
Chapter 10
Statistical Analysis and Evaluation of Blind
Speech Extraction Algorithms

Hiroshi Saruwatari and Ryoichi Miyazaki

Abstract In this chapter, a problemofblind source separation for speech applications
operated under real acoustic environments is addressed. In particular, we focus on
a blind spatial subtraction array (BSSA) consisting of a noise estimator based on
independent component analysis (ICA) for efficient speech enhancement. First, it
is theoretically and experimentally pointed out that ICA is proficient in noise esti-
mation rather than in speech estimation under a nonpoint-source noise condition.
Next, motivated by the above-mentioned fact, we introduce a structure-generalized
parametric BSSA, which consists of an ICA-based noise estimator and post-filtering
based on generalized spectral subtraction. In addition, we perform its theoretical
analysis via higher-order statistics. Comparing a parametric BSSA and a parametric
channelwise BSSA, we reveal that a channelwise BSSA structure is recommended
for listening but a conventional BSSA is more suitable for speech recognition.

10.1 Introduction

A hands-free speech recognition system [1–3] is essential for the realization of an
intuitive, unconstrained, and stress-free human–machine interface, where users can
talk naturally because they require no microphone in their hands. In this system,
however, since noise and reverberation always degrade speech quality, it is difficult
to achieve high recognition performance, comparedwith the case of using a close-talk
microphone such as a headset microphone. Therefore, wemust suppress interference
sounds to realize a noise-robust hands-free speech recognition system.
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Source separation is one approach to removing interference sound source
signals. Source separation for acoustic signals involves the estimation of original
sound source signals from mixed signals observed in each input channel. There have
been various studies on microphone array signal processing; in particular, the delay-
and-sum (DS) [4–7] array and adaptive beamformer (ABF) [8–11] are the most con-
ventionally used microphone arrays for source separation and noise reduction. ABF
can achieve higher performance than the DS array. However, ABF requires a priori
information, e.g., the look direction and speech break interval. These requirements
are due to the fact that conventional ABF is based on supervised adaptive filtering,
which significantly limits its applicability to source separation in practical applica-
tions. Indeed, ABF cannot work well when the interfering signal is nonstationary
noise.

Recently, alternative approaches have been proposed. Blind source separation
(BSS) is an approach to estimating original source signals using only mixed signals
observed in each input channel. In particular, BSS based on independent component
analysis (ICA) [12], in which the independence among source signals is mainly used
for the separation, has recently been studied actively [13–22]. Indeed, the conven-
tional ICA could work, particularly in speech–speech mixing, i.e., all sources can
be regarded as point sources, but such a mixing condition is very rare and unreal-
istic; real noises are often widespread sources. In this chapter, we mainly deal with
generalized noise that cannot be regarded as a point source. Moreover, we assume
this noise to be nonstationary noise that arises in many acoustical environments;
however, ABF could not treat this noise well. Although ICA is not influenced by the
nonstationarity of signals unlike ABF, this is still a very challenging task that can
hardly be addressed by conventional ICA-based BSS because ICA cannot separate
widespread sources.

In this chapter, first, we analyze ICA under a nonpoint-source noise condition and
point out that ICA is proficient in noise estimation rather than in speech estimation
under such a noise condition. This analysis implies that we can still utilize ICA as
an accurate noise estimator. Next, we review blind spatial subtraction array (BSSA)
[23], an improvedBSS algorithm recently proposed in order to deal with real acoustic
sounds. BSSA consists of an ICA-based noise estimator and post-filtering such as
spectral subtraction (SS) [24], where noise reduction in BSSA is achieved by sub-
tracting the power spectrum of the estimated noise via ICA from the power spectrum
of the noisy observations. This “power-spectrum-domain subtraction” procedure pro-
vides better noise reduction than conventional ICA with estimation error robustness.
However, BSSA always suffers from artificial distortion, so-called musical noise,
owing to nonlinear signal processing. This leads to a serious tradeoff between the
noise reduction performance and the amount of signal distortion in speech recogni-
tion.

In a recent study, two types of BSSA have been proposed (see Fig. 10.1) [25].
One is the conventional BSSA structure that performs SS after delay-and-sum (DS)
(see Fig. 10.1a), and the other involves channelwise SS before DS (chBSSA; see
Fig. 10.1b). Also, it has been theoretically clarified that chBSSA is superior to BSSA
for the mitigation of the musical noise [26]. Therefore, in this chapter, we generalize
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Fig. 10.1 Block diagrams of a SS after DS (BSSA) and b channelwise SS before DS (chBSSA)

the various types of BSSA as a structure-generalized parametric BSSA [27], and we
provide a theoretical analysis of the amounts of musical noise and speech distortion
generated in several types of methods using the structure-generalized parametric
BSSA. From a mathematical analysis based on higher-order statistics, we prove the
existence of a tradeoff between the amounts of musical noise and speech distortion
in various BSSA structures. From experimental evaluations, it is revealed that the
structure should be carefully selected according to the application, i.e., a chBSSA
structure is recommended for listening but a conventional BSSA is more suitable for
speech recognition.

The outline of this chapter is organized as follows. In Sect. 10.2, we provide a brief
review of ICAused for speech applications [28, 29]. In Sect. 10.3, a theoretical analy-
sis of ICA under nonpoint-source noise condition is given, and following this section,
we give a review of BSSA and its generalized algorithms [23, 27] in Sect. 10.4. In
Sect. 10.5, we describe a musical noise assessment method based on higher-order
statistics [30–32]. Using the method, we give a theoretical analysis of musical noise
generation and speech distortion for structure-generalized BSSA, where the authors
can show that chBSSA is superior to BSSA in terms of less musical noise property,
but BSSA is superior to chBSSA in terms of less speech distortion property [27]. In
Sect. 10.6, we show results of experimental evaluation [27]. Following a discussion
on the theoretical analysis and experimental results, we present our conclusions in
Sect. 10.7.
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10.2 Data Model and Conventional BSS Method

10.2.1 Sound Mixing Model of Microphone Array

In this chapter, a straight line array is assumed. The coordinates of the elements
are designated d j ( j = 1, . . . , J ), and the direction-of-arrivals (DOAs) of multiple
sound sources are designated θk(k = 1, . . . , K ) (see Fig. 10.2). Here, we assume the
following sound sources: only one target speech signal, some interference signals
that can be regarded as point sources, and additive noise. This additive noise rep-
resents noises that cannot be regarded as point sources, e.g., spatially uncorrelated
noises, background noises, and leakage of reverberation components outside the
frame analysis. Multiple mixed signals are observed at microphone array elements,
and a short-time analysis of the observed signals is conducted by frame-by-frame
discrete Fourier transform (DFT). The observed signals are given by

x( f, τ ) = A( f ) {s( f, τ ) + n( f, τ )} + na( f, τ ), (10.1)

where f is the frequency bin and τ is the time index of DFT analysis. Also, x( f, τ )

is the observed signal vector, A( f ) is the mixing matrix, s( f, τ ) is the target speech
signal vector in which only the U th entry contains the signal component sU ( f, τ )

(U is the target source number), n( f, τ ) is the interference signal vector that contains
the signal components except the U th component, and na( f, τ ) is the nonstationary
additive noise signal term that generally represents nonpoint-source noises. These
are defined as

x( f, τ ) = [x1( f, τ ), . . . , xJ ( f, τ )]T, (10.2)

s( f, τ ) = [0, . . . , 0
︸ ︷︷ ︸

U−1

, sU ( f, τ ), 0, . . . , 0
︸ ︷︷ ︸

K−U

]T, (10.3)

n( f, τ ) = [n1( f, τ ), . . . , nU−1( f, τ ), 0, nU+1( f, τ ), . . . , nK ( f, τ )]T,(10.4)

na( f, τ ) = [n(a)
1 ( f, τ ), . . . , n(a)

J ( f, τ )]T, (10.5)

A( f ) =
⎡

⎢

⎣

A11( f ) · · · A1K ( f )
...

...

AJ1( f ) · · · AJ K ( f )

⎤

⎥

⎦ . (10.6)

10.2.2 Conventional Frequency-Domain ICA

Here, we consider a case where the number of sound sources, K , equals the number
of microphones, J , i.e., J = K . In addition, similarly to that in the case of the
conventional ICA contexts, we assume that the additive noise na( f, τ ) is negligible
in (10.1). In frequency-domain ICA (FDICA), signal separation is expressed as
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Fig. 10.2 Configurations of microphone array and signals

Fig. 10.3 Blind source separation procedure in FDICA in case of J = K = 2

o( f, τ ) = [o1( f, τ ), . . . , oK ( f, τ )]T = WICA( f )x( f, τ ), (10.7)

WICA( f ) =
⎡

⎢

⎣

W (ICA)
11 ( f ) · · · W (ICA)

1J ( f )
...

...

W (ICA)
K1 ( f ) · · · W (ICA)

K J ( f )

⎤

⎥

⎦ , (10.8)

where o( f, τ ) is the resultant output of the separation and WICA( f ) is the complex-
valued unmixing matrix (see Fig. 10.3).

The unmixing matrix WICA( f ) is optimized by ICA so that the output entries of
o( f, τ ) become mutually independent. Indeed, many kinds of ICA algorithms have
been proposed. In the second-order ICA (SO-ICA) [17, 19], the separation filter
is optimized by the joint diagonalization of co-spectra matrices using the nonsta-
tionarity and coloration of the signal. For instance, the following iterative updating
equation based on SO-ICA has been proposed by Parra and Spence [17]:
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W[p+1]
ICA ( f ) = −μ

∑

τb

χ( f ) off-diag (Roo ( f, τb)) W[p]
ICA( f )Rxx ( f, τb) + W[p]

ICA( f ),

(10.9)

where μ is the step-size parameter, [p] is used to express the value of the pth step in
iterations, off-diag[X] is the operation for setting every diagonal element of matrixX
to zero, andχ( f ) = (

∑

τb
‖Rxx ( f, τb)‖2)−1 is a normalization factor (‖·‖ represents

the Frobenius norm). Rxx ( f, τb) and Roo( f, τb) are the cross-power spectra of the
input x( f, τ ) and output o( f, τ ), respectively, which are calculated around multiple
time blocks τb. Also, Pham et al. have proposed the following improved criterion for
SO-ICA [19]:

∑

τb

{

1

2
log det diag

[

WICA( f )Roo( f, τb)WICA( f )H
]

− log det
[

WICA( f )
]

}

,

(10.10)

where the superscript H denotes Hermitian transposition. This criterion is to be min-
imized with respect to WICA( f ). Another possible way to achieve SO-ICA has been
proposed as the direct joint diagonalization based on the linear algebraic procedure
[33, 34].

On the other hand, a higher-order statistics-based approach exists. In higher-
order ICA (HO-ICA), the separation filter is optimized on the basis of the non-
Gaussianity of the signal. The optimal WICA( f ) in HO-ICA is obtained using the
iterative equation

W[p+1]
ICA ( f ) = μ[I − 〈ϕ(o( f, τ ))oH( f, τ )〉τ ]W[p]

ICA( f ) + W[p]
ICA( f ), (10.11)

where I is the identity matrix, 〈·〉τ denotes the time-averaging operator, and ϕ(·)
is the nonlinear vector function. Many kinds of nonlinear function ϕ( f, τ ) have
been proposed. Considering a batch algorithm of ICA, it is well known that tanh(·)
or the sigmoid function is appropriate for super-Gaussian sources such as speech
signals [35, 36]. In this study, we define the nonlinear vector function ϕ(·) as

ϕ(o( f, τ )) ≡ [ϕ(o1( f, τ )), . . . , ϕ(oK ( f, τ ))]T, (10.12)

ϕ(ok( f, τ )) ≡ tanh o(R)
k ( f, τ ) + i tanh o(I)

k ( f, τ ), (10.13)

where the superscripts (R) and (I) denote the real and imaginary parts, respectively.
The nonlinear function given by (10.12) indicates that the nonlinearity is applied
to the real and imaginary parts of complex-valued signals separately. This type
of complex-valued nonlinear function has been introduced by Smaragdis [16] for
FDICA, where it can be assumed for speech signals that the real (or imaginary) parts
of the time–frequency representations of sources are mutually independent. Accord-
ing to Refs. [21, 37], the source separation performance of HO-ICA is almost the
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same as or superior to that of SO-ICA. Thus, in this chapter, HO-ICA is utilized as
the basic ICA algorithm hereafter.

FDICA has the inherent problem so-called permutation problem, i.e., difficulty
in removing the ambiguity of the source order in each frequency subband. In the
context of the permutation problem in the ICA study, there exist many methods
for solving the permutation problem, such as the source DOA-based method [38],
subband correlation-based method [15], and their combination method [39]. The
definite way to avoid the permutation problem is to use time-domain ICA (TDICA),
which has, however, other problems like relatively slow convergence and complex
implementation. Several literatures can be available for understanding the difference
and comparison between TDICA and FDICA [40–42].

10.3 Analysis of ICA Under Nonpoint-source Noise Condition

In this section, we investigate the proficiency of ICA under a nonpoint-source noise
condition. In relation to the performance analysis of ICA, Araki et al. have reported
that ICA-basedBSS has equivalence to parallel constructedABFs [43, 44]. However,
this investigation was focused on separation with a nonsingular mixing matrix, and
thus was valid for only point sources.

First, we analyze beamformers that are optimized by ICAunder a nonpoint-source
condition. In the analysis, it is clarified that beamformers optimized by ICA become
specific beamformers that maximize the signal-to-noise ratio (SNR) in each output
(so-called SNR-maximize beamformers). In particular, the beamformer for target
speech estimation is optimized to be a DS beamformer, and the beamformer for
noise estimation is likely to be a null beamformer (NBF) [18].

Next, a computer simulation is conducted. Its result also indicates that ICA is
proficient in noise estimation under a nonpoint-source noise condition. Then, it is
concluded that ICA is suitable for noise estimation under such a condition.

10.3.1 Can ICA Separate Any Source Signals?

Many previous studies onBSS provided strong evidence that conventional ICA could
perform source separation, particularly in the special case of speech–speech mixing,
i.e., all sound sources are point sources. However, such sound mixing is not realistic
under common acoustic conditions; indeed the following scenario and problem are
likely to arise (see Fig. 10.4):

• The target sound is the user’s speech, which can be approximately regarded as a
point source. In addition, the users themselves locate relatively near the micro-
phone array (e.g., 1m apart), and consequently the accompanying reflection and
reverberation components are moderate.
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Fig. 10.4 Expected directivity patterns that are shaped by ICA

• For the noise, we are often confronted with interference sound(s) which is not a
point source but a widespread source. Also, the noise is usually far from the array
and is heavily reverberant.

In such an environment, can ICA separate the user’s speech signal and a widespread
noise signal? The answer is no. It is well expected that conventional ICA can suppress
the user’s speech signal to pick up the noise source, but ICA is veryweak in picking up
the target speech itself via the suppression of a distant widespread noise. This is due
to the fact that ICA with small numbers of sensors and filter taps often provides only
directional nulls against undesired source signals. Results of the detailed analysis of
ICA for such a case are shown in the following subsections.

10.3.2 SNR-Maximize Beamformers Optimized by ICA

In this subsection, we consider beamformers that are optimized by ICA in the fol-
lowing acoustic scenario: the target signal is the user’s speech and the noise is not a
point source. Then, the observed signal contains only one target speech signal and
an additive noise. In this scenario, the observed signal is defined as

x( f, τ ) = A( f )s( f, τ ) + na( f, τ ). (10.14)
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Note that the additive noise na( f, τ ) cannot be negligible in this scenario. Then, the
output of ICA contains two components, i.e., the estimated speech signal ys( f, τ )

and estimated noise signal yn( f, τ ); these are given by

[ys( f, τ ), yn( f, τ )]T = WICA( f )x( f, τ ). (10.15)

Therefore, ICA optimizes two beamformers; these can be written as

WICA( f ) = [gs( f ), gn( f )]T, (10.16)

where gs( f ) = [g(s)
1 ( f ), . . . , g(s)

J ( f )
]T is the coefficient vector of the beamformer

used to pick up the target speech signal, and gn( f ) = [g(n)
1 ( f ), . . . , g(n)

J ( f )
]T is the

coefficient vector of the beamformer used to pick up the noise. Therefore, (10.15)
can be rewritten as

[ys( f, τ ), yn( f, τ )]T = [gs( f ), gn( f )]Tx( f, τ ). (10.17)

In SO-ICA, the multiple second-order correlation matrices of distinct time block
outputs,

〈o( f, τb)oH( f, τb)〉τb , (10.18)

are diagonalized through joint diagonalization.
On the other hand, in HO-ICA, the higher-order correlation matrix is also diag-

onalized. Using the Taylor expansion, we can express the factor of the nonlinear
vector function of HO-ICA, ϕ(ok( f, τ )), as

ϕ(ok( f, τ )) = tanh o(R)
k ( f, τ ) + i tanh o(I)

k ( f, τ ),

=

⎧

⎪
⎨

⎪
⎩

o(R)
k ( f, τ ) −

(

o(R)
k ( f, τ )

)3

3
+ · · ·

⎫

⎪
⎬

⎪
⎭

+ i

⎧

⎪
⎨

⎪
⎩

o(I)
k ( f, τ ) −

(

o(I)
k ( f, τ )

)3

3
+ · · ·

⎫

⎪
⎬

⎪
⎭

,

= ok( f, τ ) −
⎛

⎜

⎝

(

o(R)
k ( f, τ )

)3

3
+ i

(

o(I)
k ( f, τ )

)3

3

⎞

⎟

⎠+ · · · . (10.19)

Thus, the calculation of the higher-order correlation inHO-ICA,ϕ(o( f, τ ))oH( f, τ ),
can be decomposed to a second-order correlationmatrix and the summation of higher-
order correlation matrices of each order. This is shown as
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〈ϕ(o( f, τ ))oH( f, τ )〉τ = 〈o( f, τ )oH( f, τ )〉τ + �( f ), (10.20)

where �( f ) is a set of higher-order correlation matrices. In HO-ICA, separation
filters are optimized so that all orders of correlation matrices become diagonal matri-
ces. Then, at least the second-order correlation matrix is diagonalized by HO-ICA.
In both SO-ICA and HO-ICA, at least the second-order correlation matrix is diag-
onalized. Hence, we prove in the following that ICA optimizes beamformers as
SNR-maximize beamformers focusing on only part of the second-order correlation.
Then the absolute value of the normalized cross-correlation coefficient (off-diagonal
entries) of the second-order correlation, C , is defined by

C =
∣

∣〈ys( f, τ )y∗
n ( f, τ )〉τ

∣

∣

√〈|ys( f, τ )|2〉τ
√〈|yn( f, τ )|2〉τ

, (10.21)

ys( f, τ ) = ŝ( f, τ ) + rs n̂( f, τ ), (10.22)

yn( f, τ ) = n̂( f, τ ) + rnŝ( f, τ ), (10.23)

where ŝ( f, τ ) is the target speech component in ICA’s output, n̂( f, τ ) is the noise
component in ICA’s output, rs is the coefficient of the residual noise component, rn

is the coefficient of the target-leakage component, and the superscript ∗ represents a
complex conjugate. Therefore, the SNRs of ys( f, τ ) and yn( f, τ ) can be respectively
represented by

�s = 〈|ŝ( f, τ )|2〉τ /(|rs |2〈|n̂( f, τ )|2〉τ ), (10.24)

�n = 〈|n̂( f, τ )|2〉τ /(|rn|2〈|ŝ( f, τ )|2〉τ ), (10.25)

where �s is the SNR of ys( f, τ ) and �n is the SNR of yn( f, τ ). Using (10.22)–
(10.25), we can rewrite (10.21) as

C =
∣

∣

∣1/
√

�s · e j arg rs + 1/
√

�n · e j arg r∗
n

∣

∣

∣

√
1 + 1/�s

√
1 + 1/�n

=
∣

∣

∣1/
√

�s + 1/
√

�n · e j (arg r∗
n −arg rs )

∣

∣

∣

√
1 + 1/�s

√
1 + 1/�n

,

(10.26)

where arg r represents the argument of r . Thus, C is a function of only �s and �n .
Therefore, the cross-correlation between ys( f, τ ) and yn( f, τ ) only depends on the
SNRs of beamformers gs( f ) and gn( f ).

In Ref. [23], the following has been proved.

• The absolute value of cross-correlation only depends on the SNRs of the beam-
formers spanned by each row of an unmixing matrix.

• The absolute value of cross-correlation is a monotonically decreasing function of
SNR.

• Therefore, the diagonalization of a second-order correlation matrix leads to SNR
maximization.
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Thus, it can be concluded that ICA, in a parallel manner, optimizes multiple
beamformers, i.e., gs( f ) and gn( f ), so that the SNRof the output of each beamformer
becomes maximum.

10.3.3 What Beamformers Are Optimized Under Nonpoint-source
Noise Condition?

In the previous subsection, it has been proved that ICA optimizes beamformers as
SNR-maximize beamformers. In this subsection, we analyze what beamformers are
optimized by ICA, particularly under a nonpoint-source noise condition, where we
assume a two-source separation problem. The target speech can be regarded as a point
source, and the noise is a nonpoint-source noise. First, we focus on the beamformer
gs( f ) that picks up the target speech signal. The SNR-maximize beamformer for
gs( f ) minimizes the undesired signal’s power under the condition that the target
signal’s gain is kept constant. Thus, the desired beamformer should satisfy

min
gs ( f )

gTs ( f )R( f )gs( f ) subject to gTs ( f )a( f, θs) = 1, (10.27)

a( f, θs( f )) = [exp(i2π( f/M) fsd1 sin θs/c), . . . , exp(i2π( f/M) fsdJ sin θs/c)]T,

(10.28)

where a( f, θs( f )) is the steering vector, θs( f ) is the direction of the target speech,
M is the DFT size, fs is the sampling frequency, c is the sound velocity, and R( f ) =
〈na( f, τ )nH

a ( f, τ )〉τ is the correlation matrix of na( f, τ ). Note that θs( f ) is a func-
tion of frequency because the DOA of the source varies in each frequency subband
under a reverberant condition. Here, using the Lagrange multiplier, the solution of
(10.27) is

gs( f )T = a( f, θs( f ))HR−1( f )

a( f, θs( f ))HR−1( f )a( f, θs( f ))
. (10.29)

This beamformer is called a minimum variance distortionless response (MVDR)
beamformer [45]. Note that the MVDR beamformer requires the true DOA of the
target speech and the noise-only time interval. However, we cannot determine the
true DOA of the target source signal and the noise-only interval because ICA is an
unsupervised adaptive technique. Thus, the MVDR beamformer is expected to be
the upper limit of ICA in the presence of nonpoint-source noises.

Although the correlation matrix is often not diagonalized in lower frequency
subbands [45], e.g., diffuse noise,we approximate that the correlationmatrix is almost
diagonalized in subbands in the entire frequency. Then, regarding the power of noise
signals as approximately δ2( f ), the correlation matrix results in R( f ) = δ2( f ) · I.
Therefore, the inverse of the correlation matrix R−1( f ) = I/δ2( f ) and (10.29) can
be rewritten as
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gs( f )T = a( f, θs( f ))H

a( f, θs( f ))Ha( f, θs( f ))
. (10.30)

Since a( f, θs( f ))Ha( f, θs( f )) = J , we finally obtain

gs( f )

= 1

J
[exp (−i2π( f/M) fsd1 sin θs( f )/c) , . . . , exp (−i2π( f/M) fsdJ sin θs( f )/c)]T.

(10.31)

This filter gs( f ) is approximately equal to a DS beamformer [4]. Note that the filter
gs( f ) is not a simple DS beamformer but a reverberation-adapted DS beamformer
because it is optimized for a distinct θs( f ) in each frequency bin. The resultant
noise power is δ2( f )/J when the noise is spatially uncorrelated and white Gaussian.
Consequently the noise reduction performance of the DS beamformer optimized by
ICA under a nonpoint-source noise condition is proportional to 10 log10 J [dB]; this
performance is not particularly good.

Next, we consider the other beamformer gn( f ), which picks up the noise source.
Similar to the noise signal, the beamformer that removes the target signal arriving
from θs( f ) is the SNR-maximize beamformer. Thus, the beamformer that steers the
directional null to θs( f ) is the desired one for the noise signal. Such a beamformer is
called NBF [18]. This beamformer compensates for the phase of the signal arriving
from θs( f ), and carries out subtraction. Thus, the signal arriving from θs( f ) is
removed. For instance, NBF with a two-element array is designed as

gn( f )

= [exp(−i2π( f/M) fsd1 sin θs( f )/c), − exp(−i2π( f/M) fsd2 sin θs( f )/c)]T · σ( f ),

(10.32)

where σ( f ) is the gain compensation parameter. This beamformer surely satisfies
gTn ( f ) · a( f, θs( f )) = 0. The steering vector a( f, θs( f )) expresses the wavefront of
the plane wave arriving from θs( f ). Thus, gn( f ) actually steers the directional null
to θs( f ). Note that this always occurs regardless of the number of microphones (at
least two microphones). Hence, this beamformer achieves a reasonably high, ideally
infinite, SNR for the noise signal. Also, note that the filter gn( f ) is not a simple NBF
but a reverberation-adapted NBF because it is optimized for a distinct θs( f ) in each
frequency bin. Overall, the performance of enhancing the target speech is very poor
but that of estimating the noise source is good.

10.3.4 Computer Simulations

We conduct computer simulations to confirm the performance of ICA under a
nonpoint-source noise condition. Here, we used HO-ICA [16] as the ICA algorithm.
We used the following 8 kHz-sampled signals as the ICA’s input; the original target
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Fig. 10.5 Layout of
reverberant room in our
simulation

speech (3 s) was convoluted with impulse responses that were recorded in an actual
environment, and to which three types of noise from 36 loudspeakers were added.
The reverberation time (RT60) is 200 ms; this corresponds to mixing filters with
1,600 taps in 8kHz sampling. The three types of noise are an independent Gaussian
noise, actually recorded railway station noise, and interference speech by 36 people.
Figure 10.5 illustrates the reverberant room used in the simulation. We use 12 speak-
ers (6 males and 6 females) as sources of the original target speech, and the input
SNR of test data is set to 0dB. We use a two-, three-, or four-element microphone
array with an interelement spacing of 4.3cm.

The simulation results are shown in Figs. 10.6 and 10.7. Figure 10.6 shows the
result for the average noise reduction rate (NRR) [18] of all the target speakers.
NRR is defined as the output SNR in dB minus the input SNR in dB. This measure
indicates the objective performance of noise reduction. NRR is given by

NRR [dB] = 1

J

J
∑

j=1

(OSNR − ISNR j ), (10.33)

where OSNR is the output SNR and ISNR j is the input SNR of microphone j .
From this result, we can see an imbalance between the target speech estimation

and the noise estimation in every noise case; the performance of the target speech
estimation is significantly poor, but that of noise estimation is very high. This result
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Fig. 10.6 Simulation-based separation results under nonpoint-source noise condition

Fig. 10.7 Typical
directivity patterns
under nonpoint-source
noise condition shaped
by ICA at 2kHz and
two-element array for case
of white Gaussian noise

is consistent with the previously stated theory. Moreover, Fig. 10.7 shows directivity
patterns shaped by the beamformers optimized by ICA in the simulation. It is clearly
indicated that beamformer gs( f ), which picks up the target speech, resembles the
DS beamformer, and that beamformer gn( f ), which picks up the noise, becomes
NBF. From these results, it is confirmed that the previously stated theory, i.e., the
beamformers optimized by ICA under a nonpoint-source noise condition are DS and
NBF, is valid.

10.4 Blind Spectral Subtraction Array

10.4.1 Motivation and Strategy

As clearly shown in Sects. 10.3.3 and 10.3.4, ICA is proficient in noise estimation
rather than in target speech estimation under a nonpoint-source noise condition. Thus,
we cannot use ICA for direct target estimation under such a condition. However, we
can still use ICA as a noise estimator. This motivates us to introduce an improved
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speech-enhancement strategy, i.e., BSSA [23]. BSSA consists of a DS-based primary
path and a reference path including ICA-based noise estimation (see Fig. 10.1a). The
estimated noise component in ICA is efficiently subtracted from the primary path
in the power spectrum domain without phase information. This procedure can yield
better target speech enhancement than simple ICA, evenwith the additional benefit of
estimation-error robustness in speech recognition applications. The detailed process
of signal processing is shown below.

10.4.2 Partial Speech Enhancement in Primary Path

We again consider the generalized form of the observed signal as described in (10.1).
The target speech signal is partly enhanced in advance by DS. This procedure can
be given as

yDS( f, τ ) = wT
DS( f )x( f, τ )

= wT
DS( f )A( f )s( f, τ ) + wT

DS( f )A( f )n( f, τ ) + wT
DS( f )na( f, τ ),

(10.34)

wDS = [w(DS)
1 ( f ), . . . , w(DS)

J ( f )]T, (10.35)

w(DS)
j ( f ) = 1

J
exp
(−i2π( f/M) fsd j sin θU /c

)

, (10.36)

where yDS( f, τ ) is the primary path output that is a slightly enhanced target speech,
wDS( f ) is the filter coefficient vector of DS, and θU is the estimated DOA of the
target speech given by the ICA part in Sect. 10.4.3. In (10.34), the second and third
terms on the right-hand side express the remaining noise in the output of the primary
path.

10.4.3 ICA-Based Noise Estimation in Reference Path

BSSA provides ICA-based noise estimation. First, we separate the observed signal
by ICA and obtain the separated signal vector o( f, τ ) as

o( f, τ ) = WICA( f )x( f, τ ), (10.37)

o( f, τ ) = [o1( f, τ ), . . . , oK+1( f, τ )]T, (10.38)

WICA( f ) =

⎡

⎢

⎢

⎣

W (ICA)
11 ( f ) · · · W (ICA)

1J ( f )
...

...

W (ICA)
(K+1)1( f ) · · · W (ICA)

(K+1)J ( f )

⎤

⎥

⎥

⎦

, (10.39)
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where the unmixing matrix WICA( f ) is optimized by (10.11) . Note that the number
of ICA outputs becomes K + 1, and thus the number of sensors, J , is more than
K +1 becausewe assume that the additive noise na( f, τ ) is not negligible.We cannot
estimate the additive noise perfectly because it is deformed by the filter optimized
by ICA. Moreover, other components also cannot be estimated perfectly when the
additive noise na( f, τ ) exists. However, we can estimate at least noises (including
interference sounds that can be regarded as point sources, and the additive noise)
that do not involve the target speech signal, as indicated in Sect. 10.3. Therefore, the
estimated noise signal is still beneficial.

Next, we estimateDOAs from the unmixingmatrixWICA( f ) [18]. This procedure
is represented by

θu = sin−1
arg

(

[W−1
ICA( f )] ju

[W−1
ICA( f )] j ′u

)

2π fsc−1(d j − d j ′)
, (10.40)

where θu is the DOA of the uth sound source. Then, we choose theU th source signal,
which is nearest to the front of the microphone array, and designate the DOA of the
chosen source signal as θU . This is because almost all users are expected to stand in
front of the microphone array in a speech-oriented human–machine interface, e.g.,
a public guidance system. Other strategies for choosing the target speech signal can
be considered as follows.

• If the approximate location of a target speaker is known in advance, we can uti-
lize the location of the target speaker. For instance, we can know the approximate
location of the target speaker at a hands-free speech recognition system in a car
navigation system in advance. Then, theDOAof the target speech signal is approx-
imately known. For such systems, we can choose the target speech signal, selecting
the specific component inwhich theDOAestimated by ICA is nearest to the known
target speech DOA.

• For an interaction robot system [46], we can utilize image information from a cam-
era mounted on a robot. Therefore, we can estimate DOA from this information,
and we can choose the target speech signal on the basis of this estimated DOA.

• If the only target signal is speech, i.e., none of the noises are speech, we can choose
the target speech signal on the basis of the Gaussianmixture model (GMM), which
can classify sound signals into voices and nonvoices [47].

Next, in the reference path, no target speech signal is required because we want to
estimate only noise. Therefore, we eliminate the user’s signal from the ICA’s output
signal o( f, τ ). This can be written as

q( f, τ ) = [o1( f, τ ), ..., oU−1( f, τ ), 0, oU+1( f, τ ), ..., oK+1( f, τ )
]T

, (10.41)

where q( f, τ ) is the “noise-only” signal vector that contains only noise components.
Next, we apply the projection back (PB) [15] method to remove the ambiguity of
amplitude. This procedure can be represented as
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q̂( f, τ ) = [q̂1( f, τ ), ..., q̂J ( f, τ )
]T = W+

ICA( f )q( f, τ ), (10.42)

where M+ denotes the Moore–Penrose pseudoinverse matrix of M. Thus, q̂( f, τ ) is
a good estimate of the noise signals received at the microphone positions, i.e.,

q̂( f, τ ) 	 A( f )n( f, τ ) + W+
ICA( f )n̂a( f, τ ), (10.43)

where n̂a( f, τ ) contains the deformed additive noise signal and separation error due
to an additive noise. Finally, we construct the estimated noise signal zDS( f, τ ) by
applying DS as

zDS( f, τ ) = wT
DS( f )q̂( f, τ ) 	 wT

DS( f )A( f )n( f, τ ) + wT
DS( f )W+

ICA( f )n̂a( f, τ ).

(10.44)

This equationmeans that zDS( f, τ ) is a good candidate for noise terms of the primary
path output yDS( f, τ ) (see the 2nd and 3rd terms on the right-hand side of (10.34)).
Of course this noise estimation is not perfect, but we can still enhance the target
speech signal via oversubtraction in the amplitude or power spectrum domain, where
the overestimated noise component is subtracted from the observed noisy speech
component with an allowance of speech distortion, as described in Sect. 10.4.4. Note
that zDS( f, τ ) is a function of the frame index τ , unlike the constant noise prototype
in the traditional SS method [24]. Therefore, the proposed BSSA can deal with
nonstationary noise.

10.4.4 Formulation of Structure-Generalized Parametric BSSA

In a recent study, two types of BSSA have been proposed (see Fig. 10.1). One is
the conventional BSSA structure that performs SS after DS (see Fig. 10.1a), and
the other involves channelwise SS before DS (chBSSA; see Fig. 10.1b). Also, it has
been theoretically clarified that chBSSA is superior to BSSA for the mitigation of
the musical noise generation [26]. In this chapter, we generalize the various types of
BSSA as a structure-generalized parametric BSSA [27].

First, parametric BSSA is described. Using (10.34) and (10.44), we perform gen-
eralized SS (GSS) [48] and obtain the enhanced target speech signal as

yBSSA( f, τ )

=

⎧

⎪
⎨

⎪
⎩

2n
√

|yDS( f, τ )|2n − β|zDS( f, τ )|2nei arg(yDS( f,τ ))

(if |yDS( f, τ )|2n − β|zDS( f, τ )|2n > 0),
0 (otherwise),

(10.45)
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where yBSSA( f, τ ) is the final output of the parametric BSSA, β is an oversubtraction
parameter, n is an exponent parameter, and |zDS( f, τ )|2n is the smoothed noise
component within a certain time frame window.

Next, in the parametric chBSSA, we first perform GSS independently in each
input channel and derive multiple enhanced target speech signals by channelwise
GSS using (10.2) and (10.42). This procedure can be given by

y(chGSS)
j ( f, τ ) =
⎧

⎪
⎨

⎪
⎩

2n
√

|x j ( f, τ )|2n − β|q̂ j ( f, τ )|2nei arg(x j ( f,τ ))

(if |x j ( f, τ )|2n − β|q̂ j ( f, τ )|2n > 0),
0 (otherwise),

(10.46)

where y(chGSS)
j ( f, τ ) is the enhanced target speech signal obtained by GSS at a

specific channel j . Finally, we obtain the resultant-enhanced target speech signal by
applying DS to ychGSS = [y(chGSS)

1 ( f, τ ), . . . , y(chGSS)
J ( f, τ )]T. This procedure can

be expressed by

ychBSSA( f, τ ) = wT
DS( f )ychGSS( f, τ ), (10.47)

where ychBSSA( f, τ ) is the final output of the parametric chBSSA.

10.5 Theoretical Analysis of Structure-Generalized Parametric
BSSA

10.5.1 Motivation and Strategy

In general, BSSA can achieve good noise reduction performance but always suf-
fers from artificial distortion, so-called musical noise, owing to its nonlinear signal
processing. This leads to a serious tradeoff between the noise reduction performance
and the amount of signal distortion in speech recognition. Therefore, in this chapter,
we provide a theoretical analysis of the amounts of musical noise and speech distor-
tion generated in several types of methods using the structure-generalized parametric
BSSA. From a mathematical analysis based on higher-order statistics, we prove the
existence of a tradeoff between the amounts of musical noise and speech distortion in
various BSSA structures. From experimental evaluations, we reveal that the structure
should be carefully selected according to the application, i.e., a chBSSA structure
is recommended for listening but a conventional BSSA is more suitable for speech
recognition.

In this chapter, we assume that the input signal x in the power spectral domain
can be modeled by the gamma distribution as [49, 50]
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PGM(x) = xα−1exp(− x
θ
)

θα�(α)
, (10.48)

where α is the shape parameter corresponding to the type of the signal, θ is the
scale parameter of the gamma distribution. In addition, �(α) is the gamma function,
defined as

�(α) =
∞
∫

0

tα−1 exp(−t)dt. (10.49)

If the input signal is Gaussian, its complex-valued DFT coefficients also have the
Gaussian distributions in the real and imaginary parts. Therefore, the p.d.f. of its
power spectra obeys the chi-square distribution with two degrees of freedom, which
corresponds to the gamma distribution with α=1. Also, if the input signal is super-
Gaussian, the p.d.f. of its power spectra obeys the gamma distribution with α<1.

10.5.2 Analysis of Amount of Musical Noise

10.5.2.1 Metric of Musical Noise Generation: Kurtosis Ratio

We speculate that the amount of musical noise is highly correlated with the number
of isolated power spectral components and their level of isolation (see Fig. 10.8).
In this chapter, we call these isolated components tonal components. Since such
tonal components have relatively high power, they are strongly related to the weight
of the tail of their probability density function (p.d.f.). Therefore, quantifying the
tail of the p.d.f. makes it possible to measure the number of tonal components.
Thus, we adopt kurtosis, one of the most commonly used higher-order statistics, to
evaluate the percentage of tonal components among all components. A larger kurtosis
value indicates a signal with a heavy tail, meaning that the signal has many tonal
components. Kurtosis is defined as

kurt = μ4

μ2
2

, (10.50)

where “kurt” is the kurtosis and μm is the mth-order moment, given by

μm =
∞
∫

0

xm P(x)dx, (10.51)

where P(x) is the p.d.f. of the random variable X . Note that μm is not a central
moment but a raw moment. Thus, (10.50) is not kurtosis in the mathematically strict
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Fig. 10.8 Example of generation of tonal component after signal processing, where input signal is
speech with white Gaussian noise and output is processed signal by GSS

definition but a modified version; however, we still refer to (10.50) as kurtosis in this
chapter.

In this study, we apply such a kurtosis-based analysis to a time–frequency period
of subject signals for the assessment of musical noise. Thus, this analysis should
be conducted during, for example, periods of silence in speech when we evaluate
the degree of musical noise arising in remaining noise. This is because we aim to
quantify the tonal components arising in the noise-only part, which is the main cause
of musical noise perception, and not in the target speech-dominant part.

Although kurtosis can be used to measure the number of tonal components, note
that the kurtosis itself is not sufficient to measure the amount of musical noise.
This is obvious since the kurtosis of some unprocessed noise signals, such as an
interfering speech signal, is also high, but we do not recognize speech as musical
noise. Hence, we turn our attention to the change in kurtosis between before and after
signal processing to identify only the musical noise components. Thus, we adopt the
kurtosis ratio as a measure to assess musical noise [30–32]. This measure is defined
as

kurtosis ratio = kurtproc
kurtorg

, (10.52)

where kurtproc is the kurtosis of the processed signal and kurtorg is the kurtosis of
the original (unprocessed) signal. This measure increases as the amount of generated
musical noise increases. In Ref. [30], it was reported that the kurtosis ratio is strongly
correlatedwith the human perception ofmusical noise. Figure 10.9 shows an example
of the relation between the kurtsis ratio (in log scale) and a human-perceptual score
of degree of musical noise generation, where we can confirm the strong correlation.

10.5.2.2 Analysis in the Case of Parametric BSSA

In this section, we analyze the kurtosis ratio in a parametric BSSA. First, using the
shape parameter of input noise αn, we express the kurtosis of a gamma distribution,
kurt(n)in , as [51]
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Fig. 10.9 Relation between kurtsis ratio (in log scale) and human-perceptual score of degree of
musical noise generation [30]

kurt(n)in =

∞
∫

0
x4PGM(x)dx

(
∞
∫

0
x2PGM(x)dx

)2
(10.53)

= (αn + 2)(αn + 3)

αn(αn + 1)
. (10.54)

The kurtosis in the power spectral domain after DS is given by [26]

kurt(n)DS 	 J−0.7 · (kurt(n)in − 6) + 6. (10.55)

Similarly to (10.53), the shape parameter αDS corresponding to the kurtosis after DS,
kurtDS, is given by solving the following equation in αDS:

kurt(n)DS = (αDS + 2)(αDS + 3)

αDS(αDS + 1)
. (10.56)

This can be expanded as

α2
DS(kurt

(n)
DS − 1) + αDS(kurt

(n)
DS − 5) − 6 = 0, (10.57)

and we have

αDS =
−kurtDS + 5 +

√

kurt2DS + 14 kurtDS + 1

2 kurtDS − 2
. (10.58)

Then, using (10.53) and (10.55), αDS can be expressed in terms of αn as
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αDS =
[

2J−0.7 ·
{

(αn + 2)(αn + 3)

αn(αn + 1)
− 6

}

+ 10

]−1

·
[{(

J−0.7 ·
{

(αn + 2)(αn + 3)

αn(αn + 1)
− 6

}

+ 6

)2

+ 14J−0.7 ·
{

(αn + 2)(αn + 3)

αn(αn + 1)
− 6

}

+ 85

}0.5

−
(

J−0.7 ·
{

(αn + 2)(αn + 3)

αn(αn + 1)
− 6

})

− 1

]

. (10.59)

Next,we calculate the change in kurtosis after parametricBSSA.With the shape para-
meter after DS, αDS, the resultant kurtosis after the parametric BSSA is represented
as

kurt(n)BSSA = M (αDS, β, 4, n)/M 2(αDS, β, 2, n), (10.60)

whereM (α, β, m, n) is referred to as normalized moment function that represents the
resultant mth-order moment after GSS in the case that the oversubtraction parameter
is β, the exponent parameter is n and the input signal’s shape parameter is α. This
can be expressed as [52]

M (α, β, m, n) =
m/n
∑

l=0

(−β)l�l(α + n)�(m/n + 1)

�l+1(α)�(l + 1)�(m/n − l + 1)

�

(

α + m − nl,

(

β
�(α + n)

�(α)

) 1
n
)

, (10.61)

where �(α, z) is the upper incomplete gamma function

�(α, z) =
∞
∫

z

tα−1 exp(−t)dt. (10.62)

Finally, using (10.52), (10.53), and (10.60),
we can determine the resultant kurtosis ratio through a parametric BSSA as

kurtosis ratio(n)
BSSA = kurt(n)BSSA/kurt(n)in . (10.63)

10.5.2.3 Analysis in the Case of Parametric chBSSA

In this section, we analyze the kurtosis ratio in a parametric chBSSA. First, we
calculate the change in kurtosis after channelwise GSS. Using (10.60) with the shape



10 Statistical Analysis and Evaluation of Blind Speech 313

parameter of input noise αn, we can express the resultant kurtosis after channelwise
GSS as

kurt(n)chGSS = M (αn, β, 4, n)/M 2(αn, β, 2, n). (10.64)

Next, using (10.55) and (10.64), we can derive the change in kurtosis after a para-
metric chBSSA as

kurt(n)chBSSA 	 J−0.7 · (kurt(n)chGSS − 6) + 6. (10.65)

Finally, we can obtain the resultant kurtosis ratio through a parametric chBSSA as

kurtosis ratio(n)
chBSSA = kurt(n)chBSSA/kurt(n)in . (10.66)

10.5.3 Analysis of Amount of Speech Distortion

10.5.3.1 Analysis in the Case of BSSA

In this section, we analyze the amount of speech distortion on the basis of the kur-
tosis ratio in speech components. Hereafter, we define s( f, τ ) and n( f, τ ) as the
observed speech and noise components at each microphone, respectively. Assuming
that speech and noise are disjoint, i.e., there is no overlap in the time–frequency
domain, speech distortion is caused by subtracting the average noise from the pure
speech component.

Thus, the distorted speech after BSSA is given by

|sBSSA( f, τ )| = 2n
√

|s( f, τ )|2n − β|zDS( f, τ )|2n

= 2n
√

|s( f, τ )|2n − βCBSSA|s( f, τ )|2n, (10.67)

where sBSSA( f, τ ) is the output speech component in BSSA. Also, calculating the
nth-order moment of the gamma distribution, CBSSA is given by

CBSSA = |zDS( f, τ )|2n/|s( f, τ )|2n

= J−n|n( f, τ )|2n/|s( f, τ )|2n

= J−n
(

αs

αn

)n
�(lphan + n)/�(αn)

�(αs + n)/�(αs)

(

|n( f, τ )|2
|s( f, τ )|2

)n

, (10.68)

where αs is the shape parameter of the input speech. Equation (10.68) indicates that
the speech distortion increases when the input SNR, |s( f, τ )|2/|n( f, τ )|2, and/or
the number of microphones, J , decreases. Using (10.61) and (10.68) with the input



314 H. Saruwatari and R. Miyazaki

speech shape parameter αs, we can obtain the speech kurtosis ratio through BSSA
as

kurtosis ratio(s)
BSSA

= M (αs, βCBSSA, 4, n)

M 2(αs, βCBSSA, 2, n)

αs(αs + 1)

(αs + 2)(αs + 3)
. (10.69)

10.5.3.2 Analysis in the Case of chBSSA

In chBSSA, since channelwise GSS is performed before DS, CBSSA is therefore
replaced with

CchBSSA = (|n( f, τ )|2n/|s( f, τ )|2n)

=
(

αs

αn

)n
�(αn + n)/�(αn)

�(αs + n)/�(αs)

(

|n( f, τ )|2
|s( f, τ )|2

)n

. (10.70)

Equation (10.70) indicates that the speech distortion increases only when the input
SNR decreases, regardless of the number of microphones. Thus, the distortion does
not change even if we prepare many microphones, unlike the case of a parametric
BSSA. Using (10.61) and (10.70) with αs, we can obtain the speech kurtosis ratio
through chBSSA as

kurtosis ratio(s)
chBSSA

= M (αs, βCchBSSA, 4, n)

M 2(αs, βCchBSSA, 2, n)

αs(αs + 1)

(αs + 2)(αs + 3)
. (10.71)

10.5.4 Comparison of Amounts of Musical Noise and Speech
Distortion Under Same Amount of Noise Reduction

According to the previous analysis, we can compare the amounts of musical noise
and speech distortion among a parametric BSSA and a parametric chBSSA under
the same NRR (output SNR–input SNR in dB). Figure 10.10 shows the theoretical
behaviors of the noise kurtosis ratio and speech kurtosis ratio. In Fig. 10.10a, b, the
shape parameter of input noise, αn, is set to 0.95 and 0.83, corresponding to almost
white Gaussian noise and railway station noise, respectively. Also, in Fig. 10.10c, d,
the shape parameter of input speech, αs, is set to 0.1, and the input SNR is set to 10
and 5dB, respectively. Here, we assume an eight-element array with the interelement
spacing of 2.15cm. The NRR is varied from 11 to 15dB, and the oversubtraction
parameter β is adjusted so that the target speech NRR is achieved. In the parametric
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Fig. 10.10 a and b are theoretical behaviors of noise kurtosis ratio in structure-generalized para-
metric BSSA. a is for white Gaussian noise and b is for railway station noise. c and d are theoretical
behaviors of speech kurtosis ratio in structure-generalized parametric BSSA, where the input SNR
is set to 10 and 5dB, respectively

BSSA and parametric chBSSA, the signal exponent parameter 2n is set to 2.0, 1.0,
and 0.5.

Figure 10.10a, b indicates that the noise kurtosis ratio of chBSSA is smaller than
that of BSSA, i.e., less musical noise is generated in a parametric chBSSA than
in a parametric BSSA, and a smaller amount of musical noise is generated when a
lower exponent parameter is used, regardless of the type of noise andNRR. However,
Fig. 10.10c, d shows that speech distortion is lower in a parametric BSSA than in a
parametric chBSSA, and a small amount of speech distortion is generated when a
higher exponent parameter is used, regardless of the type of noise and NRR. These
results theoretically prove the existence of a tradeoff between the amounts of musical
noise and speech distortion in BSSA and chBSSA.
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10.6 Experiment

10.6.1 Experimental Setup

In this study, we conducted a speech recognition experiment. We used an eight-
element microphone array with an interelement spacing of 2.15cm, and the direction
of the target speech was set to be normal to the array. The size of the experimental
room is 4.2× 3.5× 3.0m3 and the reverberation time is approximately 200ms. All
the signals used in this experiment are sampled at 16 kHz with 16-bit accuracy. The
observed signal consists of the target speech signal of 200 speakers (100 males and
100 females) and two types of diffuse noise (white Gaussian noise and railway station
noise) emitted from eight surrounding loudspeakers. The input SNR of the test data
is set to 3, 5, and 10dB. The FFT size is 1,024, and the frame shift length is 256
in BSSA. The speech recognition task is a 20k-word Japanese newspaper dictation,
where we used Julius 3.4.2 [53] as the speech decoder. The acoustic model is a
phonetic-tied mixture [53], and we use 260 speakers (150 sentences/speaker) to train
the acoustic model. In this experiment, the NRR, i.e., the target SNR improvement, is
set to 10dB for white Gaussian noise and 5dB for railway station noise, the exponent
parameter 2n is set to 1.0 and 0.5, and the oversubtraction parameter β is adjusted
so that the target NRR is achieved.

10.6.2 Evaluation of Speech Recognition Performance and
Discussion

Figure 10.11 shows the results of word accuracy in the parametric BSSA and para-
metric chBSSA, which reveal that better speech recognition performance can be
obtained in a parametric BSSA when the input SNR is low (e.g., 3dB).

This result is of considerable interest because Takahashi et al. [26] reported a
contradictory result, i.e., the sound quality of chBSSA is always superior to that of
BSSA. Indeed,we conducted a subjective evaluation.Wepresented 56pairs of signals
processed by a parametric BSSA and a parametric chBSSA, selected from sentences
used in the speech recognition experiment, in random order to 10 examinees, who
selected which signal they preferred. The result is shown in Fig. 10.12, confirming
that chBSSA is preferred by humans, in contrast to the speech recognition results.
This is partially true regarding noise distortion, i.e., the amount of musical noise
generated, as theoretically shown in Fig. 10.10a, b. Thus, the human evaluation is
strongly affected by noise distortion.

However, as shown in Fig. 10.10c, d, the speech distortion in chBSSA is larger
than that inBSSA; this leads to the degradation of speech recognition performance. In
summary, we should carefully select the structure of signal processing in BSSA, i.e.,
chBSSA is recommended for listening but BSSA is suitable for speech recognition
under a low-input SNR condition.
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Fig. 10.11 Results of word accuracy in parametric BSSA and parametric chBSSA
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Fig. 10.12 Subjective evaluation results: BSSA versus chBSSA

10.7 Conclusions and Remarks

This chapter addressed the BSS problem for speech applications under real acoustic
environments, particularly focusing on BSSA that utilizes ICA as a noise estimator.
Under a nonpoint-source noise condition, it was pointed out that beamformers opti-
mized by ICA are a DS beamformer for extracting the target speech signal that can
be regarded as a point source and NBF for picking up the noise signal. Thus, ICA is
proficient in noise estimation under a nonpoint-source noise condition. Therefore, it
is valid to use ICA as a noise estimator.

Motivated by the above-mentioned fact, we introduced a structure-generalized
parametric BSSA, which consists of an ICA-based noise estimator and GSS-based
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post-filtering. In addition, we performed its theoretical analysis via higher-order
statistics. Comparing a parametric BSSA and parametric chBSSA, we revealed that
a channelwiseBSSAstructure is recommended for listening but a conventionalBSSA
is more suitable for speech recognition.

In this chapter, the SS-based BSSAs, which involve SS-based post-filtering, were
mainly addressed. Recent studies have provided the further extended methods that
include other types of post-filtering, such as Wiener filtering [54, 55], the minimum
mean-square error short-time spectral amplitude (MMSE-STSA) estimator [56, 57],
and the combination method with cepstral smoothing for mitigating musical noise
[58]. Also, the theoretical analysis based on the higher-order statistics for these
methods is available in several literatures [59–63]. In addition, thanks to the same
higher-order statistics analysis, musical-noise-free post-filtering [64], in which no
musical noise is perfectly generated, has been proposed, and successfully introduced
into the channelwise BSSA architecture [65, 66].

BSS implementation on a small hardware still receivesmuch attention in industrial
applications. Due to the limitation of space, however, the authors skip the discussion
on this issue. Instead, several studies [21, 67, 68] have dealtwith the issue of real-time
implementation of ICA and BSSA, which would be helpful for the readers.
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