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Abstract. This chapter presents a method for repairing the connectivity and re-
dundancy of a WSN using mobile robots. It comprises three mechanisms: di-
agnosis, connectivity repairing and redundancy repairing. During the diagnosis
stage the robots survey the scenario learning all required information of the prob-
lem. The connectivity repairing mechanism, which takes place after the diag-
nosis stage, finds the best deployment locations to ensure that the WSN has
1-connectivity. The redundancy repairing mechanism finds the locations where
the deployment of new nodes best improves fault tolerance to node failures. The
proposed scheme does not use any parameters or assumptions since it acquires
all the required information during the diagnosis stage. Besides, its solution is
very close to the optimal solution –in all the experiments performed it differed
in one node maximum– but requires only a fraction of the time required by the
optimal method. The proposed method has been evaluated in simulations and has
been validated in experiments carried out in the CONET Robot-WSN Integrated
Testbed.

1 Introduction

Cooperation among mobile robots and Wireless Sensor Networks (WSN) enhances
their individual performance, providing wide variety of complementarities. Robots mo-
bility and their capability of carrying sensors and equipment are useful to enlarge the
sensing range and accuracy of static WSN nodes and enlarge the communication ranges
of static WSN nodes. Mobile robots have been proposed for WSN localization [3], WSN
deployment [21] and WSN data retrieving [19], among others.

Recently, WSN repairing using robots has attracted significant interest. Some of
these methods, such as [2,26], detect faults in the network such as coverage holes but
do not propose a way to mitigate these faults. Many others focus on solving connectiv-
ity failures, see [22,27,10], and most of them propose mobile nodes as tools to repair
network connectivity. However, the great majority have been tested only in simulations
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and only few, such as [6,15], were used in real experiments. Existing methods aim at
repairing only connectivity disregarding the fact that WSN nodes are rather fragile and
a connected network can be suddenly disconnected even if only one node fails.

This chapter presents mechanisms for integral WSN repairing. Their objective is not
only to repair connectivity but also to ensure a certain level of redundancy. The method
can be divided in three mechanisms: diagnosis, connectivity repairing and redundancy
repairing. In the first one the mobile robots explore the scenario in order to identify the
WSN status, topology and to estimate the location of the deployed nodes. In connectiv-
ity repairing, using this information, the method first computes the locations where new
WSN nodes should be deployed in order to ensure that the connectivity of the WSN is
repaired. Then, mobile robots are commanded to deploy WSN nodes at the computed
locations. These new nodes are integrated in the pre-existing WSN. If the connectivity
of the resulting WSN is confirmed as repaired, in the next stage redundancy repairing
is applied. Redundancy repairing deploys new WSN nodes at specific locations until a
certain level of redundancy is achieved.

The proposed scheme does not use parameters nor requires any assumptions on the
WSN nor on the WSN nodes being used. It acquires all the required information during
WSN diagnosis stage and only needs as input the desired level of WSN redundancy.
The proposed method has been implemented in simulations and has also been experi-
mentally demonstrated in the CONET Robot-WSN Integrated Testbed [12].

This chapter is organized as follows. Related work is discussed in Section 2. Section
3 provides a general description of the proposed method. The diagnosis, connectivity
repairing and redundancy repairing stages are described in Sections 4-6, respectively.
Validation experiments are presented in Section 7. Section 8 closes this chapter with the
conclusions.

2 Related Work

Fragility of individual nodes has motivated the development of a good number of meth-
ods for WSN diagnosis and repairing. Some focus on the identification of faults and
misbehaviors in the networks [2,8], whereas others aim to develop a model of the faults
that can occur in WSNs [26]. Others focus on detecting specific types of failures in the
network, mainly coverage holes, such as in [23] and [28].

There are a good number of works that propose methods to solve connectivity failures.
Some of them study the placement of relay nodes to repair the connectivity, see e.g. [22],
while others propose using mobile nodes than can be relocated in order to substitute a fail-
ing node or to join two disconnected parts of the network, see [27,10], among others. For
example, DARPA LANDROIDS program [5] uses mobile radio relay platforms to im-
prove communications connectivity in non-line-of-sight communications environments
such as urban settings. Work [4] uses predictive reasoning to compute the relocation of
the mobile nodes. In this work sensor nodes can predict the performance of the WSN
in terms of coverage when a node moves in a given direction. Others compute locations
where WSN nodes should be deployed in order to repair the connectivity while optimiz-
ing utilities such as coverage or energy consumption, see [16,9], among others.

Much research has been carried out based on theoretical analyses. Most of them have
been tested only in simulations and their results in many cases show to be unrealistic
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when experimented in real settings. Only a few works include experimental validation.
In [6] a flying robot is employed to deploy nodes on the ground. Once on the ground,
the nodes compute their connectivity map in a distributed way. If the network is discon-
nected, an algorithm determines waypoints for the helicopter to drop additional nodes.
In one of the experiments performed in [15] a mobile node was employed to re-establish
the link between static nodes.

However, most works focus on connectivity repairing and disregard redundancy,
which is critical for WSN robustness in real applications. Several concepts for redun-
dancy in WSN have been defined. Work [1] presented the concept of N-redundancy of
a node and proposed: a method to compute N-redundancy, a technique to estimate the
repair time and a repairing algorithm that minimizes the repair time. However, like the
aforementioned works, its objective was only to repair the connectivity of isolated parts
of the network and did not consider redundancy repairing. The concept of redundancy
has also been used in works that study the density of deployments, such as [18,17], but
these works did not address network repairing.

This chapter proposes a method for integral WSN repairing which involves con-
nectivity and also redundancy repairing. The proposed method makes no assumptions
except the approximate region where nodes are deployed. To the best of our knowledge,
it is the first work that validates experimentally the use of robots for ensuring a certain
level of redundancy.

3 General Description

Consider a scenario where a number of static WSN nodes have been deployed, but their
exact position or the WSN topology are not known. This case is realistic even when the
nodes have been manually deployed if we consider the inaccuracies in the GPS receiver.
For instance, in an environmental monitoring application WSN nodes could have been
thrown randomly from an Unmanned Aerial Vehicle (UAV) over the area of interest. We
know the approximate area where nodes were deployed but not their exact location. The
objective of the WSN is to collect data from each node in a Base Station (BS). However,
the nodes will be located at unknown locations and eventually will be disconnected from
the base. We want to devise a method that ensures a certain level of connectivity and
redundancy among the deployed nodes. WSN repairing can be triggered after nodes
deployment or on demand when the BS detects WSN malfunctioning. The approach
selected is to deploy new nodes instead of re-locating existing nodes.

The proposed method employs the concepts of N-connectivity and N-redundancy.
N-connectivity is a metric used to define the minimum number of nodes that need to
be removed in order to partition a graph. If a graph has N-connectivity, it remains con-
nected even if any N-1 nodes are removed. If a network has 0-connectivity it means that
there are disconnected nodes.

N-redundancy, defined in [1], represents a local measurement of the goodness of the
connectivity among the neighbors of each node. A node i is N-redundant if we need to
remove at least N nodes neighbors of node i, besides removing node i itself, in order to
break the connectivity between two neighbors of node i. 0-redundancy nodes are fragile
points of the network: if node i fails the network becomes disconnected. We consider a
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network robust if all its nodes have at least 2-redundancy. A WSN is N-redundant when
all its nodes have N-redundancy or higher.

N-connectivity is a metric for the whole network while N-redundancy is a metric for
each node. They offer interesting complementarities. N-connectivity naturally allows
analyzing if the network is connected. However, being a global metric, it is not very
useful to detect the fragile points of the network. For improving fault tolerance we
prefer to use N-redundancy, which is a local metric and naturally finds the nodes in the
network that are more critical. Knowing which are the fragile nodes is exploited by our
method, which drives the search of the repairing locations using heuristics and reducing
computer burden.

The proposed scheme deploys new WSN nodes such that the resulting WSN has at
least 1-connectivity and N-redundancy, a desired level N of redundancy. The scheme
uses three mechanisms:

• Diagnosis: One or several robots carrying onboard WSN nodes survey the scenario
to learn the status of the WSN, including the locations of the deployed nodes and
the WSN topology. It also learns a model of the distribution of Packet Reception
Rate (PRR) with distance for the deployed static nodes.

• Connectivity repairing: This mechanism deploys WSN nodes to ensure that the re-
sulting WSN has 1-connectivity. If the network contains nodes or clusters of nodes
disconnected from the base station, the method computes the best locations where
new nodes should be deployed in order to reduce the number of clusters in the
network to one.

• Redundancy repairing: It takes place when the WSN has 1-connectivity. It it-
erates computing the locations where new nodes should be deployed in order to
best improve the redundancy of the static nodes that have redundancy lower than
N. The iterations continue until all the nodes in the network achieve the desired
N-redundancy.

4 WSN Diagnosis with Mobile Robots

Assume we have available one or more mobile robots that carry one onboard WSN
node. Each robot can measure its own location and can communicate with its onboard
node using a bidirectional protocol that enables transmission of commands, requests
and data. The scenario is discretized into cells and one or more mobile robots are com-
manded to survey the scenario passing over the centers of each of the cells. During the
survey robots make measurements and ask static nodes. As a result, each robot com-
putes the location of the nodes it has discovered, the topology of the static WSN and
gathers data to compute a PRR-range model of the static nodes.

During the survey when a robot is close to the center of a cell it commands its on-
board node to broadcast a beacon packet. Static nodes that receive the beacon packet
respond by transmitting a response packet. When the onboard node receives the packet
it measures its Radio Signal Strength Indication (RSSI). The location of each node can
be determined from these RSSI measurements. A number of RSSI-based localization
methods have been developed including range-based methods, such as multilateration



WSN Connectivity and Redundancy Repairing with Mobile Robots 189

[24], or range-free methods, such as ROC-RSSI [14], which rely on geometric consid-
erations, or fingerprinting methods, such as [11], which compare measurements with a
previously obtained RSSI map. In our case, the location of a node is simply assigned to
the cell with the highest RSSI value.

This survey also allows obtaining the topology of the WSN. Every static node dy-
namically learns which are its neighbor nodes by a simple protocol that periodically
broadcasts packets among static nodes. We consider that node j is neighbor of node
i, i.e. i and j are connected, if node i has received more than a certain percentage of
responses from node j over the last m broadcasting periods. Thus, when a static node
i responses to the robot node, the packet contains the ID of the sender and also of the
sender neighbors. Thus, each robot can easily build the local connectivity matrix LCM
of the static nodes in the area it surveyed.

Each robot transmits its LCM to the Base Station, which joins them all. A global
connectivity matrix GCM of size n x n is generated, being n the number of nodes dis-
covered. If entry GCM(i,j)=“1” it means node j and i are neighbors. Figure 1 shows a
simple example and its global connectivity matrix. Neighbor nodes are depicted with a
line in the figure.
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Fig. 1. Random deployment and its global connectivity matrix GCM in a simple simulation

The Base node connected to the BS is also one of the static nodes discovered. GCM
contains the topology of the network and allows us to know if all the nodes are con-
nected, and the network has at least 1-connectivity, or instead there are isolated parts
of the network and therefore is divided in two or more clusters. Algorithm 1 shows
a simple method that computes a cluster matrix C that represents the groups of con-
nected nodes in the WSN topology. Along this paper we will use the term cluster when
referring to isolated groups of connected WSN nodes.

C is an n x n matrix which entries can be either “1” or “0”. If C(i,j)=“1” it means that
node j belongs to cluster i. Thus, only rows in C with at least one entry with value “1”
represent a cluster. Rows in C with all entries “0” do not represent a cluster. C allows
expressing cases in which all nodes are disconnected from each other (n clusters) and
also cases in which all nodes are connected (1 cluster).
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Algorithm 1 performs similarly as depth first search to create C. First, C is initialized
with a zero n x n matrix. The algorithm searches the first entry in GCM with value “1”
and declares a new cluster. Then, it finds the nodes belonging to that cluster iteratively
analyzing the connected nodes either directly or through other nodes of the same cluster
(line 6 of the algorithm). Entries in GCM with values “1” already assigned to a previous
cluster are not analyzed. The algorithm ends after analyzing all the entries in GCM.

At the end of the algorithm every row of C that contains at least one “1” represents a
cluster of the network. For every row, the columns filled with “1” correspond to nodes
that are in that cluster. Figure 2 shows matrix C corresponding to the example in Fig.
1. The resulting five clusters are C1 = {1}, C2 = {2}, C3 = {3,5,7,8}, C4 = {4} and
C5 = {6}: it requires connectivity repairing.

Algorithm 1. Computation of C from GCM
1. Cluster Matrix C is initialized as n x n matrix of zeros
2. j=1, C( j,1) = 1
3. for k=1:n do
4. if ∑

i
C(i,k) = 0 then

5. C( j,k) = 1
6. C( j,m) = 1 ∀ node m that is neighbor of node k in GCM
7. j++
8. end if
9. end for

Fig. 2. Cluster matrix C computed for the example in Fig. 1

In the diagnosis stage also a PRR-range model for the deployed nodes is computed.
Each robot is assumed to know its location during the survey. Also, the location of the
static nodes has been estimated as described above. Thus, it is possible to build a PRR-
range model using the response packets transmitted by the static nodes and the distances
between the robot and the static nodes when the beacon packets were transmitted. In this
model range is divided in intervals and the mean percentage of messages received over
all the messages broadcasted is taken as the PRR in this interval. Figure 3 shows the
PRR-range model obtained in network diagnosis experiments performed in the CONET
Robot-WSN Integrated Testbed.
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Fig. 3. PRR-range model obtained in the CONET Robot-WSN Integrated Testbed

Finally, it is decided if there is need or not to activate the connectivity repairing
mechanism. If network is composed of more than one cluster, the connectivity repairing
stage is triggered. If the network is composed by only one cluster of nodes, there is no
need to activate connectivity repairing.

5 WSN Connectivity Repairing

This mechanism calculates the locations where new nodes should be deployed in order
to optimally improve WSN connectivity by joining disconnected clusters. At the end of
the previous stage the locations of the nodes and the topology of the clusters are known.
The connectivity repairing mechanism is divided in two steps, see Algorithm 2. In the
first step new nodes are deployed to join nearby clusters in larger clusters –we call them
superclusters. In the second step all superclusters are joined in one cluster covering the
entire network, achieving 1-connectivity.

To group clusters in superclusters first we need to know which clusters can be joined
into the same supercluster. Using the PRR-range model obtained in the diagnosis stage,
R is computed as the range that ensures a desired PRR level, PRR(d) ≥ X ,∀d ≤ R. X
is taken as 0.85 in the experiments. If the closest nodes of two different clusters are
separated by a distance lower than 2R, then these clusters can be joined by deploying
a new node. These clusters are considered neighbors and can be grouped into the same
supercluster.

Consider a WSN with N disconnected clusters. We can compute the cluster connec-
tivity matrix CCM. If entry CCM(i,j)=“1” it means that clusters i and j are neighbors.
Otherwise, CCM(i,j)=“0”. The size of CCM(i,j) is NxN. CCM is also a connectivity
matrix. We can also use Algorithm 1 to obtain superclusters of neighbor clusters. The
supercluster matrix SC, of size NxN, is obtained after applying Algorithm 1 to CCM.
If SC(i,j)=“1” it means that cluster j belongs to supercluster i. In short, a recursive
approach is followed to define how WSN nodes are organized at different levels.

Figure 4 shows an example with 8 nodes, which after the diagnosis stage, are orga-
nized in five clusters: C1 = {1}, C2 = {2,3,4}, C3 = {5,6}, C4 = {7} and C5 = {8}.
C1 and C2 are at a distance lower than 2R, thus they are neighbor clusters. The same
applies to C1 and C3, C2 and C3 and C4 and C5. Thus, these clusters are organized in two
superclusters: SC1 = {C1,C2,C3} and SC2 = {C4,C5}. Dashed lines in Fig. 4 shows the
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Fig. 4. Superclusters in an example. The links between clusters are represented by dashed lines.
CCM and SC are also shown.

imaginary lines of length R < d < 2R that would join the closest nodes of two different
neighbor clusters.

The next step is to compute the locations where to deploy the minimum number
of nodes that ensure 1-connectivity within each supercluster. We interpret the graph
resulting from considering the WSN topology (in black in Fig. 4) and the imaginary
lines between clusters (dashed in Fig. 4). As shown in Fig. 4 two different cases can
arise. In SC1 imaginary lines between clusters, for brevity from now on ilbcs, form a
polygon (a triangle). In SC2, the ilbcs do not form a polygon.

When the ilbc in a supercluster do not form a polygon the repairing location is se-
lected among the cells which distance to both vertices of the ilbc are simultaneously
lower than R. These locations ensure connectivity between both clusters. Then, the
repairing location is selected analysing the effect of deploying a node at each of the
selected cells. The location is selected as that in which deploying the node maximizes
the repairing impact of the deployment, i.e. creates the highest number of new connec-
tions. If case of tie, the quality of the new links is analyzed: the repairing location is
selected as the cell with the highest average PRR of the new connections originated by
deploying the node in that cell.

In case ilbcs form a polygon, the method identifies the locations within the polygon
where the minimum number of nodes should de deployed to establish 1-connectivity in
the supercluster. First, the method tries to join all the clusters using only one node. If
there is at least one cell within the polygon which distance to all the clusters is lower
than R, then the supercluster can be connected using only one node. If there are more
than one possible cell, the best is selected measuring the repairing impact as described
above. Otherwise, the algorithm tries to connect all the clusters using two new nodes. A
combination of two cells within the polygon that enable connection among all clusters
is selected. If several solutions exist, the best combination using the above criteria is
selected. In case no combination of two cells exist, the procedure is iteratively repeated
trying solutions with one more node until a solution is found. Notice that a solution is
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guaranteed to exist with a number of nodes equal to the number of ilbcs that form the
polygon. Also the number of ilbcs will be lower or equal to the number of clusters in
the supercluster.

Figure 5 shows with asterisks the set of deployment locations selected to join the
clusters into superclusters SC1 and SC2. The connections originated from the new nodes
are depicted with dashed lines. In this case the new node 9 joins C1, C2 and C3 into
supercluster SC1 and node 10 joins C4 and C5 into SC2.
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Fig. 5. Solutions selected to join C1, C2 and C3 into supercluster SC1 and C4 and C5 into SC2. The
selected deployment positions for the new nodes are represented with asterisks.

The next step is to join all superclusters in one. The first step is to identify the short-
est imaginary lines that join two different superclusters. The length of these lines are
higher than 2R: it is not possible to join two superclusters with only one node. Thus, the
approach is to deploy chains of new nodes along these imaginary lines. The minimum
number of lines needed to join S superclusters is S-1. However, there are usually more
than one combination of S-1 lines between superclusters that join all the network. The
method selects the combination of lines that join all superclusters with the lowest total
length.

For those imaginary lines the optimal locations in which to place nodes is sought
between cells which distance to these lines is lower than a certain distance d. The num-
ber of nodes Nn that should be deployed depends of the length of the line, Nn ≥ L/2R,
being L the length of the line and R the range that ensures a certain level of PRR ac-
cording to the PRR-range model computed in the diagnosis stage. The locations of the
nodes along the lines are selected using their repairing impact: solutions that join the
superclusters with the highest number of new connections are selected; and in case of
tie, the solution which new connections have the highest average PRR is selected.

Figure 6 shows the solution selected to join the superclusters in the example in Fig.
5. The shorter lines joining superclusters SC1 and SC2 is that between nodes 1 and 10.
Two nodes are necessary to join both superclusters. The proposed repairing locations
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Algorithm 2. Connectivity repairing algorithm
1. Step1: Join clusters into superclusters
2. Compute CCM
3. Obtain SC applying Algorithm 1 to CCM
4. Determine all imaginary lines between clusters ilbcs
5. for Each supercluster in SC do
6. if ilbcs do not form a polygon then
7. Select the cell close to ilbcs that produces the best connectivity impact
8. end if
9. if ilbcs form a polygon then

10. Determine minimum number of cells that join the clusters
11. Select the combination of cells that produces the best connectivity impact
12. end if
13. end for
14. Step2: Join superclusters
15. Determine the shortest set of lines that joins all superclusters
16. for Every line do
17. Determine the minimum number of nodes to join the superclusters along each line
18. Select the combination of cells that produces the best connectivity
19. end for
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Fig. 6. Solutions adopted to join the superclusters SC1 and SC2 in the example in Fig. 4.

selected are marked with red asterisks as nodes 11 and 12 and the new connections are
represented as dashed lines.

Finally, robots are commanded to deploy nodes at the repairing positions. New de-
ployed nodes integrate with the existing WSN. If the BS node confirms that it receives
packets from all nodes: the connectivity repairing is confirmed and the connectivity ma-
trix GCM is updated. If the BS does not receive packets from all the nodes a new WSN
diagnosis is needed.
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6 WSN Redundancy Repairing

The redundancy repairing mechanism is activated if there are nodes with a lower N-
redundancy than the desired level. This stage assumes that the network has 1-connectivity,
i.e. it is applied after the connectivity repairing stage. This mechanism iteratively calcu-
lates the position where the deployment of a new node best improves the N-redundancy
of the entire network. The iterations keep on until every node has at least the desired
N-redundancy level.

The first step is to compute the redundancy of every node in the network. To do
this we follow the concept of N-redundancy as stated in [1] and make use of the GCM
obtained in the diagnosis mechanism and updated in the connectivity repairing mecha-
nism. A node i has N-redundancy when if removed, at least N more nodes need to be re-
moved to break the connectivity between two neighbors of i. Nodes with 0-redundancy
are critical. A WSN is said to be robust if all nodes have a least 2-redundancy.

Algorithm 3 shows the method to compute the N-redundancy of node i. The algo-
rithm can determine if node i has redundancy higher or equal to 2. If node i has re-
dundancy lower than N, the method computes its redundancy. The algorithm operates
with GCM’, a copy of GCM where the connections of the node i have been removed.
If a pair of neighbors of i are disconnected in GCM’, redundancy of node i is set to 0.
Otherwise, we analyze the impact of removing the connections of neighbors of node i.
If removing the connections corresponding to any other neighbor of node i disconnects
two neighbors of node i then redundancy of node i is 1. Otherwise, its redundancy is 2
or higher.

Algorithm 3. Computation of N-redundancy of node i
1. Copy GCM in GCM’
2. Initial Redundancy 2
3. Remove all links with node i in GCM’
4. Compute cluster matrix C’ corresponding to GCM’
5. Redundancy 0 if node i has only one neighbor
6. for any possible pair of nodes j and k neighbors of i do
7. if j and k are in different clusters then
8. Redundancy 0
9. else

10. if Removing any other node, nodes j and k are in different clusters then
11. Redundancy 1
12. end if
13. end if
14. end for

For example, node 7 in Fig. 7 has 0-redundancy because removing its connections
disconnects nodes 3 and 8. On the other hand, node 3 has 1-redundancy: besides node
3 itself we need to remove one node, e.g. node 1, to disconnect two neighbors of node
3, e.g. 2 and 7. The redundancy of every node is shown on top of its identifier.
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If the redundancy of a node is lower than the desired N-redundancy level, redun-
dancy repairing mechanism is triggered, see Algorithm 4. Redundancy repairing itera-
tively computes the location in which to deploy a node that produces the larger increase
in redundancy. A brute-force solution that simulates the redundancy increment when
deploying a node at each scenario cell would involve high computational cost and re-
sult in bad scalability. Many cells are not within the radio coverage of any static node.
Also, there are locations that even within the coverage range of a static nodes, are not
useful to improve redundancy. Therefore, the proposed mechanism only analyzes the
scenario cells that satisfy the following two conditions: a) the cell is within the convex
hull of all the deployed nodes and b) the cell is within the radio coverage (distance is
lower than R) of at least two static nodes.

The computation of the convex hull of a set of points can be easily performed with
algorithms such as [25,20]. Figure 7 shows the convex hull that envelopes the nodes
of a cluster. The edges of the polygon can be either connections between static nodes
or imaginary lines between disconnected nodes (dashed lines). The N-redundancy of
every node is shown on top of the node identifier.
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Fig. 7. Example of computation of N-redundancy and convex hull in a node cluster

The cells that do not satisfy both conditions are discarded. The redundancy repairing
cells are selected analyzing the impact on redundancy improvement of deploying a node
on that cell. The first criterion is the number of nodes that increase their redundancy
from 0 to 1 (or higher) as a result of deploying a node at that cell. Nodes with 0-
redundancy, such as node 7 in Fig. 7, are critical nodes in the WSN: the proposed
method gives priority to solving fragile points. The second criterion is the number of
nodes that increase their redundancy from 1 to 2 (or higher). The second criterion is used
if there is a tie when using the first criterion. In case the tie keeps, the third criterion is
the number of new connections originated by deploying a node at that cell. If necessary,
the fourth criterion is to select the cell that obtains the highest average PRR in the
connections it originates.
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Once a repairing position is selected, GCM is updated with the connections produced
by the new node. Then, the next iteration of the WSN redundancy repair mechanism
starts. The iterations continue until all nodes have at least N-redundancy. Once they
have been computed, the robots are commanded to deploy the nodes, provided that the
needed number of new nodes are available.

Algorithm 4. N-redundancy repair algorithm
1. Compute the convex hull as in [25,20]
2. Select cells within the convex hull that connect at least two nodes
3. while N-redundancy not achieved do
4. Analyze the effect of deploying one node in every selected cell
5. Select the cell that produces best impact on redundancy
6. end while

Keeping with the example as in Fig. 7, Fig. 8 shows an example that requires two
iterations to achieve the desired 2-redundancy in all the nodes. The deployment of the
first node, see Fig. 8-left, increases N-redundancy from 0 to 1 or 2 in nodes 7, 4 and
5. N-redundancy is also increased from 1 to 2 in nodes 3 and 1. Hence, deploying only
one new node, 1-redundancy is ensured in the whole network. The deployment of the
second node, node 10, see Fig. 8-right, increases N-redundancy from 1 to 2 in nodes 9,
5, 7 and 8. Therefore, 2-redundancy is ensured in the whole WSN and the redundancy
repairing mechanism finishes.
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Fig. 8. First and second iterations of the WSN redundancy repairing mechanism in the example of
Fig. 7. Left) First iteration. The deployment of node 9 ensures 1-redundancy in the WSN. Right)
Second iteration. The deployment of node 10 ensures 2-redundancy in the WSN.

7 Validation

7.1 Simulations

The proposed method is compared with the optimal algorithm in order to assess its
performance. The addressed problem is known be NP-complete, [13]. The algorithm
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that minimizes the number of nodes consists in trying each possible solution. First, it
tries to solve the problem using one node. If no solution is found, all combinations with
two nodes are tried. It keeps until a solution is found. Figure 9 shows the computational
time and the number of nodes required by both methods to solve the problem with 1-
redundancy in 10 different 20x20 m2 scenarios with 5 nodes. In these simulations both
methods were executed in MATLAB. The time is represented in logarithmic scale. In
all scenarios the solution found by our method is very near the optimal, it uses the same
number of nodes or only one less, and requires times that are only a small fraction of
the optimal. In many cases, e.g. scenarios 2, 4, 6, 7 and 8, our method gives the same
solution but requiring significantly less time. In scenario 10, our method solves the
problem adding one node in 1.88 s, while the optimal method solves it with 4 nodes but
requires 221970 s.
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Fig. 9. Computational time and number of nodes required for achieving 1-redundancy in 10 dif-
ferent scenarios. The solutions of the optimal algorithm are represented by full markers while
those of the proposed method are represented by empty markers. The number of nodes required
to solve each scenario is shown next to every marker.

Figure 10 shows the computational times and number of nodes resulting from solving
the problem in the scenario in Figure 4 but scaled in the range [0.5, 3.5]. In scaled sce-
narios, distances from nodes location to the scenario center were multiplied by a scal-
ing factor. The nodes communication range were kept unaltered. The proposed method
scales linearly only with the area of the convex hull that envelopes nodes, which is
typically a fraction of the total area.

The proposed method discretizes the scenario into cells. Its dependence with the
coarseness of the discretization is also analyzed. Low resolution leads to solutions that
use more nodes than needed. High resolution leads to high computing burden. To con-
sider both effects discretization coarseness is selected depending on the nodes range
and the size of the convex hull. Notice that the convex hull size is unknown before the
redundancy step. The diagnosis and connectivity steps are performed using a fixed res-
olution, e.g. 1x1 m per cell. Notice that connectivity is very efficient and its burden has
low dependence with cell resolution.
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Fig. 10. Computational time and number of additional nodes needed to achieve 1-redundancy in
the scenario in Figure 4 at different scales.

Then, once the nodes range and the convex hull size have been computed, the resolu-
tion is selected in the range [R/2, R/5] depending on the convex hull size. The objective
is that the convex hull has around 150 cells. Of course, larger scenarios could produce
more than 150 cells even if R/2 resolution is selected. In these cases, the method scala-
bility ensures reaching a solution in reasonable times, as analyzed below.

The scenario in Fig. 4 was solved using a discretization in the range [25-625] cells.
Figure 11 shows the computational times employed by the proposed algorithm to
achieve 1-connectivity, 1-redundancy and 2-redundancy. The computational times in
the three cases behave linearly against the number of cells in the discretized scenario.
The times to compute 1-connectivity solutions are negligible even in highly discretized
scenarios. The times to compute 1-redundancy solutions are lower than 1 second. The
times to compute 2-redundancy solutions are larger and they increase linearly with the
number of cells.
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Fig. 11. Computational times to solve the scenario of Figure 4 with a growing number of cells
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7.2 Experiments

The proposed method has been also experimented in real settings in the CONET Robot-
WSN Integrated Testbed. The CONET Testbed1 is a remote open tool to assess and
compare multi-robot and WSN methods and algorithms. It is composed by 5 Pioneer
3-AT robots and 140 WSN nodes of different models. Each robot is endowed with a
Hokuyo range finder and an Microsoft Kinect camera, GPS and Inertial Measurement
Unit, among others. The testbed is installed since 2010 at the basement of the building
of the School of Engineering of Seville (Spain). For this experiment one robot was
equipped with a robotic arm for node deployment and retrieving, see Fig. 12-left.

In these experiments twenty nodes and a Base node have been deployed in the testbed
room. The fleet of Pioneer 3-AT robots cooperatively perform the WSN diagnosis mech-
anism to compute: locations of the nodes, the connectivity GCM and cluster C matrices
and the PRR-range model. Figure 12-right shows the WSN topology in one experiment
after the WSN diagnosis stage. The circles represent the discovered nodes at their esti-
mated locations. The connectivity between nodes is also depicted. In this example, the
WSN is fragmented into three clusters: the biggest cluster, C1, includes 10 nodes and
the Base node, the other two, C2 and C3, are disconnected from the Base.

Fig. 12. (Left) Mobile robot deploying a node with its robotic arm. (Right) Connectivity after the
WSN diagnosis stage. The WSN is fragmented in three clusters.

Since the network is fragmented the WSN connectivity repairing mechanism is started.
It is detected that the distance between the closest nodes is lower than 2R. Thus, the three
clusters can be joined in one supercluster. The method determines that one single node
deployed between the three clusters can join them in only one supercluster. Figure 13-a
shows with dashed lines the links between the closest nodes of the three clusters. In this
case the links between C1 and C2, between C2 and C3, between C3 and C1 form a four
sided polygon together with already existing connection between the nodes of C1. The
solution is sought inside the area delimited by the polygon. The best solution is to deploy
one node at the center of the polygon. Then, a robot of the fleet is assigned with the task
of deploying a node at the computed position. A simple task allocation based on Market-
based auctioning is used, [7]. Once deployed, the new node establishes links with its new

1 https://conet.us.es

https://conet.us.es
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neighbors, depicted in red solid lines in Fig. 13-a. The WSN has 1-connectivity and the
connectivity repairing stage is considered finished.

The initial redundancy of every node is shown in Fig. 13-a. There are three nodes
with 0-redundancy and thus the WSN redundancy repairing mechanism is triggered.
Figure 13-b shows the convex hull that envelopes all the nodes. The edges of the poly-
gon are connections between static nodes or imaginary lines between nodes with no
radio connection, shown as dashed red lines in the figure. In this case all the cells inside
the convex hull are within the radio coverage of at least two nodes, so in every iteration
the WSN redundancy repairing mechanism computes a solution within the convex hull.

(a) (b)

(c)

Fig. 13. Steps in the WSN connectivity and redundancy repairing mechanisms. (a) Network after
the WSN connectivity repairing. One node is deployed. The new connections are shown as red
lines. (b) Network after achieving 1-redundancy in the WSN redundancy repairing stage, the new
connections after deployment of two nodes are shown in red colour. (c) Network state after the
deployment of one more node.
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After two iterations and the deployment of two more nodes 1-redundancy is achieved
in the whole network. After deployment, see Fig. 13-b, ten -10- new connections are
created -in red in the figure- and all nodes have at least 1-redundancy. Then, another iter-
ation of the redundancy repairing mechanism was carried out to achieve 2-redundancy.
The location selected was computed as described in Section 6. After deployment, four
new connections were created and a total of seven WSN nodes increase their
N-redundancy from 1 to 2. A summary of this experiment can be seen in this video2.

8 Conclusions

In this chapter a system for connectivity and redundancy repairing of WSN with mo-
bile robots has been presented. The system consists of three mechanisms: diagnosis,
connectivity repairing and redundancy repairing. After the diagnosis stage, the connec-
tivity repairing mechanism finds the optimal deployment locations to ensure that the
WSN has 1-connectivity. The redundancy repairing mechanism is executed iteratively.
At each iteration, it finds the location where the deployment of a new node best im-
proves N-redundancy of all the nodes in the WSN.

The proposed scheme does not use any parameters. It acquires all the required in-
formation during WSN diagnosis stage and only needs as input the desired level of N-
redundancy. It has been successfully validated in experiments carried out in the CONET
Robot-WSN Integrated Testbed3.

The method uses a iterative approach. It assumes that all necessary nodes are avail-
able for deployment. However, when it is not the case, the method uses the nodes avail-
able in the best possible way. Each node is deployed optimizing its impact following a
step-by-step optimization. The use of globally optimal methods is currently under re-
search. On the other hand, the problems of connectivity and redundancy are coupled but
in our method are treated independently. The search for a global solution that simulta-
neously solves the two problems is under development.
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