
Chapter 17
Supervised Normalization of Large-Scale Omic
Datasets Using Blind Source Separation

Andrew E. Teschendorff, Emilie Renard and Pierre A. Absil

Abstract Biotechnological advances in genomics have heralded in a new era of
quantitative molecular biology whereby it is now possible to routinely measure over
tens of thousands of molecular features (e.g., gene expression levels) in hundreds if
not thousands of patient samples. A key statistical challenge in the analysis of such
large omic datasets is the presence of confounding sources of variation, which are
often either unknown or only known with error. In this chapter, we present a super-
vised normalization method in which Blind Source Separation (BSS) is applied to
identify the sources of variation, and demonstrate that this leads to improved statisti-
cal inference in subsequent supervised analyses. The statistical framework presented
here will be of interest to biologists, bioinformaticians and signal processing experts
alike.

17.1 Introduction

Omic and sequencing technologies have revolutionized the biomedical field [40].
With these technologies, it is now possible, at a reasonable economic cost, to mea-
sure the levels of molecular entities, for instance, gene expression, genome-wide,
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in cellular specimens from large numbers of patients [8]. Analysis of these large
genomic, more generally refered to as “omic”, datasets promises to provide the
advances and biomarkers, which are urgently needed in the biomedical field, herald-
ing in the new age of personalized medicine [34]. However, a serious obstacle in
translating these mammoth amounts of data into biomedical advances is the pres-
ence of confounding factors, both technical and biological [21]. Recent studies [21,
43] have shown that technical confounding factors, generally refered to as batch
effects, for instance the date in which a sample was processed, are omnipresent in
omic datasets, affecting even some of the highest-profile studies such as The Cancer
Genome Atlas [46], or the 1,000 Genomes Project [7]. Some estimates indicate that
in any given study up to 80% of measured molecular features can correlate with
unwanted technical factors [21]. Furthermore, not adjusting for confounding factors
can adversely impact statistical inference, compromising sensitivity and specificity
[20, 45].

There are many reasons why these batch effects arise. Specially, in the case
of large-scale studies profiling hundreds to thousands of samples, samples will
inevitably have been processed on either different dates, by different laboratories
or personnel, or on different plates or chips. Laboratory conditions can vary between
dates affecting the biological measurements, or the quality of the profiling technol-
ogy may also vary significantly from batch to batch. Moreover, profiled samples
may come from patients treated at different medical centers, and therefore the way
samples were handled (e.g., time from sampling to storage) may introduce further
variation (see e.g., [25]). All of these factors have been shown to introduce unwanted
variation in the data, and since “the more you measure the more can go wrong”, it is
clear that large scale studies are particularly vulnerable to such confounding factors.
On the other hand, it is worth pointing out that large-scale studies are also much
better placed than small sample-size studies at adjusting for confounding factors.
For instance, it is easier to detect and subsequently correct for a single chip/plate
effect if there are many other chips/plates in the study that have performed well since
the latter can then serve as controls.

The statistical design of a study is of critical importance in trying to prevent the
potentially adverse effects of confounding factors on downstream statistical infer-
ence. Clearly, the statistical design of a study must be such so as to ensure that
a number of specific research questions can be properly addressed. This typically
requires that samples be distributed randomly across batches, ensuring balanced
numbers of specific phenotypes across them. Thus, in comparing phenotypes A and
B, one would randomize these across batches ensuring balanced numbers of A and
B in each batch. However, it is not unusual for unbalanced designs to arise as a result
of samples dropping out, in turn caused by logistical or quality control issues. This
is particularly true for large-scale studies where logistical or quality control issues
almost inevitably arise. These unbalanced designs can then have a dramatic negative
impact on statistical inference if adjustment for the technical sources of variation is
not performed. Thus, (large-scale) studies with an initial perfect study design may
still be hampered by confounding factors.
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There are a number of other key issues tomention in connection with confounding
factors. First, it is clear that the potential impact of confounding factorswill depend on
the signal-to-noise ratio. This in turn depends on numerous study-specific factors,
including the phenotype of interest, the nature of the confounding variation and
the tissue type being profiled. For instance, if one is measuring DNA methylation,
a covalent modification of DNA that can affect the activity of nearby genes [9],
and if the comparison is between normal and cancer tissue, then it is likely that
batch effects can be ignored, since DNAmethylation changes associated with cancer
are generally of a large magnitude (high signal-to-noise ratio limit) [46]. On the
other hand, if the Epigenome-wide Association Study (EWAS) [31] measuring DNA
methylation is being conducted inwhole blood tissue [24], then this is likely to involve
small effect sizes in relation to the technical sources of variation like chip effects, or
biological factors such as age. For instance, in Rakyan et al. [31], the authors report
a genomic site with a DNA methylation pattern in whole blood that correlates with
smoking status, involving small 5–10% shifts in average methylation between cases
and controls. Such 5–10% shifts could in principle be also caused by batch/chip
effects. Similarly, such small shifts in average DNA methylation levels could be due
to relatively small changes in blood cell type composition, which in turn could be
caused by differences in the age of the sampled individuals [43]. Thus, techniques
like Singular Value Decomposition (SVD) are specially useful for omic data since
they easily allow approximate relative quantification of the variance associated with
different sources of variation [43].

A second important issue is that the way in which statistical inference is affected
strongly depends on how the confounders are correlated to the phenotype of inter-
est (POI) [19]. Clearly, a confounding factor which is anti-correlated to a POI will
dampen the statistical significance, while positive correlations will lead to overopti-
mistic results. An orthogonal confounder of large variability in relation to the POI
signal will similarly compromise the statistical significance and lead to a large false
negative rate (FNR). Thus, when analyzing omic data it is important to be aware of
these different potential scenarios and generation of P-value histograms is strongly
recommended as a means of detecting the strength and type of confounding [19].

Last but not least, confounding sources of variation can be of a very different
nature, directly influencing the type of statistical adjustment procedure to be used. For
instance, some confounders like plate or date, are examples of known confounders in
the sense that we know exactly on which date and on which plate a given sample was
processed, as these are factors that are normally recorded in an experiment. In this
case, adjustment with (Bayesian) regression models, which use the confounders as
explicit covariates, is possible and indeed fairly popular [16]. However, surprisingly
often confounders are only known with uncertainty or error. For instance, in DNA
methylation studies conducted with the Illumina Infinium beadchips, samples need
to be preprocessed using a bisulfite conversion step, which translates epigenetic
changes into genetic ones allowing these to be measured on the beadchip [4]. This
conversion step is variable between samples and although the conversion efficiency
can be measured using control probes on the beadchip, this measurement is subject
to error. As another example, we have observed components of variation in DNA
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methylation data associated with the season in which samples were collected. Season
can be viewed as a surrogate for temperature, which is the more likely causal factor,
yet the exact temperature to which the samples were exposed to during transportation
from medical centers to the central processing lab was not recorded. At the other
extreme, we may have confounders which are completely unknown, or there is no
correlated known factor that could be used as surrogate. All these considerations are
important in the context of this chapter, because clearly in the latter two scenarios,
explicit adjustment for confounders is neither advisable or possible. Hence, BSS
techniques are needed to infer these confounders from the data itself. On the other
hand, as we shall see, known confounders also become useful in the BSS context,
since they can be used to objectively evaluate the quality of blind source separation.

It is paramount to stress again the importance of adjusting for confounding factors,
as not doing so can seriously reduce the effective power of the studies, or lead to
unacceptably large false discovery rates [21, 45]. Thus, there is an urgent need for
powerful statistical methods to be applied in the biomedical field to help address
these significant challenges. To further motivate a BSS-based approach to statistical
inference, we emphasize that it is only natural to view any biological omic dataset
as an interference pattern, with some sources of variation reflecting the biological
phenotype of interest, and others reflecting the effects of technical factors. Therefore,
BSS methods are optimally placed to infer such sources of variation.

Indeed, BSS methods have already been extensively applied to omic data, but
only as a means of performing dimensional reduction to identify biological sources
of variation [12, 18, 22, 23, 28, 42, 49], and, secondly, as a means of performing
feature selection and classification [14]. Specific popular BSS algorithms include
Independent Component Analysis (ICA) [15] and non-negative matrix factorisation
(NMF) [13], which have been applied to diverse data types, from gene expression
[42] to DNA methylation data [51], including even mutational data [1] and multidi-
mensional cancer genomic profiles [50]. The earliest studies already demonstrated
that BSS methods like ICA and NMF lead to substantial improvements in modeling
biological sources of variation and that these improvements are mainly due to the
sparse (supergaussian) nature of the underlying biological sources [18, 42].

In contrast, relatively few BSS applications have focused on the problem of arti-
fact removal in biomedical data, which is surprising given that technical sources
of variation are omnipresent in such data and that they can so negatively affect
statistical inference. We would also argue that the application of BSS methods to
identify and remove technical artifacts in real omic data provides a substantially
better framework in which to objectively evaluate BSS algorithms. There are several
reasons for this. First, biological sources of variation such as activity of a molecu-
lar signaling pathway are “fuzzy” objects and only rarely can be used as defining a
ground truth. On the other hand, technical artifacts are sometimes well known to the
experimentalist performing the study and hence, as explained above, these can be
exploited to assess the quality of BSS separation. Indeed, we recently demonstrated
the feasibility of this conceptual framework for assessing BSSmethods in a proof-of-
principle study, analyzing both DNA methylation and gene expression data [45]. In
that work, we proposed an algorithm called Independent Surrogate Variable Analysis
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(ISVA), based on ICA, for performing supervised normalization in the presence of
confounding factors [45], demonstrating its superiority over non-BSS based alterna-
tives. The main purpose of this chapter is therefore to demonstrate that BSS methods
can lead to substantial improvements in statistical inference in large omic datasets,
thanks to a more efficient deconvolution of the confounding sources of variation.
Our secondary aim is to increase the awareness among the BSS community of the
importance of this fairly novel BSS application to artifact removal in biomedical
omic data, and thus provide a fertile ground for interdisciplinary cross-pollination.

This chapter is organized as follows. First, because most of the examples con-
sidered in this chapter are drawn from studies in DNA methylation, we provide
the reader with a brief introduction to DNA methylation and the Illumina Infinium
Beadarray technology, a technology that allows genome-wide measurements of this
epigenetic mark. In the subsequent section, we provide a number of examples of con-
founding variation in omic data and describe their negative impact on downstream
statistical inference, including examples where methods based on explicit adjust-
ment of confounders cannot be applied. In Sect. 17.3, we describe the problem of
performing supervised analysis in the background of confounding factors, introduc-
ing and reviewing the SVA framework of Leek et al. [19, 20]. We argue theoretically
why SVA may break down and why a BSS method is needed to avoid the pitfalls
associated with SVA. This motivates the ISVA algorithm [45], which we review in
the next subsection. In Sect. 17.4, we validate ISVA on simulated data and demon-
strate the need for adjustment of confounding factors. In Sect. 17.5, we compare
ISVA to SVA in modeling beadchip effects in real omic data. Section 17.6 provides
a rigorous evaluation of ISVA on eight real omic datasets, using the non-BSS SVA
method as well as another method based on explicit adjustment as benchmarks. In
the final section, we briefly explore the performance of a generalized BSS algorithm
in modeling beadchip effects. We end with conclusions and suggestions for further
research.

17.2 DNA Methylation and the Illumina Infinium Beadarray
Technology

DNA methylation refers to the covalent attachment of a methyl CH3 group to DNA
cytosines, normally, but not exclusively, in the context of a CG dinucleotide, refered
to as a CpG [9]. There are about 30 million of such CpG sites in the human genome,
most of which are methylated. These 30 million CpG sites represent in fact an
underenrichment of CpGs in the human genome. In some genomic regions however,
the density of CpGs is much higher than normal, and these are refered to as CpG
islands. Roughly, about 60% of gene promoters fall within CpG islands and most of
these are normally unmethylated. Thus, whereas most of the genome is methylated,
many of the promoter CpG islands are unmethylated in the normal state.
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DNA methylation is important for a number of reasons. It is not only essential
for embryonic development, but is also key in developmental processes [9]. Very
recently, it has been demonstrated that differentially methylated regions between
diverse normal cell types are enriched for transcription factor binding sites, sup-
porting the view that DNA methylation is associated with how accessible the DNA
is to transcription factors. Thus, hypomethylation, i.e., loss of DNA methylation,
allows transcription factor proteins to more easily bind to DNA in order to initi-
ate developmental differentiation programs. The DNA methylation state at the gene
promoter is also a key determinant of the gene’s activity, i.e., its gene expression
level, with promoter hypermethylation normally associated with gene silencing [9].
DNA methylation is particularly important in diseases like cancer, where it is sig-
nificantly altered [11, 17]. Indeed, a key cancer hallmark is the hypermethylation
of CpG island promoters, whilst most of the cancer genome undergoes widespread
hypomethylation. These deregulations in DNA methylation may lead respectively,
to underexpression/silencing of key tumor suppressor genes, or overexpression of
oncogenes (tumor promoting genes).

DNA methylation can be measured fairly accurately using a number of different
technologies. In this chapter, wewill be consideringDNAmethylation data generated
using the Infinium beadarray technology from Illumina [4]. In particular, we will be
considering a version of this technology, called Infinium 27k, that allows measure-
ment of DNA methylation at over 27,000 CpG sites, mostly located within gene
promoters of approximately 14,000 genes. The beadarray consists of a set of probes
that interrogate the methylation state at each of these 27,000 sites. For each CpG
site, there are two sets of probes, one designed to match the methylated version of
the allele, while the other matches the unmethylated version. This is made possible
by treating the DNA with bisulfite, prior to hybridisation to the beadarray. Dur-
ing bisulfite conversion, unmethylated cytosines are converted into uracil and then
thymine upon DNA amplification (i.e., uC → T ), whereas methylated cytosines
are protected and remain cytosines (i.e., mC → C). Thus, an epigenetic difference
can be translated into a genetic one, which is then easily measured using probes on
the beadarray as described. While the methylation state of a given CpG site in a
given diploid cell can take only three values (0 = both alleles unmethylated, 1 =
only one of the alleles is methylated, 2 = both alleles are methylated), in practice,
measurement is taken over many thousands of cells, with the methylation state also
being potentially variable between cells. Hence, methylation at a single CpG site
in a given sample taken from an individual is quantified in terms of a β-distributed
quantity, β = M/(U + M), where M and U denote the intensities of the methylated
and unmethylated versions of the allele, as estimated from the respective probes on
the array. By construction, this β-value lies between 0 (unmethylated) and 1 (fully
methylated).

A number of important features of the Illumina methylation beadarrays are worth
mentioning. First, amaximumof 12 samples can bemeasured on any given beadchip.
As with any technology, the quality of beadchips can vary from batch to batch. Also,
the DNA quality of a sample can vary significantly, which would subsequently affect
β-value estimates. For these reasons, the beadchips are equipped with a number
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of control probes, each designed to measure the quality of a particular aspect of
the assay. For instance, bisulfite conversion efficiency (BSC) could vary between
samples, causing biases in the β-values, and this can be assessed using built-in
control probes which measure the efficiency of bisulfite conversion.

17.3 Confounding Factors in Large-Scale Omic Studies

In order to illustrate the nature and impact of the problem posed by confounding
factors, we consider two examples. These examples are taken from two separate
DNA methylation studies generated with the Infinium 27k technology. Let us con-
sider our first example. This is a DNA methylation dataset of whole blood samples
from 187 individuals with type-1 diabetes, including both sexes, and with individuals
drawn from two underlying cohorts. This particular dataset was used to test if DNA
methylation changes correlate with the age of the individual at sample draw, thus age
is here the POI [44]. The 187 samples were distributed over 17 different beadchips
with at most 12 samples per beadchip. A SVD of the 27,578 × 187 row-centered
(rows label CpGs) data matrix was performed to assess the nature of the largest
sources of variation. As can be seen in Fig. 17.1, it is only the fifth component of
variation that correlates with the POI (i.e., age), with the top components correlating
with other factors such as sex, BSC and (bead)chip. Furthermore, it can be seen that
the fifth component also correlates with chip indicating that this could be a poten-
tial confounder. This example further illustrates that technical or other biological
variation can be of orders of magnitude larger than the effect size of interest.

As a second example, we consider a DNA methylation dataset of 48 samples,
consisting of 30 normal samples from the cervix and 18 representing an intraepithelial
cervical neoplasia of grade 2 or higher (CIN2+) (a preinvasive cancer condition).
Here too, a SVD on the row-centered data matrix, reveals that it is only the third,
fourth, and fifth components that correlate with biological factors such as age or
CIN2+ status (Fig. 17.2a–b). Furthermore, unsupervised clustering of the samples
does not lead to segregation of the samples according to CIN2+ status, as one would
have expected on biological grounds (Fig. 17.2c). This example also illustrates that
the top component of variation is correlatingwith an unknown factor, possibly spatial
artifacts on the chips but which are also largely independent of chip. The key point to
appreciate here is that there is no surrogate known factor that we can use tomodel this
confounding source of variation, and hence explicit adjustment for this confounder
using a multivariate regression model in which the confounder is included as a
covariate is not possible [16].
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Fig. 17.1 a Relative fraction of variation carried by each of the seven significant singular vectors of
a SVD, as measured relative to the total variation in the data. Number of significant singular vectors
was estimated using Random Matrix Theory (RMT) [45]. Some of the singular values are labeled
according to which confounders the corresponding singular vectors are correlated to, as shown in
panel b. b Heatmap of P-values of association between the seven significant singular vectors and
the phenotype of interest (here age at sample draw) and confounding factors (Chip, cohort, sex,
and bisulphite conversion (BSC) efficiency controls 1 and 2). P-values were estimated using linear
ANOVA models in the case of chip, cohort and sex, while linear regressions were used for age
and BSC efficiency. Color codes: P < 1e − 10 (brown), P < 1e − 5 (red), P < 0.001 (orange),
P < 0.05 (pink), P > 0.05 (white)

17.4 Supervised Normalization by SVA and ISVA

The previous examples illustrate some of the difficulties that confounding factors
can pose in statistical analyses. One of the common tasks in omic data analysis is to
perform a supervised analysis in which we seek to identify features associated with
a phenotype of interest. Clearly, such task may be compromised by the presence of
confounding factors, specially if the confounder is unknown or if it is only known
subject to error, since in these cases we can’t adjust for them explicitly. Thus, one
desires a statistical framework in which to perform supervised analysis (i.e., feature
selection) in the presence of uncertain or unknown confounding factors. We refer
to this supervised analysis problem as “supervised normalization” in the sense that
the normalization of the data is performed as part of the supervised analysis and is
therefore dependent on the phenotype of interest. So far, only two algorithms, SVA
[19, 20] and ISVA [45] have been proposed to address this problem in the context
of omic data, where by definition the number of features is relatively large.
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Fig. 17.2 Confounding variation in a DNA methylation dataset of 30 normal cervical samples and
18 cervical intraepithelial neoplasias of grade 2 or higher (CIN2+). a Relative fraction of variation
carried by each of the six significant singular vectors of a SVD, as measured relative to the total
variation in the data. Number of significant singular vectors was estimated using Random Matrix
Theory (RMT) [45]. Some of the singular values are labeled according to which confounders the
corresponding singular vectors are correlated to, as shown. b Heatmap of P-values of association
between the six significant singular vectors and the phenotypes of interest (here CIN2+ status and
age at sample draw) and confounding factors (Chip and bisulphite conversion efficiency (BSCE)).
P-values were estimated using linear ANOVA models in the case of chip and CIN2+ status, while
linear regressions were used for age and BSC efficiency. Color codes: P < 1e − 10 (brown),
P < 1e − 5 (red), P < 0.001 (orange), P > 0.05 (white). c Hierarchical clustering of the 48
samples over the 5,000 most variable probes

17.4.1 Surrogate Variable Analysis

Leek and Storey proposed an ingenious solution to the problem posed above, known
as SVA [19, 20], which we now describe. Let us assume that we have a data matrix,
Xi j , with i (i = 1, . . . , p) labeling the features (genes, CpGs,...) and j ( j = 1, . . . , n)
labeling the samples, with p � n. Furthermore, we assume that each row of X has
been mean centered, and that we have a POI encoded by a vector y = {y1, . . . , yn}.
As in [20] we may allow for a general function of the phenotype vector, so that the
starting model for SVA takes the form

Xi j = fi (y j ) + εi j . (17.1)



474 A. E. Teschendorff et al.

Typically, fi (y)wouldbe a functionof the form fi = bi F(y)withbi a feature specific
regression parameter (to be estimated) and F representing a general link function.
Thus, SVA starts by performing univariate regressions, leading to estimates b̂i as well
as an estimate of the error matrix ε, which we shall call the residual variation matrix,
R ≡ ε̂. Componentwise, Ri j ≡ Xi j − f̂i (y j ). SVA then proceeds by performing a
SVD of the residual variation matrix

R = U DV T . (17.2)

Thus, the singular vectors of the SVD capture variation which is orthogonal to the
variation associated with the POI. This residual variation is therefore likely to be
associated with other biological factors, not of direct interest, or with experimental
factors, all of which constitute potential confounders. SVA provides a prescription
for the construction of surrogate variables, vk (k = 1, . . . , K with K < n), in terms
of the singular vectors (i.e., the column vectors of V ) of this SVD [20]. In the final
step, feature selection is performed using the modified regression model

Xi j = fi (y j ) +
K∑

k=1

λki vk j + ε′
i j . (17.3)

with the rows of ε′ now uncorrelated [19].
In the above framework, it is key to realize that SVA hinges on a big assump-

tion, which is that we have a perfect, or at least a sufficiently accurate model F(y)

describing the data, such that the residual variation encapsulated by the matrix R
does not contain any biological variation of interest (see left part of Fig. 17.3). In
this case, the only requirement on the surrogate variables describing the confounding
variation is that they span the residual variation space. We note that there is in fact
no requirement for the surrogate variables (SVs) to align with (i.e., precisely model)
the confounding factors.

However, now consider an alternative, and, as we shall see later, a more realistic
scenario, where model F(y) is imperfect. For instance, we may be using a linear
function F when the relation between data and POI is highly nonlinear. In this
case, residual biological variation of interest may be present in R (see right part of
Fig. 17.3). In such a scenario, we would want our SVs to align with the confounding
factors and not with the residual biological variation, since otherwise inclusion of
this in the subsequent adjusted supervised analysis (Eq.17.3) would lead to a reduced
biological signal. Later we shall see examples of this happening. Hence, in this more
realistic scenario, we need to choose SVs that span a subspace of R, i.e., one that is
also orthogonal to the residual biological variation. This in turn means that we need
an algorithm that can more accurately deconvolve the confounding sources from
the residual biological variation. As one might expect (and we shall see examples
of this later), the SVD used in SVA can not accurately deconvolve these different
sources of variation. This motivates the introduction of BSS methods in the context
of supervised normalization.
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Fig. 17.3 Surrogate Variable Analysis (SVA) begins by performing a regression of the data matrix,
X , against the phenotype of interest, Y , specified through a possibly nonlinear function F(Y ). In
the equation above, B denotes regression parameters, whereas R denotes the residual variation, i.e.,
the variation in the data not explained by the phenotype of interest under the specified model F .
Under such a model, there are two possible scenarios. In the ideal scenario (left pointing arrow),
F(Y ) models the data perfectly in the sense that the residual variation space, depicted by the plane
R, contains no residual biological variation of interest. In this case, the surrogate variables, which
are estimated from a SVD of R, and are indicated by blue arrows, don’t need to align with the
confounding factors (green arrows), as they are only required to span the same plane R. However,
in the more realistic scenario, there could be imperfections in the model F(Y ) (e.g., using a linear
model when the relationship between X and Y is nonlinear), which in turn could lead to residual
biological variation (red arrow) in the residual variation space R. In this case, we need to choose
surrogate variables that align with the confounders and “avoid” the residual biological variation of
interest, since otherwise using the whole space R in the subsequent adjustments will lead to loss of
biological signal. Thus, in this scenario, we need to select an appropriate subspace of R and only
use this subspace for the subsequent adjustments and supervised analysis. ISVA uses ICA instead
of PCA/SVD in the decomposition of R, thus allowing to infer surrogate variables that better model
the confounding sources of variation. Geometrically, this means that the independent surrogate
variables align significantly better with the confounders and the residual biological variation, thus
allowing an appropriate subspace of R to be selected. This subspace should not contain any residual
biological variation and ICA is key to achieving this

17.4.2 Independent Surrogate Variable Analysis

Motivated by the discussion above, we seek a BSS method that can more accurately
infer the sources of variation in the estimated residual matrix R. The generaliza-
tion of SVA in which a BSS method is used to decompose R is called ISVA [45].
Although many BSS methods exist, in [45] we considered one of the simplest ver-
sions of ICA, the “fastICA” algorithm [15]. Thus, as with SVA, there are three parts
to the ISVA algorithm: (i) detection of confounding/unmodeled factors (steps 1–4),
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(ii) construction of surrogate variables (SVs) (steps 5–10), and (iii) final feature
selection using the SVs as covariates.

In detail, the steps in ISVA are:

1. Construction of the residual variation matrix by removing the variation associ-
ated with the phenotype of interest: Ri j ≡ Xi j − f̂i (y j ).

2. We estimate the intrinsic dimensionality, K , of the residual variationmatrix using
RMT [29]. This gives the number of components as input to the ICA algorithm.

3. Perform ICA on R: R = S A + ε, with S a p × K source matrix and A a K × n
mixing matrix. We point out that in this formulation of ICA, the statistical inde-
pendence requirement is imposed on the columns of S. We denote the columns
of S and rows of A by Sk and Ak , respectively.

4. We regress Ak to each Xi (i = 1, . . . , p) and calculate P-values of association
pi .

5. From this P-value distribution, we estimate the FDR using the q-value method
[38] and select the features with q < 0.05. If the number of selected features is
less than 500, we select the top 500 features (based on P-values). Let rk denote
the number of selected features.

6. We construct the reduced rk × n datamatrix Xr obtained by selecting the features
in previous step.

7. Perform ICA on Xr using K independent components: Xr = Sr Ar + εr . Find
the column k∗ of Ar that best correlates (absolute correlation) with Ak .

8. Set the SV vk = (Ar )k∗ . The purpose of steps 4–8 is to regularize the estimates
and thus avoid overfitting as explained in [20].

9. Repeat steps 4–8 for each significant independent component, Ak , obtained in
step-3.

10. Perform SV subspace selection using a SV selection criterion. Let K ∗ denote
the set of selected SVs.

11. Finally, we run the model

Xi j = fi (y j ) +
∑

k∈K ∗
λki vk j + ε′

i j . (17.4)

and perform feature selection using a FDR (q-value) estimation procedure [38]
and a nominal q-value threshold of say 0.05.

As formulated above, there are three differences between ISVA [45] and SVA [19].
First, ISVA uses RMT to estimate the dimensionality, in contrast to SVA which uses
an explicit randomization procedure [20]. This difference is, however, not of major
consequence [45]. Second, ISVA uses ICA in step-3 instead of SVD. Third, ISVA
incorporates a SV subspace selection step (step-10) using a SV selection criterion that
we shall discuss in detail in Sect. 17.7.4. This step is absolutely key to the improved
inference that ISVA offers, and we point out here that the use of a BSS method in
step-3 is also key to facilitating the choice of SV subspace in step-10. Finally, we
remark that any BSS technique could be used to model the sources of variation in
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R (step-3), and thus the ISVA framework can be easily generalized to incorporate
more sophisticated BSS algorithms.

17.5 Validation of SVA and ISVA on Simulated Data

Before exploring the SVA and ISVA algorithms in the context of real data, it is
illuminating to first compare their performance on simulated data. The simulation
model is exactly the one considered in [45], and for completeness we provide full
details here again in the appendix. Briefly, we generated synthetic data matrices
with 2,000 features and 50 samples and considered the case of two confounding
factors (CFs) in addition to the primary POI. The primary phenotype is a binary
variable y with 25 samples in one class (y = 0) and the other half with y = 1.
Similarly, each confounding factor is assumed to be a binary variable affecting one
half of the samples (randomly selected). We further assume 10% of features (200
features) to be true positives (TPs) discriminating the two phenotypic classes. We
model the confounding factors as follows: each confounding factor is assumed to
affect 10% of features with a 25% overlap with the TPs (i.e., 50 of the 200 TPs
are confounded by each factor). Without loss of generality, noise is modeled by a
Gaussian of mean zero and unit variance N (0, 1). We further assume that the POI
is associated with an effect size ey(= �μ/σ) of 1, i.e., the difference in the means
between the phenotypes, �μ, equals the standard deviation, σ , within each group.
Effect sizes of the two confounders are assumed to be equal to eC F and we define
the relative effect size as eR ≡ eC F/ey = eC F . We here consider the case eR = 2
corresponding to a situation where the confounding factors are associated with a
larger variance than the POI. The simulation model is run a total of 100 times and
for each run we record the following measures (using an estimated FDR threshold of
0.05): the sensitivity (SE), the positive predictive value (PPV), the sensitivity of TPs
specifically affected by the confounding factors (SE-A), and the overall correlation
(R2-values) to the CFs. For the first three measures, we also compare SVA and
ISVA to a simple linear regression method that does not do any adjustment for the
confounding factors (LR). Results are shown in Fig. 17.4.

From this figure, we can make the following observations. First, the PPV is high
for all methods, and is in line with the estimated FDR (=1-PPV) of 0.05 used in
performing feature selection. Second, we can see that the power of the study is
reduced if no adjustment is made for the confounding factors. Indeed, we can see
that, focusing on those true positive features which are corrupted by confounding
variation, the sensitivity to retrieve these features is improved approximately twofold
by using SVA or ISVA. Third, ISVA and SVA perform similarly on simulated data,
despite the fact that ISVA reconstructs the confounding factors at substantially higher
R2 values. Thus, the simulated data nicely illustrates the “perfect model” scenario
depicted in the left side of Fig. 17.3. Since the data are simulatedwith the samemodel
that is subsequently used to run the univariate regression, the residual variationmatrix
R contains no residual biological variation, hence it does not matter if the SVs align
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Fig. 17.4 Feature selection performance metrics of different algorithms over 100 runs of the syn-
thetic data ran with eR = 2. The algorithms for feature selection are SVA, ISVA, and a simple
linear regression without adjustment for confounders (SLR). For a given estimated FDR threshold
of 0.05, we compare the sensitivity/power (SE), the positive predictive value (PPV), the sensitiv-
ity to detect true positives which are affected by confounders (SE-A), and the average R2-value
between confounders and the best correlated surrogate variable. See Appendix for further details
of simulation model

with the confounders. The main requirement is for the SVs to span the space R, and
hence similar results are obtained using the SVs from SVA or ISVA, since in both
cases, the SVs span the same space.

17.6 Improved Modeling of Confounding Factors
in Omic Data by BSS Methods

In the previous section, we have seen how ISVA models the confounding factors
much better than SVA. The aim of this section is to demonstrate that ISVA also leads
to improved modeling of the confounding sources of variation in real data. Later,
in the subsequent section, we shall see how this translates into improved feature
selection. Once again, we consider DNAmethylation data and as confounding factor
we consider the beadchip. Illumina Infinium beadchips can accommodate up to 12
samples per chip, hence there are enough samples for beadchip effects to be assessed.
Importantly, it is always known which samples were profiled on which beadchip,
hence this is an example of a known confounder and thus it can be used to objectively
assess the quality of blind source separation. As a benchmarkwe consider SVAwhich
uses SVD/PCA to decompose the residual variation matrix. As shown in Fig. 17.5,
the surrogate variables inferred using ISVA model the beadchip effects substantially
better than those inferred using SVA, as indicated by the significantly higher R2

values. For further examples, we refer the reader to [45].
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Fig. 17.5 Comparison of ISVA to SVA in identifying beadchip effects in the DNA methylation
dataset from [3]. The weights (y-axis) of the two surrogate variables that most significantly asso-
ciated with beadchip effects are plotted against beadchip number (x-axis), for SVA and ISVA
separately. To compare the identifiability of beadchip effects, we provide the R2 and F-statistics of
a linear ANOVA model with beadchip number as the independent variable

17.7 Improved Feature Selection Using ISVA

We have seen that ISVA can model confounding sources of variation substantially
better than SVA. This in turn should lead to improved statistical inference, e.g.,
feature selection, at least in those scenarios where it is necessary to select a surrogate
variable subspace, as explained in Sect. 17.3. To demonstrate this, we first provide
a number of real data examples where SVA breaks down. Subsequently, we show
how ISVA circumvents the problem, leading to substantially improved statistical
inference.

17.7.1 SVA Breakdown in mRNA Expression Data

In order to demonstrate that SVA can break down, we consider a real dataset with
a known biological signature: it is well known that many genes implicated in cell
proliferation and the cell-cycle are differentially expressed between high and low
grade cancers [26, 32, 36, 41]. The grade of a cancer refers to the level of differ-
entiation of the cancer cells, with high-grade cancers exhibiting a less differentiated
state, whilst low-grade cancers are more differentiated in the sense that they are
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more similar to normal (healthy) tissue, which is a highly differentiated state com-
pared to the undifferentiated stem cells that they are derived from. Thus, high-grade
cancers are generally more aggressive and correspondingly are also characterized
by a higher expression of cell proliferation and cell-cycle genes. This cell prolif-
eration gene expression signature is a universal signature, able to distinguish high
grade from low-grade cancers, irrespective of tissue type [26, 32, 36, 41]. Thus,
given a gene expression dataset of high and low grade cancers, selecting features
(genes) that best discriminate low and high grade cancers should lead to significant
enrichment of genes implicated in the cell-cycle and cell proliferation. The enrich-
ment of a top ranked list of discriminatory genes for any gene ontology can be
assessed using a Fisher’s exact test, as done for instance in [43], a procedure known
generally as Gene Set Enrichment Analysis (GSEA) [39]. If a feature selection
method were to not yield significant enrichment for cell-cycle or cell proliferation
genes, one would conclude that the feature selection procedure has failed to retrieve
the known biological signature. Thus, in what follows we consider “grade” as the
POI and we aim to show that SVA breaks down, not being able to retrieve the cell
proliferation/cell-cycle enrichment due to the presence of confounding factors.

Specifically, we consider the case of breast cancer. There are two main subtypes
of breast cancer: estrogen receptor positive (ER+) and estrogen receptor negative
(ER−) breast cancer [48]. This stratification of breast cancers reflects the levels of
expression of the estrogen receptor gene, ESR1, with ER− breast cancers showing
absent expression ofESR1. Thus, in ER+ breast cancer,ESR1 expression and activity
is high, which results in the overexpression of genes within the ESR1 signaling
pathway.Wenote that theseESR1 signalinggenes are different from the cell-cyle/cell-
proliferation ones. Now, it is well known that most ER− breast cancers are of high
grade, whilst ER+ breast cancers can be either high or low grade [41]. Thus, if the
aim is to identify genes whose expression correlates with grade, ER−status may
be seen as a biological confounder, since the distribution of ER+ and ER− tumors
will differ between low and high-grade cancers. Furthermore, it is also well known
that low and high grade ER+ breast cancers do not differ in terms of the level of
ESR1 expression and ER−signaling [26, 36, 41]. Hence, this means that in the task
of identifying genes that are associated with grade, any gene set enrichment must
be specific to cell-cycle and should not include terms involved in ER−signaling. In
other words, if feature selection for grade associated genes also leads to enrichment
of ER−signaling genes, then this indicates confounding by ER−status. Although
here the confounder is biological, this does not matter for the sake of comparing
algorithms, and indeed the biological framework considered here provides a nice
testing ground for the SVA and ISVA algorithms.

As expression data, we consider the data from four independent breast cancer
studies [5, 26, 35, 36], as used in [45]. In these datasets, besides ER−status, we
also consider tumor size as a potential biological confounder. We note that in these
datasets potential technical confounders such as batch effects are unknown. The
P-values of the GSEA of the top ranked grade-associated genes against cell-cycle
and ER−signaling terms are given in Table17.1 for genes selected using SVA and a
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Table 17.1 Grade associated expression differences: in each mRNA expression dataset and for
each method (LR+CFs, SVA, ISVA) we give the number of confounding factors (CFs) or SVs
used as covariates in the regression analysis, the number of genes differentially expressed with
histological grade (nDEGs) at a false discovery rate threshold of 0.05 (FDR< 0.05), and the
P-value of enrichment (Hypergeometric/Fisher test) of cell-cycle and estrogen upregulated gene
(ESR1-UP) categories among these differentially expressed genes

LR+CF SVA ISVA

Dataset(Sotiriou)
nCF/SV 2 4 4
nDEGs 491 0 607
P-value(Cell-cycle) 6e-18 1 5e-16
P-value(ESR1-UP) 0.03 1 0.14
Dataset(Loi)
nCF/SV 2 19 5
nDEGs 829 0 146
P-value(Cell-cycle) 5e-37 1 7e-24
P-value(ESR1-UP) 0.90 1 0.61
Dataset(Schmidt)
nCF/SV 2 27 15
nDEGs 2364 0 451
P-value(Cell-cycle) 3e-25 1 5e-19
P-value(ESR1-UP) 7e-4 1 0.14
Dataset(Blenkiron)
nCF/SV 2 20 8
nDEGs 1292 1 829
P-value(Cell-cycle) 2e-25 1 7e-27
P-value(ESR1-UP) 7e-4 1 0.31

Confounding factors here are ER status and tumor size. In bold face we indicate those P-values
that are significant after adjustment for multiple-testing

feature selection method that uses ER−status and tumor size as explicit covariates
in the linear regression model (LR+CF).

Based on this table, we can make two important observations. First, in three
datasets, SVA predicts no differentially expressed genes between low and high
grade breast cancer, a result which is in complete disagreement with extensive
biological knowledge [26, 32, 41]. As a result of this, none of the biological
terms cell-cycle or ER−signaling are enriched. Second, performing feature selec-
tion using a multivariate linear regression model with ER−status and size as explicit
covariates (LR+CF) leads to many differentially expressed genes (DEGs) in every
dataset. Correspondingly, we observe strong enrichment of the cell-cyle term among
these genes, consistent with biological knowledge. However, we also observe that
ER−signaling is significantly enriched in 2 out of 4 studies, hence the enrichment
for cell-cycle genes is nonspecific. This means that explicit adjustment for the con-
founders has not fully eliminated the effect of one confounder (ER−status) and hence
we can conclude that the list of DEGs contains many false positives associated with
ER−signaling. This contamination of ER−signaling genes is likely to be due to the



482 A. E. Teschendorff et al.

Table 17.2 Age-associated CpGs: in each dataset and for each method (LR+CFs, SVA, ISVA)
we give the number of CFs or SVs used as covariates in the regression analysis, the number of
CpGs differentially methylated with age (nDMCs) (FDR< 0.05 for Datasets T1D and UKOPS1,
FDR< 0.3 for Datasets UKOPS2 and WBBC), the number of these that are hypermethylated with
age and that map to polycomb group targets (nPCGTs), and the P-value of PCGT enrichment
among age-hypermethylated CpGs (Hypergeometric test)

Dataset(T1D) LR+CF SVA ISVA

nCF/SV 4 4 6
nDMCs 440 688 902
nPCGTs 96 110 148
P-value 4e-32 7e-26 2e-34
Dataset(UKOPS1)
nCF/SV 3 18 6
nDMCs 267 4 232
nPCGTs 75 1 59
P-value 4e-24 0.27 2e-19
Dataset(UKOPS2)
nCF/SV 3 21 8
nDMCs 20 201 225
nPCGTs 4 15 29
P-value 0.001 0.01 3e-7
Dataset(WBBC)
nCF/SV 3 15 6
nDMCs 564 185 469
nPCGTs 84 19 64
P-value 7e-22 0.01 3e-11

The CFs in each dataset are described in Appendix. In bold-face we indicate those P-values that
are significant after adjustment for multiple-testing

fact that the immunohistochemically determined ER−status of the samples is only
approximate, i.e., the confounder is subject to error. Thus, neither method, SVA or
LR+CF, succeeds in yielding specific enrichment of cell-cycle genes among the
genes associated with grade.

17.7.2 SVA Breakdown in DNA Methylation Data

As a second example, we consider DNAmethylation data. A large number of studies
have now unequivocally demonstrated that promoter DNA methylation of a specific
class of genes, known generally as PolyComb Group Targets (PCGTs), increases
with the age of the tissue (see e.g., [27, 30, 44]). Hence, feature selection for CpGs
in gene promoters undergoing age-associated increases in DNA methylation should
be enriched of PCGTs. Table17.2 shows the results of applying SVA and a linear
regression method that uses confounders as explicit covariates (LR+CF).
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We can see that in only one of the four datasets (T1D set), does SVA convincingly
retrieve the age-PCGT DNA methylation signature. In the other three datasets, the
P-value of enrichment is either not significant or would fail significance after cor-
rection for multiple testing. In contrast, linear regression with explicit adjustment for
confounders (see Appendix for the nature of the explicit confounders) convincingly
captures the biological signature in 3 out of 4 datasets.

17.7.3 Residual Biological Variation

The results presented above clearly demonstrate a pitfall of the SVA algorithm: it
can fail to retrieve a well-known and extensively validated association between a
molecular signature and a phenotype of interest. The most plausible explanation
for why this happens is that residual biological variation is being interpreted as
confounding variation leading to a “dampening” of the biological signal (see
Fig. 17.3). To show that this is indeed what is happening we can study the corre-
lations between the surrogate variables and the biological as well as confounding
factors. The statistical significance of these correlations is best shown as a heatmap.
This is shown for the four DNA methylation datasets considered in Table17.2 in
Fig. 17.6. From this figure and Table17.2 we can see that in all three datasets where
SVA fails to clearly capture the age-PCGT DNA methylation signature, that in all
three of them there is residual variation correlating with age. Conversely, in the one
dataset where there is no residual variation correlating with age (i.e., T1D set), SVA
retrieves the biological signature. Thus, this example clearly illustrates that the sce-
nario of residual biological variation arising due to imperfections in the modeling,
as depicted in Fig. 17.3, is indeed fairly common.

17.7.4 The Need for Surrogate Variable Subspace Selection

The above two examples in gene expression and DNAmethylation data demonstrate
the need to perform adjustment on a surrogate variable subspace, since otherwise one
risks “peeling” away biological variation of interest. In the case where there is no
residual biological variation it should be clear that it does not matter what basis (i.e.,
surrogate variables) we use to span the surrogate variable subspace. In other words,
it should not matter whether we use SVs constructed from principal components
(SVA) or from the independent components (ISVA). However, in the scenario where
biological variation of interest is present in the residual variation matrix R, we need
to select surrogate variables that “align” with the true confounders and which avoid
as much as possible the directions defined by the residual biological variation. This
then requires a BSS method to better deconvolute the effects of the confounders and
this residual biological variability. However, application of a BSS method to R only
yields a decomposition of R into a number of independent “sources” and does not,
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Fig. 17.6 Heatmap of P-values of association between the surrogate variables (SVs) inferred using
SVA and the confounders and phenotype of interest (age). P-values were estimated from linear
ANOVA in the case of categorical confounders (e.g Chip, Sex, Cohort) and from linear regressions
in the case of continuous variables (age, BSC efficiency-BSCE and DNA concentration-DNAc).
Color codes: P < 1e − 10 (darkred), P < 1e − 5 (red), P < 0.001 (orange), P < 0.05 (pink),
P > 0.05 (white)

on its own, provide a prescription for subspace selection. Hence, how do we select
this subspace?

The previous example discussed in Table17.2 and Fig. 17.6 provides a possible
prescription for how to perform the subspace selection, namely, only those SVs
should be included that do not correlate significantly with the phenotype of interest.
But what if SVs correlate significantly with both the POI and a confounder? In this
scenario, it is unclear whether to include these SVs in the final feature selection
procedure (i.e., step-11). The surrogate variable selection step therefore remains an
outstanding problem.
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Table 17.3 Surrogate Variable Selection: there are four possible case scenarios to consider depend-
ing on the R2

v f values between surrogate variable v and factor f , as shown

Scenarios POI( f = b) CF( f = t) ISVA

Case-1 Pvb < 0.001 Pvt > 0.001 Exclude
Case-2 Pvb > 0.001 Pvt < 0.001 Include
Case-3 Pvb < 0.001 Pvt < 0.001 Include if R2

vb < R2
vt

Case-4 Pvb > 0.001 Pvt > 0.001 Normally include

POI phenotype of interest ( f = b), CF technical confounder ( f = t). Pv f denotes the P-value
of the association between SV v and factor f . Final column indicates whether the SV v should be
included in the final adjustment step of ISVA or not. A conservative Bonferroni threshold of 0.001
is used to call statistical significance since the number of SVs is typically on the order of ∼10

Here we propose a simple heuristic to the subspace selection problem, which we
can only justify a posteriori, by showing that it leads to successful retrieval of the
known biological signatures. For each of the SVs and for each factor (biological
or technical) we first compute a model fit R2 value, using an appropriate linear or
nonlinear model framework. Let R2

v f denote the R2 value between surrogate variable
v and factor f . Further, let b denote the POI factor, and t denote a generic technical
factor. Then, there are four possible cases to consider, as indicated in Table17.3. In
case-1, the surrogate variable correlates significantly only with the POI, and hence it
ought to be excluded as remarked earlier. Conversely, if the surrogate variable corre-
lates significantly with a technical factor but not with the POI, then the corresponding
SV should be included. In the third case, where the SV correlates significantly with
both the POI and a technical CF, we use the model selection criterion

R2
vb < R2

vt (17.5)

to include only those where the correlation with the technical factor is stronger.
The rationale for this criterion is that if the variation described by v correlates more
strongly with the POI, then it is more likely that this variation is genuinely asso-
ciated with the POI, and hence this component should be excluded. The final case
corresponds to a scenario where the SV does not correlate with any known factor, in
which case it is also unclear whether to include the SV or not. In principle, one must
allow for the possibility of complete unknown (i.e., hidden) factors, in which case
the SV should be included. On the other hand, exclusion could be argued on grounds
of small variability and inaccuracies in dimensionality estimation.

Before demonstrating that the simple procedure presented in Table17.3 works, we
need to discuss furtherwhatmay seem as a serious drawbackwith the above heuristic,
as it requires some knowledge of the technical confounding factors. Given that BSS
methods are ideally suited to the scenario where sources of variation are unknown,
does this then pose an intrinsic limitation to the ISVA method? The answer is no.
To understand this, we first note that BSS methods are useful also in circumstances
where confounders are only known with error, since in such cases it would be better
to model the effects of the confounders from the data itself. In this case, the simple
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Fig. 17.7 Heatmap of P-values of association between the surrogate variables (SVs) inferred using
ISVA and the confounders and phenotype of interest (age). P-values were estimated from linear
ANOVA in the case of categorical confounders (e.g., Chip, Sex, Cohort) and from linear regressions
in the case of continuous variables (age, BSC efficiency-BSCE and DNA concentration-DNAc).
Color codes: P < 1e − 10 (darkred), P < 1e − 5 (red), P < 0.001 (orange), P < 0.05 (pink),
P > 0.05 (white)

SV subspace selection step described above can be applied. Second, the scenario
where confounders are known, or only known subject to error, constitutes the most
common scenario. Last but not least, SVs not correlating with any factor (case-4)
may still be included in the adjustment, as the main requirement is to avoid including
SVs that correlate strongly with the POI.

17.7.5 The ISVA Solution

Let us now see how ISVA resolves the problematic issues that we encountered ear-
lier with SVA. We first consider the four DNA methylation datasets considered in
Table 17.2 and Fig. 17.6. In Fig. 17.7 we show the heatmap of associations between
SVs constructed from ISVA with the same confounders.
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Fig. 17.8 Heatmap of P-values of association between the surrogate variables (SVs) inferred using
SVA and ISVA and the confounders (ER−status and tumor size) and the phenotype of interest
(Grade). a Dataset Loi, b Dataset Schmidt. P-values were estimated from linear regressions. Color
codes: P < 1e −10 (darkred), P < 1e −5 (red), P < 0.001 (orange), P < 0.05 (pink), P > 0.05
(white). “V” indicates SVs selected for adjustment in SVA or ISVA

Note how in two datasets (UKOPS1 and WBBC) there is no residual biological
variability associated with age (the POI). In the UKOPS2 set, there are two SVs that
correlate marginally with age, and importantly they do not correlate with any other
factor, hence these are not included in step-11 of ISVA. In the T1D set, there are
three SVs that correlate with age, but only one of these (SV-3) is excluded, because
the other two (SV-1 and SV-5) correlate more strongly with potential confounders
such as Sex, Cohort, BSCE, and Chip. As seen in Table 17.2, ISVA with the above
prescription for SV subspace selection, leads to significant enrichment of PCGTs in
all four DNAmethylation datasets. Thus, using ISVA the known biological signature
is successfully retrieved in all sets.

It could be argued that the key step is the SV subspace selection, and not the
BSS algorithm per se. To show how the use of ICA facilitates the SV subspace
selection, we return to the example of mRNA expression data with grade as the
POI and ER−status playing the role of confounder. Table17.1 shows the results
obtained by ISVA. In comparison to SVA, we can see that ISVA leads to specific
enrichment of cell-cycle genes (i.e., ER−signaling genes are not enriched), clearly
indicating that confounding by ER−status has been successfully removed. Aswe can
see fromFig. 17.8, this improved feature selection can be attributed to amore accurate
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deconvolution of residual variation associated with grade from that associated with
ER−status. As illustrated in Fig. 17.8a, SV-1 in SVA is equally strongly correlated
with grade and ER−status, indicating inaccurate deconvolution. In contrast, with
ISVA, the SVs correlating most strongly with ER (SV-12) and grade (SV-7) are
distinct, thus facilitating SV subspace selection and subsequently allowing improved
feature selection. Similarly, in Fig. 17.8b, SV-3 in SVA is selected for adjustment yet
it correlates very strongly with grade. In contrast, in ISVA the SV correlating most
strongly with grade (SV-9) does so much more strongly than with ER−status, and
hence this SV is not included in the subsequent adjustment. The effect of ER in the
residual variation space is captured by other SVs (SV-12, 20, 24, 27) which do not
correlate as strongly with grade, and these are therefore included in the adjustment.
Thus, in these two examples, the BSS method is key since it allows more accurate
deconvolution of the different sources of variation in the residual variation space.
Even if a SV subspace selection step is incorporated into SVA (using the same
heuristic criterion as for ISVA), we would still select problematic SVs since PCA
does not allow accurate deconvolution of the different sources of variation (see [45]
for results of this modified SVA).

17.8 Modeling of Confounding Factors with Generalized BSS
Algorithms

In the previous sections, we have seen how a simple BSS method (fastICA) can
lead to substantial improvements in modeling confounding factors as well as to an
improved deconvolution of the biological and confounding factors, both of which
are important, and which subsequently lead to improved feature selection in super-
vised analysis problems. We have also provided an objective evaluation framework
in which to assess and compare the different algorithms.

It is therefore of interest to consider more sophisticated BSS methods, since
these might offer further improvements in statistical inference. In doing so, the first
question to address iswhethermodeling of confounders is improved using thesemore
advanced BSS methods. One particular generalization of ICA which is of interest
to study concerns the statistical independence assumption, which so far has been
applied to the columns of the source matrix S. In other words, given the residual
matrix R of dimension p × n, we applied ICA in the context

R = S1A + ε (17.6)

with the inference required to minimize a residual sum of squares subject to the
constraint that the K p−dimensional column vectors of S1 be as statistically inde-
pendent as possible. However, as shown in previous studies [37, 47], a dual interpre-
tation/implementation is possible, whereby statistical independence is imposed on
the rows of the mixing matrix A. This dual problem can be expressed as:
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RT = AT ST
1 + ε

= S̃2 Ã + ε (17.7)

where statistical independence is now imposed on the columns of S̃2 which is amatrix
of dimensionality n × K . As shown in [2, 33, 37, 47], it is possible to formulate a
“spatio-temporal” or bi-dimensional ICA,

R = S1ST
2 + ε (17.8)

inwhich statistical independence is favored across both features (“time”) and samples
(“space”), by means of an overall cost function, C f , defined as a weighted linear
combination of the cost functions used to solve Eqs. 17.6 and 17.7, i.e.,

C f = (1 − a)C f1 + aC f2 (17.9)

More formally, the specific bi-dimensional ICA algorithm we consider here [2, 33,
47] starts with a SVD of the row and column centered (residual) data matrix R,
so R = U DV T , with corresponding estimation of the dimensionality K (using as
before RMT). One then constructs the reduced matrix RK = UK DK V T

K where the
first K columns of U and V have been selected corresponding to the top K singular
values of D. This reduced matrix can then be rewritten as

RK = UK DK W −1
︸ ︷︷ ︸

S1

W V T
K︸ ︷︷ ︸

ST
2

(17.10)

with W an invertible matrix of size K × K . Finally, we seek to optimize the matrix
W such that the fourth-order cumulants of S1 and S2 are as diagonal as possible, i.e.,
minimizing

C f (W ) =
(

a
∑

i

Off
(

Ci (ST
2 )

)
+ (1 − a)

∑

i

Off
(

Ci (ST
1 )

))
(17.11)

where Off(Y ) returns the sum of squares of the off-diagonal elements of Y , and the
Ci are fourth-order cumulants. Imposing that W is orthogonal leads to a formulation
which can be solved by means of the JADE algorithm [6]. We note however that this
formulation of bi-dimensional ICAdiffers slightly from that of [33, 47], as the second

term in the contrast function involves
(
Ci (ST

1 )
)
instead of

(
Ci (ST

1 )
)−1

. Minimizing
one or the other pursues the same goal, namely statistical independence for columns
of S1. This novel formulation however allows us to treat both extreme cases on
an equal footing: a = 1 corresponds to JADE applied on RT

K = S2ST
1 whereas

a = 0 corresponds to JADE applied on RK = S1ST
2 . Thus, the cost function can be

interpreted as a weighted linear combination of two ‘jade-like’ cost functions.
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Fig. 17.9 Modeling of beadchip effects by bi-dimensional ICA in two DNA methylation datasets.
y-axis labels the R2 value of the component correlating best with the beadchip as assessed using a
linear ANOVA model. x-axis labels the parameter a in Eq.17.11

Given the above formulation of bi-dimensional ICA, it is of interest to study the
effect of the parameter a on the quality of BSS. Since beadchip effects provide an
objective framework in which to assess the quality of the BSS, we focus on how well
these effects are modeled by the family of bi-dimensional ICA algorithms above. For
simplicity, we consider the unsupervised problem in which the ICA decomposition
is done on the data matrix X itself.1 Figure17.9 shows the results, indicating that in
terms of modeling beadchip effects, ICA is best run with values of a close to zero.
This corresponds to imposing statistical independence of the sources across features,
as implemented in the fastICA version of the ISVA algorithm.

17.9 Conclusions

In this chapter, we have presented and discussed the problem that confounding
factors pose in large omic datasets. Since feature selection is a common task in the
analysis of such large datasets, it is paramount to have statistical methods in place
that can perform supervised analysis and feature selection in the background of such
confounding factors, specially when these are uncertain or unknown. We have seen
how BSS methods are necessary in this context, since there is a requirement to accu-
rately model confounding factors and to deconvolve these from variation associated
with the phenotype of interest. We have presented an algorithm, ISVA, which uses
a BSS technique (ICA) to perform a supervised normalization of the data and have
shown that it offers a more sound statistical framework in which to perform feature
selection than a competing non-BSS tool based on PCA.

As mentioned earlier, it is possible to consider any BSS algorithm within the
ISVA framework. One of the most straightforward generalizations of the fastICA
algorithm used in our ISVA implementation is to relax the statistical independence

1 Instead of the residual variation matrix R which requires specification of the POI and is thus
supervised.
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assumption, but to simultaneously impose partial statistical independence along the
dual “sample”-space, resulting in a bi-dimensional ICA. However, we have seen that,
at least in terms of modeling beadchip effects, that the original implementation (i.e.,
imposing statistical independence across features) is optimal. This could be due to
the sources across features being well described by sparse distributions or by the fact
that statistical independence is best assessed using the larger feature space.

Although the bi-dimensional ICA did not lead to improved modeling of beadchip
effects, it is nevertheless of interest to investigate this and other BSS algorithms
in the ISVA context. For instance, it could well be that other types of confounding
factors are best modeled using bi-dimensional ICA or ICA algorithms that also allow
for skewed sources of variation [37, 47]. Exact known confounders (like beadchip
effects) allow for objective assessment of BSS in real data, yet unfortunately, not
many such factors exist. On the other hand, the number of beadchips in studies can
vary substantially, thus allowing assessment of the BSS methods at least in rela-
tion to statistical properties such as kurtosis, which would vary for beadchip effects
depending on the overall sample size of the study. Thus, a beadchip effect affect-
ing 12 samples out of 120 samples (10 beadchips) will exhibit different statistical
properties to one in a study of only 36 samples.

Besides the detailedmodeling of the sources, another key challenge faced in ISVA
is the SV subspace selection step. Although we have presented a simple heuristic
selection criterion, which, as we have seen, successfully retrieves the known bio-
logical signatures in diverse real datasets, the criterion itself is not applicable to the
case where confounders are complete unknowns (i.e., hidden). In fact, this remains
an outstanding statistical challenge since (1) the presence of biological variation of
interest in the matrix of residuals is almost always inevitable and (2) it is entirely
plausible that some of this variation is driven by hidden confounding factors and
hence that the associated SVs should be included in the final regression model.

The results on eight real datasets presented here however, conclusively demon-
strate that a SV selection step is absolutely necessary to arrive at the correct biolog-
ical conclusion, yet in other datasets where the biological truth is unknown, the SV
selection criterion used here could falter due to hidden confounding factors. In other
words, in the eight real datasets considered here we can be fairly certain that the data
is not subject to substantial hidden (i.e., completely unknown) confounding varia-
tion, since otherwise our SV selection criterion would not have led to the retrieval of
the known biological signatures.

With this chapter we hope to engage biologists, bioinformaticians, and signal
processing experts alike. The problem that confounding factors pose in the statistical
analysis of omic data is both challenging and critical to the ultimate success of large-
scale genomic and epigenomic studies aiming to identify the much needed disease
biomarkers. Further research in this area is therefore urgently needed.
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Appendix

Simulated Data

We simulated data matrices with 2,000 features and 50 samples and considered
the case of two confounding factors (CFs) in addition to the primary phenotype
of interest. The primary phenotype is a binary variable I1 with 25 samples in one
class (I1 = 0) and the other half with I1 = 1. Similarly, each confounding factor is
assumed to be a binary variable affecting one half of the samples (randomly selected).
For a given sample s we thus have a 3-tuple of indicator variables Is = (I1s, I2s, I3s)

where I2 and I3 are the indicators for the two confounding factors. Thus, samples fall
into 8 classes. For instance, if Is = (0, 0, 0) then this sample belongs to phenotype
class 1 and is not affected by the two confounding factors. Similarly, Is = (0, 1, 0)
means that the sample belongs to class 1 and is affected by the first confounding
factor but not the second.

We assume 10% of features (200 features) to be TPs discriminating between
the two phenotypic classes. We model the confounding factors as follows: each
confounding factor is assumed to affect 10% of features with a 25% overlap with
the TPs (i.e 50 of the 200 TPs are confounded by each factor). Let Jg denote the
indicator variable of feature g, so Jg is a 3-tuple (J1g, J2g, J3g)with J1g an indicator
for the feature to be a true positive, and J2g (J3g) an indicator for the feature to be
affected by the first (second) confounding factor. Thus, the space of features is also
divided into eight groups. Furthermore, let (e1, e2, e3) denote the effect sizes of the
primary variable and the two confounding factors respectively, where we assume for
simplicity that e2 = e3. Without loss of generality, we further assume that noise is
modeled by a Gaussian of mean zero and unit variance N (0, 1). Thus, for a given
sample s we draw data values for the various feature groups as follows:

1. Jg = (0, 0, 0): null unaffected features

p(x |Is) ∼ δJg,000N (0, 1)

2. Jg = (0, 1, 0) or (0, 0, 1): null features affected by only one CF

p(x |Is) ∼ δJg,010
{
δIs ,x1z N (e2, 1)

+ δIs ,x0z N (0, 1)
}

+ δJg,001
{
δIs ,xy1N (e3, 1)

+ δIs ,xy0N (0, 1)
}

3. Jg = (0, 1, 1): null features affected by the two CFs
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p(x |Is) ∼ δJg,011
{
δIs ,x11N (e2 + e3, 1)

+ δIs ,x01N (e3, 1)

+ δIs ,x10N (e2, 1)

+ δIs ,x00N (0, 1)
}

4. Jg = (1, 0, 0): true positives not affected by CFs

p(x |Is) ∼ δJg,100
{
δIs ,0yz N (0, 1)

+ δIs ,1yz(π−1N (−e1, 1) + π1N (e1, 1))
}

5. Jg = (1, 0, 1) or (1, 1, 0): true positives affected by one CF

p(x |Is) ∼ δJg,101
{
δIs ,0y0N (0, 1) + δIs ,0y1N (e3, 1)

+ δIs ,1y0(π−1N (−e1, 1) + π1N (e1, 1))

+ δIs ,1y1(π−1N (−e1 + e3, 1)

+ π1N (e1 + e3, 1))
}

∼ δJg,110
{
δIs ,00z N (0, 1) + δIs ,01z N (e2, 1)

+ δIs ,10z(π−1N (−e1, 1) + π1N (e1, 1))

+ δIs ,11z(π−1N (−e1 + e2, 1)

+ π1N (e1 + e2, 1))
}

6. Jg = (1, 1, 1): true positives affected by all CFs

p(x |Is) ∼ δJg,111
{
δIs ,000N (0, 1)

+ δIs ,010N (e2, 1) + δIs ,001N (e3, 1)

+ δIs ,011N (e2 + e3, 1)

+ δIs ,101(π−1N (−e1 + e3, 1)

+ π1N (e1 + e3, 1))

+ δIs ,110(π−1N (−e1 + e2, 1)

+ π1N (e1 + e2, 1))

+ δIs ,111(π−1N (−e1 + e2 + e3, 1)

+ π1N (e1 + e2 + e3, 1))
}
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where in the above δx ′ y′z′,xyz denotes the triple Kronecker delta: δx ′ y′z′,xyz = 1 if
and only if x ′ = x , y′ = y and z′ = z, otherwise δx ′ y′z′,xyz = 0, and (π−1, π1) are
weights satisfying π−1 + π1 = 1. In our case, we used π1 = π−1 = 0.5.

DNA Methylation Data (Whole Blood Tissue)

In all datasets, age is the phenotype of interest. (i) T1D: this DNAm dataset consists
of 187 blood samples from patients (94 women and 93 men) with type-1 diabetes.
This set served as validation for a DNAm signature for aging [44]. We take BSCE,
beadchip, cohort, and sex as potential confounding factors. Samples were distributed
over 17 beadchips; (ii) UKOPS1: this DNAm set consists of 108 blood samples from
healthy postmenopausal women which served as controls for the UKOPS study [43].
Confounding factors in this study include BSCE, beadchip and DNA concentration
(DNAc). Samples were distributed over 10 beadchips; (iii) UKOPS2: This is similar
to Dataset2 but consists of 145 blood samples from healthy postmenopausal women
distributed over 36 beadchips (i.e., approximately four healthy samples per chip, the
other eight blood samples per chip were from cancer cases) [43]; (iv) WBBC: This
dataset consists of whole blood samples from a total of 84 women (49 healthy and
35 women with breast cancer). Samples were distributed over seven beadchips, and
confounders are BSCE, status (cancer/healthy), and beadchip.

Breast Cancer mRNA Expression Data

The mRNA expression profiles are all from primary breast cancers and three of
the datasets were profiled on Affymetrix platforms, while another was profiled on
an Illumina Beadchip. Normalized data were downloaded from GEO (http://ncbi.
nlm.nih.gov/), and probes mapping to the same Entrez ID identifier were averaged.
Sotiriou: 14,223 genes and 101 samples [36]; Loi: 15,736 genes and 137 samples
[26]; Schmidt: 13,292 genes and 200 samples [35]; Blenkiron: 17,941 genes and
128 samples [5]. In these datasets, we take histological grade as the phenotype
of interest and consider estrogen receptor status and tumor size as potential con-
founders. Cell-cycle-related genes are known to discriminate low and high grade
breast cancers irrespective of estrogen receptor status [26, 36]. Therefore, we com-
pare the algorithms in their ability to detect specifically cell-cycle-related genes and
not estrogen-regulated genes. To this end, we focused attention on two gene sets, one
representing cell-cycle-related genes from the Reactome http://www.reactome.org,
and another representing estrogen receptor (ESR1) upregulated genes [10]. The cell-
cycle set showed negligible overlapwith theESR1 gene set, however, we removed the
few overlapping genes to ensure mutual exclusivity of the cell-cycle and ESR1 sets.

http://ncbi.nlm.nih.gov/
http://ncbi.nlm.nih.gov/
http://www.reactome.org
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