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Frequency Domain Blind Source Separation
Based on Independent Vector Analysis
with a Multivariate Generalized Gaussian
Source Prior

Yanfeng Liang, Syed Mohsen Naqvi, Wenwu Wang
and Jonathon A. Chambers

Abstract Independent vector analysis (IVA) is designed for retaining the depen-
dency contained in each source vector, while removing the dependency between
different source vectors during the source separation process. It can theoretically
avoid the permutation problem inherent to independent component analysis (ICA).
The dependency in each source vector ismaintained by adopting amultivariate source
prior instead of a univariate source prior. In this chapter, a multivariate generalized
Gaussian distribution is proposed to be the source prior, which can exploit the energy
correlation within each source vector. It can preserve the dependency between dif-
ferent frequency bins better to achieve an improved separation performance, and is
suitable for the whole family of IVA algorithms. Experimental results on real speech
signals confirm the advantage of adopting the new source prior on three types of IVA
algorithms.

5.1 Introduction

Blind source separation (BSS) aims to separate specific signals from observed mix-
tures with very limited prior knowledge, and has been researched over recent decades
and has wide potential applications, such as in biomedical signal processing, image
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processing, speech processing, and communication systems [1, 2]. A classical BSS
problem is the machine cocktail party problem, which was proposed by Colin Cherry
in 1953 [3, 4]. His drive was a machine to mimic the ability of a human to extract
a target speech signal from microphone measurements acquired in a room environ-
ment.

In order to solve the BSS problem, a statistical signal processing method, i.e.,
independent component analysis (ICA), is proposed to exploit the non-Gaussianity of
the signals [5]. It works efficiently to solve the instantaneous BSS problem. However,
the problem becomes convolutive BSS problem in a room environment due to the
reflections from the ceiling, floor, andwalls. The length of the room impulse response
is typically on the order of thousands of samples, which leads to huge computational
cost when using time domain methods. Therefore, frequency domain methods have
been proposed to reduce the computational cost due to the convolution operation
in the time domain becomes multiplication in the frequency domain provided the
block length of the transform is substantially larger than the length of the time
domain filter [6, 7]. When the mixtures are transformed into the frequency domain
by using the discrete Fourier transform (DFT), the instantaneous ICA can be applied
in each frequency bin to separate the signals. However, the permutation ambiguity
inherent to ICA becomes more severe because of the potential misalignment of the
separated sources at different frequency bins. In this case, when the separated sources
are transformed back to the time domain, the separation performance will be poor.
Therefore, various methods have been proposed to mitigate the permutation problem
[7]. However, most of them use extra information such as source geometry or prior
knowledge of the source structure, and pre or post processing is needed for all of
these methods which introduces additional complexity and delay.

Recently, independent vector analysis (IVA) has been proposed to solve the per-
mutation problem naturally during the learning process without any pre or post
processing [8]. It can theoretically avoid the permutation problem by retaining the
dependency in each individual source vectorwhile removing the dependencybetween
the source vectors of different signals [9, 10]. Themain difference between ICA algo-
rithms and IVA algorithms is the nonlinear score function. For conventional ICA
algorithms, the nonlinear score function is a univariate function which only uses the
data in each frequency bin to update the unmixing matrix. However, the nonlinear
score function for IVA is a multivariate function, which can use the data from all the
frequency bins. Therefore, it can exploit the inter-frequency dependencies tomitigate
the permutation problem.

There are three state-of-the-art types of IVA algorithms, which are the natural
gradient IVA (NG-IVA), the fast fixed-point IVA (FastIVA) and the auxiliary function
based IVA (AuxIVA). NG-IVA adopts the Kullback-Leibler divergence between the
joint probability density function and the product of marginal probability density
functions of the individual source vectors as the cost function, and the natural gradient
method is used to minimize the cost function [9]. FastIVA is a fast form of IVAwhich
usesNewton’smethod to update the unmixingmatrix [11].AuxIVAuses the auxiliary
function technique to converge quickly without introducing tuning parameters and
can guarantee the objective function decreases monotonically [12]. There are also
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several other IVA algorithms, which are based on these three IVA algorithms. The
adaptive step size IVA algorithm, which is based on the NG-IVA algorithm, can
automatically select the step size to achieve a faster convergence [13]. The audio-
video based IVAmethod combines video information with FastIVA to obtain a faster
and better separation performance in noisy and reverberant room environments [14].
And IVA methods which exploit the activity and dynamic structure of the sources to
achieve improved separation performance have also been proposed [15, 16].

The nonlinear score function of IVA is used to preserve inter-frequency depen-
dencies for individual sources [9]. Because the nonlinear score function is derived
from the source prior, an appropriate source model is needed. For the original IVA
algorithms, a multivariate Laplace distribution is adopted as the source prior. It is
a spherically symmetric distribution, which implies the dependencies between dif-
ferent frequency bins are all the same. In order to describe a variable dependency
structure, a chain-type overlapped source model has been proposed [17]. Similarly, a
harmonic structure dependency model has been proposed [18]. A Gaussian mixture
model can also be adopted as the source prior, whose advantage is that it enables the
IVA algorithms to separate a wider class of signals [19, 20]. Most of these source
models assume the covariance matrix of each source vector is an identity matrix due
to the orthogonal Fourier basis. This implies that there is no second order correlation
between different frequency bins. Although recently a multivariate Gaussian source
prior has been proposed to introduce the second order correlation [21], it is only
applicable when there are large second order correlations such as in functional mag-
netic resonance imaging (fMRI) studies. For the frequency domain IVA algorithms,
higher order correlation information between different frequency bins is still missing
and should be exploited.

In this chapter, a multivariate generalized Gaussian distribution is adopted as the
source prior. It has heavier tails compared with the original multivariate Laplacian
distribution, which makes the IVA algorithms derived from it more robust to outliers.
It can also preserve the dependency across different frequency bins in a similar way
as when the original multivariate Laplacian distribution is used to derive an IVA
algorithm. Moreover, the nonlinear source function derived from this new source
prior can additionally introduce the energy correlation within each source vector.
Therefore, it contains more informative dependency structure and can thereby better
preserve the dependencies between different frequency bins to achieve an improved
separation performance.

The structure of this chapter is as follows. In Sect. 5.2, the original IVA is intro-
duced. In Sect. 5.3, the energy correlation within a frequency domain speech signal
is introduced. Then a multivariate generalized Gaussian distribution is proposed to
be the source prior and analyzed in Sect. 5.4. Three types of IVA algorithms with the
proposed source prior are discussed in Sect. 5.5. The experimental results are shown
in Sect. 5.6, and finally the conclusions are drawn in Sect. 5.7.
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5.2 Independent Vector Analysis

In this chapter, wemainly focus on the IVA algorithms used in the frequency domain.
The noise-free model in the frequency domain is described as:

x(k) = H(k)s(k) (5.1)

ŝ(k) = W(k)x(k) (5.2)

wherex(k) = [x1(k), . . . , xm(k)]T is the observed signal; s(k) = [s1(k), . . . , sn(k)]T

is the source signal; ŝ(k) = [ŝ1(k), . . . , ŝn(k)]T is the estimated signal. They are all in
the frequency domain and (·)T denotes vector transpose. The index k = 1, 2, . . . , K
denotes the k-th frequency bin, and K is the number of frequency bins; m is the
number of microphones and n is the number of sources. H(k) is the mixing matrix
whose dimension is m × n, and W(k) is the unmixing matrix whose dimension is
n × m. In this chapter, we assume that the number of sources is the same as the
number of microphones, i.e., m = n.

Independent vector analysis is proposed to avoid the permutation problem by
retaining the inter-frequencydependencies for each sourcewhile removing thedepen-
dencies between different sources. It theoretically ensures that the alignment of the
separated signals are consistent across the frequency bins. The IVA method adopts
the Kullback-Leibler divergence [9] between the joint probability density function
p(ŝ1 . . . ŝn) and the product of marginal probability density functions of the individ-
ual source vectors

∏
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where E[·] denotes the statistical expectation operator, and det(·) is the matrix
determinant operator. The dependency between different source vectors should be
removed but the inter-relationships between the components within each vector can
be retained, when the cost function is minimized. These inter-frequency dependen-
cies are modelled by the probability density function of the source.

Traditionally, the scalar Laplacian distribution is widely used as the source prior
for the frequency domain ICA-based approaches. The resultant nonlinear score func-
tion is a univariate function, which can not preserve the inter-frequency dependencies
because it is only associated with each individual frequency bin. In order to keep
the inter-frequency dependencies of each source vector, a multivariate Laplacian
distribution is adopted as the source prior for IVA, which can be written as
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q(si ) ∝ exp

(

−
√
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†�−1

i (si − μi )

)

(5.4)

where (·)† denotes the Hermitian transpose, μi and �i are respectively the mean
vector and covariance matrix of the i-th source. Then the nonlinear score function
can be derived according to this source prior. We assume that the mean vector is a
zero vector and the covariance matrix is a diagonal matrix due to the orthogonality
of the Fourier basis, which implies that each frequency bin sample is uncorrelated
with the others. As such, the resultant nonlinear score function to extract the i-th
source at the k-th frequency bin can be obtained as:
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(5.5)

where σi (k) denotes the standard deviation of the i-th source at the k-th frequency
bin. This is a multivariate function, and the dependency between the frequency bins
is thereby accounted for in learning. When the natural gradient method is used to
minimize the cost function, the unmixing matrix update equation is:

�W(k) =
(

I − E
[(

ϕ(k)(ŝ)
)

ŝ∗
(k)
])

W(k) (5.6)

where I is the identity matrix, and (·)∗ denotes the conjugate operators. ϕ(k)(ŝ) is the
nonlinear score function

ϕ(k)(ŝ) =
[
ϕ(k)(ŝ1), . . . , ϕ

(k)(ŝn)
]T

(5.7)

5.3 Energy Correlation Within a Frequency Domain
Speech Signals

In the derivation of the original IVA algorithms little attention was focused upon
the correlation information between different frequency bins due to the orthogonal
Fourier basis. However, the higher order information exists and could be introduced
to exploit the dependency between different frequency bins and better preserve the
inter-frequency dependency. The correlation of squares of components is discussed
in [22], which can be used to exploit the dependency between different components.
For the frequency domain speech signals, the energy correlation between different
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Fig. 5.1 The frequency domain energy correlation of the speech signal “si1039.wav”

frequency bins is such square correlation, which can be defined as

cov
(
|si (a)|2, |si (b)|2

)
= E

[
|si (a)|2|si (b)|2

]
− E
[
|si (a)|2

]
E
[
|si (b)|2

]
(5.8)

The use of such energy correlation has seldom been highlighted in the original
IVA algorithms. In order to show the energy correlation within the frequency domain
speech signals, we choose a particular speech signal “si10390.wav” from the TIMIT
database [23], with 8kHz sampling frequency and 1,024DFT length. Then thematrix
of energy correlation coefficients betweendifferent frequencybins is plotted as shown
in Fig. 5.1. Figure5.1 is just part of the whole matrix of energy coefficient, which
corresponds to the frequency bins from 1 to 256. The high frequency part is omitted
due to the limited energy which leads to large correlation coefficients.

It is shown in Fig. 5.1, besides the information on the diagonal, there are many
information on the off-diagonal elements, which is correspond to the energy corre-
lation between different frequency bins. It indicates that there are energy correlation
as defines in Eq. (5.8), which also leads to that E

[|si (a)|2|si (b)|2] is not equal to
zero for many points and this information should be used to help to further exploit
the dependency between different frequency bins.

5.4 Multivariate Generalized Gaussian Source Prior

In this section, we propose a particular multivariate generalized Gaussian source
prior as the source prior, fromwhich a new nonlinear score function can be derived to
introduce the energy correlation information to improve the separation performance.
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The source prior we proposed belongs to the family of multivariate generalized
Gaussian distributions which takes the form

q(si ) ∝ exp

⎛

⎝−
(

(si − μi )
†�−1

i (si − μi )

α

)β
⎞

⎠ (5.9)

when α = 1 and β = 1
2 , it is the multivariate Laplace distribution adopted by the

original IVA algorithm [9].
Now we assume that α = 1, the mean vector is a zero vector and the covariance

matrix is an identity matrix due to the orthogonality of the Fourier basis and scaling
adjustment. Then, the source prior takes the general form

p(si ) ∝ exp

⎛

⎝−
(

K∑

k=1

|si (k)|2
)β
⎞

⎠ (5.10)

where we constrain 0 < β < 1 to obtain a super-Gaussian distribution to describe
the speech signals. The nonlinear score function based on this new source prior is

ϕ(k)
(
ŝi (1) . . . ŝi (k)
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In order to introduce the energy correlation, the root needs to be odd, otherwise the
square will be cancelled. Then the denominator can be expanded as

⎛
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(5.12)

which contains cross items
∑

a �=b cab|ŝi (a)|2|ŝi (b)|2 corresponding to energy cor-
relation between different frequency bins, and cab is a scalar constant between the
a-th and b-th frequency bins.

Thus the following condition must be satisfied

1 − β

2
= 1

2I + 1
(5.13)

where I is positive integer. Then we can obtain the condition for β

β = 2I − 1

2I + 1
(5.14)
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On the other hand, β is the shape parameter of the generalized multivariate
Gaussian distribution. In order to make the proposed source prior more robust to
outliers compared with the original source prior, β should be less than the 1/2, which
is correspondent to the original source prior. Thus

2I − 1

2I + 1
<

1

2
(5.15)

Finally, I = 1 is the only solution, and the associated β is 1/3. Thus the appropriate
generalized Gaussian distribution takes the form

q(si ) ∝ exp

(

− 3
√

(si − μi )
†�−1

i (si − μi )

)

(5.16)

We next show that this source prior can also preserve the inter-frequency depen-
dencies within each source vector in a similar manner to the original source prior for
IVA [9].

We begin with the definition of a K -dimensional random variable

si = v
3
4 ξ i + μi (5.17)

where v is a scalar random variable, and ξ i obeys a generalized Gaussian distribution
which has the form:

p(ξ i ) ∝ exp
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If v has a Gamma distribution of the form:

p(v) ∝ v
1
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− v

2

)

(5.19)

then the proposed source prior can be achieved by integrating the joint distribution
of si and v over v as follows:
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where α1 and α2 are both normalization terms. Therefore, equation (5.20) confirms
that the new source prior has the dependency generated by v.

In Lee’s paper [24], the source priors suitable for IVA are discussed. A general
form of source prior is described as:

q(si ) ∝ exp

(

− (‖si‖p)
1
L

)

= exp

(

−
(∑

k

|s(k)
i |p
) 1

pL
)

(5.21)

where ‖ · ‖p denotes the l p norm, and L is termed as the sparseness parameter.
He suggested that the spherical symmetry assumption is suitable for modeling the
frequency components of speech, i.e. p = 2, and through certain experimental studies
found that the best separation performance can be achieved when L = 7.

Our new proposed source prior also belongs to this family. If we choose p = 2
to make it spherically symmetric, and choose L = 3

2 , the proposed source prior can
be obtained. However, our detailed experimental results show that the improvement
of performance is not robust when L = 7 as mentioned in [24], while the NG-IVA
which adopts our new source prior can consistently achieve improved separation
performance.

5.5 IVA Algorithms with the New Source Prior

5.5.1 NG-IVA with the New Source Prior

Applying this new source prior to derive the nonlinear score function of the NG-IVA
algorithmwith the assumption that the mean vector is zero and the covariance matrix
is an identity matrix, we can obtain

ϕ(k)
(
ŝi (1) . . . ŝi (k)

) = 2ŝi (k)

3 3

√(
K∑

k=1
|ŝi (k)|2

)2
. (5.22)

If we expand the equation under the cubic root, it can be written as:

(
K∑

k=1

|ŝi (k)|2
)2

=
K∑

k=1

|ŝi (k)|4 +
∑

a �=b

cab|ŝi (a)|2|ŝi (b)|2 (5.23)

which contains cross items
∑

a �=b cab|ŝi (a)|2|ŝi (b)|2. These terms are related to the
energy correlation between different components within each source vector, and
capture the level of interdependency between different frequency bins. Thus, this
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new multivariate nonlinear function can provide a more informative model of the
dependency structure. Moreover, it can better describe the speech model.

5.5.2 FastIVA with the New Source Prior

Fast fixed-point independent vector analysis is a fast formof IVAalgorithm.Newton’s
method is adopted in the update, which converges quadratically and is free from
selecting an efficient learning rate [11]. The contrast function used by FastIVA is as
follows:

J =
n∑

i=1

(

E

[

F

(
K∑

k=1

|ŝi (k)|2
)]

−
K∑

k=1

λ
(k)
i

(
wi (k)†wi (k) − 1

)
)

(5.24)

where w†
i is the i-th row of the unmixing matrix W, and λi is the i-th Lagrange

multiplier. F(·) is the nonlinear function, which can take on several different forms
as discussed in [11]. It is a multivariate function of the summation of the desired
signals in all frequency bins. With normalization, the learning rule is:

wi (k) ←E

[

F ′
(

K∑

k=1

|ŝi (k)|2
)

+ |ŝi (k)|2F ′′
(

K∑

k=1

|ŝi (k)|2
)]

wi (k)

− E

[

(ŝi (k))∗F ′
(

K∑

k=1

|ŝi (k)|2
)

xk

]

(5.25)

where F ′(·) and F ′′(·) denote the derivative and second derivative of F(·), respec-
tively. If this is used for all sources, an unmixing matrix W(k) can be constructed,
which must be decorrelated with

W(k) ←
(

W(k)(W(k))†
)−1/2

W(k). (5.26)

When the multivariate Laplacian distribution is used as the source prior for the
FastIVA algorithm, with the zeromean and unity variance assumptions, the nonlinear
function takes the form

F

(
K∑

k=1

|ŝi (k)|2
)

=
(

K∑

k=1

|ŝi (k)|2
)1

2

. (5.27)

When the newmultivariate generalized Gaussian distribution is used as the source
prior, with the same assumptions, the nonlinear function becomes:
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F

(
K∑

k=1

|ŝi (k)|2
)

=
(

K∑
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|ŝi (k)|2
)1

3

. (5.28)

Therefore, the first derivative becomes:

F ′
(

K∑

k=1

|ŝi (k)|2
)

= 2

3 3

√(
K∑

k=1
|ŝi (k)|2

)2
. (5.29)

It is very similar to Eq. (5.22), and it also contains cross terms which can exploit
the energy correlation between different frequency bins. Thus, the FastIVA algorithm
with the new source prior is likely to help improve the separation performance.

5.5.3 AuxIVA with the New Source Prior

AuxIVA adopts the auxiliary function technique to avoid the step size tuning [25]. In
the auxiliary function technique, an auxiliary function is designed for optimization.
During the learning process, the auxiliary function is minimized in terms of auxiliary
variables. The auxiliary function technique can guarantee monotonic decrease of the
cost function, and therefore provides effective iterative update rules [12].

The contrast function for AuxIVA is derived from the source prior [25]. For the
original IVA algorithm,

G(ŝi ) = G R(ri ) = ri (5.30)

where ri = ‖ŝi‖2.
By using the proposed multivariate generalized Gaussian source prior, we can

obtain the following contrast function

G(ŝi ) = G R(ri ) = r
2
3

i . (5.31)

The update rules contain two parts, i.e., the auxiliary variable updates and unmix-
ing matrix updates. In summary, the update rules are as follows:

ri =
√
√
√
√

K∑

k=1

|w†
i (k)x(k)|2 (5.32)

Vi (k) = E

[
G ′

R(ri )

ri
x(k)x(k)†

]

(5.33)
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wi (k) =
(

W (k)Vi (k)

)−1

ei (5.34)

wi (k) = wi (k)
√

w†
i (k)Vi (k)wi (k)

. (5.35)

In Eq. (5.34), ei is a unity vector, the i-th element of which is unity.

During the update process of the auxiliary variable Vi (k), we notice that
G ′

R(ri )

ri
is

used to keep the dependency between different frequency bins for source i . In this

chapter, as we defined previously, G R(ri ) = r
2
3

i . Therefore

G ′
R(ri )

ri
= 2

3r
4
3

i

= 2

3 3

√(
K∑

k=1
|ŝi (k)|2

)2
(5.36)

which has the same form as Eq. (5.29). The update rules also contain the fourth order
terms to exploit the energy correlation within the frequency domain speech signal
vectors and should thereby help to achieve a better separation performance.

5.6 Experiments

In this section, we used all three state-of-the-art IVA algorithms with the proposed
multivariate generalized Gaussian source prior to separate the mixtures obtained in
a reverberant room environment. The speech signals were chosen from the TIMIT
dataset [23], and each of them was approximately 7 s long. The image method was
used to generate the room impulse responses, and the dimensions of the room were
7 × 5 × 3 m3. The DFT length was set to be 1,024, and the reverberation time
RT60 = 200ms. We used a 2 × 2 mixing case, and the microphone positions are
[3.48, 2.50, 1.50] and [3.52, 2.50, 1.50]m respectively. The sampling frequency
was 8kHz. The separation performance was evaluated objectively by the signal-to-
distortion ratio (SDR) and signal-to-interference ratio (SIR) [26]. Figure5.2 is the
plan view of the experimental setting.

5.6.1 NG-IVA Algorithms Comparison

In the first experiment, two different speech signals were chosen randomly from the
TIMIT dataset andwere convolved into twomixtures. Then theNG-IVAmethodwith
original source prior, the NG-IVA method with our proposed source prior and NG-
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Fig. 5.2 Plan view of the experiment setting in the room environment with two microphones and
two sources

Table 5.1 Separation performance comparison in SDR (dB)

Original Proposed Lee’s

Mixture 1 12.27 12.90 4.74
Mixture 2 18.13 18.47 18.34
Mixture 3 8.88 11.83 11.41
Mixture 4 15.57 16.92 5.95
Mixture 5 18.10 18.69 15.44
Mixture 6 18.81 19.58 3.71
Mixture 7 15.94 16.59 8.63
Mixture 8 15.29 15.75 16.03
Mixture 9 18.58 19.05 17.35
Mixture 10 18.80 19.31 0.78

IVA with Lee’s source prior where the sparseness parameter L = 7, were all used to
separate the mixtures, respectively. Then the source positions were changed to repeat
the simulation. For every pair of speech signals, three different azimuth angles for
the sources relative to the normal to the microphone array were set for testing, these
angles were selected from 30◦, 45◦, 60◦, and −30◦. After that, we chose another
pair of speech signals to repeat the above simulations. We used ten different pairs
of speech signals totally, and repeated the simulation 30 times at different positions.
Tables5.1 and 5.2 show the average separation performance for each pair of speech
signals in terms of SDR and SIR in dB.

The experimental results indicate clearly that NG-IVA with the proposed source
prior can consistently improve the separation performance. Although the NG-IVA
with Lee’s source prior can get improvement results sometimes, the separation
improvement is not consistent, in some cases there is essentially no separation such
as mixtures 1, 6, and 10. Even though it can achieve better separation than original
NG-IVA, it is still no better than the proposed method. Only for mixture 8, does
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Table 5.2 Separation performance comparison in SIR (dB)

Original Proposed Lee’s

Mixture 1 14.08 14.84 5.62
Mixture 2 19.57 19.86 19.81
Mixture 3 10.72 13.74 13.19
Mixture 4 16.98 18.46 7.16
Mixture 5 20.14 20.47 16.94
Mixture 6 20.30 20.98 4.35
Mixture 7 17.88 18.40 10.73
Mixture 8 19.88 20.41 20.61
Mixture 9 20.75 20.89 18.80
Mixture 10 20.28 20.60 1.48
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Fig. 5.3 Separation comparison in terms of SDR between original and proposed NG-IVA algo-
rithms as a function of reverberation time

it achieve the best separation performance. Therefore, among all these three algo-
rithms, the NG-IVAwith the proposed source prior is the best method, because it can
consistently achieve better separation performance. The average SDR improvement
and SIR improvement are approximately 0.9 and 0.8dB, respectively compared with
the original NG-IVA algorithm.

Then we used the NG-IVA algorithms with the proposed source prior to separate
the mixtures obtained from different reverberant room environments. Two speech
signals were selected from the TIMIT dataset randomly and convolved into two
mixtures. The azimuth angles for the sources relative to the normal to the micro-
phone array were set as 60◦ and −30◦. Both the original NG-IVA and the proposed
method were used to separate the mixtures. The results are shown in Figs. 5.3 and
5.4, which show the separation performance comparisons in different reverberant
environments. Figures5.3 and 5.4 show the SDR and SIR comparison, respectively.
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Fig. 5.4 Separation comparison in terms of SIR between original and proposedNG-IVA algorithms
as a function of reverberation time

They indicate that the proposed algorithm can consistently improve the separation
performance in different reverberant environments, up to a reverberation time of
450ms. The advantage reduces with increasing reverberation time RT60 due to the
greater challenge in extracting the individual source vectors.

5.6.2 FastIVA Algorithms Comparison

In the second experiment, all the experimental settings and the processes are all
the same as the first experiment. Here we randomly selected five pairs of speech
signals from the TIMIT dataset and convolved them into mixtures. The original
FastIVA algorithm and the FastIVA algorithm with the proposed source prior were
used to separate the speech mixtures. Then the source positions were changed to
repeat the experiment, the average separation performance comparison is shown in
Table5.3. It shows that the separation performance can be improved by adopting the
proposed source prior. The average SDR improvement and SIR improvement both
are approximately 0.6dB.

We also compared the separation performance of these two algorithms in dif-
ferent reverberant room environments as in the first experiment. The SDR and SIR
comparisons are shown in Figs. 5.5 and 5.6. in terms of SDR and SIR comparison,
respectively. The results show that the FastIVA algorithm with the proposed source
prior can improve the separation performance, but again the advantage is reduced
with increasing reverberation time RT60.
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Table 5.3 Separation performance comparison in terms of SDR and SIR measures in dB

Mixtures Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5

Original FastIVA (SDR) 17.77 19.48 14.75 18.12 16.79
Proposed FastIVA (SDR) 18.04 20.63 15.08 18.88 17.31
Original FastIVA (SIR) 19.32 21.01 17.04 19.80 19.18
Proposed FastIVA (SIR) 19.59 22.04 17.31 20.51 19.74
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Fig. 5.5 Separation comparison in termsof SDRbetweenoriginal andproposedFastIVAalgorithms
as a function of reverberation time
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Fig. 5.6 Separation comparison in terms of SIR between original and proposed FastIVA algorithms
as a function of reverberation time
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Table 5.4 Separation performance comparison in terms of SDR and SIR measures in dB

Mixtures Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5

Original AuxIVA (SDR) 12.13 14.62 9.86 19.23 18.64
Proposed AuxIVA (SDR) 14.82 16.30 12.45 19.92 19.50
Original AuxIVA (SIR) 14.06 16.72 11.59 20.54 20.12
Proposed AuxIVA (SIR) 17.26 18.42 14.58 21.20 20.90
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Fig. 5.7 Separation comparison in terms of SDR between original and proposed AuxIVA algo-
rithms as a function of reverberation time

5.6.3 AuxIVA Algorithms Comparison

In the third experiment, the separation performance of AuxIVA with original source
prior and AuxIVA with proposed source prior were compared. Again five different
pairs of speech signals were used, and the simulation was repeated 15 times at dif-
ferent positions. Table5.4 shows the average separation performance for each pair of
speech signals in terms of SDR and SIR. The average SDR and SIR improvements
are approximately 1.7 and 1.9dB, respectively. The results confirm the advantage of
the proposed AuxIVA method which can better preserve the dependency between
different frequency bins of each source and thereby achieve a better separation per-
formance.

Then we also tested the robustness of the proposed AuxIVA method in different
reverberant room environments. The experimental settings are all the same as pre-
vious two experiments. The results are shown in Figs. 5.7 and 5.8, which show the
separation performance comparison in different reverberant environments. It indi-
cates that the AuxIVA algorithm with the proposed source prior can consistently
improve the separation performance in different reverberant environments as the
other two kinds of IVA algorithms.
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Fig. 5.8 Separation comparison in terms of SIR between original and proposedAuxIVA algorithms
as a function of reverberation time

Examining the results for all the three algorithms, our proposed source prior
offers the maximum improvement in the AuxIVA algorithm. However, it is difficult
to make a general recommendation, which is the best algorithm due to the variability
of performance with different speech signals and mixing environments.

5.7 Conclusions

In this chapter, a specific multivariate generalized Gaussian distribution was adopted
as the source prior for IVA. This new source prior can better preserve the inter-
frequency dependencies as compared to the original multivariate Laplace source
prior, and is more robust to outliers. When the proposed source prior was used in IVA
algorithms, it introduces energy correlation commonly found in frequency domain
speech signals to improve the learning process and enhance separation. Three state-
of-the-art types of IVA algorithms with the new source prior, i.e., NG-IVA, FastIVA,
and AuxIVA, were all analyzed, and the experimental results confirm the advantage
of adopting the new source prior particularly for low reverberation environment.
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