
Chapter 16
Exploratory Analysis of Brain with ICA

Rubén Martín-Clemente

Abstract This chapter introduces the use of independent component analysis (ICA)
in the study of electroencephalographic (EEG) data. Though the main application of
ICA is in the context of denoising, we prefer to focus our attention to the indepen-
dent components of artifacts-free EEG data. The interpretation of these independent
components is still controversial, and we outline the more accepted alternatives. An
introduction to the results obtained when applying ICA to evoked potentials (EPs)
and event-related potentials (ERPs) is presented, as well as an explanation of the ICA
of natural images and its relationship with models of visual cortex is also presented.
This chapter is written as a general introduction to the subject for those who want to
get started in the main topics.

16.1 Introduction

Independent Component Analysis (ICA) is a multivariate technique that enables us
to linearly transform a given random vector into a vector of (maximally) independent
components. In the last decade, ICAhas beenwidely used in biomedical applications:
e.g., for the detection of the fetal electrocardiogram [20, 45, 64–66], in the analysis
and classification of heartbeats [10, 12, 57, 71], in functional magnetic resonance
imaging (fMRI) [22, 36, 52], for the development of brain computer interfaces
[27, 80], in photoplethysmography [54, 56], in electromyography [14, 44], for the
diagnostic of scoliosis [1], in the modeling of metabolic processes [59], et cetera.
ICA is also closely related to the blind source separation problem.

This chapter reviews the use of ICA in the study of brain and, specifically, elec-
troencephalogram (EEG), which records the brain’s electrical activity. Our aim is to
provide an introduction for those who want to get started in the main points. The
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chapter is organized as follows: first of all, we provide basic background information
on the structure and function of the brain. The application of ICA to EEG data is
reviewed in Sect. 16.4, with special emphasis in the interpretation of the independent
components, in the use of ICA for denoising the data, in the search for the sources
of the electromagnetic fields in the brain, and in the study of the so-called evoked
and event-related potentials. We focus in these specific analyses because ICA has
demonstrated well its effectiveness for all of them. The ICA of natural images has
attracted great attention in recent years, due to its ability to explain certain charac-
teristics of the simple cells in the visual cortex, and is explained in Sect. 16.5. In
Sect. 16.6, we present some algorithms specifically devised for the analysis of the
EEG and, finally, the last Section is devoted to present some conclusions.

16.2 Background of Brain Structure and Function

The brain is the part of the central nervous system that gives rise to thought and
consciousness, interprets the stimuli from the environment, and controls and coordi-
nates other organs of the body. It is made up of 15–33billion neurons and more than
100billion nerves. There are two kinds of tissue in the central nervous system: grey
matter and white matter. Grey matter consists of closely packed neural cell bodies,
and can be regarded as the information processing part of the central nervous system.
Grey matter is found at the cerebral cortex and also at the surfaces of the cerebellum,
the brainstem, the basal ganglia and the limbic system (these terms are explained
below). White matter is a vast system of neural connections that contains the nerve
fibers (axons) that communicate the regions of the brain to each other.

Our brain is composed of three specialized parts that collaborate together: the
cerebrum (see Sect. 16.2.1), the cerebellum, and the brain stem (see Fig. 16.1):

• The brain stem is the link between the spinal cord and the rest of the brain. It
performs many basic reflex functions, contributing to the control of the cardiac
and respiratory functions and maintaining the consciousness.

• The cerebellum is at the back of the brain and regulates the muscular activity. It
is responsible for accurate movement coordination, motor learning, equilibrium,
posture, balance, and muscle tone. The cerebellum does not decide to make the
movements, but executes the motor commands from the cerebrum, calibrating the
actions and position according to the information received from the muscles and
the inner ear.

The brain is bathed in cerebrospinal fluid, surrounded and protected by a layer of
tissues calledmeninges, the blood–brain barrier, and the bones of the skull (cranium).
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(a) (b)

Fig. 16.1 Parts of the brain. a Structure of the brain. b Brain cortex

16.2.1 The Cerebrum

The cerebrum is the dominant part of the brain and comprises two (more or less
symmetric) left and right hemispheres, connected by a large white matter structure
called corpus callosum. The cerebrum may itself be divided into three subregions
(see Fig. 16.1):

1. The cerebral cortex.
2. The basal ganglia.
3. The limbic system.

The outermost layer of brain cells is called cerebral cortex and is made up of grey
matter. Thinking and voluntary movements begin in the cortex. The cortex is only
1.5–4.5mm deep and, due to its special interest, it will be described in some detail
in Sect. 16.2.2. Under the cortex we find a large mass of white matter, within which
a number of clusters of neurons (grey matter) called basal ganglia are found. The
basal ganglia are involved in perception, attention, motivation and motor functions.
Basal ganglia also have an important role in controlling eye movements. Finally, the
limbic system (also called the “emotional brain”) consists of several nerve pathways
incorporating subcortical structures located on top of the brain stem, including the
hippocampus,1 the hypothalamus,2 the amygdala3 and the thalamus.4 The limbic
system controls our emotions and plays an important role in learning,memory, control
of appetite, and in the regulation of hormones.

1 The hippocampus plays an important role in the formation of new memories, and in spatial
orientation. It also seems to be related to behavioral inhibition.
2 The hypothalamus is involved in emotion and endocrine function control, hunger, and sleep–wake
cycle regulation, among other tasks. It also controls the pituitary gland.
3 The amygdala is involved in memory, emotion, and fear.
4 The thalamus regulates auditory, somatosensory, and visual sensory information. All sensory
stimuli, with the exception of smell, is received in the cortex after passing through the thalamus.



438 R. Martín-Clemente

Interestingly, it has been suggested that the cerebral cortex performs unsupervised
learning, the basal ganglia are devices for reinforcement learning, and the cerebellum
performs supervised learning.

16.2.2 The Cerebral Cortex

The cortex is the outermost layer of brain cells, and deserves special attention. It is
a very thick layer of neural tissue, composed of a narrow convoluted margin of grey
substance.

The cortex is a continuous sheet of grey matter. Note, however, that it is conven-
tionally divided in each hemisphere into four lobes, named after the bones under
which they are located (see Fig. 16.1b):

1. The frontal lobe. Under the forehead.
2. The parietal lobe. Under the top of the head, above the ears.
3. The temporal lobe. Above ears and immediately behind and below the frontal

lobe.
4. The occipital lobe. At the back of the head.

Different lobes of the cortex have different functions. Basically, these functions
can be grouped into three major categories: cognitive (language, thinking, and inter-
pretation of the world), motor (functions related to the control of voluntary move-
ments), and sensory functions (the ability to process the information fromour senses):

• The frontal lobe is associated with higher cognitive functions (personality, reason-
ing, and judgement) and, in collaboration with the basal ganglia and the parietal
lobe, is also responsible for motor functions (e.g., the primary motor cortex is
located at the posterior part of the frontal lobe). Broca’s area, whose functions are
linked to speech production, is also in the frontal lobe.

• The parietal lobe integrates the main somatosensory receptive areas, i.e., those
related to the sense of touch, and its functions also include spatial orientation or
the ability to read and write. Left part of the parietal lobe has also the ability to
understand numbers and solve mathematical problems.

• The part of the cortex responsible for processing sound is mainly at the temporal
lobe (the Wernicke’s area, which is usually above the left ear, plays a key role in
the comprehension of language). Temporal lobes also control visual and verbal
memories.

• The part of the cortex that processes visual information (i.e., the primary visual
cortex) is located at the occipital lobe.

Let us finish with a true curiosity: each cerebral hemisphere controls mainly the
opposite side of the body and, interestingly, left part of the cerebrum seems to be
responsible for numerical and scientific thinking, and written and spoken language;
by contrast, the right part of the cerebrum seems to be linked to artistic capabilities
and imagination.
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16.2.3 The Electroencephalogram

In a sense, trying to understand the inner working of the brain through the EEG is
comparable to trying to understand the mechanisms of a motor through the motor
noise. TheEEGmainly arises from the postsynaptic currents in the pyramidal neurons
of the cortex. Pyramidal neurons are the most abundant type of neuron in the cortex,
and receive their name from the similarity between the cell body (soma) and a
pyramid. Every neuron receives inputs from many others. In each communication,
the “transmitter” neuron is called presynaptic, and the “receiver” neuron is called
postsynaptic (the synapse is the point of connection between the neurons).When two
neurons communicate, a flow of positively charged ions, the postsynaptic current, is
generated from the presynaptic cell to the postsynaptic cell (that current also produces
a voltage, called postsynaptic potential, across the membrane of the postsynaptic
neuron). In practice, hundreds, if not thousands, of postsynaptic currents combine in
the neuron and, if their sum pass a threshold, an action potential occurs. The action
potential is a short spike (1ms) that propagates through the axon to other neurons,
generating new postsynaptic currents. The summation of the electric fields associated
with the synchronous postsynaptic currents of millions of neurons can be measured
at the scalp, giving the EEG. More precisely, the EEG is a record over time of the
differences of potential between different locations on the surface of the head.

Figure 16.2 shows the standard location of the electrodes for EEG recording. As
an example, Fig. 16.3 shows typical voltage waveforms as can be measured at these
locations: in this figure, note that the EEG is not “clean”, but rather is contaminated
by a number of artifacts, e.g., a “bump” artifact appears at t = 2 s in the frontal
electrodes most probably due to the fact that the subject has blinked or moved the
eyes (see Sect. 16.4.4).

16.3 Overview of EEG Signal Processing

EEG signal processing (see [72] for a book of reference) usually comprises three
steps:

1. Noise reduction.
2. Feature extraction.
3. Feature classification.

Some comments are in order.

16.3.1 Noise Reduction

The EEG signal measurements are usually contaminated by several types of noise
and artifacts, for example, electrocardiogram artifacts and eye-induced artifacts. Eye
blinks, for example, elicit a large potential difference between the cornea and the
retina that can be one order of magnitude larger than the EEG (see Fig. 16.3).
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Fig. 16.2 Standard placement of electrodes for EEG recording. Letters “F”, “T”, “P” and “O”,
respectively, mean frontal, temporal, parietal, and occipital lobe (see Fig. 16.1b). The ‘C’ letter
stands for central, and letter “z” (zero) refers to an electrode placed on the center line. Electrodes
on the right hemisphere are numbered with even numbers, and odd-numbers are used on the left
hemisphere. “Fp” refers to the frontal polar sites

The bandwidth of the EEG is from about 1 to 100Hz, although we rarely go
beyond 50Hz in clinical practice. Most of the noise can be suppressed by applying
low-pass filters. DC and baseline drifts can be eliminated using high-pass filters (1Hz
cutoff frequency), and powerline harmonics can be removed with a comb filter. If the
subjects under test do not maintain their eyes closed during the recording of the EEG,
additional processing is required to eliminate eye-blink artifacts. Adaptive filtering
has been used for this task, where the necessary reference signals are taken from
electrodes located in the vicinity of the eyes. Adaptive filtering can be also used to
eliminate electrocardiogram (ECG) artifacts.

Of course, as the reader well knows, ICA is a valuable tool for denoising and
removing artifacts. In fact, denoising and removing artifacts seem to be the primary
use for ICA in EEG signal processing.More informationwill be given in Sect. 16.4.4.
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Fig. 16.3 EEGdata. The figure represents 5 s of 61 rawEEG channels, obtained from a healthy sub-
ject . Data was obtained from the Physionet database (http://www.physionet.org/pn4/eegmmidb/).
The placement of the electrodes, as well as an explanation of the nomenclature used for the channels,
can be seen in Fig. 16.2. The horizontal axis represents time in seconds. The ICA of these data is
presented in Fig. 16.4

http://www.physionet.org/pn4/eegmmidb/
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Fig. 16.4 Independent components of the data shown in Fig. 16.3. ICA was performed by using
the Infomax algorithm [7]. Scalp maps and equivalent current dipoles (ECDs) of these independent
components are shown in Fig. 16.5

16.3.2 Feature Extraction

After removing noise and artifacts, the second step in EEG signal processing usually
consists in extracting relevant features out of the EEG signals.

Since the EEG is highly nonstationary in nature, feature extraction can be per-
formed only after prior segmentation of the signals into short segments, usually not
longer than a few seconds. Features are then extracted from each one of them.Within
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1 (3.3%) 2 (14%) 3 (58%)

4 (9.8%) 5 6 (56%)

7 (29%) 8 (55%) 9 (49%)

Fig. 16.5 This figure shows the scalp topographies and the current equivalent dipoles (ECDs) of
some of the independent components in Fig. 16.4 (the number between parentheses is an indicator
of the residual error in the estimation of the ECD). The physiological origin of the independent
components may be determined from this information. The “dots” indicate the location of the
electrodes

each segment, the signals are considered to be stationary and can then be described
by suitable probability distributions. The major problem is, of course, to determine
the initial and final time instants of each segment. Usually, the data is first divided into
short-time frames and statistics, such as the kurtosis, are computed for each frame.
Denoting s(n) the value of the test statistic in the nth frame, if |s(n) − s(n − 1)| is
greater than a predefined threshold, we assume that the “border” that separates two
consecutive segments is located in between the nth frame and the preceding (n−1)th
frame.

Features can be selected in several ways. There exists time-dependent fea-
tures (mean and peak values of the EEG signals, energy, higher order statistics,
entropy, autoregressive (AR) parameters, Lyapunov exponents, . . .), frequency-
dependent features (power spectral density (PSD) values, band powers, . . .),
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time–frequency-dependent features (matching pursuit, coefficients of the wavelet
decomposition, . . .), and so on. Spatial-based features are particularly interesting.
The most important spatial-based feature is the localization at a given time of the
regions inside the brain in which the postsynaptic currents5 are more active. This
feature provides valuable information on the functioning of brain and, also, on sev-
eral diseases and abnormalities. ICA has revealed itself as an useful preprocessing
tool for this task (see Sect. 16.4.2).

Notice finally that, to take into account the time-course variation of the EEG’s
characteristics, it is usual in EEG signal processing to concatenate the features from
several different time segments into a single feature vector.

16.3.3 Feature Classification

Finally, we try to classify the features into different classes that, in turn, correspond
to different brain activities. For example, epileptic seizures produce a series of sharp
spikes in the EEG. Their second- and higher order statistics may be classified to
determine automatically the type and severity of the epileptic attack or, even, to
distinguish between a true epileptic seizure and a nonepileptic attack.

Linear classifiers, such as Fisher’s linear discriminants and support vector
machines (SVM), are probably the most popular classification methods in EEG sig-
nal processing. Linear classifiers use hyperplanes to separate the data into classes.
Fisher’s linear discriminant assumes that the data is gaussian distributed, and (roughly
speaking) obtains the separating hyperplanes by maximizing the distance between
certain projections of representativemembers of the classes. As an alternative, SVMs
select the hyperplanes bymaximizing the distance to the classes. Interestingly, SVMs
also enable us to define nonlinear decision boundaries by previously mapping the
data to another space of higher dimensionality.

Other classifiers used in EEG signal processing include multilayer perceptrons,
Bayes classifiers or Hidden Markov Model (HMM) classifiers. Nearest neighbor
classifiers are also popular when unsupervised learning is required. Finally, note that
several classifiers can be combined to obtain a better performance using, for example,
voting algorithms such as bagging or boosting.

16.4 The ICA of EEG data

The use of ICA for studying brain dynamics greatly follows from the seminal work
[60] by Makeig and co-workers. A good survey of these and other authors’ contri-
butions can be found in [50, 77, 78]. For simplicity, we shall focus mainly on the
analysis of the electroencephalogram (EEG), but essentially the same applies to the
ICA of magnetoencephalogram (MEG) data. Also note that there exists an excellent

5 See Sect. 16.2.3.
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and freely available Matlab toolbox, called EEGLAB, that can be used to process
EEG data in many ways (www.sccn.ucsd.edu/eeglab/). This software has been used
to generate nearly all of the figures in this chapter.

16.4.1 Interpretation of ICA

In EEG signal processing, unfortunately, ICA raises more questions than we can
answer. Let us list some open problems below:

• What does ICAdo?This is at least controversial: since no part of the brain functions
completely independent from the others, how can ICA generate physiologically
plausible component waveforms [61]? All we can actually expect is that ICA
will perform a decomposition of the EEG recordings into temporally indepen-
dent components. “Temporally independent components” is often interpreted by
neurobiologists as signals having “maximally distinct” waveforms. The effective
number of independent components contributing to the EEG is a priori unknown,
and may vary from one subject to another even under the same conditions.

• Have the “independent components” got a definite physical origin? Actually, their
origin may be distributed across many brain regions and, moreover, is a priori
unknown. Each independent component can come from the linear combination
of postsynaptic currents spread around all the brain. Having said that, it is very
interesting that, in many cases, the independent components seem to be linked to
physically compact areas of the brain (see Sect. 16.4.2).

• What does ICA actually do? Makeig et al. consider that ICA actually reveals a
system of synchronous but independent electromagnetic activity within relatively
large independent EEG domains [63]. In other words, ICA defines transient brain
networks (that may be distributed, linked, and even interpenetrated) whose elec-
tromagnetic activity is concurrent and independent, and all together make up the
EEG data. This is a different but complementary perspective of the brain to that
adopted by traditional neuroscience. Note that ICA is not actually concerned with
the spatial location of those brain networks, if this has sense, but with the informa-
tion they provide. What to do with this information, and how to integrate it with
other approaches, is an interesting line of open research.

• What is ICA currently useful for? In any case, ICA has demonstrated its effec-
tiveness as a preprocessing tool: definitively, ICA is able to remove a wide range
of artifacts (see Sect. 16.4.4) and is of great assistance in modeling the electro-
magnetic fields in the brain (see Sect. 16.4.2). Moreover, the ICA decomposition
facilitates the analysis and classification of the so-called evoked and event-related
potentials (EPs and ERPs) (see Sect. 16.4.3). Finally, although not directly con-
nected with the study of the EEG, we would like to mention that there are strong
similarities between the processing of images in the human visual system and ICA
(see Sect. 16.5).

www.sccn.ucsd.edu/eeglab/
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Table 16.1 EEG frequency bands

Name Frequency (Hz) Characteristics

α 8–13 Present in sleep relaxation and usually when eyes are closed.
They mainly originate in the occipital lobes

β 14–30 Associated with consciousness and reasoning. Sensitive to
medications

θ 4–8 Present during light sleep. Theta waves arise in the cortex or in
the hyppocampus

δ <4 Present when in deep sleep. They can originate from the cortex
or in the thalamus

γ >30 May be associated to high-level information processing
μ 8–13 Present when the body is at rest. Unlike the α wave, which is

related to the visual cortex, μ waves are associated to the
motor cortex

16.4.1.1 Characteristics of the Independent Components

Having identified the ICA model,

x = A s,

where x contains the signals recorded by the electrodes and s is the vector of inde-
pendent components, the columns of the mixing matrix A give the relative strength
of each component at each electrode. A graphical representation of these strengths,
depicted at the location of the corresponding electrodes on a cartoon head model, is
called scalp map or scalp topography of the independent component (see Fig. 16.5).
It should be noted that as important as the waveform of the independent compo-
nent is its associated scalp map: the physical origin of the components can be often
identified by these maps (e.g., eye activity is located mainly at frontal sites [50]).

Moving on to other issues, it is well known that the normal EEGwaveforms can be
classified into six patterns: alpha, beta, delta, gamma, mu, and theta (see Table 16.1).
The frequency analysis of the independent components shows that gamma band and
near DC dynamics appear to be less well represented than activity in intermediate fre-
quency bands [2]. Recent papers include a study of the reliability of the independent
components when ICA is trained on insufficient data, that can be found in [26].

16.4.2 Identifying the Electromagnetic Brain Sources

Wehave alreadymentioned (see Sect. 16.2.3) that the EEG is a record of the electrical
activity of the brain that arises from thepostsynaptic currents in the pyramidal neurons
of the cortex. A postsynaptic current appears to an external observer as if it were
generated by a current dipole. When many neurons are active, dipoles with the same
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orientation sum to form a single large current dipole, which is usually referred to as
an “equivalent current dipole” (ECD). Interestingly, areas with a diameter up to 3cm
can be accurately modeled by a single ECD. The potential due to a current dipole of
moment p(t) at a point specified by a radius vector r originated at the position of the
dipole is

v(t) = p(t) · r
4π σ |r|3

where σ is the permittivity of the medium. Denoting ei , i = 1, 2, 3, the orthonormal
basis vectors in the three-dimensional space and letting {s1(t), s2(t), s3(t)} be the
coordinates of p(t) in this basis, i.e., p(t) = ∑3

i=1 si (t)ei , it follows that

v(t) =
3∑

i=1

ai si (t)

where ai = ei ·r/(4π σ |r|3). The signals recorded at the electrodes v1(t), . . . , vN (t)
are modeled as the superposition of the potentials due to a large number of dipoles:

v1(t) = a11 s1(t) + · · · + a1M sM (t) + n1(t)

...

vN (t) = aN1 s1(t) + · · · + aN M sM (t) + nM (t)

where si (t), i = 1, . . . , M denote the dipoles’ coordinates (M >> N ) and ni (t)
considers the contribution of noise. Inferring the number, spatial localization, and
orientation of the ECDs on the cortical surface helps to identify the areas responsible
for those brain activities which are of interest, but it is a very difficult inverse problem
(one of the main difficulties arising from the fact that the electrodes actually record
a mixture of the contributions of all dipoles).

ICA has not been designed to solve the above-mentioned inverse problem (among
other things because we have no guarantee that the si are independent). Nevertheless,
since ICA is able to remove a wide range of artifacts (see Sect. 16.4.4), it has proven
to be an efficient preprocessing step that makes easier the localization of the ECDs
[15, 34, 70, 75].Most importantly—andherewe refer back to the previous sections—
many independent components have scalpmaps that are perfectly compatible with an
origin in a single equivalent current dipole or in a pair of dipoles [21]. It follows that
determining theECDs that generate those scalpmapsmaybemuchbetter conditioned
than solving directly the original inverse problem. As an example, Fig. 16.5 shows
the scalp topographies and the current equivalent dipoles (ECDs) of some of the
independent components shown in Fig. 16.4. Most importantly, we can assume that
the independent components originate at the locations of these ECDs. In this way,
we can link the independent components to physically compact regions of the brain.
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16.4.3 Evoked and Even-Related Brain Potentials

External stimuli cause the brain to produce electrical potentials known as evoked
potentials and even-related potentials (EPs and ERPs in the future). Measurement
of EPs/ERPs involves recording the EEG while stimuli (e.g., sound burst or light
flashes) is presented. Usually, EPs/ERPs are signals of very low amplitude (µV)
that cannot be discerned by the naked eye from the background EEG activity. For
this reason, the stimulus is repeated many times and the segments (or epochs) of
EEG preceding and immediately following each stimulus presentation are collected
and summed together, causing random noise to be canceled. The difference between
EPs and ERPs is conceptual: while EPs directly reflect the basic processing of the
stimulus and occur early in time, ERPs involve later and more complex processes
in higher brain structures. Furthermore, EPs usually require to average more epochs
than ERPs.

Multiple studies of EPs/ERPs have benefited from the use of ICA, and we will
review a few for illustration [9, 11, 16, 17, 28, 47, 55, 62, 79, 80]. Makeig
et al. [62] decomposed ERPs, which were recorded in response to visual stimuli, into
threemeaningful independent components with physically plausible scalpmaps. The
time–frequency characteristics of the independent components were related to those
of an ERP called P300.6 Jentzsch [47] conducted an experiment in which subjects
were instructed to press buttons in response to some property of a visual stimulus,
and ICA was applied to auditory grand average ERPs.7 The independent component
amplitudes appeared to be sensitive to the hand used in the response, and the compo-
nents themselves turned out to be quite similar to P300 and N1 waves.8 Xu et al. [80]
also proposed an algorithm for the P300 ERP detection. Basically, ICA was applied
to raw EEG data and those independent components more consistent with the P300
wave were first identified, and then projected back to the scalp. By doing so, the
signal-to-noise ratio of P300 was increased, and the wave was then easily detected.

Bishop et al. [9] were interested in the process of maturing of the auditory system.
They analyzed auditory grand average ERPs elicited by tones in children between
7 and 11 years. For all age groups, two major independent components were found
in the data, which mapped on to the projections of single equivalent dipoles located
on the temporal lobe. Interestingly, one of the generators was tangentially oriented
and showed substantial changes between 7 and 11 years, whereas the other generator
was radially oriented and did not show age changes.

6 P300 (also called P3 or late positive component or LPC) is a reliable positive ERP that peaks at
approximately 300 ms after the presentation of relevant or infrequent stimuli. It has two subcompo-
nents, P3a and P3b, which respectively originate from frontal and parietal lobes. P3a is associated
with the response to a change in the environment, while the amplitude of P3b is inversely propor-
tional to the probability of the stimulus. P300 also seems to be correlated with decision-making
processes.
7 The term “grand average” means that the author averaged together epochs from many subjects.
8 N1 is a large EP that appears in visual discrimination tasks.
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Müller et al. [67] studied event-related MEG recordings, where a single patient
was subject to combined auditory and vibrotactile stimulation, generatedwith a loud-
speaker that was also coupled to a balloon that was held by the subject with both
hands. ICAwas able to separate the somatosensory and the auditory brain responses,
and the scalp maps of the independent components were in good agreement with
the field patterns of conventional ECDs. Furthermore, these ECDs were located pre-
cisely in the brain regions expected to be activated by the respective stimuli. Themost
interesting part of the paper, however, is that in which the authors discuss the effects
of overlearning: while averaging the event-related responses is required to remove
the background EEG activity and increase the signal-to-noise ratio, the number of
data points available for the ICA algorithms decreases to the same extent, so that the
independent components are prone to suffer from overlearning or overfitting. Over-
learning produces independent components that are zero almost everywhere except
for a single spike or “bump” when HOS-based algorithms are used [73], or inde-
pendent components with sinusoidal spurious components when SOS-based ICA
methods are employed.9 As a solution, the authors propose to reduce the dimension-
ality of the data and an additional resampling-basedmethod to evaluate the reliability
of the results. Wang et al. [79] used ICA to select the optimal electrode pair, in the
sense of enhancing the signal-to-noise ratio, and detect visual EPs.

16.4.3.1 Analyzing Single-Trial EPs/ERPs

However, averaging EPs/ERPs has several disadvantages. The most important one
is that it eliminates the trial-to-trial temporal variability between EPs/ERPs, even
though this variability may reflect changes in subject state and reveal information
about brain dynamics [61]. When applied to single-trial EPs/ERPs, ICA gives dis-
tinctive results that cannot be obtained by conventional approaches: Jung et al. [51],
e.g., describe the ICA decomposition of single-trial 31-channel ERP epochs10 from
28 normal, 10 autistic, and 12 brain lesion subjects, all of whom were asked to par-
ticipate in visual attention tasks and to press a button each time they saw a circle
appear on the screen. ICA separated out:

1. Blink-related artifacts and eye movement components.
2. Independent components whose activation was time-locked to the visual stimuli.

When projected back to the scalp11 and then summed to estimate their contri-

9 HOS = Higher Order Statistics. SOS = Second-Order Statistics.
10 The number of epochs ranged from 300 to 700.
11 Given the ICAmodelx = A s,wherex stands for the observations and s represents the independent
components, we project back to the scalp these independent components simply by setting the other
independent components to zero. In other words, the observations are reconstructed considering
only the contribution of the independent components time-locked to the visual stimuli.
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butions to the average response, they accounted for nearly all of the P1 and N1
peaks.12

3. Independent components clearly time-locked to the button press. After being
realigned to the median response time and projected back to the scalp, the sum
of these independent components was closely related to P300 ERPs.

4. Independent components whose behavior is similar to that of μ brain waves (see
Table 16.1). These independent components decrease following the button press.

5. Spatially overlapping independent components accounting for α band activity
(see again Table 16.1), and that show a variety of relationships to the stimuli and
the subject responses.

6. Nonevent-related background EEG activity.

In conclusion, ICA enhances the amount and quality of the information that can
be extracted from ERP data. The authors report that ICA facilitates the analysis and
classification (successful clustering experiments are reported) of the different types
of response, allowing the study of the interactions between the ERPs and the ongoing
EEG activity, as well as a better understanding of the brain dynamics.

16.4.4 Denoising

It should not be surprising that ICA is primarily used as a blind source separation
technique for the removal of artifacts such as those caused by blinking, eye muscle
movement (electrooculogram or EOG), facial muscle movements, cardiac activity,
etc [6, 18, 19, 23, 30, 35, 43, 46, 48, 49, 53, 70, 74, 76]. The idea is simply to
reconstruct the EEG data as follows:

xd = A s0

where xd is the denoised EEG vector and s0 is the vector of independent components,
in which we have set the artifactual components to zero.

Let us present a simple example. Figure 16.4 shows real EEG data (data were
collected for 1min though only 5 s are shown for clarity). The EEG is contaminated
by several artifacts. Specifically, there is an strong eye activity in the frontal electrodes
(FP1 and so on): for example, an ocular artifact is clearly visible at t = 2 s—observe,
for example, that the short duration of the deflections is compatible with blinking.
There is another interfering signal,more visible at the occipital and parietal electrodes
(O1 and so on), that is (more or less) periodic with a period slightly lower than 1s.
It is a “peaky” signal that seems to be an electrocardiogram (ECG) artifact.

Figure 16.6 shows the distribution of the voltage at the head surface at t = 2 s
and, for comparison, at t = 3s (when there are no visible artifacts). The plots
confirm that the voltage concentrates over the frontal scalp when an ocular artifact

12 P1 (or P100) is an EP sensitive to visual discrimination tasks that peaks at 100–130ms after
stimulus presentation and is modulated by attention.
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(a) (b)

Fig. 16.6 Voltage distribution at the head surface. a Voltage at t = 2 s. b Voltage at t = 3s

is present. First of all, we rejected the independent components whose scalp maps
are similar to Fig. 16.6 (such as, e.g., the independent component 1, see Fig. 16.5).
These components are assumed to be responsible for the ocular artifacts. By so
doing, we obtained the denoised EEG data shown in Fig. 16.7. Figure 16.8 plots the
power spectra of the independent components, showing a large peak around 60Hz.
This is not a typical EEG frequency, and we consider it to be the “signature” of an
artifact (probably, it corresponds to the aforementioned ECG artifact or, perhaps,
to noise line). The figure also shows that the components 1, 2, 4, 6, and 9 are the
components which contribute the most at 60Hz. After rejecting them, we finally
obtain the “cleaned” EEG data depicted in Fig. 16.9.

In the previous example, we identified the artifactual components by visual
inspection. The automatic identification of the artifacts seems to be a more pow-
erful approach, and we will briefly review here three representative ideas:

Escudero et al. [23] obtained satisfactory results in denoising MEG data from
11 healthy elderly subjects. They propose a few criteria for the identification of
the artifactual components. Cardiac signals, for example, have highly asymmetric
density functions and also tend to be leptokurtic (supergaussian), so that they can
be discriminated by their skewness and kurtosis coefficients (which are expected to
take large values). On the other hand, power line noise and ocular artifacts can be
easily detected by examining their frequency characteristics and scalp maps.

Shao et al. [74] also extract several features from the independent components
and use a support vector machine (SVM) to classify them as inherent brain activities
or artifacts. For each independent component si , six extracted features are defined
as follows:

1. The ratio between the maximum peak amplitude and the variance of the inde-
pendent component: f1 = max(|si |)/σ 2

si
(ocular artifacts, e.g., have a large

amplitude).



452 R. Martín-Clemente

Fig. 16.7 EEG data after rejecting the independent components associated with ocular artifacts

2. The normalized skewness: f2 = |E[s3i ]|/σ 3
si
(as explained above, the distribution

of cardiac artifacts is highly asymmetric).
3. The variance of the scalpmap of si : f3 = var(ai/‖ai‖), where ai is the i th column

of the mixing matrix (it seems that the scalp map of the cardiac artifacts has a
low variance).

4. A measure (i.e., the Kullback-Leibler divergence) of the difference between the
probability density function of the independent component and that of a repre-
sentative EOG artifact.

5. TheKullback-Leibler divergence of the probability of the independent component
from that of a reference cardiac artifact.
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Fig. 16.8 Power spectra of the independent components and distribution of the voltages over the
surface of the head at 60Hz. The figure also shows that the independent components 1, 2, 4, 6, and
9 contribute the most at 60Hz

6. The cross correlation between the independent component and a set of eye-
blinking dominated EEG channels (namely, Fp1, Fp2, F3, F4, O1, and O2, see
Fig. 16.2).

Along the same lines, Dammers et al. [18] propose another criteria for the
automated classification of the independent components as either valid data or noise.
For example, the detection of cardiac artifacts is performed in [18] as follows: after
a bandpass filtering of the independent component under test (using different fre-
quency bands that cover the spectrum of the ECG, namely, 2–4, 4–8, 8–16, and
10–20Hz), its normalized phase is calculated by the formula

	(t) = ψ(t)/(2π) mod 1



454 R. Martín-Clemente

Fig. 16.9 EEG data after removing the independent components associated with ocular artifacts
and those that contribute the most at 60Hz

where ψ(t) is the instantaneous phase of the independent component, obtained by
the Hilbert transform. The normalized phase is then divided into segments of 1 s
around the R-peaks of the ECG signal. Cardiac artifacts are synchronous with the
ECG, and hence different segments are expected to have nearly identical normalized
phases. In other words: all segments have the same values at the same time or, in
other words, samples at the same time point are identical. The distribution of the
samples is then degenerate, i.e., a Dirac delta. On the contrary, when the independent
component is not a cardiac artifact, according to the principle of maximum entropy,
we can assume that the samples are uniformly distributed (the uniform distribution is
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the maximum entropy distribution among all distributions supported in the interval
[0, 2π ]). A statistical test is then used to quantify the deviation of the distribution
from the uniform distribution. The authors claim that the proposed criterion is highly
sensitive for identification of weak components caused by cardiac activity.

16.5 ICA of Natural Images

Hubel and Wiesel received the Nobel Prize after showing that certain neurons of the
primary visual cortex (the so-called simple cells) give their maximum response in the
presence of visual stimuli consisting of localized and oriented structures [37, 38],
i.e., the neurons respond only if a line in a particular direction (an “edge”) enters their
receptive fields.13 As one moves through the visual cortex in the occipital lobe, one
finds columns of neurons that have approximately the same receptive field location,
but with different orientation selectivities. Its an important problem for neuroscience
to understand the reasons for this organization in the visual sensory system (why are
cells directionally dependent?).

Natural images are highly redundant (i.e., nearby pixels are strongly correlated).
Barlow suggested that all sensory systems, including the visual one, aim to remove
the redundancy in the input data, trying to minimize the amount of information to be
processed, and hypothesized that the activation of each neuron in the sensory system
should be as statistically independent from the others as possible [3–5]. Furthermore,
Field [24, 25] argued that the responses of the neurons of the primary visual cortex
should be sparsely distributed.

How do we perform ICA in image processing? The observed data vectors xi are
obtained after the vectorization of a large number of M × N pixel patches selected
randomly from the images.14 The ICA decomposition of the data can be written as:

xi = A si

=
∑

k

ak sik

where ak denotes the kth column of the mixing matrix A, and sik is the i th sample
of the kth independent component. Vectors ak are often called basis vectors, since
they provide a generative model of the data. These basis vectors can be also plotted
as M × N images by an inverse-vectorization operation. When we do that, we get an
interesting surprise—and here we refer back to the previous paragraphs: the images

13 Each cell in the visual cortex responds only to the presence of light in a well-defined part of the
retina, called the receptive field of the cell. The part of the visual scene projected on that area of the
retina is also called “receptive field”. Roughly speaking, we may think that the job of the cell is to
report to the rest of the brain what is happening in that little area.
14 The pixels of each pack are stacked one under the other to form the associatedMN×1 observation
vector.
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of the basis vectors resemble “edges” with different orientations, lengths, and widths
(Fig. 16.10). Furthermore, the distribution of the independent components is sparse,
as expected, in the sense that most of the values are close to zero and only a few of
them are significantly large. In other words, and very roughly speaking, each patch
of the image seems to be formed with only a few simple lines.15 Confirming what
Barlow and Field had predicted, only a few neurons are therefore activated at a time.

These results are not sensitive to the choice of algorithm used. They were first
described by Bell and Sejnowski [8], which employed Infomax [7]. Similar results
have been obtained using FastICA [39]. Well before the emergence of ICA, Hancock
et al. [31] proposed a redundancy reduction approach based on Principal Component
Analysis (PCA) only. However, they failed in modeling the receptive fields of the
simple cells: according to their results, only a few basis vectors matched oriented and
localized patterns. Olshausen and Field [68, 69] proposed an unsupervised learning
algorithm that attempted to find a factorial code of independent visual features,
generating a set of bases that presented similar properties to the receptive fields of
simple cells, i.e., most of them also showed localized and oriented “edges”.

Recentworks include [41, 42],where it is proposed amodel of spatial organization
of the ICAbases that attempts to imitate the retinotopic organization [29] of the visual
cortex, and the papers [13, 40], where the authors analyze the similarities between
the processing of color images in the human visual system processing and ICA.

16.6 Semi-Blind ICA of Brain Data

Most researchers use traditional ICA blind algorithms for the analysis of brain sig-
nals. Nevertheless, we wish to draw attention to three representative approaches [19,
33, 46] that exploit the availablea priori knowledge about the data.As amatter of fact,
there exists in many cases a priori information about the artifacts that contaminate
the data: power line interferences, for example, are at 50/60Hz and its harmonics,
cardiac artifacts are synchronized with heart activity, eye activity is located mainly
at frontal sites, etc. The use of this information seems to be a promising possibility.

16.6.1 Exploiting the Temporal Structure of the Brain Signals

De Clercq et al. [19] use canonical correlation analysis (CCA) for muscle artifact
removal in EEG, as follows: given the zero-mean observation vector x(t), the idea is
to force the source estimates to be maximally correlated with x1(t) = x(t −1). Thus
they pretend to enforce the generation of maximally autocorrelated sources, since it
is known that brain sources have a high autocorrelation whereas muscle activity is

15 Actually, this statement has to be taken with care: all basis functions (more or less) equally
contribute to many image patches.
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Fig. 16.10 Typical ICA image-basis obtained from 12 × 12 patches

similar to white noise, due to its broader frequency spectrum. The idea is to search
for the vectors w and w1 that maximize the objective function:

ρ(x(t), x1(t)) = E[x(t) x1(t)]
√

E[x2(t)] E[x21 (t)]

where x(t) = wT x(t) and x1(t) = wT
1 x1(t). After some algebra, it is found that w

is an eigenvector of the matrix:
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C−1
xx Cxx1 C−1

x1x1Cxx1 ,

whereCxx andCx1x1 are the auto-covariance matrices of x(t) and x1(t), respectively,
and Cxx1 is the cross-covariance matrix of x(t) and x1(t). The source estimates are
then simply given by

wT x(t).

Each eigenvector of the matrix gives a different source estimate, and the eigen-
vectors corresponding to the lowest eigenvalues are expected to generate the muscle
artifacts. Experiments show that the algorithm is superior to traditional approaches
and other ICA techniques based on higher order statistics.

16.6.2 Using a Temporal Reference

James et al. [46] used a reference signal r(t) which incorporates the a priori infor-
mation to guide the search for the independent components. Given the observation
vector x, the following criterion is used in [46]:

maximize f (w)

subject to g(w) ≤ 0

and E[y2] = 1

and E[r2] = 1

where f (w) is the following approximation to the negentropy of the estimated inde-
pendent component y = wT x [39]:

f (w) = {E[G(y)] − E[G(v)]}2

where v is a zero-mean unit-variance Gaussian random variable, G(·) can be any
nonquadratic function, and

g(w) = ε − E[r(t) y(t)]

measures the similarity between r(t) and y(t), with ε being a threshold.16 This is
a constrained optimization problem that can be solved through a Newton-like algo-
rithm [58]. Interestingly, experiments show that the exact waveform of the reference
signals is not very important, provided that the temporal features of interest are
captured. For example, a good reference signal for the ECG artifact can be simply
obtained by passing the contaminated data through a peak detector that highlights the

16 Interestingly, in the original formulation of the algorithm [58], g(w) is defined as g(w) =
E[r(t) y(t)] − ε.
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R waves. As g(w) is a correlation-based measure, the reference signal r(t) and the
independent component must be aligned in time. The authors address this problem
by repeatedly applying the method with the reference shifted one sample from one
experiment to the next, until the correlation between r(t) and the estimated source
signal y(t) attains its maximum value.

16.6.3 Using Spatial Constraints

Hesse et al. [33] noted that the scalp maps of some expected source signals may be
approximately calculated a priori from previous data or using, for example, dipole
models. This information may be used as a constraint on the mixing matrix A,
assuming that

A = [Ac, Au]

where Ac are columns subject to those constraints, and Au contains unconstrained
columns. Roughly speaking, the algorithm may be as follows:

1. Execute one step of some iterative ICA algorithm to find an estimate Â of the
mixing matrix A.

2. Enforce the constraints on the estimate Â of A, ensuring that Â is of full column
rank.

3. Return to 1 until convergence.

The second step can be performed in several ways: for example, the columns of Ac

may directly overwrite the corresponding columns of Â. Given a column ac of Ac

and the corresponding column âc of Â, a “softer” and alternative procedure may be
to overwrite âc with

p ac + (1 − p) âc

whereas p is chosen so that angle between ac and the new âc is below some thresh-
old [32]. Note that the final constrained source signals may not be statistically inde-
pendent among themselves. Having said that, when applied to EEG recorded during
an epileptic seizure (called ictal EEG), the algorithm obtains a coherent and physi-
ologycally plausible decomposition of the data. The authors also report good results
in removing ocular artifacts.

16.7 Concluding Remarks

ICA has undoubtedly proven to be a useful tool for removing artifacts from the EEG
data. The interpretation of the true “brain components”, however, is still controversial
and seems to be an exciting open field for research. The ICA of natural images
has also revealed interesting connections with the early models of the visual cortex
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and the characterization of the so-called simple cells. Finally, the use of a priori
information about the brain sources to help the ICA algorithms is a third promising
line of research.

This chapter has introduced the use of ICA in the study of electroencephalographic
(EEG) data. We hope to achieved our goal of writing a general and accessible intro-
duction to the problem for those who want to get started in the main topics. We refer
the reader to the references for a second and more profound insight into this exciting
subject.
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