creative software engineers began to develop rapid-prototyping capa-

bilities that potential customers found very helpful in resolving IKIWISI require-

ments. However, when we tried to emphasize rapid prototyping in competitive

procurements, we found that we had so thoroughly brainwashed many of our senior

software engineers that they would pound on the table and say, “You can’t do that!

It’s programming before we’ve defined the requirements, and it violates our

policies!” Further, we found that several government agencies had adopted and

v

adapted our policies and standards as their way of doing business. And if undoing

corporate policies was difficult, undoing government policies and standards was

virtually impossible.

Since then, further trends have made the sequential, reductionist approach less

and less viable. Requirements have become more emergent with system use. With

COTS products and cloud services, their capabilities drive the system requirements

rather than prespecified requirements. Time-to-market pressures and rapidly evolv-

ing products such as cell phones have made sequential definition and development

processes uncompetitive in the marketplace, along with increasingly rapid changes

in technology, organizations, and user preferences. Yet, many organizations cling

to the sequential, reductionist approach as a security blanket. Increasingly, they

take several years to deliver a system and then find that its technology is obsolete

and that its users’ needs have become very different.

Thus, the appearance of this book, Software Project Management in a Changing
World, is very timely. It focuses on how people and organizations can make their

processes more change-adaptive. It is good in emphasizing in its chapters on cost

estimation and risk/opportunity management that unpredictable change requires

probabilistic approaches, using range vs. point estimates, late binding of product

content decisions, and evolutionary development. It has good guidance on agile

project management, using principles such as minimum critical specifications,

autonomous teams, skills redundancy, and use of feedback and post release

reflection.

The book is also strong on quality management and on balancing lightweight

agile methods with the use of empirical methods, using Goal-Question-Metric and

Experience Factory-type approaches to the management and use of project knowl-

edge. Its chapters on global project management and global team motivation are

strong in identifying and employing knowledge on personnel motivation and on the

importance of investments in team building and trust, although the chapter on

human resource allocation focuses more on algorithmic methods of project staffing.

The strong emphasis on how to make software processes more change-adaptive

could have done more on how to make software products more change-adaptive. A

good example is the approach in David Parnas’ paper on Designing Software for

Ease of Extension and Contraction. This involves identifying sources of change and

encapsulating them into modules, so that change effects are largely confined to

individual modules, rather than rippling through the rest of the product. This also

involves identifying evolution requirements as well as current-snapshot require-

ments for the initial product. Other good product-adaptive approaches include open

interface standards, use of design patterns and generics, judicious selection of

COTS products that are change-adaptive without destabilizing their users, and

emphasizing simplicity via Occam’s Razor or Einstein’s guidance, “Everything

should be as simple as possible, but no simpler.”

That said, the book is also strong in identifying sources of change in software

technology and their implications for software management. These include big data

and search technology that can enhance project knowledge and social media

technology that can enable better multidiscipline and distributed-stakeholder

vi Foreword

collaboration in software requirements negotiation, change handling, and concur-

rence at decision gates. Also, improved process simulation technology can be used

to better understand the likely effects of alternative project decisions and to

determine the domains of applicability of various software “laws,” such as Brooks’

Law: Adding people to a late software project will make it later (not always true if

foreseen and done early). It is also strong in identifying alternative software

development methods and their management differences, such as open source,

inner source, distributed and global software development, and agile methods.

Overall, I found the book to be a pleasure to read and a valuable source of

guidance on how to cope with the proliferating sources of change we all will face in

the future. I hope that you will benefit from it in similar ways.

February 2014 Barry Boehm

Foreword vii

ThiS is a FM Blank Page

Author Biography

Barry Boehm is the TRW Professor in the USC Computer Sciences, Industrial and

Systems Engineering, and Astronautics Departments. He is also the Director of

Research of the DoD-Stevens-USC Systems Engineering Research Center, and the

founding Director of the USC Center for Systems and Software Engineering. He

was director of DARPA-ISTO 1989–1992 at TRW 1973–1989, at Rand Corpora-

tion 1959–1973, and at General Dynamics 1955–1959. His contributions include

the COCOMO family of cost models and the Spiral family of process models. He is

a Fellow of the primary professional societies in computing (ACM), aerospace

(AIAA), electronics (IEEE), and systems engineering (INCOSE) and a member of

the U.S. National Academy of Engineering.

ix

ThiS is a FM Blank Page

Acknowledgments

Editing a book is a major undertaking; it may sound like it is much less work than

authoring your own book. And maybe it is less work, but, foremost, it is different. It

requires a lot of coordination, and hence editors become highly dependent on the

contributors, reviewers, and others providing support. This book is no different.

We would like to express our gratitude to all the contributors for sharing their

expertise and being responsive to our comments, enquiries, and requests. We are

grateful to all reviewers helping us further improve the content of the book.

Maleknaz Nayebi was of tremendous support in preparing supplementary literature

studies. We would also like to express our gratitude to the Springer team for their

support and in particular to Ralf Gerstner for his guidance and valuable input on

practical matters.

We are grateful to Professor Barry Boehm for agreeing to write the foreword and

for sharing his vast experience with us. Barry not only provides his personal

perspective on the evolution of software development as a whole but also focuses

on software project management.

Last but not least, we would like to express our sincere thanks to Kornelia Streb.

She re-created most of the art work and did an excellent job in handling a large

variety of tasks in the process of editing the book.

February 2014 Günther Ruhe

Claes Wohlin

xi

ThiS is a FM Blank Page

Contents

1 Software Project Management: Setting the Context 1

1.1 Motivation . 1

1.2 Characteristics of Software Projects and Why Software Project

Management Is Difficult . 3

1.3 Ten Knowledge Areas of Software Project Management 6

1.4 The Book’s Coverage of the PMBOK Knowledge Areas 16

1.5 The Multidisciplinary Nature of Project Management 18

1.6 The Future of Software Engineering . 19

1.7 Software Project Management: Past and Future 20

1.8 This Book . 21

References . 23

Part I Fundamentals

2 Rethinking Success in Software Projects: Looking Beyond

the Failure Factors . 27

2.1 The Extent of Software Project Failures 27

2.2 Beyond Simple Success Measures . 31

2.3 Rethinking Project Success . 34

2.4 Towards Multiple Levels of Success . 36

2.5 Mapping Success . 37

2.6 Illustrative Examples . 40

2.7 The Impact of Time . 41

2.8 Measuring Success . 42

2.9 Conclusions . 46

References . 47

3 Cost Prediction and Software Project Management 51

3.1 Introduction . 51

3.2 A Review of State-of-the-Art Techniques 52

3.3 A Review of Cost Estimation Research 55

xiii

3.4 The Interaction Between People and Formal Techniques 58

3.5 Practical Recommendations . 63

3.6 Follow-Up Sources of Information . 65

Glossary . 66

References . 68

4 Human Resource Allocation and Scheduling for Software Project

Management . 73

4.1 Introduction . 74

4.2 Human Resource Allocation and Scheduling Approaches 76

4.3 The Implication of Software Development Personality Types . . . 92

4.4 Further Research Trends and Challenges 100

4.5 Concluding Remarks . 101

References . 102

5 Software Project Risk and Opportunity Management 107

5.1 Introduction . 107

5.2 The Duality of Risks and Opportunities 108

5.3 Fundamentals of Risk–Opportunity Management 109

5.4 Risk and Opportunity Management Methods, Processes,

and Tools . 115

5.5 Top-10 Risk Item Tracking . 117

5.6 Risk-Balanced Activity Levels . 119

5.7 Summary and Conclusions . 120

References . 120

Part II Supporting Areas

6 Model-Based Quality Management of Software Development

Projects . 125

6.1 Introduction . 126

6.2 Selecting the Right Quality Models . 129

6.3 Building Custom-Tailored Quality Models 136

6.4 Specification and Application of Quality Models 145

6.5 Strategic Usage of Quality Models . 150

6.6 Conclusions and Future Work . 153

References . 154

7 Supporting Project Management Through Integrated Management

of System and Project Knowledge . 157

7.1 Introduction . 158

7.2 Our Vision: Integrated System and Project Knowledge

Management . 161

7.3 Literature Review . 165

7.4 Integrating System and Project Knowledge Using Work Items . . . 168

xiv Contents

7.5 Integrating System and Project Knowledge Using Decisions . . . 175

7.6 Research Issues on Integrating System and Project Knowledge . . . 185

7.7 Conclusions and Outlook . 187

References . 188

8 Framework for Implementing Product Portfolio Management

in Software Business . 193

8.1 Introduction . 194

8.2 Research Approach . 196

8.3 Theory-Building Case Study and Evaluation 201

8.4 Software Product Portfolio Management Implementation

Framework . 204

8.5 Maturity Matrix for PPM . 211

8.6 Theory-Testing Case Study . 214

8.7 Implications . 217

8.8 Conclusions and Future Research . 218

References . 219

9 Managing Global Software Projects . 223

9.1 Introduction . 224

9.2 Foundations . 225

9.3 Benefits and Challenges . 226

9.4 Global Software Development . 232

9.5 Work Organization . 235

9.6 Risk Management in Global Software Projects 239

9.7 Trends and Conclusions . 243

References . 245

10 Motivating Software Engineers Working in Virtual Teams Across

the Globe . 247

10.1 Introduction . 248

10.2 Motivation Theory . 249

10.3 Characteristics of a Software Engineer 254

10.4 Software Engineer Motivation in GSD—A Case Study 256

10.5 Motivational Factors and GSD Guidelines 262

10.6 Theory and Practice of GSD Motivation 262

10.7 Summary and Conclusions . 269

References . 271

Part III New Paradigms

11 Agile Project Management . 277

11.1 Introduction . 277

11.2 Software Project Management . 278

11.3 Self-Managing Software Teams . 282

11.4 Team Leadership . 284

Contents xv

11.5 Feedback and Learning . 287

11.6 Principles of Agile Project Management 292

11.7 Conclusions . 296

References . 296

12 Distributed Project Management . 301

12.1 Introduction . 301

12.2 Ten Misconceptions in Distributed Software Development 305

12.3 Conclusions . 318

References . 319

13 Management and Coordination of Free/Open Source Projects 321

13.1 Introduction . 322

13.2 F/OSS Management . 327

13.3 Current Challenges in F/OSS Management 332

13.4 Future Open Source Management Techniques 335

13.5 Conclusions . 340

References . 340

14 Inner Source Project Management . 343

14.1 Introduction . 344

14.2 Inner Source . 345

14.3 A Framework for Understanding Project Management

in Inner Source . 352

14.4 Case Studies . 357

14.5 Discussion and Future Work . 365

References . 367

Part IV Emerging Techniques

15 Search-Based Software Project Management 373

15.1 Introduction . 373

15.2 Search-Based Software Engineering . 375

15.3 Search-Based Software Project Management 376

15.4 Possible Directions for Future Work on Search-Based Project

Management . 388

15.5 Conclusions . 392

References . 392

16 Social Media Collaboration in Software Projects 401

16.1 Introduction . 401

16.2 Interactions in Software Projects . 403

16.3 Social Aspects of Software Projects . 404

16.4 Importance of Social Media in Software Projects 405

16.5 Pilot Study . 405

16.6 The Future of Social Media in Software Projects 420

xvi Contents

16.7 Conclusions . 422

References . 422

17 Process Simulation: A Tool for Software Project Managers? 425

17.1 Purpose and Scope of Software Process Simulation 426

17.2 An Illustrative Application Example . 428

17.3 The Gap Between State of the Art and State of Practice 438

17.4 Issues that need to be Addressed . 441

17.5 Conclusions . 444

References . 445

18 Occam’s Razor and Simple Software Project Management 447

18.1 Introduction . 447

18.2 Occam’s Razor and Project Management 450

18.3 Speculation-Based Modeling (Is Difficult) 452

18.4 Support-Based Modeling (Can Be Simplified with Data Mining) . . . 454

18.5 Spectral Learning and Project Management 461

18.6 General Applications to Project Management 469

18.7 Discussion . 470

References . 471

Index . 473

Contents xvii

ThiS is a FM Blank Page

List of Contributors

Andreas S. Andreou Department of Electrical Engineering, Computer Engineer-

ing and Informatics, Cyprus University of Technology, Lemesos, Cyprus

Sarah Beecham Department of Computer Science & Information Systems,

Lero—The Irish Software Engineering Research Centre, University of Limerick,

Limerick, Ireland

Barry Boehm University of Southern California, Los Angeles, USA

Sjaak Brinkkemper Department of Information and Computing Sciences,

Utrecht University, Utrecht, The Netherlands

Darren Dalcher National Centre for Project Management, University of Hert-

fordshire, Hatfield, UK

Alexander Delater Institute of Computer Science, University of Heidelberg,

Heidelberg, Germany

Torgeir Dingsøyr SINTEF, Trondheim, Norway

Ton Dobbe UNIT4, Sliedrecht, The Netherlands

Tore Dybå SINTEF, Trondheim, Norway

Christof Ebert Vector Consulting Services GmbH, Stuttgart, Germany

Filomena Ferrucci DISTRA, University of Salerno, Salerno, Italy

Mark Harman Department of Computer Science, University College London,

London, UK

Rachel Harrison Computing and Communication Technologies, Oxford Brookes

University, Oxford, UK

Jens Heidrich Fraunhofer IESE, Kaiserslautern, Germany

Tom-Michael Hesse Institute of Computer Science, University of Heidelberg,

Heidelberg, Germany

xix

Martin Höst Department of Computer Science, Lund University, Lund, Sweden

Erik Jagroep Department of Information and Computing Sciences, Utrecht Uni-

versity, Utrecht, The Netherlands

Michael Kläs Fraunhofer IESE, Kaiserslautern, Germany

Tim Menzies Lane Department of Computer Science & Electrical Engineering,

West Virginia University, Morgantown, USA

Nils Brede Moe SINTEF, Trondheim, Norway

Alma Oručević-Alagić Department of Computer Science, Lund University, Lund,

Sweden

Barbara Paech Institute of Computer Science, University of Heidelberg,

Heidelberg, Germany

Dietmar Pfahl Institute of Computer Science, University of Tartu, Tartu, Estonia

Dieter Rombach Technische Universität Kaiserslautern, Kaiserslautern, Germany

Fraunhofer Institute for Experimental Software Engineering (IESE), Fraunhofer-

Platz 1, Kaiserslautern, Germany

Günther Ruhe Department of Computer Science & Electrical Engineering, Uni-

versity of Calgary, Calgary, Canada

Federica Sarro Department of Computer Science, University College London,

London, UK

Martin Shepperd Information Systems and Computing, Brunel University,

Uxbridge, UK

Darja Smite Blekinge Institute of Technology, Karlskrona, Sweden

Ioannis Stamelos Department of Informatics, Aristotle University of

Thessaloniki, Thessaloniki, Greece

Klaas-Jan Stol Lero—The Irish Software Engineering Research Centre, University

of Limerick, Limerick, Ireland

Constantinos Stylianou Department of Computer Science, University of Cyprus,

Lefkosia, Cyprus

Varsha Veerappa Department of Computing and Communication Technologies,

Oxford Brookes University, Oxford, UK

Inge Van de Weerd Department of Information, Logistics and Innovation, VU

University Amsterdam, Amsterdam, The Netherlands

Claes Wohlin Blekinge Institute of Technology, Karlskrona, Sweden

xx List of Contributors

Chapter 1

Software Project Management: Setting

the Context

Günther Ruhe and Claes Wohlin

Abstract This chapter is designed as the introduction to the book. It provides the

motivation for studying software project management as a response to the increas-

ing variety of software development methodologies. The chapter characterizes

software projects and presents ten knowledge areas in software project manage-

ment. This body of knowledge is described in the software edition of the Project

Management Body of Knowledge (PMBOK). The chapters of the book are classi-

fied in terms of their contribution to these knowledge areas.

The chapter also discusses the multidisciplinary nature of the project manage-

ment discipline. Based on some predicted trends for the future of software engi-

neering, a prediction on the future of software project management is given.

Finally, an overview of the content and structure of the whole book is presented.

1.1 Motivation

The world is continuously changing. Software and software-intensive systems are

among the key drivers of this trend. The speed and magnitude of all these changes is

breathtaking. What would happen today if any of the existing telecommunication,

health-care, financial, or logistic systems were not performing securely, safely, and

reliably? The rapid growth in technology in combination with the strong depen-

dence of products and services on software raises the demand on managing the

development and evolution of such systems.

G. Ruhe (*)

University of Calgary, Calgary, Canada

e-mail: ruhe@ucalgary.ca

C. Wohlin

Blekinge Institute of Technology, Karlskrona, Sweden

e-mail: claes.wohlin@bth.se

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_1, © Springer-Verlag Berlin Heidelberg 2014

1

mailto:ruhe@ucalgary.ca
mailto:claes.wohlin@bth.se

Project management is one of the youngest, most vibrant, and most dynamic

fields among different management disciplines. According to the PMBOK, project

management is the “application of knowledge, skills, tools and techniques to

project activities to meet the project requirements” (PMI 2013a). Project manage-

ment is accomplished through the application and integration of 47 logically

grouped project management processes divided into five process groups: initiating,

planning, executing, monitoring and controlling, and closing.

Software is a direct product of the cognitive processes of individuals engaged in
innovative teamwork. Many of the procedures and techniques used in software

project management are designed to facilitate communication and coordination

among team members engaged in an intellectually intensive work. Software devel-

opment is often characterized as a learning process in which knowledge is gained

and information generated during the project. Dealing with people and conflicts,

team building, knowledge sharing, and communication will be the determinants of

good project management.

Software project management deals with software projects and the challenges of

human-based development (as opposed to the more deterministic processes in

traditional projects). The higher flexibility in software development approaches

puts new demands on the capabilities of software project management. Weaknesses

in planning, organizing, staffing, directing, and controlling are hard to be counter-

balanced by more efficiency in technical development work. As Fred Brooks stated

in 1987, “. . . today’s major problems with software development are not technical

problems, but management problems” (Brooks 1987).

The principal nature of the challenges in software project management has not

changed dramatically in the last 25 years. However, software-intensive systems of

the twenty-first century increasingly vary in their content, size, complexity, and

their degree of interaction with other systems. The technological and communica-

tion infrastructure to develop these systems is hard to compare with that available in

the past. As a consequence, the concrete content of the project management

challenges looks different from that of 25 years ago.

Beginning from the 1970s and 1980s, traditional plan-driven software develop-

ment has been replaced and complemented by more adaptive and dynamic

approaches. Global (or distributed) software development, open source develop-

ment, and the application of the different variants of adaptive development tech-

niques have proven successful under various circumstances. The Internet has

dramatically enhanced the ability of individuals, teams, and organizations to man-

age projects across continents and cultures in real time (Kwak and Anbari 2008).

New paradigms (such as inner-source project management) or emerging techniques

(such as social media collaboration) provide new opportunities for conducting

software project management more successfully than before.

2 G. Ruhe and C. Wohlin

1.2 Characteristics of Software Projects andWhy Software

Project Management Is Difficult

Software development is both human-intensive and knowledge-intensive, which

makes people the most important asset in any software development endeavor.

Software projects are different from other projects in a number of ways. Conse-

quently, management of software projects cannot be done in the same way as in

traditional project management and needs to be adjusted correspondingly. Follow-

ing (PMI 2013b), some of the main differentiating factors are as follows:

• Software is an intangible product.

• Software is a cognitive and human-based development process that requires

sharing of documents.

• There is a higher degree of uncertainty in the project and product scope.

• Communication and coordination within software teams and with project stake-

holders often lacks clarity.

• The intellectual capital of software personel is the primary asset of software

projects and organizations.

• There is a degree of change of requirements in the course of the software project.

• The creation of software requires innovative problem solving to create unique

solutions.

• Initial planning and estimation of software projects is challenging because these

activities depend on requirements that are often imprecise or based on lacking

information.

• The development and evolution of software-intensive systems is challenging

because of the high complexity of software based on the enormous number of

logical paths in program modules and all the combinations of interface details.

• Exhaustive testing of software is impractical because of the time and related

complexity constraints.

• Software development often involves interactions of different vendor products

and interfaces with other software.

• Software security is a large and growing challenge.

• Objective measurement and quantification of software quality is difficult.

• Learning and knowledge creation in software development is more difficult

because processes, methods, and tools are constantly evolving.

• The execution of software is platform-dependent and is often an element of a

system consisting of diverse hardware, other software, and manual procedures.

Software project life cycles are models of how software projects pass through the

phases of development, from their initiation to their closure. The software extension

of the PMBOK describes the continuum of software project life cycles ranging from

highly predictive to highly adaptive (PMI 2013b). The variation between them is

described by the degree of change in requirements (from being specified during

initiation and planning to elaboration at frequent intervals during development), the

1 Software Project Management: Setting the Context 3

control of cost and risk, and the involvement of key stakeholders (from involvement

at scheduled milestones to continuous involvement).

Practically, all modern development approaches are iterative and incremental

(Larman and Basili 2003) in their key nature. The notion of iteration refers to a

phase within the development process, while the term increment describes a certain
stage of the product evolution. An example of an incremental software product

development process is given in Fig. 1.1.

Kruchten (2011) has proposed a conceptual model of software development. The
main pillars of that model are four core entities called intent, product, work, and
people, which are common entities across all software development projects. In

brief, the entities give answers to the following questions:

Intent: What is the project trying to achieve?

Product: What is the outcome of the project?

Work: How to build the targeted product?

People: Who will be available to perform the work?

Analyze

Architect

Design Construct
& Integrate

Demo working
Product

V1
Test

Design Construct
& Integrate

Demo working
Product
V1 + V2

Test

Design Construct
& Integrate

Demo working
Product

V1 + V2 +V3
Test

Design Construct
& Integrate

Demo working
Product

V1 + V2 + V3 + V4
Test

Feature
Set 1

Feature
Set 2

Feature
Set 3

Feature
Set 4

Time

Fig. 1.1 Incremental software product development (PMI 2013a)

4 G. Ruhe and C. Wohlin

Each of these four core entities has three attributes: time, quality, and risk. The

time attribute refers to a description of the execution of the project over time.

Quality is applied as well to all the four entities. For example, the quality of the

people refers to the competence, diligence, and dedication of the staff assigned to

the project. The risk attribute describes the inherent uncertainty of all the entities.

In addition, there is a value attribute for the intent and product, as well as a cost
attribute for people and work. The majority of the cost is associated with the cost of

the people performing the work. The intended value can be defined in terms of

functional and quality requirements. The resulting value can be expressed in

financial terms by the net present value of the product.

Besides the common core concepts, there are factors used to differentiate pro-

jects. All these factors can be grouped into organization-level and project-level
project factors:

1. Organization-level factors:

(a) Business domain: For what domain is the software (–based) product

developed?

(b) Number of instances: How many instances of the software (–based) prod-

uct will be deployed?

(c) Maturity of organization: How mature are the processes of the software

developing organization?

(d) Level of innovation: How innovative is the organization?

(e) Culture: In which culture are the projects developed?

2. Project-level factors:

(a) Size: How big is the system under development?

(b) Stable architecture: Is a stable architecture in place?

(c) Business model: Under which business model is the software (–based)

product developed?

(d) Team distribution: How many teams are working in the project and in

which configuration?

(e) Rate of change: How stable is your business environment and how many

risks and uncertainties are you facing?

(f) Age of system: Greenfield (from scratch) vs. brownfield (evolving) software

system development?

(g) Criticality: How many people’s safety will be threatened if the system fails?

(h) Governance: Who manages the project managers? How much governance

is applied to the project?

This classification can serve as guidance to approach the question: which

software project management approach has proven successful and is recommended

for which given configuration of project-level and organization-level factors? We

do not expect having a single answer in most cases. We also expect having clusters

of configurations where certain approaches are recommended. As the pathway to

accumulate the knowledge needed to make these decisions, the empirical paradigm

1 Software Project Management: Setting the Context 5

suggests the replicated application of making the observations, modeling the real-

world phenomena, measuring and analyzing, validing hypotheses, and defining

another cycle with slightly changed parameters to confirm the existing and creating

the new knowledge (Basili et al. 1999).

1.3 Ten Knowledge Areas of Software Project

Management

The PMBOK (PMI 2013a) as a set of standard terminology and guidelines for

project management is familiar to most professionals and researchers. A PMBOK

knowledge area contains the processes that need to be accomplished within its

discipline in order to achieve an effective project management program. The

software extension of the PMBOK (PMI 2013b) is based on the PMBOK but

provides an extension toward commonly accepted practices for managing software

projects. Software project management processes are grouped into initiating, plan-
ning, executing, monitoring and controlling, and closing.

The whole body of knowledge of software project management is described by

ten knowledge areas. Each area is defined by a set of associated processes. In what

follows, and aligned with the software extension of the PMBOK (PMI 2013b), we

describe the main content of these knowledge areas. For five areas that are the

closest to the content of the book, a more detailed description, including inputs,

outputs, and the main tools and techniques (to be) used for the respective processes,

is given. These knowledge areas are:

• Time management

• Cost management

• Human resource management

• Communications management

• Risk management

1.3.1 Integration Management

This area coordinates other areas to work together throughout the project and

includes the processes and activities to identify, define, combine, unify and coor-

dinate the various processes and project management activities within the project

management process groups. Integration management contains management of

processes for controlling the project during its life-cycle from execution through

completion, as well as controlling successful management of stakeholder expecta-

tions. It also includes making choices about resource allocation, making trade-offs

among competing objectives and alternatives, and managing the interdependencies

among the project management knowledge areas. This knowledge area emphasizes

6 G. Ruhe and C. Wohlin

the generally accepted role of a project manager: performing coordination and

bringing all the pieces (the deliverables of the project) together. It also refers to

the integration of processes and activities (PMI 2013b).

1.3.2 Scope Management

A set of processes is used to ensure that the project includes all the requirements and

that no new requirements are added in a way that could harm the project. This

knowledge area includes the processes required to ensure that the project includes

all the work required, and only the work required, to complete the project success-

fully and includes setting clearly defined project objectives, defining major project

deliverables, and controlling changes to those deliverables. Managing the scope

primarily concerns defining and controlling what is and what is not included in the

project.

For software, the definition of product scope includes features and quality

attributes that are needed and desired by stakeholders. The product scope can be

used to estimate the project scope, and constraints on the project scope may

determine the product scope. Constraints on both of these may require trade-offs

among features, quality attributes, schedule, budget, resources, and technology.

1.3.3 Time Management

Processes are required to manage the timely completion of the project and to ensure

that the project is completed on schedule. In software projects, this knowledge area

is driven by risk, resource availability, business value, and the scheduling methods

used. Specific scheduling methods for software projects introduced by PMI

(2013b), including structured scheduling, schedule as an independent variable,

iterative scheduling with a backlog, on-demand scheduling, and portfolio manage-

ment scheduling. All the respective processes with their inputs, outputs, and tools

and techniques (to be) used are summarized in Table 1.1.

1.3.4 Cost Management

Project cost management includes the processes involved in planning, estimating,

budgeting, financing, funding, managing, and controlling costs so that the project

can be completed within the approved budget (PMI 2013a). In other words, this

knowledge area includes processes to ensure that the project is completed on

budget. Cost management for software projects includes making initial estimates

and updating them periodically and may include identifying and forecasting the

1 Software Project Management: Setting the Context 7

Table 1.1 Overview of project time management processes (PMI 2013b)

Process name Inputs Outputs Tools and techniques

Plan schedule

management

– Project management plan

– Project charter

– Enterprise environmental

factors

– Organizational process

assets

– Safety and security issues

– Schedule man-

agement plan

– Expert judgment

– Analytical techniques

– Meetings

Define activities – Schedule management

plan

– Scope baseline

– Enterprise environmental

factors

– Organizational process

assets

– Additional factors

– Activity list

– Activity attri-

butes

– Milestone list

– Decomposition

– Rolling wave planning

– Experts judgment

– Story breakdown structure

– Storyboards

– Use cases

Sequence

activities

– Schedule management

plan

– Activity list

– Activity attributes

– Milestone list

– Project scope statement

– Enterprise environmental

factors

– Organizational process

assets

– Architectural and IV & V

constraints

– Safety and security

analyses

– Project sched-

ule network

diagrams

– Project docu-

ment updates

– Feature sets

– Release plans

– Architectural

and

nonfunctional

dependencies

– Precedence diagramming

method (PDM)

– Dependency determination

– Applying leads and lags

– SAIV and time boxing

– Work in progress limits and

classes of service

– Feature set evaluation

– Service-level agreements

Estimate activity

resources

– Schedule management

plan

– Activity list

– Activity attributes

– Risk register

– Activity cost estimates

– Resource calendars

– Enterprise environmental

factors

– Organizational process

assets

– Activity

resource

requirements

– Resource

breakdown

structure

– Project docu-

ment updates

– Experts judgment

– Alternatives analysis

– Published estimating data

– Bottom-up estimating

– Project management

software

Estimate activity

durations

– Schedule management

plan

– Activity list

– Activity attributes

– Activity resource require-

ments

– Resource calendars

– Project scope statement

– Risk register

– Resource breakdown

– Activity dura-

tion estimates

– Project docu-
ment updates

– Experts judgment

– Analogous estimating

– Parametric estimating

– Three-point estimating

– Group decision-making

techniques

– Reserve analysis

(continued)

8 G. Ruhe and C. Wohlin

cost of maintaining and evolving a software product plus listening or updating

commercially acquired components over many years (PMI 2013b). All the respec-

tive processes with their inputs, outputs, and tools and techniques (to be) used are

summarized in Table 1.2.

1.3.5 Quality Management

Project quality management includes the processes and activities of the performing

organization that determine the quality policies, objectives, and responsibilities so

that the project will satisfy the needs for which it was undertaken. Project quality

management uses policies and procedures to implement, within the project’s

context, the organization’s quality management system and supports continuous

process improvement activities as undertaken on behalf of the performing organi-

zation (PMI 2013a). This area also includes developing plans to ensure that project

requirements, including product requirements, are met and validated. Quality

management can ultimately establish a quality policy, help understand quality

principles introduced by quality experts, develop quality assurance processes, and

control the quality of all project deliverables.

Table 1.1 (continued)

Process name Inputs Outputs Tools and techniques

structure

– Enterprise environmental

factors

– Organizational process

assets

Develop

schedule

– Schedule management

plan

– Activity list

– Activity attributes

– Project schedule network

diagrams

– Activity resource require-

ments

– Resource calendars

– Activity duration esti-

mates

– Project scope statement

– Risk register

– Project staff assignment

– Resource breakdown

structure

– Enterprise environmental

factors

– Organizational process

assets

– Schedule base-

line

– Project sched-

ule

– Schedule data

– Project calen-

dar

– Project man-

agement plan

updates

– Project docu-

ment updates

– Release and

iteration plan

updates

1 Software Project Management: Setting the Context 9

Table 1.2 Project cost management overview of processes (PMI 2013b)

Process name Inputs Outputs Tools and techniques

Plan cost

management

– Project management

plan

– Project charter

– Enterprise environ-

mental factors

– Organizational process

assets

– Cost management

plan

– Accuracy of esti-

mate

– Units of measure

– Cost performance

measurement

methods

– Expert judgment

– Analytical techniques

– Meetings

Estimate costs – Cost management plan

– Human resource man-

agement plan

– Scope baseline

– Project schedule

– Risk register

– Enterprise environ-

mental factors

– Organizational process

assets

– Software size and

complexity

– Rate of work

– Activity cost esti-

mates

– Basis of estimates

– Project document

updates

– Experts judgment

– Analogous estimating

– Parametric estimating

– Bottom-up estimating

– Three-point estimates

– Reserve analysis

– Cost of quality

– Project management

software

– Vendor bid analysis

– Group decision-making

techniques

– Time-boxed estimating

– Function point and source

line of code estimating

– Story point and use-case

point estimating

– Estimating reusable code

effort

– Price to win

Determine

budget

– Cost management plan

– Scope baseline

– Activity cost estimates

– Basis of estimates

– Project schedule

– Resource calendars

– Risk register

– Agreements

– Organizational process

assets

– Cost baseline

– Project funding

requirements

– Project document

updates

– Cost aggregation

– Reserve analysis

– Experts judgment

– Historical relationships

– Funding limit

reconciliation

Control costs – Project management

plan

– Project funding

requirements

– Work performance

data

– Organizational process

assets

– Work performance

information

– Cost forecast

– Change requests

– Project management

plan updates

– Project document

updates

– Organizational pro-

cess assets updates

– Earned value manage-

ment

– Forecasting

– To-complete perfor-

mance index

– Performance reviews

– Project management

software

10 G. Ruhe and C. Wohlin

Software quality has been a fundamental issue from the early days of developing

algorithms. Software quality models include process quality, internal and external

product quality, quality in use, data quality, and quality of the software code. The

complexities of software quality have led to a number of quality models, such as

those in ISO/IEC 25000 and other standards (PMI 2013b).

1.3.6 Human Resource Management

Project human resource management includes the processes that organize, manage,

and lead the project team. This knowledge area includes all the processes used to

develop, manage, and put the project team together. This involves identifying

project stakeholders, developing the project team, motivating the team, and under-

standing management styles and organizational structure.

Software project staffs collaborate to solve novel problems with incomplete

information. Software project managers usually put less emphasis on directing

the work and more on facilitating the efficiency and effectiveness of project

teams, and solving the fitness problem of each team member within the team is

critical due to the interaction and communication needs of software projects. All the

respective processes with their inputs, outputs, and tools and techniques (to be) used

are summarized in Table 1.3.

1.3.7 Communications Management

Project communications management includes the processes that are required to

ensure the timely and appropriate planning, collection, creation, distribution, stor-

age, retrieval, management, control, monitoring, and ultimate disposition of project

information (PMI 2013a). This knowledge area determines what information is

needed, how that information will be sent and managed, and how project perfor-

mance is reported. This involves planning and distributing information correctly

and to the appropriate stakeholders, reporting the performance, managing stake-

holders, and developing processes to ensure effective transfer of information.

Communications management is mainly about effective communication among

those involved in the project, from stakeholders to internal project interests at

different levels and with different views.

The role of project communication is a primary consideration for software

projects because teams of individuals who engage in closely coordinated, intellec-

tual activities develop software. With no physical product to reference, effective

communication is paramount for keeping team members productively engaged and

stakeholders informed (PMI 2013b). All the respective processes with their inputs,

outputs, and tools and techniques (to be) used are summarized in Table 1.4.

1 Software Project Management: Setting the Context 11

1.3.8 Risk Management

Project risk management includes the processes of conducting risk management

planning, identification, analysis, response planning, and risk control in a project.

The objectives of project risk management are to increase the likelihood and impact

of positive events and decrease the likelihood and impact of negative events in the

project (PMI 2013a). This area includes identifying potential project risk events,

using qualitative and quantitative analysis to prioritize potential risks, respond to

risk situations, and develop risk monitoring and controlling processes. This area can

Table 1.3 Project human resource management overview of processes (PMI 2013b)

Process name Inputs Outputs Tools and techniques

Plan human

resource

management

– Project manage-

ment plan

– Activity resource

requirements

– Enterprise envi-

ronmental factors

– Organizational

process assets

– Human resource man-

agement plan

– Organization charts and

position descriptions

– Networking

– Organizational theory

– Expert judgment

– Meetings

Acquire project

team

– Human resource

management

plan

– Enterprise envi-

ronmental factors

– Organizational

process assets

– Project staff assign-

ments

– Resource calendars

– Project management

plan updates

– Preassignment

– Negotiation

– Acquisition

– Virtual teams

– Multi criteria decision

analysis

Develop project

team

– Human resource

management

plan

– Project staff

assignments

– Resource calendars

– Team performance

assessments

– Enterprise environ-

mental factors

updates

– Interpersonal skills

– Training

– Team-building activities

– Ground rules

– Colocation

– Recognition and rewards

– Personnel assessment

tools

– Additional tools and

techniques

Manage project

team

– Human resource

management

plan

– Project staff

assignments

– Team performance

assessments

– Issue log

– Work performance

reports

– Organizational

process assets

– Change requests

– Project management

plan updates

– Project documents

updates

– Enterprise environ-

mental factors

updates

– Organizational pro-

cess assets updates

– Observation and conver-

sation

– Project performance

appraisals

– Conflict management

– Interpersonal skills

– Additional consideration

12 G. Ruhe and C. Wohlin

be defined as a proactive approach to risk management in which the project team

and the project manager actively discuss potential risk situations that will make

difference between a smooth-flowing project and a project filled with surprises and

potential disasters.

Each software development project has different uncertainties and risks, because

each project is a unique combination of requirements, design, and construction,

resulting in distinct software products (the uncertainty arises from a lack of

information, and risk is a potential issue). Software risk management aims to

improve the probability of achieving the project goals; software opportunity man-

agement aims to exceed the project goals. Opportunity management is commonly

Table 1.4 Project communications management overview of processes (PMI 2013b)

Process name Inputs Outputs Tools and techniques

Plan communication

management

– Project management

plan

– Stakeholder register

– Enterprise environ-

mental factors

– Organizational pro-

cess assets

– Communication man-

agement plan

– Project documents

update

– Communication

requirements analy-

sis

– Communication tech-

nology

– Communication

models

– Communication

methods

– Meetings

Manage

communication

– Communication

management plan

– Work performance

reports

– Enterprise environ-

mental factors

– Organizational pro-

cess assets

– Release and itera-

tion plans

– Project communica-

tions

– Project management

plan updates

– Project documents

updates

– Organizational pro-

cess assets updates

– Special communica-

tion tools

– Update information

radiators

– Communication tech-

nology

– Communication

models

– Communication

methods

– Information manage-

ment systems

– Performance reporting

– Information radiators

– Velocity

– Historical velocity

– Online collaboration

tools

Control

communication

– Project management

plan

– Project communica-

tions

– Issue log

– Work performance

data

– Organizational pro-

cess assets

– Prioritized backlog

– Velocity statistics

and projections

– Work performance

information

– Change requests

– Project management

plans updates

– Organizational pro-

cess assets updates

– Iteration and release

plan updates

– Reprioritized backlog

– Information manage-

ment systems

– Expert judgment

– Meetings

– Considerate commu-

nications

– Automated systems

1 Software Project Management: Setting the Context 13

applied in software project management, especially in adaptive projects that have

the opportunity to respond to customer-requested changes, apply new technology,

or receive additional resources (PMI 2013b). All the respective processes with their

inputs, outputs, and tools and techniques (to be) used are summarized in Table 1.5.

1.3.9 Procurement Management

Project procurement management includes the processes necessary to purchase or

acquire products, services, or results needed from outside the project team to

complete the project objectives. This includes determining what goods and services

should be purchased or developed internally by an organization, planning pur-

chases, and developing procurement documentation such as requests for proposals.

It also involves determining appropriate contract types, negotiating terms, selecting

sellers, managing contracts through implementation, and then managing project

closure and contractual closure.

This knowledge area addresses planning, conducting, controlling, and closing

out software project procurements. It also addresses the acquisition of commer-

cially available software for use in a software project. Licensing of software

packages, obtaining of rights to modify open source software, the reuse of existing

components, and the purchase of specialty services to build software are all

elements of software procurement. Software may also be procured as a service.

Just as with commercially available software, it is important to understand the exact

nature of the services provided; how they might evolve over time; and what control

the customer retains over the data provided to be processed under the service, the

results obtained, and any security obligations. These considerations are usually

covered in a service-level agreement. Often, the standard agreement issued by the

provider may not meet the acquirer’s specific needs (PMI 2013b).

1.3.10 Stakeholder Management

Project stakeholders include anyone influenced by or influencing the result of a

(software) project. The involvement of different types of customers, developers,

management, shareholders, competitors, as well as standards and legislations are

important for the execution and success of the project. Project stakeholder man-

agement includes the processes to ensure the identification of stakeholders and to

plan, manage, and control their engagement, which is required to identify the

people, groups, or organizations that could impact or be impacted by the project,

to analyze stakeholder expectations and their impact on the project, and to develop

appropriate management strategies for effectively engaging stakeholders in project

decisions and execution. Stakeholder management also focuses on continuous

communication with stakeholders to understand their needs and expectations,

14 G. Ruhe and C. Wohlin

Table 1.5 Project risk management overview of processes (PMI 2013b)

Process name Inputs Outputs Tools and techniques

Plan risk

management

– Project management

plan

– Project charter

– Stakeholder register

– Enterprise environ-

mental factors

– Organizational process

assets

– Risk management

plan

– Analytical techniques

– Expert judgment

– Meetings

– Additional consideration

Identify risks – Cost management plan

– Schedule management

plan

– Quality management

plan

– Human resource man-

agement plan

– Scope baseline

– Activity cost estimates

– Activity duration esti-

mates

– Stakeholder register

– Project documents

– Procurement docu-

ments

– Enterprise environ-

mental factors

– Organizational process

assets

– Risk taxonomies

– Risk register – Documentation reviews

– Information gathering

techniques

– Checklist analysis

– Assumptions analysis

– Diagramming techniques

– SWOT analysis

– Expert judgment

– Retrospective meetings

Perform qualita-

tive risk

analysis

– Risk management plan

– Scope baseline

– Risk register

– Enterprise environ-

mental factors

– Organizational process

assets

– Project documents

updates

– Risk probability and

impact assessment

– Probability and impact

matrix

– Risk data quality assess-

ment

– Risk categorization

– Risk urgency assessment

– Expert judgment

– Additional consideration

Perform quantita-

tive risk

analysis

– Risk management plan

– Cost management plan

– Schedule management

plan

– Risk register

– Enterprise environ-

mental factors

– Organizational process

assets

– Project manage-

ment plan

updates

– Project documents

update

– Additional

consideration

– Data gathering and repre-

sentation techniques

– Quantitative risk analysis

and modeling techniques

– Expert judgment

(continued)

1 Software Project Management: Setting the Context 15

addressing issues as they occur, managing conflicting interests, and fostering

appropriate stakeholder engagement in project decisions and activities.

Stakeholder management is critical for achieving successful outcomes for soft-

ware projects because software has no physical presence and is often novel.

Software is difficult to visualize until it is demonstrated. In addition, there often

exists a gulf of expectation between what a customer or product owner states and

what the developer interprets. Misalignments among stakeholders represent a major

risk to the successful completion of software projects (PMI 2013b).

1.4 The Book’s Coverage of the PMBOK Knowledge Areas

In Table 1.6, we define each chapter’s main scope related to the established

PMBOK knowledge areas. It shows that the collection of chapters is in good

match with the project management knowledge areas introduced by the PMBOK

(PMI 2013a). Some of the chapters are related to more than one knowledge area.

Chapter 8 is the only exception to this. This chapter is more related to “The

Standard for Portfolio Management” (PMI 2013c), published recently in response

to the increasing acceptance of portfolio management. On the other hand, almost all

the knowledge areas are covered by at least one chapter, with most of them having

multiple connections. Again, there is one exception, and this is the area of procure-

ment management, being outside the scope of this book.

Table 1.5 (continued)

Process name Inputs Outputs Tools and techniques

Plan risk

responses

– Risk management plan

– Risk register

– Project manage-

ment plan

updates

– Project documents

update

– Additional

consideration

– Strategies for negative

risks or treats

– Strategies for positive

risks or opportunities

– Contingent response

opportunities

– Expert judgment

– Additional consideration

Monitor and con-

trol risks

– Project management

pan

– Risk register

– Work performance

data

– Work performance

reports

– Work performance

information

– Change requests

– Project manage-

ment plan

updates

– Project documents

updates

– Organizational

process assets

updates

– Risk reassessment

– Risk audits

– Variance and trend analy-

sis

– Technical performance

measurement

– Reserve analysis

– Meetings

16 G. Ruhe and C. Wohlin

http://dx.doi.org/10.1007/978-3-642-55035-5_8

Table 1.6 Book chapters vs. PMBOK knowledge areas

Chapter Title PMBOK knowledge areas

2 Rethinking Success in Software Projects:

Looking beyond the Failure Factors

– Communications management

– Time management

– Cost management

– Scope management

– Risk management

– Stakeholder management

3 Cost Prediction and Software Project

Management

– Cost management

4 Human Resource Allocation and Scheduling

for Software Project Management

– Human resource management

– Time management

5 Software Project Risk and Opportunity

Management

– Risk management

– Cost management

6 Model-Based Quality Management of Soft-

ware Development Projects

– Quality management

7 Supporting Project Management Through

Integrated Management of System and

Project Knowledge

– Integration management

– Scope management

– Time management

– Quality management

– Communications management

– Risk management

– Stakeholder management

8 A Framework for Implementing Product

Portfolio Management in Software

Business

– Not in the domain of PMBOK knowl-

edge areas, but related to portfolio

management

9 Managing Global Software Projects – Communications management

– Human resource management

10 Motivating Software Engineers Working in

Virtual Teams Across the Globe

– Human resource management

11 Agile Project Management – Time management

– Human resource management

– Communications management

– Integration management

– Stakeholder management

12 Distributed Project Management : Ten Mis-

conceptions That Might Kill Your

Distributed Project

– Communications management

– Time management

– Cost management

– Human resource management

13 Management and Coordination of Free/Open

Source Projects

– Human resource management

– Communications management

– Integration management

14 Inner Source Project Management – Communications management

– Integration management

– Time management

– Cost management

15 Search-Based Software Project Management – Human resource management

– Time management

– Cost management

16 Social Media Collaboration in Software

Projects

– Communications management

– Stakeholder management

(continued)

1 Software Project Management: Setting the Context 17

http://dx.doi.org/10.1007/978-3-642-55035-5_2
http://dx.doi.org/10.1007/978-3-642-55035-5_3
http://dx.doi.org/10.1007/978-3-642-55035-5_4
http://dx.doi.org/10.1007/978-3-642-55035-5_5
http://dx.doi.org/10.1007/978-3-642-55035-5_6
http://dx.doi.org/10.1007/978-3-642-55035-5_7
http://dx.doi.org/10.1007/978-3-642-55035-5_8
http://dx.doi.org/10.1007/978-3-642-55035-5_9
http://dx.doi.org/10.1007/978-3-642-55035-5_10
http://dx.doi.org/10.1007/978-3-642-55035-5_11
http://dx.doi.org/10.1007/978-3-642-55035-5_12
http://dx.doi.org/10.1007/978-3-642-55035-5_13
http://dx.doi.org/10.1007/978-3-642-55035-5_14
http://dx.doi.org/10.1007/978-3-642-55035-5_15
http://dx.doi.org/10.1007/978-3-642-55035-5_16

1.5 The Multidisciplinary Nature of Project Management

Project management (PM) is seen by Kwak and Anbari (2008) as the integration

and application of what was called allied disciplines. The authors analyzed the past,
current, and future trends of the allied disciplines by exploring, identifying, and

classifying the top management journal articles related to project management

research. The authors defined eight main areas (allied disciplines) and conducted

some research trend analysis. They studied 537 articles published between 1950

and June 2007. A ranking of the disciplines according to the number of studies is

presented in Table 1.7.

Kwak and Anbari (2008) predicted that project management becomes more

multidisciplinary and flexible in adopting tools from other disciplines. As

documented by the book, this also applies to software project management.

Accurate planning and estimation of cost and schedule is difficult for all kinds of

projects, but it is particularly difficult for software projects because of the cognitive

nature of work, the wide variety of productivity among individuals, the poor

requirement definition, and the data inaccuracy of past projects. In the study of

allied disciplines, the authors predict that Strategy/Integration/Portfolio Manage-
ment/Value of Project Management and Marketing and Quality Management/Six
Sigma/Process Improvement should have a growing impact on project management

as business strategies are developed and qualities are measured and analyzed to plan

and implement effective project management. Chapters 6, 7, and 8 are contributions

in this direction.

According to PMI (2013b), the creation of software requires innovative problem

solving to create unique solutions. Software projects are more akin to research and

development projects than to construction and manufacturing projects. From an

allied disciplines point of view, Technology Applications/Innovation/New Product
Development/Research and Development as well as Performance Management/
Earned Value Management/Project Finance and Accounting are poised to make

major breakthroughs given the recent organizational interest and institutional

determination in achieving project success (Kwak and Anbari 2008). Chapters 2,

3, and 5 are contributions in this direction.

Operations Research/Decision Sciences/Operation Management/Supply Chain

Management, Performance Management/Earned Value Management/Project

Table 1.6 (continued)

Chapter Title PMBOK knowledge areas

17 Process Simulation: A Tool for Software

Project Managers?

– Time management

– Cost management

– Risk management

18 Occam’s Razor and Simple Software Project

Management

– Cost management

18 G. Ruhe and C. Wohlin

http://dx.doi.org/10.1007/978-3-642-55035-5_6
http://dx.doi.org/10.1007/978-3-642-55035-5_7
http://dx.doi.org/10.1007/978-3-642-55035-5_8
http://dx.doi.org/10.1007/978-3-642-55035-5_2
http://dx.doi.org/10.1007/978-3-642-55035-5_3
http://dx.doi.org/10.1007/978-3-642-55035-5_5
http://dx.doi.org/10.1007/978-3-642-55035-5_17
http://dx.doi.org/10.1007/978-3-642-55035-5_18

Finance and Accounting, Information Technology/Information Systems, and Tech-

nology Applications/Innovation/New Product Development/Research and Devel-

opment will work together to deliver tools and techniques to allow the “science” of

planning, scheduling, and cost control to function in a real project delivery envi-

ronment. Chapters 4, 15, 17, and 18 are contributions in this direction.

1.6 The Future of Software Engineering

Boehm predicted that in response to the increasing criticality of software within

systems and the increasing demands being put on twenty-first century systems,

systems and software engineering processes will evolve significantly over the next

two decades (Boehm 2006a). By analyzing today’s trends, Goff stated that the

average enterprise in 2025, even with innovation, market pressures, and significant

effort, will still be struggling to adapt with today’s leading technologies (Goff

2009).

In the case of predicting the future in software project management, both trends

of project management and software engineering could be helpful. The ten trends in

software engineering discussed in Boehm and Lane (2010) are

1. Increasing emphasis on rapid development and adaptability

2. Increasing software criticality and the need for quality assurance

3. Increased complexity, global systems of systems, and the need for scalability

and interoperability

4. Increased needs to accommodate Commercial-Off-The-Shelf (COTS) software

services and legacy systems

Table 1.7 Ranking of PM allied disciplines according to Kwak and Anbari (2008)

Rank Discipline

Percentage of

publications

1 Strategy/Integration/Portfolio Management/Value of Project Man-

agement and Marketing

30

2 Operations Research/Decision Sciences/Operation Management/

Supply Chain Management

23

3 Organizational Behavior/Human Resources Management 13

4 Information Technology/Information Systems 11

5 Technology Applications/Innovation/New Product Development/

Research and Development

11

6 Performance Management/Earned Value Management/Project

Finance and Accounting

7

7 Engineering and Construction/Contracts/Legal Aspects/Expert

Witness

3

8 Quality Management/Six Sigma/Process Improvement 2

1 Software Project Management: Setting the Context 19

http://dx.doi.org/10.1007/978-3-642-55035-5_4
http://dx.doi.org/10.1007/978-3-642-55035-5_15
http://dx.doi.org/10.1007/978-3-642-55035-5_17
http://dx.doi.org/10.1007/978-3-642-55035-5_18

5. Increasingly large volumes of data and ways to learn from them

6. Increased emphasis on users and end value

7. Computational plenty and multicore chips

8. Increasing integration of software and systems engineering

9. Increasing software autonomy

10. Combinations of biology and computing

Technology trends and the continuing need for product differentiation, global-

ization, and its effect on the market and processes for new technology introduction

accelerate system change, which makes the trade-off between the speed develop-

ment and the costs of development a necessity. Nidiffer and Dolan (2005) stated

that the ever-increasing growth and complexity of software-intensive systems and

the appearance of geographically distributed systems are today’s trends. Geograph-

ically distributed projects let managers compress schedules by employing larger

workforces than could fit in a single location, using time zone differences to

increase the number of productive work hours in a day, and securing scarce

resources such as knowledge experts and other specialized resources no matter

where they reside. However, these benefits come with increased risks because of the

lack of face-to-face communication, in particular the potential loss of trust, collab-

oration, and communication richness.

On the other hand, as a probable situation, computational plenty will spawn new

types of applications and platforms. These will present process-related challenges

for specifying their configurations and behavior; generating the resulting applica-

tions; verifying and validating their capabilities such as performance and depend-

ability; and integrating them into even more complex systems of systems. All these

may need minor changes in the domain of project management. Boehm (2006b)

indicates that key challenges include cross-cultural bridging; the establishment of a

common shared vision and trust; contracting mechanisms and incentives; hand-

overs and change synchronization in multi-time zone development; and culture-

sensitive collaboration-oriented groupware.

1.7 Software Project Management: Past and Future

While the era of modern project management as a discipline started in the 1950s, it

was by about 1980 that the software development industry started implementing

some established project management practices. During this period, Barry Boehm

defined the whole field of software engineering economics by introducing

COCOMO, the Constructive Cost Model for software (Boehm 1981). In 1984,

The Project Management Institute (PMI) was offering its certification program for

the first time. By the 1990s, project management theories and practices accepted

widely, and project management was known as a profession.

More recently, project management has become a factor present at all levels, in

all divisions of many companies. Goff (2009) discussed visions for the project

20 G. Ruhe and C. Wohlin

management software industry from an industrial point of view. The following

trends were projected:

• Project portfolio management

Currently there are several vendors that create tools to support portfolios in

the case of managing integration and it should support the future of project

management.

• Collaboration with the means of virtual teams and social networks

Combination of virtual teams with social networks in conjunction with more

advanced tools supporting collaboration and communication creates new oppor-

tunities of working together as virtual teams, not being colocated. This is

projected to result in a massive increase in the market size for PM software.

• Mastery of real-time tracking

Time tracking based on a time sheet is a critical success factor for many teams.

Earned value management becomes more useful if retrospective analysis moves

from being done one month after the work towards being done only one day

afterwards, in combination with having much more accurate and reliable

information available.

• Capture and reuse of project knowledge

Developing the project schedule and project plan once would be really great; in

fact all successive projects reuse the materials as templates. This reuse could be

applied in project documents such as test plans or requirements, too.

• Dashboards and project intelligence

Project tracking may be based on easy-to-measure trailing indicators instead of

critical indicators. Monitoring the project status in an efficient way will help in

project communication improvement and smarter decisions.

• Project management absorbed into enterprise systems

More and more connectivity to other enterprise system functionality. Strongest

ties are to enterprise resource planning (ERP) systems, but links and increasing

degree of overlap also exist with customer relationship management (CRM),

supply chain management (SCM), and product life cycle management (PLM)

systems.

1.8 This Book

Software Project Management in a Changing World is not “just another book” in

the area of software project management. It brings together the various current

directions within the discipline, which have been so far presented mainly in

individual articles or books. Whenever appropriate, the content of the book is

based on evidence coming from empirical evaluation of the proposed approaches.

There is already a great variety of books and publications offering guidelines and

best practices. To keep the content of the book focused, the implicit assumption

here is that we do not address small-scale projects. For professionals, the book is

1 Software Project Management: Setting the Context 21

intended to be a source of inspiration to refine their project management skills into

new areas. For researchers and graduate students, the book presents some of the

most recent methods and techniques to accommodate the new challenges of the

discipline. The goal of the book is to find a good balance between new results and

putting together existing material to allow its usage in new contexts.

The book consists of four parts, preceded by a general introduction. Each of the

parts consists of a sequence of chapters. All the four parts start with a brief overview

outlining its content.

Introduction

1. Software Project Management: Setting the Context by Günther Ruhe and Claes

Wohlin

Part I: Fundamentals

2. Rethinking Success in Software Projects: Looking Beyond the Failure Factors

by Darren Dalcher

3. Cost Prediction and Software Project Management by Martin Shepperd

4. Human Resource Allocation and Scheduling for Software Project Management

by Constantinos Stylianou and Andreas S. Andreou

5. Software Project Risk and Opportunity Management by Barry Boehm

Part II: Supporting Areas

6. Model-based Quality Management of Software Development Projects by Jens

Heidrich, Dieter Rombach and Michael Kläs

7. Supporting Project Management through Integrated Management of System

and Project Knowledge by Barbara Paech, Alexander Delater and

Tom-Michael Hesse

8. A Framework for Implementing Product Portfolio Management in Software

Businesses by Erik Jagroep, Sjaak Brinkkemper, Inge van de Weerd and Ton

Dobbe

9. Managing Global Software Projects by Christof Ebert

10. Motivating Software Engineers Working in Virtual Teams across the Globe by

Sarah Beecham

Part III: New Paradigms

11. Agile Project Management by Tore Dybå, Torgeir Dingsøyr and Nils Brede

Moe

12. Distributed Project Management by Darja Šmite

13. Management and Coordination of Free/Open Source Projects by Ioannis

Stamelos

14. Inner Source Project Management by Martin Höst, Klaas-Jan Stol and Alma

Oručević-Alagić

22 G. Ruhe and C. Wohlin

Part IV: Emerging Techniques

15. Search-Based Software Project Management by Filomena Ferrucci, Mark

Harman and Federica Sarro

16. Social Media Collaboration in Software Projects by Rachel Harrison and

Varsha Veerappa

17. Process Simulation: A Tool for Software Project Managers? by Dietmar Pfahl

18. Occam’s Razor and Simple Software Project Management by Tim Menzies

Software project management is a dynamically evolving discipline, which is

constituted of a wide range of sub disciplines. Each of them covers specific

practices, methods, and tools. Even though we have covered a broad range of

topics, the book is not intended to be comprehensive. The selection of the chapters

was primarily based on the perceived importance of the topics, although it was

impossible to cover all topics of interest. For example, even though there exists a

large variety of proprietary and open source tools (Pereira et al. 2013), we consid-

ered software project management tools in general being outside the scope of the

book. Also, some recent trends such as the one of utilizing the power of predictive

analytics (Hassan 2013) or of visualization of project data (Novais et al. 2013) for

the purpose of qualifying project management were not included.

The book is intended to attract readers from both academia and practice. The

targeted benefits for the readers are

• Getting an overview of the most recent methods and techniques

• Support for better decision-making and providing inspiration when conducting

the activities related to project management in new contexts

• Learning about the most recent trends and understanding the implications of

their implementations

References

Basili VR, Shull F, Lanubile F (1999) Building knowledge through families of experiments. IEEE

Trans Softw Eng 25(4):456–473

Boehm BW (1981) Software engineering economics. Prentice Hall, Englewood Cliffs, NJ

Boehm BW (2006a) Some future trends and implications for systems and software engineering

processes. Syst Eng 9(1):1–19

Boehm BW (2006b) A view of 20th and 21st century software engineering. In: 28th international

conference on software engineering, New York, pp 12–29

Boehm BW, Lane JA (2010) Evidence-based software processes. In: International conference on

software process, ICSP 2010. LNCS, vol 6195. Springer, Berlin, pp 62–73

Brooks FP (1987) No silver bullet: essence and accidents of software engineering. IEEE Comput

20(4):10–19

Goff SA (2009) Visions for the project management software industry. In: Cleland D, Bidanda B

(eds) Project management circa 2025. Project Management Institute, Athabasca University,

Newtown Square, PA, pp 1–15

Hassan AE (2013) Software analytics: going beyond developers. IEEE Softw 30(4):53

Kruchten P (2011) The frog and the octopus – a model of software development. CSI Commun 35

(4):12–15

1 Software Project Management: Setting the Context 23

Kwak YH, Anbari FT (2008) Impact on project management of allied disciplines: trends and future

of project management practices and research. Project Management Institute, Newtown

Square, PA

Larman C, Basili VR (2003) Iterative and incremental development: a brief history. Computer 36

(6):47–56

Nidiffer KE, Dolan D (2005) Evolving distributed project management. IEEE Softw 22(5):63–72

Novais RL, Torres A, Mendes TS, Mendonça M, Zazworka N (2013) Software evolution visual-

ization: a systematic mapping study. Inf Softw Technol 55:1860–1883

Pereira AM, Goncalves RQ, von Wangenheim CG, Buglione L (2013) Comparison for open

source tools for project management. Int J Softw Eng Knowl Eng 23:189–209

PMI (2013a) A guide to the project management body of knowledge (PMBOK® guide), 5th edn.

Project Management Institute, Newtown Square, PA

PMI (2013b) Software Extension to the PMBOK Guide, 5th edn. Project Management Institute,

IEEE Computer Society, Newtown Square, PA

PMI (2013c) The Standard for Portfolio Management, 3rd edn. Project Management Institute,

Newtown Square, PA

Biography Günther Ruhe holds an Industrial Research Chair in Software Engi-

neering at University of Calgary. Dr. Ruhe received a doctorate rer. nat degree in

Mathematics with emphasis on Operations Research from Freiberg University and

a doctorate habil. nat. degree (Computer Science) University of Kaiserslautern.

From 1996 until 2001, he was the deputy director of the Fraunhofer Institute for

Experimental Software Engineering (Fh IESE). Ruhe received an iCORE research

award for the period 2001 to 2007. Since 2007, he had served as an Associate Editor

of the Journal of Information and Software Technology, published by Elsevier. His
main research interests are in the areas of Product Release Planning, Software

Project Management, Empirical Software Engineering as well as Search-based

Software Engineering. He is a Senior member of IEEE and a member of the

ACM. Dr. Ruhe is the Founder and CEO of Expert Decisions Inc., a University

of Calgary spin-off company created in 2003.

Claes Wohlin is Professor of Software Engineering at Blekinge Institute of Tech-

nology, Sweden. From January 1, 2014, he has been serving as the Dean for the

Faculty of Computing. ProfessorWohlin is a guest professor at Shandong University

at Weihai in China. Prior to joining BTH in 2000, he held professor chairs at Lund

and Linköping Universities. He has been a Visiting Professor at Chalmers Univer-

sity of Technology in Göteborg (2005–2008) and at the University of New South

Wales in Sydney, Australia (2009–2011). Professor Wohlin received a Ph.D. degree

in Communication Systems from Lund University in 1991. Since January 2008,

Professor Wohlin has been Editor-in-Chief of the Journal of Information and
Software Technology, published by Elsevier, and he has been the Co-Editor-in-Chief
of the journal since 2001. In 2011, Claes Wohlin was elected member of the Royal

Swedish Academy of Engineering Sciences. He is a senior member of IEEE.

24 G. Ruhe and C. Wohlin

Part I

Fundamentals

Introduction

Software project management as such implies managing a set of fundamental

aspects in relation to the development and evolution of software as outlined in

Chap. 1. In this part of the book, we have invited some of the leading experts in

relation to a set of fundamental areas for a software project manager to master, and

they share their knowledge, insights and accompanying recommendations and

conclusions in four chapters in this part of the book.

In Chap. 2, Darren Dalcher challenges us to rethink the definition of software

project management success. The chapter starts off by summarizing some of the

literature in reporting on the failures in relation to software projects. The data

clearly indicates that it is a daunting task to succeed with your software project, in

particular if it is a large project. He goes on to explain how the project manager all

too often is not really in charge of the main success factors: software performance in

terms of what the software should achieve, cost of development and delivery time.

Dalcher describes the need to have multiple categories for success, for example,

project success and product success. Based on this reasoning, the chapter presents a

four-level model of success in relation to software projects and their output. Some

examples are presented to highlight how the perception of failure or success may

change with the levels as well as over time.

Martin Shepperd provides a review of software project cost prediction in

Chap. 3. He starts by discussing some of the main reasons for the problems in

relation to cost prediction: 1) complexity of the development, 2) software develop-

ment is a design activity, 3) estimates are needed early and 4) the development is

often put under social and political pressure. The chapter continues by reviewing

some of the techniques for cost prediction both formal models and expert judgment.

Challenges in relation to both techniques for cost prediction are discussed along

with the need to consider both the people and formal aspects. Particular emphasis is

given to the problems that arise from cognitive biases, that is, heuristics that cause

even experts to deviate from optimal or logical decision-making. Based on the

http://dx.doi.org/10.1007/978-3-642-55035-5_1
http://dx.doi.org/10.1007/978-3-642-55035-5_2
http://dx.doi.org/10.1007/978-3-642-55035-5_3

discussion, Shepperd provides some recommendations in relation to improving the

practice of software cost prediction.

In Chap. 4, Constantinos Stylianou and Andreas S. Andreou address some of the

issues in relation to human resource allocation and scheduling in software projects.

Given that software development is a design activity, the human aspect of devel-

opment and management is crucial. Stylianou and Andreou focus on human

resources from a planning perspective, including assigning developers and teams

to tasks within the development. The chapter provides an overview of some recent

approaches to human resource allocation and scheduling. The most common

general approaches in research relate to using different specific techniques in

relation to mathematical modelling and computational intelligence. The chapter

provides summaries and references to specific approaches to human resource

allocation and scheduling. It ends with a discussion on the shift towards also

incorporating non-technical factors in human resource allocation and scheduling

and, in particular, the adoption of a more human-centric approach by using software

developers’ personality types to allocate tasks and form teams.

Barry Boehm has authored the final chapter (Chap. 5) in this part. The chapter

discusses risk and opportunity management in relation to software projects. Risk is

an uncertain condition and event, which may jeopardize the success of the software

project. Boehm describes a number of aspects to be addressed to manage risk. He

discusses the duality between risk and opportunity, where risks may generate losses

and opportunities may result in gains. He describes and illustrates how risk and

opportunity exposure can be managed. Boehm highlights that not only risks must be

managed, but also the opportunities. He continues by discussing the joint manage-

ment of risks and opportunities. Furthermore, he introduces the concept of lean risk

management plans and discusses risk tracking.

The four chapters in this part give an in-depth insight into some of the challenges

related to a selection of fundamental areas for anyone conducting research into

software project management or managing a software project.

26 Part I Fundamentals

http://dx.doi.org/10.1007/978-3-642-55035-5_4
http://dx.doi.org/10.1007/978-3-642-55035-5_5

Chapter 2

Rethinking Success in Software Projects:

Looking Beyond the Failure Factors

Darren Dalcher

Abstract The notions of success and failure in software projects are confusing.

Failure is often considered in the context of the iron triangle as the inability to meet

time, cost, and performance constraints. While there is a consensus around the

prevalence of project failure, new projects seem destined to repeat past mistakes.

This chapter tries to advance the discussion by offering a new perspective for

reasoning about the meaning of success and the different types of software project

failures.

In order to court project success, practitioners need to rise beyond a fixation with

the internal parameters of efficiency, thus bringing forth the effectiveness required

to secure project success. The chapter begins by discussing the limited insights

from existing project failure surveys, before offering a four-level model addressing

the essence of successful delivery and operation in software projects. Following

consideration of outcomes and time, the chapter offers a series of vignettes and mini

case studies that highlight the rich interplay between the four levels of success,

before addressing the types of measures underpinning the four levels and the need

to develop a multi-dimensional perspective to obtain a more accurate picture

regarding the success of a project.

2.1 The Extent of Software Project Failures

The popular computing literature is awash with stories of software development

failures and their adverse impacts on individuals, organisations, and societal infra-

structure. Indeed, contemporary software development practice is regularly

D. Dalcher (*)

NCPM, University of Hertfordshire, MacLaurin Building, 4 Bishops Square, Hatfield,

Hertfordshire AL10, 9AB, UK

e-mail: d.dalcher2@herts.ac.uk

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_2, © Springer-Verlag Berlin Heidelberg 2014

27

mailto:d.dalcher2@herts.ac.uk

characterised by runaway projects, late delivery, exceeded budgets, reduced func-

tionality, and questionable quality that often translate into cancellations, reduced

scope, and significant rework cycles (Dalcher 1994). The net result is an accumu-

lation of waste typically measured in financial terms. For example, in 1995, failed

U.S. projects cost $81 billion, with an additional $59 billion of overspend, totalling

$140 billion (Standish 2004). Capers Jones contended that the average

U.S. cancelled project was a year late, having consumed 200 % of its expected

budget at the point of cancellation (1994). In 1996, failed projects alone totalled an

estimated $100 billion (Luqi and Goguen 1997). In 1998, 28 % of projects failed, at

a cost of $75 billion, while in 2000, 65,000 U.S. projects were reported to be failing

(Standish 2000). McManus and Wood-Harper (2008) reported that the cost of

software project failure across the European Union in 2004 was €142 billion.

More recently, a McKinsey–Oxford survey of more than 5,400 software projects

revealed that half of all projects significantly fail on budgetary assessment, while

17 % of projects actually threaten the very existence of the company, with the

average project running 45 % over budget and 7 % behind schedule, while deliv-

ering 56 % less functionality than predicted (Bloch et al. 2013). According to the

report, achieving $15 million in benefits now requires an average spending in

excess of $59 million.

Yet, software project failure is not a new phenomenon. The first indications of

the problem and mention of the term ‘software crisis’ were made during the NATO

conferences in 1968 and 1969 (Naur and Randell 1968; Buxton et al. 1969). Indeed,

conference attendees reported a set of symptoms that would resonate with the issues

raised by developers and managers today. Over 30 years ago, a GAO report in the

USA (Anon 1979) showed that there were serious problems associated with the

development of software. Less than 2 % of the total value of contracts could be used

efficiently as delivered and a further 3 % could only be used after changes. The rest

of the projects had the software delivered but never successfully used; the software

paid for but not delivered; or the software used but extensively reworked or later

abandoned. Moreover, the first edition of the best-selling book in software engi-

neering tells the story of a huge IBM software project with major cost and schedule

delays which teetered on the brink of disaster for a number of years from the

perspective of the project manager trying to stabilize the project (Brooks 1975).

Indeed, the OS360 project came close to bankrupting IBM.

Consultancies and polling organisations have attempted to collect market data

about the prevalence of failure. The Standish Group, for example, has been com-

piling an annual failure survey since 1994. In 1995, 31.1 % of U.S. software

projects were cancelled, while 52.7 % were completed late, over budget (cost

189 % of their original budget), and lacked essential functionality (Standish

2000). Only 16.2 % of projects were completed on time and within budget; only

9 % were in larger companies, where completed projects had an average of 42 % of

desired functionality (ibid.). The 1996 cancellation figure rose to 40 % (ibid.)

before improving to around 15 % in 2002 (see Fig. 2.1). However, the most recent

figures reveal that the current failure rate is 21 % (Standish 2011) with 63 % of

overall projects labelled as not successful. Note that problems associated with cost

28 D. Dalcher

estimation and the apparent optimism of software project managers are covered in

Chap. 3.

While the research approach used by the Standish Group has been challenged

over the methodology adopted and its rigour (Glass 2005, 2006; Jørgensen and

Moløkken 2006; Eveleens and Verhoef 2010), the figures provide a well-referenced

baseline related to the extent of software project failures. Other studies appear to

confirm the high failure rates. For example, Taylor (2000) reported that only

130 projects out of 1,027 were considered successful, while a 2004

PriceWaterhouse-Coopers study surveyed 10,640 projects and revealed that only

2.5 % of companies achieve budget, scope, and schedule targets on all their

projects. Sauer and Cuthbertson (2003) reported that 16 % of IT projects (with a

major emphasis on software development) were considered successful, however

Sauer et al. (2007) noted that 67 % of the projects were nonetheless delivered close

to budget, schedule, and scope expectations. More recently, McManus and Wood-

Harper (2008) discovered that only one in eight IT projects can be considered truly

successful, with almost a quarter (23.8 %) cancelled due to issues related to

requirements, change, communication, business process alignment, and overspend.

Using similar definitions, IBM (2008) reported that only 40 % of projects experi-

enced by 1,500 change management executives met their schedule, budget, and

quality targets, while KPMG (2010) observed that 70 % of surveyed organisations

in New Zealand had experienced a failure in the previous 12 months. Following

interviews with 600 developers, Geneca (2011) reported that 75 % of project

participants lacked confidence in project success, admitting that their projects are

‘doomed right from the start’.

Not surprisingly, larger and longer projects fare worse. Figure 2.2 shows the

probability of success mapped against project duration relating to a body of 23,000

projects accumulated by the Standish Group. The diagram confirms that the

Standish figures 1994-2010

Succeeded

Failed

%

60

50

40

30

20

10

Challenged

1994

16

31

53

1996

27

40

33

1998

26

28

46

2000

28

23

49

2002

34

15

51

2004

29

18

53

2006

35

19

46

2008

32

24

44

2010

37

21

42

0

Fig. 2.1 Standish figures 1994–2010

2 Rethinking Success in Software Projects: Looking Beyond the Failure Factors 29

http://dx.doi.org/10.1007/978-3-642-55035-5_3

probability of success is much higher for smaller projects; for longer projects, the

likelihood of a successful outcome is significantly decreased. Jones (2007) confirms

from his detailed studies that the risk of cancellation or major delays rises rapidly as

the overall application size (measured in function points) goes up.

Jones (2007, 2008) investigated the likelihood that the average U.S. software

project will be cancelled, typically due to cost and schedule overruns, failure to

meet requirements, poor planning, estimating, quality control, or excessive require-

ments creep, relative to size. The results indicate that none of the eight domains

investigated are fully successful for large systems of above 10,000 function points

in size, showing the average probability of cancellation at 36 %. He warned that the

‘development of large applications in excess of 10,000 function points is one of the

most hazardous and risky undertakings of the modern world’ (Jones 2007). Appli-

cations in the region of 100,000 function points are more likely to fail with an

average cancellation likelihood reading of 51 %, with some sectors such as Man-

agement Information Systems displaying higher failure rates (70 %). Jones (2008,

p. 308) concluded that: ‘Cancellations, major delays in excess of one calendar year,

and cost overruns in excess of 100 % remain endemic problems for software

applications in the 100,000 function point size range, and larger.’ Jones (2010)

further added that: ‘large software projects are almost always over budget, usually

delivered late, and are filled with bugs when they’re finally delivered. Even worse,

as many as 35 % of large applications in the 10,000 function point or more size

range will be cancelled and never delivered at all.’

Flyvbjerg and Budzier (2011) contended that IT projects are now so big and their

influence so wide ranging across many aspects of the organisation, that they pose a

singular new kind of risk that can sink entire corporations, cities, and even nations.

Their global survey of 1,471 IT change projects showed that while the average cost

overrun on large initiatives was 27 %, one in six projects showed a cost overrun of

200 %, on average, and a schedule overrun of almost 70 %. As software is

integrated into bigger products and systems, the concerns can become magnified.

‘The software industry has the highest failure rate of any so-called engineering

Project success
(from 23,000 projects)

Duration (months)

%
 P

ro
ba

bi
lit

y
of

 s
uc

ce
ss

60

50

40

20

10

0
6

30

9 12 18 24

Fig. 2.2 Standish figures: success against project duration

30 D. Dalcher

field. An occupation that runs late on more than 75 % of projects and cancels as

many as 35 % of larger projects is not a true engineering discipline’ (Jones 2010).

2.2 Beyond Simple Success Measures

The relationship between success and failure is not clear. Some view the relation-

ship as a binary function so that a project is either successful, or not. The research

by McManus and Wood-Harper describes failure as ‘those projects that do not meet

the original time, cost and requirements criteria’. The Standish Group makes a

further distinction between ‘failed projects’ and ‘challenged projects’. Failed pro-
jects are cancelled before completion, never implemented, or scrapped following

installation. Challenged projects are completed and operational projects which are

over-budget, late, and with fewer features and functions than initially specified.

Successful projects, in contrast, are completed on time, on budget, with all specified

features. Figure 2.1 also shows the relationship between successful, challenged, and

failed projects. Observing the Standish figures over the past 19 years would appear

to indicate a rough rule of thumb, suggesting a split of 25 % of projects being

successful, 50 % being challenged, and 25 % failing.

The Oxford Dictionary defines success as: a favourable outcome; doing what

was desired or attempted; the accomplishment of an aim or purpose; or the

attainment of wealth or fame or position. Failure is broadly defined as lack of

success supporting the idea of a binary relationship. In an attempt to make further

sense of the relative positions of success and failure, software surveys have clearly

found it useful to introduce the idea of partial failure (or challenged projects) as an

intermediate position between success and failure, potentially indicating dissatis-

faction with a two-state explanation. Indeed many project outcomes do not fall

directly into either category.

The majority of the studies mentioned above define success as meeting all the

criteria associated with the budget, schedule, and functionality; with failure viewed

as a failure to meet all of the same criteria. This implies that if a project is finished

on time, within budget, whilst offering the expected functionality, it can be viewed

as successful. Conversely, failing to meet any of the criteria will deem it a failure.

The view is predicated on the traditional measures applied in project management

and generally known as the triple constraint, the golden triangle, or the iron triangle.

This idea presupposes high estimation accuracy with regard to the initial formula-

tion of the variables of the triple constraint (Eveleens and Verhoef 2010) when the

degree of uncertainty is at its greatest.

Traditional project management theory holds that optimising the three criteria

will result in ideal performance on a project. Typical projects thus require a

balancing act between the so-called triple constraints of time, cost, and functional-

ity as expressed in the original triangle conceived by Martin Barnes in 1969 (see

Fig. 2.3). Note that the third corner is named ‘performance’. The original release

named that corner ‘quality’, but this was soon corrected to performance ‘to reflect

2 Rethinking Success in Software Projects: Looking Beyond the Failure Factors 31

whatever the finished product was supposed to achieve’ (Barnes 2013). Perfor-

mance means satisfactory function of the product, which has to be fully defined.

This could be specified in terms of rate of return, profit, beat the enemy, impress

visitors, or in the case of software the project scope and expected functionality. The

whole point of the triangle is that the spot can be placed at such a point that its

closeness to each corner represents its relative importance and helps the project

manager to make informed decisions about the project. Trade-offs and adjustments

are therefore made by restricting, adding to, or adjusting the cost, time, and

performance associated with a project. The triangle enables managers to consider

each decision and its implications on the dimensions of time, cost, and performance

and integrate the different project management functions. For example, the more

that is requested in terms of performance, the more it is likely to cost and the longer

the expected duration. If the client needs to have a certain performance delivered

very rapidly, this will increase the cost due to the need to work faster and have more

resources involved in the development, albeit with increased communication costs.

The more features expected from a system, the higher the cost and the longer the

expected duration. Conversely, if the costs need to be kept to a minimum, one may

need to consider the essential performance, or the overall project scope, and

compromise there (Dalcher and Brodie 2007).

Many managers quickly discover that the triangle is not flexible. The three

factors are closely entwined and project managers are expected to balance the

what (performance) with the when (time) and the how much (cost). Kloppenborg

and Mantel (1990) discerned that the importance assigned to the factors varies

systematically according to the life cycle stage. Optimisation and trade-offs will

thus depend on the phase during which decisions are made. While tools such as

project priority matrices (see Fig. 2.4) may be utilised to prioritise the constraints

underpinning the decision process, managers would need to consider the overall

priorities and recognise that priorities may shift according to the stage of develop-

ment. The priority matrix offers a simplifying mechanism for making decisions.

The horizontal axis depicts the three key constraints of time, performance, and cost,

while the vertical axis covers the suggested treatment options (constrain, enhance,

Performance

Time Cost

Fig. 2.3 Budget, time, and

performance trade-off

32 D. Dalcher

or accept). In the example below, the proposed project offers a new type of market-

leading functionality which must be available in full; that is, it MUST meet the

performance criteria—hence fixing, or constraining, that aspect. Given the intention

to release before the competition, every effort should be spent on activities that

enhance or help project delivery to ensure the product is first to market. The trade-

off, therefore, requires that reasonable additional costs are accepted in order to

optimise the time criterion, whilst strictly adhering to the performance brief. The

matrix offers a structured way of considering the impacts offering a simplified

version of the trade-off triangle.

In practice, performance is often determined prior to the project. Moreover,

project managers often inherit the overall budget from the contracting activities that

may even have imposed a fixed-price contract structure. A fixed overall budget may

also exclude typical remedies like the hiring of specialists and the addition of

human resources. The only remaining latitude for leverage is in the schedule.

However, this may also be imposed on a project through a fixed date for delivery

with little regard to the complexity of the intended system or the risks it embodies.

Once both budget and schedule are fixed, there appears to be little capacity for

compromises and trade-offs.

The three factors clearly play a key part in determining the degree to which a

project is challenged (or even deemed a failure); yet they may be uncontrollable by

the project manager. Indeed, Capers Jones observed that the most common con-

straints encountered are: fixed delivery dates; fixed-price contracts; staffing or team

size limitations; and performance or throughput constraints (Jones 2000) i.e., fixed

time, price, staffing level, performance, and scope. Many managers are thus looking

to control other factors that may alter the outcome of the project, in particular as the

constraints often occur in concert. Measuring success on the basis of preestablished

parameters that cannot be adjusted is therefore of limited value.

Time

Constrain

Enhance

Accept

Performance Cost

Fig. 2.4 Project priority matrix

2 Rethinking Success in Software Projects: Looking Beyond the Failure Factors 33

Before addressing additional factors in the next section it is also useful to point

out that the artefacts of projects, especially the final delivered systems, interact with

organisations, customers, stakeholders, and other systems. Their impacts, regard-

less of whether or not they are delivered on time, can be crucial and perhaps even

fatal in financial or real terms. Dalcher reports on the impact of an ambulance

despatch system that was delivered to the users, the citizens of a major metropolis

(on the third attempt), yet failed in action subsequently, potentially leading to loss

of life (Dalcher 2010). Another illustration is a UK disaster which followed an

earlier, yet unrelated failure. The delay in introducing the Nirs2 system into the

Inland Revenue beginning in 1995 meant that additional backlogs were building

up. The backlogs caused the Inland Revenue to stop sending reminders to up to a

third of the UK working force, warning them that they needed to top up their

national insurance contributions. As a result, around 10 million people face a state

pension shortfall. The impacted party includes the lowest paid workers in the

UK. While the backlog resulted from a delayed system that itself cost taxpayers

millions of pounds, the additional loss will be borne by individuals and only count

as a hidden backlog indirectly stemming from another failure. The true cost to

individuals is likely to be £15 billion and the hardship that ensues as a result (BBC

2003). Therein lies the complexity of counting the costs of failure. Numerous other

compilations have been published identifying major impacts on individuals, orga-

nisations, and society at large (see for example, Dalcher 1994, 2012; Flowers 1996;

Charette 2005). The success, and failure, of software projects therefore cannot be

delimited by a simplified set of factors and constraints associated with the delivery

effort.

2.3 Rethinking Project Success

Project success is a rather nebulous concept and the focus on the triple constraint

can be too limiting. Indeed, Linberg (1999) asserted that a whole new theory of

project success is needed. Pinto and Slevin (1988) noted that success combines

issues related to the project itself with issues related to the client. Moreover,

software developers and systems analysts have recognised long ago that user

involvement, satisfaction and buy-in are crucial to the success of software projects.

Prototyping and user-driven approaches were developed to maximise the potential

for satisfaction for various stakeholders and thus increase the likelihood of user

acceptance of the ultimate system.

Baccarini identified the need to distinguish between project management success

and the success of the product which entails dealing with the effects of the project’s

final delivered product (1999), thereby allaying the need to define a further dimen-

sion concerned with client expectations which have already been expressed in the

desired performance functionality. Ironically, this chimes with the original (but

often misunderstood) intention of the Barnes’ triangle (Fig. 2.3) to capture the

agreed upon definition of the purpose of the project or how the complete project

34 D. Dalcher

would perform. Given that the product will be utilised by the client there is a degree

of correspondence between the dichotomies put forward by Pinto and Slevin and by

Baccarini. Indeed, de Wit (1988) observed that measuring progress and cost are part

of project control, which should not be confused with measuring success. Cooke-

Davies (2002) likewise made a distinction between the focus on project perfor-

mance and the need to look at the success of a project.

Having multiple categories of success would suggest that it is possible to be

successful in some areas and not successful in others. It thus makes it possible to

understand mismatches between the different criteria and groups. Moreover, it

implies that the traditional triple constraints of cost, time, and performance only

reveal part of the picture. In other words, it may be possible to maximise the

traditional criteria and yet deliver a product that is not valued by the users.

Likewise, it is also possible to exceed the traditional criteria but deliver a product

that is valued and adopted by the user community, despite exceeding the budget or

the schedule, or even both.

The discussion thus far indicates that at least two different levels of success can

be identified. Indeed, according to Munns and Bjerimi (1996) it is possible to

achieve a successful project even when management has failed, and also possible

to deliver a failed project following successful management. However most studies

and surveys of software project failures tend to focus on the traditional criteria of

efficiency embedded through the triple constraints of time, cost and performance.

They thus ignore the deeper aspects associated with the delivered product, its

perceived utility and value, the expectations and needs of stakeholders, the intended

performance of the product, and the project context.

Further evidence of the need to look beyond the traditional criteria is provided in

Table 2.1, which summarises an extended and refined set of common issues that

were originally identified across six project failures covered in detail in Dalcher and

Genus (2003) and extended through a sequence of workshops with practitioners, the

mapping of factors in 150 failed projects and a series of four international surveys

resulting in the revised figure presented in this chapter. Note: Escalation of com-

mitment and its impact on projects is explained in detail in Sect. 11.3.

The obvious message from the set of issues is that the traditional efficiency

criteria as embedded in the triple constraint do not appear to have played a part in

the build-up to any of the failures. Instead, the issues identified were more

concerned with the product (as well as the assumptions and expectations surround-

ing it) and the overall business success.

It may also be instructive to scrutinise other domains and sectors. When the UK

Government recognised that the construction sector was underachieving, it

assigned a task force to determine the causes of the shortfall. The study

recommended substantial changes in the culture and structure of the sector (Egan

1998). Crucially, it perceived the need to replace competitive tendering with long-

term relationships to address the growing dissatisfaction of both private and public

sector clients. The main criticism was reserved for the way projects were assessed

as the focus on time, cost, and quality was recognised to be wholly inadequate.

Overall, the task force acknowledged that the construction sector had thus far failed

2 Rethinking Success in Software Projects: Looking Beyond the Failure Factors 35

http://dx.doi.org/10.1007/978-3-642-55035-5_11#Sec6

to meet the needs of modern business by failing to look beyond the traditional

success criteria to determine the true performance of projects. A 10-year retrospec-

tive review re-affirmed that progress had yet to materialise (Egan 2008).

2.4 Towards Multiple Levels of Success

Success, it would appear, needs to be understood at multiple levels in order to

appreciate the complex dynamics and subtle impacts. A tabular representation of

four levels of success, which builds on the earlier discussion, is offered in Table 2.2.

Level 1 represents project management success and is thus concerned with

internal efficiency and performance measurement and optimisation at the project

level through the tracking of the cost, schedule and performance parameters. Level

1 success is therefore to do with project delivery against the constraints or measures

imposed on the project.

Level 2 is focused on the overall effectiveness of the project through the lens of

what is actually being delivered. Success is measured through the utility and

acceptability of the output that has been delivered. The benefits of the projects

and the achievement of the objectives are thus assessed in terms of the satisfaction

of the customer and the different stakeholder groups. Level 2 success reflects the

acceptability and impact of the resulting artefact, the benefits that it delivers, the

degree to which it is used, the quality built into it, the match with the project

objectives, needs and requirements, the relationship with the different stakeholder

groups, and the overall impact on the customer.

Level 3 is centred on the business efficiency which is assessed through the

creation and delivery of internal value. The outcome of the project contributes to

business success through the satisfaction of business objectives that have been

realised. Success equates to maximisation of financial and business efficiency

measures, such as sales, profits or ROI as well as delivered value measures.

Table 2.1 Groupings of crucial issues observed in failures

Area Typical additional issues

Relationship

management

Vendor–client disagreements, partnerships, long-term perspective,

respect, joint working

Trust Lack of trust, reliance, co-operation

Communication Information, barriers, exchange, ambiguities

Management of

expectations

Stakeholder engagement, needs assessment, involvement

Politics Organisational politics, blocks, defensive routines

Escalation of

commitment

Sunken costs, pressure, escalating investment

Risk management Exchanging risks, effective transfer

Contract management Contractual engagement, multiple interpretations, expected obligations

36 D. Dalcher

Level 4 is forward looking and opportunistic and enhances the business horizon

by projecting future gains and opening new avenues, capabilities, skills, and

markets. Strategic opportunities require a continuous and long-term approach that

seeks to derive not just immediate benefit but also maximise opportunities for

cornering the market, creating killer applications, and building the potential for

self-enhancing positive feedback loops to secure future growth. Level 4 success is

achieved through the realisation of new opportunities and harnessing of new

potential. It may include new uses or ideas that were not originally considered as

well as the development of new competence or capability.

The focus identified in Table 2.2 provides a clue as to the nature of measure-

ments required at each level. Measurement at Level 1 focus on determining the

progress and efficiency of the project management effort, for example, through the

use of earned value management. Measures for Level 2 are concerned with benefits

realisation and measuring the achievements of objectives, requirements, and expec-

tations. Measures for Level 3 emphasise the business value using traditional

economic measures such as sales, revenue, and delivered value. Measures for

Level 4 require a more creative measurement of opportunities, capabilities, and

market position. The combined levels offer a richer way of conceptualising and

making sense of the complex phenomena surrounding success in and around

projects.

2.5 Mapping Success

It is interesting to note the horizon of activity for each of the levels of success. At

Level 1, project management success is concerned with the execution of the project

itself based on performance against internally established constraints. Success at

this level is determined upon the delivery of the project, often achieved through the

incremental delivery of partial targets. It is primarily concerned with the task of

project control. This is what most failure surveys assess and, therefore, where most

failures are observed.

Level 2 success is more deeply entwined with the design activities resulting in

the product or deliverables; indeed this is where utility and quality provide the key

to the assessment of success. Both levels can be said to be output driven as they look

at the complementary aspects of technical action and management within

established and imposed constraints. Level 2 success can extend to cover the entire

Table 2.2 Levels of success

Levels of project success Focus

Level 1: Project management success – Efficiency and performance

Level 2: Project success – Objectives, benefits, stakeholders

Level 3: Business success – Value creation and delivery

Level 4: Future potential – New markets, skills, opportunities

2 Rethinking Success in Software Projects: Looking Beyond the Failure Factors 37

operational life of the project. After all, delivering a bridge that stands for 6 months

before collapsing is far from being a mark of utility, quality, or success.

The levels of success show a shift from focusing on internal efficiency and

outputs, to outcomes and value as more strategic considerations come into play. The

main distinction is that outputs occur as a result of a process as they relate to the

specified deliverables and artefacts (that are delivered within time, cost, and

performance constraints) viewed in terms of tangible products and services, such

as a new web interface. Outcomes are the effects of change and how it translates

into value for the entire business even beyond the reach of the original project.

Outcomes happen as a result of the work and will often support the realisation of

strategy through new capabilities or capacities, such as improved access to services

or systems resulting from the new web interface. This relationship is depicted in

Table 2.3.

Encouraging long-term thinking is important from a strategic perspective as it

enables organisations to realise corporate strategies. It also fits with the need to deal

with extended life cycles and consider deployment, extended use, and

decommissioning of artefacts alongside benefiting from new opportunities and

market possibilities. Moreover, it also chimes with the idea of viewing software

development as the development of a continuous service (implying the fostering of

long-term relationships and the dedication of attention to strategic concerns at the

operational end) rather than the delivery of a single artefact. It is worth noting that

while Levels 1 and 2 are primarily concerned with the delivery of a single project,

the remaining levels look beyond a single delivery view by utilising a more

strategic lens that considers operation and investment cycles.

A further important distinction is the separation between efficiency and effec-

tiveness. Project managers and software developers have shown a tendency to focus

on efficiency and its implications, as is reflected by the continuing obsession with

failure studies. However meaningful solutions emerge from consideration of effec-

tiveness. Efficiency is essentially viewed as an internally oriented productivity

metric and method of evaluation, as it is concerned with following procedures

and processes, adhering to constraints or achieving with minimum resources.

Effectiveness on the other hand, relates to the overall utility; the ends to effective-

ness’ means.

Table 2.3 Focus vs. output/outcome

Focus

vs. output/

outcome Outputs Outcomes

Internal focus Level 1: Project management success

Internal measures and constraints

Level 3: Business success

Internal business value realised fol-

lowing project investment

External focus Level 2: Project success

Utility/usefulness of deliverables and

other key outputs to stakeholders

Level 4: Future potential

Business potential, opportunities

and wider implications

38 D. Dalcher

In a nutshell, efficiency focuses on optimisation of the available resources by

‘doing things right’, while effectiveness revolves around the fulfilment of objec-

tives and the contribution to achieving organisational goals by ‘doing the right

things’. This is depicted in Table 2.4 which also shows the types of measures

required.

Failure studies and surveys seem to focus on criteria concerned with the effi-

ciency of projects, while ignoring the effectiveness aspects, and thus sidestepping

the major issues associated with the outcomes of change. Indeed, even the bodies of

knowledge in project management seem concerned with the track record of projects

as a measure of quality. However, this is not the case as achievement in line with the

triple constraints measures the ability to predict deadlines when uncertainty is at its

highest and stick to them. This is not a measure of quality and is therefore addressed

as Level 1 success. To attain project success, one needs to relate to the benefits,

impacts, and quality aspects and perspectives related to the effectiveness of a

project.

Quality, utility, and success are judged by different stakeholders in different

ways, employing different criteria, over different timescales (Morris and Hough

1987; Wateridge 1995; Turner 2009)—see also Chap. 6. Recently, there has been a

tendency to let the customer define quality. The Kodak organisation defines quality

as ‘those products or services that are perceived to meet or exceed the needs and

expectations of the customer at a cost that represents outstanding value’ (Kerzner

2009). The interesting point to note with this definition is how the customer

viewpoint impacts on a project: a project must take great care that it accurately

defines the customers’ needs and expectations, as the ultimate power about deciding

on quality is given to the customers. So with this type of definition, conformance to

requirements is not necessarily sufficient—the customer must be satisfied with the

resulting product or service. Further, in order to maintain the satisfaction of

Table 2.4 Efficiency/effectiveness vs. timing orientation

Efficiency/

effectiveness

vs. timing

orientation Short term Long term

Efficiency Level 1: Project management success

Efficiency of project: internal effi-

ciency in delivery within con-

straints; minimising resources;

procedural focus; project

execution

Level 3: Business success

Determining financial efficiency,

business value, and return on

investment

Effectiveness Level 2: Project success

Utility and quality of output; com-

pleteness, and conformance to

requirements addressing true

needs and concerns of

stakeholders

Level 4: Future potential

Achieving enterprise objectives; best

quality horizon as focus for

improvement; investment as

greater benefit

2 Rethinking Success in Software Projects: Looking Beyond the Failure Factors 39

http://dx.doi.org/10.1007/978-3-642-55035-5_6

customers and their loyalty and to ensure higher levels of success, products need to

be revised and adjusted to reflect shifting needs and expectations (as well as market

trends and competition). Consequently, maintaining quality becomes a continuous

process of product (and process) improvement (Dalcher and Brodie 2007).

2.6 Illustrative Examples

To highlight the distinctive features of the levels of success and the differences

between them it might be instructive to focus on thumbnail sketch examples of

projects from a range of sectors and reflect on their relative success in comparison

with the four levels.

Story 1: The operation was successful but the patient died. Level 1 success—

Level 2 failure. This chapter began by describing a number of failure surveys

focused on project management failure (i.e., the inability to meet time, cost, and

performance criteria). Project management success is no guarantee of project

success as many targets are assigned arbitrarily at an early phase. For example,

the third attempt to deliver a working ambulance despatch system for London was

delivered by the agreed deadline (Level 1 success), but stopped working a few days

later resulting in potential loss of life (Dalcher 2010). This experience will chime

with other software projects that are delivered on time and within budget, covering

the agreed scope, which are ultimately never used by the users, or fail within a few

weeks of the handover date.

Story 2: The Millennium Dome: Early partial failure becomes Level 4 suc-

cess. The project to deliver a dome-shaped building to house a 1-year exhibition to

celebrate the millennium had to be delivered in time for the new Millennium. The

building itself and the infrastructure enabling Londoners to experience the exhibi-

tion were just about finished on time, but only following an unexpected injection of

additional funds. On opening night, many of the exhibits were not functioning and

dignitaries were left to queue outside for hours. Expected visitor numbers as

specified in the business case exceeded one million per month, but in practice

only about a third of the expected visitors turned up. The exhibition had to be kept

open for a further year (in clear violation of the stated intention) to try and recoup

some of the costs, while the entry fee was ultimately cut in half in order to attract

additional visitors. Following the end of the exhibition, the site was mothballed at a

cost of £190,000 a year adding to the accumulated losses. However, once the sale

was finally concluded, the renamed O2 Centre became the biggest and most

successful sports and entertainment arena complex in Europe. Level 4 success

through innovative use of the structure thus managed to make up for the earlier

disappointments (albeit in the hands of a new owner).

Story 3: The Sydney Opera House: Technical failure—architectural mar-

vel. An even more heralded failure which clearly failed in terms of project man-

agement, project, and business. The Sydney Opera House came in at 14 times over

budget, a clear project management failure. The building was unsuitable for its

40 D. Dalcher

original purpose as the acoustics made it impossible to have concerts inside the hall.

However the building has become an icon and is considered to be an architectural

marvel. It is attracting tourists from all over the world and generating revenue, not

least for the entire city. The revenue is not generated under the original intention but

the new potential has been utilised to the full. Interestingly, the building was not fit

for its purpose and hence was not of acceptable quality, yet it managed to generate a

new purpose for which it was fit enough.

Story 4: Project Orion: Level 1 & 2 innovation success—long-term failure.

A massive effort to develop Kodak’s new Advantix photographic system was

considered a big success on completion. The product was selected by Business

Week as one of the best new products of 1996 (suggesting project success). It also

won the Project Management Institute International Project of the Year award,

confirming that it was also a project management success. The only problem was

that Kodak failed to anticipate the accelerating switch to digital photography which

made the product redundant. A successful output that won multiple awards was thus

destined to become a failure as an outcome as it failed to deliver the promised value.

In terms of utility the resulting product was an award winner but at the wrong end of

the utilisation and relevance curve just as the technology slid out of fashion and was

replaced by a new innovation.

The brief vignettes highlight the complexity of success and the interplay

between the different levels involved. Success is never simple and the mini cases

help in shedding further light on the rich, interconnected, and intricate (and

sometimes temporary) nature of success.

2.7 The Impact of Time

Time is often viewed as a strategic resource. In some cases, it is viewed as being

more important than money. This brief section focuses on the temporal nature of

success and failure through the lens of time. In essence, we all recognise that things

change. Perceptions, values, priorities, and objectives shift over time. Views about

success and failure may also be similarly impacted. What is considered to be

success, or a failure at a given point, may need to be adjusted to reflect new

perceptions or changing views. Some of the individual cases described above hint

at the change of perception over time. The following mini-case emphasises that

point further.

Story 5: Raising the Vasa: Celebrating failure. The Vasa was the pride of the

Swedish Royal Navy on August 1628 when it set sail on its maiden voyage.

According to Fairley and Wilshire (2003), it was Sweden’s most expensive project

ever. The ship was much needed to bolster the Navy following a number of defeats

in the Baltic Sea during the war with Poland. It was also meant to outperform a

Danish ship being built at the same time. The completion of the ship was heralded

as a great success and thousands turned up for cheer. Yet, definite success turned to

failure when the ship capsized and sank after managing to sail less than a nautical

2 Rethinking Success in Software Projects: Looking Beyond the Failure Factors 41

mile out of Stockholm on a calm day. The crowd, which included foreign ambas-

sadors invited to witness the great occasion, watched the ship disappear only 120 m

from shore, with the loss of 30–50 sailors. In the space of minutes the successful

release had turned into a catastrophic failure, accompanied by the loss of human

life. The Vasa 333 years later, was raised and ultimately installed in a Museum

close to where it sank. The Vasa is now one of Sweden’s most popular tourist

attractions as an embarrassing episode was radically transformed into a long-term

success by ‘celebrating’ and analysing the failure.

The moral of the story is that the perception of success, and failure is wholly

dependent on the point at which it is assessed. An undertaking can shift from being

viewed as a success, as in the case of a standing bridge, or a floating ship, to being

regarded as a total failure following structural, or even human failure. Nonetheless,

over time new opportunities emerge and the perception can once again shift.

Understanding and labelling of phenomena is therefore clearly aligned to the period

in which it is perceived, observed, and categorised. The benefit of hindsight, the

burden of maintenance, or the chimes of progress can revive, question, and

re-enliven previous pronouncements.

It is also worth noting that outcomes persist beyond the life of a given project or

programme. Increasingly, there is talk about the legacy of projects which delays the

assessment of the impacts and results on initiatives. For example the legacy targets

of the London 2012 Olympic games include local regeneration, increased partici-

pation in sports activities, enhanced enrolment in local clubs, and a reduction in

rates of obesity among young people (BBC 2012). Such targets and outcomes can

only be evaluated longitudinally. The reasons for the longer time horizon include

the following:

• Effects following significant interventions are only temporary and partial.

• Evaluation requires a longer time horizon.

• Benefits were designed to be measured over longer time periods.

• Perceptions and priorities shift with time.

• Impact is measured in terms of changes to adaptive patterns over time.

2.8 Measuring Success

Determining the success of a project is not simple. It is often said that success is in

the eye of the beholder, and can mean different things to different people. Conse-

quently, analysing the dimensions of success and failure is a complicated task

(Cooke-Davies 2002; Shenhar and Dvir 2007; Dalcher 2009). Measuring success

requires an understanding of the different levels of success and what each one can

offer:

Project management success implies tracking data related to predicted cost, time,

and scope. Measuring performance against efficiency considerations is relatively

straightforward. Determining progress through monitoring the achievement of

42 D. Dalcher

milestones (e.g., using Earned Value Methods) enables project managers to track

the achievement of predefined targets. It is a very useful focus when there is little

residual uncertainty or when the project is clearly understood. However, it is

debateable whether the measurement of an arbitrarily predefined target is

completely meaningful, especially when project managers play little, if any,

part in the initial estimation. Typical measures would focus on the efficiency of

the process emphasising milestones, identified defects, and delivery and change

management measures (including approved change requests), as well as earned

value management measures showing project management progress, cost and

schedule variances, cost performance index, and estimate to complete.

Project success relates to the effectiveness of a project and is normally considered

in terms of realised benefits. In order to provide meaningful values, measures

should relate to the requirements identified and be established and acknowl-

edged as part of the needs assessment and requirements management processes.

Stakeholder management is central to the identification and assessment of the

concerns of different stakeholder groups and the issues impacting the develop-

ment team. de Wit (1988) defined success as encompassing a high level of

satisfaction concerning the project result amongst key stakeholders and users,

while Lyytinen and Hirschheim (1987) framed the effort in terms of meeting

stakeholders’ expectations in terms of the balance between the objectives,

constraints, and benefits. Project success can therefore be viewed as either

realising the stream of benefits allocated to the project as they are cascaded

down from the strategic objectives, or equalling and exceeding the expectations

of clients, users, and stakeholder groups, thereby emphasising elements of

stakeholder satisfaction and management.

Drevin and Dalcher (2011a, b, c) reported on the different concerns and issues

expressed by different stakeholder groups. Using both narrative and

antenarrative approaches to make sense of the stories of different communities,

unveiled significantly differing interpretations of the purpose of a project, the

approaches for dealing with alternative communities and the understanding of

the perception of success and failure as they percolate and aggregate in different

stakeholder communities. Typical project success measures would identify

realised benefits from the project, achieved project requirements, satisfaction

levels, recorded complaints, usage figures for the delivered artefacts, and met

expectations.

Business success pertains to the funds raised from the initiative, or more generally

to the organisational value derived in terms of finance, environmental and social

concerns, and their balancing. The perspective often requires a longer timeframe

that considers value creation and delivery over investment cycles and the

contributions made towards the achievement of strategic objectives of the

organisation. Business success can refer to the payback period, but often extends

to consider the accumulated benefits accruing from an investment in a project or

initiative. Business success measures typically address the delivered value, the

rate of return, break-even calculations, payback calculations, sales achieved,

revenue measures, environmental and social targets, and increasingly may focus

2 Rethinking Success in Software Projects: Looking Beyond the Failure Factors 43

on reputation, influence marketing, and sustainability ratings. Note that some of

the calculations may be done from the project portfolio management, a multi-

project or an enterprise-wide perspective. Occasionally, project managers are

involved in devising some of these calculations during the initiation phase of

projects, however the business success readings are likely to materialise well

after the delivery phase of the project.

Future potential extends the time horizon of consideration into the longer-term

utilisation of the outcomes and results of projects and actions. It allows the

accumulation of longer-term benefits that result from adjustments and

re-balancing. The intention is to seek to increase the accrued value from projects

by exploring and exploiting opportunities beyond the formalised project base-

line. Given the longterm focus it cannot be assumed that project assumptions,

and originally intended outcomes remain relevant over time. The aim therefore

is to maximise organisational value in accordance with the strategic direction.

When projects are completed under conditions of uncertainty, they are often

subject to positive feedback cycles, systems dynamics, and complex interactions

that uncover new opportunities and strategic openings. Potential opportunities

can often lead organisations to explore new directions, expand into a particular

market, or occupy a certain leading position within a sector, and adjust their

strategic intentions to match their new ambitions. Measures will focus on the

identification and utilisation of emerging opportunities and adaptation to new

market conditions that result from the experience, learning, and re-positioning

related to the project and its outcomes.

Table 2.5 identifies some of the specific measures that can be utilised within each

of the success levels. The measures were derived through a series of workshops

with over 120 practicing project managers in four countries. The purpose of the

sessions was to validate the model proposed in this chapter and to identify specific

measures suited to each of the levels. Groups worked independently through the

levels and the results were compared and developed further during a second series

of facilitated sessions.

The accomplishment of any of the measures can be absolute or relative. The

factors can be combined into a compound measure for a particular level, or a

judgement statement regarding the achievement of each specific measure can be

independently derived and assessed. In any project, one or more of the measures

may be critical and multi-attribute aggregation methods can be used to combine,

and trade-off specific measures.

Measurement of success requires understanding of the relevant levels. The

identification of meaningful dimensions and the agreement regarding relevant

factors could lead to a richer mapping of the relative success merits of projects

alongside the multiple levels. More complex profiles can be devised by combining

additional measures and considerations within each of the dimensions. Projects can

thus be ranked and rated along four, or any other number of dimensions, providing

an alternative to the simplistic measures which are currently being over used in

failure studies. By shifting the focus to success and recognising the multi-factor

44 D. Dalcher

Table 2.5 Measures for determining success by level

Success level Measures

Project management success – Project cost

– Project time

– Full scope

– Milestones

– Functionality

– Project performance data

– Number of defects

– Earned value management

– Use of resources (in terms of resource constraints)

– Agreed scope changes

– Change requests

Project success – Benefits

– Satisfied objectives

– Satisfied project requirements

– Satisfied stakeholder needs

– Stakeholder satisfaction

– Client satisfaction

– Complaints

– Product/result usable

– Product/result in use (usage figures)

– Product/result useful

– Fulfilled expectations

Business success – Delivered value

– Return on investment (ROI)

– Break-even time (BET)

– Break-even after release (BEAR)

– Net present value (NPV)

– Internal rate of return (IRR)

– Economic value added (EVA)

– Payback calculations

– Shareholder value

– Environmental targets

– Social or societal targets

– Sustainability considerations

– Revenue measures

– Sales

– Improving operating margins

– Reputation

Future potential – New business opportunities

– New benefits

– Additional business

– New markets

– Derived products

– Competitive advantage

– New or expanded core competency

– New system capability

– New people-related capability

– Recognition in new market or segment

– New strategy

– Improved processes

– Image

– Enhanced reputation

2 Rethinking Success in Software Projects: Looking Beyond the Failure Factors 45

nature of the levels, it thus becomes possible to chart a more meaningful picture of

success using the levels as dimensions (see Fig. 2.5).

The radar chart will be able to rate the success at each level independently and

provide more sophisticated snapshots of projects and initiatives capable of counter-

balancing the simplistic measures used to gauge success in project work hitherto.

Figure 2.5 provides a relative benchmarking between Project Orion and the Mil-

lennium Dome, described earlier, showing how each performed along the four

project success dimensions.

2.9 Conclusions

Project failures have been used to highlight the need to improve IT software project

practice. Many of the studies and surveys focus on project management success

(or failure), which can be described as a subset of internal efficiency measures and

imposed constraints ignoring the impact on the project and the business. In order to

improve project performance, project managers need to look beyond such measures

and focus on project success—an area concerned with the effectiveness and quality

of the project output. Project managers are also increasingly asked to consider the

value derived from the project, the sustainability implications as well as issues

related to environmental, social, and societal impacts.

Success is a complex and multi-layered concept that needs to be understood at

different levels and time frames. Indeed, the impact of success often extends

beyond a single project. This chapter offers a wider perspective, which takes in a

range of project success levels thus enabling practitioners to move beyond the

simplistic measures that continue to be offered. The success view determines

actions and colours new developments. Increased attention to enterprise objectives

Business success Project management
success

Project success

Future potential

Project Orion

Millenium Dome

Fig. 2.5 Project success radar chart

46 D. Dalcher

and utility, rather than simply endeavouring to optimise correctness according to

preimposed constraints, can open a new dialogue about the needs of a profession

seeking to fundamentally and essentially improve its track record and enable

project management practice to rise beyond the continuous obsession with failure.

Further work is needed to encourage the research and practice communities to

consider project management success at a number of levels. Practitioners will need

to make links between strategy, business, and project management delivery func-

tions, while researchers are likely to try and make sense of requirements and

expectations that emerge from a multi-level model that invites new types of surveys

to make sense of the success and failure in software projects. Ultimately, in order to

overcome failure we must learn to appreciate success and grow up enough to look

beyond the simplest manifestations of an imperfect practice.

Success is not final, failure is not fatal: it is the courage to continue that counts.
Winston Churchill

References

Anon (1979) Contracting for computer software development—serious problems require manage-

ment attention to avoid wasting additional millions, general accounting office report to the

congress by the comptroller general of the United States. FGMSD 80–84

Baccarini D (1999) The logical framework method for defining project success’. Proj Manag J 30

(4):25–32

Barnes M (2013) Private communication, September 2013 BBC (2003) BBC Radio 4 news,

15.5.2003. http://www.silicon.com/news/500022/1/4169.html

BBC (2012) London 2012 legacy plan published, 18 September 2012. http://bbc.co.uk. Accessed

12 Nov 2013

Bloch M, Blumberg S, Laartz J (2013) Delivering large-scale IT projects on time, on budget and

on value. McKinsey Finance 45:28–35

Brooks F (1975) The mythical man-month: essays on software engineering. Addison-Wesley,

Reading, MA

Buxton JN, Naur P, Randell B (1969) Software engineering techniques. In: Proceedings, NATO

conference, scientific affair division, Brussels

Charette RN (2005) Why software fails. IEEE Spectr 42(9):42–49

Cooke-Davies T (2002) The “real” success factors on project. Int J Proj Manag 20(3):185–190

Dalcher D (1994) Falling down is part of growing up; the study of failure and the software

engineering community. In: Proceedings of 7th SEI education in software engineering confer-

ence. Springer, New York, pp 489–496

Dalcher D (2009) Making sense of IS failures. Encyc Inf Sci Technol 5:2476–2483

Dalcher D (2010) The LAS story: learning from project failure. In: Turner RJ, HuemannM, Anbari

FT, Bredillet CN (eds) Perspectives on projects. Routledge, New York

Dalcher D (2012) The nature of project management: a reflection on the anatomy of major projects

by Morris and Hough. Int J Manag Proj Bus 5(4):643–660

Dalcher D, Brodie L (2007) Successful IT projects. Thomson, London

Dalcher D, Genus A (2003) Avoiding IS/IT implementation failure. Tech Anal Str Manag 15

(4):403–407

de Wit A (1988) Measurement of project management success. Int J Proj Manag 6(3):164–170

2 Rethinking Success in Software Projects: Looking Beyond the Failure Factors 47

http://www.silicon.com/news/500022/1/4169.html
http://bbc.co.uk/

Drevin L, Dalcher D (2011a) Antenarrative and narrative: the experience of actors involved in the

development and use of information systems. In: Boje DM (ed) Storytelling and the future of

organisations: an antenarrative handbook. Taylor and Francis, New York, pp 148–162

Drevin L, Dalcher D (2011b) Narrative methods: success and failure stories as told by information

systems users. In: Standing conference for management and organization enquiry, SC’MOI

conference, Philadelphia, PA

Drevin L, Dalcher D (2011c) Using antenarrative approaches to investigate the perceptions of

Information Systems’ actors regarding failure and success. In: Pokorny J, Repa V, Richta K,

Wojtkowski W, Linger H, Barry C, Lang M (eds) Information systems development business

systems and services: modeling and development. Springer, New York, pp 207–218

Egan J (1998) Rethinking construction, the report of the construction task force. Department of

Environment, Transport and the Region, London

Egan J (2008) Sir John Egan’s speech to the house of commons, 21st April, 2008

Eveleens JL, Verhoef C (2010) The rise and fall of the chaos report figures. IEEE Softw 27

(1):30–36

Fairley RE, Wilshire MJ (2003) Why the Vasa Sank: 10 problems and some antidotes for software

projects. IEEE Softw 20(2):18–25

Flowers S (1996) Software failure, management failure. Wiley, Chichester

Flyvbjerg B, Budzier A (2011) Why your IT project may be riskier than you think. Harv Bus Rev

89(9):83–85

Geneca (2011) Doomed from the start? Why a majority of business and IT teams anticipate their

software development project will fail. Geneca, Oakbrook Terrace, IL

Glass R (2005) IT Failure Rates—70% or 10-15%. IEEE Softw 22(3):110–112

Glass R (2006) The Standish report: does it really describe a software crisis? CACM 49(8):15–16

IBM (2008) Making change work. IBM Global Services, Somers, NY

Jones C (1994) Assessment and control of software risks. Prentice-Hall, Englewood Cliffs, NJ

Jones C (2000) Software assessments, benchmarks and best practices. Addison-Wesley, Upper

Saddle River, NJ

Jones C (2007) Estimating software costs: bringing realism to estimating. McGraw Hill, New York

Jones C (2008) Applied software measurement: global analysis of productivity and quality.

McGraw Hill, New York

Jones C (2010) Software engineering best practices: lessons from successful projects in the top

companies. McGraw Hill, New York

Jørgensen M, Moløkken K (2006) How large are software cost overruns? A review of the 1994

Chaos report. Inform Softw Technol 48(8):297–301

Kerzner H (2009) Project management: a systems approach to planning, scheduling and control-

ling, 10th edn. Wiley, Hoboken, NJ

Kloppenborg T, Mantel SJ (1990) Tradeoffs on projects: they may not be what you think. Proj

Manag J 21(1):13–20

KPMG (2010) KPMG New Zeland project management survey 2010. Http://kpmg.co.nz

Linberg K (1999) Software developer perceptions about software project failure: a case study.

J Syst Softw 49:177–192

Luqi, Goguen JA (1997) Formal methods: promises and problems. IEEE Softw 14(1):73–85

Lyytinen K, Hirschheim R (1987) Information systems failures—a survey and classification of the

empirical literature. Oxf Surv Inf Technol 4:57–309

McManus J, Wood-Harper T (2008) A study in project failure. http://www.bcs.org/server.php?

show¼ConWebDoc.19584

Morris PWG, Hough G (1987) The anatomy of major projects: a study of the reality of project

management. Wiley, Chichester

Munns AK, Bjerimi BF (1996) The role of project management in achieving project success. Int J

Proj Manag 14(2):81–87

Naur P, Randell B (1968) Software engineering. In: Proceedings. NATO Scientific Affairs

Division, Brussels

48 D. Dalcher

http://kpmg.co.nz/
http://www.bcs.org/server.php?show%E2%80%89=%E2%80%89ConWebDoc.19584
http://www.bcs.org/server.php?show%E2%80%89=%E2%80%89ConWebDoc.19584
http://www.bcs.org/server.php?show%E2%80%89=%E2%80%89ConWebDoc.19584

Pinto JK, Slevin DP (1988) Critical success factors in effective project implementation. In:

Cleland DI, King WR (eds) Project management handbook, 2nd edn. Van Nostrand Reinhold,

New York

Sauer C, Cuthbertson C (2003) The state of IT project management in the UK 2002–2003.

Templeton College, Oxford

Sauer C, Gemino A, Reich BH (2007) The impact of size and volatility on IT project performance.

CACM 50(11):79–84

Shenhar AJ, Dvir D (2007) Reinventing project management: the diamond approach to successful

growth and innovation. Harvard Business School Press, Boston, MA

Standish Group (2000) Chaos 2000. Standish, Dennis, MA

Standish Group (2004) Chaos 2004. Standish, Dennis, MA

Standish Group (2011) Chaos 2011. Standish, Dennis, MA

Taylor A (2000) IT projects sink or swim. The Comp Bulletin, January, Brit Comp Society

Turner JR (2009) The handbook of project based management, 3rd edn. McGraw-Hill, New York

Wateridge JH (1995) IT projects: a basis for success. Int J Proj Manag 13(3):169–172

Biography Darren Dalcher is Professor of Project Management at the University

of Hertfordshire and Founding Director of the National Centre for Project

Management. He edits two international project management book series as well

as the Journal of Software: Evolution and Process. He has published over

150 refereed papers and book chapters. He is an Honorary Fellow of the Associa-

tion of Project Management and a Chartered Fellow of the British Computer

Society.

2 Rethinking Success in Software Projects: Looking Beyond the Failure Factors 49

Chapter 3

Cost Prediction and Software Project

Management

Martin Shepperd

Abstract This chapter reviews the background and extent of the software project

cost prediction problem. Given the importance of the topic, there has been a great

deal of research activity over the past 40 years, most of which has focused on

developing formal cost prediction systems. The problem is that presently there is

limited evidence to suggest formal methods outperform experts, therefore detailed

consideration is given to the available empirical evidence concerning expert per-

formance. This shows that software professionals tend to be biased (optimistic) and

over-confident, and there are a number of deep cognitive biases which help us

understand why this is so. Finally, the chapter describes how this might best be

tackled through a range of simple, practical and evidence-based methods.

3.1 Introduction

Cost estimation1 has been viewed as a challenging and important part of software

project management for almost 60 years. Interestingly, Benington (1956) writes of

his experiences developing, what was back in the mid-1950s, a large air defense

system comprising half a million lines of code (LOC). In it he tabulates what he

termed ‘reasonable production costs’ and although the headings such as computer

M. Shepperd (*)

Department of Computer Science, Brunel University, Middlesex UB8 3PH, UK

e-mail: martin.shepperd@brunel.ac.uk

1 There is something of a proliferation of terminology. Whilst the majority of writers refer to cost

modelling or prediction, strictly speaking the usual focus is upon labour or effort which forms the

dominant part of costs and is usually the hardest to predict. Such costs may or may not be reflected

in the price charged to the client or user. This chapter will use the term in this particular sense.

Likewise, estimation and prediction are used interchangeably since we’re only concerned with

future events.

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_3, © Springer-Verlag Berlin Heidelberg 2014

51

mailto:martin.shepperd@brunel.ac.uk

and paper costs might no longer be seen as relevant, others such as specification,

coding and testing remain pertinent. The outcome was ‘the schedule slipped by a

year’, something that remains distressingly familiar!

So how bad is the problem? Apart from the anecdotal, evidence is surprisingly

elusive probably due to the commercially sensitive nature of poor project cost

estimation. Jørgensen and Moløkken-Østvold (2006) reviewed multiple sources

of evidence and concluded that a typical cost estimation error was ‘in the range

of about 30 %’. Another indicator that not all is well comes from the 2005 and 2007

surveys conducted by El Eman and Koru (2008) who from a total of 388 responses

found ‘the most critical performance problem in delivered software projects is

therefore estimating the schedule and managing to that estimate’. An independent

study by the European Services Strategy Unit of 105 large public ICT projects

(Whitfield 2007) found more than half to show cost overruns with the average cost

being 30.5 %, a figure very much in line with Jørgensen and Moløkken-

Østvold (2006).

The question therefore arises, as to why are software project costs difficult to

estimate? There are many reasons. First and foremost is complexity. Many projects

are extremely large undertakings with multiple stakeholders in a setting

characterised by uncertainty, inconsistency and change. Second, software develop-

ment is best viewed as a design type activity and it is emphatically not concerned

with production. This means the sub-tasks and activities are not routine so simple

linear extrapolation is seldom a safe guide. Third, estimates are required at a very

early stage when little is known and requirements are still to be discovered,

arbitrated, let alone documented. Finally, there are many subtle, and not so subtle,

social and political pressures upon those responsible for cost modelling. In his

analysis of a wide range of projects, Flyvbjerg refers to this tendency to under-

estimate costs and over-estimate benefits in order to secure funding for a proposed

project as ‘strategic misrepresentation’ (Flyvbjerg 2008).

Clearly, these problems with predicting software project costs have significant

ramifications. First, we see a tendency for errors in one direction, i.e., bias or a

propensity for over-optimism. Second, poor cost prediction will severely hamper

meaningful cost-benefit analysis and the consequent unnecessary cancellation of

projects that should not have been commissioned in the first place. Conversely,

under-estimation might lead to missed opportunities or sub-optimal procurement

decisions.

3.2 A Review of State-of-the-Art Techniques

The first thing to consider is what is an estimate? Although it can easily be

forgotten, it must be stressed that an estimate is a probabilistic statement (DeMarco

1982; Kitchenham and Linkman 1997), and consequently, to simply report an

estimate as a point value masks important information. As an example, if a project

manager makes a prediction that the Integration Testing will take 150 person-hours,

52 M. Shepperd

we do not know with what confidence he or she makes this statement; it could be

with near certainty or it could be a wild guess with almost no certainty. Thus there

are two components. Jørgensen and Sjøberg (2003) recommend a simple approach

based on an interval and a confidence level. Based on the Integration Testing

example, the project manager (if highly confident) might state 140–160 person-

hours at 90 % confidence, or (if lacking confidence) 50–250 person-hours at 50 %

confidence. Note the trade-off between the interval size so it is possible to increase

confidence by enlarging the interval or to decrease the confidence value and reduce

the interval accordingly.

An alternative approach sometimes used in industry is derived from the critical

path analysis technique Program Evaluation and Review Technique (PERT) (Willis

1985) and is known as 3-point estimation. It is based on the idea that an estimate is

actually a probability distribution, and a simple characterisation is as a triangle

based on the best case, worst case and most likely case or mode.

Figure 3.1 shows an example of a 3-point estimate depicted as a triangular

probability distribution. The shaded area shows the region within which the true

or actual effort value will fall (assuming of course that the distribution is correctly

estimated). The estimation interval is the range between the worst case (i.e., the

highest possible value) for effort and the best case (i.e., the lowest possible value)

for effort. In addition, the distribution shows likelihood or the probability p on the

y-axis. This reveals that the highest or modal point on the distribution is the most

likely, i.e., it has the greatest chance of actually occurring. The distribution also

reveals another interesting property, that it is skewed or biased since the region

above or to the right of the most likely value is considerably greater than the region

below the mode. The implication is that even if the distribution were accurately

estimated, to use the most-likely value as the actual estimate will lead to a tendency

to under-estimate over time. This is a phenomenon that we observe (as noted in

Sect. 3.1).

Although thinking of an estimate as a distribution enables a far richer analysis,

empirically we are hindered by the fact that we are obliged to construct the

distribution from a single observation. The situation can be further complicated

by the fact that projects are seldom static and so one has to be clear whether the

estimates refer to a project as intended at its inception as compared with the actual

project as delivered which could conceivably have functionality added or removed.

These problems are further explored by Grimstad et al. (2006).

There is surprisingly little systematic analysis of what software practitioners

actually do. Studies such as those by Heemstra (1992) and Hughes (1996) have

reported that expert judgment is the dominant method amongst software practi-

tioners and there is little to suggest matters have changed radically since the 1990s.

One source for identifying what is perceived as good practice is the Software

engineering Body of Knowledge (SWEBOK; Abran and Bourque 2004), which was

the culmination of the work of a team of software development experts. Interest-

ingly, the section on effort, schedule and cost estimation is relatively brief; how-

ever, a number of principles emerge:

3 Cost Prediction and Software Project Management 53

1. Estimates can be derived top-down or by means of some breakdown of tasks.

2. For each such task the expected effort [cost] range can be derived from a cost

model which needs calibration to the local environment using historical data if
available. Otherwise, an alternative is needed such as expert judgment.

3. The individual estimates should be summed across the entire project.

4. Estimates need to be revised iteratively until agreement is reached amongst all

stakeholders, which the SWEBOK identifies as principally software engineers

and management.

In this list of steps I have italicised some key concepts, which will be explored in

more detail.

The idea behind a top-down or a decomposition approach to cost estimation is

that of divide and conquer. In other words, it is easier to estimate the cost of a small

task than a large one. Moreover, it is easier to match a smaller task to some

repertoire of previously completed tasks, than it is for a large task where the

combinatorial explosion militates against this possibility. Often, the idea is

formalised into work breakdown charts. The chief difficulty is the fact that some

activities do not easily fit into neat hierarchical breakdowns.

The next point of note is the SWEBOK recommendation to consider

representing an estimate as a range. As previously discussed, in order to view an

estimate as a probabilistic statement a point value is inadequate. However, to attach

additional meaning minimally, we need a confidence level in the range. Provision

of 3-point estimate provides an even richer picture.

SWEBOK also recommend the use of formal models, and although no examples

are specified, widely used models include COCOMO 81, which is based on a

non-linear relationship between estimated LOC and effort, implying diseconomies

of scale. The fundamental relationship is modified by the type of project and,

p
best case

worst case

most likely

effort
0

Fig. 3.1 Three point estimates as probability distribution

54 M. Shepperd

initially, 14 cost drivers. This was subsequently modified and extended as

COCOMO II, although, unfortunately unlike COCOMO 81, the database from

which this model is derived is not in the public domain.

Although COCOMO is widely used and there are many free implementations, it

has come in for criticism. Firstly, accurate estimates of LOC may not be available at

an early stage of a software project. Secondly, there is mixed empirical evidence as

to whether software projects exhibit diseconomies (as many commentators assert),

economies or simple linearity with respect to scale (Kitchenham 2002). Third, there

is limited evidence that COCOMO performs well using the off the shelf settings on

data other than that with which it was developed, for example, Kocaguneli

et al. (2012b) reported that the model was ranked 92 out of 102 different combina-

tions of models and pre-processors that were evaluated in a major empirical study.

Likewise Kemerer (1987) reported mean absolute relative errors in excess of 600 %

for a different data set of 15 software projects. Interestingly, he found that

COCOMO performed best (least badly?) in its simplest form, and additional sophis-

tication of themodel harmed its accuracy. This has ledmany researchers, in line with

the SWEBOK, to recommend tailoring and calibration to a local environment.

Gulezian (1991) describes how multiple regression analysis can be used to calibrate

the weights for the various cost drivers. The systematic review by Jørgensen (2004)

identified individual primary studies and the only ones that showed formal predic-

tion systems to outperform experts involved the use of calibration. More recently,

Yang et al. (2013) described a calibration procedure to handle local bias, thereby

improving the usability of cross-company data sets and demonstrated this with

respect to COCOMO II. The value of calibration was again highlighted by the

analysis of Menzies et al. (2013). Nevertheless, despite some of the reservations

COCOMO or a similar approach is often used as some form of sanity check.

Another important part of the SWEBOK recommendations is the need to revisit

any prediction. This has often been neglected by researchers who tend to see a

software project as a static snapshot, which of course does not reflect the realities of

(1) a growing understanding of the requirements and challenges as the software

project plays out, converging upon certainty on the day of delivery and (2) the

changing environment in which the project is embedded. MacDonell and Shepperd

(2003a) in a rare study of re-estimation in a commercial setting found no support for

the idea that there are ‘standard proportions’ of effort for particular development

stages, e.g., specification and design. However, in most cases simple linear regres-

sion combined the managers’ estimates led to improvements in predictive accuracy.

These results indicate that, in this organisation, prior-phase effort data is useful and

revising estimates worthwhile.

3.3 A Review of Cost Estimation Research

Because of the need for effective software cost estimation, this has been the subject

of a good deal of research. From the outset, the aim has been to replace the

subjectivity of project managers and other professionals, generally referred to as

3 Cost Prediction and Software Project Management 55

expert judgment with more objective and formal approaches. This was, or still is,

seen as a good thing because this provides opportunities for scrutiny, it is more

repeatable and can militate against the loss of knowledge and insight if experts

leave an organisation.

Early approaches tended to be based on some function between size either

measured as estimated LOC or Function Points (Albrecht and Gaffney 1983) and

a variant known as Mk II Function Points (Symons 1988). Generically, these take

the form:

E ¼ f Sað Þ

where E is effort or cost, S is size (typically measured by LOC or Function Points)

and a an exponent representing economies or diseconomies of scale. Typically, this

overall relationship is then modified by a set of productivity or cost factors.

COCOMO 81 (as described in Sect. 3.2) is a good example of this approach. An

interesting recent study by Kocaguneli et al. (2012a) has suggested that in many

cases, the use of a size measure may be less important than previously supposed. It

may be that other features act as a proxy for size, e.g., the different application types

may tend to be of different sizes. Nevertheless, it is an thought-provoking point that

size may be less essential than has been previously supposed.

Early models were postulated based on the beliefs of the inventor, however, the

1990s heralded a more data-driven approach to modelling. Often, multiple regres-

sion methods sometimes using a stepwise approach2 were deployed in order to

isolate the important factors, specific to some software development environment

as captured by a data set of historical project data. Kitchenham and Kansala (1993)

used multiple regression to re-estimate weightings for the standard values for

Function Points with considerable benefit. They also reminded researchers of the

dangers of constructing models when many of the components are strongly corre-

lated, i.e., multicollinearity is present which if uncorrected leads to highly unstable

models.

Given the emphasis of learning from historical data, different machine learning

techniques became popular from the 1990s onwards. In all cases the underlying

principle is to reason inductively from the particular to the general. For cost

prediction the idea is to learn from past, completed software projects in order to

predict for new, unseen projects. One technique is lazy learning3 based on analog-

ical or case-based reasoning (Shepperd and Schofield 1997; Keung et al. 2008)

which is often referred to as Estimation by Analogy (EBA). The simplicity of the

idea—that history repeats itself, but not exactly—has attracted a good deal of

attention not least because to be acceptable to practitioners, prediction systems

2 The regression model is constructed one independent variable at a time or iteratively until no new

variable significantly contributes to the model fit.
3 A lazy learner only makes an inductive generalization when actually presented with the new

problem to solve. This can be advantageous when trying to learn in the face of noisy training cases

and much uncertainty.

56 M. Shepperd

benefit from good explanatory value since decisions arising from the prediction will

be of high value (Mair et al. 2000). Despite these strengths, EBA was not found by a

Systematic Review (Mair and Shepperd 2005) of all available empirical studies to

outperform simpler regression models with 9 studies supporting, 4 equivocal and

7 against.

Because of the relative ease of fitting regression models these are now often used

as a benchmark with which to compare more elaborate methods, e.g., Mair

et al. (2000) compared various machine learning methods (artificial neural nets

(ANNs), case-based reasoners (CBR) and rule induction) with stepwise regression.

Interestingly, the basic regression approach outperformed the rule induction algo-

rithms although not CBR or ANNs.

The last decade could be characterised by research that has explored more

advanced prediction systems. Examples include through the use of ensembles of

learners coupled with some decision making logic (Minku and Yao 2013) and new

approaches like Grey Relational Algebra (Song and Shepperd 2011). This has been

supported by more research into such things as data pre-processing as many

prediction methods are vulnerable to excessive noise, extreme outliers and missing

observations. Consequently, appropriate pre-processing can have a substantial

impact upon predictive performance, Strike et al. (2001), Song and Shepperd

(2007), Liu and Mintram (2005).

Another area of concern and of some progress is developing frameworks as to

how we meaningfully compare the proliferating number of cost estimation

approaches. Until the empirical studies of Myrtveit and Stensrud (1999) which

set out to independently compare regression modelling, EBA and the unaided

human expert, it was not customary to perform any statistical testing. Subsequently,

inferential test such as t-tests and Mann–Whitney U became the norm, however,

methodological problems such as correcting4 the α threshold for null hypothesis

significance testing in the face of large numbers of tests and using inappropriate

measures of predictive accuracy remained. Mittas and Angelis have proposed a

method that is not too conservative but reduces the number of tests required by

means of clustering the results into groups (Mittas and Angelis 2013). More

generally, various authors have proposed remedies and strong arguments as to

why to proper procedures are required in order to derive sound conclusions. For

example, Shepperd and MacDonell (2012) show that inappropriate evaluation hid

the fact that various published prediction techniques such as regression to the mean

coupled with EBA actually performed worse than guessing!

After the event, when evaluating the quality of a prediction there are three

dimensions that need to be assessed (1) error (2) bias and (3) variance or scatter.

4 Essentially, the point is that when conducting a significance test for a hypothesis, there are two

dangers: One can wrongly reject the null hypothesis or wrongly fail to reject the null hypothesis. It

is customary to set the chances of wrongly rejecting the null hypothesis (denoted by α) at 0.05.
However, if many tests are performed, the probability of at least once committing such an error

grows with the number of tests. For this reason, the α threshold needs to be reduced to take this

danger into account.

3 Cost Prediction and Software Project Management 57

Even accuracy is often misunderstood in the software engineering community and

inappropriately assessed by accuracy statistics such as Mean Magnitude of Relative

Error (MMRE). Elsewhere researchers show how this is flawed both theoretically as

it is merely an asymmetric measure of spread (Kitchenham et al. 2001) and

empirically through Monte Carlo simulation (Foss et al. 2003). Without a clear

conceptual understanding of accuracy it is difficult for the community to review or

improve their prediction practice since there is no systematic basis for evaluating

different approaches to cost estimation. Indeed, MMRE has the rather perverse

characteristic of favouring optimistic predictions over pessimistic ones. Given the

widespread use of MMRE this may be another contributor to the biases we observe

in industry practice described in Sect. 3.1. Therefore, unless there is good reason to

the contrary, it is recommended (Shepperd and MacDonell 2012) that researchers

seek to minimise the absolute sum of the residuals, consider performance relative to

guessing and be aware of the effect size. The effect size is a means of capturing the

practical or real world effect of the particular intervention, for example by moving

from cost estimation technique A to B what actual benefit does this yield? This is a

very different question from how likely is the effect to have arisen by chance since

large numbers of observations will render even small effects highly significant

(Armstrong 2007; Ellis 2010).

The final development, and one that warrants a section in its own right, is the

realisation that formal prediction or cost models have not succeeded in replacing

humans and therefore there is a need to research into how practitioners make

predictions. This section has of necessity been brief. For a more detailed overview

see the mapping studies in Jørgensen (2004) and Jørgensen and Shepperd (2007).

3.4 The Interaction Between People and Formal

Techniques

As the previous section has shown there has been no shortage of ideas or research

into constructing formal prediction systems for software project costs. Unfortu-

nately, as systematic reviews (Mair and Shepperd 2005; Jørgensen and Shepperd

2007; and simulation work Shepperd and Kadoda 2001) demonstrate, no single

technique dominates. In particular, formal model performance seems closely linked

with the specific characteristics of the historical data that are used to train or

calibrate the prediction system (Shepperd and Kadoda 2001). This has led some

researchers such as Menzies et al. to suggest that we should focus on finding

prediction systems that are ‘good enough’ rather than the ‘best’ (Menzies

et al. 2010). Nevertheless, Jørgensen (2004) reported that formal models do not

consistently outperform their human counterparts and frequently do less well.

Specifically, in his systematic review of 15 primary studies he reports that

5 favoured formal models, 5 were equivocal and 5 favoured expert judgement

over the formal model. Looking in more detail, Jørgensen suggests that those

58 M. Shepperd

studies using local calibration or where the estimators lacked expertise yielded the

best results for formal models. Similarly, in a software maintenance setting, the

systematic review of Riaz et al. (2009) found that ‘there is little evidence on the

effectiveness of software maintainability prediction techniques and models’. More-

over, formal models do not appear to be very widely used in practice and expert

judgement remains the dominant estimation technique (Jørgensen 2004). Conse-

quently, Jørgensen and his co-workers have been exploring over the past decade

why this might be so.

The first thing to appreciate is the nature and use of cost estimates. Software

projects are generally high value and relatively infrequent events since typical

durations are many months through to years. Therefore the estimate matters and

in a way that predicting if a supermarket customer chooses a cabbage will they also

purchase carrots, does not. The career prospects of an individual may be impacted

by an estimate and the associated decision-making, e.g., to initiate/cancel a soft-

ware project. In extremis the financial health or viability of the software develop-

ment may be impacted. Such awareness may skew the estimation process of

individuals. More than 20 years ago Lederer and Mendelow (1999) in their study

of cost estimation within information systems projects observed how organisational

politics can be inimical to good estimation. Flyvbjerg et al. (2003), Flyvbjerg

(2008) in a study of a number of major projects—whilst not specifically related to

software—found considerable evidence to support the notion of strategic misrep-

resentation. This typically manifests itself as a tendency to under-estimate costs and

over-estimate benefits because of the desirability of the end goal. In terms of

software it may be that professionals might see the potential opportunities of a

new project, e.g., improved work prospects, personal development or intellectual

challenge. The interesting thing is that formal models may not offer any protection

against such phenomena since these models require inputs, many of which must be

estimated, for instance COCOMO (as previously indicated) requires the user to

estimate delivered LOC which will not normally be known at the point of predic-

tion. Likewise many machine learning techniques are heavily parameterised with

little deep theory to guide the user, thus rendering such methods rather experimental

in their approach. This can encourage a ‘suck it and see’ philosophy. Jørgensen and

Gruschke (2005) termed this ‘expert judgment in disguise’.

The problem of obtaining useful predictions is compounded by the strong

tendency for professionals to display both over-optimism, e.g., Buehler

et al. (1994) and over-confidence, e.g., Jørgensen (2010). Because these phenomena

are so widespread the causes of bias have been extensively investigated by cogni-

tive psychologists in various domains over the past three decades since the seminal

work of Kahneman and Tversky (1979). This has led to the identification of a

number of cognitive biases that appear to be both deeply ingrained and widespread.

Four such biases are now considered.

One problem is the so-called ‘planning fallacy’ which is the tendency to under-

estimate project completion times as a consequence of spending time on detailed

planning aspects. Buehler et al. (1994) examined the underlying cognitive

processes and found that a narrow focus on future plans for the target task led to

3 Cost Prediction and Software Project Management 59

neglect of other useful sources of information. In other words, an illusion of

control leads to significant over-optimism. Therefore we might expect detailed

top-down planning methods such as work breakdown to be vulnerable to this

particular bias.

Another source of bias is a preference for case-specific (and recent) evidence

over distributional evidence (Tversky and Kahneman 1974; Griffin and Buehler

1999). For example, data suggesting that 8 out of 10 projects are delivered late (i.e.,

costs and schedule have been under-estimated) might be neglected in preference to

evidence suggesting this specific project will be different because staff will be

motivated to work harder or because there will be reuse of some software compo-

nents. This helps us understand why professionals struggle to learn lessons from the

past because deep down we believe it will be different next time. The problem is the

distributional or frequency related evidence says otherwise and this is usually

correct!

A closely related phenomenon is the peak-end rule where the most recent

experience dominates even when it is highly atypical. This has been demonstrated

in many different arenas including the experiment described in Kahneman

et al. (1993) where participants were subjected to modest pain (a hand in icy

water) and preferred the worse (in terms of temperature and duration) experience

when for the final period the water temperature was raised. In terms of software

projects, professionals may recall the final experiences of getting software to work,

as opposed to the lengthy previous experiences of failures and debugging. Again

this bias can lead to distributional evidence being ignored or neglected and the

consequent impact upon estimates.

A third, relevant cognitive theory is the dual-process theory of cognition which

leads to a tendency to trust analytic justifications (explanations) over intuitive ones

yet to prefer intuitive judgments over analytic ones. One implication is that this is

another reason why formal prediction systems can turn into ‘expert judgment in

disguise’ (Jørgensen and Gruschke 2005) as the estimator is seeking ‘objective’

evidence to support his or her intuitive judgement.

A fourth bias is known as anchoring where data in the request for an estimate can

be highly influential even when the estimator is told to ignore it. An example is the

experiment by Jørgensen and Grimstad (2012) where professional participants were

randomly allocated to two groups, one of which was primed with a high anchor and

another with a very low anchor. They were then asked to estimate the same task,

namely their own productivity in LOC per work-hour over their last project.

Remarkably, the difference in median response between the two groups was almost

sevenfold (15 LOC per hour versus 100 LOC per hour). This stable finding—

repeated by a number of independent studies—indicates just how vulnerable

humans are to these biases and is clearly a major contributor to the some of the

cost estimation problems reported at the beginning of this chapter.

These biases are common to many problem domains, and seem independent of

individual differences, e.g., the traits of optimism and procrastination (Buehler and

Griffin 2003). The limited work investigating de-biasing strategies, e.g., utilising

previous experience, such as past project databases, Personal Software Process

60 M. Shepperd

(Humphrey 2000) and lessons learned sessions, have not been all that successful,

particularly in the field of software engineering prediction. Interestingly, Jørgensen

and Grushka found that software professionals were better able to learn lessons for

the estimates of others than for their own estimates (Jørgensen and Gruschke 2009).

There are both theoretical and empirical reasons why software practitioners

make consistently sub-optimal predictions within software engineering. However,

the vast bulk of the psychological research has been conducted using student

participants working on problems that are not industry-related (Mair et al. 2009)

and therefore Jørgensen’s work using software developers has been quite unusual.

In addition, the literature has predominantly focused upon understanding factors

that contribute to bias. We need to also explore factors that promote de-biasing in

realistic settings. In parallel, much research has been undertaken into meta-

cognition (i.e., thinking about thinking), particularly in the domain of learning.

There is a considerable body of evidence showing that increased metacognitive

awareness leads to increased learning and enhanced performance, e.g., Coutinho

found a relationship between metacognitive awareness and educational perfor-

mance (Coutinho 2007). Other researchers have shown that metacognitive skills

can be taught (Borkowski et al. 1987; Dawson 2008) and these can potentially

militate against some of the cognitive biases described above.

Metacognition can be divided into metacognitive knowledge and metacognitive

skills. The former relates to declarative knowledge of the interactions among self,

task, and strategy characteristics (Flavell 1979) that can be inaccurate and resistant

to change. Clearly, this will be an inhibitor to improving prediction performance.

Metacognitive skills on the other hand refer to procedural knowledge for self-

regulating problem solving and learning activities and include feedback (reflection)

on metacognitive knowledge. This division between metacognitive knowledge and

skills is related to that of single and double loop learning popularised by Argyris

and Schön (1996).

‘Single-loop learning’ occurs when goals, values, plans and rules are taken for

granted and put into operation rather than questioned. It reduces risk and affords

greater control, but severely limits growth and learning. By contrast, ‘double-loop

learning’ involves questioning the fundamental systems that underlie goals and

strategies. It results in the questioning of governing variables and may lead to

fundamental changes. This double-loop learning is necessary if practitioners and

organisations are to make informed decisions in changing and uncertain contexts.

Reflection is a metacognitive skill important for personal and professional

development, see for example, Schön (1983), Moon (1999), and it plays a key

role in both single and double loop learning. However critical reflection, as dem-

onstrated in double loop learning, is essential for growth and change. Critical

reflection demands focusing on the cognitive aspects and challenging the strategies

that led to particular actions, and the outcomes and lessons learned from those

actions for future application.

Unfortunately, previous studies of software project cost prediction suggest that

feedback on performance and the typical methods for reflecting on experience, e.g.,

unaided lessons learned sessions, do not necessarily lead to improvement in

3 Cost Prediction and Software Project Management 61

accuracy or assessment of the uncertainty (Jørgensen and Gruschke 2009). The lack

of training in both reflecting on one’s own thinking and the fundamental causes of

suboptimal outcomes (double-loop learning) can be a major obstacle. As an illus-

tration, in a previous study where software professionals described reasons for their

estimation errors (Jørgensen and Gruschke 2009; Moløkken and Jørgensen 2004),

most were shallow and corresponded to single-loop learning. In particular the

participants (all software professionals) exclusively focused on reasons for their

estimation inaccuracy and at the expense of their confidence. Indeed, participants

only identified means to improve their accuracy (e.g., add more time for unknown

events). The alternative, which would have been to change their level of confidence

in the effort estimates, was not considered in terms of documented reflections. This

lack of double-loop learning would seem to be a key contributor to the robust

findings on over-optimism and over-confidence among software developers (Note,

in contrast Chap. 7 takes a more organisational perspective to learning. It also uses

the device of a decision rationale to support future learning.)

Hence it is important to consider estimation approaches that are underpinned by

theories of meta-cognition and double-loop learning. Specifically, we need to better

understand the impact of enhanced metacognitive awareness on the ability to

improve project cost prediction and confidence (uncertainty assessment) within a

software engineering context. To summarise,

1. Formal prediction systems are not consistently reliable or superior to the unaided

human expert. Moreover, their inputs and parameters must be manipulated by

humans with a consequent loss of their raison d’être, i.e., objectivity.

2. There is a strong tendency for professionals to display over-optimism and over-

confidence. A number of experiments and empirical studies help us to under-

stand the cognitive basis for this bias.

3. De-biasing strategies based upon utilising previous experiences, such as lessons

learned sessions, have not led to noticeable improvement in prediction accuracy

or the realism of uncertainty assessment.

4. There are opportunities to apply recent results from metacognition research to

counteract this natural bias and consequently improve performance.

It is therefore evident that more attention needs to be paid both by researchers

and practitioners into the cognitive aspects of cost estimation. To ignore this aspect

is to severely limit the reach and impact of any initiatives to improve cost estima-

tion practice. As has already been noted, formal models such as those based on

machine learning algorithms have their place, but they still depend upon inputs and

parameters supplied by, and outputs utilised by, software professionals who are

subject to the same cares, concerns and biases of all human beings.

62 M. Shepperd

http://dx.doi.org/10.1007/978-3-642-55035-5_7

3.5 Practical Recommendations

Thus far, this chapter has noted the importance of effective cost estimation for

software projects and contrasted this with the widespread challenges that are faced.

In particular, endemic over-optimism has led to costs being systematically under-

estimated and over-confidence, causing estimators to believe they are more accu-

rate than they really are. We have then reviewed the problems that are currently

being experienced in terms of cost estimation, most notably the tendency to be

over-optimistic (i.e., under-estimate costs) and to be over-confident (i.e., be less

accurate than anticipated). This has triggered a good deal of research to try to

overcome these problems, in particular through proposing formal prediction sys-

tems or models. After initial work based on the idea of generally applicable models

such as COCOMO (Boehm 1984) and COCOMO II (Boehm et al. 2000), the

dominant idea driving formal models has been to derive them from historical data

either through statistical analysis such as regression modelling or through induction

using one of the many machine learning techniques available. Despite this activity,

it is not possible to strongly recommend any one formal technique, for the simple

reason of a lack of consistent evidence. Thus, any recommendations must be

grounded in the understanding that human judgement plays a substantial

contribution.

Whilst not intended to be exhaustive, the following is a list of six practical

recommendations that are supported by empirical evidence and could usefully be

deployed in real-life projects:

1. Data driven

2. Sensitivity analysis

3. Multiple techniques

4. Group estimates

5. Training and reflection

6. Estimation and confidence

Data-driven estimation requires the availability of historical data on previously

completed projects. Such data can be useful in three different ways. First, for

analogical reasoning that can be formalised as case-based reasoning (Shepperd

and Schofield 1997) or used more informally. Second, local historical data can be

used for calibration purposes since there is widespread evidence to indicate that

off-the-shelf approaches are problematic and that general purpose models benefit

from calibration to the specific or local problem domain (Cuelenaere et al. 1987;

Jeffery and Low 1990; Gulezian 1991; Yang et al. 2013). Third, for direct predic-

tive model building, relevant, local data is necessary for training, i.e., inductive

learning purposes. Naturally, the question arises about the situation when no local

data is available. This might be because the software development organisation is

new or because no relevant past data exists. Is the assumption that global data is

inferior to local data well founded? This has vexed researchers for some time and

two systematic reviews (Kitchenham et al. 2007; MacDonell and Shepperd 2007)

3 Cost Prediction and Software Project Management 63

have concluded that the evidence is mixed, and from primary studies available no

definitive answer is possible. In some ways, the question of local vs. global data is

somewhat artificial and more relevant is how relevant is the global or cross-

company data? However, a recommendation is to inform any cost estimation with

local data, including past estimation performance data wherever possible. If cir-

cumstances do not allow this, then global data, after careful consideration of its

relevance, is the next best option.

Sensitivity analysis is not common practice, yet in the face of uncertainty, it is a

very useful means of determining the vulnerability of an estimate to particular

assumptions and the level of confidence that can be placed in that estimate. Such

analysis can be highly sophisticated (Saltelli et al. 2000) or use simple Monte Carlo

methods (Fishman 1996). Wagner (2007) illustrates how these ideas can be

deployed using a COCOMO model and finds that the code size estimate dominates

the effort prediction, but less obviously that there are significant second order

effects between the different cost drivers due to the multiplicative nature of the

model. This kind of analysis can also be valuable when the uncertainty surrounding

an estimate is unacceptable, thereby helping the estimator identify the most impor-

tant sources of variability and could then take steps to reduce this uncertainty

through further investigation, simulation, etc. of the key parameters or inputs.

Using more than one estimation method or multiple techniques is another

important consideration. Although an obvious recommendation for practitioners,

this has not been widely researched and the evidence base is quite limited.

Kitchenham et al. (2002) conducted an empirical study of 145 projects at a large

software house where estimators were required to use a minimum of two techniques

and then select one estimate to be the basis of client-agreed budget. The advantage,

over simply using the mean is that if one estimate is misleading it will not

‘contaminate’. MacDonell and Shepperd (2003b) explored a similar question and

also found that not only was no one technique best but using the mean was also

sub-optimal. By selecting one technique, or perhaps investigating more deeply,

requires more consideration and discussion than the formulaic application of an

averaging technique.

Group estimates should also be considered as a practical estimation technique.

Again, surprisingly considering they have been promoted since Boehm’s seminal

Software Engineering Economics (Boehm 1981) described a wideband Delphi

process, but there has been limited research and therefore evidence. Taff

et al. (1991) proposed a related approach that they termed Estimeetings, however,

little empirical support is offered in terms of their effectiveness. Passing and

Shepperd (2003) investigated the impact of group discussion and iterated estimates

and found that both checklists and group discussions significantly contribute to

improved estimation. The limitation of this study was that it involved Masters

students rather than professionals and was in an artificial setting. Reporting similar

results, Moløkken and Jørgensen (2004) found a significant and substantial effect in

terms of the tendency for group estimates to be less optimistic both for group

decisions and the individual post-group discussion decisions to be less optimistic

than the original estimates.

64 M. Shepperd

The lack of systematic training and reflection is another improvement opportu-

nity. As Jørgensen puts it ‘the focus on learning estimation skills from software

development experience seems to be very low’ (Jørgensen 2004). The challenges

are that the various cognitive biases described in Sect. 3.4 are deeply ingrained and

de-biasing strategies not necessarily effective. Consequently, emphasis should be

given to reflection but structured in order to guide estimators beyond the shallow

reflections that some researchers have found, such as ‘the estimate was too low

because insufficient time was allocated’! Researchers have also found that

emphasising metacognitive skills can also significantly improve performance.

Finally, practitioners need to keep in mind that because an estimate is a proba-

bilistic statement, it has two dimensions (the estimate and confidence) and there-

fore, it is not well represented by a single point value even if this is required as the

final outcome of the decision making process, e.g., the bid value. To give an

example, estimating 1,000 person-hours� 10 person-hours is a very different

proposition to 1,000 person-hours� 500 person-hours. Even this may not be ade-

quate since it is unclear whether it means that an actual effort of 1,510 person-hours

is deemed impossible or merely very unlikely. Moreover such a formulation

imposes a symmetric distribution which may not properly reflect the estimator’s

beliefs. Jørgensen recommends a confidence value in a range, e.g., 80 % confidence

between 500 and 1,500 person-hours. This allows some simple trade-offs between

precision and confidence to be exploited. A richer picture still is obtained by

describing the estimate as a probability distribution, e.g., as a 3-point estimate

and a triangular distribution. Either way, failing to regard estimates as probabilities

indicates a failure to appreciate their true nature and therefore the opportunity to

learn and improve.

The above list contains some simple, practical, general and evidence-based

recommendations for software cost estimation. It is not a panacea, and there are

many other challenges that have not been fully addressed. Nevertheless, given the

importance of software, software projects and effective cost management, they may

offer some useful steps forward.

3.6 Follow-Up Sources of Information

There are several comprehensive systematic reviews on research into cost estima-

tion. Jørgensen and Shepperd (2007) gives general coverage of the different

research activities being undertaken and Simula have continued to update the

database of sources subsequent to its publication.5 A second, more specialised on

the role of human experts, and slightly older systematic review is by Jørgensen

(2004). The review by Riaz et al. (2009) focuses on cost estimation in a software

maintenance context.

5 The bibliographic database can be found at www.simula.no/BESTweb

3 Cost Prediction and Software Project Management 65

http://www.simula.no/BESTweb

Cost estimation generally takes place in the wider setting of a software project.

There are many good textbooks, such as Hughes and Cotterell (2009) on project

management and Sommerville (2010) on software engineering and the set of

guidelines published as the SWEBOK (Abran and Bourque 2004).

In terms of making sense of published empirical research comparing different

formal models, and for designing new experiments, Shepperd and MacDonell

(2012) set out a framework based on three research questions that need to be

addressed.

Glossary

Absolute residuals a simple and robust means of assessing the predictive accuracy

of a prediction system. It is defined simply as: yi � ŷ ij jwhere yi is the true value
for the ith project and ŷ i the estimated value. This gives the error, irrespective of

direction, i.e., an under- or over-estimate. The mean residual (keeping the

direction of error) gives a measure of the degree of bias.

Cognitive bias these are patterns of thinking about problem solving or decision-

making that distort and lead people to ‘sub-optimal’ choices. Because of the

ubiquity of many such biases, they are classified and named, e.g., the anchoring

bias. See the pioneering work of Tversky and Kahneman (1974).

Double loop learning this differs from ordinary or single-loop learning in that one

not only observes the effects of the process, but also understands the external

factors that influence the effects. This was initially promoted by Argyris and

Schön as a way of promoting effective organisational behaviour (Argyris and

Schön 1996).

Estimation by Analogy (EBA) uses some form of case-based reasoning where a

new or target case which is to be solved is plotted in feature space (one

dimension per feature) and some distance metric used to determine past proxi-

mal cases from which a solution can be derived. For a general account of CBR

see the pioneering work by Kolodner (1993) and for its application to software

engineering see Shepperd (2003).

Expert Judgement this is something of a catch all description for a range of

informal approaches to estimation. Jørgensen describes it as ‘unaided intuition

(“gut feeling”) to expert judgment supported by historical data, process guide-

lines and checklists (“structured estimation”)’ (Jørgensen 2004). Despite it being

a widespread estimation approach, it can still be criticised for its reasoning not

being open to scrutiny since the reasoning process is ‘non-recoverable’

(Jørgensen 2004), not repeatable or easily transferable from existing experts to

others.

Formal prediction system or formal model for cost prediction is characterised by

repeatability so that different individuals applying the same inputs should

generate the same outputs (with the exception of prediction systems based on

66 M. Shepperd

stochastic search [also see Chap. 15 on search-based project management] where

this will tend to be true over time (Clark et al. 2007), but not necessarily for a

single utilisation). Examples of formal systems range from simple algorithmic

models, such as COCOMO, to complex ensembles of learners.

Machine Learning this is a branch of applied artificial intelligence based on

inducing prediction systems from historical data, i.e., reasoning from the partic-

ular to the general. There are a wide range of approaches including neural

networks, case-based reasoning, rule induction, Bayesian methods, support

vector machines and population search methods such as genetic programming.

Standard textbooks that provide overviews of these techniques include Witten

et al. (2011).

Mean magnitude of relative error (MMRE) this is a widely used, although now

heavily criticized (Kitchenham et al. 2001; Foss et al. 2003; Shepperd and

MacDonell 2012), measure of predictive accuracy defined as:

MMRE ¼
Xn

1

xi � x̂ ið Þ.
xi

����

����
�� �

n

where x is the true cost for the ith project, x̂ is the estimated cost and n the total

number of projects.

Metacognition this refers to ‘thinking about thinking’ (Flavell 1979) and is an

awareness and monitoring of one’s thoughts and performance. It encompasses

the ability to consciously control the cognitive processes involved in learning

such as planning, strategy selection, monitoring and evaluating progress towards

a particular goal and adapting strategies as, and when, necessary to reach that

goal (Ridley et al. 1992).

Over-confidence refers to the tendency of an estimator to value precision over

accuracy. Typically, one might express confidence in an estimate as the likeli-

hood that the true value falls within a specified interval. For example, stating that

one is 80 % confident that the actual effort will fall within the range 1,000–1,200

person-hours implies that this will occur 8 out of 10 times. If the true value falls

into the range less frequently this implies over-confidence. Jørgensen

et al. (2004) reported that over-confidence was a widespread phenomenon and

that at least one contributor was the fact that managers often interpret wide

intervals as conveying a lack of knowledge and prefer narrow but less accurate

estimates.

Over-optimism refers to the situation where the estimation error is biased towards

an under-estimate. Many studies indicate that this is the norm in the software

industry with a figure of 30 % being seen as typical (Jørgensen 2004).

Prediction whilst ‘prediction’ and ‘estimation’ are often used interchangeably, we

use ‘prediction’ to mean a forecast or projection, and ‘estimate’ to connote a

guess or rough and ready calculation.

Single-loop learning Argyris and Schön (1996) characterise this as focusing on

restrictive feedback so that the individual or organisation only endeavours to

improve a single metric without external reflection upon the process, i.e., double

loop learning.

3 Cost Prediction and Software Project Management 67

http://dx.doi.org/10.1007/978-3-642-55035-5_15

References

Abran A, Bourque, P (2004) SWEBOK: guide to the software engineering body of knowledge.

IEEE Computer Society

Albrecht AJ, Gaffney JR (1983) Software function, source lines of code, and development effort

prediction: a software science validation. IEEE Trans Softw Eng 9:639–648

Argyris C, Schön D (1996) Organizational learning II: theory, method and practice. Addison-

Wesley, Reading, MA

Armstrong S (2007) Significance tests harm progress in forecasting. Int J Forecast 23:321–327

Benington HD (1956) Production of large computer programs. In: Symposium on advanced

computer programs for digital computers, ACR-15

Boehm BW (1981) Software engineering economics. Prentice-Hall, Englewood Cliffs, NJ

Boehm BW (1984) Software engineering economics. IEEE Trans Softw Eng 10:4–21

Boehm B, Abts C, Brown W, Chulani S, Clark BK, Horowitz E, Madachy R, Reifer D, Steece B

(2000) Software cost estimation with COCOMO II. Pearson/Prentice Hall, Englewood Cliffs,

NJ

Borkowski JG, Carr M, Pressley M (1987) Spontaneous strategy use: perspectives from

metacognitive theory. Intelligence 11:61–75

Buehler R, Griffin D (2003) Planning, personality, and prediction: the role of future focus in

optimistic time predictions. Organ Behav Hum Decis Process 92:80–90

Buehler R, Griffin D, Ross M (1994) Exploring the “Planning Fallacy”: why people underestimate

their task completion times. J Pers Soc Psychol 67:366–381

Clark J, Dolado JJ, Harman M, Hierons RM, Jones B, Lumkin M, Mitchell B, Mancoridis S,

Coutinho SA (2007) The relationship between goals, metacognition, and academic success.

Educate 7:39–47

Coutinho SA (2007) The relationship between goals, metacognition, and academic success.

Educate 7:39–47

Cuelenaere A, van Genuchten M, Heemstra F (1987) Calibrating a software cost estimation model

- why and how. Inf Softw Technol 29:558–567

Dawson TL (2008) Metacognition and learning in adulthood. Developmental Testing Service

LLC, Northampton, MA

DeMarco T (1982) Controlling software projects: management, measurement and estimation.

Yourdon Press, New York

El Emam K, Koru G (2008) A replicated survey of IT software project failures. IEEE Softw

25:84–90

Ellis P (2010) The essential guide to effect sizes: statistical power, meta-analysis, and the

interpretation of research results. Cambridge University Press, Cambridge

Fishman G (1996) Monte Carlo: concepts, algorithms, and applications. Springer, New York

Flavell JH (1979) Metacognition and cognitive monitoring: a new area of cognitive-

developmental inquiry. Am Psychol 34:906–911

Flyvbjerg B (2008) Curbing optimism bias and strategic misrepresentation in planning: reference

class forecasting in practice. Eur Plan Stud 16:3–32

Flyvbjerg B, Bruzelius N, Rothengatter W (2003) Megaprojects and risk: an anatomy of ambition.

Cambridge University Press, Cambridge

Foss T, Stensrud E, Kitchenham B, Myrtveit I (2003) A simulation study of the model evaluation

criterion MMRE. IEEE Trans Softw Eng 29:985–995

Griffin D, Buehler R (1999) Frequency, probability, and prediction: easy solutions to cognitive

illusions? Cogn Psychol 38:48–78

Grimstad S, Jørgensen M, Moløkken-Østvold K (2006) Software effort estimation terminology:

the tower of Babel. Inf Softw Technol 48:302–310

Gulezian R (1991) Reformulating and calibrating COCOMO. J Syst Softw 16:235–242

Heemstra FJ (1992) Software cost estimation. Inf Softw Technol 34:627–639

Hughes RT (1996) Expert judgement as an estimating method. Inf Softw Technol 38:67–75

68 M. Shepperd

Hughes RT, Cotterell M (2009) Software project management. McGraw-Hill, London

Humphrey W (2000) Introducing the personal software process. Ann Softw Eng 1:311–325

Jeffery DR, Low GC (1990) Calibrating estimation tools for software development. Softw Eng J

5:215–221

Jørgensen M (2004) A review of studies on expert estimation of software development effort.

J Syst Softw 70:37–60

Jørgensen M (2010) Identification of more risks can lead to increased over-optimism of and over-

confidence in software development effort estimates. Inf Softw Technol 52:506–516

Jørgensen M, Grimstad S (2012) Software development estimation biases: the role of

interdependence. IEEE Trans Softw Eng 38:677–693

Jørgensen M, Gruschke T (2005) Industrial use of formal software cost estimation models: expert

estimation in disguise? In: Proceedings of EASE, Keele, UK

Jørgensen M, Gruschke T (2009) The impact of lessons-learned sessions on effort estimation and

uncertainty assessments. IEEE Trans Softw Eng 35:368–383

Jørgensen M, Moløkken-Østvold K (2006) How large are software cost overruns? A review of the

1994 CHAOS report. Inf Softw Technol 48:297–301

Jørgensen M, Shepperd M (2007) A systematic review of software development cost estimation

studies. IEEE Trans Softw Eng 33:33–53

Jørgensen M, Sjøberg DIK (2003) An effort prediction interval approach based on the empirical

distribution of previous estimation accuracy. Inf Softw Technol 45:123–136

Jørgensen M, Teigen KH, Moløkken K (2004) Better sure than safe? Overconfidence in judgment

based software development effort prediction intervals. J Syst Softw 70:79–93

Kahneman D, Tversky A (1979) Intuitive prediction: biases and corrective procedures. TIMS Stud

Manag Sci 12:313–327

Kahneman D, Fredrickson B, Schreiber C, Redelmeir D (1993) When more pain is preferred to

less: adding a better end. Psychol Sci 4:401–405

Kemerer CF (1987) An empirical validation of software cost estimation models. Commun ACM

30:416–429

Keung J, Kitchenham B, Jeffery R (2008) Analogy-X: providing statistical inference to analogy-

based software cost estimation. IEEE Trans Softw Eng 34:471–484

Kitchenham BA (2002) The question of scale economies in software - why cannot researchers

agree? Inf Softw Technol 44:13–24

Kitchenham BA, Kansala, K. (1993) Inter-item correlations among function points. In: 1st

International symposium on software metrics. IEEE Computer Society Press, Baltimore, MD

Kitchenham BA, Linkman SG (1997) Estimates, uncertainty and risk. IEEE Softw 14:69–74

Kitchenham BA, MacDonell SG, Pickard L, Shepperd MJ (2001) What accuracy statistics really

measure. IEEE Proc Softw Eng 148:81–85

Kitchenham BA, Pfleeger SL, McColl B, Eagan S (2002) An empirical study of maintenance and

development estimation accuracy. J Syst Softw 64:57–77

Kitchenham B, Mendes E, Travassos G (2007) Cross versus within-company cost estimation

studies: a systematic review. IEEE Trans Softw Eng 33:316–329

Kocaguneli E, Menzies T, Hihn J, Kang H (2012a) Size doesn’t matter? On the value of software

size features for effort estimation. In: Proceedings of the 8th international conference on

predictive models in software engineering, New York

Kocaguneli E, Menzies T, Keung J (2012b) On the value of ensemble effort estimation. IEEE

Trans Softw Eng 38:1403–1416

Kolodner JL (1993) Case-based reasoning. Morgan-Kaufmann, San Mateo, CA

Lederer A, Mendelow A (1999) The impact of the environment on the management of information

systems. Inf Syst Res 1:205–222

Liu Q, Mintram R (2005) Preliminary data analysis methods in software estimation. Softw Qual J

13:91–115

MacDonell S, Shepperd M (2003a) Using prior-phase effort records for re-estimation during

software projects. In: 9th IEEE international metrics symposium

3 Cost Prediction and Software Project Management 69

MacDonell S, Shepperd M (2003b) Combining techniques to optimize effort predictions in

software project management. J Syst Softw 66:91–98

MacDonell S, Shepperd MJ (2007) Comparing local and global software effort estimation models

– reflections on a systematic review. In: 1st international symposium on empirical software

engineering and measurement, Madrid

Mair C, Shepperd M (2005) The consistency of empirical comparisons of regression and analogy-

based software project cost prediction. In: 4th international symposium on empirical software

Engineering (ISESE) Noosa Heads, Australia

Mair C, Kadoda G, Lefley M, Keith P, Schofield C, Shepperd M, Webster S (2000) An investi-

gation of machine learning based prediction systems. J Syst Softw 53:23–29

Mair C, Martincova M, Shepperd M (2009) A literature review of expert problem solving using

analogy. In: 13th international conference on evaluation and assessment in software engineer-

ing (EASE), British Computer Society, Swinton, UK

Menzies T, Jalili M, Hihn J, Baker D, Lum K (2010) Stable rankings for different effort models.

Autom Softw Eng 17:409–437

Menzies T, Butcher A, Cok D, Marcus A, Layman L, Shull F, Turhan B, Zimmermann T (2013)

Local versus global lessons for defect prediction and effort estimation. IEEE Trans Softw Eng

39:822–834

Minku L, Yao X (2013) Ensembles and locality: insight on improving software effort estimation.

Inf Softw Technol 55:1512–1528

Mittas N, Angelis L (2013) Ranking and clustering software cost estimation models through a

multiple comparisons algorithm. IEEE Trans Softw Eng 39:537–551

Moløkken K, Jørgensen M (2004) Group processes in software effort estimation. Empir Softw Eng

9:315–334

Moon J (1999) Reflection in learning and professional development: theory and practice. Kogan

Page, London

Myrtveit I, Stensrud E (1999) A controlled experiment to assess the benefits of estimating with

analogy and regression models. IEEE Trans Softw Eng 25:510–525

Passing U, Shepperd M (2003) An experiment on software project size and effort estimation. In:

ACM-IEEE international symposium on empirical software engineering (ISESE 2003)

Riaz M, Mendes E, Tempero E (2009) A systematic review of software maintainability pre-

diction and metrics. In: 3rd international symposium on empirical software engineering and

measurement, ACM Computer Press, pp 367–377

Ridley D, Schutz P, Glanz R, Wernstein C (1992) Self-regulated learning: the interactive influence

of metacognitive awareness and goal-setting. J Exp Educ 60:293–306

Saltelli A, Tarantola S, Campolongo F (2000) Sensitivity analysis as an ingredient of modeling.

Stat Sci 15:377–395

Schön DA (1983) The reflective practitioner. Basic Books, New York

Shepperd M (2003) Case-based reasoning and software engineering. In: Aurum A, Jeffery R,

Wohlin C, Handzic M (eds) Managing software engineering knowledge. Springer, Berlin

Shepperd MJ, Kadoda G (2001) Comparing software prediction techniques using simulation.

IEEE Trans Softw Eng 27:987–998

Shepperd M, MacDonell S (2012) Evaluating prediction systems in software project estimation.

Inf Softw Technol 54:820–827

Shepperd MJ, Schofield C (1997) Estimating software project effort using analogies. IEEE Trans

Softw Eng 23:736–743

Sommerville I (2010) Software engineering. Pearson, Hemel Hempstead, UK

Song Q, Shepperd M (2007) Missing data imputation techniques. Int J Bus Intell Data Mining

2:261–291

Song Q, Shepperd M (2011) Predicting software project effort: a grey relational analysis based

method. Expert Syst Appl 38:7302–7316

Strike K, El Emam K, Madhavji N (2001) Software cost estimation with incomplete data. IEEE

Trans Softw Eng 27:890–908

70 M. Shepperd

Symons CR (1988) Function point analysis: difficulties and improvements. IEEE Trans Softw Eng

14:2–11

Taff LM, Borcering JWB, Hudgins WR (1991) Estimeetings: development estimates and a front-

end process for a large project. IEEE Trans Softw Eng 17:839–849

Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics and biases. Science

185:1124–1131

Wagner S (2007) An approach to global sensitivity analysis: FAST on COCOMO. In: 1st

International symposium on empirical software engineering and measurement (ESEM 2007).

IEEE Computer Society, pp 440–442

Whitfield D (2007) Cost Overruns, delays and terminations: 105 outsourced public sector ICT

contracts. The European Services Strategy Unit

Willis R (1985) Invited review: critical path analysis and resource constrained project schedul-

ing—theory and practice. Eur J Oper Res 21(2):149–155

Witten I, Frank E, Hall M (2011) Data mining: practical machine learning, tools and techniques.

Morgan Kaufmann, Burlington, MA

Yang Y, He Z, Mao K, Li Q, Nguyen V, Boehm B, Valerdi R (2013) Analyzing and handling local

bias for calibrating parametric cost estimation models. Inf Softw Technol 55:1496–1511.

Software Engineering Body of Knowledge (SWEBOK). Software Engineering Body of

Knowledge (SWEBOK) Home. http://www.computer.org/portal/web/swebok/home

Biography Martin Shepperd received a Ph.D. in computer science from the Open

University in 1991 for his work in measurement theory and its application to

empirical software engineering. He is Head of Department and holds the chair of

Software Technology and Modelling at Brunel University, London, UK. He has

published more than 150 refereed papers and 3 books in the areas of software

engineering and machine learning. He is a fellow of the British Computer Society.

3 Cost Prediction and Software Project Management 71

http://www.computer.org/portal/web/swebok/home

Chapter 4

Human Resource Allocation and Scheduling

for Software Project Management

Constantinos Stylianou and Andreas S. Andreou

Abstract Software project management consists of a number of planning, orga-

nizing, staffing, directing and controlling activities. Human resources feature

prominently in all of these activities and, as a consequence, they can affect and

determine project management decisions. Therefore, in order to help guarantee the

success of a software project, managers must take into consideration this type of

resource when performing the aforementioned activities. This chapter specifically

investigates human resources from a planning perspective and, in particular,

focuses on the responsibilities of allocating developers and teams to project tasks,

scheduling developers and teams, as well as forming development teams. These

responsibilities are often challenging to undertake because they are accompanied by

time, budget and quality constraints, which software project managers find difficult

to balance correctly. The purpose of the chapter is to explore the most recent

research work in the field of human resource allocation and scheduling, and to

specifically examine the motivation behind each approach and the goals and

benefits to real-world practitioners. In addition, the chapter investigates develop-

ment team formation, which can be considered as an indirect method of allocating

human resources to a software project. This perspective, in particular, sheds light on

current and future trends, which lean towards incorporating human-centric aspects

of software development in planning activities.

C. Stylianou

Department of Computer Science, University of Cyprus, Lefkosia, Cyprus

e-mail: cstylianou@cs.ucy.ac.cy

A.S. Andreou (*)

Department of Electrical Engineering/Computer Engineering and Informatics, Cyprus

University of Technology, 31 Archbishop Kyprianou Avenue, P.O. Box 50329, Lemesos 3036,

Cyprus

e-mail: andreas.andreou@cut.ac.cy

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_4, © Springer-Verlag Berlin Heidelberg 2014

73

mailto:cstylianou@cs.ucy.ac.cy
mailto:andreas.andreou@cut.ac.cy

4.1 Introduction

Human resource allocation involves assigning a developer to carry out a task and

attempts to answer “Who will work on what?”, whereas human resource scheduling

involves specifying the time frame in which a developer will work on a task and

tries to answer “Who will work when?”. They are both part of a software project

manager’s planning activities, but depending on the practices followed by each

software development company and the information regarding the actual software

project, the way they are carried out can vary. In some cases, a software project

manager is required to allocate and schedule one or more developers to each task,

whereas in other cases, tasks are distributed to already predefined teams of devel-

opers. Finally, there are times when a project manager needs to only put together a

group of developers without assigning them to specific tasks or scheduling them, in

effect carrying out team formation. Generally, they are both carried out at the initial

phases of a software project. However, in most cases, information at the beginning

of a software project is often imprecise or unavailable. As a result, they are

considered two of the most challenging responsibilities of software project man-

agers, and they are part of the first activities that can significantly affect the

progression and overall success of a software development project. Adding further

complexity for project managers is the fact that allocating developers to tasks and

scheduling tasks and developers are not independent activities and that treating

them so may be considered unsuitable (Chang et al. 2008). Allocation and sched-

uling both affect the availability of developers, so in order to avoid conflict, both

activities need to be worked on simultaneously.

To help them, software project managers make use of their own past experiences

and previously acquired knowledge together with the wide range of available

commercial tools and techniques, such as Microsoft Project, Project KickStart,

Basecamp, MatchWare MindView and RationalPlan MultiProject. A study of the

impact of project management information systems by Raymond and Bergeron

(2008) found that such systems improve efficiency and effectiveness with respect to

project planning and control activities, as well as general project performance and

overall success. However, not many of these available applications are tailor-made

for the software development industry. A survey conducted by McBride (2008)

highlights this, especially for monitoring, controlling and coordination activities, in

which project managers use a number of different mechanisms for a given activity

but also use the same mechanism for a number of activities.

As a result of a lack of specific tools, software project managers still seek the aid

of more practical and intelligent models and techniques to overcome the challenges

posed within these activities. Many research studies have contributed to the attempt

to solve the problem of human resource allocation and scheduling specifically for

the software industry, in particular, by utilizing specialized operational research

techniques found in the fields of mathematical modelling and computational intel-

ligence. The first part of the literature review in this chapter (Sect. 4.2), therefore, is

dedicated to providing an overview of some of the most recent approaches proposed

74 C. Stylianou and A.S. Andreou

that specifically focus on the use of these techniques in order to handle the most

common human resource allocation and scheduling issues and to provide an

automated way of supporting software project managers with practical benefits to

the software industry.

Given that even to this day a large percentage of software projects are severely

challenged or considered to have failed, combined with the fact that human

resources are considered the only type of resource in a software project, one of

the directions that the software engineering research community is trying to estab-

lish for the software development industry to follow involves including human-

centric aspects. Specifically, this direction attempts to promote non-technical

aspects of software development as equally important as technical aspects in

approaches for human resource allocation, scheduling and team formation.

A leading trend focuses on taking into account the personality types of devel-

opers when assigning them to tasks and also when grouping them into development

teams. More and more studies are now being performed aiming to observe the

effects of personality types on performance, productivity, software quality and job

satisfaction. Also, there have been attempts to determine the personality types

required of different software development professionals, such as system analysts,

programmers, testers, etc. Therefore, the second part of the literature review in this

chapter (Sect. 4.3) presents various human resource allocation and scheduling

approaches, as well as team formation strategies for software development teams,

that incorporate personality types and results of their application in the software

industry.

The aim of this chapter is to present a better understanding of research efforts for

human resource allocation, scheduling and team formation in the software industry

and to highlight the trends emerging. By conducting this survey, the aim is to

identify any gaps in current research of software project human resource allocation

in order to suggest possible areas for further investigation. To facilitate this, an

initial search of digital libraries was carried out to extract primary studies and

survey papers concerning software human resource allocation scheduling and team

formation. The electronic databases used included IEEE Xplore, ScienceDirect,

ACM Digital Library, SpringerLink, Google Scholar and Wiley Interscience. Other

sources were later incorporated by using the reference lists of retrieved studies, as

well as conference proceedings and technical reports. Irrelevant or duplicate arti-

cles and papers that the initial search generated were then eliminated. Due to the

different terminology often used to describe human resource allocation and sched-

uling, a number of keyword search strings were used to obtain related articles.

Specifically, conjunctions of different phrases were built by selecting from a list of

various related keywords, including terms such as (1) “resource,” “human

resource,” “developer,” “software developer,” “team,” “software team”; (2) “sched-

uling,” “planning,” “allocation,” “formation,” “assignment”; and (3) “software,”

“software project,” “software development,” “software management.”

4 Human Resource Allocation and Scheduling for Software Project Management 75

4.2 Human Resource Allocation and Scheduling

Approaches

The various models and techniques adopted in the proposed attempts belong to the

fields of mathematical modelling and computational intelligence as these generally

contain the most commonly used methods to solve problems in the field of

operational research. Operational research consists of different complex decision-

making problems in various fields, such as natural sciences and engineering as well

as social sciences, which are solved by locating optimal or near-optimal solutions.

Human resource allocation and scheduling can be considered an operational

research problem and, thus, most research efforts are focused on providing solu-

tions using mathematical modelling and computational intelligence methods. A

short description of each approach is provided so that the reader can identify the

possible benefits and shortcomings of using it for allocation and/or scheduling in

the real world.

Mathematical models make use of mathematical notations and concepts, such as

variables, operators, equations and functions, to represent a problem and then

attempt to solve the model as an optimization problem or to use the model as a

prediction scheme. The types of models include linear programming, which is

optimizing a linear objective function, statistical modelling and queuing theory.

On the other hand, computational intelligence techniques comprise a range of

nature-inspired methodologies and algorithms aiming to solve real-world problems

that are both complicated and complex. Their goal is to imitate the individual and

collective behaviours and qualities of living beings concerning reasoning, logic and

inference, learning and processing knowledge, as well as reproduction and evolu-

tion to achieve specific goals. The most well-known techniques include evolution-

ary algorithms and swarm intelligence.

In general, the available methods and techniques in both categories have been

adopted as means to help solve several important problems in the field of software

engineering. For example, techniques that are capable of carrying out prediction

have been used in models for estimating software costs and effort (Heiat 2002),

classification schemes have been utilized for evaluating software quality

(Khoshgoftaar and Seliya 2004), clustering algorithms have been part of attempts

to group and retrieve software components in repositories (Stylianou and Andreou

2007), and methods for optimization have been applied to automatically generate

test-cases (Michael et al. 1997).

76 C. Stylianou and A.S. Andreou

4.2.1 Mathematical Modelling Approach

4.2.1.1 Linear Programming

The first type of mathematical modelling concerns linear programming, which

requires a linear objective function to be minimized or maximized in order to find

optimal solutions to problems described by linear relationships subject to certain

problem-specific restrictions. Kantorovich (1940), a Soviet mathematician during

World War II, first introduced this approach as a means to solve several planning

problems for the military, including how to optimally assign, schedule and transport

resources based on their availability and cost so that army expenses are reduced

while enemy losses are increased. Consequently, linear programming has been

considered by researchers as a suitable technique for helping software project

managers in their planning activities also.

Li et al. (2007) used integer linear programming to help software development

organizations cope with the pressures of limited resources and decreased time-

to-market intervals by proposing two models concerning requirement scheduling

and software release planning. Their first model takes into account the precedence

dependencies of requirements and the skills of available teams of developers to

generate a project schedule for the development of requirements of a new release

within the shortest possible make-span, whereas their second model integrates

requirements selection and software release planning of a project with a fixed

deadline to maximize revenues in addition to providing an on-time delivery sched-

ule. One of the assumptions of this attempt is that requirements are assigned to

teams of developers to implement and not to individual developers. Additionally,

for testing their proposed approach, the authors used both example and real-world

data sets. The authors do point out, however, that a mathematical model cannot

stand alone as a project management decision support system since other real-world

factors influence the decision-making process, such as psychological, personality

and political factors.

Another methodology using linear programming is presented by Otero

et al. (2009) and was developed to tackle the issue of project manager subjectivity

in human resource allocation. The authors highlight that ineffectual resource

allocation can lead to many problems for development organizations, such as

“schedule overruns, decreased customer satisfaction, decreased employee morale,
reduced product quality, and negative market reputation” (Ejnioui et al. 2012).

They, therefore, propose the best-fitted resource methodology that works to mea-

sure the suitability between the skills required by tasks and the skills possessed by

the available resources. Project managers can then use the results from the meth-

odology to decide on the most suitable (optimal) allocation of resources based on

their capabilities. To test their approach, the authors provided a small sample

resource allocation scenario to 30 subjects consisting of software engineers and

project managers from the industry and also computer science students and pro-

fessors from universities, and asked them to perform a ranking of the available

4 Human Resource Allocation and Scheduling for Software Project Management 77

resources based on the developers capabilities in the required skills. The results of

this survey were then compared to the results obtained from their methodology,

showing that such an approach had potential in allocating developers to tasks.

Otero et al. (2010) presented another similar multicriteria decision-making

methodology for software task assignment. Here, they state that there is evidence

that ineffective human resource project planning is the main reason that software

development projects fail (Tsai et al. 2003). The methodology uses a desirability

function as a means of assigning tasks to developers in cases where there are no

optimally suitable developers in the existing workforce. It takes into account the

capabilities of resources in skills, the required levels of expertise as well as the level

of significance of skills required by tasks and task complexities. A significant aspect

of this approach is that it can be extended to take into account project-specific

factors that a software project manager decides are important according to the needs

of the project. An artificial case study was used to demonstrate the methodology,

consisting of a scenario where a task needed to be assigned to one of ten candidate

developers based on their skill assessment and associated cost with respect to the

required skills of the task. On a practical level, the authors state that the approach

can be adopted by software project managers using a simple spreadsheet imple-

mentation. However, no formal description of a tool is provided. Although it seems

sensible to exploit the strengths of developers based on what each task requires, this

is only realistically possible if the developer is available to carry out a task. The

approach, however, does not address the issue of availability when computing the

desirability function and does not deal with human resource scheduling, which

often influences or comes hand-in-hand with allocation.

4.2.1.2 Probabilistic Modelling

Probabilistic modelling is a mathematical modelling approach that uses data (usu-

ally historical data) to forecast the conditions of different future states of a problem

by calculating the probability of certain outcomes. A characteristic of this approach

is that one or more of the variables in the model can be random.

Padberg (2001) presented a probabilistic project scheduling model, which

focused on using scheduling strategies to help software development organizations

to manage their human resources more effectively, arguing that software devel-

opers are the most valuable resources and that software project managers need a

useful scheduling support tool as opposed to a common cost estimation tool that

simply predicts the overall development effort needed to carry out a project.

Specifically, in the approach scheduling strategies represent, in quantitative

terms, the effect of decisions regarding development costs and duration on the

current state of a project. Once a strategy is fixed it is inserted into the model to

compute a probability distribution estimating the completion time and cost by using

several technical and non-technical factors, such as scheduling constraints, adopted

software processes and the complexity of components to be developed, as well as

the skills and experience of the human resources. Stochastic optimization

78 C. Stylianou and A.S. Andreou

techniques are then applied to optimize the expected duration or the cost of the

project with regard to the allocated resources. It is important to model the intrinsic

uncertainty that is part of the software process regarding the duration of activities

and also the events that occur during a project. The author, therefore, claims that

using a probabilistic approach can help deal with the fact that events in a project can

occur with a particular likelihood. The approach considers a project to be broken

down into components to which only one team is assigned at any given time. An

advantage to the approach is that it allows a team to interrupt their work on a

component in order to rework a previously completed component. In addition, it

takes into account the availability of development teams as well as the precedence

relationships between components. However, overall this approach can only be

applicable in software companies that have predefined teams of developers, with

each team possessing the know-how to undertake the development of the compo-

nent. For small-to-medium sized companies that do not often have such luxury, this

could be impractical.

Padberg (2002, 2003) later implemented this previous probabilistic scheduling

model as a discrete simulation model for project managers to use as a tool to

provide feedback and comparisons among varying strategies and also implemented

a variation of the value iteration algorithm to generate optimal scheduling policies

in the model (Padberg 2004, 2006). The premise of these works remains the same as

in his previous approaches: that uncertainty inherent in the task durations can only

allow a software project manager to create a schedule wherein the duration and cost

are “likely” to be minimized, and so it is vital for software project managers to be

able to apply dynamic scheduling policies.

4.2.1.3 Queuing Theory

Queuing theory can be used as a mathematical model to simulate a system provid-

ing services to customers (human or otherwise) as they wait in line to be served. In

general, this method attempts to minimize the duration and size of delays subject to

constraints and, therefore, has practical applications in problems such as schedul-

ing, employee allocation, facility design and management, and traffic flow

management.

Antoniol et al. (2004a) used this technique in their approach concerning the

allocation of resources in a large software maintenance project. Specifically, the

authors made use of stochastic simulations of queuing networks as an instrument to

evaluate the probability that the project meets its deadline as the project is being

carried out.

Jalote and Jain (2004) implement a critical path/most immediate successor first

approach to resource allocation targeting software projects that are to be developed

by multiple teams across different geographically distributed time zones. With a

rise in the number of organizations adopting global software development, project

managers face new communication and coordination issues in addition to technical

and managerial problems. Therefore, they suggest a 24-hour software factory

4 Human Resource Allocation and Scheduling for Software Project Management 79

model that utilizes project task precedence graphs and available resources to satisfy

three types of constraints: operational, skill and resource, in order to generate a

near-to-optimal software project schedule with the shortest make-span. Further

reading on global software development is available in Chaps. 9 and 10, which

discuss in detail various aspects of managing IT projects developing software

across the globe and motivating virtual team members involved in global IT pro-

jects, respectively.

4.2.1.4 Constraint Satisfaction

Constraint satisfaction is a method that is adopted as a means of modelling and

finding solutions to combinatorial problems by imposing conditions on variables in

mathematical functions that are all required to be satisfied. They feature in many

artificial intelligence fields and other disciplines, including planning, scheduling

and logistics. Well-known examples of problems that can be solved using this

method include map colouring, job shop scheduling and even Sudoku puzzles.

With respect to the software industry, the constraints regarding development pro-

jects predominantly concern the budget, the schedule and the quality of the software

products. Therefore, this method is adopted in order to attempt to satisfy the

restrictions surrounding these issues.

Barreto et al. (2005) proposed the use of constraint satisfaction as an optimiza-

tion approach to software project staffing, stating that process productivity and

product quality are highly associated with the abilities of the available resources.

The abilities taken into consideration included skills, knowledge, experience,

capabilities and roles, and together with the characteristics of a project’s activities

and any development organization constraints, various utility functions can be

maximized or minimized depending on the project manager’s needs. The possible

optimizers implemented consisted of most or least qualified team, cheapest team,

smallest team, and best partial solution team. It is assumed that tasks are broken

down into small units of work to which only one developer can be assigned. Once

the software project manager decides what these tasks are, the tool performs

optimization in order to locate the developer assignments that best fit the chosen

utility function. The approach concentrates solely on the allocation of resources,

while the starting and finishing times of tasks are known beforehand.

As an extension to their previous approach, Barreto et al. (2008) incorporated a

mechanism to also handle developer productivity. The authors state that the time

taken to carry out a task is affected by the developer’s level of productivity. Hence,

the approach proposes various productivity modifiers computed based on the

experience, the profession or the activity itself. A software project manager selects

to apply one of these modifiers, and then a new duration for each task is estimated

accordingly (either increasing or decreasing it based on the developer assigned). A

new utility function was subsequently implemented to enable assignments yielding

the fastest team. The ability to factor in productivity is very important for software

companies as the accuracy of budgets and schedule estimates can be improved.

80 C. Stylianou and A.S. Andreou

http://dx.doi.org/10.1007/978-3-642-55035-5_9
http://dx.doi.org/10.1007/978-3-642-55035-5_10

4.2.2 Computational Intelligence Approaches

4.2.2.1 Evolutionary Algorithms

Evolutionary algorithms are a class of population-based algorithms that stem from

the theory of natural evolution. They are most widely used to solve search-based

problems that require some form of optimization since they are able to explore and

exploit a problem’s search space more efficiently and effectively to locate the best

or near-best solutions. Consequently, evolutionary algorithms have been commonly

applied directly or indirectly to the problem of human resource allocation and

scheduling in software development projects. In order to find the optimal or near-

optimal solutions, evolutionary approaches evaluate each individual in the popula-

tion, which represents a candidate solution, using an objective function that rates

the fitness of solutions and checks whether they satisfy various constraints. Stronger

candidates are passed into subsequent generations, whereas weaker ones are

discarded, leading to the detection of (near-)optimal solutions. Chapter 15 discusses

a number of approaches that adopt such algorithms, though several have been

selected to be presented in the remainder of this section.

One of the earliest instances of using evolutionary algorithms for software

project allocation and scheduling is found in the work of Chang et al. (1994),

who formalized a model for software project management, namely SPMNet, in the

mid-1990s. Their approach focuses on the fact that software development organi-

zations fail to assign the right developers to the right tasks due to the difficulties

faced by project managers in handling the high level of complexity involved in

finding optimal or near-optimal schedules. Their approach employs a single-

objective genetic algorithm as a “schedule optimizer” aiming to minimize the

total duration and cost of a software project through a process of assigning software

developers to tasks (Chang et al. 1994, 1998). One of the practical benefits of the

formal software management model proposed is that it allows software project

managers to track the progress of a project by working together with developers and

customers. It also addresses the issue of risk management by enabling the

pre-execution of SPMNet and, hence, predicting the future states of a project.

Over the years, this model has been significantly extended to support features to

deal with additional software project management issues, such as partial assign-

ment of developers to tasks, developer overload and multiple project scheduling

(Chang et al. 2001), in addition to developer reassignments, task suspensions and

resumptions, learning and task-specific deadlines (Chang et al. 2008).

Ge and Chang (2006) used the schedule optimizer mentioned above to imple-

ment a capability-based scheduling framework in which task durations are calcu-

lated through system dynamics simulation that focused on the capabilities of the

available personnel. The authors state that it is important to consider developers’

capabilities because they can influence a team’s average productivity, which is

determined by factors such as individual productivity, overworking and communi-

cation overhead. Being able to simulate the effect of an assignment based on the

4 Human Resource Allocation and Scheduling for Software Project Management 81

http://dx.doi.org/10.1007/978-3-642-55035-5_15

capabilities of the developer going to carry out a task could provide software project

managers vital information at any stage during the project. However, exact details

on how system dynamics simulation manages to generate task durations are not

provided, which severely limits the assessment of its applicability in real-world

settings.

An extension to the capability-based scheduling framework is suggested by

Jiang et al. (2007), who incorporate personnel risks based on historical data during

the assignment process. This addition is aimed at helping software project managers

identify, analyse and monitor possible risk factors arising from human activities

(for example, late-in-the-day coding) and allow them to regulate resource assign-

ment. Furthermore, the authors adapt the previous genetic algorithm to a multi-

objective schedule optimizer employing a weighted sum method to allow for

tradeoff solutions to be generated. Another approach using multi-objective optimi-

zation was implemented again by Ge (2009) to provide a framework for scheduling

and rescheduling software projects. The approach takes into account the skills and

capabilities of available developers and attempts to provide an optimal project

schedule based on efficiency (minimum cost and duration) and also stability factors

(minimum impact of disruptions caused by rescheduling developers).

Alba and Chicano (2005, 2007) also employed genetic algorithms to develop an

automated tool to allocate resources to tasks taking into account duration, resource

skills, cost and global complexity. Their research work was centered on the fact that

one of the goals of software project managers is to reduce both the cost and the

duration of software development projects even though these two goals can be

conflicting. Each individual in the population is an assignment matrix representing

the allocation of developers to tasks. The quality of each assignment matrix

regarding cost and duration is evaluated through two objectives using the salary

of each developer, the degree of dedication each developer is permitted to work on

each task and the effort required for each task. The project’s schedule is constructed

directly as a result of the developers allocated to each task. As the algorithm

executes, solutions converge to the optimal/near-optimal allocations and schedules.

By allowing project managers to adjust weights according to the problem at hand,

they have the ability to perform different scenario analyses and make better

decisions regarding the software project. This is a significant feature because the

importance of each criterion is subject to the software being developed within the

project, thus it is reasonable to expect a software project manager in some cases to

want to give emphasis on minimizing the cost of the project and in other cases to

want to focus on minimizing the project’s duration, depending on which criterion

he or she considers more important. One drawback to the approach, however,

relates to the way that developer skills are handled. Specifically, the skills possessed

by developers are treated as Boolean; either a developer possesses a certain skill or

does not, and this information is used to evaluate whether the skills required by the

project’s tasks are satisfied in the form of a constraint. However, in reality, most

project managers do not treat skills in such a way but rather take into account that

developers possess skills at varying levels. Therefore, the approach would make

more sense to address this as part of the evaluation of objectives (i.e., as an

82 C. Stylianou and A.S. Andreou

additional criterion for assigning developers to a task) rather than as part of the

assessment of the constraints. A comparison of several multi-objective evolutionary

algorithms using various quality indicators was subsequently performed in Luna

et al. (2011) and Chicano et al. (2011) using the same representation, that is, with

each solution comprising a series of developers possessing a set of skills, which are

matched against the skills required by the project’s tasks. None of the experiments

in this group of approaches, however, has been tested on real-world software

projects. Instead, they have only been applied to a collection of simulated projects,

which were created by an instance generator that randomly creates a set of tasks

(with associated costs and required skills) and a set of developers (with associated

salaries and skills possessed). The randomness of the generated software projects

may not always accurately reflect, for example, the correlation between the skill set

and salary of a developer where higher-skilled employees are more likely to be

paid more.

In the approach proposed by Duggan et al. (2004), project managers supply the

complexity of the packages to be developed (using McCabe’s (1976) cyclomatic

complexity measure) and the proficiency (from novice to expert) of the available

software engineers in each of the packages. Using a multi-objective genetic

algorithm, the approach aims to find an optimal solution that minimizes the number

of defects per unit of complexity and minimizes the duration of the project with a

specific assignment of developers. However, software project managers may find it

difficult to adopt this approach because it is strictly focused on allocating and

scheduling resources regarding implementation tasks of a development project

and only if the project is developed using an object-oriented approach.

Kapur et al. (2008) proposed a hybrid approach, which employs integer linear

programming in conjunction with genetic algorithms for resource scheduling and

allocation, targeting planning product releases. The authors emphasize the fact that

software developers have different levels of skills and so their goal is to help project

managers assign the most qualified developers to the required tasks in order for

them to achieve maximum productivity, which in turn leads to a product release

offering features that maximize business value. The optimization carried out using

the genetic algorithm helps software companies decide which features should be

included in a particular release for its customers. The two-phase method was

applied to a real-world project carried out at Chartwell Technology, which special-

izes in developing online gaming and gambling software, demonstrating how

change requests, user requirements and improvements were planned and ordered.

This approach, however, can only be used for allocating and scheduling human

resources for software projects developed incrementally. Ngo-The and Ruhe (2009)

further develop this two-phase approach again aimed at incremental software

development. The authors use integer linear programming to fix an upper bound

to the maximum possible achievable business value according to stakeholders’

satisfaction and then employ a genetic algorithm to evaluate this value and subse-

quently find an optimal or near-optimal assignment and schedule of developers to

tasks in order to plan which features are to be included in each release and which are

to be postponed. The approach also allocates non-human resources, such as capital,

4 Human Resource Allocation and Scheduling for Software Project Management 83

during the assignment procedure. One of the benefits of the approach, as stated by

the authors, is that project managers can replan features and reschedule resources if

requirements are changed or new requirements are introduced by simply using the

same two-phase approach with modified inputs and parameters.

Several attempts carried out by Antoniol et al. (2004b, 2005) had the sequence of

execution of work packages and the assignment of teams to work packages eval-

uated using a hybrid of queuing simulation and a single-objective genetic algo-

rithm. A shift to a multi-objective genetic algorithm was then made in the approach

suggested in Gueorguiev et al. (2009), which highlights the difficulties in

constructing project schedules with regard to risk. The main objective of this

approach focuses on the conflicting objectives of robustness and completion time,

but the approach can be used implicitly for resource usage maximization. Further-

more, the adoption of queuing simulation for task staffing and optimization for

scheduling tasks are also part of a later approach in Di Penta et al. (2011), where

additional features are implemented to deal with fragmentation, software developer

specialization and work package dependencies. Ren et al. (2011) opted for a

different approach to optimizing the sequence of execution of work packages and

assigning developers to tasks by adopting a cooperative co-evolutionary method,

which tries to evolve two populations of individuals simultaneously through col-

laboration, rather than having individuals in a single population compete against

each other.

In an alternative approach, Yannibelli and Amandi (2011) proposed a

knowledge-based genetic algorithm to aid project managers at the early stages of

scheduling to staff software projects with the most effective employees. Specifi-

cally, the approach uses available knowledge about employees’ previous partici-

pation in projects to evaluate how effective a set of resources will be if assigned to a

specific activity and how effective each individual in that set will be. With this

knowledge, the algorithm attempts to find feasible and optimal project schedules

satisfying the precedence relationships between the activities and the human

resource requirements. An important aspect of this approach is that allocations

are based not only on the skills of developers but also on the level of effectivity that

is the result of two or more developers working together on the same task. This is an

attempt to reflect real-world practices since a software project manager may be

hesitant to assign a task to a pair of developers when he or she is aware that the pair

is less effective working together, even though individually the developers possess

a higher level of skills than another pair of developers. It might be preferable to

allocate two developers who are less skilled, but more effective working together in

order to be more productive. What the authors do not make clear, however, is

whether the duration of a task is specified knowing the exact number of developers

to be assigned to it. What would be more flexible, if this is not the case, is having the

duration of a task to actually shorten or stretch depending on the final level of

effectivity resulting from the developers assigned.

Some of the approaches mentioned in this section are revisited in Chap. 15,

which provides an overview of how different areas and problems of software

84 C. Stylianou and A.S. Andreou

http://dx.doi.org/10.1007/978-3-642-55035-5_15

project management have been reformulated to be solved with computational

search and optimization techniques.

4.2.2.2 Swarm Intelligence

Swarm intelligence algorithms are a specific group of computational intelligence

methods inspired by the behaviour of biological systems found in nature, such as

the flocking of birds and the schooling of fish. The aim of swarm intelligence

algorithms is to mimic how each individual in the swarm acts and interacts with

other individuals in its environment to achieve a common goal shared by all

individuals. In particular, swarm intelligence algorithms, such as ant colony opti-

mization and particle swarm optimization, work similarly to evolutionary algo-

rithms by assessing the quality of the solution that each individual in the swarm

represents. In the case of human resource allocation and scheduling for software

development, these types of algorithms are only just now beginning to be applied,

though the general goals of the approaches still focus on minimizing the cost and

duration of software projects in a similar fashion to evolutionary algorithms.

Chen and Zhang (2013) recently proposed a model that combines an event-based

scheduler with ant colony optimization, aiming to provide solutions consisting of

reduced project costs and more stable workload assignments. Essentially, the model

considers that developer allocations are affected by specific events: the starting time

of the project, the time when developers join or leave the project, and the time when

developers are released from completed tasks. When one of these events occurs

during the project, the event-based scheduler modifies the allocation of developers

based on the priority given to tasks, the skill proficiency of developers and the

current availability of the developers. Then, the method goes on to construct a new

schedule by using ant colony optimization, where artificial ants are iteratively

dispatched to build project plans. The practical benefits with this method are that

it allows a software project manager to have the flexibility to pre-empt tasks, but

also to be able to handle and avoid resource conflicts. Experiments were carried out

on 80 artificial projects and 3 real-world business software projects of a depart-

mental store, and the results demonstrated that the combination of event-based

scheduling with ant colony optimization was effective in yielding solutions with the

lowest project cost.

Xiao et al. (2013) also presented an approach using swarm optimization to

allocate and schedule developers in a software project. The authors adopted a

similar approach as Alba and Chicano (2005), but instead of using a genetic

algorithm to generate solutions with optimal developer assignments and project

schedules, they adopted ant colony optimization. They used the same objectives,

that is, to minimize cost and duration, subject to the precedence relationships of

tasks and skills of developers. The authors show through the results of optimization

on 30 randomly generated project instances that this approach outperformed the

original.

4 Human Resource Allocation and Scheduling for Software Project Management 85

A particle swarm optimization algorithm was used by Gerasimou et al. (2012) in

an initial investigation in maximizing human resource usage. The proposed

approach aims to assign tasks to software developers based on their experience in

the skills required by the tasks and, simultaneously, to generate the shortest project

make-span by scheduling tasks with respect to task dependencies and developer

availability. A software project manager gives each objective a weight denoting its

level of importance so that the particles, which represent the start days of tasks and

the developers allocated to it, can converge to an optimal as possible solution that

balances the two objectives according to the weights provided. The reasoning

behind this approach is that, ideally, a software project manager would want to

assign a task to the developer most suitable in terms of skill. However, if the most

skilful developer is assigned conflictingly to two tasks that are scheduled to execute

in parallel, a software project manager is faced with the dilemma of how to handle

such a conflict. Does he or she allocate a different, possibly less skilled, developer

to one of the tasks but keeps the schedule the same? Or does he or she leave the

assignments as they are and sets one of the tasks to start as soon as the developer

becomes available again, possibly increasing the duration of the project? The

challenge with implementing such an approach in real-world projects is that the

cost of the project is not taken into consideration, which could also affect the

allocation criteria. Furthermore, project managers may not be able to quantify the

experience a developer has in particular skills easily. It is, however, critical to take

into account the non-interchangeable nature of software developers considering

that each developer possesses a different skill set with different levels of

proficiency.

4.2.2.3 Fuzzy Logic

Fuzzy logic is regarded as a control system for solving problems based on infor-

mation that is imprecise, ambiguous, uncertain or even missing, and is used to

imitate the human decision-making process on a linguistic (descriptive) rather than

a numeric basis. The goal is to model the vagueness of variables that do not possess

a clear and crisp distinction between its possible values. Instead, it divides the

variable into (usually) overlapping fuzzy sets and with the use of membership

functions determines the degree to which a specific value falls into each set. It

has been applied in many disciplines, such as robotics, medicine and management,

where it has helped overcome the subjectivity of the decision maker.

One attempt at using fuzzy logic for software project scheduling was proposed as

a decision support system by Hapke et al. (1994), who claim that, due to the

uncertainty of time parameters, software project managers can only approximate

the durations of development activities. The fuzzy project scheduling system

proposed, therefore, creates intervals representing possible durations of tasks and

aims to assign software engineers to development phases taking into consideration

the completion time and maximum lateness of a software project. The time criterion

is cut into lower and upper bounds generating a set of optimistic and pessimistic

86 C. Stylianou and A.S. Andreou

scenarios, which are then optimized using priority heuristic rules. Because the

approach only handles the minimization of the duration of projects, its applicability

in the industry may be limited. The fact, however, that human resources are

considered renewable resources severely increases its limitations since it does not

accurately reflect the impact that developers’ capabilities can have on allocation

and scheduling.

Fuzzy logic was also employed as a means for project scheduling by Callegari

and Bastos (2009) in order to handle the difficulties present in pure mathematical

models, for example, “the partial loss in meaning in terms of knowledge represen-
tation.” The multi-criteria resource selection method proposed employs multi-

valued logic and a set of inference rules to rank available resources according to

their suitability to specific tasks, thus allowing project managers to assign resources

to tasks. Specifically, a fuzzy rule matrix is constructed that stores how suitable an

assignment is based on the skill level expected by a task and the current skill level

possessed by the assigned developers. If-then rules then help software project

managers allocate developers in order to meet the requirements of each task. One

advantage of this approach is that the rules can help avoid poor utilization of

developers, which is considerably important for software development companies

as highly experienced developers are not wasted on tasks requiring low levels of

skills. However, one criticism is its inability to handle the scheduling of developers

simultaneously. This is one of the few approaches that also demonstrate a prototype

tool to show how a software project manager can adopt the approach in the industry.

The approaches discussed in Sect. 4.2 are summarized in Table 4.1. They are

grouped by the method/technique adopted in each proposed human resource sched-

uling and allocation attempt explored. As can be seen, the majority of attempts

employ computational intelligence methods as a form of optimization, with the

most popular technique being evolutionary algorithms.

4.2.3 Discussion

Not getting the right people to do the right job at the right time can be detrimental to

the success of a software project. Various techniques borrowed from several fields

have been used to help avoid this through different approaches allocating and

scheduling human resources in software projects. But despite the evolution over

the years, the problem still remains unsolved largely because there is no consensus

on the criteria that these research approaches need to target to create a successful

human resource allocation and scheduling tool. There are several notable points

regarding the approaches that need to be addressed.

Firstly, even though there have been many approaches proposed, their ability to

be applied in real-world environments is not always clear. First and foremost, any

approach should be accompanied with some sort of tool to show exactly how the

approach could be adopted by software project managers and not provide only a

description of the underlying mechanisms. Additionally, the information needed to

4 Human Resource Allocation and Scheduling for Software Project Management 87

T
a
b
le

4
.1

S
u
m
m
ar
y
o
f
h
u
m
an

re
so
u
rc
e
al
lo
ca
ti
o
n
an
d
st
af
fi
n
g
ap
p
ro
ac
h
es

Te
ch

ni
qu

e/
M

et
ho

d
R

es
ea

rc
h

A
tt

em
pt

G
oa

ls
/O

bj
ec

tiv
es

C
on

st
ra

in
ts

D
at

a
U

se
d

L
in

ea
r

Pr
og

ra
m

m
in

g
 –

Li
 e

t a
l.

(2
00

7)
 –

M
in

im
iz

e
pr

oj
ec

t d
ur

at
io

n
 –

M
ax

im
iz

e
re

ve
nu

es
 –

R
eq

ui
re

m
en

t d
ep

en
de

nc
ie

s
 –

Te
am

 a
va

ila
bi

lit
y

 –
Si

m
ul

at
ed

 –
R

ea
l-w

or
ld

 –
O

te
ro

 e
t a

l.
(2

00
9)

 –
O

te
ro

 e
t a

l.
(2

01
0)

 –
M

ax
im

iz
e

su
ita

bi
lit

y
of

de

ve
lo

pe
rs

 –
Sk

ill
/e

xp
er

tis
e

re
qu

ire
m

en
ts

 –

R
es

ou
rc

e
re

qu
ire

m
en

ts

 –
Si

m
ul

at
ed

Pr
ob

ab
ili

st
ic

 M
od

el
lin

g
 –

Pa
db

er
g

(2
00

1;
 2

00
2;

 2
00

3;
 2

00
4;

20

06
)

 –
M

in
im

iz
e

pr
oj

ec
t d

ur
at

io
n

 –
Sk

ill
/e

xp
er

tis
e

re
qu

ire
m

en
ts

 –
Si

m
ul

at
ed

Q
ue

ui
ng

 T
he

or
y

 –
A

nt
on

io
l,

C
im

iti
le

 e
t a

l.
(2

00
4)

 –
M

in
im

iz
e

ris
k

of
 d

el
ay

 –
N

/A
 –

R
ea

l-w
or

ld
 –

Ja
lo

te
 a

nd
 Ja

in
 (2

00
4)

 –
M

in
im

iz
e

pr
oj

ec
t d

ur
at

io
n

 –
Ta

sk
 d

ep
en

de
nc

ie
s

 –
Sk

ill
/e

xp
er

tis
e

re
qu

ire
m

en
ts

 –

R
es

ou
rc

e
re

qu
ire

m
en

ts

 –
Si

m
ul

at
ed

 –
R

ea
l-w

or
ld

C
on

st
ra

in
t S

at
is

fa
ct

io
n

 –
B

ar
re

to
 e

t a
l.

(2
00

5;
 2

00
8)

 –
M

in
im

iz
e

pr
oj

ec
t c

os
t

 –
M

ax
im

iz
e/

m
in

im
iz

e
te

am

qu
al

ity
 –

M
in

im
iz

e
te

am
 si

ze
 –

M
in

im
iz

e
pr

oj
ec

t d
ur

at
io

n

 –
R

es
ou

rc
e

re
qu

ire
m

en
ts

 –

D
ev

el
op

er
 a

va
ila

bi
lit

y
 –

Si
m

ul
at

ed

E
vo

lu
tio

na
ry

 A
lg

or
ith

m
s

 –
C

ha
ng

 e
t a

l.
(1

99
4)

 –
C

ha
ng

 e
t a

l.
(1

99
8)

 –
C

ha
ng

 e
t a

l.
(2

00
1)

 –
C

ha
ng

 e
t a

l.
(2

00
8)

 –
M

in
im

iz
e

pr
oj

ec
t c

os
t

 –
M

in
im

iz
e

pr
oj

ec
t d

ur
at

io
n

 –
M

in
im

iz
e

am
ou

nt
 o

f o
ve

r-
tim

e

 –
D

ev
el

op
er

 a
va

ila
bi

lit
y

 –
D

ev
el

op
er

 o
ve

rti
m

e
lim

it
 –

H
ar

d
de

ad
lin

es
 –

R
es

ou
rc

e
re

qu
ire

m
en

ts

 –
Si

m
ul

at
ed

 –
G

e
an

d
C

ha
ng

 (2
00

6)
 –

M
in

im
iz

e
pr

oj
ec

t c
os

t
 –

D
ev

el
op

er
 a

va
ila

bi
lit

y
 –

D
ev

el
op

er
 o

ve
rti

m
e

lim
it

 –
Ta

sk
 d

ep
en

de
nc

ie
s

 –
Si

m
ul

at
ed

88 C. Stylianou and A.S. Andreou

Te
ch

ni
qu

e/
M

et
ho

d
R

es
ea

rc
h

A
tt

em
pt

G
oa

ls
/O

bj
ec

tiv
es

C
on

st
ra

in
ts

D
at

a
U

se
d

E
vo

lu
tio

na
ry

 A
lg

or
ith

m
s

(c
on

tin
ue

d)
–

Ji
an

g
et

 a
l.

(2
00

7)
–

M
in

im
iz

e
pr

oj
ec

t c
os

t
–

M
in

im
iz

e
pr

oj
ec

t r
is

k
–

D
ev

el
op

er
 a

va
ila

bi
lit

y
–

D
ev

el
op

er
 o

ve
rti

m
e

lim
it

–
Ta

sk
 d

ep
en

de
nc

ie
s

–
N

/A

–
G

e
(2

00
9)

– –
M

ax
im

iz
e

st
ab

ili
ty

–
D

ev
el

op
er

 a
va

ila
bi

lit
y

–
D

ev
el

op
er

 o
ve

rti
m

e
lim

it
–

Ta
sk

 d
ep

en
de

nc
ie

s

–
Si

m
ul

at
ed

–
A

lb
a

an
d

C
hi

ca
no

 (2
00

5;
 2

00
7)

–
Lu

na
 e

t a
l.

(2
01

1)
–

C
hi

ca
no

 e
t a

l.
(2

01
1)

–
M

in
im

iz
e

pr
oj

ec
t c

os
t

–
M

in
im

iz
e

pr
oj

ec
t d

ur
at

io
n

–
D

ev
el

op
er

 o
ve

rti
m

e
lim

it
–

Ta
sk

 d
ep

en
de

nc
ie

s
–

R
es

ou
rc

e
re

qu
ire

m
en

ts

–
Sk

ill
/e

xp
er

tis
e

re
qu

ire
m

en
ts

–
Si

m
ul

at
ed

–
D

ug
ga

n
et

 a
l.

(2
00

4)
–

M
ax

im
iz

e
pr

oj
ec

t d
ur

at
io

n
–

M
in

im
iz

e
so

ftw
ar

e
de

fe
ct

s
–

Pa
ck

ag
e

de
pe

nd
en

ci
es

–
Te

am
 u

til
iz

at
io

n
–

C
om

m
un

ic
at

io
n

ov
er

he
ad

–
Si

m
ul

at
ed

–
K

ap
ur

 e
t a

l.
(2

00
8)

–
N

go
-T

he
 a

nd
 R

uh
e

(2
00

9)

–
M

ax
im

iz
e

bu
si

ne
ss

 v
al

ue
–

Fe
at

ur
e

de
pe

nd
en

ci
es

–
Ta

sk
 d

ep
en

de
nc

ie
s

–
D

ev
el

op
er

 a
va

ila
bi

lit
y

–
R

el
ea

se
 d

ea
dl

in
es

–

Fe
at

ur
e

re
le

as
e

re
qu

ire
m

en
ts

–
R

es
ou

rc
e

re
qu

ire
m

en
ts

–
Si

m
ul

at
ed

–
R

ea
l-w

or
ld

–
A

nt
on

io
l,

D
i P

en
ta

 e
t a

l.
(2

00
4;

20

05
)

–
M

in
im

iz
e

pr
oj

ec
t d

ur
at

io
n

–
N

/A
–

R
ea

l-w
or

ld

–
G

ue
or

gu
ie

v
et

 a
l.

(2
00

9)
–

M
in

im
iz

e
pr

oj
ec

t d
ur

at
io

n
–

M
in

im
iz

e
pr

oj
ec

t o
ve

rr
un

s
–

W
or

k
pa

ck
ag

e
de

pe
nd

en
ci

es
–

R
ea

l-w
or

ld

(c
o
n
ti
n
u
ed
)

4 Human Resource Allocation and Scheduling for Software Project Management 89

T
a
b
le

4
.1

(c
o
n
ti
n
u
ed
)

Te
ch

ni
qu

e/
M

et
ho

d
R

es
ea

rc
h

A
tt

em
pt

G
oa

ls
/O

bj
ec

tiv
es

C
on

st
ra

in
ts

D
at

a
U

se
d

E
vo

lu
tio

na
ry

 A
lg

or
ith

m
s

(c
on

tin
ue

d)
–

D
i P

en
ta

 e
t a

l.
(2

01
1)

–
M

in
im

iz
e

pr
oj

ec
t d

ur
at

io
n

–
M

in
im

iz
e

sc
he

du
le

 fr
ag

m
en

-
ta

tio
n

–
W

or
k

pa
ck

ag
e

de
pe

nd
en

ci
es

–
W

or
k

pa
ck

ag
e

as
si

gn
m

en
t

–
Sk

ill
/e

xp
er

tis
e

re
qu

ire
m

en
ts

–
R

ea
l-w

or
ld

–
R

en
 e

t a
l.

(2
01

1)
–

M
in

im
iz

e
pr

oj
ec

t d
ur

at
io

n
–

W
or

k
pa

ck
ag

e
de

pe
nd

en
ci

es
–

R
es

ou
rc

e
re

qu
ire

m
en

ts

–
R

ea
l-w

or
ld

–
Ya

nn
ib

el
li

an
d

A
m

an
di

 (2
01

1)
–

M
ax

im
iz

e
ef

fe
ct

iv
ity

 le
ve

ls

of
 te

am
s

–
Ta

sk
 d

ep
en

de
nc

ie
s

–
R

es
ou

rc
e

re
qu

ire
m

en
ts

–

Si
m

ul
at

ed

Sw
ar

m
 In

te
lli

ge
nc

e
–

C
he

n
an

d
Zh

an
g

(2
01

3)
–

M
in

im
iz

e
pr

oj
ec

t c
os

t
–

Ta
sk

 d
ep

en
de

nc
ie

s
–

D
ev

el
op

er
 o

ve
rti

m
e

lim
it

–
R

es
ou

rc
e

re
qu

ire
m

en
ts

–
Si

m
ul

at
ed

–
X

ia
o

et
 a

l.
(2

01
3)

–
M

in
im

iz
e

pr
oj

ec
t c

os
t

–
M

in
im

iz
e

pr
oj

ec
t d

ur
at

io
n

–
D

ev
el

op
er

 o
ve

rti
m

e
lim

it
–

Ta
sk

 d
ep

en
de

nc
ie

s
–

R
es

ou
rc

e
re

qu
ire

m
en

ts

–
Sk

ill
/e

xp
er

tis
e

re
qu

ire
m

en
ts

–
Si

m
ul

at
ed

–
G

er
as

im
ou

 e
t a

l.
(2

01
2)

–
M

in
im

iz
e

pr
oj

ec
t d

ur
at

io
n

–
M

ax
im

iz
e

su
ita

bi
lit

y
of

de

ve
lo

pe
rs

–
D

ev
el

op
er

 a
va

ila
bi

lit
y

–
Ta

sk
 d

ep
en

de
nc

ie
s

–
R

es
ou

rc
e

re
qu

ire
m

en
ts

–

Sk
ill

/e
xp

er
tis

e
re

qu
ire

m
en

ts

–
Si

m
ul

at
ed

Fu
zz

y
L

og
ic

–
H

ap
ke

 e
t a

l.
(1

99
4)

–
M

in
im

iz
e

pr
oj

ec
t d

ur
at

io
n

–
Ta

sk
 d

ep
en

de
nc

ie
s

–
D

ev
el

op
er

 a
va

ila
bi

lit
y

–
R

ea
l-w

or
ld

–
C

al
le

ga
ri

an
d

B
as

to
s (

20
09

)
–

M
ax

im
iz

e
su

ita
bi

lit
y

of

de
ve

lo
pe

rs
–

N
/A

–
Si

m
ul

at
ed

90 C. Stylianou and A.S. Andreou

execute any approach should be easily obtainable and measurable where necessary

by software project managers, such as the dependency relationships between tasks

in order to validate the feasibility of a schedule. But, for example, things like units

of complexity may not be able to be provided by a software project manager,

especially at the initial stages of the project. Also, some attempts have put their

approach to the test using simulated or artificial projects only, without obtaining

results from experiments on real-world cases. This may negatively influence a

project manager’s perception of the practicality of the approach.

Secondly, the majority of the research works approach the problem as a (multi-)

optimization problem in that they aim to minimize/maximize several objectives,

with genetic algorithms being the most prevalent of approaches. The most popular

objectives involve the cost and duration of the project—two of the three dimen-

sions/constraints of software project success—through allocating and scheduling

developers in such a way that the assignments yield a balance between the two.

Thirdly, some approaches consider software developers as interchangeable

resources, especially when it comes to dealing with the skills required by tasks

and the skills possessed by developers. Just because two developers possess the

same skill, it does not mean that they will carry out a task in the same way or within

the same time. Software developers are knowledge workers, and it is with this

knowledge that software is built. The varying levels of skill proficiency and

experience between developers can be directly related to the salary of developers

as well as to the time it takes to carry out a task. Therefore, in approaches trying to

allocate and schedule developers, it is important for software project managers to be

able to factor in the variance caused by different levels of performance and

productivity of developers.

Skill proficiency and experience levels are not the only things that differentiate

developers. Performing human resource allocation and scheduling using only these

technical aspects of software development means that other, non-technical aspects

are neglected. Amrit (2005) argues that approaches that are based strictly on skills

and experience may be inadequate for project managers to help them handle issues

like interpersonal relationships among developers. Such human, social and cultural

aspects are strongly exhibited in software development companies, especially as

they become more reliant on teamwork and collaboration and the emergence of

distributed development. For this reason, more and more research work is being

carried out that tries to incorporate non-technical aspects, especially human-centric

factors, involved in software development. The following section discusses one of

the current directions in this trend and, in particular, the impact of the personality

type of software developers. There have been many studies surrounding this

human-centric factor, and additionally, various approaches have been proposed

attempting to incorporate it into human resource management either as part of team

formation strategies or as part of allocation and scheduling activities.

4 Human Resource Allocation and Scheduling for Software Project Management 91

4.3 The Implication of Software Development Personality

Types

4.3.1 Personality and Type Assessment

Personality psychology is the area of psychology that examines the person—the

human individual. Every individual has a set of characteristics, both organized and

dynamic, that come into action or that are expressed in certain situations regarding a

person’s cognitive, motivational and behavioural patterns. Over the years, many

categories of personality theories have been developed, including trait theories,

type theories, humanistic theories and behaviourist theories, all of which aim either

to understand an individual’s distinctive personality features or to identify general

rules applying to different individuals. During the twentieth century, with the rapid

growth of the field of personality psychology, there was an equal interest in the field

of personality testing. The intensive research in the field has led to many additions

and modifications of personality assessment instruments, both in approach and

application.

One of the most widely administered personality tests is the Myers-Briggs Type

Indicator (MBTI) (Briggs Myers et al. 1998), which scores individual preferences

based on the works of Carl Gustav Jung (1923). Individuals answer a psychometric

questionnaire that assesses preferences relating to four dichotomies: extraversion/

introversion, sensing/intuition, thinking/feeling and judging/perceiving. The per-

sonality type of an individual is determined by which alternative of each dichotomy

is preferred by answering a series of forced-choice questions. It should be noted that

preference of one option does not mean that the other is never used—it is simply

less preferred. As a result, there are 16 possible combinations of personality types.

Another well-known personality test is the Keirsey Temperament Sorter

(Keirsey and Bates 1984), which is closely related to the MBTI but, instead, uses

temperaments rather than attitudes and functions. The four temperaments (artisan,

guardian, idealist and rational) can be subsequently broken down into roles and

further into role variants based on an individual’s preference towards behaviours

that are concrete or abstract, cooperative or pragmatic, directive or informative and

assertive or responsive. An individual’s temperament and character type is mea-

sured using a 70-item forced-answer questionnaire.

The Revised NEO-Personality Inventory (NEO-PI-R) (Costa and McCrae 1992)

was introduced to measure the Five-Factor Model (FFM) personality traits of

individuals (Tupes and Christal 1961). The assessment determines emotional,

interpersonal, experiential, attitudinal and motivational styles represented by the

five domains—neuroticism, extraversion, openness to experience, agreeableness

and conscientiousness—and their subdomains (facets). The 240 items comprising

this psychological personality inventory contain descriptions of behaviours that are

answered using a five-point scale.

92 C. Stylianou and A.S. Andreou

Personality tests have been used extensively in a number of academic and

application disciplines that have required the adoption of personality measures.

More importantly, personality tests may also be utilized for career and personnel

assessment. Even as far back as the early twentieth century, tests were used to

investigate the desirable psychological abilities and traits an employee was required

to have. For example, Münsterberg’s (1913) theories and research work in the field

of industrial/organizational psychology led to the widespread development and

adoption of a personality test to measure and evaluate candidate employees. His

test was put into practice by the Boston Elevated Company for selecting conductors

as well as by the American Tobacco Company for choosing travelling salesmen.

After World War II, the use of personality testing shifted its focus on assessing

employees most suited for managerial and executive positions, and many compa-

nies, including IBM, started developing their own employee personality tests.

Eventually, during the 1960s, testing restarted being practised at all levels and

over a wider variety of occupations (Cox 2003).

Investigating whether or not a specific type of job can be executed by a particular

personality type, especially for the heavily people-oriented field of software devel-

opment, is very appealing to many organizations. It can help supervisors decide on

issues such as pay rises and promotions or, in a negative light, disciplinary action

and dismissal. As a result, several studies have been carried out to investigate

whether software development professionals possess a specific type of personality.

The outcomes of these investigations can shed light on the type(s) of personality

that are drawn towards a career in software development. It also enables to explore

whether different professions within the industry appeal to different personality

types.

4.3.2 Personality Types of Software Development
Professionals

One of the earliest studies of personnel in software engineering-related occupations

was performed by Moore (1991). The study was based on the Sixteen Personality

Factor Questionnaire (16PF), a popular measurement tool in personality-occupation

studies and extensively used to assemble personality profiles for people in various

occupations (Cattell et al. 1993). In the study, the author compiled the 16PF

questionnaire for four software development occupation categories—application

programmers, systems analysts, technical programmers and data processing

managers—in an attempt to answer the question “Do these groups of information
systems professionals share a common personality profile, or are there significant
differences?” After multiple analyses, the authors found that managers and appli-

cation programmers were most similar in that they are more inclined to experiment

and think freely, thus allowing them to use their imagination more, while at the

same time being more outspoken and comfortable with whatever happens.

4 Human Resource Allocation and Scheduling for Software Project Management 93

In contrast with application programmers, however, managers are more likely to be

laid-back and spontaneous, more forceful and competitive, and more capable of

abstract thinking. Another finding showed that systems analysts and technical

programmers have a tendency to be more practical, careful and conservative than

data processing managers because their work is often highly visible, not only within

data processing but throughout the company. Mistakes can be costly but also

embarrassing. Additionally, the study also identified managers as “less concerned
with social rules than most people” and more likely to pursue their own desires.

Wynekoop and Walz (1998) attempted to explore the differences between

information systems professionals in order to determine whether or not differences

existed in personality characteristics with the rest of the general population. They

surveyed three oil and gas companies with a total of 114 programmer analysts,

systems analysts and project managers and administered the California Psycholog-

ical Inventory Adjective Check List (ACL) (Gough and Heilbrum 1983) on the

employees. The results showed that managers and systems analysts are more

similar to each other than to programmers. In addition, managers and systems

analysts differ from the general population on more scales than programmers but

also on different scales. Another finding was that managers tend to be more logical,

compliant and with more confidence than the general population, whereas analysts

are more willing to keep friendly relationships with others. Generally, the study

shows that IT professionals have more leadership skills, are more ambitious and

reasonable and have more self-esteem and can be more disciplined than other

professionals. Similarly, Smith (1989) also carried out research on IT professionals,

though his work concentrated only on the personality types of systems analysts.

Based on MBTI type tests, the author concluded that a high majority of systems

analysts tend to prefer sensing and thinking in addition to being more introvert

rather than extrovert.

Capretz (2003) attempts to provide a personality profile of software engineering

employees by distributing the MBTI instrument to 100 software engineers working

for the government or for private companies and students of private or public

universities and comparing the results to the distribution of MBTI types of the

general US adult population. The motivation behind the author’s research is the fact

that the majority of software engineering professionals are typecast as “nerds”—
introverts working alone in a corner and with no intentions to interact with others.

However, over the years, software development has become more complex and has

given rise to specialization within the profession (such as systems analysts,

designers, programmers, testers, etc.), and as a result, each role requires a

corresponding personality type. Furthermore, at the time of the study, there had

been very little research carried out on the degree of job satisfaction among

software professionals; any profile of the software engineer constructed may have

been modified due to the growth of the field’s popularity. The results of the author’s

survey showed that the majority of software engineers are technically oriented and

prefer working with facts and reason rather than with people. It was also noted that

systems analysts possessed a personality type that preferred to communicate with

other people and to use their enhanced thinking ability to solve organizational

94 C. Stylianou and A.S. Andreou

problems. On the other hand, programmers exhibit a personality type that excels at

spotting the centre of a problem and seem to find practical solutions. Conversely,

some have a high need to achieve although a low drive to socialize with other

people. It is a fact that the software development field is dominated by introverts,

who typically have difficulty in communicating with end users. The greatest

difference, according to the author, between software engineers and the general

population is that the majority of software engineers take action based on what they

think rather than what somebody else feels. This, however, does not help bring

software developers closer to the users.

A more recent comprehensive investigation can be found in an analysis by

Varona et al. (2012), which surveys existing studies that try to profile software

development professions, in order to properly understand the human resources

working in the software industry, as well as to spot possible trends and changes.

4.3.3 Allocating Developers to Tasks Based on Personality
Types

Even if a specific personality type can be distinguished for each software develop-

ment profession, the most important question is how to make use of this information

in practice when trying to allocate and schedule human resources or form software

development teams. There has been a gradual rise in the number of approaches

aiming to help answer this question, and this section presents some of these

approaches.

The personality type of a developer can play a significant role in determining

which tasks he or she is assigned to because particular individual traits can help

certain developers to be more adept in coping with the requirements and character-

istics of a specific task. Furthermore, a more suitable personality type assigned to a

task can have a direct influence on individual performance and team efficacy (Peeters

et al. 2006; Capretz and Ahmed 2010b) and group conflict and team cohesion (Karn

et al. 2007), as well as contribute to the overall quality of the final software product

(Fernández-Sanz and Misra 2011). In addition, when a developer is assigned to a task

that suits his or her personality, then his or her level of job satisfaction can increase

leading to higher productivity (Acuña et al. 2009).

Dafoulas and Macaulay’s (2001) approach to assigning developers to tasks uses

dynamic role allocation to maximize productivity and performance and takes into

account certain role criteria (such as the goals and objectives, skills and knowledge,

as well as any personality and culture requirements) so that project managers can

assign/reassign roles or activities to team members according to their suitability.

Acuña and Juristo (2004) also consider roles and human capabilities in their

attempts. Their proposed model first determines the intra-personal, organizational,

interpersonal and management capabilities of teammembers and then performs role

assignment to team members based on the capabilities required by the roles and the

4 Human Resource Allocation and Scheduling for Software Project Management 95

capabilities of the available resources. Each capability is allotted a number of

personality traits required to be possessed using the 16PF test as a psychometric

instrument. The goal is to assign those employees possessing the 16PF personality

traits nearest to the 16PF personality traits required by the role (Acuña et al. 2006).

Similarly, André et al. (2011) developed a formal model for human resource

allocation focusing on the assignment of developers to roles. In this approach, rules

are generated to undertake the team formation process based on the roles and

competencies of developers assessed through psychological tests. These team

formation rules were converted into a formal model comprising four objective

functions (competence, team compatibilities, availability and distance cost) and

12 constraint types to perform human resource assignment to roles by employing

heuristic algorithms (random restart hill climbing, simulated annealing, tabu search

and various other combinations of heuristic approaches).

Capretz and Ahmed (2010a, b) presented an attempt at human resource allocation

suggesting a mapping of job requirements and skills to personality characteristics of

employees, stating that the diversity of psychological types improves effectiveness

and fulfillment of software developers. Because employees are more likely to

perform better if they are assigned roles that their personality traits are best suited

to, the authors associate hard skills (in the form of job requirements) to soft skills

(in the form of personality requirements) for various software professionals: systems

analysts, designers, programmers, testers and maintenance staff. The soft skills are

then matched with specific personality characteristics based on MBTI personality

types, and this can allow project managers to select team members with the same

personality types and assign them to the roles required in the project.

Stylianou and Andreou (2012) employed a multi-objective genetic algorithm to

simultaneously allocate and schedule software developers to tasks based on the

technical skills and their personality types. One of the assumptions in this approach

is that the schedule of tasks is fixed, and so the allocation of developers is

constrained by the time that each task has been set to execute. This approach was

recently developed into a prototype intelligent decision support tool in Stylianou

et al. (2012) and was extended to also accommodate situations where a software

project manager wishes to allocate and schedule software developers without

having the project tasks scheduled beforehand. The results obtained in these two

approaches appear highly promising and demonstrate the significance of human-

centric developer assignment.

4.3.4 Allocate Developers to Team Based on Personality
Types

While some may argue the importance of getting a developer to work on the right

task, others may argue the significance of getting developers to work right together.

The approaches mentioned in Sect. 4.3.3 all focus on the relationship between

developers and tasks. However, what about the relationship between developers

96 C. Stylianou and A.S. Andreou

themselves? After all, software projects are undertaken by teams and require

collaboration, coordination and communication between members. The answer to

this question has been explored by several groups of researchers, all trying to

identify how the personality type of developers influences various facets of team

work and investigate whether certain combinations of personality types improve

aspects such as performance, productivity and even quality. From a software

project manager’s perspective, this could help him or her to understand and exploit

this underlying factor effectively when deciding on allocating developers to tasks.

One area of study concerns the heterogeneity of personality types, that is, the

diversity of traits possessed by developers. Rutherfoord (2001) examined the

impact of diversity by comparing teams comprising different personality types

with teams composed of the same personality type using the Keirsey Temperament

Sorter. The results showed that groups with members of the same personality type

were having more personal problems, rather than technical. The surveys revealed

that members seemed to want to elaborate the project by themselves and had

problems with members that did not have much of a sharing discipline. On the

other hand, groups with members of different personality types seemed to have

more problems at a technical level. It was also noticed that groups where all

members possessed a “supervisor” personality type were spending too much time

discussing on how tasks will be assigned, despite this matter having already been

decided previously. Groups where all members possessed an “inspector” personal-
ity type were very quiet, and interaction between them did not seem to exist. These

groups appeared, however, much more focused and responsible. Groups with

different personality types among their members were very active, had robust

discussions and provided different kinds of ideas. The authors also noticed that

groups with “supervisor” personality types were very opinionated and preferred to

“follow a traditional path.” Research by Neuman et al. (1999) investigated the

relationship between work team effectiveness and two other factors: team person-

ality elevation (TPE), defined as “the average level of a given trait within a team,”
and team personality diversity (TPD), described as “the variability or differences in
personality traits found within a team.” Predicting job performance using person-

ality has conventionally been based only on the elevation, or magnitude, of traits

within the group, and this has been the foundation of selection and placement

strategies. Nevertheless, the authors claim that team-based designs may also require

taking into account the diversity, or variability, of traits within the group in order to

find correlations between personality and job performance. The research used the

FFM to examine the relationship between team personality composition and work

team performance. Based on the authors’ interpretation of the results, teams

perform better when members differ in terms of extraversion and emotional stabil-

ity rather than when members are similar in terms of these traits. Conversely, team

performance is likely to increase if team members possess similarly high levels of

traits regarding conscientiousness, agreeableness and openness to experience.

Therefore, project management decisions on employee selection can be supported

by taking into account the similarity of certain traits and the dissimilarity of others

within a team.

4 Human Resource Allocation and Scheduling for Software Project Management 97

Interestingly, a large number of research studies concentrate on the effects of

personality in agile methodologies, which is in itself a relatively new development

approach in the field of software engineering. Project management for agile meth-

odologies is explored in Chap. 11, which describes how agile methodologies

transform the way in which communication, collaboration and coordination prac-

tices in software development projects are carried out towards a more “people-
oriented” approach where software teams are self-managing and share the decision-

making. In this chapter, the discussion focuses particularly on pair programming

and how personality types are implicated. This activity involves two developers

working together on one task as they alternate between the roles of “driver”—the

developer who codes—and “navigator”—the developer who reviews the code.

Immediately, there is a need for social interaction (in the form of communication,

collaboration and cooperation) among the developers in order to reach a common

goal of delivering the unit produced on time and with the required quality. Hence,

this is the reason why, especially in the past several years, studies have been carried

out to investigate the impact that personality types have on the performance and

productivity of the pairs.

Sfetsos et al. (2006) concentrated on the diversity of personality traits and came

to the conclusion that pairs with heterogeneous personalities and temperaments

exhibit better performance and collaboration-viability than pairs with similar per-

sonality traits. Software project managers, therefore, can take into account person-

ality types when allocating developers to tasks and try to match developers so as to

optimize the pair’s effectiveness. Similarly, Choi et al. (2008) investigated which

combination of personality types yields higher pair productivity. Specifically, they

tested pairs of developers with alike, opposite and diverse combinations of person-

ality types and found that the latter combination outperformed, in terms of code

productivity, the other two.

In practice, a software development company may find it easier and cheaper if

developers are left to team up by themselves. Oftentimes, however, pairs will be

formed based on friendships and common interests and not on optimizing produc-

tivity. If personality types are taken into account, a software project manager can

assign tasks to developers yielding maximum effect with relatively little time

and cost.

Acuña et al. (2009) explored the relationship between each of the five factors of

the FFM and job satisfaction, performance, team cohesion, task conflict and quality

in agile settings. Their quasi-experiment produced a variety of results. Firstly, they

observed that the quality of the end product is positively correlated to the preferred

interpersonal style of the developers. This means that teams with a high average

level of extraversion will enjoy the social interaction that is promoted through agile

methodologies, and all members share the same goal of making the project a

success. They also noted that developers with positive attitudinal and motivational

styles are also more likely to be satisfied with their job. Developers in a team that

share the same high level of agreeableness and conscientiousness feel more content

with their career. Staying with the factors of the FFM, Salleh et al. (2010) explored

how they especially affected pair programming. The main findings here were that

98 C. Stylianou and A.S. Andreou

http://dx.doi.org/10.1007/978-3-642-55035-5_11

pairings of developers with high levels of traits relating to openness to experience

were conducive to the effectiveness of the pairings. Hannay et al. (2010) provide a

comprehensive survey of the research investigating the effects of personality on

pair programming and its ability to predict job performance.

4.3.5 Discussion

There are two schools of thought concerning the inclusion of information regarding

the personality types of developers for human resource allocation and scheduling

activities in software development. On the one hand, there is a view that a developer

should be assigned to a task that he or she is more suitable based on the require-

ments of the task and the personality type of the developer. The claim is that each

software development task has a set of characteristics and requirements that can be

associated to a desired set of personality traits. For example, requirements elicita-

tion tasks involve a high level of social engagement and the ability to identify with

clients to understand their needs. Therefore, an introverted individual may struggle

to perform these tasks as they are more reserved and prefer working alone rather

than in environments requiring high social interaction. The research does not claim

that a developer cannot carry out a task if he or she does not have the right

personality type; it claims that he or she would not prefer to carry out the task.

Consequently, a better task-fit for a developer would result not only in better

performance but also in higher job satisfaction. The more fulfilled a developer is

while working on a task that he or she is suited to, the more productive and efficient

he or she is. Of course, this can only work if the developer is capable of carrying out

the task in the first place with regard to technical skills, knowledge and expertise, so

as not to jeopardize the quality of the software being developed.

On the other hand, there is the standpoint that a developer should be assigned

with other developers so that the resulting combination of personality types leads to

increased performance and effectiveness. The claim here is that there are certain

combinations of personality traits that can improve the productivity of the team and

increase the probability of success. Some traits, such as conscientiousness, should

be present in all team members, while other traits, such as extraversion, should be

diverse. Contrariwise, if several developers are assigned to work together on a task,

their combination of personality types may not foster the most efficient and

productive working environment. This does not mean that the job cannot get

done; it may just mean that a more appropriate mixture of developers in terms of

personality type may be able get the job done with improved levels of communi-

cation, collaboration and coordination, which are governed by an individual’s

personality type. Inevitably, if this personality type blend is not “effectual” there

will be several knock-on effects, such as lowered productivity, job satisfaction and,

ultimately, software quality.

Overall, there are a limited number of approaches that attempt to incorporate

personality types of software developers in order to assign them to tasks, which is

4 Human Resource Allocation and Scheduling for Software Project Management 99

expected as this is still a relatively new direction. Some do not treat the allocation

and scheduling of developers as an operational research problem and, therefore, do

not employ the specialized techniques and methods as the approaches presented in

Sect. 4.2 do. Those that do, attempt to optimize the allocation so that the developer

whose personality type is closest to a desired profile is assigned. Interestingly, all

but one approach overlook dealing with the problem of resource/task scheduling

altogether, which as previously mentioned, is tough to separate from allocation as

both activities are affected by developer availability constraints. Hence, the ability

of approaches to provide an integrated tool may be considered limited unless they

are able to accommodate scheduling also.

4.4 Further Research Trends and Challenges

Incorporating aspects of personality types in allocation and scheduling is still at a

young and exploratory stage, and so the applicability of approaches lacks the

backup of empirical evidence demonstrating their practical benefits in order to

promote their adoption by real-world software development companies. A system-

atic evaluation of the effect is still required to be carried out to gather such

evidences, and if these continue to indicate promising results, only then can a

significant evolution in team formation, as well as allocation and scheduling

strategies, occur.

The desired personality types of roles, tasks or activities that form the basis of

assigning suitable developers in a number of approaches are not always justified

empirically. It is important that the desired personality type of a task is correctly

identified in order to allocate a suitable developer, but this may pose a challenge

given the different personality measures and frameworks available to assess per-

sonality types and preferences. There is currently no consensus as to which per-

sonality instrument is the most capable of providing a task’s desired personality

accurately.

There is a difference of opinion with respect to how personality types can be

utilized—for assigning tasks or for staffing teams. Either way, the emphasis

remains on gathering evidence whether taking into account personality types of

developers constitutes a legitimate way forward to help software project managers

make staffing decisions aiming to increase the probability of success. Ideally, future

approaches will be able to support both these valid research viewpoints.

Considering the use of personality types does not aim to single out developers or

discriminate against them. Instead, it is supposed to provide software project

managers with additional and complementary information to help them in the

allocation and scheduling of resources or, in general, task-independent team for-

mation. Additionally, it should not substitute or force to disregard important

technical factors such as knowledge, skills and experience. However, some devel-

opers may still consider such an approach intrusive, so it is therefore important to

provide reassurances that the goal is to utilize this human-centric factor to achieve

100 C. Stylianou and A.S. Andreou

maximum resource usage through the strengths of developers. Ultimately, the goals

and objectives of any approach are to eliminate those risks in software project

management preventing development organizations from delivering their products

on time, within budget and with the required level of quality.

One of the other biggest challenges for the research community is trying to find a

way of blending or “marrying” the two styles of solution. The interdisciplinary

nature of the area requires many fields to come together to provide adequate and

practical solutions for the software development industry. On the one hand, opti-

mizing technical project criteria, such as cost, duration and number of defects, is

attempted to be solved as an operational research problem, whereas the human-

centric approaches tend to be handled as team formation strategies. Therefore, the

ideal direction for research would be to concentrate on providing a hybrid of the two

solution styles in a unified software project allocation and scheduling framework,

on the one hand taking advantage of the benefits of underlying techniques (math-

ematical modelling or computational intelligence) and on the other hand targeting

technical as well as non-technical, human-centric criteria. One of the obstacles to

achieving this is quantifying and measuring human-centric criteria.

4.5 Concluding Remarks

The purpose of this chapter was to give the reader an insight of the most recent

research approaches to human resource allocation and scheduling in software pro-

jects. What is observed is that there is a shift from the traditional operational

research approach of allocating and scheduling developers based on conventional

technical criteria, such as cost and duration, towards focusing on team formation

and allocation strategies, aiming to make use of both the technical abilities of

developers (e.g., skills and experience) as well as their personality types for

improving other criteria, such as performance, productivity and software quality.

The traditional approaches to human resource allocation and scheduling con-

sider the attempt to solve the problem as an optimization problem and make use of

mathematical modelling techniques, such as linear programming and probabilistic

modelling, in addition to computational intelligence methods, such as evolutionary

algorithms and swarm intelligence. In order to determine the best allocation and

scheduling plan, a software project manager would have to exhaustively evaluate

all the possible permutations given the project’s tasks, their durations, their depen-

dency relationships and the skills they require, in addition to the available devel-

opers, their cost and the skills they possess. Especially with larger-sized software

projects, this may prove overwhelming and time-consuming for a project manager.

Approaches that adopt these methods therefore attempt to provide a quicker and

easier alternative.

Allocating and scheduling human resources has started to move into a more

human-centric direction, with a growth in the research area investigating the

addition of non-technical aspects of software development to help software project

4 Human Resource Allocation and Scheduling for Software Project Management 101

managers increase the rate of software project success. One such aspect involves

the use of personality types in allocation and scheduling. Research approaches,

however, are still currently limited, but as this trend is becoming more popular,

evidence is accumulating showing that personality types could indeed be used to

help assess how well a developer would perform certain jobs and tasks and also how

effective and/or productive he or she will be with other developers. Also, some

studies have concluded that caution must be given in forming diverse software

development teams as these appear to generally perform better than less heteroge-

neous teams. Overall, this particular area of research is very promising as it

contributes to dealing with the important issue of helping software projects succeed

by focusing on the most important, if not the only, resource involved in software

development.

References

Acuña ST, Juristo N (2004) Assigning people to roles in software projects. Softw Pract Exp 34

(7):675–696

Acuña ST, Juristo N, Moreno AM (2006) Emphasizing human capabilities in software develop-

ment. IEEE Softw 23(2):94–101

Acuña ST, Gómez M, Juristo N (2009) How do personality, team processes and task character-

istics relate to job satisfaction and software quality? Inf Softw Technol 51(3):627–639

Alba E, Chicano JF (2005) Management of software projects with GAs. Paper presented at the 6th

metaheuristics international conference, Vienna, Austria, 22–26 August, 2005

Alba E, Chicano JF (2007) Software project management with GAs. Inf Sci 177(11):2380–2401

Amrit C (2005) Coordination in software development: the problem of task allocation. Paper

presented at the 27th international conference on software engineering, St. Louis, MO,

15–21 May, 2005

André M, Baldoquı́n MG, Acuña ST (2011) Formal model for assigning human resources to teams

in software projects. Inf Softw Technol 53(3):259–275

Antoniol G, Cimitile A, Di Lucca GA, Di Penta M (2004a) Assessing staffing needs for a software

maintenance project through queuing simulation. IEEE Trans Softw Eng 30(1):43–58

Antoniol G, Di Penta M, Harman M (2004) Search-based techniques for optimizing software

project resource allocation. Paper presented at the 2004 genetic and evolutionary computation

conference, Seattle, WA, 26–30 Jun 2004

Antoniol G, Di Penta M, Harman M (2005) Search–based techniques applied to optimization of

project planning for a massive maintenance project. Paper presented at the 21st IEEE interna-

tional conference on software maintenance, Budapest, Hungary, 26–29 Sept 2005

Barreto A, Barros MO, Werner CML (2005) Staffing a software project: a constraint satisfaction

approach. ACM SIGSOFT Softw Eng Notes 30(4):1–5

Barreto A, Barros MO, Werner CML (2008) Staffing a software project: a constraint satisfaction

and optimization-based approach. Comput Oper Res 35(10):3073–3089

Briggs Myers I, McCaulley MH, Quenk NL, Hammer AL (1998) MBTI® Manual: a guide to the

development and the use of the Myers-Briggs type indicator®, 3rd edn. Consulting Psychol-

ogists, Mountain View, CA

Callegari DA, Bastos RM (2009) A multi-criteria resource selection method for software projects

using fuzzy logic. Paper presented at the 11th international conference on enterprise informa-

tion systems, Milan, Italy, 6–10 May 2009

102 C. Stylianou and A.S. Andreou

Capretz LF (2003) Personality types in software engineering. Int J Hum Comput Stud 58(2):207–

214

Capretz LF, Ahmed F (2010a) Making sense of software development and personality types. IT

Prof 12(1):6–13

Capretz LF, Ahmed F (2010b) Why do we need personality diversity in software engineering?

ACM SIGSOFT Softw Eng Notes 35(2):1–11

Cattell RB, Cattell AK, Cattell HEP (1993) 16PF fifth edition questionnaire. Institute for Person-

ality and Ability Testing, Champaign, IL

Chang CK, Chao C, Hsieh S et al (1994) SPMNet: a formal methodology for software manage-

ment. Paper presented at the 18th annual international computer software and applications

conference, Taipei, Taiwan, 9–11 Nov 1994

Chang CK, Chao C, Nguyen TT, Christensen MJ (1998) Software project management net: a new

methodology on software management. Paper presented at the 22nd annual international

computer software and applications conference, Vienna, Austria, 19–21 Aug 1998

Chang CK, Christensen MJ, Zhang T (2001) Genetic algorithms for project management. Ann

Softw Eng 11(1):107–139

Chang CK, Jiang H, Di Y et al (2008) Time-line based model for software project scheduling with

genetic algorithms. Inf Softw Technol 50(11):1142–1154

ChenW, Zhang J (2013) Ant colony optimization for software project scheduling and staffing with

an event-based scheduler. IEEE Trans Softw Eng 39(1):1–17

Chicano F, Luna F, Nebro AJ et al (2011) Using multi-objective metaheuristics to solve the

software project scheduling problem. Paper presented at the 13th annual conference on genetic

and evolutionary computation, Dublin, Ireland, 12–16 Jul 2011

Choi KS, Deek FP, Im I (2008) Exploring the underlying aspects of pair programming: the impact

of personality. Inf Softw Technol 50(11):1114–1126

Costa PT Jr, McCrae RR (1992) NEO inventories professional manual. Psychological Assessment

Resources, Inc., Odessa, TX

Cox AM (2003) I am never lonely: a brief history of employee personality testing. Stay Free!

21:22–24

Dafoulas GA, Macaulay LA (2001) Facilitating group formation and role allocation in software

engineering groups. Paper presented at the 2001 ACS/IEEE international conference on

computer systems and applications, Beirut, Lebanon, 25–29 Jun 2001

Di Penta M, Harman M, Antoniol G (2011) The use of search-based optimization techniques to

schedule and staff software projects: an approach and an empirical study. Softw Pract Exp 41

(5):495–519

Duggan J, Byrne J, Lyons GJ (2004) A task allocation optimizer for software construction. IEEE

Softw 21(3):76–82

Ejnioui A, Otero CE, Otero LD (2012) A multi-attribute decision making approach for resource

allocation in software projects. In: Arabnia HR, Reza H, Xiong J (eds) Proceedings of the 2012

international conference on software engineering research and practice, Las Vegas, 12–16 June

2012

Fernández-Sanz L, Misra S (2011) Influence of human factors in software quality and productivity.

Paper presented at the 2011 international conference on computational science and its appli-

cations, Santander, Spain, 20–23 Jun 2011

Ge Y (2009) Software project rescheduling with genetic algorithms. Paper presented at the 2009

international conference on artificial intelligence and computational intelligence, Shanghai,

China, 7–8 Nov 2009

Ge Y, Chang CK (2006) Capability-based project scheduling with genetic algorithms. Paper

presented at the 2006 international conference on computational intelligence for modelling,

control and automation and international conference on intelligent agents web technologies

and international commerce, Sydney, Australia, 28 Nov–1 Dec 2006

Gerasimou S, Stylianou C, Andreou AS (2012) An investigation of optimal project scheduling and

team staffing in software development using particle swarm optimization. Paper presented at

4 Human Resource Allocation and Scheduling for Software Project Management 103

the 14th international conference on enterprise information systems, Wrocław, Poland,

28 Jun–1 Jul 2012

Gough HG, Heilbrun AB Jr (1983) The adjective checklist manual. Consulting Psychologists

Press, Inc., Palo Alto, CA

Gueorguiev S, Harman M, Antoniol, G (2009) Software project planning for robustness and

completion time in the presence of uncertainty using multi objective search based software

engineering. Paper presented at the 11th annual conference on genetic and evolutionary

computation, Montréal, Canada, 8–12 Jul 2009

Hannay JE, Arisholm E, Engvik H, Sjoberg DIK (2010) Effects of personality on pair program-

ming. IEEE Trans Softw Eng 36(1):61–80

Hapke M, Jaszkiewicz A, Slowinski R (1994) Fuzzy project scheduling system for software

development. Fuzzy Sets Syst 67(1):101–117

Heiat A (2002) Comparison of artificial neural network and regression models for estimating

software development effort. Inf Softw Technol 44(15):911–922

Jalote P, Jain G (2004) Assigning tasks in a 24-hour software development model. Paper presented

at the 11th Asia-Pacific software engineering conference, Busan, Korea, 30 Nov–3 Dec 2004

Jiang H, Chang CK, Xia J, Cheng S (2007) A history-based automatic scheduling model for

personnel risk management. Paper presented at the 31st annual international computer software

and applications conference, Beijing, China, 24–27 Jul 2007

Jung CG (1923) Psychological types (H. Godwin Baines Trans.). London, England: Routledge;

Kegan Paul Ltd

Kantorovich LV (1940) A new method of solving some classes of extremal problems. Doklady

Akad Sci USSR 28:211–214

Kapur P, Ngo-The A, Ruhe G et al (2008) Optimized staffing for product releases and its

application at Chartwell technology. J Softw Maint Evol R 20(5):365–386

Karn JS, Syed-Abdullah S, Cowling AJ, Holcombe M (2007) A study into the effects of person-

ality type and methodology on cohesion in software engineering teams. Behav Inf Technol 26

(2):99–111

Keirsey D, Bates M (1984) Please understand me: character and temperament Types. Prometheus

Nemesis Book Company, Del Mar, CA

Khoshgoftaar TM, Seliya N (2004) Comparative assessment of software quality classification

techniques: an empirical case study. Empir Softw Eng 9(3):229–257

Li C, van den Akker J. M., Brinkkemper S, Diepen G (2007) Integrated requirement selection and

scheduling for the release planning of a software product. Paper presented at the 13th

international working conference on requirements engineering: foundation for software qual-

ity, Trondheim, Norway, 11–12 Jun 2007

Luna F, Gonzalez-Alvarez DL, Chicano F, Vega-Rodriquez MA (2011) On the scalability of

multi-objective metaheuristics for the software scheduling problem. Paper presented at the

11th international conference on intelligent systems design and applications, Córdoba, Spain,

22–24 Nov 2011

McBride T (2008) The mechanisms of project management of software development. J Syst Softw

81(12):2386–2395

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng 2(4):308–320

Michael CC, McGraw GE, Schatz MA, Walton CC (1997) Genetic algorithms for dynamic test

data generation. Paper presented at the 12th international conference on automated software

engineering, Lake Tahoe, 1–5 Nov 1997

Moore JE (1991) Personality characteristics of information systems professionals. Paper presented

at the 1991 ACM SIGCPR conference on computer personnel research, Athens, GA, 8–9 Apr

1991

Münsterberg H (1913) Psychology and industrial efficiency. The Riverside Press, Cambridge,

USA

Neuman GA, Wagner SH, Christiansen ND (1999) The relationship between work-team person-

ality composition and the job performance of teams. Group Organ Manag 24(1):28–45

Ngo-The A, Ruhe G (2009) Optimized resource allocation for software release planning. IEEE

Trans Softw Eng 35(1):109–123

104 C. Stylianou and A.S. Andreou

Otero LD, Centeno G, Ruiz-Torres AJ, Otero CE (2009) A systematic approach for resource

allocation in software projects. Comput Ind Eng 56(4):1333–1339

Otero CE, Otero LD, Weissberger I, Qureshi A (2010) A multi-criteria decision making approach

for resource allocation in software engineering. Paper presented at the 12th international

conference on computer modelling and simulation, Cambridge, England, 24–26 Mar 2010

Padberg F (2001) scheduling software projects to minimize the development time and cost with a

given staff. In: Anonymous eighth Asia-Pacific software engineering conference (APSEC

2001), Macao, China, 4–7 Dec 2001. IEEE Computer Science Press, Los Alamitos, CA,

pp 187–194

Padberg F (2002) Using process simulation to compare scheduling strategies for software projects.

Paper presented at the 9th Asia-Pacific software engineering conference, Gold Coast,

Australia, 4–6 Dec 2002

Padberg F (2003) A software process scheduling simulator. Paper presented at the 25th interna-

tional conference on software engineering, Portland, OR, 3–10 May 2003

Padberg F (2004) Computing optimal scheduling policies for software projects. Paper presented at

the 11th Asia-Pacific software engineering conference, Busan, Korea, 30 Nov–3 Dec 2004

Padberg F (2006) A study on optimal scheduling for software projects. Softw Process Improv Pract

11(1):77–91

Peeters MAG, van Tuijl HFJM, Rutte CG, Reymen IMMJ (2006) Personality and team perfor-

mance: a meta-analysis. Eur J Pers 20(5):377–396

Raymond L, Bergeron F (2008) Project management information systems an empirical study of

their impact on project managers and project success. Int J Proj Manag 26(2):213–220

Ren J, Harman M, Di Penta M (2011) Cooperative co-evolutionary optimization of software

project staff assignments and job scheduling. Paper presented at the 2011 international

symposium on search based software engineering, Szeged, Hungary, 10–12 Sept 2011

Rutherfoord RH (2001) Using personality inventories to help form teams for software engineering

class projects. ACM SIGCSE Bull 33(3):73–76

Salleh N, Mendes E, Grundy J, St. John Burch G (2010) An empirical study of the effects of

conscientiousness in pair programming using the five-factor personality model. Paper

presented at the 32nd ACM/IEEE international conference on software engineering, Cape

Town, South Africa, 2–8 May 2010

Sfetsos P, Stamelos I, Angelis L, Deligiannis I (2006) Investigating the impact of personality types

on communication and collaboration-viability in pair programming – an empirical study. Paper

presented at the 7th international conference on extreme programming and agile processes in

software engineering, Oulu, Finland, 17–22 Jun 2006

Smith DC (1989) The personality of the systems analysts: an investigation. ACM SIGCPR

Comput Pers 12(2):12–14

Stylianou C, Andreou AS (2007) A hybrid software component clustering and retrieval scheme

using an entropy-based fuzzy k-modes algorithm. Paper presented at the 19th IEEE interna-

tional conference on tools with artificial intelligence, Patras, Greece, 29–31 Oct 2007

Stylianou C, Andreou AS (2012) A multi-objective genetic algorithm for software development

team staffing based on personality types. Paper presented at the 8th IFIP WG 12.5 international

conference on artificial intelligence applications and innovations, Halkidiki, Greece, 27–30

Sept 2012

Stylianou C, Gerasimou S, Andreou, AS (2012) A novel prototype tool for intelligent software

project scheduling and staffing enhanced with personality factors. Paper presented at the 24th

IEEE international conference on tools with artificial intelligence, Athens, Greece, 7–9 Nov

2012

Tsai H, Moskowitz H, Lee L (2003) Human resource selection for software development projects

using Taguchi’s parameter design. Eur J Oper Res 151(1):167–180

Tupes EC, Christal RE (1961) Recurrent personality factors based on trait ratings. J Pers 60

(2):225–251

4 Human Resource Allocation and Scheduling for Software Project Management 105

Varona D, Capretz LF, Piñero Y et al (2012) Evolution of software engineers’ personality profile.

SIGSOFT Softw Eng Notes 37(1):1–5

Wynekoop JL, Walz DB (1998) Revisiting the perennial question: are IS people different? ACM

SIGMIS Database 29(3):62–72

Xiao J, Ao X, Tang Y (2013) Solving software project scheduling problems with ant colony

optimization. Comput Oper Res 40(1):33–46

Yannibelli V, Amandi A (2011) A knowledge-based evolutionary assistant to software develop-

ment project scheduling. Expert Syst Appl 38(7):8403–8413

Biography Constantinos Stylianou is a Ph.D. student at the Department of Com-

puter Science of the University of Cyprus. His research focuses on aspects of

software project management and specifically on the use of intelligent techniques

for human resource scheduling and allocation in addition to human-centric factors

in software development. He is also a research member of the Software Engineering

and Intelligent Information Systems Research Lab of the Cyprus University of

Technology.

Andreas S. Andreou is an Associate Professor and Vice-Chair of the Department of

Electrical Engineering/Computer Engineering and Informatics of the Cyprus Uni-

versity of Technology. He is the Director of the Software Engineering and Intelli-

gent Information Systems Research Lab, where his areas of interest include

Software Engineering, Web Engineering, Electronic and Mobile Commerce and

Intelligent Information Systems.

106 C. Stylianou and A.S. Andreou

Chapter 5

Software Project Risk and Opportunity

Management

Barry Boehm

Abstract Risk is an uncertain event or condition that has a positive or negative

effect on project objectives. Risk management includes the processes of planning,

identification, analysis, resource planning, and controlling risk in a project. This

chapter focuses on recent insights and approaches within risk management. A

positive counterpart to risk management has emerged, called opportunity manage-

ment. The duality between the two concepts is explained, and the fundamentals of

risk–opportunity management are discussed. Furthermore, risk and opportunity

management methods, processes, and tools are presented.

5.1 Introduction

Compared to 20–30 years ago, very few projects end up delivering what were

initially defined as its requirements. Or if they do, the delivered system has become

a poor match to the organization’s current needs. Thus, most projects will have to

address project uncertainties and risk management right at the start and throughout

the project.

Risk management is all about uncertainty and value. Its fundamental quantity to

be managed is risk exposure, calculated as the project’s probability of loss
(a measure of uncertainty) times its impact of loss (a measure of stakeholder

value). This is initially obtained by identifying the project’s initial sources of

uncertainty called Prob(Loss) and adding up their contributions to overall risk

exposure. Risk exposure then continues to be updated as the project encounters

further sources of uncertainty.

B. Boehm (*)

University of Southern California, Los Angeles, CA, USA

e-mail: barryboehm@gmail.com

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_5, © Springer-Verlag Berlin Heidelberg 2014

107

mailto:barryboehm@gmail.com

The remainder of this chapter elaborates on recent new insights and approaches:

• The duality of risk and opportunity management

• Risk management elements: risk assessment and risk control

• Fundamental risk quantities: risk exposure and risk reduction leverage

• Fundamental risk management strategies: risk understanding, avoidance, trans-

fer, reduction, and acceptance

• Evidence- and value-based milestone decision processes (shortfalls in evidence

are uncertainties and risk probabilities; stakeholder value propositions are deter-

minants of risk impact)

• Risk-based “how much is enough” analyses (balancing the risk of doing too little

and the risk of doing too much)

Also, it is important to recognize that not all uncertainty is bad. A positive

counterpart to risk management has emerged, called opportunity management,

which enables projects to balance risk and opportunity prospects.

5.2 The Duality of Risks and Opportunities

The generally accepted quantity for reasoning about risk is risk exposure
(RE) defined as

RE ¼ Prob Lossð Þ�Impact Lossð Þ

Opportunity can be considered as a dual to risk as a decision not to pursue an

opportunity has a negative expected value equal to the probability of success for the

opportunity times its impact of gain if it succeeds. This could be called its “missed

opportunity” risk exposure, but it is more positive to call it its opportunity exposure
(OE) defined as

OE ¼ Probability Gainð Þ�Impact Gainð Þ

Charette (1999) defines such a holistic view as risk entrepreneurship. Risk
entrepreneurs are not extreme thrill seekers; they are careful, judicial, and value-

aware decision makers. They understand the possible costs of risks as well as the

return from the opportunities. However, where the business value is sufficiently

large and the risk is both understandable and within the bounds of the organiza-

tion’s capability to manage it if something goes awry, they have the ability and the

courage to embrace the risk.

Another form of opportunity management that emphasizes the duality with risk

management involves identifying, evaluating, and deciding on opportunities to

reduce the project’s risk exposure. This is discussed below with respect to the

concept of risk reduction leverage.

108 B. Boehm

It should be noted that in managing opportunities as well as risks, negative risks

generally have a much stronger impact than pure opportunities (those not paired

with a risk). The INCOSE/IEEE System Engineering Body of Knowledge, SEBoK

(Pyster et al. 2013) states that

In principle, opportunity management is the duality to risk management (. . .). Thus, both
should be addressed in risk management planning and execution. In practice, however, a

positive opportunity exposure will not match a negative risk exposure in utility space, since

the positive utility magnitude of improving an expected outcome is considerably less than

the negative utility magnitude of failing to meet an expected outcome.

Canada (1971), Kahneman and Tversky (1979).

In other words, the utility function usually applied to project and program

managers is strongly weighted toward the negative; that is, making a $1 million

loss has about the same negative utility for a project manager as has the positive

utility of making a $5 million gain. Edmund Conrow’s comprehensive book,

Effective Risk Management (Conrow 2003) has some further cautions about

overenthusiastic opportunity management.

5.3 Fundamentals of Risk–Opportunity Management

This section provides a summary of the fundamental risk–opportunity management

activities (risk assessment and risk control); the two primary decision criteria

associated with risk management (risk exposure and risk reduction leverage); and

the five fundamental risk management strategies (risk understanding, risk avoid-

ance, risk transfer, risk reduction, and risk acceptance). We use risk as the over-

arching term, but we always consider the risk–opportunity dualism in the

discussion.

5.3.1 Risk Assessment: Identification, Analysis,
and Prioritization

Risk Identification produces lists of potential project-specific risks or opportuni-

ties likely to change a project’s outcome. Typical identification techniques include

checklists, decomposition, comparison with experience, conflicts among the

success-critical stakeholders’ value propositions, and examination of decision

drivers. Another key contribution to risk identification involves evidence-based

decision criteria, in that shortfalls in evidence of project and product feasibility are

uncertainties or probabilities of loss if the project proceeds with inadequate evi-

dence of feasibility. This Prob(Loss) when multiplied by the Impact(Loss) becomes

Risk Exposure, as above.

5 Software Project Risk and Opportunity Management 109

Risk Analysis produces assessments of the gain/loss-probability and gain/loss-

impact associated with each of the identified risks and assessments of the

compounding that may occur if risks interact to change probabilities or impacts

when more than one happens to occur. Typical techniques include network analy-

sis, decision trees, cost models, performance models, and statistical decision

analysis.

Even for medium-size (20–30 people) projects, Risk Identification can identify

up to 100 candidate risks to address. However, about 10–15 project-wide risks are

about the most that a medium-size, medium-complexity project should take on

simultaneously. The overall objective of risk analysis is therefore to determine the

relative risk exposure of each identified risk, initially just accurately enough to

separate the “big rocks” from the “pebbles,” and subsequently to provide more

insight on how best to reduce the big-rock probabilities and impacts of loss. If these

quantities cannot be accurately determined, the project has two main choices. One

is to assign relative values for Prob(Loss) and Impact(Loss), generally on a scale of

0–10. The other is to buy information to reduce risk, via stakeholder interviews,

surveys, prototypes, or high-level models.

Risk Prioritization produces a prioritized ordering of the risks to be subjected

to budgeted risk mitigation and control, and which are to be monitored for oppor-

tunistic risk mitigation or growth to become a serious risk requiring budgeted risk

mitigation. The emphasis on risk mitigation budgets reflects the reality that projects

have limited budgets, and that the relative cost of risk mitigation is as important as

the relative risk or opportunity exposure. This brings into play the second funda-

mental risk quantity called risk reduction leverage (RRL). RRL is defined as the

ratio of risk exposure reduction to the cost of achieving the reduction for a given

risk reduction alternative.

Thus, having a high risk exposure may not be a good criterion for choosing risks

to be mitigated. If an emerging technology is so immature that a very large budget

or long schedule would be required to reduce its risks of performance, reliability,

scalability, or maintainability, it would be best to defer consideration of its use until

it reached a higher level of maturity. Typical risk prioritization techniques include

RRL analysis, particularly involving cost-benefit analysis, and Delphi or group-

consensus techniques.

5.3.2 Risk Control: Risk Mitigation Planning, Risk
Mitigation, Risk Monitoring and Corrective Action

Risk Mitigation Planning produces plans for addressing each risk (e.g., via risk

understanding, avoidance, transfer, reduction, or acceptance), including the coor-

dination of the individual plans with each other and with the overall project plan. As

above under Risk Prioritization, it is important to address situations where a risk

mitigation threatens a project’s critical path, a particularly frequent occurrence with

110 B. Boehm

highly interactive risks that are pushing the technology frontiers in several direc-

tions at once. In such cases, it is often best to defer some of the capabilities, or if

several are needed for success, to reflect this in the project’s schedule. A good

example was the CCPDS-R project described in Royce (1998), which deferred its

Preliminary Design Review from a traditional Month 6 to Month 14, by which time

all of the risks had been mitigated.

Typical techniques include checklists of risk mitigation techniques, cost–benefit

analysis, and standard risk management plan outlines, forms, and elements. In

many cases, though, the standard forms may be overkills; a lean alternative is

provided below.

Risk Mitigation produces a situation in which the risks are eliminated or

otherwise resolved (e.g., risk avoidance via relaxation of requirements; opportunity

acceptance via strategic partnership agreements). Typical techniques include pro-

totypes, simulations, benchmarks, mission analyses, key-personnel agreements,

design-to- cost approaches, and incremental development for risk avoidance.

Opportunity assurance analysis may use technology trend analyses, multi-corporate

analyses, prototypes, and agreements, and acquisition analyses.

Risk monitoring and corrective Action involves tracking the project’s progress

towards resolving its risk exposure and taking corrective action where appropriate.

Typical techniques include risk management plan milestone tracking and a top ten

risk event list whose progress is reviewed and acknowledged at each weekly,

monthly, or milestone project review.

A framework and checklist of goals, critical success factors, and questions for

feasibility evidence assessment and associated risk monitoring at decision points is

provided in (Boehm et al. 2009). A complementary continuous risk monitoring

framework is the INCOSE System Engineering Leading Indicators Guide

(INCOSE 2012).

5.3.3 The Fundamental Risk Quantities: Risk Exposure
and Risk Reduction Leverage

Having defined risk exposure (RE) and opportunity exposure (OE) in terms of

“loss,” to be able to use these in project situations, we need a definition of “loss.”

Given that all projects involve several classes of stakeholders (customer, developer,

user, maintainer, and often others such as suppliers, distributors, interoperators,

regulators, and venture capitalists), each with somewhat different but highly impor-

tant value propositions or satisfaction criteria, we can see that “loss” is

multidimensional. For customers and developers, budget overruns and schedule

slips can result in losses of value. For users, products with the wrong functionality,

user interface shortfalls, performance shortfalls, or reliability shortfalls can result in

losses of value. For maintainers, poor quality and bad design can result in losses of

value.

5 Software Project Risk and Opportunity Management 111

One way to look at risk exposure in context is to construct a decision tree similar

to that shown in Fig. 5.1. It illustrates a potentially risky situation involving the

software controlling a spacecraft experiment. The software has been under devel-

opment by an experiment team that understands their experiment well, but is

inexperienced and somewhat casual about software development. As a result, the

satellite platform manager has obtained an estimate that there is a probability Prob

(Loss) of 0.1 that the experimenters’ software will have a critical error: one which

will wipe out the entire experiment and cause an associated loss Size(loss) of the

total $20 million investment.

The satellite platform manager identifies two major options for reducing the risk

of losing the experiment:

• Convincing and helping the experiment team to apply better software develop-

ment methods. This incurs an additional analysis and test cost of $400 K, and

from previous experience the manager estimates that this will reduce the failure

probability Prob (Loss) to 0.05

• Hiring a contractor to independently verify and validate (IV&V) the software.

This costs an additional $300 K, plus another $300 K to fix the defects found by

IV&V. Based on the results of similar IV&V efforts, the manager estimates that

this will reduce the error probability Prob(Loss) to 0.01

The decision tree in Fig. 5.1 then shows, for each of the two major decision

options, the possible outcomes, their probabilities, the losses associated with each

Do IV&V

No IV&V

P = 0.09

Find CE

Find CE

NO CE

NO CE

Don’t find CE

Don’t find CE

P = 0.01

P = 0.9

P = 0.5

P = 0.05

P = 0.9

L = $ 0.6 M

$ 0.054 M

$ 0.206 M

$ 0.54 M

$ 0.02 M

$ 1.02 M

$ 0.36 M

$ 0.8 M

$ 1.4 M

Risk Exposure
Combined

Risk Exposure

L = $ 20.6 M

L = $ 0.6 M

L = $ 0.4 M

L = $ 0.4 M

L = $ 20 M

$ 0.6 M

$ 0.4 M

Fig. 5.1 Decision tree for spacecraft experiment IV&V

112 B. Boehm

outcome, the risk exposure associated with each outcome, and the total risk

exposure (or expected loss) associated with each decision option. In this case, the

total risk exposure associated with the experiment-team option is $1.4 M. For the

strongest IV&V option, the total risk exposure is only $0.8 M; thus it represents the

more attractive option.

Besides providing individual solutions for risk management situations, the

decision tree also provides a framework for analyzing the sensitivity of preferred

solutions to the risk exposure parameters. Thus, for example, the experiment-team

option would be preferred if the loss due to a critical software error were less than

$5 M, if the experiment team could reduce their critical-software-error probability

to less than 0.02, if the IV&V team option cost more than $1,200 K, or if there were

various partial combinations of these possibilities. However, even with this sort of

sensitivity analysis, there may not be enough information available to quantify the

risk exposure parameters well enough to perform a precise analysis.

A similar approach can be accomplished to evaluate the benefit of a pure

opportunity or to analyze the risk-reward balance of compound opportunities and

risks.

The second fundamental risk quantity is the leverage available based on miti-

gation or assurance costs. Risk reduction leverage RRL is defined as follows:

RRL ¼ REbefore � REafterð Þ=risk reduction cost

With an REbefore of 0.1 * $20M ¼ $2M, the corresponding RRL values for the

“No IV&V” and “Do IV&V” options are:

RRL No IV&Vð Þ ¼ 2M� 1MÞ=400K ¼ 2:5; andð
RRL Do IV&Vð Þ ¼ 2M� 0:2MÞ=600K ¼ 3:ð

Even stronger outcomes could be achieved via value-based prioritization of

IV&V activities (Li et al. 2010), as frequently 20 % of the defects impact 80 %

of the business value (Bullock 2000).

5.3.4 The Fundamental Risk Mitigation Strategies

There are five fundamental strategies that can be used to mitigate a risk: Risk

understanding via buying information, risk avoidance, risk transfer, risk reduction

and Risk Acceptance. Like the decision tree, these are equally useful in investigat-

ing opportunities:

• Risk Understanding. Sometimes, the best way of mitigating a risk is to gain

more insight into the problem. Buying information via prototyping to learn more

about requirements or COTS product interoperability can reduce or eliminate

risks.

5 Software Project Risk and Opportunity Management 113

• Risk Avoidance. Avoiding a risk means taking actions that remove the risk from

the critical path or the project. For example, negotiating with the customer to

reduce a risky performance goal can effectively avoid the risk.

• Risk Transfer. Transferring risk involve an action that moves the risk from one

party to another, or shares the risk exposure between several parties such that no

single party is overly burdened.

• Risk Reduction. Actions can be taken that reduce the risk exposure by lowering

the probability or the magnitude of loss.

• Risk Acceptance. This is a decision that the risk exposure is low enough that the

project can succeed even if the risk occurs, or that the opportunity exposure for

success more than compensates for the risk exposure for failure. Accepting the

risks still implies that they need to be managed.

Here is an example of how each of these were used for a COTS selection options

analysis originally described in (Boehm and Bhuta 2008). Suppose that at the

beginning of a project, there is an opportunity to choose either a higher-

performance COTS product B or a comparable but lower-performance COTS

product C. Without further evidence about the relative merits of COTS products

B and C, the project would choose B. However, in this case, the project then finds

out during integration that B has serious architectural mismatches with another

project-essential COTS product A. This will cause the project to overrun by

3 months and $300 K.

At this point, the probability of this is 1.0, so it is not a risk but a problem. But

earlier, its nature was uncertain and should have been identified as a risk item

during an early milestone review by the experts reviewing the evidence that the

selected COTS products would successfully interoperate. It would then need to be

covered by a risk management plan in order to meet the review success criteria. A

risk management plan can use one or more of the main risk mitigation strategies, In

general, the best one to try first is Risk Understanding via buying information,

which will provide more insight on which of the other strategies to employ.

Risk Understanding. The project decides to spend $30 K prototyping the inte-

gration of COTS packages B and C with COTS package A. It finds the architectural

mismatches between A and B, and the likely resulting costs and schedules needed to

resolve them, and also finds that COTS package C would integrate easily with A,

but with a 10 % performance loss. This information enables the stakeholders to

better evaluate the other risk mitigation strategies.

Risk Avoidance. This option would be best if the customer agrees that the

reduction in performance is preferable to the prospect of late delivery, and agrees

to go with COTS product C rather than B.

Risk Transfer. However, if the customer decides that the increase in performance

is worth the extra time and money, the customer should establish a risk reserve of

3 months and $300 K to be used to the extent that it will be needed during

integration, but with award fees for the developer if less than the full risk reserve

will be needed.

114 B. Boehm

Risk Reduction. In order to eliminate the schedule risk, the developer and

customer agree to perform a parallel integration of A and B early in the project

with the added cost but with no delay in delivery schedule.

Risk Acceptance. The developer decides that having a proprietary solution to

integrating A and B will provide them with a competitive edge on future projects,

and decides to fund and patent the solution, while giving the customer a royalty-free

license to use it. From a risk/opportunity standpoint, the business case for having a

proprietary solution to integrating A and B would have given the developer a

sufficiently high payoff to generate a positive Opportunity Exposure for taking

this option.

Usually, some combination of the risk mitigation strategies will prove mutually

acceptable to all of the stakeholders. However, there will be some situations in

which there are irreconcilable differences between the stakeholders that leave the

project with no feasible options. In this case, it is best to have found this out early

rather than at the end of the project, and to discontinue the project with no further

expenditure of stakeholders’ resources, or to redefine the project scope in a way that

is mutually satisfactory to the stakeholders.

5.4 Risk and Opportunity Management Methods,

Processes, and Tools

This section elaborates on several particularly valuable risk and opportunity man-

agement methods, processes, and tools mentioned above. They are evidence- and

risk-based decision reviews, lean risk management plans, top-10 risk tracking, and

risk-balanced activity levels.

5.4.1 Evidence- and Risk-Based Decision Reviews

A major recent step forward in the management of outsourced projects has been to

move from schedule-based reviews to event-based reviews. A schedule-based

review says basically that, “The contract specifies that the Preliminary Design

Review (PDR) will be held on April 1, 2014, whether we have a design or not.”

In general, neither the customer nor the developer wants to fail the PDR, so the

project goes into development with the blessing of having passed a PDR, but with

numerous undefined interfaces and unresolved risks. Such shortfalls are the primary

source of large amounts of late rework, generally resulting in major project over-

runs and incomplete deliveries.

An event-based review says, “Once we have a preliminary design, we will hold

the PDR.” Such a review will generally consist of exhaustive presentations of

sunny-day briefing charts and UML diagrams. But in general, it will still have

5 Software Project Risk and Opportunity Management 115

numerous unidentified shortfalls that will cause extensive project rework, overruns,

and incomplete deliveries. These shortfalls are uncertainties and probabilities of

loss, which when multiplied by size of loss become Risk Exposure.

Evidence- and risk-based decision reviews use evidence criteria embodied in a

Feasibility Evidence Description (FED). It includes evidence provided by the

developer and validated by independent experts that, if the system is built to the

specified architecture it will

1. Satisfy the specified operational concept and requirements, including capability,

interfaces, level of service, and evolution

2. Be buildable within the budgets and schedules in the plan

3. Generate a viable return on investment

4. Generate satisfactory outcomes for all of the success-critical stakeholders

5. Identify shortfalls in evidence as risks, and cover them with risk mitigation plans

A FED does not assess a single sequentially developed system definition element

(operational concept, requirements specification, architecture, development plan,

integration and test plan, etc.), but the consistency, compatibility, and feasibility of

several concurrently engineered elements. To make this concurrency work, a set of

milestone decision reviews are performed to ensure that the many concurrent

activities are synchronized, stabilized, and risk-assessed at the end of each phase.

Each of these reviews is focused on developer-produced and expert-validated

evidence, documented in the FED (or preferably to provide pointers to the results

of feasibility analyses, to avoid excessive documentation), to help the system’s

success-critical stakeholders determine whether to proceed into the next level of

commitment. Hence, they are called Commitment Reviews.

The FED is based on evidence from simulations, models, or experiments with

planned technologies and increasingly detailed analysis of development approaches

and project productivity rates. The parameters used in the analyses should be based

on measured component performance or on historical data showing relevant past

performance, cost estimation accuracy, and actual developer productivity rates. A

Data Item Description for contractual purposes is defined in Boehm et al. (2013),

based on earlier contributions such as (AT&T 1993; Boehm 1996; Royce 1998;

Kruchten 1999; Maranzano et al. 2005).

A shortfall in feasibility evidence indicates a level of program execution uncer-

tainty or probability of loss, and a source of program risk. It is often not possible to

fully resolve all risks at a given point in the development cycle, but known,

unresolved risks need to be identified and covered by risk management plans,

including the necessary staffing and funding to address them. The nature of the

evidence shortfalls, the strength and affordability of the risk management plans, and

the stakeholders’ degrees of risk acceptance or avoidance will determine their

willingness to commit the necessary resources to proceed. A program with risks

is not necessarily bad, particularly if it has strong risk management plans. A

program with no risks may be high on achievability, but low on ability to produce

a timely payoff or competitive advantage.

116 B. Boehm

5.4.2 Lean Risk Management Plans

The word “Plan” often conjures up a heavyweight document full of boilerplate and

hard-to-remember sections. Risk management plans should be particularly lean and

risk-driven as illustrated in the outline presented in Fig. 5.2 (a generally useful

outline for other plans as well).

Figure 5.3 (Boehm 1991) provides an example of how the outline might be used

to develop a risk management plan to conduct fault tolerance prototyping to

mitigate identified risks that the fault tolerance features might seriously compro-

mise performance aspects such as throughput, real-time deadline satisfaction, and

power consumption. It also shows the examples of the types of information to be

provided for responsibilities, the risk management approach, and the needed

funding resources.

5.5 Top-10 Risk Item Tracking

As discussed in Sect. 5.3.1, even medium-sized projects can identify up to

100 potential risks, but on the order of 10 is best for top-management focus. The

number 10 is not magical; it could be 7 or 12. The others can be put on a watch list,

and promoted to the top-10 if they become serious.

An example format for the top-10 risk item list is shown in Fig. 5.4. Each risk

item should identify the risk, and note its current and previous rank along with the

number of months (or other periodic project review frequency) it has been on the

list. The top-10 list should be the first item discussed in the monthly project review,

as it is the best vehicle for the project manager to indicate to her or his superiors

doing the review where the project will need their help. If this is done at the end of

the review, time will often run out before the needed help can be discussed and

acted on.

1. Objectives (the “Why”)

2. Deliverables and Milestones (the “What” and “When”)

3. Responsibilities (the “Who” and “Where”)

4. Approach (the “How”)

5. Resources (the “How Much”)

Fig. 5.2 Lean risk management plan outline

5 Software Project Risk and Opportunity Management 117

1. Objectives

Determine and reduce the level of risk of the fault tolerance features causing
unacceptable performance (e.g., throughput, response time, power consumption).
Create a description of and a development plan for a set of low-risk fault
tolerance features.

2. Deliverables and Milestones

By week 3:
Evaluation of fault tolerance options, assessment of reusable components,
draft workload characterization, evaluation plan for prototype exercise, and
description of prototype.
By week 7:
Operational prototype with key fault tolerance features, workload simulation,
instrumentation and data reduction capabilities. Draft description, plan for fault
tolerance features.
By week 10:
Evaluation and iteration of prototype, revised description and plan for fault
tolerance features.

3. Responsibilities

• System Engineer: G. Smith assigned to Tasks 1, 3, 4, 9, 11 and to support of
 Tasks 5, 10
• Lead Programmer: C. Lee assigned to Tasks 5, 6, 7, 10 and to support of
 Tasks 1, 3
• Programmer: J. Wilson assigned to Tasks 2, 8 and to support of
 Tasks 5, 6, 7, 10

4. Approach

Design-to-Schedule prototyping effort, driven by hypotheses about fault
tolerance-performance effects, using multicore processor, real-time OS,
add prototype fault tolerance features.

Evaluate performance with respect to representative workload.
Refine Prototype based on results observed.

5. Resources

$60K Full-time system engineer, lead programmer, programmer
 (= 10 weeks)*(3 staff)*($2K/staff-week)
$0K 3 Dedicated workstations (from project pool)
$0K 2 Target processors (from project pool)
$0K 1 Test co-processor (from project pool)
$10K Contingencies

$70K Total

Fig. 5.3 Sample lean risk management plan

118 B. Boehm

5.6 Risk-Balanced Activity Levels

How much evidence generation is enough? The amount of evidence for a commit-

ment decision should be proportional to the amount of risk involved in making the

decision. This may seem like circular reasoning, and it is in a way. But it can be

approached incrementally, which is the process used in the Incremental Commit-

ment Spiral Model (Boehm et al. 2014).

The risk-based decision heuristic of balancing the risks of doing too little

evidence generation with the risks of doing too much can be applied to most

decisions involved in systems and software definition, development, and evolution.

How much system scoping, planning, prototyping, COTS evaluation, requirements

detail, spare capacity, fault tolerance, safety, security, environmental protection,

documenting, configuration management, quality assurance, peer reviewing, test-

ing, use of formal methods, and feasibility evidence is enough? The best answer can

generally be found by considering and balancing the risks of doing too little with the

risks of doing too much. And the answer will generally not be the same for all parts

of the system. The higher-risk parts of the system will need more attention to detail

than the lower-risk parts, in order to reduce both the probability and size of loss

involved in getting it wrong.

Replacing sensor-control
software developer

1 4 2
Top replacement candidate
unavailable

Target hardware delivery delays 2 5 2 Procurement procedural delays

Staffing of design V&V team 4 2 3
Key reviewers committed;
Need fault-tolerance reviewer

Softare fault-tolerance may
compromise performance

5 1 3
Fault tolerance prototype
successful

Accommodate changes in data
bus design

6 - 1
Meeting scheduled with
data bus designers

Testbed interface definitions 7 8 3
Some delays in action items;
Reviewer meeting scheduled

User interface uncertainties 8 6 3
User interface prototype
successful

TBDs in experiment
operational concept

- 7 3 TBDs resolved

Uncertainties in reusable
monitoring software

- 9 3
Required changes small,
successfully made

Sensor data formats undefined 3 3 3
Action items to software,
sensor team; Due next month

Risk Item Risk Resolution Progress

Mo. Ranking

This Last # Mo.

Fig. 5.4 Top-10 risk items list assuming monthly risk reassessment (Boehm 1991)

5 Software Project Risk and Opportunity Management 119

ThisMeta-Principle of Risk Balancing: Balancing the risk of doing too little and
the risk of doing too much of anything will generally find a middle course sweet spot
that is about the best you can do, is arguably the strongest contribution of risk

management to software project management.

Of course, there is nothing new about it. It is what Herb Simon was talking about

in preferring satisficing to optimizing; what Aristotle was talking about with the

golden mean; what the Confucians talk about with the doctrine of the mean, and

what the Buddhists talk about with the middle way. With all of these advocates, it

seems like a pretty good underlying meta-principle.

5.7 Summary and Conclusions

The fundamental quantity to be managed in risk or opportunity management is risk

or opportunity exposure. It is the product of the probability that a risk or opportunity

item will be realized (a measure of uncertainty) times the loss or gain impact of the

risk or opportunity item on the resulting system’s effectiveness (a measure of

value). Further aspects of uncertainty are addressed in Chaps. 2 and 3 on Cost

and Schedule Estimation and Chap. 11 on Agile Project Management.

Further aspects of value are addressed in Chap. 2 on defining success, Chap. 6 on

Quality Management, and Chap. 8 on Portfolio Management.

As uncertainty increases with changes in technology, competition, the environ-

ment, and social systems, and impact increases as software becomes increasingly

success-critical for systems (Neumann 1985), risk and opportunity exposure

become increasingly critical to software project management. Future technologies

likely to change and improve software risk and opportunity management are

search-based techniques as addressed in Chap. 15 and social media collaboration

support as addressed in Chap. 16.

Several techniques are presented on the components of risk assessment (risk

identification, analysis, and prioritization) and risk control (risk mitigation plan-

ning, execution, monitoring, and corrective action); options for risk mitigation (risk

understanding, avoidance, transfer, reduction, and acceptance); risk management

methods, processes, and tools (evidence-based decision reviews, decision trees,

lean risk mitigation plans, and top-10 risk item tracking). Arguably, the strongest

contribution that risk considerations can provide to software project management is

the meta-principle of risk balancing: balancing the risk of doing too little and the
risk of doing too much of anything will generally find a middle course sweet spot
that is about the best you can do.

References

AT&T (1993) Best current practices: software architecture validation. AT&T, Murray Hill, NJ

Boehm B (1991) Software risk management: principles and practices. IEEE Softw 8(1):32–41

Boehm B (1996) Anchoring the software process. IEEE Softw 1996:73–82

120 B. Boehm

http://dx.doi.org/10.1007/978-3-642-55035-5_2
http://dx.doi.org/10.1007/978-3-642-55035-5_3
http://dx.doi.org/10.1007/978-3-642-55035-5_11
http://dx.doi.org/10.1007/978-3-642-55035-5_2
http://dx.doi.org/10.1007/978-3-642-55035-5_6
http://dx.doi.org/10.1007/978-3-642-55035-5_8
http://dx.doi.org/10.1007/978-3-642-55035-5_15
http://dx.doi.org/10.1007/978-3-642-55035-5_16

Boehm B, Bhuta J (2008) Balancing opportunities and risks in component-based software devel-

opment. IEEE Softw 15(6):56–63

Boehm B, Ingold D, Dangle K, Turner R, Componation P (2009) Early identification of SE-related

program risks. SERC Technical Report RT-EM

Boehm B, Lane J, Koolmanojwong S, Turner R (2013) An evidence-based systems engineering

(SE) data item description. In: Proceedings, CSER 2013, Elsevier

Boehm B, Lane J, Koolmanojwong S, Turner R (2014) The incremental commitment spiral model:

principles for creating successful systems and software. Addison-Wesley, Reading, MA

Bullock J (2000) Calculating the value of testing. Softw Testing Qual Eng (May/June):56–62

Canada R (1971) Intermediate economic analysis for management and engineering. Prentice-Hall,

Englewood Cliffs, NJ

Charette R (1999) The competitive edge of risk entrepreneurs. IEEE IT Prof 1:67–71

Conrow E (2003) Effective risk management: some keys to success, 2nd edn. AIAA, Reston, VA

INCOSE (2012) System engineering leading indicators guide, version 2.0. INCOSE-TP-2005-

001-03

Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica

47(2):263–292

Kruchten P (1999) The rational unified process. Addison-Wesley, Reading, MA

Li Q, Shu F, Boehm B,Wang Q (2010) Improving the ROI of software quality assurance activities:

an empirical study. In: Proceedings of international conference on software process (ICSP

2010), Paderborn, Germany, Jul 2010, pp 357–368

Maranzano JF, Rozsypal SA, Zimmermann GH, Warnken GW, Wirth PE, Weiss DM (2005)

Architecture reviews: practice and experience. IEEE Softw 22:34–43

Neumann P (1985) Risks to the public in computers and related systems. Softw Eng Notes. ACM

SIGSOFT, 1985-continuing

Pyster A et al (2013) Guide to the systems engineering body of knowledge, risk management.

http://sebokwiki.org/1.1.1/index.php?title¼Risk_Management. Retrieved 16, 2013

Royce WE (1998) Software project management. Addison-Wesley, Reading, MA

Biography Barry Boehm is the USC Distinguished Professor of Computer

Sciences, Industrial and Systems Engineering, and Astronautics, and the TRW

Professor of Software Engineering. He is also the Chief Scientist of the DoD-

Stevens-USC Systems Engineering Research Center and the founding Director of

the USC Center for Systems and Software Engineering. His contributions include

the COCOMO family of cost models and the Spiral family of process models.

5 Software Project Risk and Opportunity Management 121

http://sebokwiki.org/1.1.1/index.php?title=Risk_Management
http://sebokwiki.org/1.1.1/index.php?title=Risk_Management

Part II

Supporting Areas

Introduction

Software project management is conducted in a context where project management

actions will vary to reflect differences in this context. This includes areas such as

quality management systems, knowledge management, product management,

global software development and motivation of software engineers. In this part of

the book, we have invited some of the leading experts on the areas listed to present

some of the latest experiences and results in relation to these five areas. The authors

share their knowledge, insights and accompanying recommendations and conclu-

sions in five chapters in this part of the book.

In Chap. 6, Jens Heidrich, Dieter Rombach and Michael Kläs highlight the need

to manage software quality as an important part of software project management.

The authors define and discuss the usage of software quality models in a project

management context. They stress some challenges in relation to quality manage-

ment and present solutions in relation to the challenges. The chapter starts with a

discussion about the need to select a suitable quality model and emphasizes that one

model may not fit in all different contexts. The authors provide an overview of

quality models, and continue with a discussion about tailoring quality models for

different contexts. The chapter ends with a discussion about the strategic usage of

quality models.

The authors of Chap. 7 argue that project management can benefit from inte-

grated project and system knowledge management. Barbara Paech, Alexander

Delater and Tom-Michael Hesse start by presenting their vision of integrating

system and project knowledge. They describe the benefits of this integrated knowl-

edge by mapping it to the knowledge areas in the Project Management Book of

Knowledge. Based on a systematic literature review, the authors discuss the capture

and use of decisions and work items in relation to software artefacts. They highlight

both the availability of tools and empirical evidence in relation to the links.

The authors continue by describing how decisions ought to be handled as explicitly

as work items. They argue that all too often decisions and rationales for decisions

http://dx.doi.org/10.1007/978-3-642-55035-5_6
http://dx.doi.org/10.1007/978-3-642-55035-5_7

are insufficiently documented, although being important bearers of knowledge. The

chapter concludes with a discussion on further research in relation to the integration

of system and project knowledge.

In Chap. 8, Erik Jagroep, Inge van deWeerd, Sjaak Brinkkemper and Ton Dobbe

introduce a framework for product portfolio management. The authors take the

standpoint that a project contributes to a company’s products, and hence manage-

ment of software projects must be well aligned with the strategic goals of different

software products. The authors use a design science approach based on a literature

review and interviews to develop the framework. It is evaluated and improved

through the application of the framework in industry in several steps. The chapter

describes the resulting framework for product portfolio management and puts it into

the context of software project management. The chapter also includes a discussion

on a maturity matrix in relation to product portfolio management. Finally, the

implications of the product portfolio management framework are discussed.

Christof Ebert discusses challenges and opportunities in relation to managing

global software projects in Chap. 9. The chapter starts by presenting the main

reasons for global software development, namely, efficiency, presence, talent and

flexibility. Ebert continues with a discussion regarding the perceived challenges

and benefits of global software development. The author motivates the need for

matching process maturity between client and supplier based on empirical research.

The chapter also includes a discussion on how global software development is

impacted by the actual work organization. The author continues by discussing risks

in relation to global software development. The chapter concludes with a discussion

regarding trends in relation to globalization.

In Chap. 10, Sarah Beecham discusses motivational issues, in particular in

relation to managing globally distributed software projects and hence for software

engineers working in virtual teams. The author starts by introducing some of the

theories in relation to motivational aspects in general and then continues to discuss

the specifics in relation to software engineers and their characteristics. After this,

Beecham presents a case study on the motivation of software engineers in a global

software development context. Based on the case study, the author moves on to

discuss how recommended global software development practices affect motiva-

tional issues. The chapter concludes with a mapping of software engineer charac-

teristics and how compatible they are to working in a virtual team in a global

context.

The five chapters in this part give an in-depth insight into some areas that

provide a context for software project management. A project manager must be

able to navigate and work in these areas to conduct their often-challenging tasks.

The chapters are intended to support project managers in their daily tasks by

offering practical recommendations based on grounded research and experience.

124 Part II Supporting Areas

http://dx.doi.org/10.1007/978-3-642-55035-5_8
http://dx.doi.org/10.1007/978-3-642-55035-5_9
http://dx.doi.org/10.1007/978-3-642-55035-5_10

Chapter 6

Model-Based Quality Management

of Software Development Projects

Jens Heidrich, Dieter Rombach, and Michael Kläs

Abstract Managing the quality of artifacts created during the development process

is an integral part of software project management. Software quality models capture

the knowledge and experience regarding the quality characteristics of interest, the

measurement data that can help to reason about them, and the mechanisms to use

for characterizing and assessing software quality. They are the foundation for

managing software quality in projects in an evidence-based manner. Nowadays,

coming up with suitable quality models for an organization is still a challenging

endeavor. This chapter deals with the definition and usage of software quality

models for managing software development projects and discusses different chal-

lenges and solutions in this area. The challenges are: (1) There is no universal

model that can be applied in every environment because quality is heavily depen-

dent on the application context. In practice and research, a variety of different

quality models exists. Finding the “right” model requires a clear picture of the goals

that should be obtained from using the model. (2) Quality models need to be

tailored to company specifics and supported by corresponding tools. Existing

standards (such as the ISO/IEC 25000 series) are often too generic and hard to

fully implement in an organization. (3) Practitioners require a comprehensive set of

techniques, methods, and tools for systematically specifying, adapting, and apply-

ing quality models in practice. (4) In order to create sustainable quality models,

their contribution to the organizational goals must be clarified, and the models need

to be integrated into the development and decision-making processes.

J. Heidrich (*) • M. Kläs

Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

e-mail: jens.heidrich@iese.fraunhofer.de; Michael.Klaes@iese.fraunhofer.de

D. Rombach

Technische Universität Kaiserslautern, Kaiserslautern, Germany

Fraunhofer Institute for Experimental Software Engineering (IESE), Fraunhofer-Platz 1, 67663

Kaiserslautern, Germany

e-mail: rombach@informatik.uni-kl.de; dieter.rombach@iese.fraunhofer.de

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_6, © Springer-Verlag Berlin Heidelberg 2014

125

mailto:jens.heidrich@iese.fraunhofer.de
mailto:Michael.Klaes@iese.fraunhofer.de
mailto:rombach@informatik.uni-kl.de
mailto:dieter.rombach@iese.fraunhofer.de

6.1 Introduction

When it comes to managing and controlling software development projects, three

dimensions are typically addressed (assuming a defined functionality and project

scope): cost, time, and quality. A variety of measurement-based approaches have

been developed in recent years for managing and controlling projects in terms of

these three aspects. However, while well-established measures exist to quantify

cost and schedule aspects (such as those described in Chaps. 3 and 4), quality is a

less tangible concept. As a consequence, it is still a challenge today to objectively

measure software quality in early stages of the development process. Yet, being

able to manage and control software quality is an integral part of professional

project management (PMI 2008).

The difficulties become obvious when we take the definition of quality as being

the “totality of characteristics of an entity that bear on its ability to satisfy stated and

implied needs” (ISO 8402 1995). On the one hand, software systems are becoming

ever more complex (e.g., in terms of size, algorithms, and interfaces) and hetero-

geneous (e.g., in terms of development platforms and languages). This makes it

more difficult to systematically analyze their quality. On the other hand, quality is

heavily dependent on the application domain, the stakeholders, the usage context,

and the specific project environment. For example,

• Application domain: Safety-critical systems (such as automobiles or power

plants) require far different quality characteristics than information systems

(such as accounting software or web applications)

• Stakeholders: A top-level manager of an organization probably has a different

understanding of the term “software quality” than technical software develop-

ment personnel

• Usage context: Different mechanisms need to be considered when trying to

predict the final software quality at early stages of the development process

compared to measuring the actual quality of a software design or component

• Project context: Having contractor-subcontractor relationships in a project

requires a detailed understanding of what quality of externally delivered artifacts

is actually needed compared to doing in-house development only

Depending on these aspects, different characteristics are important, and different

techniques, methods, and tools have to be used as part of the software development

process to guarantee a certain level of quality.

Software quality models are a means for defining and operationalizing the term

“software quality.” The typical approach is to refine the abstract term into more

concrete subconcepts down to a level of detail where concrete metrics and indica-

tors can be assigned. Depending on the structure of such a model, mechanisms for

evaluating/assessing software quality are included. They support the stakeholders

of a quality model in interpreting the measurement data (e.g., by defining thresholds

distinguishing between acceptable and not acceptable quality) and in aggregating

126 J. Heidrich et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_3
http://dx.doi.org/10.1007/978-3-642-55035-5_4

the results in order to allow them to come up with an evaluation/assessment of the

different quality characteristics of interest.

One of the most popular and extensive software quality models is published in

the ISO/IEC standard 9126-1 (2001) and the corresponding standard for software

product evaluation ISO/IEC 14598-1 (1999). It distinguishes three different views

on product quality:

• Internal Quality describes the characteristics of intermediate artifacts of the

development process required to satisfy internal quality requirements.

• External Quality describes externally visible quality characteristics of artifacts

of the development process required to satisfy external quality requirements.

They typically specify the quality of the product delivered to the customer.

• Quality in Use defines quality characteristics from the perspective of a user,

which are of importance when the software product that was delivered to the

customer is actually used.

The assumption underlying the definition of these views is that having high-

quality processes helps to obtain artifacts with good internal quality; creating

artifacts with high internal quality supports achieving a final product with good

external quality; and a product of high external quality leads to good user experi-

ence with the product, that is, good quality in use (ISO/IEC 9126-1 2001).

For all three views on software quality, the standard provides models defining a

breakdown structure of quality into subconcepts. For example, internal and external

quality is broken down into functionality, reliability, usability, efficiency, main-

tainability, and portability. Each of these high-level quality characteristics is broken

down into corresponding subcharacteristics. The models for internal and external

quality essentially comprise the same quality characteristics, but use different

metrics for actually measuring product quality in the end.

Recently, the successor to these two standards has been published, the ISO/IEC

25000 “Software Product Quality Requirements and Evaluation (SQuaRE)”

(ISO/IEC 25000-1 2005), which comprises a whole series of standards related to

quality management addressing models for product quality (external and internal

quality) and quality in use (2501n series), measuring product quality (2502n series),

and evaluating/assessing product quality (2504n series). Moreover, standards have

been added that address how to define and systematically derive quality require-

ments, that is, nonfunctional requirements of software products (2503n series).

The ISO/IEC standards specify a set of quality models that try to be generic

enough to be applicable for all kinds of software systems. Indeed, models proposed

to be universal, such as those described in the ISO/IEC standards, stay on a high-

level of abstraction, making it difficult to instantiate and apply them. In literature, a

variety of more specific software product quality models can be found for different

application domains, stakeholders, usage purposes, and project environments (Kläs

et al. 2009). However, in practice, it is quite difficult to sustainably apply these

models for managing the quality of the outcome of a software development project

(Wagner et al. 2010b) (overview):

6 Model-Based Quality Management of Software Development Projects 127

• Challenge 1: There is no universal quality model that can be applied in every

environment. In practice and research, a variety of different quality models

exists. Finding the “right” model requires a clear picture of the goals that should

be obtained from using the model in a software development project. Goals may

range from getting a common understanding of important quality characteristics

when specifying requirements to determining the maintainability of the source

code to getting early indicators for potentially failing performance or reliability

targets. In order to quantitatively manage the fulfillment of the nonfunctional

requirements of a product under development, having the right model is essen-

tial. Otherwise, there is a high risk of a lot of effort being spent on collecting data

of limited use for the success of the project

• Challenge 2: Quality models need to be tailored to company specifics and

supported by corresponding tools. Existing standards (such as the ISO/IEC

25000 series or the predecessor ISO/IEC 9126) are too generic and hard to

fully implement in an organization. Moreover, it is difficult to come up with

reliable measures and evaluation criteria. Nevertheless, quality models as pro-

posed in respective standards may be a good starting point. However, if models

are not further tailored, there is a high risk that either the models will not find all

quality issues, which will in turn lead to bad product quality, or the models will

find too many issues, which will be hard to prioritize and comprehensively

address in the project

• Challenge 3: Cost-effective application of quality models requires a compre-

hensive framework to facilitate their specification, adaptation, and practical

usage for software product evaluation/assessment. Without such a framework

that can be used right out of the box, more effort will typically be spent on

thinking about how to construct and implement such quality models from scratch

than on actually thinking about the content of the models itself and about how

product quality can effectively be managed in a development project

• Challenge 4: In order to create quality models that are sustainably used for

decision-making, their contribution to and value for the organizational goals

have to be clarified, and the models need to be integrated into development and

decision-making processes (e.g., by defining appropriate quality gates). Without

this integration effort, model-based quality management remains a project-

specific effort largely dependent on the mechanisms the project manager wants

to use for managing product quality. In order for models to be used effectively,

the organization as a whole needs to implement a framework to think about

software quality and how this contributes to their overall strategy across multiple

development projects

This chapter deals with the definition and usage of software quality models for

monitoring and controlling the quality of artifacts produced during the software

development life cycle. It discusses the different challenges mentioned above in

more detail and illustrates solutions based upon first-hand experience from different

industrial applications.

128 J. Heidrich et al.

Figure 6.1 gives an overview of the content of this chapter and embeds it into the

context of project and quality management. The order in which companies are

typically confronted with the introduced challenges determines the order of the

subsequent sections: Sect. 6.2 deals with the selection of suitable quality models for

a specific organization (Challenge 1), Sect. 6.3 deals with a process for building

custom-tailored models that can be used for evaluating product quality during the

software and system development process (Challenge 2), Sect. 6.4 introduces a

recently finalized, comprehensive framework for specifying and applying quality

models in practice (Challenge 3), and Sect. 6.5 deals with integrating quality

models into organizational goals and strategies (Challenge 4). Section 6.6 summa-

rizes the chapter and gives an outlook to future work.

6.2 Selecting the Right Quality Models

In practice and research, a variety of different quality models exists that is designed

for different application domains, stakeholders, usage contexts, and project envi-

ronments. The difficult question is: Which quality models are relevant and can be

applied in a given environment? To answer this question, a clear picture of the

underlying goal to be achieved by a quality model is required. In order to state this

goal more precisely, some key questions have to be answered, such as

• Which artifacts of the development process should be analyzed (e.g., require-

ments document, architecture, design, or code)?

Section 6.5
Assure strategic

alignment

Section 6.2
Identify and select

Organizational
Goals

Project
Management

Quality
Management

Existing
Quality Models

Organizational
Quality Model

Section 6.3
Quality modeling

Section 6.4 Framework and implementation

provideuse

Upper-level
Management

Involved
Decision Makers

QM-related
Artifacts

improve

Fig. 6.1 Overview of the structure of Chap. 6

6 Model-Based Quality Management of Software Development Projects 129

http://dx.doi.org/10.1007/978-3-642-55035-5_6

• For which purpose should the model be used (e.g., measuring the product quality

of some artifacts or predicting the quality of the final software product delivered

to the customer)?

• Which quality characteristics are of interest (e.g., quality in general or some

subcharacteristics, such as maintainability or reliability)?

• Which stakeholders want to use the analysis results (e.g., project managers,

suppliers, developers)?

• In which environment and context is the model to be applied (e.g., in the

development of safety-critical embedded systems or web-based services)?

A systematic literature review and state-of-the-practice survey (Kläs et al. 2009)

revealed 79 product quality models1 ranging from general standards related to

software product quality, such as IEEE 1061 (1998), ISO/IEC 9126-1 (2001),

ISO/IEC 25000-1 (2005), IEC 61508-1 (2010), ISO/IEC 14598-1 (1999), or

ISO/IEC 15939 (2007) via domain-specific standards such as MISRA (1995),

ECSS (1996), or UKMD (1997) to quality models from academic research, such

as Cavano and McCall (1978), Boehm (1978), Dromey (1998), or Avizienis

et al. (2001). It is beyond the scope of this chapter to discuss these models in

general. However, for illustrating purposes, Fig. 6.2 gives an overview of the

quality models identified and their year of creation, distinguishing between official

and de facto standards, models that are actually applied in practice, and models

having a more scientific background. Furthermore, it separates models addressing

quality in general (dark gray boxes) from models addressing specific quality

characteristics (light gray boxes).

If a suitable quality model or a set of quality models needs to be identified, a

classification scheme is needed for distinguishing among the different types of

existent models. The scheme presented in Kläs et al. (2009) discusses the following

dimensions:

(a) Structural components: How is the quality model structured? What structural

components are supported? For example, models can include structures for

refining quality characteristics, for measuring quality characteristics, for eval-

uating measurement data, for aggregating results, etc.

(b) Quality modeling goal: What is the goal addressed by the quality model? In

particular, who will use the model, for which purpose, to address which aspects

of quality, and on what kinds of artifacts?

(c) Model instantiation: Does the quality model only prescribe a structure for

specifying quality models (called metamodel) or does it also include an instan-

tiation of that structure [i.e., a specific quality model such as those described in

ISO/IEC 25010 (2011)?]

1A product quality model is a conceptual or mathematical model addressing one or more relevant

characteristics of certain types of work products (such as requirements, design, code, documen-

tation, or the final product) with the objective of better understanding and dealing with these

characteristics (e.g., by specifying or quantifying them or correlating them with others).

130 J. Heidrich et al.

(d) Method for instantiation/adaptation: Is a procedure provided to instantiate

the provided metamodel or adopt/tailor the presented quality model to specific

needs?

(e) Dissemination: What is the degree of dissemination of the quality model? For

example, is it only used in a scientific context, is there some evidence that it is

actually applied in practice, or is it an official or de facto standard?

(f) Tool support: Is the quality model tool-supported in terms of specifying and

adapting the model as well as actually applying the model to software products?

Measurement
information

model ISO 25000
SQuaRE

Wake’s
maintainability

model

BBN

Rechenberg’s
complexity
measure

Neumann’s quality
decomposition for ES

Enhanced
Usability
Model

Defect Content
Estimations

Malaiya’s QM
of test

coverage

Boehm

McCall
Factor Criteria

Metric

DGQ - ITG

COQAMO
Constructive

QUAlity MOdel

Davis’ QM
for SRS

SEI
Quality

Attributes

FALCON
Quality

Prediction

Rana’s generic
QM

Quality model
analysis program

CQM

QMOOD

Metrics for
COTS-based

systems
Fuzzy Feature
Space-based

QM

Rawashdeh’s
QM for COTS

Quality metrics
for KADS

Swarup’s QM
for safety

Agile Software
Metrics

Oman’s
maintainability

metrics

Avizienis’ QM
of Dependability

GEQUAMO

St
an

da
rd

A
pp

lie
d

Sc
ie

nt
if
ic

General Quality
Focus

Specific Quality
Focus

1980 1990 1995 2000 2005 2010

COSMICMISRA-C

Function
Points

EN 60601-1-4IEEE STD
982.1-1988

IEEE STD
1061 - 1998

ISO 9126 -
ISO 14598

ECSS
Dependability

MISRA-C++

RAMS
(EN50126) IEC 61508

FURPS

Capture-/
Recapture

Quality prediction
Porter’s

classification
trees

ODC

DFM

Regression
trees

COQUALMO

McCabe

FURPS +

MOOSE
CAME

WinWin System
QARCC

Knowledge Base

Dromey

PROFESsoftware
QM

SQUID

ISO 9126
extension

ASPIRE for
NFR

Systemic
quality
model

QualOSS

Wagner’s
integrated QM

PM for
FLOSS - ITS

Defect
Density
Metrics

Activity-based
Maintainability

QM

Maintainability
model for

control units
HyDEEP

Technical
Topic

Classification

Multi-objective
quality

classification

CART

Schneidewind’s
quality prediction

SW Reliability
Growth Model

Factor
Criteria
Metric

EMERALD
Factor

strategy QM
for OOD

Fig. 6.2 Quality model landscapes

6 Model-Based Quality Management of Software Development Projects 131

For example, there may exist commercial tool support, only prototypical tool

support, or no tool support at all.

Based on the work in Kläs et al. (2009), the following subsections give further

insights into what structural components of models look like (dimension a), discuss

the specification of quality modeling goals (dimension b), and describe quality

model landscapes as a means for systematically selecting suitable models (based on

dimensions a–f).

6.2.1 Structural Components

Figure 6.3 depicts a graphical illustration of typical structural components of

quality models. Mainly depending on the application purpose, different components

are required by different quality models.

In general, two different parts of a model can be distinguished. The left side

shows components related to the quality focus; that is, the quality characteristics of

interest. The right side shows the components related to so-called variation factors,

that is, factors that explain variances when analyzing quality characteristics. For

example, the maintainability of a piece of software (as one characteristic in the

quality focus) may be influenced by the experience of the developers or the amount

of reuse that was performed (as two potential variation factors).

The relationships between quality focus characteristics and variation factors may

be expressed qualitatively or quantitatively. For example, a quality model may

specify that developers with higher experience produce software that is easier to

maintain (quantitative expression), or it may specify that by increasing the average

experience of the developers by 1year, maintenance costs can be reduced by 10 %

(quantitative expression). Most quality models rely on qualitative relationships or

do not specify variation factors at all. The reason for that is that in order to be able to

make such statements, a very thorough understanding of the impact relationships is

required. From building cost estimation (Trendowicz et al. 2006) and defect

prediction models (Kläs et al. 2010b) (prediction), we know that the variation

factors themselves and especially the quantitative relationships highly depend on

the particular organization for which such a model is built.

The quality focus may be further refined by a breakdown structure of concepts

(typically quality characteristics). For example, ISO/IEC 25010 refines maintain-

ability into modularity, reusability, analyzability, modifiability, and testability.

These subconcepts may then be quantified using concrete metrics that can be

used for actually measuring the subconcepts. For example, ISO/IEC 25021

(2012) defines concrete metrics for measuring the subconcepts of maintainability.

In addition, a quality model may define evaluation criteria for interpreting the

measurement data and evaluating/assessing the concepts of interest. For example,

ISO/IEC 25040 (2011) defines a quality evaluation reference model and guide.

Finally, a quality model may specify a procedure for aggregating the evaluation

132 J. Heidrich et al.

results of the measurement data, resulting in an overall statement regarding the

main concept (across the different refinement levels). For example, if a unique

evaluation scale is defined for all concepts, the aggregation may be as simple as the

weighted average across the results of all relevant subconcepts, or it may make use

of advanced techniques from the field of multi-criteria decision analysis (MCDA)

(Trendowicz et al. 2009).

Variation factors can be refined, quantified, evaluated, and aggregated in a

similar way as the quality focus (e.g., the concept of developer experience can be

refined into domain and programming experience and can be quantified by the

respective years of professional experience).

In Sect. 6.3, we present the creation of an example quality model for assessing

maintainability, which is a good illustration of the structural components discussed

above (Fig. 6.2).

A quality model may be characterized according to the structural components

supported by the model. This gives valuable information about what can actually be

accomplished in practice when using the model. For example, if a model does not

specify evaluation rules, it is possible to measure quality characteristics, but it is not

possible to evaluate/access the product’s quality (which can be perfectly alright

depending on the goals related to the use of the model).

6.2.2 Quality Model Goal

Kläs et al. (2009) use the Goal-Question-Metric paradigm (GQM) (Basili

et al. 1994a) as a schema for specifying the goals related to using a quality

model. The GQM approach is a de facto standard for defining goal-oriented

Quality Focus

Aggregation
Method

Refinement

Quantified
Impact

+/-

f(.)

Qualitative
Impact

Metrics

Evaluation
Criteria

Sub Concept

Concept

Metrics

Evaluation
Criteria

Sub Concept

Aggregation
Method

Refinement

Metrics

Evaluation
Criteria

Sub Concept

Concept

Metrics

Evaluation
Criteria

Sub Concept

Variation Factors

≤ ≤ ≤ ≤

Fig. 6.3 Conceptual elements of quality models [cf. Kläs et al. (2009)]

6 Model-Based Quality Management of Software Development Projects 133

measurement programs. It supports organizations in clearly specifying measure-

ment goals and systematically deriving metrics from these goals. The GQM goal

template distinguishes five parameters that can easily be reused for specifying

quality modeling goals:

• Object: Specifies the object that is analyzed by the quality model, for example,

one or several types of artifacts from the development process, such as require-

ments specifications, design documents, or code (or parts thereof)

• Purpose: Specifies the usage purpose for which the quality model is built, such

as characterization, understanding, evaluation, prediction, or improvement

• Quality focus: Specifies which quality characteristics are analyzed, for instance,

product quality in general or certain quality characteristics as defined by ISO

25010, such as maintainability, reliability, or usability

• Viewpoint: Specifies the stakeholders interested in the results obtained by

applying the quality model, for example, a quality manager (for assuring product

quality at certain milestones of the development process) or a developer (for

identifying quality issues and improving the quality of the affected artifacts)

• Context: Specifies the organizational scope of the quality model and the appli-

cation domain covered by the quality model, for example, the model might focus

on software developed in a certain business unit or on artifacts created for a

certain class of projects; the model may be constructed for the domain of

embedded software systems, management and information systems, or web

applications

Figure 6.4 illustrates potential usage purposes of quality models (based upon

typical GQM purposes) in connection with the structural components of a quality

model needed for supporting these purposes:

1. Specify: The model is only used for specifying the term “product quality” by

refining it into subqualities. Such models specially help to structure quality

requirements or issues and define a common understanding of quality. For

example, ISO/IEC 25010 defines a breakdown structure of quality

characteristics

2. Measure: The model is used for quantifying quality characteristics by using

metrics. For example, an organization wants to determine a baseline for software

product quality based on the measures defined in ISO/IEC 25022

3. Monitor: The model is used for identifying trends in quality-related figures and

making sure that a certain level is maintained by monitoring measurement data

(values of metrics) over time. For example, an organization wants to make sure

that the interface complexity of software components does not increase

4. Assess: The model is used for assessing/evaluating the quality of dedicated

artifacts by checking that quality requirements are fulfilled. For example, it is

checked that the application’s response time is less than 2 s

5. Control: The model is used for assessing product quality periodically or at

certain points of the development process. For example, product complexity is

checked against a defined threshold every week

134 J. Heidrich et al.

6. Improve: The model is used for improving quality characteristics by manipu-

lating and controlling variation factors that have an impact on these character-

istics. For example, coding guidelines (as a variation factor) are introduced to

increase maintainability (as a quality characteristic)

7. Manage: The model is used for managing product quality over time by control-

ling product quality periodically or at certain points of the development process

and making use of variation factors if quality requirements are not fulfilled. For

example, involving more experienced developers (as a known variation factor) if

the design of the system has some significant quality issues

8. Estimate: The model is used for estimating quality characteristics by making

use of variation factors (e.g., because the quality characteristics cannot be

measured directly). For example, Capture-Recapture models estimate the num-

ber of remaining defects by using the information about the number of joint

defects found by different reviewers of the same artifact (Petersson et al. 2004)

9. Predict: The model is used to predict quality characteristics in the future, based

on variation factors that can be measured earlier. For example, this is the

principle of cost estimation models, but also of models that try to predict the

number of defects in a delivered software product at early stages of the devel-

opment process, such as Kläs et al. (2010b) (prediction). Where estimation

models are used to determine the present but unknown state of a quantity such

as the number of defects in the currently investigated artifact, prediction models

make statements about the future, such as the prospective performance of the

final product based on the analyzed design documentation

+/-+/-

t t1 t2

f(.)f(.)

(1) Specify

(2) Measure (3) Monitor

(5) Control

(7) Manage

(9) Predict

(4) Assess

(6) Improve

(8) Estimate

Evaluation
criteria

Single Point in Time Across Time

QF

QF

QF

QF

QF QF

QF QF

QF

Variation factor
concept

VF

Metrics

QF QF

VF

Quality focus
concept

QF

Qualitative
impact

+/-

Quantified
impact

f(.)

Refinement

QF
QF

QF

VF

VF VF

≥

≥

≥
≥

≥

≥

Fig. 6.4 Application purposes of quality models [cf Kläs et al. (2009)]

6 Model-Based Quality Management of Software Development Projects 135

6.2.3 Quality Model Landscapes

Quality model landscapes make use of the classification scheme described at the

beginning of this section to provide an overview of available quality models and to

allow selecting those models that best fit the needs of an organization. An organi-

zation specifies its needs in terms of analyzing software product quality by filling in

the classification scheme and thinking about the structural components needed, the

goals related to using the quality model, and the other dimensions mentioned above.

The landscapes presented in this chapter are based on the work described in Kläs

et al. (2009) and combine the results of a literature review and a survey targeting

practitioners and their experiences with quality models (Wagner et al. 2010a)

(survey).

For example, the quality model overview diagram (Fig. 6.2), which was intro-

duced in the beginning of this section, illustrates a simple quality model landscape

visualizing three dimensions: (1) the creation date of the model (from the context

information of field b of the classification scheme); (2) whether quality in general is

addressed or a specific aspect (from the quality focus information of b); and (3) the

dissemination of the models (from field e of the scheme).

Table 6.1 shows another quality model landscape illustrating the number of

quality models identified in a systematic literature review and presented in Fig. 6.2

according to two other dimensions: (1) the usage purpose and (2) the main quality

focus addressed as mentioned in the model descriptions. For example, if an

organization wants to estimate the number of defects, seven potential models are

of interest. As can be seen in the table, most of the models from the survey deal with

product quality in general and support the specification, measurement, or assess-

ment of product quality. Models considering the defect-proneness of products are

mainly estimation or prediction models.

6.3 Building Custom-Tailored Quality Models

This section deals with how to build a custom-tailored quality model in practice.

First, general strategies and the high-level construction process are shown. After-

ward, the detailed steps for constructing a concrete model are illustrated.

There are two contrary strategies that can be followed: (1) An existing quality

model may be selected (such as the one from ISO/IEC 25000) and applied or (2) a

new custom-tailored model is built from scratch that exactly fits the needs of an

organization. In this section, we will first discuss these two extremes and then

explain why and how to combine these strategies to overcome their limitations.

The advantage of the first strategy is that a set of predefined quality character-

istics and metrics is available that were elicited based on the knowledge and

experience of experts from other organizations and institutions. The disadvantage

is that existing quality models are often quite abstract and therefore hard to use out

136 J. Heidrich et al.

T
a
b
le

6
.1

Q
u
al
it
y
m
o
d
el
s
co
v
er
in
g
d
if
fe
re
n
t
u
sa
g
e
p
u
rp
o
se
s
an
d
q
u
al
it
y
fo
cu
s
[c
f.
T
re
n
d
o
w
ic
z
et

al
.
(2
0
0
9
)]

G
en
er
al

D
ef
ec
ts

D
ep
en
d
ab
il
it
y

F
u
n
ct
io
n
al
it
y

M
ai
n
ta
in
ab
il
it
y

P
o
rt
ab
il
it
y

R
el
ia
b
il
it
y

S
af
et
y

U
sa
b
il
it
y

S
p
ec
if
y

2
0

4
1

2
4

1

M
ea
su
re

1
6

1
2

2
1

M
o
n
it
o
r

1
2

1

A
ss
es
s

1
3

2
1

C
o
n
tr
o
l

1
1

Im
p
ro
v
e

7
2

2
1

M
an
ag
e

4
1

E
st
im

at
e

2
7

P
re
d
ic
t

4
5

1
3

6 Model-Based Quality Management of Software Development Projects 137

of the box. For example, the metrics proposed for the ISO/IEC 25000 series are very

hard to implement in an organization. Another disadvantage is that the more

detailed existing models were created for a certain context and cannot be trans-

ferred to a different context that easily. For example, a quality model that was

designed for embedded systems cannot be directly transferred to and applied to

information systems.

The advantage of the second strategy is that the model ideally fits the specific

needs of an organization and can be designed in such a way that it integrates already

available measurement data and data collection tools and fits into the organizational

and development processes. The disadvantage is that guidance is needed for

building up a meaningful quality model; therefore, expert knowledge and experi-

ence are needed. Moreover, this is a labor-intensive process and involves experts

experienced in model building as well as experts of the corresponding organization

the model is being built for. According to Wagner et al. (2010a) (survey), more than

70 % of 125 respondents of a survey employ company-specific models (either

developed from scratch or tailored on the basis of company-specific requirements).

Kitchenham et al. (1997) propose a combination of these two strategies to

overcome this gap by first choosing the most appropriate existing quality model

and, then reusing this model or parts thereof for defining a custom-tailored model.

Figure 6.5 illustrates a process for developing a company-specific quality model

based on the Quality Improvement Paradigm (QIP) (Basili et al. 1994b):

1. Characterize: Define the scope and application environment in which the

organization wants to use the quality model

2. Set goals: Define the quality modeling goals (using the goal parameters intro-

duced in the previous section), analyze the suitability of existing models with

respect to these goals, select the most appropriate quality model if existent, and

then adapt the model to the specific needs of the organization or build the model

from scratch if no existing model could be found

3. Choose process: Define a measurement plan containing a list of metrics and

additional data about who is responsible for collecting this data at which point in

time of the development process. Define mechanisms/processes for data collec-

tion, processing, and visualization as well as corresponding tool support. The

latter includes integrating the usage of the quality models at predefined stages of

the development process

4. Execute: Apply the quality model to artifacts of the development process,

collect measurement data, and assess/evaluate product quality based on evalu-

ation guidelines

5. Analyze: Analyze and validate the assessment results and check the validity of

the quality model

6. Package: Improve the quality model, if needed, and initiate actions for improv-

ing the software product quality, if needed

The following sections give a practical usage example of the process as

described above based upon a real industrial application. For reasons of

138 J. Heidrich et al.

confidentiality, the original quality modeling goals, the quality model itself, as well

as the analysis results have been carefully modified.

Additional industry-related lessons learned from building custom-tailored qual-

ity models following the process shown above can also be found in Lampasona

et al. (2012).

6.3.1 Characterize: Define Environment and Scope

The first step is about defining the scope and application environment in which the

organization wants to use the quality model. Our example organization develops

safety-critical systems. In recent years, more and more functionality has been

implemented as software. However, software is usually developed by external

suppliers and delivered to the system manufacturer as an integrated unit containing

the software as well as the hardware (processors, controllers, memory, etc.) the

software runs on. The manufacturer has to integrate all these delivered units into an

overall system and ensure that they can communicate with each other. The scope of

the quality model has been defined as focusing on the software components

developed by external suppliers and their integration into the overall system.

6.3.2 Set Goals: Define Goals and Build Quality Model

The second step is about defining the quality modeling goals, analyzing the

suitability of existing models with respect to these goals, selecting the most

appropriate quality model, and adapting the model to the specific needs of the

1 Characterize
Define environent for QM
Define scope of QM

2 Set Goals
Define QM goals
Analyze suitability of existing QM
Define / adapt / tailor QM
Set Baselines

3 Choose Process
Define measurement plan
Set up data collection mechanisms
Set up database (warehouse)
Set up data processing and visualization

4 Execute
Start measuring quality

Fill database
Assess Products

5 Analyze
Analyze data

Validate assessment results
Check QM

6 Package
Correct / adapt QM

Initiate product improvement actions

Fig. 6.5 Developing custom-tailored quality models

6 Model-Based Quality Management of Software Development Projects 139

organization. The major organizational goal behind the usage of the quality model

is the reduction of maintenance costs. This should be achieved by ensuring that the

software components are of high quality in order to reduce problems during

integration, testing, and rework. For this reason, the main goal related to software

development is to improve the maintainability of a software component delivered

by external suppliers. For assessing/evaluating the quality of the software delivered,

a quality model is used.

The quality modeling goal is as follows:

• Object: Software components delivered (mainly code and interfaces)

• Purpose: Evaluation/assessment

• Quality focus: Maintainability

• Viewpoint: Quality manager and external supplier

• Context: Construction of safety-critical embedded systems

Based on this goal specification, ISO 25010 was used as a reference quality

model. However, it was decided to establish custom-tailored metrics and

corresponding evaluation rules for measuring and assessing quality characteristics

of interest. The tailoring was performed by external quality modeling experts based

on a series of workshops and interviews. First, structured interviews with domain

experts from the organization were performed, and an initial quality model based on

ISO 25010 was created. After that, the model was reviewed and discussed with a

broader group of stakeholders (quality managers and suppliers) for achieving a

basic consensus among the experts.

An overview of the model obtained is presented in Fig. 6.6. Basically, the quality

model created consisted of two parts: one part containing quality characteristics

directly related to maintainability and another part containing variation factors

influencing maintainability. The main focus should be on analyzability and adapt-

ability. As a consequence, only these two quality characteristics were refined

following the classical GQM approach in order to determine metrics that fit these

characteristics. For each characteristic, a few metrics were assigned, grouped into

different technical topics. For example, analyzability is measured based on the

coupling of internal software components. Coupling is measured using standard

metrics such as Fan-In (ingoing relationships), Fan-Out (outgoing relationships),

and Coupling between Objects (CBO) (Dörr et al. 2004). The variation factor part

of the model contains, for example, metric groups related to the logical and physical

partitioning/distribution of the software functionality that cannot be influenced by

the pure software component, such as a high coupling with other units and the

software components of those units. In our example, this cannot be influenced by

the external software supplier and becomes part of the variation factor model.

Each metric, group of metrics, quality characteristic, and variation factor has a

certain weight that defines how important the respective element is with regard to

the parent element. Evaluation rules (employing simple mathematical functions)

provide a mapping between measurement values and an evaluation scale. After-

ward, a weighted sum is calculated for the groups, quality characteristics, and

variation factors considered. The top-level grades make statements about the

140 J. Heidrich et al.

maintainability of the delivered software components and external factors that may

explain variations between the quality characteristics.

There are several options regarding how to define evaluation rules, such as

Trendowicz et al. (2009), and create a mapping function. The difficult part lies in

identifying meaningful thresholds for distinguishing between good and bad values.

An organization may retrieve values from literature. However, these values nor-

mally need to be adapted for the specific usage context. Therefore, most organiza-

tions building quality models create their own database of measurement values and

perform some statistical analysis on these values in order to find realistic values and

thresholds.

The assessment scale for quality characteristics was defined from 1¼ very bad

maintainability, 2¼ bad, 3¼ neither good nor bad, 4¼ good, to 5¼ very good

maintainability. The assessment scale for variation factors was defined from

1¼ very negative influences on maintainability, 2¼ negative influences, 3¼ no

influences, 4¼ positive influences, to 5¼ very positive influences on maintainabil-

ity. For example, if maintainability was rated with 4 and the variation factors were

rated with 2, the software component provided good maintainability despite the fact

that there was a negative influence.

6.3.3 Choose Process: Set Up Data Collection and Analysis

Step 3 is about defining a measurement plan as well as mechanisms/processes for

data collection, processing, and visualization as well as corresponding tool support.

Table 6.2 presents the measurement plan (Differding 2001) that was created for the

quality model, gives a list of all metrics, and defines the range of measurement

Metric
Group

Quality Focus
Area

Variation Factor
Area

Metric

Weights

3 3

QF: Maintainability

% Load1

ES 3: Load

Size1

ES 1: Physical
Partitioning

Fan-In1

Fan-Out1
Size1

ES 2: Logical
Partitioning

Fan-In1

Fan-Out1

1 1

EQ 1: Impact on
Analyzability

1

EQ 2: Impact on
Adaptability

1 1

VF: Impact on
Maintainability

Nesting Depth1

S 4: Nesting

% Generated1

S 5: Code
Generation

Fan-In1

S 3: Coupling

1

1

Fan-Out

CBO

% Documented1

S 1: Documentation

LOC / Function1

S 2: Internal Complexity

1 McCabe

1 2 1 1 1

Q 1: Analyzability

1 1 12

Q 2: Adaptability

Fig. 6.6 Example quality model for maintainability

6 Model-Based Quality Management of Software Development Projects 141

values, the point in time of the development process when the data should be

collected (and analyzed), the data source, and who is responsible for data collection.

A questionnaire was created to get manual measurement data from external

suppliers. Moreover, a static code analysis tool was used for extracting code

metrics. Due to confidentiality reasons, the code was analyzed on the suppliers’

side, and only the measurement values were exchanged. Moreover, interface data

was extracted from the configuration database of the organization (containing an

overview of all units provided by the suppliers and their interfaces). The organiza-

tion decided to store all data in a relational database for further analysis and

visualization. Figure 6.7 gives an overview of the general procedure for collecting

and analyzing the data at certain quality gates of the organization’s development

process:

• Raw measurement data is collected from different artifacts of the development

process (in our case, basically code and interface data) based upon the metrics

defined in the quality model. This process is driven by the data collection

resources mentioned in the measurement plan. The raw measurement data is

stored in a database

• Afterward the measured artifacts are evaluated on the basis of the evaluation

rules defined in the quality model. An assessment report is created containing the

results of the evaluation. This process is driven by experts for the quality model

(typically people from the quality management part of the organization and/or

external measurement experts)

• The assessment results are discussed with the relevant stakeholders, in this

example the suppliers and the responsible project manager of the organization.

A list of countermeasures is created for coping with the weaknesses identified in

the quality assessment. The succeeding quality assessment, conducted after the

next quality gate of the development process, will check whether the defined

Table 6.2 Measurement plan

ID Range Collection time Data source Resource

% Documented % Quality Gates Static Code Analyzer Supplier

LOC/Function R Quality Gates Static Code Analyzer Supplier

Average McCabe R Quality Gates Static Code Analyzer Supplier

Fan-In N Quality Gates Static Code Analyzer Supplier

Fan-Out N Quality Gates Static Code Analyzer Supplier

CBO N Quality Gates Static Code Analyzer Supplier

Nesting Depth N Quality Gates Static Code Analyzer Supplier

% Generated % Quality Gates Static Code Analyzer Supplier

Physical Size N Quality Gates Interface Data Manufacturer

Physical Fan-In N Quality Gates Interface Data Manufacturer

Physical Fan-Out N Quality Gates Interface Data Manufacturer

Logical Size N Quality Gates Interface Data Manufacturer

Logical Fan-In N Quality Gates Interface Data Manufacturer

Logical Fan-Out N Quality Gates Interface Data Manufacturer

% Load % Quality Gates Questionnaire Supplier

142 J. Heidrich et al.

countermeasures had the intended effect and probably make some adjustments,

so that an overall feedback loop is created

6.3.4 Execute: Use the Quality Model for Evaluation/
Assessment

Step 4 is about applying the quality model to artifacts of the development process,

collecting measurement data, and assessing/evaluating product quality based upon

evaluation guidelines. The maintainability quality model was applied to 20 already

delivered software components of different external suppliers of the organization.

Measurement data was collected according to plan, the data was mapped to the

evaluation scale described above, aggregated according to the defined weightings in

the quality model, and finally, the quality of the delivered software components was

analyzed by means of pairwise comparison. In order to avoid comparing apples and

oranges, only meaningful comparisons were selected.

The main purpose of the first application of the quality model was to execute a

proof of concept and calibrate the model for future usage. To define reliable

baselines, more software components would have to be analyzed to allow sound

statistical analyses. An example comparison of two software components can be

found in Table 6.3. As can be seen from the table, SC1 was evaluated as having

good maintainability (4.0 on a scale from 1 to 5) despite having a slightly negative

influence on maintainability resulting from the external variation factors (2.5). In

contrast, SC2 was evaluated as having poor maintainability (1.75) while having a

slightly positive influence on maintainability (3.5). The same argument is generally

true for both of the quality subcharacteristics analyzability and adaptability.

Data Collector

Counter
Measures

Development
Artifact

Model Expert

Stakeholders Results Discussion
and Reactions

Role

Artifact

Activity

Quality Evaluation /
Assessment

Data Collection and
Validation

Feedback
Loop

Raw Data

Quality
Assessment Result

Quality Model
(including

assessment rules)

Quality Management
 System

Fig. 6.7 Making use of models for quality assessments

6 Model-Based Quality Management of Software Development Projects 143

6.3.5 Analyze: Analyze Evaluation/Assessment Results

Step 5 is about analyzing and validating the assessment results and checking the

validity of the quality model. For this purpose, the assessment results were com-

pared with expert statements from the organization regarding the actual maintain-

ability of the software components in practice. The experts gave pairwise ratings

about which software component is actually better in terms of maintainability. The

quality model rated the software components in the same way as the experts in 90 %

of all cases. For the 10 % of failed ratings, the organization observed a significant

difference in the requirements implemented in the software component. Because of

the limited number of data points, no general statement about the validity of the

quality model could be made at that point in time.

6.3.6 Package: Define Improvement Actions

Step 6 is about improving the quality model if needed and initiating actions for

improving software product quality. In our example case, the analysis results were

discussed in a workshop, and feedback to the data collection resources was pro-

vided. The evaluation results of the software components were traced back to

concrete metric results (e.g., high coupling, complexity) and corresponding

improvement actions have been launched for refactoring the components. Further-

more, based on this discussion, the following improvement actions were defined for

the future use of the quality model in the organization:

• Increase the number of analyzed software components and cluster them

according to the different types of units to improve the interpretability of the

results

• Analyze the distribution of measurement values in the database to establish more

reliable baselines/thresholds for the different clusters identified

• Focus on automatic data collection to reduce data collection effort

• Set up means for dealing with missing data to increase the robustness of the

quality model

Table 6.3 Example results

comparing software

components SC1 and SC2

SC1 SC2

Quality focus area

QF: Maintainability 4.00 1.75

– Q1: Analyzability 3.50 2.00

– Q2: Adaptability 4.50 1.50

Variation factor area

VF: impact on maintainability 2.50 3.50

– EQ1: impact on analyzability 2.00 4.00

– EQ2: impact on adaptability 3.00 3.00

144 J. Heidrich et al.

6.4 Specification and Application of Quality Models

The previous sections illustrated how to select an appropriate quality model and

how to adapt and make use of such a model in practice for systematically analyzing

the quality of software products. However, there is little tool support available for

specifying, customizing, and applying these models. This makes it hard and very

effort-consuming to develop complete and consistent quality models. A compre-

hensive framework is needed for the cost-efficient specification, adaptation, and

practical usage of quality models. This problem was addressed in the Quamoco

research project, which aimed at creating a “Quality Standard for Software-

Intensive Systems” (Wagner et al. 2012).

The major motivation was the lack of a mandatory, applicable, and tool-

supported quality standard for software development comparable to standards in

other industries. A large number of different quality models addressing different

goals exist (as seen in Sect. 6.2). However, the existing models are hard to use

because the abstraction level is often too high, and it is difficult to come up with

reliable and collectable measures. Moreover, adapting/tailoring the models to the

specific needs is an effort-consuming process. There is also a lack of reliable

evaluation criteria and little support for the meaningful aggregation of quality

assessment results, which inhibits meaningful comparisons and benchmarking.

The Quamoco approach implemented the idea of balanced quality models,

which means that detailed but highly adaptable core models are provided together

with a fine-grained customization process (Kläs and Münch 2008). In Quamoco, the

core consists of a quality base model comprising quality characteristics, metrics,

and evaluation rules that are essential for all kinds of software-intensive systems.

Based on this base model, different domain-specific extensions were created

together with appropriate domain experts from various industries (e.g., for infor-

mation systems, embedded systems, custom software development, etc.). These

domain-specific quality models can be customized to the specific needs of an

organization (or a part of an organization) using the Quamoco tool suite.

The tool suite supports a user in selecting an appropriate domain-specific model

and tailoring this model to the specific needs of the organization by removing or

modifying existing parts or adding completely new entities to the model. Further-

more, all models have default connections to measurement instruments actually

collecting and analyzing the data and feeding the analysis results back into the

model. Figure 6.8 shows a screenshot of the Quamoco quality model editor (down-

loadable from http://www.quamoco.de). As general quality models tend to become

complex, visualization support is essential to get an overview of the quality

characteristics addressed and the relationships modeled. The figure shows a sun-

burst (Stasko 2013) diagram visualizing the model structure of the Quamoco base

quality model (which is available at http://www.quamoco.de), together with the

evaluation results for an analyzed system. The right part of the sunburst shows the

hierarchy of quality characteristics.

6 Model-Based Quality Management of Software Development Projects 145

http://www.quamoco.de/
http://www.quamoco.de/

The left side comprises the measured product-related factors (variation factors)

in the model. Each quality characteristic is impacted by different product-related

factors; the lines visible in the figure indicate all product-related factors impacting

the quality characteristic Resource Utilization (the right hand-side target of all

visible lines). The information pane next to the sunburst shows the results of the

selected quality characteristic for the system under evaluation (Log4J, a Java-based

logging mechanism). The color encoding of the sunburst diagram indicates the

evaluation results of quality characteristics and technical factors (from “green”

equaling no quality issues to “red” equaling many quality issues). Furthermore, the

tool supports tracing down the identified quality issues to concrete findings in the

analyzed artifacts.

The major outcomes of the Quamoco project can be summarized as domain-

independent as well as domain-specific quality models, an approach for tailoring

these models to the specific needs of an organization, a method for assessing the

quality of software products, and, finally, tool support for the specification and

application of quality models.

The sections below provide additional insights into the metamodel used for the

specification of quality models and the approach taken for evaluating/assessing

software product quality.

Fig. 6.8 Quamoco quality modeling tool suite

146 J. Heidrich et al.

6.4.1 The Quamoco Quality Metamodel

The underlying metamodel used for the specification of Quamoco quality models is

quite generic, with the intent being sufficient expressiveness to model quality in

diverse environments with different perceptions on quality (Kläs et al. 2010a)

(meta-models). An overview exemplified by an excerpt of the domain-specific

model for embedded systems (Mayr et al. 2012) can be seen in Fig. 6.9. The left

side illustrates the structural components of the metamodel. The right side illus-

trates these structural components with excerpts from the quality model for embed-

ded systems.

• Abstract Factors: An abstract factor can describe any concept (e.g., quality

characteristic or variation factor) that is considered in a quality model. In the

embedded systems model, four types of factors are distinguished:

– Technical Factors define technical properties of entities that are independent

of the programming language (such as having “valid pointer references”).

– ISO Quality Aspects describe ISO 25000 quality characteristics (such as

“reliability” or “functional” correctness)

– Requirements describe quality requirements impacted by technical factors

(such as “avoiding wrong and invalid references”)

– Goals describe technical goals related to quality requirements (such as having

“safe software systems”)

• Entity and Property: A factor may further be described by an entity and a

property it refers to. For example, the technical factor “reference validity of

G: Safety QA: Reliability QA: Suitability

influences

refines

refines

influences

influencesinfluences by

refined by

AF: Abstract
Factor

TF: Technical
Factor

QA: ISO Quality
Aspect

Entity Property

M: Measure

E: Evaluation

G: Goal

R: Requirement

R: Avoid wrong
and invalid
references

R: Avoid out of
bound access

TF: Reference
Validity @ Source

Code

QA: Functional
Correctness

TF: Reference
Validity @ Pointer

Access

TF: Reference
Validity @

Assignment Statement

TF: Reference
Validation @ ...

M: PC-lint
604

M: PC-lint
674

M: PC-lint
733

M: ...

measures

Fig. 6.9 The Quamoco metamodel for embedded systems, [cf. Mayr et al. (2012)]

6 Model-Based Quality Management of Software Development Projects 147

assignment statements” addresses the entity “assignment statement” (as part of a

source code) and the property “reference validity.”

• “Refined by” Relationship: A factor can be refined into subfactors. However, a

factor can only be refined by factors of the same type. For example, the quality

aspect “suitability” is refined by the quality aspect “functional correctness.”

Refinement, abstract factor, entity, and property elements together implement

the refinement concept (cf. Sect. 6.2.1).

• “Influenced by” Relationship: The relation states whether a factor positively or

negatively influences another one and provides a textual justification for this

relationship. However, impacts can only be modeled between factors of different

types. For example, the technical factor “valid pointer references” influences the

requirement “avoiding wrong and invalid references.” The impact elements add

the possibility to specify quality relationships as introduced in Sect. 6.2.1

• Measure: Factors can be quantified by measures. A measure is actually

implemented by measurement instruments, which in turn are provided by mea-

surement tools. For example, the technical factor “reference validity of assign-

ment statements” is measured by the measure “PC-lint 604,” which is provided

by the “PC-lint” tool. In general, a measure may be implemented by different

tools. For example, the popular measure “lines of source code” is implemented

by all static code analysis tools. If subjective measurement data needs to be

collected and no measurement tool is available, a manual measurement instru-

ment (e.g., a certain questionnaire that needs to be filled in manually) can be

assigned to the measure. Measure elements implement the quantification con-

cept (cf. Sect. 6.2.1)

• Evaluation: Factors are evaluated by evaluation rules describing how to assess

the factor on a certain evaluation scale. Factors that have no metrics assigned to

them cannot be evaluated in the model. For example, the evaluation rule for the

technical factor “reference validity of assignment statements” describes how to

interpret and aggregate the measurement data provided by all measures assigned

to the factor. Evaluation elements therefore provide implementation for both the

general evaluation and the aggregation concepts as introduced in Sect. 6.2.1

The metamodel allows implementation of all conceptual structures needed to

specify, measure/monitor, assess/control, and improve/manage quality (cf. Fig. 6.3):

It also allows making a clear distinction between the quality characteristics of

interest and all factors having an impact on them. By offering the opportunity to

formulate arbitrary hierarchies of factors and relationships between different fac-

tors, the model allows the definition of different views/perspectives, such as

combining a technical/developer view (requirements and technical goals) with a

customer/manager (quality aspects) view in one comprehensive model. Further-

more, it allows for explicitly specifying the impact relationship between different

factor hierarchies and expressing basic causal relationships.

148 J. Heidrich et al.

6.4.2 The Quamoco Quality Evaluation

The main objective of a quantitative quality evaluation is to have an easy-to-

understand, evidence-based (measurement-based), and reliable (repeatable) rating

of the quality of software products. For that purpose, the measurement values need

to be normalized and mapped to a uniform evaluation scale. Quamoco uses values

between 0 and 1 as an internal evaluation scale, but supports different interpretation

models, which can be defined based on the given context. The default interpretation

model maps the evaluation results between 0 and 1 on a scale based upon the

German school grade system. The mapping between evaluation results and grades

was defined and checked for plausibility for Java-based systems using the evalua-

tion results for more than 100 analyzed open source systems (Wagner et al. 2012).

The evaluation procedure employs multicriteria decision analysis (MCDA)

techniques and is illustrated in Fig. 6.10. The procedure for determining evaluation

rules (assuming that the remaining parts of a quality model are specified) is as

follows (Trendowicz et al. 2009):

• Weighting: Quantify the importance of each factor relative to other factors of

the same refinement and/or impact hierarchy

• Scoring: Collect measurement data for all leaf factors of the hierarchy

• Evaluation: Define so-called utility functions that map the measurement values

to the evaluation scale with values between 0 and 1. Note that for most measures,

some sort of normalization is required to allow defining that utility function

• Aggregation: Aggregate the evaluation results provided by the utility functions

by computing a weighted sum (which is again a value between 0 and 1)

U = 0.44

U(F1) = 0.4 U(F2) = 0.5

M1 = 6.0

W1 = 0.6 W2 = 0.4

M23 = 2.0

1.0

0.0
1.0

M23 – Comments Density

0.0 3.02.0

0.5

10.0

1.0

0.0

U
til

ity
 (

F
1)

U
til

ity
 (

F
2)

0.0 20.0

veto

0.4

6.0

M1 – Cyclomatic Complexity

A
ss
es
sm
en
t

1

Utility

2

4

5

6

3

0 0.30 0.50 0.67 0.81 0.92

Worst

Best

1.0

0.44

QA:
Maintainability

Software Code

TF1: Code
Complexity

TF2: Code
Doc. Level

M: Cyclomatic
Complexity

M: Comments
Density

Fig. 6.10 Quality assessment example

6 Model-Based Quality Management of Software Development Projects 149

• Interpretation: Map the aggregated evaluation results to an interpretation scale

(e.g., school grades)

The Quamoco models come with predefined evaluation rules calibrated on the

basis of a survey on the most relevant quality characteristics, the experience of

numerous software quality professionals involved in creating the model, and

thresholds calculated on the basis of more than 100 software projects. Although

the model results were confirmed by experts on five open source software products

(Wagner et al. 2012), it is strongly recommended to perform additional calibration

activities on organization-specific data before using the model.

6.5 Strategic Usage of Quality Models

The last section deals with how to support decision-making based on the outcomes

from applying quality models and how this contributes to higher-level organiza-

tional goals and strategies. GQM+Strategies®2 (Basili et al. 2010) is a measurement

planning and analysis approach that provides a framework and notation to help

organizations develop/package their operational, measurable business goals, select

strategies for implementing them, communicate these goals and strategies through-

out the organization and translate these goals into lower-level goals and strategies

down to the level of projects, assess the effectiveness of their strategies at all levels

of the organization, and recognize the achievement of their business goals. The

output of the GQM+Strategies® approach is a detailed and comprehensive model

that defines all the elements necessary for a measurement program.

GQM+Strategies® makes the business goals, strategies, and corresponding lower-

level goals explicit.

In the past, a variety of approaches have been developed covering different

aspects of linking activities related to IT services and software development to

upper-level goals of an organization and demonstrating their business value, such as

the Business Motivation Model (OMG 2010), Practical Software and Systems

Measurement (USDoD 2003), Balanced Scorecards (Kaplan and Norton 1992),

Information Technology Infrastructure Library (ITIL) (OGC 2002), Control Objec-

tives for Information and Related Technology (COBIT)® (ISACA 2007), or the

Sarbanes-Oxley Act (SOX 2002). The aim of GQM+Strategies® is not to replace

these approaches, but rather to close the existing gaps with respect to linking goals,

their implementation, and the measurement data needed to evaluate goal

attainment.

Figure 6.11 illustrates the basic concepts of the approach. The left side describes

a hierarchy of organizational goals and strategies. Organizational goals define a

target state the organization wants to achieve within a given time frame (e.g.,

2 Registered trademark of the Fraunhofer Institute for Experimental Software Engineering,

Germany and the Fraunhofer USA Center for Experimental Software Engineering, Maryland.

150 J. Heidrich et al.

improved customer satisfaction or reduced rework costs). Strategies are possible

approaches for achieving a goal within the environment of the organization.

Context factors and assumptions provide the rationale for the refinement hierarchy.

Context factors represent all kinds of factors the organization knows for sure,

whereas assumptions are estimated unknowns, that is, what is believed to be true

but needs to be reevaluated over time.

GQM graphs define how to measure whether a goal has been accomplished and

whether a strategy has been successful. Following the classic GQM approach

(Basili et al. 1994a), goals are broken down into concrete metrics. Interpretation

models are used for objectively evaluating goals and strategies.

Figure 6.12 and Table 6.4 illustrate excerpts of an example GQM+Strategies®

model focusing on the goals and strategies hierarchy and highlighting some mea-

surement data that is collected for evaluating the achievement of organizational

goals. On the lowest level, one strategy (DS-S) of the highlighted branch may

actually be to build and introduce software product quality models for, e.g.,

software reliability. The use of these quality models at different quality gates of

the software development process will in turn help to decrease the number of

defects that slip to later stages of the process (DS-G) by finding potential reliability

issues as early as possible. Less defect slippage is related to improving the quality

assurance activities of organization X (PR-S), which is a strategy for improving the

reliability of the IT products of organization X (PR-G). Improved IT products

(NC-S1) will in turn attract more customers to use the IT-based services of

company X (NC-G).

The entire model provides an organization with a mechanism for not only

defining measurement consistent with larger, upper-level organizational concerns,

but also for interpreting and rolling up the resulting measurement data at each level.

Having this chain of arguments also supports an organization in demonstrating the

values of software-related improvement initiatives, such as the systematic usage of

software product quality models. The impact of these models can be evaluated

directly in terms of an organization’s higher-level goals and make the benefits

measurable for it. More industry-related lessons learned from making strategic use

Goal+Strategies Element GQM Graph

influences

realized
by a
set of

influences

< measures
achievement

of

> made
measurable

through

Context/
Assumption

Organizational
Goal

Strategy

made measurable through

Measurement
Goal

Question

Question

Metrics

Metrics

Metrics

Interpretation Model

refined refined

Fig. 6.11 The GQM+Strategies® grid metamodel

6 Model-Based Quality Management of Software Development Projects 151

NC-G: Increased
number of
customers

CI-G: Improved
custom. interaction

process

IQ-G: Improved
information

quality of IS

NC-S1: Improve
IT products

CI-S: Provide more
complete and

consistent inform.

FF-G: Delivered
new features and

fixes faster

PR-G: Improved
reliability of

products

PP-G: Increased
productivity of

dev. projects

DS-G: Decreased
defects slipped

FF-S: Increase
productivity of

dev. projects

PR-G: Improve
QA activities

PP-S: Introduce
agile development

DS-S: Build and
introduce a quality
model for reliability

IQ-S: Increase IT
support of cust.

process

NC-S2: Improve
custom. interaction

processes

PR-G: Improve reliability of products

0

500

1000

1500

2000

Complaints (Products)

NC-G: Increase number of customers

0

5000

10000

2011
Q1

2011
Q2

2011
Q3

2011
Q4

2012
Q1

2012
Q2

2012
Q3

2012
Q4

Customers (Insurance)

DS-G: Decrease defects slipped

-40
-20

0
20
40
60

Defect Flow Model (Release R)

Requirements

Design

Coding

Integration

Operation

CA12

CA1

CA2 CA3

CA4

Organizational
Goal Strategy CA Context or Assumtion

CA5 CA6 CA7

CA8 CA9

CA10 CA11

Fig. 6.12 Example GQM+Strategies® grid

Table 6.4 Overview of context and assumption

ID Type Description

CA1 Context Company X provides banking and insurance services. X has a lot of cus-

tomers in the banking area, but only few in the insurance area

CA2 Assumption The quality of the IT products has to be improved

CA3 Assumption The quality of the customer interaction processes has to be improved

CA4 Context The services of X are built upon an Enterprise information system (IS) that is

composed of different software components

CA5 Context Customers complain that it takes too long to deliver new features and to fix

existing bugs

CA6 Context Customers complain that the IT products are not reliable

CA7 Context Customers complain about issues related to customer interaction

CA8 Assumption The delay of existing projects is mainly responsible for the inability to

deliver new features and bug fixes faster

CA9 Context Customers complain about inconsistent and incomplete information during

their interaction with company X

CA10 Context According to the experience from the recently run pilot project, agile

development principles will be able to speed up software development

CA11 Context According to the analysis of the defect data, too many defects appear in the

design and coding stage

CA12 Context Not all services of X are completely IT supported; some have to be provided

manually, which decreases information quality

152 J. Heidrich et al.

of quality models employing the GQM+Strategies® approach can be found in Basili

et al. (2013).

6.6 Conclusions and Future Work

This chapter gave an overview of the challenges and potential solutions for sys-

tematically managing the quality of software products. Controlling the quality of all

artifacts created during the software development process is one crucial task of

professional project management (PMI 2008). Quality models support an organi-

zation in general and project managers in particular in objectively evaluating and

assessing software product quality through the use of measurement. Knowledge and

experience regarding critical quality characteristics and indicators for measuring

and evaluating these characteristics are captured in these models.

The chapter highlighted four challenges when dealing with quality models in

practice and proposed solutions developed in recent years. First, there is no

universal quality model that can be applied everywhere. A variety of quality models

exists, and mechanisms such as the proposed classification scheme and quality

model landscapes are needed to identify the “right” model based on a clear picture

of the goals that should be obtained from using the model.

Second, it is essential to tailor quality models to company specifics. Existing

standards are often too generic and hard to fully implement in an organization. A

structured process, such as the six-step process proposed, is needed to develop

custom-tailored quality models. This also allows for collecting the measurement

data needed and to focus data analysis and interpretation on the quality character-

istics of interest.

Third, in practice, it is an effort-consuming process to specify and apply quality

models because no proven standard techniques, methods, and tools are available.

The Quamoco approach described above provides a well-defined metamodel for the

specification of quality models and comes with tool-supported, domain-specific

models, which can be customized to the specific needs of an organization.

Fourth, in order to create quality models that are sustainably implemented in an

organization, the link and contribution to organizational goals need to be clarified.

As illustrated by the GQM+Strategies® approach, the data provided from applying

software product quality models can be used directly for guiding improvement

actions and decision-making.

In the future, software projects will be faced with new challenges that need to be

mastered from a practitioner’s point of view if an organization wants to provide

products with the right level of quality in order to defend and further expand its

position on the market. In order to manage future projects successfully, processes

and quality assurance mechanisms must handle ever shorter business and technol-

ogy life cycles and must permit flexible adaptation. Introducing agile development

principles is one potential approach allowing for more flexibility (as discussed in

Chap. 11). Software products and systems are increasingly being developed in a

6 Model-Based Quality Management of Software Development Projects 153

http://dx.doi.org/10.1007/978-3-642-55035-5_11

distributed manner in heterogeneous environments. Chapters 9, 10, and 12 highlight

some further challenges and solution approaches for managing global software and

IT projects. This is particularly true for cyberphysical systems, where organizations

from different domains work together on an integrated solution, each with its own

special requirements regarding the integration of different processes and quality

management mechanisms. As a consequence, software product quality models must

be easy to adapt to new quality requirements on the one side. On the other side, they

must be able to address very heterogeneous quality requirements from different

domains, which probably use different development processes, and to integrate all

these aspects into a comprehensive model. From a researcher’s point of view, one

major challenge lies in providing empirically proven quality models that can be

successfully applied in dedicated domains with known effects. Future work will

focus on coping with these aspects.

Acknowledgments The research leading to these results was partially supported by the ARTE-

MIS Joint Undertaking under grant agreement no. 269335, the research project Quamoco (grant

01IS08023), and from the German Federal Ministry of Education and Research (BMBF).

References

Avizienis A, Laprie JC, Randell B (2001) Fundamental concepts of dependability

Basili V, Caldiera G, Rombach D (1994a) Goal, question metric paradigm. Encyc Softw Eng

1:528–532 (John Wiley and Sons)

Basili V, Caldiera G, Rombach D (1994b) The experience factory. Encyc Softw Eng 1:469–476

(John Wiley and Sons)

Basili V, Heidrich J, Lindvall M, Münch J, Regardie M, Rombach D, Seaman C, Trendowicz A

(2010) Linking software development and business strategy through measurement. IEEE

Comput 43(4):57–65

Basili V, Lampasona C, Ocampo A (2013) Aligning corporate and IT goals and strategies in the oil

and gas industry. In: Proceedings of the 14th international conference on product-focused

software process improvement, lecture notes in computer science, vol 7983. Springer,

New York, pp 184–198

Boehm BW (1978) Characteristics of software quality. North-Holland, Amsterdam

Cavano JP, McCall JA (1978) A framework for the measurement of software quality. In: Pro-

ceedings of the software quality assurance workshop on functional and performance issues.

ACM, New York, pp 133–139

Differding C (2001) Reuse of measurement plans based on process and quality models. In:

Proceeding of 3rd international workshop on advances in learning software organizations

(LSO). Springer, pp 207–221

Dörr J, Trendowicz A, Kolb R, Punter T, Kerkow D, König T, Olsson T (2004) Quality models for

non-functional requirements. Fraunhofer IESE Report No. 010-04/E

Dromey GR (1998) Software product quality: theory, model and practice. Griffith University,

Brisbane, Australia

ECSS-Q-30A (1996) Space product assurance: dependability

IEC 61508-1 (2010) Functional safety of electrical/electronic/programmable electronic safety-

related systems

IEEE 1061 (1998) Software quality metrics methodology

154 J. Heidrich et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_9
http://dx.doi.org/10.1007/978-3-642-55035-5_10
http://dx.doi.org/10.1007/978-3-642-55035-5_12

ISACA (2007) Control objectives for information and related technology (CoBIT®). Retrieved

04 12 2007, from www.isaca.org

ISO 8402 (1995) Quality management and quality assurance – vocabulary

ISO/IEC 14598-1 (1999) Information technology software product evaluation

ISO/IEC 15939 (2007) Systems and software engineering measurement process

ISO/IEC 25000-1 (2005) Software product quality requirements and evaluation (SQuaRE)Guide

to SQuaRE

ISO/IEC 25010 (2011) SQuaRE system and software quality models

ISO/IEC 25021 (2012) SQuaRE quality measure elements

ISO/IEC 25040 (2011) SQuaRE evaluation process

ISO/IEC 9126-1 (2001) Software engineering product quality - part 1

Kaplan R, Norton D (1992) The balanced scorecard - measures that drive performance. Harv Bus

Rev 71

Kitchenham BA, Linkman S, Pasquini A, Nanni V (1997) The SQUID approach to defining a

quality model. Softw Qual Control 6(3):211–233

Kläs M, Münch J (2008) Balancing upfront definition and customization of quality models. In:

Proceedings of the workshop on software quality modeling and assessment (SQMB 2008),

Munich, Germany, pp 26–30

Kläs M, Heidrich J, Münch J, Trendowicz A (2009) CQML Scheme: a classification scheme for

comprehensive quality model landscapes. In: Proceedings of the 35th EUROMICRO confer-

ence (SEAA 2009). IEEE Computer Society, pp 243–250

Kläs M, Lampasona C, Nunnenmacher S, Wagner S, Herrmannsdörfer M, Lochmann K (2010a)

How to evaluate meta-models for software quality? In: Proceedings of the joint international

conferences on software measurement. IWSM/MetriKon/Mensura, Shaker, pp 443–462

Kläs M, Elberzhager F, Münch J, Hartjes K, von Graevemeyer O (2010b) Transparent combina-

tion of expert and measurement data for defect prediction – an industrial case study. In:

Proceedings of the 32nd international conference on software engineering (ICSE 2010),

Cape Town, South Africa, pp 119–128

Lampasona C, Heidrich J, Basili V, Ocampo A (2012) Software quality modeling experiences at

an oil company. In: Proceedings of the 6th international conference on empirical software

engineering and measurement (ESEM), 20–21, pp 243–246

Mayr A, Plösch R, Kläs M, Lampasona C, Saft M (2012) A Comprehensive code-based quality

model for embedded systems - systematic development and validation by industrial projects.

In: Proceedings of the 23rd international symposium on software reliability engineering

(ISSRE 2012), Dallas, TX

MISRA Report 5 (1995) Software metrics office of government commerce (2002). The IT

Infrastructure Library (ITIL) Service Delivery, The Stationary Office London

Object Management Group (2010) The business motivation model (BMM) V. 1.1. Retrieved 06 08

2010, from www.omg.org

Office of Government Commerce (OGC) (2002) The IT infrastructure library (ITIL) service

delivery. The Stationary Office, London

Petersson H, Thelin T, Runeson P, Wohlin C (2004) Capture–recapture in software inspections

after 10 years research––theory, evaluation and application. J Syst Softw 72(2):249–264

Project Management Institute (2008) A guide to the project management body of knowledge

(PMBOK® Guide), 4th edn. Project Management Institute

Sarbanes-Oxley Act (2002) Public Law No. 107-204, 116 Stat. 745, Codified in sections of 11, 15,

18, 28, and 29 in United States Code, July 30

Stasko J (2013) Sun burst. Retrieved 29 01 2013, from www.cc.gatech.edu/gvu/ii/sunburst

Trendowicz A, Heidrich J, Münch J, Ishigai Y, Yokoyama K, Kikuchi N (2006) Development of a

hybrid cost estimation model in an iterative manner. In: Proceedings of the 28th international

conference on software engineering (ICSE 2006), Shanghai, China, pp 331–340

6 Model-Based Quality Management of Software Development Projects 155

http://www.isaca.org/
http://www.omg.org/
http://www.cc.gatech.edu/gvu/ii/sunburst

Trendowicz A, Kläs M, Lampasona C, Münch J, Körner C, Saft M (2009) Model-based product

quality evaluation with multi-criteria decision analysis. In: Proceedings of the joint interna-

tional conferences on software measurement (IWSM/MetriKon/Mensura), Shaker, pp 3–20

United Kingdom Ministry of Defense (1997) Def Stan 00-55 requirements for safety related

software in defense equipment

US Department of Defense and US Army (2003) Practical software and systems measurement: a

foundation for objective project management, v. 4.0c, from www.psmsc.com

Wagner S, Lochmann K, Winter S, Göb A, Kläs M, Nunnenmacher S (2010a)

Software quality in practice survey results. Retrieved 03 06 2014, from

http://mediatum.ub.tum.de/doc/1110601/1110601.pdf

Wagner S, Broy M, Deißenböck F, Kläs M, Liggesmeyer P, Münch J, Streit J (2010b)

Softwarequalitätsmodelle. Praxisempfehlungen und Forschungsagenda, Informatik Spektrum

33(1):37–44 (Springer)

Wagner S, Lochmann K, Heinemann L, Kläs M, Trendowicz A, Plösch R, Seidl A, Goeb A, Streit

J (2012) The Quamoco product quality modeling and assessment approach. In: Proceedings of

the 34th international conference on software engineering (ICSE 2012), Zurich, Switzerland,

pp 1133–1142

Biography Jens Heidrich graduated from the University of Kaiserslautern, Ger-

many, with a Diploma degree in Computer Science and received his doctoral degree

from the same university in 2008. He is head of the Process Management division at

the Fraunhofer Institute for Experimental Software Engineering (IESE) in Kaisers-

lautern, Germany, and a lecturer at the University of Kaiserslautern, Germany. He

is a member of the German Informatics Society and part of the managing committee

of the section “Software Measurement.”

Dieter Rombach studied mathematics and computer science at the University of

Karlsruhe, Germany, and obtained his Ph.D. in Computer Science from the Uni-

versity of Kaiserslautern, Germany in 1984. Since 1992, he has held the Software

Engineering Chair in the Department of Computer Science at the University of

Kaiserslautern. In addition, he is the founding and executive director of the Fraun-

hofer Institute for Experimental Software Engineering IESE in Kaiserslautern,

Germany.

Michael Kläs graduated from the University of Kaiserslautern, Germany, with a

German Diploma degree in Computer Science in 2005 and started working at the

Fraunhofer Institute for Experimental Software Engineering IESE thereafter. He

works on subjects concerning goal-oriented measurement, modeling and assessing

quality, as well as defect prediction and cost estimation. His current research

interests focus on early quality prediction and aligning large-scale technology

evaluation endeavors.

156 J. Heidrich et al.

http://www.psmsc.com/
http://mediatum.ub.tum.de/doc/1110601/1110601.pdf

Chapter 7

Supporting Project Management Through

Integrated Management of System

and Project Knowledge

Barbara Paech, Alexander Delater, and Tom-Michael Hesse

Abstract Software engineering is a knowledge-intensive task. Many different

kinds of knowledge are created, for example, system knowledge, such as require-

ments, design, or code, and project knowledge, such as project plans, decisions, and

work items. In this chapter, we study two kinds of project knowledge: work items

and decisions. Work items document what should or has been done by whom and

when. Decisions represent the solution to a decision problem. They are important to

be kept in mind so that the future development will be consistent with the past.

These kinds of knowledge can be implicit or explicit. Work items are typically

managed explicitly in issue trackers, while decisions are mostly hidden in informal

notes or in the artifacts, which result from these decisions. Rationale management

research has suggested several approaches to make decisions and their rationale

explicit. However, in contrast to issue trackers, which are widespread, these

approaches are considered as overhead in industry. In this chapter, we argue that

work items and decisions should be managed together with the system knowledge.

This has several benefits for project management processes, such as project plan-

ning or monitoring, for example, with better information for the allocation of work

items or risk identification. We present a vision detailing these benefits and discuss

what is known in research and practice about the realization of this vision. In

particular, we review existing approaches to capture work items or decisions and

their links to other knowledge and discuss the empirical evidence of their benefits

for an integrated system and project knowledge management in industry.

B. Paech (*) • A. Delater • T.-M. Hesse

Institute of Computer Science, University of Heidelberg, Heidelberg, Germany

e-mail: paech@informatik.uni-heidelberg.de; delater@informatik.uni-heidelberg.de;

hesse@informatik.uni-heidelberg.de

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_7, © Springer-Verlag Berlin Heidelberg 2014

157

mailto:paech@informatik.uni-heidelberg.de
mailto:delater@informatik.uni-heidelberg.de
mailto:hesse@informatik.uni-heidelberg.de

7.1 Introduction

Knowledge management (KM) is a diverse field. Many general and software

engineering–specific facets are described in Bjørnson and Dingsøyr (2008),

Aurum et al. (2003). Lindvall and Rus (2003) distinguish:

1. General KM activities for asset reuse, document management, collaboration,

competence management, and expert networks

2. KM activities specific in software organizations, such as configuration manage-

ment and version control, design rationale, traceability, defect tracking, and

supporting CASE-tools

3. KM to support organizational learning such as prediction models, lessons

learned, case-based systems, and data discovery

In this chapter, we focus on (1) and (2) which means, knowledge captured within

a software project and used to support the team of current and future projects to

better perform their work. Knowledge can be captured explicitly in artifacts such as

documents or emails. Or it can be implicit in the heads of people or as part of a

conversation.

We distinguish two different types of knowledge created and used in a software

development project. On the one hand, system knowledge concerns the software

system and its context such as requirements, architecture and design of the system,

test cases, and the actual implementation of the design and test cases in the code. On

the other hand, project knowledge concerns the actual development and mainte-

nance process. In particular, all outputs of project management processes described

in the PMBOK guide (Duncan 2013) and its software extension (PMI 2013) are part

of the project knowledge. We distinguish the plan knowledge such as the project

plan (called project management plan in the PMBOK guide if on a high level and

project schedule on a detailed level) or the project participants from the execution

knowledge such as work items (including work on bugs and change requests) and

decisions (see Fig. 7.1). Note that we only consider the system and project knowl-

edge on the level of an individual software product. There is also generalized

knowledge crosscutting different products, for example, system knowledge such

as design patterns or project knowledge such as best practices or process models.

Work items describe what should or has been done by whom and when. When

captured during project work, work items typically have a completion status, a due

date, and are assigned to team members. Typically, they are fine-grained capturing

an aspect of the software development work relevant at a particular moment of the

project. Often, work items are called issues and describe future work, change

requests, or bug reports. In the PMBOK guide (Duncan 2013), work items are

called activities: “a distinct, scheduled portion of work performed during the course

of a project”. Sometimes (e.g., in Chap. 4, which deals with the allocation of the

work to developers), work items are also called tasks.

During project work, decisions are made (implicitly or explicitly), which con-

cern the project or the system. According to Ngo and Ruhe (2005), a decision

problem at least comprises a set of alternatives and a set of criteria to evaluate each

158 B. Paech et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_4

alternative. A decision embodies a choice of an alternative. Decisions are typically

complex and crosscutting, such as the argumentation for the definition of a partic-

ular architecture. In consequence, it is useful to capture decision knowledge for

considering and reviewing it in upcoming project activities so that former decisions

and directions of development are understood over time. Decisions are accompa-

nied by rationales (called rationale or rationale knowledge) justifying the decision.

Rationale Management aims to make the rationale explicit (Dutoit and Paech 2001,

Dutoit et al. 2006). Thus, rationale management approaches capture decisions

together with their rationale. As explained in Sect. 7.5, decision knowledge com-

prises the decision and many other kinds of attributes, and one of them is the

rationale.

It is important to note that both work items and decisions can refer to system and

project knowledge. For example, a work item can describe work to develop code

(code is system knowledge) or to develop a project plan (project plan is project

knowledge). Similarly, a decision can concern an architecture (architecture is

system knowledge) or a milestone (milestone is project knowledge). We classify

work items and decisions as project execution knowledge as they do not describe

the system, but human actions (work and decisions) to produce the system. As

decisions are created by all team members, the knowledge created by the project

manager (e.g., the work items) is only part of the project knowledge.

In practice, system and project knowledge are typically treated separately.

System knowledge is captured in all kinds of CASE-tools such as requirements

management or test tools. Project knowledge is mostly captured in project man-

agement or issue tracking tools. Issue trackers (such as Bugzilla, Jira, and Trac) are

a kind of project management software that is widely used in industry; for example,

in the Eclipse Community Survey, 80 % of over 600 respondents use at least one

issue tracking tool in their daily work (Skerrett 2011). There are tools integrating

system and project knowledge. An example for such a widely used tool is MyLyn,1

Knowledge

Requirements
Knowledge

Decisions

Work ItemsProject PlanTest Cases

Revisions

Code ArtifactsArchitecture

Project
Participants

Component
Design

Non Functional
Requirements

Functional
Requirements

Execution
Knowledge

Plan
Knowledge

Test
Knowledge

Code
Knowledge

Design
Knowledge

Project KnowledgeSystem Knowledge

Fig. 7.1 Examples of system knowledge and project knowledge

1 http://www.eclipse.org/mylyn/

7 Supporting Project Management Through Integrated Management of System and. . . 159

http://www.eclipse.org/mylyn/

which integrates issue tracking into Eclipse. Each time before a new revision is

created, MyLyn asks the developer to select a work item from the issue tracker to be

linked to the new revision. MyLyn then inserts the unique identifier of the work

item into the commit message of the new revision to achieve bidirectional trace-

ability between the new code and the work item. Tasktop2 extends this with links to

requirements or quality management tools. However, this does not provide a

comprehensive integration of system and project knowledge allowing the linking

of any element of system and project knowledge to another.

We argue that it is beneficial for the whole project team (including the project

manager) when system knowledge and project knowledge are captured explicitly

and managed together. On the one hand, the usage of project knowledge can be

improved when it is linked to the affected system knowledge. For example, when a

work item demanding the implementation of a requirement is linked to the require-

ment and later to the created code, the project manager can easily identify which

code was involved in the implementation. This allows, for example, a better

estimation of future implementation work. Also, if a decision is captured and linked

to the affected system knowledge, the impact of changes of this decision can be

analyzed more easily. On the other hand, the capture of system knowledge can be

improved, as today in practice more project knowledge is captured than system

knowledge. For example, from the links between work items and code as well as

between work items and requirements, new links between requirements and code

can be inferred. These are very helpful for maintainers.

In our work, we focus on decisions and work items for the integration of system

and project knowledge as both are important parts of the project knowledge and

both have obvious relations to system knowledge. As outlined in our vision in

Sect. 7.2, the links between system knowledge, work items, and decisions already

provide ample benefit for project management. To achieve this vision, we have

conducted a literature review on the state of the art and practice and developed first

ideas to realize this vision. Both are reported in this chapter.

In the following sections, we first discuss our vision of how project management

can benefit from integrated management of system knowledge, decisions, and work

items. Then, we analyze the state of the art and practice with respect to the

integration of system knowledge and decision and work items. First, we treat

work items and decisions separately. For work items, we focus on existing

approaches that link work items and different kinds of system knowledge. As

decisions are more complex, we first review how decisions are captured as such

and then how they are linked to other kinds of knowledge. In both cases, we explore

how these links are created and used, and we discuss the empirical evidence of

integrated system and project knowledge management. Finally, we discuss research

necessary to achieve our vision.

The remainder of this chapter is structured as follows: In Sect. 7.2, we sketch our

vision of integrated system and project knowledge management and discuss how

2 http://tasktop.com

160 B. Paech et al.

http://tasktop.com/

project management can benefit from this. In Sect. 7.3, we describe how we

conducted the literature review to identify relevant research on work items and

decisions. The identified approaches for work items and decisions are described in

Sects. 7.4 and 7.5, respectively. In Sect. 7.6, we identify issues for further research,

and Sect. 7.7 provides a conclusion and an outlook.

7.2 Our Vision: Integrated System and Project Knowledge

Management

In this section, we sketch our vision of integrated system and project knowledge
management through integrated management of work items and decisions and
different kinds of system knowledge (abbreviated ISPKM in the following). As we

want to focus on the benefits for the project manager, we look at the knowledge

areas as described in the PMBOK guide (Duncan 2013) and its software extension

(PMI 2013). In the following (see Table 7.1), we describe how selected areas can

benefit from ISPKM knowledge (that means work items and decisions linked to

each other or to requirements, design, code, or test, respectively). In the text, we

refer to the processes of the knowledge area by listing the corresponding PMBOK

chapters. For some of these areas, the processes are also discussed in Chap. 1. In the

following, we give examples of how the knowledge areas can benefit from ISPKM.

In Sects. 7.4 and 7.5, we discuss what approaches and tools exist for ISPKM and

whether empirical evidence for these benefits has already been found. The papers

giving the corresponding evidence are already listed in Table 7.1.

As described in Chap. 14, there are four key project management themes,

namely, process management, project planning, monitoring and taking actions,

and human issues. The knowledge areas we mention below belong to project

planning and monitoring and taking action.

Work items that are captured explicitly in issue trackers particularly support the

knowledge area project integration management and the knowledge area project time
management, as they help to capture the project management plan (PMBOK Sect. 4.2)

and the project schedule (PMBOK Sects. 6.2, 6.3, and 6.6), to direct and manage

project work (PMBOK Sect. 4.3), to monitor and control project work (PMBOK

Sects. 4.4 and 6.6), and to perform integrated change control (PMBOK Sect. 4.5).

Links from work items to system knowledge support the project team in the

project execution in general. If a work item is linked to the inputs of the work (e.g.,

requirements to be implemented), it is easier for the project participants to under-

stand what to do. They also save time through direct navigation. If the work item is

also linked to the output (e.g., the code created), then any other project participant

(and in particular the project manager) can better understand the context of the

output, for example, who created the output or the used input. Furthermore, the

project management processes listed above are supported directly. When develop-

ing the project plan and project schedule, the project manager has to assign work

items to the responsible project participant. Based on links between system

7 Supporting Project Management Through Integrated Management of System and. . . 161

http://dx.doi.org/10.1007/978-3-642-55035-5_1
http://dx.doi.org/10.1007/978-3-642-55035-5_14
http://dx.doi.org/10.1007/978-3-642-55035-5_4#Sec2
http://dx.doi.org/10.1007/978-3-642-55035-5_6#Sec2
http://dx.doi.org/10.1007/978-3-642-55035-5_6#Sec6
http://dx.doi.org/10.1007/978-3-642-55035-5_6#Sec17
http://dx.doi.org/10.1007/978-3-642-55035-5_4#Sec13
http://dx.doi.org/10.1007/978-3-642-55035-5_4#Sec19
http://dx.doi.org/10.1007/978-3-642-55035-5_6#Sec17
http://dx.doi.org/10.1007/978-3-642-55035-5_4#Sec20

knowledge (e.g., requirements) and work items, new work items can be assigned to

developers who have worked on similar system knowledge in the past. This could

even be done automatically. Project control is enhanced when the output of a

project work (e.g., the design element or code file) is linked to the corresponding

work item. As well known from change management, pre and post-traceability links

of requirements support the change impact analysis (Gotel and Finkelstein 1994).

Table 7.1 Benefits of ISPKM

Links between work items and

system knowledge

Links between decisions and system

knowledge

Develop project plan Assign work items (Helming

et al. 2010; Kagdi and

Poshyvanyk 2009)

Direct and manage pro-

ject work

Understand context of work

(Helming et al. 2009a, b)

Understand output of work

Monitor and control pro-

ject work

Identify output from work

item

Perform integrated

change control

(Burge and Brown

2008)

Identify change through work

items

Identify related change

Define activities,

sequence activities,

develop schedule

See integration management

Collect requirements Suggest changes during

implementation (Helming

et al. 2009c)

Manage communication Identify information

recipients

Identify information recipients

(Aurum et al. 2006)

Control communication Report performance

Control quality Identify work on quality

requirements

Enforce decision

Stakeholder engagement Explain decision effects

Identify risks Consider decision assumptions and

rationale and decision relations

(Burge and Brown 2008)m

Control risks Identify changed decisions

Improve comprehension of

system and project

knowledge

Improve comprehension of system

and project knowledge (Falessi

et al. 2006b, 2008a, b)

Improve quality of system

knowledge (Helming

et al. 2009c)

Improve quality of system knowledge

Improve capture of decisions

162 B. Paech et al.

Similarly, links from work items to requirements can be used to understand the

context of the requirements implementation. In particular, if code is also linked to

work items, code affected by the requirements change can be identified. Clearly,

this could also be achieved by direct links between requirements and code. How-

ever, it takes more effort to capture them directly, compared to the effort of linking

the system knowledge to the work items (see Sect. 7.4.2).

The links between work items and system knowledge also support the knowl-

edge area project scope management and project communication management. The
collection of requirements (PMBOK Sect. 5.2) is enhanced by links between work

items and requirements. For example, it is easier for project participants to identify

requirements relevant to their work and thus to indicate changes necessary because

of their work (e.g., if it is not possible to implement a requirement as requested). In

general, information distribution (PMBOK Sect. 10.2) is supported as project

participants who should receive the information can be identified from the work

item. For example, a change on system knowledge by one project participant (e.g.,

requirements or code change) can be distributed to another project participant who

is assigned a work item related to the system knowledge (improve change aware-

ness). Links between work items and requirements are especially important for

crosscutting requirements such as quality requirements. For them, enhanced com-

prehension, as described above, is important. Furthermore, links between work

items and quality requirements support the knowledge area project quality man-
agement because it is easily traceable who was involved in the realization of a

quality requirement and when. Similarly, performance reporting in general

(PMBOK Sect. 10.3) is supported. The completion status of the output of a work

item can be derived from the completion status of the work item. Furthermore, the

amount of work of a work item can not only be measured in hours, but also

measured in terms of output (e.g., lines of code).

As described above, links from work items to system knowledge help to identify

links between system knowledge elements and support change awareness. Thus,

they improve the quality of the system knowledge in terms of completeness and

up-to-dateness.

Decisions provide an important background for project work. They capture the

essentials of the project work and thus of the output of the work that is described in

the work items. Typical decision attributes are the problem and solution description

with rationale, assumptions, or constraints considered for the decision and links to

related system knowledge and other decisions.

As for work items, the capture of links between decisions and system knowledge

supports the project work in general (PMBOK Sect. 4.3). If a decision is linked to

the outputs of the work (e.g., implemented code or components), it is easier for the

project participants to understand the output. The reason is that the decision

essentials are implicit in the output, for example, the assumptions or constraints

for choosing a particular technology. This is missing if the decision is not linked to

the output. Project participants also save time through direct navigation. Similar to

work items, links from system knowledge to decisions support project control

(PMBOK Sect. 4.4), change control (PMBOK Sect. 4.5), information distribution

7 Supporting Project Management Through Integrated Management of System and. . . 163

http://dx.doi.org/10.1007/978-3-642-55035-5_5#Sec2
http://dx.doi.org/10.1007/978-3-642-55035-5_10#Sec2
http://dx.doi.org/10.1007/978-3-642-55035-5_10#Sec6
http://dx.doi.org/10.1007/978-3-642-55035-5_4#Sec13
http://dx.doi.org/10.1007/978-3-642-55035-5_4#Sec19
http://dx.doi.org/10.1007/978-3-642-55035-5_4#Sec20

(PMBOK Sect. 10.2), and quality management (PMBOK Chap. 8). In particular, if

a decision is linked to all affected system elements, the project manager is

supported in controlling whether a decision has been realized consistently (decision

enforcement). If a decision is to be changed, it is easier to identify which elements

will be affected by the change, and if a system element is changed, it is easier to

identify whether a major decision is affected and needs to be adapted. As for work

items, information distribution is supported. A change of the system knowledge by

one project participant (e.g., requirements change) has to be distributed to another

project participant who is responsible for a decision related to this system knowl-

edge. Thus, project participants who should receive the information can be identi-

fied by a decision. As quality requirements are crosscutting, it is especially

important to trace these decisions made with respect to quality.

Unlike work items, decisions and their links are also useful for the knowledge

area stakeholder management and the knowledge area risk management. The main

reason is that decisions provide the context for system knowledge through their

attributes. This can be helpful for the communication with the stakeholders during

the stakeholder engagement management (PMBOK Sect. 13.3), for example, to

explain a decision effect that is not desired by the stakeholder when referring to the

decision’s problem or the constraint description. Assumptions made during

decision-making can be helpful in order to create and update the risk register and

assumptions log (PMBOK Sect. 11.2). For example, the assumptions of design

decisions might indicate potential technical or structural risks for the system. The

rationale of decisions includes the drawbacks of decisions and thus indicates the

possible risks of a decision. Links from decisions to system knowledge support the

identification of risks due to incorrectly realized decisions. Links between decisions

help to identify decision dependencies and thus to identify risks due to decision

inconsistencies. They also help in continuously controlling risks (PMBOK Sect.

11.6) when decisions change over time.

Furthermore, work items and decisions can be linked to each other and to other

project knowledge. Linking work items and decisions could alleviate the capture of

decisions as the capture of work items is already widespread. If a work item or a

decision concerns the project management work (e.g., creating a project plan), the

benefits are similar as for the system knowledge, such as enhanced understanding,

control, impact analysis, or information distribution.

Altogether, the examples given above show that ISPKM supports comprehen-

sion in general and provides important information for many project management

processes. Furthermore, it helps to save time in accessing information. Clearly,

there is also effort involved in ISPKM, which has to be balanced with the benefits.

The effort mainly arises during the capture of the work items and decisions and their

links. As discussed for rationale management approaches in Dutoit et al. (2006),

such an effort is particularly worthwhile for complex projects or systems such as

distributed projects, product lines, safety critical systems, or COTS-based systems.

The possibilities to alleviate the capture are discussed in Sects. 7.4 and 7.5. Often,

they involve information retrieval methods. Thus, they are part of software analyt-

ics, which aim to gain insights into data from software development and manage-

ment (Menzies and Zimmermann 2013).

164 B. Paech et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_10#Sec2
http://dx.doi.org/10.1007/978-3-642-55035-5_8
http://dx.doi.org/10.1007/978-3-642-55035-5_13#Sec9
http://dx.doi.org/10.1007/978-3-642-55035-5_11#Sec2
http://dx.doi.org/10.1007/978-3-642-55035-5_11#Sec14

In our view, ISPKM is also worthwhile for agile project management. As

described in Chap. 11, agile project management focuses on communication,

coordination, collaboration, and decision-making during execution. The informa-

tion provided by ISPKM supports all of this. ISPKM does not require extensive

up-front planning. As evidenced by the widespread use of issue trackers, work

items support flexible project planning. Shared decision-making is supported by a

shared understanding provided through an explicit decision. Therefore, a light-

weight realization of ISPKM should also be very helpful for agile projects.

In the following sections, we review what approaches exist to realize this vision

and the evidence of its benefits.

7.3 Literature Review

We conducted a literature review to identify existing research on ISPKM. We used

the guidelines of Kitchenham and Charters (2007) for our search strategy and

documentation. However, we did not strictly conduct a systematic literature review

as the literature was only assessed by one of the authors, namely, the literature on

work items by the second author and the literature on decisions by the third author.

The aim was to identify major contributions, but not to discuss the differences

between the approaches in detail. Our overall research questions were

• RQ1: How is the ISPKM knowledge captured?

• RQ2: How is the ISPKM knowledge used?

• RQ3: Which tools are used to support ISPKM?

• RQ4: What empirical evidence does exist for the benefits of ISPKM?

As discussed at the end of the last section, RQ1 and RQ3 are important to assess

the effort for ISPKM. RQ2 and RQ4 are important to assess the benefits of ISPKM.

The results are presented in Sect. 7.4 for work items and Sect. 7.5 for decisions. In

the following, we describe the search strings and sources used and the overall

outcome of the search. Each search was documented strictly: We recorded all

search results per source and documented the number of hits per source and the

papers identified as relevant per source.

Search for Work Item Literature. We used the following publication sources:

IEEE,3 ACM,4 SpringerLink,5 and ScienceDirect.6 We did not explicitly look at

approaches capturing work items, as their capture in terms of issue trackers is

standard (Skerrett 2011). Thus, for RQ1 with respect to work items, we focus on the

capture of the links to system knowledge. The final search string had three terms

3 http://ieeexplore.ieee.org/Xplore/home.jsp
4 http://dl.acm.org/
5 http://www.springerlink.com/
6 http://www.sciencedirect.com/

7 Supporting Project Management Through Integrated Management of System and. . . 165

http://dx.doi.org/10.1007/978-3-642-55035-5_11
http://ieeexplore.ieee.org/Xplore/home.jsp
http://dl.acm.org/
http://www.springerlink.com/
http://www.sciencedirect.com/

(see Table 7.2). The first term is divided into terms for the four system knowledge

areas of interest, namely, requirements, design, code, and test. To reduce the

number of similar terms required in the search string, we used wild cards (*), for

example, test* to cover terms like testing, test case, etc. The second term ensures

that traceability links between the elements are considered. Furthermore, we

explicitly searched for papers in the Mining Software Repositories7 (MSR) com-

munity, with the terms “mining” and “msr”, because in this community data mining

techniques are often applied to create or use links between work items and code.

The third term is a collection of various synonyms for work item. All three terms

had to appear in the title, abstract, or keywords of the papers.

The searches were executed in February 2013. We had a total of 814 hits for the

four sources. Two exclusion rounds were performed to identify the relevant papers.

Papers were considered relevant if they considered work items and links to one of

the four knowledge areas. In the first exclusion round, we looked only at the title

and abstract of each paper and identified 45 relevant papers. We aggregated all

results and removed duplicates, resulting in a total of 36 papers. In the second

exclusion round, we looked at the abstracts and, in those cases where the abstract

did not contain enough information, at the introduction and conclusion. In the end,

we identified a total of 19 papers as relevant (requirements¼ 5, code¼ 12,

design¼ 0, test¼ 2).

7.3.1 Search for Decision Literature

The final search string had two terms: the first in two variants (see Table 7.3). The

first term 1a addresses decision knowledge and drivers for decisions. It was used

again in IEEE, ACM, SpringerLink, and ScienceDirect. For SpringerLink and

ScienceDirect, we restricted the search to “Computer Science.” A search for

Table 7.2 Derived search terms for work items

Search terms Restriction

Term 1 – Requirements: requirement OR “system specification”

– Design: architecture OR “software design”

– Code: code OR repository OR revision OR vcs OR “version

control system”

– Test: test*

Title, abstract,

keywords

AND

Term 2 Trace OR traceability OR link OR relation OR mining OR msr Title, abstract,

keywords

AND

Term 3 “Work item” OR “action item” OR “bug report” OR “change request”

OR ticket OR “project management”

Title, abstract,

keywords

7 http://msrconf.org/

166 B. Paech et al.

http://msrconf.org/

“decision” or “design decision” as single terms produced far too many results. To

be able to cover design decisions as well, we included typical approaches for design

decision knowledge by manual search. Many other related topics, such as decision

science or management, are also very comprehensive, so it was not our goal to

cover them completely. However, we again considered these fields in our manual

search in selected publications. In addition, a search in the International Journal of
Software Engineering and Knowledge Engineering8 was conducted with a broader

search term (see term 1b). The second search term restricts the application of

decisions as we were interested in the capture, models, representations, links, and

uses of decisions. We included “information” to cover unstructured representations

of decision knowledge. The usage of decisions was described by the more specific

alternatives “benefit” and “advantage.” All terms had to appear either in the title,

the abstract, or the keywords of the papers.

The searches were executed in October 2012. In total, we had 520 hits. From the

separate manual search, we had another 21 hits. Two exclusion rounds were

performed on these 541 hits. Hits were considered as relevant if they explicitly

addressed decision knowledge and its contents, representation, capture, linking to

the other knowledge areas, or usage. Moreover, hits were not considered if the full

text was not retrievable or if they were duplicated. In the first round, the titles and, if

necessary, the abstracts were evaluated. This revealed 77 hits. In the second round,

all abstracts were examined, and promising papers were fully read. In the end, we

identified a total of 33 papers as relevant. Twenty-one of them resulted from engine

search. In particular, 19 results were found by term 1a and 2 by term 1b (IJSEKE).

Another ten relevant papers resulted from the manual search and are marked by the

character “m” in superscript form when being referenced.

Finally, we want to emphasize that the restrictions in sources and search terms

can be threats to the validity of our literature review. We included as many sources

as feasible, but still even more conferences and journals could be considered. In

particular, this is a possible threat to our manual search for literature on design

Table 7.3 Derived search terms for decisions

Search terms Restriction

Term 1a “Decision knowledge” OR “decision rationale” OR “decision

motivation” OR “decision intention”

Title, abstract,

keywords

Term 1b “Decision knowledge” OR “decision rationale” OR “decision

motivation” OR “decision intention” OR “design decision” OR

“requirements decision” OR “implementation decision” OR

“test decision” OR “maintenance decision” OR (“management

decision” AND “software project”)

Title, abstract,

keywords

AND

Term 2 Model OR representation OR information OR capture OR link OR

benefit OR advantage

Title, abstract,

keywords

8 http://www.worldscientific.com/worldscinet/ijseke

7 Supporting Project Management Through Integrated Management of System and. . . 167

http://www.worldscientific.com/worldscinet/ijseke

decisions. Next, the search mechanisms provided for each source are evolving over

time and might vary in the quantity of results and the quality of hits. Moreover,

contributions might have been classified incorrectly during the assessments as only

one author per search performed them. Lastly, many empirical contributions we

found have their own threats to validity, which can also impact the conclusions

drawn from our review. These threats are mentioned separately in Sects. 7.4

and 7.5.

7.4 Integrating System and Project Knowledge Using

Work Items

Work items represent explicit knowledge about the process executed in the project.

This knowledge is gathered, updated, and detailed continuously over time. In

Sect. 7.4.1, we provide an overview of the search results on work items answering

RQ1 to RQ4 with respect to the links between work items and system knowledge. In

Sect. 7.4.2, we present our own research on integrating system and project knowl-

edge with work items. The following sections refer back to Sect. 7.2 to describe

already available empirical evidence for certain parts of our vision of ISPKM.

7.4.1 Results of the Literature Review

Each of the following sections covers one knowledge area: requirements (see

Sect. 7.4.1.1), code (see Sect. 7.4.1.2), and test (see Sect. 7.4.1.3). We did not

find approaches that link work items and design.

7.4.1.1 Requirements and Work Items

Links between requirements are extensively studied in the requirements engineer-

ing community, for example, by Cleland-Huang et al. (2012). However, only very

few approaches consider links between requirements and work items.

Creation of Links between Requirements and Work Items (RQ1, RQ3,

RQ4). Table 7.4 summarizes the approaches for creating links between require-

ments and work items. Link creation, tool support, and empirical evidence are

emphasized.

All approaches use textual requirements as development artifacts. In the

approaches of Helming et al., the traceability links between requirements and

work items are created manually. They implemented their approach in the model-

based CASE-tool UNICASE, which is an application based on the Eclipse

168 B. Paech et al.

framework. UNICASE is capable of storing all kinds of system and project knowl-

edge and the traceability links between them in a single environment.

The approach by Yadla et al. (2005) supports the automatic linking of require-

ments to bug reports as a special kind of work item, using information retrieval

(IR) techniques. It is implemented in the tool RETRO (REquirements TRacing

On-target). Basically, the approach uses the IR techniques to search for similarities

of texts in requirements and in bug reports. The search is not automatically applied

as soon as a bug report is created, but a team member can manually initiate the

approach at any time during the project. They evaluated their approach based on

two data sets for a NASA scientific instrument. For the first data set, they found a

precision (fraction of retrieved instances that are relevant) of 0.69 and a recall

(fraction of relevant instances that are retrieved) of 0.85. For the second data set,

they found a precision of 0.99 and a recall of 0.70. Results in this range are very

good and comparable to manual linkage (Maeder and Gotel 2012).

Thus, there is first evidence that the effort of link capture can be alleviated by

automation.

Usages of Links between Requirements and Work Items (RQ2, RQ3, RQ4).

Table 7.5 provides an overview of the usage of links between requirements and

work items.

In Sect. 7.2, our vision introduced several examples of how traceability links

between requirements and work items can be used. Helming et al. provide empirical

evidence based on the data of the UNICASE development project that these links

support direct navigation, comprehension support, and project reporting (Helming

et al. 2009a, b). They observed that as long as work items and requirements stand in

meaningful relation to each other (e.g., a work item is referencing a requirement in

its textual description), users navigate between them, even when there are no

explicit links between them. They confirmed the expected benefit that direct

navigation saves time. In their analysis, developers achieved significantly lower

navigation distances for linked artifacts than for non-linked artifacts.

The aggregation of links can provide further comprehension support. UNICASE

provides an overview of the requirements and the number of associated open work

items over time. The authors confirmed our vision that an overview of the comple-

tion status of work items that are linked to requirements realistically visualizes the

team status, similar to burn-down charts in SCRUM. Helming et al. also confirmed

that requirements linked to work items have a higher level of actuality, meaning

that developers keep the requirements related to their work items more upto-date.

They showed that the number of changes for linked artifacts is significantly higher

than for non-linked artifacts.

Table 7.4 Approaches creating links between requirements and work items

Approach Link creation Tool support Empirical evidence

Helming et al. (2009a, b, c, 2010) Manual UNICASE –

Yadla et al. (2005) Automatic RETRO Industrial

7 Supporting Project Management Through Integrated Management of System and. . . 169

Another benefit of links between requirements and work items that we intro-

duced in Sect. 7.2 is improved change awareness. The notification strategy of

Helming et al. (2009c) is based on the traceability links between requirements

and work items. Based on the data of a big student project with a real customer, they

showed that this traceability-based notification strategy results in a low number of

notifications with a high rating of user satisfaction.

As described in Sect. 7.2, the assignment of work items to developers is one

important task of a project manager. Helming et al. applied existing machine

learning techniques as well as a novel approach relying on the links to assign

work items to developers (Helming et al. 2010). They evaluated all approaches

on three big UNICASE projects. The novel approach did outperform the other

approaches whenever it was applicable.

Altogether, the work of Helming et al. provides a first evidence for the useful-

ness of ISPKM related to requirements.

7.4.1.2 Code and Work Items

Many commercial software development projects as well as open source projects

(e.g., Eclipse, Apache, etc.) use issue trackers (Skerrett 2011) together with a

centralized version control system (VCS) like Subversion or the increasingly

popular Git. A major focus of the MSR community is to apply data mining

techniques to analyze the vast amounts of data stored in issue tracking systems

and VCSs. Our literature review found, in addition to specific approaches, the paper

by Hassan (2008), which presents a brief history of MSR and discusses the

achievements so far. In the following, we discuss the specific approaches to capture

links between code and work items.

Creation of Links between Code and Work Items (RQ1, RQ3, RQ4).

Table 7.6 provides an overview of approaches and tools creating links, sorted

according to their year of publication. Although Nguyen et al. do not present an

approach for the creation of links, we identified the paper as relevant and included it

in the discussion in this section, because they present empirical evidence for the

creation of links between code and work items.

Table 7.5 Approaches using links between requirements and work items

Approach Usage Tool support

Empirical

evidence

Helming et al.

(2009a, b)

Direct navigation, comprehension support,

project reporting

UNICASE Academic

Up-to-date requirements specification

Helming et al. (2009c) Change awareness UNICASE Academic

Helming et al. (2010) Automatic assignment of work items to

developers

UNICASE Academic

170 B. Paech et al.

Bachmann et al. present an approach that helps to automatically link revisions

and bug reports after development (Bachmann et al. 2010). They engaged an expert

core developer from the Apache open source project to classify 6 full weeks of the

Apache VCS history. They used this data set consisting of 493 revisions and their

automatic approach to analyze the connection between the bug reports and the

revision data. Bachmann et al. found (among other insights) that not all fixed bugs

are stored in the issue tracker. Some are discussed (only) on the mailing list.

Furthermore, developers sometimes fix bugs that are only reported in other pro-

jects’ issue trackers, rather than in their own project’s issue tracker, and vice versa.

Thus, additional measures, such as incentives, are needed to make sure that project

work is accurately reflected in the work items.

Sureka et al. also presented an approach to automatically recover traceability

links between standalone bug reports and code files within a VCS (Sureka

et al. 2011). Complementing existing approaches that primarily apply regular

expressions (e.g., Bachmann et al. 2010), their approach uses a formal mathemat-

ical foundation (primarily based on probability theory). They could confirm the

feasibility of their approach on a much larger data set of 8,470 bug reports and

10,159 revisions.

The approach of Bangcharoensap et al. (2012) showed that code files can be

identified that may contain a bug based on the initial bug report description. Their

approach uses three mining approaches: text mining, code mining, and change

history mining. In a first step, the text mining approach measures the textual

similarities between the description of a bug report and all code files to identify a

ranked list of code files. In a second step, the code mining and change history

mining approaches are used to further reduce the potential list of erroneous code

files. They evaluated their approach using Eclipse platform project data consisting

of 2,950 bug reports and 48,764 code files, achieving an accuracy of about 53 %.

Davies et al. propose an approach that measures the similarity between the text

used in the bug report and the text of other already fixed bug reports together with

the fixed code (Davies et al. 2012). They showed that their own approach is not very

effective when used alone, but it showed statistically significant improvements

when used in combination with approaches measuring the textual similarity

between bug report descriptions and code files.

Nguyen et al. did not suggest a new approach, but studied linkage bias and

tagging bias (Nguyen et al. 2010). Linkage bias either means that a bug report is

linked to the wrong code or no code at all. Tagging bias means that not all bug

Table 7.6 Approaches creating links between code and work items

Approach Link creation Tool support Empirical evidence

Bachmann et al. (2010) Automatic Linkster Open source

Sureka et al. (2011) Automatic Experimental tool Open source

Bangcharoensap et al. (2012) Automatic – Open source

Davies et al. (2012) Automatic – Open source

Nguyen et al. (2010) – – Open source

7 Supporting Project Management Through Integrated Management of System and. . . 171

reports in an issue tracking system actually represent bugs. Instead, developers

often use issue tracking systems to track other issues such as work items, decisions,

and enhancements. Therefore, using such data might lead to incorrect bug counts

for the different parts of a software system. Nguyen et al. used a nearly ideal data set

from the IBM Jazz project consisting of 13,367 fixed bug reports and examined the

aforementioned biases. They found that even in this ideal setting, both types of

biases do exist in the data set. They argue that linkage bias is more likely due to the

software development process rather than being a side effect of the linking heuris-

tics. They also found that, even under tagging bias, existing bug prediction models

will still perform almost as if there was no bias.

Altogether, the literature so far focuses on bug reports when dealing with

ISPKM related to code. The study of Bachmann et al. shows that issue trackers

are not a perfect base, while Nguyen et al. show that manual link creation is not

perfect. The other approaches show that automatic creation is possible, but does not

yet achieve the precision of link creation between requirements and work items.

Usages of Links Between Code and Work Items (RQ2, RQ3, RQ4). Similar

to links between requirements and work items, links between code and work items

can be used in various ways (see Table 7.7).

Maeder and Egyed conducted a controlled experiment with 52 subjects (students

of computer science) performing 315 maintenance tasks on two third-party devel-

opment projects: half of the tasks with and the other half without traceability

navigation (Maeder and Egyed 2011). They concluded that the mere existence of

traceability links between work items and code has a profound effect on the

performance (21 % faster) and quality (60 % better) of the implementation tasks.

Furthermore, the existence of links fundamentally changed the way subjects nav-

igated through the code. They found that the subjects relied predominantly on

traceability navigation when it was available, displacing the manual search navi-

gation in most cases.

The subjects adopted traceability immediately as their major way of navigation

within the code, right from the first performed task, even without prior training.

However, the frequent usage of traceability links could be related to the inexperi-

ence of the students with the code.

The other approaches revealed in our search do not presume links. Instead, they

create temporary links between code and work items for specific usage. The

empirical evidence focuses on the correctness of the approaches and not on the

usage of the links.

As for requirements, Kagdi and Poshyvanyk study the use of IR techniques on

code files and work items to assign developers (Kagdi and Poshyvanyk 2009).

However, their evaluation is very preliminary as only one change request was

analyzed.

Canfora and Cerulo study the usefulness of IR to create links between code and

change requests for impact analysis, for example, for developers to identify code to

work on as well as for project managers for effort estimation of the change request

(Canfora and Cerulo 2005, 2006). Their method exploits IR techniques to identify

code file revisions impacted by past change requests similar to the actual one. They

172 B. Paech et al.

showed with a case study consisting of four open source projects (kcalc, kpdf,

kspread, Firefox) that the set of code files returned by their approach is correct in no

less than 30 % of the cases and reaches a maximum of 78 %.

In a follow-up work to Kagdi and Poshyvanyk (2009), Canfora and Cerulo

(2005, 2006), Gethers et al. also present an approach to perform impact analysis

of a given change request to code files (Gethers et al. 2011, 2012). The approach

uses a combination of information retrieval, dynamic analysis, and mining of

software repository techniques. In addition, this approach uses contextual informa-

tion such as the execution traces of the code and an initial code file that was verified

for change, meaning that this code file definitely needs to be considered. To validate

their approach, they conducted an empirical evaluation of four open source projects

(jEdit, ArgoUML, muCom, JabRef). Their results indicate that their approach

shows statistically significant improvements of these approaches. They only rely

on the textual description of the change requests. In certain cases, an improvement

of 17 % in precision and 41 % in recall was gained.

Altogether, while the explicit creation of links to code has mainly been studied

for big reports, several usages have been studied that implicitly generate links

between more general work items and code. Evidence exists that direct navigation

provided by ISPKM related to code is useful. Furthermore, for assignment and

impact analysis, a better precision and recall can be achieved than for the general

creation approaches.

7.4.1.3 Test and Work Items (RQ1, RQ2)

Our literature review only identified two papers concerned with test cases and work

items together (see Table 7.8).

Bettenburg et al. conducted an extensive survey among 466 developers and

reporters of the Apache, Eclipse, and Mozilla projects to identify “what makes a

good bug report” in these projects (Bettenburg et al. 2008). Among many other

interesting insights, the developers and reporters said that it is very important to

have links between tests and bug reports. This was the second most common

Table 7.7 Usages of links between code and work items

Approach Usage Tool support

Empirical

evidence

Maeder and Egyed

(2011)

Direct navigation Experimental

tool

Academic

Up-to-date requirements

specification

Kagdi and Poshyvanyk

(2009)

Automatic assignment of work items

to developers

– Open source

Canfora and Cerulo

(2005, 2006)

Impact analysis Jimpa (Eclipse

plug-in)

Open source

Gethers et al. (2011,

2012)

Experimental tool Open source

7 Supporting Project Management Through Integrated Management of System and. . . 173

response, with 51 %. Thus, this survey confirms the usefulness of links between test

and work items.

Kaushik et al. proposed an approach using IR techniques to create traceability

links between bug reports and test cases, with the aim of recommending test cases

for bugs (Kaushik et al. 2011). They evaluated their approach using data from an

undisclosed industry project consisting of 9 closed bug reports and 13,380 test

cases. The approach was able to find the correct test cases for each bug report, but

returned a lot of irrelevant test cases as well. Therefore, the tester still has to select

the appropriate test cases from the list of returned test cases.

Altogether, the focus again is on bug reports. While there is evidence of their

usefulness, the work on the automatic creation of links to tests is only very

preliminary.

7.4.2 A More Comprehensive Integration of System
and Project Knowledge Through Work Items

In Sect. 7.2, we described our vision of how system and project knowledge could be

integrated. In particular, easy capture is important. The approaches discussed above

focus on linkage by IR techniques after the project work has been completed. This

motivated us to present a new approach to semiautomatically capture traceability
links between requirements, work items, and code during development (Delater
et al. 2012; Delater and Paech 2013a, b). Our approach captures traceability links

during development while developers work on work items. It is implemented in the

tool UTC (Delater and Paech 2013c) (UNICASE Trace Client), which is an

extension of UNICASE.

There are three options to create links: (A) The developer can select the work

item from his/her list of assigned work items before starting the implementation.
Then, UTC logs all requirements the developer looks at as well as all touched

code files and asks the developer to validate them before linking them to the work

item and checking them into the VCS. (B) Similar to the functionality of MyLyn,

the work item to be linked can be selected after the implementation and before the

check-in into the VCS. (C) Furthermore, a revision can be linked manually to a

work item after check-in into the VCS.

An evaluation in three software development projects with undergraduate stu-

dents (Delater and Paech 2013b) with varying durations between 5 weeks and

6 months showed that the students mainly used options B and C, while option A

was only used in 5–10 %. We think that option A will be used more often in larger

Table 7.8 Approaches creating or using links between tests and work items

Approach Link creation or usage Tool support Empirical evidence

Bettenburg et al. (2008) Direct navigation – Open source

Kaushik et al. (2011) Automatic – Industrial

174 B. Paech et al.

projects, but there was only a small amount of requirements in our projects. Here,

the subjects were very much familiar with the requirements and did not need to look

at them often during development. We used the two metrics precision (fraction of

retrieved instances that are relevant) and recall (fraction of relevant instances that

are retrieved) to measure the quality of the creation of the traceability links. In the

three projects, we achieved a precision of 0.865–0.89 and a recall of 0.90–0.92 for

the links between requirements and work items and a precision of 0.83–0.88 and a

recall of 0.85–0.92 for the links between work items and code. UTC also supports

the exploitation of work items to improve system knowledge by inferring direct

links between requirements and code from the links to the work items (a benefit

mentioned already in Sect. 7.2). In the three development projects, this resulted in a

precision between 0.835 and 0.88 and a recall between 0.89 and 0.92. This is

comparable to manually performed linkage (Maeder and Gotel 2012). However,

there are some threats to validity. Due to temporal restrictions, the sizes of the

development projects were limited, for example, the number of requirements and

developed code. This does not allow us to draw conclusions on larger projects. In

the development projects, all undergraduate students had basic knowledge in

software engineering. No undergraduate student had industrial experience. This

does not allow us to draw conclusions on more experienced developers from

industry.

Altogether, our approach gives a first evidence that it is feasible to capture the

links between work items and system knowledge during development and that this

can be used to improve the system knowledge.

7.5 Integrating System and Project Knowledge Using

Decisions

Work items are gathered, updated, and detailed continuously over time. Before,

while, or after a work item is executed, decisions are made. They often concern a

broad variety of system or project aspects. Examples are the determination of

milestone or deadline dates or the decision of how to realize a certain system

component.

However, decisions and rationale often remain undocumented for most of the

activities in software projects (Dutoit et al. 2006). Typically, they cannot fully be

recovered at later project stages (Canfora et al. 2000). This is likely to increase the

project teams’ effort and expenses, for example, during the maintenance of soft-

ware systems.

Hence, we argue that decisions should be treated similar to and related to work

items to facilitate their capture and use. In the following, we describe the state of the

art and practice concerning decision knowledge. The next section presents an

overview of concepts for decision knowledge and their documentation. Then, the

7 Supporting Project Management Through Integrated Management of System and. . . 175

capture, usage, and challenges of decision knowledge are discussed in order to

answer the research questions raised in Sect. 7.3.

7.5.1 Concepts for Decision Knowledge

In the following, we sketch decision-making strategies and approaches to document

decision knowledge. We use another four sources in addition to our review results

in order to explain typical rationale approaches. When being referenced, all those

sources are marked by the character “a” in superscript form (as mentioned in

Sect. 7.3, superscript “m” stands for manual search). More details on rationale

management can be found in the two books on rationale management in software

engineering (Burge et al. 2008; Dutoit et al. 2006)a.

Decision-Making Strategies. Decision-making strategies describe how the

solution of a given open question is determined.

Table 7.9 provides an overview of decision-making strategies applied in soft-

ware development found by our literature review.

According to Zannier et al., “much of [the] problem solving can be viewed as

problem structuring” (Zannier et al. 2007). Two kinds of problems are distin-

guished: the well-structured problem, for which criteria exist to describe the

relationships between the problem and the solution, and the ill-structured problem,
which needs structuring first to reveal such criteria. In a well-structured problem,

the problem-solving process is approached in a structured and managed way, using

the knowledge given by the criteria. On the contrary, ill-structured problems are

closely related to wicked problems. There is no stopping rule, and solutions cannot

be evaluated as true or false, but only as good or bad (Zannier et al. 2007).

According to Lipshitz et al. (2011)m and Zannier et al. (2007), two major types

of decision-making strategies can be distinguished: First, rational decision-making
strategies address well-structured problems. They aim at choosing the optimal

solution to a given problem. Rational decision-making strategies assume that

there is thorough information on the set of alternatives and their outcome so that

the evaluation of alternatives is comprehensive. This implies that the focus is on the

input and output of the decision as the alternatives are evaluated according to their

estimated performance for the given criteria. Moreover, rational decision-making

relies on formalism in developing abstract and context-free models of the decision.

A typical example for this kind of strategy is the multicriteria analysis with its

implementation in the analytic hierarchy process (AHP) (Saaty 1990)a.

The process of rational decision-making in teams has been evaluated by an

experiment of Mentis et al. with 36 participants (20 with undergraduate and 16 with

graduate degrees) in 12 teams (Mentis et al. 2009). The goal of the subjects was to

find an optimal solution to a given planning issue. Mentis et al. evaluated the

statements of the team discussions, classifying them as “State” for information

sharing, “Analyze” for the interpretation and summarizing of information and

“Argue” for positions concerning given statements. They found the beginning of

176 B. Paech et al.

group decision processes to be dominated by state contributions, whereas argue

contributions dominated the end. In newly built groups, state contributions

appeared most often, whereas argue-statements were observed most often in

established groups. During the whole process, information was shared continually.

Second, naturalistic decision-making strategies address ill-structured problems.

They assume a scenario with the need for a real-time reaction under dynamically

changing conditions. This shifts the determination of a solution from choosing

between alternatives to matching the given situation with a formerly experienced

one. In consequence, the goal is to find a sufficient solution that worked before.

Appropriate matches of situations are based on empirical prescriptions. Therefore,
naturalistic decision-making strategies aim at describing the prerequisites and rules
for matching situations rather than comparing outcomes. Their decision models are

informal and accept information to be incomplete. A typical example of this kind of

strategy is the recognition-primed model (Klein 2008)m, describing the creation

process of decision patterns.

Zannier et al. evaluated the use of decision-making strategies in software pro-

jects in an interview study with 25 professionals. They found that decisions are

often made by mixing these types of strategies, for example, by combining rational

and naturalistic decision-making (Zannier et al. 2007). This is particularly true for

agile projects, where developers tend to employ naturalistic decision-making with

rational decision-making elements (Zannier and Maurer 2006). It should be noted

that particular software development activities might require specialized decision-

making strategies. For example, Falessi et al. present a survey on software design

decision-making strategies (Falessi et al. 2011).

Documenting Decision Knowledge. The documentation of decision knowledge

depends on the strategy that was chosen to make a decision. Some approaches

treat knowledge from rational decision-making, whereas others fit to naturalistic

decision-making.

One knowledge metamodel typically considered for documenting decisions is

QOC by MacLean et al. (1991)a. It consists of six major elements. Questions

structure the problems to be explored. Options are the considered solution alterna-

tives, which can be evaluated and ranked with the help of criteria. Assessments link

criteria to options. Arguments can be used to challenge or support all elements and

particularly assessments. Decisions reflect the option finally selected. The elements

of QOC are similar to those used in the decision representation language (DRL)

approach by Lee (1991)a. Both approaches focus on the problem addressed by a

Table 7.9 Decision-making strategies from the literature review

Decision-making strategies Empirical evidence

Naturalistic (Zannier et al. 2007; Zannier and

Maurer 2006; Lipshitz et al. 2011m)

Industrial (Zannier et al. 2007; Zannier and

Maurer 2006)

Rational (Zannier et al. 2007; Zannier and

Maurer 2006; Lipshitz et al. 2011m)

Industrial (Zannier et al. 2007; Zannier and

Maurer 2006)

Academic (Mentis et al. 2009)

7 Supporting Project Management Through Integrated Management of System and. . . 177

decision, exploring the given issue, related criteria, and solution alternatives. In

their structure, they align with rational decision-making.

On the contrary, the choice of a particular solution without extensive problem

exploration can be documented via scenario-based claims analysis by Carroll and

Rosson (1992)a. Claims advocate a certain solution. They can be supported or

challenged by arguments, stating advantages and shortcomings of the claimed

solution. Both claims and arguments are derived from a usage scenario of the

solution. This perspective on decision knowledge aligns with naturalistic

decision-making, as it focuses on a scenario and its particular needs.

The approaches to document decision knowledge revealed by our literature

review propose their own metamodels for structuring decision knowledge contents.

However, they refer to or are built upon QOC/DRL or Scenario-based Claims

Analysis. For example, Tyree and Akerman point out that integration with the

typically used rationale metamodels is desirable (Tyree and Akerman 2005)m and

the approach of Burge and Brown (2004)m is directly based on DRL.

It should be noted that most of the approaches presented in the following aim at

documenting design and architecture decision knowledge. In addition, we found a

model for engineering decisions in general, a conceptual model for decision

rationale in maintenance, and a claim-based decision documentation model for

project and system knowledge. Requirements were often considered when

addressing decision knowledge in design.

In the sequel, we first present the metamodel of Tyree and Akerman (2005)m in

detail and then discuss the other approaches in comparison to it. We do so because

this metamodel is very comprehensive. In addition, it comprises 13 different

knowledge elements and can be employed as a simple text pattern with standard

text editors (see Table 7.10).

Next, we sketch the major differences between this pattern and the other

approaches (see Table 7.11, the entries are sorted in ascending order by year of

publication). Except for the approach of Smith et al., which can support naturalistic

decision-making and is therefore separated by a thick line, all other approaches

refer to rational decision-making.

Whereas the pattern of Tyree and Akerman is already comprehensive itself,

many new knowledge elements are added by other approaches. However, none

covers all. Furthermore, there is a dominance of documentation that aligns with

rational decision-making.

Regarding our vision described in Sect. 7.2, we observed that the documentation

approaches do support our vision well. Most documentation approaches offer

knowledge entities to document rationales and assumptions for decisions so that

risk management will benefit. Some approaches focus on enhancing links between

decisions and other artifacts.

For example, CM2 and RATSpeak appear to be particularly useful for project

control. They couple decision documentation closely to the systems’ source code so

that project participants are informed of decisions affecting this code. Other

approaches like DGA or TREx introduce further knowledge entities, such as project

goals or decision motivation as decision attributes. This helps the project manager

178 B. Paech et al.

to keep the decisions aligned with the projects’ requirements through additional

context information. Quality management can be enhanced by the links to quality

attributes in the approach of Capilla et al.

7.5.2 Decision Knowledge in Theory and Practice

Decisions often impact the development activity they originate from, but may also

constrain successive activities. In this section, we answer RQ1 to RQ4 with respect

to decisions and the links between decisions and system or other project knowledge.

First, we discuss the abilities of the presented approaches to capture decision

knowledge and to manage links between decisions and different knowledge areas.

Afterward, the usage of decision knowledge is described followed by a discussion

of empirical evidence and challenges.

The Capture of Decision Knowledge (RQ1, RQ3). We see three major

approaches for capturing decision knowledge and its links: manual elicitation,

automated extraction, or a hybrid approach. Whereas the manual elicitation

approaches provide support for documenting decision knowledge manually by the

users, the automated extraction approaches provide support for deriving decision

knowledge from existing sources. Hybrid approaches apply both manual elicitation

and automated extraction. In addition to the capture of the decision itself, the

approaches differ in the kinds of links they capture or create.

Table 7.10 Decision knowledge elements of the pattern by Tyree and Akerman

Knowledge

element Considered content

Issue Open questions addressed by the decision

Decision The alternative finally chosen in the decision

Status A state describing the current decision condition, like pending, approved, or

rejected (see Kruchten et al. 2006m for a sophisticated status model)

Group
Assumptions

The category the decision belongs to

Assumptions concerning the context of the decision and their influences on the

alternatives considered

Constraints Limitations that result from the chosen alternative

Positions Alternatives considered in the decision

Argument Rationale supporting the selected position

Implications The consequences which arise from the decision, like the need to adapt an

artifact

Related
decisions

Decisions related to the one described, e.g., due to influences or dependencies

Related
requirements

Software requirements that set or influence the objectives for the described

decision

Related artifacts Other artifacts being concerned by the decision or concerning it

Related
principles

Institutional principles that concerned or influenced the decision

Notes Further notes related to the decision process

7 Supporting Project Management Through Integrated Management of System and. . . 179

Table 7.12 provides an overview of the approaches and the links to the knowl-

edge areas with the entries sorted by year of publication in an ascending order. We

mention every tool we discovered that supports a particular approach. For the

Table 7.11 Additions to the pattern of Tyree and Akerman

Approach Main characteristics

Major Additions to Tyree

and Akerman Pattern

Cooperative conceptual

maintenance model

(CM2) (Canfora

et al. 2000)

Focus on decision rationale in the

software maintenance process;

comments are used to state ratio-

nales on source files

Refinement of related

artifacts

RATSpeak (Burge and

Brown 2004)m
Extends DRL; emphasis on position

and argument element

Background information

like tradeoffs, argu-

ment ontology

Jansen and Bosch (2005)m Focus on architecture decisions Refinement of implica-

tions through architec-

tural modifications

DAMSAK (Babar

et al. 2006)m
Focus on design decision and rationale Scenario descriptions for

decisions

Decision, goal, and alterna-

tives (DGA) (Falessi

et al. 2006a)

Extends Tyree and Akerman Project objectives

Kruchten et al. (2006)m Focus on design decisions; Many

relationships between decisions

such as “constrains”, “forbids”,

“enables”

Enhanced state model,

decision scope

Capilla et al. (2007m, 2011) Distinguishes optional and mandatory

attributes; Focus on relationships

between decisions and other

knowledge

Attributes for decision

evolution, Relation-

ships to quality

attributes

Zimmermann et al. (2007) Extends QOC Involved persons such as

decision identifier,

responsible, taker

Architecture rationale and

elements linkage

(AREL) (Tang

et al. 2007)m

Focus on design decisions and

rationale

Motivational reasons for

decisions

ADDRA (Jansen et al. 2008) Focus on design decisions, identified

by the delta between two architec-

tural states

Problem causes

Jansen et al. (2009) Focus on design decisions and knowl-

edge domain modeling

Tailored knowledge

metamodel

Könemann (2009) Focus on design decisions UML design models

Rockwell et al. (2009) Focus on engineering design Extended description of

alternatives

Toeska rationale extraction

(TREx) (López

et al. 2012)

Focus on realization of non-functional

requirements (NFR)

Ontology for architecture

and NFR; Decision

goals

Smith et al. (2005) Decisions and system and project

knowledge

Claims, references to pro-

ject knowledge

180 B. Paech et al.

following tools, we found a working URL: (SEURAT,9 Archium,10 ADDSS,11

AREL12). A more detailed tool evaluation can be found in two tool surveys by

Table 7.12 The capture of decision knowledge in different approaches

Approach Tool

Knowledge

Elicitation/

Extraction Links

CM2 (Canfora

et al. 2000)

COMANCHE Manual Decisions and code files

RATSpeak

(Burge and

Brown

2004)m

SEURAT SEURATArch-

itecture (Wang and

Burge 2010)

Manual Decisions and requirements and

artifacts

Archium (Jansen

and Bosch

2005)m

Archium Manual Decisions and architectural

knowledge

Smith

et al. (2005)

LINK-UP Manual Decisions and system and pro-

ject knowledge

Tyree and

Akerman

(2005)m

– Manual Decisions and other related

decisions, requirements and

artifacts

DAMSAK

(Babar

et al. 2006)m

PAKME (Babar and

Gorton 2007)m
Manual Decisions and requirements

DGA (Falessi

et al. 2006a)

– Manual Decisions and goals, other

related decisions, require-

ments and artifacts

Capilla

et al. (2007m,

2011)

ADDSS Manual Decisions and other related

decisions and architectural

knowledge

AREL (Tang

et al. 2007)m
AREL Manual Decisions and architectural

knowledge

Zimmermann

et al. (2007)

ADkwik Hybrid Decisions and architectural

knowledge

ADDRA (Jansen

et al. 2008)

– Automated Decisions and architectural

knowledge

Jansen

et al. (2009)

Knowledge architect Hybrid Decisions and architectural

knowledge

Könemann

(2009)

– Manual Decisions and UML models

Rockwell

et al. (2009)

– Manual Decisions and requirements

TREx (López

et al. 2012)

Plugins/Rationale

Repository

Automated Decisions and text documents

9 http://www.users.muohio.edu/burgeje/SEURAT/
10 http://www.archium.net/
11 http://triana.escet.urjc.es/ADDSS/
12 http://www.ict.swin.edu.au/personal/atang/AREL-Tool.zip

7 Supporting Project Management Through Integrated Management of System and. . . 181

http://www.users.muohio.edu/burgeje/SEURAT/
http://www.archium.net/
http://triana.escet.urjc.es/ADDSS/
http://www.ict.swin.edu.au/personal/atang/AREL-Tool.zip

Tang et al. (2010), Babar et al. (2007), which were also brought up by our literature

review. The early approaches up to AREL and the approach of Rockwell et al. and

Könemann record decision rationales and create links manually by user input.

ADDRA and TREx use automated tool-supported extraction of decision rationales

from given artifacts. ADDRA recovers architectural models from given source code

and other documents and then derives architectural deltas indicating decisions.

TREx gathers decision knowledge by text mining in given plaintext development

documents.

Two hybrid approaches by Zimmermann et al. and Jansen et al. allow users to

enter data manually according to the respective metamodels. Zimmermann

et al. also use requirement descriptions to derive an initial description of the design

decisions for the software. Jansen et al. manually extract a project-specific decision

rationale model.

Regarding the knowledge areas, many approaches link decisions and architec-

tural knowledge or requirements on which they are grounded or which they impact.

Additionally, links to other related decisions are supported. The CM2 approach and

RATSpeak with SEURAT enable developers to link their decision rationale

descriptions manually to their respective code file. The approach of Smith

et al. allows annotating system or project knowledge elements with claims. In

particular, project deadlines and the resource planning for projects can be linked

to decision knowledge. The pattern of Tyree and Akerman, and therefore also DGA,

provide the option to manually create links to any decision-related artifact from the

development process. The TREx approach links a decision rationale to the docu-

ments it originates from.

Altogether, we observe that decisions are mainly linked to system knowledge,

such as system components or requirements. Links focusing on project knowledge

can only be found in the approach of Smith et al. Our literature review did not reveal

any approach linking work items and decisions. In contrast to the capture of work

items and their links, decisions and their links are mainly captured manually. One

reason for this is probably that so far, no commercial tool for the decision capture

does exist.

Usage of Decision Knowledge (RQ2). An overview of all usages and the

corresponding approaches can be found in Table 7.13.

Many benefits presented in our vision in Sect. 7.2 are supported in these

approaches. All approaches aim to increase the understanding of development by

transparent decision-making and direct navigation. These usages serve to improve

project execution as well as to manage quality. One approach directly aims at

enhancing risk management. Two approaches support decision enforcement: Zim-

mermann et al. propose to inject decision contents when models are transformed or

code is generated and Könemann advocates a similar idea when decisions are

captured with their corresponding UML models. Four approaches support impact

analysis for decision changes.

In addition to tracing the decision impact, AREL also supports tracing decisions

to other knowledge along their causes. Thus, causes such as requirements or

constraints can be uncovered when assessing a knowledge element. However, no

182 B. Paech et al.

approach provides particular support for analyzing the impact of system knowledge

changes on decision knowledge or for information distribution. Also, no approach

particularly supports quality management or stakeholder communication.

Empirical Evaluation of Documentation and Usage (RQ4). As discussed in

the last section, the documentation of decision knowledge can be beneficial for

development activities and for software project management in particular. Some

empirical evidence for this was revealed by our literature review, but there are also

challenges uncovered by empirical research. In Table 7.14, an overview of empir-

ical studies is given, grouped by their approach or topic.

The need for documenting decisions in software projects is shown in a study

conducted by Aurum et al., who interviewed key project team members in a

software project with 30 team members of a large Australian insurance company

(Aurum et al. 2006). It was found that many decisions were made uninformed, as

the issue perception of team members is heterogeneous and the decision leader and

decision executor are not the same person by default. Here, there is the need to

discuss and align different understandings of issues within the project, which can be

done by evaluating and reviewing the documentation of decisions.

Falessi et al. conducted two controlled experiments employing the DGA

approach, including the pattern of Tyree and Akerman (2005). They involved

50 master students per study at two universities in Italy and Spain (Falessi

et al. 2008a, b). The subjects had to evaluate given decision descriptions structured

by the DGA approach. In detail, it was asked whether particular knowledge

elements were required in order to understand the documented decision. In both

studies, the decision knowledge elements “Issue,” “Decision,” and “Related

requirements” were found to be the three elements that were required by most

participants. Moreover, the evaluation of their Italian study showed that DGA

documentation did not significantly affect the time needed for the individual and

team decision process, but increased the effectiveness of both decision processes

(Falessi et al. 2006b).

A controlled experiment for RATSpeak and SEURAT was performed with two

groups of ten users. It indicated that identifying changes in the code and

maintaining software was alleviated by the use of SEURAT (Burge and Brown

2008)m.

However, threats to validity exist for each study. The project studied in Aurum

et al. (2006) was complex and customer-specific, so results might vary for smaller

Table 7.13 Usages for decision knowledge

Usage Approaches

Transparent decision-

making

All

Direct navigation All

Decision enforcement Zimmermann et al. (2007), Könemann (2009)

Impact analysis RATSpeak (Burge and Brown 2004), AREL (Tang et al. 2007)m, ADDRA

(Jansen et al. 2008), (Jansen et al. 2009)

Risk management Smith et al. (2005)

7 Supporting Project Management Through Integrated Management of System and. . . 183

projects and projects in different domains. Falessi et al. point out the designed

environment of their study, which might affect the transfer of the results to practice

(Falessi et al. 2006b). Burge and Brown particularly mention the small size of the

groups in their study as a cause for individual differences (Burge and Brown 2008).

Furthermore, some challenges exist that might influence the success of

establishing and using a decision documentation culture in a project. A survey of

Tang et al. with 81 practitioners revealed two kinds of challenges (Tang

et al. 2006)m. Similar challenges are described in Dutoit et al. (2006)a.

• Psychological challenges: People tend to document positive information more

often than negative. Especially when using decisions as a measure for uncer-

tainty, the documented knowledge may not fully reflect the given information in

a project. In addition, staff members may be interested not to disclose all their

knowledge in order to strengthen their own position. So it is important to

establish a knowledge sharing culture in a project and reward knowledge-sharing

actively.

• Practical challenges: Team members may not be able or do not want to spend

the effort of documenting decisions and their rationales. It is important to plan

the project in a way that allows knowledge documentation and reflection. Also,

the given approaches to document decision knowledge are likely not to fit all

project contexts. In small and noncomplex projects, rationale documentation is

not found to be necessary by team members due to the increased effort with low

benefits at hand. Therefore, it is necessary to tailor the documentation technique

to individual project needs. Moreover, the tool support for documenting decision

knowledge is limited.

Altogether, there is a first evidence for the need of decision knowledge, as well

as for the usefulness of some decision knowledge. The evidence regarding

RATSpeak and SEURAT supports the benefits of links between system knowledge

and decisions. However, it is likely that establishing the capture of decision

knowledge is more difficult than for work items and their knowledge.

Table 7.14 Empirical evaluation of decision knowledge documentation

Topic or approach Empirical evidence

Needs for decision knowledge Industrial (Aurum et al. 2006)

RATSpeak with SEURAT, impact analysis Academic (Burge and Brown 2008)m

DGA Academic (Falessi et al. 2006b, 2008a, b)

Challenges in decision documentation Industrial (Tang et al. 2006)m

184 B. Paech et al.

7.6 Research Issues on Integrating System and Project

Knowledge

Our vision on ISPKM discussed many practical benefits. As can be seen from

Table 7.1, many of them have been confirmed for work items in the first studies.

Also, for the usefulness of decision knowledge, some evidence does exist. In the

following, we list several research challenges that need to be solved to make

ISPKM really useful in practice.

The literature review on work items has shown that only few approaches support

explicit links to work items. Code is mainly linked to bug reports. Furthermore,

work items have so far not been linked to design. The links are mainly used for

navigation, comprehension support, assignment of work, and support of the change

process in terms of change awareness, motivation to keep system knowledge up-to-

date, and impact analysis.

The literature review on decision knowledge has shown that decision knowledge

in itself is very complex. There are many different approaches to its documentation,

mainly focusing on rational decision-making. Furthermore, most approaches rely

on the project participants to create the decision knowledge manually. Thus, the

capture effort is a major problem. Decisions are mostly linked to system knowledge

and used for direct navigation. In the area of project management, risk management

is supported by the capture of rationales. First approaches exist that support the

consistency between decisions and the impacted knowledge, but their usage for

information distribution and stakeholder communication is not yet supported. Also,

work items and decisions are not linked.

The following research issues are derived from the gap between our vision in

ISPKM and the insights above, as well as from our experiences based on the work

we described in Sect. 7.4.2.

7.6.1 Project Knowledge

Improved documentation of decisions mixing naturalistic and rational decision-
making: As discussed in Sect. 7.5.1, empirical evidence has shown that project

participants apply both rational and naturalistic decision-making. Thus, it is impor-

tant that these two kinds can be supported in parallel. However, only very few

approaches support naturalistic decision-making. In our view, this is one of the

reasons, why decision knowledge capture is not accepted in practice. As can be seen

from the use of social media in software projects (see Chap. 16), software project

participants like to share knowledge in a flexible way. Furthermore, it should be

possible to transform rational decision knowledge into naturalistic knowledge and

vice versa. Thus, it is necessary to study how naturalistic decision-making can be

supported. For example, it should be possible to condense all rationales and

decisions relevant for a specific system knowledge element into one claim that

7 Supporting Project Management Through Integrated Management of System and. . . 185

http://dx.doi.org/10.1007/978-3-642-55035-5_16

argues for this specific element. Similarly, it should be possible to start out with

claims and gradually enrich these with decision knowledge and rationales. The

transformation between these two kinds could also help to support the enforcement

of decisions in the corresponding knowledge.

Integrating work items and decision knowledge to alleviate the decision cap-
ture: An additional way to alleviate the capture of decision knowledge is to relate it
to work items. Decisions result from the work that is continually done in the project,

which is described in work items. Every time a work item is performed, decisions

have been made before, while, or after working. Thus, work items and decisions

could be captured together and linked directly (similar to the capture of links to

code described in Sect. 7.4.2) so that the context and history of decisions is

understood from the project knowledge point of view. Furthermore, the system

knowledge linked to the work items could provide a context for the decisions. Both

benefits also work the other way round. Decisions provide project context for the

work items, and system knowledge related to decisions provides system knowledge

important for the work item. Care must be taken to minimize the capture effort, so

that, for example, requirements need not be linked manually to both work items and

decisions. As discussed below, all these links should be exploited with dedicated

algorithms and aggregated for project monitoring, reporting, and risk management.

Dealing with implicit knowledge related to decisions based on links: It is well
known that because of the huge amount of implicit knowledge in software projects,

access to implicit knowledge (often called tacit knowledge) should also be

supported (Gervasi et al. 2013). Based on our experiences with links between

work items and system knowledge, we suggest that links from system and project

knowledge to the persons touching it could be captured automatically. They then

serve as a hint of where to find implicit knowledge.

7.6.2 System and Project Knowledge

Improved capture of links: Clearly, efficient capture of the links is of utmost

importance for link usage in practice. This is a general issue, not only for links

concerning work items or decisions (Cleland-Huang et al. 2012). There are many

approaches using IR techniques, but precision and recall is in general not yet

sufficient for practice. Therefore, it is important to use other information in the

link creation process such as logs from the development process. The semiauto-

matic capture based on logging provided by MyLyn and our approach are first steps

in this direction.

More comprehensive integration of system knowledge: The existing

approaches should be extended to deal with other kinds of system knowledge. In

particular, the semi-automatic approaches of capturing related system knowledge

while working on a work item could be extended to also capture related design and

test or project knowledge. In addition, more different kinds of work items could be

supported when creating and using the links. As for work items, current decision

186 B. Paech et al.

knowledge approaches do not comprehensively relate decisions and system knowl-

edge. In particular, decisions concerning code or tests are not documented explicitly

so far. Furthermore, there are many different approaches for capturing architectural

decision knowledge. Thus, research is necessary to identify the most important

decision knowledge elements for the different system knowledge areas.

Intelligent exploitation and management of the links: Links can be exploited to
uncover further relationships between system and project knowledge elements. As

suggested in our own approach (Sect. 7.4.2), from the links between requirements

and a work item as well as between the work item and the code, one can infer direct

links between requirements and code. However, over time, links inferred from one

work item might be made obsolete by work on other work items. Thus, intelligent

algorithms are needed to discard derived links not relevant any longer. In general,

intelligent algorithms are needed to manage the links over time. Very likely, this

will depend on the kind of knowledge and links so that many different dedicated

approaches need to be developed.

Improved support for project managers: In Sect. 7.2, we have listed many

project management activities that could be supported by ISPKM. For many of

them, some first approaches and evidence exist (see Table 7.1). More such

approaches need to be developed. In any case, the approaches need to be incorpo-

rated into commercial tools. For issue trackers, this seems to be viable in the near

future.

More empirical evidence: As there are only few approaches integrating system

and project knowledge management comprehensively, empirical studies on the

benefits of the integration can so far only be conducted as experiments such as

Maeder and Egyed (2011). More such evidence is needed. In particular, it is

important to understand the benefits of semiautomatic capture (similar to our

approach) and to conduct studies in industry. The latter will only be possible if

these ideas are integrated into commercial tools as mentioned above.

7.7 Conclusions and Outlook

This chapter discussed the capture and use of work items and decisions and related

system and project knowledge. While work items are often captured in practice,

only few approaches link them explicitly with other kinds of knowledge. In

contrast, decisions are rarely captured in practice; however, there are many differ-

ent academic approaches for their documentation. In both cases, some first empir-

ical evidence exists that links between work items or decisions on the one hand and

system and other project knowledge on the other hand are beneficial in general and

in particular for project management activities.

Our own work focuses on two aspects: In order to alleviate the capture of system

and project knowledge and their links, we are working on the semi-automatic

capture and exploitation of links between work items and other kinds of knowledge.

In order to support decision-making in practice, we work on tool support to

7 Supporting Project Management Through Integrated Management of System and. . . 187

integrate naturalistic and rational decision-making. Based on these two results, we

hope to be able to support and study ISPKM in practice.

Acknowledgments This work was partially supported by the DFG (German Research Founda-

tion) under the Priority Programme SPP1593: Design for Future—Managed Software Evolution.

We thank the reviewers for their helpful comments.

References

Aurum A, Jefferey R, Wohlin C, Handzic M (eds) (2003) Managing software engineering

knowledge. Springer, Berlin

Aurum A,Wohlin C, Porter A (2006) Aligning software project decisions: a case study. Int J Softw

Eng Knowl Eng 16(6):795–818

Babar MA, Gorton I (2007) A tool for managing software architecture knowledge. In: SHARK/

ADI’07: 2nd workshop on sharing and reusing architectural knowledge - architecture, ratio-

nale, and design. IEEE, Minneapolis, MN

Babar MA, Gorton I, Kitchenham B (2006) A framework for supporting architecture knowledge

and rationale management. In: Dutoit AH, McCall R, Mistrik I, Paech B (eds) Rationale

management in software engineering. Springer, Berlin

Babar MA, de Boer RC, Dingsoyr T, Farenhorst R (2007) Architectural knowledge management

strategies: approaches in research and industry. In: SHARK/ADI’07: 2nd workshop on sharing

and reusing architectural knowledge - architecture, rationale, and design. IEEE, Minneapolis,

MN

Bachmann A, Bird C, Rahman F, Devanbu P, Bernstein A (2010) The missing links: bugs and

bug-fix commits. In: FSE: 18th ACM SIGSOFT international symposium on foundations of

software engineering, pp 97–106

Bangcharoensap P, Ihara A, Kamei Y, Matsumoto K (2012) Locating source code to be fixed based

on initial bug reports - a case study on the eclipse project. In: International workshop on

empirical software engineering in practice, pp 10–15

Bettenburg N, Just S, Schröter A, Weiss C, Premraj R, Zimmermann T (2008) What makes a good

bug report? In: FSE: 16th ACM SIGSOFT international symposium on foundations of software

engineering. ACM, New York, NY, pp 308–318

Bjørnson FO, Dingsøyr T (2008) Knowledge management in software engineering: a systematic

review of studied concepts, findings and research methods used. Inf Softw Technol

50:1055–1068

Burge JE, Brown DC (2004) An integrated approach for software design checking using design

rationale. In: First international conference of design computing and cognition, pp 557–576

Burge JE, Brown DC (2008) Software engineering using RATionale. J Syst Softw 81(3):395–413

Burge JE, Carroll JM, McCall R, Mistrik I (2008) Rationale-based software engineering. Springer,

Berlin

Canfora G, Cerulo L (2005) Impact analysis by mining software and change request repositories.

In: 11th IEEE international symposium software metrics, Como, pp 21–29

Canfora G, Cerulo L (2006) Jimpa: an eclipse plug-in for impact analysis. In: CSMR: 10th

European conference on software maintenance and reengineering, Bari, pp 340–342

Canfora G, Casazza G, de Lucia A (2000) A design rationale based environment for cooperative

maintenance. Int J Softw Eng Knowl Eng 10(5):627–645

Capilla R, Nava F, Duenas JC (2007) Modeling and documenting the evolution of architectural

design decisions. In: SHARK/ADI’07: 2nd workshop on sharing and reusing architectural

knowledge - architecture, rationale, and design. IEEE Computer Society, Washington, DC

188 B. Paech et al.

Capilla R, Zimmermann O, Zdun U, Avgeriou P, Kuester JM (2011) An enhanced architectural

knowledge metamodel linking architectural design decisions to other artifacts in the software

engineering lifecycle. In: ECSA: 5th european conference on software architecture, Essen,

Germany, pp 303–318

Carroll JM, Rosson MB (1992) Getting around the task-artifact cycle: how to make claims and

design by scenario. ACM Trans Inf Syst 10(2):181–212

Cleland-Huang J, Gotel O, Zisman A (eds) (2012) Software and systems traceability. Springer,

New York

Davies S, Roper M, Wood M (2012) Using bug report similarity to enhance bug localisation. In:

WCRE: working conference on reverse engineering, Kingston, pp 125–134

Delater A, Paech B (2013a) Analyzing the tracing of requirements and source code during

software development: a research preview. In: REFSQ’13: 19th international working confer-

ence on requirements engineering: foundation for software quality, LNCS, vol 7830. Springer,

Berlin, pp 308–314

Delater A, Paech B (2013b) Tracing requirements and source code during software development:

an empirical study. In: ESEM’13: 7th ACM/IEEE international symposium on empirical

software engineering and measurement, Baltimore, MD, pp 24–35

Delater A, Paech B (2013c) UNICASE trace client: a CASE tool integrating requirements

engineering, project management and code implementation. In: Workshop Nutzung und

Nutzen von Traceability. Lecture notes in informatics, vol 215. GI, pp 459–463

Delater A, Narayan N, Paech B (2012) Tracing requirements and source code during software

development. In: ICSEA’12: 7th international conference of software engineering advances,

pp 274–282

Duncan WR (2013) A guide to the project management body of knowledge (PMBOK® guide), 5th

edn. Project Management Institute (PMI)

Dutoit AH, Paech B (2001) Rationale management in software engineering. In: Chang SK

(ed) Handbook of software engineering and knowledge engineering, vol 1. World Scientific,

Singapore

Dutoit AH, McCall R, Mistrik I, Paech B (eds) (2006) Rationale management in software

engineering. Springer, Berlin

Falessi D, Becker M, Cantone G (2006a) Design decision rationale: experiences and steps ahead

towards systematic use. SIGSOFT Softw Eng Notes 31(5)

Falessi D, Cantone G, Becker M (2006b) Documenting design decision rationale to improve

individual and team design decision making. In: ISESE’06: international symposium on

empirical software engineering. ACM Press, New York, pp 134–143

Falessi D, Cantone G, Kruchten P (2008a) Value-based design decision rationale documentation:

principles and empirical feasibility study. In: WICSA 08: seventh working IEEE/IFIP confer-

ence on software architecture. IEEE, Vancouver, BC, pp 189–198

Falessi D, Capilla R, Cantone G (2008b) A value-based approach for documenting design

decisions rationale. In: SHARK’08: 3rd international workshop on Sharing and reusing

architectural knowledge. ACM Press, New York, pp 63–70

Falessi D, Cantone G, Kazman R, Kruchten P (2011) Decision-making techniques for software

architecture design: a comparative survey. ACM Comput Surv 43(4):Article 33

Gervasi V, Gacitua R, Rouncefield M, Sawyer P, Kof L, Li M, Piwek P, De Roeck A, Willis A,

Hui Y, Nuseibeh B (2013) Unpacking tacit knowledge for requirements engineering. In:

Maalej W, Thurimella AK (eds) Managing requirements knowledge. Springer, Heidelberg,

pp 23–48

Gethers M, Kagdi H, Dit B, Poshyvanyk D (2011) An adaptive approach to impact analysis from

change requests to source code. In: ASE: 26th IEEE/ACM international conference on

automated software engineering, Lawrence, KS, pp 540–543

Gethers M, Dit B, Kagdi H, Pashyvanyk D (2012) Integrated impact analysis for managing

software changes. In: ICSE: international conference on software engineering. IEEE,

Piscataway, NJ, pp 430–440

7 Supporting Project Management Through Integrated Management of System and. . . 189

Gotel O, Finkelstein A (1994) An analysis of the requirements traceability problem. In: First

international conference on requirements engineering, Colorado Springs, CO, pp 94–101

Hassan, AE (2008) The road ahead for mining software repositories. In: FoSM’08: frontiers of

software maintenance, Beijing, pp 48–57

Helming J, David J, Koegel M, Naughton H (2009a) Integrating system modeling with project

management - a case study. In: COMPSAC’09: international computer software and applica-

tions conference. IEEE Computer Society, Seattle, WA, pp 571–578

Helming J, Koegel M, Naughton H (2009b) Towards traceability from project management to

system models. In: TEFSE’09: ICSE workshop on traceability in emerging forms of software

engineering. IEEE Computer Society, Washington, DC, pp 11–15

Helming J, Koegel M, Naughton H, David J, Shterev A, Bruegge B (2009c) Traceability-based

change awareness. In: MODELS’09: 12th international conference on model driven engineer-

ing languages and systems. Springer, Berlin, pp 372–376

Helming J, Arndt H, Hodaie Z, Koegel M, Narayan N (2010) Automatic assignment of work items.

In: ENASE’10: evaluation of novel approaches to software engineering. Communications in

computer and information science. Springer, Berlin, pp 236–250

Jansen A, Bosch J (2005) Software architecture as a set of architectural design decisions. In:

WICSA’05: 5th working conference on software architecture. IEEE, Pittsburgh, PA, pp

109–120

Jansen A, Bosch J, Avgeriou P (2008) Documenting after the fact: recovering architectural design

decisions. J Syst Softw 81(4):536–557

Jansen A, Avgeriou P, van der Ven JS (2009) Enriching software architecture documentation. J

Syst Softw 82(8):1232–1248

Kagdi H, Poshyvanyk D (2009) Who can help me with this change request? In: ICPC: 17th

international conference on program comprehension. IEEE, Vancouver, BC, pp 273–277

Kaushik N, Tahvildari L, Moore M (2011) Reconstructing traceability between bugs and test

cases: an experimental study. In: WCRE: 18th working conference on reverse engineering,

Limerick, pp 411–414

Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in

software engineering. Technical report EBSE-2007-01. School of Computer Science and

Mathematics, Keele University

Klein G (2008) Naturalistic decision making. J Hum Fact Ergon Soc 50(10):456–460

Könemann P (2009) Integrating decision management with UML modeling concepts and tools. In:

Joint working IEEE/IFIP conference on software architecture & European conference on

software architecture. IEEE, Cambridge, pp 297–300

Kruchten P, Lago P, van Vliet H (2006) Building up and reasoning about architectural knowledge.

In: Hofmeister C, Crnkovic I, Reussner R (eds) Quality of software architectures, vol 4214,

Lecture notes in computer science. Springer, Berlin, pp 43–58

Lee J (1991) Extending the Potts and Bruns model for recording design rationale. In: ICSE: 13th

international conference on software engineering, pp 114–125

Lindvall M, Rus I (2003) Knowledge management for software organizations. In: Aurum A,

Jefferey R, Wohlin C, Handzic M (eds) Managing software engineering knowledge. Springer,

Berlin, pp 73–94

Lipshitz R, Klein G, Orasanu J, Salas E (2011) Taking stock of naturalistic decision making. J

Behav Decis Mak 14(5):331–352

López C, Codocedo V, Astudillo H, Cysneiros LM (2012) Bridging the gap between software

architecture rationale formalisms and actual architecture documents: an ontology-driven

approach. Sci Comput Program 77(1):66–80

MacLean A, Young RM, Victoria ME, Moran TP (1991) Questions, options, and criteria: elements

of design space analysis. Hum Comput Interact 6(3–4):201–250

Maeder P, Egyed A (2011) Do software engineers benefit from source code navigation with

traceability? - an experiment in software change management. In: ASE: 26th IEEE/ACM

international conference on automated software engineering, Lawrence, KS, pp 444–447

190 B. Paech et al.

Maeder P, Gotel O (2012) Ready-to-use traceability on evolving projects. In: Cleland-Huang J,

Gotel O, Zisman A (eds) Software and systems traceability. Springer, New York, pp 173–194

Mentis HM, Bach PM, Hoffman B, Rosson MB, Carroll JM (2009) Development of decision

rationale in complex group decision-making. In: CHI: 27th international conference on human

factors in computing systems. ACM, New York, pp 1341–1350

Menzies T, Zimmermann TH (2013) Software analytics: so what? Guest editor introduction,

special issue. IEEE Softw 30(4):31–37

Ngo T, Ruhe G (2005) Decision support in requirements engineering. In: Aurum A, Wohlin C

(eds) Engineering and managing software requirements. Springer, Berlin

Nguyen THD, Adams B, Hassan AE (2010) A case study of bias in bug-fix datasets. In: WCRE:

7th working conference on reverse engineering, Beverly, MA, pp 259–268

PMI (2013) Software extension to the PMBOK guide, 5th edn. IEEE Computer Society, Project

Management Institute (PMI)

Rockwell J, Grosse IR, Krishnamurty S, Wileden JC (2009) A Decision Support Ontology for

collaborative decision making in engineering design. In: International symposium on collab-

orative technologies and systems. IEEE, Baltimore, MD, pp 1–9

Saaty T (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(1):9–26

Skerrett I (2011) The eclipse foundation. The eclipse community survey 2011. http://www.eclipse.

org/org/press-release/20110610_survey.php

Smith JL, Bohner SA, McCrickard DS (2005) Project management for the 21st century: supporting

collaborative design through risk analysis. ACM Southe Conf 43(2):300–305

Sureka A, Lal S, Agarwal L (2011) Applying Fellegi-Sunter (FS) model for traceability link

recovery between bug databases and version archives. In: APSEC: 18th Asia Pacific software

engineering conference, Ho Chi Minh, pp 146–153

Tang A, Babar MA, Gorton I, Han J (2006) A survey of architecture design rationale. J Syst Softw

79(12):1792–1804

Tang A, Jin Y, Han J (2007) A rationale-based architecture model for design traceability and

reasoning. J Syst Softw 80(6):918–934

Tang A, Avgeriou P, Jansen A, Capilla R, Babar MA (2010) A comparative study of architecture

knowledge management tools. J Syst Softw 83(3):352–370

Tyree J, Akerman A (2005) Architecture decisions: demystifying architecture. IEEE Softw 22

(2):19–27

Wang W, Burge JE (2010) Using rationale to support pattern-based architectural design. In:

SHARK’10: ICSE workshop on sharing and reusing architectural knowledge. ACM Press,

New York, pp 1–8

Yadla S, Hayes JH, Dekhtyar A (2005) Tracing requirements to defect reports: an application of

information retrieval techniques. Innov Syst Softw Eng 1:116–124

Zannier C, Maurer F (2006) Foundations of agile decision making from agile mentors and

developers. In: Abrahamsson P, Marchesi M, Succi G (eds) Extreme programming and agile

processes in software engineering. Springer, Berlin, pp 11–20

Zannier C, Chiasson M, Maurer F (2007) A model of design decision-making based on empirical

results of interviews with software designers. Inf Softw Technol 49(6):637–653

Zimmermann O, Gschwind T, Küster J, Leymann F, Schuster N (2007) Reusable architectural

decision models for enterprise application development. In: Overhage S, Szyperski CA,

Reussner R, Stafford JA (eds) Software architectures, components, and applications. Springer,

Berlin, pp 15–32

Biography Barbara Paech holds the chair “Software Engineering” at the Univer-

sity of Heidelberg. Since many years, her group is particularly active in the area of

requirements, rational and quality engineering. Her research is often empirical and

in close cooperation with industry. She has published a book on rationale

7 Supporting Project Management Through Integrated Management of System and. . . 191

http://www.eclipse.org/org/press-release/20110610_survey.php
http://www.eclipse.org/org/press-release/20110610_survey.php

management and is founding member of the International Requirements Engineer-

ing Board (IREB).

Alexander Delater is a Ph.D. candidate at the department of computer science at the

University of Heidelberg, Germany. He is a member of the Software Engineering

research group of Barbara Paech. His Ph.D. topic is achieving requirements-to-code

traceability using work items from project management. Beyond traceability, his

main research interests lie in the area of requirements engineering.

Tom-Michael Hesse is a Ph.D. candidate at the department of computer science at

the University of Heidelberg, Germany. He is a member of the Software Engineer-

ing research group of Barbara Paech. His Ph.D. topic is employing documented

decision knowledge to improve the software evolution process. Further research

interests are knowledge representation and the integration of requirements engi-

neering with other software engineering activities.

192 B. Paech et al.

Chapter 8

Framework for Implementing Product

Portfolio Management in Software Business

Erik Jagroep, Inge van de Weerd, Sjaak Brinkkemper, and Ton Dobbe

Abstract Whether a software product company takes up a project depends on the

strategic decisions that are made with regard to an organization’s products. A software

project needs to fit strategic goals and enable an organization to realize a vision through

its software products. Making decisions on a strategic level, however, requires infor-

mation of several related topics including technological trends and the product’s life

cycle and surpasses the scope of an individual software project. Instead, these decisions

are made on the level of the product portfolio. Product Portfolio Management (PPM)

holds that an organization has to manage investment decisions over time following

profit and risk criteria. Given the multitude of relevant topics and the interrelatedness

between these topics, it has proven difficult to implement PPM processes in software

businesses. To this end, we created the Portfolio Implementation Framework (PIF)

consisting of (a) a competence model, giving an overview of the critical topics;

(b) process-deliverable diagrams, which provide an implementation path for product

portfolio management processes; and (c) a maturity matrix that comprises 32 capabil-

ities, which should be realized during implementation. The maturity matrix also serves

as an instrument for industry to assess, compare and improve portfolio management

processes across organizations. The framework provides a holistic view on a step-by-

step PPM process implementation and has proved its applicability in practice.

E. Jagroep (*) • S. Brinkkemper

Department of lnformation and Computing Sciences, Utrecht University, Utrecht,

The Netherlands

e-mail: e.a.jagroep@uu.nl; s.brinkkemper@uu.nl

I. van de Weerd

Department of lnformation, Logistics and lnnovation, VU University Amsterdam, Amsterdam,

The Netherlands

e-mail: i.vande.weerd@vu.nl

T. Dobbe

UNIT4, Sliedrecht, The Netherlands

e-mail: ton.dobbe@unit4.com

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_8, © Springer-Verlag Berlin Heidelberg 2014

193

mailto:e.a.jagroep@uu.nl
mailto:s.brinkkemper@uu.nl
mailto:i.vande.weerd@vu.nl
mailto:ton.dobbe@unit4.com

8.1 Introduction

This chapter deals with project management from the perspective of the software

business. Rather than individual projects, entire product and project portfolios are

considered to ensure business can continue in both the short and long term. With the

introduction of the portfolio matrix by the Boston Consulting Group in the 1970s

and extensions like the ones made by Higgins (1985), the topic of Product Portfolio

Management (PPM) has enjoyed a prominent position on the scientific research

agenda. The principle has been applied to different kinds of products, new portfolio

matrices have emerged (Ward and Peppard 2006) and ongoing research has been

conducted on different aspects of PPM. These include comparisons to methods for

financial portfolios (Wind 1975), portfolio management methods combined with

managing new product development (Cooper et al. 2001) and tools for portfolio

evaluation (Cooper and Edgett 2008). Related to PPM, project portfolio manage-

ment (PjPM) (Kittlaus and Clough 2006; Killen et al. 2008) and product life cycle

management (Saaksvuori and Immonen 2008) are also identified as important

processes.

A central discipline with regard to PPM is software product management, which

is defined as the “. . .discipline and role, which governs a product (or solution or
service) from its inception to the market/customer delivery in order to generate the
biggest possible value to the business” (Ebert 2007). PPM has been identified as

one of the four business functions with regard to software product management,

next to product planning, release planning and requirements management (Bekkers

et al. 2010). Though relatively less established than software project management,

software product management has been confirmed as a key area within many

software companies (Fricker et al. 2009). Ebert (2007) continues that a product

manager should aim at having the right product mix and selecting the right projects

to implement a specific strategy. The selected projects are the responsibility of the

project manager, making him a key figure in helping to realize the organizational

strategy. This strategic context is also discussed in terms of ‘decisions’ in Chap. 7.

The relation between portfolio management and software projects is elaborated

upon further by Cooper et al. (2001) by identifying ailments of having ineffective

portfolio management. These are

• Missing strategic criteria in project selection

• Selecting low-value projects due to deficient go/kill and project selection

decisions

• Lack of focus resulting in too many active projects and thinly spread resources

leading to increased time to market, poor quality of execution and decreased

success rates.

• Selection of project based on politics, opinion and emotion rather than facts and

objective criteria.

194 E. Jagroep et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_7

Given that PPM is defined as managing investment decisions over time follow-

ing profit and risk criteria and concerns the strategic information gathering and

decision-making across the entire product portfolio (Kittlaus and Clough 2006;

Bekkers et al. 2010), PPM could help in overcoming the identified ailments.

Portfolio management is about choosing which products should be introduced,

developed or even discontinued and determining which are in line with the orga-

nizational strategy and remain profitable in the short and long term. In this light, it is

not without reason that a product manager is projected as the ‘mini-CEO’ of a

product (McNally et al. 2009). The project manager should be familiar with this

through the ‘portfolio management’ perspective described in the Project Manage-

ment Body of Knowledge (PMBOK).

This research aims at providing a means for implementing PPM processes within

an organization. More specifically, the processes are to be structured to fit the

processes of software businesses. However, a sole focus on PPM will not provide a

complete solution. Given their interrelatedness, topics like market analysis, product

life cycle management (PLM), partnering and contracting (Bekkers et al. 2010) and

PjPM (Kittlaus and Clough 2006) should also be included. The main related topics

that can be identified are PLM and PjPM and are further elaborated upon below.

PLM is defined as a business approach integrating people, processes, business

systems and information to manage the complete life cycle of a product across

enterprises (Lee et al. 2007). Considering the strategic scope of PPM and the scope

of PPM in general, a connection can be made between the decisions that need to be

made on the portfolio level and the information that is made available through

PLM. Indeed, the core of product life cycle management is the preservation

and storage of information relating to an organization’s products and activities

(Saaksvuori and Immonen 2008).

PjPM is the central management of one or several portfolios in terms of

identification, prioritization, authorization, organization, realization and controlling

of its associated projects (Stantchev et al. 2009). Looking back at the definition of

PPM it is clear that projects surrounding a product are an example of the investment

decisions that have to be made and that project managers have a key task in

realising these projects in an efficient, qualitatively high and timely manner. To

stress the importance, Stantchev et al. (Stantchev et al. 2009) state that in uncertain

times, organizations focus even more on the effective allocation of scarce world-

wide resources to their development projects.

The topics related to PPM have been researched in terms of defined capabilities

(Bekkers et al. 2010), maturity models (Saaksvuori and Immonen 2008; Batenburg

et al. 2006) and implementation trajectories (Batenburg et al. 2006; de Reyck

et al. 2005), and in some cases, combinations of these topics are discussed

(Cooper et al. 2001; Kittlaus and Clough 2006). However, no attempt has been

made on creating a means of implementing PPM processes that encompasses all

related topics. Note that this does not mean that the existing models are not correct.

Rather, the main issue with only taking up one specific topic is that even though the

results have a proven value in practice, to fully experience the benefits of PPM also,

the implementation and operationalization of the other aspects have to be taken into

8 Framework for Implementing Product Portfolio Management in Software Business 195

account. Keeping this in mind, we have formulated the following research question

for this research: “How can product portfolio management be implemented in
software businesses to enable the corporate strategy?”

To answer this question, we propose the Software Product Portfolio Manage-

ment Implementation Framework, or PIF in short, which consists of a competence

model, process-deliverable diagrams (PDDs) and a maturity matrix. The framework

provides a step-by-step process for implementing PPM processes and also

addresses the interdependencies of these processes with the topics that are related

to PPM. Thus, PIF provides a holistic view of PPM process implementation. The

maturity comprises the capabilities associated with PPM and enables organizations

to determine their maturity level within the different focus areas.

In the remainder of this chapter, we first present the followed research approach.

In Sect. 8.3, we explain more the theory-building case study that has been

performed. We continue with the presentation of PIF in Sects 8.4 and 8.5. This is

followed by a theory-testing case study (Sect. 8.6) and the conclusions and recom-

mendations for further research.

8.2 Research Approach

The applied research methodology can be described as design science (Hevner

et al. 2004) since new artifacts are created with the purpose of fulfilling an identified

business need, namely, the need for directions on implementing PPM processes.

The artifact in this research is the aforementioned PIF containing a competence

model, PDDs and a maturity matrix. During the individual activities in the proposed

method, the five phases of design research, awareness of the problem, suggestion,

development, evaluation and conclusion (Vaishnavi and Kuechler 2004; Takeda

et al. 1990) have been applied. However, given their more explicit methodology, we

follow the six-step methodology as defined by Pfeffers et al. (Pfeffers et al. 2007).

The problem motivating our research (1) is the question on how to implement PPM

within software businesses in a holistic manner. In this specific case, holisticmeans

that related topics are also taken into account in the solution. Given that PIF

includes a competence model, focus area maturity matrix and PDDs that provide

an implementation path for this purpose, the objective of our solution (2) is to

provide a well-founded framework for the step-by-step implementation of PPM

processes.

The design and development (3) of PIF is drawn from both literature on PPM and

practice of PPM and related topics. Literature analysis helped in defining the areas,

identifying the related topics that are of importance and thereby providing a solid

base, whereas the practical aspect helped to confirm, adjust or extend the findings

from literature. The first steps in this stage resulted in a preliminary PIF. By

performing case studies, we provided ourselves with a complete set of information

to construct the final PIF. By applying PIF in case studies, the framework has been

demonstrated to be able to be applied in practice (4). However, since only two case

196 E. Jagroep et al.

studies have been performed, further demonstration of PIF must take place by

applying PIF in the field. The evaluation (5) of PIF is done through case studies

and expert interviews, where during the construction of PIF the methods as

described by Bekkers et al. (2010), Weerd I van de (2009) and van Steenbergen

et al. (2010) have been followed. Publication in scientific conferences and journals

as well as practitioner outlets covers the communication regarding PIF (6).

The activities that comprise this research are depicted in Fig. 8.1. The figure

shows the research activities that have been performed in the form of rounded

rectangles on the left-hand side and the products of these activities in the form of

rectangles on the right-hand side. The arrows indicate the flow of the research, in

this case the order in which the activities have been performed. The first activity

included a literature analysis and interviews. We first performed a thorough liter-

ature analysis and conducted interviews to get a clear scope in the area of PPM. As a

result of this study, an initial set of guidelines was created. These guidelines were

based on best practices, lessons learned and existing methods and models and form

the foundation of the framework.

The next step was the theory-building case study at COMP1, a large Dutch

software organization. The results from this case study combined with the afore-

mentioned guidelines formed the basis for the preliminary PIF. The final activity

comprised a theory-testing case study where the preliminary PIF has been applied at

another large Dutch software organization (COMP2) in order to validate and refine

the preliminary framework. This activity resulted in the final version of PIF. In the

remainder of this section, a more thorough description of each of the research

activities is presented. More details on COMP1 and COMP2 are given in the

specific sections they apply to.

8.2.1 Literature Analysis and Interviews

In this stage, we used a literature study and interviews to find a direction for the

solution of the described problem. During the literature study, apart from the theory

on PPM itself, we also identified literature related to PPM. This resulted in a list of

relevant PPM topics consisting of project portfolio management, product life cycle

management, strategy, information requirements, information technology and

tools. In the second step of the literature analysis, the identified topics were further

investigated, and a list of key issues was created that are of influence for PPM. The

key issues were identified using three criteria:

1. The issues must be mentioned by the majority of the authors.

2. Issues should (logically) be linked to other important aspects to create a solid

framework.

3. Issues should be linked to matrices and models available in literature.

8 Framework for Implementing Product Portfolio Management in Software Business 197

Consider, for example, ‘link projects to strategic objectives’ as a key issue

stemming from PjPM literature. This issue holds a direct relation with the further

development of a product and thereby the overall status of the product portfolio.

Inspired by grounded theory research (Charmaz 2006) using the principles of

qualitative analysis (Denzin and Lincoln 2011), all key issues were coded to be

able to categorize them and refer back to them at a later moment in the research. For

this principle, two main activities are identified: coding and continuous comparison.

During the analysis, key issues for each topic have been identified, coded and

categorized. Through the activity of continuous comparison, relations between

the categories and literature have been identified. The codes, presented in Jagroep

et al. (2011a), consist of three parts showing respectively the source of the key

issue, the section and a numbering. For example, ‘iv-plm-1’ indicates the first key

issue stemming from interviews on the topics of PLM, compared to ‘t-ppm-2’,

which indicates the second key issue stemming from the theory on the topic

of PPM.

The second part of this phase consisted of interviews conducted at COMP1 to

research the state of affairs of product portfolio management practice at this

organization. Considering the explorative nature, a semi-structured interview was

used for two reasons: (1) to question the topics that had been identified during the

literature analysis and (2) to leave room for the interviewees to discuss other topics

relevant to PPM. In total, 13 interviews were held with product managers situated in

the Netherlands, The United Kingdom, Sweden and Spain. As with the literature

analysis, the results of the interviews were transformed into key issues that in turn

were coded following the scheme presented earlier.

Literature analysis
+

interviews

Theory building
case study

+
evaluation

Theory testing
case study

Guidelines

Preliminary PIF

Final PIF

Fig. 8.1 Research methods

198 E. Jagroep et al.

8.2.2 Theory-Building Case Study and Evaluation

In this stage, we performed a theory-building case study and an evaluation, which

resulted in the preliminary PIF. The first activity in this stage was the creation of an

entity that would be used in the theory-building case study. Following the ‘develop/

build’ and ‘justify/evaluate’ cycle (Hevner et al. 2004), we started with the creation

of the competence model, building heavily on the continuous comparison activity

as identified with the principles of qualitative analysis. In this model, an overview is

presented on PPM and all topics related to PPM. To identify these topics, we built

on the guidelines and categorized them into a set of topics that were to become part

of the model. In most cases, this would be a one-to-one mapping of the exact topic,

PLM would remain PLM, for example. However, the topic ‘information require-

ments’ was too vague to make part of the competence model. In these cases, the

coded key issues were considered again to make a different, more concrete cate-

gory. In this specific example, ‘information requirements’ resulted in ‘gatekeeper

introduction’ and additions to the topics ‘information technology’ and ‘process

formalization’.

The second activity was to create the associated PDDs on the topics that had

been identified in the competence model. In a PDD, the processes are modelled on

the left-hand side and show the activities that should be performed in order to reach

a desired goal. On the right-hand side, the corresponding deliverables for each

activity are given. A deliverable is not limited to result from a single activity,

though. For example, the activity of creating a central project administration should

result in a corresponding deliverable (e.g., project database). However, this deliv-

erable is adapted when the activity of defining separate portfolios is performed.

During the process of constructing the PDDs, the main focus was to create a process

that would enable an organization to cope with the identified key issues for that

specific topic. The PDDs thus suggest an implementation path starting from the top

of the diagram. Further information on PDDs can be found in Weerd I van de and

Brinkkemper (2008).

With this initial framework, we conducted a case study where the framework

was applied at COMP1. For this case study, the five major process steps as in

Runeson and Höst (2009), (1) case study design, (2) preparation of data collection,

(3) collecting evidence, (4) analysis of collected data and (5) reporting, were

followed. The design of the case study has been sketched above; the objective is

to create a framework for PPM process implementation. Given the focus on

software products, the case has been selected to be a large Dutch software organi-

zation with the individual business units being the units of analysis (Yin 2009). The

units of analysis have been selected based on the criteria that the persons involved

had to be responsible for at least one product in the organizational portfolio.

The preparation of data collection and the analysis of the results are described in

Jagroep et al. (2011a). For the actual collection of the evidence, the first-degree

technique of interviews has been applied. With interviews, the researcher is in

direct contact with the subjects and collects data in real time in Runeson and Höst

8 Framework for Implementing Product Portfolio Management in Software Business 199

(2009). The interview itself is semi-structured, allowing for improvisation and

exploration of the studied subjects where a pyramid model has been applied.

With regard to reporting the research, the structure as proposed by in Runeson

and Höst (2009) has been utilized.

Based on the results of the case study, the decision was also made to create a

maturity matrix. The construction of this matrix followed after realizing that there is

an increase in the maturity of the portfolio management processes when the PDDs

are followed. This maturity increase, however, was not clearly visible in the

competence model and PDDs. Thus, a maturity matrix was constructed to provide

this clarity. In the matrix, maturity is shown in the form of capabilities, where a

capability is defined as ‘a demonstrable ability and capacity to perform a certain

process at a certain level’ (Weerd I van de 2009). A more detailed description of the

maturity matrix is presented in Sect. 8.5.

The final activity performed in this phase was an evaluation of the artifacts.

Specifically, an expert evaluation has been performed on respectively the PDDs and

the maturity matrix. Four experts in the field of software product management

(independent from the research) have participated by assessing the framework and

proposing improvements through answering interview questions and discussion.

These interview results have also been processed for the construction of the

preliminary PIF.

8.2.3 Theory-Testing Case Study

For constructing the final version of PIF, a theory-testing case study has been

performed. In this phase, PIF has been validated through a case study at COMP2,

a company similar to COMP1 in terms of products and customer base, but with a

different culture, philosophy and organizational traits. Given the fact that this case

study is done separately from the theory-building case study, a separate plan for this

case study has been developed based on Runeson and Höst (2009). Thus again, the

five major process, being (1) case study design, (2) preparation of data collection,

(3) collecting evidence, (4) analysis of collected data and (5) reporting, are

followed for conducting this case study.

With regard to the design of the case study, the objective is to improve the theory

on the existing preliminary PIF (Jagroep et al. 2011b) by confirming the theory or

provide grounds for alterations. The case has been carefully selected to have an

identical context as the previous work, namely, the Dutch software industry. In this

sense, the case is the large Dutch software organization and the units of analysis are

the individual business units that have participated in the case study (Yin 2009).

The units of analysis have been selected based on the criteria that the persons

involved had to be responsible for at least two products in the organizational

portfolio. In comparison to the theory-building case study, these persons are active

on a more strategic level, which fits the nature of product portfolio management.

The theoretical background on this topic is provided by Bekkers et al. (2010) and

200 E. Jagroep et al.

Jagroep et al. (2011b). The analysis of the collected data was kept identical to the

theory-building case study for reasons of consistency. With regard to reporting the

research, again the structure as proposed by in Runeson and Höst (2009) was applied.

8.2.4 Threats to Validity

With regard to the validity of the case studies that have been performed, we discuss

the four aspects as proposed by Yin (2009). For the threats to construct validity, we

deliberately made the starting point for this research a literature study. Based on the

models and definitions that were found, a solid framework was created for PPM and

the related topics. In the interviews for the case study, the definitions of the terms

were taken up to ensure that there was a common understanding of the topics. All

findings from the interviews were linked to the theoretical framework, and the chain

of evidence was kept intact as presented in Jagroep et al. (2011a). Finally, the expert

evaluation completed the cycle for triangulation. Also, the fact that the interviews

for the theory-testing case study were conducted on the level of portfolio managers

ensured that different views could be taken up in the research. The threats to the

internal validity are taken up with the holistic approach that has been taken up in

this research. Instead of focusing solely on PPM or a related topic, the complete set

of topics has been taken into account. Therefore, the effects of factors that influence

the process in one area could relatively easily be related to other areas when this

seemed the case.

The external validity is purposefully limited to software products. Through

multiple embedded case studies, though solely within the Dutch software industry,

it became clear that the results could be applied to the organizations independent of

one another. An interesting fact is that these organizations are also active on an

international level; however, since this was not the main focus, no conclusions can

be drawn from this. Also, since the framework is related to other literature and

models that have been applied in practice, for example, Weerd I van de et al. (2006),

the threats to external validity have been kept to a minimum. With regard to the

reliability of the case studies, we set up a protocol (Jagroep et al. 2011a) that has

been consistently applied in both case studies and encompassed the coding and

analysis of the data.

8.3 Theory-Building Case Study and Evaluation

8.3.1 Theory-Building Case Study

In the theory-building case study, performed at COMP1, the research artifacts have

been evaluated to construct and apply the preliminary version of PIF. COMP1 is a

8 Framework for Implementing Product Portfolio Management in Software Business 201

large software company founded in the Netherlands and has over 4,000 employees

in 24 countries worldwide. With a product portfolio of more than 100 products,

COMP1 is considered an important player in the global software market. For this

case study, 11 product managers from COMP1 were interviewed. These product

managers were the units of analysis and were responsible for products in, amongst

others, the ERP, bookkeeping, governmental, retail and healthcare sectors and were

situated in business units in the Netherlands, Sweden, Spain and the UK.

In this stage, what has been later labeled ‘preliminary PIF’ consisted of an

implementation model overview and the associated PDDs for the focus areas

(Jagroep et al. 2011b). Based on the literature analysis, in total nine focus areas

were identified, which are ‘initiation’, ‘strategy implementation’, ‘gatekeeper intro-

duction’, ‘PLM’, ‘PPM’, ‘PjPM’, ‘process formalization’, ‘information technol-

ogy’ and ‘tooling’. Also, based on the literature analysis, these focus areas were in

turn divided into three categories, being ‘strategic processes’, which guide an

organization in realizing a fully operational implementation, ‘core processes’, the

main processes concerning product portfolio management, and ‘supporting pro-

cesses’, designed to facilitate the creation of instruments required for portfolio

management.

As stated, the maturity matrix was constructed in a later stage of the case study,

when it became apparent that the notion of maturity was not clearly represented in

the framework. For the initial assessment, the PDDs were used and operationalized

in the form of a spider graph (Fig. 8.2). Each participant described the processes,

and a maturity level was determined by scoring the participant on a scale of zero

(not mature) to five (most mature). This scoring was done based on the current

position in the PDD. The spider graphs show each of the focus areas along with a

score on each dimension based on their current activity according to the PDD. The

assessments of the PPM processes resulting from the case studies have shown that

the preliminary PIF could indeed be applied to software businesses. The capabilities

in the matrix could be applied to both their departmental and organizational

processes and provided a clear picture on the current status of their processes.

Based on the information that is contained in the spider graphs, the decision was

made to construct a maturity matrix. For each of these focus areas, capabilities have

been identified. These capabilities are based on the earlier-mentioned key issues,

guidelines and existing maturity models. This information was also mapped on to

the PDDs for each focus area to ensure that these artifacts would be compatible. In

this sense, the two can be considered complementary; the capabilities represent the

ability to perform an activity, and the PDDs show the actual activities and forth-

coming deliverables required for implementing these activities. With regard to the

dependencies between capabilities and their position in the maturity matrix, the

PDDs proved useful as they indicate an order of implementation, prerequisites and

other dependencies for the capabilities. A more detailed description is presented in

Sect. 8.5.

202 E. Jagroep et al.

8.3.2 Expert Evaluation

In this phase, the preliminary PIF artifacts (the competence model and PDDs) have

again been evaluated. In total, four experts in the area of software product man-

agement have been interviewed using a semi-structured interview. The questions

were aimed at evaluating the presentation of the framework, its completeness and

the affordance. A question, for example, covered whether the experts found that

there is a clear increase in maturity when the activities for each topic are performed.

In total, six questions were formulated with the possibility of side-stepping when

required. Before continuing to discuss the results, however, a remark should be

made on the scope of the evaluation. Due to limited time, resources and availability

of experts, the scope of the evaluation was limited to the core processes of the

competence model. Though all topics are of importance, by limiting the scope the

quality of the evaluation did not have to be compromised.

Based on the responses, a number of alterations were made to the framework that

resulted in the form presented in this chapter. The first was on the view of the PDDs.

In the earlier versions, the framework also encompassed activities that were con-

sidered as actions within the portfolio management process. The view that is taken

up now is that of setting up the processes. Secondly, various alterations have been

made to the framework with regard to PPM and PM. Amongst others, the activity of

defining separate portfolios has been added. On the integration of these topics, an

alteration was to let the project portfolio be managed by the portfolio review board

instead of a separate project portfolio committee. For the full list of alterations, see

Jagroep et al. (Jagroep et al. 2011a).

5
4
3

2
1
0

Strategy
implementation

Initiation

PM

PPM

PLM

Tool
construction

Information
technology

Process
formalization

Gatekeeper
introduction

Fig. 8.2 Maturity spider

graph for PPM at business

unit COMP1

8 Framework for Implementing Product Portfolio Management in Software Business 203

8.4 Software Product Portfolio Management

Implementation Framework

8.4.1 Introduction

The Software Product Portfolio Management Implementation Framework, intro-

duced as PIF, consists of a competence model (Fig. 8.3), PDDs and a maturity

matrix (Sect. 8.5). For the construction of the final PIF, we followed the method as

defined in van Steenbergen et al. (2010), where four process phases are identified,

namely, (1) scope, (2) design model, (3) develop instrument, and (4) implement &

exploit. In the scoping phase (1), performed during the literature analysis and

interviews phase and the theory-building case study of the research methodology,

we identified the topics that needed to be included in the framework. Going towards

the design phase (2), the focus areas of the competence model were identified.

These are ‘Initiation’, ‘Strategy implementation’, ‘Gatekeeper introduction’, ‘Prod-

uct Life Cycle Management’, ‘Product Portfolio Management’, ‘Project portfolio

Management’, ‘Process formalization’, ‘Information technology’ and ‘Tooling’.

Figure 8.3 shows how the focus areas are categorized according to their role within

the process of implementing product portfolio management processes within an

organization.

To provide more insight in the strategic value of PPM processes, Fig. 8.3 shows

the focus areas in the context of an organization. For example, the board can expect

information concerning the mid and long-term strategy and vision as output from

the PPM processes. On a more operational level, however, the support department

can expect to obtain product quality control information out of the PPM processes.

This context has been added to the figure based on the results of the theory-building

case study. Note, however, that this context overlaps with the stake- holders as

identified in the PMBOK, again showing the interrelatedness between the subjects.

For the development of the instrument (phase 3), it is suggested to perform the

activities of developing an assessment instrument and define improvement actions

(van Steenbergen et al. 2010). The first is actually embedded in the capabilities that

have been defined, considering that a yes/no question can be posed as to whether an

organization possesses a specific capability. The improvement actions are

suggested in the PDDs. At any point in time, an organization can fall back to the

capabilities to determine what the next capability is and on the PDDs to determine

the activities and deliverables required to reach that capability.

The final phase in this method, the implementation & exploitation phase (4),

consists of implementing the framework, iteratively improving and communicating

the results. Looking back at the research methodology (Fig. 8.1), it is clear that

these activities are performed through applying PIF in case studies. The results of

each case study contributed to finalizing PIF, making it the framework presented in

this research.

204 E. Jagroep et al.

With regard to the exploitation of the model by industry, PIF is positioned as a

situational model for organizations, more specifically product software businesses,

looking for improving their PPM processes. ‘Situational’ implies that not every

organization is required to reach the highest level of maturity (Bekkers et al. 2010).

Instead, each organization should decide what level of maturity best fits the

organization. This activity is covered in the ‘Initiation’ focus area, which helps

with forming the initial picture with regard to the desired PPM processes. From

there on, the PDDs for the other focus areas can be followed as described above to

actually implement the desired processes. Given the strategic nature of PPM,

mostly high-level management is involved in deciding the strategic direction,

involving both product and project managers in the process.

8.4.2 Process Descriptions for PIF

The process descriptions are modeled as PDDs. The activities are shown from the

perspective of implementation and are, as explained, described on a high level to

ensure their general applicability. It has to be noted that the actual usage of the

framework is situational for each organization. Amongst others, differences in size,

culture and organizational structure are aspects that need to be taken into account

when implementing these processes.

In this section, the PDDs are explained in more detail, but due to limitations in

space, only four processes are part of this chapter. These are the three core

processes, of PLM, PPM and PjPM, shown respectively in Figs. 8.4, 8.5 and 8.6,

and the gatekeeper introduction (Fig. 8.7). The full framework is explained in

Jagroep et al. (2011a).

Support
Product

quality control
information

Product
development

Strategic
direction

ServicesCustomer
experiences

ConsultancyCustomer
experiences

Marketing Marketing
strategy

Sales
New and existing

business
opportunities

R&D Prioritized
requirements

HRM
Detailed
resource

information

Supporting processes

Tooling
Information
technology

Process
formalization

Core processes

Project
Portfolio

Management
(PjPM)

Product
Portfolio

Management
(PPM)

Product
Lifecycle

Management
(PLM)

Strategic processes

Gatekeeper
introduction

Strategy
implementationInitiation

Management

Mid- and long-term
strategy and vision

Mid- and long-term
business case prioritising

Board

Fig. 8.3 Software product portfolio management competence model

8 Framework for Implementing Product Portfolio Management in Software Business 205

8.4.2.1 Product Life Cycle Management

Product Life Cycle Management is the concept of preserving information on a

company’s products as they progress through their life cycles (Saaksvuori and

Immonen 2008). As such, implementing PLM processes within an organization

focuses on making this information available for decision-making. First, to ensure

that the concept of PLM is familiar within an organization, a corporate vision is

established, which in turn is used as a basis for departmental PLM visions. These

visions define how PLM can contribute to the business processes. Parallel to

defining these visions, a central product storage can be created containing infor-

mation on the early life cycle phases (initiation, design, building, test & integration

and release) of the product. As an organization usually has control over these early

phases, the information on these phases is relatively easy to collect.

When this is established, the other phases of the life cycle (evolution and phase-

out) can be included, which also encompasses the collection of information outside

the organization. Also, parallel to defining the departmental visions are the activ-

ities to incorporate PLM into the strategic processes. As PLM encompasses the

creation, preservation and storage of information relating to the company’s prod-

ucts (Batenburg et al. 2006), PLM brings about critical information for effective

Product lifecycle management

Integrate with enterprise
systems and establish

communication channels

Integrate ecosystem partners in the PLM process

ECOSYSTEM INFORMATION

Partner evaluation
External factor evaluation
Partnering options

PLM concept definition

CORPORATE PLM VISION

DEPARTMENTAL PLM VISION

CENTRAL PRODUCT
INFORMATION STORAGE

Lifecycle phase
Phase-out possibilities

PRODUCT INFORMATION

Include other stages of the lifecycle

Establish departmental PLM
vision

Integrate PLM with roadmap
and strategic decisions

Create central storage on early
stages of product lifecycle

Establish corporate PLM vision

Define the PLM concept

Fig. 8.4 PDD for product life cycle management

206 E. Jagroep et al.

strategic decision-making. With regard to projects, this could be information for the

decision whether to delay or postpone a specific project in the portfolio.

As a final activity with regard to PLM, the integration with the ecosystem is

suggested. In most cases, organizations produce and deliver their products to

customers themselves. But it can also be the case that external parties are involved

in these processes (e.g., development and distribution), which also possess infor-

mation on the products and could influence their performance. The integration of

the ecosystem is a means of getting insight into the impact a partner has on a

specific product, being able to benchmark with others, enable collaboration and

make the product life cycle more transparent (Batenburg et al. 2006; de Reyck

et al. 2005).

8.4.2.2 Product Portfolio Management

In the PDD of Product Portfolio Management, the focus shifts from managing

products on a departmental level towards managing the entire organizational

portfolio. The reason for this is that product information for portfolio management

Product portfolio management

ORGANIZATIONAL PRODUCT
PORTFOLIO

DEPARTMENTAL PORTFOLIO
ROADMAP

PRODUCT MANAGER
TASK DEFINITION

PORTFOLIO REVIEW BOARD
TASK DEFINITION

Organizational product portfolio
Organizational project portfolio
Portfolio scope analysis
Collaboration evaluation
Integration evaluation

EXTERNAL ASSESSMENT

Pricing model evaluation
Competitor assessment
Distribution channel investigation
Deployment method investigation

MULTIFUNKTIONAL
CORE TEAM

Product manager
Marketing manager
Project manager
Lead developer

Perform externally oriented
assignments

Define organizational
product portfolio

Incorporate gatekeeper
findings in decision making

Assign multifunctional
core teams

Create departmental
portfolio roadmap

Assign product manager and define tasks

Define portfolio review board tasks

Select business unit representative and establish
portfolio review board

Fig. 8.5 PDD for product portfolio management

8 Framework for Implementing Product Portfolio Management in Software Business 207

CORPORATE PROCESS AND
TASK DEFINITION

CENTRAL PROJECT
ADMINISTRATION

DEPARTMENTAL PROCESS
DEFINITION

PROJECT DESCRIPTION

Project name
Project status
Project planning
Calculated ROI
Project objective
Resource allocation
Project manager
Portfolio allocation

BUSINESS CASE

Strategic categorization
Risk estimation

Project portfolio management

Create central project administration containing basic
project information

Include current and future projects
across the organization

Assign project managers that are accountable
for project results

Define organizational PM process and tasks for
portfolio review board

Define departmental PM

Define separate portfolios

Categorize projects
according to strategic drivers

Create separate business
cases of projects Is used for creating

Fig. 8.6 PDD for project portfolio management

GATEKEEPER FUNCTION
DESCRIPTION

INFORMATION
REQUIREMENT DEFINITION

Market assessment
Competitor assessment
Technology assessment
Partnering possibilities
Rules and legislation constraints
Future predictions

Gatekeeper introduction

Introduce formal gatekeeper function

Include gatekeeper findings in decision making

Establish information channels

Assess external information needs

Fig. 8.7 PDD for gatekeeper introduction

208 E. Jagroep et al.

is made available through the information that is stored on the departmental level.

In other words, if the product information is not structurally stored and kept up to

date on the departmental level, the information on the portfolio level will be

inaccurate. Therefore, the first activities are aimed at facilitating this departmental

management. This is done by defining the product manager’s tasks as the ‘mini-

CEO’ representing the business unit in strategy definition and operational execution

(Ebert 2007). Also, having a clear view of the departmental portfolio and its future

(in the form of a roadmap) and establishing a multi-functional team to get different

perspectives on the individual product are activities to ensure the processes on the

departmental level. These activities bring an organization on the third maturity

level (product (line) orientation), as identified by Weerd I van de et al. (2006).

When the products are properly handled on the department level, the focus is

expanded to the entire organization. More specifically, the organizational portfolio

is defined, and externally oriented information is included by performing an

external assessment. Defining the organizational portfolio contributes to having a

common understanding of what exactly is a product, component, service and core

asset (Bekkers et al. 2010) and simply having the portfolio documented in one

format. The external assessment is the formalized procedure of ensuring that the

individual products still fit the market. Note that gatekeeper findings (Jagroep

et al. 2011a) are mentioned in the diagram as these are also externally oriented.

From there on, the portfolio review board can be introduced consisting of high-level

representatives of departments or business units. If proper information is provided,

the organizational product and project portfolio can be truly managed across

products and departments. Having proper portfolio management processes in

place could also prove to have a positive influence on reaching level 4 in the

success of a software project (see Chap. 2).

8.4.2.3 Project Portfolio Management

The next PDD is on the topic of Project Portfolio Management (Fig. 8.6). With

regard to projects, the emphasis is put on ensuring a strategic fit and on managing

projects across an organization. The suggested activities and resulting deliverables

should lead to reaching the four goals of portfolio management as identified by

Cooper et al. (Cooper et al. 2002). Note that in the case of PjPM, the focus again

shifts from managing the projects on a departmental level, where the projects are

executed under the supervision of project managers, to managing the entire project

portfolio. Therefore, the first activity is to create a central project administration

where basic information on current (active) and future projects is stored. As this

could very rapidly become a large collection, the next activity is to bring structure

in this collection by creating business cases of each project. Business cases are

made on the basis of the strategic contribution to the organization and the estimated

risk of each individual project. However, even with the business cases, projects with

great strategic potential, for example, could end up on the bottom of the list when

monetary gains are a more important criterion for prioritizing. To solve this issue,

8 Framework for Implementing Product Portfolio Management in Software Business 209

http://dx.doi.org/10.1007/978-3-642-55035-5_2

the suggestion is to create separate portfolios for each of the areas of interest. This

separation could be considered as an appliance of the strategic buckets method

(Cooper and Edgett 2010). For the individual project manager, this holds that a

change of focus could be experienced with regard to managing individual projects;

by applying this method, the strategic importance of projects will become more

apparent. The risk management of a project (see Table 1.15), for example, could

become a more stringent issue for the project manager to consider.

The next activity aims at defining and improving the departmental PjPM pro-

cesses. When projects are taken up, resources are spent, and projects (especially in

the case of software development) often take up a considerable amount of time. To

get the most out of projects, the business should be enabled to make go/kill/hold/ fix

decisions and ‘ensure rational, accurate alignment with the business’ (Rajegopal

et al. 2007). When this is the case, an organization is able to quickly reallocate its

resources to where they are needed the most. Put otherwise, project management

would have to become more dynamic and the project manager more aware of the

organizational environment and the stakeholders (see Sect. 1.3.10).

The final activity is realizing PjPM on an organizational level. First, a corporate

PjPM process should be defined to ensure consistency in the manner that projects

are handled. Different project managers have different management styles, which

could inhibit an organization in harmonizing the organizational processes. Note that

it is not implied that each project manager should operate identically compared to

the others. Instead, a number of ‘quality’ criteria for the project management

process could be established that guide the project manager on ‘what’ to do, without

instructing ‘how’ to do so. Harmonization lowers the threshold for cross-

departmental collaborations and is an area where the usage of social media could

prove to be valuable (see Chap. 16).

Second, considering the overlap between PjPM and PPM, no companywide

board is established for PjPM. Instead, the PjPM tasks are formally defined, such

that they can be performed by the portfolio review board that has been established

for PPM. Mind that, as with the other implementation activities, such a board

should only be implemented when it fits the organization. With these activities,

the organization can be placed in the portfolio optimization stage as identified by de

Reyck et al. (2005). With this PDD, the management of individual projects is not

elaborated upon considering the portfolio point of view of the framework. There is,

however, a clear overlap with a number of knowledge areas as identified in the

PMBOK. For example, ‘project scope management’ is aimed at ensuring that the

right scope is set for both product and project. We consider the suggested strategic

bucket method as a tool to categorize the scoped projects into project programs. The

same holds for ‘project cost management’, where the proposed method could be

used to better divide the available budget across projects.

210 E. Jagroep et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_1#Tab15
http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec13
http://dx.doi.org/10.1007/978-3-642-55035-5_16

8.4.2.4 Gatekeeper Introduction

The final PDD is on the topic of gatekeeper introduction (Fig. 8.7). Though gate-

keeper introduction is not a core process, it is a relatively new item within the area

of software product management. A gatekeeper is originally defined as ‘an indi-

vidual that maintains active communication with scientists at other firms, govern-

ment laboratories, and universities’ (Eisenhardt and Martin 2000; Vischer

et al. 2010). This is the definition given in the context of dynamic capabilities,

which are ‘the organizational and strategic routines by which firms achieve new

resource configurations as markets emerge, collide, split, evolve, and die’ (Teece

et al. 1997).

It is essential for the strategic decision-making process to also obtain informa-

tion that resides outside of the organization. Therefore, there should be some notion

on the external information needs and the information channels that are of impor-

tance. However, simply collecting information is not sufficient. The information

that is collected should find its way to serve within the decision-making process.

The final activity is on the actual introduction of the gatekeeper’s role. The

gatekeeper is the ideal person to keep track of advancements in the dynamic

environment surrounding a software product. The gatekeeper can keep connections

with a variety of external parties (e.g., partners, competitors, customers) and

translate developments to concrete points of interest (or concern) for a software

product or product portfolio.

8.5 Maturity Matrix for PPM

8.5.1 Structure

The maturity matrix (Table 8.1) is the research artifact where the element of

maturity is most prominent. For reasons discussed by Weerd I van de (2009) and

Bekkers et al. (2010), the choice was made to apply a focus area-oriented model.

The matrix shows the nine focus areas (topics) identified in the leftmost column,

their specific maturity levels in the form of capabilities, indicated by the letters A-F,

and the maturity levels for the matrix, indicated by the numbers 0–10 in the top row.

Each capability encompasses a measurement of maturity and can be used to

determine the current situation of the PPM processes within an organization and

as a reference guide towards the next stage in maturity. For example, when an

organization states that capability A for PLM is implemented and B is not, it means

that the maturity of this organization with regard to PLM is ‘1’. The next stage

would be ‘2’, which can be reached by implementing the B capability. The order of

implementation is preferably from left to right where inter-process dependencies,

dependencies between capabilities in other focus areas (Weerd I van de 2009), need

to be taken into account.

8 Framework for Implementing Product Portfolio Management in Software Business 211

Table 8.1 also shows an example of a matrix profile (grey shading), which

represents the PPM maturity of a software business (van Steenbergen et al. 2010).

In this particular example, most A-capabilities are implemented. However, in the

focus area of PLM, none of the capabilities is implemented yet, leading to an

overall maturity level of zero. In this case, the first improvement activity should be

the implementation of the A and B capabilities with regard to PLM. Note that since

the matrix is constructed in conjunction with the competence model and PDDs, they

should be considered as complementary and referred to when a more thorough

understanding is required.

8.5.2 Capabilities

The full list of capabilities that comprise the maturity matrix are presented online

(see ‘Appendix J’ in Jagroep et al. (Jagroep et al. 2011a)). As an example, the

capabilities for the PPM focus area are presented in Table 8.2. For each of the

capabilities, a title is given, as well as a short description of the activity that needs to

be performed within an organization. Consider capability B for the focus area of

PPM. This capability is named ‘Constructed departmental roadmap’, and it is

explained that there should be a document describing the future developments of

the products in the portfolio over a certain period of time for a certain department

within an organization. Since portfolio management is initiated on the product

level, it should be clear what the future (development) projects (touching the

topic of PjPM) on the departmental level are with regard to the products on the

departmental level. This departmental roadmap could in turn be used as a means for

communication of the plans with regard to a specific product.

Table 8.1 Maturity matrix for product portfolio management with example maturity profile

0 1 2 3 4 5 6 7 8 9 10
Strategy processes
Initiation A B C
Strategy implementation A B C
Gatekepper introduction A B
Core processes
Product portfolio management A B C D E F
Product life-cycle management A B C D E
Product portfolio management A B C D E
Supporting processes
Process formalization A B
Tooling A B C
Information technology A B C

212 E. Jagroep et al.

With regard to the placement of the capabilities in the maturity matrix, we

consider the focus area of PLM. The guidelines found for PLM suggested to first

keep track of the life cycle phases that are under the control of the organizations and

from there on expand to include the other life cycle phases. When the processes for

an individual process are taken care of, the focus can shift to span the ecosystem of

a product. As a consequence, these capabilities are placed on the left-hand side of

the maturity scale. More difficult capabilities to implement, often stemming from

the more mature situations in these models, are placed on the right-hand side. This

process handles the intra-process, the order of the capabilities within a focus area,

capability dependencies as described by Weerd I van de et al. (2008).

The inter-process capability dependencies (Weerd I van de et al. 2008), which is

the order of the capabilities between focus areas, is explained using PLM capability

C ‘PLM integration in the product roadmap’. Looking at related focus areas,

specifically PPM and PjPM, this capability, based on literature, requires that the

tasks of the product manager are defined and that a central project administration is

established. Therefore, the implementation of the PLM C capability depends on

both A capabilities in the focus areas of PPM and PjPM and is consequently placed

in a higher maturity level.

Table 8.2 Capabilities for the PLM focus area

A Defined product manager tasks

The tasks of a product manager are formally defined.

B Constructed departmental roadmap

A document is created describing the future developments of the products in the portfolio over a

certain period of time for a certain department within an organization.

C Established multi functional core teams

A multi functional core team is responsible for the management and thereby the success of a

product.

D Defined organizational portfolio

The entire organizational portfolio is defined in terms of products, components and core assets,

documented and communicated. All stakeholders (e.g., product managers) provide input for

this mapping and validate the end result.

E External assessment is performed

In conjunction with the gatekeeper function, a number of externally oriented aspects (e.g., pricing

model and competitor advancements) are assessed for each product in the portfolio to improve

the organizations’ ability to tailor products to the markets’ needs.

F Established portfolio review board

A board is established that is actively managing the entire product and project portfolio of an

organization, for example, through the usage of service catalogs.

8 Framework for Implementing Product Portfolio Management in Software Business 213

8.6 Theory-Testing Case Study

In this section, the validation of PIF is presented. First, a more thorough description

is given of the case that has been studied and the results from this case study. These

results confirm whether or not PIF can indeed be applied in practice and whether the

framework and related theory are sufficient to assess the full scope of PPM. The

section concludes with the adjustments that have been made to the research artifacts

and the findings that have led to these adjustments. In this description, the maturity

matrix is taken as the central object. Changes in the maturity matrix also imply

changes in the other research artifacts.

As stated in the research methodology, the case study has been performed to

validate the implementation framework for product portfolio management pro-

cesses in the software business. To this end, the case study has been performed at

a different, but nevertheless large, Dutch software organization (COMP2). The

units of analysis for this case study were clusters within the organization, each with

their own target markets, and their respective product portfolio’s, where a cluster

exists of a number of business units and multiple products. A cluster exists of a

number of business units and multiple products. In total, seven interviewees have

participated in the case studies, which were accountable for 32 software products.

The choice to select interviewees on a higher strategic level was deliberately made

as this fits the strategic nature of product portfolio management. The products that

made up the portfolios of these clusters ranged from specialized software catered to

a specific niche to large suites for demanding users. Examples are human resource

software, administrative software and ERP systems deployed at, amongst others,

local governments, healthcare institutions and retail and housing co- operatives.

The average market share of these products is 47.6 %, with the highest market share

being 71 % and the lowest being 20 %. With most of the products in the portfolio,

the position of the market leader is claimed.

For this case study, the same research question as formulated for the entire

research was the central question and, to conform to the protocol, the same semi-

structured interview was used. The results of this case study have been accordingly

analyzed and coded, as described in Sect. 8.2.1 and again processed to enrich the

framework that was already created based on literature. Considering the fact that we

already had the preliminary PIF, the interviewees got an explanation of the frame-

work and the way their interview results would contribute to finalizing it. Note that

this was done after the interview had finished and thus had no influence on the

actual results of the interviews.

Table 8.3 shows the scores of the interviewees mapped onto the maturity matrix.

The percentages are placed on the positions of the capabilities and indicate the part

of the interviewees that have implemented a specific capability. It shows that the

clusters have all implemented the A capabilities and in most cases also the B

capabilities. The gray scale is a visual indication of the maturity of the organization.

The dark gray indicates that the capabilities in this area are implemented within the

clusters, while the shades towards lighter gray indicate that fewer clusters possess

the capabilities according to the assessment. From the matrix, it is clear that the

214 E. Jagroep et al.

main focus for a more mature process should be on capabilities regarding ‘Initia-

tion’, ‘PLM’, ‘Tooling’ and ‘Information technology’. Overall, the maturity is set

on level 3 since every cluster possesses the capabilities until that maturity level.

Apart from the application of PIF, also a number of changes have been made to

the research artifacts based on this case study. These alterations are presented below

and are structured according to the capability or focus area they apply to. Note that

not every focus area required an alteration. As a general change, the core processes

have been moved to the centre of the matrix for aesthetic reasons. The more detailed

alterations are explained below:

Initiation—Capability C This capability has been moved from position 5 to

position 8 on the maturity scale. During the interviews, all interviewees acknowl-

edged that the portfolio plan is actually being constructed after the construction of

the product roadmaps. It has been acknowledged that the product roadmaps actually

form the input for the portfolio plan. Using centrally communicated themes from

the high-level management, the strategic direction for the portfolio is set out.

Strategy Implementation—Capability C This capability has been moved from

position 7 to 8 on the maturity scale. The portfolio strategy can be defined

internally, but, as acknowledged by all seven interviewees, the external environ-

ment is a highly influential factor. Therefore, the new position for this capability is

on the same level as capability E for product portfolio management.

Gatekeeper Introduction—Capability A Again, a capability has been moved,

however this time, downwards on the maturity scale. All interviewees actually

admitted to perform the functions of a gate keeper; they were in contact with the

external environment and translated their findings into concrete directions for a

product or the organization in general. With this finding, it was also indicated that

Table 8.3 PPM maturity scores COMP 2

0 1 2 3 4 5 6 7 8 9 10
Strategic processes
Initiation 100% 43% 14%

Strategic implementation 100% 86% 29%

Gatekeeper introduction 100% 14%

Core processes
Product portfolio management 100% 100% 71% 43% 0% 0%

Product life-cycle management 100% 100% 14% 0% 0%

Project portfolio management 100% 100% 14% 0% 0%

Supporting processes
Process formalization 57% 0%

Tooling 43% 0% 0%

Information technology 71% 0% 0%

8 Framework for Implementing Product Portfolio Management in Software Business 215

tools and information technology actually depended on the information require-

ments that are defined by the gatekeeper process. Therefore, this capability is aligned

with both A capabilities of the ‘tooling’ and ‘information technology’ process areas.

Product Portfolio Management With regard to this process area, the inter-

viewees did not provide answers that led to alterations of the existing capabilities.

However, five out of seven interviewees indicated missing the concrete activity of

defining the organizational portfolio. Shifting from operational to more strategic

levels requires that there is clarity on the entire product portfolio that the review

board is made responsible for. Hence also the positioning of this new capability

(D) before the external assessment is performed. This activity and deliverable have

also been included in the PDD shown in Fig. 8.6, where the major part of the

alterations have been made. The suggested order in the first PDD appeared too

rigid, while all interviewees acknowledged that certain activities could indeed be

performed simultaneously or that no particular order is required. More specifically,

the figure shows that the activities on the departmental levels ‘Create departmental

portfolio roadmap’, ‘Assign product manager and define tasks’ and ‘Assign

multifunctional core teams’ can be performed simultaneously and in no particular

order. Note also that the name ‘Define product manager tasks and assign product

managers’ has been changed to ‘Assign product manager and define tasks’ for

aesthetic reasons.

The final alteration is in the mid-segment of the PDD, where the focus slowly

shifts towards the portfolio level. The alteration encompasses the simultaneous act

of defining the organizational product portfolio and incorporating external infor-

mation in the decision-making process. With regard to the order of first incorpo-

rating gatekeeper findings and then performing the externally oriented assessment,

the interviewees indicated that gatekeeper findings triggered which external aspects

should be further assessed.

Product Life Cycle Management For the process area of PLM, the capability of

integrating PLM into the roadmap (C) has been added to the maturity matrix.

Though all interviewees acknowledged that the life cycle of a product was an

important factor to take into account, only one interviewee acknowledged that the

information on the life cycle of a product was actually included in the roadmap for

that product. Considering the importance of the information, this activity has also

been made more explicit in the PDD (Fig. 8.5).

Other alterations in this process area are made in the PDD and are on the

informative nature of the PLM process. The activity of actually integrating this

information with the other (strategic) process in the organization ensures that the

information is made available and being used within the organization. Also, a minor

alteration has been made by replacing the supply chain of a product for the

ecosystem surrounding a product. Based on Jansen et al. (Jansen et al. 2009) we

consider an ecosystem to better fit the framework.

Project Portfolio Management Though no capabilities were altered, there are

minor changes to the PDD with regard to PjPM (Fig. 8.6). The PDD has been

216 E. Jagroep et al.

changed to explicitly include the activity of defining the PjPM processes on a

departmental level, an activity that was unclear with the previous description.

Along with this alteration, the names of the corresponding deliverables were

adjusted.

Tooling A process area that has been altered to a great extent is the area of tooling.

First of all, the name ‘tool construction’ has been replaced by ‘tooling’. This more

generic term better suits the described processes in the PDD. Second, the capabil-

ities have changed. The initial capability of having an established tool collection

did not indicate the different strategic levels that four out of seven interviewees

pointed out. To be more specific, it was acknowledged that tools were often used

within the individual business units and that there was an awareness of their

existence. Going one step further, two out of seven interviewees were involved in

an endeavour to roll out a dedicated tool for product roadmapping. This tool can be

used within a business unit, within a cluster or even throughout the organization.

The final capability goes to a more strategic level, namely, that of governance

tooling. Given the fact that processes are implemented on different levels of the

organization, in different environments and in different manners, there is the need

to be able to keep track of their implementation and functioning. Governance

tooling enables the organization to do so, but also requires significant effort to

implement. With regard to the placement of the capabilities on the maturity scale,

the same division as ‘information technology’ has been applied as three out of

seven interviewees acknowledged the similarity in implementation difficulty and

added value to the processes.

8.7 Implications

The portfolio implementation framework in this chapter is proposed as a contribu-

tion for the area of software product portfolio management. The importance of PPM

is acknowledged within the scientific community, but no holistic method for

implementing the associated process has been available. This is where PIF is

suggested to fill the gap. Even though a clear distinction can be made between

the suggested focus areas, there is an overlap when it comes to information

requirements and process dependencies. For academic purposes, PIF is considered

to be a starting point in maintaining this holistic approach. Though each focus area

is interesting in its own regard, taking the interrelatedness into account is beneficial

for being able to apply the results in practice. Though the focus of this research is on

software, we do not argue that the framework is limited to this domain. Given the

situational factors, (parts of) the framework could possibly be applied to other

domains.

From a practical perspective, PIF provides a translation between scientific

knowledge and practical appliance by making the topics more concrete and realiz-

able in terms of processes. Knowledge on specific topics is available in scientific

8 Framework for Implementing Product Portfolio Management in Software Business 217

articles, but it is often the case that this knowledge cannot be applied in practice.

PIF proved its applicability by case studies, and in one of these case companies, the

profile of the maturity matrix has increased the awareness on this topic on the

corporate level. This in turn led to the organization implementing the advice that

was suggested based on PIF.

PIF is also a contribution in terms of an instrument for industry. As shown

through the case studies that have been conducted, software organizations can be

compared with one another using PIF. In this regard, PIF could prove to be a tool for

bench-marking. The application of this framework in general could also lead to

improved decision-making with regard to the product portfolio of an organization.

PIF provides useful insight in the current state of affairs, which helps to raise the

awareness on the subject and in turn possibly improve the portfolio as a whole. The

starting point for improvement is the initiation focus area within the model and

from there moving on to assess the other focus areas.

Related to software project management, PIF is positioned on a more strategic

level. Though it is acknowledged that individual projects require proper manage-

ment on their own, with regard to the success of a product, it is also important that

the right strategic projects are taken up. This, amongst others, depends on the life

cycle phase a product is in, the roadmap that is created for a product and the

developments outside the organization (e.g., technological developments). Both

practitioners and academics should consider a software project in the context of an

entire organization and from this point of view maximize the value for business.

8.8 Conclusions and Future Research

The research question in this chapter, “How can product portfolio management be

implemented in software businesses to enable the corporate strategy?” is addressed

by the introduction of the software product portfolio management implementation

framework (PIF). As there is a growing interest for product portfolio management

with regard to software products, we believe that PIF is a good starting point for

implementing and improving portfolio management processes within software

organizations. Where maturity levels, methods and implementation trajectories

have been defined for the individual focus areas identified in PIF, no model or

framework has been available that incorporates a holistic view of these topics.

Through extensive literature study and assessments of product portfolio manage-

ment in practice, PIF is the first framework to incorporate a multitude of related

topics within the domain of software products. With regard to PIF’s applicability in

practice, two case studies were performed that indeed showed the potential of

assessing and improving portfolio management processes in software businesses.

As an initial study into the implementation of product portfolio management

processes within software businesses, further research is required to improve the

research results. The research method that has been followed proved to be useful for

exploring the research area and defining a new scope for PPM, but other aspects and

218 E. Jagroep et al.

relations could be added based on newer findings. Especially, considering the

dynamics of business, business models and technology, PIF should be constantly

adapted to fit these new situations when required. Further research could therefore

be conducted on the content of PIF itself but also on the application, and forthcom-

ing evaluation, of the framework. Practitioners should be aware of the fact that their

input is essential when future frameworks and models are to better address their

needs and help improve business.

With regard to the content that has been discussed, a number of directions can be

thought of for future research. First, research could be conducted on the state of

affairs at other software organizations. With more input from the practical perspec-

tive, more key issues, guidelines, activities, topics or even capabilities could be

identified that make PIF more complete. Second, research could be conducted on

the PPM processes of top performers to identify best practices. This could prove

useful when the aim is to validate PIF as a benchmarking tool. And finally, experts

from other domains, for example, project management could be involved in further

development of the model. On the evaluation of the framework, further research

could be conducted by performing more case studies where PIF is applied. Valuable

insights can be gained into the completeness of the framework and its general

applicability when organizations of different sizes are included. Ideally, every

organization, depending on their situational factors, should be able to implement

product portfolio management processes that fit the organizational needs.

Acknowledgements We would like to thank all (strategic) product managers within the two

Dutch software organizations for their cooperation with the interviews and the experts who have

participated in the evaluation of the framework. Furthermore, we want to thank the organizers,

reviewers and participants of the 5th International Workshop on Software Product Management

for their suggestions and remarks.

References

Batenburg R, Helms RW, Versendaal J (2006) PLM roadmap: stepwise implementation based on

the concepts of maturity and alignment. Int J Prod Lifecycle Manage 1:333–351

Bekkers W, Weerd I van de, Spruit M, Brinkkemper S (2010) A framework for process improve-

ment in software product management. Commun Comput Info Sci 99:1–12

Charmaz K (2006) Constructing grounded theory: a practical guide through qualitative analysis.

SAGE, London

Cooper RG, Edgett SJ (2008) Maximizing productivity in product innovation. Res Technol

Manage 51:47–58

Cooper RG, Edgett SJ (2010) Developing a product innovation and technology strategy for your

business. Res Technol Manage 53:33–40

Cooper RG, Edgett SJ, Kleinschmidt EJ (2001) Portfolio management for new product develop-

ment: results of an industry practices study. In: R&D management, Blackwell Publishers Ltd,

pp 361–380

Cooper RG, Edgett SJ, Kleinschmidt EJ (2002) Portfolio management: fundamental to new

product success. In: Belliveau P, Griffin A, Somermeyer S (eds) The PDMA ToolBook 1 for

new product development, 1st edn. Wiley, New York, pp 331–364

8 Framework for Implementing Product Portfolio Management in Software Business 219

de Reyck B, Grushka-Cockayne Y, Lockett M, Calderini SR, Moura M, Sloper A (2005) The

impact of project portfolio management on information technology projects. Int J Project

Manage 23:524–537

Denzin NK, Lincoln YS (2011) Handbook of qualitative research. Sage, Thousand Oaks, CA

Ebert C (2007) The impacts of software product management. J Syst Softw 80:850–861

Eisenhardt KM, Martin JA (2000) Dynamic capabilities: what are they? Strateg Manage J

21:1105–1121

Fricker S, Gorschek T, Byman C, Schmidle A (2009) Handshaking: negotiate to provoke the right

understanding of requirements. IEEE Software 99

Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS

Q 28:75–105

Higgins JM (1985) Strategy formulation implementation and control. Dryden Press, New York

Jagroep E, Weerd I van de, Brinkkemper S, Dobbe T (2011a) Software product portfolio

management: towards improvement of current practice. http://www.cs.uu.nl/research/tech-

reps/repo/CS-2011/2011-022.pdf. Accessed 25 March 2012

Jagroep E, Weerd I van de, Brinkkemper S, Dobbe T (2011b) Implementing software product

portfolio management. In: Paper presented at the 5th international workshop on software

product management, University of Trento, Trento, 30–30 August 2011

Jansen S, Finkelstein A, Brinkkemper S (2009) A sense of community: a research agenda for

software ecosystems. Presented at the 31st international conference on software engineering,

Vancouver, May 16–24

Killen CP, Hunt RA, Kleinschmidt EJ (2008) Project portfolio management for product innova-

tion. Int J Qual Reliab Manage 25:24–38

Kittlaus HB, Clough P (2006) Software product management and pricing: key success factors for

software organizations. Springer, Berlin

Lee SG, Ma YS, Thimm GL, Verstraeten J (2007) Product life-cycle management in aviation

maintenance, repair and overhaul. Comput Ind 59:296–303

McNally RC, Durmusoglu SS, Calantone RJ, Harmancioglu N (2009) Exploring new product

portfolio management decisions: the role of managers’ dispositional traits. Ind Mark Manage

38:127–143

Pfeffers K, Tuunanen T, Rothenberger MA, Chatterjee S (2007) A design science research

methodology for information systems research. J Manage Info Syst 24:45–77

Rajegopal S, McGuin P, Waller P (2007) Project portfolio management. Palgrave McMillan,

Hampshire

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software

engineering. Empir Softw Eng 14:131–164

Saaksvuori A, Immonen A (2008) Product lifecycle management. Springer, Berlin

Stantchev V, Franke MR, Discher A (2009) Project portfolio management systems: business

services and web services. In: Perry M, Sasaki H, Ehmann M. Bellot GO, Dini O (eds)

Proceedings of the 4th international conference on internet and web applications and services,

Venice/Mestre, 2009

Steenbergen M van, Bos R, Binkkemper S, van deWeerd I, Bekkers W (2010) The design of focus

area maturity models. In: Winter R, Zhao JL, Aier S (eds) Global perspectives on design

science research. Lecture Notes in Computer Science, vol 6105. Springer, Heidelberg, p 317

Takeda H, Veerkamp P, Tomiyama T, Yoshikawam H (1990) Modeling design processes.

AI Magazine 11:37–48

Teece DJ, Pisano G, Shuen A (1997) Dynamic capabilities and strategic management. Strateg

Manag J 18:509–533

Vaishnavi V, KuechlerW (2004)Design research in information systems.Association for information

systems. http://desrist.org/design-research-in-information-systems. Accessed 31 January 2011

Vischer M, Boutellier R, Breitenmoser P (2010) Implementation of a gatekeeper structure for

business and technology intelligence. Int J Technol Intell Plan 6:111–127

Ward J, Peppard J (2006) Strategic planning for information systems. Wiley, West Sussex

220 E. Jagroep et al.

http://www.cs.uu.nl/research/techreps/repo/CS-2011/2011-022.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-2011/2011-022.pdf
http://desrist.org/design-research-in-information-systems

Weerd I van de, Brinkkemper S (2008) Meta-modeling for situational analysis and design

methods. In: Syed MR, Syed SN (eds) Handbook of research on modern systems analysis

and design technologies and application. Idea Group Publishing, Hersey, PA, pp 38–58

Weerd I van de (2009) Advancing in software product management: an incremental method

engineering approach. Dissertation, Utrecht University

Weerd I van de, Versendaal J, Brinkkemper S (2006) A product software knowledge infrastructure

for situational capability maturation: Vision and case studies in product management. http://

www.cs.uu.nl/research/techreps/repo/CS-2006/2006-008.pdf. Accessed 25 March 2011

Wind Y (1975) Product portfolio analysis: a new approach to the product mix decision. Wharton

University of Pennsylvania. http://marketing.wharton.upenn.edu/documents/research/7401_

Product_Portfolio_A_New_Approach.pdf. Accessed 20 May 2010

Yin RK (2009) Case study research: design and methods. Sage, Thousand Oaks, CA

Biography Erik Jagroep after finishing the Business Informatics master program

at Utrecht University, Erik Jagroep became a PhD candidate at Utrecht University

on the topic of sustainable software development. Besides this academic position,

Erik is also consultant at a large Dutch software organization where his work is

aimed at improving the product management processes. This combination enables

bringing research into practice fulfilling both academic and industry needs.

Inge van de Weerd is an assistant professor at the Knowledge, Information and

Networks group at the VU University, Amsterdam. She holds a PhD in Information

and Computing Sciences from Utrecht University and was visiting scholar at the

Tokyo Institute of Technology. Her research interests focus on the intersection of

IT and organizations.

Sjaak Brinkkemper is full professor of Organization and Information at Utrecht

University, the Netherlands. He leads a group of about 30 researchers, with a

methodology of product software development, implementation and adoption and

business-economic aspects of the product software industry as the main research

themes. He has published 10 books and about 150 papers on his research interests:

software production, meta-modelling and method engineering.

Ton Dobbe In his career within Unit4, Ton Dobbe has carried positions in market-

ing, both local and international product marketing and management. In his current

role as Vice President Product Marketing, Ton is responsible for both product

strategy and global product marketing of Unit4’s strategic international ERP

solution, with a special interest in managing the UNIT4 product portfolio.

8 Framework for Implementing Product Portfolio Management in Software Business 221

http://www.cs.uu.nl/research/techreps/repo/CS-2006/2006-008.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-2006/2006-008.pdf
http://marketing.wharton.upenn.edu/documents/research/7401_Product_Portfolio_A_New_Approach.pdf
http://marketing.wharton.upenn.edu/documents/research/7401_Product_Portfolio_A_New_Approach.pdf

Chapter 9

Managing Global Software Projects

Christof Ebert

Abstract Projects are increasingly distributed across different sites. But distrib-

uted teams and suppliers complicate communication and create numerous frictions.

Over half of all distributed projects do not achieve their intended objectives and are

then canceled. Traditional labor cost-based location decisions are replaced by a

systematic improvement of business processes in a distributed context. Benefits are

tangible, as our clients emphasize: better multisite collaboration, clear supplier

agreements, and transparent interfaces are the most often reported benefits. There

is a simple rule: Only those who professionally manage their distributed projects

will succeed in the future.

This chapter summarizes experiences and guidances from industry in a way to

facilitate knowledge and technology transfer. It looks to processes and approaches

for successfully handling global software development and outsourcing and offers

many practical hints and concrete explanations to make global software engineering

(GSE) a success. Starting with the necessary foundations, the chapter indicates what

solutions are available to successfully implement GSE. It underlines the basic

concepts and practices of GSE with broad industrial experiences and also summa-

rizes future trends in GSE. The chapter is based on an industry perspective taking

into consideration the state of the practice to ensure direct transfer and applicability

to distributed projects.

Some portions of the text and pictures have been first published in the book Ebert, C.: Global

Software and IT: A Guide to Distributed Development, Projects, and Outsourcing. Wiley, USA,

2012. Used with permission. The chapter is based on an industry perspective, which means that

we look primarily towards industry needs in GSE to ensure applicability to distributed projects.

C. Ebert (*)

Vector Consulting Services GmbH, Ingersheimer Strasse 24, 70499, Stuttgart, Germany

e-mail: christof.ebert@vector.com

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_9, © Springer-Verlag Berlin Heidelberg 2014

223

mailto:christof.ebert@vector.com

9.1 Introduction

Successfully managing global software projects has rapidly become a key need

across industries. However, a majority of such global projects do not deliver

according to expectations (Ebert 2012; PWC 2013). Globally distributed software

development poses substantial risks to project and product management. As com-

panies turn to globalized software, they find the process of developing and

launching new products becoming increasingly complex as they attempt to inte-

grate skills, people, and processes scattered in different places. Many companies

realize after a while into global software engineering that savings are much smaller

and problems are more difficult to solve than before. Disillusioned, many abandon

their global software engineering (GSE) activities. What has gone wrong? GSE

bears many chances and challenges, which we address in this chapter briefly from a

project management perspective.

Global software engineering, IT outsourcing, and business process outsourcing

during the past decade have shown growth rates of 10–20 % per year (Ebert 2012;

PWC 2013; Forrester 2012). While the market proximity, cost advantages, and skill

pool still look advantageous, global development and outsourcing bears a set of

risks that come on top of the regular project risks. Not knowing them and not

mitigating them means that soon your project belongs to the growing share of failed

global endeavors. Global software engineering is as natural for the software busi-

ness as is project management or requirements engineering. Going global with

software is a means of effective work split and managing skills and competences.

To be successful with software, we need to take advantage of continuous collabo-

ration around the globe. This chapter looks into different business models in

software.

The share of offshoring or globalization depends on the underlying business

needs and on what software is being developed. While for mere IT applications or

Internet services, the global development is fairly easy, embedded software still

faces major challenges to distributed development. A study by embedded.com

found that only 30 % of all embedded software is developed in a global or

distributed context, while the vast majority is collocated (Ebert 2012; Chui

et al. 2012; Forrester 2012). Similarly, the amount of quality deficiencies and

call-backs across industries has increased in parallel to growing global development

and sourcing.

Already in 1962, EDS started with offering IT on spare capacity (time-shared

computing) as an external service (what would be today called application service

provisioning). In 1976, EDS started deploying global IT services, such as financial

accounting. India very early realized that this form of business could help the

country leapfrog into current technologies and therefore become a major business

partner for the Western world. Indian Institutes of Technology started in the 1960s

with computer science curricula, thus providing the foundations for India’s latter

success in the IT domain. The first e-mail sent from China to a foreign country was

on 20 September 1987 to the University of Karlsruhe, Germany. The text was short,

224 C. Ebert

yet powerful: “Across the Great Wall we can reach every corner in the world.” It

was the vision of an increasingly connected world where all citizens and enterprises

can do business with each other. The world was beginning to become flat. Yet, the

notion of “across the wall” also shows that connected does not necessarily mean

sharing the same values or being borderless and integrated.

The journey has begun, but it is far from being clear what the stable end positions

will be. Clearly, some countries will come to saturation because global develop-

ment essentially means that all countries and sites have their fair chance to become

a player and compete on skills, labor cost, innovativeness, and quality. Software

engineering is based upon a friction-free economy with any labor being moved to

the site (or engineering team) that is best suitable among a set of constraints. No

customer is anymore in a position to judge that a piece of software from a specific

site is better or worse compared to the same software being produced somewhere

else in the world. In essence, the old-economy labeling of “made in country x” has

become a legacy thinking that does not relate to software industries. What counts

are business impacts and performance, such as resource availability, productivity,

innovativeness, quality of work performed, cost, flexibility, skills, and the like.

9.2 Foundations

Today, practically all new business plans contain offshoring as a key element to

contain cost or achieve more flexibility to cope with changing demands in skills and

numbers of engineers. Different business models are applied in the global context.

A first distinction is made between outsourcing and offshoring.

• Offshoring: Executing a business activity beyond sales and marketing outside

the home country of an enterprise. Enterprises typically either have their local

branches in low-cost countries or ask specialized companies abroad to execute

the respective activity. Offshoring within the company is called captive

offshoring.

• Outsourcing: A lasting and result-oriented relationship with a supplier, who

executes business activities for an enterprise, which were traditionally executed

inside the enterprise. Outsourcing is site-independent. The supplier can reside in

the direct neighborhood of the enterprise or offshore.

Offshoring and outsourcing are two dimensions in the scope of globalized

software development. They do not depend on each other and can be implemented

individually. All global software development formats allow more flexibly manag-

ing operational expenses because resources are allocated at places and from regions

where it is most appropriate to flexible needs and ever-changing business models.

Figure 9.1 summarizes the reasons for GSE based on data from software companies

in Europe and North America (Ebert 2012; PWC 2013).

Cost reduction is still the major trigger for globalization, though its relevance

has been decreasing over the past years. This reasoning is simple and yet so

9 Managing Global Software Projects 225

effective that it is today mainstream for most companies and media. Labor cost

varies across the globe. For similar skills and output, companies pay in different

places of the world a different amount of money per working hour or per person-

year. Looking to mere labor cost for the comparable skills of educated software

engineers, several Asian countries offer a rate of 10–40 % of what is paid for the

same working time in Western Europe or the USA. Salary differences theoretically

allow reducing R&D labor cost by 40–60 % (PWC 2013; Greengard 2013; Chui

et al. 2012; Forrester 2012). Obviously, insufficient competences, hidden costs, and

many additional over-heads severely reduce this potential.

Other factors therefore start influencing the decision for GSE. Increasingly,

global software development and offshoring is about proximity to markets, sharing

the benefits of resources from different cultures and backgrounds, and flexibility in

skill management. Managers want access to on-demand specialist know-how with

less forecasting and provisioning, which often contains a lot of fixed cost that in

today’s competitive environment is not anymore bearable. Increasingly, the target

is quality improvement and innovation; both are related to blending cultures and

thus achieve internal competition and a new stimulus for doing better.

The different drivers fueling the need for outsourcing and offshoring as they

appear in Fig. 9.1 and in major statistics can be summarized in four categories,

namely, efficiency, presence, talent, and flexibility. We will further look at these

factors in the next section.

9.3 Benefits and Challenges

Working in a global context has advantages but also drawbacks. While the positive

side accounts for time zone effectiveness or reduced cost in various countries, we

should not close our eyes in front of risks and disadvantages. Practitioners of global

software development and outsourcing clearly recognize that difficulties exist. In

Labor cost
32%

Talent and
skills
27%

Quality,
cycle time

21%

Flexibility
14%

Local
markets

6%

Fig. 9.1 Reasons for

outsourcing and offshoring

226 C. Ebert

this chapter, we look into the risks and failures in global software projects. Only

when we are aware of risks and past failures do we have a chance to do better.

Many factors cannot be quantified or made tangible initially, but will sooner or

later heavily contribute to overall performance. For instance, innovation is a major

positive effect that is boosted by going global. Engineers with all types of cultural

backgrounds actively participate to continuously improve the product, how to

innovate new products, and how to make processes more effective. Even with the

slightly more complex decision-making process behind, achievements are substan-

tial if engineers with an entirely different education and culture try to solve

problems. Best practices can be shared, and sometimes small changes within the

global development community can have big positive effects.

Not all companies that engage in GSE look at all four drivers with the same

motivation. In several industry projects that I had been working on, we even faced a

kind of trajectory where a vast majority of companies started with efficiency needs

(i.e., cost savings), moved on to a presence in local markets, and, only after these

two forces had been understood and digested, moved further to talent and flexibil-

ity. Also, it is clear that these four factors feed themselves. The more energy a

company spends on building a regional pool of skilled software engineers, the more

it also considers how to best utilize these competencies, for instance, to build a

regional market or to develop new products for such markets.

It looks just rational to put stakeholders at one place, share the objectives, and

execute the project. Working in one location is a major lesson learned from many

failed projects that found its way into many states of the practice development

methodologies, such as agile development. So, what are the strategies and tactics to

survive globally dispersed projects?

In our experiences with clients around the world, 20–25 % of all outsourcing

relationships fail within 2 years, and 50 % fail within 5 years (Ebert 2012). This is

supported by a recent study that reports a trend towards localization and insourcing

(Greengard 2013; Forrester 2012).

One fifth of the executives in a recent survey say that they are dissatisfied with

the results of their outsourcing arrangements, while another fifth of the respondents

see no tangible benefits (PWC 2013; Greengard 2013; Chui et al. 2012). Deloitte,

considering responses from 22 primary industries in 23 countries, found that almost

half of the respondents have terminated an outsourcing agreement early for cause of

convenience. More importantly, one third of those who terminated a contract for

these reasons chose to bring the work back in-house. In fact, insourcing has

emerged as a viable option, particularly when outsourcing does not meet expecta-

tions (Greengard 2013). A Forrester study focusing on sourcing and vendor man-

agement sees “an ongoing level of dissatisfaction with outsourcing,” citing

Forrester’s 2012 services survey of some 1,000 IT service professionals, where

nearly half the respondents listed “poor service quality” as a challenge and one third

stated that they were looking to bring work back in-house (Forrester 2012).

Working in a globally distributed project means overheads for planning and

managing people. It means language and cultural barriers. In this chapter, we try to

9 Managing Global Software Projects 227

summarize experiences and to share the best practices from projects of different

types and sizes that involve several locations in different continents and cultures.

The business case of working in a low-cost country is surely not a simple trade-

off of different costs of engineering in different regions. Many companies struggle

because they just looked at the perceived differences in labor cost and not enough at

risks and overhead expenses. Twenty percent of all globalization projects are

cancelled within the first year (Ebert 2012; Greengard 2013). Fifty percent are

terminated early (Ebert 2012; Greengard 2013). In many cases, the promise of

savings has not matched the diminishing returns of unsatisfied customers.

Big savings in GSE have been reported only from (business) processes that are

well defined and performed already before offshoring started and that do not need

much control (Forrester 2012; Sangwan et al. 2007; Rivard and Aubert 2008). This

includes maintenance projects (under the condition that the legacy software has

some type of description) where some or all parts could be distributed, technical

documentation (i.e., creation, knowledge management, packaging, translation, dis-

tribution, maintenance), or validation activities. Development projects have shown

good results in all cases where tasks have been well separated so that distributed

teams would have a direction and ownership.

In many companies around the world, I had seen global development projects

failing when tasks were broken down too much, such as asking a remote engineer to

do the verification for software developed concurrently in another site (Ebert 2012).

In such cases, distance effects and a lack of direct communication slow down

development rather than help it. The single biggest source of difficulties in

outsourcing/offshoring is related to communication across sites, bad communica-

tion hindering both coordination and insufficient management processes.

For example, the continuous integration of insufficiently verified and encapsu-

lated software components fails if done remotely to the parallel ongoing software

development. Distributed teams working on exactly the same topic (e.g., the

famous follow-the-sun pattern of developing a piece of software in different time

zones) posed the highest challenges for coordination and often resulted in severe

overheads that would be measurable or tangible only later (e.g., features

misinterpreted, insufficient quality, lack of ownership and responsibility, etc.).

The challenges in global software can be summarized as follows:

• Lack of strategy and shared values in the parent organization resulting in

insufficient collaboration and unclear work split and ownership. Roadmaps

might be fragmented or insufficient visibility provided on the strategy that

both contribute to an insecurity of teams and cause suboptimal results. A clear

sign for the lack of strategy is the senior manager announcing, “We will work in

India because it is cheaper,” or the engineering lead explaining, “Any work can

be done by virtual teams.” A major underlying reason for dysfunctional global

work is different values and underlying society factors. We often label this

superficially as “culture issues” or, even worse, as “soft factors,” claiming that

we cannot handle it with our limited management and software education. For

instance, time perception in a society has a profound impact on many behaviors

228 C. Ebert

such as insufficient planning and monitoring, which cannot be cured only as

symptoms. A culture deeply rooted in the present will always be portrayed as

lazy and unfocused by a society rooted in the future and therefore demanding

accurate planning. The same applies to societies that value entrepreneurship and

spontaneous (re)actions to events as opposed to those that prefer clearly outlined

roles and responsibilities.

Such differences must be recognized, considered, and dealt with. A shared

value system and continuous team building activities will help, as well as

rotating employees across these different societies.

• Insufficient communication due to distance, time zones, and cultural barriers.

Note that distance impacts start at around 10–15 meters, that is, far earlier than

what one would usually assume. People talk and share only if they are close to

each other and frequently run into each other without this being planned. Lucent

and others did extensive studies on communication in global teams and found

that 15 % of software development is informal communication (Ebert 2012;

Ebert and Dumke 2007; Carmel and Espinosa 2012). Distributed teams are less

effective than a collocated team working on the same task.

• Dispersed work organization. The global nature of project and product work

obscures a holistic view of project success factors. More sites add cost due to

overhead management, separated and dysfunctional processes, tools, and teams.

Tools help, but will not be enough to build a distributed team. Process immatu-

rity is a key roadblock and a cause of inefficiencies and rework. Forrester,

Gartner, BCG, and Standish report 10 % management overhead, that is, one

person to synchronize for ten persons allocated an offshore task (Ebert 2012;

PWC 2013; Forrester 2012; Sangwan et al. 2007). Our own experiences show

that having two sites working on the same development project immediately

adds 10–20 % of the cost while reducing visibility and the impacts of manage-

ment. Overall effort overheads are ca. 35 % if working in two places due to

interface control, management, replication, frictions, etc. (Ebert 2012; Ebert and

Dumke 2007).

• Inadequate global management resulting in micromanaged tasks or a lack of

visibility. Often, project managers would fear the lack of control and establish

very small fragmented tasks to stay in control. Micromanagement creates a lack

of buy-in from the teams as they expect that the manager would interfere

anyway, so they do not have to pay attention. On the other end is insufficient

visibility, starting with estimates and continuing with change management and

progress tracking. Global team management often suffers from biased attitudes.

Functional and regional rivalries exacerbate the tendency to claim the credit for

success and shift the blame for failures. We experienced in several such global

product lines that roadmaps and features are overly volatile because of local

optimization on per regional customer basis. Our own experiences in many

distributed projects over the past decade show that having two sites working

on the same development project immediately adds 10–20 % of the cost while

reducing visibility and the impacts of management (Ebert 2012). Alcatel-Lucent

reports 30–100 % delays for multisite change requests and overall project delays

9 Managing Global Software Projects 229

if a project is distributed across sites (Ebert and Dumke 2007). Shell underlines

the relevance of strong global management for such global software projects

(De Loof 2013).

• Isolated learning. Improvements derived from past experiences are rarely

applied beyond the originating organizational silo. We found that in global

software engineering individual sites – even if working in the same product

line – often have their own mostly organically grown tools and processes. It is

not that they don’t like corporate standards; it is rather the desire of local

management to optimize locally – because it is easier and faster than trying to

convince headquarters in another region of the world. Different countries or

regions would launch independent infrastructure optimizations in order to dif-

ferentiate. This is often amplified by dysfunctional regional competition as many

companies have been established to challenge “high-cost” countries with “low-

cost” countries. For this reason, the parent organization would hesitate to

provide all the necessary support due to fears that work would be taken away.

Additional obstacles in sharing experiences arise from insufficient risk mitiga-

tion related to intellectual property or third-party access to tools and knowledge

repositories. SAP reports, “Distributed development is slower and less forgiving

in case of mistakes. We need to communicate more but we have less capacity to

communicate. Effects of mistakes are not easily apparent and tend to be hidden

by regional owners longer than possible in a centralized development” (Ebert

2012).

• Less agility compared to collocated teams. On one hand workflows, monitoring

and engineering processes must be strengthened to assure that different stake-

holders collaborate well. On the other hand, baselining reviews across sites,

agreements on plans, stepwise synchronization of work products, multisite

project reviews etc. all add to this very concrete overhead situation. Such tasks

are normal and necessary as soon as an integrated activity is done in different

sites. But they are perceived as overhead by the teams and if not well-trained

they try to escape causing major trouble during development. Therefore, engi-

neering and management workflows and tools must be as agile and seamless

across interfaces and sites as possible. Modern product life-cycle management

tools certainly reduce such overheads.

• Insufficient contract management. Contracts are absolutely crucial for managing

external suppliers. They must include defined and measurable service level

agreements (SLAs) to assure appropriate quality levels. For captive offshoring

it might be wise, depending on organization structure, to govern by means of

internal contracts and SLAs. They have the big advantage that targets and

measurements are agreed on upfront and would not need continuous debates

with the senior management if some delivery is late. Certainly, such internal

contracts and SLAs together with a culture of accountability and clearly assigned

responsibility also avoid the political game of finger-pointing at “the others”

who did not do their job well.

230 C. Ebert

• Unknown legal environment. This is a major trap for any global activity,

independent of whether it is sales or engineering. To mitigate legal risks and

exposure both local as well as central management must get very familiar with

local laws, such as contracts, liability, intellectual property or human resource

management. If you do not yet have enough experience with global development

and specific regulations, we strongly recommend using consulting to ramp up

your competencies and processes before you actually engage in global develop-

ment. Never ever rely on the legal support from a supplier in the host country to

which you want to expand your engineering teams.

• High employee turnover rate. Turnover rates are higher in offshore centers than

in onshore ones—with the same job content (Ebert 2012). Reasons are manifold,

but can be reduced to three factors, namely reduced motivation, culture clashes,

and insufficient management. We see different local patterns of employee

turnover rates across the world. Given the many opportunities for brilliant

engineers, low motivation and insufficient rewards from their day-to-day work

environment makes them search for another job. Often, it is simply the job

content (e.g., doing only legacy repair, having only scattered assignments with

low personal commitment and ownership) and a lack of career paths that make

engineers move to another company. For instance, India’s software industry is in

such fast growth that many engineers are continuously approached by other

companies with even more interesting offers. But, with additional effort and

skilled management, turnover rates can be reduced. We have experienced that it

is feasible to manage an Indian engineering team with turnover rates similar to

those in Europe over many years (Ebert 2012). It all depends on management,

culture, responsibilities, and, ultimately, motivation.

With these challenges, the reported cost reduction from GSE is much less than

the abovementioned potential of 40–60 % savings if the same process is split across

the world with changing responsibilities (Sangwan et al. 2007; Rivard and Aubert

2008). Successful companies reported from their global software projects a 10–

15 % cost reduction after a 2- to 3- year learning curve. Initially, outsourcing

demands up to 20 % additional efforts (Ebert 2012; PWC).

Figure 9.2 shows the average contribution of this hidden cost to the overall cost

of R&D. For mere IT outsourcing, overheads are lower, specifically for

management.

Externalizing insufficient engineering processes creates extra cost and learning

curve-driven delays—on both sides. These additional costs sum up to 20–40 % of

the regular costs of engineering (Ebert 2012; Forrester 2012; Ebert and Dumke

2007).

The learning curve for transferring an entire software package to a new team

(e.g., location) takes 12 months (Ebert 2012; Sangwan et al. 2007; De Loof 2013;

Ebert and Dumke 2007). The effectiveness of software design and coding grows in

a learning curve with 50 % effectiveness reached after 1–3 months and 80 % after

3–5 months. This obviously depends on process maturity and technology

9 Managing Global Software Projects 231

complexity. Each of the following bullets accounts for a 5–10 % increase in regular

on-shore engineering cost in the home country (Ebert 2012; Ebert and Dumke

2007).

• Supplier and contract management

• Coordination and interface management

• Fragmented and scattered processes

• Project management and progress control

• Training, knowledge management, communication

• IT infrastructure, global tools licenses

• Liability coverage, legal support.

9.4 Global Software Development

Global software projects typically have some sort of supplier–client relationship,

even if there is only one company with a captive development center. It is important

for clients and suppliers to have shared processes and to maintain clear rules on

collaboration regarding roles, interfaces, tools, work products, etc. Empirical stud-

ies highlight that success is higher when both the client and the supplier firms

exhibit at least Capability Maturity Model Integration (CMMI) maturity level

3 (Rottman and Lacity 2006). Outsourcing insufficient engineering and manage-

ment processes is a key reason for failed outsourcing projects (Ebert 2012;

Sangwan et al. 2007). Insufficient processes are amplified as soon as distance and

corporate boundaries add toward complexity. Figure 9.3 shows the mutual depen-

dencies between supplier and client process maturities (Ebert and Dumke 2007).

Initializing cost
(total)

Initializing cost
(annual rate,
discounted)

Home country overhead cost for
communication, travel, interface
management

Cost of offshore management,
additional IT, infrastructure, etc.

Equivalent hourly rates
for offshore R&D

Home country cost

0

100

80

60

40

20

Savings

Fig. 9.2 Cost comparison including hidden cost

232 C. Ebert

From our empirical research in different companies and GSE settings around the

world, we can conclude that organizations with low organizational maturity (such

as CMMI maturity level 1) should not expect that GSE would yield much benefit,

except that an entire business process is given away (Ebert 2012). Instead, it will

reveal major deficiencies in processes and workflow, which create all types of

difficulties, such as insufficient quality, delays, additional cost, canceled offshoring

contracts, demotivated workforce in both places (previous and new), and many

more. The only viable alternative for such low-maturity organizations is to ramp up

their own processes before proceeding with global software engineering.

Different societies—and often persons on the microscopic level—have different

values and underlying driving factors. For instance, time perception varies dramat-

ically across societies around the globe. Some focus on the past or present, while

others are very future-oriented. Though this can be explained sociologically, such

as the foreseeable or always surprising effects of nature on the destiny of a certain

region of the world, it impacts behaviors. Therefore, the concept of urgency is

different in such societies. Putting hard deadlines or considering a milestone as a

deadline might work well in some societies, and fail without adequate training in

others.

Administration and planning might be traditionally considered highly relevant,

for example, in northern countries and in China (the first historically due to the need

to plan for long winters, the latter due to thousands of years of highly sophisticated

administrations) or almost irrelevant. Trust is another example. Some cultures do

not care about written documents and take primarily the person and his word as the

baseline. Others demand written documents and evidence in order to accept results.

Knowing about such differences allows you to consider them in team building and

setting a shared vision and shared values and objectives. Shared values and training

on such different aspects of society is key in preparing the right development

process and balancing the need for checkpoints with the level of acceptable and

meaningful concrete deliverables. Needless to say, increasingly these society fac-

tors are reduced with growing globalization, as can be seen in the Indian software

Process maturity sourcing client
P
ro

ce
ss

 m
at

ur
it
y

so
ur

ci
ng

 s
up

pl
ie

r

High

High

Low

Low

Win-Win
(process

integration,
shared

objectives,
mutual

optimization)

Replacement
(insufficient

supplier
performance,
selection of

better supplier)

Overheads
(lack of

downstream
integration,

rework cycles)

Failure
(dysfunctional

interfaces,
frictions,
overruns)

Fig. 9.3 Process maturity

of suppliers and clients must

match

9 Managing Global Software Projects 233

industry, which over the decades has adjusted extremely well to the northwestern

way of planning and tracking.

Global development must balance managed processes with the flexibility to ease

the work for individual engineers. Agility in a global context is of demand when

engineers must act fast and don’t have the time to baseline and stepwise sync

around the globe’s time zones. This is difficult and needs a profound understanding

(driven from business rationales) of how to structure and tailor processes to avoid

unnecessary overheads. Facilitate processes wherever possible, such as with stan-

dardized templates for work products or tools for workflow management. They

reduce errors and improve productivity.

Global development benefits from chunking deliverables to self-contained work

products that can be stepwise stabilized and integrated. It is based on the old Roman

idea that self-contained pieces are easier to govern than a huge complex system (the

so-called divide and conquer paradigm). This paradigm holds independent of

whether you do maintenance on a big legacy system, application and service

development, or the engineering of a new system. Incremental development and

related life cycle models are known and applied for many years to address this

“chunking” and stepwise stabilization.

Today, most life cycle models and development approaches are enhanced by

agile methods. Increments toward a stable build are one of the key success factors in

global development. They assure that deliveries from different teams or places in

the world can be effectively integrated. Within periodic intervals, a validated

baseline is made available for all team members, on which they build their

enhancements or maintenance changes. Incremental development reduces delivery

and quality risks because progress within the team is more continuous and can be

more easily monitored. Utilize agile practices such as Scrum to build trust across

sites and to ensure delivery in time, budget, and quality.

Traditionally, agile development methodologies have been seen as demanding

small collocated teams (see also Chap. 11). This allows fast interaction between

team members and, where necessary, immediate reaction and consideration of

feature changes demanded by a customer. This seems to be in contradiction to the

entire paradigm of global software engineering—at least for any distributed devel-

opment. It is certainly true from a microscopic perspective: Do not split team tasks

and responsibilities across sites if it can be avoided. For instance, if code is

developed in one place and the unit tested in another, there is certainly the risk of

inefficiency, misunderstandings, and inconsistencies. From the macroscopic point

of view, distributed and global development is in line with the needs of agile

development. It demands spliting the work in a way as to maximize team cohesion

and minimize coupling. For instance, qualification testing or network integration in

communication solutions can well be done at another place than the underlying

application development. Requirements and business cases can be developed in

different organizational and geographic layouts than the resulting designs and code.

In fact, hardware development since long has proven that with the right collab-

oration technologies, outsourced manufacturers can work with design teams at

234 C. Ebert

http://dx.doi.org/10.1007/978-3-642-55035-5_11

other physical places given that they have an understanding of sound and integrated

engineering change management, product data management, and the like.

Within global engineering projects, it is often not so obvious how to implement

an entirely incremental approach to architecture that is primarily driven by

interacting classes or subsystems. Clearly, it would be advantageous to have

isolated add-on functionality or independent components. In real-world systems,

specifically in legacy systems that are decided to be maintained in low-cost

countries, development at the top level (or architectural design) agrees not only

on interfaces and impacts on various subsystems but also on a work split that is

aligned with subsystems. The clash often comes when these subsystems should be

integrated with all the new functionality. Such processes are characterized by

extremely long integration cycles that do not show any measurable progress in

terms of feature content.

9.5 Work Organization

Globally distributed software development is highly impacted by work organization

and effective work split. Working in a globally distributed environment means

over-heads for planning and managing people. It means language and cultural

barriers. We provide some practical insights in this chapter about how to best

organize work in a global setting.

Clearly, mixed teams with people from different countries, cultures, and, per-

haps, companies stimulate innovation both in terms of products and technologies

and in terms of more efficient collaboration. Teams that have worked together for a

long time, such as departments inside a company, often struggle to identify really

innovative solutions because they are captured within their traditional thinking

schemes. As soon as external players are added to such a team, there is a new

stimulus from outside, and it is less easy to simply wipe these ideas off the table.

Barriers of culture and people to global collaboration are not to be

underestimated. They range from language barriers to time zone barriers to incom-

patible technology infrastructures to heterogeneous product line cultures and not-

invented-here syndromes. It creates jealousy among the more expensive engineers,

afraid of losing their jobs, while being forced to train their much cheaper counter-

parts. An obvious barrier is the individual profit and loss responsibility, which in

tough times means primarily focusing on current quarter results and not investing in

future infrastructures. Incumbents perceive providing visibility as a risk because

they become accountable and more subject to internal competition.

Although there are no patent recipes for GSE work allocation, many experiences

from previous projects indicate what we might call “typical configurations.” Such

configurations are shown in Table 9.1.

The first column to the left indicates the “operational scenario” of global product

development and operations. It starts with the beginning of the product (solution)

life cycle and moves to installation and operation toward the bottom of the table.

9 Managing Global Software Projects 235

The second column shows the most appropriate business model for such an

operational scenario. The next column indicates how external suppliers might be

included. Obviously, external suppliers do not fit in to all scenarios, depending on

intellectual property and dependency exposure but also related to risk management

for future growth. The learning curve duration and the break-even period depend on

these scenarios and are summarized in the subsequent columns. The last column

finally portrays how many parties (external or internal) are most appropriate.

Needless to say, most scenarios are most effectively handled with a small number

of contributors—except such cases where the contribution can be well isolated and

decoupled from overall project flow and risks (e.g., software components or

platforms that are selected and evolve in parallel but without critical dependencies).

Effective work organization and resource allocation is key to successful global

software development. There are two options for organizing global assignments,

namely, virtual teams and collocated teams.

Virtual teams are set up with engineers from different parts of the world with a

shared objective for the duration of the assignment (see also Chap. 10). They

collaborate inside the team with high functional coherence. Virtual teams are

created when skills are distributed and must cooperate toward an engineering

product or design. The advantage certainly is the famous “follow the sun” approach

of continuous engineering because one part of the team is almost always able to

take up the work of another that just finished working hours. Evidently this works

not for a setting with engineers in close time zones (e.g., North American compa-

nies working with engineers in South America, Western European companies

working with engineers in Eastern Europe and India, Chinese, Japanese and Korean

companies working with engineers in Vietnam).

Table 9.1 Global work allocation and typical configurations

Task Business model Supplier model Learning
curve

Break-even
period

Number of
partners / sites

Definition and analysis of new
business models and processes;
performance improvement

Preferable onshore; should be
co-located

External consulting with
own senior management Long Long Few

Product definition;
platforms and applications
for resale

Onshore, close collaboration External consulting;
own senior management Long Long Few

Development of internal
(ICT) applications

Offshore Typically outsourcing Short Middle Few-
many

Product development (ge-
neric)

On- / near- / offshore Typically outsourcing or
own development center Middle

Middle

Middle-long Few

Product development
(embedded; complex)

On- / near- / offshore; single
project should be co-located

Typically own
development center Middle-long Few

Validation of software On- / near- / offshore; tasks
test and development should be
co-located

Typically outsourcing or
own test center Middle Middle Few

Maintenance of internal
applications

Offshore Typically outsourcing or
own development center Middle Middle-long Many

Maintenance of products Near- / offshore Typically outsourcing or
own development center Middle Long Few

Selection and installation of
software and infrastructure

On- / near-shore, close collab-
oration

Consultant; preferably own
organization Short Short-middle Few

Operation of infrastructure On- / near-shore Typically outsourcing or
own IT center Short Short-middle Few

Operation of internal
applications

On- / near- / offshore Typically outsourcing or
own IT center Short Middle Few

236 C. Ebert

http://dx.doi.org/10.1007/978-3-642-55035-5_10

The drawback of virtual teams is communication difficulties and the lack of team

spirit because people do not know each other. Virtual teams need precisely allo-

cated work packages and demand an overhead planning. They demand excellent

collaboration tools beyond configuration management and document management.

Continuous integration of the resulting code is a big advantage in virtual teams

regardless of whether they work on new designs or maintenance tasks. It assures

that team members in other places can continue with the same code and be sure that

it is working when they start.

Collocated teams work at one place with a defined work assignment. They

benefit from being together as a team and, thus, from simplified communication.

Collocation means that team members should sit in the same building, perhaps the

same room. From a mere people management perspective, this is of great advantage

and can yield productivity gains of 30–50 % (Ebert and Dumke 2007). Being at one

place, they can utilize standard engineering tools for configuration management or

their shared documents, thus keeping the setup rather simple.

The difficulty in setting up such teams is that the necessary skills are not always

available at one place. Often, such teams suffer from interface inconsistencies with

their fellow teams working on different assignments in different places. Competi-

tion between teams could impact integration negatively. It is of benefit for collo-

cated teams to establish clear quality gates and quality control activities (e.g.,

reviews, inspections, unit tests with defined exit criteria) to assure the right quality

level when the resulting work products are passed on to other places in the world.

Independent of the team structure (i.e., virtual or collocated), we recommend

using fully allocated team members and coherent assignments.

Coherence means that the work is split during development according to feature

content, which allows assembling a team that can implement a set of related

functionalities. The more coherence the work assignment has, the less dependencies

and interactions occur with other teams that might work in different settings or even

different places and time zones. Projects are, at their kick-off, already split into

pieces of coherent functionality that will be delivered in increments to a continuous

build. Coherent functional entities are allocated to development teams, which can

be based in different locations. Architecture decisions, decision reviews at major

milestones, and tests should be done at one place. Experts from countries with a

minority contribution will be relocated for the time the team needs. This allows

effective project management, independent of how the project is globally allocated.

Full allocation implies that engineers working on a project should not be

distracted by different tasks in other projects. The more the allocation to a single

task and shared objective within one team, the fewer engineers are distracted by

disturbances and thus context switches. Full allocation does not mean 100 %, but

should certainly be higher than 60 %. If tasks are too small, then related tasks

should be allocated to the team. The difficulties usually start with very heteroge-

neous assignments such as working on two different products. In such cases, the

context switching from one product to the other is highly dysfunctional and causes

dramatic productivity loss.

9 Managing Global Software Projects 237

These working principles directly impact productivity. Team members must

communicate whenever necessary and without long planning and preparation to

make the team efficient (Carmel and Espinosa 2012). Alcatel-Lucent, for instance,

evaluated projects over 5 years and could distinguish according to the factor of

collocation and the allocation degree (Ebert 2012). Collocated teams achieve an

efficiency improvement of over 50 % during initial validation activities (Ebert

2012; Ebert and Dumke 2007). This means that with the same amount of defects

in design and code, those teams that sit in the same place need less than half the time

for defect detection. Allocation directly impacts overall project efficiency. It was

found in the same long-term study that small projects with highly scattered

resources would show less than half the productivity compared to projects with

fully allocated staff. Cycle time is similarly impacted. People switching between

tasks need time to adjust to the new job. In that same study, Alcatel-Lucent found an

impact of a factor 2–3 compared to what is necessary if resources are allocated to

one job during a window of 1 week upward.

Ensure that people work on few tasks or work packages—with the highest

possible allocation. More tasks mean more interrupts and thus more defects and

longer response times and ultimately reduced motivation. Enriching jobs in the way

described above means also more training and coaching needs. We saw, however,

in our own experiences over the past 10 years that coaching pays off. Looking only

at the cost of nonquality, that is, the time to detect and correct defects, we found that

projects with intensive coaching (ca. 1–2 % of accumulated phase effort) could

reduce the cost of nonquality in the phase by over 20 % (Ebert 2012). A breakeven

is typically reached at ca. 5 % coaching effort (Ebert 2012). This means that there

are natural limits toward involving too many inexperienced engineers.

The higher the allocation, the more motivation and ownership you will gain from

your global development teams. The major changes for a team moving to global

development are concurrent engineering and teamwork. They need to be supported

by the respective workflow techniques. We assemble cross-functional teams espe-

cially at the beginning of the project. Even before project kick-off, a first expert

team is called to ensure a complete impact analysis that is a prerequisite to defining

increments. Concurrent engineering means that, for instance, a tester is also part of

the team, as experience shows that designers and testers look at the same problem

very differently. Testability can only be ensured with a focus on test strategy and

the potential impacts of design decisions already made during the initial phases of

the project.

Based on a mapping of customer requirements to architectural units (i.e.,

modules, databases, subsystems, and production tools), global engineering activi-

ties can be treated according to their impact on architectural entities:

• Small independent architectural units that could be fairly well separated and left

out of any customization. Typically, they are subject to moving into separate

servers. Development is collocated at one place

• Big chunks that would be impacted in any project and thus need a global focus to

facilitate simple customization (e.g., different signaling types can be captured

238 C. Ebert

with generic protocol descriptions and translation mechanisms). Development

happens in multiskilled teams. These skills are replicated in almost all locations.

• Market- or customer-specific functional clusters that would be defined based on

the requirement analysis and ultimately form the project team responsible for a

customer project. This type of requirement must be the exception and asks for a

dedicated pricing strategy as it creates most overheads—but could be most

interesting for our customers to differentiate

Such a separation of architectural units is the necessary precondition for splitting

a global project into teams that can be individually collocated.

9.6 Risk Management in Global Software Projects

Globally distributed software development amplifies typical software project–and

product-related risks, such as project delivery failures and insufficient quality.

Worse yet, it creates new risks, such as inadequate intellectual property rights

(IPR) management or lock-in situations with suppliers. These risks must be iden-

tified in due time and have to be considered together with the sourcing strategy and

its operational implementation.

While the classic centralized software development approach allowed solving

problems in the coffee corner or around the white board, global teams are composed

of individuals who are culturally, ethnically, and functionally diverse. They work in

different locations and time zones and are not easily reachable for a chat on how to

design an interface or how to resolve a bug that prevents tests from progressing.

This explains that, for instance, only 30 % of all embedded software is developed in

a global or distributed context, while the vast majority is collocated. The reason is

very simple: Embedded software poses a much higher risk on safety and reliability,

and thus, companies prefer risk management in their own—known—environment,

rather than adding risk through global teams. How can these risks be mitigated and

be thus flexibility improved?

Risk management is the systematic application of management policies, pro-

cedures, and practices to the tasks of identifying, analyzing, evaluating, treating,

and monitoring risk (see also Chap. 5). Global development projects pose specific

risks on top of regular risk repositories and check lists. They relate to two major

underlying risk drivers, namely, insufficient processes and inadequate management.

Not all eventualities can be buffered because in the global economy, developing

and implementing products must be fast, cost effective, and adaptive to changing

needs. Therefore, there is a need to utilize different techniques to effectively and

efficiently mitigate risks. Governance and legal regulations play a crucial role in

mitigating risks in global projects. Methods include using basic project, supplier,

and quality management techniques; process frameworks such as CMMI (capabil-

ity maturity model), ITIL (IT infrastructure library), COBIT® (Control Objectives

for Information and Related Technology), product life cycle management, effective

9 Managing Global Software Projects 239

http://dx.doi.org/10.1007/978-3-642-55035-5_5

communication processes, SLA (service-level agreements)-based escalation, com-

petence management, and innovation management.

Most countries today force companies with headquarters in that country or that

are quoted at a local trading place to comply with rules on risk management. A good

example is the Sarbanes-Oxley Act in the USA, which holds the CEO and CFO of

such companies personally liable for providing correct information about the status

of the company and for ensuring that the internal control and risk management

system is working properly. Failing to prove compliance can result in lawsuits and

severe punishment. Offshoring or outsourcing, therefore, must support these mech-

anisms for internal control and risk management. This can be translated to the

following rules:

• Establish and maintain an efficient and effective control and risk management

system that includes supplier management

• Enforce the internally applicable compliance rules also to suppliers so that full

transparency can be maintained

• Provide transparency of the business processes and the resulting documentation

and work products

• Document decisions with an impact on governance, compliance, and finance

risks

• Ensure that industrial best practices are followed to effectively and efficiently

mitigate risks, including the supply chain, as it has an immediate impact on

finance performance and the legal exposure of a company.

The latter specifically applies also for mitigating software product liability risks,

which in some countries can end in very costly lawsuits if, for instance, products

create risks to public safety or health or even have already caused damages. From a

legal perspective, best practices translate into consistently and auditably applying

international standards, such as CMMI, COBIT, ITIL, etc.

Governance and compliance are the personal responsibility of a CEO or man-

aging director and his finance deputy. It is enforced by a set of processes and

checks, including periodic external audits.

Based on our project experiences, we have established a global software risk

top10 list (Ebert 2012). Depending on the specific layout of global software (e.g.,

with or without an external supplier), the ranking list of these top 10 risks is as

follows: project delivery failures; insufficient quality; distance and culture clashes;

staff turnover (mostly for captive centers); poor supplier services (only for

outsourced development); instability with overly high change rate; insufficient

competences; wage and cost inflation; lock-in (only for outsourced development);

and inadequate IPR management.

These risks can be clustered according to major drivers, which then allow

selecting the most adequate mitigation strategy. Figure 9.4 shows the top 10 risks

sorted on the four major drivers for global software.

Not all of these risks and suggested mitigation actions may be applicable to all

organizations and scenarios. Wage and cost escalation will not be an issue for

growing teams, as generally new recruits are at a lower cost than the existing

240 C. Ebert

average, and per head cost will come down even if wage cost is going

up. Professional training like the certification of project managers increases the

risk of attrition due to a better sellable skill level in the market! Long-term retention

methods for attrition management will itself contribute to the other risk of wage

escalation. Similarly, the strong correlation observed between skill development

and attrition might not be a universal phenomenon, or there might be other

overlying attributes impacting attrition more strongly. We recommend that organi-

zations make an internal analysis to fine-tune their approach.

Risk mitigation happens all along the life cycle (see also Chap. 5). It is not

enough to identify risks once and then keep a lookout at the repository. Risks are

dynamic by nature, and so must be their mitigation. As a general rule for risk

identification in a specific environment, we recommend setting up undesired sce-

narios, evaluating their probability to occur, and deciding for some 10–20 of those

scenarios to take dedicated mitigation actions. A majority is mitigated inside the

global development project (e.g., common tools), while only a few must be part of

the corporate risk strategy (e.g., handling supplier defection). Organizations should

not worry about the number of the 10–20 scenarios. They repeat in each of the

organization’s respective projects and will build a kind of checklist with dedicated

and organization-specific mitigation strategies that are reused in each new project.

Figure 9.5 shows typical checklists as they are used throughout the life cycle to

reassess risks and to follow their mitigation.

1. Presence: Global growth
 strategy.
 Learn from new
 markets.

 Risk:
Instability with overly
high change rates
Inadequate IPR
management

2. Talent: Race for skilled
 people. Value creation
 happens where the skills
 are.

 Risk:
Staff turnover

Wage and cost
inflation

Insufficient
competencies

3. Flexibility: Just-in-time
 organizational networks.

 Risk:
Poor supplier
services

Distance and culture
clashes

Lock-in

4. Efficiency: Speed to
 profit ahead of
 competitors.

 Risk:
Project delivery
failures
Insufficient quality

Fig. 9.4 The top 10 global software risks and their underlying drivers

9 Managing Global Software Projects 241

http://dx.doi.org/10.1007/978-3-642-55035-5_5

ti
m

e

In
it
ia

ti
on

an
d

ra
m

p-
up

0,
1

11010
0

10
10

0
10

00

P
ro

je
ct

si
ze

(F
P

s)

P
ro

je
ct

e f
f o

rt

Person years

P
ro

je
ct

si
ze

(F
P

s)

�
A

re
 t

he
re

 s
ud

de
n

be
ha

vi
or

al
 c

ha
ng

es
?

�
A

re
 c

on
tr

ac
tu

al
 a

gr
ee

m
en

ts
 n

ot
be

in
g

ke
pt

?

�
A

re
 t

he
re

 d
if
fi
cu

lt
ie

s
an

d
is
su

es
w

hi
ch

 a
re

 n
ot

 c
om

m
un

ic
at

ed
?

�
H

av
e

in
pu

ts
,
sp

ec
if
ic

at
io

ns
,
et

c.
be

en
 f

re
qu

en
tl
y

re
je

ct
ed

?

�
Is

 t
ur

n-
ov

er
 r

at
e

of
 e

ng
in

ee
rs

 o
n

yo
ur

 p
ro

je
ct

s
ab

ov
e

av
er

ag
e?

�
Is

 t
he

re
 r

ed
uc

ed
 c

on
ta

ct
 w

it
h

su
pp

lie
r

se
ni

or
 m

an
ag

em
en

t?

�
D

oe
s

th
e

su
pp

lie
r

de
m

an
d

th
e

re
-

pr
io

ri
ti
ze

 r
eq

ui
re

m
en

ts
?

�
D

oe
s

th
e

su
pp

lie
r

in
te

rp
re

t
th

e
SL

A
ov

er
ly

 e
xa

ct
 a

nd
 r

es
tr

ic
ti
ve

?

�
Is

 t
he

re
 a

n
in

cr
ea

si
ng

 a
m

ou
nt

 o
f

es
ca

la
ti
on

?

�
D

oe
s

th
e

fi
na

nc
ia

l
si
tu

at
io

n
of

 t
he

su
pp

lie
r

w
or

se
n?

�
D

id
 t

he
 s

up
pl

ie
r

re
ce

nt
ly

 g
ai

n
ne

w
an

d
m

or
e

re
le

va
nt

 c
lie

nt
s?

�
D

o
ot

he
r

cl
ie

nt
s

le
av

e
th

e
su

pp
lie

r?

S
ou

rc
in

g
st

ra
te

gy

C
om

pe
tit

io
n

S
m

al
l

H
ig

h

C
om

pe
tit

or
s

1
2

3
4

5

S
ub

st
itu

tio
n

ris
k

S
m

al
l

H
ig

h

N
ew

so
lu

tio
ns

1
2

3
4

5

Im
pa

ct
s

S
m

a l
l

H
ig

h

E
xt

er
na

lf
ac

t o
r s

1
2

3
4

5

N
eg

ot
ia

t io
n

po
w

er
S

m
al

l
H

ig
h

S
u p

pl
ie

rs

1
2

3
4

5

N
eg

ot
ia

tio
n

po
w

er
S

m
al

l
H

ig
h

C
u s

t o
m

er
s

1
2

3
4

5

M
a r

ke
te

nt
ry

ris
k

S
m

al
l

H
i g

h

N
e w

en
tr

ie
s

1
2

3
4

5

C
om

pe
tit

io
n

S
m

al
l

H
ig

h

C
om

pe
tit

or
s

1
2

3
4

5

C
om

pe
tit

io
n

S
m

al
l

H
ig

h

C
om

pe
tit

or
s

1
2

3
4

5

S
ub

st
itu

tio
n

ris
k

S
m

al
l

H
ig

h

N
ew

so
lu

tio
ns

1
2

3
4

5

S
ub

st
itu

tio
n

ris
k

S
m

al
l

H
ig

h

N
ew

so
lu

tio
ns

1
2

3
4

5

Im
pa

ct
s

S
m

a l
l

H
ig

h

E
xt

er
na

lf
ac

t o
r s

1
2

3
4

5

Im
pa

ct
s

S
m

a l
l

H
ig

h

E
xt

er
na

lf
ac

t o
r s

1
2

3
4

5

N
eg

ot
ia

t io
n

po
w

er
S

m
al

l
H

ig
h

S
u p

pl
ie

rs

1
2

3
4

5

N
eg

ot
ia

t io
n

po
w

er
S

m
al

l
H

ig
h

S
u p

pl
ie

rs

1
2

3
4

5

N
eg

ot
ia

tio
n

po
w

er
S

m
al

l
H

ig
h

C
u s

t o
m

er
s

1
2

3
4

5

N
eg

ot
ia

tio
n

po
w

er
S

m
al

l
H

ig
h

C
u s

t o
m

er
s

1
2

3
4

5

M
a r

ke
te

nt
ry

ris
k

S
m

al
l

H
i g

h

N
e w

en
tr

ie
s

1
2

3
4

5

M
a r

ke
te

nt
ry

ris
k

S
m

al
l

H
i g

h

N
e w

en
tr

ie
s

1
2

3
4

5

�
D

id
 y

ou
 e

ve
r

w
or

k
w

it
h

th
is
 s

up
pl

ie
r

an
d

w
ou

ld
 y

ou
 d

o
it
 a

ga
in

?

�
W

ha
t

ex
pe

rt
is
e

an
d

re
fe

re
nc

es
 d

oe
s

th
e

su
pp

lie
r

br
in

g?

�
H

ow
 a

re
 s

ki
lls

 m
an

ag
ed

 i
n

lig
ht

 o
f

tu
rn

ov
er

s?

�
H

ow
 s

ta
bl

e
is
 t

he
 s

up
pl

ie
r

an
d

it
s

st
ak

eh
ol

de
rs

?

�
D

o
pr

oc
es

se
s

an
d

pr
oc

es
s

m
at

ur
it
y

fi
t

yo
ur

 n
ee

ds
?

�
C

an
 t

he
 s

up
pl

ie
r

ha
nd

le
 g

lo
ba

l
de

ve
lo

pm
en

t
te

am
s?

�
C

an
 h

e
m

an
ag

e
te

am
s

w
it
h

m
em

be
rs

fr
om

 d
if
fe

re
nt

 c
om

pa
ni

es
?

�
D

oe
s

th
e

su
pp

lie
r

ha
ve

 t
he

 n
ec

es
sa

ry
fo

rm
al

 q
ua

lif
ic

at
io

ns
?

�
A

re
 t

he
 l
eg

al
 c

on
st

ra
in

ts
 a

cc
ep

ta
bl

e
fo

r
yo

u
an

d
yo

ur
 c

om
pa

ny
?

�
A

re
 t

oo
ls
,
in

te
rf

ac
es

,
IT

 i
nf

ra
st

ru
ct

ur
e

an
d

se
cu

ri
ty

 s
uf

fi
ci

en
t?

�
A

re
 p

ri
ce

s
de

m
an

de
d

fo
r

se
rv

ic
es

co
m

pe
ti
ti
ve

?

�
H

ow
 w

ill
 y

ou
 a

vo
id

 a
 l
oc

k-
in

 p
os

it
io

n?

P
ro

je
c t

C
on

t r
ol

le
r

15
27

W
X

S
ta

tu
s

P
ro

je
ct

M
an

ag
er

Jo
hn

P
ha

nt
a

C
on

te
nt

S
ta

rt
S

ch
ed

ul
e

E
nd

C
os

t

S
up

er
vi

si
on

X
T

-1
1

S
te

er
in

g
B

oa
rd

#
R
is
k

P
ro
b
ab
ili
ty

I m
p
a c
t

S
co
r e

O
rg
P
ro
b
.

O
r g
.I
m
p
.

O
rg
.S
co
re

A
ct
io
n

R
es
p

1. 2. 3. 4. 5. O
p
en
Is
su
es

1. 2. 3. 4. 5.

20
06
- 0
1-
01

20
06
-0
8-
31

Ja
n

06

F
eb

06

M
rz

06

M
a

i0
6

Ju
n

06

Ju
l0

6

A
u g

0 6 J a
n

0 6
F

eb
06

M
rz

06
A

pr
06

M
a

i0
6

Ju
n

0 6
Ju

l0
6

A
ug

06
S

e p
06

O
kt

06

en
d

va
lu

e

pr
o

je
ct

st
ar

t

an
a

ly
s

is

in
cr

e m
en

t1

in
cr

e m
e n

t2

in
cr

em
en

t3

sy
st

em
te

st

re
le

as
e

M
ile
st
o
n
es

-3
0

2 0701 2
0

17
0

2 2
0

Ja
n

06
F

eb
06

M
rz

06
A

pr
06

M
a

i0
6

Ju
n

06
Ju

l0
6

A
ug

06

B
ud

ge
t,

la
te

st

E
xp

.p
la

n,
or

ig
in

a
l

E
xp

.p
la

n,
la

te
st

E
xp

e n
se

s,
ac

t u
a

l

E
xp
en
se
C
o
n
tr
o
l

eA
S
E
E
-P
rj
M

D
as

hb
oa

rd
:S

m
al

lP
ro

je
ct

s

0%20
%

40
%

60
%

80
%

10
0%

12
0%

14
0%

0%
1 3

%
24

%
3 7

%
50

%
62

%
75

%
88

%
10

0 %

P
l a

nn
ed

V
a

lu
e

A
ct

ua
lC

os
t

E
ar

n e
d

V
a

l u
e

E
a r
n
e d
V
al
u
e

0

20
0

40
0

60
0

8 0
0

10
00

12
00

14
00

1 6
00

18
00

20
00 01

.0
1.

20
06

01
.0

2.
20

06
01

.0
3.

20
06

01
.0

4.
20

06
01

.0
5.

20
06

01
.0

6.
20

06
01

.0
7.

20
06

01
.0

8.
20

06
01

.0
9.

20
06

de
te

ct
e d

c
lo

se
d

op
en

, c
rit

ic
a

l

c
l o

se
d,

es
t.

D
ef
ec
ts

02468101 21416

Ja
n

0 6
F

eb
06

M
rz

06
A

p r
06

M
a

i0
6

Ju
n

06
Ju

l0
6

A
ug

06
S

ep
06

D
es

co
pe

d

C
lo

se
d

T
es

te
d

D
es

ig
ne

d

C
om

m
i tt

e d

R
eq
u
ir
em
en
ts

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00 01

.0
1.

20
06

01
.0

2.
20

06
01

.0
3.

20
06

01
.0

4.
20

06
01

.0
5.

20
06

01
.0

6.
20

06
01

.0
7.

20
06

01
.0

8.
20

06
01

.0
9.

20
06

op
en

su
cc

es
sf

u
l

p
l a

n,
su

cc
e s

sf
u

l

T
es
t
P
ro
g
re
ss

P
ro

je
ct

ex
ec

ut
io

n

�
Is

 p
ro

gr
es

s
ac

co
rd

in
g

to
 a

gr
ee

d
m

ile
st

on
es

 a
nd

 d
el

iv
er

ab
le

s?

�
A

re
 r

ig
ht

 s
ki

lls
 a

nd
 e

ng
in

ee
rs

 a
va

ila
bl

e
as

 a
gr

ee
d?

�
Is

 t
ec

hn
ic

al
 e

xp
er

ti
se

 o
n

ri
gh

t
le

ve
l?

�
A

re
 a

gr
ee

d
qu

al
it
y

le
ve

ls
 o

f
de

liv
er

ab
le

s
pr

ov
en

?

�
A

re
 t

he
 b

ud
ge

te
d

co
st

 a
nd

 s
ch

ed
ul

e
ke

pt
?

�
Is

 q
ua

lit
y,

 c
os

t
an

d
co

nt
en

t
of

 w
or

k
pr

od
uc

ts
 a

de
qu

at
e?

�
W

hi
ch

 r
is
ks

 m
at

er
ia

liz
e?

 W
hi

ch
 r

is
ks

ar
e

m
it
ig

at
ed

?

�
A

re
 a

gr
ee

d
st

an
da

rd
s

an
d

pr
oc

es
se

s
im

pl
em

en
te

d?

�
Is

 s
ec

ur
it
y

an
d

in
te

lle
ct

ua
l
pr

op
er

ty
su

ff
ic

ie
nt

ly
 p

ro
te

ct
ed

?

�
A

re
 g

ov
er

na
nc

e
m

ec
ha

ni
sm

s
in

st
al

le
d

an
d

fo
llo

w
ed

?

�
W

hi
ch

 i
m

pr
ov

em
en

ts
 a

re
 p

ro
po

se
d

by
su

pp
lie

r?

�
Is

 t
he

re
 a

ny
 w

ay
 t

o
im

pr
ov

e
re

la
ti
on

sh
ip

 m
an

ag
em

en
t?

�
W

as
 t

he
 s

up
pl

ie
r

su
ff
ic

ie
nt

ly
 q

ua
lif

ie
d?

�
H

av
e

ob
je

ct
iv

es
 a

nd
 c

on
st

ra
in

ts
 b

ee
n

m
et

?

�
H

av
e

al
l
de

liv
er

ab
le

s
be

en
 a

cc
or

di
ng

to
 S

L
A

 a
nd

 q
ua

lit
y

le
ve

ls
?

�
H

as
 e

ff
or

t
be

en
 i
n

lin
e

w
it
h

es
ti
m

at
es

?
H

ow
 t

o
im

pr
ov

e?

�
W

hi
ch

 r
is
ks

 m
at

er
ia

liz
ed

?
W

hi
ch

 r
is
ks

ha
ve

 b
ee

n
m

it
ig

at
ed

?

�
W

hi
ch

 i
m

pr
ov

em
en

ts
 a

re
 s

ug
ge

st
ed

by
 y

ou
r

ow
n

te
am

?

�
H

as
 t

he
 w

or
k

sp
lit

 a
nd

 t
as

k
al

lo
ca

ti
on

be
en

 a
de

qu
at

e?

�
A

re
 t

he
re

 p
os

si
bi

lit
ie

s
to

 i
m

pr
ov

e
re

la
ti
on

sh
ip

 m
an

ag
em

en
t?

�
A

re
 t

he
re

 p
os

si
bi

lit
ie

s
to

 i
m

pr
ov

e
co

m
m

un
ic

at
io

n?

�
W

hi
ch

 -
 o

w
n

or
 m

ut
ua

l
-

pr
oc

es
se

s
ne

ed
 t

o
be

 i
m

pr
ov

ed
?

�
Is

 t
hi

s
th

e
su

pp
lie

r
to

 c
on

ti
nu

e
w

or
ki

ng
w

it
h?

E
va

lu
at

io
n

an
d

re
la

ti
on

sh
ip

m
an

ag
em

en
t

G
en
er
al
p
ro
je
ct
in
fo
rm
a t
io
n

N
am
e
o
f
p
ro
je
c t

X
X
X
X
X

P
ro
je
ct

m
an
ag
er
(s
):

Y
Y
Y
Y
Y

P
u
rc
h
as
e

m
an
ag
er
:

Z
Z
Z
Z
Z
Z

S
u
p
p
lie
r:

A
A
A
A
A
A
A

D
at
e:

W
ed
ne
sd
ay
,S
ep
te
m
be
r
2 9
, 1
99
9

P
ro
j e
ct
tr
ac
ki
n
g
ch
ar
ac
te
ri
st
ic
s In
it
ia
lb
as
el
in
e
p
la
n

F
in
al
ac
tu
al
s

P
ea
k
st
a f
f:

8
8

P
ro
d
u
ct
si
ze
in
es
lo
c’
s

37
90
0

37
75
0

P
ro
d
u
c t
si
ze
in
fu
n
ct
io
n

p
o
in
ts

84
2

83
8

T
o
ta
le
ff
o
rt
(P
M
)

11
4,
25

11
8,
4

T
o
ta
ld
u
ra
ti
o
n
(m
o
s)

18
,3

18
,2

S
ta
rt
d
at
e

06
-0
4-
19
98

0 6
-0
4-
19
98

E
n
d
d
at
e

31
-0
8 -
19
99

27
- 0

8-
19

99

S
ch
ed
u
le

o
ve
rr
u
n

(p
er
ce
n
ta
g
e)

E
ff
o
rt
o
v e
rr
u
n

(p
er
ce
n
ta
g
e
)
S
iz
e
o
ve
rr
u
n

(p
er
ce
n
ta
g
e

In
it
ia
l

P
I

A
ct
u
al

P
I

In
i t
ia
l

M
B
I

A
ct
u
al

M
B
I

0%
-2
%

0%
11
,5

11
,5

1,
9

1,
9

E
r r
o
rs
S
IT
to
F
O
C

E
rr
o
rs
af
t e
r
F
O
C

T
o
ta
le
rr
o
r s

re
p
o
r t
ed

M
T
T
D
at
p
ro
je
ct

en
d

2 0
8

37
24
5

5

S
t a
tu
s
R
ep
o
rt
O
v e
ra
ll
h
is
to
ry
:

A
pr
il
'9
9

M
a y
'9
9

Ju
ne
'9
9
Ju
ly
' 9
9
A
ug
.' 9
9
S
ep
t. '
99

G
en
er
al
p
ro
je
ct
in
fo
rm
a t
io
n

):

: : tr
ac
ki
n
g
ch
ar
ac
te
ri
st
ic
s In
it
ia
l b
as
e l
in
e
p
la
n

F
i n
al
ac
tu
al
s

:
si
ze
in

(m
o
s)

I n
i t
i a
lb
as
el
i n
e
p
l a
n

F
in
al
ac
t u
al
s

:

06
-

31
-

27
-0

8-

P
ro

je
ct

t r
ac

ki
ng

r e
v i

ew
da

ta
(i n

iti
al

ba
se

l in
e

ve
rs

us
re

p o
rt

ed
)

P
ro

je
ct

t r
ac

ki
ng

r e
v i

ew
da

ta
(i n

iti
al

ba
se

l in
e

ve
rs

us
P

ro
je

ct
t r

ac
ki

ng
r e

v i
ew

da
ta

(i n
iti

al
ba

se
l in

e
ve

rs
us

20
8

37
24
5

5

S
ta
tu
s
R
e p
o
rt
O
ve
r a
ll
h
is
to
ry
:

20
8

37
24
5

5

S
ta
tu
s
R
ep
o
rt
O
ve
ra
l l
h
is
t o
ry
:

F
ig
.
9
.5

C
o
m
p
ar
is
o
n
m
an
u
al

v
er
su
s
o
p
ti
m
iz
ed

b
as
el
in
e
st
af
fi
n
g
p
la
n

242 C. Ebert

9.7 Trends and Conclusions

Global engineering will evolve toward a standard engineering management method

that must be mastered by each R&D manager. Processes and product components

will increasingly be managed in a global context. Suppliers from many countries

will evolve to ease the start-up and operations of GSE even for small- and mid-sized

enterprises in high-cost countries. Brokers will emerge and help find partners in

different parts of the world and manage the offshoring overheads.

The cost per head will stay low for a few years and, over the next few years, will

steadily increase due to the rising standards of living in the emerging countries,

contributing to outsourcing and offshoring (see also Chaps. 13 and 14). GSE has a

strong contribution in improving the living conditions around the world. Bridging

the divide is best approached by sharing values and understanding cultures. Such

increasing standards of living as in China, India, and many others of today’s

low-cost countries will generate hundreds of millions of new middle-class people

who will demand more information technology.

GSE is the consequence of the rather friction-free economic principles of the

entire software industry. Basically, any code can be developed at any place in the

world and made visible and accessible to any other place in the world at virtually

the same time. There are not many overheads in distribution or industrialization as

long as the source code is shared. Many companies start global development due to

perceived cost differences. The achieved cost reductions are further delivered to

customers, which means competitive pressure for those enterprises not yet

embarking on global development. Further advantages appear when intensifying

GSE, such as more flexible working hours of engineers and a demand-oriented

provisioning of skills. Starting with smaller chunks of working, outsourcing/

offshoring intensifies toward globalizing the execution of entire business processes

or products. Innovative products are created due to more capacity and more

efficient workflows. Product life cycles and technology growth will further accel-

erate due to this increasing innovation driven by global software engineering. The

principle as such is amplified and will not allow any enterprise to exit.

We see four major drivers fueling the need for outsourcing and offshoring,

namely, efficiency, presence, talent, and flexibility. Figure 9.6 shows these drivers:

efficiency, presence, talent, and flexibility.

1. Presence. Global R&D and software engineering has become part of companies’

growth strategies because they are closer to their markets and they better

understand how to cope with regional needs, be it software development or

services. Such global growth is a self-sustaining force, as it demands increasing

capacities in captive or outsourced software engineering centers.

2. Talent. Computer science and engineering skills are scarce. Many countries do

not have enough resources locally available to cope with the demand for

software products and services. Fueling this trend, many younger people got

nervous with media-driven perceptions about the danger of outsourcing/

offshoring for the entire software field, which they decided to rather engage in

9 Managing Global Software Projects 243

http://dx.doi.org/10.1007/978-3-642-55035-5_13
http://dx.doi.org/10.1007/978-3-642-55035-5_14

fully different fields. The consequence is a global race for excellent software

engineers. Outsourcing/offshoring is the instrument to provide such skills and

handle the related supplier processes.

3. Flexibility. Software organizations are driven by fast-changing demands on

skills and the sheer numbers of engineers. With the development of a new and

innovative product, many people are needed with broad experiences, while when

arriving at maintenance, these skill needs look different, and manpower distri-

butions are also changing. Such a flexible demand cannot be handled anymore

inside the enterprise. Outsourcing/offshoring is the answer to provide skilled

engineers just in time and thus allows building flexible ecosystems combining

suppliers, customers with engineering, and service providers.

4. Efficiency. Software companies need to deliver fast and reliably, while at the

same time, the competition is literally a mouse click away. Hardly any other

business has such low entry barriers as the software business, and therefore, it

stimulates an endless fight for efficiency along the dimensions of improved cost,

quality, and time-to-profit. Outsourcing/offshoring clearly helps in improving

efficiency due to labor cost differences across the world, better quality with

many well-trained and process-minded engineers especially in Asia, and a

shorter time-to-profit by following the sun and developing and maintaining

software in two to three shifts in different time zones.

Global software projects need to facilitate speed, organization, and collabora-

tion. They must leverage investments fast because of the ever-growing risk of

2. Talent:
Race for skilled
people.
Value creation
happens where
the skills are.

3. Flexibility:
 JIT networks
 across
 organization.
 Technology
 expertise that
 depends on
 context.

1. Presence:
Global growth
strategy.
Learn from new
markets.

4. Efficiency:
 Process
 excellence.
 Speed to profit
 ahead of
 competitors.

Fig. 9.6 The way ahead: four drivers fuel future globalization

244 C. Ebert

(IP) loss. The new product life cycle is determined by the time it takes to copy and

compete. Implement processes that provide agility and efficiency. Companies need

to balance the time-to-profit with the time-to-copy. They need to develop an

organizational and management strategy for offshoring, along with developing an

economic business case. Collaboration will further grow across disciplines, cul-

tures, times, distance, and organizations. This demands new competences such as

managing in difficult situations, teamwork across distances and cultures, sharing

without losing, etc., which many students so far do not learn in their classroom

projects.

Unfortunately (for the expensive western countries), these changing conditions

will not have a sustainable positive impact on today’s highly paid software engi-

neers. In contrast, an increasing amount of competing software companies will

evolve and further push for global alignment of engineering cost (but this time

cutting down the top salaries). What looks healthy from a global perspective will

have negative impacts on those of us who will not adjust fast enough to a new work

split.

To be successful in a global market, a company should manage the risks of

global software development and utilize the positive aspects as drivers to shape the

software engineering processes in detail and the culture in general. The challenge is

to continuously improve processes, innovativeness, and productivity. Software

engineering has low entry barriers and a global resource pool. Engineers will

have to assess their own competitive value frequently and change gears and

functions opportunistically to stay employable. That is the task of all of us software

engineers in the future. Those of us who stagnate will be out of business faster than

we might think.

History has shown time and again that mixing genes is the best thing that can be

done in the path of evolution. Or, in the words of Charles Darwin, who was one of

the first truly globally acting scientists, “It is not the strongest of the species that

survive, or the most intelligent, but the ones most responsive to change.” Global-

ization is about the same concept. . .

References

Carmel E, Espinosa JA (2012) I’m working while they’re sleeping: time zone separation chal-

lenges and solutions. Nedder Stream Press, New York

Chui M, Manyika J, Bughin J, Dobbs R, Roxburgh C, Sarrazin H, Sands G, Westergren M (2012)

The social economy: unlocking value and productivity. McKinsey Global Institute

De Loof L (2013) Managing IT transformation on a global scale. http://www.mckinsey.com/

insights/business_technology/managing_it_transformation_on_a_global_scale_an_interview_

with_shell_cio_alan_matula. Accessed on 15 Aug 2013

Ebert C (2012) Global software and IT: a guide to distributed development, projects, and

outsourcing. Wiley, New York

Ebert C, Dumke R (2007) Software measurement. Springer, Heidelberg

Forrester’s Forrsights Services Survey Q2 (2012) http://www.forrester.com/Forrsights+Services

+Survey+Q2+2012/-/E-SUS1391. Accessed on 15 Aug 2013

9 Managing Global Software Projects 245

http://www.mckinsey.com/insights/business_technology/managing_it_transformation_on_a_global_scale_an_interview_with_shell_cio_alan_matula
http://www.mckinsey.com/insights/business_technology/managing_it_transformation_on_a_global_scale_an_interview_with_shell_cio_alan_matula
http://www.mckinsey.com/insights/business_technology/managing_it_transformation_on_a_global_scale_an_interview_with_shell_cio_alan_matula
http://www.forrester.com/Forrsights+Services+Survey+Q2+2012/-/E-SUS1391
http://www.forrester.com/Forrsights+Services+Survey+Q2+2012/-/E-SUS1391

Greengard S (2013) Is outsourcing losing its appeal? Deloitte study report. 15 Apr 2013. http://

www.baselinemag.com/it-services/is-outsourcing-losing-its-appeal. Accessed on 15 Aug 2013

PWC (2013) Global software 100 leaders report. http://www.pwc.com/gx/en/technology/publica

tions/global-software-100-leaders/index.jhtml. Accessed on 15 Aug 2013

Rivard S, Aubert BA (2008) Information technology outsourcing. M. E. Sharpe, New York

Rottman J, Lacity M (2006) Proven practices for effectively offshoring IT work. Sloan Manage

Rev 47(3):56–63

Sangwan R, Bass M, Mullick N, Paulish D, Kazmeier J (2007) Global software development

handbook. Auerbach, Boca Raton, FL

Biography Christof Ebert is managing director at Vector Consulting Services. He

supports clients around the world to improve product strategy and product devel-

opment and to manage organizational changes. Prior to this, he held global man-

agement positions for 10 years at Alcatel-Lucent. A trusted advisor for companies

around the world and a member of several of industry boards, he lectures at the

University of Stuttgart and at the Sorbonne in Paris. He authored several books

including his most recent one entitled Global Software and IT published by Wiley.
He received the IEEE distinguished visitor award and is a member of the Alcatel

Technical Academy.

246 C. Ebert

http://www.baselinemag.com/it-services/is-outsourcing-losing-its-appeal
http://www.baselinemag.com/it-services/is-outsourcing-losing-its-appeal
http://www.pwc.com/gx/en/technology/publications/global-software-100-leaders/index.jhtml
http://www.pwc.com/gx/en/technology/publications/global-software-100-leaders/index.jhtml

Chapter 10

Motivating Software Engineers Working

in Virtual Teams Across the Globe

Sarah Beecham

Abstract The motivation of software engineers affects the quality of the software

they produce. Motivation can be viewed in terms of needs. The key need for a

software engineer is to ‘identify with their task’ which requires being given a task

that is challenging and understanding the purpose and significance of the task in

relation to the complete system being developed. Software engineers’ needs are

complex – they also require regular feedback, trust, appreciation, rewards, a career

path, and sustainable working hours. Furthermore, amongst other fixed environ-

mental factors, these motivators require sensitive tuning in line with a software

engineer’s personality and career stage. Creating this personality-job fit is not easy

in a co-located environment, so how can project managers motivate teams of

individuals distributed across the globe?

This chapter reflects on some of the motivational issues that managers of virtual

teams may encounter. Some background theory is presented for a deeper under-

standing of how to manage team motivation. Recommendations are drawn from a

case study where issues raised by practitioners working in virtual teams serve to

highlight and magnify known motivational issues. Project managers play an impor-

tant part in software engineer motivation. If they can create a working environment

that motivates individuals in the team, they will find that team members are more

likely to turn up to work, are less likely to look elsewhere for employment, will

work harder to meet deadlines, will take more pride in their work, and will share

their knowledge, concerns, and ideas for innovation.

S. Beecham (*)

Department of Computer Science and Information Systems, Lero – The Irish Software

Engineering Centre, University of Limerick, Limerick, Ireland

e-mail: sarah.beecham@lero.ie

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_10, © Springer-Verlag Berlin Heidelberg 2014

247

mailto:sarah.beecham@lero.ie

10.1 Introduction

This chapter explores how to motivate a software engineer working in a virtual

team. To answer this question, some general motivation theories are introduced that

are relevant to software engineer motivation in a global setting. Since motivating

practitioners is likely to lead to improved quality of the software product

(McConnell 1996; Verner et al. 2014) and development of software is increasingly

a global effort (Chaps. 9 and 12), examining how to motivate software engineers

working in globally distributed teams should be of interest to software development

practitioners.

Although motivation is a well-researched area, existing theories have not kept

pace with today’s software engineering climate. The twenty-first century has seen

radical changes in both the working environment and the demands made on the

people employed to undertake the work. The move towards developing software

globally has been rapid, requiring engineers to work in teams around the clock, with

mixed values and cultural styles. It is clear that global software development (GSD)

is here to stay, despite the risk it poses to motivation (Frey and Osterloh 2002).

GSD can require software engineers to work on sites hundreds or even thousands

of miles away from their virtual team mates, where members of the same team may

never meet in person. Engineers may also have to cope with time zone differences

between sites that constrain the ability to communicate in real time and can lead to

delays and frustration, or to working antisocial hours. Other barriers emerge such as

cultural and linguistic differences between team members who may need to discuss

complex technical issues (Noll et al. 2010; Shah et al. 2012; Monasor et al. 2013).

Add to this mix a backdrop of tight deadlines, centralized budgetary controls, and

requirements for high-quality software. It is clear from this short summary that

GSD places unique and extreme demands on the engineer. While existing theories
of motivation do not account for the complexities introduced when working in

distributed teams, fortunately we have a wealth of empirical research we can draw

on to help identify how, where and what motivation means in this context. This

chapter draws on theories of motivation and maps these to empirical findings of

work undertaken in GSD.

The growth of agile practices (see Chap. 11), shared responsibilities, and flat

organisational hierarchies have all contributed to our understanding of how to foster

motivation. For example, Beecham et al. (2008) and França et al. (2012) found that

agile principles generally meet software engineers’ motivational needs, with a few

exceptions. However, recent work also suggests that too much freedom and ad hoc

arrangements can work against software engineer motivation (Fernández-Sanz and

Misra 2011). This seems to contradict the open source and inner source software

development paradigms that are gaining in popularity and impetus (Chaps. 13 and

14 relate). The authors of Chap. 14 discuss how software engineers, when adopting

OSS practices, are likely to be the recipients of many types of rewards—shown in

this chapter to be important intrinsic motivators. In OSS, self-selecting volunteers

come together to create their own communities and expend effort to produce high-

248 S. Beecham

http://dx.doi.org/10.1007/978-3-642-55035-5_9
http://dx.doi.org/10.1007/978-3-642-55035-5_12
http://dx.doi.org/10.1007/978-3-642-55035-5_11
http://dx.doi.org/10.1007/978-3-642-55035-5_13
http://dx.doi.org/10.1007/978-3-642-55035-5_14
http://dx.doi.org/10.1007/978-3-642-55035-5_14

quality and useful software. It is not surprising that researchers look to these

environments to learn about motivation since contributors appear to be motivated

by some internal impetus not necessarily associated with financial reward (Ye and

Kishida 2003; Roberts et al. 2004; Riehle 2007).

Having read through this chapter, the reader should come away with a basic

understanding of some organisational and motivation theories (Sect. 10.2), a feel

for whether software engineers are likely to have distinct personalities of their own

(Sect. 10.3), and an understanding of how to motivate software engineers in a

virtual team setting through a case study example presented in Sect. 10.4. Sec-

tion 10.5 maps Global Teaming practices to motivational factors. Section 10.6

discusses the case study example in the context of some motivation theory. Sec-

tion 10.7 concludes the chapter with a summary of software engineer motivation

in GSD.

10.2 Motivation Theory

There are techniques managers can apply that will motivate employees to work

harder, and increase their commitment to the organisation. Creating the right

conditions can also stimulate innovation (Frey and Osterloh 2002). However,

perhaps the reason that there are well over 100 theories of motivation (Petri and

Govern 2012), is that no one theory truly reflects how people are motivated. At best,

each theory provides new insights into what is a highly complex area (da Silva and

França 2012).

Classic motivation theories can be broadly classified as either ‘content’ or

‘process’ theories. Content theories include Maslow’s hierarchy of needs (1954),

Herzberg et al.’s two-factor theory (1959), and McClelland’s needs theory (1961).

These content theories assume a “complex interaction between internal and exter-

nal factors” and explore “the circumstances in which individuals respond to differ-

ent types of internal and external stimuli” (Bassett-Jones and Lloyd 2005). Process

theory, on the other hand, describes motivation as “a sequence or process of related

activities” (Hall et al. 2009). Exponents of process theories include Adam’s (1963)

equity theory, Vroom’s (1964) expectancy theory, Skinner’s (1976) stimulus-

response theory, Locke et al.’s (1968) goal setting theory, and Hackman and

Oldham (1976) and Couger and Zawacki’s (1980) task design theories. This chapter

focuses on the process theories relating to work design and job characteristics

(Hackman and Oldman 1976; Couger and Zawacki 1980), where task variables

are explored in a GSD context. Also, Herzberg’s (1959) two-factor content theory

(motivation-hygiene theory) is discussed since the external environment (a hygiene

factor) is an integral part of GSD.

Motivation theories try to explain the conscious or unconscious decisions people

make to expend effort or energy on a particular activity. Handy (1993) encapsulates

many of these process theories in his ‘motivation calculus,’ which expresses

10 Motivating Software Engineers Working in Virtual Teams Across the Globe 249

motivation in terms of needs, results that satisfy needs, and effort1 expended to

achieve those results that satisfy the needs. The calculus demonstrates that the level

of effort a person is willing to expend on a task is linked to how the person feels that

effort will be rewarded; if the person values the expected reward, they will increase

the effort accordingly. If the result fulfills a need and the experience is positive, it

will feed into the person wanting to expend energy again on similar need-related

tasks, and so the cycle continues. The re-enforcement cycle is explained in the

example in Fig. 10.1 and summarised in Fig. 10.2.

Figure 10.2 indicates that it is tapping into the strength (or salience) of the need that

will determine how to motivate the engineer. For example, looking at Fig. 10.2 (b),

A software engineer with a strong need to learn is given a problem-solving

task that promises to expand his or her knowledge and skill-set. The effort

the engineer is prepared to expend on the task will depend on the degree to

which he or she

b) having completed the task, finds that the resulting increased knowledge

 and skills satisfy the learning needs (instrumentality of the satisfied need).

a) believes that solving the problem will lead to increased knowledge

 and skills (expectancy that the need will be satisfied) and

Fig. 10.1 Example scenario of motivational elements adapted from Handy (1993)

Example decision making mechanism

‘E’ Factors
conscious,

unconscious,
long/short horizon

Needs
e.g.

Hertzberg/
Maslow

Results
(specificity)

Motivation cycle

‘E’ Factors
problem
solving

Results
enhanced
skill set

Leads to Drives energy
expended to ...

Satisfies +/-

Need
salience +/-
‘to Learn’

a b

Fig. 10.2 Motivation calculus inspired by Handy (1993) (a) Motivation cycle (b) Example

decision-making mechanism

1 Effort is just one of the E’s in the calculus; other E’s include energy, excitement, enthusiasm,

emotion, expenditure of time, expenditure of money, and expenditure of passion.

250 S. Beecham

motivation can break down if the problem-solving task does not lead to enhancing

the skill set as this will not satisfy the need to learn. Alternatively, the motivation

cycle is broken if an enhanced skill set does not satisfy the need to learn. The need

and how to satisfy that need will vary from person to person. Individual characteristics

play an integral part in motivation theories.

It is the mapping of the individual need to the type of job that forms the basis for

the ‘job characteristics theory’ (JCT) also discussed in this chapter. Section 10.3

considers the individual personality traits and characteristics of the software engi-

neer—this is perhaps the Holy Grail, as if we can find common traits in people

attracted to the software engineering profession, it will ease the task of motivating

engineers.

10.2.1 Motivation as a Social Process

While Handy’s approach is useful in capturing motivation, understanding can be

broadened by viewing motivation as part of a social process. This complementary

social process dimension relates strongly to the context of software engineers who

must work together in teams and interact. Motivation as a social process defines

how people join, remain part of, and perform adequately in a human organisation

(Huczynski and Buchanan 1991). The global organisation is a social arrangement

comprising members who are motivated to join, to stay, and to perform at accept-

able levels. It is within a social context that teams working remotely are encouraged

to work harder and more effectively. Some research suggests that social interaction

itself can be motivating (Petri and Govern 2012). Self-motivation is just one factor

that drives an individual to join an organisation, to stay, and to perform at accept-

able levels. The other characteristics are discussed in Sect. 10.3. The increase in the

use of social media in GSD (see Chap. 16) reflects the growing need for members of

distributed teams to collaborate via informal channels.

10.2.2 Rational-Economic Needs

Scientific management research, conducted in the 1940s, asserted that dividing

work into structural units and offering monetary incentives would motivate indi-

viduals to increase their productivity. Frederick Taylor (1947), a key proponent of

the scientific management movement, introduced the rational-economic needs

concepts of motivation that he believed would lead to work being more satisfying

and profitable. Taylor hypothesised that workers would be motivated by the high

wages that they earned by working in the most efficient and productive way. Taylor

was preoccupied with finding the most efficient methods and procedures for

coordination and control of work, a goal shared with today’s global software

development managers. Key principles of Taylor’s approach include the division

10 Motivating Software Engineers Working in Virtual Teams Across the Globe 251

http://dx.doi.org/10.1007/978-3-642-55035-5_16

of labour, the sharing of responsibility between management and workers, knowl-

edge sharing, and carrying out work in a prescribed way. It appears that Taylor

anticipated the need for a work environment suited to automation. Taylor’s vision

can also be mapped to GSD and other product management approaches since

dividing up processes into discrete, unambiguous pieces eases task allocation and

sharing among developers working in virtual teams. Chapter 9 discusses how to

allocate tasks in distributed and global development to maximize team cohesion

and minimize coupling.

Initially, the effect of the introduced changes raised productivity and employee

wages by 60 % (Huczynski and Buchanan 1991). However, despite increased

output and monetary rewards, there was a strong reaction against scientific man-

agement methods from employees (Mullins 1993). Taylor’s design of fragmented

tasks was boring and called for a low level of skill. Requiring low levels of skill

allowed the management to treat people as pure resources that could easily be

replaced. In line with this, managers could reduce wages and ignore the psycho-

logical needs of the employees who had little opportunity to give feedback,

experiment or make changes. These factors resulted in Taylorism in its strictest

sense becoming obsolete with the term “scientific management” falling out of

favour fairly soon after its introduction.

Paradoxically, even though we are aware that Taylor’s methods do not work in

the long term, today’s managers of distributed teams seem to be reintroducing some

of these practices. In terms of division of labour, one model is that testing gets

outsourced to low-labour cost countries, design is undertaken in the onshore office,

and coding is performed in satellite locations. Also, decision making can be the

province of the centralized managers, where the needs of those working remotely

are not necessarily represented in the organisational process.

In summary, Taylor’s approach reflected the spirit of the times in the 1940s, a

time of industrial reorganisation, new forms of technology, and the emergence of

large complex organisations. We now find ourselves again in a phase of industrial

reorganisation, with even more complex work structures in the form of globally

distributed software development. Work patterns have changed largely due to new

forms of technology, especially concerning methods of communication. Perhaps for

this reason elements of Taylor’s approach have not died out, a sentiment shared by

academics who proclaimed in the early 1990s that “Taylorism is alive today”

(Huczynski and Buchanan 1991). More recently, researchers Kennedy and Nur

(2012) note that prescriptive practices associated with Taylorism continue to rise.

Engineering work is now highly controlled by procedures and the increased need

for senior management approval. This has implications for motivation as “so long

as the Taylorist paradigm persists, the organisational aspiration to create a high

commitment culture is likely to prove elusive” (Bassett-Jones and Lloyd 2005).

However, it could be that it is the high employee turnover and subsequent low

knowledge retention that drive the need for regimented processes (Kennedy and

Nur 2012).

252 S. Beecham

http://dx.doi.org/10.1007/978-3-642-55035-5_9

10.2.3 Motivation Theories for Software Engineering

Given that motivation is important, and that looking at people as machines that will

do repeated work ad infinitum (even for good pay) is not a panacea, we now move

away from the scientific management view and go to an approach where it is the

people within the organisation that matter most.

Organisational theory records several approaches and models of motivation,

many of which have been applied in software engineering research (Hall

et al. 2009; Sharp et al. 2009). This chapter focusses on two theories that stand

out amongst this group as being particularly relevant to motivating people who

work in global software development teams: firstly, the content theory expounded

by Herzberg et al. (1959)—the two-factor theory- and secondly, the process theory

according to Hackman and Oldham’s (1974) job characteristics theory (JCT) and
adapted by Couger and Zawacki (1980) for software engineers. A brief definition of

these theories is given next, along with why they might, even after 40 plus years,

support the management of virtual teams.

Herzberg’s two-factor theory: In 1959, Herzberg and his collaborators isolated

two different factors that influenced motivation and satisfaction at work. One set of

factors, classified as ‘demotivators’ or hygiene factors, are those that, if absent, can

reduce motivation; these extrinsic factors are concerned with the work environ-

ment. However, to motivate employees to give their best, the focus must move to a

different set of factors, classified as ‘motivators’ or intrinsic factors relating to the

task itself.

The work of Herzberg is pertinent to global software development, since moti-

vation (and demotivation) factors are viewed in terms of external influences and

internal influences, even though the theory was developed over 50 years ago.

However, there is some controversy as to how factors are classified, “largely

because of the assertion that there was a weak correlation between financial reward

and job satisfaction” (Bassett-Jones and Lloyd 2005). Herzberg classifies financial

rewards as a hygiene factor, suggesting that inadequate financial reward can

demotivate—and that beyond a limited threshold, money cannot motivate.

Although classifying factors as either hygiene or motivators can appear contrived,

it is helpful for the purpose of identifying how GSD factors may demotivate. Also,

it is helpful as there might be some hygiene factors that are outside the control of the

project manager. Of note is that demotivators are not the opposite of motivators;

demotivators and motivators are distinct groups of factors.

Job characteristics theory: According to Beecham et al.’s review of the moti-

vation literature (2008), Hackman and Oldham’s (1974, 1976) job characteristics

theory (JCT) is the most applied theory in software engineering. This process theory

views the work itself as the main motivator, where given a set of personal needs, a

person will only be motivated if these needs are matched by the job. The JCT model

reflects the relationship between job characteristics, psychological states, and

personal work outcomes. The JCT was extended by Couger and Zawacki (1980)

to fit the software engineering context. The associated data collection tool, the Job

10 Motivating Software Engineers Working in Virtual Teams Across the Globe 253

Diagnostics Survey (JDS), was developed to quantify an individual’s person-job fit.

Once quantified, motivation levels can be compared across individuals, across

organisations, and across studies. As shown in the investigation into Herzberg’s

hygiene factors, global software development can involve environmental factors

outside the control of the project manager. The importance, therefore, of the person-

job fit seems particularly pertinent to our solution. The person-job fit for GSD is

considered later in this chapter.

10.3 Characteristics of a Software Engineer

As noted in the Section on motivational theory (Sect. 10.2), there is no one-size-fits-

all solution to motivating software engineers since motivation depends on individ-

ual needs and personality. Findings are derived from an in-depth systematic liter-

ature review of software engineer motivation (Beecham et al. 2008). A section of

the motivation review was dedicated to studies that looked specifically at types of

people attracted to the software engineering profession as opposed to what moti-

vates them to stay in the profession, to do better work, etc. As a result, some

characteristics appear similar to motivators, even though they came from a different

strand of research. The original rationale for conducting the research into the

characteristics was to assess whether software engineers are somehow different to

professionals in other domains. Because, if there is no difference, we could argue

that we do not need a separate study and model of motivation for software

engineers; we could draw on the existing models and theories of motivating people

in the workplace, some of which have been discussed in the previous section. On

balance, 73 % of studies of software engineers indicated that software engineers do

form a distinct identifiable occupational group (Beecham et al. 2008). This finding

indicates that studying motivation for software engineers as a separate profession

could benefit the managers of software engineers and researchers.

Figure 10.3 shows how controls and mediators will shape a software engineer’s

characteristics.

A systematic literature review of 92 separate studies relating to software engi-

neer motivation (Beecham et al. 2008) observed that a software engineer’s charac-

teristics are formed by two factors: their internal make-up (termed ‘control factors’)

and external factors (termed ‘moderators’). Control factors define innate personal-

ity. Although personality will have an influence on the characteristics of a software

engineer, defining personality types goes beyond the scope of this chapter. For

readers interested in knowing more about this dimension, Chap. 4 gives an in-depth

description of personality and how to assess different personality types. Modera-

tors, on the other hand, are discussed briefly since they are understood to change the

strength of certain characteristics.

The moderators identified in Beecham et al. (2008), listed in Table 10.1, have

particular significance in a global, virtual team setting. Although they can be

outside the control of the manager, they still need to be acknowledged as important

254 S. Beecham

http://dx.doi.org/10.1007/978-3-642-55035-5_4

to the individual. For example, although an individual’s career stage, age, and the

state of the IT profession are fixed, they may all influence how to motivate the

individual.

Also, the culture of the individual or given setting has been identified as

problematic in many GSD studies, for example, Olson and Olson (2004), and is

often labeled as a barrier to successful communication (Noll et al. 2010). However,

managers can take advantage of a mixed cultural team for enhanced creativity,

innovation, and holiday cover (Deshpande et al. 2010).

Promotion prospects are also seen as moderating a software engineer’s charac-

teristics. For example, Johnson et al. (2010) found a significant positive correlation

between an employee’s promotion focus and affective commitment. Promotion

prospects are a poorly studied area in GSD research and may as a result be

overlooked as an important motivator. Translating this moderator into a GSD

context highlights the need for software engineers working remotely to have a

clear career path and promotion opportunities. All factors listed in Table 10.1 are

likely to moderate the strength of a software engineer’s characteristics.
Of the many software engineer characteristics identified in the literature (con-

sidered in relation to GSD later in this chapter in Table 10.8), growth-oriented,

introverted, and need for independence were the most cited. However, some

characteristics contradict each other, such as ‘introverted’ with a low need for

social interaction, and ‘need to be sociable and identify with a group or organisa-

tion’. The view that software engineers are introverted reflects findings from the

many studies coming from Couger and colleagues who measured the social needs

strength of engineers (Couger and Zawacki 1980) in their Job Diagnostics Survey

(for a full list of sources, see Beecham et al. 2008). This view is not universal, as

seen in the body of more recent research that identified software engineers as

sociable people (Beecham et al. 2008). Certainly the need for software engineers

to communicate and relate to others is crucial in a GSD context. The new software

engineer profile may therefore reflect the changing demands of the role.

+/- +/-

The Software Engineer

Moderate strength of each
characteristic

Moderators
(External)

e.g. Career stage
Role

Responibilities

Software Engineer
Characteristics

(Listed in Table 10.8)

Determine the characteristics
of an individual

Control Factors
(Internal)

e.g. Personality
Managerial/technical

leanings
Innate ability

Fig. 10.3 Model of software engineer characteristics adapted from Beecham et al. (2008)

10 Motivating Software Engineers Working in Virtual Teams Across the Globe 255

Figure 10.4 shows the relationship between characteristics, controls and moder-

ators (given in detail in Fig. 10.3), and motivators and outcomes. The level to which

the needs (defined by a software engineer’s characteristics) are met by the motiva-

tors will impact on tangible outcomes. For example, Hall et al. (2008a, b) found a

positive correlation between software engineer motivation and employee turnover,

and Verner et al. (2010) found a positive correlation between motivation and

software engineering/management agreements on project success.

In summary, this section reflected on the characteristics of software engineers

and whether they have any common characteristics. Understanding that engineers

are likely to have some distinct traits should help managers to motivate their

software development teams. The studies included in the motivation review (Bee-

cham et al. 2008) did not consider the extra complexity of working in a distributed

environment. The characteristics in a GSD context are considered in Sect. 10.6. The

next section places all the 22 motivating factors identified in the review in a GSD

context through an empirical mapping study.

10.4 Software Engineer Motivation in GSD—A Case Study

This section examines how software engineers’ needs are likely to be affected by

GSD. A case study conducted during 2010–2011 is used as an example of how

virtual team behaviour may inhibit or strengthen software engineer motivation.

The case study is based on a GSD organisation that distributes its software

development activities across several sites and countries. The organisation has its

central office in Ireland and develops bespoke software for the financial services

sector. It is a medium-sized organisation with approximately 200 employees. For

reasons of confidentiality and anonymity, this organisation is referred to as “GSD

Corp.” GSD Corp offshore much of their development activities, but maintain a

large team of practitioners in the central office who work mainly from 9 A.M. to 5 P.M.,

5 days a week. This team develops their core product, manages the off-shore teams,

and tests the bespoke software. The offshore teams are more focussed on require-

ments gathering and product deployment. Offshoring is undertaken for three key

reasons: firstly, to extend their customer base; secondly, to work closely with their

customers; and thirdly, to hire excellent technical talent in low-cost countries. All

development comes under the organisational control of GSD Corp. The purpose of

conducting the case study was to examine the processes used by GSD Corp to

develop their software.

Table 10.1 Software

engineer moderators
1. Career stage (age and experience)

2. Culture (relating to national culture)

3. Job type/role/occupational level

4. State of IT profession (snapshot of evolutionary process)

5. Type of organisation (e.g., promotion opportunities/rules)

256 S. Beecham

Onshore and offshore opinions and lessons learned were solicited through a

series of in-depth interviews that provided insights into where GSD processes might

be improved. To gain a full picture of day-to-day work patterns, two projects were

studied, one of which had just been completed, and the other was still in progress.

Twenty-four employees performing various roles in the development process based

in four different countries (Ireland, USA, South Africa, and Australia) were

interviewed using the same set of semistructured questions. Each employee was

interviewed for 1–2 hours, on a one-to-one, confidential basis. All interviewees

worked in a distributed environment. Detailed notes were taken during the inter-

views, which were also recorded and later transcribed verbatim. A cross section of

roles was interviewed in the sample, including technical and business consultants,

quality assurance, project managers, project leads, solution architects, technical and

business stream leads, and programme manager.

The detailed notes and analysis of interview transcripts presented a full picture

of how GSD Corp operates across its several sites. The findings presented in this

section are drawn from a subset of responses to direct and indirect interview

questions that related to motivation. Direct questions included “how motivated

were you in your project?”, “was your project a success or highly challenged?”,

“how do you define project success?”. Indirect questions tackled the problems and

challenges the interviewees experienced in conducting their day-to-day tasks work-

ing in a virtual team, as well as discussing what excited them about their work.

Using a qualitative, content analysis approach (Krippendorff 1980) similar to that

used in Noll et al. (2011), responses were categorised according to whether they

highlighted a challenge or a solution to a given problem, as well as advantages and

disadvantages of working in virtual teams.

needs

The Software Engineer

Characteristics
(likes, dislikes, etc.)

Controls (personality etc.),
Moderators (age, state of

profession, etc.)

Outcomes

- Absenteeism
- Job retention
- Software quality
- Productivity
- Commitment
- Innovation

met?

Motivators

Extrinsic and
Intrinsic Factors

relating to
software
engineers

Fig. 10.4 Model of software engineer motivation adapted from Beecham et al. (2008)

10 Motivating Software Engineers Working in Virtual Teams Across the Globe 257

10.4.1 Case Study Results

The preliminary results shown in Tables 10.2, 10.3, 10.4, and 10.5 map case study

findings (such as advantages and disadvantages of working in a virtual team) to

motivational factors drawn from the literature (Beecham et al. 2008). Extrinsic

factors are presented separately as it is likely that they will require a different

management approach to the intrinsic motivators that are concerned with the job

itself.

In the case study, two extrinsic factors were enabled by GSD: job security

(no interviewee felt their job was under threat) and the need to work for a successful

company (see Table 10.2). Some factors appear independent of whether employees

work in a co-located or virtual environment, such as having a feedback mechanism

in place. Factors that are likely to be equally difficult to achieve in virtual and

co-located teams are not covered in these tables.

However, the case study did reveal several motivational factors that appear to be

challenged as a result of working in a distributed team. Extrinsic factors (see

Table 10.3) such as poor working conditions (disruptive) and a poor work-life

balance (e.g., unpredictable working hours, extensive travel, and long commute)

can demotivate software engineers. GSD Corp’s poorly defined virtual team roles

weakened practitioner empowerment and feeling of responsibility. Ambiguous

roles and responsibilities can be problematic in a co-located environment, and

working remotely magnifies the problem. For example, a team lead working at a

remote customer site was undermined by senior management (working from a

different country and time zone) who decided to discuss on-site matters directly

with the customer (ignoring the team lead working in a predominantly customer-

facing role). Not only was this undermining for the on-site team member, it caused

confusion as to who is responsible for handling customer issues.

Considering issues directly associated with the job itself (shown in Tables 10.4

and 10.5), there were perceived differences in how employees were treated based

on where they were located. For example, a practitioner working offshore reported

that they sometimes missed out on training opportunities. Also, those based

remotely felt they did not have the same promotion prospects as the onshore team

since the remotely based senior management tended to see problems rather than

when the employee was doing a good job and there were fewer options in a small

organisation for internal promotion. Offshore teams felt that they worked longer

Table 10.2 Extrinsic motivators enhanced by virtual team practices

Extrinsic factor Virtual team practice (drawn from case study)

Working in a successful

organisation

Spreading the business into new markets was seen as a good business

model. Operating in different countries was linked to

organisational success.

Job security/stable

environment

None of the employees interviewed felt insecure. They knew that

good engineers where in short supply and did not feel that their

jobs were under threat, despite the financial climate.

258 S. Beecham

Table 10.3 Extrinsic motivation challenged by virtual team practices

Extrinsic factor Virtual team practice (drawn from case study)

Rewards and incentives (e.g., scope for

increased pay and benefits linked to

performance)

Requires objective measurement, and as such is

independent of location—however, making

sure that rewards are given to each employee

fairly across different locations may not be

achievable, e.g., some remote workers were

not able to take time off in lieu for working

long hours and overtime.

Good management (senior management sup-

port, team-building, good

communication).

Becomes even more important when working

remotely—extra pressures, extra layer of

complexity requires experienced and confi-

dent managers to deal with unforeseen prob-

lems. A recurring theme was that remote

projects required experienced managers that

can communicate well with both customers

and all team.

Sense of belonging/supportive relationships Difficult to feel supported when your counterpart

might be sleeping during your core working

hours. However, the organisation had a strong

corporate culture, clearly communicated in all

interviews.

Work/life balance (flexibility in work times,

caring manager/employer, work location)

Extremely difficult to achieve, when there is a lot

of travel, working away from home (and

family), and keeping work hours down to core

times seems impossible. It was rare to hear any

reports of people working sustainable hours

when working remotely.

Employee participation/involvement/working

with others

Some experienced managers working remotely

did not want to participate with the wider

organisation; finding interference from higher

management to be a negative influence. They

tended to want to be left alone to sort out their

customer facing issues. A fine balance needs

to be struck between participation and a

top-down style of management that imposes

the processes.

Appropriate working conditions/environment/

equipment/tools/physical space/quiet

Working conditions specially affected remote

workers. For example, when working onsite

with customers they often did not have any

influence on where they work, or how and

sometimes, when. They were not able to sep-

arate themselves from being on call to the

customer: there was a tension between dealing

with customer demands and their tangible

deliverables.

Sufficient resources Resources were scarce in terms of people (indi-

viduals were stretched to fill the gaps).

10 Motivating Software Engineers Working in Virtual Teams Across the Globe 259

Table 10.4 Intrinsic motivation challenged by virtual team practices

Intrinsic factor Virtual team practice (from case study)

Development needs addressed (e.g. training

opportunities to widen skills)

Formal training, though offered centrally, would not

always be extended to those employees working

remotely. Many employees would have liked to

attend training programmes that were only made

known to them after they occurred, or when all

places were filled. Also, working remotely, they

were not able to take the time out for training,

which was not built into the development

schedule.

Technically challenging work The technical work may be less challenging if task is

highly specified, with reduced dependencies.

However, balancing the many responsibilities

and demands on time, and keeping both customer

and management happy was very challenging.

Identify with the task (clear goals, how task

fits in with whole)

Working in a distributed fashion in some cases

resulted in developers not seeing the bigger pic-

ture and how their part of the work fitted in with

the overall delivered product.

Employee participation/involvement/work-

ing with others

Members of the team may find it difficult to work

with others if they are in different time zones.

They can become disenfranchised or alienated.

Difficult to make their opinion heard if not

working physically together.

Career path (opportunity for advancement,

promotion prospect, career planning)

There was a perceived lack of opportunity for

advancement within the organisation—espe-

cially in an offshore role. Also in this SME, there

were a limited number of roles available. Indi-

vidual career plans to gain as much experience as

possible to improve their marketability with

external employers were met. Yet, even if

employee work experience and skills were

increased over time, they may leave the organi-

sation to reap the benefits of increased skills.

Making a contribution/task significance

(degree to which job impacts on others).

Working in a piecemeal fashion, e.g. just doing the

coding, or part of the coding, prevented the

developer from recognising how his/her part will

make a difference. Some were uncertain as to

whether software they are developing was used/

implemented.

Recognition (for a high-quality, good job

done

Universal recognition for a job well done is difficult

to achieve when working remotely, where the

main reason for making contact with head office

might be to escalate a problem, or to check back

when some action needs to be granted permis-

sion, or expenses need to be paid. If all is going

well, then the practitioner ‘doing a good job’

may just be invisible.

(continued)

260 S. Beecham

hours and had less leave than those based in the head office. These factors threaten

motivators such as career path, trust, recognition, good management, respect,

rewards, and equity.

Table 10.4 (continued)

Intrinsic factor Virtual team practice (from case study)

Trust/respect Trust is a recognised problem in GSD and can cause

barriers to the development. Engendering trust is

difficult when teams may never have met face to

face, may not share a common language, and

may have different cultures. This however did

not pose a problem in the case study with their

strong corporate and friendly culture.

Equity Fair treatment of all individuals working in virtual

teams is difficult to achieve in GSD. For exam-

ple, teams working in both the UK and the USA

may feel that the employee in the other county is

working less hours (e.g., a US employees devel-

oper may not be able to contact their European

counterpart after 11 A.M. US time), also the US

tend to take fewer days leave than their European

counterparts.

Empowerment/responsibility Responsibility by role is ambiguous—when roles are

not well defined, it is difficult to know just how

much authority you have to make changes and

make decisions. Decision making is key to

motivation (Handy 1993), therefore responsibil-

ities need to be clear.

Table 10.5 Intrinsic motivation enhanced by virtual team practices

Intrinsic factor Virtual team practice (from case study)

Variety of work (e.g., making good use

of skills, being stretched)

The individual can find themselves fulfilling several

roles, even if not trained or experienced in the role.

When working remotely, there might be no-one to

delegate to. Employees made excellent use of their

skills. However, there became an over-reliance on the

employee, who at times experienced unsustainable

working hours.

Autonomy Autonomy is usually not a problem when working

remotely; a prerequisite for remote working is the

ability to work independently. However, individuals

can be undermined if head office is heavy handed, and

interferes with communication, say with on-site cus-

tomers, or if their work is monitored too stringently.

For developers working under the spotlight of the

customer, autonomy can be problematic.

10 Motivating Software Engineers Working in Virtual Teams Across the Globe 261

10.5 Motivational Factors and GSD Guidelines

GSD research is rich in frameworks, guidelines, and recommendations that aim to

overcome challenges that arise when software is developed by teams that are

separated by geographic distance, that span multiple time zones, have different

first languages and represent multiple cultures. However, none of these guidelines

are expressly connected to motivation. This section therefore addresses the ques-

tion, “How do GSD recommended practices support software engineer motiva-

tion?” For brevity, consideration is given to guidelines developed specifically for

global teams. These are presented in the global teaming model (GTM) according to

Richardson et al. (2012) and encompass 20 detailed GSD practices drawn from

empirical research and the GSD literature. Where possible the guideline is mapped

to the motivational factors identified in Tables 10.2, 10.3, 10.4, and 10.5.

Tables 10.6 and 10.7 present a mapping of extrinsic and intrinsic motivational

factors to GTM practice guidelines. The motivational factors included in Beecham

et al. (2008) are considered, and the case study findings have been used to explore

how the Global Teaming Model (GTM) guidelines support motivation.

The mappings shown in Tables 10.6 and 10.7 indicate that if a project manager

follows the guidelines offered by the Global Teaming Model, they will in turn also

address many of the software engineer’s motivational needs (labeled ‘need directly

addressed’). Those areas not supported by the guidelines (labeled ‘need not

addressed’) tend to be environmental, and outside the scope of a process model

such as the Global Teaming Model (Richardson et al. 2012). However, many of the

solutions are indirectly addressed (labelled ‘implied/partial support of need’) and

will require careful implementation to ensure the practice fully meets the motiva-

tional needs of the virtual engineer. Those motivators labeled ‘need directly

addressed’ will also need further investigation, since as already discussed in this

chapter, each guideline needs to be tailored to the individual requirements of the

software engineer. (The GTM (Richardson et al. 2012) contains more detailed

descriptions of the guidelines.)

Although the Global Teaming Model takes a management or organisation view,

it does reflect the needs of the employee, as shown in this practice: “Ensure that the

supervision, support and information needs of all team members are met regardless

of location.” However, although the guidelines for global teaming reflect best

practice, they are no substitute for highly experienced project managers (Hall

et al. 2008a, b; Beecham et al. 2013; Monasor et al. 2013).

10.6 Theory and Practice of GSD Motivation

Šteinberga and Šmite (2011) conducted a complementary study of motivation in

distributed software development teams. They mapped motivators to the GSD

literature in order to assess the impact of GSD on software engineer motivation.

262 S. Beecham

Table 10.6 GSD guideline support for intrinsic motivation

SW engineer intrinsic motivators Global teaming guidelines (Richardson et al. 2012)

NEED DIRECTLY ADDRESSED

Development needs addressed (e.g., training

opportunities to widen skills)

“Training should be tailored to team member’s

specific needs and location.” “Undertake train-

ing onsite and face-to-face so team members can

be directly assessed and training provision tai-

lored to their specific requirements.”

Identify with task (how task fits in with

whole)

“Project goals and objectives should be communi-

cated, understood and agreed across all team

members regardless of location.”

Making a contribution/task significance “Let team members know their input to process

development and ownership is valued.”

IMPLIED/PARTIAL SUPPORT OF NEED

Variety of work (e.g., making good use of

skills, being stretched)

“Gather all information relating to the technical . . .
experience of potential and existing team mem-

bers. When teams are in place and project details

reported project managers should understand .

individual’s skills and knowledge.”

Technically challenging work “Gather all information relating to the technical and

professional experience of potential and existing

team members.”

Employee participation “. . . individuals visit locations for extended
periods. . .”

Autonomy Modularisation is one approach to development

where work is partitioned into modules that have

a well-defined functional whole.

Recognition (for a high-quality, good job

done -different to rewards/incentives)

“The global team is viewed as an entity in its own

right, regardless of the location of its team

members and its performance should be judged

and rewarded accordingly.” “Acknowledging

team success may require tailoring rewards to

the needs of different cultures.”

Trust/respect “Structure global team and monitor operation to

minimize fear and alienation in teams.” “Set up

a strategy to handle, monitor and anticipate

where conflict between remote locations may

occur.”

Equity “Be aware of problems with unbalanced team sizes

. . .” “Ensure supervision, support and informa-

tion needs of all team are met regardless of

location.”

Empowerment/responsibility Information of individual’s role within the team and

specific areas of responsibility [should be

recorded].

NEED NOT ADDRESSED

Career path (opportunity for advancement,

promotion prospect) hierarchy; state of

economy.

Outside scope of practice model: depends on orga-

nisation size;

10 Motivating Software Engineers Working in Virtual Teams Across the Globe 263

Their assessments, however, do not totally agree with the empirical results reported

in this section. These differences indicate that the findings reported in this chapter

are preliminary, context specific, and non-generalizable. Šteinberga and Šmite

(2011) hypothesized that many motivators challenged by working in a distributed

manner would be supported by agile methods. For example, feedback, recognition,

and trust are likely to be promoted by iterations and small releases that enable early

and frequent feedback, and recognition for a job well-done. Some of these ideas are

supported by Beecham et al.’s (2007) empirical study of motivation of teams

applying XP development methods. Specifically XP had a positive effect on

motivation by clearly monitoring project progress, promoting knowledge sharing

and learning on the job, working independently as a team, and communicating good

and bad news through positive feedback without punitive repercussions. However,

individual recognition was a problem (as the focus was on the team, or pairs of

programmers) that could have a negative influence on promotion prospects and

rewards. Also, the work tended to be repetitive and therefore did not meet the need

for variety. Although agile methods were originally designed for co-located teams,

research has shown that distributed teams can apply many of the practices

Table 10.7 GSD guideline support for extrinsic motivation

SW engineer extrinsic factors Global teaming model guidelines (Richardson et al. 2012)

NEED DIRECTLY ADDRESSED

Rewards and incentives “Identify common goals, objectives and rewards.” Consider

“cultural issues, economic situation and income tax laws when

planning rewards.”

Employee participation/

involvement

“Face-to-face meetings are recommended when and where

possible”

IMPLIED/PARTIAL SUPPORT OF NEED

Good management “Ensure that the supervision, support and information needs of all

team members are met regardless of location.”

Feedback “Strategies need to be put in place to encourage formal and

informal reporting. . . Seek and encourage input from team

members at all locations.”

Sense of belonging/supportive

relationships

“Provide training to give all team members an opportunity to

learn and understand about each other’s culture.”

Work-life balance “Achievable milestones should be planned and agreed.” “Project

manager should allocate tasks and timescales that are

realistic.”

Appropriate working condi-

tions/environment

Many solutions relate to this under practice “Determine team and

organisational structure between locations.”

NEED NOT ADDRESSED

Working in successful

company

Environmental/not based on practice

Job security stable

environment/

Environmental/not based on practice

Sufficient resources Environmental/not based on practice

264 S. Beecham

effectively (Jalali and Wohlin 2012; Hillegersberg et al. 2011). For more informa-

tion on general agile project management, see Chap. 11.

Returning to motivation theory—how can it help us understand how to manage

motivation in virtual teams? The job characteristics theory emphasizes the need to

match the person to the role to ensure their growth needs and social needs are met.

We found in our analysis of software engineer characteristics that software engi-

neers vary in their profiles. For example, they are not necessarily introverted or

motivated by financial rewards (although some might be). Placing these ideas in the

context of GSD points to the importance of global project managers identifying

which practices can be adapted to meet the needs of the engineer and which

practices are fixed. Where the global manager is powerless to change a practice

or environmental factor associated with a given task, an option will be to select a

person whose characteristics are most suited to the role required to complete that

task. If the software engineer enjoys the task to the extent that environmental

factors do not detract, or whose growth needs and social needs match those offered

by the task, their motivation level should remain high.

An analysis of the impact of GSD on the motivation of practitioners interviewed

in the GSD Corp case study listed areas that were ‘challenged’ by distributed

development. Applying GSD best practice in the form of Global Teaming recom-

mendations indicates that good management could, in many cases, counteract these

vulnerable areas. Challenged areas in GSD motivation include rewards and incen-

tives, staff development, work-life balance, and promotion opportunities. However,

of more concern are those factors that, due to the environment, would be extremely

difficult, or even impossible, to change or control. The only way to support

practitioners involved in GSD exposed to these fixed factors is by having a clear

knowledge of their characteristics. For example, an engineer with a high need to

work with people face to face would be unsuited to working in a virtual team.

Enjoyment of travel and ability to communicate with people from different cultures

is also a prerequisite in many distributed projects.

Tables 10.8 and 10.9 list the characteristics, moderators, and controls associated

with software engineers’ suitability to working in a GSD environment according to

case study findings. Managers can use these tables as a starting point to identify

those practitioners suited to working in virtual teams either because of their

characteristics, or moderators and controls of those characteristics. For example

in Table 10.8, some engineer characteristics (for the sake of the example labeled

‘low’ suitability for GSD) require high geographic stability (suggesting a dislike of

travel), and an introverted personality. A manager may decide that the role demands

a lot of travel and interaction with other team members, and therefore this profile

could be deemed unsuited to the role. A more suitable set of characteristics for GSD

(labeled high GSD compatibility) is likely to be that the software engineer is

technically competent, growth oriented, independent, creative, etc.

Sharp et al.’s (2007) empirical research considered the motivation of software

engineers in terms of the role they play, thus creating a more pragmatic model of

motivation than considering each member of a large team individually. This view

reflects Maslow’s theory of motivation (Maslow 1954), where, for example,

10 Motivating Software Engineers Working in Virtual Teams Across the Globe 265

http://dx.doi.org/10.1007/978-3-642-55035-5_11

developers may be at a different stage in their careers than project managers. Sharp

et al. (2007) found a difference in how software developers and project managers

were motivated, and suggest that project managers should recognize these differ-

ences. Management approaches applied by project managers who assume that

developers are motivated in a similar way to themselves are in danger of being

ineffective or even detrimental. However, this finding does assume that roles are

well defined. In GSD, this is not always the case (Richardson et al. 2012). Further-

more, the literature is divided as to whether clear role definition is a good thing. For

example, Kennedy and Nur (2012) found that clear role differentiation can hinder

effective project management. Motivation by group therefore will be difficult to

achieve where group is defined by the role a practitioner plays in the development,

if that role is not well defined.

Table 10.8 Software Engineer Characteristics and GSD Role

Characteristic GSD compatibility

Ch.1 Need for stability (organisational stability) Low

Ch.2 Technically competent High

Ch.3 Achievement orientated (e.g., seeks promotion) Medium

Ch.4 Growth orientated (e.g., challenge, learn new skills) High

Ch.5 Need for competent supervising Medium

Ch.6 Introverted (low need for social interaction) Low

Ch.7 Need for involvement in personal goal setting Medium

Ch.8 Need for feedback (needs recognition) Medium

Ch.9 Need for geographic stability Very low

Ch.10 Need to make a contribution (worthwhile/meaningful job) High

Ch.11 Autonomous (need for independence) High

Ch.12 Need for variety High

Ch.13 Marketable High

Ch.14 Need for challenge High

Ch.15 Creative High

Ch.16 Need to be sociable/identify with group High

Table 10.9 Software engineer moderators and controls and GSD compatibility

Moderators and

controls GSD compatible

Mod.1 Career stage At stage that allows flexible working hours and travel

Mod.2 Culture Open, interested in and tolerant of other cultures

Mod.3 Job type/role/occupa-

tional level

Applies to all development roles and levels, though inexperi-

enced levels may not be suited to GSD

Mod.4 State of IT profession Ideally, buoyant to support feeling of security

Mod.5 Type of organisation Offers promotion opportunities, e.g., management, customer

facing, domain specific, technical roles

Cont.1 Personality traits Good communicator; not too introverted

Cont.2 Career paths (manage-

rial/technical)

Fixed in a person: either type likely to be compatible with most

GSD organisations

Cont.3 Competencies Ability (both technical and managerial)

266 S. Beecham

While role ambiguity can be stimulating for the practitioner—and far from the

Taylor approach of narrow and specialised work, it can be difficult to manage. The

case study in this chapter highlights some advantages and disadvantages associated

with role ambiguity: the individual may enjoy up skilling, developing a healthy CV

with a broad skill set to market. However, if one member plays several roles, they

can become over-stretched in terms of holding key knowledge, and having demands

on their time from customers, sales force, head office, development team, etc. Also,

the hours they are required to work can be unsustainable. Therefore, despite the

challenging work, the individual may leave their employment if no time is allowed

for their own needs and for a work-life balance.

10.6.1 Herzberg’s Two-Factor Theory and the ‘Crowding
Out’ Effect

Software engineers are motivated by internal factors such as challenging and varied

work, fairness, participation, trust, respect, and social interaction (discussed earlier;

see Tables 10.4 and 10.5). It is the careful management of these intrinsic factors that

will result in a software engineer’s increased commitment to the task. External

factors such as rewards and salary also need to be managed in order to match the

software engineer’s expectations. However, internal and external needs must be

finely balanced. For example, advantages gained from intrinsic motivation can be

crowded out by placing too much emphasis on extrinsic motivators (Frey and

Osterloh 2002). Crowding out can be explained as follows: An employee finds

their job interesting and challenging, feels they are treated fairly, and feel that they

are part of a team and have something specific to contribute. However, the moti-

vation engendered by these intrinsic factors can be crowded out—“obscured by

shifting the excitement connected with the job towards monetary reward.”

According to Frey and Osterloh (2002), “Offering extrinsic motivators, such as

salary can actually switch someone’s enjoyment and fulfillment from the job itself

to doing the job for financial reward. That reward is often short lived.” However,

the authors add that extrinsic motivators cannot be ignored and that under certain

circumstances they are indispensable (Frey and Osterloh 2002).

10.6.2 People, Process, and Creativity

We know from software engineer motivation research that the profession attracts

people who are technical and creative with a very high need for challenging work

(Beecham et al. 2008). This is reflected in, for example, the enjoyment derived from

problem solving or learning a new programming language. The idea of working in

the same small area, in piecemeal fashion, is anathema to the software practitioner.

10 Motivating Software Engineers Working in Virtual Teams Across the Globe 267

As much as managers might strive to put processes in the place of dependence on

people, this can never work in software development, since the task itself is so

dependent on skilled people finding solutions to new problems and it is unlikely that

two pieces of software will be identical when viewed as a whole.

The very job itself is difficult, hard to estimate, and challenging to get right in

terms of meeting customer requirements, since each piece of software is in some

way going to be different from other software written in the past. But that is the

attraction, the challenge, and perhaps a key reason software engineers are attracted

to this profession in the first place.

There is a tension between some management practices and software engineer

creativity and job satisfaction. For example, it is difficult to work across sites

operating in different time zones without structure: “While synchronous groups

can often vary the degree and type of structure dynamically as needed, this is more

difficult for distributed asynchronous groups that are dependent on both structure

and process rules for coordination” (Ocker et al. 1995). Being dependent on

structure fits Taylor’s scientific management view that the way to maximize output

was to discourage free thought and expect employees to follow prescribed steps

(Kennedy and Nur 2012). It appears that controls and processes are orthogonal to

creativity. According to Ocker et al., “too much structure, or the wrong structure,

can limit the creative process.” This is supported by Van de Walle et al., who note

that the absence of structured task support led to greater satisfaction in their study of

distributed teams (Van de Walle et al. 2007). To allow practitioners the freedom to

be creative, the project manager must therefore aim for a correct balance between

structure (seen as defined processes) and flexibility.

10.6.3 Returning to the Rational-Economic Model in GSD

Working remotely, managers are encouraged to keep the need for interaction

among remote locations to a minimum (e.g., Richardson et al. 2012). It is, after

all, these communications that can introduce difficulties such as misunderstandings,

stress, and delays into the process, especially when working in different time zones,

etc. Effective partitioning and allocation of work across the GSD team is something

all managers need to plan for at the start of any project. There are several options to

task allocation (Carmel 1999) and, according to Parnas (1972), managers can

choose one or more of the following approaches: modularisation, phase-based, or

integrated. Partitioning can be component based (Kotlarsky et al. 2007) or lifecycle

based (Šmite 2007). Strategic partitioning of the development task can reduce the

need for communication across teams.

However, when we consider the individual, the perceived productivity gains of

working discretely are likely to be short-lived. Developing software is essentially a

human intellectual and social activity (Ferratt and Short 1986; Burn et al. 1992;

Jordan and Whiteley 1994; Garza et al. 2003; Sumner et al. 2005). If the work is

viewed as repetitive, boring, and fragmented, then the individual may not feel part

268 S. Beecham

of the overall organization and may perceive their work to be meaningless. It is

important for engineers’ motivation that they perceive that their contributions

matter (Ferratt and Short 1986; Crepeau et al. 1992; Garza et al. 2003). Research

shows that monotony creates apathy, dissatisfaction, and carelessness (Crepeau

et al. 1992; Peters 2003; Sumner et al. 2005; Ituma 2006), particularly when an

individual does not develop new skills. However, another issue with task allocation

by site is career advancement. For example, if a programmer desires to become a

software architect, he or she needs to see a career path and be given an opportunity

to learn related new skills. Working remotely can mean that the individual either

does not have the scope to advance up the career ladder, or that they may be

overlooked.

The concepts and theories relating motivation to a GSD context have been drawn

from the literature, and the case study has been used to provide real-world examples

of how these theories can be applied in practice. There are limitations to using one

case study, and findings are used merely as indicators of where practices can help or

hinder motivation. For example, some engineers might be highly motivated by

salary, and provided they are well paid, they will continue to produce high-quality

work despite many other motivators being challenged.

10.7 Summary and Conclusions

This chapter explored motivation theories and used a case study as an example of

how to motivate software engineers working in virtual teams. Theories of motiva-

tion suggest that people, in whatever sphere, will have their own specific needs, and

that it is the strength of those needs and the likelihood that they will be met by a

given task that will determine the energy and enthusiasm the individual will expend

on that task. However, despite the bespoke nature of motivation, the research does

point to areas that need to be considered in every case. In every situation, the

manager needs to balance three things: the task, the environment, and the software

engineer’s characteristics. If any of these are mismatched, no amount of stimulus

from the job will result in sustained motivation.

Software development teams cannot be treated as a homogeneous group with

similar characteristics. As it appears that engineers’ needs differ according to the

role they play, a way to manage engineers’ motivation is by role. However, roles are

an area that can be blurred, particularly in a global setting. The research and

findings from the case study reported in this chapter have identified this as a

problem. The demands placed on engineers working remotely can mean that they

are encouraged to take on many roles to ensure project success. While keeping roles

and responsibilities fluid might suit upper management, and even meet the software

engineer’s need for varied and challenging work, it can place unrealistic pressures

on an individual’s time.

This chapter listed factors known to motivate software engineers. Twenty-two

different factors that motivate software engineers to produce high-quality software

10 Motivating Software Engineers Working in Virtual Teams Across the Globe 269

have been divided into intrinsic and extrinsic motivators. Case study findings,

drawn from a company engaged in distributed software development, were mapped

to each motivation factor. In this way, preliminary results were presented relating to

areas that particularly threaten software engineers’ motivation in a global setting.

Taking a needs-theory approach, managers must first consider which motivation

factors they can control and which are outside their control. For example, the

negative influence of extrinsic factors can be reduced by ensuring that employees

are given adequate pay, a feeling of security, and good management. As global

software development stems from the ‘environment’ it makes sense to view exter-

nal factors as a separate threat or enhancement to motivation. Some environmental

factors are outside the control of the manager. For example, no amount of best

practice can change the culture of a country, the security of a job in a volatile

economy, or a limited career path in a small organization.

The job characteristics theory (Hackman and Oldham 1974) emphasizes the

importance of person-job fit. The GSD engineer needs to have certain characteris-

tics in place that are resilient to the environment, leaving them free to be motivated

by the intrinsic aspects of the work. Ideally, a software engineer recruited to work in

a virtual team will be at a career stage that allows them flexibility to travel,

flexibility in their place of work, and the hours they work. Also, they need to be

open, tolerant, and interested in different cultures. They need a good level of

confidence in their own ability, to know their own limitations, to be good and

clear communicators, and on the extrovert end of the personality spectrum.

So, once the person-job fit has been matched, and extrinsic factors controlled for

where possible, managers can turn their attention to the intrinsic factors that relate

to the job itself. It is getting these factors right that will motivate software engineers

to do the best job they can. Software engineers need technically challenging work,

variety of tasks, and evidence that their efforts will result in a useful contribution.

Engineers also require developmental training, to feel involved, recognition and

rewards for doing a good job, and to be treated fairly, regardless of their location.

Finally, they need trust and respect, responsibility, autonomy, and empowerment.

This chapter looked at how motivation theory can help to solve some GSD

organisational problems such as low employee commitment and high turnover. It

also examined how motivation might promote software quality and inspire inno-

vation. However, an assumption associated with recommended management prac-

tices is that the employee stays in the organisation long enough to benefit from any

motivation program. We have seen that heavy-weight processes can stifle innova-

tion and that enforced compliance will demotivate the technical employee. A way

forward could be to apply agile development methodologies and empower

employees by creating an environment that allows a worker to develop a sense of

ownership and pride of accomplishment (Kennedy and Nur 2012).

There is still more work required in this area. We need ways to measure the

person-job fit for GSD. Also, although agile methods appear to address many

software engineer motivation needs in co-located settings, we still need to know

how to implement agile methods in a distributed setting so that motivation is

positively affected.

270 S. Beecham

Finally, when managers are allocating tasks to engineers, they would do well to

heed the advice given by Herzberg:

If you want someone to do a good job, give them a good job to do.

Acknowledgments Thanks are extended to the many practitioners who gave their time and made

this study possible. Also, thanks are given to the reviewers and colleagues who commented and

proofread early versions of this chapter. This work was supported in part by Science Foundation

Ireland grant 10/CE/I1855 to Lero – the Irish Software Engineering Research Centre (www.lero.ie).

References

Adams JS (1963) Toward an understanding of inequity. J Abnorm Social Psychol 67:422–436

Bassett-Jones N, Lloyd GC (2005) Does Herzberg’s motivation theory have staying power?

J Manage Develop 24(10):929–943

Beecham S, Baddoo N, Hall T, Robinson H, Sharp H (2008) Motivation in software engineering: a

systematic literature review. Info Softw Technol (IST), Elsevier 50(9–10):860–878

Beecham S, O’Leary P, Baker S, Richardson I, Noll J (2013) Who are we doing global software

development research for? In: 8th IEEE international conference on global software engineer-

ing (ICGSE’13), Bari, Italy

Beecham S, Sharp H, Baddoo N, Hall T, Robinson H (2007) Does the XP environment meet the

motivational needs of the software developer? An empirical study. Agile 2007 conference.

Washington, DC

Burn JM, Couger JD, Ma L (1992) Motivating IT professionals. The Hong Kong challenge. Info

Manage 22(5):269–280

Carmel E (1999) Global software teams: collaboration across borders and time zones. Prentice

Hall, Saddle River, NJ

Couger JD, Zawacki RA (1980) Motivating and managing computer personnel. Wiley, New York

Crepeau RG, Crook CW, Goslar MD, McMurtrey ME (1992) Career anchors of information

systems personnel. J Manage Info Syst 9(2):145–160

da Silva FQ, França ACC (2012) Towards understanding the underlying structure of motivational

factors for software engineers to guide the definition of motivational programs. J Syst Softw 85

(2):216–226

Deshpande S, Richardson I, Casey V, Beecham S (2010) Culture in global software development -

a weakness or strength? In: IEEE international conferences on global software engineering

(ICGSE 2010), Princeton, NJ

Fernández-Sanz L, Misra S (2011) Influence of human factors in software quality and productivity.

In: Murgante B, Gervasi O, Iglesias A, Taniar D, Apduhan B (eds) Computational science and

its applications - ICCSA 2011, vol 6786. Springer, Berlin, pp 257–269

Ferratt TW, Short LE (1986) Are information systems people different: an investigation of

motivational differences. Manage Info Syst (MIS) Q 10(4):377–387

França ACC, Carneiro DE, da Silva FQ (2012) Towards an explanatory theory of motivation in

software engineering: a qualitative case study of a small software company. 26th IEEE

Brazilian Symposium on Software Engineering (SBES)

Frey BS, Osterloh M (2002) Successful management by motivation: balancing intrinsic and

extrinsic incentives. Springer, Berlin

Garza AI, Lunce SE, Maniam B (2003) Career anchors of Hispanic information systems pro-

fessionals. Proceedings - annual meeting of the decision sciences institute, pp 1067–1072

Hackman JR, Oldman GR (1976) Motivation through the design of work: test of a theory.

Academic Press, New York

10 Motivating Software Engineers Working in Virtual Teams Across the Globe 271

http://www.lero.ie/

Hackman RJ, Oldham GR (1974) The job diagnostic survey: an instrument for the diagnosis of

jobs and the evaluation of job redesign projects. Office of Naval research manpower admin-

istration: NCIS national technical information service, US Department of Commerce

Hall T, Beecham S, Baddoo N, Sharp H, Robinson H (2009) A systematic review of theory use in

studies investigating the motivations of software engineers. ACM Transac Softw Eng

Methodol (TOSEM) 18(3):10

Hall T, Beecham S, Verner J, Wilson D (2008a) The impact of staff turnover on software projects:

the importance of understanding what makes software practitioners tick (Refilling the pipeline:

meeting the renewed demand for information technology workers). In: ACM-SIGMIS CPR’08

Conference, Charlottesville, VA, April 3–5

Hall T, Sharp H, Beecham S, Baddoo N, Robinson H (2008b) What do we know about developer

motivation? IEEE Softw 25(4):92–94

Handy C (1993) Understanding organisations, 4th edn. England Penguin Books Ltd, Middlesex

Herzberg F, Mausner B, Snyderman BB (1959) Motivation to work, 2nd edn. Wiley, New York

Hillegersberg Jv, Ligtenberg G, Aydin MN (2011) Getting agile methods to work for Cordys global

software product development. In: Fifth global sourcing workshop, Courchevel 1850, France

Huczynski AA, Buchanan DA (1991) Organizational behaviour: an introductory text, 2nd edn.

Prentice Hall, London

Ituma A (2006) The internal career: an explorative study of the career anchors of information

technology workers in Nigeria Proceedings of the 2006 ACM SIGMIS CPR conference on

computer personnel research: forty four years of computer personnel research: achievements,

challenges & the future. Claremont, CA, pp 205–212

Jalali S, Wohlin C (2012) Global software engineering and agile practices: a systematic review. J

Softw Evol Proces 24(6):643–659

Johnson RE, Chang C-HD, Yang L-Q (2010) Commitment and motivation at work: the relevance

of employee identity and regulatory focus. Acad Manage Rev 35(2):226–245

Jordan E, Whiteley AM (1994) HRM practices in information technology management. In:

Computer personnel research conference (SIGCPR) on Reinventing IS: managing information

technology in changing organizations. ACM Press, Alexandria, VA

Kennedy D, Nur M (2012) The rise of taylorism in knowledge management. In: Proceedings of

PICMET’12: technology management for emerging technologies (PICMET)

Kotlarsky J, Oshri I, von Hillegersberg J (2007) Globally distributed component-based software

development: an exploratory study of knowledge management and work division. J Info

Technol 22:161–173

Krippendorff K (1980) Content analysis an introduction to its methodology. Sage, Beverly Hills, CA

Locke EA (1968) Toward a theory of task motivation and incentives. Organ Behav Human Perfor

3:157–189

Maslow A (1954) Motivation and personality. Harper & Row, New York

McClelland DC (1961) The achieving society. Van Nostrand, Princeton, NJ

McConnell S (1996) Avoiding classic mistakes [software engineering]. IEEE Softw 13(5):111–112

Monasor MJ, Vizcaı́no A, Piattini M, Noll J and Beecham S (2013) Towards a global software

development community web: identifying patterns and scenarios. In: PARIS Workshop,

International Conference on global software development (ICGSE), Bari, Italy

Mullins LJ (1993) Management and organisational behaviour. Pitman Publishing, London

Noll J, Beecham S, Richardson I (2010) Global software development and collaboration: barriers

and solutions. ACM SIGCSE bulletin - special section on global intercultural collaboration

(September)

Noll J, Beecham S, Seichter D (2011) A qualitative study of open source software development:

the OpenEMR project. In: IEEE empirical software engineering and measurement conference

– ESEM 2011, Banff, Canada, September, 19–23

Ocker R, Hiltz SR, Turoff M, Fjermestad J (1995) The effects of distributed group support and

process structuring on software requirements development teams: results on creativity and

quality. J Manage Info Syst 12(3):127–153

272 S. Beecham

Olson JS, Olson GM (2004) Culture surprises in remote software development teams. ACM Q,

Nova Iorque 1(9):52–59

Parnas D (1972) On the criteria to be used in decomposing systems into modules. Commun ACM

15(12):1053–1058

Peters L (2003) Managing software professionals. IEMC’03 proceedings. managing technologi-

cally driven organizations: the human side of innovation and change (IEEE Cat.

No.03CH37502). IEEE, Albany, NY, pp 61–66

Petri HL, Govern JM (2012) Motivation: theory, research, and application, 6th edn. Wadsworth

Publishing, Belmont, CA

Richardson I, Casey V, McCaffery F, Burton J, Beecham S (2012) A process framework for global

software engineering teams. Info Softw Technol 54(11):1175–1191

Riehle D (2007) The economic motivation of open source: stakeholder perspectives. IEEE Comput

40(4):25–32

Roberts J, Hann I, Slaughter S (2004) Understanding the motivations, participation and perfor-

mance of open source software developers: a longitudinal study of the Apache projects.

Carnegie Mellon University Working Paper

Shah H, Nersessian NJ, Harrold MJ, Newstetter W (2012) Studying the influence of culture in

global software engineering: thinking in terms of cultural models In: ACM proceedings of the

4th international conference on intercultural collaboration, Bengaluru, India

Sharp H, Baddoo N, Beecham S, Hall T, Robinson H (2009) Models of motivation in software

engineering. Info Softw Technol 51(1):219–233

Sharp H, Hall T, Baddoo N, Beecham S (2007) Exploring motivational differences between

software developers and project managers. In: The 6th joint meeting of the european software

engineering conference and the ACM SIGSOFT symposium on the foundations of software

engineering (ESEC/FSE07), Dubrovnik, Croatia

Skinner BF (1976) Walden two. Macmillan, New York

Šmite D (2007) Global software development improvement. PhD Thesis, Riga Information

Technology Institute, University of Latvia

Šteinberga L, Šmite D (2011) Towards a contemporary understanding of motivation in distributed

software projects: solution proposal, vol 770. University of Latvia, Computer Science and

Information Technologies, pp 15–26

Sumner M, Yager S, Franke D (2005) Career orientation and organizational commitment of IT

personnel. ACM SIGMIS CPR conference on computer personnel research (Atlanta, Georgia,

USA, April 14 16, 2005) pp 75–80

Taylor FW (1947) Scientific management. Harper & Row, New York

Van de Walle B, Campbell C, Deek FP (2007) The impact of task structure and negotiation

sequence on distributed requirements negotiation activity, conflict, and satisfaction, published

by LNCS

Verner J, Beecham S, Cerpa N (2010) Stakeholder dissonance: disagreements on project outcome

and its impact on team motivation across three countries. In: ACM SIGMIS CPR’10, Vancou-

ver, Canada

Verner J, Ali-Barbar M, Cerpa N, Hall T, Beecham S (2014) Factors that motivate software

engineering teams: a four country empirical study. J Syst Softw 95:115–127

Vroom VH (1964) Work and motivation. Wiley, New York

Ye Y, Kishida J (2003) Toward an understanding of the motivation of open source software

developers. Proceedings - International conference on software engineering, pp 419–429

Biography Sarah Beecham holds the position of research fellow in the Process

Quality Group in Lero—the Irish Software Engineering Research Centre. Sarah’s

research interests include software fault prediction, effort estimation, evidence-

based software engineering, requirements engineering, and software process

improvement. She has published widely in the area of software engineer

motivation.

10 Motivating Software Engineers Working in Virtual Teams Across the Globe 273

Part III

New Paradigms

Introduction

Software development practices continuously evolve, and organizations introduce

new ways of working. These evolving and new practices change the role of the

project manager and the challenges experienced when performing the activities

related to the role. For this part of the book, we have invited leading experts on

some of these new paradigms in relation to software project management. The new

paradigms include agile software development, distributed development, open

source development and inner source development. This part consists of four

chapters, in which the authors share their knowledge, insights and accompanying

recommendations and conclusions.

In Chap. 11, Tore Dybå, Torgeir Dingsøyr and Nils Brede Moe characterize and

define software project management in an agile setting. The authors start by

describing traditional software project management, pinpoint its challenges and

then move on to introduce project management in an agile setting. Next, the authors

present several concepts that are typical in an agile setting such as self-managing

teams, team leadership and feedback and learning. The chapter then describes four

principles of agile software project management: minimum critical specification,

autonomous teams, redundancy and feedback and learning. The authors elaborate

on these four principles based on their experiences from working closely with

several industry partners involved in agile software development.

Darja Šmite shares her experiences in relation to distributed software project

management in Chap. 12. The author highlights ten misconceptions about project

management for distributed software projects and discusses some lessons learned

when working closely with industry in relation to global software development. The

chapter structures a number of sourcing strategies and then goes into presenting the

ten misconceptions. Each misconception is illustrated with a practical example

from industry, and its implications for practice are discussed. Based on the

http://dx.doi.org/10.1007/978-3-642-55035-5_11
http://dx.doi.org/10.1007/978-3-642-55035-5_12

presentation of the ten misconceptions, the chapter ends with some conclusions and

reflections.

Chapter 13 discusses open source development. Ioannis Stamelos highlights the

differences between traditional software development and open source develop-

ment, and in particular he discusses the differences in how development and

software project management are conducted. In open source, people and commu-

nity organizations are emphasized. The chapter starts with a general introduction

and comparison, in terms of both differences and similarities, between open source

and more traditional software development. The author continues by describing

management issues in relation to open source software development. Next, some

challenges in the management of open source software development are

highlighted. The chapter concludes with a discussion regarding future open source

management techniques.

In Chap. 14, Martin Höst, Klaas-Jan Stol and Alma Oručević-Alagić discuss

project management in inner source software development, i.e. where an organiza-

tion uses principles from open source development for their software development.

The chapter starts by positioning inner source in relation to traditional software

development and presents a number of motivations for adopting inner source.

Furthermore, the authors present a framework that highlights a number of key

themes in project management to illustrate how traditional software project man-

agement differs from inner source project management. This is followed by two

industry case studies to exemplify project management in inner source. Based on

observations from these two case studies, a number of implications for using inner

source software development in practice are presented. Given the nascent state of

the inner source research area, the chapter concludes with several new research

directions.

The four chapters in this part provide an in-depth insight into some of the new

paradigms affecting software project management of today. The chapters highlight

some of the trends that a project manager must be able to handle in their daily work.

The chapters in this part highlight some of the new paradigms and hence challenges

and opportunities that software project managers must be able to address in

contemporary software development.

276 Part III New Paradigms

http://dx.doi.org/10.1007/978-3-642-55035-5_13
http://dx.doi.org/10.1007/978-3-642-55035-5_14

Chapter 11

Agile Project Management

Tore Dybå, Torgeir Dingsøyr, and Nils Brede Moe

Abstract Agile software development represents a new approach for planning and

managing software projects. It puts less emphasis on up-front plans and strict

control and relies more on informal collaboration, coordination, and learning.

This chapter provides a characterization and definition of agile project management

based on extensive studies of industrial projects. It explains the circumstances

behind the change from traditional management with its focus on direct supervision

and standardization of work processes, to the newer, agile focus on self-managing

teams, including its opportunities and benefits, but also its complexity and chal-

lenges. The main contribution of the chapter is the four principles of agile project

management: minimum critical specification, autonomous teams, redundancy, and

feedback and learning.

11.1 Introduction

A software project can be seen as a collection of activities that create an identifiable

outcome of value. In its simplest form, project management consists of planning,

executing, and monitoring these activities (see Chap. 1). However, the high costs

and failure rates of software projects continue to engage researchers and practi-

tioners, and despite several advances, the effective management of software pro-

jects is still a critical challenge.

This challenge has led to extensive interest in agile software development in the

past decade (Dingsøyr et al. 2012). A number of methods have emerged that

describe practices for development phases at the team, project, and organizational

T. Dybå (*) • T. Dingsøyr • N.B. Moe

SINTEF, Trondheim, Norway

e-mail: tore.dyba@sintef.no; torgeird@sintef.no; nilsm@sintef.no

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_11, © Springer-Verlag Berlin Heidelberg 2014

277

http://dx.doi.org/10.1007/978-3-642-55035-5_1
mailto:tore.dyba@sintef.no
mailto:torgeird@sintef.no
mailto:nilsm@sintef.no

levels (Abramson et al. 2010). Scrum is the method that most clearly addresses

software project management (Schwaber and Beedle 2001).

In agile software development, developers work in teams with customers that

represent the system’s users. The features to be implemented in each development

cycle are jointly decided by the customer and the rest of the development team.

Augustine et al. (2005) describes the role of the software project manager as one of

facilitating and working with a team in making project-related decisions.

Our objective in this chapter is to provide software project managers with a set of

principles for handling the complexity and uncertainty inherent in agile software

projects. The rest of this chapter is organized as follows: Sect. 11.2 describes

challenges and recent developments in software project management. Section 11.3

explains the role of self-managing software teams, while Sect. 11.4 discusses the

leadership of such teams. Section 11.5 describes the importance of feedback and

learning. Finally, Sect. 11.6 presents a set of principles for agile project manage-

ment, while Sect. 11.7 concludes the chapter.

11.2 Software Project Management

Managing the unique and complex processes that constitute a project involves the

implementation of specific management activities. In software development, as in

most other businesses, there has been a tendency toward standardizing these

activities by means of formalized, generic project management methodologies

like, PRINCE2,1 which was developed and championed by the UK government.

Although there is a global conception of the project management phenomenon,

there is no unified theory of project management (Garel 2013) or well-defined

measures of project success (see Chaps. 2 and 5).

11.2.1 Traditional Project Management

Traditional project management largely derives from the linear structure and

discrete, mechanical views of the systems engineering and quality disciplines of

the 1950s and 1960s. Basically, traditional project management views development

as a linear sequence of well-defined activities such as requirements, design, coding,

and testing. It assumes that you have almost perfect information about the project’s

goal and expected solution. As a consequence, it does not easily accommodate for

deviations in scope, schedule, or resources.

Hardware development seemed to fit well into the traditional approach. How-

ever, due to its intangible nature, software was not equally well understood and, as a

1www.prince-officialsite.com

278 T. Dybå et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_2
http://dx.doi.org/10.1007/978-3-642-55035-5_5
http://www.prince-officialsite.com/

consequence, software development did not fit well into the same approach. To

counter this, the term “software engineering” was coined at the historic NATO

conference in Garmisch-Partenkirchen in 1968 as a solution to these problems in

software development, implying the need for software development to be based on

the principles and practices seen in engineering.

Thus, the point of departure for most of the subsequent efforts in addressing the

problems in software development has been to treat the entire task of software

development as a process that can be managed through engineering methods. Hoare

(1984), for example, considered the “rise of engineering” and the use of “mathe-

matical proof” in software development as a promise to “transform the arcane and

error-prone craft of computer programming to meet the highest standards of a

modern engineering profession.” Likewise, Lehman (1989) focused on reducing

uncertainty in the development process through the “engineering of software.”

Humphrey (1989) recognized that the key problems in software development are

not technological, but managerial in nature (see also Chap. 1). Consequently, he

developed a framework for managing and improving the software process, which

was later known as “The Capability Maturity Model for Software” (CMM). Con-

sistent with the views of software engineering, the CMM, and its successor CMMI,

is rooted in the engineering tradition, emphasizing predictability and improvement

through the use of statistical process control. Humphrey (1989) formulated his

fundamental view in this way: “If the process is not under statistical control,

sustained progress is not possible until it is.”

As these examples from some of the most influential academic leaders within the

software community show, software development and software project manage-

ment are strongly rooted in the rationalistic traditions of engineering. Indeed, most

of the writings to date can be seen to have antecedents in the industrial models

devised by Frederic Winslow Taylor and Henry Ford, and also in the model of

bureaucracy described by Max Weber.

Contemporary project management methodologies, like PRINCE2, are stan-

dardized, process-driven project management methodologies, which build on this

engineering tradition and that contrast with reactive and adaptive methods such as

Scrum. What many seem to forget, is that the acronym PRINCE stands for “PRoject

IN Controlled Environment.” It should not come as a surprise then that it does not fit

equally well within the environment in which many, if not most, software projects

operate.

11.2.2 Challenges of Software Project Management

Although there are several challenges with traditional project management princi-

ples, two are especially important for the management of software projects: com-

plexity and uncertainty. Project complexity means that the many different actions

and states of the software project and its environmental parameters interact, so the

effects of actions are difficult to assess (Pich et al. 2002). In complex software

11 Agile Project Management 279

http://dx.doi.org/10.1007/978-3-642-55035-5_1

projects, an adequate representation of all the technological, organizational, and

environmental states that might have a significant influence on the project’s out-

come of value, or of the causal relationships, is simply beyond the capabilities of

the project team.

Most of the classic problems of developing software derive from this essential

complexity and its exponential increase with size; for example, it is estimated that

for every 25 % increase in problem complexity, there is a 100 % increase in

complexity of the software solution (Woodfield 1979). A further challenge is that

the information needed to understand most software problems depends upon one’s

idea for solving them. The kind of problems that software projects deal with tend to

be unique and difficult to formulate and solutions tend to evolve continually as

developers gain a greater appreciation of what must be solved (Nerur and

Balijepally 2007).

Adding to the complexity of the problem and its solution is the fast-changing and

highly uncertain environment, for example, market turbulence and changes in

customer requirements and project goals. It is necessary therefore to accept that

our assumptions and predictions about future events will, by nature, be uncertain.

When managing software projects, we need to be extremely cautious of extrapo-

lating past trends or relying too heavily on past experience. Trends peter out, and

the future is full of unexpected developments as well as unpredictable human

behavior. The greater the uncertainty inherent in a project, the more the team

have to move from traditional approaches that are based on a fixed sequence of

activities to approaches that allow to redefine the activities—or even the structure

of the project plan—in midcourse (De Meyer et al. 2002). Therefore, as the project

complexity and uncertainty increase, managers need to go beyond traditional risk

management; adopting roles and techniques oriented less toward planning and more

toward flexibility and learning.

11.2.3 From Traditional to Agile Project Management

The position taken in this chapter regarding software project management is

strongly influenced by socio-technical theory (Trist 1981). Its central conception

is that organizations are both social and technical systems, and that the core of the

software organization is represented through the interface between the technical

and human (social) system. From an engineering perspective, however, the world is

composed of problems whose existence is distinct from the methods, tools, and

practices of software development. The technical rationality behind this worldview

emphasizes “objective truths” and global “best practices” at the expense of local

context and expertise. An important aspect of socio-technical theory, however, is

the belief that there may be many optimal solutions—or best ways—to a specific

problem, since the “joint optimization” of a particular technical and human system

can be implemented in several ways that can be equally efficient. We therefore

280 T. Dybå et al.

reject the assumption that complexity, uncertainty, and change can be controlled

through a high degree of formalization

At its core, agile project management is about managing the impact of com-

plexity and uncertainty on a project, recognizing

• The need for a dramatically shorter time frame between planning and execution

• That planning an action does not provide all the details of its implementation

• That creativity and learning are necessary to make sense of the environment

Agile project management is based on the same principles found in the Agile

Manifesto.2

Therefore, unlike the linear sequence of well-defined activities of traditional

project management, agile project management is characterized by short cycles of

iterative and incremental delivery of product features and continuous integration of

code changes. Agile project management introduces changes in management roles

as well as in practices. Scrum, for example, defines three roles in software projects:

development team members, a facilitator, and a product owner. A typical work

environment for an agile team is shown in Fig. 11.1.

The task of the facilitator is to organize meetings of the development team and to

make sure that the team addresses any obstacles they encounter. The task of the

product owner is to prioritize what is to be developed. Apart from that, the team

should be self-managed. In practice, however, many companies also appoint a

project manager to assist a product owner in working on requirements and to handle

other matters than those directly related to software development, such as internal

and external reporting.

Fig. 11.1 The work environment of an agile development team

2 http://agilemanifesto.org/

11 Agile Project Management 281

http://agilemanifesto.org/

However, the introduction of agile development does not change the fundamen-

tal knowledge required to develop software, but it does change the nature of

collaboration, coordination, and communication in software projects. Moving

from traditional to agile project management implies a shift in focus from extensive

up-front planning to the crucial decisions that are made during the execution of the

project. Most importantly, moving from traditional to agile development implies

dealing with complexity and unpredictability by relying on people and their crea-

tivity rather than on standard processes (Dybå 2000; Conboy et al. 2011), and thus

moving from command and control to shared decision-making and self-

management in software teams.

11.3 Self-Managing Software Teams

Teams are the fundamental organizational unit through which software projects are

executed. A team structure brings business and process knowledge together with

design and programming skills. However, three challenges characterize the effec-

tiveness of software teams (Faraj and Sambamurthy 2006). First, the expertise

required for the completion of software tasks is distributed across team members

who must find effective ways of collaboration, knowledge sharing, and problem

solving. Second, software projects need a combination of formal and informal

modes of control with appropriate expertise in knowing how to exercise the

appropriate combinations of control strategies during the execution of the project.

Finally, software projects are characterized by varying levels of task uncertainty

and coordination challenges. As a result, the software teams must be capable of

dealing with the resulting ambiguity of their project tasks.

In accordance with contemporary perspectives, we conceptualize the software

team as embedded in a multilevel system of individual-, team-, and organizational-

level aspects (Kozlowski and Ilgen 2006; Moe et al. 2009). This conceptualization

is important in our effort to make actionable recommendations on agile software

management.

With the introduction of agile software development, self-managing software

teams have become widely recommended. While organizing software development

in self-managing teams has many advantages such as increased productivity,

innovation, and employee satisfaction, it is not enough to put individuals together

and expect that they will automatically know how to work effectively in such

teams. Succeeding with managing agile teams requires a full understanding of

how to create and maintain self-managing teams.

One can argue that leading self-managing teams is more challenging than

leading traditional teams, because the project manager needs to enable shared

leadership (the opposite of centralized leadership), shared decision-making, shared

mental models, and a constant learning and improvement process. This takes time.

What makes the leadership of such teams even more difficult is the fact that

software development teams are typically formed anew for each project, depending

282 T. Dybå et al.

on project requirements and who is available (Constantine 1993). It is extremely

rare for an entire team to move from one project to another.

Self-managing teams are also known as autonomous or empowered teams.

While self-managing teams represent a radically new approach to planning and

managing software projects, the notion of self-management is not new; research in

this area has been conducted since Eric Trist and Ken Bamforth’s study of self-

regulated coal miners in the 1950s (Trist and Bamforth 1951).

Self-management can be understood as a strategy for learning and improving a

software team itself since it can directly influence team effectiveness, improvement

work, and innovation. Self-management has also been found to result in more

satisfied employees, lower turnover, and lower absenteeism (Cohen and Bailey

1997). Others also claim that self-managing teams are a prerequisite to the success

of innovative projects (Takeuchi and Nonaka 1986), especially the innovative

software projects (Hoegl and Parboteeah 2006). Furthermore, having team mem-

bers cross-trained to do various jobs increases functional redundancy, and thus the

flexibility of the team in dealing with personnel shortages. Even though there are

several studies on the benefits of self-managing teams, there is substantial variance

in research findings regarding the consequences of such teams on such measures as

productivity, turnover, and attitudes (Guzzo and Dickson 1996).

Self-managing teams offer potential advantages over traditionally managed

teams because they bring decision-making authority to the level of operational

problems and uncertainties and thus increase the speed and accuracy of problem

solving. Companies have implemented such teams to reduce costs and to improve

productivity and quality. However, effective self-managing units cannot be created

simply by exhorting democratic ideals, by tearing down organizational hierarchies,

or by instituting one-person-one-vote decision-making processes (Hackman 1986).

Hackman identified five general conditions that appear to foster and support self-

management:

• Clear, engaging direction

• An enabling performing unit structure

• A supportive organizational context

• Available, expert coaching

• Adequate resources

To succeed with creating and maintain a self-managing agile team, the project

manager must enable all these conditions.

Understanding the different levels of autonomy is also important for being able

to succeed as an agile project manager. An agile team needs autonomy on both the

team and the individual levels (Moe et al. 2008). The project manager must ensure

that

• The team has authority to define work strategies and processes, project goals,

and resource allocation

• All team members jointly share decision authority (what group tasks to perform

and how to carry them out)

• A team member must have some freedom in carrying out the assigned task

11 Agile Project Management 283

The conflict between individual and team autonomy is one main reason why it is

challenging to establish well-functioning agile teams. If individuals are indepen-

dent and mostly focus on their own schedule and implementation of their own tasks,

there will be less interaction between the group members, which will threaten the

teamwork effectiveness. However the self-managing team may end up controlling

group members more rigidly than they do under traditional management styles,

which will reduce the motivation for the individual team member. The question is

then: How can an agile project manager balance team level autonomy and individ-

ual level autonomy in agile software teams? This is especially challenging when

development is done in market-driven agile projects with fixed scope and deadlines.

11.4 Team Leadership

Most models of team effectiveness recognize the critical role of team leadership.

However, examining the extensive literature on leadership theories is beyond the

scope of this chapter. Still, a relatively neglected issue in the current literature is

what leaders should actually be doing to enhance team effectiveness (Kozlowski

and Bell 2003). Many leadership theories focus on leading individuals rather than

leading in a team context. In this section, we examine the functional role of team

leaders and discuss leadership and decision-making in the context of self-managing

teams. A recent focus group study on agile practitioners shows that planning,

shielding the team from interruptions, agreeing on a work process, ensuring ade-

quate resources, and setting up a working technical infrastructure are seen as

important aspects of team leadership (Dingsøyr and Lindsjørn 2013).

In a self-managing team, members have responsibility not only for executing the

task but also for monitoring, managing, and improving their own performance

(Hackman 1986). Furthermore, leadership in such teams should be diffused rather

than centralized (Morgan 2006). Shared leadership can be seen as a manifestation

of fully developed empowerment of a team (Kirkman and Rosen 1999). When the

team and the team leaders share the leadership, it is transferred to the person with

the key knowledge, skills, and abilities related to the specific issues facing the team

at any given moment (Pearce 2004). While the project manager maintains the

leadership for project management duties, the team members lead when they

possess the knowledge that needs to be shared during different phases of the project

(Hewitt and Walz 2005).

11.4.1 Shared Decision Making

Product- and project-level decisions in a software company can be considered at the

strategic, tactical, and operational levels (Aurum et al. 2006). In traditional devel-

opment decision-making is governed by the hierarchical command and control

284 T. Dybå et al.

structure, while in agile development team empowerment and shared decision-

making is encouraged at all levels (Fig. 11.2). In most organizations, you will

find a mixture of these two ways of making decisions. In an agile product company,

strategic decisions are primarily related to product and release plans, which may

require creativity and opportunistic inputs, and should be based on an accurate

understanding of the current business process and a detailed knowledge of the

software product. Tactical decisions in such companies involve the project man-

agement view, where the aim is to determine the best way to implement strategic

decisions, that is, to allocate the resources. On the other hand, operational decisions

in an agile company are about implementation of product features and the process

of assuring that specific tasks are carried out effectively and efficiently (Moe

et al. 2012).

Adaptability is essential in agile teams since strategic decisions are made

incrementally while important tactical and operational decisions are delayed as

much as possible, in order to allow for a more flexible response to last minute

feedback from the market place. Because the self-managing team is responsible for

solving operational problems and uncertainties, this increases the speed and accu-

racy of problem solving, which is essential when developing software.

While there are several benefits with shared decision-making in agile teams,

there also exist some challenges. First, the shared decision-making approach, which

involves stakeholders with diverse backgrounds and goals, is more problematic

than the traditional approach where the project manager is responsible for most of

the decisions (Nerur et al. 2005). Also, despite the benefits of shared decision-

making, cohesion has been indicated as a source of ineffective or dysfunctional

decision-making; perhaps the most noted problem associated with team cohesion is

groupthink. Finally, it is important to understand that not every decision must be

made jointly with equal involvement by every team member, rather the team can

also delegate authority to individuals or subgroups within the team. The challenge

is to understand which team member is supposed to be involved in which decisions.

In agile software development, one important forum for shared decision-making

is the standup meeting because it is about coordinating and planning the daily work.

St
ra

te
gi
c

D
es

ic
io

ns

O
pe

ra
tio

na
l

D
ec

isi
on

s
Te

ch
ni

ca
l

D
ec

isi
on

s

Team

Management/
Product owner

Traditional Agile

St
ra

te
gi
c

D
es

ic
io

ns

O
pe

ra
tio

na
l

D
ec

isi
on

s
Te

ch
ni

ca
l

D
ec

isi
on

s

Fig. 11.2 Traditional and agile models of decision-making (Moe et al. 2012)

11 Agile Project Management 285

The meeting is supposed to be short, and the purpose of the meeting is to improve

communication, highlight and promote quick decision-making, and identify and

remove impediments.

The daily meeting is a place where the agile software team members use their

experience to make decisions in a complex, dynamic, and real-time environment.

To understand the effect of decision making in such a complex environment with

time pressure, the theory of naturalistic decision making (NDM) (Meso et al. 2002)

is useful. NDM postulates that experts can make good decisions under difficult

conditions, such as time pressure, uncertainty, and vague goals, without having to

perform extensive analyses and compare options. The experts are able to do so by

employing their experience to recognize problems that they have previously

encountered and for which they already developed solutions. Experts use their

experience to form mental simulations of the problem currently being encountered

and use these simulations to suggest appropriate solutions.

There are certain implications of viewing daily meetings as an NDM process.

First, the agile project manager needs to make sure that employees are trained to

develop domain-specific expertise and collaborative teamwork skills. Second,

because NDM relies on highly trained experts, the agile project manager needs to

make sure the team consists of experts, not novices. If there are novices in the team,

the agile project manager needs to determine how to move the novices through the

stages until they become experts. Third, to make teams perform effective decision-

making processes in such meetings, the project manager needs to make sure the

team members have developed a shared mental model; that is, they must have a

shared understanding of who is responsible for what and of the information and

requirements needed to solve the tasks (Lipshitz et al. 2001).

11.4.2 Escalation of Commitment

One major source of error in decision-making is escalation of commitment (Stray

et al. 2012). Escalating situations happen when decision-makers allocate resources

to a failing course of action (Staw 1976). It is a general phenomenon that is

particularly common in software projects due to their complex and uncertain

nature. Keil et al. (2000), for example, found that 30–40 % of all software projects

experience escalation of commitment.

Several studies have shown that decision-makers tend to invest additional

resources in an attempt to justify their previous investments (Bazerman

et al. 1984). Because groups have the capacity of employing multiple perspectives

when making decisions, one might believe that escalating commitment situations

should occur less frequently in agile teams than in traditional teams. However,

several studies show that when having group decision-making, escalating tenden-

cies will occur more often and will be more severe than in individual decision-

making due to group polarization and conformity pressures (Whyte 1993).

286 T. Dybå et al.

To avoid situations of escalating commitment in agile projects, it is important to

make sure that the team meetings do not become a place for defending decisions

(Stray et al. 2012). Not only do the teams need to watch their internal process, they

also need to consider which non-team members are allowed to participate or

observe the team meetings. If team members start to defend their decisions or

give detailed reports of what they have done because people outside the team are

present in, for example, the daily meetings, we advise that these people outside the

team do not participate on a regular basis.

Early signs of escalation in, for example, the daily meeting such as rationalizing

continuation of a chosen course of action, and when team members start giving

detailed and technical descriptions of what they have done since last meeting, must

be taken seriously. Further, when the team becomes aware of the signs of escalating

commitment, this needs to be addressed in the retrospective meetings (see next

section).

11.5 Feedback and Learning

Agile software development is a type of knowledge work (see Chap. 7) where

feedback and learning is particularly important. In order to adapt to changes in

technology and customer requirements and to reduce the risk in development, agile

development methods rely on frequent feedback loops both within the development

team and with external stakeholders. The focus on having a “shippable product”

leads to feedback on technical problems, and the demonstration of the product at the

end of iterations leads to feedback on the developed functionality. The feedback

represents opportunities for learning, which can lead to changes in product and

personal skills, as well as changes in the development process.

With the focus in agile development on “working software” and “individuals and

interactions,” knowledge is managed in a very different manner than in traditional

software development. Traditional development has often focused on managing

explicit knowledge in the form of written lessons learned in knowledge repositories

and documented procedures in electronic process guides (see Chap. 7). Agile

methods focus on managing knowledge orally, which means that dialogue is the

main method of transfer (Bjørnson and Dingsøyr 2008). Von Krogh et al. write that

“it is quite ironic that while executives and knowledge officers persist in focusing

on expensive information-technology systems, quantifiable databases, and mea-

surement tools, one of the best means for knowledge sharing and creating knowl-

edge already exists within their companies. We cannot emphasize enough the

important part conversations play” (von Krogh et al. 2000).

A well-known theory of learning that focuses on feedback is Argyris and

Schön’s theory of single- and double-loop learning (Argyris and Schön 1996).

Double-loop learning is distinguished from single-loop learning in that it concerns

the underlying values. If an agile team repeatedly changes practices without solving

their problems, this is a sign that they have not understood the underlying causes of

11 Agile Project Management 287

http://dx.doi.org/10.1007/978-3-642-55035-5_7
http://dx.doi.org/10.1007/978-3-642-55035-5_7

their problem and is practicing single-looped learning. Lynn et al. (1999) argue that

learning has a direct impact on cycle time and product success, and have identified

two factors that are central for learning: capturing knowledge, and a change in

behavior based on the captured knowledge. Practices that must be in place for this

to happen are, among others, recording and reviewing information, have goal

clarity, goal stability, and vision support.

There are, however, often challenges in agile teams to make use of opportunities

for learning. A study by Stray et al. (2011) reports that many teams spend little time

reflecting on how to improve how they work and they do not discuss obvious

problems. Some of the teams that carry out regular retrospective meetings struggle

to convert their analysis into changes in action. Among those who try to remedy

identified problems actively, several give up after seeing little change.

Learning is challenging but crucial. A stream of research has established that

teams who have shared mental models about product, tasks, and process work more

effectively. Further, developing overlapping knowledge, sometimes referred to as

knowledge redundancy, is critical in turbulent environments where people need to

work on tasks assigned by priority rather than competence of team members. In the

following, we discuss some of the main arenas for feedback and learning in agile

development: the project kick-off and retrospectives after iteration and release.

11.5.1 Agile Project Kick off

Kick-off is one of the most used tools of project management (Besner and Hobbs

2008). Typical activities in a kick-off meeting are describing a vision for the

project, establishing roles, project stakeholders, and planning the project. A vision

or overall goals of the project will usually be defined by the customer, what is

referred to as the product owner in Scrum. Further, in agile methods, the team is

seen as a self-managing team, with one person facilitating the work of the team.

Thus, the only internal roles are the team facilitator and team members. However,

companies often also appoint a project manager, especially in multi team projects.

The project stakeholders are usually represented by one product owner, but can also

be other people from the customer who have an interest in the product to be

developed, or other development projects, for example, when sharing a common

technical infrastructure. A picture from a project kick-off is shown in Fig. 11.3.

As for planning the project, one important decision is the duration of an iteration.

If there are frequent changes in customer requirements or technology, this calls for

shorter iterations, while a more stable environment calls for longer iterations.

Normally an agile team will make a rough plan for several iterations and a detailed

plan for the next one. The detailed plan can be made at the kick-off by making a

product owner give priorities to the set of features that is to be developed. The

features are estimated, for example, using the technique planning poker, which

facilitates a discussion between team members on what tasks must be performed to

develop a feature. The team then commits to what they will be able to deliver in the

288 T. Dybå et al.

first iteration. The “plan” for the team is then a list of prioritized features, and who

is to perform the tasks of developing the features is decided on during the iteration.

What is important in the kick-off meeting to enable feedback and learning? From

studies of shared mental models, we know that teams need to establish shared

knowledge on a number of areas to function effectively. Shared mental models

comprise knowledge of the tasks, technology, team members’ skills, and interac-

tions. The planning poker technique is one way to improve shared mental models.

Estimation discussions can provide knowledge of tasks at hand, the technology

used in development, as well as demonstrating team member skills (Fægri 2010).

Planning poker is carried out as follows: Every individual is given a set of

playing cards with values loosely in a Fibonacci sequence, usually 0, 1, 2, 3, 5, 8,

13, 20, 40, and 1. For each task, individuals decide on a card that represents the

amount of work; this can be in number of hours or relative to a standard task. All

team members show their cards, and the person with the highest and lowest

estimates is asked to explain their reasoning. The process is repeated until consen-

sus, or if consensus is unlikely a number is set based on majority vote or average of

votes. If there is much divergence, it might also be necessary to decompose a task

into smaller tasks that are easier to estimate. See Chap. 3 for a further discussion of

estimation, and there are also some studies available on the use of planning poker as

an estimation technique (Molokken-Ostvold et al. 2008).

Finally, that everyone has a clear image of team interaction is accomplished by

having clear work processes. Agile methods are simple and easy to remember,

which makes it easy to function as a shared mental model.

Fig. 11.3 Project kick off with development team, team facilitator, and customer responsible

11 Agile Project Management 289

http://dx.doi.org/10.1007/978-3-642-55035-5_3

11.5.2 The Retrospective

A retrospective (or postmortem review (Birk et al. 2002) or post-iteration workshop

(Outi 2006)) is a collective learning activity after an iteration or release (Dingsøyr

2005). The main motivation is to reflect on what happened in order to improve

future practice—for the individuals that have participated in the project and possi-

bly also for the organization as a whole.

Researchers in organizational learning use the term “reflective practice”

(Dybå et al. 2014), which is “the practice of periodically stepping back to ponder

on the meaning to self and others in one’s immediate environment about what has

recently transpired. It illuminates what has been experienced by both self and

others, providing a basis for future action” (Raelin 2001). This involves uncovering

and making explicit results of plans, observation, and achieved practice. It can lead

to understanding of experience that has been overlooked in practice. Kerth argues

that a retrospective can help members of a community to understand the need for

improvement and motivate them to change. The retrospective helps the community

to become “master of its software process” (Kerth 2001). In addition, retrospectives

are claimed to foster learning, growth, and participant maturity, and provides an

opportunity to celebrate success. Derby and Larsen further suggest that retrospec-

tives lead to improved productivity, capability, quality, and capacity; the purpose is

“whole-team learning” (Derby and Larsen 2006).

A typical agile retrospective will be conducted with activities to gather data,

generate insight, and make decisions (ibid). To gather data, exercises such as

plotting important events on a timeline or just brainstorming on “what went well”

and “what could be improved” are typical. Insights are generated by analysis of the

material, through use of fishbone diagrams, structuring of data and prioritization

(see Fig. 11.4). Decisions about changes are made on this basis and are planned as

tasks in the next iteration.

Although retrospectives today is a very common practice, there has been little

research on this topic. Most works concentrate on describing approaches to conduct

retrospectives, with little focus on the effects. However, in a survey on essential

practices in research and development companies, “learning from post-project

audits” were found to be one of the most promising practices to yield competitive

advantage (Menke 1997).

Kransdorff (1996) criticizes postmortems because people participating do not

have an accurate memory, which can lead to disputes. He suggests collecting data

during the project, for example, through short interviews, in an effort to get more

objective material.

290 T. Dybå et al.

11.5.3 Visualizing Project Status

Many teams use visual boards, kanbans,3 or “information radiators” as a central

element for collaboration, coordination, and communication (Sharp and Robinson

2010). A board usually displays tasks on cards, and the placement of cards on a

board shows their status. Teams have found that such boards make meetings

efficient. Participants point at cards on the board to show what team members

work on, and the board shows progress in the project.

Physical artifacts are easy to refer to, easy to annotate, and hard to ignore (Sharp

et al. 2006). A physical board makes it easier to limit the amount of information

unlike an electronic system, which is often the alternative. Such boards can help

giving teams a shared mental model of the project status, importance of tasks, and

how ready the product is for delivery.

A visual board can be set up quickly by placing a board in a relevant location,

deciding on how to organize the board, and supplying cards to put on the board.

Find a location, which is visible both for the development team and for others who

have interest in the work of the team. The board could be placed with other visual

information the team is using, for example, a burndown4 chart, which shows the

remaining work in this phase.

The board should show important information about status and progress of the

work of the team. This can be done by dividing the board into relevant phases that

Fig. 11.4 A retrospective in a development team with a group of developers structuring the results

of a brainstorming session

3A kanban is a visual card system for organizing production according to demand, central in lean

production.
4 A burndown chart shows the estimated remaining work in an iteration, and is updated daily when

teams use the Scrum development process.

11 Agile Project Management 291

work tasks go through. Typical phases include “to do,” “analysis,” “development,”

“review,” “integration test,” and “ready for deployment test,” as shown in Fig. 11.5.

If your team has particular problems, for example, if it is unclear for developers

whether a task is completed or not, you can add a phase for checking that either

another developer or an external person agrees that the task is completed. Some also

choose to mark problems in the project either through putting tasks in an area for

problems or by marking tasks with a different color.

Physical artifacts like the card represent tokens of responsibility, and moving

artifacts have been found to give more insight than electronic manipulation tools

(Sharp et al. 2006), which is the alternative many teams use. A visual board makes it

easy to discover common problems in a project like: tasks do not get completed,

important tasks are not done, and if too many tasks are started at the same time.

11.6 Principles of Agile Project Management

A fundamental property of software is its nonphysical form; software code is

essentially a large set of abstract instructions possessing unlimited complexity,

flexibility, and revisability. Software exhibits nonlinear behavior and does not

Fig. 11.5 Example visual board with areas for tasks “todo,” “analysis,” “development,” “review,”

“integration test,” and “ready for deployment test”

292 T. Dybå et al.

conform to laws of nature. One consequence is that it is inherently hard to build

models of software that allow accurate reasoning about the system’s qualities

(Fægri et al. 2010). Agile project management addresses these basic properties of

software and breaks away from the linear sequence of well-defined activities of

traditional project management. It shifts focus from up-front planning to execution.

In doing so, agile project management moves from traditional command and

control structures to shared decision-making, self-management, and learning in

software teams to deal with the complexity and unpredictability of the problem-

solving activities of software projects.

Based on our extensive experience and studies of a multitude of agile projects

during the last decade (Moe et al. 2009, 2010; Moe et al. 2012; Dybå and Dingsøyr

2008; Šmite et al. 2010; Dingøyr et al. 2012; Dingsøyr et al. 2010; Dybå 2011), we

offer the following set of socio-technical principles of agile project management

(see Table 11.1).

11.6.1 Minimum Critical Specification

This principle has two aspects; the first is that no more should be specified than is

absolutely essential; the second requires that the team identify what is critical to

overall success. This means that the system requirements should be precise about

what has to be done, but not about how to do it, and that the use of rules, standards,

and predefined procedures is kept to an absolute minimum. Focus should be on the

larger system requirements and boundary conditions, leaving as many design

decisions as possible to those closest to the work.

Understanding “the problem” that the system is intended to address is one of the

keys to project success. Therefore, this principle is oriented toward the analysis and

problem understanding that will help the project’s stakeholders to focus on the

nature of the overall problems and issues and come to some agreement about what

these really are. It will also help the software team to understand the problems—

rather than what they perceive as being the “problem”—the system is supposed to

solve.

Table 11.1 Principles of agile project management

Minimum critical

specification

No more should be specified than is absolutely essential and critical to

overall success

Autonomous teams Autonomous teams are responsible for managing and monitoring their

own processes and executing tasks

Redundancy Team members should be skilled in more than one function

Feedback and learning Feedback and learning are integral to project execution and the project’s

interaction with the environment

11 Agile Project Management 293

Additionally, complex and turbulent environments require software projects to

be highly adaptable. Thus, specifying more than is needed closes options that

should be kept open for as long as possible.

Successfully dealing with this principle requires that the project establishes

shared mental models about the problem and its solution, as well as about tasks,

technology, team member skills, and interactions. The project’s kick-off meeting is

crucial for achieving this.

11.6.2 Autonomous Team

This principle is based on the premise that autonomous, or self-managing, teams are

a prerequisite for the success of innovative software projects. Such teams offer

potential advantages over traditionally managed teams because they bring decision-

making authority to the level of operational problems and uncertainties and thus

increase the speed and accuracy of problem solving.

Members of autonomous teams are responsible for managing and monitoring

their own processes and executing tasks. They typically share decision authority

jointly, rather than having a centralized decision structure where one person makes

all the decisions or a decentralized decision structure where team members make

independent decisions.

However, there are important individual and organizational barriers and chal-

lenges to successfully applying autonomous teams in software development (Moe

et al. 2009). Misalignment between team structure and organizational structure can

be counterproductive, and attempts to implement autonomous teams can cause

frustration for both developers and management. Shared resources, organizational

control, and specialist culture are the most important barriers that need to be

effectively dealt with in order to succeed.

Furthermore, autonomy at the team level may conflict with autonomy at the

individual level; when a project as a whole is given a great deal of autonomy, it does

not follow that the individual team members are given high levels of individual

autonomy. It is a danger, therefore, that the self-managing team may end up

controlling team members more rigidly than they do under traditional management

styles. Thus, it is imperative to ensure that individual developers have sufficient

control over their own work and over the scheduling and implementation of their

own tasks.

For autonomous teams to thrive, it is thus necessary to build trust and commit-

ment in the whole organization, avoiding any controls that would impair creativity

and spontaneity. The team’s need for continuous learning, not the company’s need

for control, should be in focus. So, make sure that both the organization and the

teams know and respect the project’s objective.

294 T. Dybå et al.

11.6.3 Redundancy

This principle is concerned with the overlap in individuals’ knowledge and skills in

order to create common references for people’s creation of new knowledge; as the

level of redundancy increases within the team, individuals will find it easier to share

new knowledge and the project will be able to coordinate its work more effectively

Therefore, this principle implies that each member of the team should be skilled in

more than one function so that the project becomes more flexible and adaptive,

which allows a function to be performed in many ways utilizing different people.

Having such redundancy, with team members cross-trained to do various jobs,

increases the project’s functional redundancy and thus the flexibility of the team in

dealing with personnel shortages. Redundancy is also critical in turbulent environ-

ments where people need to work on tasks assigned by priority rather than the

competence of team members.

A particular challenge, however, is that individual specialization, high levels of

proficiency, and the ability to solve more complex problems are often more

important motivations for people than to seek overlapping knowledge. It is essen-

tial, therefore, with a greater focus on redundancy at the organizational level

surrounding the project; rather than viewing redundancy as unnecessary and inef-

ficient, the organization must appreciate both generalists and specialists to build

redundancy into its projects.

11.6.4 Feedback and Learning

Without feedback and learning, agile project management is not possible. The focus

on project execution rather than on up-front planning in agile projects, leads to an

intertwinement of learning and work, and of problem specification and solution.

Viewing the software project as an open system that is continuously interacting

with its environment also points to the importance of feedback and learning.

The complexity and unpredictability of software problems are typical of

“wicked” problems (Rittel and Webber 1973; Yeh 1991), which are difficult to

define until they are nearly solved. For such problems, requirements cannot be

completely specified until most of the system is built and used. At the same time,

the system cannot be built without specifying what is to be built. Furthermore, the

problem is never really solved as improvements can always be made.

To deal with and manage software problems, therefore, the activities of require-

ments, design, coding, and testing have to be performed in an iterative and incre-

mental way, which focuses on ongoing improvement of output value rather than on

single delivery. The project should allow overlapping and parallel activities in a

series of steps, making feedback and continual learning an internalized habit to

reach a desirable result.

11 Agile Project Management 295

Together, these principles lay the foundation for successfully planning, execut-

ing, and monitoring the activities of a software project while allowing openness to

define the details in each individual case according to the project’s specific context.

11.7 Conclusions

The principles of agile project management have the potential to provide organi-

zations and systems with emergent properties. However, organizations should be

cautious in embracing these principles or in integrating them with existing prac-

tices. Agile management methods are ideal for projects that exhibit high variability

in tasks, in the skills of people, and in the technology being used. They are also

appropriate for organizations that are more conducive to innovation than those built

around bureaucracy and formalization. Software organizations should, therefore,

carefully assess their readiness before treading the path of agility.

The challenge in managing agile software projects is to find the balance between

upfront planning and learning. Planning provides discipline and a concrete set of

activities and contingencies that can be codified, executed, and monitored. Learning

permits adapting to unforeseen or chaotic events. The two require different man-

agement styles and project infrastructure. Projects with low levels of complexity

and uncertainty allow more planning, whereas projects with high levels of com-

plexity and uncertainty require a greater emphasis on learning. Openness to learn-

ing is new to many software companies. But it is obvious from the many spectacular

project failures that the time has come to rethink some of the traditions in software

project management.

Agile project management has currently caught interest for small and co-located

projects. However, in the future, agile project management might also solve some

of the important challenges facing large-scale and global projects (see Chap. 12).

The issues raised in this chapter are instrumental in making this move from

traditional to agile project management; or in the words of Louis Pasteur: “chance

favors only the prepared mind.”

References

Abramson P, Oza N, Siponen MT (2010) Agile software development methods: a comparative

review. In: Dingsøyr T, Dybå T, Moe NB (eds) Agile software development. Current research

and future directions. Springer, Berlin, pp 31–59

Argyris C, Schön DA (1996) On organizational learning II: theory method and practise. Addison

Wesley, Reading, MA

Augustine S, Payne B, Sencindiver F, Woodcock S (2005) Agile project management: steering

from the edges. Commun ACM 48(12):85–89

Aurum A,Wohlin C, Porter A (2006) Aligning software project decisions: a case study. Int J Softw

Eng Knowl Eng 16(6):795–818

296 T. Dybå et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_12

Bazerman MH, Giuliano T, Appelman A (1984) Escalation of commitment in individual and

group decision making. Organ Behav Hum Perform 33:141–152

Besner C, Hobbs B (2008) Project management practice, generic or contextual: a reality check.

Proj Manage J 39:16–33

Birk A, Dingsøyr T, Stålhane T (2002) Postmortem: never leave a project without it. IEEE Softw

19(3):43–45, Special issue on knowledge management in software engineering

Bjørnson FO, Dingsøyr T (2008) Knowledge management in software engineering: a systematic

review of studied concepts and research methods used. Info Softw Technol 50(11):1055–1168.

doi:10.1016/j.infsof.2008.03.006

Cohen SG, Bailey DE (1997) What makes teams work: group effectiveness research from the shop

floor to the executive suite. J Manage 23(3):239–290

Conboy K, Coyle S, Wang X, Pikkarainen M (2011) People over process: key challenges in agile

development. IEEE Softw 28(4):48–57

Constantine LL (1993) Work organization: paradigms for project management and organization.

Commun ACM 36(10):35–43

De Meyer A, Loch CH, Pich MT (2002) Managing project uncertainty: from variation to chaos.

MIT Sloan Management Review Winter 2002:60–67

Derby E, Larsen D (2006) Agile retrospectives: making good teams great. The Pragmatic Book-

shelf, Raleigh, NC

Dingsøyr T (2005) Postmortem reviews: purpose and approaches in software engineering. Info

Softw Technol 47(5):293–303

Dingsøyr T, Lindsjørn Y (2013) Team performance in agile development teams: findings from

18 focus groups. In: Baumeister H, Weber B (eds) Agile processes in software engineering and

extreme programming, vol 149. Springer, Berlin, pp 46–60

Dingsøyr T, Dybå T, Moe NB (2010) Agile software development: current research and future

directions. Springer, Berlin

Dingsøyr T, Nerur S, Balijepally V, Moe NB (2012) A decade of agile methodologies: towards

explaining agile software development. J Syst Softw 85(6):1213–1221. doi:10.1016/j.jss.2012.

02.033

Dybå T (2000) Improvisation in small software organizations. IEEE Softw 17(5):82–87

Dybå T (2011) Special section on best papers from XP2010. Info Softw Technol 53(5):507–508

Dybå T, Dingsøyr T (2008) Empirical studies of agile software development: a systematic review.

Info Softw Technol 50(9–10):833–859. doi:10.1016/j.inf-sof.2008.01.006

Dybå T, Maiden N, Glass R (2014) The reflective software engineer: reflective practice. IEEE

Softw 31(4):32–36

Fægri TE (2010) Adoption of team estimation in a specialist organizational environment. In:

Sillitti A, Martin A, Wang X, Whitworth E (eds) 11th international conference on agile

software development, Trondheim, Norway, 1–4 June 2010. Springer, pp 28–42

Fægri TE, Dybå T, Dingsøyr T (2010) Introducing knowledge redundancy practice in software

development: experiences with job rotation in support work. Info Softw Technol 52(10):1118–

1132

Faraj S, Sambamurthy V (2006) Leadership of information systems development projects. IEEE

Transact Eng Manage 53(2):238–249

Garel G (2013) A history of project management models: from pre-models to the standard models.

Int J Proj Manage 31(5):663–669

Guzzo RA, Dickson MW (1996) Teams in organizations: recent research on performance and

effectiveness. Annu Rev Psychol 47:307–338

Hackman JR (1986) The psychology of self-management in organizations. In: Pallack MS, Perloff

RO (eds) Psychology and work: productivity, change, and employment. American Psycholog-

ical Association, Washington, DC

Hewitt B, Walz D (2005) Using shared leadership to foster knowledge sharing in information

systems development projects. In: Walz D (ed) Proceedings of the 38th Hawaii international

conference on system sciences (HICCS), pp 1–5

11 Agile Project Management 297

http://dx.doi.org/10.1016/j.infsof.2008.03.006
http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1016/j.inf-sof.2008.01.006

Hoare CAR (1984) Programming: sorcery or science? IEEE Softw 1(2):5–16

Hoegl M, Parboteeah P (2006) Autonomy and teamwork in innovative projects. Hum Resour

Manage 45(1):67

Humphrey WS (1989) Managing the software process. Addison-Wesley, Reading, MA

Keil M, Mann J, Rai A (2000) Why software projects escalate: An empirical analysis and test of

four theoretical models. MIS Q 24(4):631–664

Kerth NL (2001) Project retrospectives: a handbook for team reviews. Dorset House Publishing,

New York

Kirkman BL, Rosen B (1999) Beyond self-management: antecedents and consequences of team

empowerment. Acad Manage J 42(1):58–74

Kozlowski SWJ, Bell BS (2003) Work groups and teams in organizations In: Borman WC, Ilgen

DR, Klimoski RJ (ed) Handbook of psychology (vol 12): industrial and organizational psy-

chology. Wiley-Blackwell, New York, pp 333–375

Kozlowski SWJ, Ilgen DR (2006) Enhancing the effectiveness of work groups and teams. Psychol

Sci Public Inter 7:77–124

Kransdorff A (1996) Using the benefits of hindsight - the role of post-project analysis. Learn Organ

3(1):11–15

Lehman MM (1989) Uncertainty in computer applications and its control through the engineering

of software. Softw Maint Res Pract 1(1):3–27

Lipshitz R, Klein G, Orasanu J, Salas E (2001) Taking stock of naturalistic decision making. J

Behav Decis Mak 14(5):331–352

Lynn GS, Skov RB, Abel KD (1999) Practices that support team learning and their impact on

speed to market and new product success. J Prod Innov Manag 16:439–454

Menke MM (1997) Managing R&D for competitive advantage. Res Technol Manage 40(6):40–42

Meso P, Troutt MD, Rudnicka J (2002) A review of naturalistic decision making research with

some implications for knowledge management. J Knowl Manage 6(1):63–73

Moe NB, Dingsøyr T, Dybå T (2008) Understanding self-organizing teams in agile software

development. In: 19th Australian conference on software engineering, pp 76–85

Moe NB, Dingsøyr T, Dybå T (2009) Overcoming barriers to self-management in software teams.

IEEE Softw 26(6):20–26

Moe NB, Dingsøyr T, Dybå T (2010) A teamwork model for understanding an agile team: a case

study of a Scrum project. Info Softw Technol 52(5):480–491

Moe NB, AurumA, Dybå T (2012) Challenges of shared decision-making: a multiple case study of

agile software development. Info Softw Technol 54(8):853–865

Molokken-Ostvold K, Haugen NC, Benestad HC (2008) Using planning poker for combining

expert estimates in software projects. J Syst Softw 81(12):2106–2117. doi:10.1016/j.jss.2008.

03.058

Morgan G (2006) Images of organizations. Sage, Thousand Oaks, CA

Nerur S, Balijepally V (2007) Theoretical reflections on agile development methodologies - the

traditional goal of optimization and control is making way for learning and innovation.

Commun ACM 50(3):79–83

Nerur S, Mahapatra R, Mangalaraj G (2005) Challenges of migrating to agile methodologies.

Commun ACM 48(5):72–78

Outi S (2006) Enabling software process improvement in agile software development teams and

organisations. VTT Publications, Espoo

Pearce CL (2004) The future of leadership: combining vertical and shared leadership to transform

knowledge work. Acad Manage Exec 18(1):47–57

Pich MT, Loch CH, De Meyer A (2002) On uncertainty, ambiguity, and complexity in project

management. Manage Sci 48(8):1008–1023

Raelin JA (2001) Public reflection as the basis of learning. Manage Learn 32(1):11–30

Rittel HWJ, Webber MM (1973) Dilemmas in a general theory of planning. Policy Sci 4:155–169

Schwaber K, Beedle M (2001) Agile software development with Scrum. Prentice Hall, Upper

Saddle River

298 T. Dybå et al.

http://dx.doi.org/10.1016/j.jss.2008.03.058
http://dx.doi.org/10.1016/j.jss.2008.03.058

Sharp H, Robinson H (2010) Three ‘C’s of agile practice: collaboration, co-ordination and

communication. In: Dingsøyr T, Dybå T, Moe NB (eds) Agile software development: current

research and future directions. Springer, Berlin, p 13

Sharp H, Robinson H, Segal J, Furniss D (2006) The role of story cards and the wall in Xp teams: a

distributed cognition perspective. In: Agile. Minneapolis, MN. IEEE Computer Society, pp

65–75

Šmite D, Moe NB, Ågerfalk PJ (2010) Agility across time and space: implementing agile methods

in global software projects. Springer, Berlin

Staw B (1976) Knee-deep in the big muddy: a study of escalating commitment to a chosen course

of action. Organ Behav Hum Perform 16(1):27–44

Stray VG, Moe NB, Dingsøyr T (2011) Challenges to teamwork: a multiple case study of two agile

teams. In: Sillitti A, Hazzan O, Bache E, Albaladejo X (eds) Agile processes in software

engineering and extreme programming, vol 77. Lecture Notes in Business Information

Processing, pp 146–161

Stray VG, Moe NB, Dybå T (2012) Escalation of commitment: a longitudinal case study of daily

meetings. In: Wohlin C (ed) Agile processes in software engineering and extreme program-

ming. Lecture Notes in Business Information Processing. Springer, Berlin, pp 153–167. doi:10.

1007/978-3-642-30350-0_11

Takeuchi H, Nonaka I (1986) The new product development game. Harv Bus Rev 64:137–146

Trist E (1981) The evolution of socio-technical systems: a conceptual framework and an action

research program. Occasional paper no 2. Ontario quality of working life centre, Toronto, ON

Trist E, Bamforth KW (1951) Some social and psychological consequences of the longwall

method of coal—getting. Hum Relat 4(1):3–38. doi:10.1177/001872675100400101

von Krogh G, Ichijo K, Nonaka I (2000) Enabling knowledge creation. Oxford University Press,

New York

Whyte G (1993) Escalating commitment in individual and group decision making: a prospect

theory approach. Organ Behav Hum Decis Process 54(3):430–455

Woodfield SN (1979) An experiment on unit increase in problem complexity. IEEE Trans Softw

Eng 5(2):76–79

Yeh RT (1991) System development as a wicked problem. Int J Softw Eng Knowl Eng 1(2):117–

130

Biography Tore Dybå received his MSc in Electrical Engineering and Computer

Science from the Norwegian Institute of Technology and the Dr. Ing. in Computer

and Information Science from the Norwegian University of Science and Technol-

ogy. He is a chief scientist at SINTEF ICT and an adjunct professor at the

University of Oslo. He has 8 years of industry experience from Norway and

Saudi Arabia. His research interests include evidence-based software engineering,

software process improvement, and agile software development. He is the author or

coauthor of more than 100 refereed publications appearing in international journals,

books, and conference proceedings. He is editor of the Voice of Evidence column in

IEEE Software and a member of the editorial boards of Journal of Software

Engineering Research and Development and Information and Software

Technology.

Torgeir Dingsøyr works with software process improvement and knowledge man-

agement projects as a senior scientist at SINTEF Information and Communication

Technology. In particular, he has focused on agile software development through a

number of case studies, coauthored the systematic review of empirical studies,

coedited the book Agile Software Development: Current Research and Future

11 Agile Project Management 299

http://dx.doi.org/10.1007/978-3-642-30350-0_11
http://dx.doi.org/10.1007/978-3-642-30350-0_11
http://dx.doi.org/10.1177/001872675100400101

Directions, and coedited the special issue on Agile Methods for the Journal of

Systems and Software. He wrote his doctoral thesis on Knowledge Management in
Medium-Sized Software Consulting Companies at the Department of Computer and
Information Science, Norwegian University of Science and Technology, where he is
now adjunct associate professor.

Nils Brede Moe works with software process improvement, agile software devel-

opment and global software development as a senior scientist at SINTEF Informa-

tion and Communication Technology. His research interests are related to

organizational, socio-technical, and global/distributed aspects. His main publica-

tions include several longitudinal studies on self-management, decision-making

and teamwork. He wrote his thesis for the degree of Doctor Philosophiae on From
Improving Processes to Improving Practice —Software Process Improvement in
Transition from Plan-driven to Change-driven Development. Nils Brede Moe is
also holding an adjunct position at Blekinge Institute of Technology.

300 T. Dybå et al.

Chapter 12

Distributed Project Management

Ten Misconceptions That Might Kill Your Distributed

Project

Darja Šmite

Abstract This chapter is dedicated to companies engaged in collaborative soft-

ware projects with staff distributed across several locations. The chapter is orga-

nized around ten problem areas. Each problem area starts with a common

misconception, followed by a discussion of complexities associated with distrib-

uted development as opposed to co-located development, practices known for

addressing these complexities, and a short list of implications for practice. The

aim is to illuminate the key complexities of managing distributed development

projects. While project managers in co-located projects are equipped with tools,

practices, and methods, these are often of little help when dealing with the chal-

lenges of distributed environment. Hence, inexperienced managers often fail to

foresee and proactively address the common problems. The readers will learn to

distinguish different types of distributed projects (including onshoring, offshoring,

outsourcing, and insourcing, to name a few) and challenges, both context dependent

and common for distributed projects.

12.1 Introduction

Tough competition and a lack of resources motivate many companies to look for

allies that can help in delivering products more cost-effectively. Software compa-

nies are no exception. While employing a large number of experienced people with

a variety of potentially necessary skills may be too costly, companies are solving

immediate gaps in personnel and expertise by contracting work through various

sourcing strategies.

D. Šmite (*)

Blekinge Institute of Technology, Karlskrona, Sweden

e-mail: darja.smite@bth.se

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_12, © Springer-Verlag Berlin Heidelberg 2014

301

mailto:darja.smite@bth.se

Inspired by industrial migrations and globalization of trade in services (Carmel

and Tjia 2005), a large number of software companies are being to collaborate with

allies in India, China, and Eastern Europe. The initial enthusiasm of the companies

going global, however, soon declines as they start experiencing unique problems of

working across geographic, temporal, and cultural boundaries. Global software

development is thus called the crisis of the decade, and although the problems of

schedule slips, cancellations, poor software, etc. are not new, in distributed projects

they are exacerbated by distance (Parnas 2006).

Due to a high demand of specialized skills, sourcing of knowledge-intensive

work in software projects is not as straightforward as in those disciplines that,

which are more dependent on physical capital. Managerial complexity stems from

the challenges associated with establishing effective communication, coordination,

and control over the staff distributed across different locations. And in various

sourcing strategies and project arrangements, these challenges vary.

12.1.1 Sourcing Strategies

Different organizational relationships and geographical locations of collaborating

partners form different sourcing strategies. Some companies contract software

development activities to third-party vendors (further referred to as outsourcing),
while others collaborate with their own subsidiaries or sites in less expensive

regions (further referred to as insourcing). Both outsourcing and insourcing collab-
orations nowadays are often targeting emerging nations (further referred to as

offshoring). Notably, as a result of rapid development and subsequent cost increase

in the mature offshore destinations, offshore vendors are often moving development

further to less expensive regions within the same country (the practice of

contracting within the same country is further referred to as onshoring). The
different sourcing arrangements can see in Fig. 12.1.

12.1.2 Project Arrangements

In order to better understand the difficulties associated with distributed software

projects, it is essential to understand what distributed development means. In this

chapter, distributed development is differentiated from global software develop-

ment in general or the concept of sourcing in its wide sense. Not all sourcing

projects are distributed, and even global projects might be entirely sourced for

development in one location with no distribution of software engineering activities.

Figure 12.2 illustrates eight examples of different project arrangements some of

which are distributed and others are not.

The first arrangement (Fig. 12.2a) illustrates traditional co-located development,

in which the team works under one roof. The second arrangement (Fig. 12.2b)

302 D. Šmite

outlines an outsourcing example, in which consultants are brought to work in the

same premises also known as on-site body-shopping practice. Such arrangement is

a sourcing practice without distributed development. In the third arrangement

(Fig. 12.2c), a company “buys” software development from the outside, while in

the fourth arrangement (Fig. 12.2d) a company builds software within the company

boundaries, but in a different location. The latter two practices are also known as

project-shopping, in which development is not distributed.

The fifth and the sixth arrangements (Fig. 12.2e, f) outline projects, in which

software development is given to two separate teams with co-located team mem-

bers. Each co-located team in such setups usually requires a team lead or an on-site

manager. In the e case, both teams belong to the same company (insourcing), but

are situated in different locations. In the f case, the company expands development

by employing an additional team’s effort from a third-party vendor (outsourcing).

Similarly, the seventh and the eighth arrangements (Fig. 12.2g, h) are distributed

projects. In contrast to e and f, team boundaries in these cases span two locations.

Therefore, these teams are called virtual or dispersed, while the projects are called

distributed. In the g case, the team comprises team members from two sites of the

same company (insourcing), while, in the h case, the team comprises team members

from two different companies (outsourcing). Traditionally, third-party vendors

support their teams with an internal project manager, while in, case of insourcing

(Fig. 12.2g) the company may decide whether this is needed or not.

Note that the given examples are not exhaustive. In practice, projects may have

more than two distributed or even dispersed teams. Accordingly, the number of

team leads or managers as well as the combination of outsourcing and insourcing

relationships may vary. The number of team members in the distributed and

Offshoring

Same company Different company

Onshoring

O
utsourcingIn

so
ur

in
g

Sa
m

e
co

un
tr

y
D

if
fe

re
nt

 c
ou

nt
ry

Offshore
insourcing

Onshore
insourcing

Offshore
outsourcing

Onshore
outsourcing

Fig. 12.1 Sourcing

strategies

12 Distributed Project Management 303

dispersed teams outlined in the figure is illustrative, while in practice some distrib-

uted projects may be significantly larger than others. The managerial hierarchy may

also vary.

Particular project context factors depending on the project type, number of

teams, and their structures may affect the magnitude of managerial challenges.

However, common challenges relevant for all (or most) distributed projects exist.

Location boundaries

Team member from a third party vendor

Project manager/Team lead from a third party vendor

Project team member

Project manager/Team lead

Team boundaries

a b

c d

e f

g h

Fig. 12.2 Nondistributed (a–d) and distributed (e–h) project arrangements. (a) Traditional

co-located team, (b) co-located team with onsite consultants, (c) non-distributed outsourcing

project, (d) non-distributed insourcing project, (e) distributed insourcing project with two distrib-

uted teams, (f) distributed outsourcing project with two distributed teams, (g) distributed

insourcing project with one dispersed team, (h) Distributed outsourcing project with one

dispersed team

304 D. Šmite

Despite the differences, all distributed projects are challenged by distance, whether

employing distributed or dispersed teams, based on insourcing or outsourcing. This

is associated with the loss of next-door closeness. Research shows that patterns of

interaction between the team members change as the distance between their work

places grows, where the breaking point is as close as 30 m (Allen 1977). While this

may seem surprising, the links between distance and collaboration frequency has

been known for decades. Distance on the global scale naturally has many more

implications, not only on the team members, but also on the practice of project

management.

The rest of the chapter is devoted to common problem areas regarding distrib-

uted project management (see Sect. 12.2). Each problem area starts with a common

misconception, followed by a discussion of complexities associated with distrib-

uted development. Related industrial experiences based on the author’s empirical

research work and personal experiences are shared through practical illustrations.

Short recommendations for practice conclude each problem area. Ten general

observations conclude the chapter (see Sect 12.3).

12.2 Ten Misconceptions in Distributed Software

Development

This section contains descriptions of ten misconceptions that prevail in particular

among project managers with no prior experience in distributed software projects.

The selection of misconceptions is based on the author’s observations from

conducting empirical research in a number of software companies around the

world. These include small, medium, and large software companies from Sweden

and Norway working with service providers and own subsidiaries from Asia and

Eastern Europe, as well as several Latvian offshore companies that work for the

customers around Europe and North America.

12.2.1 Experienced Project Managers Will Deal with Any
Complexities: Managing Distributed Development
Projects Cannot Be That Hard

The reason of failure in global and distributed projects is often not related to the

abilities of project managers to manage a project or lead people. Projects fail mainly

due to the lack of awareness of unique factors that make distributed projects

different from co-located ones (DeLone et al. 2005; Carmel and Tjia 2005).

Managers do not always know what to anticipate. Geographic, temporal, and

cultural distances make even experienced managers handicapped since practices

that are commonly used in co-located projects are often of little help. Distributed

12 Distributed Project Management 305

projects require a rich and reliable technical and communication infrastructure that

can support distributed teamwork. Besides, the very basic management routines

change, when managers loose the next-door closeness.

Practical illustration: A Latvian project manager with a long experience in software
development was assigned responsibility for a distributed onshore insourcing project.
The project employed a dispersed team with team members from two locations of the
same company separated by 200 km. The manager was very traditional in his beliefs in
standardizing work practices and trusting only after verifying the results. Managing the
dispersed team made him uncomfortable. He lacked visibility into the process and was
unable to closely supervise his employees. At one point he even thought of installing video
cameras in the remote location. Remote team members felt manager’s distrust and thus
feared of being fired. When facing difficulties with poor IT infrastructure (slow computers
and Internet connection), they decided not to complain, because they were afraid to cause
any more inconveniences. The manager, however, associated these problems with poor
performance, lazy work and lack of capabilities of the remote team members. Misunder-
standings would have destined this collaboration to termination if only an external con-
sultant experienced in distributed development would not have been brought into the
project. After visiting the remote location the consultant revealed the true reasons behind
performance problems and made a step towards initiating open communication between
the dispersed team members and the project manager.

Based on an empirical study published in (Moe and Šmite 2008).

The style of supervision and daily managerial routines are not the only practices

that change in the light of distribution. A number of specific impact factors for

project management are attributed to global and distributed projects. For example,

offshored projects often suffer from high turnover of the employees, which imme-

diately affects the project performance and leads to additional costs of recruiting

and training new employees. Work over distance causes significant overhead of

communication and coordination since problem resolution often requires more

people to be involved and computer-mediated communication is much slower

than face-to-face (Matloff 2005). Task allocation also requires concern about the

interdependencies between the sites to minimize the collaborative overhead; how-

ever, the nature of software development often means that many tasks are, in fact,

interrelated.

All the mentioned factors and many more have important implications for

various aspects of project management such as project planning, effort estimation,

task allocation, and project monitoring. Experience shows that managers with no or

limited prior experience in managing distributed projects often overlook or under-

estimate the necessity and importance of preparation early in the project (Carmel

and Tjia 2005).

Implication for Practice Both planning and execution of a distributed project

requires knowledge about unique factors inherited in this type of projects and a

deep understanding of their impact. It is essential to adjust the methods for project

estimation and monitoring to account for the specifics of distributed projects.

Estimating the value of impact factors and associated overheads is not easy as

they vary in different setups. Therefore, it is important to document and use

historical data from within the company.

306 D. Šmite

12.2.2 Experience from a Single Distributed Development
Is Invaluable and Turns a Project Manager into
an Expert

Experience is indeed invaluable. However, distributed projects are diverse and each

of them has a different flavor stemming from the context of each individual

sourcing strategy and project arrangement.

In particular, not all distributed projects experience all three distances (geo-

graphic, temporal, and cultural). Projects can be distributed nationally or interna-

tionally, from north to south or from east to west, or even have a mixture of different

distances in case of involvement of more than two locations. Figure 12.3 illustrates

the different arrangements of onshore and offshore projects [adapted from Šmite

et al. (2014)]. For convenience, distances are expressed in concrete measures,

which allow project managers to evaluate at least some of the implications of

arranging projects in different locations. For example, a large temporal distance

(more than 4 h) means that dispersed team members will have a small synchronous

collaboration window, while geographic distance is associated with the travel time.

If the flying time is more than 2 h, it means that a meeting of 2–3 h will likely

require staying overnight.

The diversity of project arrangements also means that each of them shapes a

different project environment. Experience from one arrangement does not neces-

sarily equip project managers for others. This is because experience shows that

techniques that work well in one context could cause failure in another (Heeks

et al. 2001).

Practical illustration: A Swedish project manager, who coordinated work in a distributed
project employing several distributed teams from Swedish and Indian sites of the same
company, has already had an extensive experience from working in software development
projects both with Chinese developers and onsite in China. He was used to providing
detailed descriptions of the tasks to avoid misunderstandings or misinterpretations, and
assigning clear responsibilities. However, he failed to realize that the only authority
eligible to assign responsibilities in the Indian team was their local manager. While
Indian developers never refused the tasks from the Swedish project manager, they did not
feel committed to fulfilling these tasks, unless the local manager approved and prioritized
them.

Based on a conversation with two project managers from a multinational software
development company

Implication for Practice Project managers shall approach each distributed project

with caution and search for experiences and practices that have proven their

efficiency in arrangements as similar as possible to those of the current interest.

12 Distributed Project Management 307

Location

Onshore

Temporal
distance

Similar

Difference of
1h or less

Different

More than
1h difference

Similar

Different

Similar

Similar

Geographic
distance

Distant

A flight is
needed

Distant

Close

Close

No flight is
needed

Legal entity

Insourcing

Outsourcing

Location

Offshore

Temporal
distance

Small

Difference of
4h or less

Large

More than
4h difference

Small

Small

Large

Small

Geographic
distance

Far

Flying time:
2h or more

Far

Near

Near

Flying time:
less than 2h

Legal entity

Insourcing

Outsourcing

Fig. 12.3 Various project arrangements [adapted from Smite et al. (2014)]

308 D. Šmite

12.2.3 Once You Are Distributed, It Does Not Matter How
Many Remote Sites Are Involved

One may believe that management of a distributed development project requires no

more than establishing a proper technological infrastructure that supports remote

development and computer-mediated communication. However, in reality this is a

misconception. Complexity of working together grows exponentially when adding

additional sites (Bhat et al. 2006; van Solingen and Valkema 2010). If working

across two locations is difficult, then adding the third or the forth site may increase

the challenges dramatically. First of all, each site ideally requires a local team lead

or a manager to supervise the development process. Secondly, coordination of daily

activities and dependencies grows in terms of complexity and required effort, while

the overall productivity goes down. This is mainly because decision-making and

problem-solving often requires involvement of people from all locations, and also

because it requires more people than if there was only one location.

A controlled study that tested different settings demonstrated that a high-quality

two-site workflow may perform similarly to a four-site workflow, since the indi-

vidual working speed decreases when more sites are added (van Solingen and

Valkema 2010). Industrial experiences also show that work division to more than

two sites is disadvantageous (Lings et al. 2007) and might make temporal distances

difficult to manage (Holmström et al. 2006). Perhaps even more important is the

finding from a multinational software development organization, in which an

increase in the number of sites as well as geographic and temporal dispersion of

those sites was associated with a negative effect on software quality (Cataldo and

Nambiar 2009).

Practical illustration: A customer from North America contracted software development
to an outsourcing service provider represented by business analysts from North America
and a team of developers from Latvia. The project was challenged by a number of factors –
new domain, new technology, and new development methodology – many of which were
underestimated. When the software was delivered the customer was not satisfied and
required additional changes. The Latvian project manager was in need of adding more
developers to finalize the already late project as soon as possible. Unfortunately, the
company was short of staff locally and it was decided to contract work to three different
sites of the same company situated in Eastern Europe. Initial optimism faded away when
poorly controlled dependencies resulted in late deliveries. In fact, some of the remotely
developed components needed rework that caused additional effort for the onsite team.
Although the customer received what was requested and used the software at the end, the
project duration exceeded the plan 4 times and the total effort exceeded the budget by 77%.
It turned out to be an expensive lesson for the service provider not to distribute development
late in the project.

Based on an empirical study published in (Šmite and Gencel 2009).

Implication for Practice If you distribute development, aim for involving no

more than two locations. If, however, involving more than two locations, managers

shall account for nonlinear growth of complexity when adding new locations.

12 Distributed Project Management 309

12.2.4 Any Problem Can Be Fixed with the Right Toolset

The basic lesson learned in distributed projects indicates that remote teamwork

requires a special infrastructure. Furthermore, many offshoring enthusiasts would

claim that companies overcome any geographical obstacles with the right toolset

(Matloff 2005). However, technology is far from being sufficient in addressing the

challenges of distributed work and even the latest advances of telecommunications

tools would not help in replacing face-to-face collaboration (Matloff 2005). The

truth is that most of the problems in distributed development are human and not

technical. While tools are important to alleviate distributed projects, solutions for

most of the problems, however, relate to managing human interaction rather than

just providing the necessary equipment.

Distributed projects significantly depend on the soft skills of the team members.

Language skills, cultural awareness, and good communication skills are only a few

examples of what a distributed team member shall possess. These skills are

especially important for project managers who are often dealing with complexities

beyond administrative functions, such as unwillingness to cooperate, lack of trust

among the team members, alienation due to the lack of face-to-face interaction or

primarily asynchronous communication, cultural misfit, etc. (Piri et al. 2012; Moe

and Šmite 2008). Many of these issues have been also related to poor motivation

and thus performance (see Chap. 10). Project managers shall also understand that

many of the human factors are interrelated—some of the problems create signifi-

cant obstacles for overcoming other problems, and thus the exposure of the negative

consequences grows.

Practical illustration: A distributed project, in which a German company offshored
software development to Latvia, suffered from deficiencies in addressing the soft factors.
Although the technological infrastructure was well thought through, and the remote team
members used video-conferencing and instant messaging extensively, that appeared insuf-
ficient to establish the trusting relationship. The project experienced a chain of problems: a
lack of language skills, too little communication, a loss of quality in the information
exchanged, and misunderstandings. Diversity in the ways of working and socio-cultural
differences between the collaborating partners only worsened the situation. The German
team members did not fully trust the capabilities of the Latvian team, while the Latvian
team did not trust the good intentions of the German managers. This generated a negative
feedback loop. The Latvian team started to doubt negative feedback from the remote
managers. This initiated extensive monitoring from the German partner, which affected
the level of trust even more. There was a decrease in information exchange and feedback,
which resulted in team members being not updated about the progress and plans. This
atmosphere influenced the offshore team’s morale and productivity started to decrease,
driving the relationship to unavoidable conflicts.

Based on an empirical study published in (Moe and Šmite 2008).

Implication for Practice Project managers shall have an explicit early concern

with identifying and addressing the soft factors in the project to avoid or at least

substantially reduce their negative consequences. This includes recruiting

employees with experience from international projects, organizing cultural com-

munication courses, clarifying the rational for engagement in the distributed

310 D. Šmite

http://dx.doi.org/10.1007/978-3-642-55035-5_10

development, providing opportunities for rich communication and face-to-face

interaction, if possible, as well as fostering frequent feedback, knowledge, and

information exchange across the sites.

12.2.5 The Follow-the-Sun Approach Significantly Speeds
Up Development

One of potential drivers of distributed development is related to the willingness to

speed up development by leveraging time-zone effectiveness, also known as

around-the-clock or follow-the-sun development approach. Companies may split

the work across three locations to fit 3 working days in 24 h. This can be done in

different ways. A project may choose to distribute sequential tasks, in which the

work is forwarded from one location to the next at the end of the day. Alternatively,

a project may also organize different tasks in a sequence, such as development and

testing, or test case creation and test execution. Although in theory such develop-

ment approach promises three times faster delivery (considering there are three

sites involved), in practice, distributed development is less efficient than co-located

due to the communication and coordination overhead and significant delays due to

asynchronous working hours (Bhat et al. 2006; van Solingen and Valkema 2010). It

is not uncommon that one site is repeatedly undoing the work of the other (Matloff

2005). This means that the gains are not as large as expected.

Interestingly, a simulation of around-the-clock development effort distribution

for a different number of sites indicates that utilizing more than three sites is seen as

unlikely to reduce development time at all (Taweel and Brereton 2006). Similarly,

empirical findings from Intel, HP, and Fidelity suggest that the companies are not

benefitting from the follow-the-sun model, striving for more synchronous work

instead (Conchúir et al. 2009).

While attempts to speed up development through sequential handovers have

failed, testing and defect resolution cycles have demonstrated their effectiveness

(Conchúir et al. 2009; Matloff 2005).

Practical illustration: A large truly global project employed development teams from
Belarus, China, India, and Latvia with US-based project management. One of the goals
of the project was to follow-the-sun and continuously develop small software components.
Task specifications were developed by the project management site and then passed on to
the offshore sites to be completed within a day. This, however, soon proved to be a
challenging mission due to cross-site coordination problems and emerging management
bottleneck. Sequential work caused frictions and conflicts. Very often in the mornings
Latvian developers would look into the code and complain about their peers in India,
who have re-written their code pieces, and then start re-writing the same code according to
their understanding. Based on the lessons learned, the number of handovers was reduced,
and more responsibilities were shared.

Based on personal experience and experiences shared in (Carmel 1999).

12 Distributed Project Management 311

Implication for Practice The follow-the-sun approach is difficult to put into

practice. If applied to development tasks, this approach carries significant overhead

and will not likely save the time as expected. However, it might be applied to

dependent tasks, such as defect resolution and support. This will require mainte-

nance of a central repository, automation of knowledge transfer between the sites

and significant support for asynchronous communication, as well as careful pro-

gress monitoring.

12.2.6 Splitting the Work into Independent Chunks Helps
to Avoid Collaboration Problems and Improves
the Output

While many managers come to realize that neither follow-the-sun development nor

sharing the same code base is easy, they strive to minimize the dependencies by

splitting the work into independent chunks. Modularization seems like the silver

bullet for distributed development, in theory, as it promises to minimize the over-

head of communication and coordination, and therefore removes the necessity to

deal with collaboration problems, cultural misunderstandings, and alike. In prac-

tice, however, it works only for well-defined tasks with clear interfaces. Changing

requirements and complex dependencies between the modules risk to drive the

project into a big bang at the end of the project, when modules are to be integrated.

Integration problems emerge because software components are never truly inde-

pendent and even the best designs are never error-free, while changes are never

completely predictable (Herbsleb and Grinter 1999). These challenges can be

addressed by implementing continuous integration strategies and incremental

deliveries.

Contradictory, although too much communication and coordination is a burden,

too little may be equally bad. This is because interaction is necessary to hold the

remote sites and their outcomes together. Thus, managers shall be aware that strict

modularization between the sites may trigger unwanted outcomes, such as alien-

ation, ignorant implementation decisions, misplaced functionality, and redundant

work.

Practical illustration: A large and complex software development project distributed
between Swedish and Chinese locations of the same company went through an evolution
of ways of working by probing and adjusting different approaches. The necessity to
collaborate resulted from a decision to merge two mature products, which were previously
developed separately in two different locations. This decision was driven by the market
demands and resulted in very coupled work on a new, shared platform across the two
development locations. However, working on the same code base required significant
amount of communication and coordination, which slowed down the development and
made work inefficient. After struggling with developing and maintaining the shared com-
ponents for a year, ways to optimize the interfaces were sought. It was therefore decided to
implement a more decoupled way of working and strive for strict modularization in order to
improve quality and isolate the impact of faults. The new approach improved the situation,

312 D. Šmite

but introduced new challenges. While coordination needs decreased dramatically, the
importance of early decisions about allocation of common requirements increased.
Because of modularization common functionality started to cause difficulties due to split
responsibilities, differences in time pressure and delivery commitments. Architects believed
that some functionality were misplaced or occasionally missed due to the wrong assump-
tions caused by the enforced modularization.

Based on an empirical study, parts of which are published in (Šmite et al. 2013).

Implication for Practice Since modularization and joint work both have their

pros and cons, managers have to make trade-off decisions. When modularization is

considered, progress coordination and frequent knowledge exchange mechanisms

shall be implemented to avoid later integration problems, ignorant implementation

decisions, misplaced functionality, and redundant work.

12.2.7 Distributed Projects Cannot Be Agile

With the growing popularity of agile development, managers started practicing

hands-on interactive methods that focus on frequent meetings and feedback. Doc-

umentation in these projects is available primarily in the office space, such as

Kanban boards and burn-down charts. Success of agile development and, espe-

cially, the implementation of self-managing teams heavily rely on cohesiveness of

the team members and their abilities to collaborate, share the knowledge, and solve

problems effectively (see Chap. 11). This may be challenging for distributed and, in

particular, dispersed teams. Therefore, agile development and distributed develop-

ment are often viewed as two incompatible approaches. However, recent empirical

studies show that some elements of agile development are not only possible to

implement, but also appear to be useful for distributed and dispersed teams

(Holmström et al. 2006; Simons 2006).

Of course, it is hard to argue that distributed projects can be truly agile, in the

sense of strict adherence to particular agile methods, especially those demanding

co-location and close interaction. However, agility as a philosophy and spirit is not

necessarily contradicting with the distributed development environment. A collec-

tion of experiences with implementing agile methods in distributed development

gathered in Šmite et al. (2010) suggest finding ways to develop a sense of teameness

across locations, providing appropriate tools and technology that can facilitate this,

enabling face-to-face collaboration when needed, valuing cultural differences

instead of seeing them as a threat, enabling teams to deliver complete functionality

independent of localization, and acquiring skilled human resources at each location.

As agile “by the book” cannot work in distribute development, project managers

shall be prepared to tailor their agile processes to suit the distributed environment.

For example, empirical experiences suggest that pure agile development with little

or no documentation beyond the code is impractical and inefficient (Simons 2006).

One important enemy worth emphasizing in those distributed projects that target

offshore locations is a high turnover of the employees within the project, which can

12 Distributed Project Management 313

http://dx.doi.org/10.1007/978-3-642-55035-5_11

be evident only in the later stages of collaboration. Notably, managers often

underestimate attrition rates, when sourcing to countries with extensive

promotion-seeking behavior. While it is not a factor specific only to distributed

projects, the role of attrition can be devastating in distributed agile projects, which

heavily depend on high levels of cohesion, familiarity, and shared mental model of

the team members. To achieve cohesiveness, agile teams shall be stable. Instability

of the team members may prevent achieving the assumed benefits of agile software

development.

Implication for Practice Managers who consider implementing agile methods for

distributed development shall ensure opportunities for close synchronous interac-

tion and availability of appropriate technology to enable close collaboration across

the distance. Many methods and practices will require adjustments, which man-

agers shall prepare to implement. The role of employee turnover in distributed agile

projects shall not be underestimated. Managers shall foresee and minimize the risk

of instability when forming agile teams.

12.2.8 Standardizing Work Processes Will Help to Control
the Diversity

Managers in distributed development often rely on formalization and standardiza-

tion by selecting quality certified partners, developing detailed architectural designs

and plans, and establishing work common procedures and ways of working, as well

as assigning the tasks to local and remote team members. This is an intuitive answer

to a challenging situation, which distributed development surely is. Although many

offshoring destinations have made adherence to the highest standards of the Capa-

bility Maturity Model their marketing cornerstone, it is important to remember that

it is simply a project management tool and not a measure of software quality

(Matloff 2005). Furthermore, in contradiction to a common view that methodolog-

ical standardization helps (Carmel and Tjia 2005), in practice, management by

program in distributed development often does not work as intended (Šmite

et al. 2008; Matloff 2005). The reasons include disparities in work practices, limited

access to remote locations, reluctance to follow enforced procedures, and clashes

with the cultural and organizational habits. In fact, an industrial experience dem-

onstrated that the benefits of process maturity diminish as the development work

becomes more distributed (Cataldo and Nambiar 2009). In addition, lack of visi-

bility into remote locations may mean that the failing course of standardization

might even not be easy to reveal.

The fact that standardization may fail does not mean, however, that planning is

useless. It means that project managers shall approach formalization of the ways of

working carefully, considering the implications of diversity across locations. Dis-

tributed development can undoubtedly benefit to some extent from stable plans,

processes, and specifications; however, spontaneous communication invoked by the

314 D. Šmite

developers is essential (Herbsleb and Grinter 1999). It is also essential to acknowl-

edge the differences and not break the culture (work related or national). Managers

will succeed better by integrating the differences and capitalizing on the strengths

of diversity rather than forcing a single-site perspective. The changes also require

more than ensuring common process descriptions and project websites; people

across all location, shall be aware and committed to following the emerging ways

of working.

Practical illustration: The Latvian project manager from the on-shore in-sourcing project,
who supervised a dispersed team of software developers separated by 200 km, heavily
relied on standardization. The company followed a set of common processes and pro-
cedures from the ISO 9001:2000 certified quality management system. In addition, the
project manager established guidelines (project quality assurance plans, communication
plans, and different software development related process handling guidelines) and
expected everybody to follow them. Noteworthy, the project manager also assigned the
daily tasks to developers. During the course of the project, however, disparities in work
practices between the central and remote locations emerged. The remote team members did
not work according to the established processes. They worked cohesively as a self-
managing team, shifted their tasks and acted “as a joint body”. Since frequent feedback
was not encouraged, they also interpreted requirements without consulting the systems
analysts who worked remotely. This often resulted in making decisions without sufficient
information, and led to subsequent rework. While the remote team members perceived to
act in the best interest of the project, their cohesiveness and independence was not
appreciated, as it ruined the standardization program set by the project manager.

Based on an empirical study published in (Šmite et al. 2008).

Implication for Practice If common ways of working are expected, these shall

originate from a dialog, between all parties involved. Alternatively, the project

manager may rely on diverse approaches in each location following the principle

“whatever works”. Rotation of personnel across locations will help to create an

understanding and awareness of the differences, as well as the necessary solutions.

12.2.9 Distributing Development to Offshore Sites Saves
Costs

The vast majority of software companies start distributed development assuming

that it will help to reduce development costs (often by contracting work offshore).

This is usually motivated by the significant salary differences in different locations.

However, attempts to understand the reliability of economic expectations lead to a

conclusion that opinions about the realization of cost savings vary (Šmite and

Wohlin 2011). Some studies claim achievement of significant cost savings through

offshoring, while others suggest that the cost savings are much lower than expected

or even hard to achieve. What companies rarely realize is that the salary differences

and thus potential cost savings are often achieved by staffing projects with young,

inexperienced programmers (Matloff 2005). In fact, an analysis of different staff

distributions revealed that the strategies with the best potential for profitability were

12 Distributed Project Management 315

among the worst for both quality and productivity (Ramasubbu et al. 2011).

Accordingly, it is not surprising that the achievement of cost savings is often

attributed to very basic projects, such as software testing (Poikolainen and

Paananen 2007), while complex software development projects are often associated

with the losses [e.g., Poikolainen and Paananen (2007)].

As noted earlier, distributed development is considerably more complex than

co-located projects, and making it work requires substantial additional investments.

The economic benefits might thus be offset by these additional costs stemming from

managerial overhead and high turnover, decreased productivity, and integration

challenges. Many of the initial extra offshore costs decrease over time (Carmel and

Tjia 2005). However, in case of receiving poor quality software delivered by the

vendors, the calculation of cost savings becomes obsolete. These challenges sug-

gest that distributed development shall not be done for cost-reduction reasons alone.

Practical illustration: Three small and medium sized Scandinavian companies decided to
achieve cost savings through outsourcing to software vendors in Asian countries, where
salary differences are significant. However, due to a chain of negative events and expensive
failures all collaborations were ultimately cancelled. All Scandinavian companies started
outsourcing with no prior experience with offshoring. All companies started small by
outsourcing minor although complex work tasks to large software vendors. Some projects
employed dispersed teams, others worked with distributed teams, but all experienced
problems with the quality of the delivered software and inefficiency of the distributed
work. While one of the companies terminated the contract after the first year of unsuccess-
ful collaboration, two other companies tried to implement different improvements, includ-
ing onsite training sessions and exchange visits. However, due to a high turnover of the
offshore employees, the necessary level of experience and expertise were never achieved,
and collaborations were terminated. Interestingly, all three companies later attempted
offshoring collaborations again, but with a different strategy.

Based on an empirical study published in (Moe et al. 2012).

It is noteworthy that there are other than cost-related reasons for distributed

development. These include search for unique experience and expertise, which is

not available in-house, entrusting product customizations to developers that know

the market best, and bidding for larger projects or scaling up development with the

help of others when it is impossible solely in-house. These targeted benefits can

compensate the inconvenience of working on a distance, as well as the additional

costs necessary to making distributed development work.

Implication for Practice Managers shall not expect cost reductions that are

implied by the salary differences and shall account for various extra costs of

distributing software development and investments necessary to make it work.

316 D. Šmite

12.2.10 Distributed Development Shall Be Avoided, as All
Distributed Projects Are Complex, Inefficient,
and Unsuccessful

While distributed projects are often more complex than even the most complex

co-located projects, distributed development shall not necessarily lead to failure.

However, to make it work, project managers shall be prepared to make the above-

mentioned investments into technical infrastructure, rich communication and face-

to-face interaction, knowledge and information exchange, and so on.

The research in the area of distributed development cannot undoubtedly point to

particular project types that are likely to be successful or unsuccessful. However,

several observations exist. For example, prior knowledge, experience, and famil-

iarity of the team members have a strong positive effect on the cooperation

(Espinosa et al. 2001). Successful distributed projects and large cost savings are

associated with well-defined processes that are performed already before offshoring

started, and which require little control (see Chap. 9). Complexity, size, necessity

for domain knowledge, ability to define independent tasks, etc. also play an

important role in determining the likelihood of success. Large, complex, and

interdependent tasks are not advised for distribution (Herbsleb and Grinter 1999).

In summary, distributed development strategies shall take into account what to

develop where and how. For example, an innovation project that requires frequent

interaction of the software developers might not be suitable for collaboration

between far off locations, but could work when being organized nearshore, where

time zone overlap is not critical and traveling distance is easy to overcome. At the

same time, offshoring of innovation-demanding projects to countries in which

educational systems stifle creativity and independent thinking might not be the

best option (Matloff 2005). Experience shows that keeping the high-level design

onsite and distributing implementation to offshore teams is not a solution either

since innovative ideas often come from programmers while they are working

(Matloff 2005).

Practical illustration: All three small and medium sized Scandinavian companies from the
previous practical illustration have created successful collaborations after failing in their
first attempts with offshore outsourcing. Instead of outsourcing software development to
large software vendors in Asia, two of the three companies decided to insource to Russia by
focusing on availability of the needed competence, geographic, temporal and cultural
proximity. The third company decided to utilize an existing location and insourced to
China by focusing on proximity to customers. All the three companies approached their
new relationships differently. Managers setting up collaborations proactively invested into
the integration of the remote sites into a common corporate culture, hiring people with the
right competences, moving experts to the new site for knowledge exchange, and engaging
developers at remote locations in challenging tasks with responsibility. All companies
succeeded in maintaining control over recruitment, training and commitment, which
were the problems experienced in the previously failed collaborations. This had a positive
impact on the overall collaboration and even though some challenges still existed, the
companies could address them more effectively.

Based on an empirical study published in (Moe et al. 2012).

12 Distributed Project Management 317

http://dx.doi.org/10.1007/978-3-642-55035-5_9

Implication for Practice Success in distributed development demands early con-

cern and investments. Project managers shall be aware of particular factors threat-

ening collaborations and unfavorable combinations of location-related and project-

related characteristics. Mature distributed collaborations might function better than

initial collaborations because accumulated experience of the project manager and

the teams are important to overcome the challenges of working distributedly.

12.3 Conclusions

The ten misconceptions in distributed project management discussed in this chapter

intend to highlight the main areas of concern and equip project managers with

awareness about what to do and what not to do. The topics here cover a variety of

common project management responsibilities, while the practices and implications

illustrate that traditional approaches may not work as intended. The challenges of

working across geographic, temporal, and cultural distances increase the manage-

rial complexity related to communication, coordination, and control. More often

than not these challenges cause ripple effects and snowball effects that are not

always foreseen by the project managers in the beginning of the project. In this way,

for example, confusion caused by delays in communication that arise from temporal

distance and asynchronous work might be amplified by cultural peculiarities related

to preferable communication patterns and approaches to problem resolution.

Based on the ten misconceptions, the following ten conclusions can be drawn:

1. Management of distributed development projects requires new skills and

approaches, often distinct from those applied in traditional co-located devel-

opment projects.

2. Distributed development projects are not the same; they have different flavors,

as the distributed setups are very diverse. Therefore, experiences from a single

project or a setup may not be sufficient or even applicable in a different project.

3. The number of sites participating in a distributed project matters greatly as the

level of complexity has a nonlinear growth when adding new development

locations.

4. Implementing better or more tools cannot fix most of the challenges in distrib-

uted development as their nature is related to managing soft factors.

5. Follow-the-sun approach is very risky and often fails to work for development

tasks; therefore, increase in development speed is never as large as expected.

6. Modularization of the work decreases communication and coordination over-

head however, increases the risks of integration failure, ignorant implementa-

tion decisions, misplaced functionality, and redundant work.

7. Distributed projects can never be agile in its true sense however, an agile spirit

and philosophy are useful to address many challenges with distributed

development.

318 D. Šmite

8. Standardization of work processes rarely works as intended due to diversity and

preferred ways of working.

9. Cost savings from distributed development are not as large as the salary

differences suggest due to additional overheads and hidden costs.

10. Distributed development can be successful if chosen as a strategic necessity,

but managers shall be prepared to invest into making it work.

References

Allen TJ (1977) Managing the flow of technology. MIT Press, Cambridge, MA

Bhat JM, Gupta M, Murthy SN (2006) Overcoming requirements engineering challenges: lessons

from offshore outsourcing. IEEE Softw 23(5):38–44

Carmel E (1999) Global software teams: collaborating across borders and time zones. Prentice

Hall PTR, Upper Saddle River, NJ

Carmel E, Tjia P (2005) Offshoring information technology: sourcing and outsourcing to a global

workforce. Cambridge University Press, Cambridge

Cataldo M, Nambiar S (2009) On the relationship between process maturity and geographic

distribution: an empirical analysis of their impact on software quality. In: Proceedings of the

7th joint meeting of the European software engineering conference and the ACM SIGSOFT

symposium on the Foundations of Software Engineering (ESEC/FSE), pp 101–110

Conchúir EÓ, Ågerfalk PJ, Holmström H, Fitzgerald B (2009) Global software development:

where are the benefits? Commun ACM 52(8):127–131

DeLone W, Espinosa JA, Lee G, Carmel E (2005) Bridging global boundaries for IS project

success. In: Proceedings of the 38th annual Hawaii international conference on systems

sciences (HICSS), pp 48b

Espinosa J, Kraut R, Slaughter S, Lerch J, Herbsleb JD, Mockus A (2001) Shared mental models,

familiarity and coordination: a multi-method study of distributed software teams. In: Pro-

ceedings of the international conference in information systems (ICSE), pp 425–433

Heeks R, Krishna S, Nicholson B, Sahay S (2001) Synching or sinking: global software

out-sourcing relationships. IEEE Softw 18(2):54–60

Herbsleb JD, Grinter RE (1999) Splitting the organization and integrating the code: conway’s law

revisited. In: Proceedings of the 21st international conference on software engineering (ICSE),

pp 85–95

Holmström H, Fitzgerald B, Ågerfalk PJ, Conchúir EÓ (2006) Agile practices reduce distance in

global software development. Inf Syst Manag 23(3):7–18

Lings B, Lundell B, Ågerfalk PJ, Fitzgerald B (2007) A reference model for successful distribute

development of software systems. In: Proceedings of the 2nd international conference on

global software engineering (ICGSE), pp 130–139

Matloff N (2005) Offshoring: what can go wrong? IT Prof 7(4):39–45

Moe NB, Šmite D (2008) Understanding a lack of trust in Global Software Teams: a multiple-case

study. J Softw Process Improv Pract 13(3):217–231

Moe NB, Šmite D, Hanssen GK (2012) From offshore outsourcing to offshore insourcing: three

stories. In: Proceedings of the 7th international conference on Global Software Engineering

(ICGSE), pp 1–10

Parnas D (2006) Agile methods and GSD: the wrong solution to an old but real problem. Commun

ACM 49(10):26–34

Piri A, Niinim T, Lassenius C (2012) Fear and distrust in global software engineering projects. J

Softw Maint Evol Res Pract 24(2):185–205

12 Distributed Project Management 319

Poikolainen T, Paananen J (2007) Performance criteria in inter-organizational global software

development projects. In: Proceedings of the 2nd international conference on global software

engineering (ICGSE), pp 60–70

Ramasubbu N, Cataldo M, Balan RK, Herbsleb JD (2011) Configuring Global Software Teams: a

multi-company analysis of project productivity, quality, and profits. In: Proceedings of the 33rd

international conference on software engineering (ICSE), pp 261–270

Simons M (2006) Global software development: a hard problem requiring a host of solutions.

Commun ACM 49(10):32–33

Šmite D, Gencel C (2009) Why a CMMI Level 5 company fails to meet the deadlines? In:

Proceedings of the international conference on product-focused software development and

process improvement, pp 87–95

Šmite D, Moe NB, Torkar R (2008) Pitfalls in remote team coordination: lessons learned from a

case study. In: Proceedings of product-focused software development and process improve-

ment conference (PROFES), LNCS, pp 345–359

Šmite D, Wohlin C (2011) A whisper of evidence in global software engineering. IEEE Softw 28

(4):15–18

Šmite D, Moe NB, Ågerfalk PJ (2010) Agility across time and space: making agile distributed

development a success, 1st edn. Springer, Heidelberg

Šmite D, Wohlin C, Aurum A, Jabangwe R, Numminen E (2013) Offshore insourcing in software

development: structuring the decision-making process. J Syst Softw 86(4):1054–1067

Šmite D, Wohlin C, Galviņa Z, Prikladnicki R (2014) An empirically based terminology

and taxonomy for global software engineering. J Empir Softw Eng 19:105–153.

doi:10.1007/s10664-012-9217-9

Taweel A, Brereton P (2006) Modelling software development across time zones. Inf Softw

Technol 48(1):1–11

Van Solingen R, Valkema M (2010) The impact of number of sites in a follow the sun setting on

the actual and perceived working speed and accuracy: a controlled experiment. In: Proceedings

of the 5th IEEE international conference on global software engineering (ICGSE), pp 165–174

Biography Darja Šmite is an Associate Professor of Software Engineering at

Blekinge Institute of Technology in Sweden and a part time Professor in the

University of Latvia. Her major research interests are related to global software

development. Experiences discussed in this book chapter are based on her research

observations collected from a variety of onshoring and offshoring projects in

Latvia, Sweden, Norway, Russia, India and China. Prior to her academic career,

Šmite has worked in industry.

320 D. Šmite

http://dx.doi.org/10.1007/s10664-012-9217-9

Chapter 13

Management and Coordination of Free/Open

Source Projects

Ioannis Stamelos

Abstract Developing software in the free/open source software (F/OSS) way is

fundamentally different from the conventional, closed, team-based, single-owner

software project. As a consequence, managing a F/OSS project is done in a quite

different way, emphasizing on people and community coordination and organiza-

tion. Management organization may take extremely distant forms: absolute mon-

archies, oligarchies, or open source democracies, with community members voting

to decide project evolution. On the other hand, not all F/OSS projects are based on

pure voluntarism. Many such projects are sponsored by firms and are managed in

their own way. In addition, certain extreme project transformations, such as

forking, occur frequently in F/OSS. Human resource management (e.g., team

building) and decision making (e.g., project cancellation) are also done in a

completely different way. This chapter focuses on how human resource manage-

ment and project organization are handled in F/OSS today. On the other hand, there

are several areas in which, given enough research and experimentation, new tools

may be provided to assist informed, successful F/OSS management, aiming to help

both experienced and novice F/OSS coordinators. The chapter attempts to foresee

how measurement, simulation, and antipattern techniques might help F/OSS man-

agers in the future.

I. Stamelos (*)

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

e-mail: stamelos@csd.auth.gr

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_13, © Springer-Verlag Berlin Heidelberg 2014

321

mailto:stamelos@csd.auth.gr

13.1 Introduction

Free/open source software development has grown to become a paradigm for

producing numerous software applications in all domains, often with higher or

comparable quality than the traditional, closed source way (e.g., in Coverity 2013 it

is reported that at least for small projects F/OSS exhibits superior quality). F/OSS

basically provides software users with three freedoms: freedom to inspect the code,

freedom to redistribute the code, and freedom to modify the code (Free Software

Foundation1 Open Source Initiative).2 Such freedoms are ruled by the distribution

license under which the code is released. F/OSS has produced highly successful

software items, such as the LINUX operating system, the Apache Web Server,

MySQL, LibreOffice, and so forth. Today, hundreds of thousands of F/OSS projects

exist, residing either on individual web sites or on forges, such as SourceForge 3 or

GitHub.4 SourceForge alone hosted over 300,000 projects in May 2013.5 F/OSS has

affected traditional software development a lot. The reader may refer to Chap. 13

for a comprehensive analysis of how F/OSS development practices may help

software companies develop their own code.

On the other hand, many of the F/OSS projects are dead projects, that either have

never really started or have seized attracting any interest. There is much hype and

many pitfalls in the realm of F/OSS, and disciplines such as project evaluation and

assessment are of paramount importance.

Code openness dictates that the development process be fundamentally different

from the closed source paradigm. Moreover, F/OSS conveys both strong ideolog-

ical components, such as the lack of copyright rules and free circulation of digital

information (Sandred 2002), and unique business models at the same time.

As mentioned in Chap. 1, management is about planning, organizing, leading,

staffing, and controlling of projects. F/OSS management is concerned with similar

activities. Because of the unique F/OSS project nature, successfully managing a

F/OSS project involves different and new challenges, disciplines, problems, tools,

and techniques. However, F/OSS management has attracted little attention from

researchers and book authors up to now compared to the extent of the closed source

management literature.

The operational context of F/OSS projects is quite complicated. For example,

not all F/OSS projects are initiated by individual programmers, as is commonly

thought, or based on pure voluntarism. Many F/OSS projects are initiated and/or

sponsored by firms and are managed in their own way (Capra et al. 2011). Hundreds

of F/OSS projects are initiated or even hosted by public entities,6 sometimes quite

1 http://www.fsf.org/.
2 http://opensource.org/.
3 http://sourceforge.net/.
4 https://github.com/.
5 http://sourceforge.net/apps/trac/sourceforge/wiki/What%20is%20SourceForge.net.
6 http://joinup.ec.europa.eu/, EU open source reuse repository for public administrations.

322 I. Stamelos

http://dx.doi.org/10.1007/978-3-642-55035-5_13
http://dx.doi.org/10.1007/978-3-642-55035-5_1
http://www.fsf.org/
http://opensource.org/
http://sourceforge.net/
https://github.com/
http://sourceforge.net/apps/trac/sourceforge/wiki/What%20is%20SourceForge.net
http://joinup.ec.europa.eu/

unexpectedly.7 In addition, certain extreme project transformations, such as

forking, occur frequently in open source. Forking in F/OSS occurs when part of a

project community continues code development in an independent way, while the

original project keeps on. Forking leads to a new project and a new software

product. One recent event that has attracted a lot of interest is the forking of

LibreOffice from the original OpenOffice project due to the acquisition of SUN,

former OpenOffice owner, by ORACLE.

In F/OSS, management organization may take extremely distant forms; one may

encounter monarchies, oligarchies, and democracies in F/OSS style, with commu-

nity members voting to decide upon project evolution. Certain projects exhibit

unique features. An example of a unique project structure in open source is the

concept of project incubation, practiced by the Apache Software Foundation (ASF).

Once the project is created, it goes through a phase in which the project is

consolidated in several ways: a self-sustainable community is built, licensing is

handled to adhere to ASF legal requirements, code is refactored, etc. When all these

issues are set, the project becomes a regular ASF project.

Human resource management is also done in a completely different way. As an

example, consider team building, an essential conventional software project man-

agement task. In F/OSS, team building is strongly related to attraction and recruit-

ment of volunteers (rather than interviewing and hiring newcomers), maintaining

their interest in the project and providing a motivating, rewarding, and socially

pleasant development/use environment (see also Chap. 10). F/OSS coordinator

fame, visibility, and recognition by the F/OSS communities are of paramount

importance for attracting participants. Anecdotal evidence suggests that recovering

“lost” contributors is another non-conventional human resource-related activity.

Decision making in F/OSS poses problems that are unique, such as the assessment

of the project status and its chances to continue successfully its trajectory in the

F/OSS ecosystem.

Management needs its own computer tools and, as one might expect, F/OSS has

produced several project management software tools, supporting typical manage-

ment activities such as project scheduling. However, there is a lack of project

management tools that are able to address the coordination and management

activities and problems that are specific to F/OSS and that are discussed in the

following.

The chapter briefly reviews the basic differences between the two development

approaches and provides answers, such as what is a F/OSS schedule or what and

how human resources are used in open source projects. It then proceeds with the

review of the basic differences in the problems with which management is faced in

F/OSS and of the relevant management activities. F/OSS management organiza-

tional structures, decision making, resource allocation, and management tools are

some of the management issues that will be detailed and analyzed. A case study is

presented, showing how F/OSS concepts may be combined with good industrial

7 http://brlcad.org/, advertised by U.S. Army as the world’s oldest open source software.

13 Management and Coordination of Free/Open Source Projects 323

http://dx.doi.org/10.1007/978-3-642-55035-5_10
http://brlcad.org/

practices. Furthermore, good practices for project documentation, measurement,

and reuse that might be easily adopted in F/OSS are examined. The last part of the

chapter examines more challenging areas in which F/OSS management might

benefit from future research outcomes. Such areas include antipatterns, project

evolution forecast, and success assessment. Finally, the need for special education

F/OSS management resources is anticipated.

13.1.1 Differences Between Free/Open Source Projects
and Conventional Projects

We need to understand the diverse nature of F/OSS compared with closed source in

order to assess their differences in terms of management. On the other hand, there

are certain important similarities between F/OSS and agile projects. Some major

F/OSS—closed source differences, directly affecting the way F/OSS is managed,

are as follows

• F/OSS projects are not triggered by a specific customer request. They are

initiated by a so-called “personal itch” (Raymond 1999). In the case of hybrid
projects, they are initiated by a company business plan that tries to explore the

benefits of software development by F/OSS communities (Sharma et al. 2002).

• F/OSS processes are fundamentally different from typical closed source life

cycle models, such as the waterfall or spiral model. A typical development

process is composed of an eternally perpetuated commit—debug—release

cycle. Abrupt changes in the codebase may also occur because of code dona-

tions, cancellation of large code chunks, refactoring, etc.

• There is no such thing as a detailed baseline budget or schedule. Few projects

have specific time schedules and task assignments (e.g., FreeBSD8). Informal

time plans, by setting project milestones in terms of new features to be

implemented, may be agreed (see the case study presented later in the chapter),

but you should not expect any Gantt diagrams. Pursuing of project goals is less

strict, and such time plans are mostly used to monitor progress and may be easily

modified if milestones are not achieved. F/OSS projects evolve according to

individual commits of code and other artifacts, such as translations, depending

on the personal agendas of the community members. As such, they cannot

typically be foreseen or anticipated in a systematic way. F/OSS projects appear

to evolve as phenomena or events occur in natural ecosystems (Thomas and

Hunt 2004).

• In most cases, there is no remuneration for participating in a F/OSS project. This

is not always the case as there are many F/OSS programmers that are paid by a

8 http://www.freebsd.org/.

324 I. Stamelos

http://www.freebsd.org/

company that is somehow interested in the project, or paid to add a specific

functionality (Capra et al. 2011).

• As a consequence of the voluntary participation, there is no personnel hiring.

F/OSS project participants are attracted by the name of the coordinator, often a

software guru, or potential contributors find the project by browsing and

searching the Internet, or maybe are invited to contribute (Antoniades

et al. 2002).

• Formal project management practices, such as formal risk analysis and planning,

or formal quality reviews, are rarely adopted. However, F/OSS projects progress

and often achieve admirable results without them (Aberdour 2007). Certain

informal quality assurance activities, such as code inspection or refactoring,

are done on a daily basis and greatly contribute to the health of technically

successful F/OSS systems.

• Project personnel roles may also differ drastically. Participant roles are not

always clearly defined, and often any community member is more or less

expected to contribute in any way he9 can (Michlmayr 2004). One striking fact

is that not even the roles of user and developer are distinguished; very often

developers are also users of the F/OSS application. A F/OSS project often starts

because of the need of a user who becomes developer (Raymond 1999). Even the

role of the coordinator is blurred; many projects have a team of peer coordina-

tors. However, in well-organized F/OSS projects, specific roles may be clearly

assigned to participants.

• As a consequence of the flexible way the projects are managed, decision making

is not monolithic, and often all community members may have a say on the

direction the project should take. The project overall organization (i.e., the

structure of authority, along with division of labor and decentralization mecha-

nisms (Wynn 2003) dictates the exact way decisions are made.

• Project release intensity is another issue: A famous saying about F/OSS is

“release early, release often” (Raymond 1999). Iteration and phased develop-

ment are considered important in closed source as well10 however, releasing in

F/OSS is much more intensive.

• Unique management decisions: F/OSS managers need to make decisions that are

unique in the software world. For example, they need to assess ideas for new

features (see the case study later in the chapter) or assess multiple code commits

that provide identical functionality to the project and choose one of them to

include in the codebase (as may happen in the LifeRay project11). Or they have

to face extreme project situations, such as project forking and community

splitting.

9Male managers in FLOSS are an order of a magnitude more common, thus we use from now on.
10 This is evident if we look at many widely known traditional process models, such as the Rational

Unified Process or Boehm’s spiral model.
11 LifeRay Inc. chooses what features proposed by the community to develop, but encourages

developers to do the same see http://www.liferay.com/community/ideas.

13 Management and Coordination of Free/Open Source Projects 325

http://www.liferay.com/community/ideas

The above hold in most F/OSS cases; given the multitude of F/OSS projects, the

reader should expect that exceptions are commonly found. Several F/OSS projects

may exhibit management practices that remind a lot of those exercised by tradi-

tional project management. In addition, there are similarities with global software

development projects (Chaps. 9, 10, and 12), such as distributed software develop-

ment, and team communication and work split issues.

13.1.2 Similarities Between Free/Open Source Projects
and Agile Projects

On the contrary, there are several similarities with agile project management (see

also Chap. 11). Agility in software is trying to avoid the pitfalls of bulk, bureau-

cratic software development.12 In doing so, agile practitioners propose agile project

management approaches. Agile projects are closer to F/OSS projects, and there are

certain similarities that are fairly easy to spot. For example, by looking at the

principles of agile methods, one may observe the similarities with F/OSS

development:

• Customer involvement in F/OSS is achieved by having mixed user and devel-

oper communities.

• Incremental delivery is achieved in F/OSS through frequent releasing.

• Focus in both cases is on people and not on processes.

• Change is natural and embraced in F/OSS (subject to community consensus).

• Self-organized teams are a characteristic of both agile and F/OSS paradigms.

By looking at the 12 practices of eXtreme Programming (XP, Beck 1999), we

may actually spot additional F/OSS practices. XP favors small releases in order to

allow immediate use of any new functionality added, just as Raymond suggests, in

order to tighten the interaction loop between F/OSS developers and users and foster

feedback from the community (Raymond 1999). XP also pursues simple design,
avoiding complicated upfront architecture designs. This is often observed in F/OSS,

where software architecture is not always documented, and development often

proceeds with small ad hoc additions to the existing design. Refactoring is also

common to both XP and F/OSS: as an example, an empirical study revealed that

seven F/OSS Java programs had been subject to refactoring, although code changes

were found to be rather small (Advani et al. 2005). Collective ownership in XP is a

straightforward concept for F/OSS and continuous integration is a direct result of

the “release early, release often” principle. The sustainable pace XP practice is

easily achieved by F/OSS due to the volunteering nature of participation and the

loose time schedules. Finally, one can draw analogies between the on-site customer
XP practice and the availability of a community of users in F/OSS. F/OSS users are

12 http://www.agilemanifesto.org/.

326 I. Stamelos

http://dx.doi.org/10.1007/978-3-642-55035-5_9
http://dx.doi.org/10.1007/978-3-642-55035-5_10
http://dx.doi.org/10.1007/978-3-642-55035-5_12
http://dx.doi.org/10.1007/978-3-642-55035-5_11
http://www.agilemanifesto.org/

not physically present when code is shaped by the developers, but are actively

involved in the whole process. Absence of physical presence is counterbalanced by

their numbers and interest in the project.

As a consequence, we may come to the conjecture that agile and F/OSS project

management have several things to share. Not everything, however, is different

when compared to closed source management. For example, task definition, prior-

itization, and task allocation to resources are everyday activities for F/OSS man-

agers as well. Task definition may stem from feature requests or wish list items by

the community or by the F/OSS manager himself. F/OSS managers, supported by

defect tracking software (e.g., Bugzilla),13 may determine bug severity levels, and

decide bug fixing prioritization and successive assignment to community members.

13.2 F/OSS Management

Taking into account the above discussion, a manager/coordinator of a F/OSS

project needs to address several management challenges in new ways. In particular,

F/OSS nature demands ad hoc project organization and human resource manage-

ment, while there is a multitude of “everyday” issues that must be handled effi-

ciently. F/OSS managers have an increased role in the technical aspects of the

project and are more heavily involved in programming issues and in project

mundane tasks. We next focus on management organization and human resource

issue handling.

13.2.1 Open Source Management Organization

Several different forms of F/OSS project organization (or governance) are possible,
ranging from single project ownership to democratic—heavily based on voting—

project organizations. Intermediate, meritocratic project organizations are also

common. A known example for the former type is the flagship of F/OSS, the

Linux Kernel project, that is managed (and named after) by its initiator, Linus

Torvalds. However, although Linus and a number of close collaborators decide

which patches and code commits will be adopted in the project, the numerous

contributors of the project are not directly controlled by them, and participation is

voluntary or guided by interested companies. One may note that there is some

similarity with the Product Owner role in SCRUM (see Chap. 11). On the other

hand, one example of democracy-like organization is the Debian project.14 This

13 https://bugzilla.mozilla.org/.
14 http://www.debian.org/vote/.

13 Management and Coordination of Free/Open Source Projects 327

http://dx.doi.org/10.1007/978-3-642-55035-5_11
https://bugzilla.mozilla.org/
http://www.debian.org/vote/

project has its own software for voting, and each year the project leader is elected

through a complex voting system.

To obtain an idea of intermediate approaches, let us consider the way the Apache

project people describe their own project organization: “The Apache projects are

managed using a collaborative, consensus-based process. We do not have a hierar-

chical structure. Rather, different groups of contributors have different rights and

responsibilities in the organization.”15 The Apache organization defines this project

organization as a meritocracy.
The Apache project is also a good example of another interesting organizational

concept, namely, F/OSS incubation, similar to the idea of start-up company incu-

bators. Existing F/OSS projects that wish to become Apache projects first enter an

incubation, preparatory stage, where technical and organizational issues are settled,

and then become full-fledged Apache projects.16 Projects are ensured to adhere to

the Apache meritocracy and legal rules, and their communities are developed. One

striking recent example is the OpenOffice project17 donated to ASF by Oracle, after

the acquisition of SUN.

Shifting from one organization model to another is not uncommon, and it is a

milestone event for any F/OSS project. For example, in 2003 Mozilla moved from a

totally free contribution model to a rather rigorously controlled model (Holck and

Jørgensen 2005).

F/OSS managers can be individuals or project management committees. In the

following, we use the term “F/OSS manager” for both cases. Nevertheless, the

project organization influences all management-related issues that are discussed in

the following sub-sections.

13.2.2 Open Source Human Resource Management

It is widely acknowledged that the human factor plays an ever increasing role in

software development (IST 2014). F/OSS is no exception to this fact, and probably

the human nature plays an even more crucial role here, because of the inherent

liberalism, the ideological background, and the voluntary participation (Sandred

2002).

The first issue to resolve is to define who is the manager of the project. Typically,

if one starts his own project he becomes the leader. Often, project initiators abandon

their project (this is probably a bad sign itself) and someone else takes their place.

As we have seen, managers may also be elected by the community or the developers

alone. As in closed source, managers need not be the best developers, rather they

must be the best leaders, those who believe in the project and are capable to

15 http://www.apache.org/foundation/how-it-works.html#meritocracy.
16 http://incubator.apache.org/.
17 http://www.openoffice.org/.

328 I. Stamelos

http://www.apache.org/foundation/how-it-works.html#meritocracy
http://incubator.apache.org/
http://www.openoffice.org/

handling and resolving community issues. Nevertheless, very often in F/OSS

development the managers are very good developers.

A F/OSS manager needs to create a healthy community around his project at the

beginning. In later phases, he needs to enlarge/maintain the community. Attracting/

retaining people in the project is therefore of paramount importance. F/OSS man-

agers need to leverage the salient differences between their project and other

projects, either F/OSS or closed, by exploiting any communication channels avail-

able, such as the project web-site, chatting, discussion lists and forums, and the

project documentation. Recruiting may involve contacting individually prospective

community members and convincing them to participate. Open calls for contribu-

tors of all kinds are also common.

Once attracted and fetched into the project, new entries must be encouraged and

their interest maintained. One successful mechanism, practiced by many renowned

projects, such as the Apache18 and FreeBSD,19 is mentoring. Newcomers are

guided by appointed experienced members to accomplish tasks that are requested

by the project. This is no easy match; mentees are typically asked to dedicate

enough time and efforts to fulfill the expectations of both the project and their

mentor.

Project support mechanisms also attract people. A project with no FAQ list or

discussion forum is not attractive since newcomers cannot find the information that

would lead them to successfully enter the project. Another project aspect that

attracts new participants is the structural quality the code and the amount of

comments in it. Bad, hard to understand code will hardly generate a thriving

community around it. One critical task for releasing F/OSS code on the Internet

is to refactor it and improve its overall appearance.

Not all community members are active in the project. A large part of them is

lurking, i.e., they observe project developments, read forum posts, download new

versions, but do not actively participate. Motivating and mobilizing lurkers is

important for managers in order to reinforce and revive their projects, by recruiting

invaluable resources to ensure sustainability and project evolution.

Free participation and liberalism in F/OSS has its own cost. A frequent obser-

vation is that weird, often anonymous people, hidden behind an e-mail address or a

nickname, pester serious F/OSS projects in various ways. Flame wars is another
common phenomenon; they may take the form of hostile interaction between two

community members that disagree on whatever issue has arisen, or they may spread

widely and involve entire communities. A recent such event is the user reactions

against Ubuntu’s Unity desktop,20 caused by rapid changes in desktop user inter-

faces in the past couple of years. Although “flame wars” may be an inappropriate

term for all cases, fighting and lively argumentation over various F/OSS issues on

the Internet is extremely common. F/OSS managers need to handle annoying

18 http://community.apache.org/mentoringprogramme.html.
19 http://www.freebsd.org/projects/summerofcode.html.
20 http://www.ubuntu.com/.

13 Management and Coordination of Free/Open Source Projects 329

http://community.apache.org/mentoringprogramme.html
http://www.freebsd.org/projects/summerofcode.html
http://www.ubuntu.com/

interventions in their projects and mitigate disagreement among community mem-

bers to ensure smooth project evolution, without altering the free expression of

personal opinions that has helped so much F/OSS grow up to its current dimensions.

13.2.3 A F/OSS Project Case Study: Plone

This subsection provides a brief account of one F/OSS project, namely Plone,21

focusing on management/governance issues. Plone is a popular content manage-

ment system, built upon the Zope22 application server. It is owned by the Plone
Foundation, a not-for-profit organization. Plone Foundation members are commu-

nity members that have contributed significantly to the project. It is run by an

elected board of directors. There are committees that examine membership appli-

cations or deal with intellectual property and licensing issues.

The project is supported by more than 300 solution providers in 57 countries

(data retrieved from Plone Website as of September 2013). The project started in

2001 and is particularly active, with a thematic conference organized yearly

(a common characteristic of large and successful F/OSS projects).

Plone development base is organized around a group of core developers and a

large group of “peripheral” users. Developers enter and exit this core group

according to their personal commitments and careers (Aspeli 2005). Their number

has grown to more than 300 currently. The user community is very lively and

supported by several mailing lists. However, the bugs they report are fixed mostly

by the core developers because of the complexity of the software (in other F/OSS

cases, users often fix the bugs they discover).

Decision making is consensus-based. Initially, whenever necessary, decisions

were forced by prominent members of the community. This was tolerated by the

community because they still had the feeling that their opinion counted (Aspeli

2005). Because this governance form might not work well as the community

continued to grow constantly, the project moved to a team-based structure,

assigning specific responsibilities to several different members, as described later.

The release process of Plone is rather interesting: it is time-based, aiming to

produce releases “of predictable size and complexity”. The PLIP process is

followed, with a 6-month fixed release cycle, a release strategy that is common in

large software organizations but not in F/OSS. Within the 6-month release period,

there is a “feature freeze” interval of 4 months to increase system stability. As a

consequence, non-timely code commits may wait for several months before getting

incorporated in a new release. Minor and major milestones and releases are planned

and monitored in the Plone roadmap, including information for accepted and

21 http://plone.org/.
22 http://www.zope.org/.

330 I. Stamelos

http://plone.org/
http://www.zope.org/

rejected features. A ticketing system is used to keep track of the several features

involved.

Two major roles in their release process are the release manager and the frame-

work team. The release manager coordinates a series of releases and is appointed by

the Plone Foundation board. He has the authority to make final decisions about the

releases he is in charge of. The framework team supports the release manager by

inspecting and reviewing candidate features. When a new feature is approved, a

member of the framework team is appointed as champion of the feature and works

with the community member(s) to complete it. A prespecified number of reviews

must be successfully passed before a feature makes it to a new release. A critical

component in the Plone structure is the Quality Assurance Team, responsible for

bug handling, patch validation, etc. Plone has many more teams in the areas of

Documentation, Internationalization, Security and Continuous Integration and
Testing.

Plone is a good example of a successful project, delivering a marketable F/OSS

product, that combines F/OSS liberties with solid governance structures.

13.2.4 Open Source Project Management Tools

Project management has its own software tools. Most tools help users design and

maintain typical management diagrams, such as Gantt or PERT diagrams, in easy to

read and modifiable ways. They also help defining resources along with their

characteristics, such as cost and type, their groupings, etc. In addition, they assist

managers in mundane tasks, such as calculating budgets, identifying critical paths,
and so on. As discussed above, F/OSS management is rather different than tradi-

tional management, so only few of these functions are of real help in F/OSS. More

advanced tools might assist F/OSS management, as detailed in the subsequent

sections of this chapter.

As one might expect, F/OSS has its own open sourced management tools,

addressing traditional management activities. There are many such tools, and a

lot of them are web based. Table 13.1 lists several such projects, along with the date

of their latest release, even if some of them are somewhat old or not popular. It is a

good indication of the interest for project management tools by the F/OSS com-

munities. There is everything there, from personal management tools and

bug/trouble tracking tools, to multiproject organization environments. As an exam-

ple, Open-Proj is a desktop tool that looks very much like Microsoft Project. Almost

half of the projects have had at least one release in the past year.

13 Management and Coordination of Free/Open Source Projects 331

13.3 Current Challenges in F/OSS Management

A number of F/OSS management challenges have been pinpointed up to now. One

further challenge for the F/OSS ecosystem is to overcome the factors that hinder the

adoption of F/OSS by both public sector organizations and private companies. For

example, in one study (Munoz-Cornejo et al. 2008), a perceived lack of security,

quality, and accountability of F/OSS products were among the factors inhibiting

adoption in hospitals.

Scientific journal and conference papers on F/OSS have started appearing since

about 15 years ago (Querol del Amo 2007), and a significant body of empirical

research on F/OSS has been produced, providing several interesting results and

additional insight regarding the mechanisms and dynamics of both F/OSS code and

communities.

Empirical research was the appropriate way for studying a phenomenon that did

not have a formal theoretical basis. In the past 10–15 years, based on empirical

findings and longitudinal observation studies, scientists have developed theories

that to a large part explain what happens in F/OSS. In addition, just as closed source

companies may benefit from F/OSS development practices (see Chap. 14), F/OSS

may adopt certain good practices from traditional development that do not alter or

otherwise affect the openness concept.

In the following, we review management areas and technical project aspects that

may be decided by F/OSS management that may benefit from existing techniques

and tools. We will also briefly describe research directions whenever appropriate.

Table 13.1 A list of F/OSS project management tools along with their most recent release date

(as of September 2013)

Achievo

27/9/2010

eHour timesheet management

2/6/2013

ProjectPier

8/1/2012

AirTODO

9/9/2007

Kforge

5/3/2013

Redmine

14/7/2013

BORG Calendar

17/7/2013

Memoranda

6/4/2007

Retrospectiva

7/2/2010

Chandler

15/4/2009

OpenAtrium

26/7/2013

SimManTools

30/9/2007

Codendi

21/10/2010

OpenGoo (new name Feng Office)

2/9/2013

TaskJuggler

30/6/2013

Collabtive

22/8/2013

OpenProj

2/10/2008

Teambox

27/5/2011

ClockingIT

18/10/2012

Plancake

22/5/2009

Todoyu

27/3/2013

DotProject

27/7/2013

ProjectHQ

7/10/2007

Trac

7/9/2012

EgroupWare

31/8/2013

Projectivity

14/1/2012

Xplanner

24/5/2006

332 I. Stamelos

http://dx.doi.org/10.1007/978-3-642-55035-5_14

13.3.1 Improved Project Documentation

Concise and clear project description and documentation have been somewhat

neglected in F/OSS up to now. Managers need to produce a clear account (on the

project web site) of what their project is about, what its current status is and what

are the goals that are pursued. This means that detailed project goals must be

discussed and decided with the help of the community.

Moreover, project documentation needs to be enhanced. F/OSS has been heavily

criticized for lower usability when compared with well-supported and documented

commercial software. Standard software project documents, such as plain user

manuals, requirements definition, and requirements specification (addressing cur-

rent and perspective user/developer queries and doubts, respectively), are still

missing. Undocumented features, resulting primarily from the lack of user manuals,

should be reduced as much as possible to avoid confusion and clarify project scope

and tasks to be accomplished.

Improving project documentation will boost productivity and make projects

more attractive to the F/OSS world, and will facilitate new entries, causing the

influx of even more software people to the F/OSS ecosystems. On the other hand,

project documentation requires resources and managers should carefully guide

project activity in this regard. For example, it may be wise to pursue the develop-

ment of a codebase that ensures project sustainability and dedicate resources to

documentation in a later phase.

13.3.2 Improved Project Measurement and Qualification

Closed source software development has seen a lot of research and practical

application in the area of project measurement and quality assurance. F/OSS has

relied mainly on massive code inspection and fault detection and debugging (“given

enough eyeballs, all bugs are shallow”) (Raymond 1999). However, F/OSS man-

agers may benefit from (open sourced) tools that produce code measurements (e.g.,

the CScout refactoring browser,23 by Spinellis) or detect bad smells (Fontana

et al. 2012, JDeodorant tool24 by Chatzigewrgiou). Such tools provide useful

quantitative information that may complement managers/community gut feeling

and expert opinion about the project quality level, and therefore support informed

refactoring. Measurements may be used to compare the codebase to known good

quality levels from literature (Samoladas et al. 2008), coming both from closed and

open source. Measurements allow benchmarking, that is, comparison with other

projects of known good quality levels. Pieces of code that produce low-quality

measurement values or that fall under some known class of bad design decisions

23 http://www.spinellis.gr/cscout/.
24 http://java.uom.gr/~jdeodorant/.

13 Management and Coordination of Free/Open Source Projects 333

http://www.spinellis.gr/cscout/
http://java.uom.gr/~jdeodorant/

may become targets for refactoring by the community. Nevertheless, software

metrics have their cost and are no silver bullet, and they should be used wisely

and only complement expert quality judgment (see Chap. 6 for a comprehensive

treatment of quality management).

F/OSS management may also obtain help from innovative tools that are becom-

ing gradually available from social media research. A lot of research has been done

concerning Social Network Analysis or SNA of F/OSS communities and relative

projects (e.g., Madey et al. 2005). SNA may identify senior members of a large

community and quantify their contribution and degree of influence, or locate

modules that simultaneously change within subsequent releases, pinpointing

semantic dependencies in the architecture. As another example, sentiment or

opinion detection tools (Liu 2010) are useful for understanding in depth one’s

audience. In the future, such tools may be able to understand levels of disagreement

or discontent among community members by inspecting postings related to faulty

functions or new versions. Although similar information may be obtained through

simple inspection of forum or discussion lists messages, such tools may process

automatically large numbers of posts in extended time periods and detect trends and

other interesting phenomena. F/OSS managers that are eager to use opinion detec-

tion tools may have a greater chance to understand their community better and

potentially make better decisions.

Measurement of community attributes may help make informed decisions. For

example, releasing of new code versions needs to be done in the right time, not

necessarily too often or too early. Tools are needed to help managers decide when

to produce a new release in order to maximize project usefulness and image, and

monitor community fatigue effects. The sentiment analysis tools mentioned above

may be used to this end.

13.3.3 Extensive and Systematic Reuse

Although reuse is practiced extensively in F/OSS, it is mainly limited to relatively

small code components or utilities, such as items typically found in software

libraries (e.g., the Apache Commons).25 However, the availability of billions of

open lines of code in forges or independent project sites provide, a basis that might

help implement an old dream in software engineering, namely, the software com-

ponent markets. Repositories of domain-specific open sourced components

(Kakarontzas et al. 2012) would foster the rapid development of new projects,

with programmers focusing on the innovative part of the applications.

Code openness would alleviate several problems of closed source components,

such as component trustworthiness, modifiability, and qualification. For example,

open component code allows identification and correction of defects of all kinds,

25 http://commons.apache.org/.

334 I. Stamelos

http://dx.doi.org/10.1007/978-3-642-55035-5_6
http://commons.apache.org/

including potential threats to security. Third parties may be hired by component

consumers to qualify open source components, with the purpose of incresaing their

trustworthiness. In addition, users are free to modify components as they wish,

provided that they respect the potential limitations of the accompanying license.

The implementation of high-quality, documented, reusable open source code would

facilitate its packaging as a component for further reuse.

13.4 Future Open Source Management Techniques

In this section, we review some interesting research results that could help F/OSS

management in the future. As already mentioned above, F/OSS adoption by both

public sector organizations and private companies is often hindered by the ambi-

guity that surrounds F/OSS projects and their future development (Munoz-Cornejo

et al. 2008). Therefore, F/OSS management areas of particular interest are the

assessment of project evolution and assessment of project success chances,

attempting to answer basic questions that every manager and F/OSS user would

pose to himself about a project. In addition, problematic situations in F/OSS (i.e.,

antipatterns) may be systematically coded to form a base from which interested

F/OSS managers may retrieve packaged knowledge about how to identify and solve

recurring management problems. Eventually, the availability of advanced F/OSS

management techniques will also lead to the need for special education resources.

13.4.1 Assessment of Project Evolution

Starting from a definition of the software process followed in a project, it is possible

to obtain a dynamical simulation model. In closed source development, processes

are already quite well defined, and many process models (waterfall, spiral, RUP,

etc.) are in place since many years. Moreover, system dynamics (Abdel-Hamid and

Madnick 1991) is being used occasionally to provide dynamic models, both to

foresee project evolution and to understand how management-related decisions will

affect the project at hand. The reader may refer to Chap. 17 for more information

about software process models and simulation.

A first attempt to produce an ad hoc dynamical simulation model was made in

Antoniades et al. (2002). A number of significant F/OSS determinant factors, such

as code production rate, F/OSS evolution patterns, and project attractiveness, were

used to model the dynamics of a F/OSS project, and a comprehensive simulation

model was designed. The model was fitted to a couple of successful F/OSS projects.

Accuracy results when the model was applied to new projects were good, but it

became apparent that different simulation models were needed in order to take into

account the multitude of different F/OSS project types and organizations. It must be

stressed that simulation of FOSS projects is not based on simulation of individual

13 Management and Coordination of Free/Open Source Projects 335

http://dx.doi.org/10.1007/978-3-642-55035-5_17

participant activity. It may be based on code production functions, probability

distributions of events like bug detection and removal, etc. Other works in this

area have also appeared afterwards (Smith et al. 2006).

An example of useful information that may be derived through such models are

the trends for project attributes. Figure 13.1 shows how a F/OSS project might grow

(Midha and Palvia 2012). After an initial “incubating” phase (startup period),

adopters (user and developers) start to adopt/enter gradually the project. Later at

some time (e.g., 6 months after project start), the project receives attention and a

period of rapid growth follows (gray area) leading to prolonged period of smooth

growth (mature period). As an example, managers of hybrid, company-sponsored,

projects may control the evolution of project adoption and predict future situations

through what-if scenarios. The whole area appears interesting and promising.

13.4.2 Assessment of Successful Continuation Chances

It has been made clear that F/OSS projects, as all kinds of software projects, are

threatened by constant risks: appearance of a strong rival F/OSS project, loss of

community interest, deterioration of internal quality, and so forth. Forking,

although beneficial from many points of view, is also feared by corporate users

who tend to favor project stability. Managers currently use their experience and

intuition or other informal means for risk assessment. However, there is one

technique, namely, survival analysis, that may help managers assess the probability

that their project will continue its life, or alternatively will fail and die, in the close

future, that is, in the next few months.

Survival analysis (Evangelopoulos et al. 2009; Samoladas et al. 2010) comes

from the field of medicine and aims at assessing the “survival” probability of

patients (avoidance of physical death) through a hazard function. In F/OSS, such

Number
of
adopters,
commits,
bug report,
etc.

Time

Period of
Rapid Growth

Mature Period

Startup
Period

Fig. 13.1 Growth of F/OSS projects at initial phases (adapted from Midha and Palvia 2012)

336 I. Stamelos

analysis may be made by considering project duration in large sets of F/OSS

projects. In Samoladas et al. (2010), survival was defined as the existence of activity

(posting in forums, codebase growth, etc.). By analyzing 1,147 SourceForge pro-

jects, it was found that survival chances get significantly lower for projects that last

for too long time. Survival analysis produces also statistical models (Cox regression
models) that help foreseeing such probability based on specific project factors, such
as the number of project developers. For example, in Samoladas et al. (2010), it was

observed that for single developer projects survival probability falls under 20 %

after approximately 32 months. It must be stressed that large-scale survival analysis

results must be combined with further qualitative information and evaluation of

success factors to correctly assess continuation chances for a specific project.

13.4.3 F/OSS Management Antipatterns

In management science, the term antipatterns (Brown et al. 2000) represents

practices that have negative effects on the projects they are applied

on. Antipatterns are recurring, unwanted situations that may stem from misconcep-

tions, wrong application of management practices, personnel problems, etc. Robot

(a person who believes that almost anything can and should be automated), absen-

tee manager (a manager who is physically/mentally absent during the project), and

metric abuse (excessive confidence on and use of software metrics) are three

examples of antipatterns. There is already a body of literature that explores project

situations that may be considered as antipatterns in traditional project management.

These works define and describe antipatterns, their causes, effects and symptoms,

and short- and long-term solutions/remedies. Although problematic situations are

reported often in F/OSS literature, there is no extensive and systematic account (see

Cerone and Settas 2011 for an initial attempt).

If aware of what antipatterns may occur in his project, a F/OSS manager may

learn what negative setups to avoid and know when one such antipattern occurs in

his project. Moreover, he will be aware of the solutions he may adopt to mitigate the

induced effects. Systematically recording F/OSS antipatterns may lead to a repos-

itory that will provide an easily accessible body of precious knowledge. Formaliz-

ing the descriptions of antipatterns may help to quantify the relationship between

causes and effects, providing tools that may be of further help to future F/OSS

managers. It is evident that the idea of antipattern usage is more appealing for less

experienced F/OSS managers, as experienced managers of large projects typically

handle such problems implicitly.

13 Management and Coordination of Free/Open Source Projects 337

13.4.4 Integration of the Management and Business
Perspective: Assessment of Business Success

Defining project success is a hard and confusing task even for closed source projects

(see Chap. 2). Several authors have already looked at ways to define success and

success criteria in F/OSS. Success in F/OSS is a multidimensional concept

(Crowston et al. 2006). Among the criteria proposed are project continuity and

release frequency (Raymond 1999) and market penetration (Feller and Fitzgerald

2002).

A frequent, natural development in successful F/OSS projects is the formation of

a business entity (a company) or a not-for-profit entity (organization) that steers the

evolution of the project. Sometimes, as is the case of the hybrid projects, it is a

company that releases the first version of the code (e.g., opens the closed code of

one of its commercial applications, in dual licensing mode), so the manager comes

already from the business world. Public organizations may also initiate F/OSS

projects.

Project success leads the community to seek business models specific to F/OSS.

In F/OSS, in addition to his technical duties, the manager of the project is heavily

involved with the business implications of his project. Such implications affect the

project organization (e.g., through forking or community migration), the project

code (e.g., in case of dual licensing, with part of the code being open, while the rest

is commercially exploited under proprietary licenses), and miscellaneous

supporting activities (e.g., translations or localizations).

We have already discussed one possible way for assessing technical success,

namely, through measurement and benchmarking. If there is a business model

behind the F/OSS project, the manager is expected to be able to assess the business

success of the project. To do so, he may use F/OSS market success assessment

models that are becoming available.

One such model (Midha and Palvia 2012) attempts to assess market success by

combining internal (technical) and externally visible attributes of the project.

Internal attributes affecting Market Success are License Type (whether permissive

or restrictive for commercial use), Size of User Base, Size of Developer Base,

Language Translations (how many times the project has been translated to different

languages), and Responsibility Assignment (whether tasks are delegated explicitly

to project members or not). Internal attributes affecting Technical Success are

Complexity (measured through the cyclomatic complexity metric, McCabe 1976)

and Modularity (measured through the number of software modules). Figure 13.2

depicts the market and technical success model. The model suggests a rather

intuitive concept: Technical Success is among the factors that contribute to Market

Success. However, in Midha and Palvia (2012), this hypothesis has not been

supported by the empirical data they analyzed. Apparently, further research is

needed to consolidate such conjectures. Once such models become sufficiently

reliable, F/OSS managers will be able to quantify their overall project business

success and compare with rival project performance. As an example, in case

338 I. Stamelos

http://dx.doi.org/10.1007/978-3-642-55035-5_2

coordinators feel that a project needs improvement, they may want to change the

way responsibilities are assigned to community members.

13.4.5 F/OSS Manager Education

For sure, certain F/OSS managers have received some formal training in traditional

software project management, including formal project planning, risk management,

quality assurance, budgeting, reporting, etc. However, a course on systematic

F/OSS project management is not easily found in current higher education curric-

ula. F/OSS managers may nowadays receive training on generic F/OSS issues (e.g.,

through Free Technology Academy courses).26 As F/OSS project management

progresses as a discipline, it is anticipated that relevant courses will start appearing

in established curricula worldwide.

Such a course should encompass standard F/OSS management approaches, as

described in previous sections of this chapter, and advanced themes, such as those

discussed in this section, including psychology and human aspects of F/OSS

development, techniques and tools for project assessment and evolution

control, etc.

On the other hand, it is widely recognized that F/OSS projects are excellent

bazaars of knowledge sharing and learning (Sowe et al. 2006). Several academic

software engineering courses around the world include student practical assign-

ments that require students to participate actively in F/OSS projects. F/OSS man-

agers need to leverage this fact, as it is one way to augment F/OSS communities

with new members. Although not without problems (acceptance of students by

existing communities, student level of knowledge and skills), blending formal

education and F/OSS projects lead to a new dimension of the F/OSS phenomenon.

Market Success

Technical Success

Internal Attributes

Licenst Type

Size of User Base

Size of Developer Base

Language Translation

Responsibility Assignment

Complexity

Modularity

External Attributes

Fig. 13.2 A model for

assessing F/OSS market and

technical success (adapted

from Midha and Palvia

2012). Internal and external

attributes are used to assess

both technical success and

market success

26 http://ftacademy.org/.

13 Management and Coordination of Free/Open Source Projects 339

http://ftacademy.org/

13.5 Conclusions

In this chapter, after a short introduction to F/OSS, we have identified some of the

basic differences between closed source and F/OSS management and similarities

with agile methods. We have reviewed basic F/OSS management approaches for

project organization and human resource management. We then proceeded by

listing some challenges that F/OSS management is faced with and proposed poten-

tial improvement actions. Finally, we have tried to identify management areas in

F/OSS that may be improved in the future. Although F/OSS managers will certainly

continue applying practices that have already led to the success of numerous F/OSS

projects, such as intensive personal communication with community members and

mentoring, they might benefit in the future (a) from the use of tools and techniques

that are successfully deployed in closed source development (related to documen-

tation, qualification, and systematic reuse) and (b) from the use of innovative

management tools and techniques that are specific to F/OSS.

Scientific and application areas of special interest for F/OSS management that

may produce advanced approaches are (a) F/OSS project success and status assess-

ment, (b) awareness of inappropriate F/OSS management practices, (c) anticipation

of F/OSS project future evolution, and (d) education of F/OSS managers and

involvement of F/OSS projects in formal education processes.

Most probably F/OSS managers will be skeptical about the use of more formal

F/OSS management approaches than those currently exercised. It may be antici-

pated that managers of hybrid F/OSS projects will probably be more interested in

the techniques and tools proposed in this chapter.

References

Abdel-Hamid T, Madnick S (1991) Software project dynamics: an integrated approach. Prentice

Hall, Englewood Cliffs

Aberdour M (2007) Achieving quality in open source software. IEEE Softw 24(1):58–64

Advani D, Hassoun Y, Counsell S (2005) Refactoring trends across N versions of N Java open

source systems: an empirical study. Technical report, University of London

Antoniades I, Stamelos I, Angelis L, Bleris G (2002) A novel simulation model for the develop-

ment process of open source software projects. Softw Process Improv Pract 7(3–4):173–188

Aspeli M (2005) A model of a mature open source project. MSc Thesis, London School of

Economics

Beck K (1999) Extreme programming explained: embrace change. Addison-Wesley, Boston

Brown W, Malveau R, McCormick H, Thomas S, Hudson T (eds) (2000) Anti-patterns in project

management. Wiley, New York

Capra E, Francalanci C, Merlo F, Rossi-Lamastra C (2011) Firms’ involvement in open source

projects: a trade-off between software structural quality and popularity. J Syst Softw 84

(1):144–161

Cerone A, Settas D (2011) Using antipatterns to improve the quality of FLOSS development. Fifth

international workshop on foundations and techniques for open source software certification

Coverity (2013) 2012 coverity scan report. Available from http://softwareintegrity.coverity.com/.

Released 7 May 2013

340 I. Stamelos

http://softwareintegrity.coverity.com/

Crowston K, Howison J, Annabi H (2006) Information systems success in free and open source

software development: theory and measures. Softw Process Improv Pract 11(2):123–148

Evangelopoulos N, Sidorova A, Fotopoulos S, Chengalur-Smith I (2009) Determining process

death based on censored activity data. Commun Stat Simul Comput 37(8):1647–1662

Feller J, Fitzgerald B (2002) Understanding Open Source Software Development. Addison-

Wesley, Boston

Fontana F, Braione P, Zanoni M (2012) Automatic detection of bad smells in code: an experi-

mental assessment. J Object Technol 11 (2):5:1–38

Holck J, Jørgensen N (2005) Do not check in on red: control meets anarchy in two open source

projects. In: Koch S (ed) Free/open source software development. IGI, Hershey, pp 1–26

IST (2014) Special issue on human factors in software development. In: Amrit C, Daneva M (eds)

Inf Softw Technol (Forthcoming)

Kakarontzas G. Stamelos I, Skalistis S, Naskos A (2012) Extracting components from open

source: the component adaptation environment (COPE) approach. In: EUROMI-

CRO-SEAA conference, pp 192–199

Liu B (2010) Sentiment analysis and subjectivity. In: Indurkhya N, Damerau FJ (eds) Handbook of

natural language processing. Now Publishers

Madey G, Freeh V, Tynan R (2005) Modeling the free/open source software community: a

quantitative investigation. In: Koch S (ed) Free/open source software development. IGI,

Hershey, pp 203–221

McCabe T (1976) A complexity measure. IEEE Trans Softw Eng 2(4):308–320

Michlmayr M (2004) Managing volunteer activity in free software projects. In: Proceedings of the

2004 USENIX annual technical conference, Freenix Track, pp 93–102

Midha V, Palvia P (2012) Factors affecting the success of open source software. J Syst Softw 85

(4):895–905

Munoz-Cornejo G, Seaman C, Gunes Koru A (2008) An empirical investigation into the adoption

of open source software in hospitals. Int J Healthc Inf Syst Inform 3(3):16–37

Querol del Amo M (2007) Open source software: critical review of scientific literature and other

sources. MSc Thesis, Norwegian University of Science and Technology

Raymond E (1999) The cathedral and the bazaar. O’Reilly Media, Cambridge

Samoladas I, Gousios G, Spinellis D, Stamelos I (2008) 4th International conference on open

source systems, pp 237–248

Samoladas I, Angelis L, Stamelos I (2010) Survival analysis on the duration of open source

projects. Inf Softw Technol 52(9):902–922

Sandred J (2002) Managing open source projects. Wiley, New York

Sharma S, Sugumaran V, Rajagopalan B (2002) A framework for creating hybrid-open source

software communities. Inf Syst J 12:7–25

Smith N, Capiluppi A, Fernández-Ramil J (2006) Agent-based simulation of open source evolu-

tion. Softw Process Improv Pract 11(4):423–434

Sowe S, Stamelos I, Angelis L (2006) Identifying knowledge brokers that yield software engi-

neering knowledge in OSS projects. Inf Softw Technol 48(11):1025–1033

Thomas D, Hunt A (2004) Open source ecosystems. IEEE Softw 21(4):89–91

Wynn D (2003) Organizational structure of open source projects: a life cycle approach. In: 7th

Annual conference of the southern association for information systems

Biography Ioannis Stamelos is an Associate Professor at the Department of Infor-

matics of the Aristotle University of Thessaloniki, where he carries out research and

teaching in the area of software engineering and information systems since 1996. He

holds a diploma of Electrical Engineering (1983) and a PhD in Computer Science by

the Aristotle University of Thessaloniki (1988). He has published approximately

150 articles in refereed international journals and conferences.

13 Management and Coordination of Free/Open Source Projects 341

Chapter 14

Inner Source Project Management

Martin Höst, Klaas-Jan Stol, and Alma Oručević-Alagić

Abstract Software development organizations are continuously looking for better

ways to manage their projects. An emerging approach to achieve this is Inner

Source, which refers to the adoption of Open Source development practices within

the confines of an organization. With an Inner Source approach, individuals, teams,

and departments within an organization can start software projects, very similar to

the Open Source model. This affects the way projects are managed in a variety of

ways. Firstly, it will affect strategic aspects such as a software sourcing strategy that

includes decisions on which software can be “Inner-Sourced.” Secondly, at the

tactical level, organizations should choose an appropriate Inner Source adoption

model that suits the goals and scope of the organization. Finally, it will affect the

operational aspects of a project, for example, in the way different people across a

whole organization can access the source code and make improvements. Further-

more, Inner Source makes communication much more transparent. While Inner

Source offers a variety of potential benefits to an organization, there are also a

number of challenges to address. This chapter discusses how the introduction of

Inner Source may affect conventional software developing environments and

especially how it affects software project management aspects. Based on our

studies and those presented in the literature, it outlines a number of benefits of

Inner Source as well as a number of challenges and some suggestions as to how they

can be addressed.

M. Höst (*) • A. Oručević-Alagić

Department of Computer Science, Lund University, Lund, Sweden

e-mail: martin.host@cs.lth.se; alma.orucevic-alagic@cs.lth.se

K.J. Stol

Lero—The Irish Software Engineering Research Centre, University of Limerick, Limerick,

Ireland

e-mail: klaas-jan.stol@lero.ie

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_14, © Springer-Verlag Berlin Heidelberg 2014

343

mailto:martin.host@cs.lth.se
mailto:alma.orucevic-alagic@cs.lth.se
mailto:klaas-jan.stol@lero.ie

14.1 Introduction

The use of Open Source Software (OSS) in industry has seen an unprecedented

growth during the last decade. Both the use of OSS development tools, such as

Eclipse, and the inclusion of OSS components (e.g., the Apache web server1) and

software frameworks (e.g., the Struts framework2) has increased. OSS refers to

software that is distributed under an Open Source license,3 which permits that the

software’s source code is freely available to anyone to change to his or her needs

(while respecting the conditions of the license). Successful OSS projects are often

developed by a large number of disparate, geographically spread, developers

around the world, as outlined in Chap. 10.

The perceived success of OSS projects, and the ability to manage distributed

development, has resulted in efforts to introduce Open Source development prin-

ciples inside companies; this phenomenon is called “Inner Source” (Stol et al. 2014)

though other terms have been used, such as “Corporate Open Source” (Gurbani

et al. 2006) and “Progressive Open Source” (Dinkelacker et al. 2002). Stol

et al. (2011) defined Inner Source as follows:

Definition: Inner Source: The leveraging of Open Source Software development practices
within the confines of a corporate environment. As such, it refers to the process of
developing software at an organization that has adopted OSS development practices.

Motivations for adopting this way of working include the inherent support for

distributed development and the potential to increase software reuse and quality due

to an increased availability, openness and transparency of the software, and an

implied invitation to anyone in an organization to join development or contribute

otherwise (Gaughan et al. 2009).

There are, however, a number of key differences between conventional in-house

development and Open Source development. For example, Open Source projects

typically do not have the same budget constraints and lead-time limitations that are

typical issues for project management in traditional projects. Therefore, Inner

Source initiatives always lead to a tailoring of Open Source development practices

to fit a corporate context. The objective of this chapter is to present an overview of

Inner Source development, and identify implications for typical project manage-

ment issues.

The remainder of this chapter proceeds as follows:

• Section 14.2 outlines what Inner Source is by positioning it in the software

development landscape with respect to other strategies. This section also pre-

sents a number of motivations, outlining why organizations adopt Inner Source.
Furthermore, this section presents different adoption models as well as a number

of new management roles that may emerge as a result of adopting Inner Source.

1 http://httpd.apache.org/.
2 http://struts.apache.org/.
3 http://opensource.org/licenses/index.html.

344 M. Höst et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_10
http://httpd.apache.org/
http://struts.apache.org/
http://opensource.org/licenses/index.html

• Section 14.3 presents a framework that identifies a number of key themes related

to project management in which Inner Source and conventional project man-

agement approaches can differ. This framework serves as a “lens” for the

remainder of the chapter, which presents two case studies.

• Section 14.4 presents the case studies that we conducted at two organizations.

The first case study presents an analysis of how well an organization’s current

project management approach aligns with an Open Source development

approach. This case study provides insights into some of the key changes that

an organization may need to make in terms of project management issues, and as

such represents a scenario prior to adopting Inner Source. The second case study
presents an analysis of an organization that has adopted Inner Source for several

years and discusses a number of project management challenges as well as

approaches to how those challenges were addressed. As such, this case presents

a scenario after adopting Inner Source.

• Section 14.5 discusses the findings of the two case studies presented in

Sect. 14.4, as well as a number of implications for practice. Based on this, we

present a number of recommendations for Inner Source project management. In

this section, we also propose a number of new directions for future research.

14.2 Inner Source

This section presents an overview of Inner Source. We outline what Inner Source is

by positioning it in terms of openness of the software product and software process
(Sect. 14.2.1). This is followed by a discussion of why organizations would want to

adopt Inner Source (Sect. 14.2.2). Section 14.2.3 discusses Inner Source adoption

models, and Sect. 14.2.4 discusses a number of Inner Source project management

roles.

14.2.1 Positioning Inner Source as a Strategy

As outlined above, the term Inner Source refers to the adoption of OSS develop-

ment practices within an organization’s boundaries. It is informative to discuss the

implications of this in relation to other trends in the software landscape, such as

open-sourcing (Ågerfalk and Fitzgerald 2008; Oručević-Alagić and Höst 2010), so

as to clearly define the scope of this chapter. Inner Source can be characterized by

two features: (1) the development process is opened up to the whole developer

community within an organization; and (2) the resulting product is proprietary, and
access to its source code is limited by an organization’s boundaries. Figure 14.1

presents a typology using these two characteristics as dimensions.

14 Inner Source Project Management 345

We refer to “conventional” development as proprietary software development,

using a closed process, and a resulting closed product. A closed process in this

context refers to the fact that there is no “open” development community in which

developers can join as new members and start contributing to the development

process as they see fit. Instead, in conventional software development, teams are

predefined and often organized in a hierarchical fashion. The product is also closed,

in that the source code is only accessible by the project team and not publicly

available.

Open Source Software is at the other end in both dimensions, with an open

process and an open product. A typical OSS project has an open process that

welcomes new contributors (see also Chap. 13). In fact, an Open Source project’s

very success depends on how many developers it can attract. The product is open as
well as the source code is necessarily available so as to comply with the require-

ments of an OSS license.

Products that are open but with a closed process is what we label “controlled

Open Source Software.” Such OSS projects comply formally with an OSI-approved

Open Source license,4 and as such are formally “Open Source.” However, in

practice, the development process is not open and the product’s development is

tightly controlled by one organization (or possibly a consortium), or a limited

number of individuals. One such example is the Lua programming language,5

which is designed, implemented, and maintained by a team of three researchers.

Lua’s source code is freely available under the MIT license. Ideas and suggestions

are welcome in the project (and some of the project’s key features originated from

1. Traditional
proprietary
software

2. Inner Source
software

Cl
os
ed

O
pe
n

3. “Controlled
Open Source
Software”

4. Open Source
software

O
pen

ClosedPr
oc
es
s

(”
co
mmun

ity
 b
ou

nd
ar
ies

”)

Product

(source code, license)

Fig. 14.1 Typology of

open and closed software

based on process and
product dimensions

4As of August 2013, there are 70 OSI-approved licenses.
5 http://www.lua.org.

346 M. Höst et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_13
http://www.lua.org/

such suggestions), but write-access (or “commit-access”) to the source code repos-

itory cannot be “earned” by others and is limited to the three original implementers

(Ierusalimschy 2008). We note that controlled OSS is different from sponsored
OSS, in which organizations contribute (“sponsor”) code or other contributions or

resources (Capiluppi et al. 2012). Sponsored OSS projects have an open process,

where new developers are welcome to contribute, which differentiates it from

“controlled” OSS.

Inner Source, then, is characterized by an open process, and a closed product. In
this context, the process is only “open” to one organization (or a consortium of

partners or subcontractors), and not to anyone outside the organization

(or consortium). In principle, anyone in the organization is free to submit contri-

butions. The resulting product, however, is still closed, in that it is proprietary and

has no Open Source license. Licensing, while a common concern for organizations

that wish to adopt OSS (Stol and Babar 2010), is therefore not a concern in Inner

Source.

The typology in Fig. 14.1 is, of course, a simplification, a snapshot of reality at

any one time and organizations may engage in more than one of the four scenarios.

For example, there is an increasing involvement of organizations in sponsored

Open Source (mentioned above), and products and services are increasingly

based on such projects.

Over time, an organization may change its software sourcing strategy and move

to another scenario within Fig. 14.1. For example, organizations may open source
their product (Oručević-Alagić and Höst 2010), opening both the process and the

product. This is, for example, what Netscape Corp. did in the late 1990s with their

Netscape Navigator, from which the Mozilla web browser project emerged.

Involvement of organizations may vary greatly, from being an “industry-led”

project (Capiluppi et al. 2012) to total withdrawal of their involvement in the

project. In a scenario where an organization is opening up its product from an

Inner Source setting, we no longer speak of Inner Source, but of open-sourcing, and

the resulting product becomes Open Source (Ågerfalk and Fitzgerald 2008;

Oručević-Alagić and Höst 2010).

14.2.2 Motivations and Benefits of Inner Source

Organizations may adopt Inner Source for a variety of reasons and offers a number

of benefits to organizations (Gaughan et al. 2009). We discuss some of these below:

• Improved reuse. An internal repository or “forge” that hosts Inner Source

projects can provide a good starting point for projects, and as such increase

reuse within the organization (Dinkelacker et al. 2002; Lindman et al. 2008;

Vitharana et al. 2010).

• Improved quality. Inner Source projects can benefit from “Linus’s Law,”

whereby a large community of developers peer review contributions. Since

14 Inner Source Project Management 347

contributions are under large-scale scrutiny, contributors may be aware of their

reputation and be motivated to write “good” code (Dinkelacker et al. 2002;

Riehle et al. 2009).

• Rapid developer redeployment. Since developers are familiar with a standard

set of common tools and infrastructure used within an Inner Source setting, as

well as with the available software on the internal forge, developers can be more

easily transferred to other projects or products (Dinkelacker et al. 2002). This in

turn will also reduce time-to-market, as project start-up time can be reduced.

• Increased awareness. An open environment facilitates an increased awareness

of the software that is developed within an organization (Lindman et al. 2008,

2013).

• Open innovation. Besides an increased awareness among developers, a more

open development environment may also support the concept of Open Innova-

tion (Morgan et al. 2011; Lindman et al. 2013).

• Large developers pool. Open collaboration on software projects facilitates a

large developer pool, thereby broadening the expertise of the developer com-

munity (Wesselius 2008; Riehle et al. 2009).

• Increased development speed. Given a larger development community, devel-

opment of Inner Source projects may benefit from an increased development

speed (Dinkelacker et al. 2002). A single team may not have enough capacity to

implement all required functionality (Wesselius 2008). This in turn also supports

a faster time-to-market.

The degree to which these benefits can be achieved will depend on how

successful an Inner Source initiative is. While the benefits listed here have been

reported in the extant literature, Inner Source as a field of research is still in its

nascent phase, and precise predictions as to the extent to which benefits can be

achieved cannot be given.

An important consideration for any organization with software as a product

(or part thereof) is the strategic “make-or-buy” decision, or the sourcing strategy.

Van der Linden et al. (2009) presented a “decision map,” which distinguishes

differentiating software (software that provides unique business value) and com-
modity software, such as operating systems, database systems and compilers.

According to this decision map, outsourcing “differentiating” software is consid-

ered unwise, since this is the (usually relatively small) part of a product that offers a

competitive advantage. Commodity software, on the other hand, should typically

not be built in- house, as this would waste costly resources. No organization should

develop its own database system or operating system; these are commodities and

should be acquired elsewhere. Inner Source, then, could be one strategy toward

commodification. It is a suitable approach to develop software that is considered

sufficiently valuable to develop in-house, while delivering functionality needed by

different stakeholders.

One important software architectural strategy within which commodification of

software is common is a software product line (Van der Linden 2009). Software

product lines typically consist of a common platform on the one hand and a number

348 M. Höst et al.

of derived applications that are based on that platform. Van der Linden (2009)

discussed how Inner Source can help to overcome a number of bottlenecks that are

common in product lines, such as the dependencies of an application on the

platform. Development of the platform may lag behind development of a

platform-based application, possibly delaying its delivery to the market. Van der

Linden (2009) reported that Inner Source adoption at Philips Healthcare has led to a

reduction of the time-to-market of at least 3 months.

14.2.3 Inner Source Adoption Models

Organizations can adopt Inner Source in different ways. In fact, each Inner Source

implementation must be tailored to the specific context of an organization

(Gaughan et al. 2009). Various factors may influence how an organization imple-

ments its Inner Source initiative, such as its product domain, whether or not it is

subject to any legal regulations, and an organization’s size. However, despite this

variety, Gurbani et al. (2010) identified two main models of Inner Source adoption:

the infrastructure-based model and the project-specific model. These are briefly

discussed below.

14.2.3.1 Infrastructure-Based Model

The infrastructure-based model is the simplest model. In this setting, an organiza-

tion facilitates Inner Source projects by providing the necessary infrastructure such
as code repositories, bulletin board software, and mailing list servers. These tools

enable project teams and individual developers to host an Inner Source project, very

similar to how individuals can publish their software on one of the public code

repositories, such as SourceForge.net. SAP (Riehle et al. 2009), Hewlett-Packard

(Dinkelacker et al. 2002), and Nokia (Lindman et al. 2008) are organizations that

have adopted this model.

14.2.3.2 Project-Specific Model

The project-specific Inner Source model is a more strategic approach and builds on

the infrastructure-based model. In this setup, there is one dedicated division (project

team or product group) that takes responsibility for development, maintenance, and

support of an Inner Source project, referred to as a shared asset. This division is

sometimes referred to as the “core team,” similar to a core team in an OSS project.

The project-specific model focuses on strategic reuse of the shared asset. A key

responsibility of the core team is to provide ongoing support to customers of the

Inner Source project. Since this requires dedicated resources to sustain the Inner

Source initiative, an organization may have to choose carefully which projects

14 Inner Source Project Management 349

receive such resources, in terms of budgets and person-years. Case studies of the

project-specific model have been reported for Philips Healthcare (Wesselius 2008)

and Alcatel-Lucent (Gurbani et al. 2006, 2010).

14.2.3.3 Comparison of Inner Source Models

Stol et al. (2011) presented a comparison of the two Inner Source models, summa-

rized in Table 14.1. This comparison is based on observations from the current

literature on Inner Source, and as such, these characteristics are not prescriptive.

Organizations may have Inner Source projects that have characteristics of both

models.

In the infrastructure model, all four characteristics in Table 14.1 are rather

optional and casual, whereas for the project-specific model they are strategic and

critical. For example, reuse in the infrastructure-based model is opportunistic and

ad hoc, whereas in a project-specific model, reuse is a strategic goal. As a result,

support is essential in the project-specific model, and typically one can observe a

special organizational unit (i.e., a core team) that takes responsibility of the shared

asset that is managed as an Inner Source project.

14.2.4 Inner Source Project Management

Open Source style development is often misinterpreted as a “chaotic” or

“unmanaged” approach to software development, while it is better characterized

as “self-organizing.” Common Open Source governance models range from highly

centralized, typically led by a “benevolent dictator for life” such as the Linux

Kernel, to decentralized ones, such as GNU Linux. In between those two mentioned

models sits a council-like governance model that is used, for example, in the

Table 14.1 Key differences between infrastructure-based and project-specific inner

Characteristic Infrastructure-based Project-specific

Software reuse Opportunistic and ad hoc. Optimize for

sharing maxi- mum number of projects

Strategically planned. Optimize

for sharing critical assets

Support Optional, depends on success of project Essential for project success.

Needs organizational support

and funding

Owner/

maintainer

Individual or team who created the project Central “core team.” Needs orga-

nizational support

Type of inner

source

software

Discrete software packages, such as utilities

(e.g., XML parser), compilers, shells

Critical asset that plays an

important role for the

organization

Source models (adapted from Stol et al. 2011)

350 M. Höst et al.

Apache project. Hence, just as successful Open Source projects can have an

extensive “management layer,” so too do Inner source projects need management.

Little is written on project management in Inner Source projects. A notable

exception is a study by Gurbani et al. (2010), which identifies a number of roles that

emerged in Alcatel-Lucent’s Inner Source project. The diagram in Fig. 14.2 pre-

sents our analysis of their presentation of these roles. In the remainder of this

chapter, we assume that an organization consists of one or more organizational
units, such as departments, teams, or business divisions.

It is important to emphasize that these roles emerged within the core team at one

organization and are not prescriptive for an Inner Source initiative. They do,

however, provide a useful reference model for organizational roles in Inner Source.

We describe these roles briefly.

A liaison has the overall responsibility for the shared asset and oversees the

activities performed by the core team. The liaison also interacts with the organiza-

tion’s internal customers (i.e., different organizational units) about, for example,

feature requests. The liaison works closely with the shared asset’s chief architect;
the chief architect can be compared to a typical OSS project’s benevolent dictator,

who has strong technical skills and whose key responsibility is strategic road

mapping and maintaining the shared asset’s architectural integrity.

A support team (Gurbani et al. (2010) refer to them as construction, verification
and load bring-up engineers) provides operational support to the business units.

Issue Tracker

Release
advocateFeature

advocate

LiaisonO
rg

an
iz

at
io

na
l
U

ni
t

Developers

O
rganizational U

nit

Developers

Delivery
advocate

Organizational Unit

Developers

Core Team

Developers

Chief
architect

Project
manager

Support team

Fig. 14.2 Roles of an Inner Source core team (based on Gurbani et al. 2010)

14 Inner Source Project Management 351

This includes release management tasks, verification, documentation, and writing

release notes. A project manager has overall project management responsibility,

which includes release planning, project monitoring, and process compliance. A

release advocate takes responsibility for a specific release and interacts closely with
the organizational units so as to assess the potential impact of the release on the

organizational units’ products that integrate the shared asset. A delivery advocate is
assigned to an organizational unit that becomes a new customer of the shared asset,

so as to assist in integrating the component into a product. Gurbani et al. (2010)

pointed out that an organizational unit might have specific tools, which complicates

the task of integrating the shared asset. The delivery advocate also assists in

ensuring that contributions from the organizational unit fit within the shared asset’s

overall architecture. Finally, a feature advocate is responsible for seeing a partic-

ular feature to completion.

14.3 A Framework for Understanding Project

Management in Inner Source

Inner Source and project management are both complex and multifaceted topics

with wide scopes and comprising many different aspects. One goal of this chapter is

to identify key aspects of project management that are affected by adopting Inner

Source. In order to define the focus of our study, we defined a framework based on a

number of aspects that we consider important for understanding project manage-

ment in Inner Source. The remainder of this chapter uses the framework to structure

the results of our analysis. We derived this framework from a number of sources

that have addressed the topic of project management in detail, which we briefly

outline below.

Much has been written on project management in general, but also in a software

engineering context as exemplified in this book. An important source is the Project

Management Body of Knowledge (PMBOK) (Duncan 2013). This is a general

guide to project management without a specific focus on software development. It

includes an extensive range of factors, or topics, which are listed in the first column

of Table 14.2. However, not all topics are related to Inner Source, which is why PM-

BOK is not an optimal instrument to focus our study.

Besides the project management field, the software engineering field also has a

“body of knowledge,” called SWEBOK (Abran and Moore 2004). SWEBOK is an

ongoing project, currently in its third version, and “accepted knowledge” of the

software engineering field. Similar to PMBOK, SWEBOK defines a number of

themes, listed in the second column of Table 14.2. While all are specific to software

engineering, not all themes are relevant to project management. Hence, SWEBOK

would not be an optimal choice as a framework either.

In addition to these two potential sources, various books have been written on

software project management (SPM), such as that by Hughes and Cotterell (2009).

352 M. Höst et al.

This source includes all factors from both PMBOK and the “Software Engineering

Management” part of SWEBOK; the third column in Table 14.2 lists the themes

discussed by Hughes and Cotterell. However, while all themes identified by Hughes

and Cotterell are relevant to project management and software engineering, not all

are relevant to Inner Source. In order to define a sound framework, we identified

four key themes that encompass the relevant topics from the three sources listed in

Table 14.2. These are

1. Process management: This includes deciding in detail what development

process to use during the project. In many cases, this is done by tailoring an

organization-level process model to a project-specific process model that fits the

constraints and requirements of a specific project.

2. Project planning: This includes traditional planning activities such as activity

planning, effort estimation, and resource allocation.

3. Monitoring and taking actions: This includes activities for monitoring and

control, as well as activities related to risk management.

4. Human issues: This includes issues related to human resources, people man-

agement, and activities that support a healthy team climate.

These themes are used to structure the remainder of this chapter. We describe the

themes in further detail below. This section ends with an overview of a number of

key concerns of project management in Inner Source that require attention.

14.3.1 Process Management

Process management is concerned with selecting, tailoring, and aligning a suitable

software development process for a project. That is, it is a “high level” and often

Table 14.2 Themes discussed in various sources relating to project management

PMBOK SWEBOK

SPM textbook (Hughes and Cotterell

2009)

– Integration management

– Scope management

– Time management

– Cost management

– Quality management

– Human resource man-

agement

– Communications man-

agement

– Risk management

– Procurement manage-

ment

– Stakeholder

management

– Initiation and scope defini-

tion

– Software project planning

– Software project enactment

– Review and evaluation

– Closure

– Software engineering

measurement

– Project evaluation and program

management

– Selection of appropriate project

approach

– Software effort estimation

– Activity planning

– Risk management

– Resource allocation

– Monitoring and control

– Managing contracts

– Managing people in software envi-

ronments

– Working in teams

– Software quality

14 Inner Source Project Management 353

organization-wide project management activity. Since the use of heterogeneous

processes may also be an issue in conventional software development contexts, one

could argue there is little difference with an Inner Source approach. There is no

single “conventional process” and no single Open Source process that is used in

Inner Source. Therefore, there is no single way of, for example, adopting and

tailoring processes in any of the cases. Each Open Source project has its own set

of practices and customs that have emerged over time. However, as outlined in

Chap. 13, there are a number of common characteristics. Likewise, an Inner Source

initiative is also tailored to an individual organization. Section 14.2.3 discusses the

two major Inner Source adoption models, which is the first major difference

between Inner Source initiatives. Furthermore, each initiative is shaped by the

context and constraints of the organization. For example, Philips Healthcare

develops a Software Product Line (SPL) for their medical equipment, whereby

the SPL platform is managed as an Inner Source project (van der Linden 2009). As

such, the company is subject to regulations set forth by the Food and Drug

Administration (FDA) in the United States. One implication of this is that the

process needs to be traceable, and regulatory bodies (such as the FDA) conduct

audits regularly to inspect the process.

Even though there are many different development methods, making it difficult

to identify common characteristics, we discuss a number of common questions that

may arise in relation to process management.

Two types of processes are of interest in this respect. First, there is the process

that is selected for development of an Inner Source project. Second, there are the

processes that are used by the customer teams that wish to integrate (or use) the

Inner Source project, and possibly contribute to it. This potentially large variety in

customer projects means that there may be a range of different processes that

interact with an Inner Source project’s process. Some customer projects may follow

a strictly stage-gated model (e.g., waterfall), whereas others follow more iterative

approaches such as Agile methods (e.g., Scrum). When customer projects wish to

contribute to the shared asset, they must consider the alignment of their own process

and the process used by the core team that develops the shared asset. A

misalignment of such processes may result in problems when the shared asset is

integrated, or worse, when a customer team misses a product release deadline (Stol

et al. 2011).

There are also requirements regarding the process for an Inner Source project.

This process must be formal and sufficiently rigorous to fulfill the requirements of a

product and its evolution, that is, handle contributions from a variety of sources in

an efficient way. It must also be aligned to other processes at the organizational

level, which are not necessarily adapted to this way of working. That is, the process

must resemble an Open Source process with its mechanisms for evaluating contri-

butions, widely available and accessible information, selecting among candidate

changes in a timely manner, etc., and at the same time adhere to the typical

organizational level process requirements that are characterized by milestones

and deadlines. Conflicts may arise between a general organizational process and

an Inner Source process (Riehle et al. 2009).

354 M. Höst et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_13

Customers of an Inner Source project may use a variety of processes, which is

why it is difficult to outline general guidelines as to how these should be aligned. In

one case study, Lindman et al. (2008) found that they are typically agile. However,

one type of required process tailoring relates to contributions to an Inner Source

project. Contributors must adhere to the requirements of an Inner Source process

prescribed by the core team, and the level of formality enforced by the core team

must be taken into consideration.

14.3.2 Project Planning

Project planning includes traditional activities such as activity planning, effort

estimation, and resource allocation, but also more general activities and tasks

such as coordination of development activities and prioritization of different imple-

mentation alternatives.

There are many planning activities of a more general nature that are important

for Inner Source management. For example, Gurbani et al. (2006) emphasized that

the core team must have a long-term vision of the evolving shared asset. Since

many projects may become dependent on the shared asset and future changes, it is

important to be able to foresee the need of different projects and to be able to

communicate the project vision.

It is also important to understand that contributing projects may not be as

focused on general solutions as the core team must be. It is natural that contributing

projects are more focused on the specific development of their project and consider

the Inner Source product as only one part of their project. This means that a core

team must coordinate the development schedules from different contributing teams,

and as much as possible, minimize the risk of duplicate work. This may involve in

some cases the prioritization and to some extent negotiation of requirements from

different projects. Long-term planning also includes evolution planning and

distinguishing general development from customer-specific changes (Gurbani

et al. 2006). Gurbani et al. (2010) suggested that this required a “full time project

manager.” Product evolution planning can be supported by keeping a list of

candidate changes, and trying to find common themes among future changes.

14.3.3 Monitoring and Taking Actions

This part of project management describes how managers can follow up work and

progress, and based on that take actions with the objective to correct for deviations

between plans and expectations, and actual progress.

As in the previous section, this text focuses on the monitoring carried out by an

Inner Source coordinator, i.e., core team, and not on the monitoring carried out by

the contributing projects.

14 Inner Source Project Management 355

One important type of monitoring is that of quality assurance of contributions.

An Inner Source coordinator may carry out this quality assurance when code is

contributed, but this may prove to be a bottleneck (Gurbani et al. 2006). One

suggested benefit of Inner Source is to have “truly independent” peer review as

an effect from a large community who have access to the code (Linus’s Law).

An Inner Source coordinator can also track features during development and

compare to the vision of the evolving code. If there are differences, which in some

way means that future contributions will not be accepted, they can be identified as

soon as possible.

14.3.4 Human Issues

The fourth and last theme of our framework is that of human issues and is based on

some of the observations that have been reported in the Inner Source literature. One

aspect of human issues that has been addressed by Gurbani et al. (2006) concerns

the fact that different contributing projects may have processes that are different

from the way that contributions are managed by the core team. This includes, for

example, how contributions are inspected.

An increased transparency of the development process that is necessary to

facilitate Inner Source may introduce friction (Gaughan et al. 2009; Melian and

Mähring 2008). Developers may experience an increased openness of the process as

a “fish-bowl,” and an increased pressure on performance. They may also see the

openness as a threat to their unique competence and skill set since more people now

may work on the same code with the same type of problem. It may require staff to

develop new skills with respect to communication and interaction. These aspects

may not be a problematic in all Inner Source initiatives, but cognizance of such

potential issues may help address such issues before they arise and escalate.

There are also some positive aspects of this nature. Other developers may

experience an open environment as very positive and rewarding. Others may see

the open environment and the possibility to voluntarily contribute as a means for

professional improvement or as a way to demonstrate their expertise, and thereby

rewarding. Such rewards may positively affect developers’ motivation, a topic that

is discussed in more detail in Chap. 10.

14.3.5 Summary

Table 14.3 summarizes some of the tension points related to the four project

management themes presented above, that may arise as a result of introducing

Inner Source. For example, if there is a focus on applying an available process in

conventional development, a difference in Inner Source is that there are now a

number of processes in organizational units that must be aligned. In conventional

356 M. Höst et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_10

development, there are a number of well-known methods for project planning,

while in Inner Source there is a need to plan and synchronize different initiatives

from organizational units that will encourage contributions. This also means that

monitoring must concern several organizational units, for example, with respect to

what each will contribute and how this is aligned to the shared asset as a whole.

Finally, a number of human issues need to be considered as well.

14.4 Case Studies

In this section, two industry case studies are presented in order to illustrate project

management issues in Inner Source. Organizations that wish to adopt Inner Source

need to understand their current project management approach so that they can

assess the extent to which this aligns with an Open Source development approach.

We conducted a case study at one organization that had a strong interest in adopting

Inner Source, to illustrate such an assessment of Inner Source alignment prior to

adoption. This is presented in Sect. 14.4.1.

Whereas the first case study presents potential project management tension

points that may arise prior to, or during adoption of Inner Source, we also conducted

a case study at an organization with an established track record in Inner Source

adoption. This second case study sheds light on a number of actual challenges in

Table 14.3 Comparison of traditional project management and potential tension points in Inner

Source

Element Traditional project management Key difference in inner-source

Process

management

Enforce common processes Top-level

coordination enforcement.

Alignment of different processes may

be challenging

Project

planning

Predefined, well-organized, use of

planning tools (e.g., Gantt charts)

to “predict” delivery. Project costs

more easily predicted and calcu-

lated (Gaughan et al. 2007)

Planning of “chaotic” OSS style pro-

ject may be unnerving. Costing of

Inner Source shared asset is more

difficult

Monitoring and

taking

actions

Standard methods for following up

progress of projects. Traditional

punish/reward model

Follow up of more high-level attributes

like plan for future releases

Human issues Option to deliver “good enough” code

as it is not visible to most people

Typically no encouragement of initia-

tives to contribute (maybe volun-

tary) to work outside own project

Hierarchical business organization

(Gaughan et al. 2007)

Contributions or code may be in an

“embarrassing” state (Dinkelacker

et al. 2002)

Conflicts OSS style (ego) strong per-

sonalities; “bullying” by techno-

logical experts who take ownership

Opening up code may face objections

from developers who fear losing

their job

Employees may resist change

(Gaughan et al. 2007)

14 Inner Source Project Management 357

Inner Source project management and how those issues have been addressed. This

case study is presented in Sect. 14.4.2.

14.4.1 A Case Study of Inner Source Alignment

The first case study was conducted in a multinational software and hardware

company, based in Sweden (hereafter referred to as “ToolSoft”). ToolSoft has

been using Open Source software in its products and has been involved with

large Open Source communities. The goal of the case study was to understand

the alignment of ToolSoft’s development practices with the Open Source develop-

ment practices. Therefore, a first step was to identify a set of software development

practices that are typical for Open Source development and compare them to the

current development practices in the company. In order to do this, practices typical

for Open Source development were identified by analyzing the most important

aspects of the Open Source projects hosted under the Apache project. The identified

practices were also validated by studying Fogel (2005) on how to run a successful

Open Source project. The identified practices are listed in Table 14.4. After the

comparison was made, the data was interpreted in the light of the aspects of the

framework presented in Sect. 14.3, according to which the results are also presented

in this chapter.

Traditional development practices are closely related to conventional software

project management (SPM) discussed in more detail in Sect. 14.3. Traditional SPM

is analyzed through its main features: process management, project planning,

monitoring and taking actions, and human issues. In order to understand how

Open Source development practices identified in this case study can be applied

within a conventional SPM context, the four features of the traditional SPM are

further examined through the framework presented in Table 14.4, which outlines a

number of aspects specific to Open Source development.

14.4.1.1 Process Management

The process management aspect of software project management is closely related

to the Open Source infrastructure aspect. An infrastructure portal (or “forge”) hosts

information about Open Source development practices including a community

guide and information on source code repositories, development roadmap, etc.

All individual projects developed by a community need to comply with the infra-

structure aspects, just like any specific project developed within a more traditional

environment needs to comply with process management defined on the organiza-

tion level.

In this study, we found that ToolSoft’s development practices are mostly aligned

with Open Source practices with respect to the infrastructure aspects. However,

some of the content hosted under the infrastructure portal was found to be

358 M. Höst et al.

incomplete and out of date. In an Open Source setting, up-to-date information

hosted under the portal is crucial for understanding how a project operates, for

example, what the project goals are, current issues and bug tracking, rules of

conduct, developers guide, and documentation. In a traditional setting, much of

this information is disseminated through different channels, either through inter-

personal communication, unarchived electronic communication, or a project’s

specific documentation. What can happen in practice, is that different projects

working on the same parts of software do not synchronize documentation, or a

task of completing documentation is not given a sufficient priority, and resulting in

outdated documentation.

14.4.1.2 Project Planning

The project planning aspect of traditional software project management deals with

identification of activity, effort estimation, and resources allocation. In an Open

Source community, an activity or task is identified through a transparent commu-

nication process, for example, a community participant identifies a new feature to

be implemented or reports a bug through an open online forum or email list. The

proposed activity is then further discussed and assessed among community partic-

ipants. Any community participant can decide to work on a task. Hence, there may

be multiple community participants working on the same activity. This is a very

different approach to resource allocation from a traditional planning approach,

where a resource is assigned to an activity, rather than a resource being able to

assign him/her self to the activity. Even though effort estimates are normally

provided for activities in an Open Source realm, a time constraint of an activity is

not normally enforced in the same sense as in a more traditional closed source

environment.

14.4.1.3 Monitoring and Taking Actions

The transparent communication aspect of Open Source development ensures that

many individuals look at the way a product is being developed, and thus, the “many

Table 14.4 Open Source development practices considered in analyzing ToolSoft’s software

development practices

Aspect Category Element

Infrastructure Product info Features, documentation, FAQ, news road map, security

Code access Download location, binary package, release notes

Community

guide

Community overview, community roles, coding conventions,

commit conventions, building and testing, debugging, mail-

ing lists, bugs/issues, releases

Communication Standardized Message, channel, norm

Management Meritocracy Role, promotion, authority

14 Inner Source Project Management 359

eyeballs” effect (Linus’s Law) often found in Open Source can be related to the

monitoring and taking actions aspect of the traditional software project manage-

ment. In Open Source development, the monitoring aspect is steered through a

transparent process where participants provide feedback on actions taken.

In this case study, we found that the communication characteristics observed in

ToolSoft have a high level of misalignment with Open Source practices. As

employees were seated closely to each other within the office plan, people tended

to favor informal meetings and discussions over electronic communication. This

way, the communication process is not transparent, or traceable, and may have to be

repeated by different community members. Open source communities use elec-

tronic forms of communication that facilitate transparent and traceable discussions.

Transparent discussions enable relevant participants and decision makers to get

involved, which may help in resolving issue in a timely fashion. Archived discus-

sions can be referenced in order to understand why certain decisions were taken in

the past or to find out how similar issues were resolved. Implementing transparent

and archived communication archives could improve efficiency in ToolSoft by

ensuring that relevant resources are involved on time by creating searchable

problem/resolution archives and by decreasing the amount of time spent in repet-

itive and less efficient ways of communication.

14.4.1.4 Human Issues

The transparent nature of communication in Open Source development helps in

understanding how the project functions, the importance of contributors’ roles, and

thus, ensures that the participant roles are assigned in a meritocratic way. A

community guide defines the rules of engagement within the community, especially

in terms of online communication norms. Open Source communities have recog-

nized the importance of friendly, standardized, and efficient communication in

overall project success (Fogel 2005). Hence, the community guide and open

communication aspects are related to the human issues feature of software project

management.

Our assessment of the management aspect showed alignment of the defined roles

in ToolSoft and Open Source development practices, but in practice the roles in

ToolSoft exhibit overlapping characteristics. For example, we found that software

architects sometimes took on responsibilities of project leads. Such overlapping and

conflicting roles can decrease the overall process and product efficiency. One

example of this is sacrificing some aspect of a product’s technical maturity to

meet a deadline.

14.4.1.5 Conclusion

In this case study, we found that implementing some characteristics of typical Open

Source practices while retaining a more traditional software development approach

360 M. Höst et al.

in terms of communication and project management may hinder the potential

efficiency of Inner Source. In order to better understand the actual effects of a

transition to Inner Source and Open Source practices, more research is needed. This

would increase understanding of benefits and drawbacks of Inner Source in an

organization, and potentially offer ways to tailor practices to closed development

environment with a limited number of resources and projects having a time

constraint as a critical attribute.

14.4.2 A Case Study of Project-Specific Inner Source

The second case study was conducted at an organization that we refer to as

“GlobalSoft.” GlobalSoft is a multinational organization in a regulated domain.

GlobalSoft has adopted a number of OSS development practices and augmented

their conventional mechanism for project management. Some of this case study’s

findings were previously reported by Stol et al. (2011); the results presented in this

section focus in particular on project management issues, taking into consideration

the four themes introduced in Sect. 14.3.

The GlobalSoft organization consists of a number of business units. Each

business unit is specialized in a specific domain for which they develop products.

Each business unit has therefore highly specialized expertise and in-depth knowl-

edge of these technologies.

Figure 14.3 shows a representation of the key elements of the Inner Source

initiative at GlobalSoft. The figure shows that a core team develops and releases

versions of the shared asset. The core team consists of architects and developers, as

well as a support team (similar to what is depicted in Fig. 14.2). The core team can

work closely with business units in so-called collaborative development projects, to

develop a new (or enrich an existing) component, which is then integrated back into

the shared asset. Effectively, these collaborative development projects include a

feature advocate from the business unit. A steering committee defines a roadmap

and decides which features are implemented. Business units integrate, and possibly

customize the shared asset. As new companies are acquired, they become part of the

organization as new business units, and any software that is brought in is scrutinized

for potential reuse.

While Inner Source offers many potential benefits (as discussed in Sect. 14.2), it

may also introduce new challenges, which are sometimes similar to those asso-

ciated with using OSS in product development (Stol et al. 2011). The remainder of

this section presents a number of challenges related to project management and how

they were addressed by the GlobalSoft.

14 Inner Source Project Management 361

14.4.2.1 Process Management

A key concern in process management was finding agreement on the software

development processes to be used. In the last two decades, GlobalSoft acquired

many companies in the same domain, which have become business units. Besides

each organization’s unique culture, an organization may also have a set of

established development processes to which they are accustomed.

One challenge that this study revealed was a misalignment of the software

development life cycles at the business units and the core team. Business units

want to focus exclusively on differentiating, value-adding functionality, and prefer

that common functionality shared by different products be implemented by the core

team. To that end, business units could send their requirements to the core team,

which would then implement a certain module or component. However, the inte-

gration tests were performed by the requesting business unit; the core team did not

build actual products and as a result did not do any integration tests, and as such did

not find any problems in using the new functionality. By the time a business unit

was ready to integrate the new component and identify problems (e.g., missing

functionality or lack of attention for quality attributes such as performance), the

core team had focused their attention to new tasks. As a result, little support in terms

of defect fixing could be expected, which was a burden for the business unit that

was trying to deliver a product to the market on time.

In order to prevent such problems, GlobalSoft adopted the concept of so-called

collaborative development projects. This can be considered a hybrid solution of

“pure” OSS style defect fixing by noncore developers, but with close involvement

GlobalSoft

Design,
maintains,
releases

Acquired
Business
Division

Collaborative
development

Sends contributions to

Integrates
and customizes

Becomes
business
division

Brings in

Investigates
for reuse

Decides on features

Results in

Participates
in

Participates
in

Shared
Asset

New/enriched
component

Acquired
software

Core Team Business
Devision

Steering
Committee

Fig. 14.3 Conceptual model of Inner Source in the GlobalSoft organization (adapted from Stol

et al. 2011)

362 M. Höst et al.

of the core team. In practice, this resulted in temporary, virtual teams that work

together on either a new component or to enrich an existing component.

14.4.2.2 Project Planning

As outlined in Sect. 14.3, project planning relates to activities such as activity

planning, effort estimation, resource allocation, but also includes feature prioriti-

zation. Many of these topics seem nonexistent in OSS projects, since in Open

Source developers self-select tasks that they feel they can do, or they feel need to

be done. This self-organizing feature of OSS style development is more difficult to

combine in commercial software development, where schedules need to be met and

budgets need to be respected.

At GlobalSoft, a steering committee developed a roadmap that outlined the

future development plans of the shared asset. The steering committee had repre-

sentatives from the business divisions as well as from the core team. This way, input

was received from both the supplier side as well as from the customer side, which

ensured that (1) the core team better understood what was needed by the business

divisions (i.e., the shared asset’s users) and (2) the business divisions could align

their own roadmap of future product evolution with the shared asset on which they

based their product.

One issue we found in this case study is that the development capacity of the core

team was a bottleneck. This was due to the fact that the core team developed a

platform that was used by many different business units, each with many feature

requests. This bottleneck was in fact one of the motivations to adopt OSS devel-

opment principles. Business divisions can—at their own cost—request develop-

ment of certain features, but this “solution” is rather limited, given the restricted

capacity of the core team.

14.4.2.3 Monitoring and Taking Actions

The case study organization used commonly used infrastructure offered by Collab.

Net.6 This includes common infrastructure such as a mailing list, a wiki, and an

issue tracker, which facilitated knowledge sharing, community interaction, and

tracking of issues. As developers encountered difficulties, the mailing list provided

a means to ask questions and share knowledge. Architects of the core team monitor

these lists regularly and provide feedback where possible.

As outlined above, the organization had grown significantly over time, as

companies were acquired that became new business units. As a result of this, the

scope of the shared asset (the product line platform used as a foundation for most

products) was evolving. Instead of a static scope (with a fixed set of features and use

6www.collab.net

14 Inner Source Project Management 363

http://www.collab.net/

cases), the shared asset’s scope was dynamic. As the new business units became

new customers of the shared asset, new use cases had to be considered, so that the

new business unit could also benefit from the platform. This could either be done by

porting the existing product to GlobalSoft’s platform or to rebuild the new business

unit’s software using the platform as a foundation.

14.4.2.4 Human Issues

There are a number of human issues to consider in Inner Source project manage-

ment. A key challenge in building an internal, organization-wide and interactive

community is getting developers to contribute. Without active members who

answer questions of other people in the community, an Inner Source initiative

may not become very successful.

A key factor that should be considered is building an environment in which all

parties involved become supportive of the Inner Source program (Stol et al. 2014).

In particular, incentives should be clear to each development group so that any

potential tension between the core team (i.e., supplier) and the business divisions

(i.e., customers) is prevented. Business divisions need to see clear benefits from

actively participating in the community in order to prevent a “them versus us”

atmosphere. This involves clearly communicating—and demonstrating—potential

benefits. Some business divisions were more receptive of GlobalSoft’s Inner Source

initiative than others.

Similar to what can be observed in Open Source communities, we found that

typically there was an evolution—or a “learning curve”—in involvement in

GlobalSoft’s Inner Source community. Usually this started with using some com-

ponents of the product line’s platform (similar to an OSS product’s users). As more

parts of a product’s application were migrated to the new platform (i.e., the shared

asset at GlobalSoft), a business unit would increase its interaction with the core

team. At some point, a business unit could decide to use components that are in

development (rather than a released snapshot version) to benefit from the latest

available functionality, and a business unit could want to contribute certain func-

tionality that they required (comparable to OSS users (or “lurkers,” even) who

become contributors). In GlobalSoft, this process worked better for some business

units than for others. In particular, business divisions that actively followed the core

team closely in their development had significantly fewer problems than those who

treated the core team as a traditional “black box” software supplier.

As outlined above, GlobalSoft acquired a large number of other companies over

time, each of which brought in their own software and systems. In many cases, these

systems would have a different architecture than GlobalSoft’s product line. One of

our findings is that GlobalSoft took a conscious approach to sit together with the

people who designed and developed the newly acquired systems. It was felt

important to come to an understanding about the design rationale for the different

systems, and to find agreement on how a new business division’s software could

make use of the shared asset. Respect for the acquired company’s culture is

364 M. Höst et al.

important in this context, rather than prescribing and requiring conformance to

GlobalSoft’s existing architecture. It was felt that a close collaboration, understand-

ing of each other’s software assets, and identifying how to let the different systems

grow toward each other would yield much better results (in both the technical

aspect as well as in “goodwill”) than enforcing GlobalSoft’s architecture.

14.5 Discussion and Future Work

This section continues the discussion on differences between conventional devel-

opment and Inner Source development. In particular, the objective is to discuss how

introducing Inner Source affects software project management. It is important to

understand that each Inner Source initiative must be tailored to the context of an

organization so as to consider the various constraints an organization may have to

address (e.g., regulated environments) as well as the organizational culture.

The decision to introduce a strategy such as Inner Source is always based on a

trade-off. On one hand, there are a number of perceived advantages such as

increased reuse and transparent communication. However, challenges may arise

as well. A key issue is to recognize that the different organizational units that work

with an Inner source core team are likely to use different development processes,

which can result in significant coordination challenges. The case study of

GlobalSoft illustrated how such process-misalignment manifested. To overcome

such issues, new coordination mechanisms can be required, or existing organiza-

tional governance mechanisms can be adjusted so as to better plan development of a

shared asset, and facilitate synchronization of development processes—in the case

of GlobalSoft, a new collaborative development mechanism emerged.

Challenges may also arise on the operational level for developers, who work in

the various organizational units and who contribute to development of a shared

asset. An increased transparency of the process in general and the visibility of the

contributed code may also result in tension points. For example, whereas code

contributions used to be limited in visibility to a developer’s project team members,

all project artifacts can now be scrutinized by an organization’s global developer

community. Some people may also see the electronic communication that is

typically used in an Open Source environment as over-formalized. This would

also result in a fully transparent (and archived) communication throughout an

organization. This may mean that some people would prefer to have informal

meetings instead of using, for example, mailing lists.

One strategy to address several of the challenges is to start with a code asset that

is already used by several projects, and then gradually introducing the concept for

other and new assets. We argue that it is an advantage to start with a part of the code

and the organization where the change is seen as positive, that is, in line with

creating a “short-term win” (Kotter 1996).

The key observations from the case studies are summarized in Table 14.5. The

results in the table suggest a few steps to take in transforming from a conventional

14 Inner Source Project Management 365

development approach to Inner Source. For example, an infrastructure for manag-

ing information needs to be used more extensively, and process synchronization

mechanisms such as collaborative development projects can be adopted to over-

come process misalignment issues.

How to carry out the introduction of Inner Source will vary across organizations

and heavily depend on contextual factors. We argue that it is important to identify

what gains are considered important and focus on those one at a time. It is also

important to identify what challenges may arise and to prepare mitigating actions to

overcome them.

Concerning process management, an important part of Inner Source manage-

ment is to align different processes in different organizational units. This is also

reflected in the importance of monitoring of different development initiatives in

different organizational units. Conventional project management is still taking

place in contributing organizational units, while an important part of Inner Source

management concerns coordination of initiatives. All management levels in an

organization should also be aware of the potential human issues that can affect

the introduction of Inner Source. That is, introducing Inner Source will mean a

number of changes at the tactical and operational levels when it comes to synchro-

nizing development activities in different business units in the organization. This is

also a basis for increasing reuse between business units, which by many is seen as

an important goal of introducing Inner Source.

Table 14.5 Key findings of the two case studies

Theme ToolSoft GlobalSoft

Process

management

Project portal that facilitates “self-

management” may exist but may

not be used fully

– Collaborative development projects

to overcome process misalignment

Project

management

Higher degree of engagement of all

project participants through trans-

parent communication process to

deliver high-quality software prod-

ucts up to users’ specifications can

be expected

– Steering committee is useful to

gather organization-wide input and

synchronize efforts

– Extra “purchasing” of critically

needed software development pos-

sible but limited to capacity of core

team

Monitoring and

taking

actions

Establish transparent and archived

communication to identify and

resolve issues more efficiently

– Dynamic scope of shared asset due to

new required use cases

Human issues Facilitate friendly communication

atmosphere and to promote based

on merit to build a healthy organi-

zation culture needed

– Need clear incentives so as to engage

people

– Learning curve may be steep due to

novelty of approach

– Respect for developers and organi-

zations’ cultures is key to success-

ful collaboration

366 M. Höst et al.

14.5.1 Future Work

As mentioned in this chapter, Inner Source is an emerging approach to software

development. Although the first studies on this topic were published in the early

2000s, the field is still in its nascent phase, and more research is necessary to better

understand how benefits (outlined in Sect. 14.2) can be achieved. We conclude this

chapter by outlining a number of directions for future work.

• While different Inner Source adoption models exist (Gurbani et al. 2010), further

studies of how organizations embrace Open Source development practices will

be a welcome addition to the literature.

• While there exist a few reports of how Inner Source supports the development of

a software product line (Van der Linden 2009), there are a few studies of reuse of

Inner Source components. Such studies do exist in an Open Source context (e.g.,

Capiluppi et al. 2011), which can be used as a template to design studies of reuse

of Inner Source components.

• In this chapter, Inner Source has been compared to traditional project manage-

ment aspects. Further research can include comparison of Inner source and

management in Agile projects.

• Quantitative studies to better understand how certain benefits can be achieved.

Such studies typically identify dependent and independent variables, and can

identify the relationship between those variables so as to be able to “predict”

how a certain benefit can be achieved.

Acknowledgments The authors wish to thank Brian Fitzgerald for useful feedback on an earlier

draft of this chapter. This work was conducted within the ITEA2-SCALARE project, supported by

Vinnova and Enterprise Ireland, and further by Science Foundation Ireland grant 10/CE/I1855 to

Lero— the Irish Software Engineering Research Centre (http://www.lero.ie), and by the Industrial

Excellence Center EASE—Embedded Applications Software Engineering (http://ease.cs.lth.se).

References

Abran A, Moore JW (2004) Guide to the software engineering body of knowledge. IEEE

Ågerfalk PJ, Fitzgerald B (2008) Outsourcing to an unknown workforce: exploring open-sourcing

as a global sourcing strategy. MISQ 32(2):385–409

Capiluppi A, Stol K, Boldyreff C (2011) Software reuse in open source: a case study. Int J Open

Source Softw Process 3(3):10–35

Capiluppi A, Stol K, Boldyreff C (2012) Exploring the Role of Commercial Stakeholders in Open

Source Software Evolution. In: Hammouda I et al (eds) OSS 2012, IFIP AICT 378, pp 178–200

Dinkelacker J, Garg PK, Miller R, Nelson D (2002) Progressive open source, 24th international

conference on software engineering (ICSE), Orlando, FL, pp 177–184

Duncan WR (2013) A guide to the project management body of knowledge (PMBOK®guide), 5th
edn. Project Management Institute (PMI), Newtown Square

Fogel K (2005) Producing open source software: how to run a successful free software project.

O’Reilly Media, Sebastopol

14 Inner Source Project Management 367

http://www.lero.ie
http://ease.cs.lth.se

Gaughan G, Fitzgerald B, Morgan L, Shaikh M (2007) An examination of the use of inner source

in multinational corporations: a preliminary framework to understand inner source software

development. In: Proceedings 1st OPAALS conference, pp 48–60

Gaughan G, Fitzgerald B, Shaikh M (2009) An examination of the use of Open Source software

processes as a global software development solution for commercial software engineering. In:

35th Euromicro conference on software engineering advanced applications (SEAA), pp 20–27

Gurbani VK, Garvert A, Herbsleb JD (2006) A case study of a corporate open source development

model. In: 28th international conference on software engineering, pp 472–481

Gurbani VK, Garvert A, Herbsleb JD (2010) Managing a corporate open source software asset.

Commun ACM 53(2):155–159

Hughes B, Cotterell M (2009) Software project management. McGraw-Hill, New Delhi

Ierusalimschy R (2008) Lua Mailing List, reply of Roberto Ierusalimschy, one of the developers of

Lua, Friday, 27 June. http://lua-users.org/lists/lua-l/2008-06/msg00407.html

Kotter J (1996) Leading change. Harvard Business Review Press, Boston

Lindman J, Rossi M, Marttiin P (2008) Applying open source development practices inside a

company. In: Russo B, Damiani E, Hissam S, Lundell B, Succi G (eds) Open source develop-

ment, communities and quality. Springer, New York

Lindman J, Riepula M, Rossi M, Marttiin P (2013) Open source technology in intra-organisational

software development–private markets or local libraries. In: Ericsson Lundstrom J, Wiberg M,

Hrastinski S, Edenius M, Ågerfalk PJ (eds) Managing open innovation technologies. Springer,

Berlin

Melian C, Mähring M (2008) Lost and gained in translation: adoption of open source software

development at Hewlett-Packard. In: Russo B, Damiani E, Hissam S, Lundell B, Succi G (eds)

Open source development, communities and quality. Springer, New York

Morgan L, Feller J, Finnegan P (2011) Exploring inner source as a form of intra-organisational

open innovation. In: Proceedings European conference on information systems

Oručević-Alagić A, Höst M (2010) A case study on the transformation from proprietary to open

source software. In: Boldyreff C, González-Barahona JM, Madey GR, Noll J,Ågerfalk PJ (eds)
Open source software: new horizons. Springer, Boston

Riehle D, Ellenberger J, Menahem T, Mikhailovski B, Natchetoi Y, Naveh B, Odenwald T (2009)

Open collaboration within corporations using software forges. IEEE Softw 26(2):52–58

Stol K, Babar MA (2010) Challenges in using open source software in product development: a

review of the literature. 3rd workshop on emerging trends in FLOSS research and develop-

ment, co-located with international conference on software engineering, pp 17–22

Stol K, Babar MA, Avgeriou P, Fitzgerald B (2011) A comparative study of challenges in

integrating open source software and inner source software. Inf Softw Technol 53(12):1319–

1336

Stol K, Avgeriou P, Babar MA, Lucas Y, Fitzgerald B (2014) Key factors for adopting inner

source. ACM Trans Softw Eng Methodol 23(2)

Van der Linden F (2009) Applying open source software principles in product lines. Upgrade 10

(2):32–41

Van der Linden F, Lundell B, Marttiin P (2009) Commodification of industrial software: the case

for open source. IEEE Softw 26(4):77–83

Vitharana P, King J, Chapman HS (2010) Impact of internal open source development on reuse:

participatory reuse in action. J Manage Inf Syst 27(2):277–304

Wesselius J (2008) The bazaar inside the cathedral: business models for internal markets. IEEE

Softw 25(3):60–66

Biography Martin Höst is a Professor in Software Engineering at Lund University,

Sweden. He received an M.Sc. degree from Lund University in 1992 and a Ph.D.

degree in Software Engineering from the same university in 1999. His main

368 M. Höst et al.

http://lua-users.org/lists/lua-l/2008-06/msg00407.html

research interests include software process improvement, software quality, risk

analysis, and empirical software engineering.

Klaas-Jan Stol is a researcher with Lero—the Irish Software Engineering Research

Centre. He holds a PhD in software engineering from the University of Limerick.

His research interests include contemporary software development methods and

strategies, including Inner Source, Open Source, crowdsourcing, and agile and lean

methods, as well as research methodology and theory building in software engi-

neering. In a previous role, he was a contributor to an Open Source project.

Alma Oručević-Alagić is a Ph.D. student at Lund University, Sweden. She received

an M.Sc. degree in Software Engineering from the University of St. Thomas,

St. Paul, Minnesota in 2002, and a Technical Licentiate degree in 2013 from

Lund University. Her research interests include Open Source, Inner Source, and

Network Analysis of software development communities.

14 Inner Source Project Management 369

Part IV

Emerging Techniques

Introduction

It is not only the software development practices that have changed, as discussed in

Part III. New techniques have emerged that can be used in project management.

Thus, in this part of the book, we have invited leading experts on different

techniques useful for the project manager. The techniques are presented in a

software project management context. The new techniques presented are search-

based techniques, social media, software process simulation and efficient use of

data. The authors share their knowledge, insights and accompanying recommenda-

tions and conclusions in four chapters in this part of the book.

In Chap. 15, Filomena Ferrucci, Mark Harman and Federica Sarro provide an

overview of search-based software project management, where search-based tech-

niques are applied to the area of software project management. The authors discuss

the use of these techniques to address some of the subareas within project manage-

ment such as staffing, scheduling, risk, overtime and effort estimation. The chapter

starts with a general introduction to search-based software engineering before

moving onto its application in software project management. A historical overview

of the application of search-based techniques in some of the different subareas of

software project management is provided. The authors conclude the chapter by

outlining some future work in the area to further enhance software project man-

agement with the use of search-based techniques.

Rachel Harrison and Varsha Veerappa share their experiences in using social

media in software project management in Chap. 16. As social media has changed

the way we interact in general, it has also provided new opportunities in software

projects. The authors elaborate on the implications of social media on software

projects and their management. They discuss interactions and social aspects in

software projects and then move onto the importance of social media in the pro-

jects. The authors have conducted a pilot study regarding the use of social media in

nine companies, and they share their observations and experiences. The study is

conducted in the context of global software development, and hence the authors

http://dx.doi.org/10.1007/978-3-642-55035-5_15
http://dx.doi.org/10.1007/978-3-642-55035-5_16

compare the findings from co-located and distributed teams. The chapter presents

some implications of the use of social media in relation to different contexts and

roles, and it ends with an outlook regarding the future of social media in software

projects.

In Chap. 17, Dietmar Pfahl provides a discussion of software process simulation.

He highlights the perceived potential in using simulation and discusses some of the

challenges in relation to its application in industrial settings. The chapter starts with

a brief historical perspective and discusses the purpose and scope of software

process simulation. He continues by introducing an example for illustration pur-

poses. The example is then used in several scenarios to show the possible applica-

tion of software process simulation in relation to software project management.

Pfahl moves onto discussing the uptake of software process simulation by the

software industry. He notes that it is quite low and stresses three main reasons for

it: (1) high cost for developing a simulation model, (2) high cost for evolving the

simulation model, and (3) difficulty in demonstrating the value of a simulation

model. Each of these three reasons is discussed in the chapter. The chapter

concludes with a presentation of five issues that need to be addressed to increase

the use of simulation as a tool in software development.

Tim Menzies describes model-based software project management in Chap. 18.

He stresses the need for the use of empirical data and models to support project

managers in their decision-making. Menzies highlights that simplicity is needed.

Software project managers need support, and in this chapter it is discussed how it is

possible to identify the least a manager needs to know to improve their projects. The

chapter starts by reviewing some work in relation to what the author refers to as

intelligent project management. It continues by explaining why speculative project

management is difficult and hence explains why support-based project management

is needed. It then describes support-based project management using data mining

and discusses some observations in relation to it. The chapter continues with a

discussion on spectral learning, which is illustrated and discussed by using data

from several case studies. A discussion on the usefulness of the ideas presented

concludes the chapter.

The four chapters in this part provide an in-depth insight into some of the new

techniques that may be useful for software project managers. The chapters highlight

some of the new techniques that a project manager can benefit from using in their

daily work. The chapters in this part highlight some of the new techniques and

hence challenges and opportunities that software project managers must be able to

address in their daily work.

372 Part IV Emerging Techniques

http://dx.doi.org/10.1007/978-3-642-55035-5_17
http://dx.doi.org/10.1007/978-3-642-55035-5_18

Chapter 15

Search-Based Software Project Management

Filomena Ferrucci, Mark Harman, and Federica Sarro

Abstract Project management presents the manager with a complex set of related

optimisation problems. Decisions made can more profoundly affect the outcome of

a project than any other activity. In the chapter, we provide an overview of Search-

Based Software Project Management, in which search-based software engineering

(SBSE) is applied to problems in software project management. We show how

SBSE has been used to attack the problems of staffing, scheduling, risk, and effort

estimation. SBSE can help to solve the optimisation problems the manager faces,

but it can also yield insight. SBSE therefore provides both decision making and

decision support. We provide a comprehensive survey of search-based software

project management and give directions for the development of this subfield

of SBSE.

15.1 Introduction

Software Project Management includes several activities critical for the success of a

project (e.g., cost estimation, project planning, quality management). These activ-

ities often involve finding a suitable balance between competing and potentially

conflicting goals. For example, planning a project schedule requires to minimise the

project duration and the project cost, and to maximise the product quality. Many of

these problems are essentially optimisation questions characterised by competing

F. Ferrucci

DISTRA, University of Salerno, Salerno, Italy

e-mail: fferrucci@unisa.it

M. Harman • F. Sarro (*)

CREST, Department of Computer Science, University College London, London, UK

e-mail: mark.harman@ucl.ac.uk; f.sarro@ucl.ac.uk

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_15, © Springer-Verlag Berlin Heidelberg 2014

373

mailto:fferrucci@unisa.it
mailto:mark.harman@ucl.ac.uk
mailto:f.sarro@ucl.ac.uk

goals/constraints and with a bewilderingly large set of possible choices. So finding

good solutions can be hard.

Search-based software engineering seeks to reformulate software engineering

problems as search-based optimisation problems and applies a variety of meta-

heuristics based on local and global search to solve them (such as Hill Climbing,

Tabu Search, and Genetic Algorithms). These meta-heuristics search for a suitable

solution in a typically large input space guided by a fitness function that expresses

the goals and leads the exploration into potentially promising areas of the search

space.

Though the term Search-Based Software Engineering (SBSE) was coined by

Harman and Jones in 2001 to cover the application of computational search and

optimisation across the wide spectrum of software engineering activities (Harman

and Jones 2001), there were already pockets of activity on several specific software

engineering problems prior to the introduction of the term SBSE. One such topic

was search-based software project management, the topic of this chapter. In

particular, there was work on search-based project scheduling and staffing by

Chang (1994), Chang et al. (1994, 1998) and Chao et al. (1993), and on search-

based software development effort estimation by Dolado (2001) and Shukla (2000).

Figure 15.1 shows the number of papers published on the use of search-based

approaches for Software Project Management. We can note that the first work

aiming at optimising project scheduling and staffing appeared in 1993, while in

2000 the SBSE community started investigating search-based approaches also for

software development effort estimation.

This chapter provides a comprehensive review of techniques, results and trends

published in relevant papers. We discuss the effectiveness of search-based

approaches for supporting project managers in many activities and provide sugges-

tions for future research directions.

SB Software Project
Management

SB Project Scheduling
and Staffing

SB Software Development
Effort Estimation

N
um

be
r

of
 P

ap
er

s

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

10

20

30

40

50

60

Fig. 15.1 Number of relevant publications on the use of search-based approaches for software

project management from 1993 to 2013 [source Zhang (2013)]

374 F. Ferrucci et al.

The rest of the chapter is organised as follows. Section 15.2 reports on the main

features of the most popular search-based techniques used in the context of search-

based software project management. Section 15.3 introduces the problems of

scheduling and staffing and building predictive models with special focus on

software development effort estimation providing a description of search-based

approaches proposed in the literature and the empirical studies carried out to assess

their effectiveness. Future research directions are described in Sect. 15.4.

Section 15.5 concludes the chapter.

15.2 Search-Based Software Engineering

Software engineering, like other engineering disciplines, is concerned with optimi-

sation problems: we seek to build systems that are better, faster, cheaper, more

reliable, flexible, scalable, responsive, adaptive, maintainable, and testable; the list

of objectives for the software engineer is a long and diverse one, reflecting the

breadth and diversity of applications to which software is put. The space of possible

choices is enormous and the objectives many and varied. Search-based software

engineering (SBSE) is an approach to software engineering in which search-based

optimisation algorithms are used to identify optimal or near optimal solutions and

to get insight. Thus, in SBSE an SE problem (e.g., test case generation) is treated as

a search or optimization problem whose goal is to find the most appropriate solution

conforming to some adequacy criteria (e.g., maximising the code coverage). Rather

than constructing test cases, project schedules, requirements sets, designs, and other

software engineering artifacts, SBSE simply searches for them.

The search space is the space of all possible candidate solutions. This is typically

enormous, making it impossible to enumerate all solutions. Moving from conven-

tional software engineering to SBSE basically requires choosing a representation of

the problem and defining a suitable fitness function to determine how good a

solution is. Typically, a software engineer will have a suitable representation for

his/her problem, because one cannot do much engineering without a way to

represent the problem in hand. Furthermore, many problems in software engineer-

ing have a rich and varied set of software metrics associated with them that

naturally form good initial candidates for fitness functions (Harman and Clark

2004).

With these two ingredients, it becomes possible to implement search-based

optimisation algorithms. These algorithms use different approaches to locate opti-

mal or near-optimal solutions. However, they are all essentially a search through

many possible candidate instances of the representation, guided by the fitness

function, which allows the algorithm to compare candidate solutions according to

their effectiveness at solving the problem in hand. Many techniques have been used,

including local search techniques, such as Hill Climbing (HC), and global tech-

niques, such as Genetic Algorithm (GA) and Genetic Programming (GP).

15 Search-Based Software Project Management 375

Despite the local maximum problem, HC is a simple technique that is both easy

to implement and surprisingly effective (Harman et al. 2002; Mitchell and

Mancoridis 2002); these aspects make it a popular first choice among search-

based techniques. GA belongs to the larger class of evolutionary algorithms

(EAs) (Holland 1975), which loosely model evolutionary searches for fit individ-

uals. GP (Koza 1992) is another form of evolutionary technique that has proved

very useful in SBSE for project management.

A comprehensive review of the overall field of SBSE can be found in the work of

Harman et al. (2012b). In that overall SBSE survey, the reader can find a more

detailed explanation of the algorithms used in SBSE. There is also a tutorial on

SBSE (Harman et al. 2010), in which the reader can find a gentle introduction to the

entire area. The SBSE survey (Harman et al. 2012b) and tutorial (Harman

et al. 2010) cover the whole area of SBSE and, as a result, has little time and

space available for each subtopic. The present survey focuses on the results, trends,

techniques, and achievements in SBSE for project management. Though there have

been many surveys on other subareas of SBSE, including, testing (McMinn 2004;

Yoo and Harman 2012), design (Räihä 2010), and requirements (Zhang et al. 2008),

there has been no previous survey on SBSE for project management.

15.3 Search-Based Software Project Management

In this section, we provide an overview of the work on search-based software

project management, in which SBSE is applied to support project managers for

time management (Sect. 1.3.3), cost management (Sect. 1.3.4), quality management

(Sect. 1.3.5), human-resource management (Sect. 1.3.6) and risk management

(Sect. 1.3.8).

The first application of SBSE to software project management has been pro-

posed for project scheduling and resource allocation. Figure 15.2 provides a generic

schematic overview of SBSE approaches to project planning. Given in input

information about work packages (e.g., cost, duration, dependencies) and staff

skills, the search-based approaches search for an optimal work package ordering

and staff allocation guided by a single or multi-objectives fitness function. A natural

goal for a search-based approach to project management is to find project plans that

minimise the completion time of the project. Another goal that has been taken into

account is to minimise the risks associated with the development process (e.g.,

delays in the project completion time, or reduced budgets available).

Figure 15.2 also highlights one of the important limitations of the approach: it

relies on simulation of the likely course of the project, given the guiding project

configuration parameters (effectively, the search space). Moreover, the formulation

of search-based project management problem does not always model the reality of

software projects (e.g., many papers do not have a realistic representation of skill

and/or risk). However, there is evidence to suggest that this uptake in making the

formulation of the search-based project management problem more realistic

376 F. Ferrucci et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec6
http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec7
http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec8
http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec9
http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec11

[see e.g., Antoniol et al. (2004, 2005), Luna et al. (2012)] and oriented towards

human aspects (see Chap. 4) is already taking place.

SBSE techniques also have a natural application in predictive modelling

(Harman 2010a). Software development effort estimation is one of the areas in

which this search-based predictive modelling approach has been most widely

investigated (Ferrucci et al. 2010d). The use of search-based approaches in this

context has been twofold: they can be exploited to build effort estimation models or

to enhance the use of other effort estimation techniques (Sarro 2011). In the first

case, the problem of building an estimation model is reformulated as an optimisa-

tion problem where the search-based method builds many possible models—

exploiting past projects data—and tries to identify the best one, that is, the one

providing the most accurate estimates. In the second case, search-based methods

can be exploited in combination with other estimation techniques to improve

critical steps of their application (e.g., features subset selection or the identification

of critical parameters) aiming to obtain better estimates.

Staff Allocation Work Package
Ordering

Search Based Optimization Techniques

Skills of Staff

Skills Required by
Work Packages

Skills Information

Cost Estimates

Duration Estimates

Dependencies
between Work

Packages

Work Packages
Information

Simulator Fitness Function

Fig. 15.2 A generic search-based project management scheme (Harman et al. 2012b)

15 Search-Based Software Project Management 377

http://dx.doi.org/10.1007/978-3-642-55035-5_4

Many empirical studies were carried out in this field showing that search-based

techniques are not only as effective as widely used effort estimation methods [see,

e.g., Ferrucci et al. (2010a)] but also their use can significantly improve the

accuracy of other data-driven effort estimation techniques [see, e.g., Corazza

et al. (2013)]. Moreover, there is evidence that the use of search-based approaches

can help to yield insight into open problems, such as the choice of a reliable

measure to compare different estimation models [see, e.g., Ferrucci et al. (2010c),

Lokan (2005)]. Furthermore, search-based approaches only have been used to

obtain exact prediction (i.e., one point estimate for a project); however, they can

be exploited to investigate prediction uncertainty and risk of inaccurate prediction

by means of using sensitivity analysis or multi-objective optimisation, as success-

fully done in other fields of SBSE [see e.g., Harman et al. (2009)].

Figure 15.3 shows the key ideas developed so far for search-based project

management. In Sects. 15.3.1, 15.3.2, 15.3.3 and 15.3.4, we discuss the studies

that have been carried out on the use of search-based approaches for project

planning and staffing, while in Sect. 15.3.5 we discuss the main studies on

search-based effort estimation. Open challenges and future work are reported in

Sect. 15.4.

SBSE has also been used to build predictive models to support project managers

in other estimation tasks, namely, quality prediction and defect prediction. In

particular, Azar (2010) considers approaches to improve predictive models of

software quality using SBSE. Liu and Khoshgoftaar (2001) apply GP to quality

prediction, presenting two case studies of the approach. This GP approach has been

extended, refined and further explored in (Khoshgoftaar et al. 2003; Liu and

Khoshgoftaar 2003, 2004; Khoshgoftaar and Liu 2007). In all these works,

GP-evolved predictors are used as the basis for decision support. Bouktif

et al. (2002, 2004, 2006) exploit GA and SA for quality prediction for software

projects. Other authors have used a combination of GA and GP techniques for

estimation as a decision support tool for software managers. Jarillo et al. (2011) and

Afzal et al. (2014) apply GA and GP for predicting the number of defects and

estimating the reliability of the system. Others exploit GA to search for a suitable

configuration of support vector machines to be used for inter-release fault predic-

tion (Di Martino et al. 2011; Sarro et al. 2012a).

15.3.1 Early Work on Search-Based Software Project
Planning and Staffing

Chang et al. (Chang 1994; Chang et al. 1994, 1998, 2001; Chao et al. 1993)

introduced the software project management net (SPM-Net) approach for project

scheduling (Sect. 1.3.3) and resource allocation (Sect. 1.3.6). This was the first

work on search-based software project management in the literature. The work is

evaluated on simulated data, constructed synthetically to mimic the properties of

378 F. Ferrucci et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec6
http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec9

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
16

20
15

20
17

SB
 f

or
 p

ro
je

ct
 s

ch
ed

ul
in

g
an

d
re

so
ur

ce
 a

llo
ca

ti
on

(C
ha

o
19

93
)

SB
 c

om
bi

ne
d

w
it
h

M
L

 f
or

 s
of

tw
ar

e
ef

fo
rt

 e
st

im
at

io
n

(S
hu

kl
a

20
00

)

(D
ol

ad
o

20
01

)

(K
ir
so

pp
 e

t
al

.
20

02
)

(A
nt

on
io

l
et

 a
l.

20
04

)

(L
ok

an
 2

00
5)

SB

fo
r

an
al

ys
in

g
co

m
m

un
ic

at
io

n
ov

er
he

ad
 i
n

so
ft

w
ar

e
pr

oj
ec

t

SB
 f

or
 i
nt

er
ac

ti
ve

 o
pt

im
iz

at
io

n
in

 p
ro

je
ct

 m
an

ag
em

en
t

(D
i
P
en

ta
 e

t
al

.
20

07
)

(S
ha

ck
el

fo
rd

 2
00

7) M
O

E
A

 f
or

 h
an

dl
in

g
so

ft
w

ar
e

pr
oj

ec
t

un
ce

rt
ai

nt
y

(G
ue

or
gu

ie
v

et
 a

l.
20

09
)

SB
 f

or
 b

ui
ld

in
g

pr
ed

ic
ti
on

 m
od

el
s

ba
se

d
on

 d
if
fe

re
nt

fi
tn

es
s

fu
nc

ti
on

s
in

 s
of

tw
ar

e
ef

fo
rt

 e
st

im
at

io
n

M
O

E
A

 f
or

 t
ra

in
in

g
en

se
m

bl
e

m
od

el
s

in
 s

of
tw

ar
e

ef
fo

rt
es

ti
m

at
io

n

M
O

E
A

 f
or

 b
ui

ld
in

g
pr

ed
ic

ti
ve

 m
od

el
s

in
 s

of
tw

ar
e

ef
fo

rt
es

ti
m

at
io

n

SB
 f

or
 W

eb
 e

ff
or

t
es

ti
m

at
io

n

R
un

ti
m

e
an

al
ys

is
 o

f
SB

 p
ro

je
ct

 s
ch

ed
ul

in
g

SB
 s

of
tw

ar
e

pr
oj

ec
t

m
an

ag
em

en
t

to
ol

SB
 f

or
 d

yn
am

ic
 a

da
pt

io
n

in
 s

of
tw

ar
e

pr
oj

ec
t

m
an

ag
em

en
t

(F
er

ru
cc

i
et

 a
l.

20
10

b)

(S
ty

la
no

u
et

 a
l.

20
12

)

(M
in

ku
 e

t
al

.
20

12
)

(M
in

ku
 e

t
al

.
20

12
)

(F
er

ru
cc

i
et

 a
l.

20
11

)

(F
er

ru
cc

i
et

 a
l.

20
10

)

(X
ia

o
et

 a
l.

20
10

)

M
O

E
A

 f
or

 o
ve

rt
im

e
pl

an
ni

ng
 i
n

so
ft

w
ar

e
pr

oj
ec

t
m

an
ag

em
en

t

(F
er

ru
cc

i
et

 a
l.

20
13

)

SB
 f

or
 b

ui
ld

in
g

pr
ed

ic
ti
on

 m
od

el
s

in
 s

of
tw

ar
e

ef
fo

rt
es

ti
m

at
io

n SB
 f

or
 f

ea
tu

re
 s

ub
se

t
se

le
ct

io
n

in
 s

of
tw

ar
e

ef
fo

rt
es

ti
m

at
io

n

SB
 f

or
 p

ro
je

ct
 m

an
ag

em
en

t
in

 p
re

se
nc

e
of

 a
ba

nd
on

m
en

t,
re

w
or

k,
 e

rr
or

 a
nd

 u
nc

er
ta

in
ty

(K
ip

er
 e

t
al

.
20

07
)

SB
 f

or
 t

ra
in

in
g

pr
ed

ic
ti
ve

 m
od

el
s

ba
se

d
on

 d
if
fe

re
nt

ac
cu

ra
cy

 m
ea

su
re

s
in

 s
of

tw
ar

e
ef

fo
rt

 e
st

im
at

io
n

SB
 f

or
 h

an
dl

in
g

so
ft

w
ar

e
ri
sk

F
ig
.
1
5
.3

K
ey

id
ea
s
d
ev
el
o
p
ed

fo
r
se
ar
ch
-b
as
ed

so
ft
w
ar
e
p
ro
je
ct

m
an
ag
em

en
t

15 Search-Based Software Project Management 379

real software projects and to evaluate the properties of the algorithms used. One of

the enduring problems researchers concerned with project management face is the

lack of available real-world project data. It remains a common problem to this day.

At about the same time as the term SBSE was introduced to the mainstream

software engineering community, Aguilar-Ruiz et al. (2001, 2002) were also

experimenting with computational search as a means of managing and investigating

software project management activities. The goal was to provide rules to the

manager to help guide the process of project management. As with the work of

Chang et al., a simulation of the project was used to evaluate the search.

This concept of a software project simulation has remained prevalent throughout

the history of work on project management (Chap. 17). To evaluate a fitness for a

proposed project plan, it is necessary to run a simulation of the course of the project

in order to obtain an assessment of the fitness of the proposed plan. Of course, this

raises additional issues as to the validity of the simulation. One of the advantages of

the SBSE approach, more generally, is that it can operate directly on the engineer-

ing material (i.e., the software) in question. This is an aspect of SBSE that is unique

to the software engineering domain and not shared by any other application of

computational search to other engineering disciplines (Harman 2010b). However,

for search-based project management, the familiar issues that arise in computa-

tional search for other engineering disciplines arise here also for software engi-

neering (Harman 2010a). We have to be aware that our model of reality and our

simulation of that model are both important players in the overall computation of

fitness and thereby impact the results obtained; errors in the model or the simulation

may feed through into poor quality solutions found by the search.

15.3.2 Minimising Software Project Completion Times

A natural step for a search-based approach to project management is to focus on

techniques that find project plans that minimise the completion time of the project

(Sect. 1.3.3). Like all project managers, software project managers are concerned

with timely product delivery. In highly competitive software engineering applica-

tion domains, time to market can be a key determinant of the ultimate success of a

product.

Antoniol et al. (2004, 2005) applied GAs, HC and SA to the problem of staff

allocation to work packages with the aim of reducing project completion time.

At the same time, Alba and Chicano (2005, 2007) also applied search algorithms

to software projects. They combined several different objectives for optimisation of

project management into a single weighted sum and optimise for this weighted sum.

The approach was evaluated on a set of problems generated by an instance

generator. Subsequently, this work was extended to handle multiple objectives

using a Pareto optimisation approach (Chicano et al. 2011).

The work of Antoniol et al. (2004, 2005) targeted a massive maintenance

project, in which work packages were compressible by the allocation of additional

380 F. Ferrucci et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_17
http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec6

staff. This principle of compressible work packages runs contrary to Brooks’

famous law (Brooks 1975). That is, adding more staff to a late project simply

makes the project even later. Following Brooks’ law, we may not, in general,

assume that a work package of two person-months will take one month to complete

should we choose to allocate two people to it. In the most extreme case, the

additional communication overheads may mean that the work package takes longer

to complete with two people than with one.

However, in some cases, it is realistic to assume that the duration of a work

package can be derived by dividing the person-months needed for the package by

the number of engineers working on it. This can only be applied within reason, even

where the linearity can be assumed to hold; a two person-month work package may

not be completed in under an hour by allocating one thousand engineers to it!

However, linearity may apply for a reasonably useful range of values, where the

tasks are highly mechanised or where they are specified in detail and prescriptive.

Such work packages may be found in such massive maintenance tasks such as those

studied in Antoniol et al. (2004, 2005). They may also be found in situations where

software engineering activities are outsourced and therefore more highly specified

for this reason.

Many authors have simplified their models of software projects by implicitly or

explicitly assuming linearity (effectively denying Brooks’ law). Where the linearity

assumption cannot be justified and we assume that Brooks’ law applies, we can still

use SBSE; we simply require a richer model. We can also use SBSE to explore the

impact of Brooks’ law on the software project planning process. Antoniol

et al. (2005) introduced an approach to investigating Brooks’ law with different

models of communication overhead to explore the influence of nonlinearity on

project planning.

More intricate models may be required to adequately capture the true behaviour

of the project once it commences. Another example of an important aspect of

software engineering projects is the tendency for aspects of the project to be

reworked. Software is so flexible that it is often considered easy to reassign or

reimplement a component. This can lead to headaches for the project manager, who

would prefer, perhaps, to schedule his or her project on the basis of known

completion times.

To make the formulation of the search-based project management problem more

realistic, Antoniol et al. (2004) introduced models of the project management

problem that account for reworking and abandonment of work packages. In this

way, we can enrich our models of the eventual software project process to cater for

more real-world assumptions. This may make the overall model more realistic and

the simulation, thereby, more reliable. Unfortunately, it also makes the model more

complex and consequently it becomes harder to explain the outcomes to the users.

Care is thus required that the model does not become such a Byzantine work of

intricate beauty that its findings become simultaneously impenetrable to the deci-

sion maker; this area of SBSE is primarily concerned with decision support, rather

than decision making (Harman et al. 2012b). Insights that accrue to the decision-

maker rely critically on accessibility of explanations.

15 Search-Based Software Project Management 381

Much of the previous work on search-based project management (Aguilar-Ruiz

et al. 2001; Alba and Chicano 2005, 2007; Chang 1994; Chang et al. 1994, 1998,

2001; Chao et al. 1993; Minku et al. 2012, 2013) has used synthetic data. This can

be achieved in a disciplined and controlled manner. For example, Alba and Chicano

(2007) used a systematic instance generator to create synthetic software project data

concerning work package estimated effort. This approach to the construction of

synthetic data allows for experimental control of the evaluation under ‘laboratory

conditions’. Such experimental control has been argued to be an important aspect of

SBSE that complements empirical analysis on real-world case studies (Harman

et al. 2012a). Antoniol et al. (2005) applied their search-based algorithms to real-

world data from a large Y2K maintenance project, providing empirical evidence

about search-based project management that complements (but does not replace the

need for) the experimental data from other studies.

Many other approaches and formulations have been introduced for the software

project management problem. For example, Alvarez-Valdes et al. (2006) applied

Scatter Search to the problem of minimising project duration. Hericko et al. (2008)

used a gradient-based optimisation method to optimise project team size while

minimising project effort. Chen and Zhang (2013) used an Ant Colony Optimisa-

tion (ACO) approach. Kang et al. (2011) optimised the scheduling of human

resource allocations by using a variant of SA, taking into account individual and

team constraints based on the literature and interviews with experts in the industry,

and by employing real data to validate their proposal. Rahman et al. (2010) also

reported on an empirical analysis carried out exploiting real data on the use of both

GA and a greedy approach that makes the locally optimal choice at each stage to

assign developer to tasks and bug fixing activities. Different aspects of the man-

agement also focused on the allocation of staff (Barreto et al. 2008; Kapur

et al. 2008) and the provision of decision support (Cortellessa et al. 2008).

Di Penta et al. (2011) provided a recent evaluation of search-based techniques for

scheduling and staffing for software project management assessed on real-world

examples in the style of detailed empirical evaluations using nonsynthetic data.

Their work covers single and multiple objective formulations, catering for

conflicting project objectives, schedule fragmentation and developer expertise.

Results are presented for HC, SA and GAs and applied to two real-world software

projects.

15.3.3 Risk-Based Approach

All software projects suffer from risk (Sect. 1.3.8). Risks can be categorised as

product risks and process risks. Risks to the product concern the possibility that

there may be flaws in the product that make it less attractive to customers, while

process risks concern the problems that may cause delays in the project completion

time, or reduced budgets available forcing compromise.

382 F. Ferrucci et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_1#Sec11

Kiper et al. (2007) were concerned with the problem of technical risks, seeking

to find those verification and validation activities that could be deployed to reduce

risks subject to budget. This work can be categorised as a product risk; it seeks to

reduce the chance that the product will exhibit a risk of faults or other low quality.

Gueorguiev et al. (2009) concerned process risk, focusing on the chances that

misestimating the effort required for a work package might lead to overruns which

would adversely affect the completion time of the project. The effects of overruns

are not immediately obvious since they can affect the critical path, making previ-

ously less important work packages become more important for the overall project

completion time.

Jiang et al. (2007) proposed an approach that extracts personnel risk information

from historical data and integrates risk analysis into project scheduling performed

with GA. A rescheduling mechanism is designed to detect and mitigate potential

risks along with the software project development. However, the proposed

approach has not been empirically validated.

Xiao et al. (2013) presented a search-based risk mitigation planning method

based on GA for project portfolio management. Their results showed that with

various risk mitigation actions and project objective settings, different plans can be

effectively obtained, thus providing decision support for managers.

15.3.4 Overtime Planning

Effort estimation and planning of projects are hard problems that can be supported

by decision support tools. Where these tools are inadequate or the project encoun-

ters unexpected ‘mission creep’, the consequences can be highly detrimental for the

software engineers working on the project and the products they produce. Typi-

cally, the only remaining solution open to the project manager is to fall back on the

allocation of overtime. However, unplanned overtime results in bad products, as has

been repeatedly demonstrated in the literature (Akula and Cusick 2008; Nishikitani

et al. 2005). It also has harmful effects on the engineers forced into such punitive

working practices (see, e.g., Kleppa et al. 2008). The spectre of the ‘death march

project’ (Yourdon 1997) hangs over many software engineering activities, largely

as a result of the inability to plan for and manage the deployment of overtime. More

thorough overtime planning is not only beneficial to the software engineers who

have to undertake the work (Beckers et al. 2008), there is also evidence that it

produces better products when used in agile team (Mann and Maurer 2005).

Motivated by these observations, Ferrucci et al. (2013) introduced a multi-

objective formulation of the project overtime planning for software engineering

management. The approach is able to balance trade-offs between project duration,

overrun risk and overtime resources for three different risk assessment models. It is

applicable to standard software project plans, such as those constructed using the

critical path method, widely adopted by software engineers and implemented in

many tools. To analyse the effectiveness of the approach, they reported an

15 Search-Based Software Project Management 383

empirical study on six real-world software projects, ranging in size from a few

person-weeks to roughly four person-years.

The experiments reveal that the approach was significantly better than standard

multi-objective search in 76 % of experiments and was significantly better than

random search in 100 % experiments. Moreover, it always significantly

outperformed standard overtime planning strategies reported in the literature.

Furthermore, the Pareto fronts obtained by the proposed approach can yield action-

able insights into project planning trade-offs between risk, duration, and overtime

using different risk assessment models. Software engineers can exploit this infor-

mation when making decisions about software project overtime planning.

15.3.5 Software Development Effort Estimation

Software development effort estimation concerns with the prediction of the effort

needed to develop a software project. Such an effort is usually quantified as person-

hours or person-months. Development effort is considered as one of the major

component of software costs, and it is usually the most challenging to predict

(Sect. 3.1). In the last few decades, several methods have been proposed to support

project managers in estimating software development effort (Briand andWieczorek

2002). In particular, data-driven methods exploit data from past projects to estimate

the effort for a new project under development (typical methods are linear regres-

sion and case-based reasoning). These data consist of information about some

relevant factors (named cost drivers) and the effort actually spent to develop the

projects. Usually a data-driven method tries to explain the relation between effort

and cost drivers building an estimation model (equation) that is used to predict the

effort for a new project. Also search-based methods have been used to build effort

estimation models by formulating the problem as an optimisation problem that aims

to identify the best model, that is, the one providing the most accurate estimates. In

the following, we highlight some key problems in the use of SBSE for effort

estimation and how they have been addressed and assessed.

Dolado (2001) was the first to employ GP to automatically derive equations for

estimating development effort and he observed a similar or better prediction than

regression equations. Based on these encouraging results, other investigations have

been carried out comparing search-based approaches with other techniques pro-

posed in the literature. Most of the studies are based on GP, and only more recently

other search-based techniques such as Tabu Search (Ferrucci et al. 2010a, b) and

multi-objective evolutionary approaches (Ferrucci et al. 2011; Minku and Yao

2012, 2013) have been employed.

As for the setting of these techniques, usually a trial-and-error process has been

employed carrying out a validation process with different settings and selecting the

one providing the best results (Ferrucci et al. 2010d). This practice is time-

consuming and it has to be repeated every time new data are used, thus limiting

the adoption of search-based approaches by practitioners. A heuristic approach has

384 F. Ferrucci et al.

http://dx.doi.org/10.1007/978-3-642-55035-5_3#Sec1

been instead exploited in (Ferrucci et al. 2010c) and empirically analysed in (Sarro

2013). The heuristic approach was originally suggested in (Doval et al. 1998) to set

population size and number of generations of a GP for software clustering. In

particular, given a project dataset containing V features, they set the number of

iterations to 10 V and stop the search after 1,000 V iterations or if the fitness value

of the best solution does not change in the last 100 V iterations. Thus, such

heuristics adapts the search process to the size of the problem under investigation.

Sarro (2013) extended the same heuristics to work also with Tabu Search

(TS) (setting to V the length of Tabu List) and assessed its effectiveness by

comparing it with respect to the use of five different configurations characterised

by very small, small, medium, large, and very large number of solutions. The results

obtained by exploiting GP and TS on seven public datasets highlighted that the

considered heuristics is suitable to set both techniques since it provided comparable

or superior prediction accuracy with respect to the ones obtained with the other

configurations. Moreover, TS and GP configured by using the heuristics are much

faster than the configurations obtained using other settings. This allowed saving

time and computational resources without affecting the accuracy of the estimation

models built with TS and GP, so the use of the heuristics has been revealed a cost-

effective way to set these techniques on the considered datasets.

Another crucial design choice for search-based approaches is the definition of

the fitness function that indicates how a solution is suitable for the problem under

investigation driving the search towards optimal solutions. For the effort estimation

problem, the fitness function should be able to assess the accuracy of estimation

models.

It is worth noting that several different accuracy measures have been proposed in

the literature for assessing the effectiveness/accuracy of effort prediction models,

such as the mean of absolute error (MAE), the mean of squared error (MSE) the

mean and median of magnitude of relative error (MMRE and MdMRE, respec-

tively), the mean and median of magnitude of estimate relative error (MERE and

MdEMRE, respectively) and the prediction at level k [Pred(k)] (Conte et al. 1986)

(Kitchenham et al. 2001). Usually they represent a cumulative measure of the error/

residual, that is, the difference between actual effort and predicted effort (e.g.,

MAE, MSE), or of the relative error with respect the actual (e.g., MMRE, MdMRE)

or the estimated effort (e.g., MEMRE, MdEMRE); or a percentage of the cases

where the considered error is less of a chosen threshold, e.g., Pred(25).

Among them, the MMRE (Conte et al. 1986) represents the most widely used

measure for assessing effort estimation proposals, thus it is not surprising that it has

been also the most used fitness function in the study employing search-based

techniques. Nevertheless, MMRE reliability has been questioned by several

researchers [e.g., Kitchenham et al. (2001), Shepperd and MacDonell (2012)] and

has been shown that it does not select the best model among competing ones.

Presently, there does not exist a unique measure universally accepted as the best

way to assess the estimation accuracy of effort models. On the other hand, each

proposed measure focuses the attention on a specific aspect. As a matter of fact,

Pred(25) measures how well an effort model performs, while MMRE measures

15 Search-Based Software Project Management 385

poor performance; MMRE is more sensitive to overestimates and MEMRE to

underestimates. Thus, it could be argued that the choice of the criterion for

assessing predictions and establishing the best model can be a managerial issue.

So, a project manager could prefer to use Pred(25) as the criterion for judging the

quality of a model, while another might prefer to use another criterion, just, for

example, MMRE to better control overestimates, or, to get a more reliable assess-

ment, another could jointly employ several evaluation criteria covering different

aspects of model performances (e.g., underestimating or overestimating, success or

poor performance).

Based on this consideration, search-based methods represent an opportunity due

to their flexibility. Indeed, they allow the use as fitness function of any measure able

to evaluate some properties of interest, thus allowing a project manager to select

his/her preferred accuracy measure so that the search for the model is driven by

such a criterion. Moreover, search-based techniques can take into account not only

single evaluation criteria but also multiple ones, considering some algebraic expres-

sions of basic measures [e.g., Pred(25)/MMRE] (Ferrucci et al. 2010c) or exploiting

more sophisticated approaches based on multi-objective optimisation (Ferrucci

et al. 2011; Minku and Yao 2012, 2013; Sarro et al. 2012b).

Different fitness functions have been employed in the studies carried out so far.

They highlighted that such a choice can affect the performance of the obtained

models: each fitness function is able to guide towards estimation models with better

accuracy in terms of the selected criterion, but some of them can degrade the other

summary measures (Burgess and Lefley 2001; Ferrucci et al. 2010c; Lokan 2005;

Sarro 2013). Thus, project managers should be aware of this effect and should take

care to select the right evaluation criterion as fitness function.

Another aspect that is important for project managers (both for trust on the

solution proposed by an estimation technique and for improving the data collection

process of current projects) is concerned with the transparency of the proposed

solution. Search-based approaches produce transparent solutions because the pre-

diction model is an algebraic expression that makes explicit any information about

the contribution of each variable in the model (this is not always the case for other

estimation techniques, e.g., neural networks).

Nevertheless, due to the variable length of the expression tree, some proposed

GP approaches [e.g., Dolado (2001), Burgess and Lefley (2001), Lefley and

Shepperd (2003)] produced unclear expressions that need to be simplified. To

improve the transparency of solutions, an evolutionary computation method,

named Grammar Guided Genetic Programming (GGGP), was proposed by Shan

et al. (2002) that exploited grammars to impose syntactical constraints and incor-

porate background knowledge. Another approach to simplify the transparency of

solutions provided by GP was exploited in (Ferrucci et al. 2010c) based on the use

of trees of fixed depth and crossover and mutation operators that preserved the

syntactic structure.

As for the empirical studies, industrial datasets have been widely used in effort

estimation studies. They come from a single company [e.g., Desharnais (Menzies

et al. 2012)] or from multiple companies [e.g., Tukutuku (Ferrucci et al. 2010a)]

386 F. Ferrucci et al.

and are related to both software and web projects. The criteria used to evaluate the

accuracy of the obtained estimates are all based on summary measures, in particular

MMRE and Pred(25). To make the comparison more reliable, some studies

complemented the analysis with graphical tools (boxplot of residuals) and statistical

tests.

As a general result of these studies, we can conclude that search-based tech-

niques behave consistently well obtaining estimation accuracy comparable or better

than other widely used estimation techniques, such as the ones based on Manual

StepWise Regression (MSWR) or Case-Based Reasoning (CBR). Recently, it has

also been highlighted that TS outperformed GP since it turns out to be more

efficient, while preserving the same accuracy (Sarro 2013).

Search-based methods have also been used in combination with other estimation

techniques [see, e.g., Braga et al. (2008), Faheem et al. (2008)], such as some

Machine Learning (ML) techniques, aiming to obtain better estimates. Indeed, as

reported in several studies, ML approaches have the potential as techniques for

software development effort estimation; nevertheless, their accuracy strongly

depends on an accurate setting of these methods [see, e.g., Song et al. (2013)]. As

an example, to use CBR we have to choose among many similarity measures,

number of analogies, and analogy adaption strategies (Mendes 2009), while to

employ Support Vector Regression (SVR) we have to set several parameters

depending also on the employed kernel function exploited to deal with nonlinear

problems (Cortes and Vapnik 1995).

There are no general guidelines on how to best configure these techniques since

the appropriate setting often depends on the characteristics of the employed dataset.

An examination of all possible values for configuration parameters of each tech-

nique is often not computationally affordable, as the search space is too large, also

due to the interaction among parameters, which often cannot be separately

optimised. Another aspect that can influence the accuracy of estimation techniques

is the quality of input features, thus a Feature Subset Selection (FSS) is usually

recommended to select a subset of relevant features to be used in the model

construction process.

To address both the above-mentioned problems, the use of search-based

approaches has been proposed and investigated. In the following, we first discuss

four works conceived to select a suitable configuration for some estimation tech-

niques, namely neural network, CBR and SVR, and then we discuss four works that

exploited GAs to address the FSS problem.

Shukla (2000) was the first to propose a GA to configure Neural Network

(NN) predictor in order to improve its estimation capability. In particular, GA

had to find suitable weights for NN layer connections guided by a fitness function

that minimises MSE values. The empirical study based on two public datasets, that

is, COCOMO and Kemerer (Menzies et al. 2012), showed that GA+NN provided

significantly better prediction than common used AI-oriented methods, such as

CARTX and Quick Propagation trained NN. Similarly, Papatheocharous and

Andreou (2009) enhanced the use of artificial neural networks by using a genetic

algorithm. Their results showed that using GA to evolve the network architectures

15 Search-Based Software Project Management 387

(both input and internal hidden layers) reduced the Mean Relative Error (MRE)

produced by the output results of each network.

Chiu and Huang (2007) applied GA to CBR to adjust the reused effort obtained

by considering different similarity distances (i.e., Euclidean, Minkowski, and

Manhattan distances) between pairs of software projects. The result obtained on

two industrial datasets revealed that the proposed GA improved the estimations

of CBR.

To automatically select suitable SVR settings, Corazza et al. (2010, 2013)

proposed and assessed an approach based on the use of TS. A total of 21 datasets

were employed and several benchmarks were taken into account. The results

revealed that the combination of TS and SVR significantly outperformed all the

other techniques, showing that the proposed approach represents a suitable tech-

nique for software development effort estimation.

The first work that proposed the use of a search-based approach to address the

FSS problem in the context of effort estimation was the one of Kirsopp et al. (2002).

They employed Hill Climbing to select the best set of project features to be used

with CBR. The combined approach was evaluated on an industrial dataset of

407 observations and the results showed that it performed better than random

feature selection and forward sequential selection.

Li et al. (2009) proposed a GA to simultaneously optimise the selection of the

feature weights and projects to be used with CBR. The empirical results employing

four datasets [two industrial (Menzies et al. 2012) and two artificial (Li et al. 2009)]

showed that the use of GA+CBR provided significantly better estimations

than CBR.

GA was also used to improve the accuracy of an effort estimation model built by

combining social choice (voting rules were used to rank projects determining

similar projects) and analogy-based approaches (Koch and Mitlöhner 2009). In

particular, GA was employed to find suitable weights to be associated to the project

attributes. The results revealed that the proposed approach provided the best value

for Pred(25), but worse MMRE values with respect to other techniques (LR, ANN,

CART, COCOMO and Grey Relational Analysis).

Huang et al. (2008) integrated a GA to Grey Relational Analysis to find the best

fit of weights for each software effort driver. The experimental results showed

comparable (COCOMO dataset) and better accuracy (Albrecht dataset) with respect

to CBR, CART, and ANN.

15.4 Possible Directions for Future Work on Search-Based

Project Management

In this section, we outline several directions for future work in search-based project

management, highlighting promising areas that emerge for the analysis of trends

within this subfield of SBSE.

388 F. Ferrucci et al.

15.4.1 Iterative Optimisation

Several authors have suggested and adopted interactive evolution (Harman 2007b)

design-based (Simons and Parmee 2008, 2012) and comprehension-based (Harman

2007a) software engineering tasks. However, only one attempt has been made to

apply this technique, which can incorporate human expert knowledge directly into

fitness computation, in project management (Shackelford and Corne 2001). Since a

software project management task is inherently human-centric, it would be natural

to explore the use of interactive evolution as a technique for ensuring that the

project manager’s expertise is accounted for in software project management

(Shackelford 2007). The difficulty, as with all interactive evolution, lies in finding

a way in which the manager can influence the computation of fitness without

overburdening him/her with request for ‘fitness assessment’.

It is also an open challenge as to how this judgment can be best incorporated into

fitness. For example, the manager may be aware that certain individuals cannot

work together, that certain work packages are more critical or that some depen-

dence can be broken to make project more ‘parallelisable’. This information cannot

simply be requested from the manager at the outset of the optimisation process;

there is too much of it, and much of the information is implicit. Rather, we need to

make the whole process of using search-based project management tools more

interactive, so that the manager is able to ‘realise’ that they know something of

importance at the specific point in the optimisation process at which it applies and

to introduce this domain knowledge into the overall planning process in a natural

and seamless way.

15.4.2 Dynamic Adaptive Optimisation

In order to maximise the value of interactive solutions to project management, we

need dynamic adaptive approaches to SBSE (Harman et al. 2012a). As an example,

effective resource scheduling is complicated by different disruptions, such as

requirements changes, bug fixing, or staff turnover, and dynamic resource sched-

uling can help address such potentially disruptive events (Xiao et al. 2010a, 2013).

If solutions can be computed in real time and presented to the decision-maker in an

intuitive form, then the decision-maker can ask on-the-fly ‘what if’ questions to

help decide on key project commitments. In an ideal world, the decision-maker

would interact with the tool, exploring the possible implications of the decisions,

with the optimisation continuing to provide updated best-so-far solutions as the

decision-maker interacts. This may require fundamentally different approaches to

the algorithms and formulations that underlie search-based software project

management.

15 Search-Based Software Project Management 389

15.4.3 Multi-objective Optimisation

It has been argued that in order to better match real-world scenarios, SBSE should

move from a single objective paradigm to a multi-objective paradigm (Harman

et al. 2007, 2012b). Indeed, more recent SBSE work has followed a more multi-

objective style of approach, touching many application areas including require-

ments (Finkelstein et al. 2008, 2009; Zhang et al. 2007), testing (Everson and

Fieldsend 2006; Harman 2011; Harman et al. 2007b), refactoring (Harman and

Tratt 2007) and also, not least, project management (Ferrucci et al. 2011, 2013;

Gueorguiev et al. 2009; Minku and Yao 2012, 2013; Rodriguez et al. 2011; Sarro

et al. 2012b; Stylianou and Andreou 2013). Most problems in software engineering

involve multiple competing objectives, and this is an observation most keenly felt

in project management. Much of the future work on SBSE for project management

is likely to focus on decision support in complex multi-objective problem spaces.

15.4.4 Co-evolution

In co-evolutionary computation, two or more populations of solutions evolve

simultaneously with the fitness of each depending upon the current population of

the other. Co-evolution can be either cooperative or competitive. In competitive

evolution, two (or more) populations of candidate solutions compete with each

other for supremacy, the fitness of one depending on the other, such that improve-

ments in one population tend to lead to lower fitness in the other. This is analogue to

the wellknown ‘predator-prey’ model of evolutionary biology, and it has found

application in SBSE work on testing (Adamopoulos et al. 2004) where predators are

test cases and programs and their faults are the prey on which the test cases feed.

However, co-evolution need not always follow a predator-prey model; it can

also be a cooperative, symbiotic process, just as often occurs in nature. In this

cooperative co-evolutionary model, several populations, all of which have distinct

fitness functions, nevertheless depend on one another, without necessarily being in

conflict. This is a natural model for project management, in which we seek, for

example, a mutually supportive allocation of staff to teams and, simultaneously, an

allocation of teams to work packages. Ren et al. (2011) explore the cooperative

co-evolutionary model of search-based project management. The close fit between

project management objectives and co-evolutionary models makes this a natural

choice and one that deserves more attention.

390 F. Ferrucci et al.

15.4.5 Software Project Benchmarking

One of the enduring problems researchers concerned with project management face

is the lack of available real world project data. It remains a common problem to this

day, especially for project planning and staffing. Indeed, despite there existing both

publicly available (Menzies et al. 2012) and private (ISBSG 2013) repositories of

real project data for software project estimation, repositories containing informa-

tion for project planning are not available. The promising results achieved in

search-based project management may lead to the false impression that these

techniques are readily available for industrial application, whereas many papers

just use synthetic data, do not model skill or have a realistic representation of skill

and/or risk. Previous work on software planning and staffing often relies on

simulation of the likely course of the project rather than real data to assess the

performance of the proposed approaches. Indeed, datasets of real-world projects are

scarce; effort data are seldom ever made public not to mention skill and other kind

of employee’s details (e.g., percentage of overhead, abilities to self-adapt to new

project, management style, team leaders or soft skill). Despite researchers making

some effort to employ real data and to deal with a more human-centric problem

(Chap. 4), to collect more real data on software projects and to make it publicly

accessible still remains an open important challenge.

15.4.6 Confident Estimates

Obtaining exact time and effort estimates in software project management is

impossible due not only to the inherently nature of estimates, but also to incom-

plete, uncertain and/or noisy input used as the basis of the estimates. Rather than

generating exact estimates, it would be beneficial to introduce some level of

uncertainty and measure its effect on the management process. As an example,

sensitivity analysis can be a very useful means of determining the vulnerability of

an estimate to particular assumptions and the level of confidence that can be placed

in that estimate and the promising results obtained by using search-based

approaches to assess software project uncertainty make us confident that these

techniques can be a key instrument to support this kind of analysis [see, e.g.,

Harman et al. (2009)].

Elsewhere, Harman (2007a) highlighted four future directions for the use of

search-based approaches to obtain more confident predictive modelling that we

want herein recall:

1. Incorporation of risk into predictive models

2. More effective measurement of cost

3. More reliable models (even at the expense of predictive power; trading median

accuracy for reduced variance over iterated predictions)

4. Sensitivity analysis to determine which aspects are more important

15 Search-Based Software Project Management 391

http://dx.doi.org/10.1007/978-3-642-55035-5_4

15.4.7 Decision Support Tools

Despite the promising results highlighted in the research papers, the use of search-

based approaches for project management is still in the development/research stage.

To the best of our knowledge, only one tool for project management based on

search-based approaches has been recently proposed (Stylianou et al. 2012). We

believe that to transfer the most successful methods into practice we need to

develop them as freely available decision support tools. Indeed, this will allow an

extensive evaluation of the interface between the technical aspects on which

the research has been focused and other related socio-technical issues for imple-

mentation and exploitation, such as user interface, ease of use, human-computer

interaction, and decision support. Moreover, this will allow us also to get feedback

from practitioners on the usefulness and cost/effectiveness of the proposed

approaches.

15.5 Conclusions

SBSE has proved widely applicable across many fields of software engineering

activities. In those software engineering activities closely associated with the

software product, SBSE has tended to be used as a means of finding good solutions,

guided by a fitness function. By contrast, its role in the earlier phases of the software

development cycle, more associated with the establishment of plans and processes,

has tended to be subtler. In particular, for software project management, SBSE has

tended to be used to provide decision support rather than to seek a single solution.

This is a naturally exploratory and multi-objective scenario. As we have seen,

search-based techniques have potential to support software project managers,

with predictions, analysis of potential scenarios and the optimised configuration

of process parameters. The review of trends in this chapter demonstrates that this is

an active and growing field.

References

Adamopoulos K, Harman, M, Hierons RM (2004) How to overcome the equivalent mutant

problem and achieve tailored selective mutation using co-evolution. In: Proceedings of the

6th conference on genetic and evolutionary computation, pp 1338–1349

Afzal W, Torkar R, Feldt R, Gorschek T (2014) Prediction of faults-slip-through in large software

projects: an empirical evaluation. Software Qual J 22:51–86. doi:10.1007/s11219-013-9205-3

Aguilar-Ruiz JS, Ramos I, Riquelme JC, Toro M (2001) An evolutionary approach to estimating

software development projects. Inf Softw Technol 43(14):875–882

Aguilar-Ruiz JS, Riquelme JC, Ramos I (2002) Natural evolutionary coding: an application to

estimating software development projects. In: Proceedings of the 4th conference on genetic

and evolutionary computation

392 F. Ferrucci et al.

http://dx.doi.org/10.1007/s11219-013-9205-3

Akula B, Cusick J (2008) Impact of overtime and stress on software quality. In: Proceedings of the

4th international symposium on management, engineering, and informatics

Alba E, Chicano F (2005) Management of software projects with GAs. In: Proceedings of the 6th

metaheuristics international conference, pp 1152:1-6

Alba E, Chicano F (2007) Software project management with GAs. Inf Sci 177(11):2380–2401

Alvarez-Valdes R, Crespo E, Tamarit JM, Villa F (2006) A scatter search algorithm for project

scheduling under partially renewable resources. J Heuristics 12(1–2):95–113

Antoniol G, Di Penta M, Harman M (2004) A robust search-based approach to project manage-

ment in the presence of abandonment, rework, error and uncertainty. In: Proceedings of the

10th international symposium on the software metrics, pp 172–183

Antoniol G, Di Penta M, Harman M (2005) Search-based techniques applied to optimization of

project planning for a massive maintenance project. In: Proceedings of the 21st IEEE interna-

tional conference on software maintenance, pp 240–249

Azar D (2010) A genetic algorithm for improving accuracy of software quality predictive models:

a search-based software engineering approach. Int J Comput Intell Appl 9(2):125–136

Barreto A, Barros M de O, Werner CM (2008) Staffing a software project: a constraint satisfaction

and optimization-based approach. Comput Oper Res 35(10):3073–3089

Beckers DG, van der Linden D, Smulders PG, Kompier MA, Taris TW, Geurts SA (2008)

Voluntary or Involuntary? control over overtime and rewards for overtime in relation to fatigue

and work satisfaction. Work Stress 22(1):33–50

Bouktif S, Kégl B, Sahraoui H (2002) Combining software quality predictive models: an evolu-

tionary approach. In: Proceedings of the international conference on software maintenance,

pp 385–392

Bouktif S, Azar D, Precup D, Sahraoui H, Kégl B (2004) Improving rule set based software quality

prediction: a genetic algorithm based approach. J Object Technol 3(4):227–241

Bouktif S, Sahraoui H, Antoniol G (2006) Simulated annealing for improving software quality

prediction. In: Proceedings of the 8th conference on genetic and evolutionary computation,

pp 1893–1900

Braga PL, Oliveira ALI, Meira SRL (2008) A GA-based feature selection and parameters

optimization for support vector regression applied to software effort estimation. In: Proceed-

ings of the ACM symposium on applied computing, pp 1788–1792

Briand L, Wieczorek I (2002) Software resource estimation. Encyclopedia Softw Eng

2:1160–1196

Brooks FP Jr (1975) The mythical man month: essays on software engineering. Addison-Wesley

Publishing Company, Reading, MA

Burgess CJ, Lefley M (2001) Can genetic programming improve software effort estimation: a

comparative evaluation. Inf Softw Technol 43(14):863–873

Chang CK (1994) Changing face of software engineering. IEEE Softw 11(1):4–5

Chang CK, Chao C, Hsieh S-Y, Alsalqan Y (1994) SPMNet: a formal methodology for software

management. In: Proceedings of the 18th international computer software and applications

conference, p 57

Chang CK, Chao C, Nguyen TT, Christensen M (1998) Software project management net: a new

methodology on software management. In: Proceedings of the 22nd international computer

software and applications conference, pp 534–539

Chang CK, Christensen MJ, Zhang T (2001) Genetic algorithms for project management. Ann

Softw Eng 11(1):107–139

Chao C, Komada J, Liu Q, Muteja M, Alsalqan Y, Chang C (1993) An application of genetic

algorithms to software project management. In: Proceedings of the 9th international advanced

science and technology, pp 247–252

Chen WN, Zhang J (2013) Ant colony optimization for software project scheduling and staffing

with an event-based scheduler. IEEE Trans Softw Eng 39(1):1–17

15 Search-Based Software Project Management 393

Chicano F, Luna F, Nebro AJ, Alba E (2011) Using multi objective metaheuristics to solve the

software project scheduling problem. In: Proceedings of the 13th conference on genetic and

evolutionary computation, pp 1915–1922

Chiu NH, Huang S (2007) The adjusted analogy-based software effort estimation based on

similarity distances. J Syst Softw 80(4):628–640

Conte D, Dunsmore H, Shen V (1986) Software engineering metrics and models. The Benjamin/

Cummings Publishing Company, Redwood City, CA

Corazza A, Di Martino S, Ferrucci F, Gravino C, Sarro F, Mendes E (2010) How effective is Tabu

search to configure support vector regression for effort estimation?. In: Proceedings of the 6th

international conference on predictive models in software engineering, pp 4:1-10

Corazza A, Di Martino S, Ferrucci F, Gravino C, Sarro F, Mendes E (2013) Using Tabu search to

configure support vector regression for effort estimation. Empir Softw Eng 18(3):506–546

Cortellessa V, Marinelli F, Potena P (2008) An optimization framework for “build-or-buy”

decisions in software architecture. Comput Oper Res 35(10):3090–3106

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

Di Martino S, Ferrucci F, Gravino C, Sarro F (2011) A genetic algorithm to configure support

vector machines for predicting fault-prone components. In: PROFES 2011. Lecture notes in

computer science, vol 6759. Springer, Heidelberg, p 247

Di Penta M, Antoniol G, Harman M, Qureshi F (2007) The effect of communication overhead on

software maintenance project staffing: a search-based approach. In: Proceedings of the 23rd

IEEE international conference on software maintenance, pp 315–324

Di Penta M, Antoniol G, Harman M (2011) The use of search-based optimization techniques to

schedule and staff software projects: an approach and an empirical study. Softw Pract Exp 41

(5):495–519

Dolado JJ (2001) On the problem of the software cost function. Inf Softw Technol 43(1):61–72

Doval D, Mancordis SB, Mitchell S (1998) Automatic clustering of software system using a

genetic algorithm. In: Proceedings of the 9th international workshop software technology and

engineering practice, pp 73–81

Everson RM, Fieldsend JE (2006) Multiobjective optimization of safety related systems: an

application to short-term conflict alert. IEEE Trans Evol Comput 10(2):187–198

Faheem A, Bouktif S, Serhani A, Khalil I (2008) Integrating function point project information for

improving the accuracy of effort estimation. In: Proceedings of the international conference on

advanced engineering computing and applications in sciences, pp 193–219

Ferrucci F, Gravino C, Mendes E, Oliveto R, Sarro F (2010a) Investigating Tabu search for Web

effort estimation. In: Proceedings of the 36th EUROMICRO conference on software engineer-

ing and advanced applications, pp 350–357

Ferrucci F, Gravino C, Oliveto R, Sarro F (2010b) Estimating software development effort using

Tabu search. In: Proceedings of the 12th international conference on enterprise information

systems, vol 1. pp 236–241

Ferrucci F, Gravino C, Oliveto R, Sarro F (2010c) Genetic programming for effort estimation: an

analysis of the impact of different fitness functions. In: Proceedings of the 2nd international

symposium on search based software engineering, pp 89–98

Ferrucci F, Gravino C, Oliveto R, Sarro F (2010d) Using evolutionary based approaches to

estimate software development effort. In: Chis M (ed) Evolutionary computation and optimi-

zation algorithms in software engineering: applications and techniques. IGI Global, Hershey,

PA, pp 13–28

Ferrucci F, Gravino C, Sarro F (2011) How multi-objective genetic programming is effective for

software development effort estimation? In: Proceedings of the 3rd international symposium

on search based software engineering. Lecture notes in computer science, vol 6956. Springer,

Heidelberg, pp 274–275

Ferrucci F, Harman M, Ren J, Sarro F (2013) Not going to take this anymore: multi-objective

overtime planning for software engineering projects. In: Proceedings of the 35th IEEE inter-

national conference on software engineering, pp 462–471

394 F. Ferrucci et al.

Finkelstein A, Harman M, Mansouri S. A, Ren J, Zhang Y (2008) “Fairness Analysis” in

requirements assignments. In: Proceedings of the 16th IEEE international requirements engi-

neering conference, pp 115–124

Finkelstein A, Harman M, Mansouri SA, Ren J, Zhang Y (2009) A search based approach to

fairness analysis in requirement assignments to aid negotiation, mediation and decision

making. Requir Eng 14(4):231–245

Gueorguiev S, Harman M, Antoniol G (2009) Software project planning for robustness and

completion time in the presence of uncertainty using multi objective search-based software

engineering. In: Proceedings of the genetic and evolutionary computation conference,

pp 1673–1680

Harman M (2007a) The current state and future of search-based software engineering. In: Pro-

ceedings of the conference on future of software engineering, pp 342–357

Harman M (2007b) Search-based software engineering for program comprehension. In: Proceed-

ings of the 15th IEEE international conference on program comprehension, pp 3–13

Harman M (2010a) The relationship between search-based software engineering and predictive

modelling. In: Proceedings of the 6th international conference on predictive models in software

engineering, pp 1

Harman M (2010b) Why the virtual nature of software makes it ideal for search-based optimiza-

tion. In: Proceedings of the 13th international conference on fundamental approaches to

software engineering, pp 1–12

Harman M (2011) Making the case for MORTO: multi objective regression test optimization. In:

Proceedings of the 1st international workshop on regression testing, pp 111–114

Harman M, Clark JA (2004) Metrics are fitness functions too. In: Proceedings of the 10th

international symposium on software metrics, pp 58–69

Harman M, Jones BF (2001) Search-based software engineering. Inf Softw Technol 43

(14):833–839

Harman M, Tratt L (2007) Pareto optimal search-based refactoring at the design level. In:

Proceedings of the 9th conference on genetic and evolutionary computation, pp 1106–1113

Harman M, Hierons R, Proctor M (2002) A new representation and crossover operator for search-

based optimization of software modularization. In: Proceedings of the 4th conference on

genetic and evolutionary computation, pp 1351–1358

Harman M, Lakhotia K, McMinn P (2007) A multi-objective approach to search-based test data

generation. In: Proceedings of the 9th conference on genetic and evolutionary computation,

pp 1098–1105

Harman M, Krinke J, Ren J, Yoo S (2009) Search-based data sensitivity analysis applied to

requirement engineering. In: Proceedings of the 11th conference on genetic and evolutionary

computation, pp 1681–1688

Harman M, McMinn P, Teixeira de Souza J, Yoo S (2010) Search-based software engineering:

techniques, taxonomy, tutorial. LASER Summer School 2010, pp 1–59

Harman M, Burke E, Clark JA, Yao X (2012a) Dynamic adaptive search-based software engi-

neering. In: Proceedings of the 6th IEEE international symposium on empirical software

engineering and measurement, pp 1–8

Harman M, Mansouri A, Zhang Y (2012b) Search-based software engineering: trends, techniques

and applications. ACM Comput Surv 45(1):11–75

Hericko M, Zivkovic A, Rozman I (2008) An approach to optimizing software development team

size. Inf Process Lett 108(3):101–106

Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann

Arbor, MI

Huang SJ, Chiu NH, Chen LW (2008) Integration of the grey relational analysis with genetic

algorithm for software effort estimation. Eur J Oper Res 188(3):898–909

ISBSG (2013) Data repository. Available at http://www.isbsg.org

15 Search-Based Software Project Management 395

http://www.isbsg.org/

Jarillo G, Succi G, Pedrycz W, Reformat M (2011) Analysis of software engineering data using

computational intelligence techniques. In: Proceedings of the 7th international conference on

object oriented information systems, pp 133–142

Jiang H, Chang CK, Xia J, Cheng S (2007) A history-based automatic scheduling model for

personnel risk management. In: Proceedings of the 31st computer software and application

conference, pp 361–364

Kang D, Jung J, Bae DH (2011) Constraint-based human resource allocation in software projects.

Softw Pract Exp 41(5):551–577

Kapur P, Ngo-The A, Ruhe G, Smith A (2008) Optimized staffing for product releases and its

application at chartwell technology. J Softw Maint Evol Res Pract 20(5):365–386

Khoshgoftaar TM, Liu Y (2007) A multi-objective software quality classification model using

genetic programming. IEEE Trans Reliab 56(2):237–245

Khoshgoftaar TM, Liu Y, Seliya N (2003) Genetic programming-based decision trees for software

quality classification. In: Proceedings of the 15th international conference on tools with

artificial intelligence, pp 374–383

Kiper JD, Feather MS, Richardson J (2007) Optimizing the V&V process for critical systems. In:

Proceedings of the 9th conference on genetic and evolutionary computation, p 1139

Kirsopp C, Shepperd MJ, Hart J (2002) Search heuristics, case-based reasoning and soft- ware

project effort prediction. In Proceedings of the genetic and evolutionary computation confer-

ence, pp 1367–1374

Kitchenham B, Pickard LM, MacDonell SG, Shepperd MJ (2001) What accuracy statistics really

measure. IEEE Proc Softw 148(3):81–85

Kleppa E, Sanne B, Tell GS (2008) Working overtime is associated with anxiety and depression:

the Hordaland health study. J Occup Environ Med 50(6):658–666

Koch S, Mitlöhner J (2009) Software project effort estimation with voting rules. Decis Support

Syst 46(4):895–901

Koza JR (1992) Genetic programming: on the programming of computers by means of natural

selection. MIT Press, Cambridge, MA

Lefley M, Shepperd MJ (2003) Using genetic programming to improve software effort estimation

based on general data sets. In: Proceedings of the 5th genetic and evolutionary computation

conference, pp 2477–2487

Li YF, Xie M, Goh TN (2009) A study of project selection and feature weighting for analogy based

software cost estimation. J Syst Softw 82(2):241–252

Liu Y, Khoshgoftaar TM (2001) Genetic programming model for software quality classification.

In: Proceedings of the 6th IEEE international symposium on high-assurance systems engineer-

ing: special topic: impact of networking, pp 127–136

Liu Y, Khoshgoftaar TM (2003) Building decision tree software quality classification models

using genetic programming. In: Proceedings of the 5th genetic and evolutionary computation

conference, pp 1808–1809

Liu Y, Khoshgoftaar T (2004) Reducing overfitting in genetic programming models for software

quality classification. In: Proceedings of the 8th IEEE international symposium on high

assurance systems engineering, pp 56–65

Lokan C (2005) What should you optimize when building an estimation model? In: Proceedings of

the 11th IEEE international symposium on metrics, pp 34

Luna F, Chicano JF, Alba E (2012) Robust solutions for the software project scheduling problem: a

preliminary analysis. Int J Metaheuristic 2(1):56–79

Mann C, Maurer F (2005) A case study on the impact of scrum on overtime and customer

satisfaction. In: Agile development conference, pp 70–79

McMinn P (2004) Search-based software test data generation: a survey. Softw Test Verif Reliab 14

(2):105–156

Mendes E (2009) Web cost estimation and productivity benchmarking. software engineering,

vol 5413, Lecture notes in computer science. Springer, Heidelberg, pp 194–222

396 F. Ferrucci et al.

Menzies, T, Caglayan B, Kocaguneli E, Krall J, Peters F, Turhan B (2012) The PROMISE

repository of empirical software engineering data. http://promisedata.googlecode.com

Minku LL, Yao X (2012) Software effort estimation as a multi-objective learning problem. ACM

Trans Softw Eng Methodol 22(4):35:1–35:32

Minku LL, Yao X (2013) An analysis of multi-objective evolutionary algorithms for training

ensemble models based on different performance measures in software effort estimation. In:

Proceedings of the 9th international conference on predictive models in software engineering,

pp 8:1–8:10

Minku LL, Sudholt D, Yao X (2012) Evolutionary algorithms for the project scheduling problem:

runtime analysis and improved design. In: Proceedings of the genetic and evolutionary

computation conference, pp 1221–1228

Minku LL, Sudholt D, Yao X (2013) Improved evolutionary algorithm design for the project

scheduling problem based on runtime analysis. IEEE Trans Softw Eng 40:83–102.

doi:10.1109/TSE.2013.52

Mitchell BS, Mancoridis S (2002) Using heuristic search techniques to extract design abstractions

from source code. In: Proceedings of the genetic and evolutionary computation conference,

pp 1375–1382

Nishikitani M, Nakao M, Karita K, Nomura K, Yano E (2005) Influence of overtime work, sleep

duration, and perceived job characteristics on the physical and mental status of software

engineers. Ind Health 43(4):623–629

Papatheocharous E, Andreou SA (2009) Hybrid computational models for software cost predic-

tion: an approach using artificial neural networks and genetic algorithms, vol 19, Lecture notes

in business information processing. Springer, Heidelberg, pp 87–100

Rahman MM, Sohan SM, Maurer F, Ruhe G (2010) Evaluation of optimized staffing for feature

development and bug fixing. In: Proceedings of the ACM-IEEE international symposium on

empirical software engineering and measurement, p 42

Räihä O (2010) A survey on search-based software design. Comput Sci Rev 4(4):203–249

Ren J, Harman M, Di Penta M (2011) Cooperative co-evolutionary optimization on software

project staff assignments and job scheduling. In: Proceedings of the 3rd international sympo-

sium on search based software engineering, pp 127–141

Rodriguez D, Ruiz M, Riquelme JC, Harrison R (2011) Multiobjective simulation optimisation in

software project management. In: Proceedings of the 13th conference on genetic and evolu-

tionary computation, pp 1883–1890

Sarro F (2011) Search-based approaches for software development effort estimation. In: Pro-

ceedings of the 12th international conference on product-focused software development and

process improvement (doctoral symposium), pp 38–43

Sarro F (2013) Search-based approaches for software development effort estimation. Ph.D. thesis,.

University of Salerno, Italy. http://www0.cs.ucl.ac.uk/staff/F.Sarro/

Sarro F, Di Martino S, Ferrucci F, Gravino C (2012a) A further analysis on the use of genetic

algorithm to configure support vector machines for inter-release fault prediction. In: Pro-

ceedings of the 27th annual ACM symposium on applied computing, pp 1215–1220

Sarro F, Ferrucci F, Gravino C (2012b) Single and multi objective genetic programming for

software development effort estimation. In: Proceedings of the 27th annual ACM symposium

on applied computing, pp 1221–1226

Shackelford MRN (2007) Implementation issues for an interactive evolutionary computation

system. In: Proceedings of the genetic and evolutionary computation conference,

pp 2933–2936

Shackelford MRN, Corne DW (2001) Collaborative evolutionary multi-project resource schedul-

ing. In: Proceedings of the congress on evolutionary computation, vol 2. pp 1131–1138

Shan Y, McKay RI, Lokan CJ, Essam DL (2002) Software project effort estimation using genetic

programming. In: Proceedings of international conference on communications circuits and

systems, pp 1108–1112

15 Search-Based Software Project Management 397

http://promisedata.googlecode.com/
http://dx.doi.org/10.1109/TSE.2013.52
http://www0.cs.ucl.ac.uk/staff/F.Sarro/

Shepperd MJ, MacDonell SJ (2012) Evaluating prediction systems in software project estimation.

Inf Softw Technol 54(8):820–827

Shukla KK (2000) Neurogenetic prediction of software development effort. Inf Softw Technol 42

(10):701–713

Simons CL, Parmee IC (2008) User-centered, evolutionary search in conceptual software design.

In: Proceedings of the IEEE congress on evolutionary computation, pp 869–876

Simons CL, Parmee IC (2012) Elegant object-oriented software design via interactive evolution-

ary computation. IEEE Trans Syst Man Cybern Part C Appl Rev 42(6):1797–1805

Song L, Minku LL, Yao X (2013) The impact of parameter tuning on software effort estimation

using learning machines. In: Proceedings of the 9th international conference on predictive

models in software engineering

Stylianou C, Andreou AS (2013) A multi-objective genetic algorithm for intelligent software

project scheduling and team staffing. Intell Decis Technol 7(1):59–80

Stylianou C, Gerasimou S, Andreou AS (2012) A novel prototype tool for intelligent software

project scheduling and staffing enhanced with personality factors. In: Proceedings of the 24th

international conference on tools with artificial intelligence, pp 277–284

Xiao J, Osterweil LJ, Wang Q, Li M (2010a) Dynamic resource scheduling in disruption-prone

software development environments. In: Proceedings of the 13th conference on fundamental

approaches to software engineering, pp 107–122

Xiao J, Osterweil LJ, Wang Q, Li M (2010b) Disruption-driven resource rescheduling in software

development processes. In: New modeling concepts for today’s software processes. Lecture

notes in computer science, vol 6195. Springer, Heidelberg, pp 234–247

Xiao J, Osterweil LJ, Chen J, Wang Q, Li M (2013) Search-based risk mitigation planning in

project portfolio management. In: Proceedings of the 2013 international conference on soft-

ware and system process, pp 146–155

Yoo S, Harman M (2012) Regression testing minimization, selection and prioritization: a survey.

Softw Test Verif Reliab 22(2):67–120

Yourdon E (1997) Death March: the complete software developer’s guide to surviving ‘mission

impossible’ projects. Prentice-Hall, Upper Saddle River, NJ

Zhang Y (2013) SBSE paper repository. http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

Zhang Y, Harman M, Mansouri SA (2007) The multi-objective next release problem. In: Pro-

ceedings of the 9th conference on genetic and evolutionary computation, pp 1129–1137

Zhang Y, Finkelstein A, Harman M (2008) Search-based requirements optimisation: existing work

and challenges. In Proceedings of the 14th international conference on requirements engineer-

ing: foundation for software quality, pp 88–94

Biography Filomena Ferrucci is professor of software engineering and software

project management at University of Salerno (Italy). Her main research interests

include software metrics, effort estimation, search-based software engineering,

empirical software engineering, and human-computer interaction. She has been

program co-chair of the International Summer School on software engineering.

Mark Harman is professor of software engineering in the Department of Computer

Science at University College London where he directs the Centre for Renewable

Energy Systems Technology (CREST). He is widely known for work on source

code analysis and testing and was instrumental in the founding of the field of

search-based software engineering (SBSE), the topic of this chapter. Since its

inception in 2001, SBSE has rapidly grown to include over 1,000 authors, from

300 institutions spread over 40 countries.

398 F. Ferrucci et al.

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

Federica Sarro is a Research Associate working in the CREST centre, Department

of Computer Science, University College London. Her main research areas are

empirical software engineering and search-based software engineering with spe-

cific interest in project management, software development effort estimation and

fault prediction. She has also been working on functional metrics for sizing

software products and human-computer interaction. Her recent research interests

include app store analysis and automatic program repair.

15 Search-Based Software Project Management 399

Chapter 16

Social Media Collaboration in Software

Projects

Rachel Harrison and Varsha Veerappa

Abstract Social media has had a big impact on the way that software projects are

managed and the way that stakeholders interact with each other: indeed, the nature

of software projects has evolved substantially in keeping with the evolution of

technology. A direct consequence of the ubiquity of the Internet is the increasing

trend toward cooperation outside the boundaries of an office. The interactions

involved in software projects have changed accordingly and can be broadly divided

into two types: (1) interactions among stakeholders who are in a single location

(e.g., people sharing the same office space) and (2) interactions among stakeholders

who are in distributed locations (e.g., software projects that are partly implemented

offshore). Social media has been and remains a significant facilitator to these kinds

of interactions. This chapter looks at the implications of the use of social media

software projects in today’s changing world.

16.1 Introduction

We use the term social media to include all web-based platforms that allow the

creation and exchange of user-generated content using Web 2.0 (McNab 2009).

Social media can be used in many circumstances. These include collaborative

projects like wikis where a group of individuals comes together to share knowledge

with the idea that the effort of all the users together gives a better outcome than that

of a single user. An example of a very popular collaborative project is Wikipedia.1

R. Harrison (*) • V. Veerappa

Department of Computing and Communication Technologies, Oxford Brookes University,

Oxford OX2 9AT, UK

e-mail: Rachel.Harrison@brookes.ac.uk; vveerappa@brookes.ac.uk

1 http://www.wikipedia.org.

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_16, © Springer-Verlag Berlin Heidelberg 2014

401

mailto:Rachel.Harrison@brookes.ac.uk
mailto:vveerappa@brookes.ac.uk
http://www.wikipedia.org/

Another example of social media is the blog in which a single user contributes to

content but allows other users to interact with features such as comments and likes.
Users can create these blogs easily on specialized platforms like Tumblr,2 Blogger3

or Wordpress.4 Microblogs are very similar to blogs and enable users to post very

short entries as brief updates. An example of a very popular microblog platform is

Twitter.5

Social networking sites such as Facebook6 and Google+7 enable users to create

personal profile pages (with information such as photos, videos and blogs) and

connect to other users to share their profile information. The users can also further

interact with each other via email and instant messengers that are integrated into

those social networking sites. Such sites also allow organizations to create their

own pages, which can be used to promote awareness about their services and

activities. Professional networking sites such as LinkedIn8 are very similar. They

enable users to post information about their careers and network with other users

with similar interests. Other forms of social media include virtual games and social

worlds such as SecondLife9 and content communities such as YouTube.10

The popularity of social media continues to increase. In October 2012, Facebook

estimated its number of users to be 1 billion while the number of Tumblr blogs is

79.3 million. Twitter, on the other hand, had more than 500 million users registered

as at March 2013. People are now using social media both informally for personal

social interactions and formally for business and work. Indeed, social media

provide an efficient and instantaneous means of communication that can be very

useful to the health services (Eckler et al. 2010; Hawn 2009; McNab 2009),

marketing (Mangold and Faulds 2009), education (Martı́n-Blas and Serrano-

Fernández 2009) and governments (Kavanaugh et al. 2012). One sector that has

particularly benefited from the use of social media is the software development

industry.

In recent years, software development has evolved from a mainly closed

in-house activity to a more open and globally distributed one. This new context

has given rise to new challenges such as communication, synchronous and asyn-

chronous coordination and trust (Herbsleb 2007). One way to address these prob-

lems is to use social media to facilitate communication, task synchronization and

knowledge sharing. This can be done at two levels: the project level (where

software teams, domain experts and clients interact with each other to ensure a

2 http://www.tumblr.com.
3 http://www.blogger.com/.
4 http://wordpress.com/.
5 https://twitter.com/.
6 http://www.facebook.com/.
7 https://plus.google.com/.
8 http://www.linkedin.com.
9 http://secondlife.com/.
10 http://www.youtube.com.

402 R. Harrison and V. Veerappa

http://www.tumblr.com/
http://www.blogger.com/
http://wordpress.com/
https://twitter.com/
http://www.facebook.com/
https://plus.google.com/
http://www.linkedin.com/
http://secondlife.com/
http://www.youtube.com/

successful outcome) and the community level (where the software team interacts

with peers in the broader community of software professionals to share knowledge).

In this chapter, we look at how the three main groups of people who are directly

or indirectly involved in a project (internal stakeholders, external stakeholders and

peers) interact. We have carried out a pilot study with practitioners in industry to

understand how social media is used in their organizations for the different types of

interactions we identified. The results of the study are used as evidence to support

the points we make in this chapter.

16.2 Interactions in Software Projects

The three main groups of people involved in a project are internal stakeholders,

external stakeholders and peers. External stakeholders are the individuals or organ-

izations that are not part of the organization doing the actual software development

activities but who have an influence on the decisions in the projects. They are not

usually in the same location as the internal stakeholders. For example, an external

stakeholder could be a manager, an end user in the client organization or a domain

expert. Such stakeholders are usually involved in the requirements elicitation and

elaboration processes as well as during testing. Figure 16.1 depicts the various types

of interactions among these stakeholders during a software project with onshore and

offshore teams.

Internal stakeholders are individuals or teams within the same company that

interact on a daily basis during the software development process. These stake-

holders can be co-located or they could be distributed geographically in the same

country or across the world. In a software project, there is usually a project manager

in charge of the main team where the project decisions are taken. There may also be

other teams that are located in the same country as the main team. Some of the tasks

may also be outsourced to offshore teams. All these stakeholders are internal

stakeholders. Software engineers, project managers and testers are examples of

such stakeholders. Their involvement in software projects ranges from require-

ments elicitation through to design, implementation and testing.

Peers are individuals who are known to the internal stakeholders either through

previous acquaintance or through necessity for the project. They usually share their

knowledge and experiences and even refer new peers to the internal stakeholders.

Peers are usually only indirectly involved in a software project. They can provide

feedback and solutions to technical problems that the internal stakeholders encoun-

ter in the software projects they are working on.

16 Social Media Collaboration in Software Projects 403

16.3 Social Aspects of Software Projects

The very nature of software projects necessitates social behaviors. According to

Begel et al. (2010), the model of teaming from Tuckman and Jensen (1977) can be

applied to the software life cycle to explain the social aspects of software projects.

During the early phases of a software project, internal stakeholders organize into

teams. This is known as forming. They then need to come to consensus about their

goals through storming. They then choose and implement their software methodo-

logy and engineering processes which is known as norming. Stakeholders collabo-
rate and coordinate the tasks among themselves to create a new product through

performing. At the end of the project, adjourning enables them to reflect on their

successes and failures in order to improve the next project’s execution and

outcome.

Interactions between internal and external stakeholders can involve the same

social interaction and processes. These interactions may not always be directly

related to coding and implementation. The external stakeholders are identified by

the internal stakeholders through forming and storming during which the require-

ments of the external stakeholders are elicited and prioritized or milestones are

agreed. During performing, external stakeholders test the deliverables to determine

Peers
External

Stakeholders
Internal

Stakeholders

Onshore Team

Offshore Team

Offshore Team

Onshore Team

Main Onshore Team

Fig. 16.1 Types of interactions in software projects

404 R. Harrison and V. Veerappa

if they have met their expectations and the adjourning process involves any post-

implementation reporting that helps to determine the success or failure of a project.

Internal stakeholders and peers interact mostly for the exchange of ideas and

current practices, and these interactions usually occur continuously and are not

restricted by a specific software project. However, these interactions are more likely

to occur during the design and implementation phases of the software development

life cycle. During these interactions, peers and internal stakeholders exchange

knowledge on best practice, technical issues and latest trends in their fields of

interest. This can be a great motivating factor for software projects (see Chap. 10).

These interactions that enable and facilitate the software development activities

require the stakeholders to be able to find and connect with other stakeholders who

have similar aims in the project or who have complementary skills.

16.4 Importance of Social Media in Software Projects

The nature of software projects has changed over time. Development is now often

done in teams which are both onshore and offshore (Carmel and Agarwal 2001). In

2008, the total global IT outsourcing was estimated to be worth between $220

billion and $250 billion with a forecasted growth of 6–9 % per annum to reach

around $380 billion by 2013 (Oshri and Kotlarsky 2010). This emphasizes the need

for successful completion of projects as the incurred losses in case of failure can be

considerable. Social media are one of the key enablers for any projects that involve

distributed teams in general.

16.5 Pilot Study

The pilot study was conducted over a period of 2 months with nine companies. We

contacted managers who had an overview of the software development process in

their respective companies. Data collection was performed using a structured

questionnaire with both open-ended and close-ended questions. Each individual

had to answer 16 questions about their past and current use of social media in

software projects as well as the software development methodologies that are used

in their companies. The questionnaire is included in Fig. 16.2.

16.5.1 Data Collection and Analysis

Our underlying motivation was to investigate the use of social media in global

software projects. We wanted to find out what kind of social media are being used

and how they are being used to better understand the evolution of social media and

16 Social Media Collaboration in Software Projects 405

http://dx.doi.org/10.1007/978-3-642-55035-5_10

to predict future trends. The participants were practitioners drawn from nine

different organizations as shown in Table 16.1. The participants were all involved

in global software development and included managing directors, project managers

and software engineers.

The organizations were chosen because they were known to perform software

engineering projects and to use social media. Initially, the organizations were

The aim of this questionnaire is to determine how Social Media are currently being used in
Software Projects. We want to understand the trends in the use of Social Media and which
activities in software projects Social Media facilitate. Examples of social media include
Twitter, Facebook, Forums, Chat Clients and Blogs. These can be either public (such as a
blogging site that is accessible by everybody on the Internet) or private (such as a forum
being hosted on company intranet for example).

1 Evolution of the use of Social Media with time
1.1 For how long have you been using Social Media in software projects?
1.2 Which Social Media you have used?
1.3 Which Social Media do you use now?
1.4 If you have stopped using some Social Media, why have you done so in each case?
1.5 Do you think that social media have increased productivity in projects? Why?

2.1 Which activities of the Software Projects are facilitated with Social Media?

3.1 Do you use Social Media to interact with colleagues in the same location as you?

4.1 Does your company use prescribed software methodologies?

3.2 Do you use Social Media to interact with colleagues in a different location from you?

3.3 Do you use Social Media to interact with peers who are not your current colleagues?

3.1.1 If yes, which activities do you use Social Media for?

3.2.1 If yes, which activities do you use Social for?

3.3.1 If yes, which activities do you use Social Media for?

4.1.1 If yes, how essential is the use of social media in those software methodologies?

2.2 Which type of Social Media do you use in each case?
2.3 How essential are Social Media for each the activities you have mentioned?

2 Activities facilitated by Social Media

3 Context of use of Social Media

4 Software Methodologies and Social Media

1. Requirements Elicitation

2. Stakeholder Identification/Recommendation

3. Design

4. Implementation

5. Testing

6. Maintenance

Fig. 16.2 Pilot study questionnaire

406 R. Harrison and V. Veerappa

contacted by email to establish their suitability and willingness to participate. The

participants were sent the questionnaire by email and were given 2 months in which

to complete it. The participants were all experienced in collaborating on projects

and using social media.

Data thus received from the participants were anonymized and encoded to

extract information that was relevant to the study. We performed a qualitative

analysis of the ensuing data to look for patterns of behavior and unexpected

behavior as well as confirmations of expected behavior as far as the use of social

media in software projects is concerned.

16.5.2 Results: Social Media and Software Projects

Social media provide many tools to support the processes involved in executing a

software project. Social media can aid software development activities from the

early phases such as requirements engineering through to development, testing and

documentation. They also provide a means to facilitate maintenance activities.

Since social media are highly flexible, stakeholders can readily adapt them to fit

their needs to help deliver successful software projects. Our survey shows that all

the phases of the software development life cycle can involve the use of social

media as illustrated in Fig. 16.3.

Two main characteristics of social media determine how they are used in

software projects. These are social presence (Short et al. 1976) and media richness
(Daft and Lengel 1986). Social presence is the acoustic, visual, and physical contact

that users can achieve using social media; that is, it is the level of awareness that

users have of each other during communication. Social media with high social

presence support synchronous and personal interactions and increase the influence

that the users have on each other. Social platforms that enable live web chats are

examples of such social media. On the other hand, social media with low social

presence favour asynchronous and more formal interactions (Kaplan and Haenlein

2010). Forums are a good example of such social media.

Table 16.1 Characteristics of participating organizations

Organization Application domain No. of staff on site (approx.)

A IT standardization and certification 5

B Automobile R&D 85

C Software services 20

D Financial services 40

E Software services 9

F Socio-technical systems development 200

G Management consulting services >500

H Software services 15

I Software services 40

16 Social Media Collaboration in Software Projects 407

Media richness is the volume of information social media can exchange in a

given time interval. Thus, social media with high media richness will use a number

of cues to increase clarity of the information being exchanged and actively facilitate

feedback. High media richness therefore implies low ambiguity and uncertainty in

the information being transmitted. For example, explaining a solution via a web

chat is likely to have lower ambiguity and uncertainty than explaining it using posts

on a forum or by email. Social presence and media richness determine the appro-

priateness of a given social media in the different stages of the software develop-

ment life cycle.

From our survey, we found that although social media have been used in software

projects since the introduction of web 2.0, there has been a relatively high rate of

adoption of social media in the last decade, similar to that which occurred at the time

of the birth of popular social media platforms such as Wikipedia, Facebook and

Twitter. The most popular social media used include (unsurprisingly) Facebook,

Twitter, instant messengers, LinkedIn and blogs. Figure 16.4 shows our findings on

the use of different social media in the software project life cycle.

We found that currently the design, testing and maintenance phases top the list

for the use of social media with the largest variety of social media being involved

during design. Social media use is least popular in stakeholder identification/

recommendation and requirements elicitation activities. Software teams use

Skype™ and forums in all phases of the software projects they are involved

in. Twitter tends to be used in maintenance, stakeholder identification and recom-

mendation, design and maintenance while instant messengers and blogs tends to be

used during design, implementation, testing and maintenance. Facebook is used

only to elicit requirements and stakeholder analysis while LinkedIn has been

identified as being useful mainly in the implementation phase of software projects.

An interesting observation here is that although requirements elicitation and stake-

holder identification/recommendation activities involve a lot of interaction among

stakeholders, they lag behind in the adoption of social media.

No. of Respondents

2 4 6 8

Maintenance

Testing

Implementation

Design

Stakeholder identification

Requirements elicitation

0

Fig. 16.3 Use of social

media in the software

project life cycle

408 R. Harrison and V. Veerappa

The popularity of instant messaging in general and Skype™11 in particular,

which provide both high social presence and high media richness, can be explained

by the fact that some of the tasks during software projects require very intense

interactions among the stakeholders. One such example is when developers need a

quick solution to a critical technical problem they encounter during implemen-

tation; they may need and want to discuss the problem urgently in detail and interact

with technical experts in the team.

Forums enable stakeholders and peers to communicate asynchronously with a

low level of formality and interaction. Thus stakeholders tend to use these in

situations which are not urgent. For example, forums are very useful for explaining

generic solutions to recurring problems which can be used by other software teams

within an organization.

Twitter is actively used to exchange information between stakeholders in soft-

ware projects because it provides support for lightweight coordination and

communication. Although the social presence and media richness is limited, the

broadcast mechanisms implemented in Twitter are very efficient in reaching a large

audience.

Blogs are frequently used by stakeholders and peers to document technical

information, to discuss the release of new features and to support requirements

engineering. Blogs are useful in these cases because they encourage discussions and

2 4 6 8 10 12 14 160
No. of Respondents

Stakeholder identification/
recommendation

Maintenance

Testing

Implementation

Design

Requirements elicitation

MessengerSkype

LinkedIn

Twitter

Blogs Forums

Facebook

Fig. 16.4 Types of social media used in the different phases of software projects

11 http://www.skypeTM.com/en/.

16 Social Media Collaboration in Software Projects 409

http://www.skypetm.com/en/

are accessible by a large number of people who can participate whenever they have

time to do so.

Facebook and LinkedIn allow the creation of virtual communities in which

stakeholders and peers can share views and information about specific topics

related to software projects. Facebook can help stakeholders to recommend other

stakeholders by inviting them to the software project pages.

16.5.3 Results: Interaction Among Co-located stakeholders

Stakeholders who are co-located may use social media to communicate with each

other despite being in the same location. This is particularly likely for large

organizations with many large teams. Here, stakeholders use social media to keep

up-to-date with what other teams are doing and to facilitate communication during

software projects. Figure 16.5 illustrates how participants in our survey use social

media to interact with co-located stakeholders.

Figure 16.5 shows that social media is not always used among co-located teams.

However, when it is used, it predominantly supports project management activities.

Senior team members tend to use social media platforms like wikis or instant

messaging for tracking the progress of tasks in a project. Wikis are excellent

facilitators of software development collaboration. Their adoption in software pro-

jects is widespread. Wikis are mainly used to support defect tracking, documen-

tation, requirements tracking, and test case management and to create project

portals. Tagging is used in software project portals such as Github12 to tag issues,

project releases, work items and builds. The main advantages of using tags in

software projects are their flexibility and their lightweight, bottom-up nature.

Instant messengers are extensively used among team members for coordination

of tasks. For example, in our study, we found that in projects which involve many

interdependent modules, team members use instant messaging to inform each other

about implementation progress. Our findings on this extensive use of chat messag-

ing are similar to those of Dittrich and Giuffrida (2011).

Social media are also widely used for knowledge sharing purposes among

co-located teams. Our study has shown us that this is particularly true for large

organizations where there are many teams in different parts of the same building.

Members of the different teams use forums to maintain awareness of the on going

work. Forums are also used to inform other teams about novel solutions to problems

or new technology that has proved to be useful in projects. In more urgent

situations, stakeholders also use instant messaging or IRC13 to ask for help or

clarifications on possible solutions when they encounter problems. Again our

findings support those of Dittrich and Giuffrida (2011).

12 https://github.com/.
13 http://www.mirc.com/jarkko.html.

410 R. Harrison and V. Veerappa

https://github.com/
http://www.mirc.com/jarkko.html

In projects which involve in-house software application development, social

media are used to interact with external stakeholders to elicit requirements and for

validation and testing purposes. Some of the teams in our survey used Skype™ to

interact with the external stakeholders in these cases. Others usedMSNmessenger14

which enables desktop sharing to help end users with live demonstrations.

Our study found that social media are also useful for networking and team

building for co-located stakeholders, who tend to use social media to connect to

other team members to keep in touch with them. Social media also facilitate the less

formal interactions that are essential to team building. For example, team members

use instant messaging and forums to joke and socialize. We found evidence for this

in our survey, which revealed that co-located stakeholders interact with each other

in two ways. First, they communicate in a formal way with each other about urgent
technical issues that require quick responses, and secondly they communicate in an

informal way to share new ideas, or (in a more social capacity) to team build or

network. The importance of both formal and informal reporting is also reported in

Black et al. (2010) and in Chap. 10. We found that instant messengers in general

and Skype™ in particular are the preferred social media in the first case as

they have high social presence while blogs and forums are widely used in the

second case.

16.5.4 Results: Benefits and Limitations of Social Media
in Co-located Interactions

According to our study, social media is very beneficial to software projects. The

fact that social media enable stakeholders to reach a very large audience is one of

the major benefits. Team members can easily interact through social media with

other colleagues who are beyond their own physical “cluster,” perhaps being

N
o.

 o
f
R

es
po

nd
en

ts
N
etw

or
ki
ng

So
ftw

ar
e D

ev
elo

pm
en

t

K
no

wled
ge
 S
ha

rin
g

Pr
oj
ec
t M

an
ag

em
en

t

Te
am

 B
ui
ld
in
g

N
ot
 U

se
d

4

3

2

1

0

Fig. 16.5 Types of

interaction among co

located stakeholders

14 http://windows.microsoft.com/en-GB/messenger/home.

16 Social Media Collaboration in Software Projects 411

http://dx.doi.org/10.1007/978-3-642-55035-5_10
http://windows.microsoft.com/en-GB/messenger/home

located on a different floor of the building or in a different common area. Thus,

social media has broken physical boundaries among stakeholders in the same

location facilitating exchange of information among a potentially large number of

co-located stakeholders.

Another benefit of social media in this context is that it enables team members

who are normally less likely to interact with others to do so. This is particularly true

for those team members who may find it hard to approach other team members for

help or advice.

However, a concern about the use of social media is the ease with which stake-

holders can shift from work-oriented interactions to more personal ones. One of our

survey participants mentioned that social media were not used for co-located

interactions because management feared that team members would spend time on

unproductive interaction. Social media are not infallible. For example, since there is

less regulation on the types of interactions permitted among co-located stake-

holders, harmful activities such as trolling (in which team members harass others

by publishing inappropriate personal information) can occur, resulting in a decrease

in performance and a decrease in motivation for the victims (Matthews and

Stephens 2010). As pointed out in Chap. 10, motivation plays an important role

in the production of high-quality software.

Through the use of social media, team members who are popular may become

powerful and hence have greater influence on others. This is especially true in the

case of asynchronous social media such as blogs (Twitter, Facebook, etc.) and often

happens when stakeholders flood these media with an excess of information.

For example, if a stakeholder frequently posts irrelevant information on Twitter,

other connected stakeholders may become overwhelmed and consequently inadver-

tently overlook other relevant information from an infrequent poster. The danger is

that very active team members can persuade others to accept solutions or techno-

logies that may not necessarily be the best solution for the project. The reverse may

also occur: a stakeholder who has very good ideas and suggestions for the project

may be completely ignored if their social media activity is overshadowed by very

active stakeholders (Matthews and Stephens 2010).

16.5.5 Results: Interactions Among Stakeholders
in Distributed Locations

Social media are particularly popular when software project teams are globally

distributed. All the teams in our study use social media actively to interact with

stakeholders who are not in the same location as they are. These can be internal

stakeholders such as team members who are working in offshore or onshore offices

and external stakeholders who are not in the same location as the main software

development team. The main software development team is assumed to be located

at the premises where the project is being managed. Figure 16.6 illustrates the

412 R. Harrison and V. Veerappa

http://dx.doi.org/10.1007/978-3-642-55035-5_10

outcome of our study concerning how social media are used among distributed

stakeholders. This shows that as expected, the main purpose of social media is to

facilitate software development activities. The actual activities depend on the role

of the stakeholders in the projects.

In the case of internal stakeholders, social media facilitate each phase of the

software development process from design through to maintenance. Instant mes-

sengers including Skype™ are used to discuss important issues regarding design

and implementation. Before commissioning a release of the software, there is

in-house testing. During this exercise, testers record any bugs or feature improve-

ments on forums and blogs and discuss these with other team members using

Skype™ and instant messenger clients. During maintenance, the different teams

involved in the software project use social media to decide whether new features

or enhancement of existing features are needed. In this phase, we once again

found instant messengers (including Skype™) to be the most popular means of

communication.

Project managers from onshore teams communicate with offshore teams via

social media to follow progress and discuss issues during the projects. Our study

found that teams which operate with this configuration have regular meetings via

instant messengers including Skype™ to inform teams in other locations about how

the project was progressing, discuss task allocations and negotiate schedules of

delivery. We found that these meetings are held daily or weekly depending on the

needs of the projects.

One of the drawbacks of working with offshore teams is the difficulty of

interaction which is exacerbated by distance. People in different locations do not

have the opportunity to have informal meetings or interactions as discussed in

Chap. 9. This can greatly impact team building and motivation. This can be

overcome (at least in part) by using social media. For example, members from

some of the teams we surveyed use instant messaging and IRC to have less formal

conversations and to get to know other team members better. The ability to initiate

conversation among team members who have not been introduced to each other is

N
o.

 o
f
R

es
po

nd
en

ts

N
etw

or
ki
ng

So
ftw

ar
e D

ev
elo

pm
en

t

K
no

wled
ge
 S
ha

rin
g

Pr
oj
ec
t M

an
ag

em
en

t

Te
am

 B
ui
ld
in
g

7

8

5

6

3

4

1

2

0

Fig. 16.6 Types of

interactions among

distributed stakeholders

16 Social Media Collaboration in Software Projects 413

http://dx.doi.org/10.1007/978-3-642-55035-5_9

an important success factor for global projects as it greatly facilitates

communication.

Our study has shown that internal stakeholders and external stakeholders who do

not share the same physical location frequently interact using social media for

software development purposes. Internal stakeholders elicit requirements from

external stakeholders using Skype™, Facebook, forums and blogs. Such social

media also support the process of recommending stakeholders that the project

team may need. During testing, external stakeholders can use forums and blogs to

report bugs and request new features. This also happens during the maintenance

phase. According to our study, external stakeholders are often informed about the

state of the project via social media. Project managers from the software team tend

to use Skype™ to communicate regularly with external stakeholders about pro-

gress, changes to milestones and delivery dates for the project.

Interactions between stakeholders at different locations can require a quick

response (typically immediate solutions to design and implementation issues).

This is also true when stakeholders are negotiating or providing their requirements

for the project. Thus, the use of social media such as instant messengers including

Skype™ ensures that the right social presence and media richness is achieved. The

parties involved in these activities need to be able to exchange a large amount of

information to ensure that there is no confusion or misunderstanding about what is

being discussed. However, there are some interactions which can occur asynchro-

nously without the need for media richness. Examples of such interactions in this

context include bug reports and feature requests. In this case, since we require a

lower social presence and media richness, social media such as forums and blogs

are appropriate.

16.5.6 Results: Benefits and Limitations of Social Media
in Distributed Interactions

Social media can be extremely beneficial for interactions among distributed stake-

holders (Begel et al. 2010). Many of the challenges that are related to distributed

software projects can be ameliorated to some extent by social media. Geographical

distance whether small or large has a great impact on the ability of teams to

collaborate successfully (Olson and Olson 2000).

One of the major issues that social media helps to address is the difficulty of

coordination due to independencies and process non-conformities (Herbsleb 2007,

Mockus and Herbsleb 2001). Our study has found that stakeholders in different

locations actively use social media to coordinate software implementation. Using

social media they are able to communicate any interdependencies that may exist

among the components of the software being developed very effectively (Herbsleb

and Grinter 1999). The fact that they use social media also helps to align processes

in the project. For example, if the stakeholders use specific terminologies in a given

414 R. Harrison and V. Veerappa

process in the development life cycle, they can discuss this and use agreed termino-

logy that all parties will understand. Slips in schedules (Herbsleb 2007, Mockus and

Herbsleb 2001) can also be detected earlier limiting the consequences these may

have on other participating teams and stakeholders. Since project managers use

social media to do task allocations and follow-ups, any delays can be discovered at

an early stage and dealt with as necessary.

Other challenges in distributed software development are mostly associated with

offshore software development, mainly because communication difficulties are a

major problem. The different cultures and languages of some stakeholders may lead

to misunderstandings (Herbsleb 2007), as also discussed in Chap. 10. Furthermore,

rapidly changing teams and projects in this context can mean that stakeholders do

not have time to form relationships with other stakeholders, as also discussed in

Chap. 12. Our study showed that social media can greatly help in these cases.

For example, interacting with a colleague via a video channel can improve under-

standing through attention to additional subtle cues such as voice tone and facial

expressions. Social media also enable stakeholders who have worked together on

projects (even for a brief period) to keep in touch via blogs. These stake-holders can

eventually become peers who can act as consultants on future projects.

Social media are also useful when managing unstable projects where informal

communication is essential (Galbraith 1977, Kraut and Streeter 1995). For example,

in a project where requirements are always changing, social media can support

distributed stakeholders by providing them with a rich platform to discuss and

interact with each other to resolve issues and project risks. With the help of forums

and blogs, stakeholders can also become acquainted with the experts on the various

subjects related to the project across the different sites and can thus reach the right

expert quickly when necessary (Sengupta et al. 2006).

Distributed teams with unstable projects can be managed by using social media

in a more formal way in which all interactions are self-moderated by stakeholders.

In such a formal setting, trolling and flooding are less likely to occur (Daft and

Lengel 1986). However, our study found that, as with co-located teams, there is still

the risk that using these social media may give rise to less productive work. This can

be especially harmful in off-shore teams as billing is done by the hour or day spent

on the project. Onshore companies or clients will only pay for additional time spent

on a given task if this can be justified.

As with all technology, users need to be motivated to use social media. This is

the case for the use of social media in offshore teams where some stakeholders

cannot see the immediate benefit of adopting social media in their day-to-day tasks

and so consider it to be an overhead in their work which is hard to justify in terms of

cost. Such non-conformity in the use of social media can mean that social media are

regarded as a burden because they may not provide complete information to the

stakeholders who are actively trying to use them.

Another issue that can arise specifically from the use of asynchronous social

media is the fact that information can become out-of-date before any attention is

given to it or information may be duplicated. Our study found that for the testing

phase (for example) users tend to report the same bug in different ways many times.

16 Social Media Collaboration in Software Projects 415

http://dx.doi.org/10.1007/978-3-642-55035-5_10
http://dx.doi.org/10.1007/978-3-642-55035-5_12

This adds an overhead to the project as project managers need to analyse each bug

report and determine whether the bug has been reported previously.

16.5.7 Results: Interaction with Peers External to the Office

Interactions with peers can have a considerable impact during software projects.

The teams in our survey define these peers as being past project team members,

colleagues, friends and academics. These peers provide a valuable source of knowl-

edge and information that stakeholders can consult in order to keep in touch with

best practice, technologies and trends. Figure 16.7 illustrates how our participants

use social media to interact with their peers.

Networking is the main reason for using social media to interact with peers. In

our study, we found that internal stakeholders use social media frequently to keep in

touch with peers. These relationships have been forged by previous experiences and

need to be maintained somehow when the parties are no longer interacting on a day-

to-day basis. Social media such as LinkedIn and Facebook enable colleagues to

keep in touch by providing updates about events that they post online.

Some of the participants in our survey mentioned using social media to com-

municate with peers for self-actualization purposes. Since the field of IT is so vast

and new technologies abound, it can be hard to be constantly aware of new tools and

techniques. Stakeholders thus use blogs maintained by peers to discuss new techno-

logies. Our study found that stakeholders also use social media to seek technical

help from their peers. Often, when they come across an issue in the project they are

working on, they either post a question on their own blogs and wait for responses

from peers or find forums online where experts can help. Stakeholders also use

social media such as blogs and forums to provide reviews on technologies, hard-

ware and methodologies they have used in previous software projects.

N
o.

 o
f
R

es
po

nd
en

ts

St
ay

 in
 to

uc
h

Se
lf-
ac
tu
ali

za
tio

n

Te
ch

ni
ca
l h

elp

Fe
ed

ba
ck

6

5

4

3

2

1

0

Fig. 16.7 Types of

interactions among

stakeholders and peers

416 R. Harrison and V. Veerappa

These interactions are often done in the stakeholders’ spare time and are very

informal. Such interactions require low social presence and a reduced level of

media richness. Thus blogs and forums are the most common social media used

for this. We also found that some teams use instant messaging and Skype™ at times

when they need urgent technical help in projects if relevant peers can be contacted

via these media.

16.5.8 Results: Benefits and Limitations of Social Media
in Interactions with Peers

The main benefit of interactions between internal stakeholders and their peers is the

fact that they can access a wealth of information that can be the key to the success of

the software project. By staying in touch with the latest tools and techniques in the

field of IT, these stakeholders are able to bring innovation into the process of

software development. Furthermore, project managers and team members are

able to access a larger audience when seeking help. This can lead to numerous

solutions for any problems which arise. Managers can then choose the one that best

suits their purpose.

However, if stakeholders spend too much time on such informal interactions,

this can impact their productivity. The information available from peers may not be

entirely appropriate or correct, and if stakeholders rely on it and use it unquestion-

ingly in software projects they may introduce more problems than they solve.

16.5.9 Results: Impact of Social Media on Productivity
in Software Projects

Our study found that social media led to an increase in productivity for all our

survey participants. The main reason for this is the fact that social media such as

Skype™ enables stakeholders to get responses almost immediately to any queries

and on-going discussions. Thus, despite a distributed team, stakeholders can set up

meetings almost instantaneously and resolve issues quickly. This means that the

teams can make the most of the time allocated to the project and so improve

productivity.

In many social media, the basic features such as blogging, instant messaging and

video calls are free for use. Furthermore, most social media enable some level of

customization. These features are the ones that stakeholders involved in software

projects desire most frequently. The low cost and easy customization of social

media imply that software engineering companies using them have a set of very

powerful tools that are virtually free. Our study confirms that telephone calls and

16 Social Media Collaboration in Software Projects 417

faxes among distributed software teams can be completely eliminated in most

cases. This decreases the overhead costs of projects considerably.

16.5.10 Results: Social Media as a Facilitator in Software
Projects

Half of the participants in our study reported that social media are useful when

applying the software methodologies prescribed by their organization or the organ-

ization of their customers. The methodologies mentioned included agile methods

(see Chap. 11) and CMMI.15 These necessitate good planning, control and moni-

toring. Such activities can be very tedious to apply across distributed teams as

project managers need to get regular updates on the progress of the projects to be

able to perform these tasks. Social media provide a convenient way to achieve this.

For example, in projects where teams use blogs to provide status updates and make

task allocations, project managers can easily be informed about the state of projects

by checking status updates and task completion progress.

16.5.10.1 Social Media in the Agile Context

Our study revealed that social media is very popular with all the agile practitioners

who responded to our questionnaire. For example, for many of these practitioners,

social media are useful for daily stand-up meetings or for demonstrations of pro-

totypes in rapid prototyping.

Agile methods involve working with requirements that are often immature and

ambiguous. Short development cycles and efficient communication help to manage

such requirements to reduce the likelihood of defects (Abrahamsson et al. 2002;

Beck and Andres 1999). Communication and feedback among the stakeholders of

an agile project are particularly crucial for its success. For example, the most

common agile practice, extreme programming, advocates the practice of real

customer involvement where stakeholders take part in weekly or quarterly meetings

for exchange of information and planning (Beck and Andres 2004). Social media

are very good tools to promote these kind of activities in the agile context.

Agile methods encourage face-to-face communication to enable the stake-

holders to share as much information as possible; this can be helped by facial

expression or other cues as well as verbal communication. Thus, in this context, the

usefulness of the social media tends to increase with the level of media richness and

social presence it provides. For example, according to Wallace et al. (2002),

videocon-ferencing is a very good alternative when stakeholders are not available

on site for user story explanation. Korkala et al. (2006) further elaborates on this to

15 http://cmmiinstitute.com/resources/.

418 R. Harrison and V. Veerappa

http://dx.doi.org/10.1007/978-3-642-55035-5_11
http://cmmiinstitute.com/resources/

include all instances where effective communication with a remote stakeholder is

required.

Social media provide the additional benefit of leaving logs and traces. This can

be extremely useful in the rapidly evolving agile context to provide a record of how

a project has progressed over time. Such information can be hard to document

methodically, especially in large projects with very short development cycles.

For example, one of our participants who uses an agile process stated that keeping

logs of chats has proved to be very useful when negotiating and justifying billing

with customers. Social mining techniques can be used with the resulting logs and

traces to get insights into the project dynamics and trends as discussed later in

Sect. 16.6.

16.5.10.2 Social Media and the Project Manager

Project complexity and uncertainty are the main challenges that project managers

face (Chaps. 11 and 13). This is especially true in the context of distributed software

development. Social media can empower project managers to manage these com-

plexities and uncertainties both proactively and reactively as they arise in a project.

However, our understanding of the role of social media for the management of

software projects is far from complete (Storey et al. 2010).

Large distributed software teams involve challenges arising from temporal,

geographical and socio-cultural distance (Holmstrom et al. 2006) that project

managers need to overcome. Social media help to coordinate and motivate these

teams by promoting communication among the different stakeholders. Project

managers can thus have better control of the progress of the individual team

members as well as the project as a whole and so can better report to other

stakeholders on the status of the project. For example, one of the participants of

our study who works with distributed teams emphasized the usefulness of weekly

meetings with offshore team members via Skype™ to plan and assign tasks to the

individual team members and set milestones. These weekly meetings also enabled

team members to raise any issues that they have encountered or that might arise.

Such interactions enable project managers to efficiently tackle these issues to

decrease their impact on the project. Our findings are again similar to those of

Dittrich and Giuffrida (2011).

16.5.11 Threats to Validity

The validity of this study is limited in a number of ways (Wohlin et al. 2012).

The threats to construct, internal and external validity are discussed here.

Construct validity asks whether the variables used in the study accurately

measure the concepts they purport to measure. The main threat is posed by partici-

pants who may not undertake the survey with sufficient care. For example,

16 Social Media Collaboration in Software Projects 419

http://dx.doi.org/10.1007/978-3-642-55035-5_11
http://dx.doi.org/10.1007/978-3-642-55035-5_13

participants who are short of time may have simply always chosen to tick the first

box presented.

However, we believe that all participants were well motivated as they were not

under any duress to participate. Consequently, it seems likely that the data collected

have been submitted accurately and in good faith.

Internal validity is concerned with whether the relationship between the survey

outcomes and the use of social media is a causal relationship rather than one which

occurred simply by chance. Survey instruments are always subject to a query

concerning interpretation: did the participants interpret the questions as they were

intended? We had performed trials with the survey within our research group and

improved the survey as a result. It is very difficult to determine whether or not every

participant interpreted every question in exactly the way that we intended. How-

ever, we believe that we did constrain possible misinterpretations of the questions

as far as possible.

External validity asks whether the results can be generalized. We must acknowl-

edge that the results of our survey are limited due to the small number of companies

surveyed. In the fullness of time, we hope to repeat this survey with a larger sample.

It is also possible that the element of selection (via personal contact) has introduced

response bias. However, the personal contacts were often only used in the first

instance; the participants who completed the survey were usually unknown to the

authors. Our response rate was 39 %, which is not unreasonable for such a survey.

16.6 The Future of Social Media in Software Projects

Collaborative platforms are increasingly being used by software teams. Collabo-

rative development environments (CDEs) provide teams with the tools to program,

debug, refactor and reuse code together with the collaboration tools needed for

distributed software development (Lanubile et al. 2010). These collaboration tools

usually include social media such as wikis, instant messenger clients and forums.

Examples of CDEs include the Jazz CDE,16 Redmine17 and Microsoft Team

Foundation Server.18 Jazz allows developers to perform the usual tasks in software

development and adds a web interface to allow developers to interact with other

stakeholders via a chat client and access other collaboration information such as

bug tracking and project status reports.

Microsoft Team Foundation Server is very similar and enables stakeholders to

track a work item or collaborate using a project portal while Redmine provides a

web interface where stakeholders can manage projects and collaborate using feeds,

wiki and forums. Feeds can provide subscribers with aggregated updates from

16 http://www-01.ibm.com/software/rational/jazz/.
17 http://www.redmine.org/.
18 http://msdn.microsoft.com/en-gb/vstudio/ff637362.aspx.

420 R. Harrison and V. Veerappa

http://www-01.ibm.com/software/rational/jazz/
http://www.redmine.org/
http://msdn.microsoft.com/en-gb/vstudio/ff637362.aspx

websites with the latest content. In software projects, feeds are an efficient way to

provide awareness about workspaces, developers and processes.

With the advent of disciplines such as social media analytics (Zeng et al. 2010)

and social media data mining (Sufian and Anantharaman 2011), we expect social

media to play a larger and more important role in software projects. Social data

mining identifies situations in which groups of people are generating electronic

records of documents such as posts, instant message logs and blogs among other

documents as part of their normal activity. Potentially useful information implicit in

these records can be identified via specific automated computational techniques

which harvest and aggregate this information. The results of these operations are

then presented for use in a meaningful way (Terveen and Hill 2001).

Since social media are widely used in software development projects, mining the

resulting data can provide valuable insights concerning the most important stake-

holders in these projects. This can enhance the ability of social media to help other

stakeholders identify experts involved or potentially involved in a project. This kind

of mining has been successfully applied to code and emails for Postgres (Bird

et al. 2006) where information extracted was used to demonstrate who the more

active participants were in the project.

Crowdsourcing is an interesting phenomenon (O’Reilly 2007) that has great

potential as it enables large numbers of stakeholders to provide requirements for

new features and to provide feedback on bugs. Crowdsourcing is defined as the act

of a company or institution of taking a function once performed by employees and

outsourcing it to an undefined and usually large network of people by issuing an

open call. The function can be performed by peer-production (in which case the job

is performed collaboratively) or by sole individuals. The essential prerequisite is the

use of the open call format and the large network of potential workers (Howe 2006).

Companies are using sites such as Topcoder19 to outsource coding tasks to the

constituency of developers worldwide. Similarly, some requirements elicitation and

stakeholder recommendations are outsourced using tools like Stakesource (Lim

et al. 2011) and OneDesk20, respectively. In this new context, social media will

become critical for the success of the software projects. Companies who will be

crowdsourcing tasks in the software development life cycle will have a more

compelling need to communicate with the successful bidders for the tasks. These

bidders can be located in any part of the world. Thus, project managers will need to

be able to communicate both synchronously (in urgent situations) and asynchro-

nously to make sure that process alignments are performed and the bidders under-

stand what the requirements are. They also need to be able to properly monitor and

coordinate projects as such models of operation have many risks associated with

them. Social media are excellent as facilitators in this case as they can provide all

the required tools for these project management activities.

19 http://www.topcoder.com/.
20 http://www.onedesk.com/.

16 Social Media Collaboration in Software Projects 421

http://www.topcoder.com/
http://www.onedesk.com/

16.7 Conclusions

Social media have already proved their usefulness in software projects in the

today’s changing world. They help project managers to overcome project manage-

ment difficulties that arise from the relatively new context of distributed software

development while providing other project stakeholders with the tools they need to

interact successfully with each other. Social media have also brought about a new

way of working where knowledge acquired can be shared with other teams or peers

and help can be obtained not only from individuals within the organizations

involved in the projects but also from external peers who are members of the

wider networks of the team members, effectively crowdsourcing new knowledge.

New applications for social media are being discovered on a daily basis. These

include social media data mining which can be used to find implicit useful infor-

mation from the data exchanged using social media. As the very nature of software

projects evolves with time, social media will also find new applications in these new

project configurations. However, despite their numerous advantages as project

management facilitators, social media can still present challenges to software pro-

jects if they are not used within a properly regulated framework.

Acknowledgments The authors would like to thank all of the participants in the survey reported

here. This research is funded by the Faculty of Technology, Design and Environment at Oxford

Brookes University. The authors are very grateful for this support.

References

Abrahamsson P, Salo O, Ronkainen J, Warsta J (2002) Agile software development methods—

review and analysis. VTT Publications, p 107. http://www.inf.vtt.fi/pdf/publications/2002/

P478.pdf. Last accessed Aug 2013

Beck K, Andres C (1999) Extreme programming explained: embrace change, 1st edn.

Addison Wesley, Boston, p 224

Beck K, Andres C (2004) Extreme programming explained: embrace change, 2nd edn.

Addison Wesley, Boston

Begel A, DeLine R, Zimmermann T (2010) Social media for software engineering. In: Pro-

ceedings of the FSE/SDP workshop on future of software engineering research—FoSER’10,

2010, p 33

Bird C, Gourley A, Devanbu P, Gertz M, Swaminathan A (2006) Mining email social networks.

In: Proceedings of the 2006 international workshop on mining software repositories—MSR’06,

p 137

Black SE, Harrison R, Baldwin M (2010) A survey of social media use in global systems

development. In: Proceedings of the 1st workshop on Web 2.0 for software engineering,

Web2SE, ACM/IEEE ICSE 2010, pp 1–5

Carmel E, Agarwal R (2001) Tactical approaches for alleviating distance in global software

development. IEEE Softw 18(2):22–29

Daft RL, Lengel RH (1986) Organizational information requirements, media richness and struc-

tural design. Manage Sci 32(5):554–571

422 R. Harrison and V. Veerappa

http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf
http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf

Dittrich Y, Giuffrida R (2011) Exploring the role of instant messaging in a global software

development project. In: 6th IEEE international conference on global software engineering

(ICGSE). IEEE

Eckler P, Worsowicz G, Rayburn JW (2010) Social media and health care: an overview. PM R

2(11):1046–1050

Galbraith J (1977) Organization design. Addison Wesley, Reading, p 426

Hawn C (2009) Take two aspirin and tweet me in the morning: how Twitter, Facebook, and other

social media are reshaping health care. Health Aff (Millwood) 28(2):361–368

Herbsleb JD (2007) Global software engineering: the future of socio-technical coordination. In:

Future of software engineering (FOSE’07), pp 188–198

Herbsleb JD, Grinter RE (1999) Splitting the organization and integrating the code. In: Pro-

ceedings of the 21st international conference on Software engineering—ICSE’99, pp 85–95

Holmstrom H, Conchuir E, Agerfalk P, Fitzgerald B (2006) Global software development chal-

lenges: a case study on temporal, geographical and socio-cultural distance. In: 2006 I.E.

international conference on global software engineering (ICGSE’06), pp 3–11

Howe J (2006) The rise of crowdsourcing. Wired Mag 14(6):1–4

Kaplan AM, Haenlein M (2010) Users of the world, unite! The challenges and opportunities of

Social Media. Bus Horiz 53(1):59–68

Kavanaugh AL, Fox EA, Sheetz SD, Yang S, Li LT, Shoemaker DJ, Natsev A, Xie L (2012) Social

media use by government: from the routine to the critical. Gov Inf Q 29(4):480–491

Korkala M, Abrahamsson P, Kyllonen P (2006) A case study on the impact of customer commu-

nication on defects in agile software development. In: AGILE (AGILE’06), pp 76–88

Kraut RE, Streeter LA (1995) Coordination in software development. Commun ACM 38(3):69–81

Lanubile F, Ebert C, Prikladnicki R, Vizcaino A (2010) Collaboration tools for global software

engineering. IEEE Softw 27(2):52–55

Lim SL, Damian D, Finkelstein A (2011) StakeSource2.0: using social networks of stake- holders

to identify and prioritize requirements. In: Proceeding of the 33rd international conference on

Software engineering—ICSE’11, p 1022

Mangold WG, Faulds DJ (2009) Social media: the new hybrid element of the promotion mix.

Bus Horiz 52(4):357–365

Martı́n-Blas T, Serrano-Fernández A (2009) The role of new technologies in the learning process:

Moodle as a teaching tool in physics. Comput Educ 52(1):35–44

Matthews P, Stephens R (2010) Sociable knowledge sharing online: philosophy, patterns and

intervention. In: Aslib proceedings. Emerald

McNab C (2009) What social media offers to health professionals and citizens. Bull World Health

Organ 87(8):566

Mockus A, Herbsleb J (2001) Challenges of global software development. In: Proceedings seventh

international software metrics symposium, pp 182–184

O’Reilly T (2007) What is Web 2.0: design patterns and business models for the next generation of

software. Commun Strat First Quarter(1):17

Olson G, Olson J (2000) Distance matters. Hum Comput Interact 15(2):139–178

Oshri I, Kotlarsky, J (2010) Realising the real benefits of outsourcing: measurement excellence

and its importance in achieving long term value. In: Global sourcing of information technology

and business processes, vol 55, pp 250–270

Sengupta B, Chandra S, Sinha V (2006) A research agenda for distributed software development.

In: Proceeding of the 28th international conference on software engineering—ICSE’06, p 731

Short J, Williams E, Christie B (1976) The social psychology of telecommunications. Wiley,

Hoboken, p 206

Storey MA, Treude C, van Deursen A, Cheng LT (2010) The impact of social media on software

engineering practices and tools. In: Proceedings of the FSE/SDP workshop on future of

software engineering research—FoSER’10. ACM Press, New York, p 359

Sufian A, Anantharaman R (2011) Social media data mining and inference system based on

sentiment analysis, Chalmers University of Technology

16 Social Media Collaboration in Software Projects 423

Terveen L, Hill W (2001) Beyond recommender systems: helping people help each other, HCI in

the new millennium. Addison-Wesley, New York, pp 487–509

Tuckman BW, Jensen MAC (1977) Stages of small-group development revisited. Group Organ

Manage 2(4):419–427

Wallace N, Bailey P, Ashworth N (2002) Managing xp with multiple or remote customers,

Proceedings of the 3rd international conference on extreme programming and agile processes

in software engineering (XP2002), pp 134–137

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in

software engineering. Springer, Berlin

Zeng D, Chen H, Lusch R, Li SH (2010) Social media analytics and intelligence. IEEE Intell Syst

25:13–16

Biography Rachel Harrison is Professor of Computer Science in the Department

of Computing and Communication Technologies at Oxford Brookes University.

Previously she was Professor and Head of Department at the University of Reading,

and before that she was a member of Faculty in the Department of Electronics and

Computer Science at the University of Southampton where she gained her PhD. Her

research is concerned with empirical and automated software engineering and

includes work on metrics, evolution, requirements, and search-based software

engineering.

Varsha Veerappa is a postdoctoral research assistant in the Department of Com-

puting and Communication Technologies at Oxford Brookes University. She com-

pleted her PhD in Computer Science at University College London (2008–2012).

Prior to this she worked in industry in various roles from project manager to

systems analyst and programmer. Her research interests include requirements

engineering, search-based software engineering, data mining, natural language

processing and software metrics.

424 R. Harrison and V. Veerappa

Chapter 17

Process Simulation: A Tool for Software

Project Managers?

Dietmar Pfahl

Abstract Process simulation has been introduced as a tool in support of software

project management more than 25 years ago. Since then, it has been considered an

approach with high potential for making software project managers’ work more

effective and successful. Unfortunately, despite high expectations and many reports

on prototypical process simulation applications in industrial contexts, little evi-

dence exists that process simulation has become an accepted and regularly used tool

of software project managers. This chapter investigates the reasons for lacking

impact of process simulation in the software industry. This is done with the help of

an in-depth description of a software process simulation application example. The

application example focuses on the effects of various workforce allocation strate-

gies on project performance, expressed in terms of project duration, effort con-

sumption, and product quality. With the help of the application example and based

on existing literature, the gap between the current state of the art of software process

simulation and the actual state of practice is described and its root-causes are

discussed. The chapter concludes with a list of issues that need to be addressed in

order to close the gap between the state of the art and the state of practice. Most of

the issues relate to the difficulty of demonstrating a positive cost-benefit ratio when

applying process simulation as a tool in support of software project management

tasks.

D. Pfahl (*)

Institute of Computer Science, University of Tartu, Tartu, Estonia

e-mail: dietmar.pfahl@ut.ee

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_17, © Springer-Verlag Berlin Heidelberg 2014

425

mailto:dietmar.pfahl@ut.ee

17.1 Purpose and Scope of Software Process Simulation

Software process simulation (SPS) is a method that aims at calculating and visual-

izing the behavior of software development process parameters over time on a

computer. During the past 25 years, beginning with the pioneering work of Kellner

and Hansen (1989), Abdel-Hamid and Madnick (1991), and several others in the

USA and Europe, much research has been conducted on finding the best way of

developing and using SPS models. For example, in Pfahl et al. (2006), the authors

report the existence of more than 250 papers and articles related to the topic of SPS,

published between 1987 and 2004. The systematic literature reviews by Zhang

et al. (2008, 2010) and Bai et al. (2011) give insights into the content and quality of

SPS-related publications including more recent years.

This chapter cannot give an introduction into the wide range of SPS modeling

methods and tools nor can it give a comprehensive overview of the various types of

SPS techniques. Regarding the diversity of SPS modeling approaches, the recent

literature survey of Bin Ali and Petersen (2012) can serve as an entry point for the

interested reader and a detailed description of a specific SPS modeling approach,

that is, integrated measurement, modeling and simulation (IMMoS), can be found

in Pfahl and Ruhe (2002). Regarding the various types of SPS techniques, the book

chapter by Müller and Pfahl (2008) can be used as an introductory overview, while

the excellent book by Madachy (2007) gives a comprehensive introduction into one

of the most popular SPS techniques, that is, system dynamics (SD).

It should be noted, though, that the reader does not need detailed knowledge

about the specific types of SPS techniques and the methods and tools available for

developing and evolving SPS models in order to understand the examples and the

following discussion presented in this chapter.

Figure 17.1 visualizes the main elements that play a role in SPS model devel-

opment and application: input, executable SPS model, and output. Input for both

model development and application consist of data and expert knowledge. During

SPS model development, data are needed (1) to create static models, derived with

the help of statistical analyses, which may help establish causal relationships

between the various variables representing the internal structure of the SPS

model, and (2) to calibrate the SPS model. During SPS model application, data

are needed to feed the model with the requested values for its input parameters.

Expertise is required during SPS model development in many ways. For example,

to define model purpose and scope, to select model parameters, to design the

internal model structure, to collect (or estimate) the required data, to specify the

input and output parameters as well as the user interface, and to implement, verify,

and validate the SPS model. Once the internal structure together with the input and

output parameters of the SPS model have been designed and the model has been

implemented and tested, simulation runs can be conducted, resulting in the produc-

tion of output data that are represented in suitable visualizations, for example,

tables, Gantt charts, and graphs showing the values of output parameters along

the time axis.

426 D. Pfahl

The starting point of any SPS modeling project is the identification and explicit

formulation of a problem statement. The problem statement defines the modeling

goal and helps to focus the modeling activities. In particular, it determines the

model purpose and scope. For SPS models, Kellner et al. (1999) propose the

following categories for model purpose and scope.

Purpose:

• Strategic management

• Planning, control, and operational management

• Process improvement and technology adoption

• Understanding

• Training and learning

Scope:

• A portion of the product development life cycle, for example, requirements

allocation and specification activities, design activities, coding activities, verifi-

cation and validation activities, and planning activities

• A development project, for example, single product development life cycle

• Multiple, concurrent projects, for example, across teams, departments or

divisions

• Long-term product evolution, for example, multiple, successive releases of a

single product

• Long-term organization, for example, strategic organizational considerations

spanning successive releases of multiple products over a longer time period

Purpose-scope combinations can be used to classify SPS applications in a

domain-independent manner. In Fig. 17.2, we use Kellner et al.’s scheme (Kellner

et al. 1999) to indicate primary and secondary SPS applications relevant for

software project management (PM). Primary SPS applications (marked with an

“x” in Fig. 17.2) aim at supporting project managers and engineers in their planning

and control tasks, that is, in their value-generating activities. Secondary SPS

applications (marked with an “o” in Fig. 17.2) aim at helping project managers

and engineers in understanding, learning, training, and improvement tasks, that is,

in activities that are only indirectly value-generating.

Internal Structure

In
pu

t
P
ar

am
et

er
s

O
ut

pu
t

P
ar

am
et

er
s

Data
&

Expertise

Data
&

Visualisations

Executable SPS Model

Fig. 17.1 Schematic visualization of SPS model development and application

17 Process Simulation: A Tool for Software Project Managers? 427

The aim of this chapter is to discuss the question whether there exists evidence

that SPS—despite the large number of related publications—actually has had an

impact in industry, as claimed in Zhang et al. (2011), or at least has a realistic

potential to have an impact, as claimed, for example, in Müller and Pfahl (2008). In

order to prepare for a discussion of this question, which we conduct in Sect. 17.3, it

is helpful to present an example of a software PM-related SPS application. The

example will help non-experts grasp the potential of SPS and it also will make the

discussion in Sect. 17.3 more concrete and tangible. Since most of the published

PM-related SPS applications in industry are primary (x-type) SPS applications,

which the interested reader can easily find examples of in the existing literature, we

will give an example of a secondary (o-type) SPS application in Sect. 17.2. Readers

interested in examples of primary SPS applications may refer to the available

literature surveys, for example, (Zhang et al. 2010), for pointers to related

publications.

17.2 An Illustrative Application Example

For the example of an SPS application related to software PM, we use the SPS

model GENSIM 2.0 (GENeric SIMulator, Version 2.0), which was developed at the

University of Calgary, Canada (Garousi et al. 2009). The choice of the SPS model is

purely of convenience. For the discussion in Sect. 17.3, we could have used any

other existing SPS model that matches the purpose and scope needed for the

application, no matter what modeling technique and tool has been used to develop

this model. In our example, the scope of the SPS model is “development project”

and the purpose “understanding”. More specifically, in the application example, we

Scope

Purpose

Portion of
lifecycle

Devel-
opment
project

Multiple,
concurrent
projects

Long-term
product
evolution

Long-term
organiza-
tion

Strategic manage-
ment

Planning x x x

Control and opera-
tional management x x x

Process improve-
ment and technolo-
gy adoption

o o o

Understanding o o o

Training and
learning o o o

Fig. 17.2 Classification of SPS applications based on the scheme by Kellner et al. (1999)

428 D. Pfahl

use the SPS model GENSIM 2.0 to analyze the impact of certain characteristics of

the software development team (workforce) on project performance, that is, project

duration, effort consumption, and quality of the software produced.

In the following subsections, we first briefly characterize the SPS model

GEN-SIM 2.0 and then present two complementary scenarios of the application

example.

17.2.1 SPS Model GENSIM 2.0

GENSIM 2.0 is a customizable and reusable SPS model. Inspired by the idea of

frameworks in software systems development, GENSIM 2.0 consists of a small set

of generic reusable components that can be plugged together and extended to model

a wide range of different software development processes. A detailed description of

GENSIM 2.0 and its implementation can be found in Khosrovian (2008).

The components of GENSIM 2.0 capture key attributes of the entities involved

in different building blocks of the software development processes that affect the

project performance measures. What makes the model results interesting and hard

to precisely predict, are the numerous complex relationships and influences

between each pair of these attributes. The current implementation of GENSIM

2.0 consists of three constructive phases (requirements, design, and code). Each

constructive phase consists of a related development activity type (e.g., require-

ments specification) and a related verification activity type (e.g., requirements

inspection). In addition, there are three analytic phases, that is, unit, integration,

and system test. Similar to the constructive phases, each analytic phase has two

related activity types, a development activity type and a validation activity type

(e.g., unit test case development, and unit testing). This separation of activity types

allows for accommodating agile development techniques such as test-first, if

desired.

When a project is conducted, engineers of the development team are assigned to

activities of a certain type, for example, a requirements inspection activity, a coding

activity or a unit test activity. Typically, activities of the same type can be

performed concurrently. Whether this actually happens depends among other things

on the number and skill of the available engineers.

It should be noted that GENSIM 2.0, unlike many other SPS models, has not

been custom-built to target a specific issue only. Rather, it is intended to be reused,

customized, and applied to tackle emerging software development-related prob-

lems of any kind. Thus, GENSIM 2.0 is independent of a specific application

domain.

GENSIM 2.0 can assist software development process management in many

different ways. However, in the following subsections, we focus on the impact of

changes in workforce characteristics (i.e., quantity and quality) on project perfor-

mance using two scenarios:

17 Process Simulation: A Tool for Software Project Managers? 429

• Scenario 1: Analyzing the effect of workforce headcount change on project

performance

• Scenario 2: Analyzing the effect of workforce skill change on project

performance.

17.2.2 Scenario 1: Effect of Workforce Headcount Change
on Project Performance

The headcount of the workforce available for a project and their capabilities in

carrying out different activities in the project have a significant impact on the

project’s performance. GENSIM 2.0 enables the PM to analyze this impact, taking

into account all the mutual influences between the characteristics of the staffing

profile, the sequence of activities, organizational policies for workforce allocation,

and other factors involved in the overall development process. The scenario

presented in this sub-section shows how GENSIM 2.0 could assist the PM by

providing estimates of the potential effects of changes to a project’s staffing profile.

To achieve increased reusability, in the implementation of GENSIM 2.0,

organization-specific policies are extracted from the SD model and incorporated

into an external Dynamic Link Libraries (DLL), which allows for easy modification

of these heuristics and algorithm. The workforce allocation is an example of such an

algorithm. The current workforce allocation algorithm in GENSIM 2.0, which is

also used for the purpose of the scenarios represented in this subsection, is

explained in detail in Khosrovian (2008).

Characteristics of the available workforce in GENSIM 2.0 are represented by an

n�m matrix S, as shown in Eq. (17.1). In this matrix, n is the headcount of the

available workforce, m is the number of types of activities that are carried out ij in
the development life cycle, and s represents the skill level of the ith engineer in

carrying out the jth activity. Skill level of 1 means that the engineer is fully skilled

in carrying out the activity type and skill level of 0 means that he/she is not able to

carry out the activity type at all. In all runs of this scenario, since we are only

concerned with the number of engineers that can carry out activities of a certain

type, we make the assumption that an engineer is either fully skilled (level¼ 1) or

not skilled at all (level¼ 0).

[0,1], ∈=n×m sij

snmsn1

s1ms11

S
. . .

.

. . .

Equation 17.1 Staffing profile representation in GENSIM 2.0

In this scenario, we use GENSIM 2.0 to evaluate how doubling the headcount of a

project’s available workforce affects the project’s performance measures, that is,

430 D. Pfahl

effort, quality, and duration. The analysis is performed on two extreme cases. In the

first case, we start out with the assumption that each activity type can be carried out

only by one engineer. In the second case, we start our analysiswith the assumption that

all activity types can be carried out by all available engineers. Any other case between

these extremes could be investigated in a similar fashion as shown in the following.

17.2.2.1 Scenario 1—Case 1

In this case, the initial workforce consists of six engineers and each activity type can

be carried out by exactly one of them. Hence, the staffing profile matrix could look

like the example given in Eq. (17.2). As can be seen, in this example each engineer

is capable of carrying out instances of two consecutive activity types. The simula-

tion run with this staffing profile is referred to as the baseline run.

The effect of doubling the headcount of the workforce is analyzed in two

different ways. Firstly, each type of activity can be carried out by only one of the

engineers and each engineer can carry out only one type of activity. Therefore, the

staffing profile matrix is defined as shown in Eq. (17.3). The simulation run with

this staffing profile is referred to as run A. Secondly, each activity can be carried out

by two of the engineers and each of those two can carry out the same two activity

types. Hence, the staffing profile matrix is specified as shown in Eq. (17.4).

=

110000000000

001100000000

000011000000

000000110000

000000001100

000000000011

S6×12

Equation 17.2 Initial staffing profile matrix for scenario 1—case 1

=

100000000000

010000000000

001000000000

000100000000

000010000000

000001000000

000000100000

000000010000

000000001000

000000000100

000000000010

000000000001

S12×12

Equation 17.3 Staffing profile matrix for run A of scenario 1—case 1

17 Process Simulation: A Tool for Software Project Managers? 431

The simulation run with this staffing profile is referred to as run B. The under-

lying rationale for choosing the staffing profiles as specified in Eqs. (17.3) and

(17.4) is that in each of the new staffing profiles one of the properties of the baseline

staffing profile is preserved when doubling the number of engineers. In Eq. (17.3),

the property that an activity type can only be performed by one engineer is

preserved. In Eq. (17.4), the property that one engineer can perform two consecu-

tive activity types is preserved.

Simulation results of run A, run B, and the baseline run are shown in Table 17.1.

Because in run B each engineer can carry out two activities and could be potentially

allocated to any of them, run B yields a much greater improvement than run A with

regard to the duration of the project. These simulation results might help a project

manager understand to what degree increased flexibility of the engineers in the

development team is beneficial.

The difference between the estimated project durations of simulation runs A and

B can be explained by the constraints inherent to the process structure. For example,

a requirements inspection activity can only begin when the related requirements

specification activity is finished. A potential overlap between specification and

inspection exists since defects found during an inspection must be corrected, thus

creating (little) additional work to be added (as rework) to the specification activity.

As a result of the comparatively small overlap between inspection and specification

rework, in run B, most of the times when there is more than one requirement

specification activity to be done, two engineers can be assigned to this type of

activity inparallel and there is no competition between the specification and inspec-

tion activity. Since similar mechanisms apply to design and coding activities, this

explains the time gain (i.e., duration reduction) in run B as compared to run A.

=

110000000000
110000000000
001100000000
001100000000

000011000000
000011000000
000000110000
000000110000
000000001100

000000001100
000000000011
000000000011

S12×12

Equation 17.4 Staffing profile matrix for run B of scenario 1—case 1

Quality remains the same in all three runs because the skill levels of all the

engineers remain constant across different runs. The difference in the effort esti-

mations is explained by the fact that the time step chosen for the simulation runs is

one whole day and therefore engineers can only be reallocated to new activities on a

daily basis, that is, only once a day. In case there is little work left to be done in any

432 D. Pfahl

of the activities, the model still allocates workforce to that activity for the whole

day, which in turn causes the resulting effort estimations to be slightly different

from the actual effort that has to be spent for that activity.

17.2.2.2 Scenario 1—Case 2

In this case, the initial workforce consists of six engineers and each activity type can

be carried out by any of the engineers, that is, each of them is capable of carrying

out all types of activities. Hence, the staffing profile matrix is defined as shown in

Eq. (17.5). The simulation run with this staffing profile is referred to as the baseline

run for case 2.

=

111111111111

111111111111

111111111111

111111111111

111111111111

111111111111

S6×12

Equation 17.5 Initial staffing profile matrix for example 1—case 2

The doubling effect is analyzed by running a simulation using a team of

12 engineers with the same pattern of capabilities as the baseline run, that is,

each engineer is capable of carrying out any type of activity. The simulation run

with this staffing profile is referred to as run C. As shown in Table 17.2, in run C, the

estimated duration of the project is reduced by 45 % percent as compared to the

baseline run of case 2. The reason why there is not a reduction by 50 %—as one

might expect—is that some activities can be finished within 1 day no matter

whether 6 or 12 engineers are allocated. As a result, since the simulation time

step in the example was set to 1 day, the duration of any activity requiring less time

than 1 day will remain equal (i.e., 1 day) for both runs. The difference in the effort

estimates between baseline and run C are also due to the choice of the simulation

time step, as explained in case 1.

Table 17.1 Simulation results for scenario 1—case 1

Run

Duration

[days]

Difference in

duration from

baseline (%)

Effort

[PD]

Difference in

effort from

baseline (%)

Quality

[UD]

Difference in

quality from

baseline (%)

Baseline 1,088 0 901 0 2 0

A 1,080 �0.73 1,061 +17.75 2 0

B 610 �43.93 1,093 +21.30 2 0

PD person-days, UD # of undetected defects in the code document

17 Process Simulation: A Tool for Software Project Managers? 433

Any other staffing profile in-between the extreme profiles used in run A (case 1)

and run C (case 2), that is, involving arbitrary settings of the staffing profile matrix,

could be investigated in the same manner. For example, in simulation run D, using

the staffing profile shown in Eq. (17.6), the duration of the project is estimated to be

232 days, the effort spent on the project is estimated to be 1,135 person-days, and

the number of undetected defects in the code is estimated to be two defects (cf. last

row of Table 17.2). In other words, if the doubling of the workforce goes not hand in

hand with a preservation of the property that all engineers can do any type of

activity, then the reduction in time is much smaller than in run C of Table 17.2.

=S12×12

101010000000
000010011010

100010100101
001011010100
001010111010
110101010011
111010110101

010011111010
001000100010
101101110100
010010010110
001001001011

Equation 17.6 Staffing profile matrix with arbitrary settings (run D of scenario 1—case 2)

17.2.3 Scenario 2: Effect of Workforce Skill Change
on Project Performance

The second scenario illustrates how GENSIM 2.0 can be used to analyze the effects

of training the available workforce or hiring better skilled workforce, and to

understand which types of skills are more worth the investment than others.

GENSIM 2.0 assumes that for each engineer, a skill level, defined as a number s

in the interval [0, 1], can be specified for any of the activity types required in a

project. If providing the skill level with such accuracy is not possible and the

engineers’ skill levels could only be specified on an ordinal scale a mapping from

the ordinal scale, onto interval [0, 1] would resolve the issue. For example, if the

Table 17.2 Simulation results for example 1—case 2

Run

Duration

[days]

Difference in

duration from

baseline (%)

Effort

[PD]

Difference in effort

from baseline (%)

Quality

[UD]

Difference in

quality from

baseline (%)

Baseline 280 0 1,005 0 2 0

C 154 �45.00 1,025 +1.99 2 0

D 232 �17.14 1,135 +12.94 2 0

PD person-day, UD # of undetected defects in the code document

434 D. Pfahl

engineers’ skill levels are provided on an ordinal scale with five values including

excellent, good, medium, and weak, we could map them onto interval [0,1] using

the mapping scheme of Table 17.3.

In the internal model structure of GENSIM 2.0, the skills of the workforce

influence performance parameters in two different ways. Whenever the skill level

of an engineer is increased, the speed with which he/she performs the related activity

is increased while his/her chances of introducing defects decrease for development

activities, and his/her chances of detecting defects increases for verification and

validation activities. For example, if the skill level of engineers that perform testing

activities is increased, the speed with which they test artifacts increases and the

effectiveness of the testing technique increases, too. If the skill level of engineers

increases, the speed with which they develop/rework artifacts increases and at the

same time the number of defects they inject into the artifacts decreases. Because of

the lack of reliable data on the magnitude of the effects of workforce skill levels on

other model parameters, it is assumed that all the parameters affected by the

workforce skill levels increase/decrease proportional to the assumed optimal per-

formance of a directly affected parameter, for example, if the skill level of an

engineer is 0.5 for system test activities, then the effectiveness of the system testing

technique used by this engineer will drop from the modeled optimal value by 50 %.

The concrete question that scenario 2 answers is: What are the effects on project

duration, effort consumption, and quality of the final product if we invest in training

engineers or hiring better skilled engineers? Like in scenario 1, the question is

analyzed for two example cases. In case 1, we start out with the situation where all

engineers in the team can perform all types of activities with a uniform skill level of

0.5 for all types of activities. Then we analyze how a 50 % skill increase (i.e., from

0.5 to 0.75) for a single activity cluster, that is, development, verification, or

validation, affects project performance. In case 2, we start out with a large set of

engineers where each engineer is specialized and can carry out only exactly one

type of activities. In the baseline situation, all engineers have a skill level of 0.5 for

the type of activity they are specialized on, then—similar to what we do in case 1—

the skill levels for certain activity type clusters are increased to 0.75. Again, we

analyze the impact of the skill change on project performance.

17.2.3.1 Scenario 2—Case 1

In case 1 of scenario 2, the staffing profile matrix has the same size and structure as

in run C (scenario 1, case 2), that is, the workforce consists of 12 engineers and each

Table 17.3 Example of

mapping skill levels from

ordinal to ratio scale

Value on ordinal scale Value on ratio scale

Unable to do 0

Weak 0.25

Medium 0.5

Good 0.75

Excellent 1

17 Process Simulation: A Tool for Software Project Managers? 435

of them can potentially carry out any of the activities, though—different to run C—

with a skill level that is smaller than 1.

The scenario includes four different simulation runs with differences in the

engineer’s skill levels as shown in Table 17.4. In simulation run E, the engineers’

skill levels for requirements specification, design, and coding activities are

increased to 0.75, assuming that such an increase can be achieved by hiring new

engineers or training the current engineers. In simulation run F, the engineers’ skill

levels for all types of inspection activities are increased to 0.75, and in simulation

run G the engineers’ skill levels for all types of test-related activities are set to 0.75.

Table 17.5 shows for each simulation run the results of those project parameters

that correspond to the most important project performance measures, that is, project

duration, effort consumption, and quality (in terms of undetected defects in the code

of the end product).

If the main concern of PM is the quality of the final product, increasing the

engineers’ skill levels for test-related activities (run G) result in more quality

improvement than increasing the engineers’ skill levels for other types of activities

(runs E and F). However, if effort or the duration of the project is considered as

well, simulation run G yields the smallest improvement with regards to these

factors. Thus, in order to decide on the kind of skills that shall be invested in,

priorities of the PM have to be taken into account and trade-offs have to be

analyzed.

17.2.3.2 Scenario 2—Case 2

In case 2 of scenario 2, the workforce comprises 70 engineers and each engineer can

be assigned to only one specific type of activity. The number of engineers that can

conduct a specific type of activity is shown in Table 17.6. These numbers were

picked arbitrarily but with realistic project sizes in mind.

We performed four different simulation runs with differences in skill levels set

in the same way as in case 1. The results of the simulation runs baseline, H, I, and J

are shown in Table 17.7.

As the data in Table 17.7 show, similar to the results of case 1, if the major

concern is quality of the final product, investing in the skill of engineers in charge of

test-related activities is the best choice. However, if duration and effort are

Table 17.4 Inputs for the simulation runs of scenario 2—case 1

Run

Uniform skill levels for

requirements, design, and code

development activities (D)

Uniform skill levels

for inspection

activities (I)

Uniform skill levels for

testing activities, incl test

case development (T)

Baseline 0.5 0.5 0.5

E 0.75 0.5 0.5

F 0.5 0.75 0.5

G 0.5 0.5 0.75

436 D. Pfahl

important as well, investing in the training of engineers conducting inspections is

the best choice.

As in other engineering disciplines, scenarios like those presented in this and the

previous subsections can be automated and fed with many different sets of input

data. The simulation can even be coupled with optimization techniques such that—

in this example—the best combination of skill levels for an available set of

engineers can be found under both project and business constraints. Thousand

other sorts of interesting software PM problems could be tackled by a simulator

like GENIM 2.0—or any other suitable SPS model. The question is however: Why

is this not done in practice? In the next section, we try to give a few answers to this

question.

Table 17.5 Results of the four simulation runs of scenario 2—case 1

Run

Duration

[days]

Difference in

duration from

baseline (%)

Effort

[PD]

Difference in

effort from

baseline

Quality

[UD]

Difference in

quality from

baseline (%)

Baseline 956 0 4,796 0 502 0

E 786 �17.78 3,924 �18.18 418 �16.73

F 500 �47.69 2,879 �39.97 230 �52.3

G 917 �4.07 4,645 �3.14 158 �68.52

PD person-day, UD # of undetected defects in the code document

Table 17.6 Workforce information for scenario 2—case 2

Activity type Number of engineers

Requirements specification development (D) 6

Requirements specification inspection (I) 1

Design development (D) 12

Design inspection (I) 3

Code development (D) 23

Code inspection (I) 5

Unit test case development (T) 5

Unit testing (T) 5

Integration test case development (T) 5

Integration testing (T) 5

System test case development (T) 10

System testing (T) 10

D, I, and T correspond to the definitions given in the top row of Table 17.4

Table 17.7 Simulation results for scenario 2—case 2

Run

Duration

[days]

Difference in

duration from

baseline (%)

Effort

[PD]

Difference in effort

from baseline (%)

Quality

[UD]

Difference in

quality from

baseline (%)

Baseline 545 0 4,872 0 502 0

H 446 –18.17 3,986 –18.19 418 –16.67

I 329 –39.63 2,984 –38.74 230 –54.12

J 524 –3.85 4,729 –2.92 158 –68.60

PD person-day, UD # of undetected defects in the code document

17 Process Simulation: A Tool for Software Project Managers? 437

17.3 The Gap Between State of the Art and State

of Practice

Although literature surveys (e.g., Zhang et al. (2010)) suggest that the number of

published SPS applications is constantly growing, there is no evidence that the

software industry has actually started adopting SPS in the context of commercial

software development for any of the purposes listed in Fig. 17.2 (cf. Sect. 17.1). The

claim by Zhang et al. (2011) that there are indications signaling that SPS research is

starting to have an impact on software development practice is relying exclusively

on the published work of a small number of experienced researchers in the SPS

community who have a vested interest in creating the impression that their research

efforts have indeed impact. In their published work, these researchers present

examples of specific SPS applications in the software industry. However, apart

from claims that positive feedback from engineers and managers has been received

in response to those specific SPS applications, there exists no substantial empirical

evidence that SPS had an impact beyond a single-case application in any software

development organization. Also, there is no evidence that SPS has been repeatedly

applied in a software development organization or even has become a common

practice in the aftermath of the one-case application.

If one takes a look at the hundreds of publications reporting SPS research and

application, one finds the same result: Whenever researchers (either from academia

or industry) apply SPS for a specific purpose in a specific context at a company,

other than anecdotal evidence about the positive effects of the SPS application in

the specific context is hardly ever reported. Sometimes, anecdotal evidence is

backed- up by questionnaire-based or interview-based surveys but those have

usually only a handful of respondents.

Why is there so little convincing evidence of successful and sustained impact of

SPS applications in the software industry? The simple and most likely answer is

that there has not been yet any significant positive impact that could have been

reported. Based on our research and experience in the field, we believe that there

are—at least—three reasons for the lack of (sustained) success of SPS applications

in software industry:

1. High cost of developing an SPS model for a professional software development

environment

2. High cost of SPS model evolution and ownership within a professional software

development environment

3. Difficulty of demonstrating the benefit of applying an SPS model in a profes-

sional software development environment

In the following subsections, we take a closer look at each of these three points.

438 D. Pfahl

17.3.1 High Cost of SPS Model Development

The first reason for little acceptance of SPS in the software industry is the high

development cost (e.g., in terms of effort) that needs to be invested to come up with

a trustworthy SPS model. Related to software PM, this is particularly true for SPS

models that address purpose/scope combinations, which are marked with an “x” in

Fig. 17.2, that is, SPS models for the purpose of planning, control, and operational

management with scope “portion of lifecycle”, “development project”, and “mul-

tiple, concurrent projects”. In order to become trustworthy, these kinds of SPS

models need to represent the complex internal dynamics of software projects

accurately and require sufficient data, either based on past measurement or based

on (trustworthy and reliable) expert opinion for sufficiently accurate model cali-

bration. In order to fulfill these requirements, much efforts needs to be invested for

(1) analyzing the development processes that are actually used in an organization,

(2) collecting the required data, and (3) eliciting and checking the required expert

knowledge.

How demanding this task is can be illustrated with the help of the GENSIM 2.0

model, which we used in the application example of Sect. 17.2. This model contains a

minimum set of 28 model parameters that have to be calibrated based on empirical

data or expert estimates (Khosrovian 2008), as shown inTable 17.8. Other SPSmodels

of similar complexity, like for example, the SPS model presented in Raffo

et al. (2004), have similarly long lists of calibration parameters. Very few software

organizations—if any at all—have data like that shown inTable 17.8 readily available.

Besides the calibration of parameters, one must also consider the cost for

capturing the actual development process and transforming it into a SPS model

structure. For models like GENSIM 2.0 or the one used by Raffo et al. (2004), this

effort is comparatively low as they are using generic model structures like that of

the V-Model and the ISO 12207 reference process model. If the SPS model

structure is supposed to capture the proprietary processes of a software develop-

ment organization, process modeling effort needs to be invested. In mature orga-

nizations with rich processes that are documented and where the process

documentation is continuously maintained, the process modeling effort might be

affordable. However, in less mature organizations with little process standardiza-

tion and documentation or in agile organizations that have less rigidity in the

processes that are followed in a project and have more flexibility due to enhanced

self-management and mutual adjustment (Chap. 11), the process modeling effort

will be high as the model will have to capture many variants and exceptions. What

typical effort numbers are is difficult to tell since data on the cost of SPS model

development are hardly ever reported. The fact that many SPS models that have

been published were developed in the course of a master or PhD thesis lets us

assume that the cost is typically more than several person-months of effort.

It should be noted, though, that the cost for the development of SPS models for

the purpose of training and learning (i.e., the last row of the SPS model categories

marked with an “o” in Fig. 17.2) can be assumed to be lower, because the

17 Process Simulation: A Tool for Software Project Managers? 439

http://dx.doi.org/10.1007/978-3-642-55035-5_11

requirements for predictive accuracy are lower. This is due to the fact that these

kinds of SPS models are only needed to illustrate certain phenomena of project

dynamic and therefore do not require real-world data but only “plausible” data

suitable to show clearly the phenomena that are of educational interest.

17.3.2 High Cost of SPS Model Evolution and Ownership

In most—if not all—published SPS applications in industry, the model was devel-

oped by a modeling expert (the academic or industrial researcher) who is not a

member of the productive software development team. This works for the devel-

opment of the initial SPS model. However, if a model shall be used on a continuing

basis—and thus needs to evolve in order to keep up with the evolution of the

Table 17.8 Calibration parameters of GENSIM 2.0

Calibration parameter name Unit Value

Initial requ. dev. rate per person per day Page/person-day 0.07

Initial design dev. rate per person per day Page/person-day 0.829

Initial code dev. rate per person per day KLOC/person-day 0.048

Code rework effort for code faults detected in CI Person-day/defect 0.3387

Code rework effort for code faults detected in UT Person-day/defect 0.4325

Code rework effort for code faults detected in IT Person-day/defect 1.0815

Code rework effort for code faults detected in ST Person-day/defect 5.6225

Design rework effort per fault Person-day/defect 0.29

Requ. spec. rework effort per fault Person-day/defect 0.125

Average requ. spec. to design conversion factor Page/page 31

Average design to code conversion factor KLOC/page 0.2

Average requ. spec. to design fault multiplier N/A 3

Average design to code fault multiplier N/A 3

Maximum requ. spec. ver. rate per person per day Page/person-day 8

Maximum design ver. rate per person per day Page/person-day 30

Maximum code ver. rate per person per day KLOC/person-day 0.6

Minimum requ. spec. fault injection rate per size unit Defect/Page 40.14

Minimum design fault injection rate per size unit Defect/Page 1.362

Minimum code fault injection rate per size unit Defect/KLOC 14.52

Maximum requ. spec. ver. effectiveness N/A 0.75

Maximum design ver. effectiveness N/A 0.76

Maximum code ver. effectiveness N/A 0.53

Average UT productivity per person per day KLOC/person-day 0.3093

Average IT productivity per person per day KLOC/person-day 0.1856

Average ST productivity per person per day KLOC/person-day 0.1546

Maximum UT effectiveness N/A 0.66

Maximum IT effectiveness N/A 0.69

Maximum ST effectiveness N/A 0.93

CI code inspection, UT unit test, IT integration test, ST system test, KLOC kilo line of code

440 D. Pfahl

software development processes it is supposed to capture—the software organiza-

tion using the SPS model needs to adopt the SPS model as a part of its development

environment, and thus take over SPS evolution under its own responsibility. It

might indeed be the case that there are software organizations that take the

ownership of SPS models; however, no publications seem to exist in support of

such an assumption. With the further emergence of lean and agile development

practices, chances that this will ever happen are supposedly not increasing.

17.3.3 Difficulty of Demonstrating Benefits of SPS Models

From a business point of view, in order to demonstrate a positive return on

investment (ROI) of SPS modeling and application, it is necessary to compare

costs and benefits in quantitative terms. Usually, cost (i.e., effort) is easier to

quantify than benefit. Thus, since even SPS modeling and application costs are

hardly ever published, it is no surprise that quantified benefits of SPS applications in

the context of software PM cannot be found in the software engineering literature.

Typically, presentations of benefits of SPS applications consist in reporting satis-

faction and positive feedback of stakeholders, for example, project managers, who

were involved in the SPS application as potential beneficiaries.

Of course, it is much more difficult to assess the benefits of an SPS application in

tangible terms than to assess the development and application costs. Looking at the

example presented in Sect. 17.2, one would have to translate the performance

improvements due to change of workforce characteristics (i.e., team size and skill

levels) into some cost unit that can be compared to the investment. This is not a

trivial task.

17.4 Issues that need to be Addressed

We intend in this chapter to address the question whether there exists evidence that

SPS actually has had an impact in industry or at least has a realistic potential to have

an impact. Given the lack of published evidence for any kind of impact in the

software industry, the first part of the question must be answered with a “no”.

Whether there is a chance that SPS at some point in time in the future will begin to

have an impact and become an accepted and regularly used PM tools depends on

progress in three areas: (1) adequate SPS model validity, (2) lower SPS model

development and evolution cost, and (3) measurable benefits of SPS model

application.

Addressing the first area, that is, adequate SPS model validity, requires that

methods, techniques, and tools be provided that help define and achieve validity

levels of SPS models appropriate for the type and context of application.

Addressing the second area, that is, lower SPS model development and evolution

17 Process Simulation: A Tool for Software Project Managers? 441

cost, requires that modeling costs are measured and published, and that methods

techniques and tools be provided that help reduce SPS modeling cost. Addressing

the third area, that is, measurable benefits of SPS model application, requires that

appropriate scenarios and measurement systems be provided that help demonstrate

the benefits of SPS model applications in an objective manner. In the following

subsections, we list issues that need to be addressed for each of the three areas.

17.4.1 Issues Related to SPS Model Validity

17.4.1.1 Issue 1: Defining Appropriate SPS Model Validity Levels

When looking at the different purpose/scope categories defined in Fig. 17.2

(cf. Sect. 17.1), it seems to be obvious that those SPS models falling in the

categories marked with “x” (x-type SPS models) require stricter validity levels,

for example, in terms of predictive accuracy, than those SPS models falling in the

categories marked with “o” (o-type SPS models), if project managers shall accept

simulation results as trust-worthy input to their regular decision making. However,

while SPS models that have been developed for the purpose of understanding and

training might require less predictive accuracy, they need to be able to illustrate

certain phenomena of interest in a clear and easy-to-understand way. Thus, they

might have higher demands with respect to usability and expressive power. Also,

SPS models that have been developed for the purpose of improvement and tech-

nology adoption might also need less predictive accuracy than SPS models for the

purpose of planning and control, but at least they must be able to rank the project

performance when comparing process alternatives correctly. In any case, different

types of models have different types and levels of validity that they need to fulfill in

order to gain acceptance in industrial practice. Research needs to be done to define

how appropriate validity levels should be defined for the various types of SPS

model applications.

17.4.1.2 Issue 2: Providing Methods, Tools and Techniques

for Assessing SPS Model Validity Levels

Once ways have been found to define adequate validities, methods, tools, and

techniques need to be developed that help assess the degree of validity of an SPS

model. This includes both quantitative and qualitative methods. The general sim-

ulation and SD literature has made proposals on how to validate models (e.g.,

Sargent 2011). These proposals need to be tailored to the specific needs of software

organizations and software project managers. A first attempt in this regard made by

Pfahl and Ruhe (2002) was insufficient and had no consequences. Thus, a more

comprehensive, fresh attempt should be undertaken.

442 D. Pfahl

17.4.2 Issues Related to SPS Model Development
and Evolution Cost

17.4.2.1 Issue 3: Collection and Reporting of SPS Modeling Cost

The fact that hardly ever SPS modeling cost is reported in the literature may be due

to two reasons: either cost (effort) is indeed not collected, or it is collected but

consider too unimportant or too sensitive information to be reported. Whatever the

reason is, in order to develop a common understanding of the cost of developing

and evolving typical SPS models for use in professional software development

contexts, both cost data collection and cost reporting (at least for research publica-

tions) must become a standard practice.

17.4.2.2 Issue 4: Reduction of SPS Modeling Cost

Based on our own SPS modeling projects with partners in the software industry, we

learned that SPS model development and evolution costs are too high to make it an

attractive endeavor for software organizations—at least as long as no tangible

benefits and a positive ROI can be demonstrated based on trustworthy empirical

evidence.

It is probable that there exist many ways to reduce SPS modeling cost. One

visionary approach would be to automate the modeling process based on the data

and knowledge that is available (for free or at low cost) in a software organization.

This vision, however, is far-fetched and currently there has not been very

promising work done in this direction—although the new research paradigm of

search- based software engineering (SBSE) might open up new opportunities in this

regard (Chap. 15).

Two options for SPS modeling cost reduction that might be more realistic for the

near future are (1) systematic re-use via SPS model patterns and (2) lean/agile SPS

modeling processes. Usually, SPS models are developed from scratch each time.

Reuse of SPS model elements is not yet common practice. The tendency to develop

SPS models each time from scratch is mainly due to the lack of practical guidance

for planning and performing comprehensive reuse of process simulation modeling

artifacts (or parts of them). In order to facilitate reuse and speeding up the

developing process, we have started to investigate possibilities for exploiting the

principles of (process) design patterns and agile software development for SPS

modeling (Garousi et al. 2009; Angkasaputra and Pfahl 2004).

17 Process Simulation: A Tool for Software Project Managers? 443

http://dx.doi.org/10.1007/978-3-642-55035-5_15

17.4.3 Issues Related to Assessing Benefits of SPS Model
Application

17.4.3.1 Issue 5: Assessing and Reporting Benefits of SPS Applications

In order to convince software professionals of the value of using SPS, convincing

SPS application scenarios that demonstrate benefits in a tangible way must be

developed. For different SPS applications (i.e., having different scope and purpose),

typical scenarios are needed, with clearly defined benefit criteria and related

measures. In order to be convincing, benefit measurement must go beyond asking

stakeholders whether they “liked” the application or “are satisfied with the results”.

The benefits must be demonstrated in such a convincing way that the question

whether a software organization would invest into SPS and use it on a regular basis

as part of their productive development activities is answered positively.

How difficult this can be has been demonstrated by an endeavor that was as

ambitious as SPS, that is, the Experience Factory at NASA (Basili et al. 2002).

Since SPS models are integrating all types of models that typically are expected to

be included in an Experience Factory organization, the complexity of the SPS

development and evolution task is comparable.

17.5 Conclusions

The goal of this chapter has been to find an answer to the question whether SPS is—

or could become—a beneficial and regularly used tool for software project man-

agers. As we have argued, there is a belief in the SPS research community that the

answer to this question should be “yes”. This belief is partly nurtured by the belief

that process simulation has shown to be beneficial in the management of

manufacturing, production, and business processes. This belief is, however, not

substantiated by empirical evidence. For example, a study Melão and Pidd reports a

“low usage of simulation in the design, modification and improvement of business

processes” (Melão and Pidd 2003). This finding is corroborated by a more recent

study, which found that among over 500 respondents who say that they do business

process modeling only 28 % use simulation (Harmon and Wolf 2011). To make

things worse, there exists one important difference between manufacturing, pro-

duction, and business processes as compared to software development processes.

Software development processes tend to be less standardized and more flexible, and

thus typically evolve quickly. Lack of standardization and higher flexibility make it

more difficult to construct and maintain sufficiently valid SPS models.

Based on our analysis of the gap between the claims made in academia about the

potential of SPS and the impact it has on professional software development, we

suggest that several issues need to be satisfactorily addressed before the potential-

ities of SPS regarding software PM materialize and a measurable impact will be

444 D. Pfahl

achieved. Given the huge task ahead, we are not optimistic that SPS modeling and

application will become an accepted and regular practice in the foreseeable future

for “x”-type SPS models, that is, SPS models in support of PM planning and

operational control tasks. Such tasks might be more effectively dealt with by

simpler and more direct techniques, such as those outlined in Chaps. 3 and 4.

Due to the different nature of their validity requirements, we are more optimistic

about “o”-type SPS models, in particular models in support of learning and training

tasks, if the issues listed in the previous section are properly addressed.

Acknowledgments Keyvan Khosrovian helped with the preparation of the application examples

that were part of his master thesis. His work was supported by NSERC (Natural Science and

Engineering Research Council, Canada). Dietmar Pfahl is partly supported by the “Estonian higher

education information and communications technology and research and development activities

state program 2011–2015 (ICT program)”—EU Regional Development Fund.

References

Abdel-Hamid TK, Madnick SE (1991) Software projects dynamics – an integrated approach.

Prentice-Hall, Upper Saddle River, NJ

Angkasaputra N, Pfahl D (2004) Making software process simulation modeling agile and pattern-

based. In: Pfahl D, Raffo D, Rus I, Wernick P (eds) Fifth international workshop on software

process simulation and modeling, ProSim 2004, Edinburgh, Scotland – Proceedings. IEE

Publishing, Stevenage, pp 222–227

Bai X, Zhang H, Huang L (2011) Empirical research in software process modeling: a systematic

literature review. In: Proceedings of the 2011 international symposium on empirical software

engineering and measurement (ESEM’11), IEEE Computer Society, Washington, DC, pp

339–342

Basili VR, McGarry FE, Pajerski R, Zelkowitz MV (2002) Lessons learned from 25 years of

process improvement: the rise and fall of the NASA software engineering laboratory. In:

Proceedings of the 24th international conference on software engineering (ICSE’02), ACM,

New York, NY, pp 69–79

Bin Ali N, Petersen K (2012) A consolidated process for software process simulation: state of the

art and industry experience. In: Proceedings of the 38th EUROMICRO conference on software

engineering and advanced applications (SEAA), pp 327–336

Garousi V, Khosrovian K, Pfahl D (2009) A Customizable pattern-based software process

simulation model: design, calibration and application. Softw Proc Improv Pract 14:165–180

Harmon P, Wolf C (2011) Business process modeling survey. BPTrends Report

Kellner MI, Hansen GA (1989) Software process modeling: a case study. In: Proceedings of the

22nd annual Hawaii international conference on system science, vol II. Software Track, pp

175–188

Kellner MI, Madachy RJ, Raffo DM (1999) Software process simulation modeling: why? what?

how? J Syst Softw 46(2/3):91–105

Khosrovian K (2008) Software process evaluation using a customizable pattern-based simulator.

Master Thesis, University of Calgary, Canada

Madachy R (2007) Software process dynamics. Wiley, Chichester

Melão N, Pidd M (2003) Use of business process simulation: a survey of practitioners. J Operat

Res Soc 54:2–10

Müller M, Pfahl D (2008) Simulation Methods. In: Singer J, Shull F, Sjøberg D (eds) Advanced

topics in empirical software engineering: a handbook. Springer, Berlin, pp 117–152

17 Process Simulation: A Tool for Software Project Managers? 445

http://dx.doi.org/10.1007/978-3-642-55035-5_3
http://dx.doi.org/10.1007/978-3-642-55035-5_4

Pfahl D, Ruhe G (2002) IMMoS - a methodology for integrated measurement, modelling, and

simulation. Softw Proc Improv Pract 7(3/4):189–210

Pfahl D, Ruhe G, Lebsanft K, Stupperich M (2006) Software process simulation with system

dynamics - a tool for learning and decision support. In: Acuña ST, Sánchez-Segura MI (eds)

New trends in software process modelling. Series on software engineering and knowledge

engineering, vol 18. World Scientific, Singapore. ISBN 981-256-619-8, pp 57–90

Raffo DM, Nayak U, Setamanit S, Sullivan P, Wakeland W (2004) Using software process

simulation to assess the impact of IV&V activities. In: Proceedings of software process

simulation modeling workshop, Edinburgh, Scotland, pp 197–205

Sargent RG (2011) Verification and validation of simulation models. In: Proceedings of the 2011

winter simulation conference, pp 183–198

Zhang H, Kitchenham B, Pfahl D (2008) Software process simulation modeling: facts, trends and

directions. In: Lin et al (ed) Proceedings of the 15th Asia-Pacific Software Engineering

Conference (APSEC 2008). IEEE Computer Society, pp 59–66

Zhang H, Kitchenham B, Pfahl D (2010) Software process simulation modeling: an extended

systematic review. In: Münch J, Yang Y, and Schäfer W (eds) International conference on

software process, ICSP 2010 – Proceedings. Springer, Berlin (Lecture Notes in Computer

Science 6195), pp 309–320

Zhang H, Jeffrey R, Houston D, Huang L, Zhu L (2011) Impact of process simulation on software

practice: an initial report. In: Proceedings of ICSE 2011, ACM, pp 1046–1056

Biography Dietmar Pfahl is a member of the Software Engineering Group in the

Institute of Computer Science, University of Tartu, Estonia. In addition, he is an

Adjunct Professor with the Schulich School of Engineering at the University of

Calgary, Canada. His research interests include software project and product

management, software process improvement, software testing, and empirical soft-

ware engineering. He is a senior member of the ACM and a member of the IEEE

and the IEEE Computer Society.

446 D. Pfahl

Chapter 18

Occam’s Razor and Simple Software Project

Management

Tim Menzies

Abstract Occam’s Razor is a principle of parsimony for problem solving. It states

that among competing hypotheses, the one with the fewest assumptions should be

selected. This chapter applies Occam’s Razor to model-based project management.

In this style of management, a manager uses models to guide their decisions.

Ideally, such models should be supported by empirical data.

This chapter explores the limits to building models from data. Results from AI

and data mining show that most data sets support only very simple models. For such

data, some minimal modeling (supported by automatic tools) will produce models

as good as anything else.

Automatic tools can exploit this “minimal models” effect. Such tools can

automatically find very simple and very succinct recommendations about how to

change and improve software projects.

18.1 Introduction

(Models) are almost the quintessential artifacts, for adaptivity to the environment is their
whole raison d’etre.

Herbert Simon “The Science of the Artificial” (Simon 1996)

The chapter is about simplicity. Specifically, it discusses how to help managers find

the least they need to change in order to most improve their projects.

This chapter assumes that managers learn what to change by reflecting on

previous projects. That is, management decisions are based on patterns in the

historical log of prior projects. What is argued here is that those patterns are either

T. Menzies (*)

West Virginia University, Morgantown, WV 26506, USA

e-mail: tim.menzies@gmail.com

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5_18, © Springer-Verlag Berlin Heidelberg 2014

447

mailto:tim.menzies@gmail.com

very simple or nonexistent. This means in turn that it is easy to learn what to

change, and the proposed changes are very succinct. Such succinct recommenda-

tions can be read and understood very quickly. Further, since they are short, they

need not be cumbersome to implement. Hence, we recommend this approach for

model-based project management.

A key concept in this chapter is “support-based” reasoning. In this approach,

managers make decisions using models that are supported by domain data. The

approach has two phases: (1) Prune away irrelevances from any collected project

data. In this phase, we heavily prune the data using Occams’s Razor,1 implemented

as a set of data mining tools. (2) In the reduced space, build models in order to better

facilitate their usage in software project management.

Why explore model-based project management? The answer is simple: much of

software project management can be characterized as the construction and explo-

ration of models of software projects. For example, suppose we have a model of

which actions lead to what results. Using that model a software manager can tackle

many of the management processes listed in Chap. 1:

• Integration management (coordinate areas to work together throughout a pro-

ject): Given a community trying to integrate their work, a project manager could

reflect on the tasks already completed to decide what tasks should be

implemented next in order to maximize the odds of project completion within

time and budget. These odds could be computed by running “what-if” scenarios

across a model.

• Scope management (ensure that the project includes all of the requirements and

no new requirements are added in a way that could harm the project): Our project

manager could run more “what-if” scenarios over their model of a project to find

what actions are best or worst to do next.

• Time, cost and quality management (processes to ensure that the project is

completed on schedule and in budget): Using more “what-if” scenarios, our

manager could explore different ways to increase the odds that a project com-

pletes on time and on budget (all the while, maintaining project quality).

• Risk management (involves identifying, managing and controlling risk of a

project): Suppose we ran more what-if scenarios on the model to find the

worst possible outcomes. The set of between our current situation and these

worst cases would be a list of monitors to implement to ensure a project does not

slip into those worse cases.

Note the precondition of all the above: managers have access to some model
about their projects. The goal of this chapter is to answer the following question:

Is it possible to reduce the effort associated with building valid and usable models to

support project management?

1 “Entia non sunt multiplicanda praeter necessitate,” which translates to “entities must not be

multiplied beyond necessity.”

448 T. Menzies

http://dx.doi.org/10.1007/978-3-642-55035-5_1

This is an important issue since the limits to that modeling process are also the

limit to supporting model-based project management. To explore this issue, we

distinguish two different ways to built models: (1) speculation-based modeling and
(2) support-based modeling.

In support-based modeling, real project data is converted into models, perhaps

with the help of some data mining algorithms (Witten and Frank 1999). On the

other hand, models built via speculation do not use any form of supporting

evidence. Experts can write such speculative models just by recording their reflec-

tions and impressions.

Speculative modeling takes many forms, some of which as discussed below (and

include (1) Delphi sessions where business users meet to brainstorm defect and

effect prediction models; and (2) the AI modeling work discussed in Sect. 18.3).

While speculative modeling sounds somewhat unfounded (perhaps even reckless

and dangerous) it can lead to useful results. Norman Fenton builds such models

with his clients. His models are intricate Bayesian nets describing the factors that

lead to defects in his client’s software project. Given months of rigorous and highly

structured meetings, these speculation, can mature into reasonable accurate defect

predictors (Fenton et al. 2007).

However, there are two problems with speculation-based modeling. Firstly,

doing it properly requires extensive and prolonged interaction with experts:

• In a personnel communication, Fenton reports that one of his models took

2 years to build.

• Valerdi reports the effort associated to commission a software cost model within

an organization. Using the wideband Delphi method (consecutive sessions with

dozens of experts) takes weeks of time to complete (Valerdi 2011).

• Later in the chapter, a review of the history of AI shows that speculation-based

modeling was a contributing factor to one of the great commercial disasters in

the history of AI (the 1987 AI winter).

The second problem is that unless the speculation-based models are validated

(using real project data), it is unclear if the models built via speculation are invalid

or not. Early last century, the physicist Wolfgang Pauli lamented such models,

commenting that without supporting evidence then all we can say about such

models is that “it is not only not right, it is not even wrong”.
This chapter explores speculative vs. support-based modeling (and we will favor

the latter since we hope our models will never be “not even wrong”). The good

news is that if we focus on models that are supported by data, then new results offer

much optimism for modeling. Specifically, if we apply certain data pruning oper-

ators, then we can generate very succinct results. There are three kinds of data

pruning operators discussed in this chapter:

• Instance selectors to prune irrelevant examples (Olvera-López et al. 2010)

• Feature selectors to prune irrelevant variables (Hall and Holmes 2003)

• Range selectors to prune variable ranges that do not contribute to decision-

making (Menzies and Hu 2003; Menzies et al. 2010, 2012)

18 Occam’s Razor and Simple Software Project Management 449

For more details on all these data pruning operators, see later in this chapter. But,

in short, data pruning works as follows. Consider a table of data where each row is

data from one project and each column is one feature we can measure about that

project:

• Instance selectors remove the rows that we do not need

• Feature selectors remove the columns that we do not need

• Range selectors remove the column ranges that are not needed for decision-

making

The result of data pruning is a much smaller table with fewer rows and columns

(as well as fewer ranges marked as “try this to improve a project”). Once the data is

pruned in this way, then modeling is easy. Or, to be more precise, it is simple to

search the pruned space to uncover project recommendations. As shown below,

such a minimal model will generate very succinct recommendations on how to

improve a project. Such suggestions are therefore quick to read, audit, critique, and

apply.

Our general conclusion is that model-based software management is not limited

by our ability to build models from data (but it may be limited by our ability to

collect data from projects). The caveat for this is that before we reason about data,

we need to first prune irrelevancies. As discussed below, this pruning can be

implemented using data mining tools.

The rest of this chapter is structured as follows: Firstly, in Sect. 18.2, we review

decades of research on intelligent project management that concludes (1) less is

more and (2) more is less. More specifically, that section argues that (1) succinct

recommendations are more useful than verbose ones since (2) larger and more

intricate recommendations are harder and more intricate to understand and apply.

An opposite approach to support-based modeling is discussed in Sect. 18.3. It

will be seen that while there is much value in the speculations of experts, such

speculation-based modeling can be very slow to perform and hard to maintain. In

Sect. 18.4, it is shown how to use some automatic data mining tools to implement

the data pruning. This section introduces the core technologies used in this chapter.

Those technologies include one called spectral learning, which is a general method

for finding features that matter while ignoring features that are irrelevant. Finally, in

Sect. 18.5, this chapter puts it all together and presents an example of Occam’s

Razor with data pruning. The examples in this section will relate to cost, effort, and

defect of some NASA software projects.

18.2 Occam’s Razor and Project Management

This chapter argues that modeling is simple—if we prune away superfluous details.

It turns out that this is a very old idea (even though, until very recently, there was

little tool support for this approach). William of Ockham (c. 1287–1347) proposed

Occam’s Razor,which is a principle of parsimony for problem-solving. It states that

450 T. Menzies

among competing hypotheses the one with the fewest assumptions should be

selected. To put that another way: (1) Prune the unnecessary and (2) focus on

what remains.

It turns out that Occam’s Razor is a core principle of cognitive psychology. In

the early 1980s, Jill Larkin and her colleagues explained human expertise in terms

of a long-term memory of possibilities and a short-term memory for the things we

are currently considering (Larkin et al. 1980):

• Novices confuse themselves by overloading their short-term memory. They run

so many “what-if” queries that their short-term memory chokes and dies.

• Experts, on the other hand, only reason about the things that matter so their

short-term memories have space for conclusions.

The exact details of how this is done are quite technical, but the main lesson is

clear: Experts are experts since they know what to ignore. Larkin et al. offered

numerous examples of this effect. Novices performed badly when they confused

themselves with too many options. Also, experts performed better since they could

clear their short-term memory of all but essential features (Larkin et al. 1980).

Occam’s Razor has obvious business implications. For one thing, we can build

very simple decision-support systems:

• In 1916, Henri said that managers plan, organize, coordinate, and control. In that

view, managers systematically assess all relevant factors to generate some

optimum plan (Fayol 1916)

• Then in the 1960s, computers were used to automatically and routinely generate

the information needed for the Fayol model. This was the era of the management

information system (MIS), where thick wads of paper were routinely filed in the

trash can (Ackoff 1967)

• In 1975, Mintzberg’s classic empirical fly-on-the-wall tracking of managers in

the day-to-day work demonstrated that the Fayol model was normative, rather

than descriptive. For example, Mintzberg found 56 US foreman who averaged

583 activities in an 8-h shift (one every 48 s). Another study of 160 British

middle and top managers found that they worked for half an hour or more

without interruption only once every 2 days (Mintzberg 1975)

The lesson of MIS is that management decision-making is not inhibited by a lack

of information. Rather, according to Ackoff, it is confused by an excess of irrele-

vant information (Ackoff 1967). This was true in the 1960s and now, in the age of

the Internet, this problem has become particularly acute. As Mitch Kapor said in his

famous quote, “Getting information off the Internet is like taking a drink from a fire

hydrant.”

Further, the lesson of Mintzberg’s study is that it is vitally important to give

managers succinct summaries of their available actions since, given their work

pressures, they just cannot digest long and overly complex ideas. Too much data

can overload a decision maker with too many irrelevancies. Data must be con-

densed before it is useful for supporting decisions. Modern decision-support

18 Occam’s Razor and Simple Software Project Management 451

systems evolved to filter useless information to deliver small amounts of relevant

information (a subset of all information) to the manager. Hence, Occam’s Razor.

18.3 Speculation-Based Modeling (Is Difficult)

This chapter advocates support-based modeling. One way to understand that style

of modeling is to contrast it with another approach. Accordingly, this section

discusses speculation-based modeling.
In 1978, Herbert Simon won a Nobel Prize for his methods of handling incom-

plete and imperfect knowledge while making decisions (Simon 1960, 1978, 1982).

He wrote of bounded rationality; that is, the rationality of individuals is limited by

the information they have, the cognitive limitations of their minds, and the finite

amount of time they have to make a decision.

One of Herbert Simon’s colleague was Allan Newell. Newell offered a

rich engineering framework for implementing Simon’s vision. In his seminal

knowledge-level keynote address to the 1980 American Association of Artificial

Intelligence, Allen Newell asked the following question: “What is knowledge?”

(Newell 1982). Newell’s answer was to define a knowledge level of goals, actions,

and a principle of rationality:

If an agent has knowledge that one of its actions will lead to one of its goals, then the agent

will select that action.

In keeping with Simon’s concept of bounded rationality, Newell’s knowledge

level agents do not need to reason optimally. Rather, the principle of rationality

characterizes intelligence as an opportunistic approach where an agent makes trade-

offs and decisions on just their immediate issues. Note that this is very different to

Fayol’s view or that of normative economics [which, according to Simon, makes

unrealistic assumptions that human decisions can be modeled mathematically as a

kind of optimizer that seeks a competitive equilibrium under competing constraints

(Simon 1978)].

This intelligence is the generation and assessment of options. This, in turn, can

be modeled as a set of nested tasks such as the following (Brooks 1975):

• Find problems

– Search to detect problems

– Search to find a diagnosis (what has changed since before?)

• Solving problems

– Search to generate alternative ways to change and improve the current

situation

– Search through the alternatives to find the better options

– Search the better options to select the best action

452 T. Menzies

• Resolution

– Monitor the proposed action

Newell and Simons implemented their view of intelligence using rule-based

languages like SOAR (Rosenbloom et al. 1993). A rule-based language is expressed

as a set of condition-action pairs. If the contents of working memory matched to

some condition, then its associated action was fired, which, in turn, could update

working memory (thus triggering more rules). SOAR’s rules were divided into

tasks where each corresponded to a task like those listed above.

Rule-based, or heuristic, programming is the quintessential speculation-based

modeling technique. In the 1970s and 1980s, generations of graduate students

(including the author of this chapter) were trained the art of knowledge acquisition,
which is the art of interviewing experts to extract rules. Such rules were viewed as

the “diamonds in the head of the experts” (Feigenbaum and McCorduck 1983). As

such, they were rarely questioned since the ethos of the time was that if we

combined enough partial insights from the experts, the resulting expert system
would achieve competency.

For a time, rule-based systems such as SOAR were wildly successful. Large

companies such as DEC claimed they were saving millions of dollars annually by

using rule-based systems to automatically configure complex hardware systems

(e.g., computers and elevators) (McDermott 1981; Marcus and McDermott 1989).

The American government made heavy investments in AI (partially in response to a

high-profile Japanese AI initiative where government and industry jointly spent half

a billion dollars on fifth generation computer systems). Graduates from top univer-

sities flocked to AI start-up companies. Rule-based expert shells (and their associ-

ated consultancy services) were sold for millions of dollars to industry and

government clients.

Many technologies suffer from a “technology hype” curve where initial prom-

ising results lead to an exploding market share (due to wildly optimistic and

excessive commercial expectation). This is usually followed by large prominent

commercial failures and a collapse in the market. This pattern was seen in the

Internet boom bust of 2002 and, in the United States, the AI winter of the late 1980s.

That AI winter was caused by a variety of factors:

• Rule-based systems were marketed as being easier to maintain than conventional

programs (since all these rules run in small localized regions, independent of

each other). In practice, this was not the case. Real-world rule bases often

contained large groups of rules with significant and complex interactions

(Bachant and McDermott 1984; Brug et al. 1986). Hence, the rules proved

hard to write and hard to maintain. Note that this result is consistent with the

experience of Valerdi and Fenton, mentioned above.

• The next generation of computer microchips arrived, showing that fast compu-

tation did not need specialized parallelized AI hardware and software.

• There was a management change in the American DARPA organization and the

new management was less enamored of AI than before.

18 Occam’s Razor and Simple Software Project Management 453

As a result, US government funding for AI was greatly reduced, which led to a

decrease in private venture capital for AI. The AI bubble burst and, in the United

States, the AI winter set in. A similar pattern (of disillusionment with AI) was

seen around the globe. In the United Kingdom, the infamous Lighthill Report

convinced the British government to end support for AI research in nearly all

British Universities—a policy that was persisted for almost a decade before being

revoked (McCarthy 1973). Also, when the Japanese finally ended their fifth gener-

ation project, all they had to show was some interesting hardware and not the

breakthrough in artificial intelligence that was initially promised.

18.4 Support-Based Modeling (Can Be Simplified

with Data Mining)

To summarize the above, researchers such as Newell and Simon proposed a

different way of looking at project management. Their technology was certainly

better (and less naive) than what was seen before (e.g., Fayol’s model). It also had

some initial successes. However, the fatal flaw in that technology was that it was

hard to maintain and hard to scale.

If a technology has anything to offer, then after the bubble and after the bubble

bursting and after a trough of disillusionment, it rises again to a steadily sustainable

level. Just like the Internet market returned from its collapse in 2002, there was a

revival in the AI market. In the 1990s, data mining technology matured to the point

where large-scale search and generalization became possible. In the twenty-first

century, many companies now use AI and data mining as part of their core business

strategies (e.g., Google, NetFlix, Facebook, Yahoo, and Microsoft). Any graduate

with even minimal data mining skills can command respectable salaries in many

organizations.

This chapter revisits Newell and Simon’s approach, but from the perspective of

data mining. Like the classical AI approach, project management will still be

viewed as the opportunistic search for actions that can take an agent to some

improved place. However, instead of requiring humans to manually model all

possible actions, we find those actions using data mining.

An interesting feature of this approach is that, in the usual case, the space of

actions is very small. That is, data mining can usher in a new era of simpler and

more intelligent project management tools.

18.4.1 Occam’s Razor and Data Mining

As mentioned above, one lesson from the 1960s obsession with management

information system (MIS) was that project managers can be overloaded with too

454 T. Menzies

much information (Ackoff 1967). Therefore, the wise decision analyst seeks the

smallest amount of the most important information. The lesson of this chapter is

that, using some data mining tools, this smallest amount may be very small indeed

(Chang 1974; Olvera-López et al. 2010; Kohavi and John 1997; Hall and Holmes

2003; Menzies and Hu 2003, 2007; Geletko and Menzies 2003; Menzies et al. 2012;

Gay et al. 2010).

Consider a table of data with rows and columns where each row is one example

instance about something (e.g., a software project) and each column is one thing we

can measure about that instance. A repeated result is that:

• After instance selection, most of the rows can be ignored: If a model can be

learned from rows of data, it follows that those rows are multiple copies of some

underlying effect. Hence, rows of data can usually be reduced to just a few

prototypes that most exemplify the underlying model. Such row selection

algorithms also serve to remove very similar (or repeated) rows, or noisy rows

that can confuse model generation (Chang 1974; Olvera-López et al. 2010;

Menzies et al. 2012). Experiments on the reduced row set show that predictive

performance can be just as good as with the full set [especially when row

pruning avoids outliers and other noisy examples (Menzies et al. 2012)].

• After column selection, most of the columns can be ignored: Feature subset

selection algorithms test what columns can be removed without damaging the

signal in the data. In the usual case, dozens of columns can be reduced to just a

few. This process removes (a) noisy columns; or (b) columns that are irrelevant

to the prediction task at hand; or (c) columns that are redundant (since they are

similar to other columns in the data) (Kohavi and John 1997; Hall and Holmes

2003).

• After range selection, most variable ranges can be ignored: A “contrast set” is

the delta between two populations. Minimal contrast sets can be formed by

listing the ranges that are more common in some preferred population. Such

minimal contrast sets can be very small, even between complex concepts. For

example, it may require gigabytes of gene sequencing to list all the properties of

human and ape DNA. But one of those two species can talk and the other cannot.

Hence, a contrast set between these two complex entities might be one simple

test (e.g., can they say their name?). Any variable range not in a contrast set is

not something that can select one population over another; hence, in terms of

offering actionable analytics, they can be ignored (Menzies and Hu 2003, 2007;

Geletko and Menzies 2003; Gay et al. 2010).

These three pruning rules can dramatically simplify a model.

• As an example of the impact of range pruning, previously we have discussed

how contrast sets can simplify seemingly very complex models. In one case, we

explored a data set that had generated a 6,000-node decision tree. The same data

yielded four contrast sets with 2–5 attributes—which were small enough to show

on one-eighth of a page (whereas the original decision tree filled 100 pages)

(Menzies and Sinsel 2000).

18 Occam’s Razor and Simple Software Project Management 455

• As an example of the impact of column and row pruning, with Kocaguenli, we

have explored tables of software effort data. In experiments with 681 projects

from 19 different data sets, we found that in each data set, we could ignore most

of that data (Kocaguneli et al. 2013a, b). Specifically, within the rows, 36–84 %

of them can be pruned and within the columns, 17–83 % of them can be pruned.

After pruning we were usually left with just 11 % of the cells in the original data

tables. Further, when we used all of the pruned data, there was very little

difference in our ability to predict the effort required to build software

(Kocaguneli et al. 2013a, b).

An interesting feature of the second result is that it did not need all the data to do

its pruning. Kocaguenli’s method understands the cost curve associated with

collecting different features. To exploit that knowledge, they first run queries on

the cheaper features. Next, for the more expensive features, they only ask for least

number of values that are most informative. For example:

• The feature “have we done this kind of project before?” is an inexpensive query

• While “how long did each subcontractor spend on these tasks?” is a far more

expensive query. In fact, this query many never get answered accurately (since

subcontractors tend to zealously guard their productivity data)

Hence, Kocaguenli’s rig was an active learner that sorted the data by the “cheap”
features, and then only asked for the smallest number of “costly” features. But even

if Kocaguenli had to access all the costly features, his approach would still have

project management implications. Data collection cost is one issue and reasoning

about models generated from the data is another. This chapter explores the latter

issue; that is, given some data (however it is collected), how hard is it to produce

succinct recommendations from that data.

The above pruning results are interesting, for many reasons:

1. It offers support to the general lesson of MIS systems in the 1960s—managers do

not need to see all the data. Rather, they only need a small percentage (in the

above experiments, just 11 %)

2. These results lend support to Simon and Newell’s approach to AI and project

management. Recall that their premise was that humans have limitations to the

time they have to make decisions, as well as the cognitive processing they can

apply to any task. If we could focus managers on just the essential data, then

even with time and cognitive limitations, it might be possible for managers to

make decisions that are just as good as if they took the time to reflect over all the

data

3. Recalling Mintzberg’s work, it shows that managers do not need to reflect on all

data to make a decision. Rather, if they have access to data pruning tools, they

need only quickly reflect on small sections of the data

But are these results a fluke? Is it just a function of the particular data sets we

studied with Kocaguenli? Perhaps not. Other empirical studies report similar

conclusions (that most rows and columns can be pruned without losing the signal

456 T. Menzies

in a table of data (Kohavi and John 1997; Hall and Holmes 2003; Chang 1974;

Olvera-López et al. 2010).

More generally, there are mathematical results showing that these empirical

studies are actually a reflection of some underlying mathematical process. The rest

of this section describes those results, which are (1) the curse (and blessing) of

dimensionality (Miller 2002), see Sect. 18.4.2, (2) intrinsic dimensionality (Levina

and Bickel 2004), see Sect. 18.4.3, and (3) spectral learning (Kamvar et al., 2003),

see Sect. 18.4.4.

Take together, these three results promise that we should expect, in the routine

case, that quickly peeking at seemingly complex data is just as effective as a more

extensive exploration of that data.

18.4.2 The “Curse” of Dimensionality (Is a Blessing
in Disguise)

Our first mathematical result relates to the connection of data to the model that can

be learned from that data. It will be argued that, for support-based modeling, the

only learnable models are models that use just a few features. The business

implication here is that, for any data set, the lessons learnable from that data are

either succinct or inaccessible.

A problem with building models is, as they get more complex, it becomes harder

to find data that supports any specific part of that model. This is because of a strange

relationship between the number of columns in a table of data (the dimensions) and

the volume of that data. To understand this curse of dimensionality, we need only

reflect on the volume of data containing similar examples. For a table of data, we

say we have one dimension per column. As the number of dimensions increases,

what happens to that volume of data:

• The volume of a n¼ 2, for example, the dimensional circle of radius r is

V2¼ πr2.
• If we add a dimension, the circle is a sphere with volume V3¼ 4/3 πr3.
• More generally, for n> 3, the volume of an n-dimensional sphere is Vn¼Vn�2 *

2πr2/n. That is, to compute a volume of an n-dimensional sphere, go back two

dimensions, then multiply that by the factor 2πr2/n.

Now here is the strange relationship. Note that in the last equation, when

n> 2πr2, the volume starts decreasing. For example, for a unit sphere (with radius

r¼ 1), the volume maximizes at n¼ 6 dimensions, then shrinks to effectively zero

after n¼ 15 dimensions.

To understand the significance of the above, consider what it means to have a

well-supported model: to be convincing, a model should be supported by enough
data to be believable. A corollary of this is that where there is insufficient data, we
cannot build a model. This is where the curse of dimensionality comes in—it says

18 Occam’s Razor and Simple Software Project Management 457

that if we try to build a model from too many dimensions, then that model will not

be well supported.

If the above math does not convince the reader, the same point can be made with

(slightly) less algebra as follows: Consider the standard Euclidean distance measure

from the origin to some point in n dimensions

X ¼ x1, x2, . . . xnf g : d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiXn

1
x

q 2

i

where d is the radius of some sphere. For the simple case where xi¼ xj, we can

re-write the above equation as

d ¼
ffiffiffiffiffiffiffi
nx2i

q

(and for the more complex case, we refer the reader to the above math).

At first glance, this equation seems to say that more dimensions means more

volume (since new dimension n0 > n adds to the sum of differences between the

features). But that first glance is misleading. For modeling, we must generalize

from related examples. If related means nearby, then it is important to check what

happens if we increase the number of dimensions n, while keeping d constant.

To see how to change xi for some constant d, we rearrange our equation to

xi ¼
ffiffiffiffiffiffiffiffiffiffi
d2=n

q
:

Note how, for constant d, xi must decrease as n increases; that is, we must

decrease the gap xi between any two instances (i.e., their distance along any single

dimension). And as this gap shrinks, it becomes less likely to find new examples in

that reduced space.

In summary, what this math shows is that the repeatable effects that we can

summarize into a model are either low-dimensional or so rare that they are no

longer repeatable. To say that another way, models are either simple or

unsupportable since more increasingly complex models are increasingly difficult

to support by the available data. This means that the curse of dimensionality can

also be a blessing:

• Since it is impossible to find the data to support bigger models, then all we need

ever do is build small ones.

• Which, in turn, means that we might be able to build those small models with

just a little data.

458 T. Menzies

18.4.3 Intrinsic Dimensionality

This section offers another mathematical argument that, in the expected case, the

models we learn from data should be very simple. The math of the previous section

is interesting, but a little abstract. A more convincing case (that our data has a very

simple structure) would need to look at actual data and report the complexity of the

structures they contain.

One tool for reporting those structures is to explore the geometry of the data

using the correlation dimension explored discussed by Levina and Bickel (2004).

To find the underlying dimensionality of a data set with n items, we plot the radius r

against the number of items found at distance within r. Then we normalize this by

the number of connections between n items. The result is C(r), which is the

expected number of neighbors at distance r:

C rð Þ ¼ 2

n n� 1ð Þ
Xn

i¼1

Xn

j¼iþ1
1 xi; xj
�� �� < r

�

In the above, some distance measure is required to find items within radius r. We

use the standard Euclidean distance described above.

To understand the intuition behind this math, consider two rooms:

• One room has no gravity, so data can float around.

• In the other room, gravity has been turned on and all the examples have fallen

down to the floor.

If we lie on the floor of both rooms and blow a bigger and bigger bubble, then in

the gravity-less room, we will encounter at most r3 more examples (since the

examples are floating in 3-d). However, in the other room, we will only ever find

at most r2 more examples. That is, the room with gravity contains examples in a

two-dimensional space that just happens to be floating in a three-dimensional space.

Levina and Bicket report that in astrophysics it is standard to report the intrinsic

dimension as the maximum slope of the a plot where log(C(r)) is on the y-axis and
vs. log(r) is on the x-axis. We have computed this slope for effort and defect

prediction data sets from the PROMISE repository.2 The following are the data

sets describing software project data:

• Defect data sets report how many bugs have been seen in functions or classes

(described in terms of static code measures such as lines of code or depth of

inheritance trees)

• Effort data sets report the total staff months needed to complete a project

(described in terms of the process, personnel, and project attributes)

The results are shown in Fig. 18.1. Note that the median intrinsic dimension is

usually below four. This is an interesting result since these data sets have up to

2 http://promisedata.googlecode.com

18 Occam’s Razor and Simple Software Project Management 459

http://promisedata.googlecode.com/

21 columns; that is, the intrinsic dimensions of this software engineering data is

much less than the raw number of columns.

Such small intrinsic dimensionality values suggest that managers might waste

much time reflecting over all the dimensions. In fact, their time could be better

spent reflecting over a much smaller number of underlying dimensions. This is very

good news for Newell and Simon since it suggests that the space of operators

needed to navigate the dimensions is very small (since there are so few places to

go). It is also very good news for Mintzburg’s managers since it suggests they may

be able to make faster decisions.

Of course, for the method in the above paragraph to be practical, it must be

possible to identify these crucial dimensions. As discussed below, this can be done

automatically with data mining tools.

18.4.4 Spectral Learning

The maths of the last two sections say that it is possible to reduce even complex data

sets to something much simpler and comprehensible. This section discusses spec-
tral learning, which is one way to implement that simplification.

Levina and Bickel report that it is possible to simplify seemingly complex data:

. . . the only reason any methods work in very high dimensions is that, in fact, the data are

not truly high-dimensional. Rather, they are embedded in a high-dimensional space, but can

be efficiently summarized in a space of a much lower dimension.
Levina and Bickel (2004)

We say above that software engineering data can have very low underlying

dimensions. One method for exploring these underlying dimensions is spectral
learning (Kamvar et al. 2003). Spectral learners reason about the eigenvectors of
the project data. These vectors have the interesting property that they combine

related features and ignore irrelevant features. For example, in the following

Numbers of data set

0 60

In
tr

in
si
c

di
m

en
si
on

al
it
y

10 20 30 40 50

1

2

3

4

5

effort
defects

Fig. 18.1 Results from

58 defect data sets and

8 effort estimation data sets

(data sets ordered by size of

the slope)

460 T. Menzies

diagram, the big arrow through the middle of the cloud of dots shows an eigenvec-

tor (and the little arrow shows an orthogonal dimension, discussed below). Observe
how the big arrow tends to point in the general direction of the data; that is, the

eigenvector is one way to summarize overall trends in the data.

The value of the angle between a raw feature (something measured from a

project) and an eigenvector shows the impact of the former on the latter: If the

eigenvector runs alongside to the feature, then that feature is oriented in the same

direction as the eigenvector. Such aligned features are most powerful in predicting

trends in the data. Similarly, if the eigenvector runs at right angles to the feature,

then that feature is orthogonal (i.e., irrelevant) to the overall trend in the data.

For example, consider Fig. 18.2, where the principal eigenvector is shown as the

larger arrow in the data. In Fig. 18.2, the x-axis is somewhat aligned with the first

eigenvector. The y-axis is less aligned: that is, changes in the y values have less

impact on the position of the data than changes in x. That is, the larger arrow in the

above figure combines both x and y, but gives more credence to the former.

18.5 Spectral Learning and Project Management

The above discussion claims that we can simplify reasoning in project management

by just reflecting on the intrinsic dimensions, found via spectral learning. If we

believe the above math, then when we discuss data sets with many dimensions, we

only need to dwell on a small subset of those dimensions. Also, we can support

Newell and Simon’s goals (the hunt for operators that can lead to some desired

objectives) since we only have to explore a few dimensions. Better yet, since this is

based on data mining, the effort required to set all this up is minimal.

18.5.1 Sample Data

To illustrate that technique, we need some sample data. Table 18.1 shows nine

projects from NASA (Kocaguneli et al. 2012). This data was collected in the period

1987–1990 as an attempt by NASA to understand the historical records of all their

software in support of the planning activities for the International Space Station. In

that study, five NASA analysts worked halftime to fully document all records

describing NASA’s software development experience. NASA analysts traveled

around the country to interview NASA employees and contractors collecting

meta-knowledge about a spreadsheet of 100+ rows and less than 30 columns.

The data in Table 18.1 is described in terms of the COCOMO ontology. This

ontology offer sets of features for project, personnel, product, and platform infor-

mation about each project (Boehm et al. 2000). Each project has associated values

for months of development (measured in calendar time) as well as effort (and

18 Occam’s Razor and Simple Software Project Management 461

10

10

5

5

0

0

- 5

- 5

Fig. 18.2 The first two

components of a cloud

of data

Table 18.1 Nine projects described using the COCOMO ontology

A B C D E F G H I

Months 38 28 29 30 25 25 23 19 14

Effort 2514 813 474 390 557 397 418 186 232

Defects 5688 4546 5614 5262 3546 3251 3311 1846 1109

Kloc 136 119 134 150 74 84 80 58 37

Acap h h h h n h h vh n

apex h h h h n h n h n

Cplx vh n n h vh h h h h

Data h n n h n n h l l

docu n n n n n n n n n

Flex h h h h h h h h h

Ltex h h h h l h h h h

pcap h vh h h n h h n n

pcon n n n n n n n n n

Plex h n h n l n n n n

pmat h h l l n h h n h

Prec h h h h h h h h h

pvol n l l n h l l l l

Rely vh h n n h h n n h

Resl h h h h h h h h h

Ruse n n n n n n n n n

Sced n n n n n n n n l

Site n n n n n n n n n

Stor xh n vh n vh vh n n n

Team vh vh vh vh vh vh vh vh vh

Time xh h n vh vh n n n n

Tool n n n n n n n n n

462 T. Menzies

effort¼ staff * months) and the number of defects found during inspections of

project artifacts.

Note that the data has 26 dimensions (three objectives: months, effort, and

defects) and 23 others. The columns use the symbols vl, l, n, h, vh, and xh to denote
very low, low, nominal, high, very high, extremely high. The row names come from

the COCOMO project (Boehm 2000) and include

– data: data base size
– acap: analysts capability
– aexp: application experience

– cplx: process complexity

– lexp: language experience
– modp: modern programming practices

– pcap: programmers capability

– rely: required software reliability

– sced: schedule pressure
– stor: main memory constraint

– time: time constraint for cpu

– tool: use of software tools
– turn: turnaround time

– vexp: virtual machine experience

– virt: machine volatility

This is part of a larger data set with 93 projects, available online at http://goo.gl/

iA0tlq.

18.5.2 Cluster +Contrast

If we project that data onto the first two eigenvectors of the data, we can generate

the visualization of the data shown in Fig. 18.3.

This data can be clustered into 9 groups. If we replace each cluster with its

middle centroid, then we get Fig. 18.4.

The above example used spectral learning to project the 23 dimensions down to

two, and then cluster the data. For technical details of that process, see (Papakroni

2013; Menzies et al. 2012).

With that knowledge, we can now map out the space of management actions

supported by this data. For every centroid, we find the nearest neighbors that have
different and better class values to our asIs centroid. The asIs centroid is the one

nearest the task at hand. For example, given a particular project, the asIs point

would be centroid closest to that project. We reason about centroids near to asIs
since recent results show that software engineering is a highly heterogeneous set of

tasks and the best results come from reasoning from similar projects (since different

projects can be very different indeed) (Menzies et al. 2012).

18 Occam’s Razor and Simple Software Project Management 463

http://goo.gl/iA0tlq
http://goo.gl/iA0tlq

For this example, we will use Cohen’s rule (Kocaguneli et al. 2013a, b), which
says that two values are different if they differ by more than the 30 % of the standard

deviation of the entire population. For a more sophisticated analysis, we might use,

say, ANOVA with a post hoc Hedges test (Kampenes et al. 2007).

As to better, that is a domain-specific predicate. In the case of effort estimation,

“better” would mean something like “lower average effort” than at asIs. For some

agile company rushing some product to market, it might be “least effort without too

0
0

0.2 0.4 0.6
2

3

4

5

6

7

8

9

10

0.02

0.04

0.06

0.08

0.12
log(effort)

0.1

Fig. 18.3 Data placed onto

a 2d grid

0
0.2 0.4 0.6

5
7

0.01

log(effort)

5.5

6

6.5

7

7.5

8

0.02

0.03

0.04

0.05

0.06

0.07

0.08

9
3

1

2

58

4 6

Fig. 18.4 Cluster centroids

found in Fig. 18.3

464 T. Menzies

many defects”. Alternatively, to explore a more complex case, it might be “same or

less analyst capability, while fewer defects”.

Let the nearest different better centroid be part of the toBe cluster. The task now
is to learn a rule that reports how to change asIs into toBe. If all the data is

discretized (Dougherty et al. 1995), we can learn that rule as follows:

• Let m and n be the number of projects in the asIs and toBe clusters
• Ignore features that management cannot change

• For every other feature, count the number of times f and g each range of that

feature appears in asIs and toBe
• Let b (for best) and r (for rest) be b¼ f/m and r¼ g/n (respectively)

• Sort its feature range by b*b/(b + r). There is some math about how we use this

particular fraction: for details, see Menzies et al. (2007)

• Build rules by taking the x highest values in that sort, then selecting all the

projects in asIs and toBe that match those values

• Keep increasing the size of x (starting at one). Stop when the projects selected by
ranges 1, 2, . . . x, x + 1 are not different and better to those found by ranges 1,
2, . . . x

• Report the following rule: if your project falls into asIs, then apply ranges 1,
2 . . . x in order to drive your project into the better land of toBe

The above procedure implements the instance, feature, and range pruning

processes described in the introduction.

• Instance pruning: Many instances are mapped into a much smaller set of

centroids

• Feature pruning: Spectral learning inputs the raw features and outputs a much

smaller number of features that ignore irrelevant features while combining the

influences of the most relevant features

• Range pruning: The above procedure only reports the ranges from the rules.3 If a

range is not included in those rules, then it is not useful for moving a project

from one region of the data to another

18.5.3 Technical Aside

The reader familiar with the AI search literature will recognize the rule generation

algorithm as a greedy search,4 ordered by a Bayesian weighting measure. This is a

very simple search procedure. Previously, we have explored a more complex search

in the context of spectral learning on software engineering data. We found that that

3 For example, if programming language experience (plex) takes the range (vl,l,n,h,vh), then range

pruning might ignore all but, for example, h, vh.
4 A greedy search takes the next best idea and applies it. This process stops when the next idea does

not improve on everything that has been seen before.

18 Occam’s Razor and Simple Software Project Management 465

the search only returned tiny rules—suggesting that the extra sophistication of that

search was somewhat unnecessary (Menzies et al. 2012). Note that this result—that

a simple search does just as well as a more complex one—is to be expected for data

with low intrinsic dimensionality.

Also, the reader familiar with the data mining literature will know that there are

many ways to cluster data and then extract rules that highlight the differences

between two regions of that data [see, e.g., (Novak et al. 2009; Gupta and Grossman

2004; Farnstrom et al. 2000)]. While we prefer the above (since it runs in near-

linear time), it would be a worthwhile experiment to reimplement the above process

using other tools for clustering and rule-learning.

18.5.4 Results

When applied to the 93 projects that generated the centroids shown above, the

above methods learned the rules of Table 18.2. One thing to note here is that of the

nine clusters, rules were learned for only six (1, 2, 3, 4, 5, and 6). This is because
7, 8, and 9 contained the lowest effort examples. For those clusters, the manage-

ment advice must be “for goodness sake, don’t change anything”. Note that not all

clusters are mentioned since some of the differences between neighbors were

statistically insignificantly different.

To use this table of rules, a project manager needs to know which cluster

represents their projects; that is, where is “their” asIs cluster. This can be accom-

plished by another data mining technique—nearest neighbor reasoning. In this

approach, the manager’s project is compared to each of the clusters in Fig. 18.4.

The manager’s asIs cluster is the one with the closest centroid. There are two

important observations to make from these results:

• In the pruned data, recommendations are very succinct. All the rules in the above
table are very small. These rules use at most three features (but often use much

less). Also, of the nearly two-dozen features in this table, only seven were ever

indicated to be important for improving a project. Note that this is consistent

with the intrinsic dimensionality results discussed above. When learning from a

space with low intrinsic dimensionality, we should not expect to see complicated

effects that use many features. In the pruned data, context changes recommen-
dations. Note that no feature is found in the majority of rules and nearly all the

used features only appear in one rule (exception rely appears in three rules)

• Across the data, what is true everywhere may be false somewhere. The above

results echo recent comments about ecological inference (which is the conceit

that if something holds across a population, then it also holds for individuals

within that population). For example, just because process maturity (pmat) is a
good general technique to improve software quality, it does not mean for specific

projects that it is the most important factor. In the above rules, pmat was only
found to be most useful for improving cluster 4

466 T. Menzies

Elsewhere, we have conducted a much larger study with this method (Menzies

et al. 2012), where the authors applied the above process to numerous data sets:

• Two effort estimation data sets: NasaCoc and China (containing information on

United States and Chinese software systems)

• Seven other defect estimation data sets that describe thousands of projects in

terms of object-oriented class features

The results are shown in Fig. 18.3. Each data set generated between 2 (SYN-

APSE) and 8 (XALAN) clusters. One cluster always had the best score (lowest

effort or defects), and this cluster was labeled C0 . No rules were learned for this

cluster since our recommendation for projects in C0 . C0 is to “maintain the status

quo”—that is, we do not know how to improve the median value of the dependent

variable (defect or effort) for this cluster, given the current data.

In Table 18.3, lines Ci ∈ C1 . . .C7 show the cluster rules learned from Ci’s best

neighbor. Also, the gray row in Table 18.3 shows the rules learned if we ignore the

clusters and generate recommendations from all data. In a comparative analysis of

these global rules versus the intracluster rules, it was found that the cluster-based

rules were better for controlling defects and reducing effort (Menzies et al. 2012).

Here, bettermeans that when rows were selected using either the global or the intra-

cluster rules, then the latter resulted in lower mean and variance in the effort and

defects of the selected rules. Certain effects were observed:

• In the pruned data, recommendations are very succinct: in Table 18.3, all the

recommendations only reference one feature

• In the pruned data, context changes recommendations: in Table 18.3, recom-

mendations were rarely repeated in different clusters

• In the pruned data, what is true everywhere may be false somewhere: The
underlined cluster rules in Table 18.3 are those that are same as the global

rules (these appear in the results for XALAN and XERCES). Note that there are

very few cluster rule sets that are the same as the global rules

Table 18.2 Recommendations learned by comparing neighboring clusters from Fig. 18.4

Cluster ID

asIs toBe Recommendation (on how to move from “asIs” to “toBe”)

1 2 plex¼ n

2 3 pvol¼ n

3 8 rely¼ n

4 6 pmat¼ n and reply¼ n

5 9 acap¼ n and pcap¼ n and tool¼ n

6 8 rely¼ h and acap¼ vh

18 Occam’s Razor and Simple Software Project Management 467

T
a
b
le

1
8
.3

R
u
le
s
fo
u
n
d
in

d
if
fe
re
n
t
cl
u
st
er
s

E
ff
o
rt

D
ef
ec
t

C
lu
st
er

N
A
S
A
C
O
C

C
H
IN

A
L
U
C
E
N
E

X
A
L
A
N

JE
D
IT

V
E
L
O
C
IT
Y

S
Y
N
A
P
S
E

T
O
M
C
A
T

X
E
R
C
E
S

g
lo
b
al

k
lo
c
¼
1

af
p
¼
1

rf
c
¼
2

lo
c
¼
1

rf
c
¼
2

ca
m
¼
7

am
c
¼
1

lo
c
¼
2

cb
o
¼
1

C
0

C
1

re
ly
¼
n

ad
d
ed

¼4
am

c
¼7

am
c
¼1

ic
¼7

n
o
c
¼1

d
it
¼4

cb
m

¼1
d
it
¼1

C
2

p
re
c
¼
h

d
el
et
e
d
¼
1

ca
¼1

ca
m

¼2
n
o
c
¼1

d
am

¼1
o
r
5

d
am

¼1
d
am

¼1
C
3

d
el
et
e
d
¼
1

d
am

¼5
ca
m

¼3
am

c
¼
6

av
g
_
cc

¼
4

n
o
c
¼
1

ca
¼
1
o
r
7

C
4

m
fa
¼
1

d
it
¼2

o
r
4

n
o
c
¼1

m
o
a
¼1

rf
c
¼5

cb
o
¼1

C
5

m
o
a
¼
1

lo
c
¼1

lc
o
m
3
¼
5

C
6

lo
c
¼1

o
r
2

m
ax
_
cc

¼
4

C
7

m
o
a
¼1

cb
m

¼1

468 T. Menzies

18.6 General Applications to Project Management

This section shows how the above data mining process can directly implement AI

modeling, without requiring speculative modeling. Returning to Newell and

Simon’s view of AI, it was said above that their view of intelligence was modeled

as the principle of rationality: If an agent has knowledge that one of its actions will

lead to one of its goals, then the agent will select that action.

More specifically, for Newell and Simon, rationality was a search through a

nested set of tasks. Those tasks were listed above and included the following:

• Finding problems by searching to detect problems or searching to find a

diagnosis

• Solving problems by searching to generate alternatives, or searching alternatives

to find better options, or searching the options to select the best action

• Resolution by monitoring the proposed action

It turns out that the above lists of tasks can be directly implemented by the data

mining methods discussed above.

• Search to detect problems:

– Apply the above clustering algorithm to find clusters of problem projects that

have poor scores.

• Search to find a diagnosis (what has changed since before?):

– For the problem clusters, find nearly by clusters that are better (have higher

scores).

– These rules can be interpreted as the set of reasons why better projects can get

worse.

• Search to generate alternative ways to change and improve the current situation:

– Learn rules to find ranges that can drive problem to better.

• Search through the alternatives to find the better options:

– As discussed above, rank those rules using some criteria that selects for the

better projects (in the above, we used b*b/(b + r)).

• Search the better options to select the best action:

– Show the business users the ranked list generated in the last point. Discuss

with them what actions are practical in the local domain.

• Monitor the proposed action:

– Once the user has selected their preferred action, then let new¼ problem
+action has been reached.

– For the new context, find nearby worrying clusters (such worrying clusters

have scores worse than the new context).

18 Occam’s Razor and Simple Software Project Management 469

– Learn rules to find ranges that can drive new to worrying. These are the ranges
that can damage the new situation.

– Take action to implement new while, at the same time, monitoring for the

conditions that would drive a new situation into being worrying.

18.7 Discussion

This chapter has explored the following issue: Is it possible to reduce the effort
associated with building valid and usable models to support project management?

It has proposed a recipe for the effective generation of recommendations on how

to change a project. The core of the method is Occam’s Razor: Prune the unneces-

sary and focus on what is remaining.

Prior AI-based approaches to model-based project management used

speculative-models, that is, interview methods to uncover rules from business

experts. If conducted in a well-structured manner, speculative modeling can

achieve impressive results. However, they take considerable time, and without

validation data, they may suffer from the problem stated by Wolfgang Pauli: “it

is not only not right, it is not even wrong”.
An alternative to speculation-based modeling is support-based modeling in

which recommendations are generated from data. It was shown above that if the

data is culled with instance, feature and range pruning, then the resulting recom-

mendations can be very succinct.

Some mathematics was presented that suggested that this is not some quirk of the

data explored in this chapter. Rather, it is a fundamental property of the structure of

data. Due to intrinsic dimensionality and spectral learning, models can be very

simple; models can be very simple indeed. Better yet, due to the curse of dimen-

sionality, if we make models too complex, there will be no data to support it. The

curse of dimensionality imposes an upper bound on the complexity of models

supported by data.

While the results of the last paragraph may not hold for all data sets, the intrinsic

dimensionality results we have calculated from known effort and defect data sets

suggest that these results could hold widely in software engineering. That said, it is

important to ask: “when can we be simple?”. That is, when should the techniques of

this chapter be applied, or be avoided? One answer is to compute the correlation

dimension of the data, then plot log(C(r)) on the y-axis and log(r) on the x-axis. If
the median slope on that line is very small (say, less than five), then the methods

discussed here are appropriate.

It should be noted that most software engineering data we have checked so far

has such a low dimensionality. Hence, our conclusion must be that managers can

take control of their projects since if they look at their project data “the right way,”

then they will only ever find a small set of succinct actions supported by that data.

470 T. Menzies

References

Ackoff RL (1967) Management misinformation systems. Manag Sci (December):319–331

Bachant J, McDermott J (1984) R1 revisited: four years in the trenches. AI Magazine (Fall):21–32

Boehm B (2000) Safe and simple software cost analysis. IEEE Softw (September):14–17

Boehm B, Abts C, Chulani S (2000) Software development cost estimation approaches - a survey.

Ann Softw Eng 10:177–205

Brooks FP (1975) The mythical man-month, Anniversary edn. Addison-Wesley, Boston, MA

Brug A, Van de Bachant J, McDermott J (1986) The taming of R1. IEEE Exp (Fall):33–39

Chang CL (1974) Finding prototypes for nearest neighbor classifiers. IEEE Trans Comput

C-23:1179–1185

Dougherty J, Kohavi R, Sahami M (1995) Supervised and unsupervised discretization of contin-

uous features. In: International conference on machine learning, San Francisco, CA, pp 194–

202

Farnstrom F, Lewis J, Elkan C (2000) Scalability for clustering algorithms revisited. SIGKDD

Explor 2:51–57

Fayol H (1916) Administration industrielle et générale; prévoyance, organisation,

commandement, coordination, controle. H. Dunod et E. Pinat, Paris, OCLC 40204128

Feigenbaum E, McCorduck P (1983) The fifth generation. Addison-Wesley, Reading, MA

Fenton N, Neil M, Marsh W, Hearty P, Radlinski L, Krause P (2007) Project data incorporating

qualitative factors for improved software defect prediction. In: PROMISE’09

Gay G, Menzies T, Davies M, Gundy-Burlet K (2010) Automatically finding the control variables

for complex system behavior. Autom Softw Eng 17(4):439–468

Geletko D, Menzies T (2003) Model-based software testing via treatment learning. In: IEEE

NASE SEW 2003

Gupta C, Grossman R (2004) Genic: a single pass generalized incremental algorithm for cluster-

ing. In: 2004 SIAM international conference on data mining

Hall MA, Holmes G (2003) Benchmarking attribute selection techniques for discrete class data

mining. IEEE Trans Knowl Data Eng 15(6):1437–1447

Kampenes VB, Dybå T, Hannay JE, Sjøberg D (2007) A systematic review of effect size in

software engineering experiments. Inf Softw Technol 49(11–12):1073–1086

Kamvar SD, Klein D, Manning C (2003) Spectral learning. In: IJCAI’03, pp 561–566

Kocaguneli E, Menzies T, Bener A, Keung J (2012) Exploiting the essential assumptions of

analogy-based effort estimation. IEEE Trans Softw Eng 28(2):425–438

Kocaguneli E, Menzies T, Keung J, Cok D, Madachy R (2013a) Active learning and effort

estimation: finding the essential content of software effort estimation data. IEEE Trans

Softw Eng 39(8):1040–1053

Kocaguneli E, Zimmermann T, Bird C, Nagappan N, Menzies T (2013b) Distributed development

considered harmful? ICSE 2013:882–890

Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324.

http://citeseer.nj.nec.com/kohavi96wrappers.html

Larkin J, McDermott J, Simon DP, Simon H (1980) Expert and novice performance in solving

physics problems. Science 208:1335–1342

Levina E, Bickel PJ (2004) Maximum likelihood estimation of intrinsic dimension. In NIPS

Marcus S, McDermott J (1989) SALT: a knowledge acquisition language for propose-and-revise

systems. Artif Intell 39(January):1–37

McCarthy J (1973) Lessons from the lighthill flap. http://www.aiai.ed.ac.uk/events/light-hill1973/

1973-BBC-Lighthill-Controversy.mov

McDermott J (1981) R1’s formative years. AI Mag 2(2):21–29

Menzies T, Hu Y (2003) Data mining for very busy people (November)

Menzies T, Hu Y (2007) Just enough learning (of Association Rules): the TAR2 treatment learner.

Artif Intell Rev 25:211–229

18 Occam’s Razor and Simple Software Project Management 471

http://citeseer.nj.nec.com/kohavi96wrappers.html
http://www.aiai.ed.ac.uk/events/light-hill1973/1973-BBC-Lighthill-Controversy.mov
http://www.aiai.ed.ac.uk/events/light-hill1973/1973-BBC-Lighthill-Controversy.mov

Menzies T, Sinsel E (2000) Practical large scale what-if queries: case studies with software risk

assessment. In: Proceedings ASE 2000

Menzies T, El-Rawas O, Hihn J, Feather M, Boehm B, Madachy R (2007) The business case for

automated software engineering. In: ASE’07: proceedings of the twenty-second IEEE/ACM

international conference on automated software engineering. ACM, New York, NY, pp 303–

312

Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener A (2010) Defect prediction from static

code features: current results, limitations, new approaches. Autom Softw Eng 17(4):375–407

Menzies T, Butcher A, Cok D, Marcus A, Layman L, Shull F, Turhan B, Zimmermann T (2012)

Local vs. global lessons for defect prediction and effort estimation. IEEE Trans Softw Eng

39:822–834

Miller A (2002) Subset selection in regression, 2nd edn. Chapman & Hall, New York

Mintzberg H (1975) The manager’s job: folklore and fact. Harv Bus Rev (July–August):29–61

Newell A (1982) The knowledge level. Artif Intell 18:87–127

Novak PK, Lavrač N, Webb GI (2009) Supervised descriptive rule discovery: a unifying survey of

contrast set emerging pattern and subgroup mining. J Mach Learn Res 10(June):377–403

Olvera-López J, Arturo J, Ariel Carrasco-Ochoa J, Martı́nez-Trinidad F, Kittler J (2010) A review

of instance selection methods. Artif Intell Rev 34(2):133–143

Papakroni V (2013) Data carving: identifying and removing irrelevancies in the data. Lane

Department of Computer Science and Electrical Engineering, West Virginia University

Rosenbloom PS, Laird JE, Newell A (1993) The SOAR papers. The MIT Press, Cambridge, MA

Simon H (1960) The new science of management decision. Prentice Hall, Englewood Cliffs, NJ

Simon H (1978) Rational decision-making in business organizations- a Nobel memorial lecture,

Dec 8. http://goo.gl/E80Nyy

Simon H (1982) Models of bounded rationality, vol 2. MIT Press, Cambridge, MA

Simon H (1996) The science of the artificial, 3rd edn. MIT Press, Cambridge, MA

Valerdi R (2011) Convergence of expert opinion via the wideband Delphi method: an application

in cost estimation models. In: Incose international symposium, Denver, CO

Witten IH, Frank E (1999) Data mining: practical machine learning tools and techniques with java

implementations. Morgan Kaufmann, San Francisco, CA

Biography Tim Menzies (P.h.D., UNSW) is a Professor in CS at WVU and the

author of over 230 referred publication. He teaches data mining and artificial

intelligence and programming languages. He is an associate editor of IEEE Trans-

actions on Software Engineering, Empirical Software Engineering and the Auto-

mated Software Engineering Journal. In 2012, he served as co-chair of the program

committee for the IEEE Automated Software Engineering conference. In 2015, he

will serve as co-chair for the ICSE’15 NIER track.

472 T. Menzies

http://goo.gl/E80Nyy

Index

Symbols

3-point estimate, 53, 54

A

Aggregation, 149

Agile development, 234, 282, 287

Agile methodologies, 97

Agile project management, 280

Agile retrospective, 290

Agile software development, 278

Agility, 230

Allied disciplines, 18

Anchor bias, 60

Anti-patterns, 338

Artificial neural nets (ANNs), 57

Aspect

quality aspects, 147

Assumptions, 151

Autonomous team, 294

B

Balanced scorecards, 150

Benevolent dictator, 350

Bias, 52, 53, 55, 57, 59, 60, 62, 64, 66, 67

Business motivation model, 150

Business process outsourcing, 224

Business success, 36

C

Calibration, 54, 55, 58, 63

Case-based reasoning 63, 66. See also
Estimation by Analogy (EBA)

Case study, 247, 248, 256, 258–262, 266,

269, 271

Challenged projects, 31

Charles Darwin, 245

CMMI

Capability Maturity Model, 240

COBIT®, 150, 240

COCOMO, 34, 35, 59, 63, 64, 67, 461

Coherence, 237

Collocated teams, 237

Column pruning, 455

Communication, 229

Communications management, 11, 12

Community, 359

Complexity, 279

Components

structural components, 130

Computational intelligence, 76

Conceptual model of software

development, 4

Constraint satisfaction, 80

Context, 134

Context factors, 151

Continuous integration, 228

Contract management, 228

Contrast set, 455

Control Objectives for Information and

Related Technology (COBIT®), 240

Corporate Open Source, 344

Cost estimation, 53, 55, 57, 59, 60, 62, 63, 65.

See also Cost prediction

Cost management, 7, 448

Cost prediction, 52, 56, 61, 62, 66. See also
Cost estimation

Cost reduction, 225

Culture, 235

Curse of dimensionality, 457

Custom-tailored quality models, 136

G. Ruhe and C. Wohlin (eds.), Software Project Management in a Changing World,
DOI 10.1007/978-3-642-55035-5, © Springer-Verlag Berlin Heidelberg 2014

473

D

Daily meeting, 286

Darwin, Charles, 245

Dashboard, 21

Data mining, 454

Data mining methods, 469

Data pruning, 449

De-biasing strategies, 60, 62, 64

Decision-making

shared decision-making, 284

Decisions, 158

Definition of quality, 126

Development process, 345

Double-loop learning, 61, 288

Dual-process theory of cognition, 60

E

Effectiveness, 38

Efficiency, 38

Effort estimation, 373, 374, 377, 378, 384, 386,

387, 389, 394, 397–399

Eigenvector, 460

Empirical paradigm, 5

Enterprise system, 21

Escalation of commitment, 286

Estimation by Analogy (EBA), 56, 66. See also
Case-based reasoning

Evaluation, 148, 149

Evolutionary algorithms, 81

Expert judgment, 59, 64

External quality, 127

Extrinsic factors, 253, 258, 264, 270

F

Factor

technical factors, 147

Failed projects, 31

Feasibility Evidence Description (FED), 116

Feature pruning, 465

Feedback, 287, 295

Flame wars, 329

Flexibility, 244

Follow-the-sun development, 311

Forking, 323

Function points, 56

Future potential, 37

Fuzzy logic, 86

G

Generation and assessment of options, 452

Global development projects, 228

Globalization, 245

Global management, 229

Global software development, 79, 248, 251,

253, 254, 270–273

Global software engineering (GSE), 223

Goal-Question-Metric paradigm, 133

Goals, 147

organizational goals, 150

Golden triangle, 31

Governance, 327

GQM, 140

GQM+Strategies®, 150

Grey Relational Algebra, 57

Group estimation, 63, 64

H

Human issues, 356

Human resource allocation, 73

Human resource management, 11

Human resource scheduling, 74

Hybrid projects, 324

I

Incubation, 328

Industrial/organisational psychology, 92

Infrastructure-based model, 349

Initiating, Planning, Executing, Monitoring

and Controlling, and Closing, 6

Inner-Source, 343

Insourcing, 302

Instance pruning, 465

Integration management, 6, 448

Intellectual property, 230

Intent, Product, Work, and People, 4

Internal quality, 127

Interpretation, 150

Intrinsic dimensionality, 459

Intrinsic factors, 253, 267

Iron triangle, 31

ISO/IEC, 14598-1, 127

ISO/IEC25000, 127

ISO/IEC standard 9126-1, 127

Iteration, 288

ITIL, 150

IT Infrastructure Library, 240

IT outsourcing, 224

J

Job characteristics, 249, 250, 253,

265, 270

K
Kick-off meeting, 288

Knowledge acquisition, 453

474 Index

Knowledge areas, 6

Knowledge management, 157

L

Lean risk management, 117

Learning, 230, 287, 295

Liability, 230

Life-cycle models, 234

Linear programming, 77

Links between work items and system

knowledge, 160

Lurking, 329

M

Maintainability, 140

Maintenance, 236

Mathematical modelling, 76

Maturity matrix, 193

Mean Magnitude of Relative Error (MMRE),

57, 67

Measure, 149

Measurement plan, 141

Mentoring, 329

Meritocracy, 328

Metacognition, 61, 62, 67

Metric, 140

Minimum critical specification, 293

Mk II Function Points, 56

Model-based project management, 448

Monitoring, 355

Motivation theory, 249, 265, 270, 271

Multi-criteria decision analysis, 133

N

Naturalistic decision-making, 178, 286

O

Object, 134

Occam’s Razor, 450

Offshore development, 405

Offshoring, 224, 302

Onshore development, 405

Onshoring, 302

Open innovation, 348

Open Source

Corporate Open Source, 344

Progressive Open Source, 344

Open Source license, 346

Operational research, 76

Opinion detection, 336

Opportunity, 108

Opportunity exposure, 108

Organizational goals, 150

Organizational scope, 134

Organization-level, 5

Orthogonal dimension, 461

OSS, 344

Outcomes, 38

Outputs, 38

Outsourcing, 302

Over-confidence, 59, 62, 63, 67

Over-optimism, 52, 59, 60, 62, 67

P

Pair programming, 97

Pattern, 447

Peak-end rule, 60

Personality psychology, 91

Personality testing, 92

Planning fallacy, 59

Planning poker, 288

PMBOK (Project Management Body of

Knowledge), 6

Portfolio Implementation Framework, 193

Postmortem review, 290

Practical Software and Systems

Measurement, 150

Presence, 226

PRINCE2, 278, 279

Principles of agile project management, 292

Probabilistic modelling, 78

Process-deliverable diagrams, 193

Process management, 353

Procurement management, 14

Product life-cycle management, 195

Product portfolio management, 193

Progressive Open Source, 344

Project, 36

Project intelligence, 21

Project knowledge, 21, 158

Project-level, 5

Project-level project factors, 5

Project management, 2

agile project management, 280

traditional project management, 278

Project Management Body of Knowledge

(PMBOK), 6

Project Management Institute, 21

Project management success, 36

Project planning, 355

Project portfolio management, 21, 194

Project scheduling, 374, 376, 380, 383, 394,

397–399

Index 475

Project-specific model, 349

Project staffing, 395

Project success, 37, 338

Prototype, 455

Purpose, 134

Q

Quality, 347

external quality, 127

internal quality, 127

Quality aspects, 147

Quality characteristic, 142

Quality evaluation, 149

Quality focus, 132

Quality Improvement Paradigm, 138

Quality in use, 127

Quality management, 9, 448

Quality modeling goal, 130, 140

Quality model landscapes, 131, 136

Quality requirements, 147

Quamoco, 145

Queuing theory, 79

R

Range pruning, 455, 465

Rational decision-making, 176

Rationales, 159

Real time tracking, 21

Redundancy, 295

Reflective practice, 290

Regression modelling, 57, 63

Release manager, 331

Requirements

quality requirements, 147

Rethinking success in software projects, 27

Retrospective, 290

Reuse, 347

Risk acceptance, 114, 115

Risk analysis, 110

Risk assessment, 109

Risk avoidance, 114

Risk balancing, 119

Risk exposure, 107, 108

Risk identification, 109

Risk item tracking, 117

Risk management, 12, 239, 448

Risk mitigation, 111, 241

Risk mitigation planning, 110

Risk monitoring and corrective action, 111

Risk prioritization, 109

Risk reduction, 114, 115

Risk reduction leverage, 108, 114

Risk transfer, 114

Risk understanding, 113, 114

Row pruning, 456

S

Sarbanes-Oxley, 240

Sarbanes-Oxley Act, 150

Scope management, 7, 448

Scoring, 149

Search-based software engineering, 373, 375,

394–395, 399

Self-managing software teams, 282

Self-managing team, 284

Sensitivity analysis, 63

Sentiment, 334

Sentiment or opinion detection, 334

Service Level Agreements, 240

Shared decision-making, 284

Shared leadership, 282, 284

Shared mental models, 289

Single-loop learning, 61, 66, 67, 287

SLA, 240

Social aspects of software projects, 404

Social Media, 401

Social media and project management, 419

Social media in agile projects, 418

Social networking, 402

Socio-technical theory, 280

Software, 2

software quality models, 126

Software engineering, 279

Software Engineering Body of Knowledge

(SweBOK), 53–55, 65, 71

Software Extension of the PMBOK, 6

Software Process Simulation (SPS), 425

Software product line, 348

Software product management, 194

Software project failure, 28

Software project management, 21

Software projects, 3

Software quality models, 126

Spectral learning, 460, 461

Speculation-based modeling, 452

Speculative modeling, 449

SPS, 427–429, 437–439

SQuaRE, 127

Stakeholder management, 14

Standup meeting, 285

Strategic misrepresentation, 52, 59

Strategies, 150, 228

Structural components, 130, 132

Success, 36

Successful projects, 31

Support-based modeling, 449

Support-based reasoning, 448

476 Index

Swarm intelligence, 85

System knowledge, 158

T

Talent, 244

Team autonomy, 284

Team leadership, 284

Technical factors, 147

Technology hype, 453

Time management, 7, 448

Traditional plan-driven software

development, 2

Traditional project management, 278

Triangle

golden, 31

iron, 31

Triple constraint, 31

Turnover, 230

U

Uncertainty, 279

Usage purposes of quality models, 134

V

Validation, 236

Values, 228

Variation factor, 140

Virtual teams, 237, 247, 252, 253, 257, 259,

265, 269

Visual boards, 291

W

Weighting, 149

Wicked problems, 295

Work organization, 229

Index 477

	Foreword
	Author Biography
	Acknowledgments
	Contents
	List of Contributors
	Chapter 1: Software Project Management: Setting the Context
	1.1 Motivation
	1.2 Characteristics of Software Projects and Why Software Project Management Is Difficult
	1.3 Ten Knowledge Areas of Software Project Management
	1.3.1 Integration Management
	1.3.2 Scope Management
	1.3.3 Time Management
	1.3.4 Cost Management
	1.3.5 Quality Management
	1.3.6 Human Resource Management
	1.3.7 Communications Management
	1.3.8 Risk Management
	1.3.9 Procurement Management
	1.3.10 Stakeholder Management

	1.4 The Book´s Coverage of the PMBOK Knowledge Areas
	1.5 The Multidisciplinary Nature of Project Management
	1.6 The Future of Software Engineering
	1.7 Software Project Management: Past and Future
	1.8 This Book
	References

	Part I: Fundamentals
	Introduction
	Chapter 2: Rethinking Success in Software Projects: Looking Beyond the Failure Factors
	2.1 The Extent of Software Project Failures
	2.2 Beyond Simple Success Measures
	2.3 Rethinking Project Success
	2.4 Towards Multiple Levels of Success
	2.5 Mapping Success
	2.6 Illustrative Examples
	2.7 The Impact of Time
	2.8 Measuring Success
	2.9 Conclusions
	References

	Chapter 3: Cost Prediction and Software Project Management
	3.1 Introduction
	3.2 A Review of State-of-the-Art Techniques
	3.3 A Review of Cost Estimation Research
	3.4 The Interaction Between People and Formal Techniques
	3.5 Practical Recommendations
	3.6 Follow-Up Sources of Information
	References

	Chapter 4: Human Resource Allocation and Scheduling for Software Project Management
	4.1 Introduction
	4.2 Human Resource Allocation and Scheduling Approaches
	4.2.1 Mathematical Modelling Approach
	4.2.1.1 Linear Programming
	4.2.1.2 Probabilistic Modelling
	4.2.1.3 Queuing Theory
	4.2.1.4 Constraint Satisfaction

	4.2.2 Computational Intelligence Approaches
	4.2.2.1 Evolutionary Algorithms
	4.2.2.2 Swarm Intelligence
	4.2.2.3 Fuzzy Logic

	4.2.3 Discussion

	4.3 The Implication of Software Development Personality Types
	4.3.1 Personality and Type Assessment
	4.3.2 Personality Types of Software Development Professionals
	4.3.3 Allocating Developers to Tasks Based on Personality Types
	4.3.4 Allocate Developers to Team Based on Personality Types
	4.3.5 Discussion

	4.4 Further Research Trends and Challenges
	4.5 Concluding Remarks
	References

	Chapter 5: Software Project Risk and Opportunity Management
	5.1 Introduction
	5.2 The Duality of Risks and Opportunities
	5.3 Fundamentals of Risk-Opportunity Management
	5.3.1 Risk Assessment: Identification, Analysis, and Prioritization
	5.3.2 Risk Control: Risk Mitigation Planning, Risk Mitigation, Risk Monitoring and Corrective Action
	5.3.3 The Fundamental Risk Quantities: Risk Exposure and Risk Reduction Leverage
	5.3.4 The Fundamental Risk Mitigation Strategies

	5.4 Risk and Opportunity Management Methods, Processes, and Tools
	5.4.1 Evidence- and Risk-Based Decision Reviews
	5.4.2 Lean Risk Management Plans

	5.5 Top-10 Risk Item Tracking
	5.6 Risk-Balanced Activity Levels
	5.7 Summary and Conclusions
	References

	Part II: Supporting Areas
	Introduction
	Chapter 6: Model-Based Quality Management of Software Development Projects
	6.1 Introduction
	6.2 Selecting the Right Quality Models
	6.2.1 Structural Components
	6.2.2 Quality Model Goal
	6.2.3 Quality Model Landscapes

	6.3 Building Custom-Tailored Quality Models
	6.3.1 Characterize: Define Environment and Scope
	6.3.2 Set Goals: Define Goals and Build Quality Model
	6.3.3 Choose Process: Set Up Data Collection and Analysis
	6.3.4 Execute: Use the Quality Model for Evaluation/Assessment
	6.3.5 Analyze: Analyze Evaluation/Assessment Results
	6.3.6 Package: Define Improvement Actions

	6.4 Specification and Application of Quality Models
	6.4.1 The Quamoco Quality Metamodel
	6.4.2 The Quamoco Quality Evaluation

	6.5 Strategic Usage of Quality Models
	6.6 Conclusions and Future Work
	References

	Chapter 7: Supporting Project Management Through Integrated Management of System and Project Knowledge
	7.1 Introduction
	7.2 Our Vision: Integrated System and Project Knowledge Management
	7.3 Literature Review
	7.3.1 Search for Decision Literature

	7.4 Integrating System and Project Knowledge Using Work Items
	7.4.1 Results of the Literature Review
	7.4.1.1 Requirements and Work Items
	7.4.1.2 Code and Work Items
	7.4.1.3 Test and Work Items (RQ1, RQ2)

	7.4.2 A More Comprehensive Integration of System and Project Knowledge Through Work Items

	7.5 Integrating System and Project Knowledge Using Decisions
	7.5.1 Concepts for Decision Knowledge
	7.5.2 Decision Knowledge in Theory and Practice

	7.6 Research Issues on Integrating System and Project Knowledge
	7.6.1 Project Knowledge
	7.6.2 System and Project Knowledge

	7.7 Conclusions and Outlook
	References

	Chapter 8: Framework for Implementing Product Portfolio Management in Software Business
	8.1 Introduction
	8.2 Research Approach
	8.2.1 Literature Analysis and Interviews
	8.2.2 Theory-Building Case Study and Evaluation
	8.2.3 Theory-Testing Case Study
	8.2.4 Threats to Validity

	8.3 Theory-Building Case Study and Evaluation
	8.3.1 Theory-Building Case Study
	8.3.2 Expert Evaluation

	8.4 Software Product Portfolio Management Implementation Framework
	8.4.1 Introduction
	8.4.2 Process Descriptions for PIF
	8.4.2.1 Product Life Cycle Management
	8.4.2.2 Product Portfolio Management
	8.4.2.3 Project Portfolio Management
	8.4.2.4 Gatekeeper Introduction

	8.5 Maturity Matrix for PPM
	8.5.1 Structure
	8.5.2 Capabilities

	8.6 Theory-Testing Case Study
	8.7 Implications
	8.8 Conclusions and Future Research
	References

	Chapter 9: Managing Global Software Projects
	9.1 Introduction
	9.2 Foundations
	9.3 Benefits and Challenges
	9.4 Global Software Development
	9.5 Work Organization
	9.6 Risk Management in Global Software Projects
	9.7 Trends and Conclusions
	References

	Chapter 10: Motivating Software Engineers Working in Virtual Teams Across the Globe
	10.1 Introduction
	10.2 Motivation Theory
	10.2.1 Motivation as a Social Process
	10.2.2 Rational-Economic Needs
	10.2.3 Motivation Theories for Software Engineering

	10.3 Characteristics of a Software Engineer
	10.4 Software Engineer Motivation in GSD-A Case Study
	10.4.1 Case Study Results

	10.5 Motivational Factors and GSD Guidelines
	10.6 Theory and Practice of GSD Motivation
	10.6.1 Herzberg´s Two-Factor Theory and the `Crowding Out´ Effect
	10.6.2 People, Process, and Creativity
	10.6.3 Returning to the Rational-Economic Model in GSD

	10.7 Summary and Conclusions
	References

	Part III: New Paradigms
	Introduction
	Chapter 11: Agile Project Management
	11.1 Introduction
	11.2 Software Project Management
	11.2.1 Traditional Project Management
	11.2.2 Challenges of Software Project Management
	11.2.3 From Traditional to Agile Project Management

	11.3 Self-Managing Software Teams
	11.4 Team Leadership
	11.4.1 Shared Decision Making
	11.4.2 Escalation of Commitment

	11.5 Feedback and Learning
	11.5.1 Agile Project Kick off
	11.5.2 The Retrospective
	11.5.3 Visualizing Project Status

	11.6 Principles of Agile Project Management
	11.6.1 Minimum Critical Specification
	11.6.2 Autonomous Team
	11.6.3 Redundancy
	11.6.4 Feedback and Learning

	11.7 Conclusions
	References

	Chapter 12: Distributed Project Management
	12.1 Introduction
	12.1.1 Sourcing Strategies
	12.1.2 Project Arrangements

	12.2 Ten Misconceptions in Distributed Software Development
	12.2.1 Experienced Project Managers Will Deal with Any Complexities: Managing Distributed Development Projects Cannot Be That ...
	12.2.2 Experience from a Single Distributed Development Is Invaluable and Turns a Project Manager into an Expert
	12.2.3 Once You Are Distributed, It Does Not Matter How Many Remote Sites Are Involved
	12.2.4 Any Problem Can Be Fixed with the Right Toolset
	12.2.5 The Follow-the-Sun Approach Significantly Speeds Up Development
	12.2.6 Splitting the Work into Independent Chunks Helps to Avoid Collaboration Problems and Improves the Output
	12.2.7 Distributed Projects Cannot Be Agile
	12.2.8 Standardizing Work Processes Will Help to Control the Diversity
	12.2.9 Distributing Development to Offshore Sites Saves Costs
	12.2.10 Distributed Development Shall Be Avoided, as All Distributed Projects Are Complex, Inefficient, and Unsuccessful

	12.3 Conclusions
	References

	Chapter 13: Management and Coordination of Free/Open Source Projects
	13.1 Introduction
	13.1.1 Differences Between Free/Open Source Projects and Conventional Projects
	13.1.2 Similarities Between Free/Open Source Projects and Agile Projects

	13.2 F/OSS Management
	13.2.1 Open Source Management Organization
	13.2.2 Open Source Human Resource Management
	13.2.3 A F/OSS Project Case Study: Plone
	13.2.4 Open Source Project Management Tools

	13.3 Current Challenges in F/OSS Management
	13.3.1 Improved Project Documentation
	13.3.2 Improved Project Measurement and Qualification
	13.3.3 Extensive and Systematic Reuse

	13.4 Future Open Source Management Techniques
	13.4.1 Assessment of Project Evolution
	13.4.2 Assessment of Successful Continuation Chances
	13.4.3 F/OSS Management Antipatterns
	13.4.4 Integration of the Management and Business Perspective: Assessment of Business Success
	13.4.5 F/OSS Manager Education

	13.5 Conclusions
	References

	Chapter 14: Inner Source Project Management
	14.1 Introduction
	14.2 Inner Source
	14.2.1 Positioning Inner Source as a Strategy
	14.2.2 Motivations and Benefits of Inner Source
	14.2.3 Inner Source Adoption Models
	14.2.3.1 Infrastructure-Based Model
	14.2.3.2 Project-Specific Model
	14.2.3.3 Comparison of Inner Source Models

	14.2.4 Inner Source Project Management

	14.3 A Framework for Understanding Project Management in Inner Source
	14.3.1 Process Management
	14.3.2 Project Planning
	14.3.3 Monitoring and Taking Actions
	14.3.4 Human Issues
	14.3.5 Summary

	14.4 Case Studies
	14.4.1 A Case Study of Inner Source Alignment
	14.4.1.1 Process Management
	14.4.1.2 Project Planning
	14.4.1.3 Monitoring and Taking Actions
	14.4.1.4 Human Issues
	14.4.1.5 Conclusion

	14.4.2 A Case Study of Project-Specific Inner Source
	14.4.2.1 Process Management
	14.4.2.2 Project Planning
	14.4.2.3 Monitoring and Taking Actions
	14.4.2.4 Human Issues

	14.5 Discussion and Future Work
	14.5.1 Future Work

	References

	Part IV: Emerging Techniques
	Introduction
	15: Search-Based Software Project Management
	15.1 Introduction
	15.2 Search-Based Software Engineering
	15.3 Search-Based Software Project Management
	15.3.1 Early Work on Search-Based Software Project Planning and Staffing
	15.3.2 Minimising Software Project Completion Times
	15.3.3 Risk-Based Approach
	15.3.4 Overtime Planning
	15.3.5 Software Development Effort Estimation

	15.4 Possible Directions for Future Work on Search-Based Project Management
	15.4.1 Iterative Optimisation
	15.4.2 Dynamic Adaptive Optimisation
	15.4.3 Multi-objective Optimisation
	15.4.4 Co-evolution
	15.4.5 Software Project Benchmarking
	15.4.6 Confident Estimates
	15.4.7 Decision Support Tools

	15.5 Conclusions
	References

	Chapter 16: Social Media Collaboration in Software Projects
	16.1 Introduction
	16.2 Interactions in Software Projects
	16.3 Social Aspects of Software Projects
	16.4 Importance of Social Media in Software Projects
	16.5 Pilot Study
	16.5.1 Data Collection and Analysis
	16.5.2 Results: Social Media and Software Projects
	16.5.3 Results: Interaction Among Co-located stakeholders
	16.5.4 Results: Benefits and Limitations of Social Media in Co-located Interactions
	16.5.5 Results: Interactions Among Stakeholders in Distributed Locations
	16.5.6 Results: Benefits and Limitations of Social Media in Distributed Interactions
	16.5.7 Results: Interaction with Peers External to the Office
	16.5.8 Results: Benefits and Limitations of Social Media in Interactions with Peers
	16.5.9 Results: Impact of Social Media on Productivity in Software Projects
	16.5.10 Results: Social Media as a Facilitator in Software Projects
	16.5.10.1 Social Media in the Agile Context
	16.5.10.2 Social Media and the Project Manager

	16.5.11 Threats to Validity

	16.6 The Future of Social Media in Software Projects
	16.7 Conclusions
	References

	Chapter 17: Process Simulation: A Tool for Software Project Managers?
	17.1 Purpose and Scope of Software Process Simulation
	17.2 An Illustrative Application Example
	17.2.1 SPS Model GENSIM 2.0
	17.2.2 Scenario 1: Effect of Workforce Headcount Change on Project Performance
	17.2.2.1 Scenario 1-Case 1
	17.2.2.2 Scenario 1-Case 2

	17.2.3 Scenario 2: Effect of Workforce Skill Change on Project Performance
	17.2.3.1 Scenario 2-Case 1
	17.2.3.2 Scenario 2-Case 2

	17.3 The Gap Between State of the Art and State of Practice
	17.3.1 High Cost of SPS Model Development
	17.3.2 High Cost of SPS Model Evolution and Ownership
	17.3.3 Difficulty of Demonstrating Benefits of SPS Models

	17.4 Issues that need to be Addressed
	17.4.1 Issues Related to SPS Model Validity
	17.4.1.1 Issue 1: Defining Appropriate SPS Model Validity Levels
	17.4.1.2 Issue 2: Providing Methods, Tools and Techniques for Assessing SPS Model Validity Levels

	17.4.2 Issues Related to SPS Model Development and Evolution Cost
	17.4.2.1 Issue 3: Collection and Reporting of SPS Modeling Cost
	17.4.2.2 Issue 4: Reduction of SPS Modeling Cost

	17.4.3 Issues Related to Assessing Benefits of SPS Model Application
	17.4.3.1 Issue 5: Assessing and Reporting Benefits of SPS Applications

	17.5 Conclusions
	References

	Chapter 18: Occam´s Razor and Simple Software Project Management
	18.1 Introduction
	18.2 Occam´s Razor and Project Management
	18.3 Speculation-Based Modeling (Is Difficult)
	18.4 Support-Based Modeling (Can Be Simplified with Data Mining)
	18.4.1 Occam´s Razor and Data Mining
	18.4.2 The ``Curse´´ of Dimensionality (Is a Blessing in Disguise)
	18.4.3 Intrinsic Dimensionality
	18.4.4 Spectral Learning

	18.5 Spectral Learning and Project Management
	18.5.1 Sample Data
	18.5.2 Cluster+Contrast
	18.5.3 Technical Aside
	18.5.4 Results

	18.6 General Applications to Project Management
	18.7 Discussion
	References

	Index

