
Chapter 9
Source Localization and Tracking:
A Sparsity-Exploiting Maximum
a Posteriori Based Approach

Md Mashud Hyder and Kaushik Mahata

Abstract In this work, we explore the potential of sparse recovery algorithms for
localization and tracking the direction-of-arrivals (DOA) of multiple targets using
a limited number of noisy time samples collected from a small number of sensors.
In target tracking problems, the targets are assumed to be moving with a small
random angular acceleration. We show that the target tracking problem can be posed
as a problem of recursively reconstructing a sequence of sparse signals where the
support of the signals changing slowly with time. Here, one can use the support
of last signal as a priori information to estimate the behavior of current signal. In
particular, we propose a maximum a posteriori (MAP)-based approach to deal with
the sparse recovery problem arising in tracking and detection of DOAs. We consider
both narrowband and broadband scenarios. Numerical simulations demonstrate the
effectiveness of the proposed algorithm. We found that the proposed algorithm can
resolve and track closely spaced DOAs with a small number of sensors.

9.1 Introduction

Direction of arrival (DOA) estimation using sensor array has been an active research
area [20, 25, 37], playing an important role in smart antennas, next generationmobile
communication systems, various type of imaging systems and target tracking appli-
cations. Many algorithms have been developed, see [37] and references therein. The
algorithms like Capon [6], pose the DOA estimation problem as a beamforming
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problem. Here one designs adaptive filterbanks to obtain nonparametric estimate
of the spatial spectrum. The popular alternative to this is the subspace algorithms
like MUSIC [35], ESPRIT [33] or weighted subspace fitting [36, 41]. The sub-
space algorithms which exploit the low-rank structure of the noise-free signal. The
maximum-likelihood estimation [25] is another efficient technique, but requires accu-
rate initialization to ensure global convergence. All these methods rely on the statis-
tical properties of the data, and hence requires a large number of time samples.

Conventional DOA estimation techniques cannot exploit the target moving statis-
tics into their formulation and hence their performance degrade when a large number
of DOAs moving in a field of interest [45]. Recently, several approaches have been
developed for tracking targets [4, 8, 30, 31, 44, 45]. The maximum likelihood (ML)
methods [30, 31, 45] have good statistical properties and are robust in target tracking
with a relatively small number of samples. The works in [30, 31] incorporate the
target motion dynamics in ML estimation and computes the the DOA parameters
at each time subinterval and refine the ML estimates through Kalman filtering. The
concept of Multiple Target States (MTS) has been introduced in [45] to describe
the target motion. The DOA tracking is implemented through updating the MTS by
maximizing the likelihood function of the array output. However, ML-based algo-
rithms have high computational cost in general [8]. A recursive expectation and
maximization (EM) [12] algorithm has been used in [8] to improve computational
efficiency of ML algorithms. Cyclostationarity property of the moving targets has
been exploited in [44]. In target tracking, the change in DOA from last time frame
to the current time frame is computed by exploiting the difference of the averaged
cyclic cross correlation of array output. Target tracking in clutter environment is also
addressed in [4].

Sparse signal representation has been applied for spectral analysis [10, 14–16,
26, 34]. In [34], a Cauchy-prior is used to enforce sparsity in a temporal spectrum.
A recursive weighted least-squares algorithm called FOCUSS has been developed
in [16] for source localization. Fuchs [14, 15] formulates the source localization
problemas a sparse recovery problem in the beam-space domain.DOAestimation has
been posed into joint-sparse recovery problem in [10, 19, 26]. �1-SVD [26] combines
the singular value decomposition (SVD) step of the subspace algorithms with a
sparse recovery method based on �1-norm minimization. The �1-SVD algorithm
can handle closely spaced correlated sources if the number of sources is known. An
alternative strategy called joint �2,0 approximation ofDOA (JLZA-DOA) is proposed
in [19]. The algorithm represents the snapshots of sensors as some jointly sparse [18]
linear combinations of the columns of a manifold matrix. The resulting optimization
problem of JLZA-DOA has been solved using a convex–concave procedure. JLZA
is further extended to deal with the joint sparse problem with multiple measurement
matrices arising in broadband DOA estimation, where the manifold matrices for
different frequency bands are different. This allows a sensor spacing larger than the
smallest half-wavelength of the broadband signal,which in turn results in a significant
improvement in the DOA resolution performance. However, these algorithms have
been designed for stationary DOA estimation.



9 Source Localisation and Tracking 261

There are two aims of the work: (i) develop an efficient algorithm for stationary
DOA estimation and, (ii) adopt the algorithm for multiple target tracking. We pose
target tracking as a problem of tracking a sparse signal x(t). Here the field of interest
is discretized into a fine grid consisting of a large number (n) of potential DOAs, and
x(t) is an n dimensional complex valued vector, where the i th component of x(t) is
essentially the signal received from the i th point on the DOA-grid at time t . Since
there are only a small number of targets at any time t , the vector x(t) is sparse, and
the support of x(t) gives the locations of the targets. As the targets move, the support
of x(t) changes with time t . If this change is slow enough, then from the estimate of
x(t −1)we canmake a fairly accurate prediction of the support of x(t). Recent papers
[24, 39, 40] in compressive sensing (CS) with partially known support demonstrate
that such prior knowledge about the support can be used to significantly lower the
number of data samples needed for reconstruction.

While the algorithms for CS with partially known support work well for slowly
varying support, thesemethods cannot be used if the target speed is above a particular
threshold. To alleviate this problemwe propose aMAP estimation approach. At time
t weuse the past estimates of x(τ ), τ < t , to construct a a priori predictive probability
density function of x(t). This prior is such that the components of x(t) which are
close to the predicted future location of DOA, will have large magnitude with very
high probability. On the other hand, a component of x(t) which are far from the
predicted location is of large magnitude with a very small probability. Subsequently,
we use this prior and the array measurements at time t to derive a MAP estimate
of x(t).

We demonstrate the performance of our method on minimum-redundancy lin-
ear arrays [27]. In a minimum-redundancy array, the inter-element spacing is not
necessarily required to maintain the half wavelength of the receiving narrowband
signal. We can resolve relatively large number of DOAs with small sensors and time
samples. Moreover, such array arrangement leads to an increase in the resolution of
DOA estimation.

Similar to [19], we enforce joint sparsity in DOA estimation for narrowband and
broadband signals. In broadband case, this joint sparsity allows a sensor spacing
larger than the smallest half-wavelength of the signal, which in turn results in a
significant improvement in theDOAresolution performance. This is possible because
the spatial aliasing effect can be suppressed by enforcing the joint sparsity of the
recovered spatial spectrum across the whole frequency range under consideration.

The chapter is structured as follows. In Sect. 9.2, narrowband stationary DOA
estimation is considered. The DOA estimation problem is set as an underdetermined
sparse recovery problem. Some state-of-the-art sparsity-based DOA estimation tech-
niques have been discussed, and a MAP-based DOA estimation framework has been
developed. Section9.3 considers the narrowband DOA tracking problem. We for-
mulate MAP framework in DOA tracking. We also demonstrate a possible way to
adopt a conventional sparsity-based DOA estimation technique in tracking problem.
The proposed MAP approach has been extended for broadband DOA estimation in
Sect. 9.4. Finally, in Sect. 9.5 we present some simulation results.
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9.2 Stationary Narrowband DOA Estimation

9.2.1 Background

Consider k narrow-band signals {s j (t)}k
j=1 incident on a sensor array, consisting of

m omnidirectional sensors. Let

y(t) = [y1(t) · · · ym(t)]′,

where y j (t) is the signal recorded after demodulation by the j th sensor and y′ denotes
the transpose of y. Defining

s(t) = [s1(t) · · · sk(t)]′,

and using the narrowband observation model [20, 25], we have

y(t) = A(θ)s(t) + e(t). (9.1)

Here A(θ) is the manifold matrix, θ is the DOA vector containing the directions of
arrival of individual signals, i.e., the j th component θ j of θ gives the DOA of the
signal s j (t), and e(t) denotes the measurement noise. The manifold matrix consists
of the steering vectors {a(θ j )}k

j=1:

A(θ) = [a(θ1) · · · a(θk)].

The mapping a(θ) depends on the array geometry and the wave velocity, which are
assumed to be known for any given θ . The problem is to find θ and k from {y j (t)}m

j=1.

9.2.2 Connection to the Blind Source Separation

Blind source separation (BSS) involves recovering unobserved signals from a set
of their mixtures [1, 21, 32]. For instance, the signal received by an antenna is a
superposition of signals emitted by all the sources which are in its receptive filed.
Let us consider k signals {s j (t)}k

j=1 incident on a sensor array, consisting of k sensors.
Let

ŷ(t) = [ŷ1(t) · · · ŷk(t)]′,

where ŷ j (t) is the signal recorded by the j th sensor. The model of sensor output be
[1, 21]:

ŷ(t) = Âs(t) + ê(t). (9.2)
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where Â ∈ R
k×k is an unknown nonsingular mixing matrix. Without knowing the

properties of the source signals and themixingmatrix, wewant to estimate the source
signals from the observations ŷ(t) via some linear transformation of the form [1]

ŝ(t) = Bŷ(t) (9.3)

where ŝ(t) = [ŝ1(t) · · · ŝk(t) ]′, and B ∈ R
k×k is a de-mixing matrix. However,

without any information about Â or s(t), it is impossible to estimate ŝ(t). In BSS,
different assumptions have been made on s(t). For example, independent component
analysis (ICA)-based approach assumes that the sources s(t) are statistically inde-
pendent [21]. The goal of ICA is to find the transformation matrix B such that the
random variables ŝ1(t), . . . , ŝk(t) are as independent as possible [32].

There are interesting similarities between the BSS model in (9.2) and the DOA
estimation model in (9.1). In the DOA estimation problem (see (9.1)), we have to
estimate the source signals, while thematrix A(θ) and s(t) are unknown. Unlike BSS,
DOA estimation model assumes that the construction of matrix A(θ) depends on the
sensor array geometry and DOA of source signals. Since, the sensor array geometry
is known, if one can estimate the DOAof sources, it is possible to construct A(θ), and
hence estimation of s(t). It is not necessary the sources to be statistically independent
[43]. Hence, DOA estimation can be viewed as a semi-BSS problem. Recently, BSS
techniques have been applied for DOA estimation [9, 22, 29].

9.2.3 DOA Estimation as a Joint-Sparse Recovery Problem

We divide the whole area of interest into some discrete set of “potential locations”.
In this work, we consider the far-field scenario and hence the discrete set be a grid of
directions-of-arrival angles. Let the set of all potential DOAs be G = {θ̄1, . . . , θ̄n},
where typically n � k. The choice of G is similar to that used in the Capon or
MUSIC algorithms. Collect the steering vectors for each element of G in

� = [a(θ̄1) · · · a(θ̄n)].

Since G is known, � is known and is independent of θ . Now, represent the signal
field at time t by x(t) ∈ C

n , where the j th component x j (t) of x(t) is nonzero only
if θ̄ j = θ� for some �, and in that case x j (t) = s�(t). Then one has a model

y(t) = �x(t) + ē(t), (9.4)

where ē(t) is the residual due to measurement noise and model-errors. Since k � n,
x(t) is sparse. Note that the equality θ̄ j = θ� may not hold exactly for any � ∈
{1, 2, . . . , k} in practice. Nevertheless, by making G dense enough, one can ensure
θ̄ j ≈ θ� closely, and the remaining modeling error is absorbed in the residual term
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ē(t).Wemodel the elements of ē(t) asmutually independent, and identically complex
Gaussian distributed random variables with zero mean and variance 1/λ, where λ is
a positive real number.

The model, (9.4) lets us pose the problem of estimating k and θ as that of esti-
mating a sparse x(t) which can be solved using CS [13] framework. If there is a
reliable algorithm to recover the sparse x(t) from y(t) using (9.4), then all but a few
components of the final solution x(t) will have very small magnitudes. Thus, if the
j th component x j (t) is a dominant component in the recovered x(t), then we infer
that at time t , there is a source with DOA θ̄ j , with an associated signal x j (t). Finally,
the number of these dominant spikes gives k.

A k sparse x(t) can be recovered uniquely from (9.4) if k ≤ m/2, and every
m columns of � form a basis of Cm . The latter is called the unique representation
property, and is closely connected to the concept of an un-ambiguous array. Apart
from the limit on k, the single snapshot setting in (9.4) is sensitive to noise. Since noise
is ubiquitous in practical problems, we turn to the so-called joint sparse formulation
[18]. In practice, we have several snapshots {y(t)}N

t=1. Using (9.4), we can write

Y := [y(1) · · · y(N )] = �X + E, (9.5)

where X = [x(1) · · · x(N )] is a sparsematrix, and E = [ē1 · · · ēN ]. If theDOAvector
θ is time-invariant over the period ofmeasurement, then for all t the nonzero dominant
peaks in x(t) occur at the same locations corresponding to the actual DOAs. In other
words, only k rows of X are nonzero. Such a matrix is called jointly k-sparse. Hence
the DOA estimation problem can be posed as the multiple measurement vectors
(MMV) problem [18] of finding a jointly sparse X from Y .

9.2.4 Results on the Joint-Sparse Recovery Problem

Assume that E = 0, and Y, X are real-valued.1 The conditions for the existence of a
unique solution to the MMV problem is demonstrated by the following lemma [11].

Lemma 1 Let rank (Y ) = r ≤ m, and every m columns of � form a basis of
R

m. Then a solution to (9.5) with k nonzero rows is unique provided that k ≤
�(m + r)/2	 − 1, where �.	 denotes the ceiling operation.

We pose DOA estimation as a MMV problem. Assume that N > m, and the matrix

X = [x(1) · · · x(N )]

1 In the real DOA estimation problem, E 
= 0 and X, Y are complex valued. We deal with these
issues in the next section.
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has rank k. Then according to Lemma 1, the DOAs can be estimated uniquely using
the joint sparse framework if k ≤ m − 1. It is interesting that all the subspace
algorithms, e.g., MUSIC or ESPRIT, have the same limitation.

As described in [19], an �2,0-norm-based minimization approach can be used to
solve theMMV problem arising in DOA estimation. However, since zero norm leads
to an NP-hard problem, different relaxations used in literature.

9.2.5 DOA Estimation Using �1 Optimization

�1-SVD [26] is an efficient algorithm that uses �2,1-based optimization to solve the
DOA estimation problem. In presence of noise, �1-SVD algorithm considers the
following way to solve X given Y in (9.5)

min
X

‖Y − �X‖2F + ς‖X‖2,1, (9.6)

where ||X ||2,1 is the mixed norm

||X ||2,1 =
n∑

i=1

√√√√
N∑

j=1

|xi ( j)|2 =
n∑

i=1

||X (i, :)||2, (9.7)

and ς > 0 is a tuning factor whose value depends on noise present in the signal.
Note that we use the Matlab notation X (i, :) to denote the i th row of X .

The computation time needed to optimization in (9.6) increases with increasing
N . To reduce both the computational complexity and sensitivity to noise, �1-SVD
uses SVD of the data matrix Y ∈ C

m×N . Similar to other subspace algorithms (i.e.,
MUSIC) the �1-SVD keeps the signal subspace.

9.2.6 MAP Approach for DOA Localization

In this section we develop a maximum a posteriori (MAP) estimation approach for
stationary DOA estimation. Recall that individual columns of E are modeled as
mutually independent and identically complex Gaussian distributed random vectors
with zero mean and covariance matrix 1/λI . Using (9.5) the conditional density of
Y given X is given by

p(Y |X) =
(

λ

2π

)m N

exp{−λ||Y − �X ||2F/2}. (9.8)
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Now suppose we know a priori density p(X) of X . Then MAP proposes to estimate
X by maximizing the conditional density p(X |Y ) given the observed data Y with
respect to X . This is same as maximizing the joint log-likelihood function [23]

log p(Y |X) + log p(X). (9.9)

Next we propose a suitable candidate for p(X). Recall that X is row sparse.
Furthermore it is reasonable to postulate the rows of X are mutually independent,
because the locations of individual targets are independent. In practice, it is com-
mon to assume that the elements in a row X (i, :) are independent and identically
distributed. The independence follows from the choice of the sampling frequency
used in practical arrays. The identical distribution follows because the energy of a
target signal remains the same over N snapshots. Now for a given i , we have two
possibilities:

• With a high probability 1−q there is no target at θ̄i , and so the elements of X (i, :)
are basically of very small energy (contributed by noise and model errors), say μ.
We model X (i, :) in this case as a complex Gaussian distributed random vector
with mean zero and covariance matrix μ2 I .

• Otherwise (with a low probability q), there is a target at θ̄i so that the elements of
X (i, :) have relatively large energy ρ � μ contributed by the target signal. We
model X (i, :) in this case as a complex Gaussian distributed random vector with
mean zero and covariance matrix ρ2 I .

Consequently, p(X) is a product of Gaussian mixture densities

p(X) =
n∏

i=1

{
q

(2πρ)N
exp

(
−||X (i, :)||22

2ρ2

)
+ 1 − q

(2πμ)N
exp

(
−||X (i, :)||22

2μ2

)}
.

(9.10)
In this work we set q = k/n. Such a Gaussian mixture model has been used in
simulations [28] and performance analysis [17] in CS literature. Using (9.10) we can
write

− ln[p(X)] =
n∑

i=1

(
−||X (i, :)||22

2ρ2 − ln

[
1 + r exp

{
−||X (i, :)||22

2σ 2

}])
+ constant

(9.11)
where the “constant” absorbs the terms independent of X , and

r = (1 − q)ρN

qμN
,

1

σ 2 = 1

μ2 − 1

ρ2 . (9.12)

Combining (9.11) with (9.8) and (9.9), we can write the criterion function
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℘(X) =
n∑

i=1

(
||X (i, :)||22

2ρ2 − ln

[
1 + ri exp

{
−||X (i, :)||22

2σ 2

}])
+ λ

2
‖Y − �X‖2F ,

(9.13)

which we need to minimize with respect to X . The reader may have noticed that
while moving from (9.11) to (9.13) we have replaced r by ri . Indeed for stationary
DOA estimation case ri = r, ∀i . Having different ri for different values of i will
be useful in tracking moving targets, where it will suffice to minimize the same cost
function (9.13). Considering the more general case at this stage allows us to use the
results in the next section in the tracking problem.

9.2.7 Solution Strategy

Like many optimization problems encountered in CS literature [7, 38], minimizing
(9.13) is a nonconvex problem. To deal with the nonconvex optimization problem
we use the concept of graduated nonconvexity (GNC) [2, 3]. GNC is a deterministic
annealingmethod for approximating the global solution for nonconvexminimization
problems. Herewe construct a sequence of functions℘ j (X), j = 0, 1, 2, . . . , w such
that

• ℘0(X) is quadratic;
• |℘ j+1(X)−℘ j (X)| is small in the neighborhood of the minimizer X ( j) of ℘ j (X);
• ℘w(X) = ℘(X) for a user chosen integer w.

Because ℘0(X) is quadratic, we can compute X (0) using the standard analytical
expression. Then as |℘1(X) − ℘0(X)| is small in the neighborhood of X (0), by
initializing a numerical algorithm to minimize ℘1(X) at X (0) one has a high proba-
bility of converging to X (1). If we continue this process of initializing the numerical
algorithm to optimize ℘ j+1(X) at our estimate of X ( j) obtained by numerically
optimizing ℘ j (X), then one can expect that X (w) is likely to be the minimizer of
℘w(X).

The sequence of functions ℘ j (X), j = 0, 1, 2, . . . , w are constructed as follows.
We choose an appropriate real number σ1 (more details on how the choices are made
will follow shortly), and define

℘0(X) =
∑

i

‖X (i, :)‖22
2ρ2 + λ

2
‖Y − �X‖2F (9.14)

℘ j (X) = ℘0(X) −
∑

i

ln

[
1 + ri exp

{
−‖X (i, :)‖22

2σ 2
j

}]
j = 1, 2, 3, . . . , w;

(9.15)
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where

σ j = (σ/σ1)
j/wσ1,

and w is a user chosen integer. The parameter σ j controls the degree of nonconvexity
in ℘ j . As we increase the value of j form 0 to w, we gradually transform ℘ j from a
convex function ℘0 to our desired likelihood function ℘w. If w is sufficiently large,
then the change from ℘ j−1 to ℘ j is small, and so is the change from X ( j−1) to X ( j).

Next we derive an expression for X (0). Let R be a diagonal matrix such that
Rii = ρ2. Recall that X (0) is the minimum point of ℘0. Hence, if we differentiate
(9.14) with respect to X and evaluate at X (0), we must get zero. Hence

X (0) = (R + λ�∗�)−1(λ�∗Y ). (9.16)

Note that we denote the conjugate transpose of � by �∗.
We can reduce the cost of computing X (0) if we use an alternative expression for

X (0), which is obtained by applying matrix inversion lemma in the right hand side
of (9.16)

X (0) = R−1�∗(I/λ + �R−1�∗)−1Y. (9.17)

where I is a m × m identity matrix. Computing X (0) via (9.16) requires inverting an
m × m matrix. On the other hand we must invert an n × n matrix if we compute X (0)

via (9.17).
The parameter σ1 controls the degree of nonconvexity in ℘1. If we take σ1 → ∞,

then the logarithmic term in (9.15) tends to ln(1+r), making℘1 a quadratic function.
In practice, we take

σ1 ≥ 5max
i

‖X (i, :)(0)‖2,

This ensures exp{−‖X (i, :)(0)‖22/(2σ 2
1 )} ≥ 0.99 for all i . Consequently, exp

{−‖X (i, :)(0)‖22/(2σ 2
1 )} ≈ 1 for all X satisfying ||X − X (0)||F < ||X (1) −

X (0)||F [28].

9.2.8 Minimizing ℘ j

In this sectionwe explore some properties of X ( j), and develop a numerical algorithm
to compute it. Define

ξ j (X (i, :)) = 1

ρ2 +
ri exp

(
−‖X (i,:)‖22

2σ 2
j

)

σ 2
j

[
1 + ri exp

(
−‖X (i,:)‖22

2σ 2
j

)] , (9.18)
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and an n × n diagonal matrix W j (X) as

W j (X) = diag{ ξ j (X (1, :)) ξ j (X (2, :)) · · · ξ j (X (m, :)) }.

From (9.18) it is readily verified that ξ j {X (i, :)} > 0 for all i . Hence W j (X) is a
positive definite matrix.

Now we can verify that

∂℘ j (X)

∂ X
= W j (X)X − λ�∗(Y − �X). (9.19)

Since X ( j) is the minimum point of ℘ j , setting X = X ( j) in (9.19) we get

X ( j) = g j (X ( j)) (9.20)

where
g j (X) := {W j (X) + λ�∗�}−1{λ�∗Y }. (9.21)

Also, a calculation similar to (9.17) gives

g j (X) := W −1
j (X)�∗ [

I/λ + �W −1
j (X)�∗]−1

Y. (9.22)

The equation X = g j (X) is nonlinear, and cannot be solved analytically. One pos-
sibility is to use a fixed point iteration. However, the convergence of the fixed point
iteration is not guaranteed. Nevertheless, using (9.19) and (9.21) we have

g j (X) − X = −{W j (X ( j)) + λ�∗�}−1 ∂℘ j (X)

∂ X
. (9.23)

Since W j is a positive definite matrix, and λ > 0, the matrix W j (X ( j)) + λ�∗�
is positive definite. Hence (9.23) implies that ℘ j (X) is decreasing along the vector
g j (X) − X . In fact moving to g j (X) from X is same as taking the Newton step
associated with some convex–concave procedure to minimize ℘ j (X) [19].

9.2.9 Numerical Algorithm for Solving MAP Optimization

TheMAP optimization strategy is given in Table 9.1.We assume that the values of ρ,
andμ are known. In fact, simulation results demonstrate that the accurate values of ρ,
andμ are not necessary. Instead, an approximation of these values are sufficient [17].
Using initial X (0) we calculate σ1, and in Step 3 some parameters including w are
set. In each iteration, we find a step-length κ along the decent-direction g j (X) − X
using the standard backtracking strategy (step 4–5) [5]. We set β = 0.5, which
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Table 9.1 MAP for narrowband DOA estimation

1. Set X = X (0)

2. Set σ1 = 5maxi ‖X (i, :)(0)‖2
3. Set j = 1, choose η ∈ (0, 1), β = 0.5 and w ≥ 15
do {
4. Set κ = 1
5. while ℘ j (κg j (X) + (1 − κ)X ]) > ℘ j (X) {

κ = βκ

} end
6. Xo = X , and X = κg j (X) + (1 − κ)X
7. If ‖X−Xo‖2‖Xo‖2 < η then j = j + 1

} while j ≤ w

is very common [5]. The inner-iteration for updating X for a given j terminates
when the relative change in the magnitude of X is below η, see step 7. Hence for a
smaller η more accurate solutions are sought in expense of higher computation time.
According to our experimental study, having η = 0.02 makes a good tradeoff. Upon
convergence of each inner iteration, we increment j (step 7). Note that choosing a
larger w helps the optimization problem in (9.15) to move slowly from convex to
its desire nonconvex form. Thus we have lower probability to get trapped in local
minimum. However, a larger w increases the number of outer iterations (step 4–7) of
the algorithm, and hence the computation time. Our experimental study suggests that
choosing w = 20 makes a good tradeoff between solution accuracy and computation
time.Upon convergence for j = w, PMAP stops its iterations. The value ofλ depends
on noise variance. In our simulation, we set λ = 5 [19].

9.2.10 Acceleration via QR Factorization

Typically, the matrix X ∈ C
n×N in (9.5) is large, as n is a large number (we need

n = 360 to achieve 0.5◦ spatial resolution). If the number of data samples N is large,
the algorithm may become very slow. To accelerate the algorithm, we use the QR
factorization Y/

√
N = R̄Q, where R̄ ∈ C

m×m is a nonsingular upper triangular
matrix, and Q ∈ C

m×N is such that Q Q∗ = I . When E = 0, then

row span{X} ⊂ row span{Q}. (9.24)

Consequently, ‖Y − �X‖2F = ‖R̄ − �X̄‖2F , where X̄ = X Q∗ ∈ C
n×m must be

jointly row-sparse, and is of significantly smaller size than X . Hence, it is more
efficient to estimate X̄ via minimizing
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℘(X̄) =
n∑

i=1

(
‖X̄(i, :)‖22

2ρ2 − ln

[
1 + ri exp

{
−‖X̄(i, :)‖22

2σ 2

}])
+ λ

2
‖R̄ − �X̄‖2F .

(9.25)

Following (9.10), it is readily verified that X̄ and X have identical a priori density
function.

9.3 Narrowband Target Tracking

9.3.1 Problem Formulation

Suppose k number of targets are moving in a plane. We wish to

• Detect the targets; and
• Track the DOAs of the targets with a time resolution τ , so that the algorithm will
yield estimates DOAs at time instant 0, τ, 2τ, 3τ, . . ..

Let fc be the sampling frequency at the sensors.We assume that over each interval
[�τ, �τ + N

fc
), the change of θi (t) is negligible, i.e.,

θ(t) ≈ θ(�τ); t ∈
[
�τ, �τ + N

fc

)
(9.26)

where N is the number of snapshots used to detect and estimate the DOAs at time �τ .
The above is a common assumption made by many state-of-the-art target tracking
algorithms [4, 30, 31, 44]. Hence under this assumption, the N snapshots of sensor
data in (9.1) can be expressed as

y(t) ≈ A(θ(�τ))s(t) + e(t), t ∈
[
�τ, �τ + N

fc

)
. (9.27)

Just as in (9.5) we can now formulate a stationary target tracking problem at time
instant �τ , where we need to recover a joint sparse matrix

X� = [x(�τ) x(�τ + 1/ fc) x{�τ + (N − 1)/ fc}]

given the snapshot matrix

Y� = [y(�τ) y(�τ + 1/ fc) y{�τ + (N − 1)/ fc}]

such that Y� = �X�+ E� holds. To solve this problemwe can always use the station-
ary DOA estimation methods discussed before. However, when we track the targets
the algorithm is inherently recursive. This means while estimating X�, we already
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know estimates of X�−1, X�−2, . . .. If we can use this prior knowledge efficiently, we
can work with a significantly smaller N making the assumption (9.26) a feasible one.
In addition it is possible to work with larger number of targets. In order to exploit the
prior information available in the estimates of X�−1, X�−2, . . ., we need to consider
a dynamic of model for target motion. This is discussed next.

9.3.2 Dynamic Model for the Target Motion

In this contribution, we stick to the most commonly used ‘small acceleration’ model
used in the target tracking literature. For any target i , we assume that its angular
acceleration θ̈i (t) is a Wiener process with a small incremental variance. Note that
we denote the first order derivative of θ(t) with respect to t by θ̇ (t), and the second
order derivative is denoted by θ̈ (t).

For a generic DOA θ(t), it is straightforward to write down the state space equa-
tions for θ(t) in terms of the state

s(t) = [θ(t) θ̇(t)]′. (9.28)

We have

ṡ(t) =
[
0 1
0 0

]
s(t) +

[
0

w(t)

]
, θ(t) = [1 0] s(t), (9.29)

where w(t) denotes the Wiener process with an incremental variance γ . Now we can
discretize (9.29) with a time resolution τ , and it is wellknown that the equivalent
discrete-time model is given by

s1(� + 1) =
[
1 τ

0 1

]
s1(�) + w1(�), θ(�τ) = [1 0] s1(�), (9.30)

where we write s1(�) := s(�τ) for short; w1(�) is a discrete-time, zero mean white
noise sequence such that

E{w1w′
1} = γ

[
τ 3/3 τ 2/2
τ 2/2 τ

]
. (9.31)

Using (9.30), (9.31) and after a few steps of algebra one can show that

θ(�τ) = 2θ(�τ − τ) − θ(�τ − 2τ) + w2(�), (9.32)

where w2 is a scalar valued discrete-time first order moving average process with
zero mean and

E{w2} = 0, E{w2
2(�)} = 2γ τ 3

3
, E{w2(�)w2(� − 1)} = γ τ 3

6
. (9.33)



9 Source Localisation and Tracking 273

9.3.3 Extension of �1-SVD for DOA Tracking

Using (9.32) we can use the estimates of X�−1, X�−2, . . . to make predictions about
X�. Then we wish to incorporate this prediction in the MAP framework described
above.However, before doing so,we consider howwe could naturally extend �1-SVD
method for tracking by using an approach called CS with partially known support
[24, 39, 40]. The idea is to use the past estimates X�−1, X�−2, . . . to estimate the
support of X�, and use that information to estimate a joint sparse X�.

Suppose that until time t = (�−1)τ the tracking algorithm has detected k targets.
The estimated DOAs for the i th target at time(�− j)τ is denoted by θ̂i (�− j). From
(9.32) we know

E{θi (�τ)} = 2θ̂i (� − 1) − θ̂i (� − 2). (9.34)

At this stage we neglect the second order statistics of w2(�), because the standard
methods for CS with partially known support does not have any provisions to do so.
Nevertheless, while discussing MAP approach in the next section, we will use the
second order statistics of w2(�).

Define I := {1, 2, . . . , n}. Recall that n is the number of points on the DOA-grid
G = {θ̄1, θ̄2, . . . , θ̄n}. CS with partially known support requires us to predict the
support T (�) of X� defined as

T� := {i ∈ I : ||X�(i, :)||2 
= 0}.

We do so as follows. For each i we identify the point of G which is the nearest to
E{θi (�τ)} and denotes the associated index by ιi :

ιi = argmin
j∈I

|θ̄ j − E{θi (�τ)}|.

Then form
T� = {ι1, ι2, . . . , ιk}.

Different CS-based algorithms have been developed to exploit the support infor-
mation in sparse recovery process [24, 39, 40]. Least squares CS-residual (LS-CS)
[39] is a two step procedure. First, a least squares (LS) estimate X̄� of X� is computed
assuming that the support of X� is T�. To explain the details, let

�+ = [�(:, ι1) �(:, ι2) · · · (:, ιk) ]

and
X+ = [�∗+�+]−1�∗+Y.
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Note that X+ is a k × N matrix, and we form X̄� as follows:

X̄�(i, :) =
{

X+( j, :), if i = ι j for some j ∈ {1, . . . , k},
0, otherwise.

(9.35)

Next calculate the associated residual

Ȳ = Y − �T�
X̄�.

In the subsequent step, LS-CS uses a CS algorithm to find a sparse solution X̂�

such that Ȳ� = �X̂�. The final estimate is X̄� + X̂�. Adapting recently proposed
modified-CS [40] to our problem, this step requires us to solve

X̂� = argmin
X

‖Y − �X‖2F + ς
∑

i∈I\T�

||X (i, :)||2. (9.36)

We refer the modification of �1-SVD as �1-SVD-MCS. It might be worthwhile to
note the difference between (9.6) and (9.36), and see how easily �1-SVD in (9.6) is
adapted to the framework of CS with partially known support.

9.3.4 MAP for Tracking

The MAP algorithm can be used for tracking problem with a small modification in
the expression for p(X) given in (9.10). Here we have the option to use the estimates
of X�−1, X�−2, . . . to obtain a better prior density p(X).

As before, suppose that until time t = (�−1)τ , the tracking algorithmhas detected
k targets. Then according to (9.32) the conditional density of θi (�τ) evaluated at θ

is proportional to

ηi (θ) = exp

⎧
⎪⎨

⎪⎩
−

[
θ − 2θ̂i (� − 1) + θ̂i (� − 2)

]2

4γ τ 3/3

⎫
⎪⎬

⎪⎭
.

It is natural to use this conditional density as a measure of the probability that θi (�τ)

is close to a grid point θ̄ j . In particular, if the i th target was the only target detected,
then the probability q j that we will find that target at the grid point θ̄ j is evaluated as

ηi (θ̄ j )∑
j∈I ηi (θ̄ j )

.

When we have k targets in the field, then the probability q j of finding a target at grid
point θ̄ j is given by
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q j = 1 −
k∏

i=1

{
1 − ηi (θ̄ j )∑

j∈I ηi (θ̄ j ).

}
, (9.37)

The above expression for (9.37) works when no new target can appear in the field,
and none of the existing targets can disappear. Nevertheless, we can generalize (9.37)
to relax these requirements. Let

• α be the probability that an existing target disappears; and
• β be the probability that a new target appears in the field at a grid point.

Now we modify (9.37) to accommodate the possibility that a new target may
appear in the field and an existing target may disappear. The event that “the i th target
is not presesent at θ̄ j” is the union of two mutually exclusive events:

1. The target has actually disappeared from the field (with probability α); and
2. The target is still there in the field (with probability 1−α), but it is not at θ̄ j . The

probability of this event is

(1 − α)

{
1 − ηi (θ̄ j )∑

j∈I ηi (θ̄ j )

}
.

Now combining the probabilities of (1) and (2), the resultant probability that “the i th
target is not present at θ̄ j” is

α + (1 − α)

{
1 − ηi (θ̄ j )∑

j∈I ηi (θ̄ j )

}
.

Then the probability that none of the existing targets is present at θ̄ j and no new
target appears at θ̄ j is

(1 − β)

k∏

i=1

[
α + (1 − α)

{
1 − ηi (θ̄ j )∑

j∈I ηi (θ̄ j )

}]
.

Thus, to accommodate the possibility that a new target may appear in the field and
an existing target may disappear (9.37) is modified accordingly to

q j = 1 − (1 − β)

k∏

i=1

[
α + (1 − α)

{
1 − ηi (θ̄ j )∑

j∈I ηi (θ̄ j )

}]
, j ∈ I (9.38)
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Once we know qi , ∀i ∈ I, we can replace q by qi in (9.10) to get

p(X) =
n∏

i=1

{
qi

(2πρ)N
exp

(
−||X (i, :)||22

2ρ2

)
+ 1 − qi

(2πμ)N
exp

(
−||X (i, :)||22

(2μ2)

)}
,

(9.39)
which in turn gives

− ln[p(X)] =
n∑

i=1

(
−||X (i, :)||22

2ρ2 − ln

[
1 + ri exp

{
−||X (i, :)||22

2σ 2

}])
+ constant

(9.40)
where

ri = (1 − qi )ρ
N

qiμN
,

1

σ 2 = 1

μ2 − 1

ρ2 . (9.41)

Combining (9.40) with (9.8) and (9.9), we again arrive at the criterion function
(9.13). However, unlike the stationary case, now all ri are different from each other.
Nevertheless, we can follow the procedure in Sect. 9.2.7 to develop a minimization
problem and use the algorithm in Table 9.1 for estimation of X (�). In this work, we
set α = 0.01, β = 0.01.

9.4 Extension of MAP Framework for Broadband
DOA Estimation

We consider the procedure proposed in [19] for broadband DOA estimation. The
broadband signal has been splitted into several narrowband signals by using a bank of
narrowband filters. Subsequently, the narrowband model (9.5) is applied to each nar-
rowband filter output. Suppose that we have narrowband data at frequencies {ωi }K

i=1,
and let �i be the “over-complete” manifold matrix at frequency ωi . Then, the nar-
rowband model at frequency ωi is of the form

Yi = �i Xi + Ei , i ∈ {1, 2, . . . , K }.

Here, Ei is the additive noise at frequency ωi and Xi is the jointly row-sparse signal
matrix at frequency ωi . Now,

X := [X1 X2 · · · X K ]
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is jointly row-sparse. This is because if Xi (�, :) is nonzero for some �, then there is
source signal at frequency ωi at direction θ̄�. Therefore, we would expect signals at
other frequencies from the direction θ̄� as well, making Xi (�, :) nonzero for all i .

Now to resolve broadband DOA in MAP framework we need to develop a priori
density p(X) of X. We assume that the energy of a target at all frequency bands
{ω j }K

j=1 is almost similar. Nevertheless, the following approach can be extended
easily when signal energy is different at different frequency band. Then as described
in Sect. 9.2.6, we have two probabilities for every index i : (i) with very small proba-
bility qi , there is a target at θ̄i , and hence the elements of X(i, :) have relatively large
energy ρ. We model X(i, :) as a complex Gaussian distributed random vector with
zero mean and covariance matrix ρ2 I ; (ii) with probability 1 − qi , the elements of
X(i, :) have small energy μ � ρ. Hence, p(X) is a product of Gaussian mixture
densities

p(X) =
n∏

i=1

{
qi

(2πρ2)K N
exp

(
−‖X(i, :)‖22

2ρ2

)
+ 1 − qi

(2πμ2)K N
exp

(
−‖X(i, :)‖22

2μ2

)}
.

(9.42)

Then following (9.8)–(9.13), we can end up the the criterion function

℘(X) =
n∑

i=1

(
‖X(i, :)‖22

2ρ2 − ln

[
1 + ri exp

{
−‖X(i, :)‖22

2σ 2

}])
+ λ

2

K∑

i=1

‖Yi − �i Xi‖2F
(9.43)

where, ri = (1 − qi )ρ
K N

qiμK N
,

which need to minimize with respect to X, and σ are defined in (9.12).
For minimizing (9.43), we follow the GNC procedure of Sect. 9.2.7 and generate

w number of suboptimization problem {℘ j (X)}w
j=1. Then following the calculation

(9.18)–(9.23), it can be shown that ℘ j (X) is decreasing along g j (X) − X, where

g j (X) = [g(1)
j (X) g(2)

j (X) · · · g(K )
j (X)], (9.44)

g(i)
j (X) = W −1

j (X)�∗
i

[
I/λ + �i W −1

j (X)�∗
i

]−1
Yi . (9.45)

Using the direction we can develop a broadband DOA estimation algorithm. The
final algorithm is given in Table 9.2.

9.4.1 Jamming Signal Mitigation

The noise term e(t) in (9.1) is the residual noise due to measurement noise andmodel
error. In general, it is assumed that the noise has uniform distribution and smaller
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Table 9.2 MAP for broadband DOA estimation

1. Set X (0)
i = R−1�∗

i (I/λ + �i R−1�∗
i )

−1Yi , i = 1, . . . , K .

Form X(0) = [ X (0)
1 X (0)

2 · · · X (0)
K ]

2. Set σ1 = 5maxi ‖X(i, :)(0)‖2
3. Set j = 1, choose η ∈ (0, 1), β = 0.5 and w ≥ 15
do {
4. Set κ = 1
5. while ℘ j (κg j (X) + (1 − κ)X]) > ℘ j (X) {

κ = βκ

} end
6. Xo = X, and X = κg j (X) + (1 − κ)X
7. If ‖X−Xo‖F‖Xo‖F

< η then j = j + 1

} while j ≤ w

magnitude than the source signal. However, there exists some other types of noisy
signals; like, jamming signal. Jamming and deception is the intentional emission
of radio frequency signals to interfere with the operation of a radar by saturating
its receiver with noise or false information. In general, jamming signals come from
fixed directions and havemagnitudemany times larger than actual source signal [42].
Hence, jamming signals hinder actual source. However, due to larger magnitude, it is
easier to know the direction of jamming signal in priori. To mitigate from jamming,
we will use the crude estimate of the direction of the jamming signal as a ‘partially
known support’ of the sparse signal X. Let the jammer direction be supported on Tj .
Then the value of qi in (9.42) will be very high if qi ∈ Tj . We then search any target
in rest of the support of X. In our experiments we set qi = 0.99 when qi ∈ Tj .

9.5 Simulation Results

We compare the performance of MAP-based approach with �1-SVD [26], Capon’s
method [6], and �1-SVD-MCS (see (9.36)). We use four sensors and follow the pro-
cedure of minimum-redundancy array [27] for the linear array arrangement. The
interelement spacings are d, 3d and 2d, respectively. For narrowband DOA estima-
tion, the value of d is equal to the half wavelength of receiving narrowband signal.
For broadband signal we consider two types of the value of d for two classes of
algorithms. Similar to [19], MAP algorithm can allow a sensor spacing larger than
the half wavelength associated with the highest frequency in the broadband signal.
Hence, we set the value of d to be 1.5 times the smallest wavelength in the broadband
signal. However, �1-SVD and Capon cannot allow larger d. Hence we set the value
of d equals to 0.5 times the smallest wavelength in the broadband signal. The algo-
rithms starts with a uniform grid with 0.5◦ resolution, i.e., n = 360, and� ∈ C

4×360.
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Fig. 9.1 Separating two uncorrelated sources at 10◦ and 15◦ by different algorithms. a Spatial
spectrum obtained by different algorithms. Signal SNR = 2 dB, N = 50. b Frequency of separating
sources versus SNR

In DOA tracking simulation, we select starting DOA locations first. The future DOA
locations are generated using (9.30). The starting θ̇ (t) = 0.50 and γ = 0.05. The
simulations are performed using MATLAB7.

9.5.1 Narrowband DOA Estimation and Tracking

Each narrowband signal is generated from a zero mean Gaussian distribution. The
measurements are corrupted by temporally and spatially uncorrelated zero-mean
noise sequence. At first we consider stationary DOA estimation. We assume the
number of DOAs k is unknown.

Figure9.1a shows the spatial spectrum plots of the different algorithms when
two uncorrelated sources are placed at 10◦ and 15◦. We take N = 50 snapshots
and SNR = 2 dB. Capon algorithm cannot separate sources. It indicates one source
at 12◦. �1-SVD can separate two sources at 10◦ and 13◦. Hence detection bias is
2◦. MAP algorithm can separate sources at 9.5◦ and 15◦. Hence bias in only 0.5◦.
Next, we investigate the impact of the noise power on the performance of algorithms.
Here, we simulate two uncorrelated sources at 10◦ and 15◦. We keep the value of N
fixed at 50 and vary the noise power. For each SNR, we carry out 100 independent
simulations, and the results are shown in Fig. 9.1b, where we plot the frequency at
which the different algorithms separate the sources against noise. Note that MAP
outperforms the �1-SVD. The plots for Capon is not shown, as they are unable to
resolve the sources when N < 140.

Figure9.2 shows the results when we simulate two strongly correlated sources at
10◦ and 15◦ with a correlation coefficient 0.99. SNR = 6 dB and N = 50. Note that
MAP can locate the sources clearly, while other methods generates single peak and
failed separating sources.
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Fig. 9.2 Separating two correlated sources at 10◦ and 15◦ by different algorithms. SNR = 6 dB,
N = 50
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Fig. 9.3 DOA tracking for three targets. SNR = 4 dB, N = 50. ‘−’ actual track, ‘+’ estimated
track. a MAP, b �1-SVD-MCS, c �1-SVD, d Capon
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Fig. 9.4 DOA tracking for three targets. SNR = 4 dB, N = 50. ‘−’ actual track, ‘+’ estimated
track. a MAP, b �1-SVD-MCS, c �1-SVD, d Capon

Narrowband DOA tracking results are shown in Fig. 9.3. We consider three
uncorrelated moving sources. The starting location of sources are −20◦, 5◦ and 10◦
respectively. The average SNR = 4 dB and N = 50. As can be seen in Fig. 9.3aMAP
can track the sources almost accurately. There is a little error tracking the first source
between time index 35 and 45. �1-SVD-MCS can track sources until time index 25.
The interesting observation is that once �1-SVD-MCS loses track of DOAs, it cannot
back to the track again. As illustrated in Fig. 9.3b, after time index 25, �1-SVD-MCS
cannot track second and third DOAs anymore. Instead, it generates some random
walk around the track of first source. �1-SVD can track the first source only. Capon
also tracks first source. However, it generates another fictitious path from 40◦ to 20◦.

We consider another route in Fig. 9.4. The starting DOA locations are −20◦, 5◦
and 15◦, respectively. In this scenario the first source crosses the route of other two
sources. It is difficult to keep track of sources when they cross each other. Figure9.4a
illustrates that MAP is able to keep tracking the sources. In some cases, the estimated
route of some sources are displaced from the actual route, however, MAP algorithm
can back to the actual route of sources immediately. As before, �1-SVD-MCS can
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Fig. 9.5 Broadband DOA estimation results for three sources are located at −10◦, 15◦ and 20◦.
SNR = 6 dB, N = 100. a MAP, b �1-SVD, c Capon
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Fig. 9.6 Separating a broadband DOA in presence of jamming signal. The jamming signal comes
from 10 and actual source is at 200. N = 100

track the sources until time index 25. The algorithm loses the track of sources when
the first and second sources cross each other. �1-SVD and Capon failed tracking
sources. Until time index 25, both algorithms track the first sources, however, they
start tracking the second source after time index 25.

9.5.2 Broadband DOA Estimation and Tracking

Broadband sources are generated using the procedure [19]. Each source consists of
10 sinusoids with frequencies randomly chosen from the interval [1, 2.5]GHz. The
received signal is sampled at 7.5GHz. The sampled data is filtered through a bank
of first-order bandpass filters of the form

Hω(z) = (1 − r)eiω

z − reiω
(9.46)

It can be shown that Hω is a narrow-band filter centered at digital frequencyω (which
is related to the analog frequency via the standard relationship). The bandwidth of
the filter is controlled by r , where 0 < r < 1. Taking r → 1 makes the bandwidth
smaller, but makes the filter less stable. We take r = 0.99. The filterbank consists of
50 filters with center frequencies uniformly distributed over the interval [1, 2.5]GHz.

We simulate three broadband sources at −10◦, 15◦ and 20◦ in Fig. 9.5. The
SNR = 6 dB and N = 100. As can be seen in Fig. 9.5, MAP algorithm separate three
sources fairly accurately. The detected peaks are sharp and clear. �1-SVD generates
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Fig. 9.7 Broadband DOA
tracking for four targets.
SNR = 4 dB, N = 100. ‘−’
actual track, ‘+’ estimated
track. a MAP, b �1-SVD-
MCS, c Capon
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many spurious peaks and failed to locate the actual DOA locations. Capon roughly
generates two peaks at−9◦ and 19◦. However, It generatesmany other randompeaks.

Figure9.6 shows the source detection performance in presence of jamming signal.
In this setup, a jammer sending signal at an angle 10 with a SNR = 40 dB. The
actual source located at 200 transmitting signal with SNR = 2 dB. As can be seen,
the proposed modification of MAP for jamming signal (MAP-Mod) in Sect. 9.4.1
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can detect the actual source. However, when we are applying the conventional MAP,
it detects jamming signal only.

Broadband DOA tracking results are shown in Fig. 9.7. We consider four moving
sources. The starting location of sources are −10◦, 15◦, 20◦ and 30◦, respectively.
The SNR = 4 dB and N = 50. As can be seen in Fig. 9.7aMAP can track the sources
with reasonable accuracy.

9.6 Conclusion

A sparse signal reconstruction perspective for source localization and tracking has
been proposed. We started with a scheme for localizing narrowband sources and
developed a tractableMAP-based optimization approach which can exploit the joint-
sparsity arises in the source localization problem. The scheme has been extend for
wideband source localization. However, the resulting optimization was nonconvex.
Hence, we propose an approach similar to the concept of GNC to cope with the
issue. We described how to efficiently mitigate the local minima of the nonconvex
optimization through an automatic method by choosing the regularization parameter.
We then adopt the MAP formulation for narrowband and wideband source tracking
scenario. In source tracking formulation, we utilize the information of current loca-
tion and moving direction of DOA to estimate its future location. We modify the
proposed MAP formulation so that it can use the information efficiently. Finally,
we examined various aspects of our approach by using numerical simulations. Sev-
eral advantages over existing source localization methods were identified, including
increased resolution, no need for accurate initialization, and improved robustness to
noise.

Some of the interesting questions for future research include an investigation
of the applicability of GNC-based sparse recovery algorithms, which have a lower
computational cost, to blind source localization. A theoretical study for determining
the sequence ℘ j (X) in (9.15) so that the algorithm can avoid local minima will be
helpful.
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