
Chapter 11
Speech Separation and Extraction by
Combining Superdirective Beamforming
and Blind Source Separation

Lin Wang, Heping Ding and Fuliang Yin

Abstract Blind source separation (BSS) and beamforming are two well-known
multiple microphone techniques for speech separation and extraction in cocktail-
party environments. However, both of them perform limitedly in highly reverberant
and dynamic scenarios. Emulating human auditory systems, this chapter proposes
a combined method for better separation and extraction performance, which uses
superdirective beamforming as a preprocessor of frequency-domain BSS. Based on
spatial information only, superdirective beamforming presents abilities of derever-
beration and noise reduction and performs robustly in time-varying environments.
Using it as a preprocessor can mitigate the inherent “circular convolution approxima-
tion problem” of the frequency-domain BSS and enhances its robustness in dynamic
environments. Meanwhile, utilizing statistical information only, BSS can further re-
duce the residual interferences after beamforming efficiently. The combined method
can exploit both spatial information and statistical information about microphone
signals and hence performs better than using either BSS or beamforming alone. The
proposed method is applied to two specific challenging tasks, namely a separation
task in highly reverberant environments with the positions of all sources known, and
a target speech extraction task in highly dynamic cocktail-party environments with
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only the position of the target known. Experimental results prove the effectiveness
of the proposed method.

11.1 Introduction

Extracting one or several desired speech signals from their corrupted observations is
essential for many applications of speech processing and communication. One of the
hardest situations to handle is the extraction of desired speech signals in a “cocktail
party” condition—from mixtures picked up by microphones placed inside a noisy
and reverberant enclosure. In this case, the target speech is immersed in ambient noise
and interferences, and distorted by reverberation. Furthermore, the environment may
be time varying. Generally, there are two well-known techniques that may achieve
the objective: blind source separation (BSS) and beamforming.

With a microphone array, beamforming is a well-known technique for directional
signal reception [1, 2]. Depending on how the beamformer weights are chosen, it can
be implemented as a data-independent fixed beamforming or data-dependent adaptive
one [3–7]. Although an adaptive beamformer generally exhibits better noise reduc-
tion abilities, a fixed beamformer is more preferred in complicated environments
due to its robustness. By coherently summing signals from multiple sensors based
on a model of the wavefront from acoustic sources, a fixed beamformer presents a
specified directional response. With abilities of enhancing signals from the desired di-
rection while suppressing ones from other directions, it can be used to perform both
noise suppression and dereverberation. The most conventional fixed beamformer
is a delay-and-sum one, which however requires a large number of microphones
to achieve high performance. Another filter-and-sum beamformer has superdirec-
tive response with optimized weights [4]. Assuming the directions of the sources
are known, speech separation or extraction can be obtained by forming individual
beams at the target sources separately. However, fixed beamforming performs lim-
itedly in real cocktail-party scenarios. First, the performance is closely related to
the microphone array size—a large array is usually required to obtain a satisfactory
result but may not be practically feasible. Second, beamforming cannot suppress the
interfering reverberation coming from the desired direction.

BSS is a technique for recovering the source signals from observed signals with the
mixing process unknown. By exploiting the statistical independence of the sources,
independent component analysis (ICA)-based algorithms are commonly used to
solve the BSS problem [8–13]. While time domain ICA-based techniques are well
suited for instantaneous mixing problem, they are not efficient in addressing the
convolutive mixture problem encountered in reverberant environments [14–17]. By
considering the BSS problem in the frequency domain, the convolutive mixing prob-
lem can be transformed into an instantaneous mixing problem for each frequency bin,
reducing computation complexity significantly. However, the inherent permutation
and amplitude scaling ambiguity problem occurs at each frequency bin in frequency-
domain BSS, deteriorating signal reconstruction in the time domain significantly
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[18, 19]. The permutation ambiguity problem has been investigated intensively and
there are generally three strategies to tackle it. The first is to make the separation
filters smooth in the frequency domain by limiting the filter length in the time domain
[16, 20, 21]. The second strategy is to exploit the interfrequency dependence of the
amplitude of separated signals [22–30]. The third strategy is to exploit the position
information about sources such as direction of arrival (DOA). By estimating the
arriving delay of sources or analyzing the directivity pattern formed by a separation
matrix, source direction can be estimated and permutations aligned [31–36].

The relationship between blind source separation and beamforming has been
intensively investigated in recent years, and adaptive beamforming is commonly
used to explain the physical principle of convolutive BSS [37, 38]. In addition,
many approaches have been presented that combine both techniques. Some of these
combined approaches are aimed at resolving the permutation ambiguity inherent
in frequency-domain BSS [31, 39], whereas other approaches utilize beamforming
to provide a good initialization for BSS or to accelerate its convergence [40–43].
For now, there were no systematically studies on combining the two techniques to
improve the separation performance in challenging acoustic scenarios.

Compared with beamforming, which extracts desired speech and suppress
interference, BSS aims at separating all the involved desired and interfering sources
equally. One advantage with blind source separation is that it does not need to know
the direction of arrival of any signals and the array geometry can be arbitrary and
unknown to the system. Nevertheless, blind source separation also performs limit-
edly in real cocktail-party scenarios. First, BSS performs poorly in high reverberation
with long mixing filters, due to the “circular convolution approximation problem”.
Second, underdetermined situations can result from the fact that there are only a lim-
ited number of microphones. Third, the performance of BSS degrades in dynamic
environments.

Due to the reasons above, few methods proposed in recent years show good sepa-
ration/extraction results in a real cocktail-party environment. In contrast, a human has
a remarkable ability to focus on a specific speaker in that case. This selective listening
capability is partially attributed to binaural hearing. Two ears work as a beamformer,
which enables directive listening [44], then the brain analyzes the received signals
to extract sources of interest from the background, just as blind source separation
does [45–47]. Stimulating this principle, we propose to do speech separation and
extraction by combining beamforming and blind source separation. Specifically, the
following two issues will be addressed:

• To improve the separation performance in highly reverberant scenarios, a com-
bined method is proposed which uses beamforming as a preprocessor of blind
source separation by forming a number of beams each pointing at a source. With
beamforming shortening mixing filters, the inherent “circular convolution approx-
imation” problem in the frequency-domain BSS is mitigated and the performance
of proposed method can improve significantly especially in high reverberation.

• The combined method is further extended to a special case of target speech
extraction problem in noisy cocktail-party environments, where only one source
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is of interest. Instead of focusing on all the sources, the proposed method forms
just several fixed beams at an area containing the target source. The proposed
scheme can enhance the robustness to time-varying environments and make the
target source dominant in the output of the beamformer. Consequently, the subse-
quent extraction task with blind source separation becomes easier and satisfactory
extraction results can be obtained even in challenging scenarios.

The rest of the chapter is organized as follows. The principles of frequency-domain
blind source separation and superdirective beamforming are reviewed in Sects. 11.2
and 11.3, respectively. Especially, the inherent “circular convolution approximation”
problem with frequency-domain BSS is discussed in detail in Sect. 11.2. BSS and
beamforming are combined for a better separation results and the performance of the
combined method is experimentally evaluated in Sect. 11.4. The combined method
is further extended to a target speech extraction problem with some experimental
results shown in Sect. 11.5. Finally, conclusions are drawn in Sect.11.6.

11.2 Frequency-Domain BSS and Its Fundamental Problem

BSS is a powerful tool for solving cocktail-party problems since it aims at recovering
the source signals from observed signals with the mixing process unknown. The sim-
plest instantaneous BSS problem can be solved by independent components analysis
(ICA), which assumes that all the source signals are independent of each other. One
challenge arises when the mixing process is convolutive, i.e., the observations are
combinations of filtered versions of sources. The convolutive BSS problem can be
solved in the time domain, where the separation network is derived by optimizing
a time-domain cost function. However, the task of estimating many parameters si-
multaneously has to face the challenge of slow convergence and high-computational
demand. Alternatively, the convolutive BSS problem can be solved in the frequency
domain, where instantaneous BSS is performed at individual frequency bins, reduc-
ing the computational complexity significantly. In this section, the principle of the
frequency-domain BSS is introduced at first, followed by a discussion of an inherent
problem, namely the circular convolution approximation problem, which degrades
the performance of the frequency-domain BSS in high reverberation.

11.2.1 Frequency-Domain BSS

Supposing N sources and M sensors in a real-world acoustic scenario, the source
vector s(n) = [s1(n), · · · , sN (n)]T, and the observed vector x(n) = [x1(n), · · · ,

xM (n)]T, the mixing channels can be modeled by FIR filters of length P , the convo-
lutive mixing process is formulated as
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Fig. 11.1 Workflow of frequency-domain blind source separation

x(n) = H(n) ∗ s(n) =
P−1∑

p=0

H(p)s(n − p) (11.1)

where H(n) is a sequence of M × N matrices containing the impulse responses of the
mixing channels, n is the time index, and the operator ‘*’ denotes matrix convolution.
For separation, FIR filters of length L can be used to estimate the source signals
y(n) = [y1(n), · · · , yN (n)]T by

y(n) = W(n) ∗ x(n) =
L−1∑

l=0

W(l)x(n − l) (11.2)

where W(n) is a sequence of N × M matrices containing the unmixing filters.
The demixing network W(n) can be estimated in the frequency domain. By using

a blockwise Q-point short-time Fourier transform (STFT), the time-domain convolu-
tion regarding the mixing process can be converted into frequency-domain multipli-
cations and correspondingly the convolutive BSS problem is converted into multiple
instantaneous BSS problem at each frequency bin. This is expressed as

x( f, l) = H( f )s( f, l) (11.3)

where l is a decimated version of the time index n, f is the frequency index, H( f )

is the Fourier transform of H(n), and x( f, l) and s( f, l) are the STFTs of x(n) and
s(n), respectively. The remaining task will be to find a demixing matrix Wdemix( f )

at individual frequency bins, so that the original signals can be recovered. This is
expressed as

y( f, l) = Wdemix( f )x( f, l) (11.4)

Based on the discussion above, the workflow of the frequency-domain BSS is
shown in Fig. 11.1. The observed time-domain signals are converted into the time–
frequency domain by STFT; then instantaneous BSS is applied to each frequency bin;
after solving the inherent permutation and scaling ambiguities, the separated signals
of all frequency bins are combined and inverse-transformed to the time domain. The
procedure of a frequency-domain BSS mainly consists of three blocks: instantaneous
BSS, permutation alignment, and scaling correction.
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(1) Instantaneous BSS
After decomposing time-domain convolutive mixing into frequency-domain instan-
taneous mixing, it is possible to perform instantaneous separation at each frequency
bin with a complex-valued ICA algorithm. The ICA algorithms for instantaneous
BSS have been studied for many years and are considered to be quite mature. For
instance, the demixing matrix can be estimated iteratively by using the well-known
Infomax algorithm [11, 12], i.e.,

{
y( f, l) = W( f )x( f, l)
W( f ) = W( f ) + η(I − E[�(y( f, l))yH( f, l)])W( f )

(11.5)

where I is an identity matrix, �(·) is a nonlinear function and E[·] is the expectation
operator.

(2) Permutation alignment
Although satisfactory instantaneous separation may be achieved within all frequency
bins, combining them to recover the original sources is a challenge because of the
unknown permutations associated with individual frequency bins. This permutation
ambiguity problem is the main challenge in the frequency-domain BSS and how to
solve this problem has been a hot topic in the research community in recent years.

Two kinds of strategies can be used to solve this problem. The first strategy
is to exploit the interfrequency dependence of the amplitude of separated signals
[22–25]. The second strategy is to exploit the position information of sources such
as direction of arrival or the continuity of the phase of separation matrix [31–33].
By analyzing the directivity pattern formed by a separation matrix, source direction
can be estimated and permutations aligned. Since the performance of the second
approach is generally limited by the reverberation density of the environment and
the source positions, we prefer to use the first approach. In [24], a region-growing
permutation alignment approach is proposed with good results, which is based on
the interfrequency of separated signals. Bin-wise permutation alignment is applied
first across all frequency bins, using the correlation of separated signal powers;
then the full frequency band is partitioned into small regions based on the bin-
wise permutation alignment result. Finally, region-wise permutation alignment is
performed, which can prevent the spreading of the misalignment at isolated frequency
bins to others and thus improves permutation alignment results. After permutation
alignment, we can assume that the separated frequency components from the same
source are grouped together.

(3) Scaling correction
The scaling indeterminacy can be resolved relatively easily by using the Minimal
Distortion Principle [48]:

Ws( f ) = diag(W−1
p ( f )) · W p( f ) (11.6)

where W p( f ) is W( f ) after permutation correction, (·)−1 denotes inversion of a
square matrix or pseudo inversion of a rectangular matrix; diag(·) retains only the



11 Speech Separation and Extraction by Combining Superdirective Beamforming 329

main diagonal components of the matrix. Ws( f ) is the demixing matrix Wdemix( f ),
which we are looking for.

Finally, the demixing network W(n) is obtained by inverse Fourier transforming
Ws( f ), and the estimated source y(n) is obtained by filtering x(n) through W(n).

11.2.2 Circular Convolution Approximation Problem

Besides the permutation and scaling ambiguity, another problem also affects the per-
formance of frequency-domain BSS: the STFT circular convolution approximation
[24, 37, 43]. The convolutive mixture is decomposed into an instantaneous mixture
at each frequency bin as shown in (11.3). Equation (11.3) is only an approximation
since it implies a circular convolution but not a linear convolution in the time domain.
It is correct only when the STFT analysis frame length L is larger than the mixing
filter length P . Thus, a large L is required to ensure a sufficient separation perfor-
mance. However in that case, the instantaneous separation performance is saturated
before reaching a sufficient level, because decreased time resolution for STFT and
fewer data available in each frequency bin will violate the independence assumption.

To verify the statement above, a simple example is given below. As is well known,
non-Gaussianity is an important measure for the independence of signals while kur-
tosis is an important measure for non-Gaussianity [8]. The kurtosis of a signal s is
defined as

kurt(s) = E{s4} − 3(E{s2})2 (11.7)

where the operator E{·} denotes expectation. A high kurtosis value indicates strong
non-Gaussianity and independence. We compare kurtosis values of the STFT coef-
ficients of a speech signal when different STFT frame sizes (varying from 128 to
16,384) are used. The kurtosis value is calculated for the real and imaginary parts
of the complex-valued coefficients, respectively. Since the kurtosis value, which is
calculated for the time sequences at each frequency bin, varies with respect to fre-
quency, a median value is chosen from the set of kurtosis values at all frequencies to
represent the independence measure of the signal after STFT analysis. Considering
the possible influence of insufficient data points at each frequency bin after a long-
frame STFT, three speech signals with lengths of 10s, 40s, and 160s, respectively,
are tested. The obtained kurtosis for different test signals and different STFT frame
sizes are shown in Fig. 11.2. For reference, the kurtosis of a normalized Gaussian
white signal is also given. As can be seen in Fig. 11.2, the real and imaginary parts
of the STFT coefficients show similar variation trend with respect to the STFT frame
size. Additionally, two phenomena can be observed.

(1) Large kurtosis values can be observed for small STFT frame sizes. The kurtosis
value increases slightly with increased STFT frame size and then decreases
significantly when the STFT frame size is larger than 1,024. The kurtosis value
is close to a Gaussian white signal when the STFT frame size is very large.
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Fig. 11.2 Kurtosis of the STFT coefficients versus STFT frame size (calculated for speech signals
of different lengths)

This demonstrates that the STFT coefficients of a speech signal show strong
non-Gaussianity for small STFT frame sizes, but tend to be Gaussian for large
STFT frame sizes.

(2) Even for a same STFT frame size, the kurtosis of a speech signal with different
length is different. Generally, a long signal shows higher kurtosis than short
signals. This may be due to insufficient data points available at each frequency
bin with short signals.

The results shown in Fig. 11.2 demonstrate that the independence assumption of
sources may collapse when a large STFT frame size is used, hence degrading the
separation performance significantly. There is a dilemma in determining the STFT
frame size: short frames make the conversion to instantaneous mixture incomplete,
while long ones disturb the separation. The conflict becomes severer in highly rever-
berant environments and leads to the degraded performance. Generally, a frequency-
domain BSS which works well in low (100–200 ms) reverberation has degraded
performance in medium (200–500 ms) and high (>500 ms) reverberation. Since the
problem originates from a processing step, which approximates linear convolutions
with circular convolutions in frequency-domain BSS, we call it circular convolution
approximation problem.

Furthermore, some separation experiments (2 × 2 and 4 × 4) are carried out in
a reverberant environment (reverberation time 300 ms) using a frequency-domain
BSS algorithm proposed in [24] with different STFT frame sizes. The source speech
signals are of 8s length and 8 kHz sampling rate.1 The resultant signal-interference-
ratios (SIR) are shown in Fig. 11.3. In both 2 × 2 and 4 × 4 cases, the separation

1 More details of the experiment can be found in Sect. 11.4.2.
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Fig. 11.3 Performance of BSS versus STFT frame size (calculated for speech signals of 8s length,
RT60 = 300 ms)

performance peaks at the STFT frame size of 2,048, while degrading for both shorter
and longer frame sizes. This verifies the discussion about the dilemma in determining
the STFT frame size. Obviously, an optimal STFT frame size may exist for a specific
reverberation. However, due to complex acoustical environments and varieties of
source signals, it is difficult to determine this value precisely. Generally, at sampling
frequency of 8,000 Hz, 1,024 or 2,048 can be used as a balanced choice for the frame
length.

11.3 Superdirective Beamforming

Beamforming is a technique used in sensor arrays for directional signal reception
by enhancing target directions and suppressing unwanted ones. Beamforming can
be classified as either fixed or adaptive, depending on how the beamformer weights
are chosen. An adaptive beamformer obtains directive response mainly by analyz-
ing the statistical information contained in the array data, not by utilizing the spatial
information directly. It generally adapts its weights during breaks in the target signal.
The challenge to predict signal breaks when several people are talking concurrently
limits the feasibility of adaptive beamforming in cocktail-party environments sig-
nificantly. In contrast, the weights of a fixed beamformer do not depend on array
data and are chosen to present a specified response for all scenarios. The directional
response is achieved by coherently summing signals from multiple sensors based on
a model of the wavefront from acoustic sources. A filter-and-sum beamformer has
super directivity response with optimized weights. The superdirective beamformer
can be designed in the frequency-domain.
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Fig. 11.4 Principle of a
filter-and-sum beamformer
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The principle of a fixed beamformer is given in Fig. 11.4, where a weighted sum of
signals from M sensors is produced to enhance the target direction. Suppose a beam-
former model with a target source r(t) and background noise n(t), the components
received by the l-th sensor is ul(t) = rl(t) + nl(t) in the time domain. Similarly, in
the frequency domain, the l-th sensor output is ul( f ) = rl( f ) + nl( f ). The array
output in the frequency domain is

x( f ) = bH( f )u( f ) (11.8)

where b( f ) = [b1( f ), . . . , bM ( f )]T is the beamforming weight vector composed
of beamforming weights from each sensor, and u( f ) = [u1( f ), . . . , uM ( f )]T is the
output vector composed of outputs from each sensor, and (·)H denotes conjugate
transpose. The b( f ) depends on the array geometry and source directivity, as well
as the array output optimization criterion such as a signal-to-noise ratio (SNR) gain
criterion [4, 49, 50].

Suppose r( f ) = [r1( f ), . . . , rM ( f )]T is the source vector, which is composed
of the target source signals from the sensors, and n( f ) is the noise vector, which is
composed of the spatial diffuse noises from the sensors. The array gain is a measure
of the improvement in signal-to-noise ratio. It is defined as the ratio of the SNR at the
output of the beamforming array to the SNR at a single reference microphone. For de-
velopment of the theory, the reference SNR is defined to be the ratio of average signal
power spectral densities over the microphone array, σ 2

r ( f ) = E{rH( f )r( f )}/M , to
the average noise power spectral density over the array, σ 2

n ( f ) = E{nH( f )n( f )}/M .
By derivation, the array gain at frequency f is expressed as

G( f ) = bH( f )Rrr ( f )b( f )

bH( f )Rnn( f )b( f )
(11.9)

where Rrr ( f ) = r( f )rH( f )/σ 2
r ( f ) is the normalized signal cross-power spectral

density matrix, and Rnn( f ) = n( f )nH( f )/σ 2
n ( f ) is the normalized noise cross-

power spectral density matrix. Provided Rnn( f ) is nonsingular, the array gain is
maximized with the weight vector

bopt( f ) = R−1
nn ( f )r( f ) (11.10)
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The terms Rnn( f ) and r( f ) in (11.10) depend on the array geometry and the
target source direction. For instance, given a circular array, Rnn( f ) and r( f ) can be
calculated as below [45].

Figure 11.5 shows an M-element circular array with a radius of r and a target
source coming from the direction (θ, φ). The elements are equally spaced around the
circumference, and their positions, which are determined from the layout of array,
are given in a matrix form as

v =
⎡

⎢⎣
vx1 vy1
...

...

vxM vyM

⎤

⎥⎦ (11.11)

The source vector r( f ) can be derived as

r( f ) =
⎡

⎢⎣
exp(− jk(sin θ · cos φ · vx1 + sin θ · sin φ · vy1))

...

exp(− jk(sin θ · cos φ · vxM + sin θ · sin φ · vyM ))

⎤

⎥⎦ (11.12)

where k = 2π f/c is the wave number, and c is the sound velocity. The normalized
noise cross-power spectral density matrix Rnn( f ) is expressed as

(Rnn( f ))m1m2 =
{

sin(kdm1m2 )

kdm1m2
, m1 �= m2

1, m1 = m2
(11.13)

where (Rnn( f ))m1m2 is the (m1, m2) entry of the matrix Rnn( f ), m1, m2 =
1, · · · , M , k is the wave number, dm1m2 is the distance between two microphones
m1 and m2.
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After calculating the beamforming vector by (11.10), (11.12) and (11.13) at
each frequency bin, the time-domain beamforming filter b(n) is obtained by inverse
Fourier transforming bopt( f ).

The procedure above is to design a beamformer with only one target direction.
In a speech separation or extraction system, each source signal may be separately
obtained using the directivity of the array, if the directions of sources are known.
However, beamforming in principle performs limitedly in highly reverberant condi-
tions because it cannot suppress the interfering reverberation coming from the target
direction.

11.4 Enhanced Separation in Reverberant Environments
by Combining Beamforming and BSS

Due to the circular convolution approximation problem, the performance of a
frequency-domain BSS algorithm degrades seriously when the mixing filters are
long, e.g., in high reverberation environments. Thus, the problem may be miti-
gated if the mixing filters become shorter. With directive response enhancing desired
direction and suppressing unwanted ones, a superdirective beamforming can deflate
the reflected paths and hence equivalently shorten the mixing filter. It thus may help
compensate for the deficiency of blind source separation. If we use beamforming as
a preprocessor for blind source separation, at least three advantages can be achieved:

(1) The interfering residuals due to reverberation after beamforming are further
reduced by blind source separation;

(2) The poor separation performance of blind source separation in reverberant
environments is compensated for by beamforming, which suppresses the reflected
paths and shortens the mixing filters;

(3) Beamformer enhances the source in its path and suppresses the ones outside.
It thus enhances signal-to-noise ratio and provides a cleaner output for blind
source separation to process.

From another point of view, beamforming makes primary use of spatial informa-
tion while blind source separation utilizes statistical information contained in signals.
Integrating both pieces of information should help to get better separation results,
just like the way our ears separate audio signals. The details of the combined method
are given below, followed by experimental results and analysis.

11.4.1 Workflow of the Combined Method

The illustration of the combined method is shown in Fig. 11.6. For N sources received
by an array of M microphones, N beams are formed toward them, respectively,
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Fig. 11.6 Illustration of the
proposed method combining
beamforming and blind source
separation
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assuming the directions of all sources are known. Then the N beamformed outputs
are fed to blind separation to recover the N sources. The signal flow of the proposed
method is shown in Fig. 11.7, which mainly consists of three stages: acoustic mixing,
beamforming, and separation.

The mixing stage results in the observed vector

u(n) = H(n) ∗ s(n) (11.14)

where u(n) = [u1(n), . . . , uM (n)]T and s(n) = [s1(n), . . . , sN (n)]T are the ob-
served and the source vectors, respectively, H(n) is a sequence of M × N matrices
containing the impulse responses of the mixing channels, and the operator ‘*’ denotes
matrix convolution.

The beamforming stage is expressed as

x(n) = B(n) ∗ u(n) = B(n) ∗ H(n) ∗ s(n) = F(n) ∗ s(n) (11.15)

where x(n) = [x1(n), . . . , xN (n)]T is the beamforming output vector, B(n) is a
sequence of N × M matrices containing the impulse responses of beamformer, F(n)

is the global impulse response by combining H(n) and B(n).
The blind source separation stage is expressed as

y(n) = W(n) ∗ x(n) = W(n) ∗ F(n) ∗ s(n) (11.16)

where y(n) = [y1(n), . . . , yN (n)]T is the estimated source signal vector, and W(n)

is a sequence of N × N matrices containing the unmixing filters.
It can be seen from (11.14)–(11.16) that with beamforming reducing reverberation

and enhancing signal-to-noise ratio, the combined method is able to replace the
original mixing network H(n), which results from the room impulse response, with
a new mixing network F(n), which is easier to separate.
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Fig. 11.7 Signal flow of the proposed method combining beamforming and blind source separation

The blind source separation and beamforming algorithms introduced in Sects. 11.2
and 11.3 can be used directly for the combined method. However, the following two
issues should be clarified when implementing the combined method.

(1) The choice of a beamformer
Beamformer can be implemented as a fixed one or an adaptive one. As mentioned
before, comparing to fixed beamforming, an adaptive method is not appropriate
for the combined method. First, an adaptive beamformer obtains directive response
mainly by analyzing the statistical information contained in the array data, not by
utilizing the spatial information directly. Its essence is similar to that of convolutive
blind source separation [37, 38]. Cascading them together is equivalent to using the
same techniques repeatedly, hence contributing little to performance improvement.
Second, An adaptive beamformer generally adapts its weights during breaks in the
target signal. However, it is a challenge to predict signal breaks when several people
are talking concurrently. This significantly limits the applicability of adaptive beam-
forming to source separation. In contrast, a fixed beamformer, which relies mainly
on the spatial information, does not have such disadvantages. It is data indepen-
dent and more robust. With its directive response fixed in all acoustic scenarios, a
superdirective beamformer is preferred in the combined method.

(2) The permutation ambiguity problem in BSS
Permutation ambiguity inherent in frequency-domain BSS is always a challenging
problem. Generally, there are two approaches to solve it. One is to exploit the depen-
dence of separated signals across frequencies, and the other is to exploit the position
information of sources: the directivity pattern of the mixing/unmixing matrix pro-
vides a good reference for permutation alignment. However, in the proposed method,
the directivity information contained in the mixing matrix does not exist any longer
after beamforming. Even if the source positions are known, they are not much helpful
to permutation alignment in the subsequent blind source separation. Consequently,
what we can use for permutation is merely the first reference: the interfrequency
dependence of separated signals.
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11.4.2 Experimental Results and Analysis

We evaluate the performance of the proposed method in simulated experiments from
two aspects. The first experiment verifies the advantage of the beamforming pre-
processing, i.e., dereverberation and noise reduction; the second one investigates the
performance of the proposed method in various reverberant conditions, and compares
it with a BSS-only method and a beamforming-only one.

The simulation environment is shown in Fig. 11.8, the room size is 7m×5m×3m,
all sources and microphones are 1.5 m high. The room impulse response was obtained
by using the image method [51], and the reverberation time was controlled by varying
the absorption coefficient of the wall. The sampling rate is 8 kHz. For BSS, a STFT
frame size of 2,048 is used. For beamforming, a circular microphone array is used
to design the beamformer with the filter length 2,048. A commonly used objective
measure, signal-to-interference ratio (SIR), is employed to evaluate the separation
performance [45].

11.4.2.1 Influence of Beamforming Preprocessing

The proposed algorithm is used for separating three sources in the environment shown
in Fig. 11.8, using a 16-element circular microphone array with a radius of 0.2 m. The
simulated room reverberation time is RT60 = 300 ms, where RT60 is the time required
for the sound level to decrease by 60 dB. This is a medium reverberant condition.
Three source locations (2, 4, 6) are used, and the sources are two male speeches and
one female speech of 8s each. Three beams are formed by the microphone array
pointing at the three sources, respectively. Impulse responses associated with the
global transfer function of beamforming is shown in Fig. 11.10, which are calculated
from the impulse responses of mixing filters and beamforming filters using
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Fig. 11.9 Global impulse responses after beamforming

F(n) = B(n) ∗ H(n) (11.17)

It can be seen that the diagonal components in Fig. 11.9 are superior to off-
diagonal ones. This implies that the target sources are dominant in the outputs. To
demonstrate the dereverberation performance of beamforming, the top left panel in
Fig. 11.9 is enlarged in Fig. 11.10 and compared with the original impulse response.
Obviously, the mixing filter becomes shorter after beamforming, and the reverbera-
tion becomes smaller. This indicates that dereverberation is achieved. So far, the two
advantages of beamforming, dereverberation and noise reduction, are observed as
expected. Thus, the new mixing network (11.17) should be easier to separate than the
original mixing network. In this experiment, the average input SIR is −2.8 dB, and
the output one, enhanced by beamforming, is 3.3 dB. Applying BSS to the beam-
formed signals, we get an average output SIR of the combined method of 16.3 dB, a
19.1 dB improvement over the input: 6.1 dB improvement at the beamforming stage,
and 13 dB further improvement at the BSS stage.

11.4.2.2 Performance in Reverberant Environments

The performances of the combined method, the BSS-only method and the
beamforming-only method, are compared in the simulated environment shown in
Fig. 11.8 with different reverberation times. The beamforming-only method is just
the first processing stage of the combined method. For the combined method,
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Fig. 11.11 Performance comparison between the combined method, the BSS-only method and the
beamforming-only method in different reverberant conditions

a 16-element microphone array with a radius of 0.2 m is used. For the BSS-only
method, a linear array consisting of four microphones (inter-space of 6 cm) is used
instead of the circular array. Various combinations of source locations are tested (2
sources and 4 sources). The sources are two male speeches and two female speeches
of 8s each. RT60 ranges from 100 to 700 ms in increments of 200 ms. The average
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input SIR does not vary significantly with the reverberation time: it is about 0 dB for
two-source cases, and −5 dB for four-source cases. For all three methods, the STFT
frame size is set at 2,048. The separation results are shown in Fig. 11.11, with each
panel depicting the output SIRs of the three methods for one source combination.
It is observed in Fig. 11.11 that for each source configuration, the output SIRs of
all methods decrease with increasing reverberation; however, the combined method
always outperforms the other two. Beamforming performs worst among the three
methods; however, it provides a good preprocessing result, and hence the combined
method works better than the BSS-only method.

It is interesting to investigate how big an improvement one can obtain by the
use of beamforming preprocessing in different reverberation values. To measure
the contribution of this preprocessing, we define the relative improvement of the
combined method over the BSS-only method as

IR = Ic − Ib

Ib
× 100 % (11.18)

where I is the obtained SIR improvement with the subscripts (·)b and (·)c standing for
the BSS-only method and the combined method, respectively. We calculate the rela-
tive performance improvement for the four separation scenarios listed in Fig. 11.11
and show the average result in Fig. 11.12. As discussed previously, the performance
is improved by the combined method for all reverberant conditions. However, it is
also observed in Fig. 11.12 that the improvement in low reverberation is not as large
as in medium and high reverberation. That is, the use of beamforming in low rever-
beration is not as beneficial as it would be for high reverberation. The reason is that
BSS can work well alone when the circular convolution approximation problem is
not evident in low reverberation, and thus the contribution of preprocessing is small.
On the other hand, when the circular convolution approximation problem becomes
severe in high reverberation, the contribution of preprocessing becomes crucial and
hence the separation performance is improved significantly.

Based on the two experiments above, a conclusion can be drawn: With beamform-
ing shortening mixing filters and reducing noise before blind source separation, the
combined method performs better than using beamforming or blind source separation
alone in highly reverberant environments. A disadvantage of the proposed method
is that it requires the knowledge of source locations for beamforming. Generally, the
source locations may be estimated with an array sound source localization algorithm
[52–54].



11 Speech Separation and Extraction by Combining Superdirective Beamforming 341

100 300 500 700
10

20

30

40

50

RT60 (ms)

R
el

at
iv

e 
im

pr
ov

em
en

t (
%

)

Fig. 11.12 Relative performance improvement of the combined method over the BSS-only method
in different reverberant environments

Fig. 11.13 Illustration of the
proposed method combining
beamforming and blind source
separation for target speech
extraction

Mic Array

S
I1

I2

I3

IN-1

B1 BQ

Beam

11.5 Target Speech Extraction in a Cocktail-Party Environment

11.5.1 Target Speech Extraction by Combining Beamforming
and BSS

In this section, the combined method is extended to a special application of target
speech extraction where only the position of the target speaker is known. In real
cocktail-party environments, each speaker may move and talk freely. This is very
difficult to handle with blind source separation or beamforming alone. Fortunately, it
is often in such a case that the target speaker stays in a position or moves slowly and
the noisy environment around it is time-varying, e.g., moving interfering speakers
and the ambient noise. For this specific situation, a target speech extraction method
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Fig. 11.14 Signal flow of the proposed method combining beamforming and blind source separa-
tion for target speech extraction

by combining beamforming and blind source separation is proposed. The principle
of the proposed method is illustrated in Fig. 11.13, where the target source S and
N − 1 interfering sources I1, . . . , IN−1, are convolutively mixed and observed at an
array of M microphones. To extract the target, Q beams (Q ≤ N ) are formed at an
area containing it, with a small separation angle between adjacent beams; then the
Q beamformed outputs are fed to a blind separation scheme. Using beamforming
as a preprocessor for BSS, the target signal becomes dominant in the output of
the beamformer and is hence easier to extract. Furthermore, as seen in Fig. 11.13,
the beams are pointing at an area containing the target, as opposed to the interfering
sources. This is very important for operation under a time-varying condition, because
of the following reasons:

(1) When the target speaker remains in a constant position while others move, it is
impractical to know all speakers’ positions and steer a beam at each of them;

(2) There is no need to steer the beams at individual speakers since only the target
speaker is of interest;

(3) The target signal is likely to become dominant in at least one of the beamformed
output channels if the beams point at an area containing the target speaker. Thus,
it is possible to extract it as an independent source even if the number of beams is
less than the sources [55]. This feature is very important for the proper operation
of the proposed method;

(4) A seamless beam area will be formed by several beams with each covering some
beamwidth. It is possible to extract the target signal even if it moves slightly inside
this area. This feature may improve the robustness of the proposed method; and

(5) The fact that there are fewer beams than sources reduces the dimensionality of
the problem and saves computation.

The signal flow of the proposed method is shown in Fig. 11.14, which is similar
to the one shown in Fig. 11.7. The same implementation of beamforming and blind
source separation is also employed.

11.5.2 Experimental Results and Analysis

We evaluate the performance of the proposed method in simulated conditions. A typ-
ical cocktail-party environment with moving speakers and ambient noises is shown
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in Fig. 11.15. The room size is 7m × 5m × 3m, and all sources and microphones
are 1.5 m high. Four loudspeakers S1–S4 placed near the corners of the room play
various interfering sources. Loudspeakers S5, S6, and S7 play speech signals con-
currently. S5 and S6 remain in fixed positions, while S7 moves back and forth at a
speed of 0.5 m/s. As the target, S5 is placed at either position P1 or P2. S5 simulates
a female speaker, while S6 and S7 simulate male speakers. An 8-element circular
microphone array with a radius of 0.1 m is placed as shown.

Three beams are formed toward S5, with the separation angle between two adja-
cent beams being 20◦. The room impulse responses are obtained by using the image
method, with the reverberation time controlled by varying the absorption coefficient
of walls [51]. The test signals last 8s with a sampling rate of 8 kHz. The extraction
performance is evaluated in terms of SIR where the signal is the target speech.

With so many speakers present in such a time-varying environment, BSS alone
fails to work. Now, we compare the performance of beamforming alone and the
proposed method with reverberation RT60 of 130 and 300 ms, respectively. The results
are given in Table 11.1. As an example, for the close target case (P1) under RT60 =
300 ms, the input SIR is around −9 dB—the target is almost completely buried in
noises and interference. The enhancement by beamforming alone is moderate. On
the other hand, the proposed two-stage method improves the SIR by 15.1 dB. In the
far target case (P2) of RT60 = 300 ms, the target signal received at the microphones
is much weaker with an input SIR around only −11 dB. The proposed method is
still able to extract the target signal with an output SIR of 3.3 dB and a total SIR
improvement of 13.5 dB.

For the close target case (P1) under RT60 = 300 ms, Fig. 11.16 shows the wave-
forms at various processing stages: sources, microphone signals, beamformer out-
puts, and finally the BSS outputs. It can be seen that the target signal S5 is totally
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Table 11.1 Comparison of beamforming and the proposed method in terms of signal-to-
interference ratio (SIR)

Target S5 P1 (close) P2 (far)

RT60 130 ms 300 ms 130 ms 300 ms
Input SIR −8.2 dB −9.1 dB −10.7 dB −10.8 dB
Beamforming 4.6 dB 0.6 dB 2.5 dB −2.3 dB
Proposed method 11.9 dB 6.0 dB 9.1 dB 3.3 dB
SIR improvement 20.1 dB 15.1 dB 19.8 dB 13.5 dB
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Fig. 11.16 Waveforms at various processing stages

buried in noises and interference in the mixture signals; it is enhanced to a certain
degree after beamforming but is still difficult to tell from the background; and af-
ter blind source separation, the target signal is clearly exhibited at the channel Y2.
In addition, an interference signal (S6) is observed at the output channel Y1, and
the noise-like output Y3 is mainly composed of the interfering speech S7 and other
noises. The extraction result verifies the validity of the proposed method in noisy
cocktail-party environments. Some audio demos can be found at [56].

The good performance of the proposed method in such time-varying environ-
ments is due to two reasons. First, fixed beamforming can enhance target signals
even in time-varying environments. Second, the spectral components of the target
and (moving or static) interfering signals are still independent after beamforming;
besides, the target signal becomes dominant in the output of the beamformer. This
helps the subsequent blind source separation.
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11.6 Conclusions and Prospects

Given the poor performance of blind source separation and beamforming alone in
real cocktail-party environments, the chapter proposes a combined method using
superdirective beamforming as a preprocessing step of blind source separation.
Superdirective beamforming shortens mixing filters and reduces noise for blind
source separation, which further reduces the residual interferences. By exploiting
both spatial and statistical information, the proposed method can integrate the ad-
vantages of beamforming and blind source separation and complement the weakness
of them alone. Good results can be obtained when applying the proposed method for
speech separation in highly reverberant environments and target speech extraction
in dynamic cocktail-party environments.

Although great potentials of the proposed method have been shown, there are still
some open problems that need to be addressed. Specifically, beamforming requires
the speaker location information to form the beam, but the proposed method in its
current form is not capable of identifying the locations, especially with moving speak-
ers. In addition, the separation performance is still limited by the microphone array
size, making it a challenge to apply the proposed method to pocket-size applications.
These will be investigated in our future research.
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