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Component Analysis
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Abstract The goal of independent component analysis (ICA) is to decompose
observed signals into components as independent as possible. In linear instanta-
neous blind source separation, ICA is used to separate linear instantaneous mixtures
of source signals into signals that are as close as possible to the original signals. In
the estimation of the so-called demixing matrix one has to distinguish two different
factors:

1. Variance of the estimated inverse mixing matrix in the noiseless case due to
randomness of the sources.

2. Bias of the demixing matrix from the inverse mixing matrix:

This chapter studies both factors for circular and noncircular complex mixtures. It is
important to note that the complex case is not directly equivalent to the real case of
twice larger dimension. In the derivations, we aim to clearly show the connections
and differences between the complex and real cases. In the first part of the chapter, we
derive a closed-form expression for theCRBof the demixingmatrix for instantaneous
noncircular complex mixtures. We also study the CRB numerically for the family
of noncircular complex generalized Gaussian distributions (GGD) and compare it to
simulation results of several ICA estimators. In the second part, we consider a linear
noisy noncircular complex mixing model and derive an analytic expression for the
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demixing matrix of ICA based on the Kullback-Leibler divergence (KLD). We show
that for a wide range of both the shape parameter and the noncircularity index of
the GGD, the signal-to-interference-plus-noise ratio (SINR) of KLD-based ICA is
close to that of linear MMSE estimation. Furthermore, we show how to extend our
derivations to the overdetermined case (M > N ) with circular complex noise.

3.1 Introduction

The goal of independent component analysis (ICA) is to decompose observed signals
into components as independent as possible. In linear instantaneous blind source
separation, ICA is used to separate linear instaneous mixtures of source signals into
signals which are as close as possible to the original signals. In the estimation of the
so-called demixing matrix, one has to distinguish two different factors:

1. Variance of the estimated inverse mixing matrix in the noiseless case due to
randomness of the sources. This variance can be lower bounded by the Cramér-
Rao bound for ICA derived for the real case in [41, 45] and for the circular and
noncircular complex case in [33, 35].

2. Bias of the demixing matrix from the inverse mixing matrix: As already noted in
[16], the presence of noise leads to a bias of the demixing matrix from the inverse
mixing matrix. Often a bias of an estimator is considered to be unwanted, but in
the case of noisy ICA the bias of the demixing matrix from the inverse mixing
matrix actually leads to a reduced noise level in the separated signals and hence
it can be considered to be desired.

This chapter studies both factors for circular and noncircular complex mixtures.
It is important to note that the complex case is not directly equivalent to the real
case of twice larger dimension [19]. In the derivations, we aim to clearly show the
connections and differences between the complex and real cases.

In many practical applications such as audio processing in frequency-domain
or telecommunication, the signals are complex. While many publications focus on
circular1 complex signals (as traditionally assumed in signal processing), [4, 36,
44] provide a good overview of applications with noncircular complex signals and
discuss how to properly deal with noncircularity. Many signals of practical interest
are noncircular. Digital modulation schemes2 usually produce noncircular complex
baseband signals, since the symbol constellations in the complex plane are only
rotationally symmetric for a discrete set of rotation angles but not any arbitrary real
rotation angle as necessary for circularity [2]. Another source of noncircularity is an
imbalance between the in-phase and quadrature (I/Q) components of communication
signals. Noncircularity can also be exploited in feature extraction in electrocardio-

1 See Sect. 3.1.1 for a definition.
2 Examples of digitalmodulation schemes are phase shift keying (PSK), pulse amplitudemodulation
(PAM) or quadrature amplitude modulation (QAM).
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grams (ECGs) and in the analysis of functional magnetic resonance imaging (fMRI)
[4]. Moreover, the theory of noncircularity has found applications in acoustics and
optics [44].

Although a large number of different algorithms for complex ICA have been pro-
posed [7, 10, 14, 17, 18, 20, 29, 30, 38, 39], the CRB for the complex demixing
matrix has only been derived recently in [33, 35]. General conditions regarding iden-
tifiability, uniqueness, and separability for complex ICA can be found in Eriksson
and Koivunen [19]. Yeredor [48] provides a performance analysis for the strong
uncorrelating transform (SUT) in terms of the interference-to-signal ratio matrix.
However, since the SUT uses only second-order statistics, the results from [48] do
not apply for ICA algorithms exploiting also the non-Gaussianity of the sources. As
discussed in [3, 4], many ICA approaches exploiting non-Gaussianity of the sources
are intimately related and can be studied under the umbrella of a maximum like-
lihood framework whose asymptotic performance reaches the CRB if the assumed
distribution of the sources matches the true distribution.

The structure of the separation problem changes substantially if we account for
additive noise. As discussed in [12], the mixing model is no longer equivariant
and the likelihood contrast can no longer be assimilated to mutual information.
Furthermore, the ML estimate of the source signals is no longer a linear function of
the observations [23]. Source estimation from noisy mixtures can be classified into
linear and nonlinear separation. In linear ICA, the presence of noise leads to a bias
in the estimation of the mixing matrix. Douglas et al. [16] introduced measures to
reduce this bias. Cardoso [8] showed that the performance of noisy source separation
depends on the distribution of the sources, the signal-to-noise ratio (SNR) and the
mixing matrix. Davies [13] showed for the real case that it is not meaningful to
estimate both the mixing matrix and the full covariance matrix of the noise from
the data. Koldovsky and Tichavsky [27, 28] drew parallels between linear minimum
mean squared error (MMSE) estimation and ICA for the real data case. Up to now,
closed-form expressions for the bias of the ICA solution in the complex case have
not been derived except for the recent work of Loesch and Yang [34].

After a review of notation for complex-valued signals, complex ICA, and the CRB
for a complex parameter vector in Sect. 3.1.1, we derive a closed-form expression for
the CRB of the demixing matrix for instantaneous noncircular complex mixtures in
Sect. 3.2. We first introduce the signal model and the assumptions in Sect. 3.2.1 and
then derive the CRB for the complex demixing matrix in Sect. 3.2.2. Section3.2.3
discusses the circular complex case and noncircular complex Gaussian case as two
special cases of the CRB. In Sect. 3.2.4, we study the CRB numerically for family
of noncircular complex generalized Gaussian distributions3 (GGD) and compare it
to simulation results of several ICA estimators.

In Sect. 3.3, we consider a linear noisy noncircular complex mixing model and
derive an analytic expression for the demixing matrix of ICA based on the Kullback-
Leibler divergence (KLD) [34]. This expression contains the circular complex and

3 See Sect. 3.2.4 for a definition.
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real case as special cases. The derivation is done using a perturbation analysis valid for
small noise variance.4 In Sect. 3.3.3, we show that for a wide range of both the shape
parameter and the noncircularity index of the GGD, the signal-to-interference-plus-
noise ratio (SINR) of KLD-based ICA is close to that of linear MMSE estimation.
We also discuss the situations where the two solutions differ. Furthermore, we extend
our derivations to the overdetermined case (M > N ) with circular complex noise in
Sect. 3.3.4.

Compared to our previous journal and conference publications [33–35], we extend
the performance study to a larger number of ICA algorithms and extend the results
for noisy mixtures to the overdetermined case.

3.1.1 Notations for Complex-Valued Signals

3.1.1.1 Complex Random Vector

Let x = xR + jxI ∈ C
N be a complex random column vector with a corresponding

probability density function (pdf) defined as the pdf p̃(xR, xI ) of the real part xR

and imaginary part xI of x. Since xR = x+x∗
2 and xI = x−x∗

2 j , we can rewrite the pdf
p̃(xR, xI ) as a function of x and x∗, i.e., p̃(xR, xI ) = p(x, x∗). In the following, we
will use p(x) as a short notation for p(x, x∗). The covariance matrix of x is

cov(x) = E
[
(x − E[x])(x − E[x])H

]
. (3.1)

The pseudo-covariance matrix of x is

pcov(x) = E
[
(x − E[x])(x − E[x])T

]
. (3.2)

(·)T and (·)H stand for transpose and complex conjugate transpose of a vector or
matrix. The augmented covariance matrix of x is the covariance matrix of the aug-

mented vector x = [
xT xH

]T
:

cov(x) =
[

cov(x) pcov(x)

pcov(x)∗ cov(x)∗
]

. (3.3)

x is called circular if p(xe jα) = p(x) ∀α ∈ R. Otherwise it is called noncircular.
Actually, for a random variable s, the circularity definition p(se jα) = p(s) ∀α ∈ R

is much stronger than the second-order circularity given by γ = E
[
s2
] = 0. There

exist noncircular complex random variables with γ = 0. For simplicity, however,

4 For a large noise variance σ 2 the theoretical analysis cannot fully describe the behavior of KLD-
based ICA since we only take into account terms of order σ 2. However, simulation results show
that KLD-based ICA still performs similarly to linear MMSE estimation.
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we use the second-order noncircularity index γ = E
[
s2
]
to quantify noncircularity

in the remainder of this chapter.

3.1.1.2 Complex Gradient

Let a complex column parameter vector θθθ = θθθ R + jθθθ I ∈ C
M , its real and imaginary

part θθθ R, θθθ I ∈ R
M , and a real scalar cost function f (θθθ,θθθ∗) = f̃ (θθθ R, θθθ I ) ∈ R be

given. For ease of notation, we will also use the simplified notation f (θθθ) instead of
f (θθθ,θθθ∗). Instead of calculating the derivatives of f̃ (·) with respect to θθθ R and θθθ I , the
Wirtinger calculus computes the partial derivatives of f (θθθ,θθθ∗) with respect to θθθ and
θθθ∗, treating θθθ and θθθ∗ as two independent variables [21, 44]. The complex gradient
vectors ∇θθθ f and ∇θθθ∗ f are given by

∇θθθ f = ∂ f

∂θθθ
= 1

2

(
∂ f̃

∂θθθ R
− j

∂ f̃

∂θθθ I

)
∈ C

M ,

∇θθθ∗ f = ∂ f

∂θθθ∗ = 1

2

(
∂ f̃

∂θθθ R
+ j

∂ f̃

∂θθθ I

)
∈ C

M . (3.4)

The stationary points of f (·) and f̃ (·) are given by
(

∂ f̃
∂θθθ R

= 0 and ∂ f̃
∂θθθ I

= 0
)
or

∂ f
∂θθθ

= 0 or ∂ f
∂θθθ∗ = 0. The direction of steepest descent of a real function f (θθθ,θθθ∗) is

given by − ∂ f
∂θθθ∗ and not − ∂ f

∂θθθ
[6]. Note that − ∂ f

∂θθθ∗ is the direction of steepest descent
for θθθ and not for θθθ∗.

As long as the real and imaginary part of a complex function g(θθθ,θθθ∗) =
gR(θθθ R, θθθ I ) + jgI (θθθ R, θθθ I ) are differentiable, the Wirtinger derivatives ∂g

∂θθθ
= ∂gR

∂θθθ
+

j ∂gI
∂θθθ

and ∂g
∂θθθ∗ = ∂gR

∂θθθ∗ + j ∂gI
∂θθθ∗ also exist [43]. Furthermore, we note that the Wirtinger

derivatives defined in (3.4) are also valid for partial derivatives of f with respect to
a parameter matrix ���. In this chapter, we will also use real derivatives which we
denote as (·)′ wherever possible.

3.1.1.3 Cramér-Rao Bound for a Complex Parameter Vector

Assume that L complex observations of x are iid with the pdf p(x;θθθ) where θθθ is
an N -dimensional complex parameter vector. In principle, it would be possible to
derive the CRB for complex parameter θθθ = θθθ R + jθθθ I by considering the real CRB

of the 2N -dimensional real composite vector θ̄θθ = [
θθθT

R θθθT
I

]T
:

cov(θ̄θθ) =
[

cov(θθθ R) cov(θθθ R, θθθ I )

cov(θθθ I , θθθ R) cov(θθθ I )

]
≥ L−1J−1

θ̄θθ
, (3.5)
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where cov(x, y) = E
[
(x − E[x])(y − E[y])T

]
denotes the cross-covariance matrix

of x and y, Jθ̄θθ = E
[{∇θ̄θθ ln p(x; θ̄θθ)

} {∇θ̄θθ ln p(x; θ̄θθ)
}T
]
is the real Fisher information

matrix (FIM) and ∇θ̄θθ ln p(x; θ̄θθ) is the real gradient vector of ln p(x; θ̄θθ).
However, it is often more convenient to directly work with the complex CRB

introduced in this section: The complex FIM of θθθ is defined as

Jθθθ =
[
Iθθθ Pθθθ

P∗
θθθ I ∗

θθθ

]
, (3.6)

whereIθθθ = E
[{∇θθθ∗ ln p(x;θθθ)} {∇θθθ∗ ln p(x;θθθ)}H ] is called the information matrix

and Pθθθ = E
[{∇θθθ∗ ln p(x;θθθ)} {∇θθθ∗ ln p(x;θθθ)}T ] the pseudo-information matrix.

The inverse of the FIM of θθθ gives, under some regularity conditions, a lower
bound for the augmented covariance matrix of an unbiased estimator θ̂θθ of θθθ [42, 44]

[
cov(θ̂θθ) pcov(θ̂θθ)

pcov(θ̂θθ)∗ cov(θ̂θθ)∗

]
≥ (

LJθθθ

)−1= L−1
[
Iθθθ Pθθθ

P∗
θθθ I ∗

θθθ

]−1

. (3.7)

Note that the complex CRB (3.7) can be transformed to the corresponding real CRB

(3.5) by using the transform J−1
θ̄θθ

= 1
2TJ −1

θθθ T−1 [42], where T = 1
2

[
I I

− jI jI

]
is a

2N × 2N matrix and I is the N × N identity matrix.
By using the block matrix inversion lemma [22], we get from (3.7)

[
cov(θ̂θθ) pcov(θ̂θθ)

pcov(θ̂θθ)∗cov(θ̂θθ)∗

]
≥ L−1

[
R−1

θθθ −R−1
θθθ Qθθθ

−QH
θθθ R−1

θθθ R−∗
θθθ

]
(3.8)

with Rθθθ = Iθθθ − PθθθI
−∗
θθθ P∗

θθθ and Qθθθ = PθθθI
−∗
θθθ . A−∗ is a short notation for(

A−1
)∗ = (A∗)−1. Often we are interested in the bound for cov(θ̂θθ) only, which can

be obtained from (3.8) as

cov(θ̂θθ) ≥ L−1R−1
θθθ = L−1(Iθθθ − PθθθI

−∗
θθθ P∗

θθθ )−1. (3.9)

Note that (3.9) gives a bound solely on the covariancematrix of an unbiased estimator.
If an estimator reaches that bound, i.e., cov(θ̂θθ) = L−1R−1

θθθ , it does not imply that it
also reaches the general CRB defined in (3.7). Only if the pseudo-information matrix
Pθθθ vanishes, cov(θ̂θθ) = L−1R−1

θθθ implies that θ̂θθ reaches the CRB (3.7).
Sometimes, we are interested in introducing constraints on some or all of the

complex parameters. The constrained CRB can be derived by following the steps in
either [42] or [24]. If the unconstrained Fisher information matrix is singular, only
the constrained CRB from [24] can be applied.
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3.2 Cramér-Rao Bound for Complex ICA

For the performance analysis of ICA algorithms, it is useful to have a lower bound
for the covariance matrix of estimators of the demixing matrix W. The Cramér-Rao
bound (CRB) is a lower bound on the covariance matrix of any unbiased estimator of
a parameter vector. A closed-form expression for the CRB of the demixingmatrix for
real instantaneous ICA has been derived recently in [41, 45] which we summarized
in Appendix 1. However, in many practical applications such as audio processing
in frequency-domain or telecommunication, the signals are complex and hence we
need the CRB for complex ICA.

3.2.1 Signal Model and Assumptions

Throughout this section, we assume an instantaneous complex linear square noiseless
mixing model

x = As (3.10)

where x ∈ C
N are N linear combinations of the N source signals s ∈ C

N . We make
the following assumptions:

A1. The mixing matrix A ∈ C
N×N is deterministic and invertible.

A2. s = [s1, . . . , sN ]T ∈ C
N are N independent random variables with zero mean,

unit variance E
[|si |2

] = 1 and second-order noncircularity index γi = E[s2i ] ∈
[0, 1].5 Since γi ∈ R, the real and imaginary part of si are uncorrelated. γi 	= 0
if and only if the variances of the real and imaginary part of si differ.
The probability density functions (pdfs) psi (si ) of different source signals si

can be identical or different. psi (si ) is continuously differentiable with respect
to si and s∗

i in the sense of Wirtinger derivatives [46] which have been shortly
reviewed in Sect. 3.1.1. All required expectations exist.

The task of ICA is to demix the signals x by a linear demixing matrix W ∈ C
N×N

y = Wx = WAs (3.11)

such that y is “as close to s” as possible according to some metric.
The ideal solution for W is A−1, neglecting scaling, phase, and permutation

ambiguity [19]. If we know the pdfs psi (si ) perfectly, there is no scaling ambiguity.
Due to the “working” assumption γi ∈ [0, 1] (see Appendix 2), there is no phase
ambiguity for noncircular sources (γi > 0) [1, 37]. A phase ambiguity occurs only
for circular sources (γi = 0). Noncircular sources si which do not comply with the
assumption γi ∈ [0, 1] can be transformed according to si e jαi such that γi ∈ [0, 1].

5 Due to the inherent scaling ambiguity between the mixing matrix A and the source signals s,
without loss of generality, we can scale s and accordingly A such that E

[|si |2
] = 1 and γi ∈ [0, 1].
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In general, a complex source signal s can be described by the following statistical
properties:

• non-Gaussianity,
• noncircularity,
• nonwhiteness, i.e., s(t1) and s(t2) are dependent for different time instants t1 	= t2,
• nonstationarity, i.e., the statistical properties of s(t) change over time.

In this section, we focus on noncircular complex source signals with independent
and identically distributed (iid) time samples. An extension to temporally non-iid
sources, i.e., to incorporate nonstationarity and nonwhiteness of the sources, has
been given in [35].

Two temporally iid sources can be separated by ICA

• if at least one of the two sources is non-Gaussian or
• if both sources are Gaussian but differ in noncircularity [19].

3.2.2 Derivation of the Cramér-Rao Bound

We form the parameter vector

θθθ = vec(WT ) = [wT
1 , . . . , wT

N ]T ∈ C
N2

(3.12)

where wT
i denotes the i-th row vector of W. The vec(·) operator stacks the columns

of its argument into one long column vector. Given the pdfs psi (si ) of the complex
source signals si and the complex linear transform x = As, it is easy to derive the pdf
of x as p(x;θθθ) = | det(W)|2∏N

i=1 psi (w
T
i x). Here, in the derivation of the CRB,

W is a short notation for A−1 and not the demixing matrix which would contain
permutation, scaling, and phase ambiguity. By using matrix derivatives [2, 3, 21],
we obtain

∂

∂WH
ln p(x;θθθ) = A∗ − x∗ϕϕϕT (Wx) = A∗(I − sϕϕϕH (s))∗ (3.13)

where ϕϕϕ(s) = [ϕ1(s1), . . . , ϕN (sN )]T and ϕi (si ) is defined as

ϕi (si ) = − ∂

∂s∗
i
ln psi (si ) = −1

2

1

psi (si )

[
∂psi (si )

∂si,R
+ j

∂psi (si )

∂si,I

]
. (3.14)

Since θθθ = vec(WT ), we get

∇θθθ∗ ln px(x;θθθ) = vec

(
∂

∂WH
ln px(x;θθθ)

)
=
[
(I ⊗ A) vec

(
I − sϕϕϕ(s)H

)]∗
,

(3.15)



3 Performance Study for Complex Independent Component Analysis 69

where A ⊗ B = [
ai j B

]
denotes the Kronecker product of A and B. Hence, the

information and pseudo-information matrix in (3.6) become

Iθθθ =
(
(I ⊗ A)E

[
vec{I − sϕϕϕH (s)} vec{I − sϕϕϕH (s)}H

]
(I ⊗ AH )

)∗

=
(
(I ⊗ A)M1(I ⊗ AH )

)∗
, (3.16)

Pθθθ =
(
(I ⊗ A)E

[
vec{I − sϕϕϕH (s)} vec{I − sϕϕϕH (s)}T

]
(I ⊗ AT )

)∗

=
(
(I ⊗ A)M2(I ⊗ AT )

)∗
, (3.17)

where

M1 = E
[
vec{I − sϕϕϕH (s)} vec{I − sϕϕϕH (s)}H

]

and M2 = E
[
vec{I − sϕϕϕH (s)} vec{I − sϕϕϕH (s)}T

]
. (3.18)

3.2.2.1 Induced CRB for the Gain Matrix G = WA

Since the so-called gain matrix G = WA is a linear function of W, the CRB for W
“induces” a bound for G. For simplicity, we first derive this induced CRB (iCRB) for
G = WA = A−1A = I which is independent of the mixing matrix A. Later we will
obtain the CRB for W from the iCRB for G.6 When Ĝ = ŴA denotes the estimated
gain matrix, the diagonal elements Ĝii should be close to 1. They reflect how well
we can estimate the power of each source signal. The off-diagonal elements Ĝi j

should be close to 0 and reflect how well we can suppress interfering components.
We define the corresponding stacked parameter vector

ϑϑϑ = vec(GT ) = vec(AT WT ) = (I ⊗ AT ) vec(WT ) = (I ⊗ AT )θθθ. (3.19)

The covariance matrix of ϑ̂ϑϑ = vec((ŴA)T ) is given by cov(ϑ̂ϑϑ) = (I ⊗ AT ) cov(θ̂θθ)

(I ⊗ A∗) where θ̂θθ = vec(ŴT ). By combining (3.9) with (3.16) and (3.17), we get

cov(ϑ̂ϑϑ) ≥ L−1(I ⊗ AT )(Iθθθ − PθθθI
−∗
θθθ P∗

θθθ )−1(I ⊗ A∗) = L−1R−1
ϑϑϑ (3.20)

6 Some authors [5, 15, 47] prefer the so-called expected interference-to-source ratio (ISR) matrix

whose elements ISRi j are defined (for i 	= j and unit variance sources) as ISRi j = E

[ |Gi j |2
|Gii |2

]
,

where Gii denotes the diagonal elements and Gi j the off-diagonal elements of G. To compute
ISRi j , usually Gii ≈ 1 (i.e., var(Gii ) � 1) is assumed such that ISRi j ≈ var(Gi j ). In this section,
we do not use the ISR matrix but instead directly derive the iCRB for G.
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with
Rϑϑϑ = (M1 − M2M−∗

1 M∗
2)

∗. (3.21)

As shown in [35], Rϑϑϑ can be calculated as

Rϑϑϑ =
N∑

i=1

di Li i ⊗Li i +
N∑

i=1

N∑
j=1, j 	=i

ai j Li i ⊗L j j +
N∑

i=1

N∑
j=1, j 	=i

bi j Li j ⊗L j i (3.22)

where di = (ηi −1)2−|βi −1|2
ηi −1 ∈ R, ai j = κi − |γ j ξi |2

κi
− 1

κ j
∈ R and bi j =

−
(

γ ∗
j ξ∗

i
κi

+ γi ξ j
κ j

)
= b∗

j i ∈ C. Li j in (3.22) denotes an N × N matrix with a 1

at the (i, j) position and 0’s elsewhere.
The parameters ηi , κi , βi , ξi and γ j are defined as

ηi = E
[
|si |2|ϕi (si )|2

]
> 1, (3.23)

κi = E
[
|ϕi (si )|2

]
≥ 1, (3.24)

βi = E
[
s2i (ϕ∗

i (si ))
2
]

∈ C, (3.25)

ξi = E
[
(ϕ∗

i (si ))
2
]

∈ C, (3.26)

γ j = E
[
s2j

]
∈ R. (3.27)

Properties and other equivalent forms of these parameters can be found in the appen-
dix of [35].

Rϑϑϑ has a special sparse structure which is illustrated below for N = 3:

Rϑϑϑ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 0 0 0 0 0 0 0 0
0 a12 0 b12 0 0 0 0 0
0 0 a13 0 0 0 b13 0 0
0 b21 0 a21 0 0 0 0 0
0 0 0 0 d2 0 0 0 0
0 0 0 0 0 a23 0 b23 0
0 0 b31 0 0 0 a31 0 0
0 0 0 0 0 b32 0 a32 0
0 0 0 0 0 0 0 0 d3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ss

The i-th diagonal element of the i-th diagonal block is Rϑϑϑ [i, i](i,i) = di . The j-th
diagonal element of the i-th diagonal block is Rϑϑϑ [i, i]( j, j) = ai j . The ( j, i) element
of the [i, j] block is Rϑϑϑ [i, j]( j,i) = bi j . All remaining elements are 0. By permuting
rows and columns of Rϑϑϑ , it can be brought into a block-diagonal form. Then it
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consists only of 1 × 1 blocks with elements di and 2 × 2 blocks

[
ai j bi j

b ji a ji

]
. Hence,

Rϑϑϑ can be easily inverted resulting in a block-diagonal matrix where all 1 × 1 and
2 × 2 blocks are individually inverted as long as di 	= 0 and ai j a ji − bi j b ji 	= 0.
The result is

R−1
ϑϑϑ =

N∑
i=1

1

di
Li i ⊗ Li i +

N∑
i=1

N∑
j=1
j 	=i

a ji

ai j a ji − bi j b ji
Li i ⊗ L j j

+
N∑

i=1

N∑
j=1
j 	=i

−bi j

ai j a ji − bi j b ji
Li j ⊗ L j i

=
N∑

i=1

fi Li i ⊗ Li i +
N∑

i=1

N∑
j=1
j 	=i

gi j Li i ⊗ L j j +
N∑

i=1

N∑
j=1
j 	=i

hi j Li j ⊗ L j i (3.28)

with

fi = 1

di
= ηi − 1

(ηi − 1)2 − |βi − 1|2 , (3.29)

gi j = a ji

ai j a ji − bi j b ji
= κ j (κi κ j − 1) − |γi ξ j |2κi

(κi κ j − 1)2 + |γi γ j ξi ξ j − 1|2 − 1 − κ2i |γi ξ j |2 − κ2j |γ j ξi |2
,

(3.30)

hi j = −bi j

ai j a ji − bi j b ji
=

γ ∗
j ξ∗

i κ j + γi ξ j κi

(κi κ j − 1)2 + |γi γ j ξi ξ j − 1|2 − 1 − κ2i |γi ξ j |2 − κ2j |γ j ξi |2
.

(3.31)

Thismeans that var(Ĝii ) and var(Ĝi j ) of Ĝ = ŴA are lower bounded by the (i, i)-th
and ( j, j)-th element of the (i, i)-th block of L−1R−1

ϑϑϑ :

var(Ĝii ) ≥ 1

L
fi = 1

L

ηi − 1

(ηi − 1)2 − |βi − 1|2 , (3.32)

var(Ĝi j ) ≥ 1

L
gi j = 1

L

κ j (κiκ j − 1) − |γiξ j |2κi

(κiκ j − 1)2 + |γiγ jξiξ j − 1|2 − 1 − κ2
i |γiξ j |2 − κ2

j |γ jξi |2
.

(3.33)

Note that L−1R−1
ϑϑϑ is the iCRB forϑϑϑ as in (3.9). In order to get the complete iCRB

for

[
ϑϑϑ

ϑϑϑ∗
]
as in (3.8), we would also need Pϑϑϑ = −R−1

ϑϑϑ Qϑϑϑ = −R−1
ϑϑϑ M∗

2M−1
1 .
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It can be shown in a similar way

Pϑϑϑ =
N∑

i=1

f̃i Li i ⊗ Li i +
N∑

i=1

N∑
j=1
j 	=i

(
g̃i j Li i ⊗ L j j + h̃i j Li j ⊗ L j i

)
(3.34)

has the same form as R−1
ϑϑϑ in (3.28) with

f̃i = − fi (βi − 1)∗
ηi − 1

= −(βi − 1)∗
(ηi − 1)2 − |βi − 1|2 , (3.35)

g̃i j = −
gi j γ

∗
j ξ∗

i + hi j

κi
=

−(κ2j − |γi ξ j |2)γ ∗
j ξ∗

i γi ξ j

(κi κ j − 1)2 + |γi γ j ξi ξ j − 1|2 − 1 − κ2i |γi ξ j |2 − κ2j |γ j ξi |2
,

(3.36)

h̃i j = −
gi j + γ ∗

i ξ∗
j hi j

κ j
= 1 − κi κ j − (γ j ξi γi ξ j )

∗

(κi κ j − 1)2 + |γi γ j ξi ξ j − 1|2 − 1 − κ2i |γi ξ j |2 − κ2j |γ j ξi |2
.

(3.37)

Note that according to (3.28) and (3.34) the iCRB forG = WA has a nice decoupling
property: the iCRB for Gii only depends on the distribution of source i and the iCRB
for Gi j only depends on the distribution of sources i and j and not on any other
sources. Note that (3.32) and (3.33) cannot be used as a bound for real ICA since the
FIM would be singular.

3.2.2.2 CRB for the Demixing Matrix W

Starting with the iCRB L−1R−1
ϑϑϑ for the stacked gain matrix ϑϑϑ = vec((WA)T ) =

(I ⊗ AT ) · vec(WT ), it is now straightforward to derive the CRB for the stacked
demixing matrix θθθ = vec(WT ) = (I ⊗ AT )−1ϑϑϑ = (I ⊗ WT )ϑϑϑ . Since θθθ is a linear
function of ϑϑϑ ,

cov(θ̂θθ) ≥ L−1R−1
θθθ = L−1(I ⊗ WT )R−1

ϑϑϑ (I ⊗ W∗) (3.38)

holds for any unbiased estimator θ̂θθ for θθθ . See [35] for a more detailed expression of
the CRB for W.

3.2.3 Special Cases of the iCRB

In the previous section, we derived the iCRB for the gain matrix G = WA for the
general complex case. Below, we study some special cases of the iCRB.
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3.2.3.1 Case A: All Sources Are Circular Complex

If all sources are circular complex, γi = 0 and βi = ηi [35]. Due to the phase
ambiguity in circular complex ICA, the Fisher information for the diagonal elements
Gii is 0 and hence their iCRB does not exist. However, we can constrain Gii to be real
and derive the constrained CRB [24] for Gii : As noted at the end of Sect. 3.2.2.1, Gii

is decoupled from Gi j and G j j and hence it is sufficient to consider the constrained
CRB for Gii alone.

The constrained CRB for Gii is given by [35]

var(Ĝii ) ≥ 1

4L(ηi − 1)
. (3.39)

The bound in (3.39) is valid for a phase-constrained Gii such that Gii ∈ R. Equation
(3.39) looks similar to the real case (3.90) except for a factor of 4 since ηi is defined
using Wirtinger derivatives instead of real derivatives.

For var(Ĝi j ) we get from (3.33)

var(Ĝi j ) ≥ 1

L

κ j

κiκ j − 1
, (3.40)

which again looks the same as in the real case (3.91). However, in the complex case,
κi is defined using the Wirtinger derivative instead of real derivative. Furthermore,
in the complex case κ measures the non-Gaussianity and noncircularity whereas in
the real case κ measures only the non-Gaussianity.

If source i and j are both circular Gaussian, κi = κ j = 1 and var(Ĝi j ) → ∞.
This corresponds to the known fact that circular complex Gaussian sources cannot
be separated by ICA.

3.2.3.2 Case B: All Sources are Noncircular Complex Gaussian

If all sources are noncircular Gaussian with different γi ∈ R, it can be shown using
the expressions for κ, ξ, η and β in (3.86)–(3.89) with c = 1 that

var(Ĝii ) ≥ 1

L

1

4γ 2
i

, (3.41)

var(Ĝi j ) ≥ 1

L

γ 2
i + γ 2

j − 2γ 2
i γ 2

j

(γ 2
j − γ 2

i )2
(1 − γ 2

i )

= 1 − γ 2
i

2L

[
1 − γiγ j

(γi − γ j )2
+ 1 + γiγ j

(γi + γ j )2

]
. (3.42)
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Note that (3.42) is exactly the same result as obtained in [48] for the performance
analysis of the SUT, i.e., our result shows that for noncircular Gaussian sources the
SUT is indeed asymptotically optimal.

If all sources are noncircular Gaussian with identical γi , it can be shown that the
iCRB for Gi j does not exist because γ 2

j −γ 2
i → 0. This confirms the result obtained

in [19, 29] which showed that ICA fails for two or more noncircular Gaussian signals
with same γi .

3.2.4 Results for Generalized Gaussian Distribution

In order to verify the CRB derived in the previous sections, we now study complex
ICA with noncircular complex generalized Gaussian distributed (GGD) sources. We
choose this family of parametric pdf since it enables an analytical calculation of
the CRB. The pdf of such a noncircular complex source s with zero mean, variance
E[|s|2] = 1 and noncircularity index γ ∈ [0, 1] can be written as [40]

p(s, s∗) =
cα · exp

(
−
[

α/2
γ 2−1

(
γ s2 + γ s∗2 − 2ss∗

)]c)

π�(1/c)(1 − γ 2)1/2
,

where α = Γ (2/c)/Γ (1/c) and Γ (·) is the Gamma function. The shape parameter
c > 0 varies the form of the pdf from super-Gaussian (c < 1) to sub-Gaussian
(c > 1). For c = 1, the pdf is Gaussian. 0 ≤ γ ≤ 1 controls the noncircularity of
the pdf. The four parameters κ , β, η, ξ required to calculate the CRB are derived
in Appendix 1. For the simulation study, we consider N = 3 sources with random
mixing matrices A. The real and imaginary part of all elements of A are independent
and uniformly distributed in [−1, 1]. We conducted 100 experiments with different
random matrices A and consider the following different ICA estimators7: Complex
ML-ICA [29], complex ICA by entropy bound minimization (ICA-EBM) [30], non-
circular complex ncFastICA (ncFastICA) [39], adaptable complex maximization of
non-Gaussianity (ACMN) [38] and strong uncorrelating transform (SUT) [18, 44].
The properties and assumptions of the five different ICA algorithms are summarized
in Table3.1.

We want to compare the separation performance of ICA with respect to the iCRB
and hence we define the performance metric as in [45]: After running an ICA algo-
rithm, we correct the permutation ambiguity of the estimated demixing matrix and
calculate the signal-to-interference ratio (SIR) averaged over all N sources:

SIR = 1

N

N∑
i=1

E
[|Gii |2

]
∑

j 	=i E
[|Gi j |2

] = 1

N

N∑
i=1

1+var(Gii )∑
j 	=i var(Gi j )

. (3.43)

7 Note that many alternative ICA estimators such as [7, 10, 14, 17, 20] exist.
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Table 3.1 Considered separation algorithms and their properties

Algorithm Pdf model/ϕ Separation principle

Complex ML-ICA (ML-ICA) True pdf of the
sources

Non-Gaussianity and noncircularity

Complex ICA by Entropy Bound
Minimization (ICA-EBM)

Adaptive Non-Gaussianity and noncircularity

Noncircular Complex FastICA
(ncFastICA)

Fixed ϕ Non-Gaussianity

Adaptable Complex Maximization of
Non-Gaussianity (ACMN)

Adaptive ϕ Non-Gaussianity

Strong Uncorrelating Transform (SUT) – noncircularity

In (3.43), the averaging over simulation trials takes place before taking the ratio.
In practice, the accuracy of the estimated demixingmatrix depends not only on the

optimization cost function but also on the optimization algorithm used to implement
the estimator: In some rare cases, complexML-ICA based on natural-gradient ascent
converges to a local maximum of the likelihood and yields a lower SIR value than
ICA-EBM. To overcome this problem, we initialized ML-ICA from the solution
obtained by ICA-EBM which is close to the optimal solution.

3.2.4.1 Case A: All Sources Are Identically Distributed

First, we study the performance when all sources are identically distributed with
the same shape parameter c and the same noncircularity index γ . Figure3.1 shows
the results: The SIR given by the iCRB increases with increasing non-Gaussianity
(c → ∞ or c → 0). For c ≈ 1, SIR is low since (nearly) Gaussian sources with
the same noncircularity index γ cannot be separated by ICA. For c 	= 1, the SIR
also increases with increasing noncircularity γ , but much slower since all sources
have the same noncircularity γ . Clearly, all ICA algorithms work quite well except
for c ≈ 1 (Gaussian). ML-ICA (Fig. 3.1b) achieves the best performance followed
by ICA-EBM (Fig. 3.1c) and ACMN (Fig. 3.1f). ncFastICA with kurtosis cost func-
tion achieves better performance for sub-Gaussian sources (c > 1) than for super-
Gaussian sources (c < 1), whereas ncFastICA with square root (sqrt) nonlinearity
works better for super-Gaussian sources than for sub-Gaussian sources. However, as
also mentioned in [30], the square root nonlinearity leads overall to the best perfor-
mance and hencewe only consider ncFastICAwith this nonlinearity in the following.
As expected, SUT fails since it only uses noncircularity for separation and hence we
do not show the results. The reason why ML-ICA outperforms ICA-EBM is that
ML-ICA uses nonlinearities matched to the source distributions while ICA-EBM
uses a linear combination of prespecified nonlinear functions. Note that ICA-EBM
allows one to select nonlinearities for approximating the source entropy. Hence if
prior knowledge about the source distributions is available, it can be incorporated
into ICA-EBM thus improving its performance.
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Fig. 3.1 Comparison of signal-to-interference ratio [dB] of different ICA estimators with CRB,
sample size L = 1000, all sources follow a generalized Gaussian distribution with ci = c and
γi = γ . iCRB (a), ML-ICA (b), ICA-EBM (c), ncFastICA kurtosis (d), ncFastICA sqrt (e), ACMN
(f)

3.2.4.2 Case B: All Sources Have Different Shape Parameters and Different
Noncircularities

Now we study the performance when the sources follow a GGD with different
shape parameters c1 = 1, c2 = c, c3 = 1/c and different noncircularity indices
γi = (i − 1)�γ . Figure3.2 shows that the SIR given by the iCRB increases both
with increasing non-Gaussianity of source 2 and 3 (i.e., c < 1) as well as increasing
difference in noncircularity indices �γ . ML-ICA achieves again the best perfor-
mance, followed by ICA-EBM. The reason is again that ML-ICA uses for each
source si a nonlinearity ϕi (si ) matched to its pdf psi (si ) whereas the nonlinearities
used in ICA-EBM are fixed a priori. Although ncFastICA and ACMN exploit the
noncircularity of the sources to improve the convergence, their cost function only
uses non-Gaussianity and not noncircularity. This is reflected clearly in Fig. 3.2 since
performance for ncFastICA and ACMN is almost constant for different �γ . SUT
uses only noncircularity for separation, and hence performance is almost constant for
different c. SUT can work quite well, as long as �γ is large enough. Only ML-ICA
and ICA-EBM use both non-Gaussianity and noncircularity and hence the contour
lines in Fig. 3.2b, c resemble those of the CRB Fig. 3.2a.
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Fig. 3.2 Comparison of signal-to-interference ratio [dB] of different ICA estimators with iCRB,
sample size L = 1000, all sources follow a generalized Gaussian distribution with c1 = 1, c2 =
c, c3 = 1/c, γi = (i − 1)�γ . iCRB (a), ML-ICA (b), ICA-EBM (c), ncFastICA sqrt (d), ACMN
(e), SUT (f)

3.2.4.3 Performance as a Function of the Sample Size

Here, we study the performance as a function of sample size L . Clearly, Fig. 3.3
shows that for circular non-Gaussian sources and limited sample size L , ML-ICA
achieves the best performance followed by ACMN and then ICA-EBM. The rea-
son why ACMN outperforms ICA-EBM for circular sources could be the fact
that ACMN needs to adapt less parameters since it uses only non-Gaussianity.
As expected, SUT fails since it only uses noncircularity for separation. For cir-
cular super-Gaussian sources (Fig. 3.3a), ACMN and ncFastICA perform almost the
same. For sub-Gaussian sources (Fig. 3.3b), the sqrt nonlinearity is sub-optimal as
shown in the larger error of ncFastICA. Figure3.4a shows results for noncircular
Gaussian sources with distinct noncircularity indices: SUT and ML-ICA perform
equally well since for noncircular Gaussian sources they are equivalent and asymp-
totically optimal. ICA-EBM approaches the performance of SUT and ML-ICA for
large enough sample size. ncFastICAandACMNwhich use only non-Gaussianity for
separation fail. Figure3.4b, c shows results for noncircular super-Gaussian (c = 0.5)
and sub-Gaussian (c = 6) sources with distint noncircularity indices: With limited
sample size, ML-ICA achieves again the best performance followed by ICA-EBM.
For a large sample size (L ≥ 1000) and a wide range of distributions including
strongly super-Gaussian but excluding strongly sub-Gaussian sources, ICA-EBM
comes close to the performance of ML-ICA, see Figs. 3.1, 3.3, 3.4. The reason for
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Fig. 3.3 Performance as a function of sample size L , circular GGD sources. c = 0.5 (a), c = 6
(b)

this behavior is that ML-ICA uses nonlinearities matched to the source distribu-
tions while ICA-EBM uses a linear combination of prespecified nonlinear functions.
These could be extended to improve performance for strongly sub-Gaussian sources.
The performance of ncFastICA and ACMN is quite far from that given by the iCRB
since these two algorithms do not use noncircularity for separation. For signals with
distinct noncircularity indices, SUT can achieve decent separation, but for strongly
non-Gaussian signals the performance is quite far from that given by the iCRB (see
also Fig. 3.2).

3.2.5 Conclusion

In this section, we have derived the CRB for the noncircular complex ICA problem
with temporally iid sources. The induced CRB (iCRB) for the gain matrix, i.e., the
demixing-mixing-matrix product, depends on the distribution of the sources through
five parameters, which can be easily calculated. The derived bound is valid for the
general noncircular complex case and contains the circular complex and the non-
circular complex Gaussian case as two special cases. The iCRB reflects the phase
ambiguity in circular complex ICA. In that case, we derived a constrained CRB
for a phase-constrained demixing matrix. Simulation results using five ICA algo-
rithms have shown that for sources following a noncircular complex generalized
Gaussian distribution, some algorithms can achieve a signal-to-interference ratio
(SIR) close to that of the CRB. Among the studied algorithms, complex ML-ICA
and ICA-EBM perform best. The complex ML-ICA algorithm, which uses for each
source a nonlinearity matched to its pdf, outperforms ICA-EBM especially for small
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Fig. 3.4 Performance as a function of sample size L , noncircular GGD sources with ci = c and
γi = (i − 1)�γ . c = 1,�γ = 0.45 (a), c = 0.5,�γ = 0.45 (b), c = 6,�γ = 0.45 (c)

sample sizes. However, for ML-ICA the pdfs of the sources must be known whereas
no such knowledge is required for ICA-EBM.Hence, for practical applicationswhere
the pdfs of the sources might be unknown ICA-EBM is an adequate algorithmwhose
performance comes quite close to the iCRB for large enough sample size L .

3.3 Solution of Linear Complex ICA in the Presence of Noise

In this section, we study the bias of the demixing matrix in linear noisy ICA from
the inverse mixing matrix. We first derive the ICA solution for the general complex
determined case. We then show how the circular complex case and the real case can
be derived as special cases. Next, we verify the results using simulations. Finally, we
extend our derivations to the overdetermined case with circular complex noise.
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3.3.1 Signal Model and Assumptions

We assume the linear noisy mixing model

x = As + v (3.44)

where x ∈ C
N are N linear combinations of N original signals s ∈ C

N with additive
noise v ∈ C

N . Here, all signals are modeled as temporally iid. In addition to the
assumptions A1 and A2 (invertibility of mixing matrix A and assumptions about
the source signals s) defined in Sect. 3.2.1, we make the following two assumptions
regarding the noise v:

1. v = [v1, . . . , vN ]T ∈ C
N are N random variables with zero mean and the

covariance matrix E[vvH ] = σ 2Rv. σ 2 = 1
N tr

[
E(vvH )

]
is the average variance

of v and tr(Rv) = N . R̄v = 1
σ 2 E[vvT ] is the normalized pseudo-covariance

matrix. R̄v = 0 if v is circular complex. The pdf of v is arbitrary but assumed
to be symmetric, i.e., pv(v) = pv(−v). This implies E(

∏N
i=1 vki

i (v∗
i )

k̃i ) = 0 for∑N
i=1

(
ki + k̃i

)
odd.

2. s and v are independent.

The task of noisy linear ICA is to demix the signals x by a linear transform
W ∈ C

N×N

y = Wx = WAs + Wv (3.45)

so that y is “as close to s” as possible according to some metric.

3.3.2 KLD-Based ICA for Determined Case

We focus on the ICA solution based on the KLD

DKL(W) =
∫

py(y; W) ln
py(y; W)

ps(y)
dy (3.46)

where py(y; W) is the pdf of y. It depends on the pdf of observation x, i.e., on the
pdf of the original source signals s and noise v, as well as on the demixing matrix
W. ps(s) = ∏N

i=1 psi (si ) is the assumed pdf of the original signals. We assume that
we have perfect knowledge about the distribution of the original signals and ps(s)
is identical to the true pdf p0s (s) of s. The KLD is known to have the following
properties:

• DKL(W) ≥ 0 for any py(y; W) and ps(y).
• DKL(W) = 0 iff py(y; W) = ps(y).

This means, minimizing the KLD with respect to W is equivalent to making the pdf
of the demixed signals y as similar as possible to the pdf of the source signals ps(s).
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Since we assume ps(s) = ∏N
i=1 psi (si ), minimizing KLD corresponds to making (a)

yi as independent as possible and (b) yi to have a pdf as close as possible to psi (si ).
This has been stated as “total mismatch = deviation from independence + marginal
mismatch” by Cardoso in [9]. The ICA solution WICA for the demixing matrix based
on KLD is given by

WICA = argmin
W

DKL(W). (3.47)

In the following, we will first derive the ICA solution for the general noncircular
complex case. The circular complex case and the real case are discussed as two
special cases.

3.3.2.1 General Noncircular Complex Case

The KLD cost function of a complex demixing matrix W is a function of the real and
imaginary part of W. Using the Wirtinger calculus (see [21, 44] and the summary in
Sect. 3.1.1.2), we can also write it as a function of W and W∗:

DKL(W, W∗) =
∫

py(y, y∗; W, W∗) ln
py(y, y∗; W, W∗)

ps(y, y∗)
dy. (3.48)

The derivative ∂ DKL(W,W∗)
∂W∗ of the KLD cost function in (3.48) is given by [21]

∂ DKL(W, W∗)
∂W∗ = −W−H + E

[
ϕϕϕ(y, y∗)xH

]
, (3.49)

where ϕϕϕ(y, y∗) = [ϕ1(y1, y∗
1 ), . . . , ϕN (yN , y∗

N )]T and ϕi (si , s∗
i ) = − ∂ ln psi (si ,s∗

i )

∂s∗
i

.

The derivative ∂
∂s∗ is also defined using the Wirtinger calculus.

A necessary condition for minimizing DKL(W, W∗) at W = WICA is

∂ DKL(W, W∗)
∂W∗

∣∣∣∣
W=WICA

!= 0 or E(ϕϕϕ(yICA, y∗
ICA)yH

ICA)
!= I (3.50)

with yICA = WICAx = WICAAs + WICAv = ŷ + WICAv. An equivalent condition

to E(ϕϕϕ(yICA, y∗
ICA)yH

ICA)
!= I in (3.50) is

E(ϕϕϕ(yICA, y∗
ICA)yH

ICA)∗ = E(ϕϕϕ∗(yICA, y∗
ICA)yT

ICA)
!= I (3.51)

which we will use in the following to facilitate comparison with Sect. 3.2.
The properties of the ICA solution based on KLD are:

• WICA = A−1 if σ 2 = 0 (no noise) and ps(s) = p0s (s).
• To computeWICA,we do not need to knowA or s, but the pdf ps(s) = ∏N

i=1 psi (si )

is required. All psi (si ) must either be non-Gaussian or Gaussian with distinct
noncircularity indices.
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• No permutation ambiguity if psi (·) 	= ps j (·) ∀i 	= j .
• There is no scaling ambiguity if psi (si ) = p0i (si ) is known ∀i . Only a phase
ambiguity remains if psi (si ) is circular.

As shown in Appendix 2, the ICA solution for the general noncircular complex case
can be derived approximately using a two-step perturbation analysis for low noise
and is given by

WICA = (I + σ 2C)A−1 + O(σ 4). (3.52)

The elements of C can be obtained from (3.97) and (3.98). If ps(s) is symmetric in
the real or imaginary part of s, they are given by (3.99) and (3.100).

For comparison, we consider the linear MMSE estimator

WMMSE = AH
(

AAH + σ 2Rv

)−1
(3.53)

=
[
I − σ 2R−1

]
A−1 + O(σ 4). (3.54)

where the last line is a first-order Taylor series expansion in σ 2 and R−1 =
A−1RvA−H . Comparing (3.54)with (3.52)we see thatWICA andWMMSE are similar
if C ≈ −R−1.

3.3.2.2 Circular Complex Case

We assume now that the source signals s and the noise v are circular. Hence, both
the noncircularity index of the sources γ and the pseudo-covariance matrix R̄v are
zero. As a consequence, (3.99) and (3.100) simplify to

Cii = − κi + λi

1 + ρi + δi

[
R−1

]
i i ∈ R,

Ci j = −κ j (κi − 1)

κiκ j − 1

[
R−1

]
i j ∈ C (i 	= j). (3.55)

3.3.2.3 Real Case

For real signals and noise, we have

γi = 1, Rv = R̄v. (3.56)

In the derivation of WICA we have considered Taylor series expansions ofϕϕϕ(y) using
Wirtinger derivatives. TheWirtinger derivatives ∂/∂s and ∂/∂s∗ of ϕ(s) ∈ R are now
identical (see (3.4)) and hence

ξi = κi , ρi = δi , λi = ωi = τi . (3.57)
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Furthermore, theWirtinger derivatives ofϕ(s) ∈ R are identical to the real derivatives
except for a factor of 1

2 (see (3.4)). Hence it holds

κi = κ̊i

2
, ρi = ρ̊i

2
, λi = λ̊i

4
, (3.58)

where κ̊i , ρ̊i and λ̊i are defined using real derivatives of ϕ(s), denoted by (·)′:

κ̊i = E(ϕ′
i (si )) =

∫
d

dsi

(−p′
si
(si )

psi (si )

)
p0i (si )dsi ,

ρ̊i = E(ϕ′
i (si )s

2
i ) =

∫
d

dsi

(−p′
si
(si )

psi (si )

)
s2i p0i (si )dsi ,

λ̊i = E(ϕ′′
i (si )si ) =

∫
d2

ds2i

(−p′
si
(si )

psi (si )

)
si p0i (si )dsi . (3.59)

Using (3.56)–(3.58), we get from (3.99) and (3.100)

Cii = − κ̊i + 1
2 λ̊i

1 + ρ̊i

[
R−1

]
i i = −Mii

[
R−1

]
i i ,

Ci j = − κ̊ j (κ̊i − 1)

κ̊i κ̊ j − 1

[
R−1

]
i j = −Mi j

[
R−1

]
i j (i 	= j). (3.60)

where Mii = κ̊i +λ̊i /2
1+ρ̊i

and Mi j = κ̊ j (κ̊i −1)
κ̊i κ̊ j −1 . Note that (3.60) corresponds to the

results in [32].

3.3.3 Results for Complex Generalized Gaussian Distribution

We study KLD-ICA for N = 3 sources with spatially white Gaussian noise with
E[vvH ] = σ 2I and the square mixing matrix A = [amn], where amn = e− jπm sin θn

and θn = −60◦, 0◦, 60◦. As proposed in [26], we use the signal-to-interference-plus-
noise ratio (SINR) to evaluate separation performance. For spatially uncorrelated
noise, we compute the SINR for a given demixing matrix W by averaging the SINR
for each source i

SINR = 1

N

N∑
i=1

|[WA]i i |2∑
j 	=i |[WA]i j |2 + σ 2

∑
j |Wi j |2 . (3.61)

The term |[WA]i i |2 reflects the power of the desired source i in the demixed signal
yi . The term

∑
j 	=i |[WA]i j |2 corresponds to the power of the interfering signals
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j 	= i in the demixed signal yi and σ 2∑
j |Wi j |2 is the noise power in the demixed

signal yi . For the remainder of this section, the signal-to-noise ratio (SNR) is defined

as that before the mixing process and not at the sensors, i.e., SNR = E
[
s2
]

σ 2 = 1
σ 2 .

It can be shown that among all linear demixing matrices W, WMMSE from (3.53) is
the one which maximizes the SINR [28]. We compare the SINR of the theoretical
ICA solution WICA from (3.52), the average SINR of ŴICA obtained from 100 runs
of KLD-based ICA using L samples and the SINR of WMMSE from (3.53). The
ICA algorithm is initialized with W = I and performs gradient descent using the
relative gradient [12], i.e., postmultiplies the gradient of KLD (3.49) by WH W. We
normalize each row of the relative gradient, resulting in an adaptive step size for
each source. In the derivation of the theoretical solution WICA, we evaluated all
expectations exactly. Hence WICA only accounts for the bias from A−1 but not for
estimation variance whereas ŴICA contains both factors.

In the following, all sources are GGD with the same shape parameter ci = c.
The noncircular complex GGD with zero mean and E[|s|2] = 1 has already been
introduced in Sect. 3.2.4. By integration in polar coordinates, it can be shown that

κ =
∫

∂ϕ∗

∂s∗ p0s (s)ds = c2Γ (2/c)

(1 − γ 2)Γ 2(1/c)
, (3.62)

δ =
∫

∂ϕ∗

∂s∗ ss∗ p0s (s) = 2c + (1 − c)γ 2

2(1 − γ 2)
, (3.63)

ρ =
∫

∂ϕ∗

∂s
s2 p0s (s)ds = −2c − 2 + (1 − 3c)γ 2

2(1 − γ 2)
, (3.64)

ξ =
∫

∂ϕ∗

∂s
p0s (s)ds = −γ κ, (3.65)

λ =
∫

∂2ϕ∗

∂s∂s∗ sp0s (s)ds = (c − 1)κ, (3.66)

ω =
∫

∂2ϕ∗

(∂s)2
sp0s (s)ds = −3

2
(c − 1)γ κ, (3.67)

τ =
∫

∂2ϕ∗

(∂s∗)2
sp0s (s)ds = −1

2
(c − 1)γ κ. (3.68)

Note that there exists a relationship between these parameters and the ones in the
derivation of the CRB in Sect. 3.2: κ and ξ are identical. Using Corollary 2 from
[35], we furthermore get

δ = η − 1 and ρ = β − 2 (3.69)

where η = E
[|s|2|ϕ(s)|2] and β = E

[
s2(ϕ∗(s))2

]
have been defined in (3.23) and

(3.25) in the previous section. These relationships hold not only for GGD but for all
source distributions.
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Fig. 3.5 SINR for circular complex GGD signals and circular complex noise, SNR = 10 dB,
L = 104 samples

3.3.3.1 Circular Complex Case

For a circular complexGGD, γ = 0 and hencewe get κ = c2Γ (2/c)
Γ 2(1/c)

, δ = c, ρ = c−1,
λ = (c − 1)κ and ξ = ω = τ = 0. Figure3.5 shows that for a wide range of the
shape parameter c, both the theoretical ICA solution WICA and its estimate ŴICA
obtained by running KLD-ICA using L = 104 samples achieve an SINR close to that
of theMMSE solution WMMSE. Note that for c close to 1, the SINR of the theoretical
solution WICA is not achievable in practice, since all sources become Gaussian and
the CRB approaches infinity for c → 1 (see Sect. 3.2 and [35]). Hence estimation of
W becomes impossible. This is reflected in Fig. 3.5: The SINR for ŴICA estimated
by KLD-ICA decreases for c → 1.

Note that for strongly non-Gaussian sources (c � 1 or c � 1) the SINR of the
theoretical solutionWICA might be smaller than that for ŴICA becauseWICA is based
on a Taylor series expansion up to order σ 2. For strongly non-Gaussian sources,
higher-order terms become important. These are implicitly taken into account by
ŴICA but not by WICA.

3.3.3.2 Noncircular Complex Case

First, we study the performance with circular noise, i.e., Rv = I and R̄v = 0, and
SNRof 10 dB. The SINRof theMMSE solutionWMMSE is 12.4 dB. Figure3.6 shows
that for a wide range of the shape parameter c and the noncircularity index γ , the
theoretical ICA solution WICA achieves an SINR close to that ofMMSE. Comparing
Fig. 3.6a, b, we note that the contour plot for the simulation using L = 103 samples
differs from the contour plot for the theoretical ICA solution. One reason is that
for noncircular sources with the same noncircularity index γi = γ , the estimation
variance increases for c → 1 (see Sect. 3.2 and [35]). Hence, in the simulation the
SINR decreases in the vicinity of c = 1. Furthermore, the smaller sample size of
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Fig. 3.6 SINR [dB] of ICA solution for noncircular complex GGD signals with γi = γ , circular
complex noise and SNR = 10 dB. WICA (52) (a), ŴICA (simulation, L = 103 samples) (b)

L = 103 leads to a larger variance of ŴICA which is not reflected in the theoretical
ICA solution WICA. With a larger sample size the SINR of WICA would be much
closer to that of WMMSE. However, Fig. 3.6b shows that even with a limited sample
size KLD-ICA can still achieve SINR performance quite close to that of MMSE
except for c ≈ 1.

Now, we consider the case where sources are noncircular complex with γ1 =
0.5, γ2,3 = 0.5 ± �γ and the noise v is noncircular with Rv = I and R̄v = 0.5 · I,
i.e., γnoise = 0.5. Figure3.7 shows decreasing SINR values for c → 1 and �γ → 0
since in that region |�Ci j | in (3.100) becomes large if sources or noise are noncircular.
However, except for this region, the SINRof the theoretical ICA solution (Fig. 3.7a) is
still close to that of MMSE (12.4 dB). The form of the contour plot for the simulation
(Fig. 3.7b) is similar to that of the theoretical solution but shows slightly lower SINR
performance especially for c ≈ 1 and small �γ . This is again due to increasing
estimation variance for c → 1 and small �γ (see Sect. 3.2 and [35]). Nevertheless,
the performance obtainable in simulations can still be considered good as long as
c is not close to 1 or �γ is sufficiently large. Finally, we want to note that in
Fig. 3.7 the decrease in SINR for strongly noncircular (large �γ ), non-Gaussian
(c 	= 1) sources is caused by the noncircularity of the noise. The reason is that
the MMSE (or maximum SINR) and the minimum KLD criterion yield different
demixing matrices W for noncircular noise: As can be seen from (3.52), (3.97) and
(3.98),WICA depends both on the noncircularity of the sources (γi 	= 0) as well as on
the noncircularity of the noise (R̄v 	= 0) whereas WMMSE from (3.54) only depends
on the normal covariance matrix of the noise Rv. This is due to the different cost
functions: Minimization of KLD makes the pdf of the demixed signals as similar to
the assumed pdf of the sources as possible whereas MMSE minimizes the expected
quadratic error between the demixed signals and the original sources. For circular
noise, the difference between WICA and WMMSE in terms of SINR is much smaller.
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Fig. 3.7 SINR [dB] of ICA solution for noncircular complex GGD signals with γ1 = 0.5, γ2,3 =
γ1±�γ , noncircular complex noise, and SNR = 10 dB.WICA (52) (a), ŴICA (simulation, L = 103
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Fig. 3.8 SINR [dB] of ICA-EBM solution for noncircular complex GGD signals, L = 103 samples
and SNR = 10 dB. γi = γ , circular complex noise(a), γ1 = 0.5, γ2,3 = γ1 ± δγ (b)

In summary, the results in this subsection have shown that

• in many cases the theoretical solution WICA of KLD-ICA can achieve an SINR
close to the optimum attainable by the MMSE demixing matrix WMMSE.

• for sources following a GGD, ŴICA obtained by running KLD-ICA with a finite
amount of samples L can achieve an SINR quite close to that of WMMSE except
for (nearly) Gaussian sources with similar noncircularity indices.

• for strongly noncircular, non-Gaussian sources and noncircular noise, the mini-
mization of the KLD and of the MSE yield different solutions.

Although we assumed that we perfectly know the distributions of the sources,
other approaches such as ICA-EBM [30] exist which do not require such knowl-
edge. As shown in Fig. 3.8, simulation results using ICA-EBM show similar SINR
performance as KLD-ICA (see Figs. 3.6b, 3.7b).
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3.3.4 Extension to Overdetermined Case

ICA algorithms for the overdetermined case have already been studied in a number
of publications (see e.g., [11, 25, 49, 50]). In the overdetermined case, x ∈ C

M with
M > N . In the noiseless case we can select any N rows of x to perform ICA as
long as the corresponding square mixing matrix Ã is invertible. When we consider
noisy mixtures, this does not hold since the information contained in the M − N
additional observations is useful to improve demixing. Hence, we need to consider
the KLD for M > N . In this case, the demixing matrix W can be decomposed as
W = [

W1 W2
]
, where W1 ∈ C

N×N and W2 ∈ C
N×(M−N ). We define an auxiliary

vector ȳ ∈ C
M :

ȳ =
[

W1 W2
0 IM−N

] [
x1
x2

]
= W̆x =

[
y
x2

]
(3.70)

Then we calculate py(y; W) by

pȳ(ȳ; W̆) = 1

|det(W̆)|2 px(x) = 1

|det(W1)|2 px(x), (3.71)

py(y; W) = 1

|det(W1)|2
∫

px(x)dx2. (3.72)

since the linear transformation of a complex random vector yields | det(W)|2 instead
of | det(W)| in the real case (see [4, 42]).

Using the above steps we obtain the modified KLD for M > N

DKL(W) = − ln |det(W1)|2 −
N∑

i=1

E
[
ln psi (yi )

]+ const. (3.73)

instead of DKL(W) = − ln |det(W)|2 −∑N
i=1 E

[
ln psi (yi )

]+ const. for M = N .
To derive WICA for M > N , we could now perform a similar Taylor series expan-

sion as for M = N . However, it is more convenient to reduce the overdetermined
case M > N to the determined case by applying a linear transform to the data to
condense all information about the source signals in the first N observations and by
applying another transform to decorrelate the noise terms in the first N observations
from those in the remaining M − N observations. The result of these two transforms
has a similar effect as a dimension reduction using principal component analysis
(PCA) except that the correlation matrix of the observations is only block-diagonal
instead of diagonal. To derive WICA, we can then combine the solution for the deter-
mined case with the linear transforms. Note that this approach is only used for the
analysis of KLD-based ICA for the overdetermined case because it simplifies the
theoretical derivation. In ICA applications, the transforms are done implicitly by the
algorithm itself.
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The first step of this procedure is to use the orthogonal transform Q defined by the

decomposition A = QH
[

Ā1
0

]
to condense all information about the source signals

in the first N observations:

x̄ = Qx = Q(As + v)

= QQH
[

Ā1
0

]
s + Qv =

[
Ā1
0

]
s + v̄ =

[
Ā1s

0

]
+
[

v̄1
v̄2

]
=
[

x̄1
x̄2

]
, (3.74)

Rv̄ = 1

σ 2 E
(

v̄v̄H
)

= QRvQH =
[

Rv̄11 Rv̄12
Rv̄21 Rv̄22

]
. (3.75)

Note that v̄1 and v̄2 may be correlated, i.e., x̄2 = v̄2 is useful for the processing of
x̄1 = Ā1s + v̄1 to reduce the impact of v̄1. Hence, we decorrelate the noise terms v̄1

and v̄2 by a second transform T =
[

IN −Rv̄12R−1
v̄22

0 IM−N

]
:

x̃ = Tx̄ = T
[

Ā1s
0

]
+ Tv̄ =

[
Ā1s

0

]
+ ṽ =

[
Ā1s

0

]
+
[̃

v1
ṽ2

]
=
[̃

x1
x̃2

]
, (3.76)

Rṽ = 1

σ 2 E
(

ṽ̃vH
)

=
[

Rv̄11 − Rv̄12R−1
v̄22

Rv̄21 0
0 Rv̄22

]
. (3.77)

ṽ1 and ṽ2 are now uncorrelated and x̃2 = ṽ2 does not contain any second-order
information useful for the processing of x̃1 = Ā1s + ṽ1.

The separated signals y are now obtained by

y = Wx = WQH T−1̃x = W̃x̃ = [
W̃1 W̃2

] [̃x1
x̃2

]
= W̃1̃x1 + W̃2̃x2 = y1 + y2

(3.78)
with W̃ = WQH T−1. The noise-only contribution y2 = W̃2̃x2 = W̃2̃v2 to y is
uncorrelated to y1 = W̃1̃x1. Hence, it is sufficient to consider the first N observations
x̃1 to derive the ICA solution for W̃1.

Considering the KLD (3.73) for the transformed demixing model y = [
W̃1 W̃2

]
[̃

x1
x̃2

]
, we get

DKL(W̃) = − ln |det(W̃1)| −
N∑

i=1

E
[
ln psi (yi )

]+ const. (3.79)

with W̃ = [
W̃1 W̃2

]
. The real derivatives of DKL(W̃) with respect to W̃1 and W̃2

are given by
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∂ DKL(W̃)

∂W̃1
= E

[
ϕϕϕ(y)̃xH

1

]
− W̃−H

1 = E
[
ϕϕϕ(y)̃yH

1 − I
]

W̃−H
1

!= 0 (3.80)

∂ DKL(W̃)

∂W̃2
= E

[
ϕϕϕ(y)̃xH

2

]
= E

[
ϕϕϕ(y)̃yH

2

]
W̃−H

2
!= 0 (3.81)

A perturbation analysis of (3.81) at y = W̃1Ā1s yields W̃2 = O(σ 4) due to
x̃2 = ṽ2. Hence, y is given by y = W̃1̃x1 + O(σ 4). The solution for W̃1 is similar
to the case of M = N

W̃1,ICA = (I + σ 2C)Ā−1
1 + O(σ 4) (3.82)

where the elements of C can be computed from (3.97) and (3.98) with R̄−1 = 0 and
R−1 = (Ā−1

1 (Rv̄11 − Rv̄12R−1
v̄22

)Ā−H
1 ).

Finally, we need to combine W̃1,ICA, T and Q to form the final solution:

W̃ICA = [
W̃1,ICA 0

]+ O(σ 4),

WICA = W̃ICATQ = W̃1,ICA

[
I −Rv̄12R−1

v̄22

]
Q + O(σ 4). (3.83)

Note that for the case of noncircular complex noise, the presented transformation
does not work sincewewould need to take into account the pseudo-covariancematrix
of the noise.

3.3.4.1 Results for Circular Complex GGD

Here, we study the performance for the overdetermined case with M = 6 sensors,
N = 3 sources, and circular complex noise. The sources follow a circular complex
GGD distribution with identical shape parameters c. Similar to Sect. 3.3.3, we use
the mixing matrix A = [amn] with amn = e− jπm sin θn with θn = −60◦, 0◦, 60◦. We
first consider spatially uncorrelated noise with Rv = I. Figure3.9a shows that for a
wide range of the shape parameter c, both the theoretical ICA solution WICA and its
estimate ŴICA obtained by running KLD-ICA using L = 104 samples achieve an
SINR close to that of the MMSE solution WMMSE. Furthermore, note that additional
sensors can improve the SINR of the demixed signals: Using only the first M = 3
sensors, WMMSE achieves an SINR of 12.4 dB (see Fig. 3.5), whereas with M = 6
sensors it achieves an SINR of 17.4 dB.

When the noise v is correlated with the normalized correlation matrix

Rv =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.00 + 0.00 j 0.62 + 0.23 j 0.44 − 0.16 j 0.46 + 0.11 j −0.09 + 0.26 j −0.03 + 0.09 j
0.62 − 0.23 j 1.00 + 0.00 j 0.56 + 0.06 j 0.47 − 0.13 j 0.44 + 0.18 j −0.09 + 0.26 j
0.44 + 0.16 j 0.56 − 0.06 j 1.00 + 0.00 j 0.52 + 0.09 j 0.47 − 0.13 j 0.46 + 0.11 j
0.46 − 0.11 j 0.47 + 0.13 j 0.52 − 0.09 j 1.00 + 0.00 j 0.56 + 0.06 j 0.44 − 0.16 j

−0.09 − 0.26 j 0.43 − 0.18 j 0.47 + 0.13 j 0.56 − 0.06 j 1.00 + 0.00 j 0.62 + 0.23 j
−0.03 − 0.09 j −0.09 − 0.26 j 0.46 − 0.11 j 0.44 + 0.16 j 0.62 − 0.23 j 1.00 + 0.00 j

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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Fig. 3.9 SINR for overdetermined case with circular complex GGD signals and circular complex
noise, SNR = 10 dB, L = 104 samples. Rv = I (a), Rv 	= I (b)

WMMSE achieves an SINR of 22.2 dB for an SNR of 10 dB and all M = 6 sensors.
With the first M = 3 sensors, it achieves only an SINR of 13.3 dB. Compared to the
case of uncorrelated noise, the form of the SINR curve for ŴICA changes slightly
but it is still quite close to that of WMMSE except for c ≈ 1 (see Fig. 3.9b).

3.4 Conclusion

We have derived an analytic expression for the demixing matrix of KLD-based ICA
for the low noise regime.We have considered the general noncircular complex deter-
mined case. The solution for the circular complex and real case can be derived as
special cases. Furthermore, we have shown how to reduce the overdetermined case
M > N to the determined case. Although the KLD and MMSE solutions differ, lin-
ear demixing based on these two criteria yields demixed signals with similar SINR
in many cases. In practice, however, not only the bias studied in this chapter but
also the variance of the estimate are important for SINR. For the noiseless case, the
variance of the estimated demixing matrix is lower bounded by the CRB derived in
Sect. 3.2 and [35].

Appendix 1

Values of κ , ξ , β, η for Complex GGD

The pdf of a noncircular complex GGD with zero mean, variance E[|s|2] = 1 and
noncircularity index γ ∈ [0, 1] is given by

p(s, s∗) =
cα · exp

(
−
[

α/2
γ 2−1

(
γ s2 + γ s∗2 − 2ss∗

)]c)

πΓ (1/c)(1 − γ 2)1/2
, (3.84)
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where α = Γ (2/c)/Γ (1/c) and Γ (·) is the Gamma function. The function
ϕ(s, s∗) = − ∂

∂s∗ ln p(s, s∗) is then given by

ϕ(s, s∗) = 2c(α/2)c

(γ 2 − 1)c

(
γ s2 + γ (s∗)2 − 2ss∗)c−1

(γ s∗ − s). (3.85)

By integration in polar coordinates, it can be shown that κ , ξ , β and η are given by:

κ = E
[
|ϕ(s)|2

]
= c2Γ (2/c)

(1 − γ 2)Γ 2(1/c)
, (3.86)

ξ = E
[
(ϕ∗(s))2

]
= − c2γΓ (2/c)

(1 − γ 2)Γ 2(1/c)
= −γ κ, (3.87)

η = E
[
|s|2|ϕ(s)|2

]
= (c + 1) · (2 − γ 2)

2(1 − γ 2)
, (3.88)

β = E
[
s2(ϕ∗(s))2

]
= (c + 1) · (2 − 3γ 2)

2(1 − γ 2)
. (3.89)

Induced CRB for Real ICA

Here, we briefly review the iCRB for real ICA [41, 45]. In the following, all real
quantities q are denoted as q̊ . In the derivation of the iCRB for the real case ϕ̊(s̊) =
−∂ ln p(s̊)/∂ s̊ and the parameters κ̊ = E[ϕ̊2(s̊)], η̊ = E[s̊2ϕ̊2(s̊)] = 2+E

[
s̊2 ∂ϕ̊(s̊)

∂ s̊

]

are defined using real derivatives. In [41, 45] it was shown that

var(Ĝii ) ≥ 1

L(η̊i − 1)
, (3.90)

var(Ĝi j ) ≥ 1

L

κ̊ j

κ̊i κ̊ j − 1
. (3.91)

Appendix 2

Here we derive an analytic expression for WICA in the presence of noise by using a

perturbation analysis. Motivated by WICA
σ 2=0= A−1, we assume that WICA can be

written as WICA = A−1 + σ 2B + O(σ 4) and derive B by a two-step perturbation
analysis:

1. Taylor series approximation of E(ϕϕϕ∗(y)yT ) in (3.51) at y = ŷ = WICAAs,
2. Taylor series approximation of the result of the above step by exploiting WICA =

A−1 + σ 2B + O(σ 4) and ŷ = s + σ 2BAs + O(σ 4) = s + σ 2Cs + O(σ 4) =
s + σ 2b + O(σ 4) with C = BA and b = Cs = [b1, . . . , bN ]T .
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In this way, we determine explicitely the deviation σ 2B of WICA from the inverse
solution A−1.

The general Taylor series expansion of ϕ∗(y) =̂ ϕ∗(y, y∗) is given as

ϕ∗(y, y∗) = ϕ∗(ŷ, ŷ∗) + ∂ϕ∗
∂y

�y + ∂ϕ∗
∂y∗ �y∗ + 1

2

(
∂2ϕ∗
(∂y)2

(�y)2 + ∂2ϕ∗
(∂y∗)2

(�y∗)2

)

+ ∂2ϕ∗
∂y∂y∗ �y�y∗ + . . .

= ϕ∗(ŷ, ŷ∗) + �(y, y∗)�y + ϑ(y, y∗)�y∗

+ 1

2

(
ν(y, y∗)(�y)2 + ζ(y, y∗)(�y∗)2

)
+ ε(y, y∗)�y�y∗ + . . . (3.92)

with �(y, y∗) = ∂ϕ∗
∂y , ϑ(y, y∗) = ∂ϕ∗

∂y∗ , ν(y, y∗) = ∂2ϕ∗
(∂y)2

, ζ(y, y∗) = ∂2ϕ∗
(∂y∗)2 and

ε(y, y∗) = ∂2ϕ∗
∂y∂y∗ . To simplify notation, we will drop the dependence of ϕ∗(·), �(·),

ϑ(·), ν(·), ζ(·), ε(·) on y∗ and keep only the dependence on y in the following.
Let

ρi = E
[
�i (si )s

2
i

]
, δi = E

[
ϑi (si )s

∗
i si
]
, (3.93)

κi = E [ϑi (si )] , ξi = E [�i (si )] , (3.94)

ωi = E [νi (si )si ] , τi = E [ζi (si )si ] , (3.95)

λi = E [εi (si )si ] , γi = E[s2i ]. (3.96)

As shown in [31, 34],WICA = A−1+σ 2C, where the elements ofC can be computed
from

ρi Cii + δi C
∗
i i + Cii = −(κi + λi )

[
R−1

]
i i − (ξi + 1

2
ωi )

[
R̄−1

]
i i − 1

2
τi
[
R̄−1

]∗
i i .

(3.97)
and

γ jξi Ci j + κi C
∗
i j + C ji = −κi

[
R−1

]∗
i j − ξi

[
R̄−1

]
i j ,

γiξ j C ji + κ j C
∗
j i + Ci j = −κ j

[
R−1

]∗
j i − ξ j

[
R̄−1

]
j i . (3.98)

with the transformed noise covariance matrix R−1 = WRvWH = A−1RvA−H +
O(σ 2) and the transformed noise pseudo-covariance matrix R̄−1 = WR̄vWT =
A−1R̄vA−T + O(σ 2). Note that RH−1 = R−1 and R̄T−1 = R̄−1.

If p(s, s∗) is symmetric in the real part �s or imaginary part �s of s, i.e.,
p(−�s,�s) = p(�s,�s) or p(�s,−�s) = p(�s,�s), the parameters κi , ρi , δi ,
λi , ξi , ωi , τi are real. For ρi + 1 ± δi 	= 0, we then get from (3.97)
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�Cii = − (κi + λi )
[
R−1

]
i i + (ξi + 1

2 (ωi + τi ))
[�R̄−1

]
i i

ρi + 1 + δi
,

�Cii = − (ξi + 1
2 (ωi − τi ))

[�R̄−1
]

i i

ρi + 1 − δi
. (3.99)

For (γ jξi + κi )(γiξ j + κ j ) 	= 1 and (γ jξi − κi )(γiξ j − κ j ) 	= 1, we obtain from
(3.98)

�Ci j =
(κ j − κi (γiξ j + κ j ))

[�R−1
]

i j + (ξ j − ξi (γiξ j + κ j ))
[�R̄−1

]
i j

(γ jξi + κi )(γiξ j + κ j ) − 1
,

�Ci j =
(κ j + κi (γiξ j − κ j ))

[�R−1
]

i j + (ξ j − ξi (γiξ j − κ j ))
[�R̄−1

]
i j

(γ jξi − κi )(γiξ j − κ j ) − 1
.

(3.100)
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