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Preface

Blind source separation (BSS) methods have received extensive attention over the
past two decades; thanks to its wide applicability in a number of areas such as
biomedical engineering, audio signal processing, and telecommunications. The
problem of source separation is an inductive inference problem, as only limited
information, e.g., the sensor observations, is available to infer the most probable
source estimates. The aim of BSS is to process these observations (acquired by
sensors or sensor arrays) in such a way that the original unknown source signals
are extracted by, e.g., an adaptive system, or separated simultaneously using, e.g.,
a block (or batch)-based algorithm, without knowing or with very limited infor-
mation about the characteristics of the transmission channels through which the
sources propagate to the sensors. Independent component analysis (ICA) is one of
the early and most widely used techniques for BSS by revealing the hidden factors
that underlie the sets of measurements or the observed signals. Recently, a number
of new techniques have been emerging in BSS, such as latent variable analysis,
non-negative matrix/tensor factorization (NMF/NTF), sparse component analysis,
dictionary learning, independent vector analysis, factor analysis, matrix comple-
tion, compressed sensing, empirical mode decomposition, and complex-valued
adaptive methods. At the same time, the applications of BSS continue to grow and
prosper in a number of areas, such as audio, speech, music, image, biomedical,
communication, and financial data analysis and processing.

This book aims to disseminate timely to the scientific community the new
developments in BSS spanning from theoretical frameworks, algorithmic devel-
opments, to a variety of applications. The book covers some emerging techniques
in BSS, especially those developed recently, offering academic researchers and
practitioners a comprehensive update about the new development in this field. The
book provides a forum for researchers to exchange their ideas, and to foster a
better understanding of the state of the art of the subject. We envisage that the
publication of this book will motivate new ideas and more cutting-edge research
activities in this area.

This book is intended for computer science and electronics engineers
(researchers and graduate students) who wish to get novel research ideas and some
training in BSS, ICA, machine learning, artificial intelligence, and signal pro-
cessing applications. Furthermore, the research results previously scattered in
many scientific articles worldwide are methodically collected and presented in the
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book in a unified form. As a result of its twofold character, the book is likely to be
of interest to researchers, engineers, and graduates who wish to learn the core
principles, methods, algorithms, and applications of BSS. Furthermore, the book
may also be of broader interest to researchers working in other areas of science and
engineering, due to the multidisciplinary nature of this book.

The book is organized into two parts. Part I is devoted to recent developments
in theories, algorithms, and extensions of BSS. In this part, we have collected nine
chapters with several novel contributions, namely, the idea of quantum ICA by
Yannick Deville and Alain Deville, the singularity-aware dictionary learning
approach for BSS by Xiaochen Zhao, Guangyu Zhou, Wenwu Wang, and Wei Dai,
the theoretical results on the performance of complex ICA by Benedikt Loesch and
Bin Yang, sub-band based BSS by Bo Peng and Wei Liu, independent vector
analysis for frequency domain BSS by Yanfeng Liang, Syed Mohsen Naqvi,
Wenwu Wang, and Jonathon A. Chambers, sparse component analysis by Yannick
Deville, underdetermined source separation by Nikolaos Mitianoudis, NMF based
source separation by Bin Gao and Wai Lok Woo, and a BSS related topic of source
localisation and tracking by Md Mashud Hyder and Kaushik Mahata. Part II
focuses on the various applications of BSS and its links to other relevant areas,
such as computational auditory scene analysis (CASA). We have gathered 10
chapters in this part. They are respectively, blind speech extraction algorithms by
Hiroshi Saruwatari and Ryoichi Miyazaki, combining superdirective beamforming
and BSS for speech separation by Lin Wang, Heping Ding, and Fuliang Yin, ideal
ratio mask for CASA by Christopher Hummersone, Toby Stokes, and Tim
Brookes, monaural speech enhancement by Masoud Geravanchizadeh and Reza
Ahmadnia, background/foreground separation by Zafar Rafii, Antoine Liutkus,
and Bryan Pardo, NMF-based sparse coding for cochlear implants by Hongmei
Hu, Guoping Li, Mark E. Lutman, and Stefan Bleeck, brain signal analysis using
ICA by Ruben Martin-Clemente, BSS for the analysis of large-scale omic datasets
by Andrew E. Teschendorff, Emilie Renard, and Pierre A. Absil, ICA for complex
domain source separation of communication signals by Ajay K. Kattepur and
Farook Sattar, and semi-blind source separation algorithms from non-invasive
electrophysiology to neuro-imaging by Camillo Porcaro and Franca Tecchio.

We would like to thank the authors for their excellent submissions (chapters) to
this book, and their significant contributions to the review process, which have
helped to ensure the high quality of this publication. Without their contributions, it
would have not been possible for the book to come successfully into existence.

January 2014 Ganesh R. Naik
Wenwu Wang
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Chapter 1
Quantum-Source Independent Component
Analysis and Related Statistical Blind Qubit
Uncoupling Methods

Yannick Deville and Alain Deville

Abstract Quantum Information Processing (QIP) is an emerging field which yields
new capabilities beyond classical, i.e., non-quantum, information processing. QIP
methods manipulate quantum bit (qubit) states instead of classical bit values. Unde-
sired coupling between these individual quantum states is expected, in the same way
as classical systems involve undesired signal coupling. Methods for recovering indi-
vidual quantum states from their coupled version are therefore required. To solve this
problem, we recently introduced the field of Quantum Source Separation (QSS). We
showed how to convert qubit states with cylindrical-symmetry Heisenberg coupling
into classical-form data, mixed according to a specific nonlinear model, which was
not previously studied in the literature. We therefore started to develop methods for
unmixing such data. While we restricted ourselves to nonblind QSS methods and a
basic blind approach in those previous works, we here proceed much further for the
more difficult, i.e., blind, case: we introduce the concept of Quantum-Source Inde-
pendent Component Analysis (QSICA), and we develop related QSS methods using
various statistical signal processing tools, namely mutual information, likelihood
and moments. The performance of the proposed approaches is validated by means
of numerical tests. This especially shows the attractiveness of our method focused
on second-order moments.

Y. Deville (B)

UPS-CNRS-OMP, IRAP (Institut de Recherche en Astrophysique et Planétologie),
Université de Toulouse, 14 avenue Edouard Belin, 31400 Toulouse, France
e-mail: yannick.deville@irap.omp.eu
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IM2NP, Aix-Marseille Univ, Campus Scientifique Saint-Jérôme, 13997 Marseille, France
e-mail: alain.deville@univ-amu.fr

G. R. Naik and W. Wang (eds.), Blind Source Separation, 3
Signals and Communication Technology, DOI: 10.1007/978-3-642-55016-4_1,
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1.1 Introduction

Source Separation (SS), also called Signal Separation, is a generic Information
Processing (IP) problem. It consists in recovering a set of unknown source “signals”
(time series, images...) from a set of observations (i.e. measured signals), which are
mixtures of these source signals. In particular, the Blind Source Separation (BSS)
configuration corresponds to the case when the parameter values of the considered
mixing model are unknown. On the contrary, in the nonblind case, these values are
either known a priori or first estimated from known observations and known source
signals [18, 21]. The field of BSS emerged in the 1980s and then quickly expanded,
as e.g., detailed in the books [11, 18, 33]. Until recently, all these investigations were
performed in a “classical”, i.e., nonquantum, framework.

Independently from (B)SS, another field within the overall IP domain rapidly
developed during the last decades, namely Quantum Information Processing (QIP)
[3, 23, 38, 47, 53]. QIP is closely related to Quantum Physics (QP). It uses abstract
representations of systems whose behavior is requested to obey the laws of QP. This
already made it possible to develop new and powerful IP methods, to be contrasted
with classical methods such as the above-mentioned (B)SS approaches. These new
methods manipulate the states of so-called quantum bits, or qubits. Their effective
implementation then requires one to develop corresponding practical quantum sys-
tems, which is only an emerging topic today [38]: in the introductory paper [53], the
author “venture[s] to say that the creation of a practical quantum computer may be
possible within the next few decades”.

We recently bridged the gap between classical (B)SS and QIP/QP, by introducing
a new field, namely Quantum Source (or Signal) Separation (QSS), first proposed
in our paper [17] and then especially detailed in [21]. The QSS problem consists in
restoring the information contained in individual quantum source signals, i.e., source
qubit states, only starting from the mixtures (in SS terms [21]) of these source qubit
states which result from their undesired coupling. This gives rise to three possible
approaches:

1. In the classical-processing approach to QSS [17, 21], one first converts the mixed
quantum data into classical-form data (whose properties still reflect their quan-
tum origin) by means of measurements, and then processes the measured data
with classical (i.e, again, nonquantum) methods. We showed that original sep-
aration methods must be developed in this case, because the specific nonlinear
mixing model which results from the considered type of qubit coupling was not
previously addressed in the classical (B)SS literature. Without having to wait for
the development of practical quantum circuits, this classical-processing version
of our approach already applies to possible experiments requiring methods for
retrieving information about individual quantum states from measurements per-
formed after undesired coupling between these states, e.g., when dealing with
quantum phenomena involving electron or nuclear spins 1/2.

2. Quantum-processing QSS methods [21] keep the quantum form of the avail-
able mixed data and process them by means of quantum circuits in order to
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retrieve the quantum sources.1 A potential application of this version of our QSS
methods concerns the core of future quantum computers, where both the data
to be processed and the processing means will have a quantum form. Quantum-
processing QSS may then be used as a preprocessing stage, to remove undesired
alterations (e.g., due to Heisenberg coupling between physical qubits, as in this
chapter) of the data to be provided to the input of the main processing stage,
which then applies the final quantum algorithm to these preprocessed data. This
two-stage system architecture is already used in the classical context, where BSS
is applied as a preprocessing stage to extract some or all source signals in various
application fields, for instance:

a. In some audio systems, the final aim is the automatic recognition of speech by a
processing unit, e.g., in order to then control actuators (for instance, a car driver
can thus control various car functions by speech). However, when a speech
signal is recorded by a set of microphones situated in a noisy environment,
each recorded signal is a mixture of speech and of various noise signals.
Providing these plain recordings to an automatic speech recognition (ASR)
system yields degraded recognition performance. A solution to this problem
consists in preprocessing these recordings by means of a BSS system, so as
to extract the speech signal, and then providing the denoised speech output of
this BSS system to the ASR system (see e.g. [25]).

b. Similarly, when using radio-frequency signals to transmit digital data, recep-
tion antennas may simultaneously receive several mixed data streams. BSS
is then applied to first unmix these signals. Each extracted signal may then
be separately used as required in the considered application. For instance, in
the radio-frequency identification (RFID) system described in [16], the main
processing stage then consists in decoding each data stream, so as to identify
the person or object that emitted these data and to accordingly control the actu-
ators of the considered application, e.g., to allow or not the RFID-tag bearer
to access a restricted area.

c. Finally, in the biomedical field, a wide range of signals such as electrocar-
diograms (ECGs) or electroencephalograms (EEGs) are processed by human
experts or computers in order to analyze various health disorders. This “main

1 In the field of (B)SS, the term “source” sometimes refers to a physical object which provides
(e.g., emits) a signal, but it is more often used as an abbreviation for “source signal”, since (B)SS
is more concerned with the processing of these signals than with the objects which provide them.
This appears in the name of SS itself: performing “SS” of course does not mean that one physically
extracts source objects one from another or from their overall set, but that one extracts the signals
associated with such objects (by using the measured mixtures of these signals): to be precise, the
field of SS is not “SS” but “source signal separation”. For the sake of simplicity, we also often
use the term “source” as an abbreviation for “source signal” in the field of QSS. For instance, in
the sentence containing this footnote, “retriev[ing] the quantum sources” means “retrieving the
quantum source signals”, i.e. “retrieving the signals associated with quantum sources”, where these
quantum sources (i.e., these objects) consist of physical implementations of qubits. Similarly, the
“source vector” considered further in this chapter is the vector composed of the values of source
signals.
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task” is often difficult because each signal in the recorded set is a mixture
of various contributions, and the information of interest thus cannot be eas-
ily extracted from any such mixed signal. Again, a solution to this problem
consists in preprocessing the original recordings by means of BSS methods,
so as to extract each signal component of interest separately on each output
of this BSS system. For instance, this approach has been used in [14] to pre-
process multichannel ECG recordings which are mixtures of large-magnitude
mother’s heartbeats, low-magnitude fetus’s heartbeats, and noise components.
This made it possible to extract fetus’s heartbeats, which are hardly visible in
the original recordings.

3. Hybrid QSS methods [22] combine the above two approaches, by first partly
processing the quantum mixtures with quantum circuits, then converting the
resulting (simpler) quantum data into classical-form ones by means of measure-
ments, and eventually processing the measured data with classical methods.

In this chapter, we only consider the first approach to QSS, based on classical-
processing methods, which are the only easily implementable ones nowadays, due to
the above-mentioned current state of quantum system development. As in the classi-
cal SS framework, these QSS methods give rise to two configurations, the nonblind
and blind ones. The simpler configuration, i.e., the nonblind one, was addressed in
our journal paper [21] and is not considered hereafter. In [21], we also briefly studied
the more complex configuration, i.e., the blind one, which requires one to estimate
the value(s) of the mixing model parameter(s). However, we only described a basic
classical-processing method for performing this estimation. That method is based on
the first-order moment of a measured signal and has the drawback of requiring some
marginal source statistics to be known. Therefore, we here develop and compare var-
ious much more powerful methods for solving the considered Blind Quantum Source
Separation (BQSS) problem, which involves an original nonlinear mixing model.

In the classical framework, several classes of methods have been proposed for solv-
ing the BSS problem for a given mixing model (the linear instantaneous model was
mainly considered). The most popular of them is based on statistical signal process-
ing and consists of Independent Component Analysis (ICA) and related methods (see
especially [10, 11, 18, 33]). In a similar way, we here develop a class of methods
which cover various statistical processing tools for solving the considered BQSS
problem. As a first type of solutions, we introduce what we will call “ Quantum-
Source Independent Component Analysis (QSICA) methods”, since they have the
following two features. First, they are intended for data which initially have a quan-
tum form (these data are here converted into classical-form data and then processed
by classical means). Second, they are based on the application of the ICA princi-
ple to BSS in its strictest sense, i.e., they assume the source signals to be mutually
statistically independent and they restore them by forcing the output signals of the
separating system to become mutually statistically independent. Still considering
the same data, we then develop other BQSS methods which are directly related to
QSICA, i.e., which again assume the sources to be statistically independent but which
use this property in other ways.



1 Quantum-Source Independent Component Analysis 7

More precisely, the remainder of this chapter is organized as follows. As stated
above, the fundamental concept used in QIP and QSS is the qubit. Therefore, we first
define this concept in Sect. 1.2. Then, in Sect. 1.3, we summarize the mixing model
that we developed in [21] for the data derived from two coupled qubits by means
of quantum-to-classical conversion. The next sections are dedicated to this original
nonlinear mixing model for classical-form data. We first present a separating system
suited to this model in Sect. 1.4. In the subsequent sections, we propose various
methods for estimating the unknown parameter of this system. The first methods,
fully based on QSICA and involving mutual information, are presented in Sect. 1.5.
Then, Sect. 1.6 describes an alternative approach based on the maximum likelihood
principle and shows its close relationship with the methods of Sect. 1.5. Both the
above types of methods exploit the whole statistics of the considered signals. Simpler
BQSS methods focused on some moments or cumulants of these signals may also be
derived, as was previously done in classical BSS. Several such methods are studied
in Sect. 1.7 , where we put the emphasis on methods based on first-order or second-
order statistics of specific signals. The numerical performance of the main methods
described in this chapter is reported in Sect. 1.8 and conclusions are drawn from all
this investigation in Sect. 1.9.

One should once and for all note that, whereas we are here concerned with con-
figurations where one aims at extracting information about quantum states after
undesired coupling (following Heisenberg’s model), on the contrary a two-qubit
gate using liquid NMR takes advantage [52] of the scalar coupling. Besides, as
detailed in [21], QSS, and especially BQSS, are quite different from quantum state
tomography and quantum process tomography [38], which were e.g. used in [55]
for two-qubit systems. These two types of tomographic techniques cannot achieve
BQSS [21].

1.2 Definition of a Single Qubit

As stated above, qubits are used instead of classical bits for performing computations
in the field of QIP [38]. Whereas a classical bit can only take two values, usually
denoted 0 and 1, a qubit with index i has a quantum state expressed, for a pure state, as

|ψi 〉 = αi |+〉 + βi |−〉 (1.1)

in the basis defined by the two orthonormal vectors that we hereafter2 denote |+〉
and |−〉, where αi and βi are two complex-valued coefficients constrained to meet
the condition

|αi |2 + |βi |2 = 1 (1.2)

2 These vectors |+〉 and |−〉 are often respectively denoted as |0〉 and |1〉 (see e.g., [38]). We had to
use the notations |+〉 and |−〉 in [21], to avoid confusion, and we keep them here.
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which expresses that the state |ψi 〉 is normalized. From a QP point of view, this
abstract mathematical model especially concerns electron or nuclear spins 1/2, which
are quantum (i.e., non-classical) objects. The component of such a spin, with index
i , along a given arbitrary axis Oz defines a two-dimensional linear operator siz . The
two eigenvalues of this operator are equal to + 1

2 and − 1
2 in normalized units, and the

corresponding eigenvectors are therefore denoted |+〉 and |−〉. The value obtained
when measuring this spin component can only be + 1

2 or − 1
2 . Moreover, let us assume

this spin is in the state |ψi 〉 defined by (1.1) when performing such a measurement.
Then, the probability that the measured value is equal to + 1

2 (respectively − 1
2 ) is

equal to |αi |2 (respectively |βi |2), i.e., to the squared modulus of the coefficient in
(1.1) of the associated eigenvector |+〉 (respectively |−〉).

The above discussion concerns the state of the considered spin at a given time.
In addition, this state evolves with time. The spin is here supposed to be placed in a
static magnetic field and thus coupled to it. The time interval when it is considered is
assumed to be short enough for the coupling between the spin and its environment to
be negligible. In these conditions, the spin has a Hamiltonian. Therefore, if the spin
state |ψi (t0)〉 at time t0 is defined by (1.1), it then evolves according to Schrödinger’s
equation and its value at any time t is

|ψi (t)〉 = αi e
−iωp(t−t0)|+〉 + βi e

−iωm (t−t0)|−〉 (1.3)

where the imaginary unit i, present, e.g., in e−iωp(t−t0), should not be confused
with the qubit index i , and the real (angular) frequencies ωp and ωm depend on the
considered physical setup.

1.3 Coupling/Mixing Model for Two Qubits

The above description directly applies to several qubits if they are not “coupled”,
i.e., if they do not interact with one another. One may however expect that undesired
coupling between individual quantum states will have to be considered in the QIP/QP
area, in the same way as signal coupling often is undesired in current classical
signal processing systems. Coupling in quantum physical setups, e.g., occurs when
two electron spins interact through exchange. In [21], we considered a two-qubit
system composed of two distinguishable spins coupled according to the version of the
Heisenberg model which has a cylindrical-symmetry axis, denoted Oz and collinear
to the applied magnetic field. We analyzed in detail the global state resulting from
that coupling and the associated measured values. Here again, the measured value of
the component of each spin along axis Oz can only be + 1

2 or − 1
2 . Therefore, when

measuring the components of both spins, the obtained couple of values is equal to
one of the four possible values (+ 1

2 ,+ 1
2 ), (+ 1

2 ,− 1
2 ), (− 1

2 ,+ 1
2 ) and (− 1

2 ,− 1
2 ). The

probabilities of these four values are respectively denoted p1, p2, p3 and p4 hereafter.
These probabilities are related as follows to the state of the overall system composed
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of these two spins. This state may be expressed as a linear combination of the vectors
of the four-dimensional basis {| + +〉, | + −〉, | − +〉, | − −〉} which corresponds to
the operators s1z and s2z respectively associated with the components of spin 1 and
spin 2 along the symmetry axis Oz. As in Sect. 1.2, each of the probabilities p1 to
p4 is here equal to the squared modulus of the coefficient of the corresponding basis
vector in the expression of the overall system state. In [21], we provided a detailed
derivation of the expressions of these probabilities in the following configuration.
The two spins are separately initialized (i.e., prepared) at time t0, with states defined
by (1.1) where i = 1 for spin 1 and i = 2 for spin 2. The overall system state
then evolves with time and the spin states thus get “mixed” (in the SS sense) with
one another as follows. The time evolution of the overall system state is defined by
phase rotations, as in (1.3), and this here involves four frequencies. These frequencies
depend on Heisenberg coupling, which is especially characterized by the so-called
principal value Jxy of the exchange tensor (see [21] for more details). We derived
the expressions of the above probabilities p1 to p4 at an arbitrary time t > t0, with
respect to the polar representation of the qubit parameters αi and βi , which reads

αi = ri e
iθi βi = qi e

iφi i ∈ {1, 2} (1.4)

with 0 ≤ ri ≤ 1 and

qi =
√

1 − r2
i (1.5)

due to (1.2). The above probabilities may then be expressed as follows:

p1 = r2
1 r2

2 (1.6)

p2 = r2
1 (1 − r2

2 )(1 − v2) + (1 − r2
1 )r2

2 v2 − 2r1r2

√
1 − r2

1

√
1 − r2

2

√
1 − v2v sin ϕI

(1.7)

p4 = (1 − r2
1 )(1 − r2

2 ) (1.8)

with

ϕI = (φ2 − φ1) − (θ2 − θ1) (1.9)

ϕE = − Jxy(t − t0)

�
(1.10)

v = sgn(cos ϕE ) sin ϕE (1.11)

where � is the reduced Planck constant. Probability p3 is not considered, since always

p1 + p2 + p3 + p4 = 1. (1.12)

Equations (1.6)–(1.8) yield a QSS problem because, using the SS terminology,
they show that some “observations” are “mixtures” of the quantities which define
quantum “sources”. This “mixing model” (1.6)–(1.8) involves the following items.



10 Y. Deville and A. Deville

The observations are the probabilities p1, p2 and p4 measured for each choice of the
initial states (1.1) of the qubits. More precisely, these probabilities are not known
exactly but estimated in practice. The procedure that we developed to this end in
[21] operates as follows for each choice of the initial states (1.1) of the qubits.
We repeatedly perform two operations: (i) we first initialize these qubits according
to (1.1) and (ii) after a fixed time interval when coupling occurs, we measure the
two spin components along Oz associated with the system composed of these two
coupled qubits. The relative frequencies of occurence of all four possible couples
of values of spin components (i.e. (+ 1

2 ,+ 1
2 ) to (− 1

2 ,− 1
2 )) then yield estimates of

the corresponding probabilities. At this stage, we ignore the resulting estimation
errors and therefore consider the exact mixing model (1.6)–(1.8). Using standard SS
notations, the observation vector is therefore x = [x1, x2, x3]T, where T stands for
transpose and3

x1 = p1, x2 = p2, x3 = p4. (1.13)

Equations (1.6)–(1.8) show that the source vector to be retrieved from these obser-
vations turns out to be s = [s1, s2, s3]T with s1 = r1, s2 = r2 and s3 = ϕI . The
parameters qi are then derived from (1.5). The four phase parameters in (1.4) can-
not be individually extracted from their combination ϕI (only two phases have a
physical meaning [22]). To avoid ambiguities, one may therefore fix three of the
phase parameters θ1, φ1, θ2, and φ2 (e.g., to 0) and only use the fourth parameter to
store information. The transform from the sources to the observations defined by the
nonlinear mixing model (1.6)–(1.8) involves a single “mixing parameter”, namely
v. As shown by (1.11), this parameter always meets the condition 0 ≤ v2 ≤ 1. In
most configurations, the values of the coupling parameter Jxy and therefore of v (see
(1.10)–(1.11)) are unknown (the sign of Jxy is however known). This corresponds to
the blind version of this QSS problem. In this configuration, retrieving the sources
first requires one to estimate the unknown mixing parameter v, which is the main
topic of this chapter.

1.4 Separating System

In [21], we showed that the mixing model (1.6)–(1.8) is invertible (with respect to the
considered domain of source values), for any fixed v such that 0 < v2 < 1, provided
the source values meet the following conditions:

3 It should be noted that the observed signals involved in this QSS problem have a specific nature, as
compared to standard nonquantum BSS problems. In the latter problems, each value of an observed
signal is usually the value of a measured physical quantity, such as the value of a voltage measured at
a given time. On the contrary, as shown by (1.13), each value of an observed signal is here the value
of a probability (which is estimated in practice). The overall signal composed of all successive values
of a given observation (e.g., all values of x1) therefore consists of a set of values of probabilities
(e.g., all values of p1), which depend on the values of the states used for initializing the qubits.
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0 < r1 < 1
2 < r2 < 1 (1.14)

−π
2 ≤ ϕI ≤ π

2 . (1.15)

In these conditions, we now have to define a separating system, which aims at
deriving an output vector y = [y1, y2, y3]T by combining the observations so that
this output vector is equal to (an estimate of) the source vector s = [s1, s2, s3]T

corresponding to these observations. This separating system therefore ideally aims
at achieving the inverse of the mixing function (1.6)–(1.8). However, it uses a tunable
parameter v instead of the actual value of the parameter v of the mixing model, since
this value of v is unknown in the considered blind configuration. The idea is then
to constrain the function achieved by the separating system to belong to a given
class of functions which depend on the parameter v, and to create BQSS methods
for setting v to an estimate of v since, (only) for this value of v, the output vector y
becomes equal to the source vector s which yields the considered observed vector.
The class of functions used for the separating system is derived as follows. One first
determines the inverse of the mixing function, i.e., the inverse image s = [s1, s2, s3]T

of a given observation vector x = [x1, x2, x3]T, by solving (1.6)–(1.8). The resulting
expression of s is provided in [21]. In this vector s = [s1, s2, s3]T, one then replaces
v by v, and s1, s2, s3 respectively by y1, y2, y3. The resulting expression defines the
output vector y = [y1, y2, y3]T of the separating system. Using the above-mentioned
expression of s from [21], the elements of y read

y1 =
√

1

2

[
(1 + p1 − p4) −

√
(1 + p1 − p4)2 − 4p1

]
(1.16)

y2 =
√

1

2

[
(1 + p1 − p4) +

√
(1 + p1 − p4)2 − 4p1

]
(1.17)

y3 = Arcsin

⎡
⎣ y2

1 (1 − y2
2 )(1 − v2) + (1 − y2

1 )y2
2 v2 − p2

2y1 y2

√
1 − y2

1

√
1 − y2

2

√
1 − v2v

⎤
⎦ (1.18)

So, to summarize:

• Equations (1.16)–(1.18) define the intput/output relationship of our separating
system, from the observations to the estimated sources.

• v is the tunable parameter of this separating system and should be set to an estimate
of v. The next sections of this chapter describe the BQSS methods that we propose
to this end.

• When v = v, the outputs y1, y2 and y3 respectively restore the sources s1 =
r1, s2 = r2 and s3 = ϕI .
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1.5 QSICA Methods Based on Mutual Information

1.5.1 Proposed Approach

In the classical framework, ICA has been considered in two ways. It has first been used
as a transform applied to given observations xi (t) (without referring to any sources),
in order to obtain output signals yi (t) which are mutually statistically independent
(or, at least, as independent as possible). Most often, this multidimensional transform
has the following properties: (i) it is memoryless, i.e., its output at a given time t only
depends on its input at the same time, and (ii) it is restricted to linear combinations
of the observations.

The second situation is found when, in addition, the observations xi are known
to be a transformed version of a set of random source signals si . This “mixing trans-
form” is often constrained to belong to a given functional class and to have unknown
parameter values, while the source signals are unknown but constrained to be mutu-
ally statistically independent. ICA then again consists of a (separating) transform
applied to the observations xi , in order to obtain output signals yi which are sta-
tistically independent. The functional form selected for the separating transform is
matched to the mixing functional form, i.e., it is chosen so that, for certain values of
the parameters of the separating transform (which depend on the parameter values
of the mixing transform), the outputs yi of the separating transform are equal to the
source signals si , up to some acceptable residual transforms (permutation, scaling
factors, ...). The latter transforms are the so-called “indeterminacies” of the consid-
ered “global model.” This global model goes from the sources si to the outputs yi ,
i.e. it combines the studied mixing and separating transforms.

A given global model is then said to be “ICA separable” [20] (for given marginal
source statistics) if by using the above ICA principle, i.e., by considering mutually
statistically independent sources and by adapting the separating transform only so
that its outputs become independent, it is guaranteed that these outputs become equal
to the sources, up to the above indeterminacies. If the considered model is ICA sep-
arable, then ICA can be used as one of the possible tools for performing BSS. On
the contrary, applying ICA to a model which is not ICA separable may yield out-
puts which are still source mixtures, which is not acceptable for BSS. In the classical
framework, many investigations have been devoted to linear instantaneous (i.e. mem-
oryless) mixing and separating models, and it has been shown that this configuration
is ICA separable for almost all marginal source statistics [10]. Nonlinear mixtures
have been addressed in much less detail, because analyzing their ICA separability
and developing associated ICA methods is then a much tougher problem. It has been
shown that, if no constraints are imposed upon the nature of the mixing model, it
yields an ICA-nonseparable configuration [11, 49].

In this section, we extend the above approach to the considered initially quantum
data, which yield the above-defined mixing and separating models. We eventually aim
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at developing corresponding QSICA methods for performing BQSS. To guarantee
the complete relevance of these methods, we first address the ICA separability of the
considered nonlinear global model.

1.5.2 ICA Separability of Studied Global Model

The global model studied in this chapter is called “the Heisenberg global model”
hereafter. It is obtained by combining the mixing model (1.6)–(1.8) and the separating
model (1.16)–(1.18). Some calculations show that this yields

y1 = s1 (1.19)

y2 = s2 (1.20)

y3 = Arcsin

⎡
⎣ (v2 − v2)(s2

2 − s2
1 )

2s1s2

√
1 − s2

1

√
1 − s2

2

√
1 − v2v

+
√

1 − v2v√
1 − v2v

sin s3

⎤
⎦ , (1.21)

again when ignoring the deviations which are due to the fact that p1, p2 and p4 are
estimated in practice.

In this global model, all output signals are therefore “reference signals”, i.e.,
unmixed signals, except for one of them, y3, which is a specific nonlinear function
of all source signals, for a given arbitrary value of the separating parameter v. This
BQSS problem may therefore be considered as a specific nonlinear extension of the
(linear) adaptive noise cancelation (ANC) problem, which was especially studied by
Widrow et al. and e.g., reported in [56].4

In [20], we proved that a wide class of global nonlinear models involving refer-
ence signals are ICA separable. More precisely, we investigated memoryless mix-
ing and separating models. We considered the random variables (RVs) defined by
all continuous-valued signals at a single time, and we analyzed the case when the
source RVs have given marginal statistics and are mutually statistically independent.
We showed that, under mild conditions, if the output RVs of the separating system
are mutually statistically independent, then they are equal to the source RVs , up to
some acceptable indeterminacies which depend on the considered model.5

Beyond separability of the above-mentioned wide class of global nonlinear
models, we also briefly considered the (memoryless) Heisenberg global model
(1.19)–(1.21) in [20], as a spin-off of our general investigation. We showed that this
specific model is ICA separable. Whereas our considerations about this Heisenberg

4 Our configuration is also an extension of ANC in the sense that (i) it involves signals which
initially have a quantum form and (ii) reference signals are not directly available as observations
here, but only after the adequate fixed processing (1.16)–(1.17) of some observations, which yields
the signals defined by (1.19)–(1.20). A reference-based model is thus obtained for the global model,
not directly for the mixing model, unlike in ANC.
5 For example only one sign indeterminacy for the Heisenberg global model, as detailed hereafter.
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global model were limited to a proof of ICA separability in [20], we here aim at
proceeding much further in the investigation of this BQSS problem, by deriving
practical qubit separation methods based on this separability property. This is the
topic of the remainder of this section.

1.5.3 Separation Criterion

Based upon the above results, we here investigate the case when all source signals
of our BQSS problem are stochastic, mutually statistically independent and each
of them is continuous valued and identically distributed (i.d). The observations and
separating system outputs are then also stochastic, continuous-valued and i.d. We
consider the RVs defined by all these signals at a single time, and we denote Yi the
RVs thus associated with the outputs of the separating system.

The above-defined ICA separability of the Heisenberg global model is a very
attractive property, because it directly yields a means for adapting the parameter v
of the separating system: this separability property ensures that, by adapting v so
that the output RVs Yi become statistically independent, it is guaranteed that they
become equal to the source RVs (up to the indeterminacies of the Heisenberg global
model). To derive a practical QSICA method from this property, we need a quantity
which measures the degree of dependence of the output RVs. A well-known quantity
which meets this condition is the mutual information (MI) of these RVs [12, 18, 46]:
their MI is zero when they are independent and positive otherwise. The output MI of
a separating system has already been used to derive nonquantum BSS methods for
linear instantaneous [10, 30, 39, 41, 42], and convolutive [42] mixtures. It has then
been applied to some nonlinear mixing and/or separating models: see, e.g., [1, 19,
24, 36, 48] (see also the general analysis in [49]). However, ICA separability was
not proved for most of those nonlinear models, unlike in our present investigation.

So, a separation criterion for the Heisenberg global model consists in adapting v
so as to minimize (and thus cancel) a function, therefore called “the cost function”,
defined as the MI of the output RVs of our separating system, and denoted I (Y ),
where Y = [Y1, Y2, Y3]T . The above ICA separability property means that I (Y ) has
no spurious global minimum points, i.e., that it reaches its global minimum value
only when SS is achieved , up to the indeterminacies of this specific model. These
indeterminacies are defined as follows. Equations (1.19)–(1.20) show that the first two
output signals are always equal to the corresponding source signals. They therefore
yield no indeterminacies at all. The indeterminacies for y3 are then derived from the
general analysis provided in [20]. The “interference term” of that investigation is here
the first term in the argument of the Arcsin(.) function in (1.21). The general analysis
provided in [20] proves that, when the output RVs are independent, this term remains
constant when the “interfering sources” (here s1 and s2) vary, Eq. (1.21) shows that
this here entails

v2 = v2. (1.22)
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This yields two possible situations. If no prior knowledge about v is available, a
QSICA method may provide either v = v or v = −v (up to estimation errors in
practice). Due to (1.21) and (1.15), these two values of v respectively yield y3 =
s3 and y3 = −s3. The third output of our separating system thus yields a sign
indeterminacy (which may be avoided e.g., by further restricting s3 to positive values).
One may also face the situation when the sign of v is known, as detailed in [21] (briefly,
since the sign of Jxy is known, (1.10)–(1.11) show that when |ϕE | ≤ π

2 the sign of
v is known). In that situation, when a QSICA method yields one of the two values
v = ±v, one may then select its sign so as to have v = v. Using the latter value in
the separating system, one then gets y3 = s3, without any indeterminacy.

The cost function thus obtained may be expressed as

I (Y ) =
(

3∑

i=1

h(Yi )

)
− h(Y ). (1.23)

In this expression, each term h(Yi ) is the differential entropy of the RV Yi , which
may be expressed as

h(Yi ) = −E{ln fYi (Yi )} (1.24)

where fYi (.) is the probability density function (pdf) of Yi and E{.} stands for expec-
tation. Similarly, h(Y ) is the joint differential entropy of all RVs Yi , which reads

h(Y ) = −E{ln fY (Y )} (1.25)

where fY (.) is the joint pdf of all RVs Yi .
Moreover, we here use the following general property. Let us consider an arbitrary

N -dimensional random vector X , to which an arbitrary invertible transform φ is
applied. We thus get the N -dimensional random vector Y defined as

Y = φ(X). (1.26)

This transform has the following effect on joint differential entropy [18]:

h(Y ) = h(X) + E{ln |Jφ(X)|} (1.27)

where Jφ(x) is the Jacobian of the transform y = φ(x), i.e., the determinant of
the Jacobian matrix of φ. Each element with indices (i, j) of this matrix is equal to
∂φi (x)
∂x j

,where φi= yi is the i th component of the vector function φ and x j is its j th
argument.

This property here applies to the output joint differential entropy defined in (1.25),
and the transform φ here consists of the separating model defined by (1.13) and
(1.16)–(1.18). Equations (1.16) and (1.17) show that y1 and y2 do not depend on x2.
Therefore, Jφ(x) here reduces to

Jφ(x) = J1 J2 (1.28)
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where

J1 = ∂y3

∂x2
(1.29)

= − sgn(v)
{

4y2
1 y2

2 (1 − y2
1 )(1 − y2

2 )(1 − v2)v2

−[y2
1 (1 − y2

2 )(1 − v2) + (1 − y2
1 )y2

2 v2 − x2]2
}− 1

2
(1.30)

J2 = ∂y1

∂x3

∂y2

∂x1
− ∂y1

∂x1

∂y2

∂x3
(1.31)

= 1

4y1 y2

√
(1 + x1 − x3)2 − 4x1

. (1.32)

Combining (1.23) and (1.27), the considered cost function becomes

I (Y ) =
(

3∑

i=1

h(Yi )

)
− h(X) − E{ln |Jφ(X)|}. (1.33)

Its term h(X) does not depend on the separating system parameter v to be opti-
mized, but only on the fixed available observations. Besides, (1.16) and (1.17) show
that the outputs y1 and y2, and therefore the differential entropies h(Y1) and h(Y2)

also do not depend on v. Therefore, minimizing I (Y ) with respect to v is equivalent
to minimizing the following cost function:

C2(Y ) = h(Y3) − E{ln |Jφ(X)|}. (1.34)

So, the separation criterion used in the proposed MI-based QSICA methods con-
sists in looking for a value vM I of v which yields the global minimum value of the
cost function I (Y ) defined by (1.33), i.e.

vM I = arg min
v

(I (Y )), (1.35)

or, equivalently, in looking for the minimum of C2(Y ). Once this criterion has been
fixed, various practical versions of this type of methods may be derived, depending
on which algorithm is used to optimize these cost functions. We now describe several
such optimization algorithms.

1.5.4 Gradient-Based Separation Algorithms

Various standard optimization algorithms, such as steepest descent/ascent (also called
gradient descent/ascent) or Newton’s method, make use of the gradient of the consid-



1 Quantum-Source Independent Component Analysis 17

ered cost function, with respect to the set of parameters to be optimized. Therefore,
we first determine the expression of the gradient of our cost functions, which here
reduces to their derivative with respect to the single adaptive parameter v. Based
on the above comments about the independence of some differential entropies with
respect to v, Eqs. (1.33) and (1.34) first yield

dI (Y )

dv
= dC2(Y )

dv
(1.36)

= dh(Y3)

dv
− dE{ln |Jφ(X)|}

dv
. (1.37)

We then determine the two derivatives involved in (1.37).

1.5.4.1 Gradient of Differential Entropy

We here aim at determining the gradient of differential entropy, i.e., dh(Y3)
dv , which

appears in (1.37). To this end, we apply a property which holds for a general non-
linear separating system. This property is established in [48], and a related proof
using some more accurate notations is also provided in Sect. 14.10 of [18] for linear
instantaneous mixtures. The general framework that we first consider involves a sto-
chastic, continuous-valued, i.d. output signal yi (t) of a separating system, defined at
time t as

yi (t) = wi (x(t)) (1.38)

where x(t) is a stochastic, continuous-valued, i.d. vector of observed values at time
t and wi (.) is an arbitrary, memoryless, differentiable, possibly nonlinear function,
which depends on a set of adaptive parameters of the considered separating system.
Each of these parameters is denoted as c j hereafter.6 The RV Yi defined by this
output at any given time t may be expressed with respect to the random vector X ,
composed of the RVs X j defined by the observations at that time, according to

Yi = wi (X). (1.39)

Considering the differential entropy h(Yi ), it may be shown that its derivative with
respect to a parameter c j reads

dh(Yi )

dc j
= E

{
ψYi

(wi (X))
dwi (X)

dc j

}
(1.40)

= E

{
ψYi

(Yi )
dYi

dc j

}
(1.41)

6 The index i of these coefficients associated with wi (.) is omitted for readability, i.e., j is used as
the overall single index of all coefficients of wi (.).
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where ψYi
(.) is the score function of Yi defined as

ψYi
(u) = ∂[− ln fYi (u)]

∂u
. (1.42)

We now apply the general result (1.41) to the term dh(Y3)
dv of (1.37), i.e., to c j = v

and to the function w3(x) = y3 which is defined by (1.13) and (1.18). Equation (1.41)
shows that we still just have to calculate the corresponding derivative dw3(x)

dc j
= dy3

dv .
This yields

dy3

dv
=
{

4y2
1 y2

2 (1 − y2
1 )(1 − y2

2 )(1 − v2)v2

− [y2
1 (1 − y2

2 )(1 − v2) + (1 − y2
1 )y2

2 v2 − x2]2
}− 1

2

×
{

2(y2
2 − y2

1 )(1 − v2)v2 − [y2
1 (1 − y2

2 )(1 − v2) + (1 − y2
1 )y2

2 v2 − x2](1 − 2v2)
}

× [(1 − v2)|v|]−1. (1.43)

1.5.4.2 Gradient Associated with Jacobian

Using (1.28)–(1.32) and the resulting property that J2 does not depend on v, some
calculations yield

d ln |Jφ(x)|
dv

= 1

|J1|
d|J1|

dv
(1.44)

= −2v
{

4y2
1 y2

2 (1 − y2
1 )(1 − y2

2 )(1 − v2)v2

−[y2
1 (1 − y2

2 )(1 − v2) + (1 − y2
1 )y2

2 v2 − x2]2
}−1

×
{

2y2
1 y2

2 (1 − y2
1 )(1 − y2

2 )(1 − 2v2)

−[y2
1 (1 − y2

2 )(1 − v2) + (1 − y2
1 )y2

2 v2 − x2](y2
2 − y2

1 )
}

(1.45)

for v ⊗= 0.

1.5.4.3 Overall Gradient of Cost Functions

Gathering all above results, the gradient (1.37) becomes

dI (Y )

dv
= dC2(Y )

dv
(1.46)
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= E

{
ψY3

(Y3)
dY3

dv

}
− E

{
d ln |Jφ(X)|

dv

}
. (1.47)

In this expression, ψY3
is the score function of Y3, which is estimated in practice,

as in other BSS methods based on mutual information [24, 39, 48]. Besides, the
explicit expression of dY3

dv in (1.47) is obtained by replacing all considered signals
by the corresponding RVs in (1.43). By also replacing signals by RVs in (1.45) and
taking the expectation of the resulting expression, one obtains the explicit form of

the term E
{

d ln |Jφ(X)|
dv

}
of (1.47). The resulting version of (1.47) reads

dI (Y )

dv
= E

{
ψY3

(Y3)

×
⎧

4Y 2
1 Y 2

2 (1 − Y 2
1 )(1 − Y 2

2 )(1 − v2)v2

− [Y 2
1 (1 − Y 2

2 )(1 − v2) + (1 − Y 2
1 )Y 2

2 v2 − X2]2
⎨− 1

2

×
⎧

2(Y 2
2 − Y 2

1 )(1 − v2)v2

−[Y 2
1 (1 − Y 2

2 )(1 − v2) + (1 − Y 2
1 )Y 2

2 v2 − X2](1 − 2v2)
⎨}

× [(1 − v2)|v|]−1

+ 2vE
{⎧

4Y 2
1 Y 2

2 (1 − Y 2
1 )(1 − Y 2

2 )(1 − v2)v2

−[Y 2
1 (1 − Y 2

2 )(1 − v2) + (1 − Y 2
1 )Y 2

2 v2 − X2]2
⎨−1

×
⎧

2Y 2
1 Y 2

2 (1 − Y 2
1 )(1 − Y 2

2 )(1 − 2v2)

−[Y 2
1 (1 − Y 2

2 )(1 − v2) + (1 − Y 2
1 )Y 2

2 v2 − X2](Y 2
2 − Y 2

1 )
⎨}

.

(1.48)

1.5.4.4 Gradient Descent Algorithm

The simplest gradient-based algorithm for minimizing the above cost functions is
the gradient descent algorithm, which initializes v (typically with a random value)
and then iteratively updates it according to the rule

v(n + 1) = v(n) − μ
dI (Y )

dv

⎩⎩⎩⎩
v=v(n)

(1.49)

where n is the iteration index and μ is a positive (fixed or varying) adaptation gain,
which controls convergence speed and accuracy. Although this algorithm is based on
a simple principle, its attractiveness eventually turns out to be limited in the QSICA



20 Y. Deville and A. Deville

problem tackled in this chapter, due to the complexity of the gradient (1.48) that we
derived above. Moreover, a general drawback of the gradient descent algorithm is
that it may converge toward a local minimum of the considered cost function. These
limitations motivate us to develop another algorithm, described hereafter.

1.5.5 A Gradientless Separation Algorithm

We here still consider the separation criterion that we derived in Sect. 1.5.3, which
consists in looking for a value of v which yields the global minimum value of the cost
function I (Y ). We now take advantage of the fact that this function only depends on a
single tunable parameter of our separating system, namely v, and that this parameter
is to be varied in a bounded interval, namely [−1, 1], due to (1.11). Therefore, a
straightforward and relatively cheap algorithm for reaching the global minimum
value of I (Y ) is here a sweep-based approach: this consists of increasing v with a
small discrete step over [−1, 1], in computing the values (estimates in practice) of
I (Y ) which correspond to each tested value of v, and in keeping a value of v which
minimizes I (Y ). Due to (1.22), one thus gets either v = v or v = −v (up to estimation
errors). Moreover, in the above-defined situation when the sign of v is known, one
can then reassign the sign of v in order to obtain v = v, or one should preferably
directly perform the sweep of v only over the adequate reduced interval [−1, 0] or
[0, 1]. This sweep-based BQSS method using mutual information is called BQSS-MI
in the tests reported further in this chapter.

It should be noted that such sweep-based approaches are also used in other types
of multisource problems than BSS, such as array processing. In particular, they have
been widely applied to the well-known MUSIC algorithm, where the single parameter
varied in the sweep is the tested direction of arrival of a propagating wave [4, 18,
43, 44, 54].

1.6 QSICA-Oriented Methods Based on Likelihood

1.6.1 Separation Criterion

Another approach to the BSS problem which has been used in the classical frame-
work is based on the Maximum Likelihood (ML) principle , which is a very general
estimation technique, e.g. described in Chap. 4 of [33]. This approach has first been
applied to linear mixtures [7, 27–30, 40, 41] and then extended to nonlinear ones
[9, 19, 31, 57]. It is closely related to ICA in the sense that it assumes statistically
independent source signals, although its separation criterion is not initially based
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on enforcing the independence of the outputs of the separating system.7 Whereas
this ML principle has only been applied to BSS in the classical framework in the
literature, we here show how to extend it to the BQSS problem, so as to estimate the
parameter v of our mixing model. This estimated value is then used as the parameter
v of the separating system of Sect. 1.4, in order to restore the source signals.

The ML procedure detailed in [7, 18]8 applies as follows to our BQSS problem.
We first express the mixing model (1.6)–(1.8) in compact form as x = F(s, v),
where the nonlinear function F(., .) has three components F1(., .) to F3(., .),
with xi = Fi (s, v), ∀i ∈ {1, . . . , 3}, and these Fi (., .) are respectively defined
by (1.6)–(1.8). Starting from the above model of the actual data, we then build the
associated model of the ML approach: still considering the functional form F(., .),
we introduce the variables s̃ = [r̃1, r̃2, ϕ̃I ]T, ṽ and x̃ = [ p̃1, p̃2, p̃4]T, which are
respectively associated with s, v, and x , and which are therefore such that

x̃ = F(s̃, ṽ). (1.50)

In the statistical ML approach, we consider the random vectors S̃ and X̃ , respec-
tively defined by s̃ and x̃ at a single time, which are such that

X̃ = F(S̃, ṽ). (1.51)

Using the standard ML approach, we study the case when S̃ has the same joint
pdf as the actual source random vector S, i.e., fS(.) (comments about the case when
they are different are available in [7, 11] ). The joint pdf of X̃ is denoted as f X̃ (.). It
depends on fS(.), which is fixed but possibly only partly known, and on ṽ, which is
varied as explained below. The resulting family of pdf f X̃ (.) is used as a parametric
model of the pdf fX (.) of the actual observations. Due to Sect. 1.4, the function
F(., ṽ) from s̃ to x̃ is invertible, for a given value of ṽ. Equation (1.51) then yields

f X̃ (x̃) = fS(s̃)

|JF (s̃, ṽ)| (1.52)

where JF (s̃, ṽ) is the Jacobian of the function F(., ṽ), defined in the same way as in
Sect. 1.5.3. For the function F(., ṽ) considered in this chapter, our calculations show
that

JF (s̃, ṽ) = 8r̃1
2r̃2

2(r̃1
2 − r̃2

2)

√
1 − r̃1

2
√

1 − r̃2
2
√

1 − ṽ2ṽ cos ϕ̃I . (1.53)

7 One may also choose to define the concept of ICA for BSS in a broader sense, i.e., as the estimation
of statistically independent source signals from their mixtures, using any suitable approach. The
ML-based approach then completely belongs to ICA.
8 We here aim at avoiding any ambiguity between the actual “fixed data” of the considered problem
and the corresponding variables introduced in the ML approach. We therefore use different notations
for these corresponding quantities, e.g., v for the fixed (unknown) mixing parameter and ṽ for the
corresponding variable of the ML approach. In the framework of BSS, this type of notations was
especially introduced in [7].
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Taking the logarithm of (1.52), and studying the case when the sources are mutu-
ally statistically independent, we obtain

ln f X̃ (x̃) =
3∑

i=1

ln fSi (s̃i ) − ln |JF (s̃, ṽ)|. (1.54)

We then consider the overall set of observed values, which consists of M samples
x(m) of the observation vector, for integer values of the time index m ranging from 1
to M . Using the extension of f X̃ (.) to all these times m, the likelihood that observed
values are drawn with a particular pdf f X̃ (.) in the considered family is defined as

L = f X̃ (x1(1), x2(1), x3(1), . . . , x1(M), x2(M), x3(M)). (1.55)

Using the standard ML approach, we focus on the case when each random sig-
nal involved in the considered memoryless models is independent and identically
distributed (i.i.d). We then have

L =
M⎫

m=1

f X̃ (x1(m), x2(m), x3(m)). (1.56)

Defining the (normalized) log-likelihood as

L = 1

M
ln L , (1.57)

Eq. (1.56) yields

L = 1

M

M∑

m=1

ln f X̃ (x1(m), x2(m), x3(m)) (1.58)

= Et [ln f X̃ (x1(t), x2(t), x3(t))], (1.59)

where Et [.] is the temporal averaging operator. Equation (1.54) then yields

L =
3∑

i=1

Et [ln fSi (s̃i (t))] − Et [ln |JF (s̃(t), ṽ)|] (1.60)

where s̃(t) is the inverse image of the vector x(t) of observed values at time t for
the mapping (1.50), and s̃i (t) are the components of s̃(t). The mapping (1.50) and
its Jacobian depend on ṽ. The log-likelihood L therefore depends on ṽ. The ML
estimator of the mixing parameter v is eventually defined as the value (or one of
the values) of ṽ which yields the global maximum value of the likelihood L or,
equivalently, of the log-likelihood L , i.e:
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v̂M L = arg max
ṽ

(L ) (1.61)

with L defined by (1.60). The maximum likelihood approach thus consists in
selecting the value of ṽ which maximizes the pdf (1.55) associated with the obser-
vations, i.e., which makes the obtained measurements most likely, hence the name
of this approach.

1.6.2 Algorithms and Connection with Mutual Information

Various optimization algorithms may then be derived from the above ML separation
criterion (1.61), e.g., using the gradient of the cost function L with respect to ṽ.
These algorithms may be developed independently from those that we proposed
above for the mutual information minimization criterion, but by using similar princi-
ples. Moreover, such calculations may be avoided thanks to the explicit connection
between the mutual information and log-likelihood cost functions (1.33) and (1.60)
that we will now derive. To this end, their respective tunable parameters (both related
to the mixing parameter v) are here set to the same value, i.e., v = ṽ. The tunable
function achieved by the separating system,9 here denoted φ(., v) for the sake of
clarity, is then equal to the inverse of the tunable function F(., ṽ) which corresponds
to the mixing model. Therefore, when x = F(s̃, ṽ), we have

y = φ(x, v) = s̃ (1.62)

Jφ(x, v) = JF (s̃, ṽ)−1. (1.63)

Besides, in a blind configuration, the pdf of the source signals involved in (1.60)
are unknown. In practice, they are therefore replaced by (estimates of) the pdf fYi (.)

of the outputs of the separating system, since the latter signals provide estimates of the
source signals. Also using (1.62)–(1.63), the log-likelihood (1.60) is thus replaced by

L2 =
3∑

i=1

Et [ln fYi (yi (t))] + Et [ln |Jφ(x(t), v)|]. (1.64)

This quantity is a relevant estimate of

L3 =
3∑

i=1

E{ln fYi (Yi )} + E{ln |Jφ(X, v)|} (1.65)

because L2 converges toward L3 for ergodic signals, when the number of samples
involved in the temporal averaging operator Et [.] tends to infinity. Moreover, com-
paring (1.65) with (1.33) and (1.24) shows that

9 See function φ defined on p. 13.
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L3 = −I (Y ) − h(X). (1.66)

Since h(X) does not depend on v, this shows that optimizing v so as to maximize
L3 is fully equivalent to optimizing it so as to minimize I (Y ). The ML and MI
approaches to this BQSS problem are therefore closely connected. This result, which
is well known for linear instantaneous mixtures [8, 30], is thus here extended to
the nonlinear mixing model considered in this chapter (and beyond it, since the
above calculations straightforwardly extend to quite general nonlinear mixing and
separating functions F(., .) and φ(., .)). Since the ML approach is thus merged with
the MI approach, only the latter approach is considered in the tests reported below.

1.7 QSICA-Oriented Methods Focused on Moments
or Cumulants

1.7.1 Methods Focused on Higher Order Statistics

The exact QSICA cost function (1.34) involves the differential entropy, and therefore
the pdf, of a separating system output. It therefore requires one to estimate this pdf
(or its derivative, used in some optimization algorithms), which is cumbersome.
An alternative approach consists in deriving an approximation of this pdf, which
yields an associated approximate QSICA criterion. A standard method for defining
an approximation of a pdf, and then of the associated differential entropy or shifted10

negentropy, consists in using the Edgeworth expansion, which is, e.g., detailed in
[35]. This approach may be summarized as follows. The considered pdf of an RV
U is expressed as the product of a reference pdf, here selected as a Gaussian RV G
with the same mean and variance as U , and of a factor expressed as a series (see its
explicit expression e.g. in [35]). This then makes it possible to express the shifted
negentropy of U , i.e.,

J (U ) = h(G) − h(U ), (1.67)

as a series. Then truncating that series to a given order provides a corresponding
approximation of that shifted negentropy, expressed in terms of the higher order
cumulants of the considered RV.

10 The expression “negentropy” is often used by the signal processing community for the quantity
J (U ) defined in (1.67). We call this quantity “shifted negentropy” because, whereas negentropy
literally means “negative of entropy” [5], the shifted negentropy J (U ) of U has the property
of never being negative [33]. The expression “shifted negentropy” is quite compatible with two
other uses of the word negentropy. The first one occurs in the context of living organisms, since
Schrödinger first spoke of “negative entropy” in [45], in order to describe the ability of living
organisms to fight against the tendency to disorder. The second appeared in the field of information
theory, when Brillouin explicitly introduced the word negentropy, in [5], when establishing a link
between information processing and the behavior of the physical systems making this processing.
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That approach was used and detailed by Comon in [10], for linear instantaneous
mixtures. It is less attractive for our nonlinear mixing model, for several reasons.
First, once the resulting approximate cost function has been derived, one should
check whether it has spurious global minimum points (as defined in Sect. 1.5.3). This
could be done for linear instantaneous mixtures, where the eventual cost function only
consists of cumulants. In our case, (1.34) shows that our cost function also involves the
complicated Jacobian of the nonlinear transform achieved by the separating system.
It is therefore not guaranteed that one can show whether this cost function is free from
spurious global minimum points. Besides, such an approach was required for linear
instantaneous mixtures for deriving a cost function which is simpler than mutual
information (it is based on higher order cumulants) since that BSS problem cannot
be solved by only using first-order and second-order statistics. On the contrary, this
Edgeworth expansion can be avoided here, because even simpler cost functions can
be derived by other means for our specific BQSS problem (i.e., for our mixing model).
So, we will now present these methods, focused on first-order and/or second-order
statistics of specific signals derived from our configuration.

1.7.2 Methods Focused on First-Order Statistics

A very simple class of statistical methods for estimating the mixing parameter v may
be derived by considering the first-order moment of p2, i.e., by taking the expecta-
tion of (1.7). We will not provide all its details here, because this yields the (only)
class of blind methods that we described in our initial journal paper [21] dealing
with QSS. We summarize its principle, however, since we will use its basic version
in the tests reported below. This approach sets a constraint on the source statistics,
i.e., it requires the value of E{sin ϕI } to be known. Moreover, we here only con-
sider its version intended for the case when E{sin ϕI } = 0, since this simplifies the
approach. Besides, all source signals are assumed to be mutually statistically inde-
pendent, which again connects this approach with QSICA, as was done above for our
ML-based approach. One may then easily check that taking the expectation of (1.7)
yields a linear equation with respect to v2. The solutions of this equation (not detailed
in [21]) read

v = ±
√

E{p2} − E{r2
1 }(1 − E{r2

2 })
E{r2

2 } − E{r2
1 } (1.68)

and the sign of v is known a priori in some configurations, as explained above (for the
case when it is unknown, see [21]). All parameters in (1.68) are known,11 since they
are statistics of the observation p2 and of the sources r1 and r2, which are derived by
the first two separating system outputs without knowing the value of v (see (1.16)–
(1.17) and (1.19)–(1.20)). Using the corresponding sample statistics, (1.68) yields

11 In practice, they are estimated from a sequence of i.d. ( therefore possibly i.i.d ) source values.
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an estimate of v, which is denoted as v̂1 since it is initially based on the first-order
moment of observation p2. Note that it eventually also uses second-order moments
of other signals, due to the nonlinear nature of mixing Eq. (1.7). This estimate v̂1
is then used as the value of the parameter v of the separating system, in order to
estimate all sources.

This BQSS method focused on a first-order moment is called BQSS-m1 in the tests
reported below. Its drawback is its constraint on the source statistics E{sin ϕI }. This
motivates us to introduce a new approach hereafter, to avoid this limitation.

1.7.3 Methods Focused on Second-Order Statistics

1.7.3.1 Separation Criterion

The methods that we proposed in Sect. 1.5 are based on ICA separability: they use the
mutual information of the output signals yi of our separating system to measure their
dependence, and they therefore take into account the whole pdf. We will now show
that our quantum mixing model is also second-order separable, in the sense that its
source signals may be estimated by using a criterion only based on the covariance of
transformed versions of the above-defined signals yi . One of these signals, denoted
z3, is derived from the observations and from v. It is defined as the argument of the
Arcsin(.) function which yields y3 in (1.18), i.e.,

z3 = y2
1 (1 − y2

2 )(1 − v2) + (1 − y2
1 )y2

2 v2 − p2

2y1 y2

√
1 − y2

1

√
1 − y2

2

√
1 − v2v

. (1.69)

In other words, we have z3 = sin y3. Thanks to (1.21), z3 may also be expressed
with respect to the source signals as

z3 = (v2 − v2)(s2
2 − s2

1 )

2s1s2

√
1 − s2

1

√
1 − s2

2

√
1 − v2v

+
√

1 − v2v√
1 − v2v

sin s3. (1.70)

The first term of (1.70) contains a factor which only depends on the source signals
s1 and s2, i.e.

z12 = s2
2 − s2

1

2s1s2

√
1 − s2

1

√
1 − s2

2

. (1.71)

Equations (1.19)–(1.20) then yield

z12 = y2
2 − y2

1

2y1 y2

√
1 − y2

1

√
1 − y2

2

. (1.72)
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Therefore, by using (1.16)–(1.17) and then (1.72), the signal z12 may indeed be
derived from the observations without having yet determined the adequate value of
v. This signal z12 may therefore be used to subsequently select the value of v. To
this end, let us consider the covariance of the RVs Z12 and Z3 defined by z12 and
z3 for a single random value of the initial states of the two qubits. This covariance
is denoted as cov(Z12, Z3), whereas var(.) stands for variance. Again assuming all
source signals to be mutually statistically independent, (1.70)–(1.71) can be shown
to yield

cov(Z12, Z3) = var(Z12)
v2 − v2
√

1 − v2v
. (1.73)

Considering the nondegenerate case when var(Z12) ⊗= 0, Eq. (1.73) shows that

cov(Z12, Z3) = 0 ⇔ v2 = v2 ⇔ v = εv (1.74)

with ε = ±1. When condition (1.74) is met, (1.15) and (1.21) yield y3 = εs3.
Moreover, the sign indeterminacy on v and therefore on y3 may be avoided by using
physical knowledge about the sign of v, as explained in Sect. 1.5.3.

The analysis presented so far shows that a second-order criterion which guarantees
separation (i.e., without spurious points) for our model consists in selecting v so as
to cancel cov(Z12, Z3). We now proceed to practical algorithms that may be used to
blindly tune v to such a value.

1.7.3.2 Separation Algorithms

Here again, iterative methods for updating v might be developed. However, a better
approach can here be derived by considering the expression of cov(Z12, Z3) only with
respect to known quantities, i.e., v and observations and/or outputs of the separating
system. Using (1.69) and (1.72), it can then be shown that

cov(Z12, Z3) = var(Z4)v2 + cov(Z4, Z5)

4
√

1 − v2v
(1.75)

where Z4 and Z5 are the RVs associated, for a single random value of the initial
states of the two qubits, with the signals z4 and z5 defined as

z4 = 2z12 = y2
2 − y2

1

y1 y2

√
1 − y2

1

√
1 − y2

2

(1.76)

z5 = y2
1 (1 − y2

2 ) − p2

y1 y2

√
1 − y2

1

√
1 − y2

2

. (1.77)
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Equation (1.75) shows that condition (1.74) is also equivalent to setting v to a
value v2, whose squared value is defined by

v2
2 = −cov(Z4, Z5)

var(Z4)
. (1.78)

This value is denoted as v2 because it corresponds to our method based on second-
order moments of the signals z12 to z5. This method is therefore called BQSS-m2.
Note, however, that these signals are nonlinear functions of the signals yi (they also
involve p2) and this method is therefore based on a few generalized moments of the
signals yi .

Equation (1.78) provides a closed-form solution for selecting v2. A practical esti-
mate of this expression may then again be derived from an i.d. sequence of signal
values, and the sign indeterminacy is handled as explained above. At this stage, this
second-order approach is more attractive than the other main solutions proposed in
this chapter, because: (i) as compared to the MI-based approach, it uses simpler sta-
tistics and yields a closed-form solution, (ii) as compared to the first-order method,
it does not require some statistics of source s3 = ϕI to be known. However, the
comparison of all three methods should also take into account the numerical per-
formance of their practical implementations. This is the topic of the next section.
Before proceeding to that numerical part of the chapter, the interested reader may
refer to the Appendix for some comments about the relationship between the BQSS
methods introduced in this section and classical BSS and ANC methods which are
also based on cumulants, moments or generalized moments.

1.8 Numerical Results

As stated above, the physical implementation of qubits is only an emerging topic,
which is beyond the scope of this chapter. Therefore, we here assess the performance
of the above methods by means of tests performed with data derived from our soft-
ware simulation of the behavior of coupled qubits. This software was described in
[21], where the only blind method tested with it was BQSS-m1. It performs each
elementary test as follows. It creates a set of observed vectors x corresponding to
known source vectors s, mixed according to the considered Heisenberg model with a
given value of the mixing parameter v. During the “mixture estimation stage”, it first
uses part of the above observed vectors (100 or 1,000 of them in our tests) to blindly
estimate v or the associated separating parameter v. During the “source estimation
stage”, this software is then used to process 100 other observed vectors with the
above estimate of the separating parameter, and it thus derives estimates y of the
actual sources s from which these observed vectors x were computed. As detailed
below, analyzing these estimated sources and comparing them to the actual sources
then makes it possible to check that the proposed methods succeed in separating
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these sources, and to determine the accuracy of this separation, i.e. the magnitude of
the deviation of the estimated sources y with respect to the actual sources12 s.

In the mixture and source estimation stages of each elementary test, the qubit
parameter values r1, r2 and ϕI are randomly selected within the 20–80 % subrange of
their 0–100 % allowed range defined by (1.14) and (1.15), with a uniform distribution.
These data are thus such that E{sin ϕI } = 0. This is required in these tests, because
we want to include in our comparison the version of our BQSS-m1 method which
requires E{sin ϕI } = 0, in addition to our new BQSS-MI and BQSS-m2 methods.
In our tests using the BQSS-MI method, the estimation of output mutual information
is performed with the approach of [13] as implemented at [50]. The estimators used
in our BQSS-m1 and BQSS-m2 methods are respectively obtained by replacing
expectation by sample mean in (1.68) and in the square root of (1.78). As stated above,
for each choice of the initial states of the qubits, a set of measurements is used to derive
the corresponding observed vector, based on the relative frequencies of occurence
of measured values. The number of measurements performed per observed vector is
Km in the mixture estimation stage and Ks in the source estimation stage. These two
independent parameters are varied in the tests reported below. The parameter v is set
to 0.5 in all these tests, and the sign of v is assumed to be known by the considered
BQSS methods.13

For each considered set of conditions and each BQSS method, we perform 100
above-defined elementary tests with different sets of source values (so that we per-
form 100 estimations of the same mixing parameter value).14 For some of these tests,
we may get complex values for the estimated sources during the source estimation
stage, for the following reason. As noted above, the observations used to derive the
outputs of the separating system are only estimates of the actual probabilities p1
to p4. These estimates are more or less accurate, depending on the number Ks of
measurements performed to estimate the above probabilities. Inserting these esti-
mates in (the complex-valued extension of) the Arcsin(.) function in (1.18) may
yield complex-valued estimated sources. The cases when any output of the sep-
arating system is complex-valued may be detected in practice and correspond to
non-satisfactory situations. Therefore, the first performance criterion used hereafter
is the “success rate” of each method, i.e., the number of elementary tests (among all
100 elementary tests for each considered set of conditions) for which all separating
system outputs obtained during the source estimation stage are real-valued. These
success rates are shown in Figs. 1.1 and 1.2.

12 This performance assessment procedure can only be used when developing and testing the
considered BQSS methods, with actual source values s which are known (but which are not used in
the BQSS methods themselves). On the contrary, in the actual setup which is to be eventually used,
the actual sources are unknown, and one precisely aims at estimating them ! They cannot therefore
be compared to their estimated values.
13 The above conditions for each elementary test are the same as in [21].
14 We therefore here perform more exhaustive tests than in [21], where only one elementary test
was performed for each set of conditions (and we avoided the complex-valued outputs mentioned
below).
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Fig. 1.1 Success rate (in %), i.e., number of elementary tests (among 100 tests per BQSS method)
which yield real-valued estimated sources. Tested methods, from high success rate (top curves)
to low success rates (bottom curves): restore sources using a value of v blindly estimated from
100 observed vectors by means of BQSS-m1 (solid lines), BQSS-m2 (dashed lines) or BQSS-MI
(dash-dotted lines) methods. The success rate is plotted vs number of measurements Ks used in the
source estimation stage. Each plot corresponds to a specific number of measurements Km used in
the mixture estimation stage
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Fig. 1.2 Same as Fig. 1.1, but estimating v with 1,000 observed vectors

Only the elementary tests which yield real-valued outputs are then considered and
the second performance criterion computed over them is the root-mean square error
(RMSE)15 achieved when estimating the third source, ϕI . The first two sources, r1

15 We here use the standard definition of the RMSE, which was detailed in [21] for an elementary
test, and which is straightforwardly extended to the set of elementary tests which yield real-valued
separating system outputs.
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Fig. 1.3 RMSE of source ϕI . Tested methods, from low RMSE (bottom curves) to high RMSE
(top curves): restore sources with v set to the exact value of v (solid line and stars) or with a value
of v blindly estimated from 100 observed vectors by means of BQSS-m1 (solid lines and circles
or squares), BQSS-m2 (dashed lines) or BQSS-MI (dash-dotted lines) methods. RMSE is plotted
versus number of measurements Ks used in the source estimation stage. Each plot for the BQSS
methods corresponds to a specific number of measurements Km used in the mixture estimation
stage

and r2, are not considered hereafter because their estimates do not depend on the
estimated value of the mixing or separating parameter, as shown by (1.16)–(1.17),
so that the corresponding RMSE is the same for all three tested methods, and this
RMSE was already provided for BQSS-m1 in [21] (for an elementary test). The
results obtained for the RMSE of ϕI are shown in Figs. 1.3 and 1.4. These RMSE
should be analyzed by also taking into account the corresponding success rates in
Fig. 1.1 and 1.2: one may get similar RMSE for different BQSS methods because,
when their success rates are lower than 100 %, these RMSE are only computed over
subsets of tests, i.e., for the “good situations” (real-valued output signals) which have
not been filtered out when computing success rates. In such cases, one should first
compare success rates: a method with (almost) 100 % success rate is sought, since
this means that it is able to extract the source signals from all considered observed
values, with an accuracy which is then investigated by checking its RMSE.

All above-defined figures yield the following comments. Figs. 1.1 and 1.2 show
that when increasing the number Ks of measurements per observed vector in
the source estimation stage, better performance is generally obtained, which was
expected because the observed values (i.e., frequency-based estimates of probabil-
ities) thus get closer to their theoretical values. The number Km of measurements
per observed vector in the mixture estimation stage has a limited influence over its
considered range.16 The most standard BQSS method, i.e., the one based on output

16 Low values of Km are not considered here, because higher numbers of measurements are more
easily accepted in the single initial chararacterization of the system (mixture estimation stage) than
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Fig. 1.4 Same as Fig. 1.3, but estimating v with 1,000 observed vectors in BQSS methods

mutual information as in classical BSS, turns out to yield rather low success rates, i.e.,
low performance, even for the highest considered values of the numbers Km and Ks

of measurements. This may especially be due to the fact that this information-based
method requires a large number of observed vectors in order to accurately estimate
output signal statistics, whereas we wish to restrict ourselves to a limited number of
such observed vectors (100 or 1,000), in order to limit the amount of data that must be
measured to apply our methods (remember that each observed vector here requires
Km = 104 or 105 measurements in the mixture estimation stage). This low perfor-
mance would be an issue if we had to restrict ourselves to this information-based
BSS criterion.

Fortunately, for the considered mixing model, we could develop simpler BQSS
methods focused on moments, which yield much higher performance than the BQSS-
MI approach when applied to the limited numbers of observed vectors that we used
in the mixture estimation stage. In particular, when estimating the mixing parameter
with 1,000 observed vectors and using Km = 105 and Ks = 105, the success rate
tends to 100 % and the RMSE gets close to 3×10−2 for these BQSS-m1 and BQSS-
m2 methods. Allowing larger data sets would yield even better performance. As a
bound, Figs. 1.3 and 1.4 also show the RMSE achieved in the source estimation stage
with Ks measurements, when v is set to the exact value of the mixing parameter v.

Finally, the performance of the BQSS-m1 method compares as follows with that of
BQSS-m2. When using a rather low number (100) of observed vectors in the mixture
estimation stage, BQSS-m1 is attractive because it provides higher performance, but
it should be remembered that (this version of) this method has a drawback: it is only

(Footnote 16 continued)
in its subsequent permanent use (source estimation stage), and because these higher numbers of
measurements are preferred, in order to better estimate the mixing parameter and thus to achieve
better performance.



1 Quantum-Source Independent Component Analysis 33

applicable to sources which are such that E{sin ϕI } = 0. For a medium number
(1,000) of observed vectors in the mixture estimation stage, the performance of
BQSS-m2 is nearly as high as that of BQSS-m1, and BQSS-m2 has the advantage
of avoiding the constraint E{sin ϕI } = 0. Depending on the considered situation,
the preferred approach is therefore BQSS-m1 or BQSS-m2. However, the situations
involving a medium number of observed vectors are of higher importance (in order to
achieve better success rates), and the most prominent method is therefore BQSS-m2.

1.9 Conclusions and Future Work

In our initial paper [21], we introduced the concept of Quantum Source Separation
(QSS) and we mainly investigated its non-blind version. In this chapter, we proceeded
much further, by considering the blind configuration, with quantum-to-classical data
conversion which yields an original nonlinear mixing model. We introduced the
field of Quantum-Source Independent Component Analysis (QSICA) and we devel-
oped QSS methods based on this QSICA concept by using various statistical signal
processing tools, namely mutual information, likelihood and moments. Besides, we
showed that cumulant-based methods derived from Edgeworth expansion are not
suited to the mixing model considered in this chapter. The performance of the pro-
posed approaches was validated by means of numerical tests. This especially showed
the attractiveness of our BQSS-m2 method, which is focused on the use of second-
order moments, and which yields a closed-form solution and good numerical per-
formance for a limited amount of measured data, without setting restrictions on the
marginal statistics of the source signals. This investigation completes a major step
in the emerging field of QSS, but we foresee other major developments of this field,
e.g., considering other classes of QSS methods or other quantum coupling models.
We will report such developments in future papers.

Appendix

In Sects. 1.5 and 1.6, we developed BQSS methods by explicitly starting from princi-
ples which were previously used in classical BSS, namely mutual information min-
imization and likelihood maximization. On the contrary, in Sects. 1.7.2 and 1.7.3,
we derived BQSS methods focused on moments without having to refer to corre-
sponding classical BSS methods. Such relationships however do exist. We therefore
describe them hereafter, to avoid any ambiguity about the claimed novelty of the
approaches described in Sects. 1.7.2 and 1.7.3, with respect to results available in the
literature, not only dealing with classical BSS, but also with classical adaptive noise
cancelation (ANC).

Several cumulant-based methods have been proposed for handling linear instan-
taneous mixtures of classical sources which are mutually independent and i.i.d, i.e.,
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which have no temporal structure (or whose temporal structure is not exploited). This
especially includes the COM2 [10], JADE [6], gradient-based [15] and fixed-point
(FastICA) [32] kurtosis optimization methods. All these approaches resort to fourth-
order cumulants, because it is well known that blind separation of i.i.d. sources cannot
be achieved only using (first-order and) second-order statistics for such mixtures (see
e.g. Sect. 7.4 of [33]). Similarly, the well-known Herault-Jutten network [34] uses
fourth-order moments, or generalized moments (i.e., moments involving nonlinear
functions of output signals) in this configuration.

On the contrary, the sources may be restored from their linear instantaneous mix-
tures by only using second-order statistics if they have temporal structure. This
especially includes stationary sources which are autocorrelated over time: see e.g.
the AMUSE method [51] also proposed by Fety [26], their SOBI extension [2] and
the Molgedey-Schuster approach [37].

The relationship between all these classical BSS methods and our BQSS
approaches of Sects. 1.7.2 and 1.7.3 may be interpreted as follows. The method pro-
posed in Sect. 1.7.2 is able to solve the BQSS problem for i.i.d. sources by only using
first-order and second-order moments of observations and separating system outputs,
unlike in classical linear instantaneous BSS. The method described in Sect. 1.7.3,
which is also applicable to i.i.d. sources, is only based on second-order statistics
(and first-order ones, in the sense: centered moments), but one should keep in mind
that these are statistics of a nonlinearly transformed version of the outputs of the
separating system (also involving an observed signal). If comparing this approach to
classical BSS, one should therefore also wonder whether classical BSS can be per-
formed by only resorting to first-order and second-order statistics of a transformed
version of the outputs of the separating system. The answer is positive: as mentioned
above, some well-known classical BSS methods are based on a cost function C
defined as the kurtosis of a (centered and scaled) output yi of the separating system,
i.e:

C = k(yi ) = E{y4
i } − 3(E{y2

i })2. (1.79)

Now allowing ourselves to consider a transformed version of yi , we here introduce
the signal zi = y2

i . The above cost function then reads

C = E{z2
i } − 3(E{zi })2. (1.80)

BSS is thus achieved by only using the first-order and second-order moments
of this transformed output, as in our BQSS approach of Sect. 1.7.3. These classical
BSS and BQSS methods however differ in the required combination of moments
and in the nature of the transforms used for creating: (i) the signals involved in the
separation criterion and (ii) the output signals of the separating system.

Our BQSS method of Sect. 1.7.3 may also be seen as a nonlinear extension of
linear ANC, as will now be explained. In its simplest form, ANC combines mixing
and separating stages which yield two signals, i.e: (i) an output signal which may be a
linear instantaneous mixture of one unknown signal of interest and of one undesired
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signal, and (ii) the undesired signal, measured alone. ANC then consists in blindly
tuning a signal scale factor in the above possibly mixed output, so as to cancel the
component of this output which corresponds to the undesired signal. Our method
of Sect. 1.7.3 performs the following nonlinear extension of linear ANC: (i) we first
introduced the signal z3, which is derived as a nonlinear combination of available
signals (see (1.69)), but which is also a linear instantaneous mixture of a signal of
interest and of an undesired overall component (see (1.70)); (ii) we then created z12
as a nonlinear combination of the available signals (see (1.72)), that we designed so
that it becomes equal to the undesired component of z3, up to its tunable scale factor
which appears in z3 (see (1.70) and (1.71)). This then opens the way to the blind
adaptation of the latter scale factor (so as to cancel it) that we eventually described
in Sect. 1.7.3.
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Chapter 2
Blind Source Separation Based on Dictionary
Learning: A Singularity-Aware Approach

Xiaochen Zhao, Guangyu Zhou, Wei Dai and Wenwu Wang

Abstract This chapter surveys recent works in applying sparse signal processing
techniques, in particular, dictionary learning algorithms to solve the blind source
separation problem. For the proof of concepts, the focus is on the scenario where
the number of mixtures is not less than that of the sources. Based on the assumption
that the sources are sparsely represented by some dictionaries, we present a joint
source separation and dictionary learning algorithm (SparseBSS) to separate the
noise corrupted mixed sources with very little extra information. We also discuss the
singularity issue in the dictionary learning process, which is one major reason for
algorithm failure. Finally, two approaches are presented to address the singularity
issue.

2.1 Introduction

Blind source separation (BSS) has been investigated during the last two decades;
many algorithms have been developed and applied in a wide range of applications
including biomedical engineering, medical imaging, speech processing, astronomical
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imaging, and communication systems. Typically, a linear mixture model is assumed
where the mixtures Z ∈ R

r×N are described as Z = AS + V . Each row of S ∈
R

s×N is a source and A ∈ R
r×s models the linear combinations of the sources. The

matrix V ∈ R
r×N represents additive noise or interference introduced during mixture

acquisition and transmission.
Usually in the BSS problem, the only known information is the mixtures Z and

the number of sources. One needs to determine both the mixing matrix A and the
sources S, i.e., mathematically, one needs to solve

min
A,S

∈Z − AS∈2
F .

It is clear that such a problem has an infinite number of solutions, i.e., the problem
is ill-posed. In order to find the true sources and the mixing matrix (subject to scale
and permutation ambiguities), it is often required to add extra constraints to the prob-
lem formulation. For example, a well-known method called independent component
analysis (ICA) [1] assumes that the original sources are statistically independent. This
has led to some widely used approaches such as Infomax [2], maximum likelihood
estimation [3], the maximum a posterior (MAP) [4], and FastICA [1].

Sparsity prior is another property that can be used for BSS. Most natural signals are
sparse under some dictionaries. The mixtures, viewed as a superposition of sources,
are in general less sparse compared to the original sources. Based on this fact, the
sparse prior has been used in solving the BSS problem from various perspectives
since 2001, e.g., sparse ICA (SPICA) [5] and sparse component analysis (SCA) [6].
In this approach, there is typically no requirement that the original sources have to be
independent. As a result, these algorithms are capable of dealing with highly corre-
lated sources, for example, in separating two superposed identical speeches, with one
being a few samples delayed version of the other. Jourjine et al. proposed an SCA-
based algorithm in [7] aiming at solving the anechoic problem. SCA algorithms look
for a sparse representation under predefined bases such as discrete cosine transform
(DCT), wavelet, curvelet, etc. Morphological component analysis (MCA) [8] and its
extended algorithms for multichannel cases, Multichannel MCA (MMCA) [9], and
Generalized MCA (GMCA) [10], are also based on the assumption that the original
sources are sparse in different bases instead of explicitly constructed dictionaries.
However, these algorithms do not exhibit an outstanding performance since in most
cases the predefined dictionaries are too general to offer sufficient details of sources
when used in sparse representation.

A method to address this problem is to learn data-specific dictionaries. In [11],
the authors advised to train a dictionary from the mixtures/corrupted-images and
then decompose it into a few dictionaries according to the prior knowledge of the
main components in different sources. This algorithm is used for separating images
with different main frequency components (e.g., Cartoon and Texture images) and
obtained satisfactory results in image denoising. Starck et al. proposed in [12] to learn
dictionary from a set of exemplar images for each source. Xu et al. [13] proposed
an algorithm, which allows the dictionaries to be learned from the sources or the
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mixtures. In most BSS problems, however, dictionaries learned from the mixtures
or from similar exemplar images rarely well represent the original sources.

To get more accurate separation results, the dictionaries should be adapted to the
unknown sources. The motivation is clear from the assumption that the sources are
sparsely represented by some dictionaries. The initial idea of learning dictionaries
while separating the sources was suggested by Abolghasemi et al. [14]. They pro-
posed a two-stage iterative process. In this process each source is equipped with a
dictionary, which is learned in each iteration, right after the previous mixture learning
stage. Considering the size of dictionaries being much larger than the mixing matrix,
the main computational cost is on the dictionary learning stage. This two-stage proce-
dure was further developed in Zhao et al. [15]. The method was termed as SparseBSS,
which employs a joint optimization framework based on the idea of SimCO dictio-
nary update algorithm [16]. By studying the optimization problem encountered in
dictionary learning, the phenomenon of singularity in dictionary update was for the
first time discovered. Furthermore, from the viewpoint of the dictionary redundancy,
SparseBSS uses only one dictionary to represent all the sources, and is therefore com-
putationally much more efficient than using multiple dictionaries as in [14]. This joint
dictionary learning and source separation framework is the focus of this chapter. This
framework can be extended potentially to a convolutive or underdetermined model,
e.g., apply clustering method to solve the the ill-posed inverse problem in underde-
termined model [13]; however, discussion on such an extension is beyond the scope
of this chapter. In this chapter, we focus on overdetermined/even determined model.

The remainder of this chapter is organized as follows. Section 2.2 describes the
framework of the BSS problem based on dictionary learning. The recently proposed
algorithm SparseBSS is introduced and compared in detail with the related bench-
mark algorithm BMMCA. In Sect. 2.3, we briefly introduce the background of dictio-
nary learning algorithms and then discuss the important observation of the singularity
issue, which is a major reason for the failure of dictionary learning algorithms and
hence dictionary learning-based BSS algorithms. Later, two available approaches are
presented to address this problem. In Sect. 2.5, we conclude our work and discuss
some possible extensions.

2.2 Framework of Dictionary Learning-Based BSS Problem

We consider the following linear and instantaneous mixing model. Suppose there are
s source signals of the same length, denoted by s1, s2, . . . , ss, respectively, where
si ∈ R

1×N is a row vector to denote the ith source. Assume that these sources are
linearly mixed into r observation signals denoted by z1, z2, . . . , zr respectively,

where zj ∈ R
1×N . In the matrix format, denote S = [

sT
1 , sT

2 , . . . , sT
s

]T ∈ R
s×N and

Z = [
zT

1 , zT
2 , . . . , zT

r

]T ∈ R
r×N . Then the mixing model is given by

Z = AS + V, (2.1)
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where A ∈ R
r×s is the mixing matrix and V ∈ R

r×N is denoted as zero mean additive
Gaussian noise. We also assume that r ≤ s, i.e., the underdetermined case will not
be discussed here.

2.2.1 Separation with Dictionaries Known in Advance

For some BSS algorithms, such as MMCA [9], orthogonal dictionaries Di’s are
required to be known a priori. Each source si is assumed to be sparsely represented
by a different Di. Hence, we have si = Dixi with xi’s being sparse. Given the
observation Z and the dictionaries Di’s, MMCA [9] aims to estimate the mixing
matrix and sources, based on the following form:

min
A,S

∈Z − AS∈2
F +

n∑

i=1

λi

∥∥∥siD
†
i

∥∥∥
1
. (2.2)

Here λi > 0 is the weighting parameter determined by the noise deviation σ, ∈·∈F

represents the Frobenius norm, ∈·∈1 is the ψ1 norm and D†
i denotes the pseudo-

inverse of Di. Predefined dictionaries generated from typical mathematical trans-
forms, e.g., DCT, wavelets and curvelets, do not target particular sources, and thus
do not always provide sufficiently accurate reconstruction and separation results.
Elad et al. [11] designed a method to first train a redundant dictionary by K-SVD
algorithm in advance, and then decompose it into a few dictionaries, one for each
source. This method works well when the original sources have components that are
largely different from each other under some unknown mathematical transforma-
tions (e.g. Cartoon and Texture images under the DCT transformation). Otherwise,
the dictionaries found may not be appropriate in the sense that they may fit better the
mixtures rather than the sources.

2.2.2 Separation with Unknown Dictionaries

2.2.2.1 SparseBSS Algorithm Framework

According to the authors’ knowledge, BMMCA and SparseBSS are the two most
recent BSS algorithms, which implement the idea of performing source separa-
tion and dictionary learning simultaneously. Due to space constraints, we focus on
Sparse BSS in this chapter. In SparseBSS, one assumes that all the sources can be
sparsely represented under the same dictionary. In order to obtain enough train-
ing samples for dictionary learning, multiple overlapped segments (patches) of the
sources are taken. To extract small overlapped patches from the source image si,
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a binary matrix Pk ∈ R
n×N is defined as a patching operator1 [15]. The product

Pk · sT
i ∈ R

n×1 is needed to obtain and vectorize the kth patch of size
√

n × √
n

taken from image S i. Denote P = [P1, . . . , PK ] ∈ R
n×KN , where K is the number of

patches taken from each image. Then the extraction of multiple sources S is defined
as PS = ([P1, . . . , PK ]) · ([sT

1 , sT
2 , . . . , sT

s

] ⊗ IK ) = P · (ST ⊗ IK ) ∈ R
n×Ks, where

symbol ⊗ denotes the Kronecker product and IK indicates the identity matrix. The
computational cost associated with converting from images to patches is low. Each
column of PS represents one vectorized patch. We sparsely represent PS by using
only one dictionary D ∈ R

n×d and a sparse coefficient matrix X ∈ R
d×Ks, which

suggests PS ∀ DX. This is different from BMMCA, where multiple dictionaries are
used for multiple sources.

With these notations, the BSS problem is formulated as the following joint opti-
mization problem:

min
A,S,D,X

λ ∈Z − AS∈2
F +

∥∥∥P† (DX) − S
∥∥∥

2

F
. (2.3)

The parameter λ is introduced to balance the measurement error and the sparse
approximation error, and X is assumed to be sparse.

To find the solution of the above problem, we propose a joint optimization algo-
rithm to iteratively update the following two pairs of variables {D, X} and {A, S} over
two stages until a (local) minimizer is found. Note that in each stage there is only
one pair of variables to be updated simultaneously by keeping the other pair fixed.

• Dictionary learning stage
min
D,X

∈DX − PS∈2
F , (2.4)

• Mixture learning stage

min
A,S

λ ∈Z − AS∈2
F + ∈DX − PS∈2

F . (2.5)

Without being explicit in (2.3), a sparse coding process is involved where greedy
algorithms, such as orthogonal matching pursuit (OMP) [17] and subspace pursuit
(SP), [18] are used to solve

min
X

∈X∈0 , s.t. ∈DX − P (S)∈2
F ⇔ ω,

where ∈X∈0 counts the number of nonzero elements in X, the dictionary D is assumed
fixed, and ω > 0 is an upper bound on the sparse approximation error.

During the optimization, further constraints are made on the matrices A and
D. Consider the dictionary learning stage. Since the performance is invariant to
scaling and permutations of the dictionary codewords (columns of D), we follow the

1 Note that in this chapter Pk is defined as a patching operator for image sources. The patching
operator for audio sources can be similarly defined as well.
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convention in the literature, e.g., [16], and enforce the dictionary to be updated on
the set

D =
{

D ∈ R
n×d : ∥∥D:,i

∥∥
2 = 1, 1 ⇔ i ⇔ d

}
, (2.6)

where D:,i stands for the ith column of D. A detailed description of the advantage by
adding this constraint can be found in [16]. Sparse coding, once performed, provides
information about which elements of X are zeros and which are nonzeros. Define
the sparsity pattern by α = {

(i, j) : Xi,j 	= 0
}
, which is the index set of the nonzero

elements of X. Define Xα as the set of all matrices conforming to the sparsity pat-
tern α . This is the feasible set of the matrix X. The optimization problem for the
dictionary learning stage can be written as

min
D∈D

fμ (D) = min
D∈D

min
X∈Xα

∈DX − P (S)∈2
F + μ ∈X∈2

F ,

= min
D∈D

min
X∈Xα

∥∥∥∥
[P (S)

0

]
−

[
D√
μI

]
X

∥∥∥∥
2

F
. (2.7)

The term μ ∈X∈2
F introduces a penalty to alleviate the singularity issue. See more

details in Sect. 2.3.3.
In the mixture learning stage, similar to the dictionary learning stage, we constrain

the mixing matrix A in the set

A = {
A ∈ R

r×s : ∥∥A:,i
∥∥

2 = 1, 1 ⇔ i ⇔ s
}
. (2.8)

This constraint is necessary. Otherwise, if the mixing matrix A is scaled by a con-
stant c and the source S is inversely scaled by c−1, then for any {A, S} we can
always find a solution {cA, c−1S|c > 1}, which further decreases the objective func-
tion (2.3) from λ ∈Z − AS∈2

F +∈DX − PS∈2
F to λ ∈Z − AS∈2

F + c−2 ∈DX − PS∈2
F .

Now if we view the sources S ∈ R
s×n as a “sparse” matrix with the sparsity pat-

tern α ′ = {(i, j) : 1 ⇔ i ⇔ s, 1 ⇔ j ⇔ N}. Then, the optimization problem for the
mixture learning stage is exactly the same as that for the dictionary learning stage:

min
A∈A

fλ (A) = min
A∈A

min
S∈Rs×n

λ ∈Z − AS∈2
F +

∥∥∥P† (DX) − S
∥∥∥

2

F

= min
A∈A

min
S∈Xα′

∥∥∥∥
[ √

λZ
P† (DX)

]
−

[√
λA
I

]
S

∥∥∥∥
2

F

, (2.9)

where the fact that R
s×n = Xα ′ has been used. As a result, the SimCO mechanism

can be directly applied. Here, we do not require the prior knowledge of the scaling
matrix in front of the true mixing matrix [10], as otherwise required in MMCA and
GMCA algorithms.

To conclude this section, we emphasize the following treatment of the optimiza-
tion problems (2.7) and (2.9). Both involve a joint optimization over two variables,
i.e., D and X for (2.7) and A and S for (2.9). Note that if D and A are fixed, then
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the optimal X and S can be easily computed by solving the corresponding least
squares problems. Motivated by this fact, we write (2.7) and (2.9) as min

D∈D
fμ (D) and

min
A∈A

fλ (A), respectively, when fμ (D) and fλ (A) are properly defined in (2.7) and

(2.9). In this way, the optimization problems, at least from the surface, only involve
one variable. This helps the discovery of the singularity issue and the developments
of handling singularity. See Sect. 2.3 for details.

2.2.2.2 Implementation Details in SparseBSS

Most optimization methods are based on line search strategies. The dictionaries at the
beginning and the end of the kth iteration, denoted by D(k) and D(k+1), respectively,
can be related by D(k+1) = D(k) + α(k)η(k) where α(k) is an appropriately chosen
step size and η(k) is the search direction. The step size α(k) can be determined by
Armijo condition or Golden selection presented in [19]. The search direction η(k) can
be determined by a variety of gradient methods [19, 20]. The decision of η(k) plays
the key role, which directly affects the convergence rate of the whole algorithm.
Generally speaking, a Newton direction is a preferred choice (compared with the
gradient descent direction) [19]. In many cases, direct computation of the Newton
direction is computationally prohibitive. Iterative methods can be used to search the
Newton direction. Take the Newton Conjugate Gradient (Newton CG) method as
an example. It starts with the gradient descent direction η0 and iteratively refines
it toward the Newton direction. Denote the gradient of fμ (D) as ∇fμ (D). Denote
∇η

(∇fμ (D)
)

as the directional derivative of ∇fμ (D) along η [21]. In each line
search step of the Newton CG method, instead of computing the Hessian ∇2fμ (D) ∈
R

md×md explicitly, one only needs to compute ∇η

(∇fμ (D)
) ∈ R

m×d . The required
computational and storage resources are therefore much reduced.

When applying the Newton CG to minimize fμ (D) in (2.7), the key computations

are summarized below. Denote D̃ = [
DT μI

]T
and let α (:, j) be the index set of

nonzero elements in X:,j . We consider D̃i = D̃:,α(:,i) ∈ R
(m+r)×r with m > r. Matrix

D̃i is a full column rank tall matrix. We denote

fi(D̃i) = min
xi

∈yi − D̃xi∈2
2

and the optimal
x∗

i = arg min
xi

∈yi − D̃xi∈2
2.

Denote D̃
†
i as the pseudo-inverse of D̃i. Then we have ∂f

∂xi
|x∗

i
= 0, where x∗

i = D̃
†
i yi,

and ∇fi(D̃i) can be written as

∇fi(D̃i) = ∂f

∂D̃i
+ ∂f

∂xi

∂xi

∂D̃i
= −2(yi − D̃ix∗

i )x
∗T
i + 0 (2.10)
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To compute ∇η

(
∇fi(D̃i)

)
, we have

∇η

(
∇fi(D̃i)

)
= 2∇η

(
D̃ix∗

i − yi

)
x∗T

i + 2
(

D̃ix∗
i − yi

)
∇ηx∗T

i

= 2∇ηD̃ix∗
i x∗T

i + 2D̃i∇ηx∗
i x∗T

i + 2
(

D̃ix∗
i − yi

)
∇ηx∗T

i

= 2ηx∗
i x∗T

i + 2D̃i∇ηx∗
i x∗T

i + 2
(

D̃ix∗
i − yi

)
∇ηx∗T

i , (2.11)

where ∇ηx∗ is relatively easy to obtain,

∇ηx∗ = −
(

D̃
T

D̃
)−1 ((

D̃
T
η + ηT D̃

)
D̃

† − ηT
)

y. (2.12)

From the definition of D̃i, Di is a submatrix of D̃i, therefore ∇fi(Di) and ∇η (∇fi(Di))

are also, respectively, submatrices of ∇fi(D̃i) and ∇η

(
∇fi(D̃i)

)
, i.e., ∇fi(Di) =(

∇fi
(

D̃i

))
1:m,: and ∇η (∇fi(Di)) =

(
∇η

(
∇fi(D̃i)

))
1:m,:.

In addition, it is also worth noting that the SparseBSS model, using one dictionary
to sparsely represent all the sources will get almost the same performance as using
multiple but same-sized dictionaries when the dictionary redundancy d/n is large
enough. As a result, it is reasonable to train only one dictionary for all the sources.
An obvious advantage of using one dictionary is that the computational cost does
not increase when the number of sources increases.

2.2.3 Blind MMCA and Its Comparison to SparseBSS

BMMCA [14] is another recently proposed BSS algorithm based on adaptive dic-
tionary learning. Without knowing dictionaries in advance, the BMMCA algorithm
also trains dictionaries from the observed mixture Z. Inspired by the hierarchical
scheme used in MMCA and the update method in K-SVD, the separation model in
BMMCA is made up of a few rank-1 approximation problems, where each problem
targets on the estimation of one particular source

min
A:,i,si,Di,Xi

λ
∥∥Ei − A:,isi

∥∥2
F + ∈DiXi − Rsi∈2

2 + μ ∈Xi∈0 . (2.13)

Different from the operator P defined earlier in SparseBSS algorithm, the oper-
ator R in BMMCA is used to take patches from only one estimated image si. Di is
the trained dictionaries for representing source si. Ei is the residual which can be
written as

Ei = Z −
∑

j 	=i

A:,jsj. (2.14)
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Despite being similar in problem formulation, BMMCA and SparseBSS differ
in terms of whether the sources share a single dictionary in dictionary learning.
In the SparseBSS algorithm, only one dictionary is used to provide sparse rep-
resentations for all sources. BMMCA requires multiple dictionaries, one for each
source. In the mixing matrix update, BMMCA imitates the K-SVD algorithm by
splitting the steps of update and normalization. Such two-step based approach does
not bring the expected optimality of A ∈ A, thereby giving inaccurate estimation,
while SparseBSS keeps A ∈ A during the optimization process. In BMMCA, the
authors claim that the ratio between the parameter λ and the noise standard deviation
σ is fixed to 30, which will not guarantee good estimation results at various noise
levels.

2.3 Dictionary Learning and the Singularity Issue

As is clear from previous discussions, dictionary learning plays an essential role in
solving the BSS problem when the sparse prior is used, and hence is the focus of this
section. We first briefly introduce the relevant background, then discuss an interesting
phenomenon, the singularity issue in the dictionary update stage, and finally present
two approaches to handle the singularity issue. For readers who are more interested
in the SparseBSS algorithm themselves may consider this section as optional and
skip to Sect. 2.4.

2.3.1 Brief Introduction to Dictionary Learning Algorithms

One of the earliest dictionary learning algorithms is the method of optimal directions
(MOD) [22] proposed by Engan et al. The main idea is as follows: in each iteration,
one first fixes the dictionary and uses OMP [17] or FOCUSS [23] to update the
sparse coefficients, then fixes the obtained sparse coefficients and updates the dictio-
nary in the next stage. MOD was later modified to iterative least squares algorithm
(ILS-DLA) [24] and recursive least squares algorithm (RLS-DLA) [25]. Aharon et
al. developed the K-SVD algorithm [26], which can be viewed as a generalization of
the K-means algorithm. In each iteration, the first step is to update the sparse coef-
ficients in the same way as in MOD. Then in the second step, one fixes the sparse
pattern, and updates the dictionary and the nonzero coefficients simultaneously. In
particular, the codewords in the dictionary are sequentially selected: the selected
codeword and the corresponding row of the sparse coefficients are updated simulta-
neously by using singular value decomposition (SVD). More recently, Dai et al. [16]
considered the dictionary learning problem from a new perspective. They formulated
dictionary learning as an optimization problem on manifolds and developed simul-
taneous codeword optimization (SimCO) algorithm. In each iteration SimCO allows
multiple codewords of the dictionary to be updated with corresponding rows of the
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sparse coefficients jointly. This new algorithm can be viewed as a generalization of
both MOD and K-SVD. Some other dictionary learning algorithms are also devel-
oped in the past decade targeting on various circumstances. For example, based on
stochastic approximations, Mairal et al. [27] proposed an online algorithm to address
the problem with large data sets.

Theoretical or in-depth analysis about the dictionary learning problem was mean
time in progress as well. Gribonval et al. [28], Geng et al. [29], and Jenatton
et al. [30] studied the stability and robustness of the objective function under different
probabilistic modeling assumptions, respectively. In addition, Dai et al. observed in
[16] that the dictionary update procedure may fail to converge to a minimizer. This is
a common phenomenon happening in MOD, K-SVD, and SimCO. Dai et al. further
observed that ill-conditioned dictionaries, rather than stationary dictionaries, are the
major reason that has led to the failure of the convergence. To alleviate this problem,
Regularized SimCO was proposed in [16]. Empirical performance improvement was
observed. The same approach was also considered in [31], however, without detailed
discussion on the singularity issue. More recently, the fundamental drawback of reg-
ularized SimCO was demonstrated using an artificial example [32]. To further handle
the singularity issue, a Smoothed SimCO [33] was proposed by adding multiplicative
terms rather than additive regularization terms to the objective function.

2.3.2 Singularity Issue and Its Impacts

In dictionary update stage of existing mainstream algorithms, singularity is observed
as the major reason leading to failures [16, 33]. Simulations in [16] suggests that the
mainstream algorithms fail mainly because of singular points in the objective function
rather than non-optimal stationary points. As dictionary learning is an essential part
of the aforementioned SparseBSS, the singularity issue also has negative impact on
the overall performance of BSS. To explain the singularity issue in dictionary update,
we first formally define the singular dictionaries.

Definition 1 A dictionary D ∈ R
m×d is singular under a given sparsity pattern α

if there exists an i ∈ [n] such that the corresponding sub-dictionary Di � D:,α(:,i) is
column rank deficient. Or equivalently, the minimum singular value of Di, denoted
as λmin (Di), is zero.

A dictionary D ∈ R
m×d is said to be ill-conditioned under a given sparsity pattern

α if there exists an i ∈ [n] such that the condition number of the sub-dictionary Di

is large, or equivalently λmin (Di) is close to zero.

Definition 2 [16] Define the condition number of a dictionary D as:

κ (D) = max
i∈[n]

λmax (Di)

λmin (Di)
,
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where λmax (Di) and λmin (Di) represent the maximum and the minimum singular
value of the sub-dictionary Di respectively.

The word “singular” comes from the fact that f (D) = min
X∈Xα

∈Y − DX∈2
F is not

continuous at a singular dictionary2 and the corresponding

X (D) � arg min
X∈Xα

∈Y − DX∈2
F

is not unique. The singularity of f (D) leads to convergence problems. Benchmark
dictionary update procedures may fail to find a globally optimal solution. Instead
they converge to a singular point of f (D), i.e., a singular dictionary.

Ill-conditioned dictionaries are in the neighborhood of singular ones. Algorith-
mically when one of the λmin (Di)s is ill-conditioned, the curvature of f (D) is quite
large and the value of the gradient fluctuates dramatically. This seriously affects the
convergence rate of the dictionary update process.

Furthermore, ill-conditioned dictionaries also bring negative effect on the sparse
coding stage. Denote yi and xi as the ith column of Y and X respectively. Consider
a summand of the formulation in sparse coding stage [16, 26], i.e.,

min
xi

∈yi − Dxi∈2
F + ∈xi∈0 .

An ill-conditioned D corresponds to a very large condition number, which breaks
the restricted isometry condition (RIP) [34], and results in the unstable solutions:
with small perturbations added on the training sample Y , the solutions of X deviate
significantly.

2.3.3 Regularized SimCO

The main idea of Regularized SimCO lies in the use of an additive penalty term to

avoid singularity. Consider the objective function fμ
(

D̃
)

in (2.7),

fμ
(

D̃
)

= min
X∈Xα

∈DX − P (S)∈2
F + μ ∈X∈2

F ,

= min
X∈Xα

∥∥∥∥
[P (S)

0

]
−

[
D√
μI

]
X

∥∥∥∥
2

F
. (2.15)

As long as μ 	= 0 (μ > 0 in our case), the block μI guarantees the full column rank

of D̃ = [
DT μI

]T
. Therefore, with the modified objective function fμ

(
D̃

)
, there is

2 An illustration: take Y, D, X as scalars. If Y 	= 0, there exists a singular point at D = 0 on
f (D) = min

X
∈Y − DX∈2

F , where X can be assigned as any real number.
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no singular point so that gradient descent methods will only converge to stationary
points.

This regularization technique is also applicable to MOD [16]. It is verified that this
technique effectively mitigates the occurrence of ill-conditioned dictionary although
at the same time some stationary points might be generated. To alleviate this problem,
one can decrease gradually the regularization parameter μ during the optimization
process [16]. In the end μ will decrease to zero. Nevertheless, it is still not guaranteed
to converge to a global minimum. The explicit example constructed in [32] shows
a failure of the Regularized SimCO. As a result, another method to address the
singularity issue is introduced below.

2.3.4 Smoothed SimCO

Also aiming at handling the singularity issue, Smoothed SimCO [33] is to remove
the singularity effect by adding multiplicative functions. The intuition is explained
as follows. Write f (D) into a summation of atomic functions

f (D) = ∈Y − DX∈2
F

=
∑

i

∈Y :,i − DiXΩ(:,i),i∈2
2 (2.16)

=
∑

i

fi(Di),

where each fi(Di) is termed as an atomic function and Di is defined in Definition
1. Let I be the index set corresponding to the Di’s of full column rank. Define an
indicator function XI s.t. XI (i) = 1 if i ∈ I and XI (i) = 0 if i ∈ Ic. Use XI (i) as
a multiplicative modulation function and apply it to each fi (Di). Then one obtains

f̄ (D) =
∑

i

fi(Di)XI (i) =
∑

i∈I
fi(Di). (2.17)

This new function f̄ is actually the best possible lower semi-continuous approxima-
tion of f and there is no new stationary point created.

Motivated from the above, we define

f̃ (D) =
∑

i

fi(Di)g (λmin (Di)) , (2.18)

where the shape of g is given in Fig. 2.1. The function g has the following properties:
(1) g (λmin) = 0 for all λmin ⇔ 0; (2) g (λmin) = 1 for all λmin (Di) > δ > 0, where δ
is a threshold; (3) g is monotonically increasing; (4) g is second order differentiable.
When using λmin (Di) as the input variable for g and the positive threshold δ → 0,
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Fig. 2.1 A shape of function
g (·)

λmin (Di) becomes an indicator function indicating whether Di has a full column
rank, i.e., {

g (λmin (Di)) = 1 if Di has full column rank;
g (λmin (Di)) = 0 otherwise.

The modulated objective function f̃ has several good properties, which do not exhibit
in the regularized objective function (2.15). In particular, we have the following
theorems.

Theorem 1 Consider the smoothed objective function f̃ and the original objective
function f defined in (2.18) and (2.16) ,respectively.

1. When δ > 0, ∞i, f̃ (D) is continuous.
2. Consider the limit case where δ → 0 with δ > 0, ∞i. The following statements

hold:

a. f̃ (D) and f (D) differ only at the singular points.
b. f̃ (D) is the best possible lower semi-continuous approximation of f (D).

Theorem 2 Consider the smoothed objective function f̃ and the original objective
function f defined in (2.18) and (2.16) ,respectively. For any a ∈ R, define the lower
level set Df (a) = {D : f (D) ⇔ a}. It is provable that when δ → 0, Df̃ (a) is the
closure of Df (a).

In practice, we always choose a δ > 0. The effect of a positive δ, roughly speaking,
is to remove the barriers created by singular points, and replace them with “tunnels”,
whose widths are controlled by δ, to allow the optimization process to pass through.
The smaller the δ is, the better f̃ approximates f , but the narrower the tunnels are,
and the slower the convergence rate will be. As a result, the threshold δ should be
properly chosen. A detailed discussion of choosing δ is presented in [32]. Compared
with the choice of the parameter (μ) in the Regularized SimCO [16], the choice of
the smoothing threshold δ is easier: one can simply choose a small δ > 0 without
decreasing it during the process.

As final remarks, Smoothed SimCO has several theoretical advantages over Reg-
ularized SimCO. However, the computations of (λmin (Di))’s introduce extra cost.
The choice between these two methods will depend on the size of the problem under
consideration.
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Fig. 2.2 Two speech sources and the corresponding noisy mixtures (20 dB Gaussian noise)

2.4 Algorithm Testing on Practical Applications

In this section, we present numerical results of the SparseBSS method compared
with some other mainstream algorithms. We first focus on speech separation where
an equal determined case will be considered. Then, we show an example for blind
image separation, where we will consider an overdetermined case.

In the speech separation case two mixtures are used, which are the mixtures of two
audio sources. Two male utterances in different languages are selected as the sources.
The sources are mixed by a 2 × 2 random matrix A (with normalized columns). For
the noisy case, a 20 dB Gaussian noise was added to the mixtures. See Fig. 2.2 for
the sources and mixtures.

We compare SparseBSS with two benchmark algorithms including FastICA
and QJADE [35]. The BSSEVAL toolbox [36] is used for the performance mea-
surement. In particular, an estimated source ŝ is decomposed as ŝ = starget +
einterf + enoise + eartif , where starget is the true source signal, einterf denotes the
interferences from other sources, enoise represents the deformation caused by the
noise, and eartif includes all other artifacts introduced by the separation algorithm.
Based on the decomposition, three performance criteria can be defined: the source-

to-distortion ratio SDR = 10 log10
∈starget∈2

∈einterf+enoise+eartif∈2 , the source-to-artifact ratio
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Table 2.1 Separation performance of the SparseBSS algorithm as compared to FastICA and
QJADE

�SDR �SIR �SAR

(a) The noiseless case
QJADE 60.661 60.661 −1.560
FastICA 57.318 57.318 −0.272
SparseBSS 69.835 69.835 1.379

(b) The noisy case
QJADE 7.453 58.324 −1.245
FastICA 7.138 40.789 −1.552
SparseBSS 9.039 62.450 0.341

The proposed SparseBSS algorithm performs better than the benchmark algorithms. Table 2.1a. For
the same algorithm, the �SDR and �SIR are the same in noiseless case. The �SDRs and �SIRs for
all the tested algorithms are large and similar, suggesting that all the compared algorithms perform
very well. The artifact introduced by SparseBSS is small as its �SAR is positive. Table 2.1b. In the
presence of noise with SNR = 20 dB, SparseBSS excels the other algorithms in �SDR, �SIR, and
�SAR. One interesting phenomenon is that the �SDRs are much smaller than those in the noiseless
case, implying that the distortion introduced by the noise is trivial. However, SparseBSS still has
better performance

SAR = 10 log10
∈starget+einterf+enoise∈2

∈eartif∈2 , and the source-to-interference ratio SIR =
10 log10

∈starget∈2

∈einterf∈2 . Among them, the SDR measures the overall performance (qual-

ity) of the algorithm, and the SIR focuses on the interference rejection. We investigate
the gains of SDRs, SARs, and SIRs from the mixtures to the estimated sources. For
example, �SDR = SDRout − SDRin, where SDRout is calculated from its definition
and SDRin is obtained by letting ŝ = Z with the same equation. The results (in dB)
are summarized in Table 2.1.

The selection of λ is an important practical issue since it is related to the noise level
and largely affects the algorithm performance. From the optimization formulation
(2.3), it is clear that with a fixed SNR, different choices of λ may give different

separation performance. To show this, we use the estimation error
∥∥∥Atrue − Â

∥∥∥
2

F
of

the mixing matrix to measure the separation performance, where Atrue and Â are the
true and estimated mixing matrices, respectively. The simulation results are presented
in Fig. 2.3. Consistent with the intuition, simulations suggest that the smaller the noise
level, the larger the optimal value of λ. The results in Fig. 2.3 help in setting λ when
the noise level is known a priori.

Next, we show an example for blind image separation, where we consider an
overdetermined case. The mixed images are generated from two source images using
a 4×2 full rank column normalized mixing matrix A with its elements generated ran-
domly according to a Gaussian process. The mean squared errors (MSEs) are used to
compare the reconstruction performance of the candidate algorithms when no noise
is added. MSE is defined as MSE = (1/N) ∈χ − χ̃∈2

F , where χ is the source image
and χ̃ is the reconstructed image. The lower the MSE, the better the reconstruction
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Table 2.2 Achieved MSEs
of the algorithms in a
noiseless case

FastICA GMCA BMMCA SparseBSS

Lena 8.7489 4.3780 3.2631 3.1346
Boat 18.9269 6.3662 12.5973 6.6555

performance. Table 2.2 illustrates the results of four tested algorithms. For the noisy
case, a Gaussian white noise is added to the four mixtures with σ = 10. We use
the Peak Signal-to-Noise Ratio (PSNR) to measure the reconstruction quality, which
is defined as, PSNR = 20log10(MAX/

√
MSE), where MAX indicates the maxi-

mum possible pixel value of the image, (e.g., MAX = 255 for a uint-8 image).
Higher PSNR indicates better quality. The noisy observations are illustrated in
Fig. 2.4b.3

Finally, we show another example of blind image separation to demonstrate the
importance of the singularity-aware process. In this example, we use two classic
images Lena and Texture as the source images (Fig. 2.6a). Four noiseless mixtures
were generated from the sources. The separation results are shown in Fig. 2.6b and c.
Note that images like Texture contain a lot of frequency components corresponding
to a particular frequency. Hence, an initial dictionary with more codewords corre-
sponding to the particular frequency may perform better for the estimation of these
images. Motivated by this, in Fig. 2.6b the initial dictionary is generated from an over-
complete DCT dictionary, but contains more high frequency codewords. Such choice

3 For the BMMCA test, a better performance was demonstrated in [14]. We point out that here a
different true mixing matrix is used. And furthermore, in our tests the patches are taken with a 50 %
overlap (by shifting 4 pixels from the current patch to the next) while in [14] the patches are taken
by shifting only one pixel from the current patch to the next.



2 Blind Source Separation Based on Dictionary Learning 55

Fig. 2.4 Two classic images, Lena and Boat were selected as the source images, which are shown
in (a). The mixtures are shown in (b). The separation results are shown in (c–f). We compared
SparseBSS with other benchmark algorithms: FastICA [37], GMCA [10], and BMMCA [14]. We
set the overlap percentage equal to 50 % for both BMMCA and SparseBSS. The recovered source
images by the SparseBSS tend to be less blurred compared to the other three algorithms

can lead to better separation results. At the same time, the very similar dictionary
codewords may introduce the risk of singularity issue (Fig. 2.5).

The major difference between Fig. 2.6b and c is that: in Fig. 2.6b the Regularized
SimCO process (μ = 0.05) is introduced, while in Fig. 2.6c there is no regularization
term in the dictionary learning stage. As one can see from the numerical results,
Fig. 2.6b performs much better than Fig. 2.6c. By checking the condition number
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Fig. 2.5 Compare the performance of estimating the mixing matrix for all the methods in different
noise standard deviation σs. In this experiment, σ varies from 2 to 20. The performance of GMCA is
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Fig. 2.6 The two source images Lena and Texture are shown in (a). The separation results are
shown in (b) and (c). The comparison results demonstrate the importance of the singularity -aware
process



2 Blind Source Separation Based on Dictionary Learning 57

when the regularized term is not introduced (μ = 0), the value stays at a high level as
expected (larger than 40 in this example). This confirms the necessity of considering
the singularity issue in BSS and the effectiveness of the proposed singularity-aware
approach.

2.5 Conclusions and Prospective Extensions

In conclusion, we briefly introduced a development of the blind source separation
algorithms based on dictionary learning. In particular, we focus on the SparseBSS
algorithm and the optimization procedures. The singularity issue might lead to the
failure of these algorithms. At the same time there are still some open questions to
be addressed.

In dictionary learning, it remains open how to find an optimum choice of the
redundancy factor τ = d/n of the over-complete dictionary. A higher redundancy
factor leads to either more sparse representation or more precise reconstruction.
Moreover, one has to consider the computational capabilities when implementing
the algorithms. From this point of view, it is better to keep the redundancy factor low.
In the simulation, we have used a 64 by 256 dictionary, which gives the redundancy
factor τ = 256/64 = 4. This choice is empirical: the sparse representation results
are good and the computational cost is limited. A rigorous analysis on the selection
of τ is still missing.

The relation between the parameters λ, ω, and noise standard deviation σ is also
worth investigating. As presented in the first experiment on blind audio separation,
the relation between λ and σ is discussed when the error bound ω is fixed in the sparse
coding stage. One can roughly estimate the value of the parameter λ assuming the
noise level is known a priori. Similar investigation is undertaken in [14], where the
authors claim that when λ ≈ σ/30, the algorithm achieved similar reconstruction
performance under various σ’s. From another perspective, the error bound ω is pro-
portional to the noise standard deviation. It turns out that once a well-approximated
relation between ω and σ is obtained, one may get more precise estimation of para-
meter λ, rather than keeping ω fixed. This analysis, therefore, is counted as another
open question.
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Chapter 3
Performance Study for Complex Independent
Component Analysis

Benedikt Loesch and Bin Yang

Abstract The goal of independent component analysis (ICA) is to decompose
observed signals into components as independent as possible. In linear instanta-
neous blind source separation, ICA is used to separate linear instantaneous mixtures
of source signals into signals that are as close as possible to the original signals. In
the estimation of the so-called demixing matrix one has to distinguish two different
factors:

1. Variance of the estimated inverse mixing matrix in the noiseless case due to
randomness of the sources.

2. Bias of the demixing matrix from the inverse mixing matrix:

This chapter studies both factors for circular and noncircular complex mixtures. It is
important to note that the complex case is not directly equivalent to the real case of
twice larger dimension. In the derivations, we aim to clearly show the connections
and differences between the complex and real cases. In the first part of the chapter, we
derive a closed-form expression for the CRB of the demixing matrix for instantaneous
noncircular complex mixtures. We also study the CRB numerically for the family
of noncircular complex generalized Gaussian distributions (GGD) and compare it to
simulation results of several ICA estimators. In the second part, we consider a linear
noisy noncircular complex mixing model and derive an analytic expression for the
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demixing matrix of ICA based on the Kullback-Leibler divergence (KLD). We show
that for a wide range of both the shape parameter and the noncircularity index of
the GGD, the signal-to-interference-plus-noise ratio (SINR) of KLD-based ICA is
close to that of linear MMSE estimation. Furthermore, we show how to extend our
derivations to the overdetermined case (M > N ) with circular complex noise.

3.1 Introduction

The goal of independent component analysis (ICA) is to decompose observed signals
into components as independent as possible. In linear instantaneous blind source
separation, ICA is used to separate linear instaneous mixtures of source signals into
signals which are as close as possible to the original signals. In the estimation of the
so-called demixing matrix, one has to distinguish two different factors:

1. Variance of the estimated inverse mixing matrix in the noiseless case due to
randomness of the sources. This variance can be lower bounded by the Cramér-
Rao bound for ICA derived for the real case in [41, 45] and for the circular and
noncircular complex case in [33, 35].

2. Bias of the demixing matrix from the inverse mixing matrix: As already noted in
[16], the presence of noise leads to a bias of the demixing matrix from the inverse
mixing matrix. Often a bias of an estimator is considered to be unwanted, but in
the case of noisy ICA the bias of the demixing matrix from the inverse mixing
matrix actually leads to a reduced noise level in the separated signals and hence
it can be considered to be desired.

This chapter studies both factors for circular and noncircular complex mixtures.
It is important to note that the complex case is not directly equivalent to the real
case of twice larger dimension [19]. In the derivations, we aim to clearly show the
connections and differences between the complex and real cases.

In many practical applications such as audio processing in frequency-domain
or telecommunication, the signals are complex. While many publications focus on
circular1 complex signals (as traditionally assumed in signal processing), [4, 36,
44] provide a good overview of applications with noncircular complex signals and
discuss how to properly deal with noncircularity. Many signals of practical interest
are noncircular. Digital modulation schemes2 usually produce noncircular complex
baseband signals, since the symbol constellations in the complex plane are only
rotationally symmetric for a discrete set of rotation angles but not any arbitrary real
rotation angle as necessary for circularity [2]. Another source of noncircularity is an
imbalance between the in-phase and quadrature (I/Q) components of communication
signals. Noncircularity can also be exploited in feature extraction in electrocardio-

1 See Sect. 3.1.1 for a definition.
2 Examples of digital modulation schemes are phase shift keying (PSK), pulse amplitude modulation
(PAM) or quadrature amplitude modulation (QAM).
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grams (ECGs) and in the analysis of functional magnetic resonance imaging (fMRI)
[4]. Moreover, the theory of noncircularity has found applications in acoustics and
optics [44].

Although a large number of different algorithms for complex ICA have been pro-
posed [7, 10, 14, 17, 18, 20, 29, 30, 38, 39], the CRB for the complex demixing
matrix has only been derived recently in [33, 35]. General conditions regarding iden-
tifiability, uniqueness, and separability for complex ICA can be found in Eriksson
and Koivunen [19]. Yeredor [48] provides a performance analysis for the strong
uncorrelating transform (SUT) in terms of the interference-to-signal ratio matrix.
However, since the SUT uses only second-order statistics, the results from [48] do
not apply for ICA algorithms exploiting also the non-Gaussianity of the sources. As
discussed in [3, 4], many ICA approaches exploiting non-Gaussianity of the sources
are intimately related and can be studied under the umbrella of a maximum like-
lihood framework whose asymptotic performance reaches the CRB if the assumed
distribution of the sources matches the true distribution.

The structure of the separation problem changes substantially if we account for
additive noise. As discussed in [12], the mixing model is no longer equivariant
and the likelihood contrast can no longer be assimilated to mutual information.
Furthermore, the ML estimate of the source signals is no longer a linear function of
the observations [23]. Source estimation from noisy mixtures can be classified into
linear and nonlinear separation. In linear ICA, the presence of noise leads to a bias
in the estimation of the mixing matrix. Douglas et al. [16] introduced measures to
reduce this bias. Cardoso [8] showed that the performance of noisy source separation
depends on the distribution of the sources, the signal-to-noise ratio (SNR) and the
mixing matrix. Davies [13] showed for the real case that it is not meaningful to
estimate both the mixing matrix and the full covariance matrix of the noise from
the data. Koldovsky and Tichavsky [27, 28] drew parallels between linear minimum
mean squared error (MMSE) estimation and ICA for the real data case. Up to now,
closed-form expressions for the bias of the ICA solution in the complex case have
not been derived except for the recent work of Loesch and Yang [34].

After a review of notation for complex-valued signals, complex ICA, and the CRB
for a complex parameter vector in Sect. 3.1.1, we derive a closed-form expression for
the CRB of the demixing matrix for instantaneous noncircular complex mixtures in
Sect. 3.2. We first introduce the signal model and the assumptions in Sect. 3.2.1 and
then derive the CRB for the complex demixing matrix in Sect. 3.2.2. Section 3.2.3
discusses the circular complex case and noncircular complex Gaussian case as two
special cases of the CRB. In Sect. 3.2.4, we study the CRB numerically for family
of noncircular complex generalized Gaussian distributions3 (GGD) and compare it
to simulation results of several ICA estimators.

In Sect. 3.3, we consider a linear noisy noncircular complex mixing model and
derive an analytic expression for the demixing matrix of ICA based on the Kullback-
Leibler divergence (KLD) [34]. This expression contains the circular complex and

3 See Sect. 3.2.4 for a definition.
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real case as special cases. The derivation is done using a perturbation analysis valid for
small noise variance.4 In Sect. 3.3.3, we show that for a wide range of both the shape
parameter and the noncircularity index of the GGD, the signal-to-interference-plus-
noise ratio (SINR) of KLD-based ICA is close to that of linear MMSE estimation.
We also discuss the situations where the two solutions differ. Furthermore, we extend
our derivations to the overdetermined case (M > N ) with circular complex noise in
Sect. 3.3.4.

Compared to our previous journal and conference publications [33–35], we extend
the performance study to a larger number of ICA algorithms and extend the results
for noisy mixtures to the overdetermined case.

3.1.1 Notations for Complex-Valued Signals

3.1.1.1 Complex Random Vector

Let x = xR + jxI ∈ C
N be a complex random column vector with a corresponding

probability density function (pdf) defined as the pdf p̃(xR, xI ) of the real part xR

and imaginary part xI of x. Since xR = x+x≤
2 and xI = x−x≤

2 j , we can rewrite the pdf
p̃(xR, xI ) as a function of x and x≤, i.e., p̃(xR, xI ) = p(x, x≤). In the following, we
will use p(x) as a short notation for p(x, x≤). The covariance matrix of x is

cov(x) = E
[
(x − E[x])(x − E[x])H

]
. (3.1)

The pseudo-covariance matrix of x is

pcov(x) = E
[
(x − E[x])(x − E[x])T

]
. (3.2)

(·)T and (·)H stand for transpose and complex conjugate transpose of a vector or
matrix. The augmented covariance matrix of x is the covariance matrix of the aug-

mented vector x = [
xT xH

]T
:

cov(x) =
[

cov(x) pcov(x)

pcov(x)≤ cov(x)≤
⎡

. (3.3)

x is called circular if p(xe jψ) = p(x) √ψ ∈ R. Otherwise it is called noncircular.
Actually, for a random variable s, the circularity definition p(se jψ) = p(s) √ψ ∈ R

is much stronger than the second-order circularity given by α = E
[
s2
] = 0. There

exist noncircular complex random variables with α = 0. For simplicity, however,

4 For a large noise variance β 2 the theoretical analysis cannot fully describe the behavior of KLD-
based ICA since we only take into account terms of order β 2. However, simulation results show
that KLD-based ICA still performs similarly to linear MMSE estimation.
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we use the second-order noncircularity index α = E
[
s2
]

to quantify noncircularity
in the remainder of this chapter.

3.1.1.2 Complex Gradient

Let a complex column parameter vector ωωω = ωωω R + jωωω I ∈ C
M , its real and imaginary

part ωωω R, ωωω I ∈ R
M , and a real scalar cost function f (ωωω,ωωω≤) = f̃ (ωωω R, ωωω I ) ∈ R be

given. For ease of notation, we will also use the simplified notation f (ωωω) instead of
f (ωωω,ωωω≤). Instead of calculating the derivatives of f̃ (·) with respect to ωωω R and ωωω I , the
Wirtinger calculus computes the partial derivatives of f (ωωω,ωωω≤) with respect to ωωω and
ωωω≤, treating ωωω and ωωω≤ as two independent variables [21, 44]. The complex gradient
vectors ⊗ωωω f and ⊗ωωω≤ f are given by

⊗ωωω f = θ f

θωωω
= 1

2

⎣
θ f̃

θωωω R
− j

θ f̃

θωωω I

⎤
∈ C

M ,

⊗ωωω≤ f = θ f

θωωω≤ = 1

2

⎣
θ f̃

θωωω R
+ j

θ f̃

θωωω I

⎤
∈ C

M . (3.4)

The stationary points of f (·) and f̃ (·) are given by
⎦

θ f̃
θωωω R

= 0 and θ f̃
θωωω I

= 0
)

or
θ f
θωωω

= 0 or θ f
θωωω≤ = 0. The direction of steepest descent of a real function f (ωωω,ωωω≤) is

given by − θ f
θωωω≤ and not − θ f

θωωω
[6]. Note that − θ f

θωωω≤ is the direction of steepest descent
for ωωω and not for ωωω≤.

As long as the real and imaginary part of a complex function g(ωωω,ωωω≤) =
gR(ωωω R, ωωω I ) + jgI (ωωω R, ωωω I ) are differentiable, the Wirtinger derivatives θg

θωωω
= θgR

θωωω
+

j θgI
θωωω

and θg
θωωω≤ = θgR

θωωω≤ + j θgI
θωωω≤ also exist [43]. Furthermore, we note that the Wirtinger

derivatives defined in (3.4) are also valid for partial derivatives of f with respect to
a parameter matrix φφφ. In this chapter, we will also use real derivatives which we
denote as (·)∀ wherever possible.

3.1.1.3 Cramér-Rao Bound for a Complex Parameter Vector

Assume that L complex observations of x are iid with the pdf p(x;ωωω) where ωωω is
an N -dimensional complex parameter vector. In principle, it would be possible to
derive the CRB for complex parameter ωωω = ωωω R + jωωω I by considering the real CRB

of the 2N -dimensional real composite vector ω̄ωω = [
ωωωT

R ωωωT
I

]T
:

cov(ω̄ωω) =
[

cov(ωωω R) cov(ωωω R, ωωω I )

cov(ωωω I , ωωω R) cov(ωωω I )

⎡
⇔ L−1J−1

ω̄ωω
, (3.5)
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where cov(x, y) = E
[
(x − E[x])(y − E[y])T

]
denotes the cross-covariance matrix

of x and y, Jω̄ωω = E
[{⊗ω̄ωω ln p(x; ω̄ωω)

} {⊗ω̄ωω ln p(x; ω̄ωω)
}T
]

is the real Fisher information

matrix (FIM) and ⊗ω̄ωω ln p(x; ω̄ωω) is the real gradient vector of ln p(x; ω̄ωω).
However, it is often more convenient to directly work with the complex CRB

introduced in this section: The complex FIM of ωωω is defined as

Jωωω =
[
Iωωω Pωωω

P≤
ωωω I ≤

ωωω

⎡
, (3.6)

where Iωωω = E
[{⊗ωωω≤ ln p(x;ωωω)} {⊗ωωω≤ ln p(x;ωωω)}H ] is called the information matrix

and Pωωω = E
[{⊗ωωω≤ ln p(x;ωωω)} {⊗ωωω≤ ln p(x;ωωω)}T ] the pseudo-information matrix.

The inverse of the FIM of ωωω gives, under some regularity conditions, a lower
bound for the augmented covariance matrix of an unbiased estimator ω̂ωω of ωωω [42, 44]

[
cov(ω̂ωω) pcov(ω̂ωω)

pcov(ω̂ωω)≤ cov(ω̂ωω)≤

]
⇔ (

LJωωω

)−1 = L−1
[
Iωωω Pωωω

P≤
ωωω I ≤

ωωω

⎡−1

. (3.7)

Note that the complex CRB (3.7) can be transformed to the corresponding real CRB

(3.5) by using the transform J−1
ω̄ωω

= 1
2 TJ −1

ωωω T−1 [42], where T = 1
2

[
I I

− jI jI

⎡
is a

2N × 2N matrix and I is the N × N identity matrix.
By using the block matrix inversion lemma [22], we get from (3.7)

[
cov(ω̂ωω) pcov(ω̂ωω)

pcov(ω̂ωω)≤cov(ω̂ωω)≤

]
⇔ L−1

[
R−1

ωωω −R−1
ωωω Qωωω

−QH
ωωω R−1

ωωω R−≤
ωωω

⎡
(3.8)

with Rωωω = Iωωω − PωωωI
−≤
ωωω P≤

ωωω and Qωωω = PωωωI
−≤
ωωω . A−≤ is a short notation for(

A−1
)≤ = (A≤)−1. Often we are interested in the bound for cov(ω̂ωω) only, which can

be obtained from (3.8) as

cov(ω̂ωω) ⇔ L−1R−1
ωωω = L−1(Iωωω − PωωωI

−≤
ωωω P≤

ωωω )−1. (3.9)

Note that (3.9) gives a bound solely on the covariance matrix of an unbiased estimator.
If an estimator reaches that bound, i.e., cov(ω̂ωω) = L−1R−1

ωωω , it does not imply that it
also reaches the general CRB defined in (3.7). Only if the pseudo-information matrix
Pωωω vanishes, cov(ω̂ωω) = L−1R−1

ωωω implies that ω̂ωω reaches the CRB (3.7).
Sometimes, we are interested in introducing constraints on some or all of the

complex parameters. The constrained CRB can be derived by following the steps in
either [42] or [24]. If the unconstrained Fisher information matrix is singular, only
the constrained CRB from [24] can be applied.
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3.2 Cramér-Rao Bound for Complex ICA

For the performance analysis of ICA algorithms, it is useful to have a lower bound
for the covariance matrix of estimators of the demixing matrix W. The Cramér-Rao
bound (CRB) is a lower bound on the covariance matrix of any unbiased estimator of
a parameter vector. A closed-form expression for the CRB of the demixing matrix for
real instantaneous ICA has been derived recently in [41, 45] which we summarized
in Appendix 1. However, in many practical applications such as audio processing
in frequency-domain or telecommunication, the signals are complex and hence we
need the CRB for complex ICA.

3.2.1 Signal Model and Assumptions

Throughout this section, we assume an instantaneous complex linear square noiseless
mixing model

x = As (3.10)

where x ∈ C
N are N linear combinations of the N source signals s ∈ C

N . We make
the following assumptions:

A1. The mixing matrix A ∈ C
N×N is deterministic and invertible.

A2. s = [s1, . . . , sN ]T ∈ C
N are N independent random variables with zero mean,

unit variance E
[|si |2

] = 1 and second-order noncircularity index αi = E[s2
i ] ∈

[0, 1].5 Since αi ∈ R, the real and imaginary part of si are uncorrelated. αi 	= 0
if and only if the variances of the real and imaginary part of si differ.
The probability density functions (pdfs) psi (si ) of different source signals si

can be identical or different. psi (si ) is continuously differentiable with respect
to si and s≤

i in the sense of Wirtinger derivatives [46] which have been shortly
reviewed in Sect. 3.1.1. All required expectations exist.

The task of ICA is to demix the signals x by a linear demixing matrix W ∈ C
N×N

y = Wx = WAs (3.11)

such that y is “as close to s” as possible according to some metric.
The ideal solution for W is A−1, neglecting scaling, phase, and permutation

ambiguity [19]. If we know the pdfs psi (si ) perfectly, there is no scaling ambiguity.
Due to the “working” assumption αi ∈ [0, 1] (see Appendix 2), there is no phase
ambiguity for noncircular sources (αi > 0) [1, 37]. A phase ambiguity occurs only
for circular sources (αi = 0). Noncircular sources si which do not comply with the
assumption αi ∈ [0, 1] can be transformed according to si e jψi such that αi ∈ [0, 1].

5 Due to the inherent scaling ambiguity between the mixing matrix A and the source signals s,
without loss of generality, we can scale s and accordingly A such that E

[|si |2
] = 1 and αi ∈ [0, 1].
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In general, a complex source signal s can be described by the following statistical
properties:

• non-Gaussianity,
• noncircularity,
• nonwhiteness, i.e., s(t1) and s(t2) are dependent for different time instants t1 	= t2,
• nonstationarity, i.e., the statistical properties of s(t) change over time.

In this section, we focus on noncircular complex source signals with independent
and identically distributed (iid) time samples. An extension to temporally non-iid
sources, i.e., to incorporate nonstationarity and nonwhiteness of the sources, has
been given in [35].

Two temporally iid sources can be separated by ICA

• if at least one of the two sources is non-Gaussian or
• if both sources are Gaussian but differ in noncircularity [19].

3.2.2 Derivation of the Cramér-Rao Bound

We form the parameter vector

ωωω = vec(WT ) = [wT
1 , . . . , wT

N ]T ∈ C
N 2

(3.12)

where wT
i denotes the i-th row vector of W. The vec(·) operator stacks the columns

of its argument into one long column vector. Given the pdfs psi (si ) of the complex
source signals si and the complex linear transform x = As, it is easy to derive the pdf
of x as p(x;ωωω) = | det(W)|2⎧N

i=1 psi (w
T
i x). Here, in the derivation of the CRB,

W is a short notation for A−1 and not the demixing matrix which would contain
permutation, scaling, and phase ambiguity. By using matrix derivatives [2, 3, 21],
we obtain

θ

θWH
ln p(x;ωωω) = A≤ − x≤ϕϕϕT (Wx) = A≤(I − sϕϕϕH (s))≤ (3.13)

where ϕϕϕ(s) = [ϕ1(s1), . . . , ϕN (sN )]T and ϕi (si ) is defined as

ϕi (si ) = − θ

θs≤
i

ln psi (si ) = −1

2

1

psi (si )

[
θpsi (si )

θsi,R
+ j

θpsi (si )

θsi,I

⎡
. (3.14)

Since ωωω = vec(WT ), we get

⊗ωωω≤ ln px(x;ωωω) = vec

⎨
θ

θWH
ln px(x;ωωω)

⎩
=
[
(I ⊗ A) vec

⎦
I − sϕϕϕ(s)H

)]≤
,

(3.15)
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where A ⊗ B = [
ai j B

]
denotes the Kronecker product of A and B. Hence, the

information and pseudo-information matrix in (3.6) become

Iωωω =
⎦
(I ⊗ A)E

[
vec{I − sϕϕϕH (s)} vec{I − sϕϕϕH (s)}H

]
(I ⊗ AH )

)≤

=
⎦
(I ⊗ A)M1(I ⊗ AH )

)≤
, (3.16)

Pωωω =
⎦
(I ⊗ A)E

[
vec{I − sϕϕϕH (s)} vec{I − sϕϕϕH (s)}T

]
(I ⊗ AT )

)≤

=
⎦
(I ⊗ A)M2(I ⊗ AT )

)≤
, (3.17)

where

M1 = E
[
vec{I − sϕϕϕH (s)} vec{I − sϕϕϕH (s)}H

]

and M2 = E
[
vec{I − sϕϕϕH (s)} vec{I − sϕϕϕH (s)}T

]
. (3.18)

3.2.2.1 Induced CRB for the Gain Matrix G = WA

Since the so-called gain matrix G = WA is a linear function of W, the CRB for W
“induces” a bound for G. For simplicity, we first derive this induced CRB (iCRB) for
G = WA = A−1A = I which is independent of the mixing matrix A. Later we will
obtain the CRB for W from the iCRB for G.6 When Ĝ = ŴA denotes the estimated
gain matrix, the diagonal elements Ĝii should be close to 1. They reflect how well
we can estimate the power of each source signal. The off-diagonal elements Ĝi j

should be close to 0 and reflect how well we can suppress interfering components.
We define the corresponding stacked parameter vector

πππ = vec(GT ) = vec(AT WT ) = (I ⊗ AT ) vec(WT ) = (I ⊗ AT )ωωω. (3.19)

The covariance matrix of π̂ππ = vec((ŴA)T ) is given by cov(π̂ππ) = (I ⊗ AT ) cov(ω̂ωω)

(I ⊗ A≤) where ω̂ωω = vec(ŴT ). By combining (3.9) with (3.16) and (3.17), we get

cov(π̂ππ) ⇔ L−1(I ⊗ AT )(Iωωω − PωωωI
−≤
ωωω P≤

ωωω )−1(I ⊗ A≤) = L−1R−1
πππ (3.20)

6 Some authors [5, 15, 47] prefer the so-called expected interference-to-source ratio (ISR) matrix

whose elements ISRi j are defined (for i 	= j and unit variance sources) as ISRi j = E

[ |Gi j |2

|Gii |2
⎡

,

where Gii denotes the diagonal elements and Gi j the off-diagonal elements of G. To compute
ISRi j , usually Gii ∇ 1 (i.e., var(Gii ) ∗ 1) is assumed such that ISRi j ∇ var(Gi j ). In this section,
we do not use the ISR matrix but instead directly derive the iCRB for G.
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with
Rπππ = (M1 − M2M−≤

1 M≤
2)

≤. (3.21)

As shown in [35], Rπππ can be calculated as

Rπππ =
N⎫

i=1

di Li i ⊗Li i +
N⎫

i=1

N⎫

j=1, j 	=i

ai j Li i ⊗L j j +
N⎫

i=1

N⎫

j=1, j 	=i

bi j Li j ⊗L j i (3.22)

where di = (∂i −1)2−|εi −1|2
∂i −1 ∈ R, ai j = κi − |α j ξi |2

κi
− 1

κ j
∈ R and bi j =

−
⎨

α ≤
j ξ≤

i
κi

+ αi ξ j
κ j

⎩
= b≤

j i ∈ C. Li j in (3.22) denotes an N × N matrix with a 1

at the (i, j) position and 0’s elsewhere.
The parameters ∂i , κi , εi , ξi and α j are defined as

∂i = E
[
|si |2|ϕi (si )|2

]
> 1, (3.23)

κi = E
[
|ϕi (si )|2

]
⇔ 1, (3.24)

εi = E
[
s2

i (ϕ≤
i (si ))

2
]

∈ C, (3.25)

ξi = E
[
(ϕ≤

i (si ))
2
]

∈ C, (3.26)

α j = E
[
s2

j

]
∈ R. (3.27)

Properties and other equivalent forms of these parameters can be found in the appen-
dix of [35].

Rπππ has a special sparse structure which is illustrated below for N = 3:

Rπππ =

⎬
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎞

d1 0 0 0 0 0 0 0 0
0 a12 0 b12 0 0 0 0 0
0 0 a13 0 0 0 b13 0 0
0 b21 0 a21 0 0 0 0 0
0 0 0 0 d2 0 0 0 0
0 0 0 0 0 a23 0 b23 0
0 0 b31 0 0 0 a31 0 0
0 0 0 0 0 b32 0 a32 0
0 0 0 0 0 0 0 0 d3

⎠
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎟

ss

The i-th diagonal element of the i-th diagonal block is Rπππ [i, i](i,i) = di . The j-th
diagonal element of the i-th diagonal block is Rπππ [i, i]( j, j) = ai j . The ( j, i) element
of the [i, j] block is Rπππ [i, j]( j,i) = bi j . All remaining elements are 0. By permuting
rows and columns of Rπππ , it can be brought into a block-diagonal form. Then it
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consists only of 1 × 1 blocks with elements di and 2 × 2 blocks

[
ai j bi j

b ji a ji

⎡
. Hence,

Rπππ can be easily inverted resulting in a block-diagonal matrix where all 1 × 1 and
2 × 2 blocks are individually inverted as long as di 	= 0 and ai j a ji − bi j b ji 	= 0.
The result is

R−1
πππ =

N⎫

i=1

1

di
Li i ⊗ Li i +

N⎫

i=1

N⎫
j=1
j 	=i

a ji

ai j a ji − bi j b ji
Li i ⊗ L j j

+
N⎫

i=1

N⎫
j=1
j 	=i

−bi j

ai j a ji − bi j b ji
Li j ⊗ L j i

=
N⎫

i=1

fi Li i ⊗ Li i +
N⎫

i=1

N⎫
j=1
j 	=i

gi j Li i ⊗ L j j +
N⎫

i=1

N⎫
j=1
j 	=i

hi j Li j ⊗ L j i (3.28)

with

fi = 1

di
= ∂i − 1

(∂i − 1)2 − |εi − 1|2 , (3.29)

gi j = a ji

ai j a ji − bi j b ji
= κ j (κi κ j − 1) − |αi ξ j |2κi

(κi κ j − 1)2 + |αi α j ξi ξ j − 1|2 − 1 − κ2
i |αi ξ j |2 − κ2

j |α j ξi |2
,

(3.30)

hi j = −bi j

ai j a ji − bi j b ji
=

α ≤
j ξ≤

i κ j + αi ξ j κi

(κi κ j − 1)2 + |αi α j ξi ξ j − 1|2 − 1 − κ2
i |αi ξ j |2 − κ2

j |α j ξi |2
.

(3.31)

This means that var(Ĝii ) and var(Ĝi j ) of Ĝ = ŴA are lower bounded by the (i, i)-th
and ( j, j)-th element of the (i, i)-th block of L−1R−1

πππ :

var(Ĝii ) ⇔ 1

L
fi = 1

L

∂i − 1

(∂i − 1)2 − |εi − 1|2 , (3.32)

var(Ĝi j ) ⇔ 1

L
gi j = 1

L

κ j (κiκ j − 1) − |αiξ j |2κi

(κiκ j − 1)2 + |αiα jξiξ j − 1|2 − 1 − κ2
i |αiξ j |2 − κ2

j |α jξi |2
.

(3.33)

Note that L−1R−1
πππ is the iCRB for πππ as in (3.9). In order to get the complete iCRB

for

[
πππ

πππ≤
⎡

as in (3.8), we would also need Pπππ = −R−1
πππ Qπππ = −R−1

πππ M≤
2M−1

1 .
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It can be shown in a similar way

Pπππ =
N⎫

i=1

f̃i Li i ⊗ Li i +
N⎫

i=1

N⎫
j=1
j 	=i

⎦
g̃i j Li i ⊗ L j j + h̃i j Li j ⊗ L j i

)
(3.34)

has the same form as R−1
πππ in (3.28) with

f̃i = − fi (εi − 1)≤
∂i − 1

= −(εi − 1)≤
(∂i − 1)2 − |εi − 1|2 , (3.35)

g̃i j = −
gi j α

≤
j ξ≤

i + hi j

κi
=

−(κ2
j − |αi ξ j |2)α ≤

j ξ≤
i αi ξ j

(κi κ j − 1)2 + |αi α j ξi ξ j − 1|2 − 1 − κ2
i |αi ξ j |2 − κ2

j |α j ξi |2
,

(3.36)

h̃i j = −
gi j + α ≤

i ξ≤
j hi j

κ j
= 1 − κi κ j − (α j ξi αi ξ j )

≤

(κi κ j − 1)2 + |αi α j ξi ξ j − 1|2 − 1 − κ2
i |αi ξ j |2 − κ2

j |α j ξi |2
.

(3.37)

Note that according to (3.28) and (3.34) the iCRB for G = WA has a nice decoupling
property: the iCRB for Gii only depends on the distribution of source i and the iCRB
for Gi j only depends on the distribution of sources i and j and not on any other
sources. Note that (3.32) and (3.33) cannot be used as a bound for real ICA since the
FIM would be singular.

3.2.2.2 CRB for the Demixing Matrix W

Starting with the iCRB L−1R−1
πππ for the stacked gain matrix πππ = vec((WA)T ) =

(I ⊗ AT ) · vec(WT ), it is now straightforward to derive the CRB for the stacked
demixing matrix ωωω = vec(WT ) = (I ⊗ AT )−1πππ = (I ⊗ WT )πππ . Since ωωω is a linear
function of πππ ,

cov(ω̂ωω) ⇔ L−1R−1
ωωω = L−1(I ⊗ WT )R−1

πππ (I ⊗ W≤) (3.38)

holds for any unbiased estimator ω̂ωω for ωωω . See [35] for a more detailed expression of
the CRB for W.

3.2.3 Special Cases of the iCRB

In the previous section, we derived the iCRB for the gain matrix G = WA for the
general complex case. Below, we study some special cases of the iCRB.
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3.2.3.1 Case A: All Sources Are Circular Complex

If all sources are circular complex, αi = 0 and εi = ∂i [35]. Due to the phase
ambiguity in circular complex ICA, the Fisher information for the diagonal elements
Gii is 0 and hence their iCRB does not exist. However, we can constrain Gii to be real
and derive the constrained CRB [24] for Gii : As noted at the end of Sect. 3.2.2.1, Gii

is decoupled from Gi j and G j j and hence it is sufficient to consider the constrained
CRB for Gii alone.

The constrained CRB for Gii is given by [35]

var(Ĝii ) ⇔ 1

4L(∂i − 1)
. (3.39)

The bound in (3.39) is valid for a phase-constrained Gii such that Gii ∈ R. Equation
(3.39) looks similar to the real case (3.90) except for a factor of 4 since ∂i is defined
using Wirtinger derivatives instead of real derivatives.

For var(Ĝi j ) we get from (3.33)

var(Ĝi j ) ⇔ 1

L

κ j

κiκ j − 1
, (3.40)

which again looks the same as in the real case (3.91). However, in the complex case,
κi is defined using the Wirtinger derivative instead of real derivative. Furthermore,
in the complex case κ measures the non-Gaussianity and noncircularity whereas in
the real case κ measures only the non-Gaussianity.

If source i and j are both circular Gaussian, κi = κ j = 1 and var(Ĝi j ) → ∞.
This corresponds to the known fact that circular complex Gaussian sources cannot
be separated by ICA.

3.2.3.2 Case B: All Sources are Noncircular Complex Gaussian

If all sources are noncircular Gaussian with different αi ∈ R, it can be shown using
the expressions for κ, ξ, ∂ and ε in (3.86)–(3.89) with c = 1 that

var(Ĝii ) ⇔ 1

L

1

4α 2
i

, (3.41)

var(Ĝi j ) ⇔ 1

L

α 2
i + α 2

j − 2α 2
i α 2

j

(α 2
j − α 2

i )2
(1 − α 2

i )

= 1 − α 2
i

2L

[
1 − αiα j

(αi − α j )2 + 1 + αiα j

(αi + α j )2

⎡
. (3.42)
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Note that (3.42) is exactly the same result as obtained in [48] for the performance
analysis of the SUT, i.e., our result shows that for noncircular Gaussian sources the
SUT is indeed asymptotically optimal.

If all sources are noncircular Gaussian with identical αi , it can be shown that the
iCRB for Gi j does not exist because α 2

j −α 2
i → 0. This confirms the result obtained

in [19, 29] which showed that ICA fails for two or more noncircular Gaussian signals
with same αi .

3.2.4 Results for Generalized Gaussian Distribution

In order to verify the CRB derived in the previous sections, we now study complex
ICA with noncircular complex generalized Gaussian distributed (GGD) sources. We
choose this family of parametric pdf since it enables an analytical calculation of
the CRB. The pdf of such a noncircular complex source s with zero mean, variance
E[|s|2] = 1 and noncircularity index α ∈ [0, 1] can be written as [40]

p(s, s≤) =
cψ · exp

⎦
−
[

ψ/2
α 2−1

⎦
α s2 + α s≤2 − 2ss≤

)]c)

π�(1/c)(1 − α 2)1/2 ,

where ψ = Γ (2/c)/Γ (1/c) and Γ (·) is the Gamma function. The shape parameter
c > 0 varies the form of the pdf from super-Gaussian (c < 1) to sub-Gaussian
(c > 1). For c = 1, the pdf is Gaussian. 0 ≤ α ≤ 1 controls the noncircularity of
the pdf. The four parameters κ , ε, ∂, ξ required to calculate the CRB are derived
in Appendix 1. For the simulation study, we consider N = 3 sources with random
mixing matrices A. The real and imaginary part of all elements of A are independent
and uniformly distributed in [−1, 1]. We conducted 100 experiments with different
random matrices A and consider the following different ICA estimators7: Complex
ML-ICA [29], complex ICA by entropy bound minimization (ICA-EBM) [30], non-
circular complex ncFastICA (ncFastICA) [39], adaptable complex maximization of
non-Gaussianity (ACMN) [38] and strong uncorrelating transform (SUT) [18, 44].
The properties and assumptions of the five different ICA algorithms are summarized
in Table 3.1.

We want to compare the separation performance of ICA with respect to the iCRB
and hence we define the performance metric as in [45]: After running an ICA algo-
rithm, we correct the permutation ambiguity of the estimated demixing matrix and
calculate the signal-to-interference ratio (SIR) averaged over all N sources:

SIR = 1

N

N⎫

i=1

E
[|Gii |2

]
∑

j 	=i E
[|Gi j |2

] = 1

N

N⎫

i=1

1+var(Gii )∑
j 	=i var(Gi j )

. (3.43)

7 Note that many alternative ICA estimators such as [7, 10, 14, 17, 20] exist.
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Table 3.1 Considered separation algorithms and their properties

Algorithm Pdf model/ϕ Separation principle

Complex ML-ICA (ML-ICA) True pdf of the
sources

Non-Gaussianity and noncircularity

Complex ICA by Entropy Bound
Minimization (ICA-EBM)

Adaptive Non-Gaussianity and noncircularity

Noncircular Complex FastICA
(ncFastICA)

Fixed ϕ Non-Gaussianity

Adaptable Complex Maximization of
Non-Gaussianity (ACMN)

Adaptive ϕ Non-Gaussianity

Strong Uncorrelating Transform (SUT) – noncircularity

In (3.43), the averaging over simulation trials takes place before taking the ratio.
In practice, the accuracy of the estimated demixing matrix depends not only on the

optimization cost function but also on the optimization algorithm used to implement
the estimator: In some rare cases, complex ML-ICA based on natural-gradient ascent
converges to a local maximum of the likelihood and yields a lower SIR value than
ICA-EBM. To overcome this problem, we initialized ML-ICA from the solution
obtained by ICA-EBM which is close to the optimal solution.

3.2.4.1 Case A: All Sources Are Identically Distributed

First, we study the performance when all sources are identically distributed with
the same shape parameter c and the same noncircularity index α . Figure 3.1 shows
the results: The SIR given by the iCRB increases with increasing non-Gaussianity
(c → ∞ or c → 0). For c ∇ 1, SIR is low since (nearly) Gaussian sources with
the same noncircularity index α cannot be separated by ICA. For c 	= 1, the SIR
also increases with increasing noncircularity α , but much slower since all sources
have the same noncircularity α . Clearly, all ICA algorithms work quite well except
for c ∇ 1 (Gaussian). ML-ICA (Fig. 3.1b) achieves the best performance followed
by ICA-EBM (Fig. 3.1c) and ACMN (Fig. 3.1f). ncFastICA with kurtosis cost func-
tion achieves better performance for sub-Gaussian sources (c > 1) than for super-
Gaussian sources (c < 1), whereas ncFastICA with square root (sqrt) nonlinearity
works better for super-Gaussian sources than for sub-Gaussian sources. However, as
also mentioned in [30], the square root nonlinearity leads overall to the best perfor-
mance and hence we only consider ncFastICA with this nonlinearity in the following.
As expected, SUT fails since it only uses noncircularity for separation and hence we
do not show the results. The reason why ML-ICA outperforms ICA-EBM is that
ML-ICA uses nonlinearities matched to the source distributions while ICA-EBM
uses a linear combination of prespecified nonlinear functions. Note that ICA-EBM
allows one to select nonlinearities for approximating the source entropy. Hence if
prior knowledge about the source distributions is available, it can be incorporated
into ICA-EBM thus improving its performance.
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Fig. 3.1 Comparison of signal-to-interference ratio [dB] of different ICA estimators with CRB,
sample size L = 1000, all sources follow a generalized Gaussian distribution with ci = c and
αi = α . iCRB (a), ML-ICA (b), ICA-EBM (c), ncFastICA kurtosis (d), ncFastICA sqrt (e), ACMN
(f)

3.2.4.2 Case B: All Sources Have Different Shape Parameters and Different
Noncircularities

Now we study the performance when the sources follow a GGD with different
shape parameters c1 = 1, c2 = c, c3 = 1/c and different noncircularity indices
αi = (i − 1)�α . Figure 3.2 shows that the SIR given by the iCRB increases both
with increasing non-Gaussianity of source 2 and 3 (i.e., c < 1) as well as increasing
difference in noncircularity indices �α . ML-ICA achieves again the best perfor-
mance, followed by ICA-EBM. The reason is again that ML-ICA uses for each
source si a nonlinearity ϕi (si ) matched to its pdf psi (si ) whereas the nonlinearities
used in ICA-EBM are fixed a priori. Although ncFastICA and ACMN exploit the
noncircularity of the sources to improve the convergence, their cost function only
uses non-Gaussianity and not noncircularity. This is reflected clearly in Fig. 3.2 since
performance for ncFastICA and ACMN is almost constant for different �α . SUT
uses only noncircularity for separation, and hence performance is almost constant for
different c. SUT can work quite well, as long as �α is large enough. Only ML-ICA
and ICA-EBM use both non-Gaussianity and noncircularity and hence the contour
lines in Fig. 3.2b, c resemble those of the CRB Fig. 3.2a.
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Fig. 3.2 Comparison of signal-to-interference ratio [dB] of different ICA estimators with iCRB,
sample size L = 1000, all sources follow a generalized Gaussian distribution with c1 = 1, c2 =
c, c3 = 1/c, αi = (i − 1)�α . iCRB (a), ML-ICA (b), ICA-EBM (c), ncFastICA sqrt (d), ACMN
(e), SUT (f)

3.2.4.3 Performance as a Function of the Sample Size

Here, we study the performance as a function of sample size L . Clearly, Fig. 3.3
shows that for circular non-Gaussian sources and limited sample size L , ML-ICA
achieves the best performance followed by ACMN and then ICA-EBM. The rea-
son why ACMN outperforms ICA-EBM for circular sources could be the fact
that ACMN needs to adapt less parameters since it uses only non-Gaussianity.
As expected, SUT fails since it only uses noncircularity for separation. For cir-
cular super-Gaussian sources (Fig. 3.3a), ACMN and ncFastICA perform almost the
same. For sub-Gaussian sources (Fig. 3.3b), the sqrt nonlinearity is sub-optimal as
shown in the larger error of ncFastICA. Figure 3.4a shows results for noncircular
Gaussian sources with distinct noncircularity indices: SUT and ML-ICA perform
equally well since for noncircular Gaussian sources they are equivalent and asymp-
totically optimal. ICA-EBM approaches the performance of SUT and ML-ICA for
large enough sample size. ncFastICA and ACMN which use only non-Gaussianity for
separation fail. Figure 3.4b, c shows results for noncircular super-Gaussian (c = 0.5)
and sub-Gaussian (c = 6) sources with distint noncircularity indices: With limited
sample size, ML-ICA achieves again the best performance followed by ICA-EBM.
For a large sample size (L ⇔ 1000) and a wide range of distributions including
strongly super-Gaussian but excluding strongly sub-Gaussian sources, ICA-EBM
comes close to the performance of ML-ICA, see Figs. 3.1, 3.3, 3.4. The reason for
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Fig. 3.3 Performance as a function of sample size L , circular GGD sources. c = 0.5 (a), c = 6
(b)

this behavior is that ML-ICA uses nonlinearities matched to the source distribu-
tions while ICA-EBM uses a linear combination of prespecified nonlinear functions.
These could be extended to improve performance for strongly sub-Gaussian sources.
The performance of ncFastICA and ACMN is quite far from that given by the iCRB
since these two algorithms do not use noncircularity for separation. For signals with
distinct noncircularity indices, SUT can achieve decent separation, but for strongly
non-Gaussian signals the performance is quite far from that given by the iCRB (see
also Fig. 3.2).

3.2.5 Conclusion

In this section, we have derived the CRB for the noncircular complex ICA problem
with temporally iid sources. The induced CRB (iCRB) for the gain matrix, i.e., the
demixing-mixing-matrix product, depends on the distribution of the sources through
five parameters, which can be easily calculated. The derived bound is valid for the
general noncircular complex case and contains the circular complex and the non-
circular complex Gaussian case as two special cases. The iCRB reflects the phase
ambiguity in circular complex ICA. In that case, we derived a constrained CRB
for a phase-constrained demixing matrix. Simulation results using five ICA algo-
rithms have shown that for sources following a noncircular complex generalized
Gaussian distribution, some algorithms can achieve a signal-to-interference ratio
(SIR) close to that of the CRB. Among the studied algorithms, complex ML-ICA
and ICA-EBM perform best. The complex ML-ICA algorithm, which uses for each
source a nonlinearity matched to its pdf, outperforms ICA-EBM especially for small
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Fig. 3.4 Performance as a function of sample size L , noncircular GGD sources with ci = c and
αi = (i − 1)�α . c = 1,�α = 0.45 (a), c = 0.5,�α = 0.45 (b), c = 6,�α = 0.45 (c)

sample sizes. However, for ML-ICA the pdfs of the sources must be known whereas
no such knowledge is required for ICA-EBM. Hence, for practical applications where
the pdfs of the sources might be unknown ICA-EBM is an adequate algorithm whose
performance comes quite close to the iCRB for large enough sample size L .

3.3 Solution of Linear Complex ICA in the Presence of Noise

In this section, we study the bias of the demixing matrix in linear noisy ICA from
the inverse mixing matrix. We first derive the ICA solution for the general complex
determined case. We then show how the circular complex case and the real case can
be derived as special cases. Next, we verify the results using simulations. Finally, we
extend our derivations to the overdetermined case with circular complex noise.
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3.3.1 Signal Model and Assumptions

We assume the linear noisy mixing model

x = As + v (3.44)

where x ∈ C
N are N linear combinations of N original signals s ∈ C

N with additive
noise v ∈ C

N . Here, all signals are modeled as temporally iid. In addition to the
assumptions A1 and A2 (invertibility of mixing matrix A and assumptions about
the source signals s) defined in Sect. 3.2.1, we make the following two assumptions
regarding the noise v:

1. v = [v1, . . . , vN ]T ∈ C
N are N random variables with zero mean and the

covariance matrix E[vvH ] = β 2Rv. β 2 = 1
N tr

[
E(vvH )

]
is the average variance

of v and tr(Rv) = N . R̄v = 1
β 2 E[vvT ] is the normalized pseudo-covariance

matrix. R̄v = 0 if v is circular complex. The pdf of v is arbitrary but assumed
to be symmetric, i.e., pv(v) = pv(−v). This implies E(

⎧N
i=1 vki

i (v≤
i )

k̃i ) = 0 for∑N
i=1

⎦
ki + k̃i

)
odd.

2. s and v are independent.

The task of noisy linear ICA is to demix the signals x by a linear transform
W ∈ C

N×N

y = Wx = WAs + Wv (3.45)

so that y is “as close to s” as possible according to some metric.

3.3.2 KLD-Based ICA for Determined Case

We focus on the ICA solution based on the KLD

DKL(W) =
∫

py(y; W) ln
py(y; W)

ps(y)
dy (3.46)

where py(y; W) is the pdf of y. It depends on the pdf of observation x, i.e., on the
pdf of the original source signals s and noise v, as well as on the demixing matrix
W. ps(s) = ⎧N

i=1 psi (si ) is the assumed pdf of the original signals. We assume that
we have perfect knowledge about the distribution of the original signals and ps(s)
is identical to the true pdf p0

s (s) of s. The KLD is known to have the following
properties:

• DKL(W) ⇔ 0 for any py(y; W) and ps(y).
• DKL(W) = 0 iff py(y; W) = ps(y).

This means, minimizing the KLD with respect to W is equivalent to making the pdf
of the demixed signals y as similar as possible to the pdf of the source signals ps(s).
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Since we assume ps(s) = ⎧N
i=1 psi (si ), minimizing KLD corresponds to making (a)

yi as independent as possible and (b) yi to have a pdf as close as possible to psi (si ).
This has been stated as “total mismatch = deviation from independence + marginal
mismatch” by Cardoso in [9]. The ICA solution WICA for the demixing matrix based
on KLD is given by

WICA = arg min
W

DKL(W). (3.47)

In the following, we will first derive the ICA solution for the general noncircular
complex case. The circular complex case and the real case are discussed as two
special cases.

3.3.2.1 General Noncircular Complex Case

The KLD cost function of a complex demixing matrix W is a function of the real and
imaginary part of W. Using the Wirtinger calculus (see [21, 44] and the summary in
Sect. 3.1.1.2), we can also write it as a function of W and W≤:

DKL(W, W≤) =
∫

py(y, y≤; W, W≤) ln
py(y, y≤; W, W≤)

ps(y, y≤)
dy. (3.48)

The derivative θ DKL(W,W≤)
θW≤ of the KLD cost function in (3.48) is given by [21]

θ DKL(W, W≤)
θW≤ = −W−H + E

[
ϕϕϕ(y, y≤)xH

]
, (3.49)

where ϕϕϕ(y, y≤) = [ϕ1(y1, y≤
1 ), . . . , ϕN (yN , y≤

N )]T and ϕi (si , s≤
i ) = − θ ln psi (si ,s≤

i )

θs≤
i

.

The derivative θ
θs≤ is also defined using the Wirtinger calculus.

A necessary condition for minimizing DKL(W, W≤) at W = WICA is

θ DKL(W, W≤)
θW≤

∣∣∣∣
W=WICA

!= 0 or E(ϕϕϕ(yICA, y≤
ICA)yH

ICA)
!= I (3.50)

with yICA = WICAx = WICAAs + WICAv = ŷ + WICAv. An equivalent condition

to E(ϕϕϕ(yICA, y≤
ICA)yH

ICA)
!= I in (3.50) is

E(ϕϕϕ(yICA, y≤
ICA)yH

ICA)≤ = E(ϕϕϕ≤(yICA, y≤
ICA)yT

ICA)
!= I (3.51)

which we will use in the following to facilitate comparison with Sect. 3.2.
The properties of the ICA solution based on KLD are:

• WICA = A−1 if β 2 = 0 (no noise) and ps(s) = p0
s (s).

• To compute WICA, we do not need to know A or s, but the pdf ps(s) = ⎧N
i=1 psi (si )

is required. All psi (si ) must either be non-Gaussian or Gaussian with distinct
noncircularity indices.
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• No permutation ambiguity if psi (·) 	= ps j (·) √i 	= j .
• There is no scaling ambiguity if psi (si ) = p0

i (si ) is known √i . Only a phase
ambiguity remains if psi (si ) is circular.

As shown in Appendix 2, the ICA solution for the general noncircular complex case
can be derived approximately using a two-step perturbation analysis for low noise
and is given by

WICA = (I + β 2C)A−1 + O(β 4). (3.52)

The elements of C can be obtained from (3.97) and (3.98). If ps(s) is symmetric in
the real or imaginary part of s, they are given by (3.99) and (3.100).

For comparison, we consider the linear MMSE estimator

WMMSE = AH
⎦

AAH + β 2Rv

)−1
(3.53)

=
[
I − β 2R−1

]
A−1 + O(β 4). (3.54)

where the last line is a first-order Taylor series expansion in β 2 and R−1 =
A−1RvA−H . Comparing (3.54) with (3.52) we see that WICA and WMMSE are similar
if C ∇ −R−1.

3.3.2.2 Circular Complex Case

We assume now that the source signals s and the noise v are circular. Hence, both
the noncircularity index of the sources α and the pseudo-covariance matrix R̄v are
zero. As a consequence, (3.99) and (3.100) simplify to

Cii = − κi + λi

1 + ρi + δi

[
R−1

]
i i ∈ R,

Ci j = −κ j (κi − 1)

κiκ j − 1

[
R−1

]
i j ∈ C (i 	= j). (3.55)

3.3.2.3 Real Case

For real signals and noise, we have

αi = 1, Rv = R̄v. (3.56)

In the derivation of WICA we have considered Taylor series expansions of ϕϕϕ(y) using
Wirtinger derivatives. The Wirtinger derivatives θ/θs and θ/θs≤ of ϕ(s) ∈ R are now
identical (see (3.4)) and hence

ξi = κi , ρi = δi , λi = ωi = τi . (3.57)
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Furthermore, the Wirtinger derivatives of ϕ(s) ∈ R are identical to the real derivatives
except for a factor of 1

2 (see (3.4)). Hence it holds

κi = κ̊i

2
, ρi = ρ̊i

2
, λi = λ̊i

4
, (3.58)

where κ̊i , ρ̊i and λ̊i are defined using real derivatives of ϕ(s), denoted by (·)∀:

κ̊i = E(ϕ∀
i (si )) =

∫
d

dsi

⎨−p∀
si
(si )

psi (si )

⎩
p0

i (si )dsi ,

ρ̊i = E(ϕ∀
i (si )s

2
i ) =

∫
d

dsi

⎨−p∀
si
(si )

psi (si )

⎩
s2

i p0
i (si )dsi ,

λ̊i = E(ϕ∀∀
i (si )si ) =

∫
d2

ds2
i

⎨−p∀
si
(si )

psi (si )

⎩
si p0

i (si )dsi . (3.59)

Using (3.56)–(3.58), we get from (3.99) and (3.100)

Cii = − κ̊i + 1
2 λ̊i

1 + ρ̊i

[
R−1

]
i i = −Mii

[
R−1

]
i i ,

Ci j = − κ̊ j (κ̊i − 1)

κ̊i κ̊ j − 1

[
R−1

]
i j = −Mi j

[
R−1

]
i j (i 	= j). (3.60)

where Mii = κ̊i +λ̊i /2
1+ρ̊i

and Mi j = κ̊ j (κ̊i −1)

κ̊i κ̊ j −1 . Note that (3.60) corresponds to the
results in [32].

3.3.3 Results for Complex Generalized Gaussian Distribution

We study KLD-ICA for N = 3 sources with spatially white Gaussian noise with
E[vvH ] = β 2I and the square mixing matrix A = [amn], where amn = e− jπm sin ωn

and ωn = −60◦, 0◦, 60◦. As proposed in [26], we use the signal-to-interference-plus-
noise ratio (SINR) to evaluate separation performance. For spatially uncorrelated
noise, we compute the SINR for a given demixing matrix W by averaging the SINR
for each source i

SINR = 1

N

N⎫

i=1

|[WA]i i |2∑
j 	=i |[WA]i j |2 + β 2

∑
j |Wi j |2 . (3.61)

The term |[WA]i i |2 reflects the power of the desired source i in the demixed signal
yi . The term

∑
j 	=i |[WA]i j |2 corresponds to the power of the interfering signals
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j 	= i in the demixed signal yi and β 2∑
j |Wi j |2 is the noise power in the demixed

signal yi . For the remainder of this section, the signal-to-noise ratio (SNR) is defined

as that before the mixing process and not at the sensors, i.e., SNR = E
[
s2
]

β 2 = 1
β 2 .

It can be shown that among all linear demixing matrices W, WMMSE from (3.53) is
the one which maximizes the SINR [28]. We compare the SINR of the theoretical
ICA solution WICA from (3.52), the average SINR of ŴICA obtained from 100 runs
of KLD-based ICA using L samples and the SINR of WMMSE from (3.53). The
ICA algorithm is initialized with W = I and performs gradient descent using the
relative gradient [12], i.e., postmultiplies the gradient of KLD (3.49) by WH W. We
normalize each row of the relative gradient, resulting in an adaptive step size for
each source. In the derivation of the theoretical solution WICA, we evaluated all
expectations exactly. Hence WICA only accounts for the bias from A−1 but not for
estimation variance whereas ŴICA contains both factors.

In the following, all sources are GGD with the same shape parameter ci = c.
The noncircular complex GGD with zero mean and E[|s|2] = 1 has already been
introduced in Sect. 3.2.4. By integration in polar coordinates, it can be shown that

κ =
∫

θϕ≤

θs≤ p0
s (s)ds = c2Γ (2/c)

(1 − α 2)Γ 2(1/c)
, (3.62)

δ =
∫

θϕ≤

θs≤ ss≤ p0
s (s) = 2c + (1 − c)α 2

2(1 − α 2)
, (3.63)

ρ =
∫

θϕ≤

θs
s2 p0

s (s)ds = −2c − 2 + (1 − 3c)α 2

2(1 − α 2)
, (3.64)

ξ =
∫

θϕ≤

θs
p0

s (s)ds = −α κ, (3.65)

λ =
∫

θ2ϕ≤

θsθs≤ sp0
s (s)ds = (c − 1)κ, (3.66)

ω =
∫

θ2ϕ≤

(θs)2 sp0
s (s)ds = −3

2
(c − 1)α κ, (3.67)

τ =
∫

θ2ϕ≤

(θs≤)2 sp0
s (s)ds = −1

2
(c − 1)α κ. (3.68)

Note that there exists a relationship between these parameters and the ones in the
derivation of the CRB in Sect. 3.2: κ and ξ are identical. Using Corollary 2 from
[35], we furthermore get

δ = ∂ − 1 and ρ = ε − 2 (3.69)

where ∂ = E
[|s|2|ϕ(s)|2] and ε = E

[
s2(ϕ≤(s))2

]
have been defined in (3.23) and

(3.25) in the previous section. These relationships hold not only for GGD but for all
source distributions.
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Fig. 3.5 SINR for circular complex GGD signals and circular complex noise, SNR = 10 dB,
L = 104 samples

3.3.3.1 Circular Complex Case

For a circular complex GGD, α = 0 and hence we get κ = c2Γ (2/c)
Γ 2(1/c)

, δ = c, ρ = c−1,
λ = (c − 1)κ and ξ = ω = τ = 0. Figure 3.5 shows that for a wide range of the
shape parameter c, both the theoretical ICA solution WICA and its estimate ŴICA
obtained by running KLD-ICA using L = 104 samples achieve an SINR close to that
of the MMSE solution WMMSE. Note that for c close to 1, the SINR of the theoretical
solution WICA is not achievable in practice, since all sources become Gaussian and
the CRB approaches infinity for c → 1 (see Sect. 3.2 and [35]). Hence estimation of
W becomes impossible. This is reflected in Fig. 3.5: The SINR for ŴICA estimated
by KLD-ICA decreases for c → 1.

Note that for strongly non-Gaussian sources (c ∗ 1 or c ∼ 1) the SINR of the
theoretical solution WICA might be smaller than that for ŴICA because WICA is based
on a Taylor series expansion up to order β 2. For strongly non-Gaussian sources,
higher-order terms become important. These are implicitly taken into account by
ŴICA but not by WICA.

3.3.3.2 Noncircular Complex Case

First, we study the performance with circular noise, i.e., Rv = I and R̄v = 0, and
SNR of 10 dB. The SINR of the MMSE solution WMMSE is 12.4 dB. Figure 3.6 shows
that for a wide range of the shape parameter c and the noncircularity index α , the
theoretical ICA solution WICA achieves an SINR close to that of MMSE. Comparing
Fig. 3.6a, b, we note that the contour plot for the simulation using L = 103 samples
differs from the contour plot for the theoretical ICA solution. One reason is that
for noncircular sources with the same noncircularity index αi = α , the estimation
variance increases for c → 1 (see Sect. 3.2 and [35]). Hence, in the simulation the
SINR decreases in the vicinity of c = 1. Furthermore, the smaller sample size of
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Fig. 3.6 SINR [dB] of ICA solution for noncircular complex GGD signals with αi = α , circular
complex noise and SNR = 10 dB. WICA (52) (a), ŴICA (simulation, L = 103 samples) (b)

L = 103 leads to a larger variance of ŴICA which is not reflected in the theoretical
ICA solution WICA. With a larger sample size the SINR of WICA would be much
closer to that of WMMSE. However, Fig. 3.6b shows that even with a limited sample
size KLD-ICA can still achieve SINR performance quite close to that of MMSE
except for c ∇ 1.

Now, we consider the case where sources are noncircular complex with α1 =
0.5, α2,3 = 0.5 ± �α and the noise v is noncircular with Rv = I and R̄v = 0.5 · I,
i.e., αnoise = 0.5. Figure 3.7 shows decreasing SINR values for c → 1 and �α → 0
since in that region |�Ci j | in (3.100) becomes large if sources or noise are noncircular.
However, except for this region, the SINR of the theoretical ICA solution (Fig. 3.7a) is
still close to that of MMSE (12.4 dB). The form of the contour plot for the simulation
(Fig. 3.7b) is similar to that of the theoretical solution but shows slightly lower SINR
performance especially for c ∇ 1 and small �α . This is again due to increasing
estimation variance for c → 1 and small �α (see Sect. 3.2 and [35]). Nevertheless,
the performance obtainable in simulations can still be considered good as long as
c is not close to 1 or �α is sufficiently large. Finally, we want to note that in
Fig. 3.7 the decrease in SINR for strongly noncircular (large �α ), non-Gaussian
(c 	= 1) sources is caused by the noncircularity of the noise. The reason is that
the MMSE (or maximum SINR) and the minimum KLD criterion yield different
demixing matrices W for noncircular noise: As can be seen from (3.52), (3.97) and
(3.98), WICA depends both on the noncircularity of the sources (αi 	= 0) as well as on
the noncircularity of the noise (R̄v 	= 0) whereas WMMSE from (3.54) only depends
on the normal covariance matrix of the noise Rv. This is due to the different cost
functions: Minimization of KLD makes the pdf of the demixed signals as similar to
the assumed pdf of the sources as possible whereas MMSE minimizes the expected
quadratic error between the demixed signals and the original sources. For circular
noise, the difference between WICA and WMMSE in terms of SINR is much smaller.
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Fig. 3.7 SINR [dB] of ICA solution for noncircular complex GGD signals with α1 = 0.5, α2,3 =
α1±�α , noncircular complex noise, and SNR = 10 dB. WICA (52) (a), ŴICA (simulation, L = 103
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Fig. 3.8 SINR [dB] of ICA-EBM solution for noncircular complex GGD signals, L = 103 samples
and SNR = 10 dB. αi = α , circular complex noise(a), α1 = 0.5, α2,3 = α1 ± δα (b)

In summary, the results in this subsection have shown that

• in many cases the theoretical solution WICA of KLD-ICA can achieve an SINR
close to the optimum attainable by the MMSE demixing matrix WMMSE.

• for sources following a GGD, ŴICA obtained by running KLD-ICA with a finite
amount of samples L can achieve an SINR quite close to that of WMMSE except
for (nearly) Gaussian sources with similar noncircularity indices.

• for strongly noncircular, non-Gaussian sources and noncircular noise, the mini-
mization of the KLD and of the MSE yield different solutions.

Although we assumed that we perfectly know the distributions of the sources,
other approaches such as ICA-EBM [30] exist which do not require such knowl-
edge. As shown in Fig. 3.8, simulation results using ICA-EBM show similar SINR
performance as KLD-ICA (see Figs. 3.6b, 3.7b).
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3.3.4 Extension to Overdetermined Case

ICA algorithms for the overdetermined case have already been studied in a number
of publications (see e.g., [11, 25, 49, 50]). In the overdetermined case, x ∈ C

M with
M > N . In the noiseless case we can select any N rows of x to perform ICA as
long as the corresponding square mixing matrix Ã is invertible. When we consider
noisy mixtures, this does not hold since the information contained in the M − N
additional observations is useful to improve demixing. Hence, we need to consider
the KLD for M > N . In this case, the demixing matrix W can be decomposed as
W = [

W1 W2
]
, where W1 ∈ C

N×N and W2 ∈ C
N×(M−N ). We define an auxiliary

vector ȳ ∈ C
M :

ȳ =
[

W1 W2
0 IM−N

⎡ [
x1
x2

⎡
= W̆x =

[
y
x2

⎡
(3.70)

Then we calculate py(y; W) by

pȳ(ȳ; W̆) = 1

|det(W̆)|2 px(x) = 1

|det(W1)|2 px(x), (3.71)

py(y; W) = 1

|det(W1)|2
∫

px(x)dx2. (3.72)

since the linear transformation of a complex random vector yields | det(W)|2 instead
of | det(W)| in the real case (see [4, 42]).

Using the above steps we obtain the modified KLD for M > N

DKL(W) = − ln |det(W1)|2 −
N⎫

i=1

E
[
ln psi (yi )

]+ const. (3.73)

instead of DKL(W) = − ln |det(W)|2 −∑N
i=1 E

[
ln psi (yi )

]+ const. for M = N .
To derive WICA for M > N , we could now perform a similar Taylor series expan-

sion as for M = N . However, it is more convenient to reduce the overdetermined
case M > N to the determined case by applying a linear transform to the data to
condense all information about the source signals in the first N observations and by
applying another transform to decorrelate the noise terms in the first N observations
from those in the remaining M − N observations. The result of these two transforms
has a similar effect as a dimension reduction using principal component analysis
(PCA) except that the correlation matrix of the observations is only block-diagonal
instead of diagonal. To derive WICA, we can then combine the solution for the deter-
mined case with the linear transforms. Note that this approach is only used for the
analysis of KLD-based ICA for the overdetermined case because it simplifies the
theoretical derivation. In ICA applications, the transforms are done implicitly by the
algorithm itself.
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The first step of this procedure is to use the orthogonal transform Q defined by the

decomposition A = QH
[

Ā1
0

⎡
to condense all information about the source signals

in the first N observations:

x̄ = Qx = Q(As + v)

= QQH
[

Ā1
0

⎡
s + Qv =

[
Ā1
0

⎡
s + v̄ =

[
Ā1s

0

⎡
+
[

v̄1
v̄2

⎡
=
[

x̄1
x̄2

⎡
, (3.74)

Rv̄ = 1

β 2 E
⎦

v̄v̄H
)

= QRvQH =
[

Rv̄11 Rv̄12

Rv̄21 Rv̄22

⎡
. (3.75)

Note that v̄1 and v̄2 may be correlated, i.e., x̄2 = v̄2 is useful for the processing of
x̄1 = Ā1s + v̄1 to reduce the impact of v̄1. Hence, we decorrelate the noise terms v̄1

and v̄2 by a second transform T =
[

IN −Rv̄12 R−1
v̄22

0 IM−N

⎡
:

x̃ = Tx̄ = T
[

Ā1s
0

⎡
+ Tv̄ =

[
Ā1s

0

⎡
+ ṽ =

[
Ā1s

0

⎡
+
[̃

v1
ṽ2

⎡
=
[̃

x1
x̃2

⎡
, (3.76)

Rṽ = 1

β 2 E
⎦

ṽ̃vH
)

=
[

Rv̄11 − Rv̄12 R−1
v̄22

Rv̄21 0
0 Rv̄22

⎡
. (3.77)

ṽ1 and ṽ2 are now uncorrelated and x̃2 = ṽ2 does not contain any second-order
information useful for the processing of x̃1 = Ā1s + ṽ1.

The separated signals y are now obtained by

y = Wx = WQH T−1̃x = W̃x̃ = [
W̃1 W̃2

] [̃x1
x̃2

⎡
= W̃1̃x1 + W̃2̃x2 = y1 + y2

(3.78)
with W̃ = WQH T−1. The noise-only contribution y2 = W̃2̃x2 = W̃2̃v2 to y is
uncorrelated to y1 = W̃1̃x1. Hence, it is sufficient to consider the first N observations
x̃1 to derive the ICA solution for W̃1.

Considering the KLD (3.73) for the transformed demixing model y = [
W̃1 W̃2

]
[̃

x1
x̃2

⎡
, we get

DKL(W̃) = − ln |det(W̃1)| −
N⎫

i=1

E
[
ln psi (yi )

]+ const. (3.79)

with W̃ = [
W̃1 W̃2

]
. The real derivatives of DKL(W̃) with respect to W̃1 and W̃2

are given by
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θ DKL(W̃)

θW̃1
= E

[
ϕϕϕ(y)̃xH

1

]
− W̃−H

1 = E
[
ϕϕϕ(y)̃yH

1 − I
]

W̃−H
1

!= 0 (3.80)

θ DKL(W̃)

θW̃2
= E

[
ϕϕϕ(y)̃xH

2

]
= E

[
ϕϕϕ(y)̃yH

2

]
W̃−H

2
!= 0 (3.81)

A perturbation analysis of (3.81) at y = W̃1Ā1s yields W̃2 = O(β 4) due to
x̃2 = ṽ2. Hence, y is given by y = W̃1̃x1 + O(β 4). The solution for W̃1 is similar
to the case of M = N

W̃1,ICA = (I + β 2C)Ā−1
1 + O(β 4) (3.82)

where the elements of C can be computed from (3.97) and (3.98) with R̄−1 = 0 and
R−1 = (Ā−1

1 (Rv̄11 − Rv̄12 R−1
v̄22

)Ā−H
1 ).

Finally, we need to combine W̃1,ICA, T and Q to form the final solution:

W̃ICA = [
W̃1,ICA 0

]+ O(β 4),

WICA = W̃ICATQ = W̃1,ICA

[
I −Rv̄12 R−1

v̄22

]
Q + O(β 4). (3.83)

Note that for the case of noncircular complex noise, the presented transformation
does not work since we would need to take into account the pseudo-covariance matrix
of the noise.

3.3.4.1 Results for Circular Complex GGD

Here, we study the performance for the overdetermined case with M = 6 sensors,
N = 3 sources, and circular complex noise. The sources follow a circular complex
GGD distribution with identical shape parameters c. Similar to Sect. 3.3.3, we use
the mixing matrix A = [amn] with amn = e− jπm sin ωn with ωn = −60◦, 0◦, 60◦. We
first consider spatially uncorrelated noise with Rv = I. Figure 3.9a shows that for a
wide range of the shape parameter c, both the theoretical ICA solution WICA and its
estimate ŴICA obtained by running KLD-ICA using L = 104 samples achieve an
SINR close to that of the MMSE solution WMMSE. Furthermore, note that additional
sensors can improve the SINR of the demixed signals: Using only the first M = 3
sensors, WMMSE achieves an SINR of 12.4 dB (see Fig. 3.5), whereas with M = 6
sensors it achieves an SINR of 17.4 dB.

When the noise v is correlated with the normalized correlation matrix

Rv =

⎬
⎢⎢⎢⎢⎢⎢⎞

1.00 + 0.00 j 0.62 + 0.23 j 0.44 − 0.16 j 0.46 + 0.11 j −0.09 + 0.26 j −0.03 + 0.09 j
0.62 − 0.23 j 1.00 + 0.00 j 0.56 + 0.06 j 0.47 − 0.13 j 0.44 + 0.18 j −0.09 + 0.26 j
0.44 + 0.16 j 0.56 − 0.06 j 1.00 + 0.00 j 0.52 + 0.09 j 0.47 − 0.13 j 0.46 + 0.11 j
0.46 − 0.11 j 0.47 + 0.13 j 0.52 − 0.09 j 1.00 + 0.00 j 0.56 + 0.06 j 0.44 − 0.16 j

−0.09 − 0.26 j 0.43 − 0.18 j 0.47 + 0.13 j 0.56 − 0.06 j 1.00 + 0.00 j 0.62 + 0.23 j
−0.03 − 0.09 j −0.09 − 0.26 j 0.46 − 0.11 j 0.44 + 0.16 j 0.62 − 0.23 j 1.00 + 0.00 j

⎠
⎥⎥⎥⎥⎥⎥⎟

,
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Fig. 3.9 SINR for overdetermined case with circular complex GGD signals and circular complex
noise, SNR = 10 dB, L = 104 samples. Rv = I (a), Rv 	= I (b)

WMMSE achieves an SINR of 22.2 dB for an SNR of 10 dB and all M = 6 sensors.
With the first M = 3 sensors, it achieves only an SINR of 13.3 dB. Compared to the
case of uncorrelated noise, the form of the SINR curve for ŴICA changes slightly
but it is still quite close to that of WMMSE except for c ∇ 1 (see Fig. 3.9b).

3.4 Conclusion

We have derived an analytic expression for the demixing matrix of KLD-based ICA
for the low noise regime. We have considered the general noncircular complex deter-
mined case. The solution for the circular complex and real case can be derived as
special cases. Furthermore, we have shown how to reduce the overdetermined case
M > N to the determined case. Although the KLD and MMSE solutions differ, lin-
ear demixing based on these two criteria yields demixed signals with similar SINR
in many cases. In practice, however, not only the bias studied in this chapter but
also the variance of the estimate are important for SINR. For the noiseless case, the
variance of the estimated demixing matrix is lower bounded by the CRB derived in
Sect. 3.2 and [35].

Appendix 1

Values of κ , ξ , β, η for Complex GGD

The pdf of a noncircular complex GGD with zero mean, variance E[|s|2] = 1 and
noncircularity index α ∈ [0, 1] is given by

p(s, s≤) =
cψ · exp

⎦
−
[

ψ/2
α 2−1

⎦
α s2 + α s≤2 − 2ss≤

)]c)

πΓ (1/c)(1 − α 2)1/2 , (3.84)
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where ψ = Γ (2/c)/Γ (1/c) and Γ (·) is the Gamma function. The function
ϕ(s, s≤) = − θ

θs≤ ln p(s, s≤) is then given by

ϕ(s, s≤) = 2c(ψ/2)c

(α 2 − 1)c

⎦
α s2 + α (s≤)2 − 2ss≤)c−1

(α s≤ − s). (3.85)

By integration in polar coordinates, it can be shown that κ , ξ , ε and ∂ are given by:

κ = E
[
|ϕ(s)|2

]
= c2Γ (2/c)

(1 − α 2)Γ 2(1/c)
, (3.86)

ξ = E
[
(ϕ≤(s))2

]
= − c2αΓ (2/c)

(1 − α 2)Γ 2(1/c)
= −α κ, (3.87)

∂ = E
[
|s|2|ϕ(s)|2

]
= (c + 1) · (2 − α 2)

2(1 − α 2)
, (3.88)

ε = E
[
s2(ϕ≤(s))2

]
= (c + 1) · (2 − 3α 2)

2(1 − α 2)
. (3.89)

Induced CRB for Real ICA

Here, we briefly review the iCRB for real ICA [41, 45]. In the following, all real
quantities q are denoted as q̊ . In the derivation of the iCRB for the real case ϕ̊(s̊) =
−θ ln p(s̊)/θ s̊ and the parameters κ̊ = E[ϕ̊2(s̊)], ∂̊ = E[s̊2ϕ̊2(s̊)] = 2+E

[
s̊2 θϕ̊(s̊)

θ s̊

]

are defined using real derivatives. In [41, 45] it was shown that

var(Ĝii ) ⇔ 1

L(∂̊i − 1)
, (3.90)

var(Ĝi j ) ⇔ 1

L

κ̊ j

κ̊i κ̊ j − 1
. (3.91)

Appendix 2

Here we derive an analytic expression for WICA in the presence of noise by using a

perturbation analysis. Motivated by WICA
β 2=0= A−1, we assume that WICA can be

written as WICA = A−1 + β 2B + O(β 4) and derive B by a two-step perturbation
analysis:

1. Taylor series approximation of E(ϕϕϕ≤(y)yT ) in (3.51) at y = ŷ = WICAAs,
2. Taylor series approximation of the result of the above step by exploiting WICA =

A−1 + β 2B + O(β 4) and ŷ = s + β 2BAs + O(β 4) = s + β 2Cs + O(β 4) =
s + β 2b + O(β 4) with C = BA and b = Cs = [b1, . . . , bN ]T .
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In this way, we determine explicitely the deviation β 2B of WICA from the inverse
solution A−1.

The general Taylor series expansion of ϕ≤(y) =̂ ϕ≤(y, y≤) is given as

ϕ≤(y, y≤) = ϕ≤(ŷ, ŷ≤) + θϕ≤
θy

�y + θϕ≤
θy≤ �y≤ + 1

2

⎣
θ2ϕ≤
(θy)2 (�y)2 + θ2ϕ≤

(θy≤)2 (�y≤)2

⎤

+ θ2ϕ≤
θyθy≤ �y�y≤ + . . .

= ϕ≤(ŷ, ŷ≤) + �(y, y≤)�y + π(y, y≤)�y≤

+ 1

2

⎦
ν(y, y≤)(�y)2 + ζ(y, y≤)(�y≤)2

)
+ ε(y, y≤)�y�y≤ + . . . (3.92)

with �(y, y≤) = θϕ≤
θy , π(y, y≤) = θϕ≤

θy≤ , ν(y, y≤) = θ2ϕ≤
(θy)2 , ζ(y, y≤) = θ2ϕ≤

(θy≤)2 and

ε(y, y≤) = θ2ϕ≤
θyθy≤ . To simplify notation, we will drop the dependence of ϕ≤(·), �(·),

π(·), ν(·), ζ(·), ε(·) on y≤ and keep only the dependence on y in the following.
Let

ρi = E
[
�i (si )s

2
i

]
, δi = E

[
πi (si )s

≤
i si
]
, (3.93)

κi = E [πi (si )] , ξi = E [�i (si )] , (3.94)

ωi = E [νi (si )si ] , τi = E [ζi (si )si ] , (3.95)

λi = E [εi (si )si ] , αi = E[s2
i ]. (3.96)

As shown in [31, 34], WICA = A−1+β 2C, where the elements of C can be computed
from

ρi Cii + δi C
≤
i i + Cii = −(κi + λi )

[
R−1

]
i i − (ξi + 1

2
ωi )

[
R̄−1

]
i i − 1

2
τi
[
R̄−1

]≤
i i .

(3.97)
and

α jξi Ci j + κi C
≤
i j + C ji = −κi

[
R−1

]≤
i j − ξi

[
R̄−1

]
i j ,

αiξ j C ji + κ j C
≤
j i + Ci j = −κ j

[
R−1

]≤
j i − ξ j

[
R̄−1

]
j i . (3.98)

with the transformed noise covariance matrix R−1 = WRvWH = A−1RvA−H +
O(β 2) and the transformed noise pseudo-covariance matrix R̄−1 = WR̄vWT =
A−1R̄vA−T + O(β 2). Note that RH−1 = R−1 and R̄T−1 = R̄−1.

If p(s, s≤) is symmetric in the real part �s or imaginary part �s of s, i.e.,
p(−�s,�s) = p(�s,�s) or p(�s,−�s) = p(�s,�s), the parameters κi , ρi , δi ,
λi , ξi , ωi , τi are real. For ρi + 1 ± δi 	= 0, we then get from (3.97)
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�Cii = − (κi + λi )
[
R−1

]
i i + (ξi + 1

2 (ωi + τi ))
[�R̄−1

]
i i

ρi + 1 + δi
,

�Cii = − (ξi + 1
2 (ωi − τi ))

[�R̄−1
]

i i

ρi + 1 − δi
. (3.99)

For (α jξi + κi )(αiξ j + κ j ) 	= 1 and (α jξi − κi )(αiξ j − κ j ) 	= 1, we obtain from
(3.98)

�Ci j =
(κ j − κi (αiξ j + κ j ))

[�R−1
]

i j + (ξ j − ξi (αiξ j + κ j ))
[�R̄−1

]
i j

(α jξi + κi )(αiξ j + κ j ) − 1
,

�Ci j =
(κ j + κi (αiξ j − κ j ))

[�R−1
]

i j + (ξ j − ξi (αiξ j − κ j ))
[�R̄−1

]
i j

(α jξi − κi )(αiξ j − κ j ) − 1
.

(3.100)
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Chapter 4
Subband-Based Blind Source Separation
and Permutation Alignment

Bo Peng and Wei Liu

Abstract The aim of this chapter is to present the fundamental ideas of
subband-based convolutive blind source separation (BSS) employing filter banks,
in particular with a focus on the inherent permutation alignment problem associated
with this approach, and bring attention to the most recent developments in this area,
including the joint BSS approach in solving the convolutive mixing problem.

4.1 Introduction to the Convolutive Mixing Problem

Blind source separation (BSS) has been studied extensively in the past 2 decades,
with the “cocktail party problem” as the most representative example [7, 14]. The
BSS problem was initially formulated by a linear instantaneous mixing model and
based on this model the independent component analysis was introduced [8], which
exploits the statistical independence of the source signals, and compensates for the
lack of prior knowledge in the mixing model. A plethora of algorithms were pro-
posed and developed afterward, including the Informax approach [4], natural gradient
algorithm using Kullback–Leibler divergence [2], fastICA [15], and linear predictor-
based algorithms [33–35, 37], etc.

Later, the instantaneous mixing model was extended and the convolutive mixing
model accounting for delay and reflection was considered, which is often encountered
in acoustic mixing problems [30–32]. However, it also appears in wireless communi-
cations when there are multipath effects in the channel model and some biomedical
problems [59]. Blind deconvolution techniques were proposed to solve these prob-
lems by extending the existing instantaneous algorithms in the time domain [3].
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The convolutive mixing model can also be transformed into the frequency-domain
after frequency decomposition of the mixed signals, in order to improve the con-
vergence rate and reduce the computation time. This is possible since convolutive
mixing in the time domain corresponds to an instantaneous one in the frequency
domain and instantaneous BSS can be performed at all the frequencies in paral-
lel [57]. Depending on the methods of frequency decomposition, it is termed as
frequency-domain BSS if the standard discrete Fourier transform (DFT) technique
is used [43, 54, 61], or it can be termed as subband-based BSS if a more general
filter banks system is used [11, 41, 44].

Because the instantaneous algorithm is applied individually at each frequency
band, there arise subband permutation and scaling ambiguities for both the DFT and
filter banks-based approaches. The scaling ambiguities will cause spectral distortions,
but can be mitigated to some degree by normalizing the separation matrices [43].
However, the permutation ambiguity leads to permutation misalignment between
different frequencies/subbands, which is usually termed as the permutation prob-
lem. Without permutation alignment, the following synthesis stage will remix the
separated signals and cause serious performance loss [16]. For frequency/subband-
domain BSS, there are mainly two approaches to solve the permutation problem.
One relies on the direction of arrival (DOA) angles of the source signals, which
are estimated from the obtained separation matrices [23]. However, it is difficult to
have accurate estimations when the signals arrive from many different directions
due to multipath propagation, and the geometric information of the sensors is also
required, which could be unavailable in some BSS problems. The other one exploits
the correlation properties between separated signals at adjacent frequency bands [43].
This is a popular method which can be employed in many frequency/subband-based
BSS problems without requiring additional assumptions, and performed as a separate
permutation alignment stage after applying instantaneous BSS algorithms. However,
when the correlation between adjacent frequency components becomes insufficient,
the alignment results will be less reliable and eventually affect the overall separation
performance.

The correlation-based alignment is a synchronizing process applied immediately
after the separation for each subband. Alternatively, we can avoid the permutation
problem at the beginning of the separation process, by employing joint BSS algo-
rithms. A joint BSS algorithm exploits the mutual information between multiple
data sets, and is designed to separate the source signals for different data sets, while
still maintaining their correct order. Several methods were proposed for achieving
this goal, including independent vector analysis [21, 22, 24], multiset canonical
correlation analysis (M-CCA) [19, 28], and the method based on generalized joint
diagonalization of cumulant matrices [27]. In this chapter, we will introduce this
concept as another method for solving the permutation problem.

This chapter is organized as follows. In Sect. 4.2, a general formulation of the
convolutive mixing model is provided, explaining the purpose of transforming the
problem into the frequency/subband domain, followed by a review of the filter banks
system for subband decomposition, including the DFT as a special case. Then in
Sect. 4.3, the subband permutation problem is discussed and various approaches
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for subband alignment are studied. In Sect. 4.4, details about the recently proposed
approach based on intersubband correlation maximization are provided. Simulation
results are given in Sect. 4.5, followed by a summary in Sect. 4.6.

4.2 Overview of Subband-Based BSS

4.2.1 Real-Valued and Complex-Valued Filter Banks

4.2.1.1 Basics of Filter Banks

In digital signal processing, if the sampling frequency at different parts of the system
changes, it is often referred to as a multirate system. A typical example is the subband
system that employs filter banks, which consists of decimators, expanders and two
sets of filters, as shown in Fig. 4.1 [1, 40, 58, 62]. The first set of filters consisting of
hm[n], m = 0, . . . , M−1, is called the analysis bank, while the second set consisting
of fm[n], m = 0, . . . , M−1, called the synthesis bank. Both the analysis and the
synthesis filters are a series of bandpass filters, with each set covering the fullband
from 0 to 2π in normalized frequency.

The input fullband signal x[n] is first split into multiple subband channels by the
analysis filters, and each subband signal only occupies a small bandwidth of the orig-
inal fullband one, which can be sampled at a lower rate due to the reduced bandwidth.
This lower sampling rate is achieved by a decimator (also called downsampler) with
a factor of N , which retains only every N th sample of its input. After the required
processing, these decimated signals are interpolated by an expander (also called an
upsampler) with the same factor N before passing through the synthesis filters, and
reconstructed back to its original sampling rate.

For a general M-channel filter banks system with a decimation factor of N , the
signal in each subband channel can be decimated by up to 1/M of the original
sampling rate, which is referred to as a critically sampled system with M = N and
an oversampled one when M > N . Performing signal processing in subbands instead
of the fullband usually has the advantage of lower computational complexity due to
a reduced data rate, and a faster convergence rate for adaptive algorithms. Moreover,
since the problem can be solved at subbands in parallel, each subband task can then
be performed on different processors if necessary, providing the additional advantage
of fast real-time implementation.

In practice, the filters in the analysis and synthesis banks have nonideal frequency
responses. So filter bank designs often focus on minimization of the stopband energy,
in order to reduce the aliasing level after the decimation operation. Also the overall
filter banks system itself is usually required not to introduce any distortion to its input
signal other than some delay and scaling effect, which is referred to as the perfect
reconstruction (PR) condition in filter banks design. The PR condition as well as the
minimization of the stopband energy will be discussed in Sect. 4.4.1.
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Fig. 4.1 General structure of an M-channel filter banks system with a decimation factor N

4.2.1.2 Modulated Filter Banks

In a modulated filter banks system, the filters in the analysis and the synthesis banks
are obtained by modulating a single lowpass filter, so that the system can be designed
and implemented more efficiently. Various modulation schemes have been proposed,
including DFT [5], modified DFT [18], generalized DFT (GDFT) [64] and discrete
cosine transform (DCT) [6, 50, 58].

For an M-channel cosine-modulated filter banks (CMFBs) system, it can be
obtained by combining 2M complex filters using exponential modulations, which
cancel the imaginary parts. The aliasing components of the system caused by deci-
mation can by approximately canceled by the synthesis filters. The expressions for
analysis and synthesis filters are given in (4.1), (4.2), and details of derivation can
be found in [58].

hm[n] = 2p0[n] cos

[
(m + 0.5)

π

M

(
n − L p − 1

2

)
+ θm

]
(4.1)

fm[n] = 2p0[n] cos

[
(m + 0.5)

π

M

(
n − L p − 1

2

)
− θm

]
(4.2)

for m = 0, 1, . . . , M − 1.

When subband processing is not limited to real-valued operations, we can consider
GDFT filter banks, where the analysis filters and the synthesis filters are derived by
modulating a prototype filter p0[n], given by

hm[n] = p0[n] · e j 2π
M (m+m0)(n+n0), (4.3)

fm[n] = h∗
m[L p − n], (4.4)

for n = 0, 1, . . . , L p − 1 and m = 0, 1, . . . , M − 1,

where m0 and n0 are offsets for the frequency and time indices, respectively. The
parameter m0 allows the GDFT filter banks to have an analogous frequency response
to the DFT filter banks. For example, when m0 = 0.5 and M is even, we will have a
special case where the first M/2 subbands are all located within the frequency range
[0,π], as shown in Fig. 4.2. The center of each analysis filter is located at

( 2mπ
M + π

M

⎡
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Fig. 4.2 The arrangement of the analysis filters for M-channel generalized DFT filter banks

and filter banks with this arrangement is often referred to as odd-stacked filter banks
[9].

Because of symmetry of the frequency responses imposed by the odd-stacked
arrangement, the first and the last M/2 analysis filters are conjugately related [12].
So if the input is real-valued, only subband operations in the first (2m+1)π

M channels
need to be processed. Similarly, the first M/2 synthesis filters are also complex
conjugate of the remaining half. So at the synthesis stage, only M/2 subbands need
to be processed, and the fullband signal can be recovered by taking the real part of
the sum of the outputs from the first M/2 channels.

Moreover, by changing the value of n0, the group delay of the analysis filters can
be altered. If the group delay is constant, the filters will have the linear phase property,
and avoid the distortion in phase. So when the prototype filter is a real-valued FIR
filter with linear phase, a good choice for the time offset is n0 = L p−1

2 . With this

choice, the modulation sequence t[n] = e j 2π
M (m+m0)(n+n0), n = 0, 1, . . . , N − 1 will

become symmetric, and the analysis filters will have linear phase after modulation.

4.2.2 Blind Source Separation in Frequency Domain

The convolutive mixing model arises when considering an acoustic scenario: there
are noticeable delays during the propagation of sound between the speakers and the
microphones, and for an indoor environment there will be reflections and additional
delays due to the multipath effect. It assumes that each propagation channel is a
linear time invariant system, and can be modeled by an FIR filter. For the multichannel
model with Ns sources and Nr mixtures/microphones, the convolutive mixing model
is given by

xi [n] =
Ns⎣

j=1

LA−1⎣

l=0

ai j [l]s j [n − l], (4.5)

where s j [n] denotes the j th source signal, xi [n] is the i th mixed signal, and LA is
the number of taps for each of the FIR filters.
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As already mentioned, transforming the separation problem into the frequency
domain will greatly simplify the solution. The transform can be achieved by applying
the short-time discrete Fourier transform (STFT) to the mixed signals and then the
convolutive mixing model in (4.5) is changed to

X j (ω, k) =
Ns⎣

i=1

A ji (e
jω)Si (ω, k), (i = 1, . . . , Ns), (4.6)

where A ji (e jω) is the frequency-domain representation of a ji (n), and Si (ω, k) and
Xj (ω, k) are the time–frequency representations of si and xi at frame index k,
respectively.

The STFT process is illustrated in Fig. 4.3. Suppose the window’s length is Lwin.
Then a Lwin-point DFT is applied to the data samples within the sliding window.
After the DFT, the window is then advanced by Rwin samples and another Lwin-
point DFT is applied to the next frame. The output of the signal transformed by the
sliding-window DFT is shown in Fig. 4.4, where Twin groups of data are obtained,
given by

Twin = ∈ Ls − Lwin

Rwin
≤, (4.7)

where Ls denotes the total number of samples for each of the mixed signals and ∈·≤
is the ceiling function.

Thus, after transforming the mixed signals into the frequency domain, we can
have the demixing model at frequency ω as follows,

Y(ω, k) = W(ω)X(ω, k), (4.8)

where Y(ω, k) and X(ω, k) are the frequency transformations of y[n] and x[n] at
frequency ω, respectively, with y[n] being the vector representing the recovered
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time-domain signals. The separation matrix W(ω) can be obtained by a standard
instantaneous BSS algorithm at each frequency.

After applying the instantaneous BSS algorithms, post-processing will be required
to mitigate the scaling and permutation ambiguities for all frequencies. Finally, the
inverse of the sliding-window DFT is applied across all the frequencies to retrieve the
fullband output. Alternatively, inverse DFT can be applied to the separation matrix
W(ω), leading to an time-domain separation matrix W, whose entry will be an FIR
filter with Lwin taps.

The overall structure of the frequency-domain BSS is illustrated in Fig. 4.5. The
frequency-domain BSS converts a complicated multichannel deconvolution problem
into a number of instantaneous mixing problems, and the BSS algorithm at each
frequency becomes easy to converge, which is due to the reduced demixing filter
length at each subband and also reduced condition number of the covariance matrix
of the corresponding decimated signals, as in the general subband adaptive filtering
case. In addition, since BSS algorithms can be applied simultaneously for different
frequency components, the computational time would be reduced. However, for the
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sliding window-based frequency-domain BSS, the design of the window function
is limited to the same length as the DFT, while for filter banks, the length of the
prototype filter can be any value larger or equal to the subband channel number.
Therefore, a general subband implementation is needed to provide a robust solution
to deal with different problems.

4.2.3 Subband Decomposition and Mixing Model

Instead of using the sliding-window DFT, we can use filter banks to achieve a more
flexible frequency decomposition. Applying subband decomposition to the fullband
mixture and performing the BSS operation at each subband leads to the subband-
based BSS structure shown in Fig. 4.6. The analysis bank has M filters, which split
each of the mixed signals into M subbands

x (m)
full [n] =

Lp−1⎣

l=0

hm[l]x[n − l], for m = 0, . . . , M − 1, (4.9)

where hm denotes the mth analysis filter and its length is L p. Each subband signal
is then downsampled by the decimator with the rate of N

x (m)[n] = x (m)
full [Nn]. (4.10)

The decomposed subband data is illustrated in Fig. 4.7, which is similar to the
frequency decomposition in Fig. 4.4, but with a different time–frequency relationship.

If the decimation factor is sufficiently large compared with the length of the
channel impulse response a ji , (4.5) can be further simplified as [41]
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x (m ) [1],

x (0) [1], · · · , x (0) [n ], · · · , x (0) [Nd ]x (0) [0],

M-channel
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x (1) [0],

x (m ) [0],

x (1) [1],

· · · ,

· · · , x (1) [n ],

x (m ) [n ], · · · ,

· · · , x (1) [Nd ]
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y (0)

x (M − 1) [0], x (M − 1) [Nd ]· · · ,x (M − 1) [n ],· · · ,

Fig. 4.7 Implementation of filter banks with subband-based BSS

x(m)[n] = A(m)s(m)[n], (4.11)

where x(m)[n] =
⎤
x (m)

1 [n], . . . , x (m)
Nr

[n]
⎦T

is the mth subband components of the

fullband mixed signals, s(m)[n] =
⎤
s(m)

1 [n], . . . , s(m)
Ns

[n]
⎦T

is the mth subband com-

ponents of the fullband source signals, and A(m) is the corresponding Nr × Ns

instantaneous mixing matrix. Therefore at each subband, an individual instantaneous
BSS problem is formed and instantaneous BSS algorithms can be employed to obtain
W(m). The separated signal at the mth subband is given by

u(m)[n] = W(m)x(m)[n]. (4.12)

The subband-based BSS system experiences the same scaling and permutation
ambiguities as the frequency-domain BSS, and post-processing is also required.
After post-processing, we obtain scaled and permutation aligned subband signal
y(m), which is then upsampled back to its original sampling frequency

y(m)
full [n] =

{
y(m)[n/N ], n = 0,±N ,±2N , . . . .

0 otherwise.
(4.13)

And the fullband separation results are obtained after the synthesis bank, given by

y[n] =
M−1⎣

m=0

L p−1⎣

l=0

fm[l]y(m)
full [n − l], (4.14)

where fm denotes the mth synthesis filter of length L p.
The frequency-domain BSS and the subband-based BSS use the same princi-

ple to solve the convolutive mixing problem, which offers better convergence and
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requires less computation time than the time-domain blind deconvolution algorithms.
However, this is achieved at the expense of scaling and permutation ambiguities at
subbands, which could seriously reduce the overall performance of the system.

4.3 Permutation Alignment

4.3.1 Ambiguities in Subband-Based BSS

In this section, solutions to the scaling and permutation problems in subband-based
BSS will be introduced and explained. As the subband-based BSS and frequency-
domain BSS have similar structures, the methods can be directly applied to the
frequency-domain BSS.

Following (4.12), the mixing-demixing relationship for each subband can be
formulated

W(m)x(m)[n] = P(m) D(m)s(m)[n], (4.15)

where P(m) is the permutation matrix for the mth subband and D(m) is a diagonal
matrix, whose entries along the diagonal are real scalar coefficients. The permutation
and scaling matrices P(m) and D(m) are random, and the uncertainties in them need
to be addressed when the fullband signals are reconstructed at the synthesis stage.
However, the scaling problem and permutation problem have different effect toward
the overall performance, and can be considered and solved separately.

The scaling ambiguity would cause each of the subband components with
unequal scaling. Assume there is no permutation ambiguity, i.e.,P(m) = I, for m =
0, . . . , M − 1, we can rewrite (4.14) as

(
y(m)

i [n]
)

(scaled)
=

M−1⎣

m=0

d(m)
i

L p−1⎣

l=0

fm[l]s(m)
i [n − l], (4.16)

where d(m)
i is the (i, i)th entry of the scaling matrix D(m). So the result of (4.16) is a

filtered version of the original source si , and the frequency response of this distortion
filter is given by d(m)

i for m = 0, . . . , M − 1. One efficient solution to reduce this
distortion is to normalize the separation filter W(m) for m = 0, . . . , M − 1, which
will suppress the variance in d(m)

i . However, please note that the scaling ambiguity
for the overall separating system will never be solved due to the blind nature of the
problem.

Although in acoustic applications, a filtered output will cause a downgrade in audio
perception, the scaling ambiguity will not affect the separation performance because
each (y(m))(scaled) represents a fully recovered signal without any other mixtures.
However, the permutation ambiguity can result in “remixing” of the subband com-
ponents, i.e.,
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(
y(m)

i [n]
)

(perm)
=

M−1⎣

m=0

L p−1⎣

l=0

fm[l]s(m)

δ(i)(m)[n − l], (4.17)

where δ(i)(m) = (1, . . . , Ns) denotes the index number of the nonzero entry at
the i th row of the permutation matrix P(m). Because the permutation matrices are
random and very likely different, subband signals corresponding to different sources
would be mixed again. The permutation ambiguity will adversely affect the overall
separation result, and the effect will become more significant when the number of
the sources increases.

4.3.1.1 Method to Mitigate the Scaling Problem

The mixed signals can be viewed as the combination of Ns independent signals,

x(m)[n] = v(m)
1 [n] + v(m)

2 [n] + · · · + v(m)
Ns

[n], (4.18)

where v(m)
i [n] = [v(m)

1i [n], v(m)
2i [n], . . . , v(m)

Nr i [n]]T , Nr is the total number of mixtures
and we assume Nr = Ns here. Then we can have [43]

x(m)[n] =
(

W(m)
)−1

W(m)x(m)[n] =
(

W(m)
)−1

IW(m)x(m)[n]

=
(

W(m)
)−1 (

E1 + · · · + ENs

⎡
W(m)x(m)[n] (4.19)

and therefore

v(m)
i [n] =

(
W(m)

)−1
Ei W(m)x(m)[n] (4.20)

for i = 1, . . . , Ns , where I is an identity matrix, Ei is a matrix with all elements
being zeros except at the i th row and the i th column, which has a value of 1. For
example, when Ns = 3, we have

I = E1 + E2 + E3 =



1 0 0
0 0 0
0 0 0


 +




0 0 0
0 1 0
0 0 0


 +




0 0 0
0 0 0
0 0 1


 .

From (4.15) we have

(
W(m)

)−1 = A(m) ·
(

P(m)D(m)
)−1 = A(m)

(
D(m)

)−1 (
P(m)

)T
. (4.21)



108 B. Peng and W. Liu

Substituting (4.21) into (4.20), since D(m) is a diagonal matrix, we have

v(m)
i [n] = A(m)

(
D(m)

)−1 (
P(m)

)T
Ei P(m)D(m)s(m)[n]

= A(m)P(m)
i s(m)[n], (4.22)

where P(m)
i = (

P(m)
⎡T

Ei P(m) is a matrix whose elements are all zeros but with one
element along the diagonal being 1. Its position is unknown due to the permutation
ambiguity. However, (4.22) shows this method in (4.20) can normalize the separa-
tion matrix and prevent the BSS algorithm from introducing additional attenuation.
Assume there is a scaling factor α(m). We can then have

v(m)
i [n] =

(
α(m)W(m)

)−1
Ei

(
α(m)W (m)

)
x(m)[n]

=
(

W(m)
)−1

Ei W(m)x(m)[n], (4.23)

which cancels α(m) from the subband output. This technique is useful for frequency/-
subband-based BSS, where the signals from different frequencies/subbands are nor-
malized to the level before applying the BSS. However, the scaling caused by the
mixing filter is arbitrary and can not be solved due to the blind nature of the problem.

4.3.2 DOA-Based Permutation Alignment

This approach exploits the relationship between the coefficients of the separation
filters and the beamforming theory, which was first proposed in [23], and further
improved in [17, 51]. Since in most BSS problems, multiple sensors are used for
receiving the signals, the receiving end becomes an array system as shown in Fig. 4.8.
And if the distance between any two sensors is less than half of the wavelength of the
signal, there will be no spatial aliasing. In beamforming theory [40], if we assume that
there is no reverberations, the coefficients of the mixing matrix can be approximated
for each frequency as follows [40]

ai j (ω) = e j ω
c di sin(θ j ), (4.24)

where θ j is the arriving angle of the j th source, c is the propagation velocity and di

is the location of the i th sensor. Note that the angle θ j is an unknown variable. Given
the separation matrix obtained, we have the following transfer function for the j th
source

U (θ j ,ω) =
Ns⎣

j

w ji (ω)ai j (ω) =
Ns⎣

j

w ji (ω)e j ω
c di sin(θ j ), (4.25)
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Fig. 4.8 The receiving array and signals in a BSS problem

which forms a directivity pattern. Because each row of the separation matrix extracts
one source from the mixture and suppresses the other sources, for each row of the
separation matrix, it corresponds to a different directivity pattern. The angles of nulls
in the directivity pattern indicate the possible directions of the interfering source
signals. For the same source at a fixed location, its angle of null should be similar in
the directivity patterns at different frequencies. So those frequency components with
similar directivity patterns will be from the same source, which clears the permutation
ambiguity.

However, this method have limitations as the following assumptions are required
for it to work:

1. There is no reverberation or multipath effect during the propagation.
2. The distance between any two sensors needs to be known, and must be less than

half wavelength to avoid the spatial aliasing problem.
3. The sources arrive from fixed angles, and these angles must be different from

each other.
4. The sources should be far away from the receiver/sensor, to satisfy the far field

condition in beamforming.

In [56], the authors also pointed out that this method is not accurate enough, which
becomes a big problem when there are more than two sources and the DOAs of theses
sources are close to each other. In practical problems such as separation of speech
signals, the multipath effect will be inevitable for an indoor environment, which
further reduces the reliability of this method. So in [56], the permutation alignment
based on interfrequency correlation is also used to improve the result.
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{
Fig. 4.9 Example of an alignment procedure during frequency-domain BSS. The solid line connects
the matched pair with maximum interfrequency correlation

4.3.3 Correlation-Based Permutation Alignment

This approach exploits the dependence between the separated frequency components,
which is firstly proposed in [43], assuming that there will be correlation between
two adjacent frequency components if they are from the same source signal. This
assumption is viable even if the source signals are nonstationary, such as in the case
of a speech signal, and therefore it is widely used in frequency-domain or subband-
based blind speech separation.

The dependence between two frequency components at frequency fa and fb can
be measured by calculating their normalized correlation, given by

λ( fa, fb) = E{(y( fa) − μ( fa))(y( fb) − μ( fb))}
σ fa σ fb

, (4.26)

where y( fa) and y( fb) denote the separated components at frequency fa and fb,
respectively, and μ and σ denote the mean and standard deviation of the component.
Because the mixing model often assumes that different sources are not correlated
with each other, the separated frequency components of different sources will have a
very small value or even zero for λ, while two separated components from the same
source will have a larger value of λ.

An example of a basic alignment procedure is shown in Fig. 4.9. We can start from
one component y1( fa) at frequency fa , and calculate the normalized correlations
between y1( fa) and all the outputs at fa+1. Based on the interfrequency dependence
assumption, the pair with largest normalized correlation is from the same source, e.g.,
y1( fa) and y1( fa+1) in the graph. The mapping is then continued between frequency
fa+1 and fa+2, and extended to the rest of the frequencies. After completing the
same procedure to all other components, a complete relationship among different
frequency components is obtained and the permutation ambiguity is cleared.

Compared to the method based on DOA estimation, this one is much more flexi-
ble, as it does not constrain the BSS algorithm in any way, and the only assumption
about the interfrequency dependence can be well met in most BSS problems. On the
other hand, this method heavily depends the second-order statistics of the separated
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outputs. So when the separation is only partially achieved and the output component
still contains the mixture from other source signals, the dependence/independence
assumption may not hold well, which will cause incorrect alignment decisions.
Furthermore, since the mapping is performed in a sequential manner, one incorrect
alignment will propagate to the remaining frequencies.

To reduce errors in permutation alignment, alternative measures of the interfre-
quency dependence are proposed. In [43], the calculation of the normalized correla-
tion is based on the envelops of the frequency components, which can be obtained
by applying a sliding window function. In [53], the correlation coefficients of signal
power ratios are used to measure the interfrequency dependence. In [42], each fre-
quency component is modeled by generalized Gaussian distribution, and the variance
among the distributions is calculated and used for clustering the components.

There are also approaches to minimize the error propagation and improve the
robustness. In [60], a two-step permutation alignment scheme is proposed to mini-
mize the error propagation. During the first step, the conventional bin-wise permu-
tation alignment is applied across all the frequencies, and a group of components
with strong interfrequency dependence is selected, which is supposed to have a more
accurate alignment. At the second step, this group is merged with neighboring fre-
quency components based on the same correlation criterion. This approach achieved
good results in simulations, but a good choice of this starting region becomes very
important to the final results. A similar method is used in [53], where the frequency
components are first divided into subgroups by clustering process. In [56], the cor-
relation approach is combined with the DOA approach, as the latter one is supposed
to be robust against local errors but lack of accuracy.

4.3.4 Joint BSS by Subband Based M-CCA

As mentioned in the Sect. 4.1, we can extend the subband-based BSS structure and
consider joint separation of signals at multiple subbands. The advantage of joint
BSS in subbands is that no permutation alignment is needed, as the algorithm will
automatically align the separated subband signals belonging to the same source.

When a number of data sets are collected and there are dependencies among them,
joint analysis is usually preferred to exploit the mutual information among them. This
concept has been used in many applications. For example, during the estimation
of brain activation, the information can be extracted from a number of functional
magnetic resonance (fMRI) data of different subjects [26, 29]. Similarly during
frequency decomposition of acoustic signals, dependence exists among signals from
different frequencies [20, 21].

This feature can be exploited by multiset canonical correlation analysis (M-CCA)
[19, 28], which estimates the linear relationship of data sets by maximizing their
correlation [13]. It only relies on the second-order statistics of the signals and has
been proved to be an efficient algorithm for separation [36, 38, 39].
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After passing through the analysis bank, the subband signals will be preprocessed
by a whitening operation; then the M-CCA based on maximizing the sum of squared
correlation (SSQCOR) is employed. At the kth stage, the criterion to recover the kth
source is given by [28]

[w(0)
k , . . . , w(M−1)

k ] = argmax
Wk

⎧
⎨
⎩

M⎣

m,n=1

|r̂ (m,n)
k |2

⎫
⎬
⎢ , (4.27)

subject to w(m)
k √

⎞
w(m)

1 , . . . , w(m)
k−1

⎠
, (4.28)

⎥⎥⎥w(m)
k

⎥⎥⎥ = 1, for m = 0, . . . , M − 1 (4.29)

where
r̂ (m,n)

k = corr
(

w(m)
k x(m), w(n)

k x(n)
)

. (4.30)

In the context of BSS, w(m)
k denotes the kth row vector of the separation matrix applied

to the mth subband. The objective function (4.27) with two constraints (4.28) and
(4.29) can be solved by forming a Lagrangian function with respect to the separation
matrix for each of the subbands. The optimum values of wk is then obtained by setting
its partial derivative function to zero, which leads to the solution to a generalized
eigenvalue problem that is updated for each stage [19]. The procedure is repeated
until the last signal is recovered.

Equation (4.30) can be further derived as

r̂ (m,n)
k = corr

(
w(m)

k A(m)s(m), w(n)
k A(n)s(n)

)

= corr
(

t(m)
k s(m), t(n)

k s(n)
)

= t(m)
k Λ(m,n)t(n)

k , (4.31)

where Λ(m,n) is the correlation matrix of the source signals s(m) and s(n), A(m) is the
equivalent instantaneous mixing matrix of A for the mth subband, and t(m)

k is the kth
row vector of the global mixing-demixing matrix T(m) at the mth subband

T(m) = W(m) · A(m) = [(t(m)
1 )T, . . . , (t(m)

k )T , . . . , (t(m)
Ns

)T ]T . (4.32)

For a satisfactory separation result, the M-CCA would require Λ(m,n) having a
form close to a diagonal matrix, whose diagonal entries are the correlation values
between the matched sources from s(m)

i and s(n)
i , i = 1, . . . , Ns [28]. For speech

signals decomposed by filter banks, this assumption can be enhanced by using the
prototype filter optimized for the intersubband correlation [45–49], which will be
discussed in the following section.
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4.4 Design of GDFT Filter Banks for Subband BSS

4.4.1 Review of Filter Banks Design

In Sect. 4.2, we have introduced the formulation for CMFBs and GDFT filter banks.
The complex-valued filter banks have been shown to have lower aliasing errors
than the real-valued ones. In this section, we will briefly review the basic ideas
for designing GDFT filter banks, and then focus on a specific design method for
improving the performance of subband-based BSS.

4.4.1.1 Aliasing in Filter Banks System

The main purpose of the analysis filters in the filter banks is to control the subband
bandwidth and minimize the components exceeding the required frequency band,
which will alias into the baseband and cause severe distortion to the decimated
subband signals.

At the mth subband of a filter banks system, the signal after decimation can be
formulated by the following equation

X (m)(z) = 1

N
Hm(z1/N )X (z1/N ) + 1

N

N−1⎣

n=1

Hm(z1/N e− j2πn/N )X (z1/N e− j2πn/N ),

(4.33)
where N is the decimation factor, X (m)(z) is the z-transform of the decomposed
signal at the mth subband, and Hm(z) is the z-transform of the mth analysis filter.
The first term at the right hand of (4.33) denotes the desired subband signal, and
the second term denotes the sum of (N − 1) aliasing components, which are the
frequency shifted versions of the original subband signal after decimation.

The analysis filters are designed to minimize subband distortion when shifted
signals overlap with the baseband signal [52]. Thus these aliasing components will
degrade the performance of the required subband processing [26]. In the context of
BSS, it will not only affect the subband separation result, but also destroy the correla-
tion between adjacent subband signals, rendering the correlation-based permutation
alignment approach even less effective.

By a very large oversampling ratio M/N , or equivalently a large subband sam-
pling frequency, the aliasing component will eventually be reduced to a great degree,
but it will also lead to an increase of the computational load. In addition, it causes the
band-edge effect if the bandwidth of the guard-band is too wide [26]. The large spec-
tral dynamic range at the band edge will lead to an ill-conditioned autocorrelation
matrix of the subband signal, and even affect the convergence rate if the autocor-
relation matrix is used in the following subband processing. In our simulations, an
oversampling ratio of 4

3 is used.
Based on (4.33), we further derive the output of the whole subband-based BSS

system,
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Yi (z) = 1

N

M−1⎣

m=0

Gm(z)ŵ(m)
i Fm(z)X(z) + 1

N

M−1⎣

m=0

Gm(z)ŵ(m)
i ×

N−1⎣

l=1

Fm(ze
− j2πl

N )X(ze
− j2πl

N ),

(4.34)
for i = 1, . . . , Ns , where X = [X1(z), . . . , X Ns (z)] is the z-transform of received

signals, Yi (z) denotes the z-transform of the i th separated signal, and Fm(z) and
Gm(z) are the z-transform of the mth analysis and synthesis filters. The vector ŵ(m)

i

is the i th row of the matrix Ŵ
(m)

, which is the equivalent separation matrix after
scaling normalization and permutation alignment at the mth subband. The first part
on the right hand side of (4.34) is the transfer function between the source and the
output and the second part represents the aliasing components from all frequencies.

4.4.1.2 Reducing the Aliasing Error

For an M-channel filter banks system, the cut-off frequency has to be at least ωp =
π/M to cover the fullband, and the transition band is between π

M and ωs = π
N . To

reduce the magnitude of the second term of (4.34) and also minimize the aliasing
components in (4.33), oversampling is often considered, i.e., N < M . At the same
time, the stopband energy of the prototype filter is minimized, written as

Es =
π⎟

ωs

∣∣∣P0(e
jω)

∣∣∣
2

dω =
π⎟

ωs

∣∣∣∣∣∣

L p−1⎣

n=0

p0[n]e jωn

∣∣∣∣∣∣

2

dω. (4.35)

The signal to aliasing ratio (SAR) can be used to measure the aliasing components
caused by the energy at the stopband [63], given by

SAR =
∫ π/N

0

∣∣P0(e jω)
∣∣2 dω

∫ π
π/N

∣∣P0(e jω)
∣∣2 dω

. (4.36)

4.4.1.3 Perfect Reconstruction Condition

When the stopband energy is minimized in (4.35) and we adopt the oversampling
structure to reduce the aliasing component, the distortion of the subband-based BSS
will be governed by the first part of (4.34), given by

Ed = 1

2π

π⎟

−π

∣∣∣∣∣
1

N

M−1⎣

m=0

Gm(e jω)ŵ(m)
i Fm(e jω)X(e jω) − Si (e

jω)

∣∣∣∣∣

2

dω, (4.37)

where Si (e jω) is the i th source signal.
In BSS, knowledge of the mixing filter A(m) is not available, and each of the

separated signals is always subject to an arbitrary filtering effect. In addition, the
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separation vector w(m)
i will not always converge to the ideal one. Thus, the separated

subband signals will retain residues from other sources. Using X int(e jω) to denote
the interference components and the scaler βi (e jω) for the attenuation caused by the
overall filtering effect between the i th source and the i th receiver at frequency ω, we
have

ŵ(m)
i X(e jω) = βi (e

jω)Si (e
jω) − X int(e

jω). (4.38)

Since the analysis and the synthesis filters are derived by the same low-pass filter, we

can substitute
∣∣P0(e j (ω−ωk )

∣∣2 = Gk(e jω)Fk(e jω) and (4.38) into (4.37). Therefore,

Ed = 1

2π

π⎟

−π

∣∣∣∣∣
1

N

M−1⎣

m=0

∣∣∣P0(e
j (ω−ωk )

∣∣∣
2

ŵ(m)
i X(e jω) − Si (e

jω)

∣∣∣∣∣

2

dω

= 1

2π

π⎟

−π

∣∣∣∣∣

(
1

N

M−1⎣

m=0

∣∣∣P0(e
j (ω−ωk ))

∣∣∣
2 − 1

)(
βi (e

jω)Si (e
jω) − X int(e

jω)
)

−X int(e
jω) − (1 − βi (e

jω))Si (e
jω)

∣∣∣
2

dω

⊗ 1

2π

π⎟

−π

∣∣∣∣∣

(
1

N

M−1⎣

m=0

∣∣∣P0(e
j (ω−ωk ))

∣∣∣
2 − 1

)(
Si (e

jω) − X int(e
jω)

)∣∣∣∣∣

2

+
∣∣∣X int(e

jω)

∣∣∣
2 +

∣∣∣(1 − βi (e
jω))Si (e

jω)

∣∣∣
2

dω, (4.39)

where H(e jω) is the frequency response of the prototype filter, ωm = 2π(m +
1/2)/M , and βi is an unknown scaling coefficient, determined by the mixing filters.

Thus, the value of
∣∣(1 − βi (e jω))Si (e jω)

∣∣2 is also unknown.
Now assume for a perfect separation, i.e., βi = 1 and the interference component∣∣X int(e jω)

∣∣2 is eliminated. Then only the first part of the final expression of (4.39)
remains, which can be further transformed into

Ed1 = 1

2π

π⎟

−π

∣∣∣∣∣

(
1

N

M−1⎣

m=0

∣∣∣P0(e
j (ω−ωm ))

∣∣∣
2 − 1

)(
Si (e

jω) − X int(e
jω)

)∣∣∣∣∣

2

⊗ max
ω

∣∣∣Si (e
jω) − X int(e

jω)

∣∣∣
2 1

2π

π⎟

−π

(
1

N

M−1⎣

k=0

∣∣∣P0(e
j (ω−ωm ))

∣∣∣
2 − 1

)
dω,

(4.40)

which forms the classical power complimentary condition for the prototype filter and
Ed1 can be minimized by adopting the PR condition



116 B. Peng and W. Liu

1

N

M−1⎣

m=0

∣∣∣P0(e
j (ω−ωm ))

∣∣∣
2 = 1. (4.41)

However, as the separating matrix W (m) can only be approximated by the inverse of
the mixing filter at each subband subject to an arbitrary scaling function by the BSS

algorithm, the assumption of βi = 1 and
∣∣X int(e jω)

∣∣2 = 0 is not practical and the PR
condition is not really necessary in the context of subband-based BSS. Therefore,
instead of removing the PR condition completely, we can adopt a relaxed condition
on the passband energy of the prototype filter, given by

E p = 1

Np

Np⎣

k=1

∣∣∣∣
∣∣∣P0(e

jwk )

∣∣∣
2 − 1

∣∣∣∣
2

= 1

Np

Np⎣

k=1

∣∣∣∣∣∣∣

∣∣∣∣∣∣

n=L p−1⎣

n=0

h0[n]e− jωk n

∣∣∣∣∣∣

2

− 1

∣∣∣∣∣∣∣

2

,

(4.42)
where Np is the number of frequency points selected, and the frequency points
[w1, . . . , wNp ] ∀ (0,π/M). During optimization, only a small value for Np is
needed.

4.4.2 Subband Correlation Maximization

The relaxed PR condition requires much fewer number of constraints at the passband
of the prototype filter. The extra design freedom provides chance to further reduce
energy at the stopband, and also provide more space to introduce a new optimization
criterion specific for the BSS application.

As mentioned, the mutual information between subbands is important to both
permutation alignment in a standard BSS and successful operation of the recent
proposed joint BSS. For a general fullband input signal x[n], the intersubband cor-
relation λ(m,m+1)(l) at time lag l between subband channels m and (m + 1) can be
determined as [25]

λ(m,m+1)(l) ⇔ E
[
hm(n + l) · hm+1(n)

] ∗ E [x[n + l] · x[n]] , (4.43)

where∗denotes the convolution operation and hm(n) and hm+1(n) are the coefficients
of the mth and the (m +1)th analysis filters. Both the statistical property of the input
signal and the filter coefficients affect the value of λ(m,m+1)(l). By carefully choosing
the filter’s coefficients, the value of λ(m,m+1)(l) can be increased.

In [47], the cost function for intersubband correlation is proposed, in which the
correlation r over all M channels is calculated by (4.44), (4.45) and (4.46).
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r (m,m+1) = arg max
l∀[−p,...,p]

⎞
|λ(m,m+1)(l)|

⎠
, (4.44)

λ(m,m+1)(l) =
⎣∞

n=0

⎤
q(m)[n + l]

⎦ ⎤
q(m+1)[n]

⎦

σ
(m)
q · σ

(m+1)
q

, (4.45)

r = 1

M − 1

M−1⎣

m=1

r (m,m+1), (4.46)

where p is a small positive integer defining the range of the time lag over which the
correlation is considered, λ(m,m+1)(l) is the normalized correlation between the mth
and the (m +1)th subbands with an offset l, q(m)[n + l] is the mth channel decimated
signal for a general input q[n] at time index n + l, q[n] is modeled as zero-mean
wide sense stationary white Gaussian, and σ

(m)
q is the standard deviation of q(m)[n].

Because the magnitude of the normalized correlation is always smaller than 1, the
objective function for minimization can be formulated as

Φcorr = 1 − r . (4.47)

For the optimized design of the GDFT prototype filter, the optimization of p0[n]
is formulated in (4.48), which minimizes both the stopband energy Es given in (4.35)
and Φcorr, constrained by the frequency response at the passband defined in (4.42)

min
h[n],0⊗n⊗L p

(1 − α)Es + α · Φcorr subject to E p < εp, (4.48)

where εp is a small value set to be the upper limit of the passband distortion error
E p and α is the weighting factor between Es and Φcorr.

Equation (4.48) is similar to the design of CMFBs in [47]. However, for the
reason stated in the previous section, the original PR condition is replaced by a soft
constraint on the passband response of the prototype filter. As a result, the aliasing
error is expected to be reduced significantly by replacing cosine modulation by GDFT
modulation, which translates into further increased intersubband correlation, so that
an improved performance in subband permutation alignment can be obtained.

Moreover, for the two components in the cost function, if we want to increase the
level of cross-correlation, the stopband attenuation for the designed prototype filter
has to be smaller, which may increase the aliasing level after decimation and as a result
reduce the cross-correlation between the adjacent subbands after decimation. On the
other hand, smaller attenuation at the stopband also undermines the assumption that
after subband decomposition, the convolutive mixing problem has been transformed
into an instantaneous one. One important note is that, even if we have the same
PR condition, the same stopband attenuation and the same overlapped area between
adjacent subbands as the existing designs without correlation maximization, the
design in (4.48) will at least have an effect of redistributing the correlation value
among different time lags and focusing the overall correlation at a specific time lag,
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Table 4.1 Parameters of the
design example for
the optimized filter banks

M = 64 N = 48 ws = 1.96π/N
wp = 1.9π/M l = 2 L p = 384
εp = 10−3 α = 10−2 Np = 4

so that we can use the correlation at that time lag for more effective permutation
alignment.

One issue with the choice of the oversampled GDFT filter banks is the values
of M and N . In theory, there are mainly two factors to consider in determining the
values of M and N . First, they should be large enough to make sure that after subband
decomposition, the convolutive mixing problem has been transformed into a series
of instantaneous mixing problems. In this case, their values are actually determined
by the complexity of the unknown fullband mixing filters in the original convolutive
mixing problem. However, a large value for M and N increases the computational
complexity of the system and reduces the data length of the decomposed subband
signals, with the latter one leading to less accurate estimation of their statistics and
cross-correlation, and as a result a degraded overall performance. It is extremely
difficult, if not impossible, to determine their optimum values and for now they can
only be chosen empirically. The same problem exists in the frequency-domain BSS
method, i.e., how to choose the right length of the DFT operation.

For oversampled GDFT filter banks, another problem is the ratio between M and
N . A larger ratio M/N gives more overlapped area between adjacent subbands, and
leaves more degrees of freedom for cross-correlation maximization. However, this
also results in higher computational complexity for the same value of M .

4.4.3 Filter Banks Design Examples

An example prototype filter is designed based on the optimized design with the para-
meters listed in Table 4.1 and the resultant frequency response shown in Fig. 4.10b.
For comparison, the prototype filter for conventional GDFT filter banks of M = 64
and N = 48 is also designed, and the frequency response is shown in Fig. 4.10a.
The response in Fig. 4.10b has a small ripple around the passband edge, as the PR
condition is relaxed. In return, it has a wider bandwidth for signal to pass and a
steeper transition band before reaching the aliasing margin at π/N .

The improvement due to the new design can be evaluated using (4.36), in which
the SAR is calculated. The optimized prototype filter has a ratio of 29.80 dB, while
the conventional one has a ratio of 26.99 dB.
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Fig. 4.10 Frequency response of two prototype filters of a 64-channel GDFT filter banks system

4.4.3.1 Filter Bank Reconstruction

Despite of the relaxation of the PR condition, the BSS-optimized design can still
retain the original waveform of the input to a large degree. This is illustrated in
Fig. 4.11, where a unit impulse was the input of the oversampled GDFT filter banks,
and the prototype filter in Fig. 4.10b was used. Because the length of the prototype
filter is Lp = 384, the filter banks have introduced a delay of L p, after which the
magnitude attenuated impulse can be observed.

4.4.3.2 Intersubband Correlation

For the permutation alignment approach based on intersubband correlation, the cor-
relation value is calculated between adjacent subband signals, where the combina-
tion with largest correlation is chosen. The result of correlation optimization can be
demonstrated by considering the simplest problem with two source signals (Ns = 2).
In order to show the improvement in alignment, two source signals s1 and s2 with-
out mixing are used. The difference between subband correlation for two different
combinations is used for evaluation, which is defined as
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Fig. 4.11 The output of the optimized GDFT filter banks for an unit impulse as the input

Θ
(m)
match = corr (s(m)

1 , s(m+1)
1 ) + corr (s(m)

2 , s(m+1)
2 ),

Θ
(m)
unmat = corr (s(m)

1 , s(m+1)
2 ) + corr (s(k)

2 , s(m+1)
1 ),

Θ(m)
s = Θ

(m)
match − Θ

(m)
unmat, (4.49)

for m = 0, . . . , M − 2, where Θmatch represents the intersubband correlation of
the matched subband signals, Θunmat represents the intersubband correlation of mis-
matched subband signals, and corr (·) calculates the normalized cross-correlation, as
defined by (4.43). Θ(m)

s for m = 0, . . . , M −2 can be viewed as a special case in the
process of permutation alignment when the BSS algorithm has fully recovered the
source signals at each subband, and for correct alignments, Θ

(m)
s should be larger

than zero.
Figure 4.12 shows the results for the optimized GDFT filter banks with two speech

signals as the sources. For comparison, results based on conventional GDFT filter
banks are also shown in Fig. 4.12, where the same sets of signals are applied. The
result shows that correct permutation alignment can be achieved for the subband
signals if complete separation can be achieved. From Fig. 4.12, we can clearly observe
an improvement for the optimized design. When the optimized filter banks are used,
Θ

(m)
s is always larger than 0.13; in contrast, the intersubband correlations using the

conventional design drop below 0.1 and become very close to zero for some subbands.
While a positive value of Θ

(m)
s guarantees correct permutation alignment, a large

positive value of Θ
(m)
s will provide a margin of safety, which becomes important

when subband separation is not achieved completely.
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Fig. 4.12 Intersubband correlation of speech signals in two GDFT filter banks systems
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Fig. 4.13 Structure of the simulation process of the subband-based BSS system

4.5 Simulation Results

In this section, MATLAB-based experiments are performed to simulate the subband
convolutive BSS system, as shown in Fig. 4.13. The source signals s[n] are recorded
speech signals sampled at 8 KHz, which are mixed by convolution operations with
mixing FIR filters. They are frequency decomposed at the analysis bank, where
GDFT-modulated filter banks are considered.

The prototype filter for the GDFT filter banks is designed by the BSS-optimized
method, with parameters listed at Table 4.1 and the frequency response is shown in
Fig. 4.10b. It is compared with the conventional design using the method in [12].

The modified iterative natural gradient algorithm is applied to each subband chan-
nel to obtain the separating matrices [10]. Since the subband signals are complex-
valued, the following nonlinear function is used [55]

ϕ(u(k)[p]) =

 u(k)

1 [p]∣∣∣u(k)
1 [p]

∣∣∣
, . . . ,

u(k)
Ns

[p]∣∣∣u(k)
Ns

[p]
∣∣∣




T

. (4.50)
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For each subband, to mitigate the scaling ambiguity problem, the minimal
distortion principle explained in Sect. 4.3.1.1 is used. For the permutation ambiguity
problem, we will align the subbands by the correlation-based approach.

4.5.1 Evaluation Criteria

Because the original signals and the mixing filters are all known in our simulation
process, we can quantitatively evaluate the separation performance. The signal to
interference ratio (SIR) at the mth subband for each separated signal is calculated
using the following equation

SIR(m) =
⎣Ns

i=1

⎥⎥⎥t (m)
i i · s(m)

i

⎥⎥⎥
2

⎣Ns

i=1

⎣Ns

j=1, j 
=i

⎥⎥⎥t (m)
i j · s(m)

j

⎥⎥⎥
2 , (4.51)

where s(m)
i is obtained by passing the i th source signal through the mth analysis filter,

and t (m)
j i is the ( j, i)-th entry of the combined mixing-demixing matrix A(m) for the

mth subband. We also consider the SIR at each of the outputs, and for the i th output,

SIR(m)
i =

⎥⎥⎥t (m)
i i · s(m)

i

⎥⎥⎥
2

⎣Ns

i=1

⎣Ns

j=1, j 
=i

⎥⎥⎥t (m)
i j · s(m)

j

⎥⎥⎥
2 , (4.52)

To evaluate the permutation alignment result, we use the source signals as refer-
ence, which are decomposed into M subbands by the same filter banks. Misalignment
between the reference and separated signals at adjacent subband means a permutation
alignment error has occurred.

4.5.2 Three-Microphone Three-Source Scenario

In our simulation, we consider a BSS problem with three speakers and three
receivers. Two sets of mixing filters are randomly generated, which are 10 and 20 tap
long, respectively, as shown in Figs. 4.14 and 4.15. The speech signals shown in
Fig. 4.16 are used as source signals, which are 7 s long and sampled at 8 KHz.

Figures 4.17 and 4.18 show the subband SIR result when the mixing filters
of length 10 were used, and both the optimized and the conventional GDFT
filter banks produced good results at lower frequencies, where an SIR level at
around 5 dB can be achieved. However, as we can see at subband m = 21 of
the conventional system, misalignment occurs and the subband SIRs for the three
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Fig. 4.14 Impulse responses of the mixing filters for a three-speaker–three-receiver system, and
each filter is 10 tap long

outputs were (−20.1, 5.24,−4.72)dB. By comparing the separated signals with
the source signals, we can obtain the SIRs for correct permutation, which are
(18.05, 5.24, 2.07)dB. As demonstrated by the examples in Sect. 4.4, when the
subband SIRs are at a low level, i.e., 2.07 dB in this case, a misalignment may occur
because of the presence of interference signals. Similarly for m = 22, the subband
SIRs are (−23.09,−7.07,−20.20)dB and the fixed SIRs are (21.19, 9.40, 1.42)dB,
which caused a second misalignment because of the same reason.

In contrast, when the optimized design was used, the subband SIR were (12.75,

7.63, 4.2)dB and (17.07, 6.69, 2.84)dB; correct alignment is obtained as the opti-
mized design can enhance the inter-subband correlation between matched subband
signals.

In Figs. 4.19 and 4.20, mixing filters of length = 20 were used for the convolutive
mixtures. As the mixing filters become longer with a more complicated frequency
response, the separation is expected to become more difficult as the number of esti-
mated coefficients has been increased. This change can be observed from the two
figures, as the subband separation performance become worse and more misalign-
ments are present for both GDFT filter banks. For the conventional design, the
misalignment appeared at m = (5, 9, 14, 15, 23, 40, 48, 49, 54, 58), and permu-
tation errors propagate between these subbands, which severely distorted the sep-
aration results. However, as the optimized design is more robust to the reduction
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Fig. 4.15 Impulse responses of the mixing filter for a three-speaker–three-receiver system, and
each filter is 20 tap long
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Fig. 4.17 The subband SIR for the three outputs using the conventional oversampled GDFT mod-
ulated filter banks for mixing filters of length = 10
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Fig. 4.18 The subband SIR for the three outputs using the optimized oversampled GDFT modulated
filter banks for mixing filters of length = 10

of subband SIR, misalignment only occurred at subbands with lowest SIR (at
m = 15, 23, 40, 48). Since the first misalignment occurred at a higher subband, and
the energy of speech signals is normally focused on lower frequencies, the impact
of permutation errors is less significant.

The fullband overall SIR values can be obtained by passing the subband compo-
nents t (m)

i i · s(m)
i and t (m)

i j · s(m)
j through the synthesis filters and calculating the ratio

after the summation. Table 4.2 summarizes the results.
The optimized and the conventional GDFT filter banks have similar results when

the subband SIRs are high, where permutation alignment can be correctly achieved.
However, when the separation difficulty increases, which is usually because of the
changes in the source signals or the mixing filters, permutation misalignment may
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Fig. 4.19 The subband SIR for the three outputs using the conventional oversampled GDFT filter
banks for mixing filters of length = 20
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Fig. 4.20 The subband SIR for the three outputs using the optimized oversampled GDFT filter
banks for mixing filters of length = 20

occur. For the optimized design, it is quite robust and correct alignment can still be
obtained even when the subband SIR is relatively low.

Permutation error is a good performance indicator of the subband-based BSS,
and when the subband system has zero permutation errors, the BSS algorithm can
reach its full potential; while the optimized prototype filter is designed to improve
the alignment result, misalignment may still occur at a few subbands. Although
occurrence of the misalignment is hardly predicted and a few misalignment may
propagate to a larger number of subbands, the optimized design can generally improve
the overall separation result. If the misalignment occurs at higher frequencies, the
main components of the source speech signals can still be recovered correctly.
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Table 4.2 Simulation results: averaged fullband SIR values for each output, the number of permu-
tation errors and permutation misalignments

SIR1 (dB) SIR2 (dB) SIR3 (dB) Permutation error Misalignment

Mixing tap = 10
Conventional GDFT 12.55 15.1 17.9 24/64 4/64
Optimized GDFT 20.4 16.8 17.24 0 0
Mixing tap = 20
Conventional GDFT 2.98 1.99 13.22 20/64 10/64
Optimized GDFT 12.56 6.33 13.53 16/64 2/64

4.6 Chapter Summary

In this chapter, we have studied the subband-based BSS problem and methods for
removing permutation ambiguity after frequency/subband decomposition. We first
reviewed the fundamental ideas for filter banks design, including minimization of
the stopband energy and the PR condition. The scaling indeterminacy of the BSS
problem were analyzed, and it has been shown that the benefit brought by the PR
condition is quite limited in the context of BSS. Thus, in Sect. 4.4, a relaxed PR
condition was employed in the filter banks design, which only considers a small
number of frequencies in the passband. The resultant additional design freedom can
be exploited by adopting a recently proposed design criterion based on intersubband
correlation maximization. The optimized GDFT filter banks have increased the cross-
correlation between matched subband signals. This improvement is especially useful
when there are still interferences present in separated subband signals. Simulation
results have shown clear improvement in the robustness of the alignment process
when the optimized GDFT filter banks were used, resulting in a reduced number of
alignment errors and a much improved overall separation performance.
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Chapter 5
Frequency Domain Blind Source Separation
Based on Independent Vector Analysis
with a Multivariate Generalized Gaussian
Source Prior

Yanfeng Liang, Syed Mohsen Naqvi, Wenwu Wang
and Jonathon A. Chambers

Abstract Independent vector analysis (IVA) is designed for retaining the depen-
dency contained in each source vector, while removing the dependency between
different source vectors during the source separation process. It can theoretically
avoid the permutation problem inherent to independent component analysis (ICA).
The dependency in each source vector is maintained by adopting a multivariate source
prior instead of a univariate source prior. In this chapter, a multivariate generalized
Gaussian distribution is proposed to be the source prior, which can exploit the energy
correlation within each source vector. It can preserve the dependency between dif-
ferent frequency bins better to achieve an improved separation performance, and is
suitable for the whole family of IVA algorithms. Experimental results on real speech
signals confirm the advantage of adopting the new source prior on three types of IVA
algorithms.

5.1 Introduction

Blind source separation (BSS) aims to separate specific signals from observed mix-
tures with very limited prior knowledge, and has been researched over recent decades
and has wide potential applications, such as in biomedical signal processing, image

Y. Liang (B) · S. M. Naqvi · J. A. Chambers
Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
e-mail: y.liang2@lboro.ac.uk

S. M. Naqvi
e-mail: S.M.R.Naqvi@lboro.ac.uk

J. A. Chambers
e-mail: J.A.Chambers@lboro.ac.uk

Wenwu Wang
University of Surrey, Guildford, Surrey, GU2 7XH, UK
e-mail: W.Wang@surrey.ac.uk

G. R. Naik and W. Wang (eds.), Blind Source Separation, 131
Signals and Communication Technology, DOI: 10.1007/978-3-642-55016-4_5,
© Springer-Verlag Berlin Heidelberg 2014



132 Y. Liang et al.

processing, speech processing, and communication systems [1, 2]. A classical BSS
problem is the machine cocktail party problem, which was proposed by Colin Cherry
in 1953 [3, 4]. His drive was a machine to mimic the ability of a human to extract
a target speech signal from microphone measurements acquired in a room environ-
ment.

In order to solve the BSS problem, a statistical signal processing method, i.e.,
independent component analysis (ICA), is proposed to exploit the non-Gaussianity of
the signals [5]. It works efficiently to solve the instantaneous BSS problem. However,
the problem becomes convolutive BSS problem in a room environment due to the
reflections from the ceiling, floor, and walls. The length of the room impulse response
is typically on the order of thousands of samples, which leads to huge computational
cost when using time domain methods. Therefore, frequency domain methods have
been proposed to reduce the computational cost due to the convolution operation
in the time domain becomes multiplication in the frequency domain provided the
block length of the transform is substantially larger than the length of the time
domain filter [6, 7]. When the mixtures are transformed into the frequency domain
by using the discrete Fourier transform (DFT), the instantaneous ICA can be applied
in each frequency bin to separate the signals. However, the permutation ambiguity
inherent to ICA becomes more severe because of the potential misalignment of the
separated sources at different frequency bins. In this case, when the separated sources
are transformed back to the time domain, the separation performance will be poor.
Therefore, various methods have been proposed to mitigate the permutation problem
[7]. However, most of them use extra information such as source geometry or prior
knowledge of the source structure, and pre or post processing is needed for all of
these methods which introduces additional complexity and delay.

Recently, independent vector analysis (IVA) has been proposed to solve the per-
mutation problem naturally during the learning process without any pre or post
processing [8]. It can theoretically avoid the permutation problem by retaining the
dependency in each individual source vector while removing the dependency between
the source vectors of different signals [9, 10]. The main difference between ICA algo-
rithms and IVA algorithms is the nonlinear score function. For conventional ICA
algorithms, the nonlinear score function is a univariate function which only uses the
data in each frequency bin to update the unmixing matrix. However, the nonlinear
score function for IVA is a multivariate function, which can use the data from all the
frequency bins. Therefore, it can exploit the inter-frequency dependencies to mitigate
the permutation problem.

There are three state-of-the-art types of IVA algorithms, which are the natural
gradient IVA (NG-IVA), the fast fixed-point IVA (FastIVA) and the auxiliary function
based IVA (AuxIVA). NG-IVA adopts the Kullback-Leibler divergence between the
joint probability density function and the product of marginal probability density
functions of the individual source vectors as the cost function, and the natural gradient
method is used to minimize the cost function [9]. FastIVA is a fast form of IVA which
uses Newton’s method to update the unmixing matrix [11]. AuxIVA uses the auxiliary
function technique to converge quickly without introducing tuning parameters and
can guarantee the objective function decreases monotonically [12]. There are also
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several other IVA algorithms, which are based on these three IVA algorithms. The
adaptive step size IVA algorithm, which is based on the NG-IVA algorithm, can
automatically select the step size to achieve a faster convergence [13]. The audio-
video based IVA method combines video information with FastIVA to obtain a faster
and better separation performance in noisy and reverberant room environments [14].
And IVA methods which exploit the activity and dynamic structure of the sources to
achieve improved separation performance have also been proposed [15, 16].

The nonlinear score function of IVA is used to preserve inter-frequency depen-
dencies for individual sources [9]. Because the nonlinear score function is derived
from the source prior, an appropriate source model is needed. For the original IVA
algorithms, a multivariate Laplace distribution is adopted as the source prior. It is
a spherically symmetric distribution, which implies the dependencies between dif-
ferent frequency bins are all the same. In order to describe a variable dependency
structure, a chain-type overlapped source model has been proposed [17]. Similarly, a
harmonic structure dependency model has been proposed [18]. A Gaussian mixture
model can also be adopted as the source prior, whose advantage is that it enables the
IVA algorithms to separate a wider class of signals [19, 20]. Most of these source
models assume the covariance matrix of each source vector is an identity matrix due
to the orthogonal Fourier basis. This implies that there is no second order correlation
between different frequency bins. Although recently a multivariate Gaussian source
prior has been proposed to introduce the second order correlation [21], it is only
applicable when there are large second order correlations such as in functional mag-
netic resonance imaging (fMRI) studies. For the frequency domain IVA algorithms,
higher order correlation information between different frequency bins is still missing
and should be exploited.

In this chapter, a multivariate generalized Gaussian distribution is adopted as the
source prior. It has heavier tails compared with the original multivariate Laplacian
distribution, which makes the IVA algorithms derived from it more robust to outliers.
It can also preserve the dependency across different frequency bins in a similar way
as when the original multivariate Laplacian distribution is used to derive an IVA
algorithm. Moreover, the nonlinear source function derived from this new source
prior can additionally introduce the energy correlation within each source vector.
Therefore, it contains more informative dependency structure and can thereby better
preserve the dependencies between different frequency bins to achieve an improved
separation performance.

The structure of this chapter is as follows. In Sect. 5.2, the original IVA is intro-
duced. In Sect. 5.3, the energy correlation within a frequency domain speech signal
is introduced. Then a multivariate generalized Gaussian distribution is proposed to
be the source prior and analyzed in Sect. 5.4. Three types of IVA algorithms with the
proposed source prior are discussed in Sect. 5.5. The experimental results are shown
in Sect. 5.6, and finally the conclusions are drawn in Sect. 5.7.
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5.2 Independent Vector Analysis

In this chapter, we mainly focus on the IVA algorithms used in the frequency domain.
The noise-free model in the frequency domain is described as:

x(k) = H(k)s(k) (5.1)

ŝ(k) = W(k)x(k) (5.2)

where x(k) = [x1(k), . . . , xm(k)]T is the observed signal; s(k) = [s1(k), . . . , sn(k)]T

is the source signal; ŝ(k) = [ŝ1(k), . . . , ŝn(k)]T is the estimated signal. They are all in
the frequency domain and (·)T denotes vector transpose. The index k = 1, 2, . . . , K
denotes the k-th frequency bin, and K is the number of frequency bins; m is the
number of microphones and n is the number of sources. H(k) is the mixing matrix
whose dimension is m × n, and W(k) is the unmixing matrix whose dimension is
n × m. In this chapter, we assume that the number of sources is the same as the
number of microphones, i.e., m = n.

Independent vector analysis is proposed to avoid the permutation problem by
retaining the inter-frequency dependencies for each source while removing the depen-
dencies between different sources. It theoretically ensures that the alignment of the
separated signals are consistent across the frequency bins. The IVA method adopts
the Kullback-Leibler divergence [9] between the joint probability density function
p(ŝ1 . . . ŝn) and the product of marginal probability density functions of the individ-
ual source vectors

∏
q(ŝi ) as the cost function
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(
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)||
∏

q
(
ŝi
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where E[·] denotes the statistical expectation operator, and det(·) is the matrix
determinant operator. The dependency between different source vectors should be
removed but the inter-relationships between the components within each vector can
be retained, when the cost function is minimized. These inter-frequency dependen-
cies are modelled by the probability density function of the source.

Traditionally, the scalar Laplacian distribution is widely used as the source prior
for the frequency domain ICA-based approaches. The resultant nonlinear score func-
tion is a univariate function, which can not preserve the inter-frequency dependencies
because it is only associated with each individual frequency bin. In order to keep
the inter-frequency dependencies of each source vector, a multivariate Laplacian
distribution is adopted as the source prior for IVA, which can be written as
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q(si ) ∝ exp

(
−
√

(si − μi )
†ψ−1

i (si − μi )

)
(5.4)

where (·)† denotes the Hermitian transpose, μi and ψi are respectively the mean
vector and covariance matrix of the i-th source. Then the nonlinear score function
can be derived according to this source prior. We assume that the mean vector is a
zero vector and the covariance matrix is a diagonal matrix due to the orthogonality
of the Fourier basis, which implies that each frequency bin sample is uncorrelated
with the others. As such, the resultant nonlinear score function to extract the i-th
source at the k-th frequency bin can be obtained as:
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where ωi (k) denotes the standard deviation of the i-th source at the k-th frequency
bin. This is a multivariate function, and the dependency between the frequency bins
is thereby accounted for in learning. When the natural gradient method is used to
minimize the cost function, the unmixing matrix update equation is:

θW(k) =
(

I − E
⎧(

α(k)(ŝ)
⎡

ŝ∈
(k)
⎨⎡

W(k) (5.6)

where I is the identity matrix, and (·)∈ denotes the conjugate operators. α(k)(ŝ) is the
nonlinear score function

α(k)(ŝ) =
⎧
α(k)(ŝ1), . . . , α

(k)(ŝn)
⎨T

(5.7)

5.3 Energy Correlation Within a Frequency Domain
Speech Signals

In the derivation of the original IVA algorithms little attention was focused upon
the correlation information between different frequency bins due to the orthogonal
Fourier basis. However, the higher order information exists and could be introduced
to exploit the dependency between different frequency bins and better preserve the
inter-frequency dependency. The correlation of squares of components is discussed
in [22], which can be used to exploit the dependency between different components.
For the frequency domain speech signals, the energy correlation between different
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Fig. 5.1 The frequency domain energy correlation of the speech signal “si1039.wav”

frequency bins is such square correlation, which can be defined as

cov
(
|si (a)|2, |si (b)|2

⎡
= E

⎧
|si (a)|2|si (b)|2

⎨
− E
⎧
|si (a)|2

⎨
E
⎧
|si (b)|2

⎨
(5.8)

The use of such energy correlation has seldom been highlighted in the original
IVA algorithms. In order to show the energy correlation within the frequency domain
speech signals, we choose a particular speech signal “si10390.wav” from the TIMIT
database [23], with 8 kHz sampling frequency and 1,024 DFT length. Then the matrix
of energy correlation coefficients between different frequency bins is plotted as shown
in Fig. 5.1. Figure 5.1 is just part of the whole matrix of energy coefficient, which
corresponds to the frequency bins from 1 to 256. The high frequency part is omitted
due to the limited energy which leads to large correlation coefficients.

It is shown in Fig. 5.1, besides the information on the diagonal, there are many
information on the off-diagonal elements, which is correspond to the energy corre-
lation between different frequency bins. It indicates that there are energy correlation
as defines in Eq. (5.8), which also leads to that E

⎦|si (a)|2|si (b)|2] is not equal to
zero for many points and this information should be used to help to further exploit
the dependency between different frequency bins.

5.4 Multivariate Generalized Gaussian Source Prior

In this section, we propose a particular multivariate generalized Gaussian source
prior as the source prior, from which a new nonlinear score function can be derived to
introduce the energy correlation information to improve the separation performance.
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The source prior we proposed belongs to the family of multivariate generalized
Gaussian distributions which takes the form

q(si ) ∝ exp

⎩
⎫−
⎬

(si − μi )
†ψ−1

i (si − μi )

φ

⎢ϕ
⎞
⎠ (5.9)

when φ = 1 and ϕ = 1
2 , it is the multivariate Laplace distribution adopted by the

original IVA algorithm [9].
Now we assume that φ = 1, the mean vector is a zero vector and the covariance

matrix is an identity matrix due to the orthogonality of the Fourier basis and scaling
adjustment. Then, the source prior takes the general form

p(si ) ∝ exp

⎩
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⎬
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⎢ϕ
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where we constrain 0 < ϕ < 1 to obtain a super-Gaussian distribution to describe
the speech signals. The nonlinear score function based on this new source prior is
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In order to introduce the energy correlation, the root needs to be odd, otherwise the
square will be cancelled. Then the denominator can be expanded as
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which contains cross items
∑

a ≤=b cab|ŝi (a)|2|ŝi (b)|2 corresponding to energy cor-
relation between different frequency bins, and cab is a scalar constant between the
a-th and b-th frequency bins.

Thus the following condition must be satisfied

1 − ϕ

2
= 1

2I + 1
(5.13)

where I is positive integer. Then we can obtain the condition for ϕ

ϕ = 2I − 1

2I + 1
(5.14)
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On the other hand, ϕ is the shape parameter of the generalized multivariate
Gaussian distribution. In order to make the proposed source prior more robust to
outliers compared with the original source prior, ϕ should be less than the 1/2, which
is correspondent to the original source prior. Thus

2I − 1

2I + 1
<

1

2
(5.15)

Finally, I = 1 is the only solution, and the associated ϕ is 1/3. Thus the appropriate
generalized Gaussian distribution takes the form

q(si ) ∝ exp

(
− 3
√

(si − μi )
†ψ−1

i (si − μi )

)
(5.16)

We next show that this source prior can also preserve the inter-frequency depen-
dencies within each source vector in a similar manner to the original source prior for
IVA [9].

We begin with the definition of a K -dimensional random variable

si = v
3
4 ξ i + μi (5.17)

where v is a scalar random variable, and ξ i obeys a generalized Gaussian distribution
which has the form:

p(ξ i ) ∝ exp
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If v has a Gamma distribution of the form:

p(v) ∝ v
1
2 exp
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− v

2

)
(5.19)

then the proposed source prior can be achieved by integrating the joint distribution
of si and v over v as follows:
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where φ1 and φ2 are both normalization terms. Therefore, equation (5.20) confirms
that the new source prior has the dependency generated by v.

In Lee’s paper [24], the source priors suitable for IVA are discussed. A general
form of source prior is described as:

q(si ) ∝ exp

(
− (∀si∀p)

1
L

)
= exp

(
−
(⎤

k

|s(k)
i |p
⎡ 1

pL
)

(5.21)

where ∀ · ∀p denotes the l p norm, and L is termed as the sparseness parameter.
He suggested that the spherical symmetry assumption is suitable for modeling the
frequency components of speech, i.e. p = 2, and through certain experimental studies
found that the best separation performance can be achieved when L = 7.

Our new proposed source prior also belongs to this family. If we choose p = 2
to make it spherically symmetric, and choose L = 3

2 , the proposed source prior can
be obtained. However, our detailed experimental results show that the improvement
of performance is not robust when L = 7 as mentioned in [24], while the NG-IVA
which adopts our new source prior can consistently achieve improved separation
performance.

5.5 IVA Algorithms with the New Source Prior

5.5.1 NG-IVA with the New Source Prior

Applying this new source prior to derive the nonlinear score function of the NG-IVA
algorithm with the assumption that the mean vector is zero and the covariance matrix
is an identity matrix, we can obtain

α(k)
(
ŝi (1) . . . ŝi (k)

) = 2ŝi (k)

3 3

√(
K∑

k=1
|ŝi (k)|2

)2
. (5.22)

If we expand the equation under the cubic root, it can be written as:

⎬
K⎤

k=1

|ŝi (k)|2
⎢2

=
K⎤

k=1

|ŝi (k)|4 +
⎤

a ≤=b

cab|ŝi (a)|2|ŝi (b)|2 (5.23)

which contains cross items
∑

a ≤=b cab|ŝi (a)|2|ŝi (b)|2. These terms are related to the
energy correlation between different components within each source vector, and
capture the level of interdependency between different frequency bins. Thus, this
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new multivariate nonlinear function can provide a more informative model of the
dependency structure. Moreover, it can better describe the speech model.

5.5.2 FastIVA with the New Source Prior

Fast fixed-point independent vector analysis is a fast form of IVA algorithm. Newton’s
method is adopted in the update, which converges quadratically and is free from
selecting an efficient learning rate [11]. The contrast function used by FastIVA is as
follows:

J =
n⎤

i=1

⎬
E

[
F

⎬
K⎤

k=1

|ŝi (k)|2
⎢]

−
K⎤

k=1

π
(k)
i

(
wi (k)†wi (k) − 1

⎡⎢
(5.24)

where w†
i is the i-th row of the unmixing matrix W, and πi is the i-th Lagrange

multiplier. F(·) is the nonlinear function, which can take on several different forms
as discussed in [11]. It is a multivariate function of the summation of the desired
signals in all frequency bins. With normalization, the learning rule is:

wi (k) ⇔E

[
F ′
⎬

K⎤

k=1

|ŝi (k)|2
⎢

+ |ŝi (k)|2 F ′′
⎬

K⎤

k=1

|ŝi (k)|2
⎢]

wi (k)

− E

[
(ŝi (k))∈F ′

⎬
K⎤

k=1

|ŝi (k)|2
⎢

xk

]
(5.25)

where F ′(·) and F ′′(·) denote the derivative and second derivative of F(·), respec-
tively. If this is used for all sources, an unmixing matrix W(k) can be constructed,
which must be decorrelated with

W(k) ⇔
(

W(k)(W(k))†
⎡−1/2

W(k). (5.26)

When the multivariate Laplacian distribution is used as the source prior for the
FastIVA algorithm, with the zero mean and unity variance assumptions, the nonlinear
function takes the form

F

⎬
K⎤

k=1

|ŝi (k)|2
⎢

=
⎬

K⎤

k=1

|ŝi (k)|2
⎢1

2

. (5.27)

When the new multivariate generalized Gaussian distribution is used as the source
prior, with the same assumptions, the nonlinear function becomes:
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F

⎬
K⎤

k=1

|ŝi (k)|2
⎢

=
⎬

K⎤

k=1

|ŝi (k)|2
⎢1

3

. (5.28)

Therefore, the first derivative becomes:

F ′
⎬

K⎤

k=1

|ŝi (k)|2
⎢

= 2

3 3

√(
K∑

k=1
|ŝi (k)|2

)2
. (5.29)

It is very similar to Eq. (5.22), and it also contains cross terms which can exploit
the energy correlation between different frequency bins. Thus, the FastIVA algorithm
with the new source prior is likely to help improve the separation performance.

5.5.3 AuxIVA with the New Source Prior

AuxIVA adopts the auxiliary function technique to avoid the step size tuning [25]. In
the auxiliary function technique, an auxiliary function is designed for optimization.
During the learning process, the auxiliary function is minimized in terms of auxiliary
variables. The auxiliary function technique can guarantee monotonic decrease of the
cost function, and therefore provides effective iterative update rules [12].

The contrast function for AuxIVA is derived from the source prior [25]. For the
original IVA algorithm,

G(ŝi ) = G R(ri ) = ri (5.30)

where ri = ∀ŝi∀2.
By using the proposed multivariate generalized Gaussian source prior, we can

obtain the following contrast function

G(ŝi ) = G R(ri ) = r
2
3

i . (5.31)

The update rules contain two parts, i.e., the auxiliary variable updates and unmix-
ing matrix updates. In summary, the update rules are as follows:

ri =
√√√√

K⎤

k=1

|w†
i (k)x(k)|2 (5.32)

Vi (k) = E

[
G ′

R(ri )

ri
x(k)x(k)†

]
(5.33)
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wi (k) =
(

W (k)Vi (k)

)−1

ei (5.34)

wi (k) = wi (k)√
w†

i (k)Vi (k)wi (k)

. (5.35)

In Eq. (5.34), ei is a unity vector, the i-th element of which is unity.

During the update process of the auxiliary variable Vi (k), we notice that
G ′

R(ri )

ri
is

used to keep the dependency between different frequency bins for source i . In this

chapter, as we defined previously, G R(ri ) = r
2
3

i . Therefore

G ′
R(ri )

ri
= 2

3r
4
3

i

= 2

3 3

√(
K∑

k=1
|ŝi (k)|2

)2
(5.36)

which has the same form as Eq. (5.29). The update rules also contain the fourth order
terms to exploit the energy correlation within the frequency domain speech signal
vectors and should thereby help to achieve a better separation performance.

5.6 Experiments

In this section, we used all three state-of-the-art IVA algorithms with the proposed
multivariate generalized Gaussian source prior to separate the mixtures obtained in
a reverberant room environment. The speech signals were chosen from the TIMIT
dataset [23], and each of them was approximately 7 s long. The image method was
used to generate the room impulse responses, and the dimensions of the room were
7 × 5 × 3 m3. The DFT length was set to be 1,024, and the reverberation time
RT60 = 200 ms. We used a 2 × 2 mixing case, and the microphone positions are
[3.48, 2.50, 1.50] and [3.52, 2.50, 1.50] m respectively. The sampling frequency
was 8 kHz. The separation performance was evaluated objectively by the signal-to-
distortion ratio (SDR) and signal-to-interference ratio (SIR) [26]. Figure 5.2 is the
plan view of the experimental setting.

5.6.1 NG-IVA Algorithms Comparison

In the first experiment, two different speech signals were chosen randomly from the
TIMIT dataset and were convolved into two mixtures. Then the NG-IVA method with
original source prior, the NG-IVA method with our proposed source prior and NG-
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Fig. 5.2 Plan view of the experiment setting in the room environment with two microphones and
two sources

Table 5.1 Separation performance comparison in SDR (dB)

Original Proposed Lee’s

Mixture 1 12.27 12.90 4.74
Mixture 2 18.13 18.47 18.34
Mixture 3 8.88 11.83 11.41
Mixture 4 15.57 16.92 5.95
Mixture 5 18.10 18.69 15.44
Mixture 6 18.81 19.58 3.71
Mixture 7 15.94 16.59 8.63
Mixture 8 15.29 15.75 16.03
Mixture 9 18.58 19.05 17.35
Mixture 10 18.80 19.31 0.78

IVA with Lee’s source prior where the sparseness parameter L = 7, were all used to
separate the mixtures, respectively. Then the source positions were changed to repeat
the simulation. For every pair of speech signals, three different azimuth angles for
the sources relative to the normal to the microphone array were set for testing, these
angles were selected from 30◦, 45◦, 60◦, and −30◦. After that, we chose another
pair of speech signals to repeat the above simulations. We used ten different pairs
of speech signals totally, and repeated the simulation 30 times at different positions.
Tables 5.1 and 5.2 show the average separation performance for each pair of speech
signals in terms of SDR and SIR in dB.

The experimental results indicate clearly that NG-IVA with the proposed source
prior can consistently improve the separation performance. Although the NG-IVA
with Lee’s source prior can get improvement results sometimes, the separation
improvement is not consistent, in some cases there is essentially no separation such
as mixtures 1, 6, and 10. Even though it can achieve better separation than original
NG-IVA, it is still no better than the proposed method. Only for mixture 8, does
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Table 5.2 Separation performance comparison in SIR (dB)

Original Proposed Lee’s

Mixture 1 14.08 14.84 5.62
Mixture 2 19.57 19.86 19.81
Mixture 3 10.72 13.74 13.19
Mixture 4 16.98 18.46 7.16
Mixture 5 20.14 20.47 16.94
Mixture 6 20.30 20.98 4.35
Mixture 7 17.88 18.40 10.73
Mixture 8 19.88 20.41 20.61
Mixture 9 20.75 20.89 18.80
Mixture 10 20.28 20.60 1.48
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Fig. 5.3 Separation comparison in terms of SDR between original and proposed NG-IVA algo-
rithms as a function of reverberation time

it achieve the best separation performance. Therefore, among all these three algo-
rithms, the NG-IVA with the proposed source prior is the best method, because it can
consistently achieve better separation performance. The average SDR improvement
and SIR improvement are approximately 0.9 and 0.8 dB, respectively compared with
the original NG-IVA algorithm.

Then we used the NG-IVA algorithms with the proposed source prior to separate
the mixtures obtained from different reverberant room environments. Two speech
signals were selected from the TIMIT dataset randomly and convolved into two
mixtures. The azimuth angles for the sources relative to the normal to the micro-
phone array were set as 60◦ and −30◦. Both the original NG-IVA and the proposed
method were used to separate the mixtures. The results are shown in Figs. 5.3 and
5.4, which show the separation performance comparisons in different reverberant
environments. Figures 5.3 and 5.4 show the SDR and SIR comparison, respectively.
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Fig. 5.4 Separation comparison in terms of SIR between original and proposed NG-IVA algorithms
as a function of reverberation time

They indicate that the proposed algorithm can consistently improve the separation
performance in different reverberant environments, up to a reverberation time of
450 ms. The advantage reduces with increasing reverberation time RT60 due to the
greater challenge in extracting the individual source vectors.

5.6.2 FastIVA Algorithms Comparison

In the second experiment, all the experimental settings and the processes are all
the same as the first experiment. Here we randomly selected five pairs of speech
signals from the TIMIT dataset and convolved them into mixtures. The original
FastIVA algorithm and the FastIVA algorithm with the proposed source prior were
used to separate the speech mixtures. Then the source positions were changed to
repeat the experiment, the average separation performance comparison is shown in
Table 5.3. It shows that the separation performance can be improved by adopting the
proposed source prior. The average SDR improvement and SIR improvement both
are approximately 0.6 dB.

We also compared the separation performance of these two algorithms in dif-
ferent reverberant room environments as in the first experiment. The SDR and SIR
comparisons are shown in Figs. 5.5 and 5.6. in terms of SDR and SIR comparison,
respectively. The results show that the FastIVA algorithm with the proposed source
prior can improve the separation performance, but again the advantage is reduced
with increasing reverberation time RT60.
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Table 5.3 Separation performance comparison in terms of SDR and SIR measures in dB

Mixtures Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5

Original FastIVA (SDR) 17.77 19.48 14.75 18.12 16.79
Proposed FastIVA (SDR) 18.04 20.63 15.08 18.88 17.31
Original FastIVA (SIR) 19.32 21.01 17.04 19.80 19.18
Proposed FastIVA (SIR) 19.59 22.04 17.31 20.51 19.74
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Fig. 5.5 Separation comparison in terms of SDR between original and proposed FastIVA algorithms
as a function of reverberation time

200 250 300 350 400 450
12

13

14

15

16

17

18

19

20

21

Reverberation time RT60 (ms)

S
IR

(d
B

)

proposed

original

Fig. 5.6 Separation comparison in terms of SIR between original and proposed FastIVA algorithms
as a function of reverberation time
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Table 5.4 Separation performance comparison in terms of SDR and SIR measures in dB

Mixtures Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5

Original AuxIVA (SDR) 12.13 14.62 9.86 19.23 18.64
Proposed AuxIVA (SDR) 14.82 16.30 12.45 19.92 19.50
Original AuxIVA (SIR) 14.06 16.72 11.59 20.54 20.12
Proposed AuxIVA (SIR) 17.26 18.42 14.58 21.20 20.90
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Fig. 5.7 Separation comparison in terms of SDR between original and proposed AuxIVA algo-
rithms as a function of reverberation time

5.6.3 AuxIVA Algorithms Comparison

In the third experiment, the separation performance of AuxIVA with original source
prior and AuxIVA with proposed source prior were compared. Again five different
pairs of speech signals were used, and the simulation was repeated 15 times at dif-
ferent positions. Table 5.4 shows the average separation performance for each pair of
speech signals in terms of SDR and SIR. The average SDR and SIR improvements
are approximately 1.7 and 1.9 dB, respectively. The results confirm the advantage of
the proposed AuxIVA method which can better preserve the dependency between
different frequency bins of each source and thereby achieve a better separation per-
formance.

Then we also tested the robustness of the proposed AuxIVA method in different
reverberant room environments. The experimental settings are all the same as pre-
vious two experiments. The results are shown in Figs. 5.7 and 5.8, which show the
separation performance comparison in different reverberant environments. It indi-
cates that the AuxIVA algorithm with the proposed source prior can consistently
improve the separation performance in different reverberant environments as the
other two kinds of IVA algorithms.
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Fig. 5.8 Separation comparison in terms of SIR between original and proposed AuxIVA algorithms
as a function of reverberation time

Examining the results for all the three algorithms, our proposed source prior
offers the maximum improvement in the AuxIVA algorithm. However, it is difficult
to make a general recommendation, which is the best algorithm due to the variability
of performance with different speech signals and mixing environments.

5.7 Conclusions

In this chapter, a specific multivariate generalized Gaussian distribution was adopted
as the source prior for IVA. This new source prior can better preserve the inter-
frequency dependencies as compared to the original multivariate Laplace source
prior, and is more robust to outliers. When the proposed source prior was used in IVA
algorithms, it introduces energy correlation commonly found in frequency domain
speech signals to improve the learning process and enhance separation. Three state-
of-the-art types of IVA algorithms with the new source prior, i.e., NG-IVA, FastIVA,
and AuxIVA, were all analyzed, and the experimental results confirm the advantage
of adopting the new source prior particularly for low reverberation environment.

Acknowledgments Some of the material of this chapter is under review for publication in Signal
Processing as “Independent Vector Analysis with a Generalized Multivariate Gaussian Source Prior
for Frequency Domain Blind Source Separation,” in October 2013.
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Chapter 6
Sparse Component Analysis: A General
Framework for Linear and Nonlinear Blind
Source Separation and Mixture Identification

Yannick Deville

Abstract In this chapter, we consider two closely related data processing tasks. The
first one is Blind Source Separation (BSS), which consists in estimating a set of
unknown source data (one-dimensional signals, images, ...) from observed mixtures
of these data, while the mixing operator has unknown parameter values. The second
task is Blind Mixture Identification (BMI), which aims at estimating these unknown
parameter values of the mixing operator. We provide a unified view and describe the
latest extensions of the general framework that we have been developing for BSS
and BMI since the beginning of the 2000s. This framework yields a wide range of
BSS/BMI methods applicable to various types of sources (one-dimensional signals,
images, ...) mixed according to various models (linear instantaneous, anechoic, full
convolutive, nonlinear and especially linear-quadratic), possibly with non-negativity
or sum-to-one constraints. This framework is based on the concept of joint sparsity of
the source data, considered in various domains (original temporal or spatial domain,
transformed representation in time-frequency or time-scale/wavelet domain, ...).
More precisely, the proposed methods essentially require a few tiny zones, in mixed
signals or in their transformed versions, where only one of the source “signals” is
active, i.e., nonzero. They therefore set very limited constraints on source sparsity
and could then be considered as “quasi-non-sparse component analysis” methods.
Besides, unlike Independent Component Analysis methods, they are suited to corre-
lated sources. We also discuss their application to various data processing functions,
ranging from audio signal separation to unmixing of hyperspectral remote sensing
images.

Y. Deville (B)

Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse,
UPS-CNRS-OMP, 14 Avenue Edouard Belin, 31400 Toulouse, France
e-mail: yannick.deville@irap.omp.eu

G. R. Naik and W. Wang (eds.), Blind Source Separation, 151
Signals and Communication Technology, DOI: 10.1007/978-3-642-55016-4_6,
© Springer-Verlag Berlin Heidelberg 2014



152 Y. Deville

6.1 Introduction

In this chapter, we consider two closely related data processing tasks. The first one
is Blind Source Separation (BSS), which is a generic signal processing problem,
where the term “signal” is to be understood in a broad sense: it may especially refer
to one-dimensional (1D) series (e.g., depending on a time or wavelength variable)
or to two-dimensional (2D) data (e.g., images), but also to more general types of
data. BSS consists in estimating a set of unknown “source signals” from observed
mixtures of these data, while the mixing operator is most often only partly known: it
is known to belong to a given linear or nonlinear class, but it has unknown parameter
values. The second task that we consider is Blind Mixture Identification (BMI),
which consists in estimating the above-mentioned unknown parameter values of the
mixing operator. Although the emphasis is often put on BSS in the literature, BMI
is also of interest in various applications (see e.g., Karoui et al. [28]), and many
so-called “BSS methods” in fact achieve both BSS and BMI.

The BSS/BMI field emerged in the 1980s and, for about two decades, the main
available class of methods for achieving BSS/BMI was Independent Component
Analysis (ICA), which was especially introduced in [11] and is described in detail in
such books as [12, 19, 23]. A second class of methods, namely Sparse Component
Analysis (SCA), then started to emerge at the end of the 1990s (see e.g., [33]), and
became prominent during the 2000s (see e.g., the description of this field in Chap. 10
of [12] or the introduction to this domain in Chap. 11 of [19]). The early SCA methods
which then became popular e.g., include (i) DUET, which was introduced by Jourjine
et al. in 2000 in [24] and then detailed in [55] and (ii) TiFROM, that we proposed
in 2001 in [1] and then extended in [3, 42]. The TiFROM approach is based on the
exploitation of “zones”, in mixed signals or in their transformed versions, where only
one of the source signals is “active”, i.e., has nonzero components (this corresponds
to the concept of joint sparsity of source signals). We then widely extended this
approach based on “single-source zones”. We thus introduced a general framework
for developing sparsity-based BSS/BMI methods, which are applicable to different
types of source data and mixing operators.

Detailed descriptions of some of these methods were provided in a few jour-
nal papers: Abrard and Deville [3] and [18] respectively, present the versions of
TiFROM and TiFCorr suited to linear instantaneous mixtures of one-dimensional
signals, Puigt and Deville [42] describes an extension of TiFROM applicable to mix-
ing models which also include time delays, and [25] concerns methods intended for
a specific class of linear instantaneous mixtures of 2D signals (this configuration is
especially faced in remote sensing applications, as explained further in this chapter).
Throughout the last decade, we performed a large number of additional investiga-
tions, to further analyze the properties of these methods, to develop alternatives for
similar configurations and also to create other methods for different types of data
(1D signals, images) or mixing operators. At this stage, the corresponding results are
only available in short conference papers.
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In this chapter, we aim at proceeding much further than the above scattered
contributions, both by providing the reader with a unified view of this general frame-
work for developing sparsity-based BSS/BMI methods, and by explicitly considering
various specific applications of this approach to different types of source data and
mixing models. Tests results also illustrate the high performance achieved by these
methods. It should therefore be clear that the scope of this chapter is at an intermediate
level:

• It is much wider than the presentation of a single SCA method, i.e., this chapter
mainly describes a whole class of such methods and suggests how various exten-
sions may be further developed.

• However, we here do not aim at providing a review of the complete SCA field:
instead, this chapter is focused on (i) the class of methods that we developed
by taking advantage of single-source analysis zones, (ii) variants and extensions
of these methods then proposed by other research groups, (iii) some other types
of methods which are somewhat related to those that we describe hereafter. For
already available reviews of the complete SCA field, the reader may e.g., refer to
Chap. 10 of [12].

Throughout this chapter, we progress from standard and/or simple types of source sig-
nals and mixing models, toward more advanced ones. The remainder of this chapter
is therefore organized as follows. The first sections deal with 1D sources, mixed
according to increasingly complex operators. In Sect. 6.2, we consider linear instan-
taneous mixtures of these 1D sources, which is the mostly used configuration in the
literature. The extension of the above methods to convolutive mixtures is relatively
natural and is therefore more briefly presented in Sect. 6.3, where we first focus on
attenuation-delay (or anechoic) mixtures and then extend the discussion to general
convolutive mixtures. Section 6.4 is devoted to nonlinear mixtures, with main empha-
sis on linear-quadratic instantaneous mixtures. We then more briefly discuss the case
of 2D sources, mixed according to a linear instantaneous model, also considering the
situation when the sources values and/or mixing coefficients are constrained to meet
some properties, as in the field of remote sensing. Finally, conclusions are drawn
from this presentation in Sect. 6.6 and a specific topic is considered in the appendix.

6.2 Linear Instantaneous Mixtures of 1D Sources

6.2.1 Problem Statement, Definitions and First Assumptions

6.2.1.1 Original Signal Representation

The BSS/BMI problem and considered source properties were only defined in general
terms in Sect. 6.1. We now detail their version corresponding to the types of sources
and mixtures addressed in this section. In their original representation domain, all
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considered signals are one-dimensional, i.e., they depend on a single scalar variable.
This variable is here denoted as t , since it is a time variable in most applications.
However, it should be clear that this section also applies to cases when this variable
t has another nature.1 Depending whether this variable belongs to a continuous of
discrete subset of R, the considered signals will be referred to as continuous-time or
discrete-time signals.

The mixing model between such 1D signals considered at this stage of our pre-
sentation is the so-called determined linear instantaneous (or memoryless) mix-
ture,2 which may be defined as follows. The values of the Pobserved mixed signals
x1(t), . . . , xP (t) at time t only depend on the values of N unknown source sig-
nals s1(t), . . . , sN (t) at the same time t (instantaneous mixture, as opposed e.g. to
the time shifts considered in Sect. 6.3.1). Moreover, these observed signals xi (t)are
linear combinations of the source signals s j (t) (linear mixture), i.e.,

xi (t) =
N∑

j=1

ai j s j (t) ∀i ∈ {1, . . . , P} (6.1)

where the values of the mixing coefficients ai j are unknown. The signals and mix-
ing coefficients may here be real-valued or complex-valued. Eq. (6.1) may also be
expressed in matrix form as

x(t) = As(t) (6.2)

where

s(t) =[s1(t), . . . , sN (t)]T (6.3)

x(t) =[x1(t), . . . , xP (t)]T , (6.4)

T stands for transpose and A is the unknown P × N matrix consisting of the mix-
ing coefficients ai j . Finally, determined mixtures correspond to the case when the
number P of observed signals is equal to the number N of source signals (underde-
termined and overdetermined mixtures are considered in Sect. 6.2.4.1). The mixing
matrix A is then square. Moreover, in this chapter, we constrain it to meet the fol-
lowing condition (which here means that it is invertible):

1 For instance, one of the possible approaches to signals encountered in the field of remote sensing
(Earth observation) consists in considering each signal associated with a given spatial position as
a 1D function of wavelength (instead of time), representing the fraction of incident light power
reflected by the considered spatial location of the scene at each wavelength. This signal represen-
tation is e.g., defined in [25]. However, the class of BSS methods studied in this chapter is not very
well suited to this signal representation in remote sensing, since the signals then most often do not
meet the sparsity assumptions required by these SCA methods. For remote sensing data, another
representation based on 2D source signals is therefore also used, as, e.g., explained in [25] and
briefly discussed in Sect. 6.5.
2 The considered mixtures are noiseless here. The influence of observation noise is discussed further
in this chapter.
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Assumption 6.1 A is a full-column-rank matrix.

Starting from a set of vectors x(t) of observed signals at some times t , BSS consists
in estimating the corresponding vectors s(t) of source signals, up to the well-known
indeterminacies of linear instantaneous BSS, namely a permutation and scale factors.
The corresponding BMI problem consists in estimating the above matrix A.

6.2.1.2 Signal Transforms

The BSS/BMI methods presented in this chapter may be directly applied to the
observed signals in their above-defined original representation xi (t) (i.e.,“time-
domain” representation, in the above broad sense of the variable t). They may also
be applied to a transformed version of the observed signals. In particular, we here
consider the following two types of transforms.

The first type consists of time-frequency (TF) transforms [10, 21]. It especially
includes the Short-Time Fourier Transform (STFT), e.g., defined in [18] for complex-
valued signals. Each STFT coefficient U (t, ω) is the contribution of the considered
signal u(t ≤) in the part of the TF plane corresponding to: (i) a short time window
centered around t and (ii) the angular frequency ω.

The other considered type of transforms consists of time-scale (TS) transforms
and especially includes the Continuous Wavelet Transform (CWT), e.g., detailed
in [16, 37, 49]. Each wavelet coefficient Wu(τ, d) defines the local behavior of
the considered signal u(t) around time τ , at scale d (with an associated frequency
proportional to 1/d).

We hereafter use a single notation for the transformed version of a signal u(t),
whatever transform is used: we denote it as U (v). Its variable v may be a scalar or
a vector, depending on which transform is used. For STFT, the variable v stands for
the couple, or corresponding vector, (t, ω). For CWT, v represents the couple (τ, d).
The notation U (v) also includes the untransformed signal u(t) itself (which may be
considered as a transformed version with identity transform), where v stands for t .

Moreover, we here only consider linear transforms, since they do not break the
simple structure of the linear mixing model (6.1): applying any such transform to
(6.1), we get

Xi (v) =
N∑

j=1

ai j S j (v) ∀ i ∈ {1, . . . , P}. (6.5)

The transformed observations Xi (v) thus remain linear instantaneous mixtures of
the transformed sources S j (v), and the mixing matrix involved in the transformed
domain is exactly the same as in the original domain. We will use this property in
Sect. 6.2.2.1.
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6.2.1.3 Sparsity of One Signal

Since the above transforms do not change the nature and parameter values of the
mixing model, the reader may wonder what advantage they bring. The answer has
to do with the sparsity of the considered signals. As a first step, we here introduce
the required concepts concerning the sparsity of a single signal (for more details on
this topic and examples, the reader may refer to [12, 19]).

Let us consider a signal in a given representation domain, such as the time, TF, or
TS domain. In this domain, this signal is defined by the values of its “components”,
e.g., by the values of the time-domain samples u(t), of the STFT coefficients U (t, ω),
or of the CWT coefficients Wu(τ, d). The degree of sparsity of this signal in the
considered domain is basically measured by the number3 of its components which
are equal to zero (or in practice, which are negligible, i.e., which have a much lower
magnitude than the maximum-magnitude component of the considered signal). The
higher this number of zero components, the higher the sparsity of the considered
signal. A highly sparse signal is therefore a signal which is “most often inactive”.
For instance, considering the time domain representation of a signal u, the number
of its values u(t) which are negligible defines its degree of sparsity. This is illustrated
for two signals in Fig. 6.1: in the time domain, both signals are active (i.e., have non-
negligible values) almost everywhere. They therefore have a low degree of sparsity
in this domain.

Any of the above-defined transforms may then be applied to an original signal
u(t) in order to obtain a representation U (v) of this signal which exhibits a higher
sparsity. For instance, the spectrograms (i.e., squared moduli of STFT coefficients
U (t, ω)) of the above two speech signals are represented in Fig. 6.2. This shows
that these signals have a very low magnitude (clear zones of the figure) in most of
the TF plane, i.e., that they are much sparser in this plane than in the time domain.
This may be explained as follows. A speech signal may be split into a series of
time intervals, with a duration around 10 to 30 ms, where it has stationary behavior.
In each such interval, a speech signal often has non-negligible components only in
some frequency bands. Therefore, whereas continuous speech yields a signal which
is active everywhere in the time domain, this signal only contributes in some zones
of the TF domain. Applying a transform such as STFT to this time-domain signal
thus yields a signal representation with a higher sparsity.

6.2.1.4 Joint Sparsity of Several Signals

The above considerations were based on the analysis of the sparsity of a single signal.
However, in the framework of BSS/BMI, we deal with a set of observed signals and
each of them contains contributions from several source signals. This requires us

3 The term “number” is to be understood either as the total number or as the fraction (or per-
centage), e.g., depending whether the set of components of the considered signal is defined over a
continuous/discrete and bounded/unbounded domain.
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Fig. 6.1 Time-domain representations of two speech signals [18, 19]. The integer-valued variable
t associated with the horizontal axis is the sample index of the considered discrete-time signal. The
vertical axis corresponds to the signal values u(t)

to analyze the joint sparsity properties of the considered source signals (this may
remind the reader of ICA methods, which are based on the joint statistics—e.g.,
joint moments or cumulants, or joint probabiblity density function—of the source
signals, or of the resulting observations or separating system outputs). More precisely,
whereas the sparsity of a single signal was analyzed above in terms of the zones of
the representation domain where it is inactive, we hereafter consider the zones of that
domain where most source signals are inactive. In particular, the BSS/BMI methods
defined below focus on zones where a single source signal is active. Before describing
these methods, we here define sparsity properties which must be met by the source
signals for these methods to be applicable.

The signals are considered in a given representation domain, denoted as D . Inside
this domain, the SCA methods described further in this chapter successively use
different “analysis zones”. Such a zone is denoted as Z and defined as follows. It
consists of a set of points of domain D . Hereafter, these points are supposed to be
adjacent. For instance, for signals considered in the discrete time domain, whose
samples are indexed by integers, an analysis zone is a bounded interval of integers
on the time axis. For signals in the TF plane, which depend on discrete time and
frequency indices, several options exist, including the following two approaches:
(i) for linear instantaneous mixtures [3, 18], we mainly consider analysis zones
corresponding to a bounded interval of adjacent time indices and to a single frequency
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Fig. 6.2 Time-frequency representations (spectrograms) of the two speech signals of Fig. 6.1
[18, 19]. The horizontal axis corresponds to time (in seconds). The vertical axis corresponds to
frequency (in Hertz). a source 1, b source 2

index,4 (ii) another solution consists in considering a single time index and a bounded
interval of adjacent frequency indices (both approaches were used for attenuation-
delay mixtures [42]).

The discussion so far was focused on deterministic signals. We here stress that,
throughout this chapter, we will also consider the case when the considered signals are
defined in a stochastic framework. In the theoretical definition of the SCA methods
proposed for stochastic signals, each analysis zone Z is restricted to a single value
of the signal argument v, e.g., a single time t . The practical implementation of these
stochastic SCA methods then has a clear link with our deterministic SCA methods, as

4 This is illustrated in (6.9) further in this chapter.
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will now appear, when introducing several definitions and an associated assumption
concerning the properties of the source signals. From here on, the concept of an
“active signal” is focused on its properties in an analysis zone.

Definition 6.1 A source signal is “active” in an analysis zone if its mean power is
non-zero in this zone.

In this chapter, we use the same notation in the deterministic and stochastic cases
for the mean power of a complex-valued signal U (v), over an analysis zone Z :
we denote it as M{|U (v)|2}(Z). In this expression, M{.}(Z) is the mean operator,5

over zone Z in the deterministic and stochastic cases, but it has a different meaning
depending on the nature of the signals:

• For deterministic signals, M{.}(Z) represents the arithmetic mean of the set of
values available in zone Z , for the considered signal (this signal is |U (v)|2 in the
above case).

• For stochastic signals, M{.}(Z) represents the expectation operator, often denoted
as E{.}. As stated above, the considered analysis zone Z is then restricted to a
single value of the signal argument v. The averaging performed by operator E{.}
consists of the statistical mean of the considered random variable over all possible
outcomes. Although such a stochastic framework may be used for defining the
proposed SCA methods and analyzing their theoretical properties it should be
clear that, when implementing these methods, one uses a single realization of the
considered stochastic signals, which yields deterministic signals. The single value
of the above variable v (e.g., single time t) considered in theoretical investigations
is then replaced by a set of values of this variable (e.g., bounded time interval),
over which arithmetic averaging is performed, assuming the signals are ergodic.
The practical implementation used for stochastic signals thus takes the same form
as in the case when the signals are initially defined in a deterministic framework.

Definition 6.2 A source signal is “isolated” in an analysis zone if only this source
signal (among all the source signals which are mixed in the observations) is active
in this analysis zone. An analysis zone where a source signal is isolated, i.e., where
a single source signal is active, is called a “single-source zone”. An analysis zone
where several source signals are active is called a “multiple-source zone”.

The above definition of an isolated source signal corresponds to the theoretical
point of view. From a practical point of view, this means that the mean powers of
all other source signals are negligible as compared to the mean power of the source
signal that is isolated.

5 In notation M{.}(.), the letter M stands for mean. Besides, in Sect. 6.2 we consider various
approaches and we therefore introduce various operators. We favor coherent and readable notations
(i.e., no subscripts) throughout this section. We therefore always provide the considered signal(s)
as the first operator argument, i.e., inside {.}, and the considered set of data points as its second
argument, i.e., inside (.). In some subsequent sections, we consider a single approach per section
and therefore introduce a somewhat simplified and more standard version of the notations used in
Sect. 6.2.
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Definition 6.3 A source signal is “accessible” in the considered representation
domain D if there exist at least one analysis zone inside this domain where this
source signal is isolated.

Assumption 6.2 Each source signal is accessible in the considered representation
domain D .

In other words, the only constraint that we set at this stage is that, for each source,
there should exist a tiny zone, in the considered representation domain, where only
this source is active. In all other zones, we allow several sources to overlap, i.e., to
be simultaneously active. The constraint on joint sparsity thus set on the sources is
very low and the “sparse component analysis” methods proposed hereafter might
therefore be more precisely called “quasi-non-sparse component analysis methods”.
This should be contrasted with such methods as DUET [24, 55] which require much
sparser signals: they typically request the source signals to have no overlap, i.e., for
each position v in the considered representation domain, only one source signal is
allowed to be active (this is called “W-disjoint orthogonality”). However, the latter
methods are thus able to extract sources in underdetermined configurations (i.e., for
a number P of observations lower than the number N of sources), whereas we only
consider determined mixtures at this stage (underdetermined mixtures are addressed
in Sect. 6.2.4.1).

In addition to Assumption 6.2, the source signals should have some other form of
“diversity”. The required diversity depends on the considered version of our methods
and is therefore detailed further in this chapter.

It should also be mentioned that the variant of our approach that we started to
define above corresponds to the case when we use the “non-centered version of the
signals”, i.e., their nonmodified version, as opposed to the “centered version of the
signals” obtained by subtracting the mean of each signal to all its available values.
Another variant of this approach may be derived by considering the centered version
of the signals. Definition 6.1 is then modified by considering signals with nonzero
variance, instead of nonzero mean power. Details about this variant may be found in
[18]. In the remainder of this chapter, we mainly consider the noncentered version of
our approach. We now move to the description of the overall structure of the proposed
SCA methods, and then detail their stages.

6.2.2 Proposed SCA Methods

6.2.2.1 Overall Structure

Most versions of our SCA methods for determined linear instantaneous mixtures of
1D sources share the same overall structure, which consists of the following stages:

1. The “sparsification” stage is the only optional stage of our methods. It consists
in applying a transform, such as those defined in Sect. 6.2.1.2, to the observed
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signals. If the signals, in their original representation, do not meet Assumption
6.2 (p. 10), this sparsification must be performed (with an adequate transform, to
be defined by the user, depending on the considered class of signals) in order to
guarantee that Assumption 6.2 becomes valid for the transformed signals. Even
if Assumption 6.2 is likely to be met by the original signals, performing this
sparsification may be of interest, because it may yield sparser data, which allow
our methods to estimate the mixing matrix and source signals more accurately.
For instance, moving from a time-domain representation of speech signals to a TF
representation is likely to yield analysis zones where sources are better isolated
in practice and thus better extracted by our BSS methods (this is confirmed by
the experimental results provided in [18]).

2. In the detection stage, our methods detect all single-source zones. Several meth-
ods may be used to this end. They are detailed in Sect. 6.2.2.2.

3. In the mixture-column estimation stage, our methods use all single-source zones
(or the best of them). In each of these zones, these methods derive an estimate of
one column of the mixing matrix, up to a scale factor. This may also be performed
by using several versions of our methods, which are described in Sect. 6.2.2.3.
Note that, for each source, this stage of our methods may yield a whole set of
estimates of the column of the mixing matrix corresponding to this source, not a
single estimate, since these methods provide one estimate per single-source zone
corresponding to this source.

4. In the mixture-column combination stage, our methods derive, for each source,
a single estimate of the corresponding column of the mixing matrix, based on the
above-mentioned complete set of estimates. Again, several methods may be used
to this end. They are detailed in Sect. 6.2.2.4.
The column vectors thus derived, which are obtained in an arbitrary order with
respect to source numbering, are then gathered in a matrix. This yields an estimate
Â of the mixing A, up to permutation and scale factors, which are the standard
indeterminacies of linear instantaneous BSS. At this stage of the approach, the
above-defined BMI task is complete.

5. In the source estimation stage, our methods combine each observed vector x(t)
with the above estimated matrix Â in order to derive the corresponding output
vector as

y(t) = Â−1x(t). (6.6)

This yields an estimate of the source vector s(t), up to the permutation and
scaling indeterminacies of its components, which result from the corresponding
indeterminacies in Â.
When using the sparsification stage in order to first create a transformed obser-
vation vector X (v), one might consider performing the source estimation stage
by applying Â−1 to X (v) instead of x(t) in (6.6). However, this would yield a
transformed version Y (v) of the estimated source vector. The inverse transform
should then be applied to Y (v), in order to derive the estimated source vector
y(t) in the original domain, which is the source representation of interest in most
applications. In order to avoid this inverse transformation of Y (v), the inversion
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(6.6) is preferably achieved in the original representation domain, even when BMI
is performed in a transformed domain. We thus take advantage of the property
mentioned in Sect. 6.2.1.2: thanks to the considered transforms, the mixing model
is the same in both domains, and its inverse may therefore be applied to either
representation of the observations.

We hereafter describe some of the above stages of our methods in more detail.

6.2.2.2 Detection Stage

In this section, we present alternative methods for detecting all single-source zones.
These methods typically explore the selected representation domain D . To this end,
they consider all analysis zones defined in practice by successive, adjacent or partly
overlapping, positions of a sliding window which is moved in all the domain D . The
signal properties are analyzed separately in each such analysis zone, by using the
alternative parameters defined hereafter.

Detection Based on Correlation Coefficients

Let us consider a single-source zone Z and denote as Sk(v) the (possibly transformed)
source signal which is isolated in this zone. At any point v in this zone, (6.5) with
P = N shows that the observed signals become restricted to

Xi (v) = aik Sk(v) ∀ i ∈ {1, . . . , N }. (6.7)

All observed signals are thus proportional in any single-source zone. A simple and
appealing approach for detecting these zones therefore consists in checking the cross-
correlation coefficients between these observed signals in all analysis zones. More
precisely, for any analysis zone Z , we first define the corresponding (zero-lag non-
centered6) non-normalized correlation parameter of two arbitrary, possibly trans-
formed, complex-valued signals U1(v) and U2(v) as

R{U1, U2}(Z) = M{U1(v) × U√
2 (v)}(Z) (6.8)

where the superscript √ denotes complex conjugation. In the specific case when U1 =
U2, the parameter R{U1, U2}(Z) becomes equal to the mean power of signal U1(v)
over analysis zone Z . Expression (6.8) applies to deterministic and stochastic signals,
in the same way as in Sect. 6.2.1.4. For instance, when considering deterministic
signals expressed in the TF domain as U1(t, ω) and U2(t, ω), their above-defined
correlation parameter explicitly reads as follows over an analysis zone composed

6 We again stress that we here restrict ourselves to the version of this method based on the noncen-
tered version of the signals and associated parameters, whereas its centered version is described in
[18].
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of L TF points which correspond to different times tp and to the same angular
frequency ω:

R{U1, U2}(Z) = 1

L

L∑

p=1

U1(tp, ω) × U√
2 (tp, ω). (6.9)

Whatever signal transform and analysis zones are considered, the (zero-lag noncen-
tered) correlation coefficient of two arbitrary signals U1(v) and U2(v) is then defined
as

ρ{U1, U2}(Z) = R{U1, U2}(Z)⊗
R{U1, U1}(Z) × R{U2, U2}(Z)

. (6.10)

In our SCA methods, the above parameters are used by considering the correlation
coefficients ρ{X1, Xi }(Z) between the observed signals X1(v) and Xi (v), for 2 ∀
i ∀ N . Note that these parameters are undefined if all source signals are equal to zero
everywhere in the considered analysis zone, because the numerator and denominator
of (6.10) are then equal to zero. To avoid this situation, we set the following condition:

Assumption 6.3 On each analysis zone, at least one source is active.

Besides, the parameters ρ{X1, Xi }(Z) are defined only when the considered
observed signals have nonzero mean powers (to avoid division by zero in (6.10)). To
guarantee that this condition is met for all observations defined by (6.7) and for any
isolated source, we set the following condition:

Assumption 6.4 all mixing coefficients ai j are non-zero.

The above Assumptions 6.3 and 6.4 are “technical assumptions”, i.e., they are
used in a theorerical approach to noiseless mixtures, essentially to avoid the above-
mentioned observations with mean powers equal to zero. On the contrary, in practice,
the (possibly transformed) observed signals contain some noise in addition to source
contributions, so that they have nonzero mean powers, even in zones where the source
signals yield no significant contributions as compared to noise. Assumptions 6.3 and
6.4 are therefore not required in practice to avoid observations with mean powers
equal to zero.

The above coefficients ρ{X1, Xi }(Z) are used as follows. It may easily be
derived from (6.7) that the moduli of these coefficients are all equal to one in
single-source analysis zones. On the contrary, they should not all be equal to one
in multiple-source zones, since we want to use these coefficients to discriminate
between single-source and multiple-source zones. To this end, we set the following
constraint on the source signals:

Assumption 6.5 Over each analysis zone, all active source signals are linearly inde-
pendent (if there exist at least two active source signals in this zone).

This assumption is expressed in compact form in order to apply to the deterministic
and stochastic frameworks. For deterministic signals, each analysis zone in practice
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consists of a discrete set of points of the considered representation domain. For each
source, we form the vector composed of the values of this source signal in this zone.
Assumption 6.5 then refers to the linear independence of these source vectors. For
stochastic signals, we consider the corresponding random variables obtained for a
single value of the signal argument v. We recall (see Papoulis and Pillai [41], Ed.
2002, p. 251) that the complex-valued random variables wi are linearly independent
if E{|c1w1 + · · · + cnwn|2} > 0 for any C ⇔= 0, where C = [c1, . . . , cn].

It may easily be checked that if the active signals in the considered zone are
orthogonal, then Assumption 6.5 is met. However, there also exist cases when several
source signals are active and such that Assumption 6.5 is still met, although these
signals are not orthogonal. The centered version of our methods leads to the same
type of results, except that the orthogonality of the active sources is replaced by their
uncorrelation (see [16] for deterministic sources or [17] for nonlinear mixtures of
stochastic sources). This shows the attractiveness of our approach: there exist signals
which cannot be separated by ICA approaches and classical second-order-statistic
BSS methods because they are correlated, while our methods apply to them, at the
expense of requesting the source signals to mainly meet the sparsity Assumption 6.2
(p. 10) and Assumption 6.5. This applicability to correlated sources is illustrated for
speech signals in Sect. 6.2.3.3.

Under the above assumptions, Appendix 1 shows that the following property is
met:

Property 6.1 An analysis zone Z is a single-source zone if and only if

|ρ{X1, Xi }(Z)| = 1 ∀ i ∈ {2, . . . , N }. (6.11)

This property is used as follows in our practical method for detecting single-
source zones, based on the correlation coefficients of observations. For each analysis
zone, we combine the above moduli of correlation coefficients, |ρ{X1, Xi }(Z)|, by
computing their mean (or e.g., their median, ...) over all i , with 2 ∀ i ∀ N . This
mean over several correlation coefficients is denoted as

|ρ{X1, Xi }(Z)|. (6.12)

The best single-source zones are then considered to be those corresponding to the
highest values of |ρ{X1, Xi }(Z)|, due to Property 6.1. The detection stage therefore
consists in keeping, as the single-source zones, all the zones which are such that
|ρ{X1, Xi }(Z)| is above a threshold, which is real-valued and slightly lower than
one. In the simplest version of this approach, the value of this threshold is selected by
the user. The automatic selection of various parameters of our methods is discussed
in Sect. 6.2.4.4. It should be noted that the above approach not only performs the
detection of single-source zones, but also provides an index of the quality of each
such zone Z , namely |ρ{X1, Xi }(Z)|. One may take advantage of this quality index
in a subsequent step of our methods, as discussed further in this chapter.
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In practice, the analysis zones where only noise significantly contributes to the
observations (as opposed to negligible source signals) do not make the proposed
detection criterion fail in the usual case when the noise contributions in diffferent
observations are orthogonal, or close to orthogonality: these zones yield low values
of |ρ{X1, Xi }(Z)| and are therefore not considered as single-source zones, hence
they are not used in the subsequent stages of our SCA methods which estimate the
mixing matrix. The analysis zones where source signals and noise have low levels can
also be excluded from the BMI task by using a slightly modified version of the above
detection stage, obtained by replacing standard correlation coefficients (6.10) by

ρ{U1, U2}(Z) = R{U1, U2}(Z)⊗
R{U1, U1}(Z) × R{U2, U2}(Z) + ε

(6.13)

where ε is a small positive constant. When applying (6.13) to observed signals in
zones where their mean powers (and therefore their cross-correlations) are low as
compared to ε, the mean correlation coefficient |ρ{X1, Xi }(Z)| takes low values so
that, again, these zones are not considered as single-source zones nor used in the
subsequent stages of our SCA methods which estimate the mixing matrix.

Several versions of our methods use this correlation-based detection stage
(in its centered or non-centered version). This first includes our LI-TempCorr
method, intended for Linear Instantaneous mixtures of 1D signals considered in the
TEMPoral domain, and based on the above CORRelation coefficients. This method
was introduced in [14] and detailed in [18]. It is also considered further in this
chapter (Sect. 6.4.2.1), in the more general framework of linear-quadratic instanta-
neous mixtures. The above-mentioned papers [14, 18] also describe the LI-TiF Corr
version of this method, which first transforms the original signals into the TIme-
Frequency domain. Transforming them into the TIme-Scale domain instead, yields
our LI-TiSCorr method, described in [16].

Detection Based on Coherence Functions

When using a TF representation of the considered signals, one may derive a detection
stage from another signal processing tool available for that representation, namely
the time-segmented coherence function. Our corresponding SCA method, intended
for Linear Instantaneous mixtures of 1D signals processed in the TIme-Frequency
domain by means of Coherence functions, is called LI-TiFCohere. It is detailed in
[5], [15]. In these papers, we consider centered uncorrelated random source signals
and we assume that each of them is accessible in the TF domain (Assumption 6.2
p. 10). We first segment the observed signals into successive time intervals, indexed
by an integer m, assuming that these signals are stationary over these intervals. We
then consider the Power Spectral Densities or PSDs, denoted S{xi , xi }(m, ω), and
the Cross-PSDs or CPSDs, denoted S{xi , x j }(m, ω), which are associated with the
mixed signals xi (t) and x j (t) on each time interval. These parameters therefore
depend both on the time index m and on the classical argument of PSDs, namely the
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angular frequency ω. The time-segmented “complex coherence function” of observed
signals x1(t) and xi (t) is then defined as

γ {x1, xi }(m, ω) = S{x1, xi }(m, ω)⊗
S{x1, x1}(m, ω) × S{xi , xi }(m, ω)

(6.14)

and the corresponding time-segmented “real coherence function” reads

Γ {x1, xi }(m, ω) = |γ {x1, xi }(m, ω)|2 . (6.15)

The single-source TF analysis zones are then defined by the TF points (m, ω) where
these time-segmented frequency-dependent real coherence functions of observed
signals take the highest values.

The above coherence functions are based on PSDs and CPSDs, and therefore
defined in a stochastic framework. However, in practice, they are applied to a single
realization of the considered random signals, according to the procedure that we
defined in Sect. 6.2.1.4. Therefore, the PSDs and CPSDs of the considered signals
must be estimated from this realization. A classical solution to this problem consists
in using averaged periodograms, which may be defined as follows. The estimate
Ŝ{u1, u2}(m, ω) of the time-segmented CPSD of two arbitrary signals u1(t) and
u2(t) is obtained by splitting the time interval associated with m into an arbitrary
number L of possibly overlapping sub-intervals, corresponding to time positions tp,
with p = 1 . . . L . The STFTs U1(t, ω) and U2(t, ω) of the considered signals are
then computed over these subintervals and Ŝ{u1, u2}(m, ω) is derived from them as

Ŝ{u1, u2}(m, ω) = 1

L

L∑

p=1

1

M
U1(tp, ω) × U√

2 (tp, ω), (6.16)

where M is the number of samples in each sub-interval. PDSs are estimated in the
same way with u1(t) = u2(t). Comparing (6.16) to (6.9), and the associated estimate
of (6.14) to (6.10) then shows that the specific implementation of the LI-TiFCohere
detection method based on average periodograms is eventually identical to the
LI-TiFCorr detection method, although these two methods were initially introduced
from different points of view. The general version of the LI-TiFCohere detection
method, based on time-segmented PSDs and CPSDs and not considering specific
procedures for estimating them, may therefore be considered as a superset of the
LI-TiFCorr detection method.

Detection Based on Ratios of Mixtures

We here consider an approach based on the ratios of observed mixtures defined as

αi (v) = Xi (v)

X1(v)
∀ i ∈ {1, . . . , N }. (6.17)
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These quantities were also used in the DUET approach [24, 55], but assuming
different properties (“W-disjoint orthogonality”, only two observed mixtures, possi-
bly underdetermined mixing model). These signal ratios αi (v) are here defined by
using the first observation, X1(v), as a reference signal, but it should be clear that any
other observation may be used instead. This could be done by rewriting the definition
of αi (v) and subsequent equations: one could replace X1(v) by another observation in
these expressions. Or, more simply, one should keep in mind that the indices assigned
to observations are arbitrary, and one may reassign them for his available data so that
he calls X1(v) the signal he wants to use as a reference.7 Similar comments apply to
the reference signal of the correlation-based and coherence-based detection stages
presented above.

Let us again consider a single-source zone Z where the isolated source is denoted
Sk(v). As shown by (6.7), at any point v in this zone, we have

αi (v) = aik

a1k
∀ i ∈ {1, . . . , N }. (6.18)

Each ratio of mixtures αi (v) therefore remains constant over a single-source zone,
although each observation generally varies on this zone, as shown by (6.7). This may
be used to discriminate such zones from multiple-source zones, provided we set the
following constraint (which here replaces Assumption 6.5 on p. 13, used in our above
correlation-based method):

Assumption 6.6 Over each analysis zone, when several sources are active, they vary
so that at least one of the ratios of mixtures αi (v), with 2 ∀ i ∀ N , does not take the
same value for all the points v situated in this zone.

The ratios of mixtures thus meet the following property:

Property 6.2 An analysis zone Z is a single-source zone if and only if

V{αi (v)}(Z) = 0 ∀ i ∈ {2, . . . , N } (6.19)

where V{.}(Z) denotes the variance of the considered (deterministic or stochastic)
signal in zone Z.

A practical method for detecting single-source zones may then be derived from
this property by computing, for each analysis zone, the mean (or median, ...) of
V{αi (v)}(Z) over all i , with 2 ∀ i ∀ N . This mean over several variances is denoted
as

V{αi (v)}(Z). (6.20)

The best single-source zones are then considered to be those corresponding to the
lowest values of V{αi (v)}(Z), due to Property 6.2. The detection stage therefore

7 The selection of this signal has no influence in the ideal configuration considered hereafter, but
it may be of importance in real applications, e.g., when avoiding to take a very noisy signal as the
reference.
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consists in keeping, as the single-source zones, all the zones which are such that
V{αi (v)}(Z) is below a threshold, which is real-valued, small and positive. This
approach leads to the same type of comments as the correlation-based detection
method, concerning the selection of the above threshold and the use of V{αi (v)}(Z) as
a quality index for each analysis zone. These two approaches however differ because
the ratios of mixtures αi (v) = Xi (v)/X1(v) and resulting variance parameters
are not symmetrical with respect to the considered two signals, unlike the above
moduli of correlation coefficients defined by (6.10). This asymmetry may degrade
the performance of this ratio-based approach, as shown in [18]. This problem may
be addressed by also considering the inverse ratios X1(v)/Xi (v), as detailed in [42]
(which mainly concerns a more complex mixing model). However, this increases
computational complexity. Therefore, the correlation-based approach described in
Section “Detection Based on Correlation Coefficients” is somewhat more attractive
in the configuration considered in this section.

The Linear Instantaneous TIme-Frequency version of the above method based on
Ratios of Mixtures of originally 1D signals is called LI-TiFROM. It was introduced
in [1] and then detailed in [3].8 The temporal version of this method, which might
be called LI-TempROM, is only briefly suggested in these papers. Another version,
which might be called LI-TiSROM, may be derived from LI-TiFROM by perform-
ing sparsification by means of a time-scale transform (as in the above-mentioned
LI-TiSCorr method), instead of the time-frequency transform used in LI-TiFROM.
This LI-TiSROM method is thus essentially a combination of the principles used in
our above LI-TiSCorr and LI-TiFROM methods. This type of LI-TiSROM method
was independently reported in [34].

It should be noted that these ratio-based SCA methods are also applicable to
dependent (e.g., correlated) source signals, as, e.g., discussed in [3]. This is illus-
trated for speech and music signals in Sect. 6.2.3.3. Besides, other approaches for
the detection stage of our SCA methods may be derived from considerations about
the estimation of the number of sources, as discussed in Sect. 6.2.4.3.

6.2.2.3 Mixture-Column Estimation Stage

As explained in Sect. 6.2.2.1, the mixture-column estimation stage is successively
applied to each single-source zone found in the detection stage, in order to derive an
estimate of one column of the mixing matrix, up to a scale factor. Three methods may
be developed to this end, by, respectively, using the same type of signal parameters
as in the above-defined three detection methods:

1. Considering correlation parameters as in Section “Detection Based on Correlation
Coefficients”, Eq. (6.7) easily shows that, in a zone where Sk(v) is isolated, we
have

R{Xi , X1}(Z)

R{X1, X1}(Z)
= aik

a1k
∀ i ∈ {2, . . . , N }. (6.21)

8 The version in [3] only uses a single ratio of mixtures αi (v). It was then extended to all above
ratios, especially in [42].
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Therefore, by filling a column vector with a first value equal to one, followed by
estimates of all left-hand terms of (6.21) with i ∈ {2, . . . , N }, one gets an estimate
of the column of mixing matrix A corresponding to source Sk(v), up to the scale
factor 1

a1k
. Of course, in a blind framework, we do not know which source is

active in any given analysis zone, and therefore which matrix column is obtained
in this zone. This stage therefore provides unlabelled estimated columns.

2. Similarly, using PSDs and CPSDs as in Section “Detection Based on Coherence
Functions”, Eq. (6.7) yields

S{xi , x1}(m, ω)

S{x1, x1}(m, ω)
= aik

a1k
∀ i ∈ {2, . . . , N }. (6.22)

The left-hand term of (6.22) therefore allows one to identify the same mixing
parameter ratio as the correlation-based approach, namely aik/a1k .

3. Finally, for the ratio-based approach of Section “Detection Based on Ratios of
Mixtures”, Eq. (6.18) shows that the above mixing parameter ratio aik/a1k is
directly provided by the ratio αi (v) of observed values at any point v of the
considered analysis zone. In practice, we use the mean (or median) of this ratio
αi (v) over the zone, i.e. M{αi (v)}(Z), in order to achieve better robustness with
respect to the nonideality of this zone (i.e., low but nonzero values of other
sources).

It is natural to use the same type of parameters (e.g., correlation) in the detection
and mixture-column estimation stages of an overall SCA method. However, one may
also develop “hybrid SCA methods”, i.e. methods which use different parameters in
these two stages. For instance, a correlation-based detection stage may be combined
with a ratio-based mixture-column estimation stage.

6.2.2.4 Mixture-Column Combination Stage

The above mixture-column estimation stage provides a complete set of unlabelled
estimates of mixing matrix columns, including one or several estimates for each actual
column of A, and called the tentative estimates of these actual columns. We now aim at
deriving a single estimate for each actual column. Two types of methods may be used
to this end. The basic type of methods aims at selecting one of the tentative columns,
for each source, in order to then store it as one of the columns of the final estimate
Â of A (again, this estimate of A is obtained up to permutation and scale factors 9).
The extended type of methods aims at deriving an adequate combination of tentative
columns corresponding to the considered source. This combination is not necessarily
equal to one of the tentative columns but typically situated “between” them (think,
e.g., of their center of gravity). Again, the new column vector thus obtained is stored
as one of the columns of the final estimate Â of A. Various methods may be used to
implement these two combination principles:

9 These two types of indeterminacies are more explicitly shown in the notations used in [18] and
hereafter in Sect. 6.4.2.1.
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1. The overall set of mixing matrix column estimates available from the mixture-
column estimation stage may be seen as a set of data points. Moreover, all points
which are estimates of the same actual column of A may be hoped to be close to one
another, as compared with their distances with respect to the points corresponding
to another column of A. Identifying these different subsets of unlabelled points
and deriving a representative point for each subset, such as its center of gravity,
is nothing but a clustering task [25, 54]. Standard clustering methods, such as
k-means (also referred to as c-means or Isodata) [25, 54] may therefore be used
to this end, as was done in various other SCA methods. To improve robustness
with respect to outliers, one may replace the means used in k-means by medians,
which yields the k-medians clustering algorithm, that we used in [44] for another
mixing model. The number of clusters to be created is equal to the number N of
sources, which is known in the determined case considered here, since it is equal
to the known number of observations (the extended case when N is unknown is
addressed in Sect. 6.2.4.3).

2. Still using a clustering-based approach, we can proceed further for the class of
SCA methods considered in this chapter because, in addition, a quality index is
available for each data point to be clustered (i.e., each estimate of a mixing matrix
column), as explained above. This allows one to use clustering methods which
take advantage of this additional information. For instance, the fuzzy k-means
algorithm (also referred to as fuzzy c-means) [25, 54] is used in the SCA method
that we proposed in [25] (for another type of observations).

3. A more specific approach for taking advantage of one of the above quality
indices consists in first ordering the single-source zones from the best one to
the worst one, according to the considered quality index. For our correlation-
based detection stage, this means ordering them according to decreasing values
of |ρ{X1, Xi }(Z)|. Similarly, when using our coherence-based detection stage,
we order single-source zones according to decreasing values of the average (over
observations) of real coherence functions of observed signals. For our ratio-based
detection stage, we order single-source zones according to increasing values of
V{αi (v)}(Z).
Once all single-source zones have been ordered, we aim at selecting a known
number N of columns, among all the tentative columns associated with all above
zones, with one column selected per source. To this end, the estimated column
corresponding to the first (i.e., best) zone in the ordered list is first kept as the
first column of Â. Then, the subsequent zones in this list are successively used
as follows. For each zone, the corresponding estimated mixing matrix column is
available from one of the methods defined in Sect. 6.2.2.3. This column is kept
only if its distance10 with respect to all previously kept columns is above a user-
defined threshold, showing that the considered zone does not contain the same

10 In the standard version of this method, the distance between two vectors containing estimates of
mixing matrix columns is just the norm of the difference between these two vectors. Other versions
may be derived by using other similarity measures between vectors, such as their angle : see, e.g.,
[26].
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source as previous zones in the ordered list. This combination stage ends when
the number of columns of Â thus kept becomes equal to the specified number
N of sources to be separated (this is theoretically guaranteed to occur because
all sources are assumed to be accessible in the considered data). In the extended
case when N is unknown, this procedure may be modified so as to determine the
value of N , as explained in Sect. 6.2.4.3.
This approach was used in several of our investigations: see especially the detailed
reports of the LI-TiFCorr and LI-TiFROM methods respectively provided in [18]
and [3]. As compared with clustering-based methods, this approach may decrease
computational complexity, but the selection of the value of its threshold distance
between mixing matrix columns may be cumbersome in practice.
This method may be considered as an off-line (or batch) method, since it requires
one to first perform the complete detection and mixing-matrix column estimation
stages, then order all single-source zones, and eventually achieve selection from
the complete set of column vectors corresponding to all single-source zones.

4. A modified, on-line, version of the above approach may also be developed. In that
case, the three stages achieving detection, mixing-matrix column estimation and
mixing-matrix column combination are performed jointly, instead of sequentially
in the batch version of the method. More precisely, this on-line method performs
the overall BMI task as follows. It first possibly achieves signal sparsification.
It then explores the resulting transformed domain, by successively considering
analysis zones, e.g., again using a sliding window. For each such zone, it directly
performs all the following processing tasks:

• Detect if this zone is single-source, as above. If it is not single-source, go to
next zone. Otherwise, continue processing as described hereafter.

• Estimate the corresponding column of the mixing matrix, as above.
• Compare this column with all previously kept ones, and only keep it if its

distances with respect to all previously kept columns are above a user-defined
threshold.

This on-line version avoids first building the complete ordered list of single-
source zones (not considering whether this may yield sub-optimal results) and may
decrease computational cost as compared with the batch version. As compared
with clustering-based methods, it still has the drawback of requiring the user to
select the value of the distance threshold between columns. This type of on-line
method was used in some of our investigations, e.g., reported in [26].

6.2.3 Experimental Results

A detailed report of the performance of the LI-TempCorr and LI-TiFCorr meth-
ods is available in [18]. Similarly, the performance of LI-TiFROM is presented
in [3] (and [18]). To avoid duplication, we do not detail all these results here.
However, in Sect. 6.2.3.1, we focus on one of their major aspects, i.e., we show
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how the performance of our LI-TiFCorr method compares with that of various ICA
methods. Then, in Sects. 6.2.3.2 and 6.2.3.3, we further analyze other aspects of
our SCA methods for linear instantaneous mixtures of 1D sources, which were not
reported in [3] and [18].

6.2.3.1 Performance of Time-Frequency SCA Methods Versus ICA

Each of the tests considered here was performed with observations consisting of two
artificial linear instantaneous mixtures of two independently recorded speech source
signals. Six pairs of sources were thus used and performance was averaged over
them. The performance for each test is measured by the output Signal/Interference
Ratio (SIRout) [18] averaged over the two outputs of the separating system. The
results thus obtained are shown in Table 6.1. The LI-TiFCorr-NC method is the
Non-Centered version that we described above, whereas LI-TiFCorr-C is its above-
mentioned centered variant. Table 6.1 (top lines) shows that these two versions of our
methods yield very similar performance. Two performance figures are provided for
each of these methods: (i) mean SIRout over all considered values of the parameters
of these methods (see first line in Table 6.1 for considered method), (ii) SIRout for
optimum parameter values (see second line in Table 6.1). These parameters are: (i) the
size of the time windows used for computing STFTs, (ii) the overlap between these
windows. Table 6.1 shows that our methods are not very sensitive to the selection of
their parameter values, and that they achieve mean output SIRs above 60 dB for the
considered type of mixtures and sources, which is very satisfactory.

The subsequent lines of Table 6.1 make it possible to compare the performance
figures of the above methods with those of various ICA methods, as implemented
in the ICAlab software package11 [8]. The latter methods here yield significantly
lower performance than ours, i.e., SIRs at most around 40 dB. This may be due to
the nonstationarity of the considered source signals for some of these ICA methods,
whereas our SCA methods are very well suited to nonstationary signals. However,
even the SONS method intended for nonstationary signals yields an SIR below 40 dB.

6.2.3.2 Performance of Time-Scale SCA Method

The tests reported here were performed with two artificial linear instantaneous mix-
tures of two independently recorded continuous speech signals. These signals cor-
respond to different sentences uttered by different male speakers and are therefore
uncorrelated (the sample zero-lag centered correlation coefficient of these overall
time series is −0.0017). These signals were rescaled so that their maximum absolute
values are equal to unity. The mixing matrix was set to

11 The term “ICA” (for Independent Component Analysis) is here to be understood in a broad sense,
i.e., the ICAlab software also implements methods which are only based on second-order statistics.
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Table 6.1 Output
Signal/Interference Ratios
(SIRout) of time-frequency
SCA methods
(LI-TiFCorr-NC and
LI-TiFCorr-C) and ICA
methods (AMUSE to
SYM-WHITE) (adapted from
[18])

BSS method SIRout (dB)

LI-TiFCorr-NC Mean over parameters 65.0
Optimum parameters 71.7

LI-TiFCorr-C Mean over parameters 64.0
Optimum parameters 69.5

AMUSE 30.5
EVD2 31.5
EVD24 23.6
SOBI 31.5
SOBI-RO 35.7
SOBI-BPF 28.4
SONS 36.2
JADE-op 2.4
JADETD 34.1
FPICA Hyper tangent 39.5

Gauss 41.0
Cubic 41.9
5th-order cumulant 25.1
6th-order cumulant 28.4

PEARSON opt. 42.2
SANG 40.5
NG-FICA 35.7
ThinICA 39.0
ERICA 37.3
SIMBEC 38.8
UNICA 37.3
FOBI-E 16.6
SYM-WHITE 20.1

A =
[

1 0.9
0.8 1

]
. (6.23)

We applied the resulting observations to the centered version of our above-defined
LI-TiSCorr method. Each analysis zone here consists of adjacent points in the TS
plane, which correspond to the same time position τ and to a discrete set of L adjacent
scales dp, with p = 1 . . . L . The reported tests were performed for various mother
wavelets ψ(t) and various numbers L of TS points in analysis zones. The CWTs were
computed with the Wavelab 802 package available at [56], using default parameter
values. The resulting output SIRs are shown in Table 6.2. They are higher than 40 dB
whatever the parameter values of our method. This demonstrates the good separation
capability of this approach and also shows that it is “automated” in the sense that the
above parameters do not require user tuning to achieve good performance.
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Table 6.2 Output Signal/Interference Ratio (in dB) of centered LI-TiSCorr method, depending
on mother wavelet and number L of time-scale points in analysis zones, for uncorrelated speech
signals [16]

Wavelet L
4 8 12

Morlet 66.3 71.4 76.2
Gaussian 48.9 69.0 41.8
Gaussian derivative 41.9 56.8 55.3
Mexican hat 50.1 60.1 73.2

6.2.3.3 Performance for Correlated Sources

One of the advantages that we claimed above for our SCA methods, whatever the
considered signal representation domain, is their ability to operate with dependent
sources, including correlated ones. We here illustrate this property by means of two
examples, which cover different types of SCA methods.

In the first example, we consider the same time-scale correlation-based method
as in Sect. 6.2.3.2, i.e., the centered version of LI-TiSCorr. We tested this method
with two correlated sources, created as follows. As compared with Sect. 6.2.3.2, we
used an additional speech signal, from a female speaker. We rescaled it so that its
absolute maximum value is equal to 0.2, and we added it to each of the previous
two male speech signals. The two signals thus obtained were considered as the
sources in this second series of tests with LI-TiSCorr, and we again mixed them
according to (6.23). Unlike ICA approaches, our LI-TiSCorr method is supposed
to be applicable to these correlated source signals (the sample zero-lag centered
correlation coefficient of these overall time series is 0.090). However, due to the
addition of the female speech signal to each male signal, each source considered
here may fill the TS plane to a larger extent than in the tests reported in Sect. 6.2.3.2.
This may reduce the amount and quality of single-source analysis zones and may
therefore somewhat degrade performance as compared with Table 6.2. This analysis
is confirmed by our test results (see Table 6.3): the output SIRs achieved here tend
to be lower than in Sect. 6.2.3.2, but they are still higher than 40 dB (except in two
cases with L = 4, so that such small analysis zones should preferably not be used).

Our second example involves two audio source signals, processed by the time-
frequency ratio-based version of our methods, i.e., LI-TiFROM. Source s1 is a guitar
playing a D chord, which consists of D, F#, A. Source s2 is a D from a singer. These
sources are strongly correlated, as may be seen in Fig. 6.3: this figure is obtained by
splitting the source signals in successive 256-sample time windows and computing,
for each such window, the absolute value of the corresponding sample estimate of
the zero-lag non-centered correlation coefficient of the source signals, i.e., the esti-

mate of |E{s1(t)s2(t)}|/
√

E{s2
1 (t)}E{s2

2 (t)}. The spectrograms provided in Figs. 6.4
and 6.5 show that these source signals are active in different parts of the TF plane.
One may therefore hope that they yield single-source zones and can thus be sepa-
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Table 6.3 Output Signal/Interference Ratio (in dB) of centered LI-TiSCorr method, depending on
mother wavelet and number L of time-scale points in analysis zones, for correlated speech signals
[16]

Wavelet L
4 8 12

Morlet 53.9 43.0 65.8
Gaussian 1.4 55.3 43.9
Gaussian derivative 41.7 55.3 45.9
Mexican hat 0.4 55.4 49.5
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Fig. 6.3 Absolute value of cross-correlation coefficient of source signals versus index of 256-
sample time window [2]

rated by our methods, although they are correlated. We checked it by mixing these
sources, again by means of matrix (6.23), and processing these observations with our
LI-TiFROM method. Each analysis zone here consists of a set of adjacent points in
the TF domain, corresponding to: (i) a set of M successive half-overlapping time
windows (with indices n j ) which cover an overall time interval here denoted as
Tq and (ii) a single angular frequency ωk . We analyzed the variance of the ratio
of mixtures12 α(n j , ωk) over M = 8 TF points. The variations of the inverse of
this variance, i.e. 1

V{α(n,ω)}(Tq ,ωk )
, with respect to Tq and ωk are shown in Fig. 6.6.

This confirms that some parts of the TF plane yield very low variance (see upwards
peaks in Fig. 6.6) and therefore consist of single-source analysis zones. The con-
sidered configuration yields output SIRs equal to 34.2 dB for s1 and 71.3 dB for s2

12 For two observations, (6.17) yields a single ratio of mixtures, corresponding to i = 2 which is
omitted in the notations used here. Moreover, in the investigation [2] reported here, that ratio was
defined as the inverse of the right-hand term of (6.17).
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Fig. 6.4 Spectrogram of guitar s1 (time in seconds, frequency in Hz) [2]
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Fig. 6.5 Spectrogram of voice s2 (time in seconds, frequency in Hz) [2]

which are quite good values for such dependent signals. On the contrary, the classical
kurtosis-based FastICA method [22] failed to separate these source signals, due to
their dependence.
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6.2.4 Extensions and Related Works

6.2.4.1 Underdetermined and Overdetermined Mixtures

Up to this point, we only considered determined mixtures. We now first comment
about underdetermined ones, which correspond to the situation when the number P
of observed signals is strictly lower than the number N of source signals. For such
mixtures, one may consider applying in the same way as in Sect. 6.2.2.1 the first four
stages (sparsification to mixture-column combination stages) of the overall structure
of our SCA methods, in order to estimate the mixing matrix, i.e., to perform the BMI
task. The last stage of our overall SCA methods, i.e., the estimation of the source
signals, then yields an issue: the mixing matrix is no more square nor invertible,
so that the source signals cannot be estimated by means of (6.6). This is a quite
general phenomenon for SCA methods and various solutions to this problem have
been reported in the literature (see, e.g., the overview in [12]). As mentioned in
Sect. 6.2.1.4, one of them consists in only allowing one source to be active at any
point of the considered representation domain (“W-disjoint orthogonality”), as in
the DUET method [24, 55]. In [18], we proposed an alternative approach, which
sets lower restrictions on the sources (i.e., the same as those defined above in this
chapter), at the expense of only performing “partial BSS”, defined hereafter. Once
the estimate Â of the (permuted and scaled) rectangular mixing matrix has been
obtained, our approach operates as follows. We keep P columns of this matrix Â,
which defines the P sources that we select as the sources of interest. We thus obtain
a square sub-matrix Â≤ of the mixing matrix Â. Moreover, Â≤ is invertible thanks
to Assumption 6.1 (p. 4). The observed signals may then be considered as mixtures
of the P sources of interest associated with the mixing sub-matrix Â≤, plus “noise”
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composed of contributions from the other (N − P) sources. We then transfer these
observed signals through the inverse of this square sub-matrix Â≤, as in (6.6). We
thus obtain output signals which separate each of the P sources of interest from the
other sources of interest, i.e., these output signals each contain a contribution from
only one of the P sources of interest, plus again “noise” consisting of contributions
from the other (N − P) sources. We thus achieve what we call “partial BSS” for the
selected P sources. Note that we may thus choose arbitrarily for which subset of P
columns of Â and associated sources, among the initial N columns and sources, we
perform partial BSS.

The third type of linear instantaneous mixtures consists of overdetermined ones,
which correspond to the situation when the number P of observed signals is strictly
higher than the number N of source signals. Unlike underdetermined mixtures, this
case yields no issue. It may e.g. be handled by replacing the inverse of the mixing
matrix by its pseudo-inverse, as discussed in [17] (see also Deville and Puigt [18]).

A particular configuration may also be defined by setting the following two con-
straints. First, the mixture is globally underdetermined, i.e., when considering the
complete set of observed data samples, the number of sources contributing to them
is higher than the number of observations, as in the above standard underdetermined
case. Second, this mixture is however locally determined or overdetermined, i.e., in
any analysis zone the number of active sources is at most equal to the number of
observations. The version of our BSS methods that we developed in [25] is suited to
this configuration.

6.2.4.2 Making Sources Accessible, Deflation-Based Methods

A general issue of various SCA methods is that their constraints on joint source
sparsity have lower chance to be met when the number of sources increases. For
the methods presented in this chapter, which are focused on single-source zones,
this means that the chance to have only one source active at a given point of the
considered signal representation decreases when the number of sources increases.
Some sources may then become unaccessible (in the sense of Definition 6.3, p. 9), so
that Assumption 6.2 (p. 10) may not be fulfilled. Fortunately, the following extensions
of our methods apply to certain cases when only part of the sources are accessible.
The basic version of this type of extension [18] may be defined as follows, with
P = N just for the sake of simplicity. Let us assume that at least one of the sources,
denoted as Sk(v), is accessible in the considered representation domain. Our above
SCA methods then make it possible to estimate the corresponding column of the
scaled permuted mixing matrix, say column j . This estimated column consists of
elements b̂i j which are estimates of

bi j = aik

a1k
∀ i ∈ {1, . . . , N }, (6.24)

as shown by Sect. 6.2.2.3. We then compute a modified version of each mixed signal
xi (t), with i = 2 . . . N , according to
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x ≤
i (t) = xi (t) − b̂i j x1(t) ∀ i ∈ {2, . . . , N }. (6.25)

Equations (6.1) and (6.24) show that we thus obtain N−1 signals which do not contain
any contributions from source sk(t) (up to errors due to the estimation of bi j ). The
key point is then that, even if some sources were not accessible from the initial set of
N mixed sources, at least one of them may become accessible from the new set of
N − 1 mixed sources involved in the modified mixed signals x ≤

i (t). This depends on
the distributions of all sources in the considered representation domain, and happens
if some sources were initially hidden (i.e., they were not isolated in any analysis zone
when considering the initial set of N sources), but they are isolated in at least one
zone when considering the set of N − 1 sources which remains after canceling the
contributions from source sk(t) in all mixed signals. If at least one source is accessible
from this new set of N −1 mixed sources, the same procedure may be applied again.
This recursive procedure ends when (no more sources are accessible or when) the
number of recombined signals is thus decreased down to one, and this signal contains
a single source. This procedure thus succeeds in extracting this source, although not
all sources were initially accessible. The same procedure may then again be applied,
by selecting other sources sk(t) at each step of its recursion in order to extract other
sources. This approach is reminiscent of deflation-based BSS methods which were
used in the framework of ICA, especially in [13], and then became popular with the
deflation-based version of the kurtotic FastICA method [22].

More advanced versions of this type of procedure may also be defined in order
to cancel, at each intermediate stage of the recursion, the contributions from all the
sources which are accessible at that stage. This is detailed in [18]. Besides, deflation-
based modified versions of our SCA methods were also proposed by independent
research groups: see [52] and, to a lower extent, [53].

6.2.4.3 Estimating the Number of Sources, Other Methods for Detection Stage

Let us consider the case of non-underdetermined mixtures (i.e. P ≥ N ) for the sake
of simplicity. If the number of source signals is unknown, one may still apply the
first three stages of our SCA methods (sparsification to mixture-column estimation
stages) in the same way as above. One may then modify their fourth stage (mixture-
column combination stage) so that it estimates the number of sources. For clustering-
based combination stages, this corresponds to automatically selecting the number of
clusters, and various methods have been developed to this end in the literature (see
e.g., references in [25], which uses one of these methods).

One may also change the operation of our combination stages based on an ordered
list: for instance, a variant of their batch version still processes the successive columns
of the ordered list as explained in Sect. 6.2.2.4, but ends when the considered quality
parameter (e.g., |ρ{X1, Xi }(Z)|) gets beyond a user-defined threshold, which shows
that the next zones in the ordered list should not be considered as single-source zones.
The number of mixing matrix columns kept at this stage is the estimate of the number
of sources provided by this approach.
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Whereas the above approach is directly related to the principles of the considered
SCA methods, one may instead here estimate the number of sources by using stan-
dard methods which have been considered in the general framework of BSS, or in
related fields such as array processing for direction of arrival estimation. Various
such methods are based on the properties of the correlation or covariance matrix
of the observations, especially on the number of its eigenvalues which are above a
threshold or on the shape of this series of eigenvalues (see e.g., Luo and Zhang [36]).

All available methods for estimating the number of sources are also of interest for
a different aspect of the SCA methods studied in this chapter, i.e., for their detection
stage. This results from the fact that the single-source tiny zones to be found by
this detection stage consist of the parts of the (possibly transformed) observations
where the “local number of sources” is equal to one. Instead of using the procedures
described in Sect. 6.2.2.2 for detecting these zones, one may therefore take advantage
of any method available from the literature for determining the number of sources
involved in mixed signals, by here applying these methods locally, i.e., successively
to each analysis zone, in order to only keep the zones where this number of sources
is equal to one. In particular, one may use methods based on the number of non-
negligible eigenvalues of local correlation or covariance matrices of the observations,
or on the magnitude of the first eigenvalue as compared with all subsequent ones. This
type of approach was e.g., used in the literature in the method recently described in
[6], which has significant relationship with our LI-TiFROM approach, as explained
in [6].

6.2.4.4 Automating Selection of Parameter Values

The above SCA methods involve a set of parameters, such as some thresholds or
the size of analysis zones and their percentage of overlap. Up to this point, we
mainly considered the case when the values of these parameters are selected by the
user, which may be cumbersome. A solution to this problem consists in extending
these SCA methods by introducing automated procedures for selecting (some of)
their parameter values. For instance, we developed an approach which essentially
consists in successively running the considered SCA method for various values of
its parameters and keeping the parameter values which yield the best performance,
according to a performance criterion which may be computed in a blind mode (at
the expense of some restrictions on the source signal properties). This approach
is detailed in [38]. Another automated approach was proposed by an independent
research group in [7] (for our methods and others).

6.2.4.5 Related Works

The methods depicted in this chapter inspired various extensions from other research
groups. Besides, our methods were considered in various papers from the literature,
to show how our approaches differ from the other methods proposed in those papers.
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Some of these aspects were presented above, e.g., in Sections “Detection Based on
Ratios of Mixtures”, 6.2.4.2, 6.2.4.3 and 6.2.4.4. Moreover, we discussed above the
relationship between our methods and DUET. Other related works from the literature
especially include different extensions of our methods which were developed by
Smith et al. and, e.g., reported in [50–53]. Besides, a method “that can be viewed
as an extension of the DUET and the TIFROM methods” is presented in [35]. The
relationship between our methods and other approaches proposed in the literature is
also, e.g., discussed in [48].

6.3 Convolutive Mixtures of 1D Sources: Major Principles

Beyond the configuration studied in Sect. 6.2, the first natural extension of our inves-
tigations concerns convolutive mixtures of 1D sources. This case is of major impor-
tance, since it is e.g., faced in acoustics or communications. For instance, when
using a set of microphones to record simultaneous audio signals, propagation effects
generally result in convolutive mixtures. For audio signals, the linear instantaneous
mixing model considered in Sect. 6.2 is a restrictive configuration, only applicable to
some mixtures, such as those artificially created in studios by combining successive
single-track recordings in order to derive the final version of a song record.

The class of SCA methods addressed in this chapter is also applicable to convo-
lutive mixtures, and this would therefore deserve a detailed description. However,
we will here restrict ourselves to a presentation of their major principles, because
they remain relatively similar to those presented in Sect. 6.2 and we will save space
for less similar configurations, namely those based on nonlinear mixtures or 2D
sources. We first focus on a specific class of (non-instantaneous) convolutive mix-
tures in Sect. 6.3.1 and then proceed to general convolutive mixtures in Sect. 6.3.2.

6.3.1 Attenuation-Delay (or Anechoic) Mixtures

Considering a discrete-time representation of signals, with an integer-valued time
index denoted as n, determined attenuation-delay mixtures are defined in the time
domain as

xi (n) =
N∑

j=1

ai j s j (n − ni j ) ∀ i ∈ {1, . . . , N } (6.26)

where we use the same notations as in (6.1) and we introduce the integer-valued13 time
shifts ni j . This model is suited to propagation without reflections (and is therefore
also called an “anechoic mixture”): ai j then represents attenuation along the direct
path from source i to sensor j , whereas ni j is the propagation delay along that path.

13 The case of non-integer time shifts is addressed in [45].
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Let us take the STFT of (6.26). If the time shifts ni j are negligible as compared
with the temporal width of the windowing function used in the STFT transform, this
yields

Xi (n, ω) =
N∑

j=1

ai j e− j ωni j S j (n, ω) ∀ i ∈ {1, . . . , N }. (6.27)

A first SCA method may then be derived by again considering ratios of mixtures,
here expressed in the TF domain, i.e.

αi (n, ω) = Xi (n, ω)

X1(n, ω)
∀ i ∈ {1, . . . , N }. (6.28)

If a source Sk(n, ω) is isolated in an analysis zone composed of TF points (n p, ωl),
Eq. (6.27) shows that all these points are such that

αi (n p, ωl) = aik

a1k
e− jωl (nik−n1k ) ∀ i ∈ {1, . . . , N }. (6.29)

Considering real positive coefficients ai j (this condition is met for attenuation without
reflection), the modulus of αi (n p, ωl) in a single-source zone is therefore equal to
aik
a1k

, i.e., to the same quantity as in Sect. 6.2. The SCA methods described in that
section may therefore be easily extended so as to estimate the (ratios of) coefficients
ai j of the mixing model considered here, now using the modulus of αi (n p, ωl) in
single-source zones. Besides, let us consider a single-source zone corresponding to a
single time position n p and to different frequencies ωl . Equation (6.29) shows that the
unwrapped phase of αi (n p, ωl) in this zone linearly varies with respect to frequency,
and that the slope of this line may be used to estimate (the differences between) the
time shifts ni j of the mixing model considered here. This yields an SCA method
for Attenuated and Delayed mixtures, operating in the TIme-Frequency domain and
based on Ratios Of Mixtures, which is therefore called AD-TiFROM. Many details
about its principle, variants and experimental performance are provided in [42].

Using correlation-based parameters instead of the above ratios of mixtures yields
the AD-TiFCorr version of this type of methods. Several variants of AD-TiFCorr are
described in [43–45]. Using a stochastic framework and coherence functions, one
may also develop a corresponding AD-TiFCohere method, as an extension of the
LI-TiFCohere method described in Sect. 6.2.

This attenuation-delay mixing model may seem to be quite restrictive, but it has
been widely considered in the BSS literature. In particular, the above-mentioned
DUET method [24, 55] uses this model. However, a more general, i.e., full convolu-
tive, model should also be considered, in order to handle more complex configura-
tions, e.g., involving multi-path propagation (early reflections and reverberation in
acoustics). We hereafter proceed to this case.
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6.3.2 General Convolutive Mixtures

Still considering a discrete-time representation of the signals and using the above
notations, convolutive mixtures are defined in the time domain as

xi (n) =
N∑

j=1

ai j (n) √ s j (n) ∀ i ∈ {1, . . . , N } (6.30)

where ai j (n) is the impulse response of the filter (e.g., representing overall propaga-
tion) from source i to sensor j , and √ stands for discrete-time convolution.

Let us take the STFT of (6.30), assuming that the parts of the impulse reponses
ai j (n) with non-negligible magnitude are much narrower than the temporal window-
ing function used in the STFT transform (the impulse responses ai j (n) do not depend
on the considered time window of the STFT transform). This yields

Xi (n, ω) =
N∑

j=1

Ai j (ω) S j (n, ω) ∀ i ∈ {1, . . . , N }. (6.31)

The specific scale factors ai j e− j ωni j of (6.27), encountered in attenuation-delay
mixtures, are here replaced by general factors Ai j (ω), but the mixing equations keep
their previous linear structure with respect to the transformed sources S j (n, ω). Part
of the principles that we developed in our above SCA methods therefore extend to
general convolutive mixtures. In particular, considering the ratio of mixtures (6.28)
in an analysis zone where source Sk(n, ω) is isolated here yields

αi (n p, ωl) = Aik(ωl)

A1k(ωl)
∀ i ∈ {1, . . . , N }. (6.32)

All these coefficients αi (n p, ωl) therefore essentially make it possible to identify the
column of filters Aik(ω) associated with the source which is isolated in the consid-
ered analysis zone, as in the linear instantaneous case. However, some additional
important phenomena should here be taken into account. First, this identification is
again achieved up to a “scaling effect”, here defined by the denominator of (6.32).
This effect is the counterpart of the denominator of (6.18) in the linear instantaneous
case. However, instead of a scaling factor (i.e., division by a constant value) in the
latter case, the generalized scaling effect faced here is a division by the frequency
response of a filter, i.e., by a frequency-dependent quantity. If using a basic separating
system structure, the outputs of that system are therefore equal to the actual sources
up to complicated filter frequency responses, as detailed in [4]. The estimated source
signals are thus altered by a frequency-dependent gain (frequency distortion), which
is a major drawback in various applications, such are speech and/or music separa-
tion. Fortunately, this issue may be solved by adding, to the above separating system,
post-processing filters which are only expressed with respect to the above-identified
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frequency responses (6.32). The resulting signals are equal to each contribution of
each source in each observation (6.31). The sources are thus restored with no addi-
tional frequency distortion, as compared with the filtering effects obtained when
recording each source separately with the same set of sensors, which is quite accept-
able. The post-processing filters that may be used to this end are also defined in [4].

Another phenomenon makes this convolutive configuration different from the lin-
ear instantaneous and attenuation-delay mixtures. In the latter two configurations,
only a limited set of mixing parameters are to be estimated, i.e., the (ratios / dif-
ferences of) scale factors ai j and possibly time shifts ni j . Mapping the considered
signals to the TF domain by means of STFT strongly relaxes the sparsity constraints
set on the sources because, essentially, a tiny single-source zone in the frequency
domain, for a given time interval, is enough for identifying ai j and ni j , and these
parameters then apply to the complete TF plane to restore the sources. Things are
different for convolutive mixtures. Let us consider a single source Sk(n, ω) as an
example. We aim at estimating each corresponding filter response Aik(ω) (up to the
scaling effect). This quantity depends on ω. Therefore, we need single-source zones
for all frequencies (unless we perform frequency smoothing for nonidentified parts
of the frequency response Aik(ω)). The simplest case is when all frequencies where
source Sk(n, ω) is isolated are obtained for the same time interval of the considered
STFTs. In other words, in the standard version of the SCA methods that we propose
for convolutive mixtures, the sparsity constraint set on the sources is that, for each
of them, there should exist a time interval where all other sources are “completely
inactive”, i.e., equal to zero at all frequencies. The source signals then contain silence
phases in the time domain. This constraint is therefore more stringent than in the case
of linear instantaneous and attenuation-delay mixtures, but this is the price to pay
for estimating a much wider set of parameters (i.e. a different complex value at each
frequency).

The proposed SCA methods for convolutive mixtures therefore first detect the
time intervals where a source is isolated, i.e., where all other sources are completely
inactive. This may be achieved by again using the real coherence function of obser-
vations, defined in Sect. 6.2. The overall quality, with respect to the single-source
property, of a time interval may then, e.g., be measured by the mean of the above
coherence function over all frequencies. In a modified version of this approach, one
may focus on the frequency bands which are of interest in the considered application,
and only compute the mean of the above coherence function over these bands. This
approach is used for speech signals in [4], where averaging of the coherence function
is performed over the band [0, 800Hz].

The above principles may be used to develop Conv-TiFCorr, Conv-TiFCohere
and Conv-TiFROM variants of our methods for Convolutive mixtures of 1D sources.
The Conv-TiFCohere method is defined in detail in [4], which also contains various
test results.
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6.4 Nonlinear Mixtures of 1D Sources

Beyond the above types of linear mixing models, various applications involve
nonlinear mixtures of 1D sources. This extended case is much tougher than the linear
one, and few BSS methods have been proposed to address it (see e.g., the review in
[12]): some ICA methods for nonlinear mixtures have been described in the litera-
ture, but very few reported BSS methods for such mixtures are based on SCA. In
this section, we show that the general framework proposed in this chapter makes it
possible to develop SCA-based methods for certain types of nonlinear mixtures. We
first focus on a specific type of nonlinear mixtures, namely linear-quadratic instanta-
neous ones, that we mainly select because they make it relatively easy to show how
the proposed SCA methods may be extended beyond linear mixtures. This linear-
quadratic instantaneous mixing model is of real practical interest, since it is faced
in various application fields, including remote sensing14 [40]. However, in some of
these applications, other BSS approaches than those presented in this chapter should
be used, since the signals faced in these applications are not sparse in the considered
domain. Beyond linear-quadratic instantaneous mixtures, we also comment about
other types of nonlinear mixtures in Sect. 6.4.3.

6.4.1 Problem Statement, Definitions and Assumptions

6.4.1.1 Signal Representation

We here consider the following configuration in the original signal representation
domain, again denoting the argument of 1D signals as t . The available P signals xi (t)
are mixtures of N source signals s j (t), with P = N (N + 1)/2 in the most general
case, as explained below. The source signals are unknown, stochastic and real-valued.
The mixing model consists of linear terms, proportional to s j (t), and quadratic cross-
terms, proportional to s̃ jk(t) = s j (t)sk(t). Each observed signal then reads

xi (t) =
∑

j=1,...,N

ai j s j (t) +
∑

1∀ j<k∀N

qi jk s̃ jk(t) ∀ i ∈ {1, . . . , P} (6.33)

where ai j and qi jk are, respectively, linear and quadratic unknown real-valued mix-
ing coefficients. This yields in matrix form

x(t) = As(t) + Qs̃(t) (6.34)

with x(t) = [x1(t), . . . , xP (t)]T and s(t) = [s1(t), . . . , sN (t)]T . The column vector
s̃(t) consists of the signals s̃ jk(t) in a given arbitrary order. Besides, A = [ai j ] and

14 We here refer to the spectral-source approach for remote sensing (i.e., sources depending on
wavelength), as opposed to the spatial-source approach.
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Q = [qi jk], where i is the row index of Q and the columns of Q are indexed by
( j, k) and arranged in the same order as the signals s̃ jk(t) in s̃(t). We also consider
the centered version of the observations, i.e.,

x ≤
i (t) = xi (t) − E{xi (t)} ∀ i ∈ {1, . . . , P}. (6.35)

Eqs. (6.33) and (6.35) then yield

x ≤
i (t) =

∑

j=1,...,N

ai j s
≤
j (t) +

∑

1∀ j<k∀N

qi jk s̃≤
jk(t) ∀ i ∈ {1, . . . , P}, (6.36)

where s≤
j (t) and s̃≤

jk(t) are respectively the centered versions of s j (t) and s̃ jk(t). This
yields in matrix form

x ≤(t) = As≤(t) + Qs̃≤(t) (6.37)

where the vectors x ≤(t), s≤(t) and s̃≤(t) are the centered versions of those involved in
(6.34).

We here do not apply any transform to the observed signals, since this is likely to
make the mixing model more complex: for instance, the Fourier transform changes
each quadratic term of the original model into the convolution of the considered
two signals. Since we only consider the original representation of the signals in this
section, we keep their original notations for the sake of simplicity.

6.4.1.2 Definitions and Assumptions

We here consider the required definitions and assumptions in the same order as in
Sect. 6.2 and we adapt them as follows. Here, the mixing matrix A is not square (see
above values of N and P) but the constraint that we set on it can still be expressed
as Assumption 6.1 (p. 4). Besides, the proposed method is suited to sources which
meet the following condition:

Assumption 6.7 All sources s1(t), . . . , sN (t) are zero-mean at any time t .15

Definition 6.1 (p. 8) then becomes, in the time domain:
Definition 6.1≤ A signal is “active” at time t if it has non-zero power16 at that time.17

It is “inactive” at time t if it has zero power at that time and may then be considered
as a deterministic constant.

15 The observations may then be non-zero-mean, due to the nonlinear nature of the mixing model and
the possible source correlation. We therefore consider the centered version x ≤

i (t) of the observations
hereafter.
16 Or, equivalently, nonzero variance.
17 As explained in Sect. 6.2.1.4, each considered temporal analysis zone is restricted to a single time
t in this theoretical statistical framework. However, in practice, all signal moments are estimated
over time intervals and each considered temporal analysis zone then consists of such an interval.
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Definition 6.2 (p. 9) is here used to define when a signal s j (t) (not a signal s̃ jk(t)
of (6.33)) is isolated. This definition is still expressed as in page 9, taking into account
that the analysis zone is here the single time t and that the considered set of sources
“mixed in the observations” contains s1(t), . . . , sN (t) but does not contain the signals
s̃ jk(t). Definition 6.3 (p. 9) and Assumption 6.2 (p. 10) here remain unchanged, taking
into account that they are also applied to s j (t), not s̃ jk(t), in the time domain, for
any analysis zone consisting of a time t .

The considered sources are therefore nonstationary,18 since their powers are zero
at some times and nonzero at others. Moreover, they are only requested to have a
slight sparsity in the time domain, in the sense that they are allowed to overlap almost
everywhere: for each source, we only request the existence of a time t (i.e., a short
time interval for practical estimation) when only this source is active.

We hereafter consider the correlation-based version of our methods. The associ-
ated Assumption 6.3 (p. 13) and Assumption 6.4 (p. 13.) then remain unchanged.
Assumption 6.5 (p. 13) here becomes:

Assumption 6.5’ For any considered time t , the signals which are contained by s≤(t)
and s̃≤(t) and which are active at that time are linearly independent (if there exist at
least two such active signals at that time).

This assumption is again based on the definition of linear independence of random
variables that we provided on page 14. It again means that the proposed method also
applies to situations where the active signals in s≤(t) and s̃≤(t) are correlated, which
is an attractive feature as compared with ICA methods.

6.4.2 Proposed SCA Method

Considering the above-defined Linear-Quadratic Instantaneous mixtures, we now
present the Temporal SCA method based on Correlation parameters, and therefore
here called LQI-TempCorr, that we introduced in [17] for handling this configuration.

6.4.2.1 Identification of Linear Part of Mixture

The first step of our method consists in identifiying the “linear part” of the mixing
model, i.e., the matrix A, or more precisely the matrix B = [bi j ], where

bi j = ai,σ ( j)

a1,σ ( j)
∀ i ∈ {1, . . . , P}, ∀ j ∈ {1, . . . , N } (6.38)

18 More precisely, they are long-term nonstationary, but they should be short-term stationary in
practice, in order to make it possible to estimate the above-mentioned signal moments over short
time intervals.
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and σ(.) is a permutation. B is therefore a modified version of A, where the columns
are permuted and each column is rescaled with respect to the value in its first row,
i.e., with respect to its linear contribution in observation x1(t).

As shown in [17], despite the presence of the quadratic part of the mixing model,
the linear part B of this model may be identified by the same type of procedure as
in our LI-TempCorr method, which was defined in Sect. 6.2 (here using the centered
version of the signals). This procedure, which is detailed in [17], is therefore skipped
in this section, where we directly proceed to the aspects of the BMI and BSS tasks
which are specific to the linear-quadratic instantaneous mixing model.

6.4.2.2 Cancelation of Linear Part of Mixture

We then aim at deriving a set of L signals zl(t) from the observations xi (t), in such a
way that these signals zl(t) only contain quadratic cross-terms, i.e. terms proportional
to s̃ jk(t). To this end, we consider signals defined as

zl(t) = x1(t) −
P∑

i=2

cli xi (t) ∀ l ∈ {1, . . . , L}. (6.39)

Combining this expression with (6.33) and (6.38) yields

zl(t) =
∑

j=1,...,N

a1,σ ( j)sσ( j)(t)[1 −
P∑

i=2

bi j cli ]+
∑

1∀ j<k∀N

rl jk s̃ jk(t) (6.40)

∀l ∈ {1, . . . , L}.

To obtain a signal zl(t) which contains no linear terms associated with any s j (t), we
select the coefficients cli so that

P∑

i=2

bi j cli = 1 ∀ j ∈ {1, . . . , N }. (6.41)

For a given index l, this yields a set of N equations, where the unknowns are the P −1
values of cli , while the (estimated) coefficients bi j are available from Sect. 6.4.2.1. If
P − 1 = N , this set of linear equations has a single solution, i.e. we can only create
one such signal zl(t). More generally speaking, whatever M ≥ 0, if P −1 = N + M ,
we can create M+1 linearly independent signals zl(t). Besides, (6.40) then reduces to

zl(t) =
∑

1∀ j<k∀N

rl jk s̃ jk(t) ∀ l ∈ {1, . . . , L} (6.42)
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i.e. these signals zl(t) are then only mixtures of the quadratic signals s̃ jk(t). Moreover,
there exist N (N −1)/2 signals19 s̃ jk(t) in the observations (6.33). We want the set of
mixtures zl(t)of the signals s̃ jk(t) to be invertible. We therefore set the numbers L and
P of recombined signals zl(t) and observations xi (t) to L = M + 1 = N (N − 1)/2
and therefore P = N + M + 1 = N (N + 1)/2.

So, we thus obtained the following result: by solving Eq. (6.41) and deriving
the resulting signals according to (6.39), we obtain the set of linear instantaneous
mixtures zl(t) of the signals s̃ jk(t) defined by (6.42), which is invertible when [rl jk]
is assumed to be invertible. These mixed signals may then be used in various ways,
as will now be shown.

6.4.2.3 Remaining BMI and BSS Tasks

One may then proceed in different ways, depending on which parts of the BMI and
BSS tasks should be performed in the considered application and which constraints
on the sources are acceptable. We now explore these alternatives.

A Method Based on Non-stationarity Conditions

We first again focus on methods for signals which are time-domain sparse, and
therefore nonstationary. One may then process the linear instantaneous mixtures
zl(t) of the signals s̃ jk(t), defined in (6.42), by adapting the approach of Sect. 6.4.2.1
to this new context. This achieves both BMI for the mixing matrix in (6.42) (but
not yet for the original matrix Q in (6.34)) and BSS for the signals s̃ jk(t) (but not
yet for the signals s j (t)). This adaptation of the approach of Sect. 6.4.2.1 requires
one to extend the assumptions accordingly. Especially, we then need times when a
single signal s̃ jk(t) is active, i.e., essentially times when only the two corresponding
sources s j (t) and sk(t) are simultaneously active.

It should also be noted that in the basic configuration with N = 2 sources, only
a single signal s̃ jk(t) exists, namely s1(t)s2(t). This signal is then directly provided
by the method described in Sect. 6.4.2.2, so that the stage described in the current
section then disappears.

A Method also Using Other Correlation Parameters

The method defined in Section “A Method Based on Non-stationarity Conditions”
yields scaled permuted versions of the signals s̃ jk(t), i.e., it provides a set of signals

yl(t) = λ jk s̃ jk(t) ∀ l ∈ {1, . . . , L}. (6.43)

19 Or less if all coefficients for at least one signal s̃ jk(t) are zero.
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We now propose a simple method which may then be applied to these signals when
one also wants to identify the matrix Q and/or to separate the signals s j (t). Consid-
ering the signals which are contained by s≤(t) and s̃≤(t) at times when they are active,
we request them to be uncorrelated, unlike in the previous stages of our approach.
Denoting y≤

l (t) the centered version of yl(t), we then have if s̃ jk(t) is active

δil = E{y≤
l (t)x ≤

i (t)}
E{[y≤

l (t)]2} = qi jk

λ jk
∀ i ∈ {1, . . . , P}, ∀ l ∈ {1, . . . , L}.(6.44)

This may be interpreted as in Sect. 6.4.2.1, i.e., one may build the matrix [δil ], where
each column l corresponds to one signal s̃ jk(t). Equation (6.44) then shows that this
matrix is equal to Q, up to the scale and permutation indeterminacies. This completes
all BMI tasks. Moreover, let us consider the signals

ui (t) = xi (t) −
L∑

l=1

δil yl(t) ∀ i ∈ {1, . . . , P}. (6.45)

Denoting u(t) the column vector of signals ui (t), Eqs. (6.33), (6.43), (6.44) and
(6.45) then yield in matrix form

u(t) = As(t). (6.46)

BSS is then straightforwardly achieved for the original sources s j (t) by computing
the vector B†u(t), where † denotes the pseudo-inverse.

A Method Only Using Variance Parameters

Eventually, if one is mainly interested in the BSS of the sources s j (t), the method of
Section “A Method Based on Non-stationarity Conditions” and its constraints may
be avoided, again at the expense of requesting the uncorrelation of the signals which
are contained by s≤(t) and s̃≤(t) (considered at times when they are active). To this
end, we introduce the signals

vi (t) = xi (t) −
L∑

l=1

dil zl(t) ∀ i ∈ {1, . . . , P}. (6.47)

It may be shown that, by adapting all coefficients dil so as to minimize the variances
of all signals vi (t), the vector v(t) consisting of these signals becomes equal to As(t).
BSS is then achieved for the original sources s j (t) by computing the vector B†v(t).

Experimental results obtained with our overall LQI-TempCorr method are reported
in [17] and skipped here, due to space limitations.



6 Sparse Component Analysis Methods: A General Framework 191

6.4.3 Related Works and Extensions

As stated above, we here considered linear-quadratic instantaneous mixtures as a rel-
atively simple application (yet significantly more complex than linear instantaneous
mixtures) of the proposed class of SCA methods to nonlinear mixtures. One may then
guess how to further extend this approach, e.g., to more general polynomial instanta-
neous mixtures. To this end, one may also take advantage of the work that we reported
in [39] for extending another type of BSS methods (Non-Negative Matrix Factor-
ization) from second-order polynomial mixtures, as above, to third-order ones. The
practical applicability of the SCA methods thus derived here for higher-order mix-
tures may however be limited by the extended sparsity properties that they require.

This type of SCA methods was also independently extended to post-nonlinear
mixtures [46] and to a wider class of nonlinear mixtures [47] by a former member
of our group.

6.5 Linear Instantaneous Mixtures of 2D Sources

Finally, we briefly discuss the situation when, in their original representation, the
considered source “signals” are two-dimensional, i.e., they are functions of two
scalar variables, denoted as pH and pV . When focusing on the case of image sources
as a typical and major example, these variables are, respectively, the Horizontal and
Vertical coordinates of the considered pixel. Besides, we here restrict ourselves to
the case when these sources are mixed according to the linear instantaneous model.
Most of the concepts developed in Sect. 6.2 for the same class of mixtures but for
another type of sources can straightforwardly be reused here. This results from the
fact that, although the signals considered in Sect. 6.2 were originally 1D, we then
intentionally moved to an arbitrary representation domain, which also includes the
domains considered here for signals which are originally 2D. We can thus first use
the framework of Sect. 6.2 by replacing the temporal variable t by the overall 2D
spatial variable (pH , pV ) which, again, is seen as the argument v of the source and
observed signals denoted as S j (v) and Xi (v). Besides, our framework may be used
when a linear sparsifying transform is applied to 2D sources.

The general class of SCA methods that we developed in Sect. 6.2.2 for possibly
transformed signals may therefore straightforwardly be extended to image process-
ing. Thus investigating Linear Instantaneous mixtures of originally 2D sources con-
sidered in the Spatial domain, and applying the Correlation-based principles of
Section “Detection Based on Correlation Coefficients” and item 1 of Sect. 6.2.2.3,
e.g., yields the SCA method here called LI-2D-SpaceCorr, which is detailed in [38].
Another version of these methods is obtained by first applying a sparsification stage,
which consists in transforming the observed images into the 2D wavelet domain.
The resulting method, called LI-2D-WaveCorr, is also detailed in [38]. Other meth-
ods, based on ratios of mixtures, may also be developed by using the proposed
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framework and applying the principles of Section “Detection Based on Ratios of
Mixtures” and item 3 of Sect. 6.2.2.3. This yields two methods, which may be called
LI-2D-SpaceROM and LI-2D-WaveROM, since the first of these methods for linear
instantaneous mixtures of originally 2D sources uses the original spatial representa-
tion of the signals, and the second method first transforms the observations into the
2D wavelet domain.

Moreover, in various image processing applications, the source values and/or
mixing coefficients meet specific constraints. In particular, for standard multispec-
tral or hyperspectral reflectance images available in the field of remote sensing
(Earth observation),20 all source values and mixing coefficients are real-valued
and non-negative and, when considering spatial unmixing methods, the sum of all
source values in each pixel is equal to one. Modified forms of the above-defined
SCA methods may be developed for this specific case. Such a modified version
of LI-2D-SpaceCorr is described in [25]. We also developed a significantly differ-
ent method for this case. This method is here called LI-2D-SpaceVM, since it is
based on the original Spatial representation of the signals and its detection stage uses
Variances of Mixtures. Its stages performing BMI were introduced in [26] and its
extension to source estimation will be described in detail in [27]. In all these meth-
ods, the non-negativity of the source signals may be used to finally estimate them
by means of non-negative least square (NNLS) [30] or Non-negative Matrix Factor-
ization (NMF) [9, 20, 31, 32] algorithms. A comparison of the NNLS-based and
NMF-based versions of LI-2D-SpaceCorr and LI-2D-SpaceVM is available in [28].

6.6 Conclusion

Sparse Component Analysis (SCA) is one of the main approaches to Blind Source
Separation (BSS) and Blind Mixture Identification (BMI). Using this sparsity con-
cept, we proposed a general framework for developing BSS/BMI methods applica-
ble to different types of sources (one-dimensional signals, images, ...), considered
in various domains (original temporal or spatial domain, transformed representa-
tion in time-frequency or time-scale/wavelet domain, ...), mixed according to var-
ious models (linear instantaneous, anechoic, full convolutive, nonlinear and espe-
cially linear-quadratic) and possibly with non-negativity or sum-to-one constraints.
These methods essentially require a few tiny single-source zones. They therefore
set very limited constraints on source sparsity and could thus be considered as
“quasi-non-sparse component analysis” methods. Besides, unlike Independent Com-
ponent Analysis methods, they are applicable to correlated sources. In this chapter, we
provided a unified view and described the latest extensions of our general framework,
and we showed that the proposed methods yield attractive experimental performance.
Some software and data corresponding to these investigations are currently available

20 For such data, standard configurations lead to linear instantaneous mixtures [29].
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at [57] and will soon be moved to [58]. Further extensions of this general framework
for BSS/BMI will be reported in future papers.
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Appendix 1

We here prove the validity of Property 6.1 (see p. 14), used in our correlation-based
SCA method for linear instantaneous mixtures. For the sake of simplicity, we express
it for a given type of signals, i.e., deterministic signals. The corresponding proof for
stochastic signals is similar and is provided for the more general case of linear-
quadratic instantaneous mixtures in [17].

For a given analysis zone Z , all values of any given observation Xi (v) are first
gathered in a vector VXi (Z), and all values of any source S j (v) similarly form a
vector VS j (Z). For determined mixtures, the scalar mixing equations in (6.5) then
yield in vector form

VXi (Z) =
N∑

j=1

ai j VS j (Z) ∀ i ∈ {1, . . . , N }. (6.48)

Besides, the correlation coefficients ρ{X1, Xi }(Z) of observed signals are defined
according to (6.10) and (6.9) or its variants for other signal transforms or types of
analysis zones. They may therefore be here expressed as

ρ{X1, Xi }(Z) = < VX1(Z), VXi (Z) >

||VX1(Z)|| × ||VXi (Z)|| (6.49)

where the notations < ., . > and ||.|| respectively stand for inner product and vector
norm. Applying the Cauchy-Schwarz inequality to (6.49) then shows that

|ρ{X1, Xi }(Z)| ∀ 1 ∀ i ∈ {1, . . . , N } (6.50)

with equality if and only if VX1(Z) and VXi (Z) are linearly dependent.
Let us now analyze this condition in a given analysis zone Z , depending on the

number of nonzero vectors VS j (Z), i.e., on the number of sources which are active
in this zone. Due to Assumption 6.3 (p. 13), at least one of these vectors VS j (Z) is
not equal to zero. If only one of them is not equal to zero, due to Assumption 6.4
(p. 13), Eq. (6.48) shows that all vectors VXi (Z), with 1 ∀ i ∀ N , are nonzero and
collinear. Therefore, equality holds whatever i in (6.50) and the detection condition
(6.11) is fulfilled.
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The only case that remains to be considered is then the situation when at least
two vectors VS j (Z) are nonzero. It may then easily be shown that if VX1(Z)

and VXi (Z) were linearly dependent for all i , with 2 ∀ i ∀ N , then, due to
Assumption 6.5 (p. 13), all the columns of the mixing matrix A with indices equal
to the indices j of the nonzero vectors VS j (Z) would be collinear. This is not true,
thanks to Assumption 6.1(p. 4). Therefore, in the considered case, at least one pair
of vectors (VX1(Z), VXi (Z)) does not consist of linearly dependent vectors, so that
|ρ{X1, Xi }(Z)| < 1 and the detection condition (6.11) is not fulfilled.

As an overall result, condition (6.11) is fulfilled if and only if exactly one of the
vectors VS j (Z) is not equal to zero in the considered analysis zone, i.e., if this is a
single-source zone, which completes the proof of Property 6.1.
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Chapter 7
Underdetermined Audio Source Separation
Using Laplacian Mixture Modelling

Nikolaos Mitianoudis

Abstract The problem of underdetermined audio source separation has been
explored in the literature for many years. The instantaneous K -sensors, L-sources
mixing scenario (where K < L) has been tackled by many different approaches,
provided the sources remain quite distinct in the virtual positioning space spanned
by the sensors. In this case, the source separation problem can be solved as a direc-
tional clustering problem along the source position angles in the mixture. The use
of Laplacian Mixture Models in order to cluster and thus separate sparse sources in
underdetermined mixtures will be explained in detail in this chapter. The novel Gen-
eralised Directional Laplacian Density will be derived in order to address the problem
of modelling multidimensional angular data. The developed scheme demonstrates
robust separation performance along with low processing time.

7.1 Introduction

Let a set of K sensors x(n) = [x1(n), . . . , xK (n)]T observe a set of L sound sources
s(n) = [s1(n), . . . , sL(n)]T . We will consider the case of instantaneous mixing,
i.e. each sensor captures a scaled version of each signal with no delay in transmis-
sion. Moreover, the possible additive noise will be considered negligible. The above
instantaneous mixing model can be expressed in mathematical terms, as follows:

x(n) = As(n) (7.1)

where A represents the K × L mixing matrix and n the sample index. The blind
source separation problem provides an estimate of the source signals s(n) given

N. Mitianoudis (B)

Image Processing and Multimedia Lab, Electrical and Computer Engineering Department,
Democritus University of Thrace, 67100 Xanthi, Greece
e-mail: nmitiano@ee.duth.gr

G. R. Naik and W. Wang (eds.), Blind Source Separation, 197
Signals and Communication Technology, DOI: 10.1007/978-3-642-55016-4_7,
© Springer-Verlag Berlin Heidelberg 2014



198 N. Mitianoudis

the sensor signals x(n). Usually, most separation approaches are semi-blind, which
implies some knowledge of the source signal’s general statistical structure. A num-
ber of algorithms have been proposed to solve the overdetermined and complete
source separation problem (K ≥ L) with great success. The additional assumption
of statistical independence between the sources led to a group of source separation
algorithms, summarised under the general term Independent Component Analysis
(ICA). Starting from different interpretations of statistical independence, most algo-
rithms perform source separation with great accuracy. An overview of current ICA
and general blind source separation algorithms can be found in tutorial books on ICA
by Hyvärinen et al. [27], Cichocki-Amari [11] and Common et al. [12].

The underdetermined source separation problem (K ∈ L) is more challenging,
since in this case, the estimation of the mixing matrix A is not sufficient for the
estimation of the source signals s(n). This type of mixtures can be encountered in
musical audio mixes. A number of solo instrument recordings are combined linearly
in a stereo (K = 2) or a multichannel (K = 5 or K = 7) mixture , in order to form
a musical score recording. Assuming Gaussian distributions for the sources and a
known mixing matrix A, one could estimate the sources using the pseudo-inverse of
matrix A in a Maximum Likelihood sense [34]. As most speech and audio signals tend
to follow heavy-tailed “nonGaussian” distributions, the above linear operation is not
sufficient to estimate the sources. Therefore, the underdetermined source separation
problem can be divided into two subproblems: (i) estimating the mixing matrix A
and (ii) estimating the source signals s(n).

The existence of a unique source estimate for the underdetermined source sep-
aration problem, even in the case that A is known, is always under question, since
it is an ill-conditioned problem that has an infinite number of solutions. Any linear
system with less equations than unknown variables has an infinite number of solu-
tions (source estimates) [31]. However, according to Eriksson and Koivunen [21],
the linear generative model of (7.1) can have a unique and identifiable solution for
the underdetermined case, provided (i) there are no Gaussian sources present in the
mixture, (ii) the mixing matrix A is of full row rank, i.e. rank(A) = K and (iii) none
of the source variables has a characteristic function featuring a component in the form
exp(Q(u)), where Q(u) is a second-order polynomial or higher. This implies that
this intractable problem may have a non-infinite number of solutions, under several
constraints and probabilistic criteria for the sources.

One probabilistic profile that satisfies the assumptions set above are sparse distri-
butions. Sparsity is mainly used to describe signals that are mostly close to a mean
value with the exception of several large values. Common models that can be used
for approximating sparsity are minimum L0 or L1 norms [34], Mixture of Gaus-
sians (MoG) [3, 14, 43] or factorable Laplacian distributions [25]. The separation
quality for the underdetermined case seems to improve with sparsity, as usually the
performance of source separation algorithms is closely connected with the “non-
Gaussianity” of the source signals [9]. However, in many practical applications, the
source data are not sparse. For example, some musical instrument signals tend to be
less sparse than speech signals in the time-domain. Speech contains a lot of silent
segments that guarantee sparsity (many zero samples), however, this might not be
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the case with many instrument signals. Therefore, the assumed sparse models are
not accurate enough to describe the statistical properties of the signals in the time-
domain. Many natural signals can have sparser representations in other transform
domains, including the Fourier transform, the Wavelet transform and the Modified
Discrete Cosine Transform (MDCT). Since these transformations are linear, it is
equivalent to estimate the generative model and the sources in the transform domain.
There are also alternative methods, where one can generate sparse representations for
a specific dataset [15]. In the following analysis, the MDCT is employed to provide
a sparser representation of audio signals.

The underdetermined source separation problem has been covered extensively
in the literature. Lewicki [34] provided a complete Bayesian approach, assuming
Laplacian source priors to estimate both the mixing matrix and the sources in
the time domain. In [33], Lee et al. applied the previous algorithm to the source
separation problem. Girolami [25] employed the factorable Laplacian distribution
and variational EM to estimate the mixing matrix and the sources. More complete
sparse source models, such as the Student-t distribution, were employed by Févotte
et al. [22]. The parameters of the model, the mixing matrix and the source signals
were estimated using either Markov Chains Monte Carlo (MCMC) simulations [22]
or a Variational Expectation Maximisation (EM) algorithm [10], featuring robust
performance, however, being computationally expensive. Clustering solutions were
introduced by Hyvärinen [28] and Zibulevsky et al. [62], also featuring good results
and lower computational complexity. In this case, the mixing matrix and the source
signals are estimated by performing clustering in a sparser representation of the
signals in the transform domain. Bofill-Zibulevsky [8] presented a shortest path
algorithm based on L1 minimisation that could estimate the mixing matrix and the
sources. O’Grady and Pearlmutter [45] proposed an algorithm to perform separation
via Oriented Lines Separation (LOST) using clustering along lines (Hard-Lost) in
a similar manner to Hyvärinen [28]. In addition, they proposed a soft-thresholding
technique using an EM on a mixture of oriented lines to assign points to more than
one source [44]. Davies and Mitianoudis [14] employed two-state Gaussian Mix-
ture Models (GMM) to model the source densities in a sparse representation and
also the additive noise. An EM-type algorithm was used to estimate the parame-
ters of the two-state models and perform source coefficients clustering. The latter
approach can be considered a joint Bayesian and clustering approach. A two-sensor
more-sources setup, modelling also some delays between the sensors, was addressed
using the DUET algorithm [61] that can separate the sources, by calculating ampli-
tude differences (AD) and phase differences (PD) between the sensors. An online
version of the algorithm was also proposed [48]. Recently, Arberet et al. [2] pro-
posed a method to count and locate sources in underdetermined mixtures. Their
approach is based on the hypothesis that in localised neighbourhoods around some
time–frequency points (t, f ) (in the Short-Time Fourier Transform (STFT) repre-
sentation) only one source essentially contributes to the mixture. Thus, they estimate
the most dominant source (the Estimated Steering Vector) and a local confidence
Measure which increases where a single component is only present. A clustering
approach merges the above information and estimates the mixing matrix A. In [58],
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Vincent et al. used local Gaussian Modelling of minimal constrained variance of the
local time–frequency neighbours assuming knowledge of the mixing matrix A. The
candidate sources’ variances are estimated after minimising the Kullback-Leibler
(KL) divergence between the empirical and expected mixture covariances, assuming
that at most 3 sources contribute to each time–frequency neighbourhood and the
sources are derived using Wiener filtering.

The instantaneous mixtures model is rather incomplete in the case of sources
recorded in a real acoustic room environment. Assume the case of a sound source
and a microphone in a room. Previous research has shown that the signal captured
by the microphone can be well represented by a convolution of the source signal
with a high-order FIR filter, modelling the room acoustics between the source and
the sensor [41]. In the case of many sources and sensors, the signal at each sensor
can be modelled by the following equation:

x(n) =



h11 . . . h1L

. . . . . . . . .

hK 1 . . . hK L


 ≤ s(n) (7.2)

where ≤ denotes the linear convolution operator and hi j denotes an FIR filter mod-
elling the room impulse response between the i-th microphone and the j-th source.

Many methods have been proposed to solve the square (K = L) convolu-
tional ICA problem. Some of them suggested working directly in the time-domain
[32, 57]. Working in the time domain has the disadvantage of being rather computa-
tionally expensive, due to calculating many convolutions and the size of the unmixing
filters. Other approaches suggested moving to the STFT domain in order to trans-
form the convolution into multiplication and apply ICA methods for instantaneous
mixtures (i.e. the natural gradient) for each frequency bin [56]. However, there
is an inherent permutation problem in all FD-ICA methods, which does not exist
in time-domain methods. Mitianoudis and Davies [41] proposed a time–frequency
source model for a ML-ICA approach, incorporating a time-varying parameter, aim-
ing to impose frequency coupling between neighbouring frequency bins. In addition,
a likelihood ratio test was proposed to address the permutation problem. In [38],
Mitianoudis and Davies described a mechanism to align permutations using sub-
space methods at each frequency bin. This idea was refined and was extended for
underdetermined convolutive mixtures by Sawada et al. [1, 49, 50]. Winter et al. [60]
estimate the mixing matrix based on hierarchical clustering, assuming sparsity of the
source signals. Sources are then estimated using L1-norm minimisation of complex
numbers, using Laplacian source priors. Duong et al. [20] model the contribution of
each source to all mixture channels in the time-frequency domain as a zero-mean
Gaussian random variable (r.v.) whose covariance encodes the spatial character-
istics of the source. They derive a family of iterative EM algorithms to estimate
the parameters of each model and propose suitable procedures adapted from pre-
vious convolutive approaches to align the order of the estimated sources across all
frequency bins.



7 Underdetermined Audio Source Separation Using Laplacian Mixture Modelling 201

A more general source separation case can be introduced by using the following
nonlinear mixing setup:

x = f (s) (7.3)

where f (·) is a general nonlinear function, which provides a mapping f : RL √ RL .
The solution for this problem forms a new class of source separation algorithms,
termed nonlinear BSS. The nonlinear problem has a fundamental characteristic that
solutions always exist; however, they are highly non-unique [27]. The general non-
linear BSS problem can be addressed using Kohonen Self-Organising maps [46]. In
[30], Jutten and Karhunen state that one can reduce these great indeterminacies by
constraining the mapping f (·) to a certain set of transformations. Smooth nonlinear
mappings, i.e. mappings that preserve independence of the components, such as a
rotation matrix, can be unmixed using multilayer perceptron (MLP) networks. In the
Post nonlinear (PNL) model, the nonlinear mapping has the following structure:

xi (n) = fi


⎡

L⎣

j=1

ai j s j (n)

⎤
⎦ , i = 1, . . . , K (7.4)

where the nonlinear functions fi (·) are assumed to be invertible. Such models may
appear in array processing, satellite and microwave communications. A separation
method for PNL models generally consists of two stages [27]: (a) a nonlinear stage,
where the functions fi are inverted, (b) a linear stage, where the linearised mixture is
separated using an ordinary linear instantaneous ICA algorithm. In addition, there are
other special nonlinear mixing cases, that can be linearised using another nonlinear
mapping function g(·) (see [30]). Recently, Duarte et al. [19] introduced a blind
compensation scheme of the nonlinear distortion introduced in PNL mixtures, by
using a semi-blind cost function to estimate the parameters of a known inverting
function. Nevertheless, further exploration of nonlinear mixtures separation goes
beyond the scope of this chapter.

In this chapter, instantaneous underdetermined source separation is examined
in the form of a directional clustering problem. Clustering is performed with the
application of density mixture models, which are trained on the directional data
using the EM algorithm. We examine three cases of candidate densities based on the
Laplacian distribution, which is well-suited to model sparse data. The directionality
of the source separation data led to the introduction of a wrapped Laplacian density
and finally a generalised directional Laplacian density, a closed-form expression that
can model multidimensional directional data.
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7.2 Underdetermined Source Separation as a Directional
Clustering Problem

Let us assume a two-sensor instantaneous mixing approach. In Fig. 7.1a, one can
see the scatter plot of the two sensor signals, in the case of two sensors and four
sources. The four sources are 7 s of speech, accordion, piano and violin signals. In
the time-domain representation, no directions of the input sources are visible in the
mixture. Consequently, the separation problem seems very difficult to solve. To get
a sparser representation of the data, the MDCT or the Short-Time Fourier Transform
(STFT) can be applied on the observed signals. The MDCT is a linear, real transform
that has excellent sparsifying properties for most audio and speech signals. The
harmonic content of most speech and musical instrument signals can be represented
by harmonically related sinusoidals with great accuracy (excluding transient and
percussive parts in audio and unvoiced segments in speech). Consequently, using a
transformation that projects the audio data on sinusoidal bases will most probably
result into a more compact and sparse representation of the original data. The MDCT
is more preferable than the STFT, since it is real and retains all the required sinusoidal
signal structure. The need for sparser representations in underdetermined source
separation and audio analysis in general is discussed more rigorously in [7, 15, 26,
35, 47]. When the sources are sparse, smaller coefficients are more probable, whereas
all the signal’s energy is concentrated in few large values. Therefore, the density of
the data in the mixture space shows a tendency to cluster along the directions of the
mixing matrix columns [62]. Observing the scatter plot in Fig. 7.1b, it is clear that
the angular difference between the two sensors can be used to identify and separate
the sources in the mixture. That is to say, the two-dimensional (2D) problem can be
transformed to a one-dimensional (1D) problem, as the main important parameter is
the angle θn of each point.

θn = atan
x2(n)

x1(n)
. (7.5)

Using the directional differences between the two sensors is equivalent to mapping all
the observed data points on the unit circle. Extending this to a general multichannel
scenario, one can map K -dimensional points x(n) to the K -D unit sphere, by divid-
ing with the vector’s norm ||x||. In Fig. 7.2a, we plot the histogram of the observed
data angle θn in the previous example.1 The strong “superGaussian” characteristics
of the individual components in the MDCT domain are preserved in the angle rep-
resentation θn . Then, the vectors xnorm(n) contain only directional information in a
polar reference system.

1 A π -periodicity is valid for the observed phenomenon, since data in (π/2, 3π/2) are symmetrical
to the ones in (−π/2, π/2) (See Fig. 7.1b). Hence, the use of the atan function instead of the
extended atan2 function is justified. For the rest of the analysis, we will assume that θn takes values
between (0, π) rather than (−π/2, π/2). This implies that data in the 4th quadrant (−π/2, 0) are
mapped with odd symmetry to the 2nd quadrant (π/2, π ). This is performed in order to facilate the
derivations of the Generalised Directional Laplacian Distribution and does not alter anything in the
actual data.
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Fig. 7.1 Scatter plot of a two-sensor four-sources mixture in the time domain and in the sparse
MDCT domain. The almost Gaussian-like structure of the time-domain representation is enhanced
using the MDCT and the four sources can be clearly identified in the mixture. a Time domain. b
MDCT domain

xnorm(n) = x(n)

||x(n)|| . (7.6)

We can also define the magnitude rn of each point x(n), as follows:

rn = ||x(n)|| =
√

x1(n)2 + · · · + xK (n)2 (7.7)
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Fig. 7.2 Histograms of angle θn in the four sources example of Fig. 7.1. The four sources are iden-
tifiable in the original histogram (a), however, keeping only the most “superGaussian” components
(b), we can facilitate the separation process, as the directions of arrival are more clearly identifiable.
a Original histogram. b Modified histogram

We can observe that points that are close to the origin have a more Gaussian structure
and thus do not contribute to the desired “superGaussian” profile. Consequently, we
can use a “reduced” representation of the original data in order to estimate the columns
of the mixing matrix more accurately. In Fig. 7.2b, we can see a histogram of those
points n, whose magnitude rn is above a threshold, e.g. rn > 0.1. Comparing with
the original histogram of Fig. 7.2a, the four components are more clearly identifiable
in this reduced representation, which can facilitate the estimation of the columns of
the mixing matrix, i.e. the directions of arrival for each source. In this representation,
we will present three models based on the Laplacian density, that can be applied to
cluster and separate the sources.
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7.3 Identification Using Laplacian Mixtures Models

A model, that is commonly used in the literature to model sparse data, is the Laplacian
density function. The definition for the Laplacian probability density function (pdf)
is given by the following expression:

L (θ, k, m) = ke−2k|θ−m| (7.8)

where m defines the mean and k > 0 controls the “width” (approximate standard
deviation) of the distribution. In a similar fashion to Mixtures of Gaussians (MoG),
one can employ Laplacian Mixture Models (LMM) in order to model a mixture of
“heavy-tailed signals”. A LMM of K Laplacians can thus be defined, as follows:

p(θ) =
K⎣

i=1

αiL (θ, ki , mi ) =
K⎣

i=1

αi ki e
−2ki |θ−mi | (7.9)

where αi , mi , ki represent the weight, mean and width of each Laplacian respectively
and all weights should sum up to one, i.e.

∑K
i=1 αi = 1. The EM algorithm is

employed to train the parameters of the mixture model. A complete derivation of an
EM algorithm was presented by Dempster et al. [16] and has been employed to fit a
MoG on a training data set [6]. Assuming N training samples for an 1D r.v. θn and
Laplacian Mixture densities (7.9), the log-likelihood of these training samples takes
the following form:

I (αi , ki , mi ) =
N⎣

n=1

log
K⎣

i=1

αiL (θn, ki , mi ). (7.10)

Introducing unobserved data items that can identify the components that “generated”
each data item, we can simplify the log-likelihood of (7.10) for Laplacian Mixtures,
as follows:

J (αi , ki , mi ) =
N⎣

n=1

K⎣

i=1

(log αi + log ki − 2ki |θn − mi |)p(i |θn) (7.11)

where p(i |θn) represents the probability of sample θn belonging to the i th Laplacian
of the LMM. In a similar fashion to MoGs, the updates for p(i |θn) and αi can be
given by the following equations:

p(i |θn) = αiL (θn, mi , ki )∑K
i=1 αiL (θn, mi , ki )

(7.12)
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α+
i ⊗ 1

N

N⎣

n=1

p(i |θn). (7.13)

The updates for mi and ki are estimated by setting ∂ J (αi , ki , mi )/∂mi = 0 and
∂ J (αi , ki , mi )/∂ki = 0 respectively. Following some derivation (see [42]), we get
the following update rules:

m+
i ⊗

∑N
n=1

θn|θn−mi | p(i |θn)
∑N

n=1
1

|θn−mi | p(i |θn)
(7.14)

k+
i ⊗

∑N
n=1 p(i |θn)

2
∑N

n=1 |θn − mi |p(i |θn)
. (7.15)

The four update rules are iterated until convergence. Enhancing the sparsity in the
angle representation θn will increase EM’s convergence speed and will provide more
accurate estimates for the sources’ angles. Therefore, we train the LMM with a subset
of those data points n that satisfy rn > B, where B is a threshold.

Once the LMM is trained, the centre of each Laplacian mi should represent a
column of the mixing matrix A in the form of [cos(mi ) sin(mi )]T . Each wrapped
Laplacian should model the statistics of each source in the transform domain and
can be used to perform underdetermined source separation.

The main issue with LMMs is that they attempt to model a circular r.v. (angles)
using a pdf that has infinite support. The Laplacian density, as described in (7.8),
is valid ∀ θ ⇔ (−∞,+∞). However, the range of θn is not only bounded to the
(0, π) interval but the two boundaries are actually connected. Assume that you have
a concentration of points close to π . The EM algorithm will attempt to fit a Laplacian
around this cluster, however, assuming a linear support on θ . As a result, the algorithm
cannot attribute points that belong to the same cluster, but are close to 0, due to the
assumed linear support. Therefore, the algorithm cannot model densities with mi

close to 0 or π with great accuracy. To alleviate the problem, the estimated centres
mi can be rotated, so that the affected boundary (0 or π ) is mapped to the middle of
the centres mi that feature the greatest distance (see [42]). This can offer a heuristic
but not complete solution to the problem.

7.4 Identification Using Mixtures of Wrapped
Laplacian Models

To address this problem in a more elegant manner, we examine the use of an approxi-
mate wrapped Laplacian distribution to model the π periodicity that exists in atan(·).
The observed angles θn of the input data can be modelled, as a Laplacian wrapped
around the interval (0, π).
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Fig. 7.3 An example of the wrapped Laplacian for T = [−1, 0, 1] k = 0.01 and m = π/4

Definition 1 A wrapped Laplacian can be described by the following additive model

Lw(θ, k, m) = 1

2T − 1

T⎣

t=−T

ke−2k|θ−m−π t | = 1

2T − 1

T⎣

t=−T

L (θ − π t, k, m)

(7.16)
where T ⇔ Z+ denotes the number of ordinary Laplacians with mean m and width
k that participate in the wrapped version.

The above expression models the wrapped Laplacian by an ordinary Laplacian and
its periodic repetitions by π (see Fig. 7.3). This is an extension of the wrapped
Gaussian distribution proposed by Smaragdis and Boufounos [55] for the Laplacian
case. The addition of the wrapping of the distribution aims at mirroring the wrapping
of the observed angles at ±π . In theory, the model should have T √ ∞ components,
however, it seems that a small range of values for T can successfully approximate
the full wrapped probability density function in practice.

In a similar fashion to LMMs, one can introduce Mixture of wrapped Laplacians
(MoWL) in order to model a mixture of angular or circular sparse signals. A MoWL
can thus be defined, as follows:

p(θ) =
K⎣

i=1

αiLw(θ, ki , mi ) =
K⎣

i=1

αi
1

2T − 1

T⎣

t=−T

ki e
−2ki |θ−mi −π t | (7.17)

where αi , mi , ki represent the weight, mean and width of each Laplacian respectively
and all weights should sum up to one, i.e.

∑K
i=1 αi = 1. We can derive the EM

algorithm, based on the previous analysis. Assuming N training samples for θn and
a MoWL densities (7.17), the log-likelihood of these training samples θn takes the
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following form:

I (αi , ki , mi ) =
N⎣

n=1

log
K⎣

i=1

αiLw(θn, ki , mi ). (7.18)

One can introduce the probability p(i |θn) of sample θn belonging to the i th wrapped
Laplacian of the MoWL and the probability p(t |i, θn) of sample θn belonging to the
t th individual Laplacian of the i th wrapped Laplacian Lw(ki , mi ). The updates for
p(t |i, θn), p(i |θn) and αi can be then given by the following equations:

p(t |i, θn) = L (θn − π t, mi , ki )∑T
t=−T L (θn − π t, mi , ki )

(7.19)

p(i |θn) = αiLw(θn, mi , ki )∑K
i=1 αiLw(θn, mi , ki )

(7.20)

αi ⊗ 1

N

N⎣

n=1

p(i |θn) (7.21)

mi ⊗
∑N

n=1
∑T

t=−T
θn−π t

|θn−π t−mi | p(t |i, θn)p(i |θn)
∑K

n=1
∑T

t=−T
1

|θn−π t−mi | p(t |i, θn)p(i |θn)
(7.22)

ki ⊗
∑N

n=1 p(i |θn)

2
∑N

n=1
∑T

t=−T |θn − π t − mi |p(t |i, θn)p(i |θn)
. (7.23)

Once the MoWL is trained, the centre of each wrapped Laplacian mi should
represent a column of the mixing matrix A in the form of [cos(mi ) sin(mi )]T . Each
wrapped Laplacian should model the statistics of each source in the transform domain
and can be used to perform underdetermined source separation. This approach
addresses the problem of modelling directional data in a more elegant manner,
however, the cost of training two EM algorithms makes this approach less attractive.

7.5 A Complete Solution Using the Generalised Directional
Laplacian Distribution

The previous two efforts do not offer a closed-form solution to the problem and they
can not be easily expanded to more than two sensors. The proposed multidimensional
Directional Laplacian model offers a closed-form solution to the modelling of direc-
tional sparse data and can also address the general K × L underdetermined source
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separation problem, which is rarely tackled in the literature. There exist distributions
that are periodic by definition and can therefore offer closed-form models for circular
or directional data.

The von Mises distribution (also known as the circular normal distribution) is a
continuous probability distribution on the unit circle [24, 29]. It may be considered
the circular equivalent of the normal distribution and is defined by:

p(θ) = ek cos(θ−m)

2π I0(k)
, ∀ θ ⇔ [0, 2π) (7.24)

where I0(k) is the modified Bessel function of the first kind of order 0, m is the
mean and k > 0 describes the “width” of the distribution. A generalisation of the
previous density is the p-dimensional (p-D) von Mises-Fisher distribution [18, 37].
A p-D unit random vector x (||x|| = 1) follows a von Mises-Fisher distribution, if
its probability density function is described by:

p(x) ∝ ekmT x, ∀||x|| ⇔ S p−1 (7.25)

where ||m|| = 1 defines the centre, k ≥ 0 and S p−1 is the p-D unit hypersphere.
Since the random vector x resides on the surface of a p-D unit-sphere, x essentially
describes directional data. In the case of p = 2, x models data that exist on the unit
circle and thus can be described only by an angle. In this case, the von Mises-Fisher
distribution is reduced to the von Mises distribution of (7.24). The von Mises-Fisher
distribution has been extensively studied and many methods have been proposed to
fit the distribution or its mixtures to normally distributed circular data [5, 18, 29, 37].

7.5.1 A Generalised Directional Laplacian Model

Assume a r.v. θ modelling directional data with π -periodicity. The periodicity of
the density function can be amended to reflect a “fully circular” phenomenon (2π ),
however, for the rest of the paper we will assume that θ ⇔ [0, π), since it is required
by the source separation application. From the definition of the von Mises distribution
in (7.24), one can create a Laplacian structure simply by introducing a | · | operator
in the superscript of the exponential. This action introduces a large concentration
around the mean, which is needed to describe a sparse or Laplacian density. Values
far away from the mean are smoothed out by the exponential. Additionally, we have
to perform some minor amendments to the phase shift and also invert the distribution
in order to impose the desired shape on the derived density.

Definition 2 The following probability density function models directional Lapla-
cian data over [0, π) and is termed Directional Laplacian Density (DLD):

p(θ) = c(k)e−k| sin(θ−m)|, ∀ θ ⇔ [0, π) (7.26)
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Fig. 7.4 The proposed Directional Laplacian Density (DLD) for various values of k

Fig. 7.5 Generalising the Directional Laplacian density in S p−1

where m ⇔ [0, π)defines the mean, k > 0 defines the width (“approximate variance”)
of the distribution, c(k) = 1

π I0(k)
and I0(k) = 1

π

∫ π

0 e−k sin θdθ .

The normalisation coefficient c(k) = 1/π I0(k) is derived from the fundamental
normalisation property of probability density functions [40]. Examples of (7.26) are
shown in Fig. 7.4. More details on the special 1D DLD case can be found in [40].

The next step is to derive a generalised definition for the Directional Laplacian
model. To generalise the concept of 1D DLD in the p-D space, we will be inspired by
the p-D von Mises-Fisher distribution [18, 37]. The von Mises-Fisher distribution
is described by p(x) ∝ ekmT x (see (7.25)). Since ||x|| = ||m|| = 1, the inner
product mT x = cos ψ , where ψ is the angle between the two vectors x and m (see
Fig. 7.5). Following a similar methodology to the 1D-DLD, we need to formulate the
term −k| sin ψ | in the superscript of the exponential. We can then derive | sin ψ | =√

1 − cos2 ψ = √
1 − (mT x)2. Thus, the superscript of the generalised DLD can be

given by −k
√

1 − (mT x)2.
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Fig. 7.6 The proposed Generalised Directional Laplacian Distribution for k = 5 and p = 3

Definition 3 The following probability density function models p-D directional
Laplacian data and is termed Generalised Directional Laplacian Distribution (DLD):

p(x) = cp(k)e−k
∇

1−(mT x)2
, ∀ ||x|| ⇔ S p−1 (7.27)

where m defines the mean, k ≥ 0 defines the width (“approximate variance”) of

the distribution, cp(k) = Γ
(

p−1
2

)

π
p+1

2 Ip−2(k)

, Ip(k) = 1
π

∫ π

0 e−k sin θ sinp θdθ and Γ (·)
represents the Gamma function.2

The normalisation coefficient cp(k) is calculated in Appendix 1. In the case of
p = 2, the generalised DLD is reduced to the one- dimensional DLD of (7.26),
verifying the validity of the above model. The generalised DLD density models
“directional” data on the half-unit p-D sphere, however, it can be extended to the
unit p-D sphere, depending on the specifications of the application. In Fig. 7.6, an
example of the generalised DLD is depicted for p = 3 and k = 5. The centre m is
calculated using spherical coordinates m = [cos θ1 cos θ2; cos θ1 sin θ2; sin θ1] for
θ1 = 0.2 and θ2 = 2.

2 Note that for n positive integer, we have that Γ (n) = (n − 1)!
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7.5.2 Generalised Directional Laplacian Density Samples
Generation

To generate 1D Directional Laplacian data, we employed the inversion of the
cumulative distribution method [17]. Inversion methods are based on the obser-
vation that continuous cumulative distribution functions (cdf) range uniformly over
the interval (0, 1). Since the proposed density is bounded between [0, π), we can
evaluate the cdf of the DLD with uniform sampling at [0, π) and approximate the
inverse mapping using spline interpolation. Thus, uniform random data in the inter-
val (0, 1) can be transformed to 1D Directional Laplacian random samples, using
the described inverse mapping procedure.

To simulate 2-D Directional Laplacian random data (p = 3), we sampled the
2-D density function for specific m, k. The bounded value space (θ1, θ2 ⇔ [0, π)) is
quantised into small rectangular blocks, where the density is assumed to be uniform.
Consequently, we generate a number of uniform random samples for each block. The
number of samples generated from each block is different and defined by the overall
DL density. The required 3-D unit-norm random vectors are produced using spherical
coordinates with unit distance and angles θ1, θ2 from the random 2-D Directional
data. The above procedure can be extended for the generation of p-D directional data.

7.5.3 Maximum Likelihood Estimation of Parameters m, k

Assume a population of p-D angular data X = {x1, . . . , xn, . . . , xN } that fol-
low a p-D Directional Laplacian Distribution. To estimate the model parameters
using Maximum Likelihood Estimation (MLE), one can form the log-likelihood and
estimate the parameters m, k that maximise it. For the Generalised DLD density, the
log-likelihood function can be expressed, as follows:

J (X, m, k) = N log
Γ
(

p−1
2

)

π
p+1

2 Ip−2(k)
− k

N⎣

n=1

√
1 − (mT xn)2. (7.28)

Alternate optimisation is performed to estimate m and k. The gradients of J along
m and k are calculated in Appendix 2. The update for m is given by gradient ascent
on the log-likelihood via:

m+ ⊗ m + η

N⎣

n=1

mT xn√
1 − (mT xn)2

xn (7.29)

m+ ⊗ m+/||m+|| (7.30)
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Fig. 7.7 The ratio Ip(k)/Ip−1(k) is a monotonic 1 − 1 function of k

where η defines the gradient step size. Since the gradient step does not guarantee
that the new update for m will remain on the surface of S p−1, we normalise
the new update to unit norm. To estimate k, a numerical solution to the equation
∂ J (X, m, k)/∂k = 0 is estimated. From the analysis in Appendix 2, we have that

Ip−1(k)

Ip−2(k)
= 1

N

N⎣

n=1

√
1 − (mT xn)2 (7.31)

To calculate k analytically from the ratio Ip−1(k)/Ip−2(k) is not straightforward.
However, after numerical evaluation, it can be demonstrated that the ratio Ip−1(k)/

Ip−2(k) is a smooth monotonic 1−1 function of k. In Fig. 7.7, the ratio Ip−1(k)/Ip−2
(k) is estimated for uniformly sampled values of k ⇔ [0.01, 30] and p = 2, 3, 4, 5, 6.
Since this ratio is not dependent on data, one can create a look-up table for a
variety of k values and use interpolation to estimate k from an arbitrary value of
Ip−1(k)/Ip−2(k). This look-up table solution is more efficient compared to possible
iterative estimation approaches of k and generally accelerates the model’s training.

7.5.4 Mixtures of Generalised Directional Laplacians

One can employ Mixtures of Generalised Directional Laplacians (MDLD) in order
to model multiple concentrations of directional generalised “heavy-tailed signals”.

Definition 4 Mixtures of Generalised Directional Laplacian Distributions are
defined by the following pdf:
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p(x) =
K⎣

i=1

ai cp(ki )e
−ki

√
1−(mT

i x)2
, ∀ ||x|| ⇔ S p−1 (7.32)

where ai denotes the weight of each distribution in the mixture, K the number of
DLDs used in the mixture and mi , ki denote the mean and the “width” (approximate
variance) of each distribution.

The mixtures of DLD can be trained using the EM algorithm. Following the
previous analysis in [6], one can yield the following simplified likelihood function:

L (ai , mi , ki ) =
N⎣

n=1

K⎣

i=1

(
log

aiΓ (
p−1

2 )

π
p+1

2 Ip−2(k)
− k

√
1 − (mT x)2

⎧
p(i |xn) (7.33)

where p(i |xn) represents the probability of sample xn belonging to the i th Directional
Laplacian of the mixture. In a similar fashion to other mixture model estimation, the
updates for p(i |xn) and αi can be given by the following equations:

p(i |xn) ⊗ ai cp(ki )e
−ki

√
1−(mT

i x)2

∑K
i=1 ai cp(ki )e

−ki

√
1−(mT

i x)2
(7.34)

ai ⊗ 1

N

N⎣

n=1

p(i |xn). (7.35)

Based on the derivatives calculated in Appendix 2, it is straightforward to derive the
following updates for mi and ki , as follows:

m+
i ⊗ mi + η

N⎣

n=1

ki
mT xn√

1 − (mT xn)2
xn p(i |xn) (7.36)

m+
i ⊗ m+

i /||m+
i ||. (7.37)

To estimate ki , in a similar fashion to the previous MLE, the optimisation yields:

Ip−1(ki )

Ip−2(ki )
=
∑N

n=1

√
1 − (mT

i xn)2 p(i |xn)
∑N

n=1 p(i |xn)
. (7.38)

The training of this mixture model is also dependent on the initialisation of its parame-
ters, especially the means mi [39]. In Appendix 3, the standard K -Means algorithm
is reformulated in order to tackle p-D directional data. The proposed p-D Direc-
tional K-Means is used to initialise the means mi of the DLDs in the generalised
DLD mixture EM training. A Directional K-Means already exists in the literature [4],
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Fig. 7.8 Examples of fitting a Generalised MDLD model on 2,000 randomly generated 1D (left)
and 2D (right) directional Laplacian data. a 1D DLD mixture. b 2D DLD mixture

however, the proposed p-D Directional K-Means in Appendix 3 employs a distance
function more relevant to sparse directional data. Examples of trained MDLD are
shown in Fig. 7.8.

7.6 Source Separation Using Hard or Soft Thresholding

Once the Mixture Model is trained, optimal detection theory and the estimated
individual Laplacians can be employed to provide estimates of the sources. The
centre of each Laplacian mi should represent a column of the mixing matrix A in
the form of [cos(mi ) sin(mi )]T . Each Laplacian should model the statistics of each
source in the transform domain. Thus, using either a hard or a soft decision threshold,
we can perform underdetermined source separation. The same strategy can hold for
either of the three proposed LMM.

7.6.1 Hard Thresholding

The hard thresholding (“Winner takes all”) strategy attributes each point of the scatter
plot of Fig. 7.1b to only one of the sources. This is performed by setting a hard thresh-
old at the intersections between the trained Laplacians. Consequently, the source
separation problem becomes an optimal decision problem. The decision thresholds
θ

opt
i j between the i-th and the j-th neighbouring Laplacians depend on the type of

mixture model (LMM, MoWL or MDLD). Threshold formulas for the LMM and
MoWL can be found in [39, 42], respectively. Using these thresholds, the algo-
rithm can attribute the points with mopt

i j < θn < mopt
jk to source j , where i, j, k
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Fig. 7.9 A two-sensors four-sources scenario, separated using LMM. In a, the four trained Lapla-
cians are depicted along with the actual density function and the imposed hard thresholds. Applying
soft thresholds, the classification shown in (b) is achieved, which allows some overlapping between
adjacent sources. a Hard thresholding. b Soft Thresholding

are neighbouring Laplacians (sources). Figure 7.9a depicts the fitted LMM, in a two
sensors—four audio sources (voice, piano, accordion and violin) example and the
hard thresholds imposed using the above equation. The points that belong to each
of the four clusters, shown in Fig. 7.9a, are attributed and are used to reconstruct
eachsource.

In the case of the 1D-MDLD, it is possible to derive the thresholds where two
neighbouring DLDs intersect and therefore apply a hard thresholding strategy to
cluster the audio data. In the case of an p-D MDLD, it is not straightforward to
derive the intersecting hyperplanes between two neighbouring DLDs, therefore, in
this case we resort to the soft-thresholding technique.
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7.6.2 Soft Thresholding

Observing the histograms of Fig. 7.2, we can attribute points that are distant from the
centre of the 2D representation to each source with great confidence. In contrast, there
exist points that cannot be attributed to either source with great confidence. These
points may belong to more than one source. One can then relax the hard threshold
strategy, by allowing points belonging to more than one source simultaneously.
A “soft-thresholding” strategy can attribute points that constitute a chosen ratio q
(i.e. 0.7–0.9) of the density of each Laplacian (any of the three models) to the cor-
responding source (see Fig. 7.9). Hence, the i th source can be associated with those
points θn , for which p(θn) ≥ (1−q)αi ki , where p(θn) is given by the corresponding
density model. A large value for q allows more points to belong to more than one
Laplacian. A small value for q imposes stricter criteria for the points to belong to a
Laplacian and essentially becomes a hard thresholding approach. This scheme can
be effective, only if the estimated Laplacians are concentrated around each mi . In
the opposite case, there will be components that will dominate the pdf and there-
fore be attributed with more points than it should and therefore they would contain
contamination from other sources. In Fig. 7.9b, we can see the four sources in the
previous 1D example, as classified by the soft thresholding strategy. The different
colours represent different clusters, i.e. different sources. We can see that several
points are attributed to both the first and the second sources and both the third and
fourth sources by the soft classification scheme.

7.6.3 Source Reconstruction

Having attributed the points x(n) to the L sources, using either the “hard” or the
“soft” thresholding technique, the next step is to reconstruct the sources. Let Si ∗ N
represent the point indices that have been attributed to the i th source and mi the
corresponding mean vector, i.e. the corresponding column of the mixing matrix. We
initialise ui (n) = 0,∀ n = 1, . . . , N and i = 1, . . . , L . The source reconstruction
is performed by substituting:

ui (Si ) = mT
i x(Si ) ∀ i = 1, . . . , L . (7.39)

In the case that we need to capture the multichannel image of the separated source,
the result of the separation is a multichannel output that is initialised to ui (n) = 0∀
n = 1, . . . , N . The source image reconstruction is performed by:

ui (Si ) = x(Si ) ∀ i = 1, . . . , L . (7.40)
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7.7 Experiments

In this section, we verify the validity of the above derived MLE algorithms and
demonstrate the density’s relevance and performance in underdetermined audio
source separation. We can see that the proposed MDLD model improves the LMM
and MoWL modelling efforts in terms of stability, speed and performance and offers
a fast alternative to state-of-the-art algorithms with reasonable separation perfor-
mance.

We will use Hyvärinen’s clustering approach [28], the MoWL algorithm [39]
and the “GaussSep” algorithm [58] for comparison. We prefered not to benchmark
the LMM model, because the other two models (MoWL and MDLD) tackle data’s
directionality more efficiently. After fitting the MDLD with the proposed EM algo-
rithm, separation will be performed using hard or soft thresholding, as described
earlier. In order to quantify the performance of the algorithms, we estimate the
Signal-to-Distortion Ratio (SDR), the Signal-to-Interference Ratio (SIR) and the
Signal-to-Artefact Ratio from the BSS_EVAL Toolbox v.3 [23]. The input signals
for the MDLD, MoWL and Hyvärinen’s approaches are sparsified using the MDCT,
as developed by Daudet and Sandler [13]. The frame length for the MDCT analysis
is set to 32 ms for the speech signals and 128 ms for the music signals sampled at 16
KHz, and to 46.4 ms for the music signals at 44.1 KHz. We initialise the parameters
of the MoWL and MDLD as follows: αi = 1/K and ci = 0.001, T = [−1, 0, 1]
(for MoWL only) and ki = 15 (for the DLD only). The centres mi were initialised in
either case using the Directional K-means step, as described in Appendix 3. We used
the “GaussSep” algorithm, as publicly available by the authors.3 For the estimation
of the mixing matrix, we used Arberet et al.’s [2] DEMIX algorithm,4 as suggested
in [58]. The number of sources in the mixture was also provided to the DEMIX algo-
rithm, as it was provided to all other algorithms. The “GaussSep” algorithm operates
in the STFT domain, where we used the same frame length with the other approaches
and a time–frequency neighbourhood size of 5 for speech sources and 15 for music
sources.

7.7.1 Two-Microphone Examples

We tested the algorithms with the Groove, Latino1 and Latino2 datasets, available by
BASS-dB [59], and sampled at 44.1 KHz. The “Groove” dataset features four widely
spaced sources: bass (far left), distorted guitar (centre left), clean guitar (centre right)
and drums (far right). The two “Latino” datasets features four widely spaced sources:
bass (far left), drums (centre left), keyboards (centre right) and distorted guitar

3 MATLAB code for the “GaussSep” algorithm is available from http://www.irisa.fr/metiss/
members/evincent/software.
4 MATLAB code for the “DEMIX” algorithm is available from http://infoscience.epfl.ch/record/
165878/files/.

http://www.irisa.fr/metiss/members/evincent/software
http://www.irisa.fr/metiss/members/evincent/software
http://infoscience.epfl.ch/record/165878/files/
http://infoscience.epfl.ch/record/165878/files/
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(far right). We also used a variety of test signals from the Signal Separation
Evaluation Campaigns SiSEC2008 [52] and SiSEC2010 [53]. We employed two
audio instantaneous mixtures from the “dev1” and “dev2” data sets (“Dev2WDrums”
and “Dev1WDrums” sets—three instruments at 16 KHz) and two speech instanta-
neous mixtures from the “dev2” data set (“Dev2Male3” and “Dev2Female3” sets—
four closely located sources at 16 KHz). We used the development (dev) datasets
instead of the test data sets, in order to have all the source audio files for proper
benchmarking.

In Table 7.1, we can see the results for the four methods in terms of SDR, SIR and
SAR. For simplicity, we averaged the results for all sources at each experiment. The
reader of the paper can visit the following url5 and listen to the described separation
results. The proposed MDLD approach seems to outperform our previous separation
effort MoWL and Hyvärinen’s algorithm in terms of all the performance indexes. The
proposed MDLD approach is not susceptible to bordering effects, since it is circular
by definition and avoids shortcomings of our previous offerings. Compared to a state-
of-the-art method, such as “GaussSep”, our method is better in terms of the SIR index
but is falling behind in terms of the SDR and SAR indexes. The SIR index reflects the
capability of an algorithm to remove interference from other sources in the mixture.
The SAR index refers to the audible artefacts that remain in the separated signals, due
to the overlapping of several points in the time–frequency space (even in the MDCT
representation) in the underdetermined mixture that are incorrectly attributed to either
source. In this sense, our algorithm seems to perform slightly better compared to
“GaussSep” in terms of removing “crosstalk” from other sources, but there seem to be
more audible artefacts after separation in our approach compared to “GaussSep”. This
is due to the fact that the “GaussSep” segments the time–frequency representation
in small localised neighbourhoods and performs local Gaussian Modelling so as
to separate and filter sources from those areas that separation is more achievable.
Instead, our approach simply clusters all time–frequency points according to the
fitted DLD using hard thresholds (or soft-thresholds in the case K > 2).

Another important issue is to compare the processing time of the three best per-
forming algorithms. All experiments were conducted on an Intel Core i5-460M (2.53
GHz) with 4GB DDR3 SDRAM running Windows Professional 64-bit and MATLAB
R2012b. Our MATLAB implementations of the MDLD and MoWL algorithms were
not optimised in terms of execution speed. In Table 7.2, the typical running time in
seconds is summarised for each experiment and method. The first observation is that
the MDLD approach is faster compared to the MoWL approach. As it was previously
mentioned, employing a mixture of wrapped Laplacians to solve the “circularity”
problem entails the running of two EM algorithms: one for the wrapped Laplacians
and one for the MoWL. This seems to delay the convergence of the algorithm. Instead,
MDLD requires the training of one EM algorithm for the mixture and it seems to con-
verge faster compared to MoWL. The second observation is that there is an important
difference between the processing time of the MDLD approach and the “GaussSep”
algorithm. As previously mentioned, the “GaussSep” algorithm is more complicated

5 http://utopia.duth.gr/~nmitiano/mdld.htm

http://utopia.duth.gr/~nmitiano/mdld.htm
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Table 7.2 Running time comparison with GaussSep and MoWL approaches

MDLD Gaussep MoWL

Groove 2.39 224.21 20.46
Latino1 1.27 122.02 5.48
Latino2 1.28 129.09 3.59
Dev2Male3 2.31 72.64 19.67
Dev2Female3 2.33 75.92 16.09
Dev2WDrums 2.07 56.79 8.55
Dev1WDrums 1.55 54.06 11.88
Average 1.88 104.96 12.24
Dev3Female3 9.56 1021.31 –
Example(3 × 5) 4.04 1598.7 –
Example(4 × 8) 9.393 2359.1 –
Average 7.66 1659.70 –

The measurements are in seconds

in structure thus justifying its long running time. Nevertheless, the proposed MDLD
approach offers a very fast underdetermined source separation alternative with high
SIR performance that can be used in environments where processing time is impor-
tant. The third observation is that the processing time for the “GaussSep” algorithm
scales significantly with the duration of the signals and the number of sources, i.e. the
“Groove”, “Latino1”, “Latino2” (44.1 KHz—4 sources) require more time than the
Dev2Male3 and Dev2Female3 sets (16 KHz—4 sources) and the Dev2WDrums and
Dev1WDrums sets (16 KHz—3 sources). Instead, MDLD’s running time seems to be
closer to the average in most cases, maybe slightly deteriorating with the complexity
of the source separation problem.

7.7.2 Underdetermined Source Separation Examples with More
Than Two Mixtures

In this section, we employ the described generalised DLD approach to perform
separation of 3 × L and 4 × L mixtures. The 2-mixtures setup, that dominates the
literature, may also arise from the fact that most audio recordings and CD masters are
available as stereo recordings (two channels is equivalent to two mixtures), where
we need to separate the instruments that are present. Nowadays, the music industry is
moving towards multichannel formats, including the 5.1 and the 7.1 surround sound
formats, which implies more than two channels will be available for processing. In
this section, we will attempt to perform separation of the Dev3Female3 set from
SiSEC2011 [54] and a 3 × 5 (3 mixtures—5 sources) and a 4 × 8 (4 mixtures—8
sources) scenario using the male and female voices from Dev3. Our MDLD approach
will be compared to the “GaussSep” algorithm that is able to work with multi-channel
data. We used the same frame length and time–frequency neighbourhood sizes for
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Table 7.3 The sources’ position angles that were used in the 3 × 5 and the 4 × 8 example

3 × 5

s1 s2 s3 s4 s5

θ1 0→ −87→ −60→ 0→ 45→
θ2 85→ 0→ −60→ 0→ 45→

4 × 8
s1 s2 s3 s4 s5 s6 s7 s8

θ1 −75→ −30→ 0→ 50→ 10→ 80→ −45→ 0→
θ2 70→ 30→ −20→ 50→ −70→ 0→ 15→ −70→
θ3 80→ 20→ 10→ −50→ 0→ −10→ −25→ −35→

both algorithms as previously. The MDLD was initialised as described in the previous
section. After fitting the model, we employed the soft-thresholding scheme, as it
was described in [42]. Since it was not straightforward to calculate the intersection
surfaces between the individual p-D DLDs, we employed a soft-thresholding scheme,
as described earlier, using a value of q = 0.8.

For the 3×5 example, we centred the five speech sources around the angles shown
in Table 7.3 which were mixed using the following mixing matrix:

A3×L =



cos θ2 cos θ1
cos θ2 sin θ1

sin θ2


 . (7.41)

For the 4 × 8 example, we centred eight audio sources around the angles shown in
Table 7.3 which were mixed using the mixing matrix:

A4×L =


⎨⎨

cos θ3 cos θ2 cos θ1
cos θ3 cos θ2 sin θ1

cos θ3 sin θ2
sin θ3


⎩⎩ . (7.42)

The separation results for the three experiments in terms of SDR, SIR and SAR
can be summarised in Table 7.4. The reader can listen to the audio results from the fol-
lowing url (See Footnote 5). In the case of K = 3 mixtures, both algorithms managed
to perform separation in either case. Similarly to the K = 2 case, “GaussSep” fea-
tured higher SDR and SAR performances, whereas the proposed MDLD algorithm
featured higher SIR performance. The image is completely different in the case of
K = 4 mixtures, where MDLD manages to separate all eight sources in contrast
to “GaussSep” that fails to perform separation. This might be due to fact that the
sparsest ML solution in the optimisation of [58] is restricted to vectors with K ∈ 3
entries, i.e. three sources present at each point. In contrast, the proposed MDLD
algorithm is designed to operate for any arbitrary number of sensors K , without any
constraint.
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Table 7.4 The proposed MDLD approach is compared for source estimation performance (K =
3, 4) in terms of SDR (dB), SIR (dB) and SAR(dB) with the GaussSep approach

SDR (dB) SIR (dB) SAR (dB)
MDLD GaussSep MDLD GaussSep MDLD GaussSep

Dev3Female3 6.02 16.93 23.84 22.43 6.17 18.40
Example 3 × 5 3.91 9.94 17.92 15.21 4.17 11.68
Example 4 × 8 2.24 −18.63 16.4 −17.58 2.52 9.39

The measurements are averaged for all sources of each experiment

In Table 7.2, we can see the processing times for the two algorithms for the three
experiments. The MDLD processing time has increased slightly but still remains rel-
atively fast, requiring an average of 7.66 s to perform separation. This implies that the
computational complexity of the proposed MDLD algorithm does not scale consider-
ably with the number of sources L and sensors K . In contrast, the “GaussSep” algo-
rithm’s processing has increased considerably with K . The processing time seems
to scale up dramatically with increasing K and number of estimated sources L . For
K = 3, it required an average of 1,310 s and for K = 4, it required 2,359 s which
is almost the double processing time for K = 3. Thus, it appears that the proposed
MDLD algorithm is capable of offering a faster and more stable multichannel solu-
tion to the underdetermined source separation problem, featuring higher SIR rates,
compared to a state-of-the-art approach.

The main aspiration for future work behind these experiments is to combine the
speed and stability of the MDLD approach with the low-artefact separation quality,
proposed by Vincent et al. [58]. It might be possible to import this time–frequency
localised source separation framework, where the source clusters can be modelled
by mixtures of MDLDs. A more intelligent fuzzy clustering algorithm may com-
bine the information from the MDLD priors to attribute points to multiple sources,
overcoming the artefacts that arise from the partitioning of the time–frequency space.

7.8 Conclusions: Possible Extensions

In this chapter, the problem of underdetermined instantaneous source separation is
addressed. Since the data can have sparse representations in a transform domain, it
is rational to use mixtures of heavy-tailed distributions, such as the Laplacian dis-
tribution, to model each source’s distribution in the mixture environment. As the
main concentrations of data appear on the directions spanned by the columns of the
mixing matrix, the source separation problem is transformed to an angular clustering
problem. In other words, data that need to be processed are directional, that the use of
Laplacian distributions with infinite support is not efficient for sources near 0, or π

directions. The first improvement was to wrap the ordinary Laplacian distribution and
create a Wrapped Laplacian distribution. Training mixture of the Wrapped Laplacian
Distribution is computationally expensive due to the concurrent estimation of two
EM algorithms. The existence of closed-form directional Gaussian models inspired
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the introduction of a Laplacian directional model. Building on previous work on
directional Gaussian models (i.e. the von-Mises and the vonMises-Fisher densities),
we proposed a novel generalised Directional Laplacian model for modelling multidi-
mensional directional sparse data. Maximum Likelihood estimates of the densities’
parameters were proposed along with an EM-algorithm that handles the training of
DLD mixtures. The proposed algorithms were tested and demonstrated good perfor-
mance in modelling the directionality of the data. The proposed algorithm can also
provide a solution for the general multichannel underdetermined source separation
problem (K ≥ 2), offering fast and stable performance and high SIR compared to
state-of-the-art methods [58].

Possible extensions is to adapt this technique for a convolutive mixture scenario,
where using the STFT, we transform the convolutive mixtures into multiple complex
instantaneous mixtures. Source separation-clustering for each frequency bin can be
performed using a modified version of the proposed algorithm for complex numbers
and permutation alignment can be performed using Time–Frequency Envelopes or
Direction-of-Arrival methods as proposed by Mitianoudis and Davies [38, 41] or
Sawada et al. [51]. The speed of the proposed MDLD algorithm can be a very positive
feature for FD-BSS, since these methods need to solve many complex instantaneous
source separation problems simultaneously.

Another possible direction is to adapt the proposed technique for underdetermined
PNL mixtures. Once the mixtures have been linearised by the blind compensation
method of Duarte et al. [19], it is always possible to use the proposed technique
to unmix the PNL mixtures in the linear stage. The speed of the proposed MDLD
algorithm may expedite the blind estimation of the inverse nonlinear function of PNL
mixtures.

Appendix 1

Calculation of the Normalisation Parameter for the Generalised DLD

To estimate the normalisation coefficient cp(k) of (7.27), we need to solve the fol-
lowing equation: ⎫

x⇔S p−1

cp(k)e−k
∇

1−(mT x)2
dx = 1. (7.43)

Following Eq. (B.8) and in a similar manner to the analysis in Appendix B.2 in [18],
we can rewrite the above equation as follows:

cp(k)

π⎫

0

dθp−1

π⎫

0

e−k
∇

1−cos2 θ1 sinp−2 θ1dθ1

p−1⎬

j=3

π⎫

0

sinp− j θ j−1dθ j−1 = 1.

(7.44)
Following a similar methodology to Appendix B.2 in [18], the above yields:
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cp(k)π

π⎫

0

e−k sin θ1 sinp−2 θ1dθ1
π

p−3
2

Γ
(

p−1
2

) = 1. (7.45)

Using the definition of Ip(k), we can write

cp(k)Ip−2(k)
π

p+1
2

Γ
(

p−1
2

) = 1 ∞ cp(k) =
Γ
(

p−1
2

)

π
p+1

2 Ip−2(k)
. (7.46)

Appendix 2

Gradient Updates for m and k for the MDDLD

The first-order derivative of the log-likelihood in (7.28) for the estimation of m are
calculated below:

∂ J (X, m, k)

∂m
= −k

N⎣

n−1

−2mT xn

2
√

1 − (mT xn)2
xn

= k
N⎣

n=1

mT xn√
1 − (mT xn)2

xn . (7.47)

Before we estimate k from the log-likelihood (7.28), we derive the following
property:

∂

∂k
I0(k) = − 1

π

π⎫

0

e−k sin θ sin θdθ = −I1(k). (7.48)

The above property can be generalised as follows:

∂ p

∂k p
I0(k) = (−1)p 1

π

π⎫

0

sinp θe−k sin θ dθ = (−1)p Ip(k). (7.49)

The first-order derivative of the log-likelihood in (7.28) for the estimation of k is
then calculated below:

∂ J (X, m, k)

∂k
= N

Ip−1(k)

Ip−2(k)
−

N⎣

n=1

√
1 − (mT xn)2. (7.50)
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Appendix 3

A Directional K-Means Algorithm

Assume that K is the number of clusters, Ci , i = 1, . . . , K are the clusters, mi

are the cluster centres and X = {x1, . . . , xn, . . . , xN } is a p-D angular dataset lying
on the half-unit p-D sphere. The original K -means [36] minimises the following
non-directional error function:

Q =
N⎣

n=1

K⎣

i=1

||xn − mi ||2 (7.51)

where || · || represents the Euclidean distance. Instead of using the squared Euclidean
distance for the p-D Directional K -Means, we introduce the following distance
function:

Dl(xn, mi ) =
√

1 − (mT
i xn)2. (7.52)

The novel function Dl is similarly monotonic as the original distance but emphasises
more on the contribution of points closer to the cluster centre. In addition, Dl is
periodic with period π . The p-D Directional K -Means can thus be described as
follows:

1. Randomly initialise K cluster centres mi , where ||mi || = 1.
2. Calculate the distance of all points xn to the cluster centres mi , using Dl .
3. The points with minimum distance to the centres mi form the new clusters Ci .
4. The clusters Ci vote for their new centres m+

i . To avoid averaging mistakes
with directional data, vector averaging is employed to ensure the validity of the
addition. The resulting average is normalised to the half-unit p-D sphere:

m+
i = 1

ki

⎣

xn⇔ki

xn (7.53)

m+
i ⊗ m+

i /||m+
i || (7.54)

5. Repeat steps (2)–(4) until the means mi have converged.
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Chapter 8
Itakura-Saito Nonnegative Matrix
Two-Dimensional Factorizations
for Blind Single Channel Audio Separation

Bin Gao and Wai Lok Woo

Abstract A new blind single channel source separation method is presented. The
proposed method does not require training knowledge and the separation system is
based on nonuniform time-frequency (TF) analysis and feature extraction. Unlike
conventional researches that concentrate on the use of spectrogram or its variants,
we develop our separation algorithms using an alternative TF representation based
on the gammatone filterbank. In particular, we show that the monaural mixed audio
signal is considerably more separable in this nonuniform TF domain. We also provide
the analysis of signal separability to verify this finding. In addition, we derive two
new algorithms that extend the recently published Itakura-Saito nonnegative matrix
factorization to the case of convolutive model for the nonstationary source signals.
These formulations are based on the Quasi-EM framework and the Multiplicative
Gradient Descent (MGD) rule, respectively. Experimental tests have been conducted
which show that the proposed method is efficient in extracting the sources’ spectral–
temporal features that are characterized by large dynamic range of energy, and thus
lead to significant improvement in source separation performance.

8.1 Introduction

The principal aim of blind source separation (BSS) is to extract the underlying
source signals from only a set of observations. Due to the diverse promising and
exciting applications, BSS has attracted a substantial amount of attention in both the
academic field as well as the industry. During the last decade, tremendous devel-
opments have been achieved in the application of BSS, particularly in wireless
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communication, medical signal processing, geophysical exploration, and image
enhancement/recognition. The so-called cocktail-party problem within the BSS con-
text refers to the phenomenon of extracting original voice signals of the speakers
from the signals recorded from several microphones. Similar examples in the field of
radio communication involve the observations that correspond to the outputs of sev-
eral antenna elements in response to several transmitters that represent the original
signals. In the analysis of medical signals, electroencephalography (EEG), magne-
toencephalography (MEG), and electrocardiogram (ECG) data represent the obser-
vations and BSS is used as a signal processing tool to assist noninvasive medical
diagnosis. BSS has also been applied to the data analysis in other areas such as
telecommunication, finance, and seismology. Further evidence of these applications
can be found in [1–6]. A review of the current literature shows that there are three
main classifications of BSS. These include linear and nonlinear, instantaneous and
convolutive, overcomplete and underdetermined. In the first classification, linear
algorithms dominate the BSS research field due to its simplicity in analysis and its
explicit separability. Linear BSS assumes that the mixture is represented by a lin-
ear combination of sources. Extension of BSS for solving nonlinear mixtures has
also been introduced. This model takes nonlinear distorted signals into consider-
ation and offers a more accurate representation of a realistic environment. In the
second classification, when the observed signals consist of combinations of multiple
time-delayed versions of the original sources and/or mixed signals themselves, the
system is referred as the convolutive mixture. Otherwise, the absence of time delays
results in the instantaneous mixture of observed signals. Finally, when the number
of observed signals exceeds the number of sources, this refers to the overcomplete
BSS. Conversely, when the number of observed signals is less than the number of
sources, this becomes the underdetermined BSS.

In general and for many practical applications, the challenging case for source
separation is when only one monaural recording is available. This leads to the single
channel blind source separation (SCBSS) where the problem can be stated as one
observation mixed with several unknown sources. In this work, we consider the case
of two sources, namely

y(t) = x1(t) + x2(t) (8.1)

where t = 1, 2, . . . , T denotes time index and the goal is to estimate the two sources
x1(t) and x2(t) given only the observation signal y(t). Unlike conventional assump-
tion used in BSS where the sources are assumed to be statistical independent which
is rather too restrictive, in this chapter, the sources are characterized as nonstationary
processes with time-varying spectra [7]. This assumption is practically justified since
most signals encountered in applications are nonstationary with time-varying spectra.
Examples include speech, audio, EEG, stock market index, and seismic trace.

Solutions to SCBSS using nonnegative matrix factorization (NMF) [8] have
recently gained popularity. They exploit an appropriate time-frequency (TF) analysis
on the mono input recordings, yielding a TF representation that can be decomposed as

|Y|.2 ≈ DH (8.2)
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where |Y|.2 ∈ ≤F×Ts+ is the power TF representation of the mixture y(t) which is

factorized as the product of two nonnegative matrices , D ∈ ≤F×I+ and H ∈ ≤I×Ts+ .
The superscript ‘·’ represents element-wise operation. F and Ts represent the total
frequency units and time slots in the TF domain, respectively. If I is chosen to be
I = Ts , no benefit is achieved in terms of representation. Thus the idea is to determine
I < Ts so the matrix D can be compressed and reduced to its integral components
so that it contains only a set of spectral basis vectors, and H is an encoding matrix
that describes the amplitude of each basis vector at each time point. Because NMF
gives a parts-based decomposition [8, 9], it has recently been proposed for separating
drums from polyphonic music [10] and automatic transcription of polyphonic music
[11]. Commonly used cost functions for NMF are the generalized Kullback-Leibler
(KL) divergence and Least Square (LS) distance [8]. A sparseness constraint [12]
can be added to these cost functions for optimizing D and H. Other cost functions for
audio spectrograms factorization have also been introduced such as that of [13] that
assume multiplicative gamma-distributed noise in power spectrograms, while [14]
attempts to incorporate phase into the factorization by using a probabilistic phase
model. Notwithstanding the above, families of parameterized cost functions, such as
the Beta divergence [15] and Csiszar’s divergences [16], have also been presented
for the source separation. However, they have some crucial limitations that explicitly
use training knowledge of the sources [17]. As a consequence, these methods are
only able to deal with a very specific set of signals and situations.

Model-based techniques have also been proposed for SCSS which usually require
training a set of isolated recordings. The sources are trained by using a Hidden Markov
model (HMM) based on Gaussian Mixture Model (GMM) and they are combined
in a factorial HMM to separate the mixture [18]. Good separation requires detailed
source models that might use thousands of full spectral states, e.g., in [19] HMMs with
8,000 states were required to accurately represent one person’s speech for a source
separation task. The large state space is required because it attempts to capture every
possible instance of the signal. These model-based techniques, however, consume a
long time not only in training the prior parameters but also presenting many difficult
challenges during the inference stage.

From the above, it is clear that existing solutions to SCBSS are still practically
limited and fall short of the success enjoyed in other areas of source separation. In this
chapter, a novel separation system is proposed and the contributions are summarized
as follows:

(i) A separability analysis in the TF domain for SCBSS and development a quan-
titative performance measure to evaluate the degree of “separateness” in the
monaural mixed signal.

(ii) A separation framework based on the cochleagram. Unlike the spectrogram
that deals only with uniform resolution, the gammatone filterbank produces
nonuniform TF domain (termed as the cochleagram) whereby each TF unit has
different resolution. We prove that the mixed signal is more separable in the
cochleagram than the spectrogram and the log-frequency.
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(iii) Development of two-dimensional NMF (NMF2D) signal model optimized
under the Itakura-Saito (IS) divergence with Quasi-EM and MGD updates
(IS-NMF2D). Two new algorithms have been developed to estimate the spectral
and temporal features of the audio source model. The first algorithm is founded
on the framework of Quasi-EM (Expectation-Maximization) while the second
algorithm is based on the multiplicative gradient decent (MGD) update rule.
Both algorithms have the unique property of scale-invariant whereby the lower
energy components in the TF domain can be treated with equal importance
as the higher energy components. This is to be contrasted with other methods
based on LS distance [20] and KL divergence [21], which favor the high-energy
components but neglect the low-energy components.

The chapter is organized as follows: Sect. 8.2 introduces the TF matrix repre-
sentation using the gammatone filterbank. Section 8.3 delves into the separability
analysis of the single-channel mixture in the nonuniform TF domain. In Sect. 8.4,
the two new algorithms are derived and the proposed separation system is devel-
oped. Experimental results and a series of performance comparison with methods
are presented in Sect. 8.5. Finally, Sect. 8.6 concludes the chapter.

8.2 Time-Frequency Representation

In the task of audio source separation, one critical decision is to choose a suitable TF
domain to represent the time-varying contents of the signals. There are several types
of TF representations and the most widely used ones are spectrogram [22] and log-
frequency spectrogram (using constant-Q transform) [23]. This is documented over
the last few years in the research of audio source separation [10–21]. In this work,
however, we develop our separation algorithms using a TF representation based on
the gammatone filterbank.

8.2.1 Gammatone Filterbank and Cochleagram

The Gammatone filterbank [24] is a cochlear filtering model which decomposes an
input signal into the time-frequency domain using a set of gammatone filters. The
specific steps of generate cochleagram are summarized as (Table 8.1).

In [25, 26], it was noted that some crucial differences exist in the TF representa-
tion of how sound is analyzed by the ear. In particular, the ear’s frequency subbands
get wider for higher frequencies, whereas the classical spectrogram as computed by
the Short-Time Fourier Transform (STFT) has an equal-spaced bandwidth across all
frequency channels. Since speech signals are characterized as highly nonstationary
and nonperiodic whereas music changes continuously, therefore, application of the
Fourier transform will produce errors when complicated transient phenomena such



8 Itakura-Saito Nonnegative Matrix Two-Dimensional Factorizations 235

Table 8.1 Cochleagram computation

1. Give impulse response of a gammatone filter:
g( f, t) = th−1e−2ψvt cos(2ψ f t), t √ 0 (8.3)

2. The filter output response x(c, t) can be expressed as:
x(c, t) = ∫⊗

−⊗ x(α )g fc (t − α) dα (8.4)
3. The output of each filter channel is divided into time frames with 50 % overlap between

consecutive frames
4. The time-frequency spectra of all the filter outputs are then constructed to form the cochleagram

as the mixture of speech and music is contained in the analyzed signal. Unlike the
spectrogram, the log-frequency spectrogram possesses nonuniform TF resolution.
However, it does not exactly match the nonlinear resolution of the cochlear since
their center frequencies are distributed logarithmically along the frequency axis and
all filters have constant-Q factor [23]. On a separate hand, the gammatone filters used
in the cochlear model (3) are approximately logarithmically spaced with constant-
Q for frequencies from fs/10 to fs/2 ( fs denotes the sampling frequency), and
approximately linearly spaced for frequencies below fs/10. Hence, this characteris-
tic results in selective nonuniform resolution in the TF representation of the analyzed
audio signal. Figure 8.1 shows the frequency response of a general gammatone filter-
bank for fs = 16 kHz. It is seen that the higher frequencies correspond to the wider
frequency subbands which resemble closely to the human perception of frequencies
[27]. Therefore, the cochleagram is developed as an alternative TF analysis tool for
source separation to overcome the limitations associated with the Fourier transform
approach.

8.3 Single Channel Source Separability Analysis

For separation, one generates the TF mask corresponding to each source and applies
the generated mask to the mixture to obtain the estimated source TF representa-
tion. In particular, when the sources do not overlap in the TF domain, an optimum
mask Mopt

i ( f, ts) exists which allows one to extract the ith original source from the
mixture as

Xi ( f, ts) = Mopt
i ( f, ts)Y ( f, ts) (8.5)

Given any TF mask Mi ( f, ts) such that 0 ∀ Mi ( f, ts) ∀ 1 for all ( f, ts), we define
the separability for the target source xi (t) in the presence of the interfering sources

pi (t) =
N∑

j=1, j ⇔=i
x j (t) as

SY→Xi ,Pi
Mi

= ‖Mi ( f, ts)Xi ( f, ts)‖2
F

‖Xi ( f, ts)‖2
F

− ‖Mi ( f, ts)Pi ( f, ts)‖2
F

‖Xi ( f, ts)‖2
F

(8.6)
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where Xi ( f, ts) and Pi ( f, ts) are the TF representations of xi (t) and pi (t), respec-
tively. ‖ · ‖F is the Frobenius norm. We also define the separability of the mixture
with respect to all the N sources as:

SY→X1,...,X N
M1,...,MN

= 1

N

N∑

i=1

SY→Xi ,Pi
Mi

(8.7)

Equation (8.6) is equivalent to measuring the success of extracting the ith source
Xi ( f, ts) from the mixture Y ( f, ts) given the TF mask Mi ( f, ts). Similarly, (8.7)
measures the success of extracting all the N sources simultaneously from the mixture.
To further analyze the separability, we invoke the following: (i) Preserved signal ratio
(PSR) that determines how well the mask preserves the source of interest and (ii)
Signal-to-interference ratio (SIR) that indicates how well the mask suppresses the
interfering sources:

PSRXi
Mi

= ‖Mi ( f,ts )Xi ( f,ts )‖2
F

‖Xi ( f,ts )‖2
F

SIRXi
Mi

= ‖Mi ( f,ts )Xi ( f,ts )‖2
F

‖Mi ( f,ts )Pi ( f,ts )‖2
F

(8.8)

Using (8.8), it can be shown that (8.7) can be expressed as SY→Xi ,Pi
Mi

= PSRXi
Mi

−
PSRXi

Mi
/SIRXi

Mi
. Analyzing the terms in (8.6), we have

PSRXi
Mi

:=
{

1, if sup pMopt
i = sup pMi

<1, if sup pMopt
i ∇ sup pMi

SIRXi
Mi

:=
{⊗, if sup p [Mi Xi ] ∗ sup pPi = →

finite, if sup p [Mi Xi ] ∗ sup pPi ⇔= →
(8.9)

where ‘supp’ denotes the support. When SY→Xi ,Pi
Mi

= 1 (i.e. PSRXi
Mi

= 1 and SIRXi
Mi

=
⊗), this indicates that the mixture y(t) is separable with respect to the ith source
xi (t). In other words, Xi ( f, ts) does not overlap with Pi ( f, ts) and the TF mask
Mi ( f, ts) has perfectly separated the ith source Xi ( f, ts) from the mixture Y ( f, ts).
This corresponds to Mi ( f, ts) = Mopt

i ( f, ts) in (8.5). Hence, this is the maximum

attainable SY→Xi ,Pi
Mi

value. For other cases of PSRXi
Mi

and SIRXi
Mi

, we have SY→Xi ,Pi
Mi

<

1. Using this concept, we can extend the analysis for the case of separating N sources.
A mixture is fully separable to all the N sources if and only if SY→X1,...,X N

M1,...,MN
= 1 in

(8.7). For the case SY→X1,...,X N
M1,...,MN

< 1, this implies that some of the sources overlap
with each other in the TF domain and therefore, they cannot be fully separated.
Thus, SY→X1,...,X N

M1,...,MN
provides the quantitative performance measure for evaluating

how separable is the mixture in the TF domain. In our comparison, the following
TF representations are used to test the mixture’s separability: spectrogram, log-
frequency spectrogram, and cochleagram. In the log-frequency spectrogram, the
frequency scale is set to logarithmic and grouped into 175 frequency bins in the
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Fig. 8.1 Averaged separability performance

Fig. 8.2 Separability under different window length

range of 50–8 kHz with 24 bins per octave while the bandwidth follows the constant-
Q rule [23]. To ensure fair comparison, we generate the ideal binary mask (IBM)
[27] directly from the original sources. To reiterate our aim, the separability analysis
is undertaken without recourse to any separation algorithms but utilizing only the
energy of the sources to ascertain the degree of “separateness” of the mixture in
different TF domains. These results have been tabulated in Fig. 8.1. The symbols
‘M’ and ‘S’ denotes music and speech, respectively.

In Fig. 8.1, three types of mixture have been used: (i) music mixed with music, (ii)
speech mixed with music, and (iii) speech mixed with speech. The speech signals are
selected from 10 male and 10 female speeches taken from TIMIT database and are
normalized to unit energy. The 10 music sources are selected from the RWC database
[28] and also normalized to unit energy. Two sources are randomly chosen from the
databases and the mixed signal is generated by adding the sources. All mixed signals
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are sampled at 16 kHz sampling rate. TF representation using different window
length has also been investigated and the results are tabulated in Fig. 8.2.

Figure 8.2 shows the average separability results for all types of the mixture based
on different window length. The bracketed number shows the number of data points
corresponding to the particular window length. It is clear that, for both spectrogram
and log-frequency spectrogram settings, the STFT with 1024-point window length
is the best setting to analyze the separability performance. The results of PSR, SIR,
and separability for each TF domain are obtained by averaging over 300 realiza-
tions. Following the listening performance test proposed in [29], we conclude that
SY→Xi ,Pi

Mi
> 0.8 leads to acceptable separation performance. Therefore, all TF rep-

resentations satisfy this condition. While this is true, the spectrogram gives only
a mediocre level of separability with averaged SY→X1,X2

M1,M2
≈ 0.86 while the log-

frequency spectrogram shows a better result with SY→X1,X2
M1,M2

≈ 0.94. Nevertheless,

the cochleagram yields the best separability with SY→X1,X2
M1,M2

≈ 0.98. Notwithstand-
ing this, it is also seen that the average SIR of the cochleagram exhibits a much higher
value than those of spectrogram and log-frequency spectrogram. This implies that
the amount of interference between any two sources is lesser in the cochleagram.

8.4 The Proposed Method

In this section, two new algorithms are developed, namely the Quasi-EM IS-NMF2D
and the MGD IS-NMF2D. The former algorithm optimizes the parameters of the
signal model using the Expectation-Maximization approach, whereas the latter is
directly based on the multiplicative gradient descent. To facilitate the derivation
of these algorithms, we first consider the signal model in terms of the power TF
representation

8.4.1 Signal Models

Since the sources have time-varying spectra, it is befitting to adopt a model
whose power spectra can be described separately in terms of time and frequency.
Although conventional NMF model can still be used, it will need a large num-
ber of spectral components and requires a clustering step to group and assign
each spectral component to the appropriate source. As a result, the NMF model
may not always yield the optimal results. An alternative model is to use the two-
dimensional NMF model (NMF2D) [2, 3, 30, 31]. This model extends the basic

NMF to be a two-dimensional convolution of D and H i.e. |Y|.2 ≈ ∑
α,β

∞β

Dα
→α

Hβ

where the vertical arrow in
∞β

Dα denotes the downward shift that moves each



8 Itakura-Saito Nonnegative Matrix Two-Dimensional Factorizations 239

element in the matrix down by β rows, and the horizontal arrow in
→α

Hβ denotes
the right shift operator that moves each element in the matrix to the right by
α columns. In scalar representation, the ( f, ts)th element in |Y|.2 is given by⎡⎡Y f,ts

⎡⎡2 ≈ ∑I
i=1
∑αmax

α=0

∑βmax
β=0 Dα

f −β,i H
β
i,ts−α where Dα ′

f ′,i ′ is the
⎣

f ′, α ′, i ′
⎤
th

element of D and Hβ′
i ′,t ′s

is the
⎣
i ′, β′, t ′s

⎤
th element of H. In source separation, this

model compactly represents the characteristics of the nonstationary sources by a
time-frequency profile convolved in both time and frequency by a time-frequency
weight matrix. Dα

i represents the spectral basis of ith source in the TF domain and

Hβ
i represents the corresponding temporal code for each spectral basis.
The TF representation of the mixture in (8.1) is given by Y ( f, ts) = X1( f, ts) +

X2( f, ts) where Y ( f, ts), X1( f, ts) and X2( f, ts) denote the TF components that
are obtained by applying the gammatone filterbank to the mixture. The time slots
are given by ts = 1, 2, . . . , Ts while frequencies by f = 1, 2, . . . , F . Since
each component is a function of ts and f , we represent this as a F × Ts matrix
Y = [Y ( f, ts)]

f =1,2,...,F
ts=1,2,...,Ts

and Xi = [Xi ( f, ts)]
f =1,2,...,F
ts=1,2,...,Ts

. It is shown in Sect. 8.3
that the sources are almost perfectly separable in the cochleagram. This therefore
enable us to express the power TF representation as |Y|.2 ≈ ∑I

i=1 |Xi |.2 which we

will model as
⎡⎡Y f,ts

⎡⎡2 ≈ ∑I
i=1
∑αmax

α=0

∑βmax
β=0 Dα

f −β,i H
β
i,ts−α . The source we seek

to determine are
⎦ |Xi ( f, ts)|.2

}I
i=1 and this will be obtained by using the matrix

factorization as
⎡⎡⎡X̃i ( f, ts)

⎡⎡⎡
.2 = ∑αmax

α=0

∑βmax
β=0 Dα

f −β,i H
β
i,ts−α . In the following, we

propose two novel algorithms to estimate Dα
f,i and Hβ

i,ts
from the mixture signal.

8.4.2 Algorithm 1: Quasi-EM Formulation of IS-NMF2D
(Quasi-EM IS-NMF2D)

We consider the following generative model defined as:

yts =
K∑

k=1

ck,ts ,◦ts = 1, . . . , Tsck,ts = [
ck,1,ts , . . . , cF,1,ts

]T

ck, f,ts ∼ Nc


0 ,

∑
α,β

Hβ
k,ts−α Dα

f −β,k


 (8.10)

where yts ∈ C F×1, ck,ts ∈ C F×1 and Nc (u, ω) denotes the proper complex Gaussian
distribution and the components c1,ts , . . ., cK ,ts are both mutually and individually
independent. The Expectation-Maximization (EM) framework is developed for the
ML estimation of θ = ⎦

Dα , Hβ
}
. Due to the additive structure of the generative
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model (8.10), the parameters describing each component Ck = [
ck,1, . . ., ck,Ts

]
can

be updated separately. We now consider a partition of the parameter space θ =⎧K
k=1 θk as θk =

⎨
Dα

k , Hβ
k

⎩
where Dα

k is the kth column of Dα and Hβ
k is the kth row

of Hβ . The EM algorithm works by formulating the conditional expectation of the
negative log likelihood of Ck as

QM L
k

⎣
θk |θ ′⎤ = −

⎫

Ck

p
⎣
Ck |Y, θ ′⎤ log p(Ck |θk) dCk (8.11)

where θ ′ always contains the most recent parameter values of
⎦

Dα , Hβ
}
.

8.4.2.1 Expressions of the E- and M-step

One iteration of the EM algorithm includes computing the E-step and maximizing
the M-step QM L

k

⎣
θk |θ ′⎤ for k = 1, . . . , K . The minus hidden-data log likelihood is

defined as

− log p (Ck |θk) = −
Ts∑

ts=1

F∑

f =1

log Nc


ck, f,ts

⎡⎡⎡⎡⎡⎡
0,
∑

α,β

Dα
f −β,kHβ

k,ts−α


 (8.12)

=̇
Ts∑

ts=1

F∑

f =1

log


∑

α,β

Dα
f −β,kHβ

k,ts−α


+

⎡⎡ck, f,ts

⎡⎡2
∑
α,β

Dα
f −β,kHβ

k,ts−α

where ‘=̇’ in the second line denotes equality up to constant terms. Then, by virtue
of (10), the hidden-data posterior also has a Gaussian form as p (Ck |Y, θ) =

Ts⎬
ts=1

F⎬
f =1

Nc

⎢
ck, f,ts

⎡⎡⎡u post
k, f,ts

φ
post
k, f,ts

⎞
where u post

k, f,ts
and φ

post
k, f,ts

are the posterior mean

and variance of ck, f,ts given as:

u post
k, f,ts

=

∑
α,β

Dα
f −β,kHβ

k,ts−α

∑
α,β,l

Dα
f −β,lH

β
l,ts−α

Y f,ts

φ
post
k, f,ts

=

∑
α,β

Dα
f −β,kHβ

k,ts−α

∑
α,β,l

Dα
f −β,lH

β
l,ts−α

∑

α,β,l ⇔=k

Dα
f −β,lH

β
l,ts−α (8.13)
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Thus, the E-step merely includes computing the posterior power Vk of component

Ck , defined as [Vk] f,ts = vk, f,ts =
⎡⎡⎡u post

k, f,ts

⎡⎡⎡
2 + φ

post
k, f,ts

. The M-step can be treated as

one-component NMF problem:

QM L
k

⎣
θk |θ ′⎤=̇

Ts∑

ts=1

F∑

f =1

log


∑

α,β

Dα
f −β,kHβ

k,ts−α


+

⎡⎡⎡u post ′
k, f,ts

⎡⎡⎡
2 + φ

post ′
k, f,ts∑

α,β

Dα
f −β,kHβ

k,ts−α

(8.14)

=̇
Ts∑

ts=1

F∑

f =1

dI S


|u post ′

k, f,ts
|2 + φ

post ′
k, f,ts

⎡⎡⎡⎡⎡⎡
∑

α,β

Dα
f −β,kHβ

k,ts−α




where dI S(·|·) is the IS divergence [32] and is formally defined as dI S(a|b) =
(a/b) − log (a/b) − 1. The IS divergence has the property of scale invariant, i.e.,
dI S(ϕ a|ϕ b) = dI S(a|b) for any ϕ . This implies that any low energy components
(a, b)will bear the same relative importance as the high energy ones (ϕ a, ϕ b). This
is particularly important in situations where|Y|.2 is characterized by a large dynamic
range such as the audio short-term spectra.

8.4.2.2 Estimation of the Spectral Basis and Temporal Code
Using Quasi-EM Method

The spectral basis and temporal code can be obtained from (8.14). The derivative
of a given element of gk, f,ts = ∑

α,β

Dα
f −β,kHβ

k,ts−α with respect to Dα
f,k and Hβ

k,ts
is

given by:

πgk, f,ts

πDα ′
f ′,k′

=
π
∑
α,β

Dα
f −β,k Hβ

k,ts−α

πDα ′
f ′,k′

= H f − f ′
k′,ts−α ′

πgk, f,ts

πHβ′
k′,t ′s

=
π
∑
α,β

Dα
f −β,k Hβ

k,ts−α

πHβ′
k′,t ′s

= D
ts−t ′s
f −β′,k′

(8.15)

The derivatives of (8.14) corresponding to Dα
f,k and Hβ

k,ts
is then obtained as

π QM L
k (θk |θ ′)
πDα ′

f ′,k′
= π

πDα ′
f ′,k′

∑
f,ts

log
⎣
gk, f,ts

⎤+ v′
k, f,ts

gk, f,ts

= ∑
β,ts

⎠
gk, f ′+β,ts −v′

k, f ′+β,ts

g2
k, f ′+β,ts

⎥
Hβ

k′,ts−α ′

π QM L
k (θk |θ ′)
πHβ′

k′,t ′s
= π

πHβ′
k′,t ′s

∑
f,ts

log
⎣
gk, f,ts

⎤+ v′
k, f,ts

gk, f,ts

= ∑
α, f

⎠
gk, f,t ′s+α −v′

k, f,t ′s+α

g2
k, f,t ′s+α

⎥
Dα

f −β′,k′

(8.16)
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Unlike the conventional EM algorithm, it is not possible to directly set

π QM L
k

⎣
θk |θ ′⎤/Dα ′

f ′,k′ = 0 and π QM L
k

⎣
θk |θ ′⎤/Hβ′

k′,t ′s
= 0 because of the nonlinear

coupling between and via v′
k, f,ts

. Thus, closed-form expressions for estimating Dα
f,k

and Hβ
k,ts

cannot be accomplished. To overcome this problem, we use the following
update rules and unify it as part of the M-step:

θk ← θk ·
⎟[∇QM L

k

⎣
θk |θ ′⎤]

−[∇QM L
k (θk |θ ′)

]
+

)
(8.17)

where ∇QM L
k

⎣
θk |θ ′⎤ = [∇QM L

k

⎣
θk |θ ′⎤]

+ − [∇QM L
k

⎣
θk |θ ′⎤]

−. For each Dα
k and

Hβ
k variables, we have:

[∇QM L
k

⎣
θk |θ ′⎤]D

− = ∑
β,ts

⎣
gk, f ′+β,ts

⎤−2
v′

k, f ′+β,ts
Hβ

k′,ts−α ′
[∇QM L

k

⎣
θk |θ ′⎤]D

+ = ∑
β,ts

⎣
gk, f ′+β,ts

⎤−1 Hβ

k′,ts−α ′
(8.18)

and [∇QM L
k

⎣
θk |θ ′⎤]H

− = ∑
α, f

Dα
f −β′,k′

⎣
gk, f,t ′s+α

⎤−2
v′

k, f,t ′s+α

[∇QM L
k

⎣
θk |θ ′⎤]H

+ = ∑
α, f

Dα
f −β′,k′

⎣
gk, f,t ′s+α

⎤−1 (8.19)

Inserting (8.18) and (8.19) into (8.17) leads to

Dα ′
f ′,k′ ← Dα ′

f ′,k′

∑
β,ts

⎣
gk, f ′+β,ts

⎤−2
v′

k, f ′+β,ts
Hβ

k′,ts−α ′

∑
β,ts

⎣
gk, f ′+β,ts

⎤−1 Hβ

k′,ts−α ′
(8.20)

Similarly, the update rules in Hβ′
k′,t ′s

writes

Hβ′
k′,t ′s

← Hβ′
k′,t ′s

∑
α, f

Dα
f −β′,k′

⎣
gk, f,t ′s+α

⎤−2
v′

k, f,t ′s+α

∑
α, f

Dα
f −β′,k′

⎣
gk, f,t ′s+α

⎤−1 (8.21)

It can be verified that the above update rules have an advantage of ensuring
the nonnegativity constraints of Dα

f,k and Hβ
k,ts

are always maintained during every
iteration.
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8.4.3 Algorithm 2: Multiplicative Gradient Descent Formulation
of IS-NMF2D (MGD IS-NMF2D)

We consider the following generative model defined as:

⎡⎡Y f,ts

⎡⎡2 =



I∑

i=1

αmax∑

α=0

βmax∑

β=0

Dα
f −β,i H

β
i,ts−α


 •E f,ts (8.22)

where E f,ts is a scalar of multiplicative independent and identically distributed (i.i.d.)
Gamma noise with unit mean, i.e., p(E f,ts ) = ∂(E f,ts |ε, κ) where ∂(E f,ts |ε, κ)

denotes the Gamma probability density function (pdf) defined as: ∂(E f,ts |ε, κ) =
κε

ξ(ε)

⎣
E f,ts

⎤ε−1 exp
⎣−κE f,ts

⎤
, E f,ts √ 0. Next, we define D = [

D1D2 · · · Dαmax
]

and H = [
H1H2 · · · Hβmax

]
. Under the independent and identically distributed (i.i.d.)

noise assumption, the term − log p(Y |D, H) becomes

− log p (Y |D, H) =
−∑T s

ts=1
∑F

f =1 log∂

⎠ |Y|·2f,ts∑I
i=1

∑αmax
α=0

∑βmax
β=0 Dα

f −β,i Hβ
i,ts−α

⎡⎡⎡⎡ε, κ

⎥

∑I
i=1
∑αmax

α=0

∑βmax
β=0 Dα

f −β,i H
β
i,ts−α

=̇dI S


|Y|·2f,ts

⎡⎡⎡⎡⎡⎡

I∑

i=1

αmax∑

α=0

βmax∑

β=0

Dα
f −β,i H

β
i,ts−α


 (8.23)

where =̇ in the second line denotes equality up to constant terms. Thus, the cost
function is C N M F2D

I S = − log p (Y |D, H). The derivatives of (23) corresponding to
Dα and Hβare given by

πC N M F2D
I S

πDα ′
f ′,i ′

= π

πDα ′
f ′,i ′

∑

f,ts

⎟ |Y|2f,ts
Z f,ts

− log
|Y|2f,ts
Z f,ts

− 1

)
(8.24)

= −
∑
β,ts

⎢⎣
Z f ′+β,ts

⎤−2
⎢
|Y|2f ′+β,ts

− Z f ′+β,ts

⎞⎞
Hβ

i ′,ts−α ′

πC N M F2D
I S

πHβ′
i ′,t ′s

=
∑

f,ts

D
ts−t ′s
f −β′,i ′

⎢⎣
Z f,ts

⎤−2
⎢

Z f,ts − |Y|2f,ts
⎞⎞

(8.25)

= −
∑

α, f

Dα
f −β′,i ′

⎢⎣
Z f,t ′s+α

⎤−2
⎢
|Y|2f,t ′s+α − Z f,t ′s+α

⎞⎞
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where Z = ∑
α

∑
β

∞β

Dα
→α

Hβ . The standard gradient decent approach gives

Dα ′
f ′,i ′ ← Dα ′

f ′,i ′ − ηD
πCost N M F2D

I S

πDα ′
f ′,i ′

and Hβ′
i ′,t ′s

← Hβ′
i ′,t ′s

− ηH
πCost N M F2D

I S

πHβ′
i ′,t ′s

(8.26)
where ηD and ηH are positive learning rates and can be obtained as

ηD = Dα ′
f ′,i ′∑

β,ts

⎣
Z f ′+β,ts

⎤−1 Hβ

i ′,ts−α ′
and ηH =

Hβ′
i ′,t ′s∑

α, f
Dα

f −β′,i ′
⎣
Z f,t ′s+α

⎤−1 (8.27)

Inserting (8.27) into (8.26) gives the multiplicative gradient decent rules

Dα ′
f ′,i ′ ← Dα ′

f ′,i ′

∑
β,ts

⎣
Z f ′+β,ts

⎤−2 |Y|2f ′+β,ts
Hβ

i ′,ts−α ′

∑
β,ts

⎣
Z f ′+β,ts

⎤−1 Hβ

i ′,ts−α ′
(8.28)

and

Hβ′
i ′,t ′s

← Hβ′
i ′,t ′s

∑
β,ts

⎣
Z f,t ′s+α

⎤−2 |Y|2f,t ′s+α
Dα

f −β′,i ′

∑
α, f

Dα
f −β′,i ′

⎣
Z f,t ′s+α

⎤−1 (8.29)

The key difference between both algorithms is that the Quasi-EM IS-NMF2D algo-
rithm prevents zeros in the factors, i.e., Dα and Hβ cannot take entries equal to
zero. On the contrary, this is not a feature shared by the MGD IS-NMF2D algorithm
since zero coefficients are invariant under MGD updates. If the MGD IS-NMF2D
algorithm attains a fixed point solution with zero entries, then it cannot be deter-
mined since the limit point is a stationary point [33]. Consequently, the resulting
factorizations rendered by these algorithms are not equivalent. For this reason, the
Quasi-EM IS-NMF2D algorithm can be considered more reliable for updating Dα

and Hβ . We have summarized both proposed algorithms in Table 8.2. Details of the
source separation performance between these algorithms will be shown in Sect. 8.5
where ψ = 10−6 is the threshold for ascertaining the convergence.

8.4.4 Estimation of Sources

The two matrices that we seek to separate from
⎡⎡Y f,ts

⎡⎡2 are
⎡⎡⎡X̃1( f, ts)

⎡⎡⎡
.2

and
⎡⎡⎡X̃2( f, ts)

⎡⎡⎡
.2

. These matrices are estimated as
⎡⎡⎡X̃1( f, ts)

⎡⎡⎡
.2 =

αmax∑
α=0

βmax∑
β=0

Dα
f −β,1Hβ

1,ts−α
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and
⎡⎡⎡X̃2( f, ts)

⎡⎡⎡
.2 =

αmax∑
α=0

βmax∑
β=0

Dα
f −β,2Hβ

2,ts−α [29] which are then used to generate the

binary mask as maski ( f, ts) = 1 if
⎡⎡⎡X̃i ( f, ts)

⎡⎡⎡
.2

>

⎡⎡⎡X̃ j ( f, ts)
⎡⎡⎡
.2

and zero other-

wise. Finally, the estimated time-domain sources are obtained as x̃i = Resynthesize
(maski ·Y) for i = 1, 2 where x̃i = [x̃i (1), . . . , x̃i (T )]T denotes the ith estimated
source. The time-domain estimated sources are resynthesized using the approach in
[22] by weighting the mixture cochleagram by the mask and correcting phase shifts
introduced during the gammatone filtering.

8.5 Experimental Results and Analysis

The proposed separation system is tested on recorded audio signals. All recordings
and processing are conducted using a PC with Intel Core 2 CPU 6600 @ 2.4 GHz and
2 GB RAM. For mixture generation, three types of mixtures are used, i.e., mixture
of music and speech, mixture of different kinds of music, and mixture of different
kinds of speech. The speech sources (male and female) are selected from the TIMIT
speech database while the music sources (jazz and piano) from the RWC database
[28]. All mixtures are sampled at 16 kHz sampling rate. In all cases, the sources are
mixed with equal average power over the duration of the signals. As for our proposed
algorithms, the convolutive components are selected as follows:

(i) For jazz and speech mixture, α = {0, . . . , 4} and β = {0, . . . , 4}.
(ii) For jazz and piano mixture, α = {0, . . . , 6} and β = {0, . . . , 9}.

(iii) For piano and speech mixture, α = {0, . . . , 6} and β = {0, . . . , 9}.
(iv) For speech and speech mixture, α = {0, 1} and β = {0, 1, 2}.

These parameters are selected after conducting Monte Carlo tests over 100 real-
izations of audio mixture. We have evaluated our separation performance in terms
of the Signal-to-Distortion ratio (SDR) that unifies the Signal-to-Interference ratio
(SIR) and Signal-to-Artifacts ratio (SAR). MATLAB routines for computing these
criteria are obtained from the SiSEC’08 webpage [34].

8.5.1 Separation Performance Under Different
TF Representations

In Sect. 8.2, the separability analysis was undertaken by using the IBM to determine
the “separateness” of the mixture without recourse to the separation algorithms. In
this section, the impact of separation algorithm is analyzed. Instead of using the IBM,
the Quasi-EM IS-NMF2D algorithm is now used to estimate the mask according to
Sect. 8.4. In this situation, we are investigating the performance of mixture separation
(rather than mixture separability). Speech signals and music are used to generate the
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Table 8.2 Pseudo codes for Quasi-EM IS-NMF2D and IS-NMF2D (MGD) algorithms

Quasi-EM IS-NMF2D algorithm MGD IS-NMF2D algorithm

Input: |Y|.2, random nonnegative matrix Dα Input: |Y|.2, random nonnegative matrix Dα and
and Hβ , β, α Output: Dα and Hβ Hβ , β, α Output: Dα and Hβ

Procedure: Compute initialize cost value
Cost (1) using (8.12)

Procedure: Compute initialize cost value
Cost (1) using (8.23)

for n=1: max number of iterations for n=1: max number of iterations

for k=1:K Compute Z = ∑
α

∑
β

Dα
f −βHβ

ts−α

(E-step): Compute vk, f,ts =
⎡⎡⎡u post

k, f,ts

⎡⎡⎡
2 + φ

post
k, f,ts

using (8.13)

• Update Dα ′
f ′,i ′ using (8.28) for all α , β

(M-step): Iterate convergence is achieved Normalize Dα ′
f ′,i ′

• Update Dα ′
f ′,k′ using (8.20) for all α , β Compute Z = ∑

α

∑
β

Dα
f −βHβ

ts−α

Normalize Dα ′
f ′,k′

• Update Hβ′
i ′,t ′s

using (8.29) for all α , β

• Update Hβ′
k′,t ′s

using (8.21) for all α , β Normalize Hβ′
i ′,t ′s

Normalize Hβ′
k′,t ′s

Compute cost value using (8.23)
end
end end
Stopping criterion: Cost (n−1)−Cost (n)

Cost (n)
< ψ Stopping criterion: Cost (n−1)−Cost (n)

Cost (n)
< ψ

monoaural mixture recording. The separation performance is evaluated by using
three types of TF representation: (i) spectrogram (STFT with 1024-point Hamming
windowed FFT and 50 % overlap), (ii) log-frequency spectrogram (as described in
Sect. 8.3 with 1024-point Hamming windowed FFT), and (iii) cochleagram based
on Gammatone filterbank of 128 channels, filter order of 4 (i.e., h = 4 in (4)), and
each filter output is divided into 20 ms time frames with 50 % overlap. To validate the
parameters setting of cochleagram (e.g. h and v), we have constructed an experiment
based on three speech sources and tested the result by fixing the parameter h in (3)
to unity. The experiment is then repeated by progressively increasing h from 2 to 10.
Over this range, the optimal separability is obtained when h = 4. The parameter v
determines the rate of decay of the impulse response of the gammatone filters. In
most audio processing tasks, it is set to v( f ) = 1.019E RB( f ) where E RB( f ) =
24.7 + 0.108 f is the equivalent rectangular bandwidth of the filter with the center
frequency f . A range of values for v has been tested, i.e., v( f ) = (1.019+ c)E RB( f )

where c ranges from −0.5 to 0.5 with increment of 0.1. The obtained result indicates
that the optimal separability is obtained by setting c = 0. As c moves away from 0,
the separability result progressively deteriorates. This confirms the validity of setting
v( f ) = 1.019E RB( f ) for the cochleagram.

where ‘J’, ‘M’, ‘F’, ‘P’, ‘S’ denote jazz, male speech, female speech, piano, and
speech, respectively.
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J and M J and F P and M P and F J and P S and S

spectrogram 3.47 -1.41 2.1 -1.01 -0.59 -0.6

log-frequency
spectrogram

6.54 3.97 2.31 0.27 1.21 -0.3

cochleagram 8.87 9.34 7.16 7.44 7.21 0.5
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Separation results using different TF representations

Fig. 8.3 Separation results using different TF representations

Figure 8.3 shows the comparison of our proposed algorithm based on the spectro-
gram, log-frequency spectrogram, and cochleagram under various audio mixtures.
The separation results for all mixture types based on the spectrogram gives an aver-
age SDR of 0.51 dB while the log-frequency spectrogram an average SDR of 2.8 dB.
However, a significantly higher performance is attained by the cochleagram with an
average SDR of 8 dB. This leads to a substantial improvement gain of 7.5 dB and
5.2 dB, respectively. The major reason for the large discrepancy is due to the mixing
ambiguity between |X1|.2 and |X2|.2. The larger the mixing ambiguity between |X1|.2
and |X2|.2, the more TF units will be ambiguous which subsequently decreases the
probability of correct assignment of each unit to the sources and eventually results
in poorer separation performance. To validate this, Fig. 8.4 shows the spectrogram
of the original sources, the mixed signal, and the estimated sources using the pro-
posed Quasi-EM IS-NMF2D algorithm. Both figures indicate that the STFT lacks
provision for further low-level information of a TF unit and therefore, the resulting
spectrogram fails to infer the dominating source. This leads to high degree of ambi-
guity in TF domain and causes lack of uniqueness in extracting the spectral-temporal
features of the sources

Similar to the above, Fig. 8.5 shows the separation results based on the log-
frequency spectrogram. Compared with spectrogram, the separation performance
is better since log-frequency spectrogram has the propensity of nonuniform time
frequency resolution. However, the transform operation used by the log-frequency
spectrogram is still based on the Fourier Transform which may not be an optimal
option. On the other hand, the results of separation in the cochleagram have led to
significant SDR improvement. The cochleagram enables the mixed signal to be more
separable and thus reduces the mixing ambiguity between |X1|.2 and |X2|.2.

This explains the average performance of separating mixture jazz music and
female utterance is the highest among all the mixtures because both sources have very
distinguishable TF patterns in the cochleagram. This is evident in Fig. 8.6, which
shows the separation results in the cochleagram. The plot clearly shows that the
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Fig. 8.4 Separation results in spectrogram

spectral energy of the two audio sources has been clustered at different frequencies
in the cochleagram due to their different fundamental frequencies. These prominent
features have been separated using our proposed Quasi-EM IS-NMF2D algorithm.

The performance of source separation also depends on how accurate the spectral
bases are estimated. Given the different types of TF representation, a question arises
as to which set of estimated spectral bases have yielded better approximation to the
respective original sources’ spectral bases. Figure 8.7 shows the results of the original
and the estimated spectral basis Dα

i for the above mixture when the factorization is
performed in the cochleagram. In Fig. 8.7, panels (a and b) refer to the original spectral
bases of the jazz music and female utterance, respectively. Panels (c and d) refer to the
estimated spectral bases. In comparison, we have also included similar factorization
results of the same mixture in the spectrogram and log-frequency spectrogram. These
are shown in Figs. 8.8 and 8.9, respectively. In sharp contrast with Fig. 8.7, it is noted
that the estimated spectral bases in Figs. 8.8 and 8.9 are quite dissimilar to the original
spectral bases. Thus, the construction of the separating mask will inevitably introduce
errors in assigning the TF units to the respective sources. Therefore, the recovered
sources are very coarse with very low values of SDR in Fig. 8.3.
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Fig. 8.5 Separation results in log-frequency spectrogram

8.5.2 Comparison Between Different Cost Functions

In the following, experiments are conducted to evaluate the efficiency of the proposed
algorithm under different cost functions. Here, we consider the Least Square (LS)
distance and Kullback-Leibler (KL) divergence. Figure 8.10 shows the separation
results in the cochleagram based on LS, KL, and IS cost functions. In Fig. 8.10, it
is noted that Quasi-EM IS-NMF2D algorithm outperforms those of LS distance and
KL divergence with an average SDR of 3.1 and 1.8 dB, respectively. This is evi-
denced by the fact that the IS divergence holds a desirable property of scale invariant
so that low energy components can be precisely estimated and they bear the same
relative importance as the high energy ones. On the contrary, factorizations obtained
with LS distance and KL divergence tend to favor the high energy components at the
expense of disregarding the low energy ones. In the cochleagram, the dynamic range
of the mixture signal can be considerably large such that the dominating signal at a
particular TF unit can manifest either as low or high energy components. In addition,
these components tend to exist as clusters. As such, when either LS distance- or
KL divergence is used, clusters with low energy tend to be ignored in favor of the
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Fig. 8.6 Separation results in cochleagram

τ τ τ τ

(a) (b) (c) (d)

Fig. 8.7 a–b Original spectral bases of jazz music and female utterance in the cochleagram. c–d
The corresponding estimated spectral bases

τ τ τ τ

(a) (b) (c) (d)

Fig. 8.8 a–b Original spectral bases of jazz music and female utterance in the spectrogram. c–d
The corresponding estimated spectral bases
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τ ττ τ

(a) (b) (c) (d)

Fig. 8.9 a–b Original spectral bases of jazz music and female utterance in the log-frequency
spectrogram. c–d The corresponding estimated spectral bases

J and M      J and F P and
M

P and F J and P S and S

LS-NMF2D 6.15 4.69 5.11 4.21 4.61 -0.4

KL-NMF2D 7.24 7.35 5.42 5.38 5.86 -0.5

Quasi-EM IS-NMF2D 8.87 9.34 7.16 7.44 7.21 0.5
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Separation results with different cost functions

Fig. 8.10 Separation results with different cost functions

high energy ones. This leads to mixing ambiguities especially for low energy ones
in which case when they are subsumed together leads to significant lost of spectral–
temporal information of the sources. Figure 8.11 shows how different cost functions
have impacted the separation performance. It is clearly seen that the LS-NMF2D
algorithm fails to determine the correct TF components of each source. Panels
(a and b) show a considerable level of mixing ambiguities (red box marked area) that
have not been accurately resolved by the LS-NMF2D algorithm. The KL-NMF2D
exhibits better performance but ignores some low energy TF components in the red
box marked area of (c). On the other hand, the proposed algorithm has successfully
extracted the low energy components for both female speech and jazz music with
high accuracy.



252 B. Gao and W. L. Woo

(a) (b)

(c) (d)

(e) (f)

Fig. 8.11 Separation results: a–b, c–d and e–f denote the recovered female speech and jazz music
in the cochleagram by using the algorithms with different cost function

8.5.3 Comparing with Different SCBSS Methods

We have made comparison with the recently published EMD SCBSS [35], which first
decomposes the given signal into spectrally independent modes using EMD algo-
rithm, and then, ICA is applied to extract statistically independent sources. All the
above single channel BSS methods will be tested across all types of mixture and com-
pared in terms of SDR. Table 8.3 summarizes the comparison results. In comparison,
the Quasi-EM IS-NMF2D with cochleagram leads to the best separation performance
for all types of the mixture. The EMD SCBSS also performs with relative accept-
able results compared with Quasi-EM IS-NMF2D. However, it is interesting to point
out that the advantage of using Quasi-EM IS-NMF2D with cochleagram is that this
method is less complex than the EMD SCBSS and simultaneously it retains a higher
level of the separation performance.

8.5.4 Separating More than Two Sources

The proposed method can be extended to the case when i > 2 sources. If more than
two sources are mixed in a single channel, this requires specifying the number of
sources to be separated. Since the method is blind, the separability of the complex
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Table 8.3 Separation results
using different SCBSS
methods

Mixtures Method SDR

Jazz and male EMD SCBSS 6.3
Quasi-EM IS-NMF2D 8.8

Jazz and female EMD SCBSS 5.2
Quasi-EM IS-NMF2D 9.3

Piano and male EMD SCBSS 5.2
Quasi-EM IS-NMF2D 7.1

Piano and female EMD SCBSS 6.6
Quasi-EM IS-NMF2D 7.4

Jazz and piano EMD SCBSS 6.6
Quasi-EM IS-NMF2D 8.5

Speech and speech EMD SCBSS 0.4
Quasi-EM IS-NMF2D 0.5

mixture depends highly on how accurate the spectral bases Dα
i can be estimated from

the TF mixture. Consequently, a set of distinguishable spectral basis of each source
for a generic case is a necessary condition to achieve good separation performance.
Thus, we adopt three different types of sources, e.g., jazz, piano, and trumpet to
generate a complex mixture. The convolutive components in the proposed algorithm
are selected as α = {0, . . . , 3} and β = {0, . . . , 31}. Table 8.4 shows the overall
separation results. It is seen that mixtures generated by all music sources have been
recovered quite successfully. Figure 8.12 shows an example of separating the mixture
of Jazz, piano, and trumpet music. It can be seen that three music sources are almost
completely separated by using the proposed method. In addition, it is noted that the
separation performance has deteriorated when the number of sources increases from
two. Increased number of sources will mean that there exists more interference in
separating every target source and hence results in higher probability of incurring an
error. Comparing the results in the table, mixtures containing speech somehow results
in slightly poorer performance than mixtures of music sources only. One reason is the
seemingly more overlaps in the TF domain between the speech and music sources.
It is observed from Fig. 8.6 that music pitches tend to jump discretely while speech
pitches do not. Consequently, this leads to less efficiency in the estimation of the
spectral basis from the mixture signal. In addition, we have tested the performance
of the proposed method on recordings mixed with i > 3 sources. We have found that
the proposed method works well for mixtures of music sources that are characterized
with distinguishable spectral basis. However, the performance shows degradation
when separating mixture contains speech sources.

8.5.5 Separating Real Music Recording

In the final experiment, the proposed method is tested on professionally produced
music recordings of the well-known song namely “You raise me up” by Kenny G. The
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Table 8.4 Separation results of three sources

Mixtures: y = x1 + x2 + x3 SDR of x̂1 SDR of x̂2 SDR of x̂3

x1 x2 x3

Jazz Piano Trumpet 6.51 5.61 5.65
Male Jazz Piano 5.23 5.73 4.13
Male Jazz Trumpet 5.18 5.65 5.21
Male Piano Trumpet 5.20 4.09 4.53
Female Jazz Piano 5.36 5.47 4.24
Female Jazz Trumpet 5.02 5.51 5.10
Female Piano Trumpet 5.02 4.32 4.28
Male Female Male −0.8 1.3 −1.6

Fig. 8.12 Decomposition results. a–c denote the original Jazz, piano, and trumpet music, d is the
mixture and e–g denote the recovered sources using the proposed method

music consists of two excerpts of length approximately 23 s on mono channel and
resampled to 16 kHz. The song is an instrumental music consisting of saxophone and
piano sound. The factors of α and β shifts are set to have αmax = 8 and βmax = 32.
Since the original source spatial images are not available for this experiment, the
separation performance is assessed perceptually and informally by analyzing the log-
frequency spectrogram of the estimated source images and listening to the separated
sound. This task was a tough task since the instruments play many different notes in
the recording. Figure 8.13 shows the separation results of the saxophone and piano
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Fig. 8.13 Separation result for song “You raised me up” by Kenny G. Top Recorded music. Middle
Separated saxophone sound. Bottom Separated piano sound

sound. The high pitch of continuous saxophone sound is shown in the middle panel of
Fig. 8.13 while the notes of the piano are evidently present in Fig. 8.11 bottom panel.
Overall, our proposed method successfully separated the professionally produced
music recordings and gives a perceptually pleasant listening experience.

8.6 Conclusion

In this chapter, a novel method to solve the single channel audio source separation
is proposed. In addition, two algorithms for nonnegative matrix two-dimensional
factorization optimized using the Itakura-Saito divergence are presented: Quasi-EM
IS-NMF2D and MGD IS-NMF2D. Coupled with the theoretical support of signal
separability in the TF domain, the separation system using the gammatone filter-
bank with these algorithms have shown to yield considerable success. The proposed
method enjoys at least three significant advantages: First, it avoids strong constraints
of separating sources without training knowledge. Second, the cochleagram rendered
by the gammatone filterbank has nonuniform TF resolution which enables the mixed
signal to be more separable and thus improves the efficiency of source separation.
Finally, the method holds a desirable property of scale invariant which enables low
energy components in the cochleagram to bear the same relative importance as the
high energy ones. The proposed cochleagram-based IS-NMF2D method in partic-
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ular using the Quasi-EM algorithm has yielded significant improvements in source
separation compared with other nonnegative matrix factorizations.
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Chapter 9
Source Localization and Tracking:
A Sparsity-Exploiting Maximum
a Posteriori Based Approach

Md Mashud Hyder and Kaushik Mahata

Abstract In this work, we explore the potential of sparse recovery algorithms for
localization and tracking the direction-of-arrivals (DOA) of multiple targets using
a limited number of noisy time samples collected from a small number of sensors.
In target tracking problems, the targets are assumed to be moving with a small
random angular acceleration. We show that the target tracking problem can be posed
as a problem of recursively reconstructing a sequence of sparse signals where the
support of the signals changing slowly with time. Here, one can use the support
of last signal as a priori information to estimate the behavior of current signal. In
particular, we propose a maximum a posteriori (MAP)-based approach to deal with
the sparse recovery problem arising in tracking and detection of DOAs. We consider
both narrowband and broadband scenarios. Numerical simulations demonstrate the
effectiveness of the proposed algorithm. We found that the proposed algorithm can
resolve and track closely spaced DOAs with a small number of sensors.

9.1 Introduction

Direction of arrival (DOA) estimation using sensor array has been an active research
area [20, 25, 37], playing an important role in smart antennas, next generation mobile
communication systems, various type of imaging systems and target tracking appli-
cations. Many algorithms have been developed, see [37] and references therein. The
algorithms like Capon [6], pose the DOA estimation problem as a beamforming
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problem. Here one designs adaptive filterbanks to obtain nonparametric estimate
of the spatial spectrum. The popular alternative to this is the subspace algorithms
like MUSIC [35], ESPRIT [33] or weighted subspace fitting [36, 41]. The sub-
space algorithms which exploit the low-rank structure of the noise-free signal. The
maximum-likelihood estimation [25] is another efficient technique, but requires accu-
rate initialization to ensure global convergence. All these methods rely on the statis-
tical properties of the data, and hence requires a large number of time samples.

Conventional DOA estimation techniques cannot exploit the target moving statis-
tics into their formulation and hence their performance degrade when a large number
of DOAs moving in a field of interest [45]. Recently, several approaches have been
developed for tracking targets [4, 8, 30, 31, 44, 45]. The maximum likelihood (ML)
methods [30, 31, 45] have good statistical properties and are robust in target tracking
with a relatively small number of samples. The works in [30, 31] incorporate the
target motion dynamics in ML estimation and computes the the DOA parameters
at each time subinterval and refine the ML estimates through Kalman filtering. The
concept of Multiple Target States (MTS) has been introduced in [45] to describe
the target motion. The DOA tracking is implemented through updating the MTS by
maximizing the likelihood function of the array output. However, ML-based algo-
rithms have high computational cost in general [8]. A recursive expectation and
maximization (EM) [12] algorithm has been used in [8] to improve computational
efficiency of ML algorithms. Cyclostationarity property of the moving targets has
been exploited in [44]. In target tracking, the change in DOA from last time frame
to the current time frame is computed by exploiting the difference of the averaged
cyclic cross correlation of array output. Target tracking in clutter environment is also
addressed in [4].

Sparse signal representation has been applied for spectral analysis [10, 14–16,
26, 34]. In [34], a Cauchy-prior is used to enforce sparsity in a temporal spectrum.
A recursive weighted least-squares algorithm called FOCUSS has been developed
in [16] for source localization. Fuchs [14, 15] formulates the source localization
problem as a sparse recovery problem in the beam-space domain. DOA estimation has
been posed into joint-sparse recovery problem in [10, 19, 26]. ψ1-SVD [26] combines
the singular value decomposition (SVD) step of the subspace algorithms with a
sparse recovery method based on ψ1-norm minimization. The ψ1-SVD algorithm
can handle closely spaced correlated sources if the number of sources is known. An
alternative strategy called joint ψ2,0 approximation of DOA (JLZA-DOA) is proposed
in [19]. The algorithm represents the snapshots of sensors as some jointly sparse [18]
linear combinations of the columns of a manifold matrix. The resulting optimization
problem of JLZA-DOA has been solved using a convex–concave procedure. JLZA
is further extended to deal with the joint sparse problem with multiple measurement
matrices arising in broadband DOA estimation, where the manifold matrices for
different frequency bands are different. This allows a sensor spacing larger than the
smallest half-wavelength of the broadband signal, which in turn results in a significant
improvement in the DOA resolution performance. However, these algorithms have
been designed for stationary DOA estimation.
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There are two aims of the work: (i) develop an efficient algorithm for stationary
DOA estimation and, (ii) adopt the algorithm for multiple target tracking. We pose
target tracking as a problem of tracking a sparse signal x(t). Here the field of interest
is discretized into a fine grid consisting of a large number (n) of potential DOAs, and
x(t) is an n dimensional complex valued vector, where the i th component of x(t) is
essentially the signal received from the i th point on the DOA-grid at time t . Since
there are only a small number of targets at any time t , the vector x(t) is sparse, and
the support of x(t) gives the locations of the targets. As the targets move, the support
of x(t) changes with time t . If this change is slow enough, then from the estimate of
x(t −1) we can make a fairly accurate prediction of the support of x(t). Recent papers
[24, 39, 40] in compressive sensing (CS) with partially known support demonstrate
that such prior knowledge about the support can be used to significantly lower the
number of data samples needed for reconstruction.

While the algorithms for CS with partially known support work well for slowly
varying support, these methods cannot be used if the target speed is above a particular
threshold. To alleviate this problem we propose a MAP estimation approach. At time
t we use the past estimates of x(α ), α < t , to construct a a priori predictive probability
density function of x(t). This prior is such that the components of x(t) which are
close to the predicted future location of DOA, will have large magnitude with very
high probability. On the other hand, a component of x(t) which are far from the
predicted location is of large magnitude with a very small probability. Subsequently,
we use this prior and the array measurements at time t to derive a MAP estimate
of x(t).

We demonstrate the performance of our method on minimum-redundancy lin-
ear arrays [27]. In a minimum-redundancy array, the inter-element spacing is not
necessarily required to maintain the half wavelength of the receiving narrowband
signal. We can resolve relatively large number of DOAs with small sensors and time
samples. Moreover, such array arrangement leads to an increase in the resolution of
DOA estimation.

Similar to [19], we enforce joint sparsity in DOA estimation for narrowband and
broadband signals. In broadband case, this joint sparsity allows a sensor spacing
larger than the smallest half-wavelength of the signal, which in turn results in a
significant improvement in the DOA resolution performance. This is possible because
the spatial aliasing effect can be suppressed by enforcing the joint sparsity of the
recovered spatial spectrum across the whole frequency range under consideration.

The chapter is structured as follows. In Sect. 9.2, narrowband stationary DOA
estimation is considered. The DOA estimation problem is set as an underdetermined
sparse recovery problem. Some state-of-the-art sparsity-based DOA estimation tech-
niques have been discussed, and a MAP-based DOA estimation framework has been
developed. Section 9.3 considers the narrowband DOA tracking problem. We for-
mulate MAP framework in DOA tracking. We also demonstrate a possible way to
adopt a conventional sparsity-based DOA estimation technique in tracking problem.
The proposed MAP approach has been extended for broadband DOA estimation in
Sect. 9.4. Finally, in Sect. 9.5 we present some simulation results.
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9.2 Stationary Narrowband DOA Estimation

9.2.1 Background

Consider k narrow-band signals {s j (t)}k
j=1 incident on a sensor array, consisting of

m omnidirectional sensors. Let

y(t) = [y1(t) · · · ym(t)]′,

where y j (t) is the signal recorded after demodulation by the j th sensor and y′ denotes
the transpose of y. Defining

s(t) = [s1(t) · · · sk(t)]′,

and using the narrowband observation model [20, 25], we have

y(t) = A(β)s(t) + e(t). (9.1)

Here A(β) is the manifold matrix, β is the DOA vector containing the directions of
arrival of individual signals, i.e., the j th component β j of β gives the DOA of the
signal s j (t), and e(t) denotes the measurement noise. The manifold matrix consists
of the steering vectors {a(β j )}k

j=1:

A(β) = [a(β1) · · · a(βk)].

The mapping a(β) depends on the array geometry and the wave velocity, which are
assumed to be known for any given β . The problem is to find β and k from {y j (t)}m

j=1.

9.2.2 Connection to the Blind Source Separation

Blind source separation (BSS) involves recovering unobserved signals from a set
of their mixtures [1, 21, 32]. For instance, the signal received by an antenna is a
superposition of signals emitted by all the sources which are in its receptive filed.
Let us consider k signals {s j (t)}k

j=1 incident on a sensor array, consisting of k sensors.
Let

ŷ(t) = [ŷ1(t) · · · ŷk(t)]′,

where ŷ j (t) is the signal recorded by the j th sensor. The model of sensor output be
[1, 21]:

ŷ(t) = Âs(t) + ê(t). (9.2)
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where Â ∈ R
k×k is an unknown nonsingular mixing matrix. Without knowing the

properties of the source signals and the mixing matrix, we want to estimate the source
signals from the observations ŷ(t) via some linear transformation of the form [1]

ŝ(t) = Bŷ(t) (9.3)

where ŝ(t) = [ŝ1(t) · · · ŝk(t) ]′, and B ∈ R
k×k is a de-mixing matrix. However,

without any information about Â or s(t), it is impossible to estimate ŝ(t). In BSS,
different assumptions have been made on s(t). For example, independent component
analysis (ICA)-based approach assumes that the sources s(t) are statistically inde-
pendent [21]. The goal of ICA is to find the transformation matrix B such that the
random variables ŝ1(t), . . . , ŝk(t) are as independent as possible [32].

There are interesting similarities between the BSS model in (9.2) and the DOA
estimation model in (9.1). In the DOA estimation problem (see (9.1)), we have to
estimate the source signals, while the matrix A(β) and s(t) are unknown. Unlike BSS,
DOA estimation model assumes that the construction of matrix A(β) depends on the
sensor array geometry and DOA of source signals. Since, the sensor array geometry
is known, if one can estimate the DOA of sources, it is possible to construct A(β), and
hence estimation of s(t). It is not necessary the sources to be statistically independent
[43]. Hence, DOA estimation can be viewed as a semi-BSS problem. Recently, BSS
techniques have been applied for DOA estimation [9, 22, 29].

9.2.3 DOA Estimation as a Joint-Sparse Recovery Problem

We divide the whole area of interest into some discrete set of “potential locations”.
In this work, we consider the far-field scenario and hence the discrete set be a grid of
directions-of-arrival angles. Let the set of all potential DOAs be G = {β̄1, . . . , β̄n},
where typically n ≤ k. The choice of G is similar to that used in the Capon or
MUSIC algorithms. Collect the steering vectors for each element of G in

ω = [a(β̄1) · · · a(β̄n)].

Since G is known, ω is known and is independent of β . Now, represent the signal
field at time t by x(t) ∈ C

n , where the j th component x j (t) of x(t) is nonzero only
if β̄ j = βψ for some ψ, and in that case x j (t) = sψ(t). Then one has a model

y(t) = ωx(t) + ē(t), (9.4)

where ē(t) is the residual due to measurement noise and model-errors. Since k √ n,
x(t) is sparse. Note that the equality β̄ j = βψ may not hold exactly for any ψ ∈
{1, 2, . . . , k} in practice. Nevertheless, by making G dense enough, one can ensure
β̄ j ⊗ βψ closely, and the remaining modeling error is absorbed in the residual term
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ē(t). We model the elements of ē(t) as mutually independent, and identically complex
Gaussian distributed random variables with zero mean and variance 1/θ, where θ is
a positive real number.

The model, (9.4) lets us pose the problem of estimating k and β as that of esti-
mating a sparse x(t) which can be solved using CS [13] framework. If there is a
reliable algorithm to recover the sparse x(t) from y(t) using (9.4), then all but a few
components of the final solution x(t) will have very small magnitudes. Thus, if the
j th component x j (t) is a dominant component in the recovered x(t), then we infer
that at time t , there is a source with DOA β̄ j , with an associated signal x j (t). Finally,
the number of these dominant spikes gives k.

A k sparse x(t) can be recovered uniquely from (9.4) if k ∀ m/2, and every
m columns of ω form a basis of Cm . The latter is called the unique representation
property, and is closely connected to the concept of an un-ambiguous array. Apart
from the limit on k, the single snapshot setting in (9.4) is sensitive to noise. Since noise
is ubiquitous in practical problems, we turn to the so-called joint sparse formulation
[18]. In practice, we have several snapshots {y(t)}N

t=1. Using (9.4), we can write

Y := [y(1) · · · y(N )] = ωX + E, (9.5)

where X = [x(1) · · · x(N )] is a sparse matrix, and E = [ē1 · · · ēN ]. If the DOA vector
β is time-invariant over the period of measurement, then for all t the nonzero dominant
peaks in x(t) occur at the same locations corresponding to the actual DOAs. In other
words, only k rows of X are nonzero. Such a matrix is called jointly k-sparse. Hence
the DOA estimation problem can be posed as the multiple measurement vectors
(MMV) problem [18] of finding a jointly sparse X from Y .

9.2.4 Results on the Joint-Sparse Recovery Problem

Assume that E = 0, and Y, X are real-valued.1 The conditions for the existence of a
unique solution to the MMV problem is demonstrated by the following lemma [11].

Lemma 1 Let rank (Y ) = r ∀ m, and every m columns of ω form a basis of
R

m. Then a solution to (9.5) with k nonzero rows is unique provided that k ∀
⇔(m + r)/2	 − 1, where ⇔.	 denotes the ceiling operation.

We pose DOA estimation as a MMV problem. Assume that N > m, and the matrix

X = [x(1) · · · x(N )]

1 In the real DOA estimation problem, E 
= 0 and X, Y are complex valued. We deal with these
issues in the next section.
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has rank k. Then according to Lemma 1, the DOAs can be estimated uniquely using
the joint sparse framework if k ∀ m − 1. It is interesting that all the subspace
algorithms, e.g., MUSIC or ESPRIT, have the same limitation.

As described in [19], an ψ2,0-norm-based minimization approach can be used to
solve the MMV problem arising in DOA estimation. However, since zero norm leads
to an NP-hard problem, different relaxations used in literature.

9.2.5 DOA Estimation Using Ω1 Optimization

ψ1-SVD [26] is an efficient algorithm that uses ψ2,1-based optimization to solve the
DOA estimation problem. In presence of noise, ψ1-SVD algorithm considers the
following way to solve X given Y in (9.5)

min
X

∇Y − ωX∇2
F + φ∇X∇2,1, (9.6)

where ||X ||2,1 is the mixed norm

||X ||2,1 =
n∑

i=1

√√√√
N∑

j=1

|xi ( j)|2 =
n∑

i=1

||X (i, :)||2, (9.7)

and φ > 0 is a tuning factor whose value depends on noise present in the signal.
Note that we use the Matlab notation X (i, :) to denote the i th row of X .

The computation time needed to optimization in (9.6) increases with increasing
N . To reduce both the computational complexity and sensitivity to noise, ψ1-SVD
uses SVD of the data matrix Y ∈ C

m×N . Similar to other subspace algorithms (i.e.,
MUSIC) the ψ1-SVD keeps the signal subspace.

9.2.6 MAP Approach for DOA Localization

In this section we develop a maximum a posteriori (MAP) estimation approach for
stationary DOA estimation. Recall that individual columns of E are modeled as
mutually independent and identically complex Gaussian distributed random vectors
with zero mean and covariance matrix 1/θI . Using (9.5) the conditional density of
Y given X is given by

p(Y |X) =
(

θ

2ϕ

⎡m N

exp{−θ||Y − ωX ||2F/2}. (9.8)
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Now suppose we know a priori density p(X) of X . Then MAP proposes to estimate
X by maximizing the conditional density p(X |Y ) given the observed data Y with
respect to X . This is same as maximizing the joint log-likelihood function [23]

log p(Y |X) + log p(X). (9.9)

Next we propose a suitable candidate for p(X). Recall that X is row sparse.
Furthermore it is reasonable to postulate the rows of X are mutually independent,
because the locations of individual targets are independent. In practice, it is com-
mon to assume that the elements in a row X (i, :) are independent and identically
distributed. The independence follows from the choice of the sampling frequency
used in practical arrays. The identical distribution follows because the energy of a
target signal remains the same over N snapshots. Now for a given i , we have two
possibilities:

• With a high probability 1−q there is no target at β̄i , and so the elements of X (i, :)
are basically of very small energy (contributed by noise and model errors), say μ.
We model X (i, :) in this case as a complex Gaussian distributed random vector
with mean zero and covariance matrix μ2 I .

• Otherwise (with a low probability q), there is a target at β̄i so that the elements of
X (i, :) have relatively large energy π ≤ μ contributed by the target signal. We
model X (i, :) in this case as a complex Gaussian distributed random vector with
mean zero and covariance matrix π2 I .

Consequently, p(X) is a product of Gaussian mixture densities

p(X) =
n⎣

i=1

⎤
q

(2ϕπ)N
exp

⎦
−||X (i, :)||22

2π2

)
+ 1 − q

(2ϕμ)N
exp

⎦
−||X (i, :)||22

2μ2

)}
.

(9.10)
In this work we set q = k/n. Such a Gaussian mixture model has been used in
simulations [28] and performance analysis [17] in CS literature. Using (9.10) we can
write

− ln[p(X)] =
n∑

i=1

⎦
−||X (i, :)||22

2π2 − ln

[
1 + r exp

⎤
−||X (i, :)||22

2∂ 2

}])
+ constant

(9.11)
where the “constant” absorbs the terms independent of X , and

r = (1 − q)πN

qμN
,

1

∂ 2 = 1

μ2 − 1

π2 . (9.12)

Combining (9.11) with (9.8) and (9.9), we can write the criterion function
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ε(X) =
n∑

i=1

⎦
||X (i, :)||22

2π2 − ln

[
1 + ri exp

⎤
−||X (i, :)||22

2∂ 2

}])
+ θ

2
∇Y − ωX∇2

F ,

(9.13)

which we need to minimize with respect to X . The reader may have noticed that
while moving from (9.11) to (9.13) we have replaced r by ri . Indeed for stationary
DOA estimation case ri = r, ∗i . Having different ri for different values of i will
be useful in tracking moving targets, where it will suffice to minimize the same cost
function (9.13). Considering the more general case at this stage allows us to use the
results in the next section in the tracking problem.

9.2.7 Solution Strategy

Like many optimization problems encountered in CS literature [7, 38], minimizing
(9.13) is a nonconvex problem. To deal with the nonconvex optimization problem
we use the concept of graduated nonconvexity (GNC) [2, 3]. GNC is a deterministic
annealing method for approximating the global solution for nonconvex minimization
problems. Here we construct a sequence of functions ε j (X), j = 0, 1, 2, . . . , w such
that

• ε0(X) is quadratic;
• |ε j+1(X)−ε j (X)| is small in the neighborhood of the minimizer X ( j) of ε j (X);
• εw(X) = ε(X) for a user chosen integer w.

Because ε0(X) is quadratic, we can compute X (0) using the standard analytical
expression. Then as |ε1(X) − ε0(X)| is small in the neighborhood of X (0), by
initializing a numerical algorithm to minimize ε1(X) at X (0) one has a high proba-
bility of converging to X (1). If we continue this process of initializing the numerical
algorithm to optimize ε j+1(X) at our estimate of X ( j) obtained by numerically
optimizing ε j (X), then one can expect that X (w) is likely to be the minimizer of
εw(X).

The sequence of functions ε j (X), j = 0, 1, 2, . . . , w are constructed as follows.
We choose an appropriate real number ∂1 (more details on how the choices are made
will follow shortly), and define

ε0(X) =
∑

i

∇X (i, :)∇2
2

2π2 + θ

2
∇Y − ωX∇2

F (9.14)

ε j (X) = ε0(X) −
∑

i

ln

[
1 + ri exp

⎤
−∇X (i, :)∇2

2

2∂ 2
j

}]
j = 1, 2, 3, . . . , w;

(9.15)
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where

∂ j = (∂/∂1)
j/w∂1,

and w is a user chosen integer. The parameter ∂ j controls the degree of nonconvexity
in ε j . As we increase the value of j form 0 to w, we gradually transform ε j from a
convex function ε0 to our desired likelihood function εw. If w is sufficiently large,
then the change from ε j−1 to ε j is small, and so is the change from X ( j−1) to X ( j).

Next we derive an expression for X (0). Let R be a diagonal matrix such that
Rii = π2. Recall that X (0) is the minimum point of ε0. Hence, if we differentiate
(9.14) with respect to X and evaluate at X (0), we must get zero. Hence

X (0) = (R + θω→ω)−1(θω→Y ). (9.16)

Note that we denote the conjugate transpose of ω by ω→.
We can reduce the cost of computing X (0) if we use an alternative expression for

X (0), which is obtained by applying matrix inversion lemma in the right hand side
of (9.16)

X (0) = R−1ω→(I/θ + ωR−1ω→)−1Y. (9.17)

where I is a m × m identity matrix. Computing X (0) via (9.16) requires inverting an
m × m matrix. On the other hand we must invert an n × n matrix if we compute X (0)

via (9.17).
The parameter ∂1 controls the degree of nonconvexity in ε1. If we take ∂1 ∞ ∞,

then the logarithmic term in (9.15) tends to ln(1+r), making ε1 a quadratic function.
In practice, we take

∂1 ◦ 5 max
i

∇X (i, :)(0)∇2,

This ensures exp{−∇X (i, :)(0)∇2
2/(2∂ 2

1 )} ◦ 0.99 for all i . Consequently, exp
{−∇X (i, :)(0)∇2

2/(2∂ 2
1 )} ⊗ 1 for all X satisfying ||X − X (0)||F < ||X (1) −

X (0)||F [28].

9.2.8 Minimizing ξ j

In this section we explore some properties of X ( j), and develop a numerical algorithm
to compute it. Define

κ j (X (i, :)) = 1

π2 +
ri exp

(
−∇X (i,:)∇2

2
2∂ 2

j

⎡

∂ 2
j

[
1 + ri exp

(
−∇X (i,:)∇2

2
2∂ 2

j

⎡] , (9.18)
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and an n × n diagonal matrix W j (X) as

W j (X) = diag{ κ j (X (1, :)) κ j (X (2, :)) · · · κ j (X (m, :)) }.

From (9.18) it is readily verified that κ j {X (i, :)} > 0 for all i . Hence W j (X) is a
positive definite matrix.

Now we can verify that

ξε j (X)

ξ X
= W j (X)X − θω→(Y − ωX). (9.19)

Since X ( j) is the minimum point of ε j , setting X = X ( j) in (9.19) we get

X ( j) = g j (X ( j)) (9.20)

where
g j (X) := {W j (X) + θω→ω}−1{θω→Y }. (9.21)

Also, a calculation similar to (9.17) gives

g j (X) := W −1
j (X)ω→ [I/θ + ωW −1

j (X)ω→⎧−1
Y. (9.22)

The equation X = g j (X) is nonlinear, and cannot be solved analytically. One pos-
sibility is to use a fixed point iteration. However, the convergence of the fixed point
iteration is not guaranteed. Nevertheless, using (9.19) and (9.21) we have

g j (X) − X = −{W j (X ( j)) + θω→ω}−1 ξε j (X)

ξ X
. (9.23)

Since W j is a positive definite matrix, and θ > 0, the matrix W j (X ( j)) + θω→ω
is positive definite. Hence (9.23) implies that ε j (X) is decreasing along the vector
g j (X) − X . In fact moving to g j (X) from X is same as taking the Newton step
associated with some convex–concave procedure to minimize ε j (X) [19].

9.2.9 Numerical Algorithm for Solving MAP Optimization

The MAP optimization strategy is given in Table 9.1. We assume that the values of π,
and μ are known. In fact, simulation results demonstrate that the accurate values of π,
and μ are not necessary. Instead, an approximation of these values are sufficient [17].
Using initial X (0) we calculate ∂1, and in Step 3 some parameters including w are
set. In each iteration, we find a step-length κ along the decent-direction g j (X) − X
using the standard backtracking strategy (step 4–5) [5]. We set β = 0.5, which
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Table 9.1 MAP for narrowband DOA estimation

1. Set X = X (0)

2. Set ∂1 = 5 maxi ∇X (i, :)(0)∇2

3. Set j = 1, choose Γ ∈ (0, 1), β = 0.5 and w ◦ 15
do {

4. Set κ = 1
5. while ε j (κg j (X) + (1 − κ)X ]) > ε j (X) {

κ = βκ

} end
6. Xo = X , and X = κg j (X) + (1 − κ)X
7. If ∇X−Xo∇2∇Xo∇2

< Γ then j = j + 1

} while j ∀ w

is very common [5]. The inner-iteration for updating X for a given j terminates
when the relative change in the magnitude of X is below Γ, see step 7. Hence for a
smaller Γ more accurate solutions are sought in expense of higher computation time.
According to our experimental study, having Γ = 0.02 makes a good tradeoff. Upon
convergence of each inner iteration, we increment j (step 7). Note that choosing a
larger w helps the optimization problem in (9.15) to move slowly from convex to
its desire nonconvex form. Thus we have lower probability to get trapped in local
minimum. However, a larger w increases the number of outer iterations (step 4–7) of
the algorithm, and hence the computation time. Our experimental study suggests that
choosing w = 20 makes a good tradeoff between solution accuracy and computation
time. Upon convergence for j = w, PMAP stops its iterations. The value of θ depends
on noise variance. In our simulation, we set θ = 5 [19].

9.2.10 Acceleration via QR Factorization

Typically, the matrix X ∈ C
n×N in (9.5) is large, as n is a large number (we need

n = 360 to achieve 0.5∼ spatial resolution). If the number of data samples N is large,
the algorithm may become very slow. To accelerate the algorithm, we use the QR
factorization Y/

√
N = R̄Q, where R̄ ∈ C

m×m is a nonsingular upper triangular
matrix, and Q ∈ C

m×N is such that Q Q→ = I . When E = 0, then

row span{X} ⊂ row span{Q}. (9.24)

Consequently, ∇Y − ωX∇2
F = ∇R̄ − ωX̄∇2

F , where X̄ = X Q→ ∈ C
n×m must be

jointly row-sparse, and is of significantly smaller size than X . Hence, it is more
efficient to estimate X̄ via minimizing
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ε(X̄) =
n∑

i=1

⎦
∇X̄(i, :)∇2

2

2π2 − ln

[
1 + ri exp

⎤
−∇X̄(i, :)∇2

2

2∂ 2

}])
+ θ

2
∇R̄ − ωX̄∇2

F .

(9.25)

Following (9.10), it is readily verified that X̄ and X have identical a priori density
function.

9.3 Narrowband Target Tracking

9.3.1 Problem Formulation

Suppose k number of targets are moving in a plane. We wish to

• Detect the targets; and
• Track the DOAs of the targets with a time resolution α , so that the algorithm will

yield estimates DOAs at time instant 0, α, 2α, 3α, . . ..

Let fc be the sampling frequency at the sensors. We assume that over each interval
[ψα, ψα + N

fc
), the change of βi (t) is negligible, i.e.,

β(t) ⊗ β(ψα); t ∈
[
ψα, ψα + N

fc

⎡
(9.26)

where N is the number of snapshots used to detect and estimate the DOAs at time ψα .
The above is a common assumption made by many state-of-the-art target tracking
algorithms [4, 30, 31, 44]. Hence under this assumption, the N snapshots of sensor
data in (9.1) can be expressed as

y(t) ⊗ A(β(ψα))s(t) + e(t), t ∈
[
ψα, ψα + N

fc

⎡
. (9.27)

Just as in (9.5) we can now formulate a stationary target tracking problem at time
instant ψα , where we need to recover a joint sparse matrix

Xψ = [x(ψα) x(ψα + 1/ fc) x{ψα + (N − 1)/ fc}]

given the snapshot matrix

Yψ = [y(ψα) y(ψα + 1/ fc) y{ψα + (N − 1)/ fc}]

such that Yψ = ωXψ+ Eψ holds. To solve this problem we can always use the station-
ary DOA estimation methods discussed before. However, when we track the targets
the algorithm is inherently recursive. This means while estimating Xψ, we already
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know estimates of Xψ−1, Xψ−2, . . .. If we can use this prior knowledge efficiently, we
can work with a significantly smaller N making the assumption (9.26) a feasible one.
In addition it is possible to work with larger number of targets. In order to exploit the
prior information available in the estimates of Xψ−1, Xψ−2, . . ., we need to consider
a dynamic of model for target motion. This is discussed next.

9.3.2 Dynamic Model for the Target Motion

In this contribution, we stick to the most commonly used ‘small acceleration’ model
used in the target tracking literature. For any target i , we assume that its angular
acceleration β̈i (t) is a Wiener process with a small incremental variance. Note that
we denote the first order derivative of β(t) with respect to t by β̇ (t), and the second
order derivative is denoted by β̈ (t).

For a generic DOA β(t), it is straightforward to write down the state space equa-
tions for β(t) in terms of the state

s(t) = [β(t) β̇(t)]′. (9.28)

We have

ṡ(t) =
[

0 1
0 0

]
s(t) +

[
0

w(t)

]
, β(t) = [1 0] s(t), (9.29)

where w(t) denotes the Wiener process with an incremental variance γ . Now we can
discretize (9.29) with a time resolution α , and it is wellknown that the equivalent
discrete-time model is given by

s1(ψ + 1) =
[

1 α

0 1

]
s1(ψ) + w1(ψ), β(ψα) = [1 0] s1(ψ), (9.30)

where we write s1(ψ) := s(ψα) for short; w1(ψ) is a discrete-time, zero mean white
noise sequence such that

E{w1w′
1} = γ

[
α 3/3 α 2/2
α 2/2 α

]
. (9.31)

Using (9.30), (9.31) and after a few steps of algebra one can show that

β(ψα) = 2β(ψα − α) − β(ψα − 2α) + w2(ψ), (9.32)

where w2 is a scalar valued discrete-time first order moving average process with
zero mean and

E{w2} = 0, E{w2
2(ψ)} = 2γ α 3

3
, E{w2(ψ)w2(ψ − 1)} = γ α 3

6
. (9.33)
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9.3.3 Extension of Ω1-SVD for DOA Tracking

Using (9.32) we can use the estimates of Xψ−1, Xψ−2, . . . to make predictions about
Xψ. Then we wish to incorporate this prediction in the MAP framework described
above. However, before doing so, we consider how we could naturally extend ψ1-SVD
method for tracking by using an approach called CS with partially known support
[24, 39, 40]. The idea is to use the past estimates Xψ−1, Xψ−2, . . . to estimate the
support of Xψ, and use that information to estimate a joint sparse Xψ.

Suppose that until time t = (ψ−1)α the tracking algorithm has detected k targets.
The estimated DOAs for the i th target at time(ψ− j)α is denoted by β̂i (ψ− j). From
(9.32) we know

E{βi (ψα)} = 2β̂i (ψ − 1) − β̂i (ψ − 2). (9.34)

At this stage we neglect the second order statistics of w2(ψ), because the standard
methods for CS with partially known support does not have any provisions to do so.
Nevertheless, while discussing MAP approach in the next section, we will use the
second order statistics of w2(ψ).

Define I := {1, 2, . . . , n}. Recall that n is the number of points on the DOA-grid
G = {β̄1, β̄2, . . . , β̄n}. CS with partially known support requires us to predict the
support T (ψ) of Xψ defined as

Tψ := {i ∈ I : ||Xψ(i, :)||2 
= 0}.

We do so as follows. For each i we identify the point of G which is the nearest to
E{βi (ψα)} and denotes the associated index by λi :

λi = arg min
j∈I

|β̄ j − E{βi (ψα)}|.

Then form
Tψ = {λ1, λ2, . . . , λk}.

Different CS-based algorithms have been developed to exploit the support infor-
mation in sparse recovery process [24, 39, 40]. Least squares CS-residual (LS-CS)
[39] is a two step procedure. First, a least squares (LS) estimate X̄ψ of Xψ is computed
assuming that the support of Xψ is Tψ. To explain the details, let

ω+ = [ω(:, λ1) ω(:, λ2) · · · (:, λk) ]

and
X+ = [ω→+ω+]−1ω→+Y.
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Note that X+ is a k × N matrix, and we form X̄ψ as follows:

X̄ψ(i, :) =
⎨

X+( j, :), if i = λ j for some j ∈ {1, . . . , k},
0, otherwise.

(9.35)

Next calculate the associated residual

Ȳ = Y − ωTψ
X̄ψ.

In the subsequent step, LS-CS uses a CS algorithm to find a sparse solution X̂ψ

such that Ȳψ = ωX̂ψ. The final estimate is X̄ψ + X̂ψ. Adapting recently proposed
modified-CS [40] to our problem, this step requires us to solve

X̂ψ = arg min
X

∇Y − ωX∇2
F + φ

∑

i∈I\Tψ

||X (i, :)||2. (9.36)

We refer the modification of ψ1-SVD as ψ1-SVD-MCS. It might be worthwhile to
note the difference between (9.6) and (9.36), and see how easily ψ1-SVD in (9.6) is
adapted to the framework of CS with partially known support.

9.3.4 MAP for Tracking

The MAP algorithm can be used for tracking problem with a small modification in
the expression for p(X) given in (9.10). Here we have the option to use the estimates
of Xψ−1, Xψ−2, . . . to obtain a better prior density p(X).

As before, suppose that until time t = (ψ−1)α , the tracking algorithm has detected
k targets. Then according to (9.32) the conditional density of βi (ψα) evaluated at β

is proportional to

Γi (β) = exp

⎩
⎫⎬
⎫⎢

−
[
β − 2β̂i (ψ − 1) + β̂i (ψ − 2)

⎧2

4γ α 3/3

⎞
⎫⎠
⎫⎥

.

It is natural to use this conditional density as a measure of the probability that βi (ψα)

is close to a grid point β̄ j . In particular, if the i th target was the only target detected,
then the probability q j that we will find that target at the grid point β̄ j is evaluated as

Γi (β̄ j )⎟
j∈I Γi (β̄ j )

.

When we have k targets in the field, then the probability q j of finding a target at grid
point β̄ j is given by
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q j = 1 −
k⎣

i=1

⎤
1 − Γi (β̄ j )⎟

j∈I Γi (β̄ j ).

}
, (9.37)

The above expression for (9.37) works when no new target can appear in the field,
and none of the existing targets can disappear. Nevertheless, we can generalize (9.37)
to relax these requirements. Let

• ρ be the probability that an existing target disappears; and
• β be the probability that a new target appears in the field at a grid point.

Now we modify (9.37) to accommodate the possibility that a new target may
appear in the field and an existing target may disappear. The event that “the i th target
is not presesent at β̄ j ” is the union of two mutually exclusive events:

1. The target has actually disappeared from the field (with probability ρ); and
2. The target is still there in the field (with probability 1 −ρ), but it is not at β̄ j . The

probability of this event is

(1 − ρ)

⎤
1 − Γi (β̄ j )⎟

j∈I Γi (β̄ j )

}
.

Now combining the probabilities of (1) and (2), the resultant probability that “the i th
target is not present at β̄ j ” is

ρ + (1 − ρ)

⎤
1 − Γi (β̄ j )⎟

j∈I Γi (β̄ j )

}
.

Then the probability that none of the existing targets is present at β̄ j and no new
target appears at β̄ j is

(1 − β)

k⎣

i=1

[
ρ + (1 − ρ)

⎤
1 − Γi (β̄ j )⎟

j∈I Γi (β̄ j )

}]
.

Thus, to accommodate the possibility that a new target may appear in the field and
an existing target may disappear (9.37) is modified accordingly to

q j = 1 − (1 − β)

k⎣

i=1

[
ρ + (1 − ρ)

⎤
1 − Γi (β̄ j )⎟

j∈I Γi (β̄ j )

}]
, j ∈ I (9.38)
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Once we know qi , ∗i ∈ I, we can replace q by qi in (9.10) to get

p(X) =
n⎣

i=1

⎤
qi

(2ϕπ)N
exp

⎦
−||X (i, :)||22

2π2

)
+ 1 − qi

(2ϕμ)N
exp

⎦
−||X (i, :)||22

(2μ2)

)}
,

(9.39)
which in turn gives

− ln[p(X)] =
n∑

i=1

⎦
−||X (i, :)||22

2π2 − ln

[
1 + ri exp

⎤
−||X (i, :)||22

2∂ 2

}])
+ constant

(9.40)
where

ri = (1 − qi )π
N

qiμN
,

1

∂ 2 = 1

μ2 − 1

π2 . (9.41)

Combining (9.40) with (9.8) and (9.9), we again arrive at the criterion function
(9.13). However, unlike the stationary case, now all ri are different from each other.
Nevertheless, we can follow the procedure in Sect. 9.2.7 to develop a minimization
problem and use the algorithm in Table 9.1 for estimation of X (ψ). In this work, we
set ρ = 0.01, β = 0.01.

9.4 Extension of MAP Framework for Broadband
DOA Estimation

We consider the procedure proposed in [19] for broadband DOA estimation. The
broadband signal has been splitted into several narrowband signals by using a bank of
narrowband filters. Subsequently, the narrowband model (9.5) is applied to each nar-
rowband filter output. Suppose that we have narrowband data at frequencies {δi }K

i=1,
and let ωi be the “over-complete” manifold matrix at frequency δi . Then, the nar-
rowband model at frequency δi is of the form

Yi = ωi Xi + Ei , i ∈ {1, 2, . . . , K }.

Here, Ei is the additive noise at frequency δi and Xi is the jointly row-sparse signal
matrix at frequency δi . Now,

X := [X1 X2 · · · X K ]
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is jointly row-sparse. This is because if Xi (ψ, :) is nonzero for some ψ, then there is
source signal at frequency δi at direction β̄ψ. Therefore, we would expect signals at
other frequencies from the direction β̄ψ as well, making Xi (ψ, :) nonzero for all i .

Now to resolve broadband DOA in MAP framework we need to develop a priori
density p(X) of X. We assume that the energy of a target at all frequency bands
{δ j }K

j=1 is almost similar. Nevertheless, the following approach can be extended
easily when signal energy is different at different frequency band. Then as described
in Sect. 9.2.6, we have two probabilities for every index i : (i) with very small proba-
bility qi , there is a target at β̄i , and hence the elements of X(i, :) have relatively large
energy π. We model X(i, :) as a complex Gaussian distributed random vector with
zero mean and covariance matrix π2 I ; (ii) with probability 1 − qi , the elements of
X(i, :) have small energy μ √ π. Hence, p(X) is a product of Gaussian mixture
densities

p(X) =
n⎣

i=1

⎤
qi

(2ϕπ2)K N
exp

⎦
−∇X(i, :)∇2

2

2π2

)
+ 1 − qi

(2ϕμ2)K N
exp

⎦
−∇X(i, :)∇2

2

2μ2

)}
.

(9.42)

Then following (9.8)–(9.13), we can end up the the criterion function

ε(X) =
n∑

i=1

⎦
∇X(i, :)∇2

2

2π2 − ln

[
1 + ri exp

⎤
−∇X(i, :)∇2

2

2∂ 2

}])
+ θ

2

K∑

i=1

∇Yi − ωi Xi∇2
F

(9.43)

where, ri = (1 − qi )π
K N

qiμK N
,

which need to minimize with respect to X, and ∂ are defined in (9.12).
For minimizing (9.43), we follow the GNC procedure of Sect. 9.2.7 and generate

w number of suboptimization problem {ε j (X)}w
j=1. Then following the calculation

(9.18)–(9.23), it can be shown that ε j (X) is decreasing along g j (X) − X, where

g j (X) = [g(1)
j (X) g(2)

j (X) · · · g(K )
j (X)], (9.44)

g(i)
j (X) = W −1

j (X)ω→
i

[
I/θ + ωi W −1

j (X)ω→
i

⎧−1
Yi . (9.45)

Using the direction we can develop a broadband DOA estimation algorithm. The
final algorithm is given in Table 9.2.

9.4.1 Jamming Signal Mitigation

The noise term e(t) in (9.1) is the residual noise due to measurement noise and model
error. In general, it is assumed that the noise has uniform distribution and smaller
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Table 9.2 MAP for broadband DOA estimation

1. Set X (0)
i = R−1ω→

i (I/θ + ωi R−1ω→
i )

−1Yi , i = 1, . . . , K .

Form X(0) = [ X (0)
1 X (0)

2 · · · X (0)
K ]

2. Set ∂1 = 5 maxi ∇X(i, :)(0)∇2

3. Set j = 1, choose Γ ∈ (0, 1), β = 0.5 and w ◦ 15
do {

4. Set κ = 1
5. while ε j (κg j (X) + (1 − κ)X]) > ε j (X) {

κ = βκ

} end
6. Xo = X, and X = κg j (X) + (1 − κ)X
7. If ∇X−Xo∇F∇Xo∇F

< Γ then j = j + 1

} while j ∀ w

magnitude than the source signal. However, there exists some other types of noisy
signals; like, jamming signal. Jamming and deception is the intentional emission
of radio frequency signals to interfere with the operation of a radar by saturating
its receiver with noise or false information. In general, jamming signals come from
fixed directions and have magnitude many times larger than actual source signal [42].
Hence, jamming signals hinder actual source. However, due to larger magnitude, it is
easier to know the direction of jamming signal in priori. To mitigate from jamming,
we will use the crude estimate of the direction of the jamming signal as a ‘partially
known support’ of the sparse signal X. Let the jammer direction be supported on Tj .
Then the value of qi in (9.42) will be very high if qi ∈ Tj . We then search any target
in rest of the support of X. In our experiments we set qi = 0.99 when qi ∈ Tj .

9.5 Simulation Results

We compare the performance of MAP-based approach with ψ1-SVD [26], Capon’s
method [6], and ψ1-SVD-MCS (see (9.36)). We use four sensors and follow the pro-
cedure of minimum-redundancy array [27] for the linear array arrangement. The
interelement spacings are d, 3d and 2d, respectively. For narrowband DOA estima-
tion, the value of d is equal to the half wavelength of receiving narrowband signal.
For broadband signal we consider two types of the value of d for two classes of
algorithms. Similar to [19], MAP algorithm can allow a sensor spacing larger than
the half wavelength associated with the highest frequency in the broadband signal.
Hence, we set the value of d to be 1.5 times the smallest wavelength in the broadband
signal. However, ψ1-SVD and Capon cannot allow larger d. Hence we set the value
of d equals to 0.5 times the smallest wavelength in the broadband signal. The algo-
rithms starts with a uniform grid with 0.5∼ resolution, i.e., n = 360, and ω ∈ C

4×360.
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Fig. 9.1 Separating two uncorrelated sources at 10∼ and 15∼ by different algorithms. a Spatial
spectrum obtained by different algorithms. Signal SNR = 2 dB, N = 50. b Frequency of separating
sources versus SNR

In DOA tracking simulation, we select starting DOA locations first. The future DOA
locations are generated using (9.30). The starting β̇ (t) = 0.50 and γ = 0.05. The
simulations are performed using MATLAB7.

9.5.1 Narrowband DOA Estimation and Tracking

Each narrowband signal is generated from a zero mean Gaussian distribution. The
measurements are corrupted by temporally and spatially uncorrelated zero-mean
noise sequence. At first we consider stationary DOA estimation. We assume the
number of DOAs k is unknown.

Figure 9.1a shows the spatial spectrum plots of the different algorithms when
two uncorrelated sources are placed at 10∼ and 15∼. We take N = 50 snapshots
and SNR = 2 dB. Capon algorithm cannot separate sources. It indicates one source
at 12∼. ψ1-SVD can separate two sources at 10∼ and 13∼. Hence detection bias is
2∼. MAP algorithm can separate sources at 9.5∼ and 15∼. Hence bias in only 0.5∼.
Next, we investigate the impact of the noise power on the performance of algorithms.
Here, we simulate two uncorrelated sources at 10∼ and 15∼. We keep the value of N
fixed at 50 and vary the noise power. For each SNR, we carry out 100 independent
simulations, and the results are shown in Fig. 9.1b, where we plot the frequency at
which the different algorithms separate the sources against noise. Note that MAP
outperforms the ψ1-SVD. The plots for Capon is not shown, as they are unable to
resolve the sources when N < 140.

Figure 9.2 shows the results when we simulate two strongly correlated sources at
10∼ and 15∼ with a correlation coefficient 0.99. SNR = 6 dB and N = 50. Note that
MAP can locate the sources clearly, while other methods generates single peak and
failed separating sources.
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Fig. 9.2 Separating two correlated sources at 10∼ and 15∼ by different algorithms. SNR = 6 dB,
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Fig. 9.3 DOA tracking for three targets. SNR = 4 dB, N = 50. ‘−’ actual track, ‘+’ estimated
track. a MAP, b ψ1-SVD-MCS, c ψ1-SVD, d Capon
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Fig. 9.4 DOA tracking for three targets. SNR = 4 dB, N = 50. ‘−’ actual track, ‘+’ estimated
track. a MAP, b ψ1-SVD-MCS, c ψ1-SVD, d Capon

Narrowband DOA tracking results are shown in Fig. 9.3. We consider three
uncorrelated moving sources. The starting location of sources are −20∼, 5∼ and 10∼
respectively. The average SNR = 4 dB and N = 50. As can be seen in Fig. 9.3a MAP
can track the sources almost accurately. There is a little error tracking the first source
between time index 35 and 45. ψ1-SVD-MCS can track sources until time index 25.
The interesting observation is that once ψ1-SVD-MCS loses track of DOAs, it cannot
back to the track again. As illustrated in Fig. 9.3b, after time index 25, ψ1-SVD-MCS
cannot track second and third DOAs anymore. Instead, it generates some random
walk around the track of first source. ψ1-SVD can track the first source only. Capon
also tracks first source. However, it generates another fictitious path from 40∼ to 20∼.

We consider another route in Fig. 9.4. The starting DOA locations are −20∼, 5∼
and 15∼, respectively. In this scenario the first source crosses the route of other two
sources. It is difficult to keep track of sources when they cross each other. Figure 9.4a
illustrates that MAP is able to keep tracking the sources. In some cases, the estimated
route of some sources are displaced from the actual route, however, MAP algorithm
can back to the actual route of sources immediately. As before, ψ1-SVD-MCS can
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Fig. 9.5 Broadband DOA estimation results for three sources are located at −10∼, 15∼ and 20∼.
SNR = 6 dB, N = 100. a MAP, b ψ1-SVD, c Capon
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from 10 and actual source is at 200. N = 100

track the sources until time index 25. The algorithm loses the track of sources when
the first and second sources cross each other. ψ1-SVD and Capon failed tracking
sources. Until time index 25, both algorithms track the first sources, however, they
start tracking the second source after time index 25.

9.5.2 Broadband DOA Estimation and Tracking

Broadband sources are generated using the procedure [19]. Each source consists of
10 sinusoids with frequencies randomly chosen from the interval [1, 2.5]GHz. The
received signal is sampled at 7.5 GHz. The sampled data is filtered through a bank
of first-order bandpass filters of the form

Hδ(z) = (1 − r)eiδ

z − reiδ (9.46)

It can be shown that Hδ is a narrow-band filter centered at digital frequency δ (which
is related to the analog frequency via the standard relationship). The bandwidth of
the filter is controlled by r , where 0 < r < 1. Taking r ∞ 1 makes the bandwidth
smaller, but makes the filter less stable. We take r = 0.99. The filterbank consists of
50 filters with center frequencies uniformly distributed over the interval [1, 2.5]GHz.

We simulate three broadband sources at −10∼, 15∼ and 20∼ in Fig. 9.5. The
SNR = 6 dB and N = 100. As can be seen in Fig. 9.5, MAP algorithm separate three
sources fairly accurately. The detected peaks are sharp and clear. ψ1-SVD generates
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Fig. 9.7 Broadband DOA
tracking for four targets.
SNR = 4 dB, N = 100. ‘−’
actual track, ‘+’ estimated
track. a MAP, b ψ1-SVD-
MCS, c Capon
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many spurious peaks and failed to locate the actual DOA locations. Capon roughly
generates two peaks at −9∼ and 19∼. However, It generates many other random peaks.

Figure 9.6 shows the source detection performance in presence of jamming signal.
In this setup, a jammer sending signal at an angle 10 with a SNR = 40 dB. The
actual source located at 200 transmitting signal with SNR = 2 dB. As can be seen,
the proposed modification of MAP for jamming signal (MAP-Mod) in Sect. 9.4.1
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can detect the actual source. However, when we are applying the conventional MAP,
it detects jamming signal only.

Broadband DOA tracking results are shown in Fig. 9.7. We consider four moving
sources. The starting location of sources are −10∼, 15∼, 20∼ and 30∼, respectively.
The SNR = 4 dB and N = 50. As can be seen in Fig. 9.7a MAP can track the sources
with reasonable accuracy.

9.6 Conclusion

A sparse signal reconstruction perspective for source localization and tracking has
been proposed. We started with a scheme for localizing narrowband sources and
developed a tractable MAP-based optimization approach which can exploit the joint-
sparsity arises in the source localization problem. The scheme has been extend for
wideband source localization. However, the resulting optimization was nonconvex.
Hence, we propose an approach similar to the concept of GNC to cope with the
issue. We described how to efficiently mitigate the local minima of the nonconvex
optimization through an automatic method by choosing the regularization parameter.
We then adopt the MAP formulation for narrowband and wideband source tracking
scenario. In source tracking formulation, we utilize the information of current loca-
tion and moving direction of DOA to estimate its future location. We modify the
proposed MAP formulation so that it can use the information efficiently. Finally,
we examined various aspects of our approach by using numerical simulations. Sev-
eral advantages over existing source localization methods were identified, including
increased resolution, no need for accurate initialization, and improved robustness to
noise.

Some of the interesting questions for future research include an investigation
of the applicability of GNC-based sparse recovery algorithms, which have a lower
computational cost, to blind source localization. A theoretical study for determining
the sequence ε j (X) in (9.15) so that the algorithm can avoid local minima will be
helpful.
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Chapter 10
Statistical Analysis and Evaluation of Blind
Speech Extraction Algorithms

Hiroshi Saruwatari and Ryoichi Miyazaki

Abstract In this chapter, a problem of blind source separation for speech applications
operated under real acoustic environments is addressed. In particular, we focus on
a blind spatial subtraction array (BSSA) consisting of a noise estimator based on
independent component analysis (ICA) for efficient speech enhancement. First, it
is theoretically and experimentally pointed out that ICA is proficient in noise esti-
mation rather than in speech estimation under a nonpoint-source noise condition.
Next, motivated by the above-mentioned fact, we introduce a structure-generalized
parametric BSSA, which consists of an ICA-based noise estimator and post-filtering
based on generalized spectral subtraction. In addition, we perform its theoretical
analysis via higher-order statistics. Comparing a parametric BSSA and a parametric
channelwise BSSA, we reveal that a channelwise BSSA structure is recommended
for listening but a conventional BSSA is more suitable for speech recognition.

10.1 Introduction

A hands-free speech recognition system [1–3] is essential for the realization of an
intuitive, unconstrained, and stress-free human–machine interface, where users can
talk naturally because they require no microphone in their hands. In this system,
however, since noise and reverberation always degrade speech quality, it is difficult
to achieve high recognition performance, compared with the case of using a close-talk
microphone such as a headset microphone. Therefore, we must suppress interference
sounds to realize a noise-robust hands-free speech recognition system.
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Source separation is one approach to removing interference sound source
signals. Source separation for acoustic signals involves the estimation of original
sound source signals from mixed signals observed in each input channel. There have
been various studies on microphone array signal processing; in particular, the delay-
and-sum (DS) [4–7] array and adaptive beamformer (ABF) [8–11] are the most con-
ventionally used microphone arrays for source separation and noise reduction. ABF
can achieve higher performance than the DS array. However, ABF requires a priori
information, e.g., the look direction and speech break interval. These requirements
are due to the fact that conventional ABF is based on supervised adaptive filtering,
which significantly limits its applicability to source separation in practical applica-
tions. Indeed, ABF cannot work well when the interfering signal is nonstationary
noise.

Recently, alternative approaches have been proposed. Blind source separation
(BSS) is an approach to estimating original source signals using only mixed signals
observed in each input channel. In particular, BSS based on independent component
analysis (ICA) [12], in which the independence among source signals is mainly used
for the separation, has recently been studied actively [13–22]. Indeed, the conven-
tional ICA could work, particularly in speech–speech mixing, i.e., all sources can
be regarded as point sources, but such a mixing condition is very rare and unreal-
istic; real noises are often widespread sources. In this chapter, we mainly deal with
generalized noise that cannot be regarded as a point source. Moreover, we assume
this noise to be nonstationary noise that arises in many acoustical environments;
however, ABF could not treat this noise well. Although ICA is not influenced by the
nonstationarity of signals unlike ABF, this is still a very challenging task that can
hardly be addressed by conventional ICA-based BSS because ICA cannot separate
widespread sources.

In this chapter, first, we analyze ICA under a nonpoint-source noise condition and
point out that ICA is proficient in noise estimation rather than in speech estimation
under such a noise condition. This analysis implies that we can still utilize ICA as
an accurate noise estimator. Next, we review blind spatial subtraction array (BSSA)
[23], an improved BSS algorithm recently proposed in order to deal with real acoustic
sounds. BSSA consists of an ICA-based noise estimator and post-filtering such as
spectral subtraction (SS) [24], where noise reduction in BSSA is achieved by sub-
tracting the power spectrum of the estimated noise via ICA from the power spectrum
of the noisy observations. This “power-spectrum-domain subtraction” procedure pro-
vides better noise reduction than conventional ICA with estimation error robustness.
However, BSSA always suffers from artificial distortion, so-called musical noise,
owing to nonlinear signal processing. This leads to a serious tradeoff between the
noise reduction performance and the amount of signal distortion in speech recogni-
tion.

In a recent study, two types of BSSA have been proposed (see Fig. 10.1) [25].
One is the conventional BSSA structure that performs SS after delay-and-sum (DS)
(see Fig. 10.1a), and the other involves channelwise SS before DS (chBSSA; see
Fig. 10.1b). Also, it has been theoretically clarified that chBSSA is superior to BSSA
for the mitigation of the musical noise [26]. Therefore, in this chapter, we generalize
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Fig. 10.1 Block diagrams of a SS after DS (BSSA) and b channelwise SS before DS (chBSSA)

the various types of BSSA as a structure-generalized parametric BSSA [27], and we
provide a theoretical analysis of the amounts of musical noise and speech distortion
generated in several types of methods using the structure-generalized parametric
BSSA. From a mathematical analysis based on higher-order statistics, we prove the
existence of a tradeoff between the amounts of musical noise and speech distortion
in various BSSA structures. From experimental evaluations, it is revealed that the
structure should be carefully selected according to the application, i.e., a chBSSA
structure is recommended for listening but a conventional BSSA is more suitable for
speech recognition.

The outline of this chapter is organized as follows. In Sect. 10.2, we provide a brief
review of ICA used for speech applications [28, 29]. In Sect. 10.3, a theoretical analy-
sis of ICA under nonpoint-source noise condition is given, and following this section,
we give a review of BSSA and its generalized algorithms [23, 27] in Sect. 10.4. In
Sect. 10.5, we describe a musical noise assessment method based on higher-order
statistics [30–32]. Using the method, we give a theoretical analysis of musical noise
generation and speech distortion for structure-generalized BSSA, where the authors
can show that chBSSA is superior to BSSA in terms of less musical noise property,
but BSSA is superior to chBSSA in terms of less speech distortion property [27]. In
Sect. 10.6, we show results of experimental evaluation [27]. Following a discussion
on the theoretical analysis and experimental results, we present our conclusions in
Sect. 10.7.
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10.2 Data Model and Conventional BSS Method

10.2.1 Sound Mixing Model of Microphone Array

In this chapter, a straight line array is assumed. The coordinates of the elements
are designated d j ( j = 1, . . . , J ), and the direction-of-arrivals (DOAs) of multiple
sound sources are designated ψk(k = 1, . . . , K ) (see Fig. 10.2). Here, we assume the
following sound sources: only one target speech signal, some interference signals
that can be regarded as point sources, and additive noise. This additive noise rep-
resents noises that cannot be regarded as point sources, e.g., spatially uncorrelated
noises, background noises, and leakage of reverberation components outside the
frame analysis. Multiple mixed signals are observed at microphone array elements,
and a short-time analysis of the observed signals is conducted by frame-by-frame
discrete Fourier transform (DFT). The observed signals are given by

x( f, α ) = A( f ) {s( f, α ) + n( f, α )} + na( f, α ), (10.1)

where f is the frequency bin and α is the time index of DFT analysis. Also, x( f, α )

is the observed signal vector, A( f ) is the mixing matrix, s( f, α ) is the target speech
signal vector in which only the U th entry contains the signal component sU ( f, α )

(U is the target source number), n( f, α ) is the interference signal vector that contains
the signal components except the U th component, and na( f, α ) is the nonstationary
additive noise signal term that generally represents nonpoint-source noises. These
are defined as

x( f, α ) = [x1( f, α ), . . . , xJ ( f, α )]T, (10.2)

s( f, α ) = [0, . . . , 0︸ ︷︷ ︸
U−1

, sU ( f, α ), 0, . . . , 0︸ ︷︷ ︸
K−U

]T, (10.3)

n( f, α ) = [n1( f, α ), . . . , nU−1( f, α ), 0, nU+1( f, α ), . . . , nK ( f, α )]T,(10.4)

na( f, α ) = [n(a)
1 ( f, α ), . . . , n(a)

J ( f, α )]T
, (10.5)

A( f ) =

⎡⎣

A11( f ) · · · A1K ( f )
...

...

AJ1( f ) · · · AJ K ( f )

⎤
⎦ . (10.6)

10.2.2 Conventional Frequency-Domain ICA

Here, we consider a case where the number of sound sources, K , equals the number
of microphones, J , i.e., J = K . In addition, similarly to that in the case of the
conventional ICA contexts, we assume that the additive noise na( f, α ) is negligible
in (10.1). In frequency-domain ICA (FDICA), signal separation is expressed as
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Fig. 10.2 Configurations of microphone array and signals

Fig. 10.3 Blind source separation procedure in FDICA in case of J = K = 2

o( f, α ) = [o1( f, α ), . . . , oK ( f, α )]T = WICA( f )x( f, α ), (10.7)

WICA( f ) =

⎡⎣

W (ICA)
11 ( f ) · · · W (ICA)

1J ( f )
...

...

W (ICA)
K 1 ( f ) · · · W (ICA)

K J ( f )

⎤
⎦ , (10.8)

where o( f, α ) is the resultant output of the separation and WICA( f ) is the complex-
valued unmixing matrix (see Fig. 10.3).

The unmixing matrix WICA( f ) is optimized by ICA so that the output entries of
o( f, α ) become mutually independent. Indeed, many kinds of ICA algorithms have
been proposed. In the second-order ICA (SO-ICA) [17, 19], the separation filter
is optimized by the joint diagonalization of co-spectra matrices using the nonsta-
tionarity and coloration of the signal. For instance, the following iterative updating
equation based on SO-ICA has been proposed by Parra and Spence [17]:
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W[p+1]
ICA ( f ) = −μ

∑
αb

β( f ) off-diag (Roo ( f, αb)) W[p]
ICA( f )Rxx ( f, αb) + W[p]

ICA( f ),

(10.9)

where μ is the step-size parameter, [p] is used to express the value of the pth step in
iterations, off-diag[X] is the operation for setting every diagonal element of matrix X
to zero, and β( f ) = (

∑
αb

‖Rxx ( f, αb)‖2)−1 is a normalization factor (‖·‖ represents
the Frobenius norm). Rxx ( f, αb) and Roo( f, αb) are the cross-power spectra of the
input x( f, α ) and output o( f, α ), respectively, which are calculated around multiple
time blocks αb. Also, Pham et al. have proposed the following improved criterion for
SO-ICA [19]:

∑
αb

{
1

2
log det diag

[
WICA( f )Roo( f, αb)WICA( f )H

]
− log det

[
WICA( f )

⎧⎨
,

(10.10)

where the superscript H denotes Hermitian transposition. This criterion is to be min-
imized with respect to WICA( f ). Another possible way to achieve SO-ICA has been
proposed as the direct joint diagonalization based on the linear algebraic procedure
[33, 34].

On the other hand, a higher-order statistics-based approach exists. In higher-
order ICA (HO-ICA), the separation filter is optimized on the basis of the non-
Gaussianity of the signal. The optimal WICA( f ) in HO-ICA is obtained using the
iterative equation

W[p+1]
ICA ( f ) = μ[I − ∈ϕ(o( f, α ))oH( f, α )≤α ]W[p]

ICA( f ) + W[p]
ICA( f ), (10.11)

where I is the identity matrix, ∈·≤α denotes the time-averaging operator, and ϕ(·)
is the nonlinear vector function. Many kinds of nonlinear function ϕ( f, α ) have
been proposed. Considering a batch algorithm of ICA, it is well known that tanh(·)
or the sigmoid function is appropriate for super-Gaussian sources such as speech
signals [35, 36]. In this study, we define the nonlinear vector function ϕ(·) as

ϕ(o( f, α )) √ [ω(o1( f, α )), . . . , ω(oK ( f, α ))]T, (10.12)

ω(ok( f, α )) √ tanh o(R)
k ( f, α ) + i tanh o(I)

k ( f, α ), (10.13)

where the superscripts (R) and (I) denote the real and imaginary parts, respectively.
The nonlinear function given by (10.12) indicates that the nonlinearity is applied
to the real and imaginary parts of complex-valued signals separately. This type
of complex-valued nonlinear function has been introduced by Smaragdis [16] for
FDICA, where it can be assumed for speech signals that the real (or imaginary) parts
of the time–frequency representations of sources are mutually independent. Accord-
ing to Refs. [21, 37], the source separation performance of HO-ICA is almost the
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same as or superior to that of SO-ICA. Thus, in this chapter, HO-ICA is utilized as
the basic ICA algorithm hereafter.

FDICA has the inherent problem so-called permutation problem, i.e., difficulty
in removing the ambiguity of the source order in each frequency subband. In the
context of the permutation problem in the ICA study, there exist many methods
for solving the permutation problem, such as the source DOA-based method [38],
subband correlation-based method [15], and their combination method [39]. The
definite way to avoid the permutation problem is to use time-domain ICA (TDICA),
which has, however, other problems like relatively slow convergence and complex
implementation. Several literatures can be available for understanding the difference
and comparison between TDICA and FDICA [40–42].

10.3 Analysis of ICA Under Nonpoint-source Noise Condition

In this section, we investigate the proficiency of ICA under a nonpoint-source noise
condition. In relation to the performance analysis of ICA, Araki et al. have reported
that ICA-based BSS has equivalence to parallel constructed ABFs [43, 44]. However,
this investigation was focused on separation with a nonsingular mixing matrix, and
thus was valid for only point sources.

First, we analyze beamformers that are optimized by ICA under a nonpoint-source
condition. In the analysis, it is clarified that beamformers optimized by ICA become
specific beamformers that maximize the signal-to-noise ratio (SNR) in each output
(so-called SNR-maximize beamformers). In particular, the beamformer for target
speech estimation is optimized to be a DS beamformer, and the beamformer for
noise estimation is likely to be a null beamformer (NBF) [18].

Next, a computer simulation is conducted. Its result also indicates that ICA is
proficient in noise estimation under a nonpoint-source noise condition. Then, it is
concluded that ICA is suitable for noise estimation under such a condition.

10.3.1 Can ICA Separate Any Source Signals?

Many previous studies on BSS provided strong evidence that conventional ICA could
perform source separation, particularly in the special case of speech–speech mixing,
i.e., all sound sources are point sources. However, such sound mixing is not realistic
under common acoustic conditions; indeed the following scenario and problem are
likely to arise (see Fig. 10.4):

• The target sound is the user’s speech, which can be approximately regarded as a
point source. In addition, the users themselves locate relatively near the micro-
phone array (e.g., 1 m apart), and consequently the accompanying reflection and
reverberation components are moderate.
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Fig. 10.4 Expected directivity patterns that are shaped by ICA

• For the noise, we are often confronted with interference sound(s) which is not a
point source but a widespread source. Also, the noise is usually far from the array
and is heavily reverberant.

In such an environment, can ICA separate the user’s speech signal and a widespread
noise signal? The answer is no. It is well expected that conventional ICA can suppress
the user’s speech signal to pick up the noise source, but ICA is very weak in picking up
the target speech itself via the suppression of a distant widespread noise. This is due
to the fact that ICA with small numbers of sensors and filter taps often provides only
directional nulls against undesired source signals. Results of the detailed analysis of
ICA for such a case are shown in the following subsections.

10.3.2 SNR-Maximize Beamformers Optimized by ICA

In this subsection, we consider beamformers that are optimized by ICA in the fol-
lowing acoustic scenario: the target signal is the user’s speech and the noise is not a
point source. Then, the observed signal contains only one target speech signal and
an additive noise. In this scenario, the observed signal is defined as

x( f, α ) = A( f )s( f, α ) + na( f, α ). (10.14)
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Note that the additive noise na( f, α ) cannot be negligible in this scenario. Then, the
output of ICA contains two components, i.e., the estimated speech signal ys( f, α )

and estimated noise signal yn( f, α ); these are given by

[ys( f, α ), yn( f, α )]T = WICA( f )x( f, α ). (10.15)

Therefore, ICA optimizes two beamformers; these can be written as

WICA( f ) = [gs( f ), gn( f )]T, (10.16)

where gs( f ) = [g(s)
1 ( f ), . . . , g(s)

J ( f )
⎧T is the coefficient vector of the beamformer

used to pick up the target speech signal, and gn( f ) = [g(n)
1 ( f ), . . . , g(n)

J ( f )
⎧T is the

coefficient vector of the beamformer used to pick up the noise. Therefore, (10.15)
can be rewritten as

[ys( f, α ), yn( f, α )]T = [gs( f ), gn( f )]Tx( f, α ). (10.17)

In SO-ICA, the multiple second-order correlation matrices of distinct time block
outputs,

∈o( f, αb)oH( f, αb)≤αb , (10.18)

are diagonalized through joint diagonalization.
On the other hand, in HO-ICA, the higher-order correlation matrix is also diag-

onalized. Using the Taylor expansion, we can express the factor of the nonlinear
vector function of HO-ICA, ω(ok( f, α )), as

ω(ok( f, α )) = tanh o(R)
k ( f, α ) + i tanh o(I)

k ( f, α ),

=

⎩
⎫⎬
⎫⎢

o(R)
k ( f, α ) −

⎞
o(R)

k ( f, α )
⎠3

3
+ · · ·

⎥
⎫⎟
⎫

+ i

⎩
⎫⎬
⎫⎢

o(I)
k ( f, α ) −

⎞
o(I)

k ( f, α )
⎠3

3
+ · · ·

⎥
⎫⎟
⎫

,

= ok( f, α ) −



⎞
o(R)

k ( f, α )
⎠3

3
+ i

⎞
o(I)

k ( f, α )
⎠3

3


+ · · · . (10.19)

Thus, the calculation of the higher-order correlation in HO-ICA, ϕ(o( f, α ))oH( f, α ),
can be decomposed to a second-order correlation matrix and the summation of higher-
order correlation matrices of each order. This is shown as
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∈ϕ(o( f, α ))oH( f, α )≤α = ∈o( f, α )oH( f, α )≤α + θ( f ), (10.20)

where θ( f ) is a set of higher-order correlation matrices. In HO-ICA, separation
filters are optimized so that all orders of correlation matrices become diagonal matri-
ces. Then, at least the second-order correlation matrix is diagonalized by HO-ICA.
In both SO-ICA and HO-ICA, at least the second-order correlation matrix is diag-
onalized. Hence, we prove in the following that ICA optimizes beamformers as
SNR-maximize beamformers focusing on only part of the second-order correlation.
Then the absolute value of the normalized cross-correlation coefficient (off-diagonal
entries) of the second-order correlation, C , is defined by

C =
∣∣∈ys( f, α )y⊗

n ( f, α )≤α
∣∣

√∈|ys( f, α )|2≤α
√∈|yn( f, α )|2≤α

, (10.21)

ys( f, α ) = ŝ( f, α ) + rs n̂( f, α ), (10.22)

yn( f, α ) = n̂( f, α ) + rnŝ( f, α ), (10.23)

where ŝ( f, α ) is the target speech component in ICA’s output, n̂( f, α ) is the noise
component in ICA’s output, rs is the coefficient of the residual noise component, rn

is the coefficient of the target-leakage component, and the superscript ⊗ represents a
complex conjugate. Therefore, the SNRs of ys( f, α ) and yn( f, α ) can be respectively
represented by

φs = ∈|ŝ( f, α )|2≤α /(|rs |2∈|n̂( f, α )|2≤α ), (10.24)

φn = ∈|n̂( f, α )|2≤α /(|rn|2∈|ŝ( f, α )|2≤α ), (10.25)

where φs is the SNR of ys( f, α ) and φn is the SNR of yn( f, α ). Using (10.22)–
(10.25), we can rewrite (10.21) as

C =
∣∣∣1/

∀
φs · e j arg rs + 1/

∀
φn · e j arg r⊗

n

∣∣∣
∀

1 + 1/φs
∀

1 + 1/φn
=
∣∣∣1/

∀
φs + 1/

∀
φn · e j (arg r⊗

n −arg rs )
∣∣∣

∀
1 + 1/φs

∀
1 + 1/φn

,

(10.26)

where arg r represents the argument of r . Thus, C is a function of only φs and φn .
Therefore, the cross-correlation between ys( f, α ) and yn( f, α ) only depends on the
SNRs of beamformers gs( f ) and gn( f ).

In Ref. [23], the following has been proved.

• The absolute value of cross-correlation only depends on the SNRs of the beam-
formers spanned by each row of an unmixing matrix.

• The absolute value of cross-correlation is a monotonically decreasing function of
SNR.

• Therefore, the diagonalization of a second-order correlation matrix leads to SNR
maximization.
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Thus, it can be concluded that ICA, in a parallel manner, optimizes multiple
beamformers, i.e., gs( f ) and gn( f ), so that the SNR of the output of each beamformer
becomes maximum.

10.3.3 What Beamformers Are Optimized Under Nonpoint-source
Noise Condition?

In the previous subsection, it has been proved that ICA optimizes beamformers as
SNR-maximize beamformers. In this subsection, we analyze what beamformers are
optimized by ICA, particularly under a nonpoint-source noise condition, where we
assume a two-source separation problem. The target speech can be regarded as a point
source, and the noise is a nonpoint-source noise. First, we focus on the beamformer
gs( f ) that picks up the target speech signal. The SNR-maximize beamformer for
gs( f ) minimizes the undesired signal’s power under the condition that the target
signal’s gain is kept constant. Thus, the desired beamformer should satisfy

min
gs ( f )

gT
s ( f )R( f )gs( f ) subject to gT

s ( f )a( f, ψs) = 1, (10.27)

a( f, ψs( f )) = [exp(i2ϕ( f/M) fsd1 sin ψs/c), . . . , exp(i2ϕ( f/M) fsdJ sin ψs/c)]T,

(10.28)

where a( f, ψs( f )) is the steering vector, ψs( f ) is the direction of the target speech,
M is the DFT size, fs is the sampling frequency, c is the sound velocity, and R( f ) =
∈na( f, α )nH

a ( f, α )≤α is the correlation matrix of na( f, α ). Note that ψs( f ) is a func-
tion of frequency because the DOA of the source varies in each frequency subband
under a reverberant condition. Here, using the Lagrange multiplier, the solution of
(10.27) is

gs( f )T = a( f, ψs( f ))HR−1( f )

a( f, ψs( f ))HR−1( f )a( f, ψs( f ))
. (10.29)

This beamformer is called a minimum variance distortionless response (MVDR)
beamformer [45]. Note that the MVDR beamformer requires the true DOA of the
target speech and the noise-only time interval. However, we cannot determine the
true DOA of the target source signal and the noise-only interval because ICA is an
unsupervised adaptive technique. Thus, the MVDR beamformer is expected to be
the upper limit of ICA in the presence of nonpoint-source noises.

Although the correlation matrix is often not diagonalized in lower frequency
subbands [45], e.g., diffuse noise, we approximate that the correlation matrix is almost
diagonalized in subbands in the entire frequency. Then, regarding the power of noise
signals as approximately π2( f ), the correlation matrix results in R( f ) = π2( f ) · I.
Therefore, the inverse of the correlation matrix R−1( f ) = I/π2( f ) and (10.29) can
be rewritten as



302 H. Saruwatari and R. Miyazaki

gs( f )T = a( f, ψs( f ))H

a( f, ψs( f ))Ha( f, ψs( f ))
. (10.30)

Since a( f, ψs( f ))Ha( f, ψs( f )) = J , we finally obtain

gs( f )

= 1

J
[exp (−i2ϕ( f/M) fsd1 sin ψs( f )/c) , . . . , exp (−i2ϕ( f/M) fsdJ sin ψs( f )/c)]T.

(10.31)

This filter gs( f ) is approximately equal to a DS beamformer [4]. Note that the filter
gs( f ) is not a simple DS beamformer but a reverberation-adapted DS beamformer
because it is optimized for a distinct ψs( f ) in each frequency bin. The resultant
noise power is π2( f )/J when the noise is spatially uncorrelated and white Gaussian.
Consequently the noise reduction performance of the DS beamformer optimized by
ICA under a nonpoint-source noise condition is proportional to 10 log10 J [dB]; this
performance is not particularly good.

Next, we consider the other beamformer gn( f ), which picks up the noise source.
Similar to the noise signal, the beamformer that removes the target signal arriving
from ψs( f ) is the SNR-maximize beamformer. Thus, the beamformer that steers the
directional null to ψs( f ) is the desired one for the noise signal. Such a beamformer is
called NBF [18]. This beamformer compensates for the phase of the signal arriving
from ψs( f ), and carries out subtraction. Thus, the signal arriving from ψs( f ) is
removed. For instance, NBF with a two-element array is designed as

gn( f )

= [exp(−i2ϕ( f/M) fsd1 sin ψs( f )/c), − exp(−i2ϕ( f/M) fsd2 sin ψs( f )/c)]T · ∂( f ),

(10.32)

where ∂( f ) is the gain compensation parameter. This beamformer surely satisfies
gT

n ( f ) · a( f, ψs( f )) = 0. The steering vector a( f, ψs( f )) expresses the wavefront of
the plane wave arriving from ψs( f ). Thus, gn( f ) actually steers the directional null
to ψs( f ). Note that this always occurs regardless of the number of microphones (at
least two microphones). Hence, this beamformer achieves a reasonably high, ideally
infinite, SNR for the noise signal. Also, note that the filter gn( f ) is not a simple NBF
but a reverberation-adapted NBF because it is optimized for a distinct ψs( f ) in each
frequency bin. Overall, the performance of enhancing the target speech is very poor
but that of estimating the noise source is good.

10.3.4 Computer Simulations

We conduct computer simulations to confirm the performance of ICA under a
nonpoint-source noise condition. Here, we used HO-ICA [16] as the ICA algorithm.
We used the following 8 kHz-sampled signals as the ICA’s input; the original target
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Fig. 10.5 Layout of
reverberant room in our
simulation

speech (3 s) was convoluted with impulse responses that were recorded in an actual
environment, and to which three types of noise from 36 loudspeakers were added.
The reverberation time (RT60) is 200 ms; this corresponds to mixing filters with
1,600 taps in 8 kHz sampling. The three types of noise are an independent Gaussian
noise, actually recorded railway station noise, and interference speech by 36 people.
Figure 10.5 illustrates the reverberant room used in the simulation. We use 12 speak-
ers (6 males and 6 females) as sources of the original target speech, and the input
SNR of test data is set to 0 dB. We use a two-, three-, or four-element microphone
array with an interelement spacing of 4.3 cm.

The simulation results are shown in Figs. 10.6 and 10.7. Figure 10.6 shows the
result for the average noise reduction rate (NRR) [18] of all the target speakers.
NRR is defined as the output SNR in dB minus the input SNR in dB. This measure
indicates the objective performance of noise reduction. NRR is given by

NRR [dB] = 1

J

J∑

j=1

(OSNR − ISNR j ), (10.33)

where OSNR is the output SNR and ISNR j is the input SNR of microphone j .
From this result, we can see an imbalance between the target speech estimation

and the noise estimation in every noise case; the performance of the target speech
estimation is significantly poor, but that of noise estimation is very high. This result
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Fig. 10.6 Simulation-based separation results under nonpoint-source noise condition

Fig. 10.7 Typical
directivity patterns
under nonpoint-source
noise condition shaped
by ICA at 2 kHz and
two-element array for case
of white Gaussian noise

is consistent with the previously stated theory. Moreover, Fig. 10.7 shows directivity
patterns shaped by the beamformers optimized by ICA in the simulation. It is clearly
indicated that beamformer gs( f ), which picks up the target speech, resembles the
DS beamformer, and that beamformer gn( f ), which picks up the noise, becomes
NBF. From these results, it is confirmed that the previously stated theory, i.e., the
beamformers optimized by ICA under a nonpoint-source noise condition are DS and
NBF, is valid.

10.4 Blind Spectral Subtraction Array

10.4.1 Motivation and Strategy

As clearly shown in Sects. 10.3.3 and 10.3.4, ICA is proficient in noise estimation
rather than in target speech estimation under a nonpoint-source noise condition. Thus,
we cannot use ICA for direct target estimation under such a condition. However, we
can still use ICA as a noise estimator. This motivates us to introduce an improved
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speech-enhancement strategy, i.e., BSSA [23]. BSSA consists of a DS-based primary
path and a reference path including ICA-based noise estimation (see Fig. 10.1a). The
estimated noise component in ICA is efficiently subtracted from the primary path
in the power spectrum domain without phase information. This procedure can yield
better target speech enhancement than simple ICA, even with the additional benefit of
estimation-error robustness in speech recognition applications. The detailed process
of signal processing is shown below.

10.4.2 Partial Speech Enhancement in Primary Path

We again consider the generalized form of the observed signal as described in (10.1).
The target speech signal is partly enhanced in advance by DS. This procedure can
be given as

yDS( f, α ) = wT
DS( f )x( f, α )

= wT
DS( f )A( f )s( f, α ) + wT

DS( f )A( f )n( f, α ) + wT
DS( f )na( f, α ),

(10.34)

wDS = [w(DS)
1 ( f ), . . . , w(DS)

J ( f )]T
, (10.35)

w(DS)
j ( f ) = 1

J
exp
(−i2ϕ( f/M) fsd j sin ψU /c

)
, (10.36)

where yDS( f, α ) is the primary path output that is a slightly enhanced target speech,
wDS( f ) is the filter coefficient vector of DS, and ψU is the estimated DOA of the
target speech given by the ICA part in Sect. 10.4.3. In (10.34), the second and third
terms on the right-hand side express the remaining noise in the output of the primary
path.

10.4.3 ICA-Based Noise Estimation in Reference Path

BSSA provides ICA-based noise estimation. First, we separate the observed signal
by ICA and obtain the separated signal vector o( f, α ) as

o( f, α ) = WICA( f )x( f, α ), (10.37)

o( f, α ) = [o1( f, α ), . . . , oK+1( f, α )]T, (10.38)

WICA( f ) =


⎡⎡⎣

W (ICA)
11 ( f ) · · · W (ICA)

1J ( f )
...

...

W (ICA)
(K+1)1( f ) · · · W (ICA)

(K+1)J ( f )

⎤
⎦⎦ , (10.39)
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where the unmixing matrix WICA( f ) is optimized by (10.11) . Note that the number
of ICA outputs becomes K + 1, and thus the number of sensors, J , is more than
K +1 because we assume that the additive noise na( f, α ) is not negligible. We cannot
estimate the additive noise perfectly because it is deformed by the filter optimized
by ICA. Moreover, other components also cannot be estimated perfectly when the
additive noise na( f, α ) exists. However, we can estimate at least noises (including
interference sounds that can be regarded as point sources, and the additive noise)
that do not involve the target speech signal, as indicated in Sect. 10.3. Therefore, the
estimated noise signal is still beneficial.

Next, we estimate DOAs from the unmixing matrix WICA( f ) [18]. This procedure
is represented by

ψu = sin−1
arg

(
[W−1

ICA( f )] ju

[W−1
ICA( f )] j ⇔u

)

2ϕ fsc−1(d j − d j ⇔)
, (10.40)

where ψu is the DOA of the uth sound source. Then, we choose the U th source signal,
which is nearest to the front of the microphone array, and designate the DOA of the
chosen source signal as ψU . This is because almost all users are expected to stand in
front of the microphone array in a speech-oriented human–machine interface, e.g.,
a public guidance system. Other strategies for choosing the target speech signal can
be considered as follows.

• If the approximate location of a target speaker is known in advance, we can uti-
lize the location of the target speaker. For instance, we can know the approximate
location of the target speaker at a hands-free speech recognition system in a car
navigation system in advance. Then, the DOA of the target speech signal is approx-
imately known. For such systems, we can choose the target speech signal, selecting
the specific component in which the DOA estimated by ICA is nearest to the known
target speech DOA.

• For an interaction robot system [46], we can utilize image information from a cam-
era mounted on a robot. Therefore, we can estimate DOA from this information,
and we can choose the target speech signal on the basis of this estimated DOA.

• If the only target signal is speech, i.e., none of the noises are speech, we can choose
the target speech signal on the basis of the Gaussian mixture model (GMM), which
can classify sound signals into voices and nonvoices [47].

Next, in the reference path, no target speech signal is required because we want to
estimate only noise. Therefore, we eliminate the user’s signal from the ICA’s output
signal o( f, α ). This can be written as

q( f, α ) = [o1( f, α ), ..., oU−1( f, α ), 0, oU+1( f, α ), ..., oK+1( f, α )
⎧T

, (10.41)

where q( f, α ) is the “noise-only” signal vector that contains only noise components.
Next, we apply the projection back (PB) [15] method to remove the ambiguity of
amplitude. This procedure can be represented as
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q̂( f, α ) = [q̂1( f, α ), ..., q̂J ( f, α )
⎧T = W+

ICA( f )q( f, α ), (10.42)

where M+ denotes the Moore–Penrose pseudoinverse matrix of M. Thus, q̂( f, α ) is
a good estimate of the noise signals received at the microphone positions, i.e.,

q̂( f, α ) 	 A( f )n( f, α ) + W+
ICA( f )n̂a( f, α ), (10.43)

where n̂a( f, α ) contains the deformed additive noise signal and separation error due
to an additive noise. Finally, we construct the estimated noise signal zDS( f, α ) by
applying DS as

zDS( f, α ) = wT
DS( f )q̂( f, α ) 	 wT

DS( f )A( f )n( f, α ) + wT
DS( f )W+

ICA( f )n̂a( f, α ).

(10.44)

This equation means that zDS( f, α ) is a good candidate for noise terms of the primary
path output yDS( f, α ) (see the 2nd and 3rd terms on the right-hand side of (10.34)).
Of course this noise estimation is not perfect, but we can still enhance the target
speech signal via oversubtraction in the amplitude or power spectrum domain, where
the overestimated noise component is subtracted from the observed noisy speech
component with an allowance of speech distortion, as described in Sect. 10.4.4. Note
that zDS( f, α ) is a function of the frame index α , unlike the constant noise prototype
in the traditional SS method [24]. Therefore, the proposed BSSA can deal with
nonstationary noise.

10.4.4 Formulation of Structure-Generalized Parametric BSSA

In a recent study, two types of BSSA have been proposed (see Fig. 10.1). One is
the conventional BSSA structure that performs SS after DS (see Fig. 10.1a), and
the other involves channelwise SS before DS (chBSSA; see Fig. 10.1b). Also, it has
been theoretically clarified that chBSSA is superior to BSSA for the mitigation of
the musical noise generation [26]. In this chapter, we generalize the various types of
BSSA as a structure-generalized parametric BSSA [27].

First, parametric BSSA is described. Using (10.34) and (10.44), we perform gen-
eralized SS (GSS) [48] and obtain the enhanced target speech signal as

yBSSA( f, α )

=

⎩
⎫⎬
⎫⎢

2n
√

|yDS( f, α )|2n − ε|zDS( f, α )|2nei arg(yDS( f,α ))

(if |yDS( f, α )|2n − ε|zDS( f, α )|2n > 0),

0 (otherwise),

(10.45)
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where yBSSA( f, α ) is the final output of the parametric BSSA, ε is an oversubtraction
parameter, n is an exponent parameter, and |zDS( f, α )|2n is the smoothed noise
component within a certain time frame window.

Next, in the parametric chBSSA, we first perform GSS independently in each
input channel and derive multiple enhanced target speech signals by channelwise
GSS using (10.2) and (10.42). This procedure can be given by

y(chGSS)
j ( f, α ) =
⎩
⎫⎬
⎫⎢

2n
√

|x j ( f, α )|2n − ε|q̂ j ( f, α )|2nei arg(x j ( f,α ))

(if |x j ( f, α )|2n − ε|q̂ j ( f, α )|2n > 0),

0 (otherwise),

(10.46)

where y(chGSS)
j ( f, α ) is the enhanced target speech signal obtained by GSS at a

specific channel j . Finally, we obtain the resultant-enhanced target speech signal by
applying DS to ychGSS = [y(chGSS)

1 ( f, α ), . . . , y(chGSS)
J ( f, α )]T. This procedure can

be expressed by

ychBSSA( f, α ) = wT
DS( f )ychGSS( f, α ), (10.47)

where ychBSSA( f, α ) is the final output of the parametric chBSSA.

10.5 Theoretical Analysis of Structure-Generalized Parametric
BSSA

10.5.1 Motivation and Strategy

In general, BSSA can achieve good noise reduction performance but always suf-
fers from artificial distortion, so-called musical noise, owing to its nonlinear signal
processing. This leads to a serious tradeoff between the noise reduction performance
and the amount of signal distortion in speech recognition. Therefore, in this chapter,
we provide a theoretical analysis of the amounts of musical noise and speech distor-
tion generated in several types of methods using the structure-generalized parametric
BSSA. From a mathematical analysis based on higher-order statistics, we prove the
existence of a tradeoff between the amounts of musical noise and speech distortion in
various BSSA structures. From experimental evaluations, we reveal that the structure
should be carefully selected according to the application, i.e., a chBSSA structure
is recommended for listening but a conventional BSSA is more suitable for speech
recognition.

In this chapter, we assume that the input signal x in the power spectral domain
can be modeled by the gamma distribution as [49, 50]
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PGM(x) = xκ−1exp(− x
ψ
)

ψκφ(κ)
, (10.48)

where κ is the shape parameter corresponding to the type of the signal, ψ is the
scale parameter of the gamma distribution. In addition, φ(κ) is the gamma function,
defined as

φ(κ) =
∞∫

0

tκ−1 exp(−t)dt. (10.49)

If the input signal is Gaussian, its complex-valued DFT coefficients also have the
Gaussian distributions in the real and imaginary parts. Therefore, the p.d.f. of its
power spectra obeys the chi-square distribution with two degrees of freedom, which
corresponds to the gamma distribution with κ=1. Also, if the input signal is super-
Gaussian, the p.d.f. of its power spectra obeys the gamma distribution with κ<1.

10.5.2 Analysis of Amount of Musical Noise

10.5.2.1 Metric of Musical Noise Generation: Kurtosis Ratio

We speculate that the amount of musical noise is highly correlated with the number
of isolated power spectral components and their level of isolation (see Fig. 10.8).
In this chapter, we call these isolated components tonal components. Since such
tonal components have relatively high power, they are strongly related to the weight
of the tail of their probability density function (p.d.f.). Therefore, quantifying the
tail of the p.d.f. makes it possible to measure the number of tonal components.
Thus, we adopt kurtosis, one of the most commonly used higher-order statistics, to
evaluate the percentage of tonal components among all components. A larger kurtosis
value indicates a signal with a heavy tail, meaning that the signal has many tonal
components. Kurtosis is defined as

kurt = μ4

μ2
2

, (10.50)

where “kurt” is the kurtosis and μm is the mth-order moment, given by

μm =
∞∫

0

xm P(x)dx, (10.51)

where P(x) is the p.d.f. of the random variable X . Note that μm is not a central
moment but a raw moment. Thus, (10.50) is not kurtosis in the mathematically strict
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Fig. 10.8 Example of generation of tonal component after signal processing, where input signal is
speech with white Gaussian noise and output is processed signal by GSS

definition but a modified version; however, we still refer to (10.50) as kurtosis in this
chapter.

In this study, we apply such a kurtosis-based analysis to a time–frequency period
of subject signals for the assessment of musical noise. Thus, this analysis should
be conducted during, for example, periods of silence in speech when we evaluate
the degree of musical noise arising in remaining noise. This is because we aim to
quantify the tonal components arising in the noise-only part, which is the main cause
of musical noise perception, and not in the target speech-dominant part.

Although kurtosis can be used to measure the number of tonal components, note
that the kurtosis itself is not sufficient to measure the amount of musical noise.
This is obvious since the kurtosis of some unprocessed noise signals, such as an
interfering speech signal, is also high, but we do not recognize speech as musical
noise. Hence, we turn our attention to the change in kurtosis between before and after
signal processing to identify only the musical noise components. Thus, we adopt the
kurtosis ratio as a measure to assess musical noise [30–32]. This measure is defined
as

kurtosis ratio = kurtproc

kurtorg
, (10.52)

where kurtproc is the kurtosis of the processed signal and kurtorg is the kurtosis of
the original (unprocessed) signal. This measure increases as the amount of generated
musical noise increases. In Ref. [30], it was reported that the kurtosis ratio is strongly
correlated with the human perception of musical noise. Figure 10.9 shows an example
of the relation between the kurtsis ratio (in log scale) and a human-perceptual score
of degree of musical noise generation, where we can confirm the strong correlation.

10.5.2.2 Analysis in the Case of Parametric BSSA

In this section, we analyze the kurtosis ratio in a parametric BSSA. First, using the
shape parameter of input noise κn, we express the kurtosis of a gamma distribution,
kurt(n)

in , as [51]
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Fig. 10.9 Relation between kurtsis ratio (in log scale) and human-perceptual score of degree of
musical noise generation [30]

kurt(n)
in =

∞∫
0

x4 PGM(x)dx

( ∞∫
0

x2 PGM(x)dx
)2 (10.53)

= (κn + 2)(κn + 3)

κn(κn + 1)
. (10.54)

The kurtosis in the power spectral domain after DS is given by [26]

kurt(n)
DS 	 J−0.7 · (kurt(n)

in − 6) + 6. (10.55)

Similarly to (10.53), the shape parameter κDS corresponding to the kurtosis after DS,
kurtDS, is given by solving the following equation in κDS:

kurt(n)
DS = (κDS + 2)(κDS + 3)

κDS(κDS + 1)
. (10.56)

This can be expanded as

κ2
DS(kurt(n)

DS − 1) + κDS(kurt(n)
DS − 5) − 6 = 0, (10.57)

and we have

κDS =
−kurtDS + 5 +

√
kurt2

DS + 14 kurtDS + 1

2 kurtDS − 2
. (10.58)

Then, using (10.53) and (10.55), κDS can be expressed in terms of κn as
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κDS =
[

2J−0.7 ·
{

(κn + 2)(κn + 3)

κn(κn + 1)
− 6

⎨
+ 10

]−1

·
[{(

J−0.7 ·
{

(κn + 2)(κn + 3)

κn(κn + 1)
− 6

⎨
+ 6

)2

+ 14J−0.7 ·
{

(κn + 2)(κn + 3)

κn(κn + 1)
− 6

⎨
+ 85

⎨0.5

−
(

J−0.7 ·
{

(κn + 2)(κn + 3)

κn(κn + 1)
− 6

⎨)
− 1

]
. (10.59)

Next, we calculate the change in kurtosis after parametric BSSA. With the shape para-
meter after DS, κDS, the resultant kurtosis after the parametric BSSA is represented
as

kurt(n)
BSSA = M (κDS, ε, 4, n)/M 2(κDS, ε, 2, n), (10.60)

whereM (κ, ε, m, n) is referred to as normalized moment function that represents the
resultant mth-order moment after GSS in the case that the oversubtraction parameter
is ε, the exponent parameter is n and the input signal’s shape parameter is κ. This
can be expressed as [52]

M (κ, ε, m, n) =
m/n∑

l=0

(−ε)lφl(κ + n)φ(m/n + 1)

φl+1(κ)φ(l + 1)φ(m/n − l + 1)

φ

(
κ + m − nl,

(
ε

φ(κ + n)

φ(κ)

) 1
n
)

, (10.61)

where φ(κ, z) is the upper incomplete gamma function

φ(κ, z) =
∞∫

z

tκ−1 exp(−t)dt. (10.62)

Finally, using (10.52), (10.53), and (10.60),
we can determine the resultant kurtosis ratio through a parametric BSSA as

kurtosis ratio(n)
BSSA = kurt(n)

BSSA/kurt(n)
in . (10.63)

10.5.2.3 Analysis in the Case of Parametric chBSSA

In this section, we analyze the kurtosis ratio in a parametric chBSSA. First, we
calculate the change in kurtosis after channelwise GSS. Using (10.60) with the shape
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parameter of input noise κn, we can express the resultant kurtosis after channelwise
GSS as

kurt(n)
chGSS = M (κn, ε, 4, n)/M 2(κn, ε, 2, n). (10.64)

Next, using (10.55) and (10.64), we can derive the change in kurtosis after a para-
metric chBSSA as

kurt(n)
chBSSA 	 J−0.7 · (kurt(n)

chGSS − 6) + 6. (10.65)

Finally, we can obtain the resultant kurtosis ratio through a parametric chBSSA as

kurtosis ratio(n)
chBSSA = kurt(n)

chBSSA/kurt(n)
in . (10.66)

10.5.3 Analysis of Amount of Speech Distortion

10.5.3.1 Analysis in the Case of BSSA

In this section, we analyze the amount of speech distortion on the basis of the kur-
tosis ratio in speech components. Hereafter, we define s( f, α ) and n( f, α ) as the
observed speech and noise components at each microphone, respectively. Assuming
that speech and noise are disjoint, i.e., there is no overlap in the time–frequency
domain, speech distortion is caused by subtracting the average noise from the pure
speech component.

Thus, the distorted speech after BSSA is given by

|sBSSA( f, α )| = 2n
√

|s( f, α )|2n − ε|zDS( f, α )|2n

= 2n
√

|s( f, α )|2n − εCBSSA|s( f, α )|2n, (10.67)

where sBSSA( f, α ) is the output speech component in BSSA. Also, calculating the
nth-order moment of the gamma distribution, CBSSA is given by

CBSSA = |zDS( f, α )|2n/|s( f, α )|2n

= J−n|n( f, α )|2n/|s( f, α )|2n

= J−n
(

κs

κn

)n
φ(lphan + n)/φ(κn)

φ(κs + n)/φ(κs)

(
|n( f, α )|2
|s( f, α )|2

)n

, (10.68)

where κs is the shape parameter of the input speech. Equation (10.68) indicates that
the speech distortion increases when the input SNR, |s( f, α )|2/|n( f, α )|2, and/or
the number of microphones, J , decreases. Using (10.61) and (10.68) with the input
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speech shape parameter κs, we can obtain the speech kurtosis ratio through BSSA
as

kurtosis ratio(s)
BSSA

= M (κs, εCBSSA, 4, n)

M 2(κs, εCBSSA, 2, n)

κs(κs + 1)

(κs + 2)(κs + 3)
. (10.69)

10.5.3.2 Analysis in the Case of chBSSA

In chBSSA, since channelwise GSS is performed before DS, CBSSA is therefore
replaced with

CchBSSA = (|n( f, α )|2n/|s( f, α )|2n)

=
(

κs

κn

)n
φ(κn + n)/φ(κn)

φ(κs + n)/φ(κs)

(
|n( f, α )|2
|s( f, α )|2

)n

. (10.70)

Equation (10.70) indicates that the speech distortion increases only when the input
SNR decreases, regardless of the number of microphones. Thus, the distortion does
not change even if we prepare many microphones, unlike the case of a parametric
BSSA. Using (10.61) and (10.70) with κs, we can obtain the speech kurtosis ratio
through chBSSA as

kurtosis ratio(s)
chBSSA

= M (κs, εCchBSSA, 4, n)

M 2(κs, εCchBSSA, 2, n)

κs(κs + 1)

(κs + 2)(κs + 3)
. (10.71)

10.5.4 Comparison of Amounts of Musical Noise and Speech
Distortion Under Same Amount of Noise Reduction

According to the previous analysis, we can compare the amounts of musical noise
and speech distortion among a parametric BSSA and a parametric chBSSA under
the same NRR (output SNR–input SNR in dB). Figure 10.10 shows the theoretical
behaviors of the noise kurtosis ratio and speech kurtosis ratio. In Fig. 10.10a, b, the
shape parameter of input noise, κn, is set to 0.95 and 0.83, corresponding to almost
white Gaussian noise and railway station noise, respectively. Also, in Fig. 10.10c, d,
the shape parameter of input speech, κs, is set to 0.1, and the input SNR is set to 10
and 5 dB, respectively. Here, we assume an eight-element array with the interelement
spacing of 2.15 cm. The NRR is varied from 11 to 15 dB, and the oversubtraction
parameter ε is adjusted so that the target speech NRR is achieved. In the parametric
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Fig. 10.10 a and b are theoretical behaviors of noise kurtosis ratio in structure-generalized para-
metric BSSA. a is for white Gaussian noise and b is for railway station noise. c and d are theoretical
behaviors of speech kurtosis ratio in structure-generalized parametric BSSA, where the input SNR
is set to 10 and 5 dB, respectively

BSSA and parametric chBSSA, the signal exponent parameter 2n is set to 2.0, 1.0,
and 0.5.

Figure 10.10a, b indicates that the noise kurtosis ratio of chBSSA is smaller than
that of BSSA, i.e., less musical noise is generated in a parametric chBSSA than
in a parametric BSSA, and a smaller amount of musical noise is generated when a
lower exponent parameter is used, regardless of the type of noise and NRR. However,
Fig. 10.10c, d shows that speech distortion is lower in a parametric BSSA than in a
parametric chBSSA, and a small amount of speech distortion is generated when a
higher exponent parameter is used, regardless of the type of noise and NRR. These
results theoretically prove the existence of a tradeoff between the amounts of musical
noise and speech distortion in BSSA and chBSSA.
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10.6 Experiment

10.6.1 Experimental Setup

In this study, we conducted a speech recognition experiment. We used an eight-
element microphone array with an interelement spacing of 2.15 cm, and the direction
of the target speech was set to be normal to the array. The size of the experimental
room is 4.2 × 3.5 × 3.0 m3 and the reverberation time is approximately 200 ms. All
the signals used in this experiment are sampled at 16 kHz with 16-bit accuracy. The
observed signal consists of the target speech signal of 200 speakers (100 males and
100 females) and two types of diffuse noise (white Gaussian noise and railway station
noise) emitted from eight surrounding loudspeakers. The input SNR of the test data
is set to 3, 5, and 10 dB. The FFT size is 1,024, and the frame shift length is 256
in BSSA. The speech recognition task is a 20k-word Japanese newspaper dictation,
where we used Julius 3.4.2 [53] as the speech decoder. The acoustic model is a
phonetic-tied mixture [53], and we use 260 speakers (150 sentences/speaker) to train
the acoustic model. In this experiment, the NRR, i.e., the target SNR improvement, is
set to 10 dB for white Gaussian noise and 5 dB for railway station noise, the exponent
parameter 2n is set to 1.0 and 0.5, and the oversubtraction parameter ε is adjusted
so that the target NRR is achieved.

10.6.2 Evaluation of Speech Recognition Performance and
Discussion

Figure 10.11 shows the results of word accuracy in the parametric BSSA and para-
metric chBSSA, which reveal that better speech recognition performance can be
obtained in a parametric BSSA when the input SNR is low (e.g., 3 dB).

This result is of considerable interest because Takahashi et al. [26] reported a
contradictory result, i.e., the sound quality of chBSSA is always superior to that of
BSSA. Indeed, we conducted a subjective evaluation. We presented 56 pairs of signals
processed by a parametric BSSA and a parametric chBSSA, selected from sentences
used in the speech recognition experiment, in random order to 10 examinees, who
selected which signal they preferred. The result is shown in Fig. 10.12, confirming
that chBSSA is preferred by humans, in contrast to the speech recognition results.
This is partially true regarding noise distortion, i.e., the amount of musical noise
generated, as theoretically shown in Fig. 10.10a, b. Thus, the human evaluation is
strongly affected by noise distortion.

However, as shown in Fig. 10.10c, d, the speech distortion in chBSSA is larger
than that in BSSA; this leads to the degradation of speech recognition performance. In
summary, we should carefully select the structure of signal processing in BSSA, i.e.,
chBSSA is recommended for listening but BSSA is suitable for speech recognition
under a low-input SNR condition.
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Fig. 10.11 Results of word accuracy in parametric BSSA and parametric chBSSA
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Fig. 10.12 Subjective evaluation results: BSSA versus chBSSA

10.7 Conclusions and Remarks

This chapter addressed the BSS problem for speech applications under real acoustic
environments, particularly focusing on BSSA that utilizes ICA as a noise estimator.
Under a nonpoint-source noise condition, it was pointed out that beamformers opti-
mized by ICA are a DS beamformer for extracting the target speech signal that can
be regarded as a point source and NBF for picking up the noise signal. Thus, ICA is
proficient in noise estimation under a nonpoint-source noise condition. Therefore, it
is valid to use ICA as a noise estimator.

Motivated by the above-mentioned fact, we introduced a structure-generalized
parametric BSSA, which consists of an ICA-based noise estimator and GSS-based
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post-filtering. In addition, we performed its theoretical analysis via higher-order
statistics. Comparing a parametric BSSA and parametric chBSSA, we revealed that
a channelwise BSSA structure is recommended for listening but a conventional BSSA
is more suitable for speech recognition.

In this chapter, the SS-based BSSAs, which involve SS-based post-filtering, were
mainly addressed. Recent studies have provided the further extended methods that
include other types of post-filtering, such as Wiener filtering [54, 55], the minimum
mean-square error short-time spectral amplitude (MMSE-STSA) estimator [56, 57],
and the combination method with cepstral smoothing for mitigating musical noise
[58]. Also, the theoretical analysis based on the higher-order statistics for these
methods is available in several literatures [59–63]. In addition, thanks to the same
higher-order statistics analysis, musical-noise-free post-filtering [64], in which no
musical noise is perfectly generated, has been proposed, and successfully introduced
into the channelwise BSSA architecture [65, 66].

BSS implementation on a small hardware still receives much attention in industrial
applications. Due to the limitation of space, however, the authors skip the discussion
on this issue. Instead, several studies [21, 67, 68] have dealt with the issue of real-time
implementation of ICA and BSSA, which would be helpful for the readers.
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Chapter 11
Speech Separation and Extraction by
Combining Superdirective Beamforming
and Blind Source Separation

Lin Wang, Heping Ding and Fuliang Yin

Abstract Blind source separation (BSS) and beamforming are two well-known
multiple microphone techniques for speech separation and extraction in cocktail-
party environments. However, both of them perform limitedly in highly reverberant
and dynamic scenarios. Emulating human auditory systems, this chapter proposes
a combined method for better separation and extraction performance, which uses
superdirective beamforming as a preprocessor of frequency-domain BSS. Based on
spatial information only, superdirective beamforming presents abilities of derever-
beration and noise reduction and performs robustly in time-varying environments.
Using it as a preprocessor can mitigate the inherent “circular convolution approxima-
tion problem” of the frequency-domain BSS and enhances its robustness in dynamic
environments. Meanwhile, utilizing statistical information only, BSS can further re-
duce the residual interferences after beamforming efficiently. The combined method
can exploit both spatial information and statistical information about microphone
signals and hence performs better than using either BSS or beamforming alone. The
proposed method is applied to two specific challenging tasks, namely a separation
task in highly reverberant environments with the positions of all sources known, and
a target speech extraction task in highly dynamic cocktail-party environments with
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only the position of the target known. Experimental results prove the effectiveness
of the proposed method.

11.1 Introduction

Extracting one or several desired speech signals from their corrupted observations is
essential for many applications of speech processing and communication. One of the
hardest situations to handle is the extraction of desired speech signals in a “cocktail
party” condition—from mixtures picked up by microphones placed inside a noisy
and reverberant enclosure. In this case, the target speech is immersed in ambient noise
and interferences, and distorted by reverberation. Furthermore, the environment may
be time varying. Generally, there are two well-known techniques that may achieve
the objective: blind source separation (BSS) and beamforming.

With a microphone array, beamforming is a well-known technique for directional
signal reception [1, 2]. Depending on how the beamformer weights are chosen, it can
be implemented as a data-independent fixed beamforming or data-dependent adaptive
one [3–7]. Although an adaptive beamformer generally exhibits better noise reduc-
tion abilities, a fixed beamformer is more preferred in complicated environments
due to its robustness. By coherently summing signals from multiple sensors based
on a model of the wavefront from acoustic sources, a fixed beamformer presents a
specified directional response. With abilities of enhancing signals from the desired di-
rection while suppressing ones from other directions, it can be used to perform both
noise suppression and dereverberation. The most conventional fixed beamformer
is a delay-and-sum one, which however requires a large number of microphones
to achieve high performance. Another filter-and-sum beamformer has superdirec-
tive response with optimized weights [4]. Assuming the directions of the sources
are known, speech separation or extraction can be obtained by forming individual
beams at the target sources separately. However, fixed beamforming performs lim-
itedly in real cocktail-party scenarios. First, the performance is closely related to
the microphone array size—a large array is usually required to obtain a satisfactory
result but may not be practically feasible. Second, beamforming cannot suppress the
interfering reverberation coming from the desired direction.

BSS is a technique for recovering the source signals from observed signals with the
mixing process unknown. By exploiting the statistical independence of the sources,
independent component analysis (ICA)-based algorithms are commonly used to
solve the BSS problem [8–13]. While time domain ICA-based techniques are well
suited for instantaneous mixing problem, they are not efficient in addressing the
convolutive mixture problem encountered in reverberant environments [14–17]. By
considering the BSS problem in the frequency domain, the convolutive mixing prob-
lem can be transformed into an instantaneous mixing problem for each frequency bin,
reducing computation complexity significantly. However, the inherent permutation
and amplitude scaling ambiguity problem occurs at each frequency bin in frequency-
domain BSS, deteriorating signal reconstruction in the time domain significantly
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[18, 19]. The permutation ambiguity problem has been investigated intensively and
there are generally three strategies to tackle it. The first is to make the separation
filters smooth in the frequency domain by limiting the filter length in the time domain
[16, 20, 21]. The second strategy is to exploit the interfrequency dependence of the
amplitude of separated signals [22–30]. The third strategy is to exploit the position
information about sources such as direction of arrival (DOA). By estimating the
arriving delay of sources or analyzing the directivity pattern formed by a separation
matrix, source direction can be estimated and permutations aligned [31–36].

The relationship between blind source separation and beamforming has been
intensively investigated in recent years, and adaptive beamforming is commonly
used to explain the physical principle of convolutive BSS [37, 38]. In addition,
many approaches have been presented that combine both techniques. Some of these
combined approaches are aimed at resolving the permutation ambiguity inherent
in frequency-domain BSS [31, 39], whereas other approaches utilize beamforming
to provide a good initialization for BSS or to accelerate its convergence [40–43].
For now, there were no systematically studies on combining the two techniques to
improve the separation performance in challenging acoustic scenarios.

Compared with beamforming, which extracts desired speech and suppress
interference, BSS aims at separating all the involved desired and interfering sources
equally. One advantage with blind source separation is that it does not need to know
the direction of arrival of any signals and the array geometry can be arbitrary and
unknown to the system. Nevertheless, blind source separation also performs limit-
edly in real cocktail-party scenarios. First, BSS performs poorly in high reverberation
with long mixing filters, due to the “circular convolution approximation problem”.
Second, underdetermined situations can result from the fact that there are only a lim-
ited number of microphones. Third, the performance of BSS degrades in dynamic
environments.

Due to the reasons above, few methods proposed in recent years show good sepa-
ration/extraction results in a real cocktail-party environment. In contrast, a human has
a remarkable ability to focus on a specific speaker in that case. This selective listening
capability is partially attributed to binaural hearing. Two ears work as a beamformer,
which enables directive listening [44], then the brain analyzes the received signals
to extract sources of interest from the background, just as blind source separation
does [45–47]. Stimulating this principle, we propose to do speech separation and
extraction by combining beamforming and blind source separation. Specifically, the
following two issues will be addressed:

• To improve the separation performance in highly reverberant scenarios, a com-
bined method is proposed which uses beamforming as a preprocessor of blind
source separation by forming a number of beams each pointing at a source. With
beamforming shortening mixing filters, the inherent “circular convolution approx-
imation” problem in the frequency-domain BSS is mitigated and the performance
of proposed method can improve significantly especially in high reverberation.

• The combined method is further extended to a special case of target speech
extraction problem in noisy cocktail-party environments, where only one source
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is of interest. Instead of focusing on all the sources, the proposed method forms
just several fixed beams at an area containing the target source. The proposed
scheme can enhance the robustness to time-varying environments and make the
target source dominant in the output of the beamformer. Consequently, the subse-
quent extraction task with blind source separation becomes easier and satisfactory
extraction results can be obtained even in challenging scenarios.

The rest of the chapter is organized as follows. The principles of frequency-domain
blind source separation and superdirective beamforming are reviewed in Sects. 11.2
and 11.3, respectively. Especially, the inherent “circular convolution approximation”
problem with frequency-domain BSS is discussed in detail in Sect. 11.2. BSS and
beamforming are combined for a better separation results and the performance of the
combined method is experimentally evaluated in Sect. 11.4. The combined method
is further extended to a target speech extraction problem with some experimental
results shown in Sect. 11.5. Finally, conclusions are drawn in Sect.11.6.

11.2 Frequency-Domain BSS and Its Fundamental Problem

BSS is a powerful tool for solving cocktail-party problems since it aims at recovering
the source signals from observed signals with the mixing process unknown. The sim-
plest instantaneous BSS problem can be solved by independent components analysis
(ICA), which assumes that all the source signals are independent of each other. One
challenge arises when the mixing process is convolutive, i.e., the observations are
combinations of filtered versions of sources. The convolutive BSS problem can be
solved in the time domain, where the separation network is derived by optimizing
a time-domain cost function. However, the task of estimating many parameters si-
multaneously has to face the challenge of slow convergence and high-computational
demand. Alternatively, the convolutive BSS problem can be solved in the frequency
domain, where instantaneous BSS is performed at individual frequency bins, reduc-
ing the computational complexity significantly. In this section, the principle of the
frequency-domain BSS is introduced at first, followed by a discussion of an inherent
problem, namely the circular convolution approximation problem, which degrades
the performance of the frequency-domain BSS in high reverberation.

11.2.1 Frequency-Domain BSS

Supposing N sources and M sensors in a real-world acoustic scenario, the source
vector s(n) = [s1(n), · · · , sN (n)]T, and the observed vector x(n) = [x1(n), · · · ,

xM (n)]T, the mixing channels can be modeled by FIR filters of length P , the convo-
lutive mixing process is formulated as
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Fig. 11.1 Workflow of frequency-domain blind source separation

x(n) = H(n) ∗ s(n) =
P−1∑

p=0

H(p)s(n − p) (11.1)

where H(n) is a sequence of M × N matrices containing the impulse responses of the
mixing channels, n is the time index, and the operator ‘*’ denotes matrix convolution.
For separation, FIR filters of length L can be used to estimate the source signals
y(n) = [y1(n), · · · , yN (n)]T by

y(n) = W(n) ∗ x(n) =
L−1∑

l=0

W(l)x(n − l) (11.2)

where W(n) is a sequence of N × M matrices containing the unmixing filters.
The demixing network W(n) can be estimated in the frequency domain. By using

a blockwise Q-point short-time Fourier transform (STFT), the time-domain convolu-
tion regarding the mixing process can be converted into frequency-domain multipli-
cations and correspondingly the convolutive BSS problem is converted into multiple
instantaneous BSS problem at each frequency bin. This is expressed as

x( f, l) = H( f )s( f, l) (11.3)

where l is a decimated version of the time index n, f is the frequency index, H( f )

is the Fourier transform of H(n), and x( f, l) and s( f, l) are the STFTs of x(n) and
s(n), respectively. The remaining task will be to find a demixing matrix Wdemix( f )

at individual frequency bins, so that the original signals can be recovered. This is
expressed as

y( f, l) = Wdemix( f )x( f, l) (11.4)

Based on the discussion above, the workflow of the frequency-domain BSS is
shown in Fig. 11.1. The observed time-domain signals are converted into the time–
frequency domain by STFT; then instantaneous BSS is applied to each frequency bin;
after solving the inherent permutation and scaling ambiguities, the separated signals
of all frequency bins are combined and inverse-transformed to the time domain. The
procedure of a frequency-domain BSS mainly consists of three blocks: instantaneous
BSS, permutation alignment, and scaling correction.
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(1) Instantaneous BSS
After decomposing time-domain convolutive mixing into frequency-domain instan-
taneous mixing, it is possible to perform instantaneous separation at each frequency
bin with a complex-valued ICA algorithm. The ICA algorithms for instantaneous
BSS have been studied for many years and are considered to be quite mature. For
instance, the demixing matrix can be estimated iteratively by using the well-known
Infomax algorithm [11, 12], i.e.,

{
y( f, l) = W( f )x( f, l)
W( f ) = W( f ) + ψ(I − E[α(y( f, l))yH( f, l)])W( f )

(11.5)

where I is an identity matrix, α(·) is a nonlinear function and E[·] is the expectation
operator.

(2) Permutation alignment
Although satisfactory instantaneous separation may be achieved within all frequency
bins, combining them to recover the original sources is a challenge because of the
unknown permutations associated with individual frequency bins. This permutation
ambiguity problem is the main challenge in the frequency-domain BSS and how to
solve this problem has been a hot topic in the research community in recent years.

Two kinds of strategies can be used to solve this problem. The first strategy
is to exploit the interfrequency dependence of the amplitude of separated signals
[22–25]. The second strategy is to exploit the position information of sources such
as direction of arrival or the continuity of the phase of separation matrix [31–33].
By analyzing the directivity pattern formed by a separation matrix, source direction
can be estimated and permutations aligned. Since the performance of the second
approach is generally limited by the reverberation density of the environment and
the source positions, we prefer to use the first approach. In [24], a region-growing
permutation alignment approach is proposed with good results, which is based on
the interfrequency of separated signals. Bin-wise permutation alignment is applied
first across all frequency bins, using the correlation of separated signal powers;
then the full frequency band is partitioned into small regions based on the bin-
wise permutation alignment result. Finally, region-wise permutation alignment is
performed, which can prevent the spreading of the misalignment at isolated frequency
bins to others and thus improves permutation alignment results. After permutation
alignment, we can assume that the separated frequency components from the same
source are grouped together.

(3) Scaling correction
The scaling indeterminacy can be resolved relatively easily by using the Minimal
Distortion Principle [48]:

Ws( f ) = diag(W−1
p ( f )) · W p( f ) (11.6)

where W p( f ) is W( f ) after permutation correction, (·)−1 denotes inversion of a
square matrix or pseudo inversion of a rectangular matrix; diag(·) retains only the
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main diagonal components of the matrix. Ws( f ) is the demixing matrix Wdemix( f ),
which we are looking for.

Finally, the demixing network W(n) is obtained by inverse Fourier transforming
Ws( f ), and the estimated source y(n) is obtained by filtering x(n) through W(n).

11.2.2 Circular Convolution Approximation Problem

Besides the permutation and scaling ambiguity, another problem also affects the per-
formance of frequency-domain BSS: the STFT circular convolution approximation
[24, 37, 43]. The convolutive mixture is decomposed into an instantaneous mixture
at each frequency bin as shown in (11.3). Equation (11.3) is only an approximation
since it implies a circular convolution but not a linear convolution in the time domain.
It is correct only when the STFT analysis frame length L is larger than the mixing
filter length P . Thus, a large L is required to ensure a sufficient separation perfor-
mance. However in that case, the instantaneous separation performance is saturated
before reaching a sufficient level, because decreased time resolution for STFT and
fewer data available in each frequency bin will violate the independence assumption.

To verify the statement above, a simple example is given below. As is well known,
non-Gaussianity is an important measure for the independence of signals while kur-
tosis is an important measure for non-Gaussianity [8]. The kurtosis of a signal s is
defined as

kurt(s) = E{s4} − 3(E{s2})2 (11.7)

where the operator E{·} denotes expectation. A high kurtosis value indicates strong
non-Gaussianity and independence. We compare kurtosis values of the STFT coef-
ficients of a speech signal when different STFT frame sizes (varying from 128 to
16,384) are used. The kurtosis value is calculated for the real and imaginary parts
of the complex-valued coefficients, respectively. Since the kurtosis value, which is
calculated for the time sequences at each frequency bin, varies with respect to fre-
quency, a median value is chosen from the set of kurtosis values at all frequencies to
represent the independence measure of the signal after STFT analysis. Considering
the possible influence of insufficient data points at each frequency bin after a long-
frame STFT, three speech signals with lengths of 10s, 40s, and 160s, respectively,
are tested. The obtained kurtosis for different test signals and different STFT frame
sizes are shown in Fig. 11.2. For reference, the kurtosis of a normalized Gaussian
white signal is also given. As can be seen in Fig. 11.2, the real and imaginary parts
of the STFT coefficients show similar variation trend with respect to the STFT frame
size. Additionally, two phenomena can be observed.

(1) Large kurtosis values can be observed for small STFT frame sizes. The kurtosis
value increases slightly with increased STFT frame size and then decreases
significantly when the STFT frame size is larger than 1,024. The kurtosis value
is close to a Gaussian white signal when the STFT frame size is very large.



330 L. Wang et al.

128 256 512 1024 2048 4096 8192 16384
0

20

40

60

80

100

120

STFT frame size

K
ur

to
si

s
Real

128 256 512 1024 2048 4096 8192 16384
0

20

40

60

80

100

120

STFT frame size
K

ur
to

si
s

Imaginary

10s
40s
160s
Gaussian

Fig. 11.2 Kurtosis of the STFT coefficients versus STFT frame size (calculated for speech signals
of different lengths)

This demonstrates that the STFT coefficients of a speech signal show strong
non-Gaussianity for small STFT frame sizes, but tend to be Gaussian for large
STFT frame sizes.

(2) Even for a same STFT frame size, the kurtosis of a speech signal with different
length is different. Generally, a long signal shows higher kurtosis than short
signals. This may be due to insufficient data points available at each frequency
bin with short signals.

The results shown in Fig. 11.2 demonstrate that the independence assumption of
sources may collapse when a large STFT frame size is used, hence degrading the
separation performance significantly. There is a dilemma in determining the STFT
frame size: short frames make the conversion to instantaneous mixture incomplete,
while long ones disturb the separation. The conflict becomes severer in highly rever-
berant environments and leads to the degraded performance. Generally, a frequency-
domain BSS which works well in low (100–200 ms) reverberation has degraded
performance in medium (200–500 ms) and high (>500 ms) reverberation. Since the
problem originates from a processing step, which approximates linear convolutions
with circular convolutions in frequency-domain BSS, we call it circular convolution
approximation problem.

Furthermore, some separation experiments (2 × 2 and 4 × 4) are carried out in
a reverberant environment (reverberation time 300 ms) using a frequency-domain
BSS algorithm proposed in [24] with different STFT frame sizes. The source speech
signals are of 8s length and 8 kHz sampling rate.1 The resultant signal-interference-
ratios (SIR) are shown in Fig. 11.3. In both 2 × 2 and 4 × 4 cases, the separation

1 More details of the experiment can be found in Sect. 11.4.2.
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Fig. 11.3 Performance of BSS versus STFT frame size (calculated for speech signals of 8s length,
RT60 = 300 ms)

performance peaks at the STFT frame size of 2,048, while degrading for both shorter
and longer frame sizes. This verifies the discussion about the dilemma in determining
the STFT frame size. Obviously, an optimal STFT frame size may exist for a specific
reverberation. However, due to complex acoustical environments and varieties of
source signals, it is difficult to determine this value precisely. Generally, at sampling
frequency of 8,000 Hz, 1,024 or 2,048 can be used as a balanced choice for the frame
length.

11.3 Superdirective Beamforming

Beamforming is a technique used in sensor arrays for directional signal reception
by enhancing target directions and suppressing unwanted ones. Beamforming can
be classified as either fixed or adaptive, depending on how the beamformer weights
are chosen. An adaptive beamformer obtains directive response mainly by analyz-
ing the statistical information contained in the array data, not by utilizing the spatial
information directly. It generally adapts its weights during breaks in the target signal.
The challenge to predict signal breaks when several people are talking concurrently
limits the feasibility of adaptive beamforming in cocktail-party environments sig-
nificantly. In contrast, the weights of a fixed beamformer do not depend on array
data and are chosen to present a specified response for all scenarios. The directional
response is achieved by coherently summing signals from multiple sensors based on
a model of the wavefront from acoustic sources. A filter-and-sum beamformer has
super directivity response with optimized weights. The superdirective beamformer
can be designed in the frequency-domain.
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Fig. 11.4 Principle of a
filter-and-sum beamformer
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The principle of a fixed beamformer is given in Fig. 11.4, where a weighted sum of
signals from M sensors is produced to enhance the target direction. Suppose a beam-
former model with a target source r(t) and background noise n(t), the components
received by the l-th sensor is ul(t) = rl(t) + nl(t) in the time domain. Similarly, in
the frequency domain, the l-th sensor output is ul( f ) = rl( f ) + nl( f ). The array
output in the frequency domain is

x( f ) = bH( f )u( f ) (11.8)

where b( f ) = [b1( f ), . . . , bM ( f )]T is the beamforming weight vector composed
of beamforming weights from each sensor, and u( f ) = [u1( f ), . . . , uM ( f )]T is the
output vector composed of outputs from each sensor, and (·)H denotes conjugate
transpose. The b( f ) depends on the array geometry and source directivity, as well
as the array output optimization criterion such as a signal-to-noise ratio (SNR) gain
criterion [4, 49, 50].

Suppose r( f ) = [r1( f ), . . . , rM ( f )]T is the source vector, which is composed
of the target source signals from the sensors, and n( f ) is the noise vector, which is
composed of the spatial diffuse noises from the sensors. The array gain is a measure
of the improvement in signal-to-noise ratio. It is defined as the ratio of the SNR at the
output of the beamforming array to the SNR at a single reference microphone. For de-
velopment of the theory, the reference SNR is defined to be the ratio of average signal
power spectral densities over the microphone array, β 2

r ( f ) = E{rH( f )r( f )}/M , to
the average noise power spectral density over the array, β 2

n ( f ) = E{nH( f )n( f )}/M .
By derivation, the array gain at frequency f is expressed as

G( f ) = bH( f )Rrr ( f )b( f )

bH( f )Rnn( f )b( f )
(11.9)

where Rrr ( f ) = r( f )rH( f )/β 2
r ( f ) is the normalized signal cross-power spectral

density matrix, and Rnn( f ) = n( f )nH( f )/β 2
n ( f ) is the normalized noise cross-

power spectral density matrix. Provided Rnn( f ) is nonsingular, the array gain is
maximized with the weight vector

bopt( f ) = R−1
nn ( f )r( f ) (11.10)
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The terms Rnn( f ) and r( f ) in (11.10) depend on the array geometry and the
target source direction. For instance, given a circular array, Rnn( f ) and r( f ) can be
calculated as below [45].

Figure 11.5 shows an M-element circular array with a radius of r and a target
source coming from the direction (ω, θ). The elements are equally spaced around the
circumference, and their positions, which are determined from the layout of array,
are given in a matrix form as

v =



vx1 vy1
...

...

vxM vyM

⎡
⎣⎤ (11.11)

The source vector r( f ) can be derived as

r( f ) =



exp(− jk(sin ω · cos θ · vx1 + sin ω · sin θ · vy1))
...

exp(− jk(sin ω · cos θ · vxM + sin ω · sin θ · vyM ))

⎡
⎣⎤ (11.12)

where k = 2φ f/c is the wave number, and c is the sound velocity. The normalized
noise cross-power spectral density matrix Rnn( f ) is expressed as

(Rnn( f ))m1m2 =
⎦

sin(kdm1m2 )

kdm1m2
, m1 ∈= m2

1, m1 = m2
(11.13)

where (Rnn( f ))m1m2 is the (m1, m2) entry of the matrix Rnn( f ), m1, m2 =
1, · · · , M , k is the wave number, dm1m2 is the distance between two microphones
m1 and m2.
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After calculating the beamforming vector by (11.10), (11.12) and (11.13) at
each frequency bin, the time-domain beamforming filter b(n) is obtained by inverse
Fourier transforming bopt( f ).

The procedure above is to design a beamformer with only one target direction.
In a speech separation or extraction system, each source signal may be separately
obtained using the directivity of the array, if the directions of sources are known.
However, beamforming in principle performs limitedly in highly reverberant condi-
tions because it cannot suppress the interfering reverberation coming from the target
direction.

11.4 Enhanced Separation in Reverberant Environments
by Combining Beamforming and BSS

Due to the circular convolution approximation problem, the performance of a
frequency-domain BSS algorithm degrades seriously when the mixing filters are
long, e.g., in high reverberation environments. Thus, the problem may be miti-
gated if the mixing filters become shorter. With directive response enhancing desired
direction and suppressing unwanted ones, a superdirective beamforming can deflate
the reflected paths and hence equivalently shorten the mixing filter. It thus may help
compensate for the deficiency of blind source separation. If we use beamforming as
a preprocessor for blind source separation, at least three advantages can be achieved:

(1) The interfering residuals due to reverberation after beamforming are further
reduced by blind source separation;

(2) The poor separation performance of blind source separation in reverberant
environments is compensated for by beamforming, which suppresses the reflected
paths and shortens the mixing filters;

(3) Beamformer enhances the source in its path and suppresses the ones outside.
It thus enhances signal-to-noise ratio and provides a cleaner output for blind
source separation to process.

From another point of view, beamforming makes primary use of spatial informa-
tion while blind source separation utilizes statistical information contained in signals.
Integrating both pieces of information should help to get better separation results,
just like the way our ears separate audio signals. The details of the combined method
are given below, followed by experimental results and analysis.

11.4.1 Workflow of the Combined Method

The illustration of the combined method is shown in Fig. 11.6. For N sources received
by an array of M microphones, N beams are formed toward them, respectively,
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Fig. 11.6 Illustration of the
proposed method combining
beamforming and blind source
separation
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assuming the directions of all sources are known. Then the N beamformed outputs
are fed to blind separation to recover the N sources. The signal flow of the proposed
method is shown in Fig. 11.7, which mainly consists of three stages: acoustic mixing,
beamforming, and separation.

The mixing stage results in the observed vector

u(n) = H(n) ∗ s(n) (11.14)

where u(n) = [u1(n), . . . , uM (n)]T and s(n) = [s1(n), . . . , sN (n)]T are the ob-
served and the source vectors, respectively, H(n) is a sequence of M × N matrices
containing the impulse responses of the mixing channels, and the operator ‘*’ denotes
matrix convolution.

The beamforming stage is expressed as

x(n) = B(n) ∗ u(n) = B(n) ∗ H(n) ∗ s(n) = F(n) ∗ s(n) (11.15)

where x(n) = [x1(n), . . . , xN (n)]T is the beamforming output vector, B(n) is a
sequence of N × M matrices containing the impulse responses of beamformer, F(n)

is the global impulse response by combining H(n) and B(n).
The blind source separation stage is expressed as

y(n) = W(n) ∗ x(n) = W(n) ∗ F(n) ∗ s(n) (11.16)

where y(n) = [y1(n), . . . , yN (n)]T is the estimated source signal vector, and W(n)

is a sequence of N × N matrices containing the unmixing filters.
It can be seen from (11.14)–(11.16) that with beamforming reducing reverberation

and enhancing signal-to-noise ratio, the combined method is able to replace the
original mixing network H(n), which results from the room impulse response, with
a new mixing network F(n), which is easier to separate.
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Fig. 11.7 Signal flow of the proposed method combining beamforming and blind source separation

The blind source separation and beamforming algorithms introduced in Sects. 11.2
and 11.3 can be used directly for the combined method. However, the following two
issues should be clarified when implementing the combined method.

(1) The choice of a beamformer
Beamformer can be implemented as a fixed one or an adaptive one. As mentioned
before, comparing to fixed beamforming, an adaptive method is not appropriate
for the combined method. First, an adaptive beamformer obtains directive response
mainly by analyzing the statistical information contained in the array data, not by
utilizing the spatial information directly. Its essence is similar to that of convolutive
blind source separation [37, 38]. Cascading them together is equivalent to using the
same techniques repeatedly, hence contributing little to performance improvement.
Second, An adaptive beamformer generally adapts its weights during breaks in the
target signal. However, it is a challenge to predict signal breaks when several people
are talking concurrently. This significantly limits the applicability of adaptive beam-
forming to source separation. In contrast, a fixed beamformer, which relies mainly
on the spatial information, does not have such disadvantages. It is data indepen-
dent and more robust. With its directive response fixed in all acoustic scenarios, a
superdirective beamformer is preferred in the combined method.

(2) The permutation ambiguity problem in BSS
Permutation ambiguity inherent in frequency-domain BSS is always a challenging
problem. Generally, there are two approaches to solve it. One is to exploit the depen-
dence of separated signals across frequencies, and the other is to exploit the position
information of sources: the directivity pattern of the mixing/unmixing matrix pro-
vides a good reference for permutation alignment. However, in the proposed method,
the directivity information contained in the mixing matrix does not exist any longer
after beamforming. Even if the source positions are known, they are not much helpful
to permutation alignment in the subsequent blind source separation. Consequently,
what we can use for permutation is merely the first reference: the interfrequency
dependence of separated signals.
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11.4.2 Experimental Results and Analysis

We evaluate the performance of the proposed method in simulated experiments from
two aspects. The first experiment verifies the advantage of the beamforming pre-
processing, i.e., dereverberation and noise reduction; the second one investigates the
performance of the proposed method in various reverberant conditions, and compares
it with a BSS-only method and a beamforming-only one.

The simulation environment is shown in Fig. 11.8, the room size is 7m×5m×3m,
all sources and microphones are 1.5 m high. The room impulse response was obtained
by using the image method [51], and the reverberation time was controlled by varying
the absorption coefficient of the wall. The sampling rate is 8 kHz. For BSS, a STFT
frame size of 2,048 is used. For beamforming, a circular microphone array is used
to design the beamformer with the filter length 2,048. A commonly used objective
measure, signal-to-interference ratio (SIR), is employed to evaluate the separation
performance [45].

11.4.2.1 Influence of Beamforming Preprocessing

The proposed algorithm is used for separating three sources in the environment shown
in Fig. 11.8, using a 16-element circular microphone array with a radius of 0.2 m. The
simulated room reverberation time is RT60 = 300 ms, where RT60 is the time required
for the sound level to decrease by 60 dB. This is a medium reverberant condition.
Three source locations (2, 4, 6) are used, and the sources are two male speeches and
one female speech of 8s each. Three beams are formed by the microphone array
pointing at the three sources, respectively. Impulse responses associated with the
global transfer function of beamforming is shown in Fig. 11.10, which are calculated
from the impulse responses of mixing filters and beamforming filters using
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Fig. 11.9 Global impulse responses after beamforming

F(n) = B(n) ∗ H(n) (11.17)

It can be seen that the diagonal components in Fig. 11.9 are superior to off-
diagonal ones. This implies that the target sources are dominant in the outputs. To
demonstrate the dereverberation performance of beamforming, the top left panel in
Fig. 11.9 is enlarged in Fig. 11.10 and compared with the original impulse response.
Obviously, the mixing filter becomes shorter after beamforming, and the reverbera-
tion becomes smaller. This indicates that dereverberation is achieved. So far, the two
advantages of beamforming, dereverberation and noise reduction, are observed as
expected. Thus, the new mixing network (11.17) should be easier to separate than the
original mixing network. In this experiment, the average input SIR is −2.8 dB, and
the output one, enhanced by beamforming, is 3.3 dB. Applying BSS to the beam-
formed signals, we get an average output SIR of the combined method of 16.3 dB, a
19.1 dB improvement over the input: 6.1 dB improvement at the beamforming stage,
and 13 dB further improvement at the BSS stage.

11.4.2.2 Performance in Reverberant Environments

The performances of the combined method, the BSS-only method and the
beamforming-only method, are compared in the simulated environment shown in
Fig. 11.8 with different reverberation times. The beamforming-only method is just
the first processing stage of the combined method. For the combined method,
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Fig. 11.10 Comparison of the impulse responses before and after beamforming: the left panel
is simulated room impulse response for RT60 = 300 ms; the right panel is the resultant impulse
response after beamforming
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Fig. 11.11 Performance comparison between the combined method, the BSS-only method and the
beamforming-only method in different reverberant conditions

a 16-element microphone array with a radius of 0.2 m is used. For the BSS-only
method, a linear array consisting of four microphones (inter-space of 6 cm) is used
instead of the circular array. Various combinations of source locations are tested (2
sources and 4 sources). The sources are two male speeches and two female speeches
of 8s each. RT60 ranges from 100 to 700 ms in increments of 200 ms. The average
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input SIR does not vary significantly with the reverberation time: it is about 0 dB for
two-source cases, and −5 dB for four-source cases. For all three methods, the STFT
frame size is set at 2,048. The separation results are shown in Fig. 11.11, with each
panel depicting the output SIRs of the three methods for one source combination.
It is observed in Fig. 11.11 that for each source configuration, the output SIRs of
all methods decrease with increasing reverberation; however, the combined method
always outperforms the other two. Beamforming performs worst among the three
methods; however, it provides a good preprocessing result, and hence the combined
method works better than the BSS-only method.

It is interesting to investigate how big an improvement one can obtain by the
use of beamforming preprocessing in different reverberation values. To measure
the contribution of this preprocessing, we define the relative improvement of the
combined method over the BSS-only method as

IR = Ic − Ib

Ib
× 100 % (11.18)

where I is the obtained SIR improvement with the subscripts (·)b and (·)c standing for
the BSS-only method and the combined method, respectively. We calculate the rela-
tive performance improvement for the four separation scenarios listed in Fig. 11.11
and show the average result in Fig. 11.12. As discussed previously, the performance
is improved by the combined method for all reverberant conditions. However, it is
also observed in Fig. 11.12 that the improvement in low reverberation is not as large
as in medium and high reverberation. That is, the use of beamforming in low rever-
beration is not as beneficial as it would be for high reverberation. The reason is that
BSS can work well alone when the circular convolution approximation problem is
not evident in low reverberation, and thus the contribution of preprocessing is small.
On the other hand, when the circular convolution approximation problem becomes
severe in high reverberation, the contribution of preprocessing becomes crucial and
hence the separation performance is improved significantly.

Based on the two experiments above, a conclusion can be drawn: With beamform-
ing shortening mixing filters and reducing noise before blind source separation, the
combined method performs better than using beamforming or blind source separation
alone in highly reverberant environments. A disadvantage of the proposed method
is that it requires the knowledge of source locations for beamforming. Generally, the
source locations may be estimated with an array sound source localization algorithm
[52–54].
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Fig. 11.12 Relative performance improvement of the combined method over the BSS-only method
in different reverberant environments
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11.5 Target Speech Extraction in a Cocktail-Party Environment

11.5.1 Target Speech Extraction by Combining Beamforming
and BSS

In this section, the combined method is extended to a special application of target
speech extraction where only the position of the target speaker is known. In real
cocktail-party environments, each speaker may move and talk freely. This is very
difficult to handle with blind source separation or beamforming alone. Fortunately, it
is often in such a case that the target speaker stays in a position or moves slowly and
the noisy environment around it is time-varying, e.g., moving interfering speakers
and the ambient noise. For this specific situation, a target speech extraction method
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Fig. 11.14 Signal flow of the proposed method combining beamforming and blind source separa-
tion for target speech extraction

by combining beamforming and blind source separation is proposed. The principle
of the proposed method is illustrated in Fig. 11.13, where the target source S and
N − 1 interfering sources I1, . . . , IN−1, are convolutively mixed and observed at an
array of M microphones. To extract the target, Q beams (Q ≤ N ) are formed at an
area containing it, with a small separation angle between adjacent beams; then the
Q beamformed outputs are fed to a blind separation scheme. Using beamforming
as a preprocessor for BSS, the target signal becomes dominant in the output of
the beamformer and is hence easier to extract. Furthermore, as seen in Fig. 11.13,
the beams are pointing at an area containing the target, as opposed to the interfering
sources. This is very important for operation under a time-varying condition, because
of the following reasons:

(1) When the target speaker remains in a constant position while others move, it is
impractical to know all speakers’ positions and steer a beam at each of them;

(2) There is no need to steer the beams at individual speakers since only the target
speaker is of interest;

(3) The target signal is likely to become dominant in at least one of the beamformed
output channels if the beams point at an area containing the target speaker. Thus,
it is possible to extract it as an independent source even if the number of beams is
less than the sources [55]. This feature is very important for the proper operation
of the proposed method;

(4) A seamless beam area will be formed by several beams with each covering some
beamwidth. It is possible to extract the target signal even if it moves slightly inside
this area. This feature may improve the robustness of the proposed method; and

(5) The fact that there are fewer beams than sources reduces the dimensionality of
the problem and saves computation.

The signal flow of the proposed method is shown in Fig. 11.14, which is similar
to the one shown in Fig. 11.7. The same implementation of beamforming and blind
source separation is also employed.

11.5.2 Experimental Results and Analysis

We evaluate the performance of the proposed method in simulated conditions. A typ-
ical cocktail-party environment with moving speakers and ambient noises is shown
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in Fig. 11.15. The room size is 7m × 5m × 3m, and all sources and microphones
are 1.5 m high. Four loudspeakers S1–S4 placed near the corners of the room play
various interfering sources. Loudspeakers S5, S6, and S7 play speech signals con-
currently. S5 and S6 remain in fixed positions, while S7 moves back and forth at a
speed of 0.5 m/s. As the target, S5 is placed at either position P1 or P2. S5 simulates
a female speaker, while S6 and S7 simulate male speakers. An 8-element circular
microphone array with a radius of 0.1 m is placed as shown.

Three beams are formed toward S5, with the separation angle between two adja-
cent beams being 20√. The room impulse responses are obtained by using the image
method, with the reverberation time controlled by varying the absorption coefficient
of walls [51]. The test signals last 8s with a sampling rate of 8 kHz. The extraction
performance is evaluated in terms of SIR where the signal is the target speech.

With so many speakers present in such a time-varying environment, BSS alone
fails to work. Now, we compare the performance of beamforming alone and the
proposed method with reverberation RT60 of 130 and 300 ms, respectively. The results
are given in Table 11.1. As an example, for the close target case (P1) under RT60 =
300 ms, the input SIR is around −9 dB—the target is almost completely buried in
noises and interference. The enhancement by beamforming alone is moderate. On
the other hand, the proposed two-stage method improves the SIR by 15.1 dB. In the
far target case (P2) of RT60 = 300 ms, the target signal received at the microphones
is much weaker with an input SIR around only −11 dB. The proposed method is
still able to extract the target signal with an output SIR of 3.3 dB and a total SIR
improvement of 13.5 dB.

For the close target case (P1) under RT60 = 300 ms, Fig. 11.16 shows the wave-
forms at various processing stages: sources, microphone signals, beamformer out-
puts, and finally the BSS outputs. It can be seen that the target signal S5 is totally
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Table 11.1 Comparison of beamforming and the proposed method in terms of signal-to-
interference ratio (SIR)

Target S5 P1 (close) P2 (far)

RT60 130 ms 300 ms 130 ms 300 ms
Input SIR −8.2 dB −9.1 dB −10.7 dB −10.8 dB
Beamforming 4.6 dB 0.6 dB 2.5 dB −2.3 dB
Proposed method 11.9 dB 6.0 dB 9.1 dB 3.3 dB
SIR improvement 20.1 dB 15.1 dB 19.8 dB 13.5 dB

0 8

−0.5

0

0.5

S
ou

rc
e

S5

0 8

−0.5

0

0.5

S6

0 8

−0.5

0

0.5

S7

0 8
−0.5

0
0.5

M
ix

U1

0 8
−0.5

0
0.5

U2

0 8
−0.5

0
0.5

B
ea

m
fo

rm

X1

0 8
−0.5

0
0.5

X2

0 8
−0.5

0
0.5

X3

0 8
−0.5

0
0.5

B
S

S

Y1

0 8
−0.5

0
0.5

Time (s)

Y2

0 8
−0.5

0
0.5

Y3

U3 − U8

Fig. 11.16 Waveforms at various processing stages

buried in noises and interference in the mixture signals; it is enhanced to a certain
degree after beamforming but is still difficult to tell from the background; and af-
ter blind source separation, the target signal is clearly exhibited at the channel Y2.
In addition, an interference signal (S6) is observed at the output channel Y1, and
the noise-like output Y3 is mainly composed of the interfering speech S7 and other
noises. The extraction result verifies the validity of the proposed method in noisy
cocktail-party environments. Some audio demos can be found at [56].

The good performance of the proposed method in such time-varying environ-
ments is due to two reasons. First, fixed beamforming can enhance target signals
even in time-varying environments. Second, the spectral components of the target
and (moving or static) interfering signals are still independent after beamforming;
besides, the target signal becomes dominant in the output of the beamformer. This
helps the subsequent blind source separation.
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11.6 Conclusions and Prospects

Given the poor performance of blind source separation and beamforming alone in
real cocktail-party environments, the chapter proposes a combined method using
superdirective beamforming as a preprocessing step of blind source separation.
Superdirective beamforming shortens mixing filters and reduces noise for blind
source separation, which further reduces the residual interferences. By exploiting
both spatial and statistical information, the proposed method can integrate the ad-
vantages of beamforming and blind source separation and complement the weakness
of them alone. Good results can be obtained when applying the proposed method for
speech separation in highly reverberant environments and target speech extraction
in dynamic cocktail-party environments.

Although great potentials of the proposed method have been shown, there are still
some open problems that need to be addressed. Specifically, beamforming requires
the speaker location information to form the beam, but the proposed method in its
current form is not capable of identifying the locations, especially with moving speak-
ers. In addition, the separation performance is still limited by the microphone array
size, making it a challenge to apply the proposed method to pocket-size applications.
These will be investigated in our future research.
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Chapter 12
On the Ideal Ratio Mask as the Goal of
Computational Auditory Scene Analysis

Christopher Hummersone, Toby Stokes and Tim Brookes

Abstract The ideal binary mask (IBM) is widely considered to be the benchmark
for time–frequency-based sound source separation techniques such as computational
auditory scene analysis (CASA). However, it is well known that binary masking
introduces objectionable distortion, especially musical noise. This can make binary
masking unsuitable for sound source separation applications where the output is
auditioned. It has been suggested that soft masking reduces musical noise and leads
to a higher quality output. A previously defined soft mask, the ideal ratio mask
(IRM), is found to have similar properties to the IBM, may correspond more closely
to auditory processes, and offers additional computational advantages. Consequently,
the IRM is proposed as the goal of CASA. To further support this position, a number
of studies are reviewed that show soft masks to provide superior performance to the
IBM in applications such as automatic speech recognition and speech intelligibility.
A brief empirical study provides additional evidence demonstrating the objective
and perceptual superiority of the IRM over the IBM.

12.1 Introduction

A natural environment usually consists of a number of sound sources. Some may
convey information that is important to the listener (a person speaking for example),
whilst others may be less important (a distant vehicle for example). If the important
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information is considered to be a target signal and all other sound is considered to
be noise/interference, then this situation may be modelled as:

z(n) = x(n) ∗ h(n) + dst(n) + dnst(n) (12.1)

where z is the mixture at sample index n, x is the target signal, h is the acoustic/channel
impulse response, and dst and dnst are stationary and non-stationary noise/interfe-
rence, respectively [33]. In certain situations, these unhelpful interfering sound
source(s) may prevent the listener from receiving all of the information from the
important target sound source. A machine listener, such as an automatic speech
recognition (ASR) system, may also be impeded by the presence of interfering
sounds. But in a natural environment, acoustic interference is often inescapable.
Hence reducing the level of acoustic interference may be useful in a number of
applications, including: ASR, speaker identification, human–computer interaction,
audio information retrieval and hearing prostheses. This broad range of applications
has meant that blind source separation (BSS) is an important area of research in
signal processing and related fields.

Through the course of research, four main approaches to BSS have emerged:
independent component analysis (ICA), spatial filtering, non-negative matrix fac-
torisation (NMF) and computational auditory scene analysis (CASA). ICA seeks
to separate components based on statistical independence. The technique aims to
find the inverse mixing matrix that provides the most independent separated source
signals [7, 23, 34]. Spatial filtering uses microphone array signal processing to
enhance sound arriving from a particular direction. NMF [24] aims to factorise a
time–frequency (T–F) representation of a mixture in to two matrices: bases and cod-
ing. The bases matrix is formed from a set of unique spectral structures; each basis
does not represent a source in the mixture but rather each sound that is part of the
mixture. For example, the signal from a piano would be divided into each individually
occurring note or speech into individual formants. The coding matrix determines the
temporal activation of the bases. CASA aims to mimic human auditory scene analysis
(ASA) [9], which is the process by which a human makes sense of an auditory scene,
a key part of which is the separation of mixtures of sounds. Humans demonstrate
a remarkable ability to extract a target sound from a mixture, providing important
motivation for research into CASA. It is for this reason that this chapter chooses to
focus on CASA.

A typical CASA system broadly consists of two stages [50]. First an analysis of
the audio in the T–F domain is used to decide whether a particular T–F unit should be
designated as target or interference. Second, this information is used to mask the T–F
representation in order to reduce or eliminate the interference. In his seminal treatise
on the topic, Wang [48] proposed the ideal binary mask (IBM) as the goal of CASA.
The IBM is set to one when the target energy exceeds the interference energy and
zero otherwise. Binary masking has also been coupled with other aforementioned
BSS techniques including ICA (e.g. [37]) and NMF (e.g. [18]). The proposal of the
IBM as the goal of CASA has been supported by a number of studies that have shown
the IBM to be advantageous for machine and human listening tasks, including speech
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intelligibility (e.g. [11, 27, 40]), and ASR (e.g. [13, 19, 42]). Furthermore, it was
shown that under certain constraints the IBM is the optimal binary mask in terms of
signal-to-noise ratio (SNR) [28].

However, it is well known that the binary mask separation method introduces
audible distortions, especially so-called musical noise. The distortion is caused by
repeated narrow-frequency-band switching. As will be shown in this chapter, the
perceived audio quality of binary-masked audio is poor. This has the potential to
limit the applications of binary mask-based techniques such as CASA to domains
where the output is not auditioned. This constitutes a significant limitation.

In order to address this limitation and the shortcomings of the IBM, this chapter
will propose the ideal ratio mask (IRM) [42] as the goal of CASA. Under certain
circumstances and/or for particular applications, the value of the IBM may be great,
and this chapter is not intended to refute that. Instead, the chapter will argue that the
IRM may be preferable to the IBM as the goal of CASA for a number of theoretical
and practical reasons, and across a majority of applications. The chapter will start
with a review of the musical noise problem is Sect. 12.2. A number of advantageous
features of the IRM will then be reviewed in Sect. 12.3, leading to the proposal of the
IRM as the goal of CASA. The IBM and IRM will then be compared in Sect. 12.4
using existing studies and a brief empirical study utilising both purely objective and
perceptually informed objective BSS metrics.

12.2 The Problem with the Ideal Binary Mask

Although binary masking has proved to be an effective BSS method, the prevalence
of artefacts such as musical noise appears to have a deleterious effect on the audio
quality of the separated output. Whilst this might not be problematic for applica-
tions where the output is not auditioned (such as ASR or databasing tasks) for other
tasks (such as speech enhancement or auditory scene reconstruction) the poor audio
quality is likely to prevent adoption of binary mask-based techniques such as CASA.
Few studies have compared the audio quality achieved by binary masking to that
achieved by other BSS methods, and hence it is difficult to draw meaningful con-
clusions on the degree to which binary masking is deleterious for audio quality.
Some data can be found in Table 12.1 [33]. The paper compares four BSS algo-
rithms against IBM-based separation. The first model, M1, combines a noise tracker
based on voice activity detection (VAD) with a minimum mean square error (MMSE)
spectral amplitude estimator (STSA) [15]. The second model, M2, combines a VAD-
based noise tracker with a log-spectral amplitude estimator (LSA) [16]. M1 and M2
use the ‘decision-directed’ method [15] to estimate the a priori SNR by weight-
ing the estimated spectral amplitude and noise variance of the previous frame, and
the posteriori SNR in the current frame. The third model, M3, uses a magnitude-
DFT MMSE estimator under the assumption that the required coefficients have a
generalised Gamma distribution (GGD). The fourth model, proposed in the paper,
combines a noise estimator designed for highly non-stationary noise (NSNE) [39]
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Table 12.1 Performance data [33] comparing the unprocessed noisy mixture with the output of a
number of BSS algorithms (M1–M3), a proposed BSS algorithm [33], and the IBM

Target-to-interference ratio (dB)
Noise estimation + method Metric −6 −3 0 3 6 9 Average

– + Noisy speech [12] OPS 9.4 8.6 25.9 8.6 9.2 18.2 13.3
SNR −8.2 −3.0 −0.6 2.6 −2.8 6.3 −1.0

M1: VAD + LSA [15] OPS 19.7 15.7 30.6 28.9 34.4 40.9 28.3
SNR −6.7 −0.8 1.4 4.3 −1.7 5.4 0.3

M2: VAD + STSA [16] OPS 20.4 16.2 31.9 29.4 34.4 37.5 28.3
SNR −6.6 −0.8 1.4 4.2 −1.7 5.2 0.3

M3: MMSE [20] + GGD [17] OPS 21.8 19.3 26.3 27.9 31.7 28.1 25.8
SNR 0.6 0.9 1.2 1.1 0.9 1.2 1.0

NSNE + ML [33] OPS 27.0 21.8 45.4 34.0 33.4 50.3 35.3
SNR 2.1 3.1 4.5 4.8 4.7 6.2 4.2

Ideal + IBM OPS 16.6 12.4 13.3 14.4 14.0 13.9 14.1
SNR 4.4 5.5 5.1 5.1 3.6 4.3 4.7

The comparisons are in terms of OPS, and SNR (in dB)

Table 12.2 Data from SiSEC2011 [4], for tasks T2 or T3 and instantaneously mixed dataset D1,
showing the average OPS and SDR (in dB) of a number of BSS techniques, including the IBM

System Metric 2 mic 2 mic 2 mic 3 mic
3 speech 3 music 4 speech 4 speech

S1 [35] OPS 43.9 52.3 42.4 –
SDR 13.4 16.6 8.9 –

S2 [31] OPS 43.2 40.0 29.8 39.7
SDR 7.9 6.9 3.0 11.7

IBM (STFT) OPS 38.9 33.3 27.1 –
SDR 10.8 10.4 9.1 –

IBM (GTFB) OPS 24.0 30.4 22.0 –
SDR 8.5 9.0 7.5 –

with a maximum likelihood (ML) speech estimator to produce a DFT-based soft
mask. The comparison utilises the perceptual evaluation of audio source separation
(PEASS) toolbox [14]. The results indicate that in terms of ‘overall perceptual score’
(OPS) (a metric intended to indicate the ‘global quality’ of the separated output), the
IBM performs poorly compared to the other methods; the difference is as much as
20 points on the 100-point scale.

A similar trend can be observed in Table 12.2 [4], which compares: S1, a gener-
alised expectation–maximisation framework for handling prior information [35]; S2,
a k-subspace-based tensor factorization method [31]; the IBM obtained via the short-
time Fourier transform (STFT); and the IBM obtained via the gammatone filterbank
(GTFB). The table shows some differences of a similar magnitude to Table 12.1,
depending on the T–F decomposition and mixture. Note that the SNR and signal-to-
distortion ratio (SDR) data presented in the tables show that poor OPS performance
is not solely attributable to poor separation performance.
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Table 12.3 A comparison using the PEASS metrics of the IBM with three mask postprocessing
and/or alternative mask estimation algorithms [43]

Method APS IPS TPS OPS

IBM 12 76 51 18
DBM 29 62 67 36
NBM 48 66 67 49
CBM 53 61 66 49

Other studies have shown that the IBM is not optimal in terms of audio quality.
One study [10] found that although the IBM improves speech intelligibility in noisy
conditions and causes the noise to be less annoying, the separated speech is unnatural
and consequently listeners do not find it preferable to the unseparated mixture. It is
noted that by softening the mask the distortions are reduced and the noise is increased
(lowering intelligibility), but that the result is preferred by listeners to the IBM and
unprocessed outputs. It should be noted that this study was conducted on normal
hearing listeners. There is some evidence to suggest that hearing-impaired listeners
are less sensitive to musical noise [1]. Therefore, it may not be advantageous to lower
the SNR by softening the mask for applications targeting hearing-impaired listeners.
A number of other studies have also shown that musical noise arising from binary
masking can be reduced by soft masking, but that this comes at a cost in terms of
SNR (e.g. [2, 5, 25]).

Such is the disturbance caused by musical noise that some studies have attempted
to improve the perceptual quality of binary-masked audio (e.g. [2, 3, 29]). In one
study, summarised in Table 12.3, mask postprocessing and alternative mask estima-
tion algorithms, were compared to the IBM in an attempt to improve the OPS of
the separated output [43]. Specifically, the study compared: the IBM; a noisy binary
mask (NBM) that had triangular probability density function (TPDF) noise added
to the binary values; a dithered binary mask in which the SNR had TPDF dither
added prior to mask calculation; and a cepstrally smoothed binary mask [29] that,
after optimization, effectively added 0.1 to all zero-valued mask units. Similarly to
previous studies noted above, the study concluded that the OPS could be improved,
but at the cost of some interference suppression. Although the DBM demonstrated
some quality improvement, methods that demonstrated the greatest improvement in
OPS allowed the mask values to deviate from zero and one.

These results suggest that a well-defined soft mask may achieve a better audio
quality than a binary mask. This has also been suggested by other authors [29, 49].
However, it seems that the choice of soft mask should be made carefully such that
it does not introduce an SNR penalty. Several authors (e.g. [5, 6]) have suggested
the use of sigmoid functions in order to generate soft masks. One such approach
[5] showed that a soft mask defined in this way offers a slight signal-to-interference
ratio (SIR) advantage over a binary mask. However, it remains unclear how such
sigmoidal masks perform using more common metrics such as SNR. One mask that
has received attention in recent years is the IRM [42]. As will be shown in the next
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section, the IRM has a number of properties that make it a good alternative to the
IBM as the goal of CASA.

12.3 The Ideal Ratio Mask as the Goal of Computational
Auditory Scene Analysis

CASA aims to model the human process of ASA [48]. Bregman [9] states that
the goal of ASA is ‘the recovery of separate descriptions of each separate thing
in the environment’. However, this goal is too vague to be transferred directly to
CASA. In his important treatise on the goal of CASA, Wang [48] suggests three
options, before suggesting that the IBM should be the goal. The first option is to
separate out all sound sources in a given mixture. However, this goal is far beyond
the capabilities of the human listener who may only be able to separate a handful of
concurrent sound sources. The second option is to enhance ASR. Whilst appealing,
since this is one of the primary applications of CASA, it is not the only application.
Thus in order to retain maximum usefulness across applications, the goal should
not be tied to a specific application. The final option is to enhance human listening.
However, not all applications involve human listeners (ASR, for example), and thus
this goal would also only apply to a subset of applications. Measuring the responses
of human listeners may also introduce prohibitive requirements of time, resources
and/or expertise that might hinder progress in the field.

Consequently, Wang [48] suggests that the IBM should be the goal of CASA, for
a number of reasons discussed in this section. In contrast, this section proposes the
IRM as the goal of CASA. The thesis is based on three strands of argumentation:
that the IRM matches or exceeds all of the desirable properties laid out by Wang
(Sect. 12.3.1); that the IRM provides a closer match to psychophysical and perceptual
mechanisms than the IBM (Sect. 12.3.2); and that the IRM provides a number of
computational advantages (Sect. 12.3.3).

12.3.1 Properties of the IBM and IRM

First, for the sake of clarity, the IBM mB and IRM mR are defined in the following
way:

mB(c, m) =




1
ut (c, m)

ui (c, m)
> 1

0 otherwise
, (12.2)

mR(c, m) = ut (c, m)

ut (c, m) + ui (c, m)
, (12.3)
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where u{t,i} is the power of the target and interfering source(s) (t and i respectively)
in time frame m and frequency bin/channel c.

In his paper proposing the IBM as the goal of CASA, Wang [48] specified four
desirable properties of the IBM. These are:

1. ‘flexibility’—for a given mixture, the mask will differ according to which sources
are designated target and interference;

2. ‘well-definedness’—the ideal mask retains its definition independently of how
many sources are present;

3. ceiling performance—the IBM is the optimal binary mask; and
4. psychoacoustical correspondence—the IBM broadly agrees with auditory mask-

ing and ASA [9] theories.

Given the similarity of the definitions of the IBM and IRM shown in (12.2) and
(12.3), it can be seen that the IRM shares all of these properties. First, the IRM
is identically flexible: any source can be designated as the target, and the sum of
remaining sources is typically designated as the interference. Second, the IRM is
also well-defined, since the interference component may constitute any number of
sources. Third, the IRM is the optimal ratio mask and is closely related to the ideal
Wiener filter (IWF), which is the optimal linear filter with respect to MMSE [28,
51]. Last, the IRM broadly agrees with psychoacoustic principles. This last point
might seem surprising: it might appear counterintuitive that the IBM and IRM can
both honour psychoacoustic principles. However, they can and, although they are
both approximations, the next section will show how the IRM is perhaps a better
approximation of auditory masking and ASA principles than the IBM.

12.3.2 Psychophysical and Perceptual Bases of the IRM

It is argued by Wang [48] that the IBM corresponds closely to auditory masking and
ASA theories. However, this section argues that the IRM provides a closer match.

The concept of binary masking assumes that auditory masking is dichotomous:
that a sound is either masked or it is not. To put it another way, it suggests that a
sensory threshold exists. However, it has been known since the 1950s that this is an
inadequate description when discussing sensory perception in any modality (see [44]
for a review). Like any sensory threshold, auditory masking is only dichotomous in
the sense that the experimenter asks the subject a yes/no question, e.g. ‘is the sound
audible?’. It seems reasonable that under identical circumstances, a listener should
always give the same answer. However, this is often not the case. The probability
of a consistent answer depends on the relative level of the competing stimulus: the
greater the difference, the greater the probability of a consistent answer. Furthermore,
individual listeners may give different answers. In auditory masking experiments this
probability of detection is often plotted as a function of signal magnitude in order to
produce a psychometric function.
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Auditory masking, like many aspects of sensory perception, has therefore been
described using signal detection theory [38, 45, 46]. When applied to the auditory
domain, the theory defines a decision variable, which often corresponds to physio-
logical or psychological responses to a stimulus, such as the auditory nerve firing rate
or sensory impression. Signal detection theory dictates that the average value of the
decision variable is monotonically related to stimulus magnitude. However, signal
detection theory also dictates that the value of the decision variable may fluctuate.
There are two causes of fluctuation: external variations such as background noise
level, or internal variations such as plausible differences in neural responses or other
psychological factors [32].

It can be seen therefore that a ratio mask, where values vary in the range [0,
1], provides a closer match to signal detection theory than a binary mask. A value
of 0 or 1 indicates certainty in the absence or presence of a signal, respectively.
An intermediate value may be obtained when the signals are of similar magnitude.
Although this may or may not agree with an experimentally derived psychometric
function, it at least provides a conceptual indication that masking is uncertain.

It should be noted, however, that the concept of a binary mask does agree to some
extent with the ASA [9] theory. The theory draws on Gestalt principles of ‘exclusive
allocation’ (sometimes referred to as ‘disjoint allocation’ or ‘belongingness’) in
visual perception, whereby a sensory element can not be used in the descriptions of
more than one object at a time. However, whilst this principle generally holds true,
there are a number of examples of violations of this principle in the auditory domain
(see [8] for a review). Bregman [8] describes this as ‘duplex perception’. Furthermore,
the grouping of sensory elements may depend on perspective or attention. Unlike the
ratio mask, a binary mask cannot account for these observations because each T–F
unit is always assigned to the source with the most energy. In his paper, Wang [48]
compares auditory objects to visual objects. Using this analogy, foreground visual
objects are assigned a mask value of one, whereas occluded objects are assigned a
value of zero. However, Bregman [8] argues that

… sound is transparent. A sound in the foreground does not ‘occlude’ a sound in the back-
ground in the same way as a visual object occludes our view of objects behind it.

In the visual domain, objects are occluded because light emitted or reflected from
the object does not impinge on the retina. In the auditory domain, even if a sound
source is visually occluded, its acoustic energy still usually impinges on the ear drums
via numerous acoustic pathways. Thereafter sounds are occluded by physiological,
psychophysical, or psychological mechanisms, rather than an absence of stimulating
input to the auditory system. Furthermore, the human head seldom occludes sound;
sound arriving at both ears usually contains information about all sound sources.

Given that auditory objects are transparent, it seems disadvantageous to assign
portions of the sensory input to only one object when information about both objects
is available. A visual analogy is given in Fig. 12.1. The two images on the left show
two objects that are overlapped such that there is now a small common area. Using a
disjoint allocation principle—demonstrated in the middle of the figure—the common
area must be assigned to one object. The scenario is analogous to binary masking.
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A B

A+B

IBM: A>B

IBM: A<B

IRM

Overlapping objects Disjoint Allocation Duplex Perception

Fig. 12.1 Visual analogies of disjoint allocation and duplex perception when objects overlap (left):
the disjoint allocation case (middle) is analogous to the binary mask; the duplex perception case
(right) is analogous to the ratio mask

The occluding object is corrupt, whereas the occluded object is incomplete. Using a
duplex perception principle—demonstrated in the right of the figure—the common
area may be assigned to both objects. The scenario is analogous to ratio masking.
The resulting objects are now complete, irrespective of the chosen source, although
each is corrupted to some extent by the other. The ratio value indicates the extent
of the corruption and hence how meaningful the area is likely to be to the current
source. Note that this analogy applies not only to overlapping auditory objects, but
also to the BSS problem since algorithms often try to estimate some parameter(s) of
both the occluding and occluded signal in order to decide how to assign T–F units
((12.2) and (12.3) assume that some knowledge of both sources is available).

12.3.3 Computational Bases of the IRM

The IRM has a number of theoretical computational advantages, which are discussed
in this section.

In their important paper on the relative merits of the IBM and IRM, Li and Wang
[28] note that:

… the IRM achieves higher SNR gains compared to the IBM. However, despite the fact that
the IBM is binary and the IRM is not, the SNR gain of the IBM is surprisingly close to that
of the IRM. This shows that the IBM is a very reasonable performance metric for sound
separation. Indeed, there are reasons to prefer the IBM over the IRM as the computational
goal of a separation system. The estimation of the IBM is considerably simpler than that of
the IRM: the former requires only binary decisions, whilst the latter requires estimating the
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energy ratio of the two signals. Binary estimation is facilitated by the existence of numerous
classification and clustering methods.

The SNR achieved by the IRM is shown in the paper to be, on average, 0.1–0.8 dB
higher than that achieved by the IBM, depending on the T–F decomposition and
constituent signals. Of course, the importance of this gain depends on the overall
SNR of the BSS algorithm.

Li and Wang argue above that binary masking facilitates classification and cluster-
ing methodologies. Whilst the IRM may preclude these possibilities, it does facilitate
alternative probabilistic frameworks; the ratio value may be considered to indicate
the probability that a given T–F region is reliable [6] or belongs to a particular source.
Additionally, the binary mask can be considered as a special case and subset of the
ratio mask. Indeed the equivalent binary mask may always be derived from the ratio
mask by rounding or quantising ratio values; the IRM cannot be derived from the
IBM. This is important from an application point of view, and suggests that algo-
rithms should always try to estimate the IRM; the algorithm may subsequently choose
(or be told) to quantise the mask if the application, for whatever reason, deems it
appropriate.

Lastly, Li and Wang suggest that estimating ratio values may be more difficult
than making binary decisions. Whilst this may or may not be the case, it should first
be considered that the original definitions of the IBM (12.2) and IRM (12.3) contain
identical quantities: estimates of the target and total interfering signal energy. Hence,
in principle the task does not differ in its complexity, even if practical applications do
not intend to estimate these values directly. Furthermore, simplicity is a relativistic
concept; undoubtedly as knowledge in this field advances estimates of the IRM will
become more accurate. The next section will consider the concept of ‘difficulty’ in
more detail.

12.4 Comparisons of the Ideal Binary and Ratio Masks

Thus far this chapter has outlined theoretical and practical reasons to prefer the IRM
over the IBM. The IRM has been shown to offer a small SNR gain over the IBM
[28]. It has also been suggested that soft masks may provide superior audio quality to
binary masks. A number of other studies have provided reasons to prefer soft masks
to binary masks.

In the original paper proposing the IRM [42], summarised in Table 12.4, it was
found that, for a small vocabulary digit recognition task, the IBM coupled with a
missing-data ASR system marginally outperformed the IRM coupled with a conven-
tional ASR system, by an accuracy of the order of 1 % across all SNRs. However,
with a large vocabulary command and control task there was demonstrable improve-
ment from the IRM of as much as 30 % accuracy, with greatest improvement found
in higher noise conditions. Similar findings, shown in Table 12.5, were made [6] by
employing a soft ‘fuzzy’ (though non-ideal) mask rather than a binary (non-ideal)
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Table 12.4 A comparison of the IBM coupled with a missing-data ASR system and the IRM
coupled with a conventional ASR system for two different vocabulary sizes [42]

Accuracy (%)
Small vocabulary Large vocabulary

SNR (dB) IRM IBM IRM IBM

−5 94.8 94.9 96.4 66.5
0 95.7 96.0 97.0 71.2
5 96.4 97.2 97.6 76.5
10 97.7 98.1 97.7 80.1
∞ 98.6 97.2 97.7 82.7

Table 12.5 A comparison of fuzzy and binary masks coupled with missing-data ASR performing
a digit recognition task under different noise conditions [6]

Digit recognition accuracy (%)
Factory noise Lynx helicopter noise

SNR (dB) Fuzzy Binary Fuzzy Binary

0 60 46 86 77
5 81 73 95 92
10 90 87 98 96
15 95 95 99 98
20 97 97 99 99
200 99 99 99 99

mask. In this case, the fuzzy mask was produced by compressing the difference
between the estimated local noise and signal x using a sigmoidal function of the
form

f (x) = 1

1 + e−α(x−β)
(12.4)

where α ∈ [0,∞) and β ∈ [0, 1] are parameters controlling the sigmoid slope and
centre, respectively. The binary mask was derived in a similar way; the final values
were rounded to 0 or 1. As shown in the table, the fuzzy mask achieves an ASR
accuracy gain of a more modest 14 %, again with greatest improvement found in
higher noise conditions.

Gains have also been observed for human audition. A recent study [30] found that
a soft mask based on the IWF significantly outperformed the IBM (with either a fixed
or local threshold, IBM-F and IBM-L, respectively) in terms of speech intelligibility
and quality. The speech intelligibility data are summarised in Table 12.6. In this
study, the formulation of the IWF was identical to the IRM since the power-spectral
density was not smoothed. The table shows that the intelligibility gain can be as much
as 100 % in high noise conditions. A similar finding, summarised in Table 12.7, was
made in another recent study [22], although the data were yielded from non-ideal
masks. In the paper, the authors created a number of mask estimation algorithms
based on estimating the MMSE of the spectral magnitude. Specifically, a continuous
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Table 12.6 Speech intelligibility of speech separated using different T–F masks and under different
interference conditions [30]

Correct (%)
Babble interference Speech interference

SNR (dB) IWF IBM-L IBM-F IWF IBM-L IBM-F

−35 96 50 – 87 4 –
−30 100 29 – 92 10 –
−25 98 52 – 98 23 –
−20 96 62 – 96 71 13
−15 100 56 – 100 87 25
−10 – 62 2 – 85 69
−5 – 75 38 – 92 87
0 – 90 75 – 100 100
5 – 90 98 – – –
10 – 87 96 – – –

Table 12.7 Speech intelligibility of masked speech with speech-shaped-noise interference [22] for
a variety of masking algorithms

Intelligibility (%)
SNR (dB) CG-MMSE BG-HU Noisy BG2-MMSE

−8 50.5 21.2 46.2 38.2
−6 69.8 36.3 56.0 55.7
−4 77.2 48.6 68.9 68.9
−2 87.4 64.3 82.8 74.5
0 89.5 79.1 91.1 85.8

gain MMSE mask (CG-MMSE) was compared with two binary gain (BG) estimators
(BG-HU [21] and BG2-MMSE proposed in the work). The unprocessed noisy speech
was also tested. The table shows that the CG-MMSE system achieved a more modest
gain of up to, approximately, 30 % in higher noise conditions. These differences in
performance were attributed, in part, to the better preservation of the target envelope
by the soft mask. It has been shown that the signal envelope is important for speech
intelligibility [41].

These studies have offered compelling evidence that the IRM may provide a supe-
rior output to the IBM for a number of applications. It was also shown [30] that the
Wiener filtering approach is less sensitive to errors in terms of speech intelligibility.
However, it remains unclear how the IBM and IRM trade off in terms of the numer-
ous sources of error and the magnitude of any separation performance gains, and
whether a ratio mask retains its error robustness in terms of sound source separation
metrics (i.e. whether the supposed difficulty of estimating the IRM [28] incurs a
penalty). The rest of this section describes a new study that attempted to address
these points. The study compared the separated audio output produced by binary and
ratio masks using a number of objective and perceptually informed objective metrics.



12 On the Ideal Ratio Mask as the Goal of Computational Auditory Scene Analysis 361

As in the previously reported study, [30] it was assumed that task difficulty could be
modelled by introducing errors to the target and interfering signal energy. The errors
inevitably led to an erroneous mask. Consequently, two additive error components
εt and εi were introduced, resulting in ‘estimated’ binary and ratio masks (m̂B and
m̂R , respectively).

The error components were calculated independently for the target and interfering
signal using a previously defined method [30]. Specifically, the error perturbed the
spectral coefficient(s) in each T–F unit prior to the calculation of spectral power used
to formulate the masks. However, unlike the previous study [30], both the STFT and
the GTFB were utilised. Similarly to Li and Wang’s study [28], the GTFB was fourth-
order and had 64 channels with centre frequencies equally spaced on the ERB-rate
scale between 50 and 8,000 Hz, although the time and phase responses were aligned
using the method described by Patterson et al. [36]. The STFT was 512-point but the
frames were not overlapping (since Li and Wang [28] point out that the IBM may
only be optimal when frames do not overlap).

The spectral power for the target and interferer signals, ût and ûi , respectively,
were calculated in the following way. For the GTFB

û{t,i}(c, m) =
(m+1)MGT−1∑

n=m MGT

[
X{t,i}(c, n) + θε{t,i}(c, m)

⎡2
, (12.5)

where X is the output of the GTFB for the target or interfering signals, MGT is the
frame length (10 ms in samples), and n is the sample index. For the STFT

û{t,i}(c, m) =
⎣⎣⎣⎣⎣⎣

(m+1)MFFT−1∑

n=MFFTm

x{t,i}(n)e
−j2π c

MFFT
n + θε{t,i}(c, m)

⎣⎣⎣⎣⎣⎣

2

, (12.6)

where MFFT is the FFT size (512). In both cases ε is an error component and θ ∈ [0, 1]
is the error magnitude. For the GTFB, the error was normally distributed noise with
zero mean. For the STFT, the error was complex noise where both real and imaginary
parts were normally distributed with zero mean. In each case, the error was scaled
in each frequency channel/bin to have equal power to the unperturbed target and
interferer signals. The perturbed powers were used to calculate ‘estimated’ binary
and ratio masks, m̂B and m̂R , respectively, such that

m̂B(c, m) =




1
ût (c, m)

ûi (c, m)
> 1

0 otherwise
(12.7)

and

m̂R(c, m) = ût (c, m)

ût (c, m) + ûi (c, m)
. (12.8)



362 C. Hummersone et al.

Fig. 12.2 Examples of the ideal and ‘estimated’ masks using a gammatone filterbank: binary masks
(left column) and ratio masks (right column); ideal masks (θ = 0) (top row), θ = 0.5 (middle row),
and θ = 1 (bottom row)

Fig. 12.3 Examples of the ideal and ‘estimated’ masks using a short-time Fourier transform: binary
masks (left column) and ratio masks (right column); ideal masks (θ = 0) (top row), θ = 0.5 (middle
row), and θ = 1 (bottom row)

With θ = 0, the signal power was unperturbed and the masks were ideal, with θ = 1
the error had equal magnitude to the unperturbed signals. The estimated masks were
applied to the unperturbed mixture in order to calculate the performance metrics.
Examples of the masks are shown in Figs. 12.2 and 12.3.
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Fig. 12.4 Performance of binary and ratio masks under error conditions, using a gammatone
filterbank, measured using a number of objective and perceptually informed objective metrics; grey
regions show 95 % confidence intervals

The stimuli were taken from the SiSEC2013 corpus.1 Instantaneous mixtures from
the D1 and D2 datasets were used; each source was designated in turn as the target,
with the sum of remaining sources designated as the interference (for the purposes
of calculating ûi and εi ). In total eight metrics were employed:

• SNR;
• three metrics from the BSS_eval toolbox [47]: SDR, SIR and signal-to-artefacts

ratio (SAR); and
• four metrics from the PEASS toolbox [14]: OPS, target-related perceptual score

(TPS), interference-related perceptual score (IPS) and artefact-related perceptual
score (APS).

The SNR and OPS metrics are designated here as ‘global’ metrics, since they produce
a single quantity derived from a number of sources of error, whereas the other metrics
consider only a subset of error sources.

The results for the GTFB versus error magnitude θ are shown in Fig. 12.4. Dif-
ferences, calculated as the scores for the ratio masks minus the scores for the binary
masks, are given in Fig. 12.5. Note that in some cases the confidence intervals in
Fig. 12.4 overlap but the corresponding difference scores in Fig. 12.5 are significant,
i.e. the lower bound of the confidence interval is greater than zero. This is because cal-
culating differences eliminates within-group variation, so that only between-group
variation is exposed. The results show that the ratio masks retain a small but sig-
nificant SNR advantage over the binary masks for all θ . The ratio masks are also
superior in terms of OPS, TPS, SAR and APS. However, this it at the cost of interfer-
ence suppression (SIR and IPS). The difference in SDR is negligible. The reduction

1 http://sisec.wiki.irisa.fr/tiki-index.php

http://sisec.wiki.irisa.fr/tiki-index.php
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Fig. 12.5 Differences in mask performance for data shown in Fig. 12.4 (scores for the binary masks
are subtracted from scores for the ratio masks); grey regions show 95 % confidence intervals

Fig. 12.6 Performance of binary and ratio masks under error conditions, using a short-time Fourier
transform, measured using a number of objective and perceptually informed objective metrics; grey
regions show 95 % confidence intervals

in artefacts is particularly prominent, and seems to have resulted in a substantial
improvement in OPS for some values of θ . Informal listening suggested that the
increase in OPS is attributable to the reduction in musical noise.

In terms of error resilience, the results show that no significant penalty is incurred
when there are errors in estimating source power. The ratio masks retains their SNR,
OPS, TPS, SAR and APS advantage for all θ .

Data for the STFT are given in Figs. 12.6 and 12.7. The trends shown in these
data appear to mostly align with observations made of the GTFB. Note that the
SNR gain is generally larger in this case, whereas the OPS gain is generally smaller.



12 On the Ideal Ratio Mask as the Goal of Computational Auditory Scene Analysis 365

Fig. 12.7 Differences in mask performance for data shown in Fig. 12.6 (scores for the binary masks
are subtracted from the scores for the ratio masks); grey regions show 95 % confidence intervals

Interestingly, the ratio masks outperform the binary masks in terms of SIR for most
values of θ , although this advantage is not reflected in the IPS.

These results suggest that the ratio masks outperform the binary masks in terms
of the ‘global’ metrics (SNR and OPS). As previously found, the IRM’s SNR gain
over the IBM is small, and this advantage is retained when the masks deviate from
ideal. The ratio masks appear to significantly reduce musical noise, outperforming
the binary masks in terms of artefact reduction (SAR and APS). They also appear to
generally outperform the binary masks in terms of TPS. However, the cost here has
been shown to be interference suppression. It remains unclear whether this will be
important to any specific applications. Therefore the IRM seems likely to be a more
appropriate goal for most applications. It should be noted that these differences may
depend upon the T–F resolution, especially in terms of speech intelligibility [26, 30],
such that smaller differences may be observed at higher resolutions.

It may be of interest to note that both experiments indicate a maximal OPS for
θ > 0, i.e. for a non-ideal mask. It seems that the introduction of random errors into
an ideal mask can reduce the severity of objectionable artefacts (as can be seen in
the APS plots) due to a lessening of the regularity and, for a ratio mask, the severity
of transitions. This phenomenon has been explored in a previous study [43].

12.5 Conclusions

This chapter has argued that the IRM is a more appropriate goal for CASA than the
IBM. A number of reasons, summarised in the following sentences, were provided.
First, the IRM shares desirable properties with the IBM that make it an appropriate
goal for CASA. Second, the IRM seems to correspond more closely to human psy-
chophysical and perceptual mechanisms, such as auditory masking and ASA, than
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the IBM. Third, the IRM has some computational advantages, such as facilitating
probabilistic frameworks. Fourth, the equivalent binary mask may always be derived
from the ratio mask; the reverse is not possible. Fifth, studies have shown the IRM
to provide small gains over the IBM for BSS (in terms of SNR), but modest to large
gains for ASR and speech intelligibility. Last, hints in the literature that the IRM
may lead to a higher audio quality than the IBM by reducing musical noise were
confirmed in a brief empirical study. The study showed that although the SNR gain
offered by the IRM might be small, and might come at the cost of a slightly reduced
interference suppression, a significant gain in OPS can be obtained, together with an
improved TPS, APS and SAR. Furthermore, the IRM retains many of its advantages
independently of any errors made in estimating source powers. It is acknowledged
that the ‘ideal’ mask might sometimes be beaten in terms of OPS by a slightly less
ideal mask. This might suggest that the goal of CASA should perhaps be an ‘almost-
ideal’ ratio mask. However, current algorithms are likely to produce a small degree
of error when used for practical BSS and so if the goal is the IRM then it is likely
that an ‘almost-ideal’ ratio mask is what will be actually produced. Thus, adopting
the IRM as the goal of CASA is likely to lead to algorithms delivering optimal OPS.
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Chapter 13
Monaural Speech Enhancement Based
on Multi-threshold Masking

Masoud Geravanchizadeh and Reza Ahmadnia

Abstract The ideal binary mask (IBM) has been assigned as a computational goal
in computational auditory scene analysis (CASA) algorithms. Only time–frequency
(T-F) units with local signal-to-noise ratio (SNR) exceeding a local criterion (LC)
are assigned the binary value 1 in the binary mask. However, there are two problems
with employing IBM in source separation applications. First, an optimum LC for a
certain SNR may not be appropriate for other SNRs. Second, binary weighting may
cause some parts or regions of the synthesized speech to be discarded at the output. If
one employs variable weights, as opposed to the hard limiting weights (i.e., 0 or 1)
taken in IBM, the above-mentioned problems can be solved considerably. In this
chapter, a novel auditory-based mask, called ideal multi-threshold mask (IMM) is
proposed which can be used in source separation applications. To show the potential
capabilities of the new mask, a minimum mean-square error (MMSE)-based method
is proposed to estimate IMM in the framework of monaural speech enhancement
system. Various objective and subjective evaluation criteria show the superior perfor-
mance of the new speech enhancement system as compared to a recently introduced
enhancement technique.

13.1 Introduction

In a natural environment, a target sound, such as speech, is usually mixed with
acoustic interference. A sound separation system that removes or attenuates acoustic
interference has many important applications, such as automatic speech recogni-
tion (ASR), speaker identification in real acoustic environments, audio informa-
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tion retrieval, sound-based human–computer interaction, and intelligent hearing aids
design. Because of its importance, the sound separation problem has been extensively
studied in signal processing and related fields. Three main approaches in this context
are speech enhancement, spatial filtering with a microphone array, and blind source
separation (BSS) using independent component analysis (ICA). Speech enhancement
typically assumes certain prior knowledge of interference. For example, the standard
spectral subtraction method is easy to apply and works well when the background
noise is stationary. However, the enhancement approach has difficulty in dealing with
some nonstationary aspects of the environment where a variety of intrusions, such
as competing talkers may occur. While machine separation remains a challenge, the
auditory system shows a remarkable capability for sound separation, even monau-
rally. According to Bregman [1] the auditory system processes the acoustic input in
two stages: an analysis and segmentation stage where the sound is decomposed into
distinct time–frequency (T–F) segments, followed by a grouping stage. The grouping
stage is divided into primitive grouping and schema-driven grouping that represents
bottom-up and top-down processes, respectively.

The ideal binary mask (IBM) has been assigned as a computational goal in compu-
tational auditory scene analysis (CASA) algorithms [2, 3]. A binary mask is defined
in the T–F domain as a matrix of binary numbers. We refer to the basic elements
of the T–F representation of a signal as T–F units. Frequency decomposition similar
to the human ear can be achieved using a bank of gammatone filters [4], and signal
energies are computed in time frames. There have been some studies toward imple-
menting an IBM with a fixed local criterion (LC). The study made in [5] has shown
large intelligibility benefits by employing an IBM-based signal segregation method.
This study has reported positive results on hearing impaired subjects. Multiplying
IBM with the noise-masked signal can yield large gains in intelligibility, even at
extremely low SNR levels (−5 dB, −10 dB) [6]. However, there are two problems
with employing IBM in source separation problems. First, an optimum LC for a
certain SNR may not be appropriate for other SNRs. Second, binary weighting may
cause some regions of the synthesized speech to be discarded at the output.

Some other notable work has been done in the realm of soft mask estimation which
is closely related to the source separation problem. The method proposed in [7] is a
two-stage frequency-domain procedure for underdetermined convolutive BSS. Here,
in the first stage, frequency bin-wise samples along the time axis are classified based
on Gaussian mixture model fitting. In the second stage, the permutation ambiguities
of the bin-wise classified signals are aligned by clustering the posterior probability
sequences along the frequency axis. After calculating the posterior probabilities for
all sources and for all observation vectors, a probabilistic T–F masking is performed
to separate source signals in the frequency domain. In another study, a source separa-
tion method using probabilistic models of sources and an expectation–maximization
parameter estimation procedure is presented [8]. The proposed system, which is
referred to as model-based expectation–maximization source separation and local-
ization (MESSL), clusters individual spectrogram points based on their interaural
phase difference (IPD) and interaural level difference (ILD). In this way, MESSL
creates probabilistic masks that can be used to separate sound sources from an under-
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determined reverberant mixture. In [9], based on weighted combination of various
features extracted from binaural recordings, a kind of soft mask is generated and
applied to the mixture signal to improve source separation algorithms in reverber-
ant conditions. Here, first, four different features are extracted at each T–F unit of
a binaural recording, namely, ILD, IPD, the observation vector, and the interaural
coherence (IC). Then, the probability of each T–F unit belonging to each source is
obtained from the occupation likelihood and applied to the mixture as a probabilistic
soft mask to extract the source signals.

In this chapter, a novel approach in designing a soft mask is proposed which can
be used in the source separation problem. Here, an ideal multi-threshold mask (IMM)
with variable threshold criteria is designed and employed to improve the quality and
intelligibility of the separated speech. The motivation behind using such a mask with
variable weights is to overcome the shortcomings of IBM which were mentioned
above.

The rest of the chapter is organized in the following manner. The next section
provides an overview of IBM and discusses its shortcomings. Section 13.3 presents
our proposed ideal multi-threshold mask (IMM). As a special case of source separa-
tion problem, Sect. 13.4 describes the monaural speech enhancement system which
is based on ideal multi-threshold masking. Systematic evaluations and comparisons
are provided in Sect. 13.5. Finally, Sect. 13.6 summarizes the chapter and gives some
remarks as to the future work.

13.2 The Ideal Binary Mask

The IBM is defined by comparing the signal-to-noise power ratios within each T–F
unit against a local criterion (LC) or threshold measured in units of decibels. Only
the T–F units with local signal-to-noise ratio (SNR) exceeding LC are assigned the
binary value 1 in the binary mask. Let T (t, f ) and M(t, f ) denote target and masker
signal powers measured in decibels, at time t and frequency f , respectively. The
IBM is defined as

IBM(t, f ) =
{

1, if T (t, f ) − M(t, f ) > LC,

0, otherwise.
(13.1)

An IBM-based segregated signal can be synthesized from a mixture by deriving a
gain from the binary mask, and applying it to the mixture before reconstruction in a
synthesis filterbank. Studies in [10] have shown nearly perfect intelligibility of IBM-
processed mixture when the value of LC is varied from −12 to 0 dB. Meanwhile,
the IBM with LC of 0 dB is considered to be theoretically the optimal mask out of
all possible binary masks in terms of SNR gain. In practice, often LC is set as the
middle of this interval (i.e., −5 or −6 dB). Along with reporting similar results, other
studies have also analyzed the effect of the spectral resolution among other factors
influencing intelligibility of ideal binary-masked speech [6]. However, there are two
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problems with employing IBM in source separation, namely the SNR-dependence
of LC and hard-masking effect of IBM which are discussed in detail below.

13.2.1 SNR Dependence of LC

Optimum LC for a certain SNR may not be appropriate for other SNRs. In other
words, the studies show that the intelligibility of speech treated with IBM decreases
significantly if LC is not selected properly. Brungart et al. [5] has measured the impact
of the threshold value on speech intelligibility and has found that optimal thresholds
are dependent on the global signal-to-noise ratio (SNR) values. Specifically, if the
SNR value is increased by ψdB, this leads to an increase of the threshold by an
amount of approximately ψdB. In this way, a high intelligibility can be maintained
if the LC value is changed in accordance with changing global SNRs.

13.2.2 Hard-Masking Effect of IBM

In the context of an ideal binary mask, T–F units assigned with the binary value 1 are
retained, while those assigned with the value 0 are discarded. Such binary weighting
may cause some parts or regions of the synthesized speech to be discarded at the
output. We interpret these regions as deep artificial gaps. To solve this problem, the
study in [11] has proposed to fill the above-mentioned speech gaps with unmodulated
broadband noise. This study reports that adding background noise shallows the areas
of silence in the time–frequency domain of the IBM-processed target–speech/masker
mixture. In this way, the abruption of transient changes in the mixture is smoothed
and the perceived continuity of target–speech components is enhanced, leading to
improved target–speech intelligibility. The amount of noise added depends on the
input noise type and SNR level.

13.3 Proposed Ideal Multi-threshold Mask (IMM)

As mentioned previously, optimum LC for a certain SNR may not be optimum for
other SNR levels. This means that the intelligibility of the IBM-processed speech
may decrease significantly if LC is not set to a proper value. Also, the hard masking
effect of IBM may cause deep artificial gaps. This is specifically the case in high
frequency regions where noise has much energy that causes the loss of the weak
unvoiced parts of speech. The resulting artificial gaps sound unnatural at the out-
put. Therefore, we seek a mask that solves the above-mentioned IBM shortcomings
simultaneously. Employing a kind of soft threshold masking is probably the strategy
which is practically applied to the incoming mixture in the human auditory system.
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Fig. 13.1 The ideal multi-threshold mask (IMM). The IMM keeps the units with local SNR greater
than 0 dB, discards the units with local SNR less than −12 dB, and weights the T-F units in this
interval increasingly

The studies made on the design and application of IBM show that, the local SNR
value of T-F units in the range of −12 to 0 dB has an important impact on selecting the
local criterion value LC. If one employs variable weights in this region, as opposed
to the hard limiting weights (i.e., 0 or 1) taken in IBM, the aforementioned problems
can be solved considerably. The ideal multi-threshold mask (IMM) which is found
empirically is depicted in Fig. 13.1 and can be stated mathematically as follows:

W (t, f ) =





0, if SNRTF < −12 dB,

0.2, if − 12 dB ≤ SNRTF < −7 dB,

0.4, if − 7 dB ≤ SNRTF < −3 dB,

0.6, if − 3 dB ≤ SNRTF < −1 dB,

0.8, if − 1 dB ≤ SNRTF < 0 dB,

1, if 0 dB ≤ SNRTF.

(13.2)

where SNRTF denotes the SNR value in T-F units, and W (t, f ) is the assigned weight
to a T-F unit according to its SNR level. Since the T-F units with SNRs close to 0 dB
have larger impact on intelligibility than those with SNRs near −12 dB, the SNR
range near 0 dB is divided into smaller partitions to increase the resolution of IMM
in this area.

The use of ideal multi-threshold mask (IMM) has two advantages over a conven-
tional IBM. First, in this type of thresholding, especially in low SNRs (i.e., smaller
than −5 dB), the small amount of noise energy which remains in the segregated
speech, does not have a destructive role but it is beneficial in filling the speech gaps.
The second advantage concerns the extraction of low-energy parts of speech signal,
especially the unvoiced regions of the target. In spite of its low rate of frequency
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Fig. 13.2 Comparison of the performances of ideal binary mask (IBM) and ideal multi-threshold
mask (IMM) in preserving the unvoiced regions of speech. The first panel, from the top, shows the
cochleagram of a clean speech signal [14]. The second panel is the cochleagram of the noisy signal
corrupted with Factory noise [15] at SNR = −10 dB. The third panel is the signal cochleagram
processed by IBM with LC = −5 dB. The last panel is the signal cochleagram processed by IMM.
Comparing the third and fourth cochleagrams shows that the unvoiced portions of the speech are
retained and the gaps are filled in the case of the cochleagram obtained by IMM

(approx. % 24 in the conversational speech [12, 13]), the unvoiced speech has an
important impact on speech intelligibility. By using IMM in the source separation
procedure, one expects to increase the intelligibility value by retaining the unvoiced
parts of speech. Figure 13.2 shows the cochleagrams of a clean signal taken from
the IEEE database [14], mixture signal corrupted with Factory noise taken from the
Noisex-92 database [15] at SNR = −10 dB, ideal binary masked signal, and ideal
multi-threshold masked signal, respectively. It can be seen that the time continuity
and the preservation of the unvoiced regions in the IMM-processed signal is more
remarkable than those obtained by using IBM.

Figure 13.3 shows the cochleagrams of a clean signal [14], mixture signal cor-
rupted with Factory noise [15] at SNR = 0 dB, ideal multi-threshold masked signal,
and ideal binary masked signal with LC = 0,−5, and −12 dB, respectively. The
SNR dependence and hard-masking problems of IBM can be seen in these represen-
tations.
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Fig. 13.3 Comparison of the performances of IMM and IBM with different masking thresholds.
The top-left panel shows the cochleagram of the utterance “A large size in stockings is hard to sell”
spoken by a male talker [14]. The top-middle panel shows the cochleagram of a mixture of speech
and factory noise [15], with SNR = 0 dB. The top-right panel shows the masked mixture using
IMM; note the similarity with the cochleagram of the original target speech (top-left panel). The
result of applying IBM with LC = 0,−5, and −12 dB to the cochleagram of the mixture is shown
in the bottom panels, respectively

13.4 Speech Enhancement Based on Ideal Multi-threshold
Masking

The discussions made above assume the ideal case, where the clean and noise signals
are separately available, and so we have access to the ground-truth SNRs of all T-F
units. However, in real-world monaural conditions, only the noisy signal is available.
Therefore, to use the potential benefits of IMM in speech enhancement applications,
this mask should be estimated from noisy signals. For this purpose, a minimum
mean-square error (MMSE)-based approach is proposed.

One reason for the incomplete performance of traditional speech enhancement
methods such as MMSE-based approach is the inaccurate prediction of the noise
power spectrum in nonstationary noisy environments. This does not mean avoiding
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Fig. 13.4 Illustrations of variances of normalized energy for the babble, factory, car, and restaurant
noises [15] after decomposing the original noise signal into 64 subband signals by a gammatone
filterbank. In each panel, the solid blue curves, labeled as “Total Var”, indicate the variance of nor-
malized energy of the original noise signals, whereas the small green squares, labeled as “Channel
Var”, indicate the normalized energy variances in each channel. Almost in all cases, the variances
of normalized energies in channels have lower values than those of the original noise signals

the use of these algorithms, but it means that if the noise behavior nears to stationary
or quasi-stationary, their performance would be better [16].

Our empirical studies show that many types of noises if decomposed into subband
signals become more stationary as compared to the original noise signal. The process
is made up of two stages. In the first stage, the noise signal is broken down into 64
subband signals using a gammatone filterbank. Signals of all individual channels are
divided into 20 ms rectangular frames with 50 % overlap. This creates time-frequency
(T-F) units, in which noise energies can be computed. In the second stage, the vari-
ances of energies of all T-F units in each channel are computed after a normalization
procedure. The normalized variance of the original undecomposed noise energy is
obtained subsequently. Figure 13.4 shows the normalized energy variances for the
Babble, Factory, Car, and Restaurant noises in gammatone filterbank channels along
with variance of normalized energy for the original noise signal. Here, the solid blue
curves, labeled as “Total Var”, depict the normalized energy variances of the original
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Fig. 13.5 Block diagram of the monaural speech enhancement system using the MMSE-based
estimation of ideal multi-threshold mask (IMM)

noise signals, whereas the small green squares in each panel, labeled as “Channel
Var”, indicate the normalized energy variances in each channel. It can be readily
seen that, almost in all cases, the variances of normalized energies for channels are
lower than those of the original noise signals themselves. This observation confirms
the fact that the noises decomposed in subbands have a stationary or quasi-stationary
behavior than the original noise signal. As a consequence of this finding, we are
motivated to employ the channel-wise MMSE method to calculate the noise power
spectrum, which is then used in the estimation procedure of IMM.

Figure 13.5 illustrates the block diagram of the monaural speech enhancement
system based on multi-threshold masking. Generally, the estimation of IMM can be
described as a two-stage process, namely the training stage and the enhancement
stage. In the first stage, an artificial neural network (ANN) is trained to find the
SNR of each T-F unit using the training data. In the next stage, the estimated IMM
is applied to the noisy signal using the calculated SNR at the output of ANN. The
details of the speech enhancement procedure are described in detail below.
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13.4.1 Peripheral Analysis

The input signal is first decomposed in the frequency domain by a bank of 64 gam-
matone filters [4], with their center frequencies equally distributed on the equivalent
rectangular bandwidth (ERB) rate scale from 50 to 8,000 Hz. This filterbank is an
empirical one that simulates the cochlear organ of the ear. The impulse response of
the gammatone filter is given as

g fc(t) = t N−1 exp [−2αb ( fc)] cos(2α fct + β) u(t). (13.3)

where N = 4 is the order of the filter, b is the equivalent rectangular bandwidth, fc

is the center frequency of the filter, β is the phase, and u(t) is the step function.
The outputs of the filterbank are then transformed into neural firing rate by hair cell

model [12]. In each filter channel, the output is divided into 20 ms time frames with
10 ms overlapping between consecutive frames. As a result of this process, the input
is decomposed into a two-dimensional time-frequency representation, or a collection
of T-F units. The resulting T-F representation is known as a cochleagram [2].

13.4.2 Calculation of Ground-Truth SNRs of T-F Units

In this stage, the ground-truth SNRs of all T-F units are calculated for the next stage,
namely the artificial neural network which should be trained using the training data.
For this purpose, first, pairs of training data, including clean and noise signals are
prepared manually at specified SNR levels. The clean and noise signals in each pair
are then decomposed separately by the peripheral analysis unit into time-frequency
units. By having access to the clean and noise signals in each T-F unit, the ground-
truth SNRs of T-F units are calculated as follows:

SNRTF
G−T = 10 log

⎡⎣
n (sTF(n))2

⎣
n (nTF(n))2

⎤
. (13.4)

Here, sTF(n) and nTF(n) represent, respectively, the clean and noise signals in each
T-F unit and n is the time index.

13.4.3 MMSE Estimation of the A priori SNR ξk

The unit has the task of estimating the a priori SNR in the frequency domain for
each T-F unit. To this aim, first, a mixture of noisy signal is generated at a known
SNR level. Then, the mixture signal is split into subband signals by the gammatone
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filterbank in the peripheral analysis stage, yielding a representation of noisy signal
in the form of T-F units.

Let y(n) = x(n) + d(n) be the sampled noisy speech signal of a T-F unit
in channel c consisting of the clean signal x(n) and the noise signal d(n). In the
frequency domain, we have:

Y (ωk) = X (ωk) + D(ωk) (13.5)

for ωk = 2αk/N and k = 0, 1, 2, . . . , N − 1, where N is the number of samples in
each frame or T-F unit of channel c.

The log-MMSE algorithm for the estimation of the a priori SNR θk can be imple-
mented recursively using the following steps. For each windowed frame m (i.e., T-F
unit) of the mixture signal in channel c do:

Step 1 Compute the DFT of the noisy speech signal: Y (ωk) = Yk exp
⎦

jφy(k)
)
.

Step 2 Estimate the a posteriori SNR ϕk as ϕk = Y 2
k /πd(k), where πd(k) is the

power spectrum of the noise signal computed during non-speech activity
(e.g., during speech pauses). Then, estimate θ̂k using the decision-directed
approach [17]:

θ̂k(m) = ∂
X̂2

k (m − 1)

πd(k, m − 1)
+ (1 − ∂) max[ϕk(m) − 1, 0], (13.6)

where 0 < ∂ < 1 is the weighting factor, and X̂2
k (m − 1) is the amplitude

estimator obtained in the past analysis frame (i.e., past T-F unit in channel
c). The above equation needs initial conditions for the first frame, i.e., for
m = 0. The following initial conditions are recommended [17] for θ̂k(m):

θ̂k(0) = ∂ + (1 − ∂) max
[
ϕk(0) − 1, 0

]
.

where good results are obtained with ∂ = 0.98.
Step 3 Based on the estimated value of θ̂k in the previous step, estimate the enhanced

signal magnitude X̂k using the log-MMSE estimator [18]:

X̂k = θk

1 + θk
exp





1

2

∞∫

vk

e−t

t
dt



 Yk

= GL S A(θk, vk)Yk, (13.7)

where GL S A(θk, vk) is the gain function of the log-MMSE estimator, θk is
the a priori SNR, and vk is defined as

vk = θk

1 + θk
ϕk .
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Fig. 13.6 Recursive learning process in a typical artificial neural network system

Step 4 Return to the Step 1, and repeat the procedure until a convergence criterion
is satisfied.

The above procedure results in a large-dimensional vector quantity θ̂k (here, a
vector with N = 256 dimensions) for each T-F unit, which will be further processed
by the next unit.

13.4.4 Regression

The estimated a priori SNRs in T-F units are vectors of large dimension. In order to
drive the ANN classifier with a low-dimensional vector, it is necessary to reduce the
dimension of the vectors generated by the MMSE estimation unit described above.
This task is achieved by the unit of regression.

Without losing the generality, a linear regression is used for the process of dimen-
sion reduction [19]. It is known that polynomial models are a special case of the
linear regression models. Polynomial models have the advantages of being simple
and familiar in their properties. Therefore, one way of reducing the dimensions of
the a priori SNR vectors is to fit them with linear polynomials of fixed order and then
extract their coefficients as the desired feature vector. Assuming that each element
of the a priori SNR vector represents an observation variable, the process of linear
regression by a polynomial of order 4 transforms the large-dimensional vectors of
the a priori SNRs (here with a dimension of 256) into feature vectors of dimension 5.

13.4.5 Training Artificial Neural Network

Typically, neural networks are adjusted or trained, such that a particular input leads
to a specific target output. Figure 13.6 illustrates such a situation. Here, the network
is adjusted, based on a comparison of output and target, until the network output
matches target.
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In the process of estimating an ideal multi-threshold mask, a neural network
consisting of one hidden layer with 50 neurons is used. The estimation procedure of
IMM consists of two steps, namely the training phase and the testing phase.

The training is performed in a supervised manner in which the low-dimensional a
priori SNR feature vectors and the corresponding ground-truth SNRs of all T-F units
are used as input and target to ANN, respectively. However, since T-F units may have
very large or very small values of ground-truth SNRs, it is important to reduce first
the impact of SNR variances on the training process of ANN. To this aim, a simple
nonlinear transformation is applied on the extracted ground-truth SNRs of T-F units
to compress (or map) the SNR values to a specified range. This mapping function is
shown in Fig. 13.7, and is described mathematically as

SNRC
TF = 1

3

⎦|SNRTF + 40| − |SNRTF − 20|), (13.8)

where SNRTF and SNRC
TF are, respectively, the true SNR and the compressed SNR

of the unit TF. The compressed values of units SNR are given as input to ANN.

13.4.6 SNR Calculation with Trained ANN

In the testing or evaluation phase of the proposed method for estimating IMM, the
reduced feature vector of each unit, i.e., the a priori SNR vector of T-F unit generated
by the regression algorithm, is extracted and given as input to the trained ANN. The
output given by ANN is the SNR value for the corresponding unit. However, before
using the calculated SNR of the unit in the estimation of IMM, it must be processed
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by a decompressing function. This is the inverse of the compressing function as used
in the training phase:

ˆSNRTF =
⎧

3 × ˆSNR
C
TF − 20

⎨
/2, (13.9)

where ˆSNR
C
TF is the SNR value obtained by ANN and ˆSNRTF is the decompressed

value of SNR for the T-F unit denoted as TF.

13.4.7 Estimation of IMM

The SNR value, as obtained by Eq. (13.9), is used to estimate the ideal multi-
threshold mask (IMM). In other words, by having access to SNRs of all T-F units
and considering IMM criterion as given by Eq. (13.2), different weights are assigned
to different T-F units of the input signal according to their calculated SNR values.
The constructed mask is then applied to the input noisy signal in the next stage to
produce the enhanced speech.

13.4.8 Resynthesis Procedure

Using the estimated IMM, it is straightforward to resynthesize the enhanced speech
signal from the output of the gammatone filterbank. This can be achieved by employ-
ing an approach introduced by Weintraub [20] which is described in the following
stages. In the first stage, first, the response of each filter is reversed in time. Then, the
reversed response is passed back through the filter. Finally, the filtered response is
time-reversed again. In this way, across-channel phase shifts in the filterbank output
are removed. In the second stage, the phase-corrected output from each channel is
divided into time frames by windowing with a raised cosine, with a frame size equal to
the one used in the decomposition of input mixture into T-F units. The energy in each
T-F unit is then weighted by the corresponding T-F mask value obtained from the esti-
mated IMM. In the last stage, the weighted responses are summed across all frequency
channels to yield an enhanced speech waveform. The process is depicted in Fig. 13.8.

13.5 Evaluations and Experimental Results

For simulations, clean speech signals are selected randomly from the IEEE corpus
[14] and noise signals are taken from the Noisex-92 database [15]. We have assessed
the performance of our proposed ideal multi-threshold mask (IMM) both in compar-
ison with IBM and in the framework of the monaural speech enhancement system by
investigating the amount of SNR improvement, PESQ [21] value, and listening tests.
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Fig. 13.8 The process of applying the estimated multi-threshold mask to generate the enhanced
speech signal from the noisy input mixture

To generate noisy signals, clean signals are mixed with the Babble, Car, Factory,
and Restaurant noises at different SNR levels. Table 13.1 shows the experimental
conditions used in the evaluation procedure.

13.5.1 Evaluation Criteria

In the following, different objective and subjective measures are introduced to assess
the performance and capability of the proposed ideal multi-threshold mask (IMM).
These include examining the results of SNR improvement, PESQ test, and listening
tests.

13.5.1.1 SNR Improvement

The SNR criterion is an objective measure which is calculated as follows:

SNR = 10 log

⎩
⎫⎬

⎣
n SAllOne(n)2

⎣
n

⎧
SAllOne(n) − ŜO(n)

⎨2

⎢
⎞⎠ , (13.10)
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Table 13.1 Experimental conditions

Number of training data 50 sentences
Number of evaluation data 10 sentences
Sampling frequency ( fs) 16 kHz
Window type Hamming
Frame length (N ) 320 samples (20 ms)
Overlap of frames (N/2) 160 samples (10 ms)
Number of channels in gammatone filterbank 64

where SAllOne(n) is the clean speech signal that is masked with an all-one mask and
resynthesized again to cancel the delay and nonlinear modifications which occur in
the synthesis process, and ŜO(n) is the enhanced signal.

Higher values of SNR improvement is an indication of higher speech qualities.

13.5.1.2 PESQ Evaluation

The perceptual evaluation of speech quality (PESQ) is an objective evaluation of
speech quality. PESQ is the ITU-T P.862 recommendation [22], which has been found
to have a good correlation with the mean opinion score (MOS) test. This score ranges
from 4.5 (the highest quality of speech) down to −0.5 (the lowest quality of speech).
Among all objective measures considered, the PESQ measure is the most complex
to compute and is the one recommended by ITU-T for speech quality assessment of
3.2 kHz (narrowband) handset telephony and narrowband speech codecs [22].

13.5.1.3 Listening Tests

In order to assess the proposed multi-threshold mask (IMM) subjectively, the MUlti
Stimulus test with Hidden Reference and Anchor (MUSHRA) is used, which is an
ITU-R Recommendation BS.1534-1 [23] as implemented in [24].

The experiments are performed in a sound-proof room. Stimuli are played to
listeners through headphone. The subjects (i.e., human listeners) are provided with
test utterances plus one reference and one hidden anchor, and are asked to rate
different signals (i.e., to give scores for the masked signals) obtained for each noise
type and SNR level on a scale of 0–100, where 100 represents the best score. The
listeners are permitted to listen to each sentence several times and always have access
to clean signal reference. The test signals are the same as those used for the objective
evaluation. Four types of noises (i.e., Babble, Car, Factory, and Restaurant) are used
during the listening tests. A total of 10 listeners (three females and seven males
between the ages of 18 and 30) have participated in these tests.
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Fig. 13.9 Average SNR-Improvement obtained by processing mixture signals with the proposed
IMM and IBMs with LC = 0,−5, and −12 dB, at different input SNRs and noise types

13.5.2 Evaluation of Ideal Masks (IMM Versus IBM)

To evaluate the performance of the ideal multi-threshold mask (IMM) against the
ideal binary mask (IBM), these masks are applied directly to the input noisy mixture
to generate the enhanced speech signal. The process is as follows. First, the clean and
noise signals are manually mixed at different SNRs. Then, IBM and the proposed
IMM are applied to the mixture signals. The weighted responses are finally processed
by the resynthesis module to yield a reconstructed ideally masked mixture waveform.

Figure 13.9 shows the average SNR-improvement obtained by processing mixture
signals with the proposed IMM and IBMs with three different LCs, at different
input SNRs, and for the Babble, Factory, Car, and Restaurant noises, respectively.
As seen from the figure, the values of SNR-improvement resulted from IBM with
LC = −12 dB lies far below those obtained from other IBMs and IMM in all noise
types. This implies the fact that the processed signal with this mask has more residual
noise compared with other masks. The improvements from IMM and other IBMs
are close together, and the amount of improvement from IMM is slightly less than
that obtained from IBM with LC = 0 dB.

Figures 13.10 and 13.11 show, respectively, the SNR-improvement at channel 50
and over the top 20 high frequency channels of the gammatone filterbank resulted
from different IBMs and IMM, under the same experimental conditions as given in
Fig. 13.9. The band-wise evaluations reveal that IMM has in general higher perfor-
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Fig. 13.10 Average SNR-Improvement in the 50th frequency channel obtained by processing
mixture signals with the proposed IMM and IBMs with LC = 0,−5, and −12 dB, at different input
SNRs and noise types

mance than IBM at high frequency channels in the sense of SNR-improvement. Also,
it is seen that the amount of improvement resulting from IBM depends highly on
the noise type and input SNR value, whereas IMM shows relatively stable behavior
in these conditions. It is known that most of the weak unvoiced parts of speech are
located at high frequencies. As stated before, the high energy of noise in these fre-
quency regions may cause the loss of unvoiced parts of speech which results in the
degradation of speech intelligibility. It can be concluded, therefore, that the IMM-
processed mixture, because of its multiple thresholds, can lead to an improvement
in speech intelligibility at high frequency range of input mixture.

Figure 13.12 shows the PESQ values for the proposed IMM and IBMs with three
different thresholds obtained at different noisy conditions and input SNR values.
As it can be seen from the figure, the IMM-processed signal has the best quality,
compared with those signals which use IBMs as the processing mask.

The results of subjective listening tests for evaluating the performance of IMM
and IBMs with different thresholds in the processing of enhancing the input noisy
mixture are depicted in Fig. 13.13. By examining the results, it is observed that
the proposed IMM produces the highest speech quality, compared with IBMs. The
superior performance of IMM is again in agreement with the results obtained during
the objective evaluations tests.
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Fig. 13.12 Average PESQ values obtained by processing mixture signals with the proposed IMM
and IBMs with LC = 0,−5, and −12 dB, at different input SNRs and noise types
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Fig. 13.13 The MUSHRA listening test results obtained by processing mixture signals with the
proposed IMM and IBMs with LC = 0,−5, and −12 dB, at different input SNRs and noise types

13.5.3 Evaluation of Estimation Methods for IMM and IBM

In this section, the performance of our proposed MMSE-based multi-threshold mask
estimation system is compared with that of a classification-based system for estimat-
ing binary mask in the framework of speech enhancement application. To this aim
and motivated by a recent classification-based approach for unvoiced–voiced speech
separation [25, 26], we first implement an SVM-based classifier for estimating binary
mask which uses the gammatone frequency cepstral coefficients (GFCC) as clas-
sification features. Then, using the previously mentioned objective and subjective
criteria, the performances of both systems are evaluated in the sense of improving
the quality of input noisy mixture.

Here, the proposed multi-threshold mask estimation system and the SVM-based
classifier (called SVM-GFCC) are trained with noisy signals obtained by mixing
clean signals with Factory noise at SNR = 0 dB. In the evaluation phase, the perfor-
mances of both systems are examined for all noise types, including the Babble, Car,
and Restaurant noises, and at different SNR values of input mixture signals. Figures
13.14, 13.15, and 13.16 show the results of SNR improvement, PESQ measures, and
listening tests, respectively. Although the results of Fig. 13.15 show that the proposed
mask estimation method performs slightly poorer than the SVM-GFCC approach in
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Fig. 13.14 Average SNR-Improvement obtained by processing mixture signals with the proposed
MMSE-based mask estimation method and SVM-GFCC approach at different input SNRs and noise
types

low SNR values, but investigating the results of other tests shows clearly that, in
general, the performance of the proposed MMSE-based mask estimation method is
superior in all noisy scenarios and input SNR values. The results demonstrate also
that the proposed mask estimation approach has good generalization ability to unseen
noises.

13.6 Summary

The ideal binary mask (IBM) has been assigned as a computational goal in com-
putational auditory scene analysis (CASA). However, there are two problems with
employing IBM in source separation applications. First, an optimum LC for a certain
SNR may not be appropriate for other SNRs. Second, binary weighting may cause
some parts or regions of the synthesized speech to be discarded at the output. We
interpret these regions as deep artificial gaps. This is specifically the case in high
frequency regions where the high energy of noise may cause the loss of unvoiced
parts of speech resulting in the degradation of speech intelligibility.
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Fig. 13.15 Average PESQ values obtained by processing mixture signals with the proposed MMSE-
based mask estimation method and SVM-GFCC approach at different input SNRs and noise types

In this chapter, a novel approach in designing an auditory-based mask is proposed
which can be used in the source separation problem. Here, an ideal multi-threshold
mask (IMM) is designed and employed in the speech enhancement application to
obtain a high quality and intelligible target signal from a mixture.

The performance evaluation of the proposed multi-threshold mask is conducted in
two steps. In the first step, the performance of the ideal multi-threshold mask (IMM) is
assessed against the ideal binary mask (IBM) by applying these ideal masks directly
to the input noisy mixture to generate the enhanced speech signal. In the second
step, and to use the potential benefits of IMM in the real-world monaural conditions,
a minimum mean-square error (MMSE)-based approach is proposed to estimate
IMM. Systematic evaluations and comparisons with an SVM-based classifier for
estimating binary mask show that the proposed estimation method of IMM improves
substantially the performance of the conventional speech enhancement systems.

It is known that there is a relationship between intelligibility and labeling errors
in IBM estimation [6]. Accuracy and HIT-FA are two important criteria to assess
the intelligibility of resynthesized signals in such systems which are based on the
estimation of binary mask. The HIT rate is defined as the percentage of the target-
dominated units in the IBM labeled correctly and the FA rate refers to the percentage
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Fig. 13.16 The MUSHRA listening test results obtained by processing mixture signals with the
proposed MMSE-based mask estimation method and SVM-GFCC approach at different input SNRs
and noise types

of the interference-dominated units in the IBM labeled wrongly. The Accuracy is
calculated as the percentage of correctly labeled units with respect to the IBM. As
stated before, it is expected that employing the multi-threshold mask improves the
intelligibility score of the input noisy signal, especially at high frequency ranges
of the spectrum. However, in this work, we have not conducted any formal intelli-
gibility tests to assess our proposed multi-threshold mask in the monaural speech
enhancement system. This is because variable weights are employed in IMM, as
opposed to the hard limiting weights (i.e., 0 or 1) taken in IBM. Therefore, here
conventional criteria such as Accuracy and HIT-FA are not directly applicable. As
the future work, we are working on developing appropriate intelligibility measures
to evaluate the proposed IMM in source separation systems.
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Chapter 14
REPET for Background/Foreground
Separation in Audio

Zafar Rafii, Antoine Liutkus and Bryan Pardo

Abstract Repetition is a fundamental element in generating and perceiving structure.
In audio, mixtures are often composed of structures where a repeating background
signal is superimposed with a varying foreground signal (e.g., a singer overlaying
varying vocals on a repeating accompaniment or a varying speech signal mixed up
with a repeating background noise). On this basis, we present the REpeating Pattern
Extraction Technique (REPET), a simple approach for separating the repeating back-
ground from the non-repeating foreground in an audio mixture. The basic idea is to
find the repeating elements in the mixture, derive the underlying repeating models,
and extract the repeating background by comparing the models to the mixture. Unlike
other separation approaches, REPET does not depend on special parameterizations,
does not rely on complex frameworks, and does not require external information.
Because it is only based on repetition, it has the advantage of being simple, fast,
blind, and therefore completely and easily automatable.

14.1 Introduction

Figure–ground perception is the ability to segregate a scene into a foreground com-
ponent (figure) and a background component (ground). In vision, the most famous
example is probably the Rubin vase: depending on one’s attention, one would per-
ceive either a vase or two faces [19]. In auditory scene analysis [2], different cues
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can be used to segregate foreground and background: loudness (e.g., the foreground
signal is louder), spatial location (e.g., the foreground signal is in the center of the
stereo field), or timbre (e.g., the foreground signal is a woman speaking).

Unlike fixed images (e.g., Rubin vase), audio has also a temporal dimension that
can be exploited for segregation. Particularly, auditory scenes are often composed of
a background component that is more stable or repeating in time (e.g., air conditioner
noise or footsteps), and a foreground component that is more variable in time (e.g.,
a human talking or a saxophone solo). The most notable examples are probably seen
(or rather heard) in music. Indeed, musical works are often organized into struc-
tures where a varying melody is overlaid on a repeating background (e.g., rapping
over a repeating drum loop or playing a solo over a repeating chord progression).
This implies that there should be patterns repeating in time that could be used to
discriminate the background from the foreground in an auditory scene.

Repetition also appears as an exploitable cue for source separation in audio. By
identifying and extracting the repeating patterns (e.g., drum loop or guitar riff), we
show that it is possible to separate the repeating background from the non-repeating
foreground in an audio mixture. This idea is supported by recent findings in cognitive
psychology which showed that human listeners are able to segregate individual audio
sources if they repeat across different mixtures, even in the absence of other cues
(e.g., spatial location) and without a prior knowledge of the sources [10].

In this chapter, we present the REpeating Pattern Extraction Technique (REPET),
a simple method that uses repetition as a basis for background/foreground separation
in audio. The basic idea is to find the repeating elements in the mixture, derive the
underlying repeating models, and extract the repeating background by comparing
the models to the mixture. The rest of this chapter is organized as follows.

In Sect. 14.2, we present the original REPET. The original REPET aims at iden-
tifying and extracting the repeating patterns in an audio mixture, by estimating a
period of the underlying repeating structure and modeling a segment of the periodi-
cally repeating background [13, 16]. The idea can be loosely related to background
subtraction, a technique used in computer vision for separating moving foreground
objects from a fixed background scene in a sequence of video frames [12].

In Sect. 14.3, we present the adaptive REPET. The original REPET works well
when the repeating background is relatively stable (e.g., a verse or the chorus in
a song); however, the repeating background can also vary over time (e.g., a verse
followed by the chorus in the song). The adaptive REPET is an extension of the
original REPET that can handle varying repeating structures, by estimating the time-
varying repeating periods and extracting the repeating background locally, without
the need for segmentation or windowing [9].

In Sect. 14.4, we present REPET-SIM. The REPET methods work well when the
repeating background has periodically repeating patterns (e.g., jackhammer noise);
however, the repeating patterns can also happen intermittently or without a global or
local periodicity (e.g., frogs by a pond). REPET-SIM is a generalization of REPET
that can also handle non-periodically repeating structures, by using a similarity matrix
to identify the repeating elements [14, 15].
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Fig. 14.1 Overview of the original REPET. Stage 1 calculation of the beat spectrum b and estimation
of a repeating period p. Stage 2 segmentation of the mixture spectrogram V and calculation of the
repeating segment model S. Stage 3 calculation of the repeating spectrogram model W and derivation
of the soft time–frequency mask M

14.2 REpeating Pattern Extraction Technique

The original REPET aims at identifying and extracting the repeating patterns in
an audio mixture, by estimating a period of the underlying repeating structure and
modeling a segment of the periodically repeating background [13, 16].

The original REPET can be summarized in three stages (see Fig. 14.1): (1) identi-
fication of a repeating period (see Sect. 14.2.1), (2) modeling of a repeating segment
(see Sect. 14.2.2), and (3) extraction of the repeating structure (see Sect. 14.2.3).

14.2.1 Repeating Period Identification

Periodicities in a signal can be found by using the autocorrelation, which is the cross-
correlation of a signal with itself. The function basically measures the similarity
between a segment and a lagged version of itself over successive time lags.

Given a mixture signal x , we first compute its short-time Fourier transform (STFT)
X using windows of N samples. We then derive the magnitude spectrogram V by
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taking the absolute value of the elements of X , after discarding the symmetric part
(i.e., the frequency channels above half the sampling frequency).

We then compute the autocorrelation over time for each frequency channel of the
power spectrogram V 2 (i.e., the element-wise square of V ) and obtain the matrix
of autocorrelations A. We use V 2 to emphasize peaks of periodicity in A. If x is
stereo, V 2 can be averaged over the channels. The overall self-similarity b of x is
then obtained by taking the mean over the rows of A. We finally normalize b by
dividing it by its first term (i.e., time lag 0). The calculation of b is shown in Eq. 14.1.

A(i, l) = 1

m − l + 1

m−l+1∑

j=1

V (i, j)2V (i, j + l − 1)2

b(l) = 1

n

n∑

i=1

A(i, l) then b(l) = b(l)

b(1)
(14.1)

for i = 1 . . . n where n = N

2
+ 1 = number of frequency channels

for l = 1 . . .m where m = number of time frames.

The idea is very similar to the beat spectrum introduced in [7], except that no
similarity matrix is explicitly calculated here, and the dot product is used in lieu of
the cosine similarity. Pilot experiments showed that this method allows for a clearer
visualization of the underlying periodically repeating structure in the mixture. For
simplicity, we will refer to b as the beat spectrum for the remainder of this chapter.

Once the beat spectrum b is calculated, the first term which measures the similarity
of the whole signal with itself (i.e., time lag 0) is discarded. If periodically repeating
patterns are present in x , b would form peaks that are periodically repeating at
different period rates, unveiling the underlying periodically repeating structure of
the mixture, as exemplified in the top row of Fig. 14.1.

We then use a period finder to estimate the repeating period p from b. One
approach can be to identify the period in the beat spectrum that has the highest mean
accumulated energy over its integer multiples (see Algorithm 1 in [16]). Another
approach can be to find the local maximum in a given lag range of the beat spectrum
(see source codes online1).

The calculation of the beat spectrum b and the estimation of the repeating period
p are illustrated in the top row of Fig. 14.1.

14.2.2 Repeating Segment Modeling

Once the repeating period p is estimated, we use it to segment the mixture spectro-
gram V into r segments of length p. We then take the element-wise median of the r

1 http://music.eecs.northwestern.edu/research.php?project=repet

http://music.eecs.northwestern.edu/research.php?project=repet
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segments and obtain the repeating segment model S, as exemplified in the middle row
of Fig. 14.1. The calculation of the repeating segment model S is shown in Eq. 14.2.

S(i, j) = median
k=1...r

{
V (i, j + (k − 1)p)

}

for i = 1 . . . n and j = 1 . . . p (14.2)

where p = period length and r = number of segments.

The rationale is that, if we assume that the non-repeating foreground has a sparse
and varied time–frequency representation compared with the time–frequency repre-
sentation of the repeating background, time–frequency bins with small deviations at
period rate p would most likely represent repeating elements and would be captured
by the median model. On the other hand, time–frequency bins with large deviations
at period rate p would most likely be corrupted by non-repeating elements (i.e.,
outliers) and would be removed by the median model.

The segmentation of the mixture spectrogram V and the calculation of the repeat-
ing segment model S are illustrated in the middle row of Fig. 14.1.

14.2.3 Repeating Structure Extraction

Once the repeating segment model S is calculated, we use it to derive a repeating
spectrogram model W , by taking the element-wise minimum between S and each
of the r segments of the mixture spectrogram V , as exemplified in the bottom row
of Fig. 14.1. The calculation of the repeating spectrogram model W is shown in
Eq. 14.3.

W (i, j + (k − 1)p) = min
{

S(i, j), V (i, j + (k − 1)p)
}

for i = 1 . . . n, j = 1 . . . p, and k = 1 . . . r (14.3)

The idea is that, if we assume that the non-negative mixture spectrogram V is the
sum of a non-negative repeating spectrogram W and a non-negative non-repeating
spectrogram V − W , then we must have W ≤ V , element-wise.

Once the repeating spectrogram model W is calculated, we use it to derive a soft
time–frequency mask M , by normalizing W by the mixture spectrogram V , element-
wise. The calculation of the soft time–frequency mask M is shown in Eq. 14.4.

M(i, j) = W (i, j)

V (i, j)
with M(i, j) ∈ [0, 1]

for i = 1 . . . n and j = 1 . . .m (14.4)

The rationale is that time–frequency bins that are likely to repeat at period rate
p in V would have values near 1 in M and would be weighted toward the repeating
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background. On the other hand, time–frequency bins that are not likely to repeat at
period rate p in V would have values near 0 in M and would be weighted toward the
non-repeating foreground.

We could further derive a binary time–frequency mask by setting time–frequency
bins in M with values above a chosen threshold t ∈ [0, 1] to 1, while the rest is
set to 0. Pilot experiments showed that the estimates sound better when using a soft
time–frequency mask.

The time–frequency mask M is then symmetrized and multiplied to the STFT
X of the mixture x , element-wise. The estimated background signal is obtained by
inverting the resulting STFT into the time domain. The estimated foreground signal
is obtained by simply subtracting the background signal from the mixture signal.

The calculation of the repeating spectrogram model W and the derivation of the
soft time–frequency mask M are illustrated in the bottom row of Fig. 14.1.

Experiments on a data set of song clips showed that the original REPET can be
effectively applied for music/voice separation [13, 16], performing as well as two
state-of-the-art methods, one based on a pitch-based method [8] and the other based
on non-negative matrix factorization (NMF) and a source-filter model [3]. Exper-
iments showed that REPET can also be combined with other methods to improve
background/foreground separation; for example, it can be used as a preprocessor to
pitch detection algorithms to improve melody extraction [16], or as a postprocessor
to a singing voice separation algorithm to improve music/voice separation [17].

The time complexity of the original REPET is O(m log m), where m is the num-
ber of time frames in the spectrogram. The calculation of the beat spectrum takes
O(m log m), since it is based on the autocorrelation which is itself based on the fast
Fourier transform (FFT), while the median filtering takes O(m) (Fig. 14.2).

Figure 14.2 shows an example of music/voice separation using the orginal REPET.
The mixture is a female singer (foreground) singing over a guitar accompaniment
(background). The guitar has a repeating chord progression that is stable along the
song. The spectrograms and the mask are shown for 5 s and up to 2.5 kHz. The
file is Tamy—Que Pena Tanto Faz from the task of professionally produced music
recordings of the Signal Separation Evaluation Campaign (SiSEC).2

The original REPET can be easily extended to handle varying repeating structures,
by simply applying the method along time, on individual segments or via a sliding
window (see also Sect. 14.3). For example, given a window size and an overlap
percentage, the local repeating backgrounds can be successively extracted using
the original REPET; the whole repeating background can then be reconstructed via
overlap-add [16].

Experiments on a data set of full-track real-world songs showed that this method
can be effectively applied for music/voice separation [16], performing as well as a
state-of-the-art method based on NMF and a source-filter model [3]. Experiments
also showed that there is a trade-off for the window size in REPET: if the window
is too long, the repetitions will not be sufficiently stable; if the window is too short,
there will not be sufficient repetitions [16].

2 http://sisec.wiki.irisa.fr/tikiindex.php?page=Professionally+produced+music+recordings

http://sisec.wiki.irisa.fr/tikiindex.php?page=Professionally+produced+music+recordings
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Fig. 14.2 Example of music/voice separation using the orginal REPET

14.3 Adaptive REPET

The original REPET works well when the repeating background is relatively stable
(e.g., a verse or the chorus in a song); however, the repeating background can also
vary over time (e.g., a verse followed by the chorus in the song). The adaptive REPET
is an extension of the original REPET that can handle varying repeating structures,
by estimating the time-varying repeating periods and extracting the repeating back-
ground locally, without the need for segmentation or windowing [9].

The adaptive REPET can be summarized in three stages (see Fig. 14.3): (1) iden-
tification of the repeating periods (see Sect. 14.3.1), (2) modeling of a repeating
spectrogram (see Sect. 14.3.2), and (3) extraction of the repeating structure (see
Sect. 14.3.3).

14.3.1 Repeating Periods Identification

The beat spectrum helps to find the global periodicity in a signal. Local period-
icities can be found by computing beat spectra over successive windows. A beat
spectrogram thus helps to visualize the variations of periodicity over time.

Given a mixture signal x , we first compute its magnitude spectrogram V (see
Sect. 14.2.1). Given a window size w ≤ m, where m is the number of time frames in
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V , we then compute for every time frame j in V , the beat spectrum b j of the local
magnitude spectrogram Vj centered on j (see Sect. 14.2.1). We then concatenate the
b j ’s into the matrix of beat spectra B. To speed up the calculation of B, we can also
use a step size s, and compute the b j ’s every s frames only, and derive the rest of the
values through interpolation. The calculation of B is shown in Eq. 14.5.

Vj (i, h) = V (i, h + j − ≤w + 1

2
√)

A j (i, l) = 1

w − l + 1

w−l+1∑

h=1

Vj (i, h)2Vj (i, h + l − 1)2 and

b j (l) = 1

n

n∑

i=1

A j (i, l)

B(l, j) = b j (l)

for i = 1 . . . n where n = N

2
+ 1 = number of frequency channels

for h = 1 . . .w where w = window size

for j = 1 . . .m and l = 1 . . .m where m = number of time frames.

(14.5)

The idea of the beat spectrogram was also introduced in [7], except that no sim-
ilarity matrix is explicitly calculated here, and the dot product is used in lieu of the
cosine similarity. For simplicity, we will refer to B as the beat spectrogram for the
remainder of this chapter.

Once the beat spectrogram B is calculated, the first row (i.e., time lags 0) is
discarded. If periodically repeating patterns are present in x , B would form horizontal
lines that are periodically repeating vertically, unveiling the underlying periodically
repeating structure of the mixture, as exemplified in the top row of Fig. 14.3. If
variations of periodicity happen over time in x , the horizontal lines in B would show
variations in their vertical periodicity.

We then use a period finder to estimate for every time frame j , the repeating period
p j from the beat spectrum b j in B (see Sect. 14.2.1). To speed up the estimation of
the p j ’s, we can also use a step size s, and compute the p j ’s every s frames only,
and derive the rest of the values through interpolation.

The calculation of the beat spectrogram B and the estimation of the repeating
periods p j ’s are illustrated in the top row of Fig. 14.3.

There is no one method to compute the beat spectrum/spectrogram or to estimate
the repeating period(s). We proposed to compute the beat spectrum/spectrogram
using the autocorrelation and estimate the repeating period(s) using a local maxi-
mum finder (see source codes online3). In [9], the beat spectrogram was derived by
computing the power spectrograms of the frequency channels of the power spectro-

3 http://music.eecs.northwestern.edu/research.php?project=repet

http://music.eecs.northwestern.edu/research.php?project=repet
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Fig. 14.3 Overview of the adaptive REPET. Stage 1 calculation of the beat spectrogram B and
estimation of the repeating periods p j ’s. Stage 2 filtering of the mixture spectrogram V and cal-
culation of an initial repeating spectrogram model U . Stage 3 calculation of the refined repeating
spectrogram model W and derivation of the soft time–frequency mask M

gram of the mixture, and taking the element-wise mean of those power spectrograms;
the repeating periods were estimated by using dynamic programming.

14.3.2 Repeating Spectrogram Modeling

Once the repeating periods p j ’s are estimated, we use them to derive an initial
repeating spectrogram model U . For every time frame j in the mixture spectrogram
V , we derive the corresponding frame j in U by taking for every frequency channel,
the median of the k frames repeating at period rate p j around j , where k is the
maximum number of repeating frames, as exemplified in the middle row of Fig. 14.3.
The calculation of the initial repeating spectrogram model U is shown in Eq. 14.6.

U (i, j) = median
l=1...k

{
V (i, j + (l − ≤k

2
√)p j )

}

for i = 1 . . . n and for j = 1 . . .m (14.6)

where k = maximum number of repeating frames

where p j = period length for frame j.
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The rationale is that, if we assume that the non-repeating foreground has a sparse
and varied time–frequency representation compared with the time–frequency repre-
sentation of the repeating background, time–frequency bins with small deviations at
their period rate p j would most likely represent repeating elements and would be
captured by the median model. On the other hand, time–frequency bins with large
deviations at their period rate p j would most likely be corrupted by non-repeating
elements (i.e., outliers) and would be removed by the median model.

The filtering of the mixture spectrogram V and the calculation of the initial repeat-
ing spectrogram model U are illustrated in the middle row of Fig. 14.3.

Note that, compared with the original REPET that uses the same repeating period
for each time frame of the mixture spectrogram (see Sect. 14.2), the adaptive REPET
uses a different repeating period for each time frame, so that it can also handle varying
repeating structures where the repeating period can also change over time.

14.3.3 Repeating Structure Extraction

Once the initial repeating spectrogram model U is calculated, we use it to derive
a refined repeating spectrogram model W , by taking the element-wise minimum
between U and the mixture spectrogram V , as exemplified in the bottom row of
Fig. 14.3. The calculation of the refined repeating spectrogram model W is shown
in Eq. 14.7.

W (i, j) = min
{
U (i, j), V (i, j)

}

for i = 1 . . . n and j = 1 . . .m (14.7)

The idea is that, if we assume that the non-negative mixture spectrogram V is the
sum of a non-negative repeating spectrogram W and a non-negative non-repeating
spectrogram V −W , then we must have W ≤ V , element-wise (see also Sect. 14.2.3).

Once the refined repeating spectrogram model W is calculated, we use it to derive
a soft time–frequency mask M (see Sect. 14.2.3).

The calculation of the refined repeating spectrogram model W and the derivation
of the soft time–frequency mask M are illustrated in the bottom row of Fig. 14.3.

Experiments on a data set of full-track real-world songs showed that the adaptive
REPET can be effectively applied for music/voice separation [9], performing as
well as a state-of-the-art method based on multiple median filtering of the mixture
spectrogram at different frequency resolutions [5] (Fig. 14.4).

The time complexity of the adaptive REPET is O(m log m), where m is the number
of time frames in the spectrogram. The calculation of the beat spectrogram takes
O(m log m), since it is based on the beat spectrum (see Sect. 14.2.3), while the
median filtering takes O(m).

Figure 14.4 shows an example of music/voice separation using the adaptive
REPET. The mixture is a male singer (foreground) singing over a guitar and drums
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Fig. 14.4 Example of music/voice separation using the adaptive REPET

accompaniment (background). The guitar has a repeating chord progression that
changes around 15 s. The spectrograms and the mask are shown for 5 s and up to
2.5 kHz. The file is Another Dreamer—The Ones We Love from the task of profes-
sionally produced music recordings of SiSEC.4

14.4 REPET-SIM

The REPET methods work well when the repeating background has periodically
repeating patterns (e.g., jackhammer noise); however, the repeating patterns can also
happen intermittently or without a global or local periodicity (e.g., frogs by a pond).
REPET-SIM is a generalization of REPET that can also handle non-periodically
repeating structures, by using a similarity matrix to identify the repeating elements
[14, 15].

REPET-SIM can be summarized in three stages (see Fig. 14.5): (1) identification
of the repeating elements (see Sect. 14.4.1), (2) modeling of a repeating spectrogram
(see Sect. 14.4.2), and (3) extraction of the repeating structure (see Sect. 14.4.3).

4 http://sisec.wiki.irisa.fr/tikiindex.php?page=Professionally+produced+music+recordings

http://sisec.wiki.irisa.fr/tikiindex.php?page=Professionally+produced+music+recordings
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Fig. 14.5 Overview of REPET-SIM. Stage 1 calculation of the similarity matrix S and estimation
of the repeating elements jk ’s. Stage 2 filtering of the mixture spectrogram V and calculation of
an initial repeating spectrogram model U . Stage 3 calculation of the refined repeating spectrogram
model W and derivation of the soft time–frequency mask M

14.4.1 Repeating Elements Identification

Repeating/similar elements in a signal can be found by using the similarity matrix,
which is a two-dimensional representation where each point (a, b) measures the
similarity between any two elements a and b of a given sequence.

Given a mixture signal x , we first compute its magnitude spectrogram V (see
Sect. 14.2.1). We then compute the similarity matrix S by multiplying transposed V
and V , after normalization of the columns of V by their Euclidean norm. In other
words, each point ( ja, jb) in S measures the cosine similarity between the time frames
ja and jb of V . The calculation of the similarity matrix S is shown in Eq. 14.8.

S( ja, jb) =
∑n

i=1 V (i, ja)V (i, jb)√∑n
i=1 V (i, ja)2

√∑n
i=1 V (i, jb)2

where n = N

2
+ 1 = number of frequency channels (14.8)

for ja = 1 . . .m and jb = 1 . . .m

where m = number of time frames.
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The idea of the similarity matrix was introduced in [6], except that the magnitude
spectrogram and the cosine similarity are used here in lieu of the mel-frequency
cepstrum coefficients (MFCC) and the dot product, respectively as the audio para-
metrization and the similarity measure. Pilot experiments showed that this method
allows for a clearer visualization of the repeating structure in x .

Once the similarity matrix S is calculated, we use it to identify the repeating ele-
ments in the mixture spectrogram V . If repeating elements are present in x , S would
form regions of high and low similarity at different times, unveiling the underlying
repeating structure of the mixture, as exemplified in the top row of Fig. 14.5.

We then identify for every time frame j in V , the frames jk’s that are the most
similar to frame j and save them in a vector of indices J j . The rationale is that, if we
assume that the non-repeating foreground has a sparse and varied time–frequency
representation compared with the time–frequency representation of the repeating
background, the repeating elements unveiled by the similarity matrix should be those
that basically compose the underlying repeating structure.

We can add the following parameters when identifying the repeating elements
in the similarity matrix: t , the minimum similarity between a repeating frame and
frame j ; d, the minimum distance between two consecutive repeating frames; k, the
maximum number of repeating frames for a frame j .

The calculation of similarity matrix S and the estimation of the repeating elements
jk’s are illustrated in the top row of Fig. 14.5.

14.4.2 Repeating Spectrogram Modeling

Once the repeating elements jk’s are identified, we use them to derive an initial
repeating spectrogram model U . For every time frame j in the mixture spectrogram
V , we derive the corresponding time frame j in U by taking for every frequency
channel, the median of the repeating frames jk’s given by the vector of indices J j ,
as exemplified in the middle row of Fig. 14.5. The calculation of the initial repeating
spectrogram model U is shown in Eq. 14.9.

U (i, j) = median
l=1...k

{
V (i, J j (l)

}

where J j = j1 . . . jk = indices of repeating frames

where k = maximum number of repeating frames (14.9)

for i = 1 . . . n and for j = 1 . . .m.

The rationale is that, if we assume that the non-repeating foreground has a sparse
and varied time–frequency representation compared with the time–frequency rep-
resentation of the repeating background, time–frequency bins with small deviations
within their repeating frames jk’s would most likely represent repeating elements
and would be captured by the median model. On the other hand, time–frequency
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bins with large deviations within their repeating frames jk’s would most likely be
corrupted by non-repeating elements (i.e., outliers) and would be removed by the
median model.

The filtering of the mixture spectrogram V and the calculation of the initial repeat-
ing spectrogram model U are illustrated in the middle row of Fig. 14.5.

Note that, compared with the REPET methods that look for periodically repeat-
ing elements for each time frame of the mixture spectrogram (see Sects. 14.2 and
14.3), REPET-SIM also looks for non-periodically repeating elements for each time
frame, so that it can also handle non-periodically repeating structures where repeating
elements can also happen intermittently.

14.4.3 Repeating Structure Extraction

Once the initial repeating spectrogram model U is calculated, we use it to derive a
refined repeating spectrogram model W , as exemplified in the bottom row of Fig. 14.5
(see Sect. 14.3.3).

Once the refined repeating spectrogram model W is calculated, we use it to derive
a soft time–frequency mask M (see Sect. 14.2.3).

The calculation of the refined repeating spectrogram model W and the derivation
of the soft time–frequency mask M are illustrated in the bottom row of Fig. 14.5.

Experiments on a data set of full-track real-world songs showed that REPET-SIM
can be effectively applied for music/voice separation [14], performing as well as a
state-of-the-art method based on multiple median filtering of the mixture spectrogram
at different frequency resolutions [5], and the adaptive REPET [9].

Note that FitzGerald proposed a method very similar to REPET-SIM, except that
he computed a distance matrix based on the Euclidean distance and he did not use a
minimum distance parameter [4].

The time complexity of the REPET-SIM is O(m2), where m is the number of time
frames in the spectrogram. The calculation of the similarity matrix takes O(m2), since
it is based on matrix multiplication, while the median filtering takes O(m) (Fig. 14.6).

Figure 14.6 shows an example of noise/speech separation using REPET-SIM. The
mixture is a female speaker (foreground) speaking in a town square (background).
The square has repeating noisy elements (passers-by and cars) that happen intermit-
tently. The spectrograms and the mask are shown for 5 s and up to 2 kHz. The file
is dev_Sq1_Co_B from the task of two-channel mixtures of speech and real-world
background noise of the SiSEC.5

REPET-SIM can be easily implemented online to handle real-time computing,
particularly for real-time speech enhancement. The online REPET-SIM simply
processes the time frames of the mixture one after the other given a buffer that
temporally stores past frames. For every time frame being processed, the similarity

5 http://sisec.wiki.irisa.fr/tiki-index.php?page=Two-channel+mixtures+of+speech+and+realworld
+background+noise

http://sisec.wiki.irisa.fr/tiki-index.php?page=Two-channel+mixtures+of+speech+and+realworld+background+noise
http://sisec.wiki.irisa.fr/tiki-index.php?page=Two-channel+mixtures+of+speech+and+realworld+background+noise
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Fig. 14.6 Example of noise/speech separation using REPET-SIM

is calculated with the past frames stored in the buffer. The median is then taken
between the frame being processed and its most similar frames for every frequency
channel, leading to the corresponding time frame for the repeating background [15].

Experiments on a data set of two-channel mixtures of one speech source and
real-world background noise showed that the online REPET-SIM can be effec-
tively applied for real-time speech enhancement [15], performing as well as different
state-of-the-art methods, one based on independent component analysis (ICA) [11],
one based on the degenerate unmixing estimation technique (DUET) [20] and a
minimum-statistics-based adaptive procedure [18], and one based on time differ-
ences of arrival (TDOA) and a multichannel Wiener filtering [1].

14.5 Conclusion

In this chapter, we presented REPET, a simple method that uses repetition as a basis
for background/foreground separation in audio. In Sect. 14.2, we have presented the
original REPET that aims at identifying and extracting the repeating patterns in
an audio mixture, by estimating a period of the underlying repeating structure and
modeling a segment of the periodically repeating background. In Sect. 14.3, we have
presented the adaptive REPET, an extension of the original REPET that can directly
handle varying repeating structures, by estimating the time-varying repeating periods
and extracting the repeating background locally, without the need for segmentation or
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windowing. In Sect. 14.4, we have presented REPET-SIM, a generalization of REPET
that can also handle non-periodically repeating structures, by using a similarity matrix
to identify repeating elements.

Experiments on various data sets showed that REPET can be effectively applied
for background/foreground separation, performing as well as different state-of-
the-art approaches, while being computationally efficient. Unlike other separation
approaches, REPET does not depend on special parameterizations, does not rely on
complex frameworks, and does not require external information. Because it is only
based on repetition, it has the advantage of being simple, fast, blind, and therefore
completely and easily automatable.

More information about REPET, including source codes, audio examples, and
related publications, can be found online.6 This work was in part supported by NSF
grant number IIS-0812314.
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Chapter 15
Nonnegative Matrix Factorization Sparse
Coding Strategy for Cochlear Implants

Hongmei Hu, Guoping Li, Mark E. Lutman and Stefan Bleeck

Abstract With the development of new speech processors and algorithms, the
majority of cochlear implant (CI) users benefit from their device, however, the aver-
age performance of most CI users still falls below normal hearing (NH) listeners, and
speech quality and intelligibility generally deteriorate in the presence of background
noise. Cochlear implants require efficient speech processing to maximize information
transfer to the brain, especially in noise. Our current work is to improve the perfor-
mance of CIs in noisy environments by developing new speech processing strategies.
In this chapter, a nonnegative matrix factorization (NMF)-based speech coding strat-
egy is introduced, where the speech is first transferred to the time–frequency domain
via a 22-channel filter bank and the envelope in each frequency channel is extracted;
and then the NMF SPARSE strategy is applied on these envelopes. The algorithm was
evaluated by objective and subjective experiments, and the results were compared to
the standard CI speech processing strategy (Advanced Combination Encoder, ACE).

H. Hu (B) · G. Li · M. E. Lutman · S. Bleeck
Institute of Sound and Vibration Research, University of Southampton,
Southampton SO17 1BJ, UK
e-mail: huhongmei.hu@gmail.com; hongmei.hu@uni-oldenburg.de

G. Li
e-mail: lgp@soton.ac.uk

M. E. Lutman
e-mail: mel@isvr.soton.ac.uk

S. Bleeck
e-mail: Bleeck@gmail.com

H. Hu
Medical Physics, University of Oldenburg and Cluster of Excellence “Hearing4all”,
26129 Oldenburg, Germany

H. Hu
Department of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China

G. R. Naik and W. Wang (eds.), Blind Source Separation, 413
Signals and Communication Technology, DOI: 10.1007/978-3-642-55016-4_15,
© Springer-Verlag Berlin Heidelberg 2014



414 H. Hu et al.

A vocoder simulation study with six participants showed that the proposed sparse
NMF strategy can outperform ACE, especially at low SNR for both speech intelli-
gibility and quality.

15.1 Introduction

Cochlear implants (CIs) are electrical devices that help to restore hearing to the
profoundly deaf. The main principle of CIs is to stimulate the auditory nerve via
electrodes surgically inserted into the inner ear. With the development of new speech
processors and algorithms, CI users benefit more and more from CIs [1], some of
them to a degree that allows them to communicate via telephone without much dif-
ficulty. However, the average speech perception performance of CI users decreases
dramatically in the presence of background noise. One potential reason is the limita-
tion of the CI electrical hearing system, such as reduced dynamic range and frequency
resolution in the impaired auditory system compared to the normal hearing system,
limited electrodes numbers and inaccurate channel selection methods in the current
CI systems, and so on. Thus there are several bottlenecks in this electrical stimu-
lation system, which only allows limited acoustic information to be transmitted to
the auditory neurons [2]. There are currently two main ways that speech process-
ing algorithms improve CI performance: one focuses on noise reduction by trying
to enhance speech and suppress noise, such as model-based and non-model-based
noise reduction algorithms [3, 4]; the other focuses on developing new cochlear cod-
ing strategies [5–7] to make good use of the limited dynamic range in the impaired
auditory system. Several speech processing strategies [5, 7–11] were proposed in
our group to improve the speech intelligibility in CIs to partly overcome these bot-
tlenecks in the CI system. A nonnegative matrix factorization (NMF)-based speech
processing strategy is presented in this chapter.

Nonnegative matrix factorization [12, 13] has recently attracted interest at the
intersection of many scientific and engineering disciplines, such as image process-
ing, pattern classification, blind source separation, speech enhancement, and speech
separation [3, 4, 6, 14–36]. NMF is useful for transforming high-dimensional data
sets into a lower dimensional space [12, 24]. Basically, given a nonnegative matrix
Z, NMF is a method to factorize Z into two nonnegative matrices. Motivated by
the nonnegativity of the envelopes in CI channels, which results in firing of audi-
tory neurons, a sparse coding strategy based on NMF is proposed in this chapter to
improve the performance of CI users in noisy environments [9, 10]. In this applica-
tion, Z is a matrix that consists of the envelopes of CI channels, named envelopegram
here. Considering the computation complexity of NMF and an envisaged real-time
implementation in the future, a basic NMF method with a sparse constraint [37] is
applied.
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15.2 Nonnegative Matrix Factorization

Given a nonnegative matrix Z with observations zi j , NMF is a method to factorize
Z into the NMF basis matrix W and component matrix H so that Z ≈ WH.
To do the factorization, a cost function D(Z||WH) is usually defined and min-
imized. There are many possibilities for defining the cost function and various
procedures for performing the consequence minimization [13, 27, 28, 32]. Since
the basic NMF allows a large degree of freedom, different types of regulariza-
tions have been used in the literature to derive meaningful factorizations for a spe-
cific application. In a general notation the following minimization is performed:
[Ŵ, Ĥ] = arg min

W,H
[D(Z||WH) + f (W) + g(H)], where f (W) and g(H) are regu-

larity functions for basis matrix W and NMF component matrix H. The most common
regularizations are motivated by the sparseness of the signal [20, 29, 30, 38] and
the correlation of the signal over time [20, 33]. A sparseness constraint based on the
relation between L1 and L2 norm is proposed in [38]. A faster algorithm is introduced
in [39] to implement NMF using the same constraint and also a new sparseness con-
straint is given by direct controlling of the number of nonzero elements (L0 norm). In
this chapter, the Euclidean distance-based NMF (EUC-NMF) will be combined with
a L1—regularized least squares sparseness penalty function through a least absolute
shrinkage and selection operator (LASSO) framework, i.e., the sparsity is measured
by L1 norm [37, 38].

15.2.1 Sparse EUC-NMF

In our application, Z is the envelope of CI-channels in multiple frequency bands.
NMF is applied to factorize the envelope matrix into two matrices consisting
respectively of NMF basis vectors W and the NMF components H that represent
the activity of each basis vector over time.

As standard NMF usually provides sparseness of its components to a certain
degree, an additional sparseness constraint is applied to explicitly control the sparsity
of the NMF component matrix H. In the future it might be preferable to optimize
the trade-off between the sparseness and reconstruction of each individual CI user.
The L1 norm of H is used as the sparsity measure and the optimization algorithm
proposed by Hoyer [37, 38] is applied to obtain nonnegative matrices W and H.

Let Z denote an N × M envelope matrix of one analysis block where N and M
indicate the number of channels and the number of frames, respectively. Given the
nonnegative envelope matrix Z, we aim to obtain the basis matrix W and component
matrix H such that

D(Z||WH) = 1
2 ∈Z − WH∈2

2 + λg(H) (15.1)
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is minimized, under the constraints ≤i, j,k : wik √ 0, hkj √ 0, λ √ 0, where W =


w11 ... w1K
...

. . .
...

wN1 . . . wN K


⎡⎣

N×K

, H =



h11 ... h1M
...

. . .
...

hK 1 . . . hK M


⎡⎣

K×M

, wi denotes the i th column of

W, g(H) =
K⎤

k=1

M⎤
j=1

hkj .

The parameter λ in Eq. (15.1) is an important factor that handles the compromise
between the NMF approximation and the sparsity. One contribution of this paper is to
show how to choose λ heuristically to maximize the performance of the whole algo-
rithm by objective evaluation methods and subjective perceptional psychophysical
experiments.

As proposed by Hoyer [37, 38], an iterative algorithm is implemented to minimize
the cost function in (15.1), in which the basis matrix W and the component matrix
H are updated by gradient descent and multiplicative update rules respectively.

15.3 Applicability of NMF in the Envelope Domain

In this section, the effect of sparse NMF is shown in processing the noisy speech in
the envelope domain.

15.3.1 Speech Test Materials

Speech materials were single words from 20 vocabulary sets of 80 words that were
composed as rhyme tests (e.g., SUN, SUB, SUD, SOME or GET, BET, WET, YET)
[40]. This material was used in a variant of the four-alternative auditory feature test
(FAAF) [41]. Figure 15.1 shows the waveforms of four clean words in one set (BIN,
PIN, DIN, TIN). Figure 15.2 shows the corresponding envelopes of 22 channels, the
envelopegram, where the x-axis is the time frame bins. Since the patterns of different
words are more distinguishable in the envelope domain (Fig. 15.2) than the waveform
domain (Fig. 15.1) and the envelopes are nonnegative, NMF should work properly
for the envelope matrix.

15.3.2 NMF Analysis on the Envelopegram

For the purpose of demonstration, NMF was applied to the whole envelopegram with
dimension 22 * T of each word individually, where T is the number of the short-time
frames in each word. Assuming sample rate is f s = 16 kHz, the length of the word
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Fig. 15.1 Waveforms of four example sounds (BIN, PIN, DIN, TIN) in the time domain (This
figure is reproduced from Hu et al.’s paper [10])
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Fig. 15.2 Envelopegram of the corresponding CI envelopes from the four sounds shown in Fig. 15.1
(This figure is reproduced from Hu et al.’s paper [10])
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is L samples, then T ≈ L/(0.25 ⊗ 128) with 128 samples’ frame length and 75 %
overlap between each frame. Five basis vectors were obtained for each envelopegram.
Figure 15.3a shows the component matrix, which determines the activity of different
basis vectors over time. Figure 15.3b shows the basis vectors for different words. Note
that although the basis vectors are different for each word, the component matrices
reflect similar patterns along time dimension for all the words, but not necessarily in
the same order of basis number. In the following section, the effect of the number of
the components in the reconstruction of the envelopegram is further investigated.

15.3.3 Reconstructed Envelope

Figure 15.4 shows the reconstruction of the envelopes with different components for
the word “DIN”. This analysis illustrates that: (1) the representation in the NMF
domain is sparser than in the time domain, indicating that NMF can reconstruct
speech with reduced information by choosing only few components. In this exam-
ple, components 1 and 4 alone can reconstruct most of the envelope information (see
Fig. 15.4 top left panel). This reflects that speech has a high degree of redundancy
and only few components are necessary to reconstruct an intelligible speech signal
[42, 43]. (2) The inherent correlation in the speech signal is conserved in the compo-
nent matrix after applying NMF. As illustrated in the top-left panel of Fig. 15.4 and in
Fig. 15.3a, the NMF components (the activity of basis vectors) tend to be continuous
over time; in other words, if a basis vector is active (meaning that its corresponding
coefficient is relatively large in the component matrix) at a specific time frame, it will
often remain active for several time frames. This might be used as additional factor
for improving iteration speed and speech reconstruction in the future. In this study
the envelopegram is factorized by the NMF into the basis and component matrices
where some components correspond to the speech source and others correspond to
the noise source. The application of sparse NMF can be interpreted by assuming that
the smaller NMF components correspond either to the noise basis vectors, or they
do not contribute significantly to the intelligibility of speech. By normalizing each
basis vector to unit norm and by applying sparseness constraint to the factorization,
the small NMF components are removed and hence a sparser signal will be obtained
while effectively performing noise reduction and reducing redundancy. The proposed
algorithm can therefore possibly enhance the speech intelligibility by increasing the
sparseness of the reconstructed signal.

15.4 Sparse NMF Strategy for CIs

Speech has a high degree of redundancy [42, 43] and the human auditory system
has the ability to understand speech based on partial information or in difficult envi-
ronments. Several models, like the glimpsing [43] and binary masking [44] theo-
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Fig. 15.3 The component matrices (a) and the basis matrices (b) of the example words “bin”,
“pin”, “din”, and “tin” (These figures are reproduced from Hu et al.’s paper [10])
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Fig. 15.4 An example of the reconstruction with different components (This figure is reproduced
from Hu et al.’s paper [10])

ries have tried to explain and model this phenomenon. Existing CI strategies, such
as continuous interleaved sampling (CIS), spectral peak (SPEAK), and advanced
combination encoder (ACE), already take advantage of the redundancy properties
of speech by selecting only few channels or only using envelope information for
stimulation. Li et al. [45] demonstrated that these strategies deliver stimulation in a
sparse representation of the speech. Our former work [5, 8, 45] further introduced a
SPARSE strategy, in which an independent component analysis (ICA)-based sparse
algorithm is applied to the spectral envelope. The redundancy properties of speech
were investigated using the SPARSE strategy and tested with objective and subjec-
tive measures at various SNRs [5, 8, 45]. It was shown that the SPARSE strategy
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Fig. 15.5 The proposed sparse NMF strategy and ACE strategy

can improve speech intelligibility for CI users even with very limited familiarity
[5, 45]. To further investigate the contribution of more efficient speech representa-
tion approaches to the performance of CIs, a sparse NMF strategy is introduced and
described in detail in this section, which aims to further improve the CI performance
in noisy environments.

Suppose z(t) is the measured noisy speech signal, zi, j is the envelope-time bin in
the i th channel of the j th frame, which is calculated by weighting and summating
the short time Fourier transfer (STFT) spectrum according to the ACE strategy [46].
Z is an N × M envelopegram, where each column is the N = 22 channel envelope
bin, M = 10 is the number of frames used in each analysis block, which is the same
as the one used in [8–10] in order to provide the same input signal in each analysis
block and short enough to allow real-time implementation.

Figure 15.5 shows the flowchart of the sparse NMF algorithm. The first steps are
identical to the standard ACE strategy. The new blocks in the dashed frame (“sparse
constrained NMF”, “reconstruction”, and “sparse NMF processed envelopes”) indi-
cate the changes that are made in addition to ACE. The blocks indicate steps of
processing: The pre-emphasis filter attenuates low frequencies and amplifies high
frequencies, to compensate for the −6 dB/octave natural slope in the long-term
speech spectrum. After transforming the input speech signal into a spectrogram,
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the 22-channel envelopegram is extracted by summing the power at frequency bins
within each band. The sparse NMF algorithm is then applied to the envelopegram
on a block-by-block basis by buffering a certain number of continuous frames in
each channel. The envelopes are reconstructed from the modified sparse NMF com-
ponents. Finally, appropriate channels are selected for stimulation in a real CI or to
obtain a vocoder simulation that can be tested in experiments with NH listeners.

15.5 Two-Step Sparsity Level Selection Procedure

The sparsity constraint parameter λ in Eq. (15.1) controls the level of sparsity as
a compromise between the NMF approximation and sparsity, which is an impor-
tant factor for the sparseness and ultimately for the speech processing performance.
Because it is not possible to determine an optimal value from the first principles,
we developed a two-step parameter selection procedure and evaluated it in detail
in [9]. This procedure works in two stages combining objective measurements with
subjective experiments: in the first stage, various objective measurements are used
to select a range of possible λ values; then, in the second stage, the final value of λ

is determined in subjective experiments.
Vocoder simulations have been widely used as a valuable tool in CI research to

simulate the perception of a CI user in experiments using NH participants [19, 47,
48]. In vocoder studies, the signal of a CI is simulated by reconstructing an acoustical
signal based on the spectrum envelope [47]. Although the simulations cannot model
individual CI users’ performance perfectly, it has been shown that these simulations
are a good model for real CI perception, specifically for speech perception, predicting
the pattern and trends in performance observed in CI users [19].

Here, in order to evaluate the performance of the sparse NMF algorithms, the
test data are vocoder simulated signals which are either produced by the ACE strat-
egy (control condition) or the sparse NMF strategy. Bamford-Kowal-Bench (BKB)
sentences [49] were used in both the objective and subjective experiments. BKB
sentence lists are standard British speech materials with 21 lists. Each list contains
50 keywords in 16 sentences.

15.5.1 Step 1: Objective Measures and Results

Babble noise was added to the speech material at three different long-term signal-
to-noise ratios (SNR) (0, 5 and 10 dB); five objective evaluation methods were
selected and results were calculated for a wide range of λ = [0.01 : 0.01 : 0.2]. The
results of the objective measures were used to set a smaller range of λ for a further
subjective experiment.
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15.5.1.1 Kurtosis

One of the most important goals of the algorithm is to sparsify the stimuli. A simple
measure of sparseness is the kurtosis [5] based on Eq. (15.2):

K = 1

n

n⎦

i=1

(
xi − μ

σ

)4

− 3 (15.2)

where x is the amplitude, μ is the mean, and σ is the standard deviation of the signal.
For a normalized Gaussian (non-sparse) distribution with μ = 0 and σ = 1, the
kurtosis is by definition K = 0; for other signals the kurtosis may be larger than zero
for a super-Gaussian or smaller than 0 for a sub-Gaussian process. If the kurtosis
becomes larger, the sparseness of the stimulus increases.

Figure 15.6 shows the kurtosis values of the vocoded speech reconstructed from
the ACE and sparse NMF strategies, for clean and noisy conditions at three SNR
levels (0, 5, and 10 dB) respectively. The value of sparseness takes the vocoded
output waveforms as a whole and calculates the kurtosis of the entire time series.
The maximum kurtosis values in each noise condition are marked with red ellipses
in Fig. 15.6, the corresponding λ values are defined as the optimal λ according to
kurtosis. These results confirm that the outputs of sparse NMF algorithms are sparser
than that of the ACE algorithm.

15.5.1.2 Normalized Covariance Metric

The normalized covariance metric (NCM) measure is similar to the speech trans-
mission index (STI) and is a widely used measure of speech intelligibility [50].
NCM is based on the covariance between the input and output envelope signals. For
computing the NCM measure, the stimulus was first bandpass filtered into k bands
spanning the signal bandwidth. The envelope of each band was computed using the
Hilbert transform, anti-aliased using low-pass filtering, and then down-sampled to fd

Hz, thereby limiting the envelope modulation frequencies to 0 − fd Hz. The NCM
measure is expected to correlate highly with the intelligibility of vocoded speech
due to the similarities in the NCM calculation and CI processing strategies; both
use information extracted from the envelopes in a number of frequency bands while
discarding fine-structure information [51, 52].

15.5.1.3 Short-Time Objective Intelligibility

The short-time objective intelligibility (STOI) is a recent improvement of traditional
objective measures [53]. The STOI calculation is based on a correlation coefficient
between the temporal envelopes of the clean and degraded speech in short-time
overlapping segments. The input of STOI is the clean and the processed signal in
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Fig. 15.6 Kurtosis of speech processed by three strategies at three SNR levels of 0, 5, and 10 dB

the time domain, and the output is a scalar value that has a monotonic relation with
the average intelligibility of the processed signal [53]. In our case, the first input is
the vocoded sparsified signal and the second is the corresponding vocoded signal of
the clean speech.

15.5.1.4 Segmental SNR and SNR

Both SNR and frame-based segmental SNR are used as objective measures of speech
quality as follows [54–56]:

Segsnr = 10

M

M−1⎦

m=0

log

Nm+N−1⎤
n=Nm

s2
c (n)

Nm+N−1⎤
n=Nm

[sn(n) − sc(n)]
2 (15.3)

where sn and sc denote processed noisy and clean speech, respectively, M is the
frame number, N is the frame length in points per frame.
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Figure 15.7 shows the NCM, STOI, segmental SNR (Segsnr), and SNR of speech
at two SNR levels (5 and 10 dB) processed by ACE, sparse NMF. The maximum
objective measure values in each noise condition were marked with red ellipses in
Fig. 15.7, the corresponding λ values were defined as the optimal λ according to
different objective measures.

Results shown in Figs. 15.6 and 15.7 demonstrate that for different objective eval-
uations, different values of λ should be set to achieve optimal results. The question
is which objective evaluation method is best suited to predict an optimal λ value.
To answer this question, first a subjective experiment was performed with NH lis-
teners to determine the relation between objective evaluation results and subjective
intelligibility experiment results.

15.5.2 Step 2: Subjective Speech Reception Threshold Test

The speech reception threshold (SRT) is the established method for measuring speech
perception and has been shown to faithfully represent speech perception ability [57].
A two-up one-down adaptive procedure was used to find the SNR required for 70.7 %
correct recognition in each condition. A sentence was classified to be correctly iden-
tified when at least two keywords were correctly repeated. The noise was babble
noise, and the SNR level varied adaptively with a 1 dB step size. To enable compari-
son with subjective results, speech recognition results were assessed using a method
to provide a speech-in-noise threshold in dB [58]. Two psychophysical experiments
were performed: first a “pilot” SRT experiment to determine an optimal λ range,
and finally a “formal” SRT experiment. All participants were normal hearing (within
−10 to 15 dB HL) native English speakers with no previous experience of BKB
sentence lists. All experiments were performed in a sound-isolated room with the
sounds presented binaurally through a Sennheiser HDA 200 headphone with a Creek
OBH-21SE headphone amplifier. The vocoded BKB sentence lists were presented
by a female speaker. The sample rate was 16 kHz. The participants were trained
with vocoded clean BKB sentences to familiarize with the test procedure. All exper-
iments were approved by the Human Experimentation Safety and Ethics Committee,
Institute of Sound, and Vibration Research, University of Southampton, UK.

15.5.2.1 Pilot SRT Experiment

In the pilot SRT experiment, six NH participants (four males, two females, and
aged 18–26) participated. Four sparse NMF strategies with different λ were tested.
Table 15.1 shows different test conditions. In conditions 1, 2, and 3, the vocoded
sounds were reconstructed from the NMF envelope withλ =0.08 (called “NMF008”),
0.13 (“NMF013”), and 0.18 (“NMF018”), respectively, for all SNRs (from −1 to
10 dB in the SRT adaptive procedure, with 1 dB step size, i.e., [−1 : 1 : 10]). In
condition 4 (“NMFcomb”), different λ were applied within the SNR range, e.g.,
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Fig. 15.7 NCM, STOI, Segsnr, and SNR of speech processed by different strategies at two SNR
levels of 5 and 10 dB
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Table 15.1 The pilot
subjective experiment
conditions

Condition Strategy λ SNR(dB)

1 NMF008 0.08 −1 : 1 : 10
2 NMF013 0.13 −1 : 1 : 10
3 NMF018 0.18 −1 : 1 : 10
4 NMFcomb 0.08 7, 8, 9, 10

0.13 3, 4, 5, 6
0.18 −1, 0, 1, 2

0.08 0.13 0.18 Combination
0

2

4

6

8

10

S
R

T
(d

B
)

λ

Fig. 15.8 The pilot subjective experiment results for all four conditions. The vertical axis is the SRT
in dB, the lower SRT means the better performance. The error bars indicate 1 standard deviation

λ = 0.08 when SNR was 7–10 dB, λ = 0.13 when SNR was 3–6 dB, and λ = 0.18
when SNR was between −1 and 2 dB. These values were obtained according to the
SNR-dependent optimization value of λ shown in Figs. 15.6 and 15.7.

Figure 15.8 shows the SRT results of all four conditions from six participants
in the pilot SRT experiments (the higher SRT value means the worse intelligibility
performance). A one-way repeated-measures analysis of variance (ANOVA) with
Fisher’s least significant difference (LSD) post hoc test shows that the effects of
different λ are significant [F(3, 15) = 19.033, p < 0.001]. NH listeners perform
significantly worse in condition 3 compared to all other conditions. Although per-
formance in condition 2 and condition 4 is higher than condition 1, this difference is
not significant.

The optimized λ for better SRT therefore probably lies between 0.08 and 0.13,
which means both NCM and STOI, especially NCM can in some instance predict
the performance of intelligibility for noise vocoded speech in such cases.
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Table 15.2 The “formal”
subjective experiment
conditions

Condition Strategy λ

1 ACE
2 NMF008 0.08
3 NMF010 0.10
4 NMF013 0.13

Table 15.3 The
paired-compared win/loss
number

Strategy ACE NMF008 NMF010

NMF008 1:9
NMF010 8:2 9:1
NMF013 9:1 8:1, 1:1 5:5

15.5.2.2 “Formal” SRT Experiment

After narrowing down the range of optimal λ in the first experiment to λ between
0.08 and 0.13, we further evaluated the sparse NMF strategy within this range in
a speech intelligibility experiment. This SRT experiment test was also designed to
compare the sparse NMF strategies with the ACE strategy.

Ten new NH (six males, four females, and aged 18–26) were recruited. All par-
ticipants were native English speakers with no previous experience of BKB sentence
lists. The ACE strategy and three NMF strategies with different sparsity conditions
were tested. Table 15.2 shows the description of different conditions. In condition 1,
the ACE strategy was used in conditions 2–4, the vocoded sound was reconstructed
from NMF envelopes with λ = 0.08 (“NMF008”), 0.10 (“NMF010”), and 0.13
(“NMF013”) for all SNR (from −1 to 10 dB in the SRT adaptive procedure). The
procedure was identical to the pilot experiment.

The result reveals a large individual performance difference. To understand aver-
aged results, a paired “win/loss” numbers analysis is shown in Table 15.3: A “win”
is marked when one strategy produces better results compared to another. Table 15.3
demonstrates that the ACE strategy outperforms the NMF008 strategy for 9 out
of 10 subjects (9:1), while both NMF010 and NMF013 strategies outperform the
ACE strategy (8:2) and there is no difference between NMF010 and NMF013. On
average, there was a 0.74 dB improvement for NMF010 and a 0.92 dB improve-
ment for NMF013 compared to the ACE strategy. A one-way repeated-measures
ANOVA with LSD post hoc test shows that the differences between the strategies
are significant [F(3, 27) = 7.13, p < 0.05]. The following comparisons are sig-
nificantly different: NMF010 < ACE(p = 0.037), NMF013 < ACE(p = 0.012),
NMF010 < NMF008(p = 0.003) and NMF013 < NMF008(p = 0.006).
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15.6 Subjective Quality Experiments with the Two-Step
Selected NMF Sparsity Level

To further evaluate the sparse NMF strategies with selected sparsity constraint
parameters λ = 0.1 and 0.13, subjective quality experiments in different SNRs were
performed to compare the performance of the NMF010 and NMF013 sparse strate-
gies with the ACE strategy.

15.6.1 Material and Methods

Five NH subjects were recruited (all male, aged between 20 and 26 years) in
this experiment. Three conditions were tested at three different SNRs (0, 5, and
10 dB). Four speech conditions were also compared, they were (a) ACE processed
vocoded clean speech (“ACE clean”), (b) ACE processed vocoded noisy speech
(“ACE noisy”), (c) and (d) sparse NMF processed noisy speech with λ = 0.1 and
0.13 respectively (“NMF010”, “NMF013”). Each speech group consisted of the same
seven individual BKB sentences with the corresponding SNR and the named process-
ing strategies, which were vocoded and concatenated into one long presentation as
testing speech.

A multi-comparison preference rating test was introduced to evaluate the quality
of the speech, in which the global speech quality is evaluated for each session, i.e.,
each SNR (0, 5, and 10 dB). Participants were asked to rate the presentations by giving
a score between 0 and 100 according to their perceived general quality (higher =
better). The participants were allowed to repeat the speech stimuli as often as they
wanted and they could give identical scores when unable to rate differently. The aim
of this experiment was to give an indication of whether the sparse NMF strategy can
improve the quality of the noisy speech and which sparsity level was preferred.

15.6.2 Subjective Quality Experiment Results

The results from the quality experiment are shown in Fig. 15.9 where the vertical
axis is the quality score from 0 to 100. Results from all participants are shown. The
different filling patterns correspond to the different coding strategies.

Figure 15.9a shows the overall speech quality test results for each individual par-
ticipant in different SNR sessions. It shows that all subjects rate the ACE clean
speech highest quality. More interestingly, all subjects prefer NMF processed speech
to the corresponding ACE noisy speech in conditions 0 and 5 dB, and three out
of five prefer at 10 dB SNR. Figure 15.9b shows the range of scores in all condi-
tions. A one-way repeated-measures ANOVA with Fisher’s LSD posthoc test shows
that the effects of the different strategies on the quality performance are significant
[F(3, 12) = 38.3, p < 0.001]. Both sparse NMF010 and NMF013 significantly
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improved the quality of vocoded speech compared to the noisy ACE strategy for
0 and 5 dB (p < 0.05), but there is no statistically significant improvement for
10 dB. There is no significant difference between NMF010 and NMF013 for 0 and
10 dB, while NMF010 significantly (p < 0.05) outperforms NMF013 at 5 dB. These
results indicate that the sparse NMF speech processing strategy is able to improve
both speech intelligibility and quality for CIs and further evaluation in CI users is
necessary.
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15.7 Conclusions

A novel CI coding strategy is proposed in which sparse NMF is applied to the
envelopes of CI-channels in order to improve the performance of CIs in noisy envi-
ronment. As demonstrated, the signal envelopegram is sparsified in the NMF domain,
and only a few basis vectors are active for each time frame. A two-step parameter
selection procedure was developed to choose the sparsity constraint parameter by
combining objective measures and SRT. Subjective listening experiments demon-
strated that the proposed sparse NMF strategy can outperform the existing ACE
strategy when using appropriate sparsity, especially at low SNR. This is evident for
both speech intelligibility and quality, at least as far as can be gauged from NH
listeners and noise vocoder CI simulation. Speech intelligibility in the sparse NMF
strategy benefits from noise reduction more than ACE, because only the key parts
of the signal are chosen for reconstruction. However, at high SNRs, speech quality
becomes more important and distortion caused by over sparsification may increase
listening effort. The sparse NMF strategy shows promise for achieving better speech
perception for CI users. To further improve the performance of the proposed sparse
NMF, it is suggested to combine the sparse NMF algorithm with an SNR-dependent
sparsity constraint.
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Chapter 16
Exploratory Analysis of Brain with ICA

Rubén Martín-Clemente

Abstract This chapter introduces the use of independent component analysis (ICA)
in the study of electroencephalographic (EEG) data. Though the main application of
ICA is in the context of denoising, we prefer to focus our attention to the indepen-
dent components of artifacts-free EEG data. The interpretation of these independent
components is still controversial, and we outline the more accepted alternatives. An
introduction to the results obtained when applying ICA to evoked potentials (EPs)
and event-related potentials (ERPs) is presented, as well as an explanation of the ICA
of natural images and its relationship with models of visual cortex is also presented.
This chapter is written as a general introduction to the subject for those who want to
get started in the main topics.

16.1 Introduction

Independent Component Analysis (ICA) is a multivariate technique that enables us
to linearly transform a given random vector into a vector of (maximally) independent
components. In the last decade, ICA has been widely used in biomedical applications:
e.g., for the detection of the fetal electrocardiogram [20, 45, 64–66], in the analysis
and classification of heartbeats [10, 12, 57, 71], in functional magnetic resonance
imaging (fMRI) [22, 36, 52], for the development of brain computer interfaces
[27, 80], in photoplethysmography [54, 56], in electromyography [14, 44], for the
diagnostic of scoliosis [1], in the modeling of metabolic processes [59], et cetera.
ICA is also closely related to the blind source separation problem.

This chapter reviews the use of ICA in the study of brain and, specifically, elec-
troencephalogram (EEG), which records the brain’s electrical activity. Our aim is to
provide an introduction for those who want to get started in the main points. The
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chapter is organized as follows: first of all, we provide basic background information
on the structure and function of the brain. The application of ICA to EEG data is
reviewed in Sect. 16.4, with special emphasis in the interpretation of the independent
components, in the use of ICA for denoising the data, in the search for the sources
of the electromagnetic fields in the brain, and in the study of the so-called evoked
and event-related potentials. We focus in these specific analyses because ICA has
demonstrated well its effectiveness for all of them. The ICA of natural images has
attracted great attention in recent years, due to its ability to explain certain charac-
teristics of the simple cells in the visual cortex, and is explained in Sect. 16.5. In
Sect. 16.6, we present some algorithms specifically devised for the analysis of the
EEG and, finally, the last Section is devoted to present some conclusions.

16.2 Background of Brain Structure and Function

The brain is the part of the central nervous system that gives rise to thought and
consciousness, interprets the stimuli from the environment, and controls and coordi-
nates other organs of the body. It is made up of 15–33 billion neurons and more than
100 billion nerves. There are two kinds of tissue in the central nervous system: grey
matter and white matter. Grey matter consists of closely packed neural cell bodies,
and can be regarded as the information processing part of the central nervous system.
Grey matter is found at the cerebral cortex and also at the surfaces of the cerebellum,
the brainstem, the basal ganglia and the limbic system (these terms are explained
below). White matter is a vast system of neural connections that contains the nerve
fibers (axons) that communicate the regions of the brain to each other.

Our brain is composed of three specialized parts that collaborate together: the
cerebrum (see Sect. 16.2.1), the cerebellum, and the brain stem (see Fig. 16.1):

• The brain stem is the link between the spinal cord and the rest of the brain. It
performs many basic reflex functions, contributing to the control of the cardiac
and respiratory functions and maintaining the consciousness.

• The cerebellum is at the back of the brain and regulates the muscular activity. It
is responsible for accurate movement coordination, motor learning, equilibrium,
posture, balance, and muscle tone. The cerebellum does not decide to make the
movements, but executes the motor commands from the cerebrum, calibrating the
actions and position according to the information received from the muscles and
the inner ear.

The brain is bathed in cerebrospinal fluid, surrounded and protected by a layer of
tissues called meninges, the blood–brain barrier, and the bones of the skull (cranium).



16 Exploratory Analysis of Brain with ICA 437

(a) (b)

Fig. 16.1 Parts of the brain. a Structure of the brain. b Brain cortex

16.2.1 The Cerebrum

The cerebrum is the dominant part of the brain and comprises two (more or less
symmetric) left and right hemispheres, connected by a large white matter structure
called corpus callosum. The cerebrum may itself be divided into three subregions
(see Fig. 16.1):

1. The cerebral cortex.
2. The basal ganglia.
3. The limbic system.

The outermost layer of brain cells is called cerebral cortex and is made up of grey
matter. Thinking and voluntary movements begin in the cortex. The cortex is only
1.5–4.5 mm deep and, due to its special interest, it will be described in some detail
in Sect. 16.2.2. Under the cortex we find a large mass of white matter, within which
a number of clusters of neurons (grey matter) called basal ganglia are found. The
basal ganglia are involved in perception, attention, motivation and motor functions.
Basal ganglia also have an important role in controlling eye movements. Finally, the
limbic system (also called the “emotional brain”) consists of several nerve pathways
incorporating subcortical structures located on top of the brain stem, including the
hippocampus,1 the hypothalamus,2 the amygdala3 and the thalamus.4 The limbic
system controls our emotions and plays an important role in learning, memory, control
of appetite, and in the regulation of hormones.

1 The hippocampus plays an important role in the formation of new memories, and in spatial
orientation. It also seems to be related to behavioral inhibition.
2 The hypothalamus is involved in emotion and endocrine function control, hunger, and sleep–wake
cycle regulation, among other tasks. It also controls the pituitary gland.
3 The amygdala is involved in memory, emotion, and fear.
4 The thalamus regulates auditory, somatosensory, and visual sensory information. All sensory
stimuli, with the exception of smell, is received in the cortex after passing through the thalamus.
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Interestingly, it has been suggested that the cerebral cortex performs unsupervised
learning, the basal ganglia are devices for reinforcement learning, and the cerebellum
performs supervised learning.

16.2.2 The Cerebral Cortex

The cortex is the outermost layer of brain cells, and deserves special attention. It is
a very thick layer of neural tissue, composed of a narrow convoluted margin of grey
substance.

The cortex is a continuous sheet of grey matter. Note, however, that it is conven-
tionally divided in each hemisphere into four lobes, named after the bones under
which they are located (see Fig. 16.1b):

1. The frontal lobe. Under the forehead.
2. The parietal lobe. Under the top of the head, above the ears.
3. The temporal lobe. Above ears and immediately behind and below the frontal

lobe.
4. The occipital lobe. At the back of the head.

Different lobes of the cortex have different functions. Basically, these functions
can be grouped into three major categories: cognitive (language, thinking, and inter-
pretation of the world), motor (functions related to the control of voluntary move-
ments), and sensory functions (the ability to process the information from our senses):

• The frontal lobe is associated with higher cognitive functions (personality, reason-
ing, and judgement) and, in collaboration with the basal ganglia and the parietal
lobe, is also responsible for motor functions (e.g., the primary motor cortex is
located at the posterior part of the frontal lobe). Broca’s area, whose functions are
linked to speech production, is also in the frontal lobe.

• The parietal lobe integrates the main somatosensory receptive areas, i.e., those
related to the sense of touch, and its functions also include spatial orientation or
the ability to read and write. Left part of the parietal lobe has also the ability to
understand numbers and solve mathematical problems.

• The part of the cortex responsible for processing sound is mainly at the temporal
lobe (the Wernicke’s area, which is usually above the left ear, plays a key role in
the comprehension of language). Temporal lobes also control visual and verbal
memories.

• The part of the cortex that processes visual information (i.e., the primary visual
cortex) is located at the occipital lobe.

Let us finish with a true curiosity: each cerebral hemisphere controls mainly the
opposite side of the body and, interestingly, left part of the cerebrum seems to be
responsible for numerical and scientific thinking, and written and spoken language;
by contrast, the right part of the cerebrum seems to be linked to artistic capabilities
and imagination.
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16.2.3 The Electroencephalogram

In a sense, trying to understand the inner working of the brain through the EEG is
comparable to trying to understand the mechanisms of a motor through the motor
noise. The EEG mainly arises from the postsynaptic currents in the pyramidal neurons
of the cortex. Pyramidal neurons are the most abundant type of neuron in the cortex,
and receive their name from the similarity between the cell body (soma) and a
pyramid. Every neuron receives inputs from many others. In each communication,
the “transmitter” neuron is called presynaptic, and the “receiver” neuron is called
postsynaptic (the synapse is the point of connection between the neurons). When two
neurons communicate, a flow of positively charged ions, the postsynaptic current, is
generated from the presynaptic cell to the postsynaptic cell (that current also produces
a voltage, called postsynaptic potential, across the membrane of the postsynaptic
neuron). In practice, hundreds, if not thousands, of postsynaptic currents combine in
the neuron and, if their sum pass a threshold, an action potential occurs. The action
potential is a short spike (1 ms) that propagates through the axon to other neurons,
generating new postsynaptic currents. The summation of the electric fields associated
with the synchronous postsynaptic currents of millions of neurons can be measured
at the scalp, giving the EEG. More precisely, the EEG is a record over time of the
differences of potential between different locations on the surface of the head.

Figure 16.2 shows the standard location of the electrodes for EEG recording. As
an example, Fig. 16.3 shows typical voltage waveforms as can be measured at these
locations: in this figure, note that the EEG is not “clean”, but rather is contaminated
by a number of artifacts, e.g., a “bump” artifact appears at t = 2 s in the frontal
electrodes most probably due to the fact that the subject has blinked or moved the
eyes (see Sect. 16.4.4).

16.3 Overview of EEG Signal Processing

EEG signal processing (see [72] for a book of reference) usually comprises three
steps:

1. Noise reduction.
2. Feature extraction.
3. Feature classification.

Some comments are in order.

16.3.1 Noise Reduction

The EEG signal measurements are usually contaminated by several types of noise
and artifacts, for example, electrocardiogram artifacts and eye-induced artifacts. Eye
blinks, for example, elicit a large potential difference between the cornea and the
retina that can be one order of magnitude larger than the EEG (see Fig. 16.3).
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Fig. 16.2 Standard placement of electrodes for EEG recording. Letters “F”, “T”, “P” and “O”,
respectively, mean frontal, temporal, parietal, and occipital lobe (see Fig. 16.1b). The ‘C’ letter
stands for central, and letter “z” (zero) refers to an electrode placed on the center line. Electrodes
on the right hemisphere are numbered with even numbers, and odd-numbers are used on the left
hemisphere. “Fp” refers to the frontal polar sites

The bandwidth of the EEG is from about 1 to 100 Hz, although we rarely go
beyond 50 Hz in clinical practice. Most of the noise can be suppressed by applying
low-pass filters. DC and baseline drifts can be eliminated using high-pass filters (1 Hz
cutoff frequency), and powerline harmonics can be removed with a comb filter. If the
subjects under test do not maintain their eyes closed during the recording of the EEG,
additional processing is required to eliminate eye-blink artifacts. Adaptive filtering
has been used for this task, where the necessary reference signals are taken from
electrodes located in the vicinity of the eyes. Adaptive filtering can be also used to
eliminate electrocardiogram (ECG) artifacts.

Of course, as the reader well knows, ICA is a valuable tool for denoising and
removing artifacts. In fact, denoising and removing artifacts seem to be the primary
use for ICA in EEG signal processing. More information will be given in Sect. 16.4.4.
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Fig. 16.3 EEG data. The figure represents 5 s of 61 raw EEG channels, obtained from a healthy sub-
ject . Data was obtained from the Physionet database (http://www.physionet.org/pn4/eegmmidb/).
The placement of the electrodes, as well as an explanation of the nomenclature used for the channels,
can be seen in Fig. 16.2. The horizontal axis represents time in seconds. The ICA of these data is
presented in Fig. 16.4

http://www.physionet.org/pn4/eegmmidb/
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Fig. 16.4 Independent components of the data shown in Fig. 16.3. ICA was performed by using
the Infomax algorithm [7]. Scalp maps and equivalent current dipoles (ECDs) of these independent
components are shown in Fig. 16.5

16.3.2 Feature Extraction

After removing noise and artifacts, the second step in EEG signal processing usually
consists in extracting relevant features out of the EEG signals.

Since the EEG is highly nonstationary in nature, feature extraction can be per-
formed only after prior segmentation of the signals into short segments, usually not
longer than a few seconds. Features are then extracted from each one of them. Within
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1 (3.3%) 2 (14%) 3 (58%)

4 (9.8%) 5 6 (56%)

7 (29%) 8 (55%) 9 (49%)

Fig. 16.5 This figure shows the scalp topographies and the current equivalent dipoles (ECDs) of
some of the independent components in Fig. 16.4 (the number between parentheses is an indicator
of the residual error in the estimation of the ECD). The physiological origin of the independent
components may be determined from this information. The “dots” indicate the location of the
electrodes

each segment, the signals are considered to be stationary and can then be described
by suitable probability distributions. The major problem is, of course, to determine
the initial and final time instants of each segment. Usually, the data is first divided into
short-time frames and statistics, such as the kurtosis, are computed for each frame.
Denoting s(n) the value of the test statistic in the nth frame, if |s(n) − s(n − 1)| is
greater than a predefined threshold, we assume that the “border” that separates two
consecutive segments is located in between the nth frame and the preceding (n−1)th
frame.

Features can be selected in several ways. There exists time-dependent fea-
tures (mean and peak values of the EEG signals, energy, higher order statistics,
entropy, autoregressive (AR) parameters, Lyapunov exponents, . . .), frequency-
dependent features (power spectral density (PSD) values, band powers, . . .),
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time–frequency-dependent features (matching pursuit, coefficients of the wavelet
decomposition, . . .), and so on. Spatial-based features are particularly interesting.
The most important spatial-based feature is the localization at a given time of the
regions inside the brain in which the postsynaptic currents5 are more active. This
feature provides valuable information on the functioning of brain and, also, on sev-
eral diseases and abnormalities. ICA has revealed itself as an useful preprocessing
tool for this task (see Sect. 16.4.2).

Notice finally that, to take into account the time-course variation of the EEG’s
characteristics, it is usual in EEG signal processing to concatenate the features from
several different time segments into a single feature vector.

16.3.3 Feature Classification

Finally, we try to classify the features into different classes that, in turn, correspond
to different brain activities. For example, epileptic seizures produce a series of sharp
spikes in the EEG. Their second- and higher order statistics may be classified to
determine automatically the type and severity of the epileptic attack or, even, to
distinguish between a true epileptic seizure and a nonepileptic attack.

Linear classifiers, such as Fisher’s linear discriminants and support vector
machines (SVM), are probably the most popular classification methods in EEG sig-
nal processing. Linear classifiers use hyperplanes to separate the data into classes.
Fisher’s linear discriminant assumes that the data is gaussian distributed, and (roughly
speaking) obtains the separating hyperplanes by maximizing the distance between
certain projections of representative members of the classes. As an alternative, SVMs
select the hyperplanes by maximizing the distance to the classes. Interestingly, SVMs
also enable us to define nonlinear decision boundaries by previously mapping the
data to another space of higher dimensionality.

Other classifiers used in EEG signal processing include multilayer perceptrons,
Bayes classifiers or Hidden Markov Model (HMM) classifiers. Nearest neighbor
classifiers are also popular when unsupervised learning is required. Finally, note that
several classifiers can be combined to obtain a better performance using, for example,
voting algorithms such as bagging or boosting.

16.4 The ICA of EEG data

The use of ICA for studying brain dynamics greatly follows from the seminal work
[60] by Makeig and co-workers. A good survey of these and other authors’ contri-
butions can be found in [50, 77, 78]. For simplicity, we shall focus mainly on the
analysis of the electroencephalogram (EEG), but essentially the same applies to the
ICA of magnetoencephalogram (MEG) data. Also note that there exists an excellent

5 See Sect. 16.2.3.
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and freely available Matlab toolbox, called EEGLAB, that can be used to process
EEG data in many ways (www.sccn.ucsd.edu/eeglab/). This software has been used
to generate nearly all of the figures in this chapter.

16.4.1 Interpretation of ICA

In EEG signal processing, unfortunately, ICA raises more questions than we can
answer. Let us list some open problems below:

• What does ICA do? This is at least controversial: since no part of the brain functions
completely independent from the others, how can ICA generate physiologically
plausible component waveforms [61]? All we can actually expect is that ICA
will perform a decomposition of the EEG recordings into temporally indepen-
dent components. “Temporally independent components” is often interpreted by
neurobiologists as signals having “maximally distinct” waveforms. The effective
number of independent components contributing to the EEG is a priori unknown,
and may vary from one subject to another even under the same conditions.

• Have the “independent components” got a definite physical origin? Actually, their
origin may be distributed across many brain regions and, moreover, is a priori
unknown. Each independent component can come from the linear combination
of postsynaptic currents spread around all the brain. Having said that, it is very
interesting that, in many cases, the independent components seem to be linked to
physically compact areas of the brain (see Sect. 16.4.2).

• What does ICA actually do? Makeig et al. consider that ICA actually reveals a
system of synchronous but independent electromagnetic activity within relatively
large independent EEG domains [63]. In other words, ICA defines transient brain
networks (that may be distributed, linked, and even interpenetrated) whose elec-
tromagnetic activity is concurrent and independent, and all together make up the
EEG data. This is a different but complementary perspective of the brain to that
adopted by traditional neuroscience. Note that ICA is not actually concerned with
the spatial location of those brain networks, if this has sense, but with the informa-
tion they provide. What to do with this information, and how to integrate it with
other approaches, is an interesting line of open research.

• What is ICA currently useful for? In any case, ICA has demonstrated its effec-
tiveness as a preprocessing tool: definitively, ICA is able to remove a wide range
of artifacts (see Sect. 16.4.4) and is of great assistance in modeling the electro-
magnetic fields in the brain (see Sect. 16.4.2). Moreover, the ICA decomposition
facilitates the analysis and classification of the so-called evoked and event-related
potentials (EPs and ERPs) (see Sect. 16.4.3). Finally, although not directly con-
nected with the study of the EEG, we would like to mention that there are strong
similarities between the processing of images in the human visual system and ICA
(see Sect. 16.5).

www.sccn.ucsd.edu/eeglab/


446 R. Martín-Clemente

Table 16.1 EEG frequency bands

Name Frequency (Hz) Characteristics

ψ 8–13 Present in sleep relaxation and usually when eyes are closed.
They mainly originate in the occipital lobes

α 14–30 Associated with consciousness and reasoning. Sensitive to
medications

β 4–8 Present during light sleep. Theta waves arise in the cortex or in
the hyppocampus

ω <4 Present when in deep sleep. They can originate from the cortex
or in the thalamus

θ >30 May be associated to high-level information processing
μ 8–13 Present when the body is at rest. Unlike the ψ wave, which is

related to the visual cortex, μ waves are associated to the
motor cortex

16.4.1.1 Characteristics of the Independent Components

Having identified the ICA model,

x = A s,

where x contains the signals recorded by the electrodes and s is the vector of inde-
pendent components, the columns of the mixing matrix A give the relative strength
of each component at each electrode. A graphical representation of these strengths,
depicted at the location of the corresponding electrodes on a cartoon head model, is
called scalp map or scalp topography of the independent component (see Fig. 16.5).
It should be noted that as important as the waveform of the independent compo-
nent is its associated scalp map: the physical origin of the components can be often
identified by these maps (e.g., eye activity is located mainly at frontal sites [50]).

Moving on to other issues, it is well known that the normal EEG waveforms can be
classified into six patterns: alpha, beta, delta, gamma, mu, and theta (see Table 16.1).
The frequency analysis of the independent components shows that gamma band and
near DC dynamics appear to be less well represented than activity in intermediate fre-
quency bands [2]. Recent papers include a study of the reliability of the independent
components when ICA is trained on insufficient data, that can be found in [26].

16.4.2 Identifying the Electromagnetic Brain Sources

We have already mentioned (see Sect. 16.2.3) that the EEG is a record of the electrical
activity of the brain that arises from the postsynaptic currents in the pyramidal neurons
of the cortex. A postsynaptic current appears to an external observer as if it were
generated by a current dipole. When many neurons are active, dipoles with the same
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orientation sum to form a single large current dipole, which is usually referred to as
an “equivalent current dipole” (ECD). Interestingly, areas with a diameter up to 3 cm
can be accurately modeled by a single ECD. The potential due to a current dipole of
moment p(t) at a point specified by a radius vector r originated at the position of the
dipole is

v(t) = p(t) · r
4 φ ϕ |r|3

where ϕ is the permittivity of the medium. Denoting ei , i = 1, 2, 3, the orthonormal
basis vectors in the three-dimensional space and letting {s1(t), s2(t), s3(t)} be the
coordinates of p(t) in this basis, i.e., p(t) = ∑3

i=1 si (t)ei , it follows that

v(t) =
3∑

i=1

ai si (t)

where ai = ei ·r/(4 φ ϕ |r|3). The signals recorded at the electrodes v1(t), . . . , vN (t)
are modeled as the superposition of the potentials due to a large number of dipoles:

v1(t) = a11 s1(t) + · · · + a1M sM (t) + n1(t)

...

vN (t) = aN1 s1(t) + · · · + aN M sM (t) + nM (t)

where si (t), i = 1, . . . , M denote the dipoles’ coordinates (M >> N ) and ni (t)
considers the contribution of noise. Inferring the number, spatial localization, and
orientation of the ECDs on the cortical surface helps to identify the areas responsible
for those brain activities which are of interest, but it is a very difficult inverse problem
(one of the main difficulties arising from the fact that the electrodes actually record
a mixture of the contributions of all dipoles).

ICA has not been designed to solve the above-mentioned inverse problem (among
other things because we have no guarantee that the si are independent). Nevertheless,
since ICA is able to remove a wide range of artifacts (see Sect. 16.4.4), it has proven
to be an efficient preprocessing step that makes easier the localization of the ECDs
[15, 34, 70, 75]. Most importantly—and here we refer back to the previous sections—
many independent components have scalp maps that are perfectly compatible with an
origin in a single equivalent current dipole or in a pair of dipoles [21]. It follows that
determining the ECDs that generate those scalp maps may be much better conditioned
than solving directly the original inverse problem. As an example, Fig. 16.5 shows
the scalp topographies and the current equivalent dipoles (ECDs) of some of the
independent components shown in Fig. 16.4. Most importantly, we can assume that
the independent components originate at the locations of these ECDs. In this way,
we can link the independent components to physically compact regions of the brain.
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16.4.3 Evoked and Even-Related Brain Potentials

External stimuli cause the brain to produce electrical potentials known as evoked
potentials and even-related potentials (EPs and ERPs in the future). Measurement
of EPs/ERPs involves recording the EEG while stimuli (e.g., sound burst or light
flashes) is presented. Usually, EPs/ERPs are signals of very low amplitude (µV)
that cannot be discerned by the naked eye from the background EEG activity. For
this reason, the stimulus is repeated many times and the segments (or epochs) of
EEG preceding and immediately following each stimulus presentation are collected
and summed together, causing random noise to be canceled. The difference between
EPs and ERPs is conceptual: while EPs directly reflect the basic processing of the
stimulus and occur early in time, ERPs involve later and more complex processes
in higher brain structures. Furthermore, EPs usually require to average more epochs
than ERPs.

Multiple studies of EPs/ERPs have benefited from the use of ICA, and we will
review a few for illustration [9, 11, 16, 17, 28, 47, 55, 62, 79, 80]. Makeig
et al. [62] decomposed ERPs, which were recorded in response to visual stimuli, into
three meaningful independent components with physically plausible scalp maps. The
time–frequency characteristics of the independent components were related to those
of an ERP called P300.6 Jentzsch [47] conducted an experiment in which subjects
were instructed to press buttons in response to some property of a visual stimulus,
and ICA was applied to auditory grand average ERPs.7 The independent component
amplitudes appeared to be sensitive to the hand used in the response, and the compo-
nents themselves turned out to be quite similar to P300 and N1 waves.8 Xu et al. [80]
also proposed an algorithm for the P300 ERP detection. Basically, ICA was applied
to raw EEG data and those independent components more consistent with the P300
wave were first identified, and then projected back to the scalp. By doing so, the
signal-to-noise ratio of P300 was increased, and the wave was then easily detected.

Bishop et al. [9] were interested in the process of maturing of the auditory system.
They analyzed auditory grand average ERPs elicited by tones in children between
7 and 11 years. For all age groups, two major independent components were found
in the data, which mapped on to the projections of single equivalent dipoles located
on the temporal lobe. Interestingly, one of the generators was tangentially oriented
and showed substantial changes between 7 and 11 years, whereas the other generator
was radially oriented and did not show age changes.

6 P300 (also called P3 or late positive component or LPC) is a reliable positive ERP that peaks at
approximately 300 ms after the presentation of relevant or infrequent stimuli. It has two subcompo-
nents, P3a and P3b, which respectively originate from frontal and parietal lobes. P3a is associated
with the response to a change in the environment, while the amplitude of P3b is inversely propor-
tional to the probability of the stimulus. P300 also seems to be correlated with decision-making
processes.
7 The term “grand average” means that the author averaged together epochs from many subjects.
8 N1 is a large EP that appears in visual discrimination tasks.
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Müller et al. [67] studied event-related MEG recordings, where a single patient
was subject to combined auditory and vibrotactile stimulation, generated with a loud-
speaker that was also coupled to a balloon that was held by the subject with both
hands. ICA was able to separate the somatosensory and the auditory brain responses,
and the scalp maps of the independent components were in good agreement with
the field patterns of conventional ECDs. Furthermore, these ECDs were located pre-
cisely in the brain regions expected to be activated by the respective stimuli. The most
interesting part of the paper, however, is that in which the authors discuss the effects
of overlearning: while averaging the event-related responses is required to remove
the background EEG activity and increase the signal-to-noise ratio, the number of
data points available for the ICA algorithms decreases to the same extent, so that the
independent components are prone to suffer from overlearning or overfitting. Over-
learning produces independent components that are zero almost everywhere except
for a single spike or “bump” when HOS-based algorithms are used [73], or inde-
pendent components with sinusoidal spurious components when SOS-based ICA
methods are employed.9 As a solution, the authors propose to reduce the dimension-
ality of the data and an additional resampling-based method to evaluate the reliability
of the results. Wang et al. [79] used ICA to select the optimal electrode pair, in the
sense of enhancing the signal-to-noise ratio, and detect visual EPs.

16.4.3.1 Analyzing Single-Trial EPs/ERPs

However, averaging EPs/ERPs has several disadvantages. The most important one
is that it eliminates the trial-to-trial temporal variability between EPs/ERPs, even
though this variability may reflect changes in subject state and reveal information
about brain dynamics [61]. When applied to single-trial EPs/ERPs, ICA gives dis-
tinctive results that cannot be obtained by conventional approaches: Jung et al. [51],
e.g., describe the ICA decomposition of single-trial 31-channel ERP epochs10 from
28 normal, 10 autistic, and 12 brain lesion subjects, all of whom were asked to par-
ticipate in visual attention tasks and to press a button each time they saw a circle
appear on the screen. ICA separated out:

1. Blink-related artifacts and eye movement components.
2. Independent components whose activation was time-locked to the visual stimuli.

When projected back to the scalp11 and then summed to estimate their contri-

9 HOS = Higher Order Statistics. SOS = Second-Order Statistics.
10 The number of epochs ranged from 300 to 700.
11 Given the ICA model x = A s, where x stands for the observations and s represents the independent
components, we project back to the scalp these independent components simply by setting the other
independent components to zero. In other words, the observations are reconstructed considering
only the contribution of the independent components time-locked to the visual stimuli.
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butions to the average response, they accounted for nearly all of the P1 and N1
peaks.12

3. Independent components clearly time-locked to the button press. After being
realigned to the median response time and projected back to the scalp, the sum
of these independent components was closely related to P300 ERPs.

4. Independent components whose behavior is similar to that of μ brain waves (see
Table 16.1). These independent components decrease following the button press.

5. Spatially overlapping independent components accounting for ψ band activity
(see again Table 16.1), and that show a variety of relationships to the stimuli and
the subject responses.

6. Nonevent-related background EEG activity.

In conclusion, ICA enhances the amount and quality of the information that can
be extracted from ERP data. The authors report that ICA facilitates the analysis and
classification (successful clustering experiments are reported) of the different types
of response, allowing the study of the interactions between the ERPs and the ongoing
EEG activity, as well as a better understanding of the brain dynamics.

16.4.4 Denoising

It should not be surprising that ICA is primarily used as a blind source separation
technique for the removal of artifacts such as those caused by blinking, eye muscle
movement (electrooculogram or EOG), facial muscle movements, cardiac activity,
etc [6, 18, 19, 23, 30, 35, 43, 46, 48, 49, 53, 70, 74, 76]. The idea is simply to
reconstruct the EEG data as follows:

xd = A s0

where xd is the denoised EEG vector and s0 is the vector of independent components,
in which we have set the artifactual components to zero.

Let us present a simple example. Figure 16.4 shows real EEG data (data were
collected for 1 min though only 5 s are shown for clarity). The EEG is contaminated
by several artifacts. Specifically, there is an strong eye activity in the frontal electrodes
(FP1 and so on): for example, an ocular artifact is clearly visible at t = 2 s—observe,
for example, that the short duration of the deflections is compatible with blinking.
There is another interfering signal, more visible at the occipital and parietal electrodes
(O1 and so on), that is (more or less) periodic with a period slightly lower than 1 s.
It is a “peaky” signal that seems to be an electrocardiogram (ECG) artifact.

Figure 16.6 shows the distribution of the voltage at the head surface at t = 2 s
and, for comparison, at t = 3 s (when there are no visible artifacts). The plots
confirm that the voltage concentrates over the frontal scalp when an ocular artifact

12 P1 (or P100) is an EP sensitive to visual discrimination tasks that peaks at 100–130 ms after
stimulus presentation and is modulated by attention.
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(a) (b)

Fig. 16.6 Voltage distribution at the head surface. a Voltage at t = 2 s. b Voltage at t = 3 s

is present. First of all, we rejected the independent components whose scalp maps
are similar to Fig. 16.6 (such as, e.g., the independent component 1, see Fig. 16.5).
These components are assumed to be responsible for the ocular artifacts. By so
doing, we obtained the denoised EEG data shown in Fig. 16.7. Figure 16.8 plots the
power spectra of the independent components, showing a large peak around 60 Hz.
This is not a typical EEG frequency, and we consider it to be the “signature” of an
artifact (probably, it corresponds to the aforementioned ECG artifact or, perhaps,
to noise line). The figure also shows that the components 1, 2, 4, 6, and 9 are the
components which contribute the most at 60 Hz. After rejecting them, we finally
obtain the “cleaned” EEG data depicted in Fig. 16.9.

In the previous example, we identified the artifactual components by visual
inspection. The automatic identification of the artifacts seems to be a more pow-
erful approach, and we will briefly review here three representative ideas:

Escudero et al. [23] obtained satisfactory results in denoising MEG data from
11 healthy elderly subjects. They propose a few criteria for the identification of
the artifactual components. Cardiac signals, for example, have highly asymmetric
density functions and also tend to be leptokurtic (supergaussian), so that they can
be discriminated by their skewness and kurtosis coefficients (which are expected to
take large values). On the other hand, power line noise and ocular artifacts can be
easily detected by examining their frequency characteristics and scalp maps.

Shao et al. [74] also extract several features from the independent components
and use a support vector machine (SVM) to classify them as inherent brain activities
or artifacts. For each independent component si , six extracted features are defined
as follows:

1. The ratio between the maximum peak amplitude and the variance of the inde-
pendent component: f1 = max(|si |)/ϕ 2

si
(ocular artifacts, e.g., have a large

amplitude).



452 R. Martín-Clemente

Fig. 16.7 EEG data after rejecting the independent components associated with ocular artifacts

2. The normalized skewness: f2 = |E[s3
i ]|/ϕ 3

si
(as explained above, the distribution

of cardiac artifacts is highly asymmetric).
3. The variance of the scalp map of si : f3 = var(ai/‖ai‖), where ai is the i th column

of the mixing matrix (it seems that the scalp map of the cardiac artifacts has a
low variance).

4. A measure (i.e., the Kullback-Leibler divergence) of the difference between the
probability density function of the independent component and that of a repre-
sentative EOG artifact.

5. The Kullback-Leibler divergence of the probability of the independent component
from that of a reference cardiac artifact.
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Fig. 16.8 Power spectra of the independent components and distribution of the voltages over the
surface of the head at 60 Hz. The figure also shows that the independent components 1, 2, 4, 6, and
9 contribute the most at 60 Hz

6. The cross correlation between the independent component and a set of eye-
blinking dominated EEG channels (namely, Fp1, Fp2, F3, F4, O1, and O2, see
Fig. 16.2).

Along the same lines, Dammers et al. [18] propose another criteria for the
automated classification of the independent components as either valid data or noise.
For example, the detection of cardiac artifacts is performed in [18] as follows: after
a bandpass filtering of the independent component under test (using different fre-
quency bands that cover the spectrum of the ECG, namely, 2–4, 4–8, 8–16, and
10–20 Hz), its normalized phase is calculated by the formula

π(t) = ∂(t)/(2φ) mod 1
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Fig. 16.9 EEG data after removing the independent components associated with ocular artifacts
and those that contribute the most at 60 Hz

where ∂(t) is the instantaneous phase of the independent component, obtained by
the Hilbert transform. The normalized phase is then divided into segments of 1 s
around the R-peaks of the ECG signal. Cardiac artifacts are synchronous with the
ECG, and hence different segments are expected to have nearly identical normalized
phases. In other words: all segments have the same values at the same time or, in
other words, samples at the same time point are identical. The distribution of the
samples is then degenerate, i.e., a Dirac delta. On the contrary, when the independent
component is not a cardiac artifact, according to the principle of maximum entropy,
we can assume that the samples are uniformly distributed (the uniform distribution is
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the maximum entropy distribution among all distributions supported in the interval
[0, 2φ ]). A statistical test is then used to quantify the deviation of the distribution
from the uniform distribution. The authors claim that the proposed criterion is highly
sensitive for identification of weak components caused by cardiac activity.

16.5 ICA of Natural Images

Hubel and Wiesel received the Nobel Prize after showing that certain neurons of the
primary visual cortex (the so-called simple cells) give their maximum response in the
presence of visual stimuli consisting of localized and oriented structures [37, 38],
i.e., the neurons respond only if a line in a particular direction (an “edge”) enters their
receptive fields.13 As one moves through the visual cortex in the occipital lobe, one
finds columns of neurons that have approximately the same receptive field location,
but with different orientation selectivities. Its an important problem for neuroscience
to understand the reasons for this organization in the visual sensory system (why are
cells directionally dependent?).

Natural images are highly redundant (i.e., nearby pixels are strongly correlated).
Barlow suggested that all sensory systems, including the visual one, aim to remove
the redundancy in the input data, trying to minimize the amount of information to be
processed, and hypothesized that the activation of each neuron in the sensory system
should be as statistically independent from the others as possible [3–5]. Furthermore,
Field [24, 25] argued that the responses of the neurons of the primary visual cortex
should be sparsely distributed.

How do we perform ICA in image processing? The observed data vectors xi are
obtained after the vectorization of a large number of M × N pixel patches selected
randomly from the images.14 The ICA decomposition of the data can be written as:

xi = A si

=
∑

k

ak sik

where ak denotes the kth column of the mixing matrix A, and sik is the i th sample
of the kth independent component. Vectors ak are often called basis vectors, since
they provide a generative model of the data. These basis vectors can be also plotted
as M × N images by an inverse-vectorization operation. When we do that, we get an
interesting surprise—and here we refer back to the previous paragraphs: the images

13 Each cell in the visual cortex responds only to the presence of light in a well-defined part of the
retina, called the receptive field of the cell. The part of the visual scene projected on that area of the
retina is also called “receptive field”. Roughly speaking, we may think that the job of the cell is to
report to the rest of the brain what is happening in that little area.
14 The pixels of each pack are stacked one under the other to form the associated MN×1 observation
vector.
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of the basis vectors resemble “edges” with different orientations, lengths, and widths
(Fig. 16.10). Furthermore, the distribution of the independent components is sparse,
as expected, in the sense that most of the values are close to zero and only a few of
them are significantly large. In other words, and very roughly speaking, each patch
of the image seems to be formed with only a few simple lines.15 Confirming what
Barlow and Field had predicted, only a few neurons are therefore activated at a time.

These results are not sensitive to the choice of algorithm used. They were first
described by Bell and Sejnowski [8], which employed Infomax [7]. Similar results
have been obtained using FastICA [39]. Well before the emergence of ICA, Hancock
et al. [31] proposed a redundancy reduction approach based on Principal Component
Analysis (PCA) only. However, they failed in modeling the receptive fields of the
simple cells: according to their results, only a few basis vectors matched oriented and
localized patterns. Olshausen and Field [68, 69] proposed an unsupervised learning
algorithm that attempted to find a factorial code of independent visual features,
generating a set of bases that presented similar properties to the receptive fields of
simple cells, i.e., most of them also showed localized and oriented “edges”.

Recent works include [41, 42], where it is proposed a model of spatial organization
of the ICA bases that attempts to imitate the retinotopic organization [29] of the visual
cortex, and the papers [13, 40], where the authors analyze the similarities between
the processing of color images in the human visual system processing and ICA.

16.6 Semi-Blind ICA of Brain Data

Most researchers use traditional ICA blind algorithms for the analysis of brain sig-
nals. Nevertheless, we wish to draw attention to three representative approaches [19,
33, 46] that exploit the available a priori knowledge about the data. As a matter of fact,
there exists in many cases a priori information about the artifacts that contaminate
the data: power line interferences, for example, are at 50/60 Hz and its harmonics,
cardiac artifacts are synchronized with heart activity, eye activity is located mainly
at frontal sites, etc. The use of this information seems to be a promising possibility.

16.6.1 Exploiting the Temporal Structure of the Brain Signals

De Clercq et al. [19] use canonical correlation analysis (CCA) for muscle artifact
removal in EEG, as follows: given the zero-mean observation vector x(t), the idea is
to force the source estimates to be maximally correlated with x1(t) = x(t −1). Thus
they pretend to enforce the generation of maximally autocorrelated sources, since it
is known that brain sources have a high autocorrelation whereas muscle activity is

15 Actually, this statement has to be taken with care: all basis functions (more or less) equally
contribute to many image patches.
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Fig. 16.10 Typical ICA image-basis obtained from 12 × 12 patches

similar to white noise, due to its broader frequency spectrum. The idea is to search
for the vectors w and w1 that maximize the objective function:

ε(x(t), x1(t)) = E[x(t) x1(t)]√
E[x2(t)] E[x2

1 (t)]

where x(t) = wT x(t) and x1(t) = wT
1 x1(t). After some algebra, it is found that w

is an eigenvector of the matrix:
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C−1
xx Cxx1 C−1

x1x1
Cxx1 ,

where Cxx and Cx1x1 are the auto-covariance matrices of x(t) and x1(t), respectively,
and Cxx1 is the cross-covariance matrix of x(t) and x1(t). The source estimates are
then simply given by

wT x(t).

Each eigenvector of the matrix gives a different source estimate, and the eigen-
vectors corresponding to the lowest eigenvalues are expected to generate the muscle
artifacts. Experiments show that the algorithm is superior to traditional approaches
and other ICA techniques based on higher order statistics.

16.6.2 Using a Temporal Reference

James et al. [46] used a reference signal r(t) which incorporates the a priori infor-
mation to guide the search for the independent components. Given the observation
vector x, the following criterion is used in [46]:

maximize f (w)

subject to g(w) ∈ 0

and E[y2] = 1

and E[r2] = 1

where f (w) is the following approximation to the negentropy of the estimated inde-
pendent component y = wT x [39]:

f (w) = {E[G(y)] − E[G(v)]}2

where v is a zero-mean unit-variance Gaussian random variable, G(·) can be any
nonquadratic function, and

g(w) = κ − E[r(t) y(t)]

measures the similarity between r(t) and y(t), with ξ being a threshold.16 This is
a constrained optimization problem that can be solved through a Newton-like algo-
rithm [58]. Interestingly, experiments show that the exact waveform of the reference
signals is not very important, provided that the temporal features of interest are
captured. For example, a good reference signal for the ECG artifact can be simply
obtained by passing the contaminated data through a peak detector that highlights the

16 Interestingly, in the original formulation of the algorithm [58], g(w) is defined as g(w) =
E[r(t) y(t)] − ξ.
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R waves. As g(w) is a correlation-based measure, the reference signal r(t) and the
independent component must be aligned in time. The authors address this problem
by repeatedly applying the method with the reference shifted one sample from one
experiment to the next, until the correlation between r(t) and the estimated source
signal y(t) attains its maximum value.

16.6.3 Using Spatial Constraints

Hesse et al. [33] noted that the scalp maps of some expected source signals may be
approximately calculated a priori from previous data or using, for example, dipole
models. This information may be used as a constraint on the mixing matrix A,
assuming that

A = [Ac, Au]

where Ac are columns subject to those constraints, and Au contains unconstrained
columns. Roughly speaking, the algorithm may be as follows:

1. Execute one step of some iterative ICA algorithm to find an estimate Â of the
mixing matrix A.

2. Enforce the constraints on the estimate Â of A, ensuring that Â is of full column
rank.

3. Return to 1 until convergence.

The second step can be performed in several ways: for example, the columns of Ac

may directly overwrite the corresponding columns of Â. Given a column ac of Ac

and the corresponding column âc of Â, a “softer” and alternative procedure may be
to overwrite âc with

p ac + (1 − p) âc

whereas p is chosen so that angle between ac and the new âc is below some thresh-
old [32]. Note that the final constrained source signals may not be statistically inde-
pendent among themselves. Having said that, when applied to EEG recorded during
an epileptic seizure (called ictal EEG), the algorithm obtains a coherent and physi-
ologycally plausible decomposition of the data. The authors also report good results
in removing ocular artifacts.

16.7 Concluding Remarks

ICA has undoubtedly proven to be a useful tool for removing artifacts from the EEG
data. The interpretation of the true “brain components”, however, is still controversial
and seems to be an exciting open field for research. The ICA of natural images
has also revealed interesting connections with the early models of the visual cortex
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and the characterization of the so-called simple cells. Finally, the use of a priori
information about the brain sources to help the ICA algorithms is a third promising
line of research.

This chapter has introduced the use of ICA in the study of electroencephalographic
(EEG) data. We hope to achieved our goal of writing a general and accessible intro-
duction to the problem for those who want to get started in the main topics. We refer
the reader to the references for a second and more profound insight into this exciting
subject.
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Chapter 17
Supervised Normalization of Large-Scale Omic
Datasets Using Blind Source Separation

Andrew E. Teschendorff, Emilie Renard and Pierre A. Absil

Abstract Biotechnological advances in genomics have heralded in a new era of
quantitative molecular biology whereby it is now possible to routinely measure over
tens of thousands of molecular features (e.g., gene expression levels) in hundreds if
not thousands of patient samples. A key statistical challenge in the analysis of such
large omic datasets is the presence of confounding sources of variation, which are
often either unknown or only known with error. In this chapter, we present a super-
vised normalization method in which Blind Source Separation (BSS) is applied to
identify the sources of variation, and demonstrate that this leads to improved statisti-
cal inference in subsequent supervised analyses. The statistical framework presented
here will be of interest to biologists, bioinformaticians and signal processing experts
alike.

17.1 Introduction

Omic and sequencing technologies have revolutionized the biomedical field [40].
With these technologies, it is now possible, at a reasonable economic cost, to mea-
sure the levels of molecular entities, for instance, gene expression, genome-wide,
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in cellular specimens from large numbers of patients [8]. Analysis of these large
genomic, more generally refered to as “omic”, datasets promises to provide the
advances and biomarkers, which are urgently needed in the biomedical field, herald-
ing in the new age of personalized medicine [34]. However, a serious obstacle in
translating these mammoth amounts of data into biomedical advances is the pres-
ence of confounding factors, both technical and biological [21]. Recent studies [21,
43] have shown that technical confounding factors, generally refered to as batch
effects, for instance the date in which a sample was processed, are omnipresent in
omic datasets, affecting even some of the highest-profile studies such as The Cancer
Genome Atlas [46], or the 1,000 Genomes Project [7]. Some estimates indicate that
in any given study up to 80 % of measured molecular features can correlate with
unwanted technical factors [21]. Furthermore, not adjusting for confounding factors
can adversely impact statistical inference, compromising sensitivity and specificity
[20, 45].

There are many reasons why these batch effects arise. Specially, in the case
of large-scale studies profiling hundreds to thousands of samples, samples will
inevitably have been processed on either different dates, by different laboratories
or personnel, or on different plates or chips. Laboratory conditions can vary between
dates affecting the biological measurements, or the quality of the profiling technol-
ogy may also vary significantly from batch to batch. Moreover, profiled samples
may come from patients treated at different medical centers, and therefore the way
samples were handled (e.g., time from sampling to storage) may introduce further
variation (see e.g., [25]). All of these factors have been shown to introduce unwanted
variation in the data, and since “the more you measure the more can go wrong”, it is
clear that large scale studies are particularly vulnerable to such confounding factors.
On the other hand, it is worth pointing out that large-scale studies are also much
better placed than small sample-size studies at adjusting for confounding factors.
For instance, it is easier to detect and subsequently correct for a single chip/plate
effect if there are many other chips/plates in the study that have performed well since
the latter can then serve as controls.

The statistical design of a study is of critical importance in trying to prevent the
potentially adverse effects of confounding factors on downstream statistical infer-
ence. Clearly, the statistical design of a study must be such so as to ensure that
a number of specific research questions can be properly addressed. This typically
requires that samples be distributed randomly across batches, ensuring balanced
numbers of specific phenotypes across them. Thus, in comparing phenotypes A and
B, one would randomize these across batches ensuring balanced numbers of A and
B in each batch. However, it is not unusual for unbalanced designs to arise as a result
of samples dropping out, in turn caused by logistical or quality control issues. This
is particularly true for large-scale studies where logistical or quality control issues
almost inevitably arise. These unbalanced designs can then have a dramatic negative
impact on statistical inference if adjustment for the technical sources of variation is
not performed. Thus, (large-scale) studies with an initial perfect study design may
still be hampered by confounding factors.
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There are a number of other key issues to mention in connection with confounding
factors. First, it is clear that the potential impact of confounding factors will depend on
the signal-to-noise ratio. This in turn depends on numerous study-specific factors,
including the phenotype of interest, the nature of the confounding variation and
the tissue type being profiled. For instance, if one is measuring DNA methylation,
a covalent modification of DNA that can affect the activity of nearby genes [9],
and if the comparison is between normal and cancer tissue, then it is likely that
batch effects can be ignored, since DNA methylation changes associated with cancer
are generally of a large magnitude (high signal-to-noise ratio limit) [46]. On the
other hand, if the Epigenome-wide Association Study (EWAS) [31] measuring DNA
methylation is being conducted in whole blood tissue [24], then this is likely to involve
small effect sizes in relation to the technical sources of variation like chip effects, or
biological factors such as age. For instance, in Rakyan et al. [31], the authors report
a genomic site with a DNA methylation pattern in whole blood that correlates with
smoking status, involving small 5–10 % shifts in average methylation between cases
and controls. Such 5–10 % shifts could in principle be also caused by batch/chip
effects. Similarly, such small shifts in average DNA methylation levels could be due
to relatively small changes in blood cell type composition, which in turn could be
caused by differences in the age of the sampled individuals [43]. Thus, techniques
like Singular Value Decomposition (SVD) are specially useful for omic data since
they easily allow approximate relative quantification of the variance associated with
different sources of variation [43].

A second important issue is that the way in which statistical inference is affected
strongly depends on how the confounders are correlated to the phenotype of inter-
est (POI) [19]. Clearly, a confounding factor which is anti-correlated to a POI will
dampen the statistical significance, while positive correlations will lead to overopti-
mistic results. An orthogonal confounder of large variability in relation to the POI
signal will similarly compromise the statistical significance and lead to a large false
negative rate (FNR). Thus, when analyzing omic data it is important to be aware of
these different potential scenarios and generation of P-value histograms is strongly
recommended as a means of detecting the strength and type of confounding [19].

Last but not least, confounding sources of variation can be of a very different
nature, directly influencing the type of statistical adjustment procedure to be used. For
instance, some confounders like plate or date, are examples of known confounders in
the sense that we know exactly on which date and on which plate a given sample was
processed, as these are factors that are normally recorded in an experiment. In this
case, adjustment with (Bayesian) regression models, which use the confounders as
explicit covariates, is possible and indeed fairly popular [16]. However, surprisingly
often confounders are only known with uncertainty or error. For instance, in DNA
methylation studies conducted with the Illumina Infinium beadchips, samples need
to be preprocessed using a bisulfite conversion step, which translates epigenetic
changes into genetic ones allowing these to be measured on the beadchip [4]. This
conversion step is variable between samples and although the conversion efficiency
can be measured using control probes on the beadchip, this measurement is subject
to error. As another example, we have observed components of variation in DNA
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methylation data associated with the season in which samples were collected. Season
can be viewed as a surrogate for temperature, which is the more likely causal factor,
yet the exact temperature to which the samples were exposed to during transportation
from medical centers to the central processing lab was not recorded. At the other
extreme, we may have confounders which are completely unknown, or there is no
correlated known factor that could be used as surrogate. All these considerations are
important in the context of this chapter, because clearly in the latter two scenarios,
explicit adjustment for confounders is neither advisable or possible. Hence, BSS
techniques are needed to infer these confounders from the data itself. On the other
hand, as we shall see, known confounders also become useful in the BSS context,
since they can be used to objectively evaluate the quality of blind source separation.

It is paramount to stress again the importance of adjusting for confounding factors,
as not doing so can seriously reduce the effective power of the studies, or lead to
unacceptably large false discovery rates [21, 45]. Thus, there is an urgent need for
powerful statistical methods to be applied in the biomedical field to help address
these significant challenges. To further motivate a BSS-based approach to statistical
inference, we emphasize that it is only natural to view any biological omic dataset
as an interference pattern, with some sources of variation reflecting the biological
phenotype of interest, and others reflecting the effects of technical factors. Therefore,
BSS methods are optimally placed to infer such sources of variation.

Indeed, BSS methods have already been extensively applied to omic data, but
only as a means of performing dimensional reduction to identify biological sources
of variation [12, 18, 22, 23, 28, 42, 49], and, secondly, as a means of performing
feature selection and classification [14]. Specific popular BSS algorithms include
Independent Component Analysis (ICA) [15] and non-negative matrix factorisation
(NMF) [13], which have been applied to diverse data types, from gene expression
[42] to DNA methylation data [51], including even mutational data [1] and multidi-
mensional cancer genomic profiles [50]. The earliest studies already demonstrated
that BSS methods like ICA and NMF lead to substantial improvements in modeling
biological sources of variation and that these improvements are mainly due to the
sparse (supergaussian) nature of the underlying biological sources [18, 42].

In contrast, relatively few BSS applications have focused on the problem of arti-
fact removal in biomedical data, which is surprising given that technical sources
of variation are omnipresent in such data and that they can so negatively affect
statistical inference. We would also argue that the application of BSS methods to
identify and remove technical artifacts in real omic data provides a substantially
better framework in which to objectively evaluate BSS algorithms. There are several
reasons for this. First, biological sources of variation such as activity of a molecu-
lar signaling pathway are “fuzzy” objects and only rarely can be used as defining a
ground truth. On the other hand, technical artifacts are sometimes well known to the
experimentalist performing the study and hence, as explained above, these can be
exploited to assess the quality of BSS separation. Indeed, we recently demonstrated
the feasibility of this conceptual framework for assessing BSS methods in a proof-of-
principle study, analyzing both DNA methylation and gene expression data [45]. In
that work, we proposed an algorithm called Independent Surrogate Variable Analysis
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(ISVA), based on ICA, for performing supervised normalization in the presence of
confounding factors [45], demonstrating its superiority over non-BSS based alterna-
tives. The main purpose of this chapter is therefore to demonstrate that BSS methods
can lead to substantial improvements in statistical inference in large omic datasets,
thanks to a more efficient deconvolution of the confounding sources of variation.
Our secondary aim is to increase the awareness among the BSS community of the
importance of this fairly novel BSS application to artifact removal in biomedical
omic data, and thus provide a fertile ground for interdisciplinary cross-pollination.

This chapter is organized as follows. First, because most of the examples con-
sidered in this chapter are drawn from studies in DNA methylation, we provide
the reader with a brief introduction to DNA methylation and the Illumina Infinium
Beadarray technology, a technology that allows genome-wide measurements of this
epigenetic mark. In the subsequent section, we provide a number of examples of con-
founding variation in omic data and describe their negative impact on downstream
statistical inference, including examples where methods based on explicit adjust-
ment of confounders cannot be applied. In Sect. 17.3, we describe the problem of
performing supervised analysis in the background of confounding factors, introduc-
ing and reviewing the SVA framework of Leek et al. [19, 20]. We argue theoretically
why SVA may break down and why a BSS method is needed to avoid the pitfalls
associated with SVA. This motivates the ISVA algorithm [45], which we review in
the next subsection. In Sect. 17.4, we validate ISVA on simulated data and demon-
strate the need for adjustment of confounding factors. In Sect. 17.5, we compare
ISVA to SVA in modeling beadchip effects in real omic data. Section 17.6 provides
a rigorous evaluation of ISVA on eight real omic datasets, using the non-BSS SVA
method as well as another method based on explicit adjustment as benchmarks. In
the final section, we briefly explore the performance of a generalized BSS algorithm
in modeling beadchip effects. We end with conclusions and suggestions for further
research.

17.2 DNA Methylation and the Illumina Infinium Beadarray
Technology

DNA methylation refers to the covalent attachment of a methyl CH3 group to DNA
cytosines, normally, but not exclusively, in the context of a CG dinucleotide, refered
to as a CpG [9]. There are about 30 million of such CpG sites in the human genome,
most of which are methylated. These 30 million CpG sites represent in fact an
underenrichment of CpGs in the human genome. In some genomic regions however,
the density of CpGs is much higher than normal, and these are refered to as CpG
islands. Roughly, about 60 % of gene promoters fall within CpG islands and most of
these are normally unmethylated. Thus, whereas most of the genome is methylated,
many of the promoter CpG islands are unmethylated in the normal state.
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DNA methylation is important for a number of reasons. It is not only essential
for embryonic development, but is also key in developmental processes [9]. Very
recently, it has been demonstrated that differentially methylated regions between
diverse normal cell types are enriched for transcription factor binding sites, sup-
porting the view that DNA methylation is associated with how accessible the DNA
is to transcription factors. Thus, hypomethylation, i.e., loss of DNA methylation,
allows transcription factor proteins to more easily bind to DNA in order to initi-
ate developmental differentiation programs. The DNA methylation state at the gene
promoter is also a key determinant of the gene’s activity, i.e., its gene expression
level, with promoter hypermethylation normally associated with gene silencing [9].
DNA methylation is particularly important in diseases like cancer, where it is sig-
nificantly altered [11, 17]. Indeed, a key cancer hallmark is the hypermethylation
of CpG island promoters, whilst most of the cancer genome undergoes widespread
hypomethylation. These deregulations in DNA methylation may lead respectively,
to underexpression/silencing of key tumor suppressor genes, or overexpression of
oncogenes (tumor promoting genes).

DNA methylation can be measured fairly accurately using a number of different
technologies. In this chapter, we will be considering DNA methylation data generated
using the Infinium beadarray technology from Illumina [4]. In particular, we will be
considering a version of this technology, called Infinium 27k, that allows measure-
ment of DNA methylation at over 27,000 CpG sites, mostly located within gene
promoters of approximately 14,000 genes. The beadarray consists of a set of probes
that interrogate the methylation state at each of these 27,000 sites. For each CpG
site, there are two sets of probes, one designed to match the methylated version of
the allele, while the other matches the unmethylated version. This is made possible
by treating the DNA with bisulfite, prior to hybridisation to the beadarray. Dur-
ing bisulfite conversion, unmethylated cytosines are converted into uracil and then
thymine upon DNA amplification (i.e., uC → T ), whereas methylated cytosines
are protected and remain cytosines (i.e., mC → C). Thus, an epigenetic difference
can be translated into a genetic one, which is then easily measured using probes on
the beadarray as described. While the methylation state of a given CpG site in a
given diploid cell can take only three values (0 = both alleles unmethylated, 1 =
only one of the alleles is methylated, 2 = both alleles are methylated), in practice,
measurement is taken over many thousands of cells, with the methylation state also
being potentially variable between cells. Hence, methylation at a single CpG site
in a given sample taken from an individual is quantified in terms of a ψ-distributed
quantity, ψ = M/(U + M), where M and U denote the intensities of the methylated
and unmethylated versions of the allele, as estimated from the respective probes on
the array. By construction, this ψ-value lies between 0 (unmethylated) and 1 (fully
methylated).

A number of important features of the Illumina methylation beadarrays are worth
mentioning. First, a maximum of 12 samples can be measured on any given beadchip.
As with any technology, the quality of beadchips can vary from batch to batch. Also,
the DNA quality of a sample can vary significantly, which would subsequently affect
ψ-value estimates. For these reasons, the beadchips are equipped with a number
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of control probes, each designed to measure the quality of a particular aspect of
the assay. For instance, bisulfite conversion efficiency (BSC) could vary between
samples, causing biases in the ψ-values, and this can be assessed using built-in
control probes which measure the efficiency of bisulfite conversion.

17.3 Confounding Factors in Large-Scale Omic Studies

In order to illustrate the nature and impact of the problem posed by confounding
factors, we consider two examples. These examples are taken from two separate
DNA methylation studies generated with the Infinium 27k technology. Let us con-
sider our first example. This is a DNA methylation dataset of whole blood samples
from 187 individuals with type-1 diabetes, including both sexes, and with individuals
drawn from two underlying cohorts. This particular dataset was used to test if DNA
methylation changes correlate with the age of the individual at sample draw, thus age
is here the POI [44]. The 187 samples were distributed over 17 different beadchips
with at most 12 samples per beadchip. A SVD of the 27,578 × 187 row-centered
(rows label CpGs) data matrix was performed to assess the nature of the largest
sources of variation. As can be seen in Fig. 17.1, it is only the fifth component of
variation that correlates with the POI (i.e., age), with the top components correlating
with other factors such as sex, BSC and (bead)chip. Furthermore, it can be seen that
the fifth component also correlates with chip indicating that this could be a poten-
tial confounder. This example further illustrates that technical or other biological
variation can be of orders of magnitude larger than the effect size of interest.

As a second example, we consider a DNA methylation dataset of 48 samples,
consisting of 30 normal samples from the cervix and 18 representing an intraepithelial
cervical neoplasia of grade 2 or higher (CIN2+) (a preinvasive cancer condition).
Here too, a SVD on the row-centered data matrix, reveals that it is only the third,
fourth, and fifth components that correlate with biological factors such as age or
CIN2+ status (Fig. 17.2a–b). Furthermore, unsupervised clustering of the samples
does not lead to segregation of the samples according to CIN2+ status, as one would
have expected on biological grounds (Fig. 17.2c). This example also illustrates that
the top component of variation is correlating with an unknown factor, possibly spatial
artifacts on the chips but which are also largely independent of chip. The key point to
appreciate here is that there is no surrogate known factor that we can use to model this
confounding source of variation, and hence explicit adjustment for this confounder
using a multivariate regression model in which the confounder is included as a
covariate is not possible [16].
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Fig. 17.1 a Relative fraction of variation carried by each of the seven significant singular vectors of
a SVD, as measured relative to the total variation in the data. Number of significant singular vectors
was estimated using Random Matrix Theory (RMT) [45]. Some of the singular values are labeled
according to which confounders the corresponding singular vectors are correlated to, as shown in
panel b. b Heatmap of P-values of association between the seven significant singular vectors and
the phenotype of interest (here age at sample draw) and confounding factors (Chip, cohort, sex,
and bisulphite conversion (BSC) efficiency controls 1 and 2). P-values were estimated using linear
ANOVA models in the case of chip, cohort and sex, while linear regressions were used for age
and BSC efficiency. Color codes: P < 1e − 10 (brown), P < 1e − 5 (red), P < 0.001 (orange),
P < 0.05 (pink), P > 0.05 (white)

17.4 Supervised Normalization by SVA and ISVA

The previous examples illustrate some of the difficulties that confounding factors
can pose in statistical analyses. One of the common tasks in omic data analysis is to
perform a supervised analysis in which we seek to identify features associated with
a phenotype of interest. Clearly, such task may be compromised by the presence of
confounding factors, specially if the confounder is unknown or if it is only known
subject to error, since in these cases we can’t adjust for them explicitly. Thus, one
desires a statistical framework in which to perform supervised analysis (i.e., feature
selection) in the presence of uncertain or unknown confounding factors. We refer
to this supervised analysis problem as “supervised normalization” in the sense that
the normalization of the data is performed as part of the supervised analysis and is
therefore dependent on the phenotype of interest. So far, only two algorithms, SVA
[19, 20] and ISVA [45] have been proposed to address this problem in the context
of omic data, where by definition the number of features is relatively large.
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Fig. 17.2 Confounding variation in a DNA methylation dataset of 30 normal cervical samples and
18 cervical intraepithelial neoplasias of grade 2 or higher (CIN2+). a Relative fraction of variation
carried by each of the six significant singular vectors of a SVD, as measured relative to the total
variation in the data. Number of significant singular vectors was estimated using Random Matrix
Theory (RMT) [45]. Some of the singular values are labeled according to which confounders the
corresponding singular vectors are correlated to, as shown. b Heatmap of P-values of association
between the six significant singular vectors and the phenotypes of interest (here CIN2+ status and
age at sample draw) and confounding factors (Chip and bisulphite conversion efficiency (BSCE)).
P-values were estimated using linear ANOVA models in the case of chip and CIN2+ status, while
linear regressions were used for age and BSC efficiency. Color codes: P < 1e − 10 (brown),
P < 1e − 5 (red), P < 0.001 (orange), P > 0.05 (white). c Hierarchical clustering of the 48
samples over the 5,000 most variable probes

17.4.1 Surrogate Variable Analysis

Leek and Storey proposed an ingenious solution to the problem posed above, known
as SVA [19, 20], which we now describe. Let us assume that we have a data matrix,
Xi j , with i (i = 1, . . . , p) labeling the features (genes, CpGs,...) and j ( j = 1, . . . , n)
labeling the samples, with p ∈ n. Furthermore, we assume that each row of X has
been mean centered, and that we have a POI encoded by a vector y = {y1, . . . , yn}.
As in [20] we may allow for a general function of the phenotype vector, so that the
starting model for SVA takes the form

Xi j = fi (y j ) + αi j . (17.1)



474 A. E. Teschendorff et al.

Typically, fi (y)would be a function of the form fi = bi F(y)with bi a feature specific
regression parameter (to be estimated) and F representing a general link function.
Thus, SVA starts by performing univariate regressions, leading to estimates b̂i as well
as an estimate of the error matrix β, which we shall call the residual variation matrix,
R ≤ β̂. Componentwise, Ri j ≤ Xi j − f̂i (y j ). SVA then proceeds by performing a
SVD of the residual variation matrix

R = U DV T . (17.2)

Thus, the singular vectors of the SVD capture variation which is orthogonal to the
variation associated with the POI. This residual variation is therefore likely to be
associated with other biological factors, not of direct interest, or with experimental
factors, all of which constitute potential confounders. SVA provides a prescription
for the construction of surrogate variables, vk (k = 1, . . . , K with K < n), in terms
of the singular vectors (i.e., the column vectors of V ) of this SVD [20]. In the final
step, feature selection is performed using the modified regression model

Xi j = fi (y j ) +
K∑

k=1

ωki vk j + β√
i j . (17.3)

with the rows of β√ now uncorrelated [19].
In the above framework, it is key to realize that SVA hinges on a big assump-

tion, which is that we have a perfect, or at least a sufficiently accurate model F(y)

describing the data, such that the residual variation encapsulated by the matrix R
does not contain any biological variation of interest (see left part of Fig. 17.3). In
this case, the only requirement on the surrogate variables describing the confounding
variation is that they span the residual variation space. We note that there is in fact
no requirement for the surrogate variables (SVs) to align with (i.e., precisely model)
the confounding factors.

However, now consider an alternative, and, as we shall see later, a more realistic
scenario, where model F(y) is imperfect. For instance, we may be using a linear
function F when the relation between data and POI is highly nonlinear. In this
case, residual biological variation of interest may be present in R (see right part of
Fig. 17.3). In such a scenario, we would want our SVs to align with the confounding
factors and not with the residual biological variation, since otherwise inclusion of
this in the subsequent adjusted supervised analysis (Eq. 17.3) would lead to a reduced
biological signal. Later we shall see examples of this happening. Hence, in this more
realistic scenario, we need to choose SVs that span a subspace of R, i.e., one that is
also orthogonal to the residual biological variation. This in turn means that we need
an algorithm that can more accurately deconvolve the confounding sources from
the residual biological variation. As one might expect (and we shall see examples
of this later), the SVD used in SVA can not accurately deconvolve these different
sources of variation. This motivates the introduction of BSS methods in the context
of supervised normalization.
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Fig. 17.3 Surrogate Variable Analysis (SVA) begins by performing a regression of the data matrix,
X , against the phenotype of interest, Y , specified through a possibly nonlinear function F(Y ). In
the equation above, B denotes regression parameters, whereas R denotes the residual variation, i.e.,
the variation in the data not explained by the phenotype of interest under the specified model F .
Under such a model, there are two possible scenarios. In the ideal scenario (left pointing arrow),
F(Y ) models the data perfectly in the sense that the residual variation space, depicted by the plane
R, contains no residual biological variation of interest. In this case, the surrogate variables, which
are estimated from a SVD of R, and are indicated by blue arrows, don’t need to align with the
confounding factors (green arrows), as they are only required to span the same plane R. However,
in the more realistic scenario, there could be imperfections in the model F(Y ) (e.g., using a linear
model when the relationship between X and Y is nonlinear), which in turn could lead to residual
biological variation (red arrow) in the residual variation space R. In this case, we need to choose
surrogate variables that align with the confounders and “avoid” the residual biological variation of
interest, since otherwise using the whole space R in the subsequent adjustments will lead to loss of
biological signal. Thus, in this scenario, we need to select an appropriate subspace of R and only
use this subspace for the subsequent adjustments and supervised analysis. ISVA uses ICA instead
of PCA/SVD in the decomposition of R, thus allowing to infer surrogate variables that better model
the confounding sources of variation. Geometrically, this means that the independent surrogate
variables align significantly better with the confounders and the residual biological variation, thus
allowing an appropriate subspace of R to be selected. This subspace should not contain any residual
biological variation and ICA is key to achieving this

17.4.2 Independent Surrogate Variable Analysis

Motivated by the discussion above, we seek a BSS method that can more accurately
infer the sources of variation in the estimated residual matrix R. The generaliza-
tion of SVA in which a BSS method is used to decompose R is called ISVA [45].
Although many BSS methods exist, in [45] we considered one of the simplest ver-
sions of ICA, the “fastICA” algorithm [15]. Thus, as with SVA, there are three parts
to the ISVA algorithm: (i) detection of confounding/unmodeled factors (steps 1–4),
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(ii) construction of surrogate variables (SVs) (steps 5–10), and (iii) final feature
selection using the SVs as covariates.

In detail, the steps in ISVA are:

1. Construction of the residual variation matrix by removing the variation associ-
ated with the phenotype of interest: Ri j ≤ Xi j − f̂i (y j ).

2. We estimate the intrinsic dimensionality, K , of the residual variation matrix using
RMT [29]. This gives the number of components as input to the ICA algorithm.

3. Perform ICA on R: R = S A + β, with S a p × K source matrix and A a K × n
mixing matrix. We point out that in this formulation of ICA, the statistical inde-
pendence requirement is imposed on the columns of S. We denote the columns
of S and rows of A by Sk and Ak , respectively.

4. We regress Ak to each Xi (i = 1, . . . , p) and calculate P-values of association
pi .

5. From this P-value distribution, we estimate the FDR using the q-value method
[38] and select the features with q < 0.05. If the number of selected features is
less than 500, we select the top 500 features (based on P-values). Let rk denote
the number of selected features.

6. We construct the reduced rk × n data matrix Xr obtained by selecting the features
in previous step.

7. Perform ICA on Xr using K independent components: Xr = Sr Ar + βr . Find
the column k⊗ of Ar that best correlates (absolute correlation) with Ak .

8. Set the SV vk = (Ar )k⊗ . The purpose of steps 4–8 is to regularize the estimates
and thus avoid overfitting as explained in [20].

9. Repeat steps 4–8 for each significant independent component, Ak , obtained in
step-3.

10. Perform SV subspace selection using a SV selection criterion. Let K ⊗ denote
the set of selected SVs.

11. Finally, we run the model

Xi j = fi (y j ) +
∑

k∀K ⊗
ωki vk j + β√

i j . (17.4)

and perform feature selection using a FDR (q-value) estimation procedure [38]
and a nominal q-value threshold of say 0.05.

As formulated above, there are three differences between ISVA [45] and SVA [19].
First, ISVA uses RMT to estimate the dimensionality, in contrast to SVA which uses
an explicit randomization procedure [20]. This difference is, however, not of major
consequence [45]. Second, ISVA uses ICA in step-3 instead of SVD. Third, ISVA
incorporates a SV subspace selection step (step-10) using a SV selection criterion that
we shall discuss in detail in Sect. 17.7.4. This step is absolutely key to the improved
inference that ISVA offers, and we point out here that the use of a BSS method in
step-3 is also key to facilitating the choice of SV subspace in step-10. Finally, we
remark that any BSS technique could be used to model the sources of variation in
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R (step-3), and thus the ISVA framework can be easily generalized to incorporate
more sophisticated BSS algorithms.

17.5 Validation of SVA and ISVA on Simulated Data

Before exploring the SVA and ISVA algorithms in the context of real data, it is
illuminating to first compare their performance on simulated data. The simulation
model is exactly the one considered in [45], and for completeness we provide full
details here again in the appendix. Briefly, we generated synthetic data matrices
with 2,000 features and 50 samples and considered the case of two confounding
factors (CFs) in addition to the primary POI. The primary phenotype is a binary
variable y with 25 samples in one class (y = 0) and the other half with y = 1.
Similarly, each confounding factor is assumed to be a binary variable affecting one
half of the samples (randomly selected). We further assume 10 % of features (200
features) to be true positives (TPs) discriminating the two phenotypic classes. We
model the confounding factors as follows: each confounding factor is assumed to
affect 10 % of features with a 25 % overlap with the TPs (i.e., 50 of the 200 TPs
are confounded by each factor). Without loss of generality, noise is modeled by a
Gaussian of mean zero and unit variance N (0, 1). We further assume that the POI
is associated with an effect size ey(= θμ/φ) of 1, i.e., the difference in the means
between the phenotypes, θμ, equals the standard deviation, φ , within each group.
Effect sizes of the two confounders are assumed to be equal to eC F and we define
the relative effect size as eR ≤ eC F/ey = eC F . We here consider the case eR = 2
corresponding to a situation where the confounding factors are associated with a
larger variance than the POI. The simulation model is run a total of 100 times and
for each run we record the following measures (using an estimated FDR threshold of
0.05): the sensitivity (SE), the positive predictive value (PPV), the sensitivity of TPs
specifically affected by the confounding factors (SE-A), and the overall correlation
(R2-values) to the CFs. For the first three measures, we also compare SVA and
ISVA to a simple linear regression method that does not do any adjustment for the
confounding factors (LR). Results are shown in Fig. 17.4.

From this figure, we can make the following observations. First, the PPV is high
for all methods, and is in line with the estimated FDR (=1-PPV) of 0.05 used in
performing feature selection. Second, we can see that the power of the study is
reduced if no adjustment is made for the confounding factors. Indeed, we can see
that, focusing on those true positive features which are corrupted by confounding
variation, the sensitivity to retrieve these features is improved approximately twofold
by using SVA or ISVA. Third, ISVA and SVA perform similarly on simulated data,
despite the fact that ISVA reconstructs the confounding factors at substantially higher
R2 values. Thus, the simulated data nicely illustrates the “perfect model” scenario
depicted in the left side of Fig. 17.3. Since the data are simulated with the same model
that is subsequently used to run the univariate regression, the residual variation matrix
R contains no residual biological variation, hence it does not matter if the SVs align
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Fig. 17.4 Feature selection performance metrics of different algorithms over 100 runs of the syn-
thetic data ran with eR = 2. The algorithms for feature selection are SVA, ISVA, and a simple
linear regression without adjustment for confounders (SLR). For a given estimated FDR threshold
of 0.05, we compare the sensitivity/power (SE), the positive predictive value (PPV), the sensitiv-
ity to detect true positives which are affected by confounders (SE-A), and the average R2-value
between confounders and the best correlated surrogate variable. See Appendix for further details
of simulation model

with the confounders. The main requirement is for the SVs to span the space R, and
hence similar results are obtained using the SVs from SVA or ISVA, since in both
cases, the SVs span the same space.

17.6 Improved Modeling of Confounding Factors
in Omic Data by BSS Methods

In the previous section, we have seen how ISVA models the confounding factors
much better than SVA. The aim of this section is to demonstrate that ISVA also leads
to improved modeling of the confounding sources of variation in real data. Later,
in the subsequent section, we shall see how this translates into improved feature
selection. Once again, we consider DNA methylation data and as confounding factor
we consider the beadchip. Illumina Infinium beadchips can accommodate up to 12
samples per chip, hence there are enough samples for beadchip effects to be assessed.
Importantly, it is always known which samples were profiled on which beadchip,
hence this is an example of a known confounder and thus it can be used to objectively
assess the quality of blind source separation. As a benchmark we consider SVA which
uses SVD/PCA to decompose the residual variation matrix. As shown in Fig. 17.5,
the surrogate variables inferred using ISVA model the beadchip effects substantially
better than those inferred using SVA, as indicated by the significantly higher R2

values. For further examples, we refer the reader to [45].
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Fig. 17.5 Comparison of ISVA to SVA in identifying beadchip effects in the DNA methylation
dataset from [3]. The weights (y-axis) of the two surrogate variables that most significantly asso-
ciated with beadchip effects are plotted against beadchip number (x-axis), for SVA and ISVA
separately. To compare the identifiability of beadchip effects, we provide the R2 and F-statistics of
a linear ANOVA model with beadchip number as the independent variable

17.7 Improved Feature Selection Using ISVA

We have seen that ISVA can model confounding sources of variation substantially
better than SVA. This in turn should lead to improved statistical inference, e.g.,
feature selection, at least in those scenarios where it is necessary to select a surrogate
variable subspace, as explained in Sect. 17.3. To demonstrate this, we first provide
a number of real data examples where SVA breaks down. Subsequently, we show
how ISVA circumvents the problem, leading to substantially improved statistical
inference.

17.7.1 SVA Breakdown in mRNA Expression Data

In order to demonstrate that SVA can break down, we consider a real dataset with
a known biological signature: it is well known that many genes implicated in cell
proliferation and the cell-cycle are differentially expressed between high and low
grade cancers [26, 32, 36, 41]. The grade of a cancer refers to the level of differ-
entiation of the cancer cells, with high-grade cancers exhibiting a less differentiated
state, whilst low-grade cancers are more differentiated in the sense that they are
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more similar to normal (healthy) tissue, which is a highly differentiated state com-
pared to the undifferentiated stem cells that they are derived from. Thus, high-grade
cancers are generally more aggressive and correspondingly are also characterized
by a higher expression of cell proliferation and cell-cycle genes. This cell prolif-
eration gene expression signature is a universal signature, able to distinguish high
grade from low-grade cancers, irrespective of tissue type [26, 32, 36, 41]. Thus,
given a gene expression dataset of high and low grade cancers, selecting features
(genes) that best discriminate low and high grade cancers should lead to significant
enrichment of genes implicated in the cell-cycle and cell proliferation. The enrich-
ment of a top ranked list of discriminatory genes for any gene ontology can be
assessed using a Fisher’s exact test, as done for instance in [43], a procedure known
generally as Gene Set Enrichment Analysis (GSEA) [39]. If a feature selection
method were to not yield significant enrichment for cell-cycle or cell proliferation
genes, one would conclude that the feature selection procedure has failed to retrieve
the known biological signature. Thus, in what follows we consider “grade” as the
POI and we aim to show that SVA breaks down, not being able to retrieve the cell
proliferation/cell-cycle enrichment due to the presence of confounding factors.

Specifically, we consider the case of breast cancer. There are two main subtypes
of breast cancer: estrogen receptor positive (ER+) and estrogen receptor negative
(ER−) breast cancer [48]. This stratification of breast cancers reflects the levels of
expression of the estrogen receptor gene, ESR1, with ER− breast cancers showing
absent expression of ESR1. Thus, in ER+ breast cancer, ESR1 expression and activity
is high, which results in the overexpression of genes within the ESR1 signaling
pathway. We note that these ESR1 signaling genes are different from the cell-cyle/cell-
proliferation ones. Now, it is well known that most ER− breast cancers are of high
grade, whilst ER+ breast cancers can be either high or low grade [41]. Thus, if the
aim is to identify genes whose expression correlates with grade, ER−status may
be seen as a biological confounder, since the distribution of ER+ and ER− tumors
will differ between low and high-grade cancers. Furthermore, it is also well known
that low and high grade ER+ breast cancers do not differ in terms of the level of
ESR1 expression and ER−signaling [26, 36, 41]. Hence, this means that in the task
of identifying genes that are associated with grade, any gene set enrichment must
be specific to cell-cycle and should not include terms involved in ER−signaling. In
other words, if feature selection for grade associated genes also leads to enrichment
of ER−signaling genes, then this indicates confounding by ER−status. Although
here the confounder is biological, this does not matter for the sake of comparing
algorithms, and indeed the biological framework considered here provides a nice
testing ground for the SVA and ISVA algorithms.

As expression data, we consider the data from four independent breast cancer
studies [5, 26, 35, 36], as used in [45]. In these datasets, besides ER−status, we
also consider tumor size as a potential biological confounder. We note that in these
datasets potential technical confounders such as batch effects are unknown. The
P-values of the GSEA of the top ranked grade-associated genes against cell-cycle
and ER−signaling terms are given in Table 17.1 for genes selected using SVA and a
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Table 17.1 Grade associated expression differences: in each mRNA expression dataset and for
each method (LR+CFs, SVA, ISVA) we give the number of confounding factors (CFs) or SVs
used as covariates in the regression analysis, the number of genes differentially expressed with
histological grade (nDEGs) at a false discovery rate threshold of 0.05 (FDR< 0.05), and the
P-value of enrichment (Hypergeometric/Fisher test) of cell-cycle and estrogen upregulated gene
(ESR1-UP) categories among these differentially expressed genes

LR+CF SVA ISVA

Dataset(Sotiriou)
nCF/SV 2 4 4
nDEGs 491 0 607
P-value(Cell-cycle) 6e-18 1 5e-16
P-value(ESR1-UP) 0.03 1 0.14
Dataset(Loi)
nCF/SV 2 19 5
nDEGs 829 0 146
P-value(Cell-cycle) 5e-37 1 7e-24
P-value(ESR1-UP) 0.90 1 0.61
Dataset(Schmidt)
nCF/SV 2 27 15
nDEGs 2364 0 451
P-value(Cell-cycle) 3e-25 1 5e-19
P-value(ESR1-UP) 7e-4 1 0.14
Dataset(Blenkiron)
nCF/SV 2 20 8
nDEGs 1292 1 829
P-value(Cell-cycle) 2e-25 1 7e-27
P-value(ESR1-UP) 7e-4 1 0.31

Confounding factors here are ER status and tumor size. In bold face we indicate those P-values
that are significant after adjustment for multiple-testing

feature selection method that uses ER−status and tumor size as explicit covariates
in the linear regression model (LR+CF).

Based on this table, we can make two important observations. First, in three
datasets, SVA predicts no differentially expressed genes between low and high
grade breast cancer, a result which is in complete disagreement with extensive
biological knowledge [26, 32, 41]. As a result of this, none of the biological
terms cell-cycle or ER−signaling are enriched. Second, performing feature selec-
tion using a multivariate linear regression model with ER−status and size as explicit
covariates (LR+CF) leads to many differentially expressed genes (DEGs) in every
dataset. Correspondingly, we observe strong enrichment of the cell-cyle term among
these genes, consistent with biological knowledge. However, we also observe that
ER−signaling is significantly enriched in 2 out of 4 studies, hence the enrichment
for cell-cycle genes is nonspecific. This means that explicit adjustment for the con-
founders has not fully eliminated the effect of one confounder (ER−status) and hence
we can conclude that the list of DEGs contains many false positives associated with
ER−signaling. This contamination of ER−signaling genes is likely to be due to the
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Table 17.2 Age-associated CpGs: in each dataset and for each method (LR+CFs, SVA, ISVA)
we give the number of CFs or SVs used as covariates in the regression analysis, the number of
CpGs differentially methylated with age (nDMCs) (FDR< 0.05 for Datasets T1D and UKOPS1,
FDR< 0.3 for Datasets UKOPS2 and WBBC), the number of these that are hypermethylated with
age and that map to polycomb group targets (nPCGTs), and the P-value of PCGT enrichment
among age-hypermethylated CpGs (Hypergeometric test)

Dataset(T1D) LR+CF SVA ISVA

nCF/SV 4 4 6
nDMCs 440 688 902
nPCGTs 96 110 148
P-value 4e-32 7e-26 2e-34
Dataset(UKOPS1)
nCF/SV 3 18 6
nDMCs 267 4 232
nPCGTs 75 1 59
P-value 4e-24 0.27 2e-19
Dataset(UKOPS2)
nCF/SV 3 21 8
nDMCs 20 201 225
nPCGTs 4 15 29
P-value 0.001 0.01 3e-7
Dataset(WBBC)
nCF/SV 3 15 6
nDMCs 564 185 469
nPCGTs 84 19 64
P-value 7e-22 0.01 3e-11

The CFs in each dataset are described in Appendix. In bold-face we indicate those P-values that
are significant after adjustment for multiple-testing

fact that the immunohistochemically determined ER−status of the samples is only
approximate, i.e., the confounder is subject to error. Thus, neither method, SVA or
LR+CF, succeeds in yielding specific enrichment of cell-cycle genes among the
genes associated with grade.

17.7.2 SVA Breakdown in DNA Methylation Data

As a second example, we consider DNA methylation data. A large number of studies
have now unequivocally demonstrated that promoter DNA methylation of a specific
class of genes, known generally as PolyComb Group Targets (PCGTs), increases
with the age of the tissue (see e.g., [27, 30, 44]). Hence, feature selection for CpGs
in gene promoters undergoing age-associated increases in DNA methylation should
be enriched of PCGTs. Table 17.2 shows the results of applying SVA and a linear
regression method that uses confounders as explicit covariates (LR+CF).
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We can see that in only one of the four datasets (T1D set), does SVA convincingly
retrieve the age-PCGT DNA methylation signature. In the other three datasets, the
P-value of enrichment is either not significant or would fail significance after cor-
rection for multiple testing. In contrast, linear regression with explicit adjustment for
confounders (see Appendix for the nature of the explicit confounders) convincingly
captures the biological signature in 3 out of 4 datasets.

17.7.3 Residual Biological Variation

The results presented above clearly demonstrate a pitfall of the SVA algorithm: it
can fail to retrieve a well-known and extensively validated association between a
molecular signature and a phenotype of interest. The most plausible explanation
for why this happens is that residual biological variation is being interpreted as
confounding variation leading to a “dampening” of the biological signal (see
Fig. 17.3). To show that this is indeed what is happening we can study the corre-
lations between the surrogate variables and the biological as well as confounding
factors. The statistical significance of these correlations is best shown as a heatmap.
This is shown for the four DNA methylation datasets considered in Table 17.2 in
Fig. 17.6. From this figure and Table 17.2 we can see that in all three datasets where
SVA fails to clearly capture the age-PCGT DNA methylation signature, that in all
three of them there is residual variation correlating with age. Conversely, in the one
dataset where there is no residual variation correlating with age (i.e., T1D set), SVA
retrieves the biological signature. Thus, this example clearly illustrates that the sce-
nario of residual biological variation arising due to imperfections in the modeling,
as depicted in Fig. 17.3, is indeed fairly common.

17.7.4 The Need for Surrogate Variable Subspace Selection

The above two examples in gene expression and DNA methylation data demonstrate
the need to perform adjustment on a surrogate variable subspace, since otherwise one
risks “peeling” away biological variation of interest. In the case where there is no
residual biological variation it should be clear that it does not matter what basis (i.e.,
surrogate variables) we use to span the surrogate variable subspace. In other words,
it should not matter whether we use SVs constructed from principal components
(SVA) or from the independent components (ISVA). However, in the scenario where
biological variation of interest is present in the residual variation matrix R, we need
to select surrogate variables that “align” with the true confounders and which avoid
as much as possible the directions defined by the residual biological variation. This
then requires a BSS method to better deconvolute the effects of the confounders and
this residual biological variability. However, application of a BSS method to R only
yields a decomposition of R into a number of independent “sources” and does not,
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Fig. 17.6 Heatmap of P-values of association between the surrogate variables (SVs) inferred using
SVA and the confounders and phenotype of interest (age). P-values were estimated from linear
ANOVA in the case of categorical confounders (e.g Chip, Sex, Cohort) and from linear regressions
in the case of continuous variables (age, BSC efficiency-BSCE and DNA concentration-DNAc).
Color codes: P < 1e − 10 (darkred), P < 1e − 5 (red), P < 0.001 (orange), P < 0.05 (pink),
P > 0.05 (white)

on its own, provide a prescription for subspace selection. Hence, how do we select
this subspace?

The previous example discussed in Table 17.2 and Fig. 17.6 provides a possible
prescription for how to perform the subspace selection, namely, only those SVs
should be included that do not correlate significantly with the phenotype of interest.
But what if SVs correlate significantly with both the POI and a confounder? In this
scenario, it is unclear whether to include these SVs in the final feature selection
procedure (i.e., step-11). The surrogate variable selection step therefore remains an
outstanding problem.
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Table 17.3 Surrogate Variable Selection: there are four possible case scenarios to consider depend-
ing on the R2

v f values between surrogate variable v and factor f , as shown

Scenarios POI( f = b) CF( f = t) ISVA

Case-1 Pvb < 0.001 Pvt > 0.001 Exclude
Case-2 Pvb > 0.001 Pvt < 0.001 Include
Case-3 Pvb < 0.001 Pvt < 0.001 Include if R2

vb < R2
vt

Case-4 Pvb > 0.001 Pvt > 0.001 Normally include

POI phenotype of interest ( f = b), CF technical confounder ( f = t). Pv f denotes the P-value
of the association between SV v and factor f . Final column indicates whether the SV v should be
included in the final adjustment step of ISVA or not. A conservative Bonferroni threshold of 0.001
is used to call statistical significance since the number of SVs is typically on the order of ⇔10

Here we propose a simple heuristic to the subspace selection problem, which we
can only justify a posteriori, by showing that it leads to successful retrieval of the
known biological signatures. For each of the SVs and for each factor (biological
or technical) we first compute a model fit R2 value, using an appropriate linear or
nonlinear model framework. Let R2

v f denote the R2 value between surrogate variable
v and factor f . Further, let b denote the POI factor, and t denote a generic technical
factor. Then, there are four possible cases to consider, as indicated in Table 17.3. In
case-1, the surrogate variable correlates significantly only with the POI, and hence it
ought to be excluded as remarked earlier. Conversely, if the surrogate variable corre-
lates significantly with a technical factor but not with the POI, then the corresponding
SV should be included. In the third case, where the SV correlates significantly with
both the POI and a technical CF, we use the model selection criterion

R2
vb < R2

vt (17.5)

to include only those where the correlation with the technical factor is stronger.
The rationale for this criterion is that if the variation described by v correlates more
strongly with the POI, then it is more likely that this variation is genuinely asso-
ciated with the POI, and hence this component should be excluded. The final case
corresponds to a scenario where the SV does not correlate with any known factor, in
which case it is also unclear whether to include the SV or not. In principle, one must
allow for the possibility of complete unknown (i.e., hidden) factors, in which case
the SV should be included. On the other hand, exclusion could be argued on grounds
of small variability and inaccuracies in dimensionality estimation.

Before demonstrating that the simple procedure presented in Table 17.3 works, we
need to discuss further what may seem as a serious drawback with the above heuristic,
as it requires some knowledge of the technical confounding factors. Given that BSS
methods are ideally suited to the scenario where sources of variation are unknown,
does this then pose an intrinsic limitation to the ISVA method? The answer is no.
To understand this, we first note that BSS methods are useful also in circumstances
where confounders are only known with error, since in such cases it would be better
to model the effects of the confounders from the data itself. In this case, the simple
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xx

x

Fig. 17.7 Heatmap of P-values of association between the surrogate variables (SVs) inferred using
ISVA and the confounders and phenotype of interest (age). P-values were estimated from linear
ANOVA in the case of categorical confounders (e.g., Chip, Sex, Cohort) and from linear regressions
in the case of continuous variables (age, BSC efficiency-BSCE and DNA concentration-DNAc).
Color codes: P < 1e − 10 (darkred), P < 1e − 5 (red), P < 0.001 (orange), P < 0.05 (pink),
P > 0.05 (white)

SV subspace selection step described above can be applied. Second, the scenario
where confounders are known, or only known subject to error, constitutes the most
common scenario. Last but not least, SVs not correlating with any factor (case-4)
may still be included in the adjustment, as the main requirement is to avoid including
SVs that correlate strongly with the POI.

17.7.5 The ISVA Solution

Let us now see how ISVA resolves the problematic issues that we encountered ear-
lier with SVA. We first consider the four DNA methylation datasets considered in
Table 17.2 and Fig. 17.6. In Fig. 17.7 we show the heatmap of associations between
SVs constructed from ISVA with the same confounders.
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Fig. 17.8 Heatmap of P-values of association between the surrogate variables (SVs) inferred using
SVA and ISVA and the confounders (ER−status and tumor size) and the phenotype of interest
(Grade). a Dataset Loi, b Dataset Schmidt. P-values were estimated from linear regressions. Color
codes: P < 1e −10 (darkred), P < 1e −5 (red), P < 0.001 (orange), P < 0.05 (pink), P > 0.05
(white). “V” indicates SVs selected for adjustment in SVA or ISVA

Note how in two datasets (UKOPS1 and WBBC) there is no residual biological
variability associated with age (the POI). In the UKOPS2 set, there are two SVs that
correlate marginally with age, and importantly they do not correlate with any other
factor, hence these are not included in step-11 of ISVA. In the T1D set, there are
three SVs that correlate with age, but only one of these (SV-3) is excluded, because
the other two (SV-1 and SV-5) correlate more strongly with potential confounders
such as Sex, Cohort, BSCE, and Chip. As seen in Table 17.2, ISVA with the above
prescription for SV subspace selection, leads to significant enrichment of PCGTs in
all four DNA methylation datasets. Thus, using ISVA the known biological signature
is successfully retrieved in all sets.

It could be argued that the key step is the SV subspace selection, and not the
BSS algorithm per se. To show how the use of ICA facilitates the SV subspace
selection, we return to the example of mRNA expression data with grade as the
POI and ER−status playing the role of confounder. Table 17.1 shows the results
obtained by ISVA. In comparison to SVA, we can see that ISVA leads to specific
enrichment of cell-cycle genes (i.e., ER−signaling genes are not enriched), clearly
indicating that confounding by ER−status has been successfully removed. As we can
see from Fig. 17.8, this improved feature selection can be attributed to a more accurate
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deconvolution of residual variation associated with grade from that associated with
ER−status. As illustrated in Fig. 17.8a, SV-1 in SVA is equally strongly correlated
with grade and ER−status, indicating inaccurate deconvolution. In contrast, with
ISVA, the SVs correlating most strongly with ER (SV-12) and grade (SV-7) are
distinct, thus facilitating SV subspace selection and subsequently allowing improved
feature selection. Similarly, in Fig. 17.8b, SV-3 in SVA is selected for adjustment yet
it correlates very strongly with grade. In contrast, in ISVA the SV correlating most
strongly with grade (SV-9) does so much more strongly than with ER−status, and
hence this SV is not included in the subsequent adjustment. The effect of ER in the
residual variation space is captured by other SVs (SV-12, 20, 24, 27) which do not
correlate as strongly with grade, and these are therefore included in the adjustment.
Thus, in these two examples, the BSS method is key since it allows more accurate
deconvolution of the different sources of variation in the residual variation space.
Even if a SV subspace selection step is incorporated into SVA (using the same
heuristic criterion as for ISVA), we would still select problematic SVs since PCA
does not allow accurate deconvolution of the different sources of variation (see [45]
for results of this modified SVA).

17.8 Modeling of Confounding Factors with Generalized BSS
Algorithms

In the previous sections, we have seen how a simple BSS method (fastICA) can
lead to substantial improvements in modeling confounding factors as well as to an
improved deconvolution of the biological and confounding factors, both of which
are important, and which subsequently lead to improved feature selection in super-
vised analysis problems. We have also provided an objective evaluation framework
in which to assess and compare the different algorithms.

It is therefore of interest to consider more sophisticated BSS methods, since
these might offer further improvements in statistical inference. In doing so, the first
question to address is whether modeling of confounders is improved using these more
advanced BSS methods. One particular generalization of ICA which is of interest
to study concerns the statistical independence assumption, which so far has been
applied to the columns of the source matrix S. In other words, given the residual
matrix R of dimension p × n, we applied ICA in the context

R = S1 A + β (17.6)

with the inference required to minimize a residual sum of squares subject to the
constraint that the K p−dimensional column vectors of S1 be as statistically inde-
pendent as possible. However, as shown in previous studies [37, 47], a dual interpre-
tation/implementation is possible, whereby statistical independence is imposed on
the rows of the mixing matrix A. This dual problem can be expressed as:
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RT = AT ST
1 + β

= S̃2 Ã + β (17.7)

where statistical independence is now imposed on the columns of S̃2 which is a matrix
of dimensionality n × K . As shown in [2, 33, 37, 47], it is possible to formulate a
“spatio-temporal” or bi-dimensional ICA,

R = S1ST
2 + β (17.8)

in which statistical independence is favored across both features (“time”) and samples
(“space”), by means of an overall cost function, C f , defined as a weighted linear
combination of the cost functions used to solve Eqs. 17.6 and 17.7, i.e.,

C f = (1 − a)C f1 + aC f2 (17.9)

More formally, the specific bi-dimensional ICA algorithm we consider here [2, 33,
47] starts with a SVD of the row and column centered (residual) data matrix R,
so R = U DV T , with corresponding estimation of the dimensionality K (using as
before RMT). One then constructs the reduced matrix RK = UK DK V T

K where the
first K columns of U and V have been selected corresponding to the top K singular
values of D. This reduced matrix can then be rewritten as

RK = UK DK W −1
︸ ︷︷ ︸

S1

W V T
K︸ ︷︷ ︸

ST
2

(17.10)

with W an invertible matrix of size K × K . Finally, we seek to optimize the matrix
W such that the fourth-order cumulants of S1 and S2 are as diagonal as possible, i.e.,
minimizing

C f (W ) =
(

a
∑

i

Off
(

Ci (ST
2 )

)
+ (1 − a)

∑

i

Off
(

Ci (ST
1 )

))
(17.11)

where Off(Y ) returns the sum of squares of the off-diagonal elements of Y , and the
Ci are fourth-order cumulants. Imposing that W is orthogonal leads to a formulation
which can be solved by means of the JADE algorithm [6]. We note however that this
formulation of bi-dimensional ICA differs slightly from that of [33, 47], as the second

term in the contrast function involves
(
Ci (ST

1 )
)

instead of
(
Ci (ST

1 )
)−1

. Minimizing
one or the other pursues the same goal, namely statistical independence for columns
of S1. This novel formulation however allows us to treat both extreme cases on
an equal footing: a = 1 corresponds to JADE applied on RT

K = S2ST
1 whereas

a = 0 corresponds to JADE applied on RK = S1ST
2 . Thus, the cost function can be

interpreted as a weighted linear combination of two ‘jade-like’ cost functions.
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Fig. 17.9 Modeling of beadchip effects by bi-dimensional ICA in two DNA methylation datasets.
y-axis labels the R2 value of the component correlating best with the beadchip as assessed using a
linear ANOVA model. x-axis labels the parameter a in Eq. 17.11

Given the above formulation of bi-dimensional ICA, it is of interest to study the
effect of the parameter a on the quality of BSS. Since beadchip effects provide an
objective framework in which to assess the quality of the BSS, we focus on how well
these effects are modeled by the family of bi-dimensional ICA algorithms above. For
simplicity, we consider the unsupervised problem in which the ICA decomposition
is done on the data matrix X itself.1 Figure 17.9 shows the results, indicating that in
terms of modeling beadchip effects, ICA is best run with values of a close to zero.
This corresponds to imposing statistical independence of the sources across features,
as implemented in the fastICA version of the ISVA algorithm.

17.9 Conclusions

In this chapter, we have presented and discussed the problem that confounding
factors pose in large omic datasets. Since feature selection is a common task in the
analysis of such large datasets, it is paramount to have statistical methods in place
that can perform supervised analysis and feature selection in the background of such
confounding factors, specially when these are uncertain or unknown. We have seen
how BSS methods are necessary in this context, since there is a requirement to accu-
rately model confounding factors and to deconvolve these from variation associated
with the phenotype of interest. We have presented an algorithm, ISVA, which uses
a BSS technique (ICA) to perform a supervised normalization of the data and have
shown that it offers a more sound statistical framework in which to perform feature
selection than a competing non-BSS tool based on PCA.

As mentioned earlier, it is possible to consider any BSS algorithm within the
ISVA framework. One of the most straightforward generalizations of the fastICA
algorithm used in our ISVA implementation is to relax the statistical independence

1 Instead of the residual variation matrix R which requires specification of the POI and is thus
supervised.
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assumption, but to simultaneously impose partial statistical independence along the
dual “sample”-space, resulting in a bi-dimensional ICA. However, we have seen that,
at least in terms of modeling beadchip effects, that the original implementation (i.e.,
imposing statistical independence across features) is optimal. This could be due to
the sources across features being well described by sparse distributions or by the fact
that statistical independence is best assessed using the larger feature space.

Although the bi-dimensional ICA did not lead to improved modeling of beadchip
effects, it is nevertheless of interest to investigate this and other BSS algorithms
in the ISVA context. For instance, it could well be that other types of confounding
factors are best modeled using bi-dimensional ICA or ICA algorithms that also allow
for skewed sources of variation [37, 47]. Exact known confounders (like beadchip
effects) allow for objective assessment of BSS in real data, yet unfortunately, not
many such factors exist. On the other hand, the number of beadchips in studies can
vary substantially, thus allowing assessment of the BSS methods at least in rela-
tion to statistical properties such as kurtosis, which would vary for beadchip effects
depending on the overall sample size of the study. Thus, a beadchip effect affect-
ing 12 samples out of 120 samples (10 beadchips) will exhibit different statistical
properties to one in a study of only 36 samples.

Besides the detailed modeling of the sources, another key challenge faced in ISVA
is the SV subspace selection step. Although we have presented a simple heuristic
selection criterion, which, as we have seen, successfully retrieves the known bio-
logical signatures in diverse real datasets, the criterion itself is not applicable to the
case where confounders are complete unknowns (i.e., hidden). In fact, this remains
an outstanding statistical challenge since (1) the presence of biological variation of
interest in the matrix of residuals is almost always inevitable and (2) it is entirely
plausible that some of this variation is driven by hidden confounding factors and
hence that the associated SVs should be included in the final regression model.

The results on eight real datasets presented here however, conclusively demon-
strate that a SV selection step is absolutely necessary to arrive at the correct biolog-
ical conclusion, yet in other datasets where the biological truth is unknown, the SV
selection criterion used here could falter due to hidden confounding factors. In other
words, in the eight real datasets considered here we can be fairly certain that the data
is not subject to substantial hidden (i.e., completely unknown) confounding varia-
tion, since otherwise our SV selection criterion would not have led to the retrieval of
the known biological signatures.

With this chapter we hope to engage biologists, bioinformaticians, and signal
processing experts alike. The problem that confounding factors pose in the statistical
analysis of omic data is both challenging and critical to the ultimate success of large-
scale genomic and epigenomic studies aiming to identify the much needed disease
biomarkers. Further research in this area is therefore urgently needed.
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Appendix

Simulated Data

We simulated data matrices with 2,000 features and 50 samples and considered
the case of two confounding factors (CFs) in addition to the primary phenotype
of interest. The primary phenotype is a binary variable I1 with 25 samples in one
class (I1 = 0) and the other half with I1 = 1. Similarly, each confounding factor is
assumed to be a binary variable affecting one half of the samples (randomly selected).
For a given sample s we thus have a 3-tuple of indicator variables Is = (I1s, I2s, I3s)

where I2 and I3 are the indicators for the two confounding factors. Thus, samples fall
into 8 classes. For instance, if Is = (0, 0, 0) then this sample belongs to phenotype
class 1 and is not affected by the two confounding factors. Similarly, Is = (0, 1, 0)

means that the sample belongs to class 1 and is affected by the first confounding
factor but not the second.

We assume 10 % of features (200 features) to be TPs discriminating between
the two phenotypic classes. We model the confounding factors as follows: each
confounding factor is assumed to affect 10 % of features with a 25% overlap with
the TPs (i.e 50 of the 200 TPs are confounded by each factor). Let Jg denote the
indicator variable of feature g, so Jg is a 3-tuple (J1g, J2g, J3g) with J1g an indicator
for the feature to be a true positive, and J2g (J3g) an indicator for the feature to be
affected by the first (second) confounding factor. Thus, the space of features is also
divided into eight groups. Furthermore, let (e1, e2, e3) denote the effect sizes of the
primary variable and the two confounding factors respectively, where we assume for
simplicity that e2 = e3. Without loss of generality, we further assume that noise is
modeled by a Gaussian of mean zero and unit variance N (0, 1). Thus, for a given
sample s we draw data values for the various feature groups as follows:

1. Jg = (0, 0, 0): null unaffected features

p(x |Is) ⇔ ϕJg,000 N (0, 1)

2. Jg = (0, 1, 0) or (0, 0, 1): null features affected by only one CF

p(x |Is) ⇔ ϕJg,010
{
ϕIs ,x1z N (e2, 1)

+ ϕIs ,x0z N (0, 1)
}

+ ϕJg,001
{
ϕIs ,xy1 N (e3, 1)

+ ϕIs ,xy0 N (0, 1)
}

3. Jg = (0, 1, 1): null features affected by the two CFs
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p(x |Is) ⇔ ϕJg,011
{
ϕIs ,x11 N (e2 + e3, 1)

+ ϕIs ,x01 N (e3, 1)

+ ϕIs ,x10 N (e2, 1)

+ ϕIs ,x00 N (0, 1)
}

4. Jg = (1, 0, 0): true positives not affected by CFs

p(x |Is) ⇔ ϕJg,100
{
ϕIs ,0yz N (0, 1)

+ ϕIs ,1yz(π−1 N (−e1, 1) + π1 N (e1, 1))
}

5. Jg = (1, 0, 1) or (1, 1, 0): true positives affected by one CF

p(x |Is) ⇔ ϕJg,101
{
ϕIs ,0y0 N (0, 1) + ϕIs ,0y1 N (e3, 1)

+ ϕIs ,1y0(π−1 N (−e1, 1) + π1 N (e1, 1))

+ ϕIs ,1y1(π−1 N (−e1 + e3, 1)

+ π1 N (e1 + e3, 1))
}

⇔ ϕJg,110
{
ϕIs ,00z N (0, 1) + ϕIs ,01z N (e2, 1)

+ ϕIs ,10z(π−1 N (−e1, 1) + π1 N (e1, 1))

+ ϕIs ,11z(π−1 N (−e1 + e2, 1)

+ π1 N (e1 + e2, 1))
}

6. Jg = (1, 1, 1): true positives affected by all CFs

p(x |Is) ⇔ ϕJg,111
{
ϕIs ,000 N (0, 1)

+ ϕIs ,010 N (e2, 1) + ϕIs ,001 N (e3, 1)

+ ϕIs ,011 N (e2 + e3, 1)

+ ϕIs ,101(π−1 N (−e1 + e3, 1)

+ π1 N (e1 + e3, 1))

+ ϕIs ,110(π−1 N (−e1 + e2, 1)

+ π1 N (e1 + e2, 1))

+ ϕIs ,111(π−1 N (−e1 + e2 + e3, 1)

+ π1 N (e1 + e2 + e3, 1))
}
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where in the above ϕx √ y√z√,xyz denotes the triple Kronecker delta: ϕx √ y√z√,xyz = 1 if
and only if x √ = x , y√ = y and z√ = z, otherwise ϕx √ y√z√,xyz = 0, and (π−1, π1) are
weights satisfying π−1 + π1 = 1. In our case, we used π1 = π−1 = 0.5.

DNA Methylation Data (Whole Blood Tissue)

In all datasets, age is the phenotype of interest. (i) T1D: this DNAm dataset consists
of 187 blood samples from patients (94 women and 93 men) with type-1 diabetes.
This set served as validation for a DNAm signature for aging [44]. We take BSCE,
beadchip, cohort, and sex as potential confounding factors. Samples were distributed
over 17 beadchips; (ii) UKOPS1: this DNAm set consists of 108 blood samples from
healthy postmenopausal women which served as controls for the UKOPS study [43].
Confounding factors in this study include BSCE, beadchip and DNA concentration
(DNAc). Samples were distributed over 10 beadchips; (iii) UKOPS2: This is similar
to Dataset2 but consists of 145 blood samples from healthy postmenopausal women
distributed over 36 beadchips (i.e., approximately four healthy samples per chip, the
other eight blood samples per chip were from cancer cases) [43]; (iv) WBBC: This
dataset consists of whole blood samples from a total of 84 women (49 healthy and
35 women with breast cancer). Samples were distributed over seven beadchips, and
confounders are BSCE, status (cancer/healthy), and beadchip.

Breast Cancer mRNA Expression Data

The mRNA expression profiles are all from primary breast cancers and three of
the datasets were profiled on Affymetrix platforms, while another was profiled on
an Illumina Beadchip. Normalized data were downloaded from GEO (http://ncbi.
nlm.nih.gov/), and probes mapping to the same Entrez ID identifier were averaged.
Sotiriou: 14,223 genes and 101 samples [36]; Loi: 15,736 genes and 137 samples
[26]; Schmidt: 13,292 genes and 200 samples [35]; Blenkiron: 17,941 genes and
128 samples [5]. In these datasets, we take histological grade as the phenotype
of interest and consider estrogen receptor status and tumor size as potential con-
founders. Cell-cycle-related genes are known to discriminate low and high grade
breast cancers irrespective of estrogen receptor status [26, 36]. Therefore, we com-
pare the algorithms in their ability to detect specifically cell-cycle-related genes and
not estrogen-regulated genes. To this end, we focused attention on two gene sets, one
representing cell-cycle-related genes from the Reactome http://www.reactome.org,
and another representing estrogen receptor (ESR1) upregulated genes [10]. The cell-
cycle set showed negligible overlap with the ESR1 gene set, however, we removed the
few overlapping genes to ensure mutual exclusivity of the cell-cycle and ESR1 sets.

http://ncbi.nlm.nih.gov/
http://ncbi.nlm.nih.gov/
http://www.reactome.org
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Chapter 18
FebICA: Feedback Independent Component
Analysis for Complex Domain Source
Separation of Communication Signals

A. K. Kattepur and F. Sattar

Abstract In this chapter, an effective blind source separation (BSS) algorithm is
applied to solve the co-channel interference problem in wireless communication
systems. Algorithms developed for this purpose must not only have the capability
of working in the complex domain and improving output signal to interference plus
noise ratio (SINR), but also have relatively low computational complexity. We pro-
pose a fast Fourier transform (FFT)-based algorithm called feedback independent
component analysis (FebICA) that is able to blindly separate complex modulated
digital signals. By applying this algorithm to communication signals, it is observed
that it has the advantages of SINR gain improvement as well as low computational
complexity. The performance of the FebICA algorithm is shown to be better than the
joint approximate diagonalization of eigen-matrices (JADE) algorithm in terms of the
output SINR and requires lower computational complexity than the analytical con-
stant modulus algorithm (ACMA). The algorithm is also shown to be more robust
with increasing number of sources compared to other algorithms. The separation
performance by using the collected field data has also been demonstrated.

18.1 Introduction

Blind source separation (BSS) algorithms are used for separating individual sources
from their mixtures with minimal a priori information about the source signals or
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their mixing process. This technique has been used with significant success in various
fields such as speech and music processing, sonar, biomedical and financial data [1].

Blind signal processing is statistically based on independent component analysis
(ICA) techniques which are based on the assumptions that the original signals are
independent and non-Gaussian in nature [2]. The basic instantaneous source separa-
tion problem in the time domain can be described as:

X = AS + N (18.1)

Here, X is the observed mixed signal, A is the mixing matrix, S is the source signal,
and N is the additive noise. The objective of any blind source separation algorithm
is to generate an unmixing matrix W such that the resulting signal Y will be a close
estimate of the original source signal S.

Y = WX (18.2)

A number of BSS algorithms widely used include FastICA [3], Infomax [4] and
joint approximate diagonalization of eigen-matrices (JADE) [5]. They make use of
the second-order or higher order statistics to estimate the unmixing matrix W in
order to recover the original sources.

In this chapter, we address the BSS problem applicable to wireless communica-
tions. Besides multipath fading, the ability of many practical wireless communica-
tions to reliably detect and extract information from the received signals is largely
affected by the band noise and co-channel transmission interference. Due to the mul-
tipath channel effects, they arrive at the receiver as angularly spread interference
sources. The received signals are also corrupted by noise from receiver electronics
as well as man-made equipments (e.g., microwave ovens, electrical lamps, motors,
overhanging power lines, etc). Typically, these noise sources have non-Gaussian sta-
tistics and are directional in nature. The use of BSS could then help to solve the
existing multipath fading problem caused by the external noise and interferences,
and thereby improve the performance of the wireless system by increasing the signal
to interference plus noise ratio (SINR) as well as capacity of the system. This is a
seemingly important yet relatively unexplored problem and needs more work to be
done in this area.

As the BSS algorithms are applied on the modulated signals (Gaussian minimum
shift keying for global system of mobile, for instance), they must be able to separate
signals in the complex domain. Moreover, this must be done under real-time process-
ing constraints with added computational complexity heavily deteriorating system
performance. In this context, JADE [5] and analytical constant modulus algorithms
(ACMA) [6] are the two commonly used algorithms to perform BSS in complex
domain. JADE algorithm makes use of Jacobi optimization to extract the source
signals, while ACMA performs singular value decomposition (SVD) to extract the
independent components. However, the limitation of these methods lies in their large
computational complexity which makes them not suitable for real-time processing.
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To tackle this problem, an iterative fast Fourier transform (FFT)-based feedback
independent component analysis (FebICA) algorithm is proposed here based on
feedback architecture which not only has relatively low computational complexity
(specially for a large number of interfering sources), but able to separate also the
complex digitally modulated signals. We also demonstrate that this system can work
with nearly singular mixing matrices, which are typically observed in multiple-input
and multiple-output (MIMO) communication systems. Another motivation of this
chapter lies on the developing and comparing the performance of different classes
of such algorithms, that could be applied in future to other fields such as biomedical
applications (e.g., electroencephalographic recording using wireless).

The proposed FebICA algorithm belongs to the class of algorithms that make use
of information maximization. By using a nonlinear function with updated weight
vectors, this type of algorithms relies on the mutual information providing a simple
learning rule. The performance of the FebICA algorithm has been demonstrated
in terms of computational complexity as well as SINR improvements. Even after
reducing complexity of source separation, the FebICA algorithm does not suffer
from deteriorating output SINR performance as seen in other BSS algorithms [7].
Hence, it can be efficiently used for real-time separation of communication signals
corrupted by co-channel interference. Also, the proposed scheme is found to be
more robust with an increasing number of sources as compared to other methods.
The separation performance for the collected field data from GSM signals has also
been demonstrated.

The organization of the chapter is as follows. In Sect. 18.2, the proposed FebICA
algorithm as well as the theoretical framework of the method are presented. The
convergence analysis concerning the stability of the proposed algorithm and the
computational complexities of the method are included in Sect. 18.3. In Sect. 18.4,
the detailed results and the performances of the proposed FebICA algorithm and the
comparison with other methods are presented in terms of output SINR as well as com-
putational complexities. Related work on source separation in the complex domain,
including applications for communication systems, is presented in Sect. 18.5. Finally,
Sect. 18.6 presents the conclusion and future work.

18.2 FebICA Algorithm

The proposed FebICA algorithm is an extension of the adaptive neural network
approach proposed in [8], which has been used to separate a mixture of odor sources.
The approach in [8] which has been originally used to estimate the olfactory percep-
tion of odors in animals is modified here to update the complex domain unmixing
matrices for source separation. It has been done by adopting the weight updates and
a gradient ascent learning rule for the application of source separation as used pre-
viously in [9]. Thus, the key contribution lies in proposing an algorithm for source
separation in complex domain which has not been done yet within adaptive neural
networks framework applied to source separation in communication systems.
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Note that among the well-known measures of BSS performance including kurto-
sis, negentropy, and mutual independence of source signals [1], in this chapter, we
exploit the mutual independence of sources as used in [4, 10]. Thus, making use of
the criterion for mutual independence, the general expression for sequential updating
of weight vectors based on the global gradient update rule, can be shown by (18.3):

W(t + 1) = W(t) + η(t)[I − f (y(t))gT (y(t))]W(t) (18.3)

where W is the unmixing matrix, η is the learning rate, f (y) is a function of the
observed mixture, and g is a nonlinearity (For detailed derivation, please see the
appendix). Thus, the crux of our source separation problem lies in the use of a cost
function for measuring independence and an appropriate optimization criterion for
updating the weights.

The proposed FebICA algorithm is presented by the steps described as follows:

1. Initialize complex weights W of the FebICA algorithm. This can either be done
randomly or by using the unmixing matrix estimate from the JADE or ACM
algorithms. The feedback weights W f b are then initialized by the off-diagonal
elements of the weights W given by:

W f b(n, m) = W(n, m) ∀n ∈= m (18.4)

where n and m represent the row and columns of the matrices, respectively. The
complex weights will eventually converge to the desired unmixing matrix, while
the feedback weights are used to control the convergence rates.

2. The FFT ψ and the row-wise mean μ of the observed signal matrix X (with M
columns) are given by:

ψk,m =
N−1∑

n=0

xn,me− j 2α
N nk k = 0, . . . , N − 1 (18.5)

μm = 1

N

N−1∑

n=0

xn,m (18.6)

where N is the length of the complex sequence in each row of the observed matrix
X given by x1,…,xM−1. This Fourier domain application to BSS has been used
in [11] and [12]. As shown in [13], by using a Fourier basis, advantages such as
compact representations, higher convergence rate, and lower mean squared error
may be achieved. Consider the following Fourier basis function:

qn[y(k)] = e jn ω y(k) (18.7)

where ω is the system frequency. The gradient ascent rule used in (18.16) can be
written as:
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wn(k + 1) = wn(k) + βωwq
n (k) (18.8)

ωwq(k) = 1

N

N−1∑

θ=0

e(θ)qn[y(k)] (18.9)

e(θ) = y(θ + 1) − ŷ(θ + 1) (18.10)

where ŷ(θ+ 1) is the estimated unmixed signal with every θth iteration. As shown
in [13], the mean square error φ with each iteration would drop as:

φ = 1

N

N−1∑

θ=0

[
y(θ + 1) − ŷ(θ + 1)

]2 (18.11)

Er =
∥∥≤φ(k) − ≤

φ(k − 1)
∥∥

∥∥≤φ(k)
∥∥ (18.12)

Thus, by controlling the relative error Er , a better accuracy measure for the source
separation problem can be achieved. The Fourier basis is also computationally
less intensive which is useful in the case of online source separation.

3. Based on (18.3) we introduce a nonlinear function g(·) which is a suitably chosen
odd nonlinearity, providing stability in the process of separation. The nonlinear
function should be judiciously selected to deal with the super-Gaussian, sub-
Gaussian, stationary, and nonstationary signals. A popular choice is a sigmoidal-
shaped functions shown in [4, 9]. This nonlinearity in the function also creates
a narrow boundary condition that is responsible for distinguishing various inde-
pendent components.

ϕ(ψk,m, πk, ∂m) = e−πk/∂m .ψk,m (18.13)

where π and ∂ are constants and ϕ is the enhanced output of the nonlinear func-
tion. By creating the narrow nonlinear boundary ϕ , the probability of finding a
single independent vector within that reduced space increases. Furthermore, the
feedback architecture reduces the mutual information between the mixed compo-
nents which is updated based on a nonlinear gradient. This is a stochastic gradient
ascent algorithm which tries to maximize the sum of fourth-order cumulants. The
performance criterion is expressed as

J(W) =
n∑

θ=1

E { f (y(θ))} (18.14)

where the function f (·) represents the objective function used in the algorithm.
The objective function is chosen to be of the form f (·) = ln[cosh(·)] which on
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Fig. 18.1 The behavior of the nonlinear operator for various settings of parameters π and ∂

differentiation provides the nonlinearity of the form g(·) = f √(·) = tanh(·). In the
learning rule given in (18.3), the nonlinearity g(·) will dominate and the learning
rule will converge to a separating matrix W (Fig. 18.1).

4. Based on the weights W and feedback weights W f b, we further define an operator
ε which is updated iteratively. This is based on minimizing the mutual informa-
tion between the original signals. As the fundamental assumption of ICA is inde-
pendence of sources, the mutual information must tend to zero as the separation
progresses.

εθ = Wθψ − (W f b)θϕ (18.15)

Here, θ represents the iteration count for the updating process.
5. The iterative process of updating the weights is described in terms of the following

equations where β is the learning factor. As described in [14], the learning rate
function β is of an exponentially decreasing form e(−ωk /5)/250, where ωk =
2αk/N , k = 0, 1, . . . , N − 1. This is a gradient ascent method of updating the
weights by minimizing the mutual information between the signals based on a
nonlinear gradient.

ωWθ = β

(
1 + ϕ √√

ϕ √ εθ

⎡
Wθ (18.16)

Wθ = Wθ−1 + ωWθ (18.17)
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Fig. 18.2 Parameters and operations involved in the FebICA algorithm

where ωWθ refers to the step size of the weight updates and ϕ √ refers to the
derivative of the nonlinear function defined in (18.13). Here, we also update the
feedback weights W f bθ with the new value of Wθ as shown in (18.4).

6. Steps 4 and 5 are repeated till convergence. After the weights converge with the
values of ε , the independent vectors are obtained as the rows of Y:

Y = WX + μ (18.18)

where Y represents the estimated original signals by the FebICA algorithm.

The described FebICA algorithm is consequently represented in Fig. 18.2 to show
the interaction of various parameters for weight update.

18.3 Convergence Analysis and Computational Complexities

For fast convergence of the FebICA algorithm, we need to set the learning rate β

such that cost function κ in (18.19) is minimized with every iteration.

κ = β

⎣
1 + ϕ

√√

ϕ
√ (Wθψ − (W f b)θϕ )

⎤
(18.19)

For the learning rate β, let us refer to (18.16) and take the ratio ωWθ/Wθ representing
κ as

κ = β (1 + f (ϕ)εθ) (18.20)



506 A. K. Kattepur and F. Satar

where (18.20) is a simplified function of learning rate β, the nonlinear function f (ϕ),
and iterative operator εθ. Then we make use of the Newton’s method [15] to provide
a local minima for the convergence criterion:

κ√ = β
⎦

f √(ϕ)εθ + f (ϕ)ε √
θ

)
(18.21)

κ√√ = β
⎦

f √√(ϕ)εθ + 2 f √(ϕ)ε √
θ + f (ϕ)ε √√

θ

)
> 0 (18.22)

where (18.22) represents a local minima for the weights to converge. As we make
use of a hyperbolic function in (18.13), the boundary values can be used as limiting
conditions for the scale β. In order to show an example of the convergence criterion,
we make use of a differentiable nonlinear function ϕ = e−πk/∂m · ψ ⊗= tanh(z) with
a sigmoidal shape. The functions in (18.15) and (18.19) then become:

εθ(z) = Wθψ − (W f b)θ tanh(z) (18.23)

κ(z) = β

(
1 + ϕ

√√

ϕ
√ (Wθψ − (W f b)θ tanh(z))

⎡

= β
(

1 + −2sech 2(z) tanh(z)
sech 2(z) (Wθψ − (W f b)θ tanh(z))

) (18.24)

Producing the derivatives,

κ
√
(z) = β

(
−2Wθψ sech 2(z) + 4(W f b)θ tanh(z)sech 2(z)

)
(18.25)

κ
√√
(z) =β

(
4ψ Wθsech 2(z) tanh(z) + 4(W f b)θsech 4(z) − 8(W f b)θsech 2(z)

tanh2(z)
)

> 0 (18.26)

This leads to the criterion for convergence when ϕ = tanh(z):

4βsech 2(z)
(
ψ Wθ tanh(z) + (W f b)θsech 2(z) − 2(W f b)θ tanh2(z)

)
> 0 (18.27)

ψ sinh(z) cosh(z)

1 − 2 sinh2(z)
>

(
W f b

W

⎡

θ

; sech (z) ∈= 0 (18.28)

with (18.28) representing a general condition for convergence of the FebICA algo-
rithm, that relates the ratio (W f b/W) for iteration θ. If the ratio is less than the
specified bounds, the weights converge to the derived unmixing matrix.

One can view this as being analogous to the anti-Hebbian terms used for
information maximization weight updates in [4]. In [10], the convergence prop-
erties of the tanh function with respect to complex and split-complex infomax
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Table 18.1 Floating point operations involved with FebICA

Equation Flop count

ψk = ∑N−1
n=0 xne− j 2α

N nk m(d log(d)) for all d ∀ n
μ = 1

N

∑N−1
n=0 xn mn

ϕ = e−πk/∂m · ψ mn
εθ = Wθψ − (W f b)θϕ Idm2n

ωWθ = β

(
1 + ϕ

√√

ϕ
√ εθ

⎡
Wθ Idm2n

FebICA 2m[n(1 + Idm + d log(d))]

Table 18.2 Computational complexity of BSS techniques

Algorithm Flop count

FebICA 2m[n(1 + Idm + d log(d))]
ACMA [6] 9d4n + 36m2n
JADE [16] 8n5 + 2d(m2 + n2)+ I(2n4 + 10n3 + 30n2)

SOBI [16] 4n3 + 2m3 + 4n2 + 0.5dm2

FastICA [16] 2dm2 + I(2n(n + d) + 2.5dn2)

INFOMAX [16] 2dm2 + I(n3 + n2 + n(5d + 4))

algorithms are further studied. According to [4], the stochastic gradient leads to

(W−1)θ = 2 ⇔ tanh(z)ψ T 	θ for which
(

W f b
W

)
θ

in (18.28) can be expressed as

2(W f b)θ ⇔ tanh(z)ψ T 	θ, where ⇔	 denotes the projection (scalar dot product)
and tanh(z) = ∑

i ti z2p+1 for p = 0, 1, 2 . . . with ti being the coefficients com-

ing from the Taylor series expansion of the tanh function. This reduces
(

W f b
W

)
θ

to

2(W f b)θ

(∑
i ti ⇔ z2p+1

i ψi 	
)

θ
. Similarly expanding the sinh and cosh terms with

Taylor series coefficients si and ci , we obtain:

∑
i si ⇔ z2p+1ψi 	 ∑

i ci z2p

2
(

1 − 2
⎦∑

i si z2p+1
)2) (∑

i ti ⇔ z2p+1
i ψi 	

)
θ

>
⎦
W f b

)
θ

(18.29)

which represents the criterion needed for convergence of weights W f b.
In Table 18.1, the floating point operations involved in various algorithmic steps

of our FebICA method is listed. The computation is determined based on the sizes
of the matrices X (m × n), U (d × m), and the number of iterations for convergence
I. The computational complexity of ACM, JADE, FastICA, INFOMAX, and SOBI
algorithms has been investigated by [6] and [16], respectively. They are compared
with FebICA for a m ×n unmixing matrix with data length d and maximal iterations
I in Table 18.2.
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Fig. 18.3 Configuration of
the sources S1, S2 and S3 with
respect to the sensor array
used to generate the mixing
process with ξ = 15◦

18.4 Results and Performance

The results and performances of the proposed method are presented here in terms
of output SINR as well as computational complexities (i.e., the number of Flop-
count). The proposed method has been tested for the Gaussian minimum shift key-
ing (GMSK) modulated signals which are generated by a simulator developed by
Ekstrom and Mikkelsen [17] and distorted with additional white Gaussian noise. In
order to develop a realistic model of the mixing process, the mixing matrix consists
of the source and sensor array geometry along with the source direction vector to
develop the mixing matrix. In this model, the mixing process embeds the source
directions in the mixing matrix. The setup consists of 3-sensor ULA (uniform linear
array) X1, X2, X3 with half-wavelength spacing and 3 sources positioned as shown
in Fig. 18.3. The sources S1 and S3 are situated 5 half-wavelengths away from S2
making an angle of 15◦ from the normal to the array axis. The observed mixed signals
are then separated using the source separation algorithms. An illustrative result of
the proposed FebICA algorithm is shown in Fig. 18.4 and compared with the widely
used second-order blind identification (SOBI) algorithm. As shown in Fig. 18.4, the
proposed method for a mixture of three GMSK modulated sources with input SNR
of 20 dB performs better than the SOBI algorithm. Note that the results in Fig. 18.4
illustrate that algorithms like SOBI that are developed for real-valued signals, fail to
perform accurate source separation for complex-valued mixing matrices and signals.

We next compare the SINR improvement provided by various source separation
algorithms. Both the nearly singular (when the sources are closed) and nonsingular
(when the sources are apart) mixing matrices with varying number of sources and
signal length are considered for our evaluation. For example, we have considered
the following nonsingular mixing matrix A1 and nearly singular mixing matrix A2
with three complex sources. The mixing procedure can be modeled with either:
(a) complex-valued instantaneous mixing matrices; (b) complex-discrete Fourier
transform of a convolutive mixture (implies separation in the frequency domain).
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Fig. 18.4 Comparative results of the proposed FebICA algorithm and the SOBI algorithm [18] for
Gaussian minimum shift keying (GMSK) modulated signals

A1 =



−0.7458 + j0.6661 − 0.9794 + j0.2019 − 1.0000 + j0.0000
0.0000 + j1.0000 − 0.2291 + j0.9734 − 1.0000 + j0.0000
0.7458 + j0.6661 0.7865 + j0.6176 − 1.0000 − j0.0000


⎧

(18.30)

A2 =



0.1483 − j0.9889 0.5158 − j0.8567 − 1.0000 + j0.0000
0.1213 − j0.9926 0.4936 − j0.8697 − 1.0000 + j0.0000
0.0943 − j0.9955 0.4711 − j0.8821 − 1.0000 + j0.0000


⎧

(18.31)

The eigenvalues of A1 and A2 are represented by the diagonal values of the mixing
matrices (see (18.32) and (18.33)). Note the lack of distinct eigenvalues for A2
in (18.33) which represents the nearly singular mixing condition.

eig(A1) =



−1.4723 + j2.2598 0 0
0 − 0.0255 + j0.1070 0
0 0 − 0.4771 − j0.7272


⎧

(18.32)
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Fig. 18.5 The SINR improvements of various algorithms for different SNR settings with 10 source
signals

eig(A2) =



−0.3770 − j1.8210 0 0
0 0.0189 − j0.0376 0
0 0 0


⎧ (18.33)

As illustrated in Fig. 18.5, for the case of nonsingular sources, the FebICA algo-
rithm improves with increase in SINR and outperforms the JADE algorithm. The
performance of all the three BSS algorithms drops when the mixing matrix is nearly
singular. The reason for this lies in the approximation of the inverse of the nearly
singular mixing matrix, that would require additional processing not provided by
traditional BSS algorithms. However, as shown in Fig. 18.5, the proposed FebICA
algorithm performs relatively well in the case of singular mixing matrices, attuned
to the feedback approach to generating the unmixing matrices. Generally speak-
ing, without BSS algorithm the output SINR becomes significantly lower than the
input SNR. However, the incorporation of BSS algorithm in communication systems
certainly improves the signal quality making the output SINR well above the input
SNR. Further, in Fig. 18.5, it can be noticed that the performance curve of the FebICA
singular seems to be linear, but becomes less consistent for FebICA nonsingular; sim-
ilar trends are observed for ACMA singular and ACMA nonsingular. Conditions for
statistical independence are valid for nonsingular case when compared to singular
(ill-conditioned) case. Thus, higher the input SNR, larger the improvement of output
SINR for the nonsingular case. Note that the results for SOBI [18] and FastICA [3]
algorithms are not presented, as they are unable to separate complex-valued signals.

We further compare the results of output SINR with increasing number of sources.
As noticed in Fig. 18.6, the improvements achieved by the proposed FebICA algo-
rithm for the complex modulated signals with data size 1480 samples and input SNR
of 25 dB are found to be consistent with increasing number of sources. Although
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Fig. 18.7 The floating point values of various BSS algorithms for increasing signal length and
number of sources

JADE algorithm provides nearly optimal performance when number of sources less
is than 4, the performance deteriorates drastically as the number of sources increases.
On the other hand, by making use of gradient ascent techniques for optimizing the
unmixing weights, the proposed algorithm seems to be more stable for large num-
ber of sources without deteriorating the performance. The ACMA is also found quite
stable as the number of sources increases. However, it is computationally more inten-
sive as shown in Fig. 18.7. The results by SOBI [18] and FastICA [3] algorithms are
not included here due to deteriorating separation performance for complex-valued
signals.
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Fig. 18.8 The separation performance of JADE and FebICA when applied to real field data: a
observed mixed signal constellation, b signal constellation after JADE, c signal constellation after
FebICA , d relative phase distribution of sources s1 and s2, e relative phase distribution after JADE,
f Relative phase distribution after FebICA

Figure 18.7 represents the floating point operations associated with various BSS
algorithms. We observe that the FebICA algorithm substantially outperforms the
ACMA when the number of sources is more than 6. It performs comparably well with
the JADE algorithm especially for large number of sources. Comparing Figs. 18.5
and 18.7, we can see that FebICA algorithm provides higher SINR gain for GMSK
mixtures while maintaining low computational complexity. It can be noted that the
computational complexity of FebICA depends on the number of corresponding iter-
ations, which in turn relates to the threshold specified in (18.28).

The results of the proposed FebICA algorithm on real field data is presented in
Fig. 18.8. The I-Q data of CFSK modulated signals produced by two sources have
been sampled at 25 kHz and received by two receivers. Then the data have been
sent out in bursts with 80 % of the time frame occupied by data and 20 % left for
synchronization. The SNR value has been recorded to be within a range of 30–40 dB.
As shown in Fig. 18.8, FebICA and JADE algorithms are able to restore the signal
constellations of the received data to that of a typical GMSK signal. The relative
phase between the two separated signals is also randomized, indicating that the
output signals become more independent than the observed input data which follows
the fundamental assumptions of BSS. Further illustration of the good separation
performance of FebICA is seen in the time-frequency plots of the mixed and separated
outputs, as shown in Fig. 18.9.
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Fig. 18.9 The separation performance of FebICA when applied to real field data: a Observed mixed
signal in TF domain b, c separated signal outputs

18.5 Related Work

In wireless communication systems, co-channel interference may be prevented by
applying medium access control (MAC) or random access protocols [19]. By apply-
ing cross layer designs, signal processing techniques like blind source separation
can be employed along with MAC protocols to improve the performance. As the
source separation is applied on digitally modulated signals, it is imperative that the
processing is algorithms for separating complex signal mixtures have been described
in the literature and the algorithms designed for real-valued data are unable to effec-
tively separate these mixtures. While most of the conventional algorithms like Fas-
tICA [3] and Infomax [4] may be applied to real signals, algorithms like JADE
[5] and (ACMA) [7] can handle source separation in complex domain. Modified
versions of Infomax [10] have been proposed to extend these algorithms to handle
complex-valued signals.

While traditional blind source separation algorithms have been applied to speech
and music signals, interest in applying these techniques to telecommunication sys-
tems has generated interest. It has been applied to multiple aspects of telecom-
munication systems including blind deconvolution, MIMO channel separation and
equalization. In [20], source separation techniques have been applied to estimation



514 A. K. Kattepur and F. Satar

of many parameters belonging to spectrally overlapping sources. The two approaches
considered including convolutive unmixing of the channel response function/
observed data and exploiting the cyclostationarity of the underlying signals. Dubroca
et al. [21] deal with the problem of blind source extraction from a multiple-
input/multiple-output (MIMO) convolutive mixtures. In [22], the maximum like-
lihood method for parameter estimation is shown to provide a unifying framework
for deriving blind deconvolution and blind source separation algorithms. The num-
ber of communication signals in a sensor array is studied in [23], by exploiting
Kolomogorov–Smirnov (K-S) tests along with ICA. In [24], ICA-based equalization
approaches are shown to be superior to subspace methods for MIMO systems.

The use of blind source separation to complex domain signals produces some
challenges that traditional ICA algorithms cannot handle. In [25], an entropy esti-
mator for complex random variables is applied to separation of complex sources. In
a chapter relevant to our work [26], an efficient algorithm to deal with convolutive
blind source separation of communication signals in frequency domain is presented
by making use of JADE in every frequency bin. In [27], a complex optimum block
adaptive ICA (Complex OBA-ICA) is applied to orthogonal frequency division mul-
tiplexing (OFDM) to recover user signals in the presence of ICI and channel induced
mixing. In [28], a new nonlinear function is proposed for natural gradient separation
algorithms (NGSA) to improve separation performance. In [29], an Infomax algo-
rithm has been used for BSS of complex-valued signals in frequency domain where
particle swamp optimization (PSO) technique is integrated to find suitable step size
for the learning process. Another frequency-domain ICA method using short-time
Fourier transform (STFT) is presented in [30] for wireless communications in order
to reduce the cross-talk in slow, frequency-selective channels.

In order to evaluate the performance of ICA algorithms for communication sig-
nals, [31] sub-Gaussian, Gaussian, and mix users (sub-Gaussian, super-Gaussian,
and Gaussian) are generated and then mixed linearly. Separation performance of
multiple ICA algorithms such as JADE, Infomax, and Fixed point algorithms are
measured by a performance index. In [32], the performances of different types of
ICA algorithms (e.g., Infomax, JADE, Pearson-ICA [33], SOBI [18]) are presented
for mitigating interferences for the systems based on direct sequence code division
multiple access (DS-CDMA) used in commercial cellular networks. In [34], fourth-
order cumulant-based separation is applied to multi-user symbol estimation problem
in direct sequence code division multiple access (DS-CDMA) systems. Bit error rate
(BER) simulations of this algorithm are shown for different number of users, signal to
noise ratio (SNR), and different number of symbols per user in comparison with the
FastICA algorithm and robust ICA. However, unlike our case, the simulated mixing
and separation has been applied to the real domain.
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18.6 Conclusion and Future Work

An effective blind source separation algorithm is proposed to reduce the co-channel
interference for complex communication signals. The proposed FebICA scheme
performs well in complex domain with low computational complexity and good
SINR improvements. When applied to a mixture of co-channel interfering digitally
modulated signals, the FebICA algorithm is shown to outperform the JADE algorithm
in terms of SINR improvement. This improvement is seen over a range of input SNR
settings as well as in the number of interfering sources. Furthermore, it is shown to
have lower computational complexity compared to ACMA, which is less dependent
on increasing the signal length as well as the number of sources. It is also stable
with increase in the number of sources providing consistent SINR improvements.
Thus, it combines the dual advantages of successful interference mitigation and lower
computational complexity. This makes the proposed algorithm suitable for practical
applications in wireless receivers.

The future work includes to apply our proposed method in vehicular communi-
cations [35, 36] where large number of sources (vehicles sensors) are involved and
the number of sources are consequently varied. For example, our FFT-based BSS
algorithm could be useful to improve real-time vehicle localization for effective traf-
fic monitoring. While the scope of this chapter is centered on the development of
a novel algorithm and corresponding performance analysis on communication sig-
nals, a detailed comparison with other classes of such complex/frequency domain
algorithms (such as [26] and [34]) would also be evaluated in future.

Appendix

Mutual Information Weight Update Criterion
The mutual independence of functions based on joint probability density functions

is given by:

fs(s) =
n⎨

i=1

fi (si ) (18.34)

where fi (si ) is the pdf of signal si . Based on signal entropy H, the mutual information
I is given by:

I(s1, s2, . . . , sn) =
n∑

i=1

H(si ) − H(s) (18.35)

H(si ) = −
⎩

fi (si ) ln fi (si )dsi (18.36)
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The objective of BSS is to find an unmixing matrix W, so that I(si , s j ) = 0.
Traditionally, higher order statistics (HOS) and associated nonlinearities can be used
to produce mutual independence [2]. For observed signals Y = WX, let the trans-
formed function (due to nonlinearities) be given by:

zi = gi (yi ) (18.37)

For a single variable z, the H(z) is maximized when nonlinearity g(·) is a cumulative
density function. In other words, H(z) is maximized when z has uniform distribution:

fz(z) = fy(y)

dz⎫
dy

(18.38)

This is of uniform distribution when

dz

dy
= fy(y) (18.39)

For n variables, this may be extended using the Jacobian form J:

fz(z) = fy(y)

|J| (18.40)

J = det


⎬⎬

dz1
dy1

· · · · · · dz1
dyn

...
. . .

dzn
dy1

· · · · · · dzn
dyn


⎢⎢⎧ (18.41)

The output joint entropy is then given by:

H(z) = −E{ln fz(z)} = −E{ln fx (x)} + E{ln |J|} = H(x) + E{ln |J|} (18.42)

For maximizing H(z), the updating weights for the unmixing matrix are given by:

ωW ∇ dH(z)

dW
= E

⎞
d ln |J|

dW

⎠
⊗= d

dW
ln |J| (18.43)

Using the definition of the Jacobian:

J = det(W)

n⎨

i=1

⎥⎥⎥⎥
dzi

dyi

⎥⎥⎥⎥ (18.44)

ωW ∇ d

dW
ln |det(W)| + d

dW
ln

n⎨

i=1

⎥⎥⎥⎥
dzi

dyi

⎥⎥⎥⎥ (18.45)
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It can be proved that:
d

dW
ln |det(W)| =

⎥⎥⎥WT
⎥⎥⎥
−1

(18.46)

d

dW
ln

n⎨

i=1

⎥⎥⎥⎥
dzi

dyi

⎥⎥⎥⎥ = d

dW

n⎨

i=1

ln

⎥⎥⎥⎥
dzi

dyi

⎥⎥⎥⎥ = f (y)xT (18.47)

Substituting this into (18.45), we obtain

ωW ∇
⎥⎥⎥WT

⎥⎥⎥
−1 + f (y)xT (18.48)

W(k+1) = W(k) + β(k)[(WT )−1 + f (y)xT ] (18.49)

Multiplying this learning rule by WT W, we get the simplified expression:

W(k+1) = W(k) + β(k)[I + f (y)yT ]W (18.50)
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Chapter 19
Semi-blind Functional Source Separation
Algorithm from Non-invasive Electrophysiology
to Neuroimaging

Camillo Porcaro and Franca Tecchio

Abstract Neuroimaging, investigating how specific brain sources play a particular
role in a definite cognitive or sensorimotor process, can be achieved from
non-invasive electrophysiological (EEG, EMG, MEG) and multimodal (concurrent
EEG-fMRI) recordings. However, especially for the non-invasive electrophysiolog-
ical techniques, the signals measured at the scalp are a mixture of the contributions
from multiple generators or sources added to background activity and system noise,
meaning that it is often difficult to identify the dynamic activity of generators of inter-
est starting from the electrode/sensor recordings. Although the most common method
of overcoming this limitation is time-domain averaging with or without source local-
ization, blind source separation (BSS) algorithms are becoming increasingly widely
accepted as a way of extracting the different neuronal sources that contribute to the
measured scalp signals without trial exclusion. The advantage of BSS or semi-blind
source separation (semi-BSS) techniques compared to methods such as time-domain
averaging lies in their ability to extract sources exploring the whole time evolving
data. Taking into account the whole signal without averaging, it also provides a
means suitable to investigate non-phase locked oscillatory processes and single-trial
behaviour. This characteristic becomes a crucial issue when investigating combined
EEG-fMRI data, particularly when the focus is on neurovascular coupling definitely
dependent on single trial variability of the two datasets. In this context, this chapter
describes a semi-BSS technique, Functional Source Separation (FSS), which is a
tool to identify cerebral sources by exploiting a priori knowledge, such as spectral
or evoked activity, which cannot be expressed by sources other than the one to be
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identified (functional fingerprint). In other words, FSS allows the identification of
specific neuronal pools on the bases of their functional roles, independent of their
spatial position.

19.1 Introduction: Relevance and Challenges
of Electrophysiology for Neuroimaging

Despite non-invasive electrophysiological techniques such as Electroencephalog-
raphy (EEG) and Magnetoencephalography (MEG) providing the opportunity to
directly measure the electrical activity of large-scale neuronal populations, different
challenges exist in characterising this activity, especially at the single-trial level [52].
Single-trial variability and signal-to-noise ratio: EEG or MEG signals not only
reflect activity of the neuronal population of interest (signal) but also unrelated
activity (artefact/noise). Consequently, changes in brain activity over a single-trial
can be dominated by changes in these artefacts. Electric/magnetic field propaga-
tion: Electrical potentials and magnetic fields generated by neuronal activity are
not only detected close to neuronal sources but also at distant sites. Therefore, each
channel derives its signal from more than one source. In this respect, choosing or
averaging channels may generate misleading results. Blind Source Separation (BSS)
methods such as Independent Component Analysis (ICA), [21, 27, 47] and semi-
BSS such as Functional Source Separation (FSS), [47, 54] have been successfully
used to separate brain sources from noise and are therefore strong candidates to re-
duce the above problems. FSS extracts on the basis of a typical behavioural property,
which cannot be expressed by other sources than the one to be identified (functional
fingerprint), independent of the spatial position, are extremely helpful especially in
those cases where cerebral plastic changes have altered the location of brain func-
tions with respect to standard anatomical landmarks typical of healthy people [16].
The independence from spatial position also allows the separation of sources close
to each other (i.e. primary somatosensory and primary motor representation of the
same body district, two hand fingers somatosensory representation).

In particular, FSS uses the simulated annealing algorithm for constraint optimiza-
tion, allowing non-differentiable contrast function and performing global optimiza-
tion, while gradient-based algorithms usually employed in ICA only guarantee local
optimization. Since brain areas could not always be reasonably assumed indepen-
dent or uncorrelated, in the FSS procedure the orthogonalization step could also be
omitted, producing a non-orthogonal extraction scheme [5]. In this condition, the
order of extraction is not significant, because the procedure is applied each time to
the original data. A typical functional constraint is applied each time to produce
each source. The proposed chapter is the culmination of our research line devoted
to source identification grounded on functional behaviour of the cerebral source of
interest.
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The structure is as follows. In Sect. 19.2, general principles of BSS and
semi-BSS with a particular focus on FSS are introduced. In particular, part of this
section is devoted to the simulated annealing, the optimization method used by FSS
to minimize the cost function is under investigation. The functional constraints, the
core of FSS methodology, are described in Sect. 19.3, where we exemplify cases of
neuronal pools already identified through FSS (primary somatosensory and motor
areas and primary visual area), together with the procedures to assess the ‘good-
ness’ of the extraction. Section 19.4 is dedicated to the FSS applied on simultaneous
EEG-functional Magnetic Resonance Imaging (fMRI) recordings. How FSS enables
the single-trial response measurement is shown in Sect. 19.5 and provides exam-
ples from EEG data as well as from technically challenging situations of concurrent
EEG-fMRI recordings. Strengths and limitations of FSS procedures, as well as final
considerations, are reported in Sect. 19.6.

19.2 Semi-BSS and FSS

19.2.1 Brief Overview

BSS is a multivariate class of computational data analysis techniques for revealing
hidden factors that underlie sets of measurements or signals. Thus BSS can be seen
as a generative model of latent variables, also called sources or factors, which de-
scribes how the observed data are generated by these unknown sources, under the
hypothesis that their contributions are linearly mixed (the mixing coefficients are also
unknown). A very famous subclass of BSS is ICA, in which the latent variables are
non-Gaussian distributed and mutually independent. In other words, the aim of ICA
is to extract in a blind fashion (i.e. without making specific assumptions) meaningful
signals that have been linearly mixed, without knowing the original signals or the
mixing coefficients.

Based on the observation that when we deal with real-world signals we are never
completely blind, in that we know (in a more or less detailed and quantitative way)
some of their characteristic features, such as the form of their probability densi-
ties, their spectral or temporal contents, spatial position, etc. Then the term blind is
replaced by the term semi-blind, and we are in the case of semi-BSS techniques.

19.2.2 ICA a Special Case of BSS

In the simplest noise-free version of the ICA model, a set of signals x (in the
specific case of this chapter simply the recorded MEG/EEG channels) is assumed
to be obtained as a linear combination (through an unknown instantaneous mixing
matrix A) of statistically independent non-Gaussian sources s. Since the observed
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mixed signals will tend to have more Gaussian amplitude distributions, ICA strives
to find a separation matrix that maximises the non-Gaussian features of the data, thus
optimally separating the signals. For this purpose, we assumed the set of observed
EEG/MEG signals to be generated by the mixing model:

x(t) = As(t) (19.1)

where t = 0, 1, 2, . . . is the discrete sampling time; x(t) = [x1(t), . . . , xm(t)] is
the m-dimensional vector of the observed signal recorded by m electrodes (EEG)
or sensors (MEG); A is an m × n (with n ≤ m) unknown full-rank mixing matrix;
s(t) = [s1(t), . . . , sn(t)]T is the n-dimensional unknown vector of the sources. The
model is approached by processing electrode signals by an ICA demixing system
described in the form:

y(t) = Wx(t) (19.2)

where y(t) = [y1(t), . . . , yn(t)]T n-dimensional vector of the estimated Independent
Components (ICs) and W is the separation matrix, i.e., the estimate of the inverse of
the unknown mixing matrix A, up to permutation and scaling.

W = Â−1 (19.3)

−1 should be intended as pseudo-inverse of the matrix in case n < m. However,
Eq. 19.2 has fewer unknowns than equations, making the estimation rely on additional
information, namely the statistical independence of sources. ICA can therefore be
cast as an optimization process that maximises independence as described indirectly
by a suitable contrast function.

In particular, the ICA assumption is that a set of statistically independent sources
s have been mixed linearly in the recorded data x by means of a mixing matrix A. The
aim is to recover both s and A starting from the observation of the linear mixture x
= As without making any particular assumption other than statistical independence
of the sources.

19.2.3 FSS a Special Case of Semi-BSS

FSS technique is part of semi-BSS methods [5, 43, 54]. The aim of FSS is to enhance
the separation of relevant signals by exploiting some of a priori knowledge without
renouncing the advantages of using only information contained in original signal
waveforms. FSS, analogous to ICA, models the set of EEG/MEG recorded signals x
as a linear combination of an equal number of sources s via a mixing matrix A. Differ-
ing from other constrained ICA models (for details about these parts of the semi-BSS
technique see [23, 26, 60], FSS identifies a single source at a time, building a contrast
function for that source that exploits fingerprint information associated with the neu-
ronal pool to be identified [43–45, 47, 54]. In general, FSS starts from the original
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EEG/MEG data matrix x for each source, and returns one functional source (FS) with
the required functional property. This scheme gives us the ability to extract the FS
that maximises the functional behaviour in agreement with the functional constraint
[5, 54]. A modified cost function (with respect to standard ICA) is defined as:

F = J + ψR (19.4)

where J is the statistical constraint normally used in ICA, while R accounts for the a
priori information known about the sources. The relative weight of these two para-
meters can be adjusted via ψ [43, Appendix A]. ψ has been chosen to both minimize
computational time and maximise the functional constraint R (see also Sect. 19.2.3.1).
Moreover, the FSS contrast function F is optimized by means of simulated anneal-
ing [24], thus allowing prior information about the FS to be described by a non-
differentiable function. Furthermore, FSS performs global optimization instead of
local optimization (gradient based algorithms) usually employed in ICA. To separate
contributions representing different sources, the proposed procedure could be applied
in two different modalities: by using an orthogonal extraction scheme (as in the basic
ICA model); by estimating the first source, and then searching for the second source
in the orthogonal space with respect to the first, and so on until the last source is
estimated with a stop rule that can be defined according to the data in hand. Since
relevant components cannot always be reasonably assumed to be independent or
uncorrelated, the FSS procedure using the orthogonalization step could be also com-
pletely skipped, producing a non-orthogonal extraction scheme. In this condition, the
order of extraction is not significant because the procedure is applied each time to the
original data. Different constraints are applied each time to produce different sources.

The provided sources are suitable to describe time evolution of on-going activity,
which allow for sample single-trial analysis, instead of averaging all sensors channels
in specific instants, as is usually done in the standard procedures. Moreover, even if
a source is extracted by exploiting a functional constraint related to a specific time
portion of the experiment, the corresponding estimated signal could be studied all
along the length of the whole session.

In the following subsections, we describe how the parameter ψ has been chosen
(Sect. 19.2.3.1) and how the simulated annealing works (Sect. 19.2.3.2). Finally,
details on the functional constraint R will be given in Sect. 19.3.

19.2.3.1 FSS Contrast Function Settings

In this section, we specify how the values of the parameter ψ in Eq. 19.4 was
determined. The parameter ψ was selected by an initial grid fixed with nine dif-
ferent ψ-values (ψ = 0; 0.01; 0.1; 0.5; 1; 10; 100; 500; 1000) plus a last condition
of ψ = 1 but only activating the functional constraint in Eqs. 19.4, i.e. removing
the J-part of the contrast function (case named as ‘Only Constraint’, OC). For each
participant (in this specific case 14 volunteers, 9 males and 5 females, mean age 41 ±
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Fig. 19.1 Mean and standard errors across subjects for the tested ψ-values of two representative
functional constraints RFSS1 ( solid blue line) and RFSM1 (dashed red line) indices (top) and of the
computational times for the two sources FSS1 (solid blue line) and FSM1 (dashed red line) extractions
(bottom)

15, age range 24–66 years), the two sources (S1–primary sensory area1; M1–primary
motor area2) were extracted, keeping track of the computational times for each case
of the grid. The indices RFSS1 and RFSM1 (see Eqs. 19.8 and 19.9 for formulation)
were evaluated for each corresponding source. The parameter ψ, consequently, was
chosen to both minimize computational times and maximise the R indices. Start-
ing from the case ψ = 100, the maximum value of the two indices was reliably
reached for all the subjects and the two sources (Fig. 19.1, top). Moreover, looking
at computational time distribution (Fig. 19.1, bottom), the ψ value minimising the
computational effort for the two sources was ψ = 1000. The computational time was
estimated for a computer with 3.2 GHz CPU and 1.0 GB RAM, on the data matrix
of 28 rows × 240,000 time points. In all cases highlighted in this chapter, we have
found that ψ = 1000 is a good compromise to minimise computational time and
maximise each functional constraint. Noteworthy, while best solutions corresponded
to ψ ≥ 100 (i.e. R weighted above two orders of magnitude greater than kurtosis J),
we concurrently documented that it is useful not to omit J from functional constraint
(OC Fig. 19.1). In fact, we empirically observed that J = 0 (OC) required more than
three times computational cost than using ψ = 1000.

1 See Sect. 19.3.1 for more details.
2 See Sect. 19.3.2 for more details.
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19.2.3.2 Optimization by Simulated Annealing

Simulated Annealing (SA) is a well-known global optimization technique [24] used
mainly in mechanical statistics. The optimization process is based on the perturbation
of a given solution, according to the concepts of temperature, statistical equilibrium
and probabilistic acceptance.

The approach has been inspired by the annealing process in metallurgy, a process
used to reach the state of minimum energy of a solid (metal). The technique consists
of raising the temperature of a metal up to the maximum degree at which the metal
melts. At this high temperature, the internal energy reaches a value that permits an
atomic rearrangement and moves away from the rigid position to assume a highly
disordered configuration typical of the liquid state. To return atoms to the highly or-
dered crystalline configuration, the temperature of the system must be slowly cooled
to allow the atoms to reposition into the crystalline order reaching the corresponding
minimum energy state.

Simulating this process is very similar to a combinatory optimization task. For
this physical system, the goal is to find some arrangement of atomic particles that
minimizes the energy (cost) of the system. The main requirement is the ability to sim-
ulate how the system reaches thermodynamic equilibrium at each fixed temperature
(obtained by a chosen cooling scheme) used to anneal it.

Based on the laws of static thermodynamics for each value of the temperature (T ),
the system evolves towards a state of minimum energy (E) and maximum probability
(likelihood). However, there is a non-zero probability at which the state is at a higher
energy. This non-zero probability is described by the Boltzmann distribution:

P(Ei ) = e
− Ei

KBT

∑
m

e
− Em

KBT

(19.5)

KB: is the Boltzmann constant.
The physical process can be successfully simulated by the Metropolis algorithm

[33]. The idea, as in iterative improvement, is to propose some random perturbation,
such as moving a particle i to a new location j, then to evaluate the resulting energy
change αE = E j − Ei (in the optimization problem the cost function is to be
minimized). If the energy is reduced, αE < 0, the new configuration has lower
energy and is accepted as the starting point for the next move. However, if the
energy is increased, αE > 0, the move may still happen: the new higher energy
configuration may be acceptable with the following probability function:

e
− αE

KBT (19.6)
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The probability used by Metropolis represents the ratio between the probabilities
that the system is in state j or state i, based on the Boltzmann distribution (in the
optimization problem the KB parameters is normally fixed to one):

P(E j )

P(Ei )
= e

− E j

KBT

∑
m e

− Em

KBT

·
∑

m e
− Em

KBT

e
− Ei

KBT

= e
− (E j − Ei)

KBT = e
− αE

KBT (19.7)

To be noted that at ‘high enough’ temperatures P(E j\Ei , T → ∞) = e0 = 1
all energy states are equally probable. Whereas at ‘low enough’ temperatures the
system is certainly in a state of minimum energy, P(E j\Ei , T → 0) = e−∞ = 0.

From the above it is clear that the success of the optimization procedure strictly
depends on the chosen cooling scheme. If the cooling scheme is slow enough (log-
arithmic), the algorithm is statistically guaranteed to reach a global optimum (with
probability 1). However, such a theoretically correct cooling schedule is too slow to
be applied in practice, so a geometric schedule is applied instead (i.e. Tt+1 = βTt

with β chosen between 0 and 1).
SA optimization has two advantages over traditional techniques used in the ICA

model (such as gradient-based): it does not require the use of derivatives and, if
properly set, it reaches the global maximum. Although it is considerably slower if
compared with traditional techniques, in the FSS procedure this is not a relevant
drawback, since usually only a very limited number of sources has to be extracted
(in the majority of the cases just one).

19.2.3.3 Simulated Annealing Approach Used in FSS

In the FSS algorithm, the data are whitened using the standard principal component
analysis (PCA) approach. For each functional constraint, an initial random w unmix-
ing coefficient vector (in Eq. 19.2) is initialized and the contrast function (in Eq. 19.4)
is maximised by perturbing w: an optimal wopt is found at the end of the optimisation
process, and the corresponding source is recovered from it. A decrease rate for the
temperature is implemented, such that Tt+1 = βTt , with β = 0.8. The algorithm
terminates when, comparing the solutions at two consecutive temperatures, the norm
of the unmixing coefficients w is under a fixed threshold (ω = 10−4).

We adopted a procedure to automatically set the initial temperature T0 depending
on the data in hand. Starting from a random initial temperature TR, we keep track
of the number of accepted (Acc) and rejected (Rej) state transitions. The ratio θ

= Acc/(Acc + Rej) is computed after the system has reached equilibrium, and the
following criterion to set up T0 is used: if θ < 0.8, the system is not warm enough
and the optimisation is not reliable, so we set TR = 1.5TR; if θ > 0.9, the system is
considered too warm and the optimisation may take more time than needed, so we
set TR = 0.9TR; if 0.8 ≥ θ ≥ 0.9, then T0 = TR.



19 Semi-blind Functional Source Separation Algorithm 529

19.3 FSS: Functional Constraints Expressing a Functional
Fingerprint of the Source of Interest

By the described method, FSS optimizes a wide variety of functional constraints,
each one typical of the source to be extracted (R quantity in Eq. 19.4).

19.3.1 Primary Sensory Hand Area

In the case of the primary sensory areas, we exploited the knowledge that around 20
ms the primary somatosensory cortex (S1) is recruited by a galvanic stimuli delivered
to a hand nerve at the wrist [3, 20]. Thus, FSS identifies the S1 region devoted to
the districts innervated by the median nerve maximising this 20 ms response (named
S1, see Fig. 19.2, top left).

The functional constraint RFSS1 is defined as [43, 44, 48]:

RFSS1
=

tk+α2tk∑
tk−α1tk

|EA(t)| −
11∑

6

|EA(t)| (19.8)

where EA stands for evoked activity, which is computed by averaging the signal
epochs of the source FSS1 triggered on the stimulus (t = 0); tk is the time point
with the maximum field potential on the maximal original MEG/EEG channels,
individually selected about k ms after the stimulus onset; α1tk (α2tk) = time point
corresponding to a signal amplitude of 50 % of the maximal value before (after) tk
(grey area in Fig. 19.2, top left); the baseline (no response) is computed in the time
interval from 6 to 11 ms.

19.3.2 Primary Motor Hand Area

To identify the source in the primary motor area devoted to the control of hand
movements (named M1, Fig. 19.2, bottom left), the coupling of cortical and muscular
rhythmic oscillations in the φ band was exploited (grey area in Fig. 19.2, bottom left).
In fact, it has been demonstrated that the component of the synchronized cortical
activity, coupled with synchronous rhythmic motor-unit firing (assessed by surface
EMG) is within this band. Cortico-muscular coherence relates to the patterns of
motor output and sensory input, both in healthy subjects [18] and in patients with
motor disorders [9, 10]. The corresponding functional constraint to obtain the M1
source was [43]:

RFSM1
=

ϕmax+α2ϕmax∑
ϕmax−α1ϕmax

Coh(ϕ) (19.9)
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Fig. 19.2 Time Constraints (Top) Representation of the quantities maximised by the functional
constraint to obtain the Functional Source (FS) in different primary brain areas. (Top Left) Primary
sensory area (S1). The grey areas indicate the time interval where the responsiveness to stimulation
(Evoked Activity, EA) is maximised (around 20 ms after contralateral median nerve stimuli, known
to be generated by S1); (Top Right) Primary visual area (V1) is maximised around 100 ms after the
visual stimuli (known to be generated by V1). Spectral constraints (Bottom). The grey area indicates
the frequency interval around 23 Hz where the cortico-muscular coherence is maximised, known to
be mainly generated in M1 (bottom left). (Bottom centre) Power Spectral Density (PSD) of the FS
in the Task\Rest condition. The grey area indicates the frequency interval from 20 to 70 Hz where
the spectral difference between Task (visual stimulation) and Rest (fixation point) is maximised
(obtaining V1). (Bottom right) The functional constraint exploited mu-rhythm (8–25 Hz) reactivity
that occurs in contralateral sensorimotor areas during uni-manual motor tasks (SM1)

where Coh (coherence function) is a function of frequency ϕ, obtained for each ϕ as
the amplitude of the cross-spectrum between the M1 source signal and the rectified
EMG, normalized by the root mean square of the power spectral densities of these
two signals; α1ϕmax (α2ϕmax) is the frequency point corresponding to a coherence
amplitude of 50 % of the maximal value between [13.5–33] Hz (called ϕmax) before
(after) ϕmax.

19.3.3 FS Evaluation for Primary Somatosensory and Motor Areas

To evaluate the goodness of functionally separated sources, three criteria were used:
functional source behaviour, functional source position and discrepancy.

19.3.3.1 Functional Source Behaviour

The identified sources displayed reactivity properties during movement and during
galvanic median nerve stimulation (see Fig. 19.3). In particular, FSS1 showed the
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Fig. 19.3 (Left) Position, direction and orientation of the ECD corresponding to S1 and M1, in the
axial, coronal and sagittal views of the MNI brain template. (Centre) Time course of the stimulus-
averaged FSS1 (solid green line, S1) and FSM1 (dashedblue line, M1) in the −30 to 100 ms time
period following the galvanic stimulation of the right hand. (Right) Cortico-muscular coherence
between each of the two sources and the rectified EMG in the frequency interval [0, 45] Hz during
isometric contraction of the right opponent thumb muscle. The dashed horizontal line indicates the
confidence limit

maximum of responsiveness to median nerve stimulation at around 20 ms (Fig. 19.3,
centre), while the source FSM1displayed higher response at around 30 ms than at
20 ms (Fig. 19.3, centre). FSM1 showed definitely higher cortico-muscular coherence
than FSS1 during handgrip (Fig. 19.3, right).

19.3.3.2 Functional Source Position

To investigate the spatial position of the FSS1 and FSM1extracted sources, they were
separately retro-projected to obtain their field distributions, by:

M EG_recFSy = aFSy FSy (19.10)

with FSy = FSS1 or FSM1 and aF Sy is the column vector of the matrix A Eq. 19.1.
Source localization was performed using an equivalent current dipole (ECD)

model, with a forward model consisting of four concentric conductive spheres (rou-
tine DIPFIT2 [36] of EEGLAB, available at http://www.sccn.ucsd.edu/eeglab [15]).
EEGLAB expresses ECD position in Talairach coordinates and projects them onto
the Montreal Neurological Institute (MNI) brain template (Fig. 19.3, left).

19.3.3.3 Discrepancy

To check for the level of residual response to the nerve stimulation after source
extraction we have introduced the discrepancy estimate, defined as the evoked activity
of the original data minus the data retro-projected as expressed by Eq. 19.10 (see
Fig. 19.4).

http://www.sccn.ucsd.edu/eeglab
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Fig. 19.4 In one representative subject. (Top) Superimposition of the channels averaged on median
nerve stimuli, in the time window [−10, 80 ms], t = 0 the stimulus arrival being at wrist (vertical
solid line). The time points corresponding to M20 component is indicated (vertical dashed lines).
(Top left) Original data. (Top centre) Retro-projected data with only the FSS1 source. (Top right)
Original data minus reconstructed data with only FSS1 source. The grey area indicates the time
interval where the functional constraints are calculated. Note that FSS1 well explain the generated
field at their respective latencies. (Bottom) Superimposition of all channels’ coherences with the
rectified EMG in the frequency window [0, 45] Hz. The confidence limit is indicated (0.015,
horizontal dashed line). (Bottom left) Original data. (Bottom centre) Retro-projected channels with
only FSM1 source. All channels display the same coherence with the EMG signal; this is because
all the channels obtained by retro-projecting only one FS display the same time evolution, unless a
multiplicative factor and the coherence are independent from the signals amplitude. (Bottom right)
Original MEG data minus reconstructed data with only FSM1 source. The grey area indicates the
frequency interval where the functional constraint is calculated

19.3.4 Primary Visual Areas

This section examines the ability of FSS to extract sources specifically related to the
Visual Evoked Potential (VEP/P100) and Gamma Band Activity (GBA) elicited by
a full reversing checkerboard. The relationship between the low frequency VEP and
the high frequency (π : 30–90 Hz) GBA, both of which can be generated by simple
visual stimuli such as checkerboards and gratings, remains unclear. In particular, two
different functional constraints were examined in this section to extract the visual
activity using FSS: temporal (see Fig. 19.2, top right) and spectral constraints (see
Fig. 19.2, bottom centre). The FSS temporal constraint maximised the activity around
the P100 of the VEP, and the spectral constraint maximised the difference in the GBA
between the rest and the task periods (see Fig. 19.2, bottom centre).
Temporal functional constraint The functional constraint RF S was defined as:

RF SP100 =
tk−α2tk∑
tk−α1tk

|EA(t)| −
0∑

t=−100

|EA(t)| (19.11)
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with the evoked activity, EA, computed by averaging signal epochs of the source
FSP100, triggered on the visual stimulation (t = 0); tk is the time point with the
maximum electric potential around 100 ms after the stimulus onset on the maximal
original EEG channel; α1tk(α2tk) is the time point corresponding to a signal am-
plitude of 50 % of the maximal value before (after) tk . The baseline was computed
in the time interval from −100 to 0 ms. The precise value of each latency tk was
chosen for each subject, corresponding to the maximum electric potential in the time
interval of interest (80–120 ms).
Spectral functional constraint To investigate the GBA, the following ad-hoc func-
tional constraint RFS was used:

RF Sπ =
∑

π PSDTask
F S(π ) − ∑

π PSDRest
F S(π )∑

π PSDRest
F S(π )

(19.12)

This constraint computes the difference in the PSD between Task (from 0 to 5 s of
each trial, t = 0 corresponding to the stimulus onset) and Rest (from −5 to 0 s
of each trial) periods in the π frequency band (30–90 Hz). This difference is then
normalised with respect to the GBA in the Rest period [4, 47].

19.3.5 FS Evaluation for Primary Visual Areas

The purpose of applying different functional constraints was threefold. Firstly, to
determine which technique was able to provide the best characterization of the GBA.
Secondly, to provide a degree of validation to the comparison of the GBA and the VEP.
Each of the techniques extracts a different part of the raw signal that is dependent
on the assumptions underlying the decomposition. In particular, the EEG_recF Sπ

sources were explicitly intended to identify activity in the gamma band, whilst the
EEG_RecFSP100 source employed a temporal constraint designed to maximise the
VEP. If similar conclusions regarding the relationship between the VEP and GBA
are drawn from examination of these different sources then some confidence can be
gained that they represent a realistic interpretation of the underlying data. Finally, the
use of FSS with multiple constraints allows the relationship between the constraints
to be studied directly. In this case, the temporal constraint centred on the P100 of the
VEP selectively identified the most probable generator of that peak. The question
could then be asked as to whether there is any evidence that this source also generates
GBA. Conversely, a completely orthogonal spectral constraint centred on the gamma
band was used to select the generator of the GBA, and the low frequency behaviour
of that source examined. Only if there is a genuine relationship between the VEP and
the GBA will the activity of the two sources be similar. These results provide clear
evidence that the neuronal pools generating the VEP and GBA have close spatial
relationships.
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Fig. 19.5 For the grand average, dipole localization and VEP are shown for each method
(EEG_recF S P100—first row and EEG_recF Sπ —second row). The envelope indicates plus and mi-
nus one standard deviation around the VEP mean. For the dipole fit, position and orientation of the
ECD are shown superimposed on the MNI brain template in axial, coronal and sagittal views. The
last row shows the overlap across the methods for the VEP and dipole source localization

To evaluate the goodness of the source extractions in the primary visual area,
source localization, evoked activity and time frequency analysis have been used. In
order to facilitate comparison, the analysed data were taken from a single occipital
electrode (POO1, the electrode nomenclature is according to the 10–5 electrode
system [35]) selected for the maximum voltage field.

19.3.5.1 Functional Source Position and Evoked Behaviour

Localization of FSS with both temporal and spectral constraints was very consistent.
The ECD demonstrated very precise spatial co-localization (Fig. 19.5). This level of
overlap supports the idea that the VEP and GBA are generated by spatially concordant
neuronal populations. In particular, the comparison of the waveforms and localization
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Fig. 19.6 Grand Average of ERSP for Raw Data (first row) and for each method EEG_recF S P100
(second row) and EEG_recF Sπ (third row). The points after 0 (from 0 to 5 s) correspond to the
time when a reversal checkerboard stimulus was presented on the screen (Stimulus—Task), and the
points before 0 (from −5 to 0 s) correspond to the time in which no reversal checkerboard stimulus
was present (No-Stimulus—Rest)

between the two extracted sources revealed a high degree of symmetry: maximising
the signal extraction for the low frequency VEP leads to a source containing strong
GBA. At the same time, maximising the GBA resulted in a source with a clear VEP.

19.3.5.2 Time-Frequency Dynamics

Time-frequency analysis was performed using a short-time Fourier analysis using
Fast Fourier Transforms (FFTs) with a moving windows size of 256 samples (500 ms)
wide as implemented in EEGLAB [15]. Event-related spectral perturbation (ERSP),
a 2-D (frequency-by-latency) image of mean change in spectral power (in dB) from
baseline [27, Concept and Terms] was computed for the POO1 electrode, and the
results were compared among the methods. The time-frequency plot was thresholded
at a bootstrap significance level of p = 0.01.

For the ERSP, the gamma activity after the stimulus presentation was more evident
in the FSS methods than in the raw data (Fig. 19.6). As expected, since it is optimised
to do so, the GBA was most robust in the EEG_recF Sπ data. To be noted that the
gamma activity after the stimulus presentation was more evident in the semi-blind
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methods than in the raw data (Fig. 19.6). As expected, since it is optimised to do so,
the GBA was most robust in the EEG_recF Sπ .

19.3.6 Motor Intention Network

Human beings are able to interact with the environment through several modalities,
which involves neural signals, muscle activities and cutaneous/proprioceptive sen-
sory organs. At the amputation site all afferent and efferent nerves, originally devoted
to the lost segment, are interrupted. The consequent deprivation of peripheral inputs
and actuators results in retrograde changes that affect not only the peripheral nervous
system but also central structures including the motor and somatosensory cortices.
In fact, following amputation the deafferented cortical areas become responsive to
inputs from the parts of the body that are represented adjacent in the Penfield ho-
munculus [22, 32, 41]. It has recently been shown that after amputation the ability
to execute a movement with the affected limb is maintained by the amputees’ brain
[49] despite the absence of a peripheral effector. Similarly to healthy controls, motor
imagination and execution differentially activate cerebral areas in amputees with a
significantly greater activation in primary motor and sensory cortices during execu-
tion, while imagination is associated with greater parietal and occipital lobe activity
[50]. Even though the nervous system is altered by the amputation, residual neural
patterns appropriate for the lost limb may still be activated when suitably stimulated
[31, 51]. Those pathways are therefore a possible target of central or peripheral neural
implants to restore a direct and relatively ‘natural’ channel for data exchanging.

In the present section, we proposed if and how a direct connection between the
brain and a prosthetic hand via a neural implant modifies bi-hemispheric EEG ac-
tivity in primary sensorimotor cortical areas controlling movements of the lost limb.
In this particular case, identifying specific neuronal pools on the bases of their func-
tional properties instead of and independently from their spatial positions became
crucial. We also had to take into account possible cerebral plastic changes altering
the location of brain functions with respect to standard anatomical landmarks typical
of healthy people.

To achieve this goal, the FSS functional constraint exploited the mu-rhythm (8–
25 Hz) reactivity [42] that occurs in contralateral sensorimotor areas during uni-
manual motor tasks, by requiring maximal variation of spectral power in β [8–13 Hz]
and φ [14–25 Hz] bands between the period of prosthesis control and rest (Fig. 19.2,
bottom right). The ad-hoc functional constraint RFS was built as follows:

RF Smu =
∑

β+φ PSDTask
F S(β+φ) − ∑

β+φ PSDRest
F S(β+φ)∑

β+φ PSDRest
F S(β+φ)

(19.13)
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with the Power Spectrum Density (PSD) during Task estimated in the 5 s windows of
each movement trial and at Rest in the 5 s windows preceding each trial. The β + φ

frequency band included 8 to 25 Hz [16].

19.3.7 FS Evaluation for the Motor Intention Network

In this case anatomical position and functional behaviour were used to evaluate the
goodness of the functional network extracted.

19.3.7.1 Functional Source Position

In order to investigate cortical recruitment occurring during the intention of mov-
ing of the (intact) right hand and (phantom–prosthetic) left hand before (PRE) and
after (POST) training with the implanted neural electrodes, the FSs identified by
FSS were submitted to a source localization algorithm (sLORETA [38]) imple-
mented in CURRY 6 (Neuroscan, Hamburg, Germany, http://www.neuroscan.com/).
sLORETA was performed for each source using a regular grid with a spacing of 3 mm
throughout the brain region and a four-shell spherical head model. The results were
projected onto the brain template of the Montreal Neurological Institute (MNI) within
CURRY.

Motor intention of the healthy right hand: Right hand movement intention
recruited well-segregated contra-lateral left sensorimotor areas (Fig. 19.7—first row).
In particular, source localization shows a clear activation of the primary sensory and
motor areas (left Postcentral Gyrus—BA2, BA3 and Precentral Gyrus—BA4).

Motor intention of the left cybernetic hand prosthesis: Delivery of motor com-
mands to the phantom of the left amputated limb before the Longitudinal Intra-
Fascicular Electrodes (LIFEs) implant [59] recruited areas in the ipsilateral primary
sensory and motor areas (left Postcentral Gyrus—BA2, BA3 and Precentral Gyrus—
BA4, Fig. 19.7—second row top) and bilateral premotor and supplementary motor
cortex (left and right BA6, Fig. 19.7—second row bottom). At this stage no con-
tralateral primary motor cortex activity was found. The cerebral recruitment during
the intent to move the phantom of the left amputated limb changed markedly after
the four weeks of prosthesis motor control training with implanted LIFEs. Corti-
cal recruitment became almost symmetrical with respect to right hand movements,
with selective involvement of the contralateral sensorimotor cortex (right Postcentral
Gyrus— BA2, BA3 and Precentral Gyrus—BA4, Fig. 19.7—third row).

19.3.7.2 Functional Source Behaviour

The cortical activation of the areas devoted to intentional control were evaluated by
time-frequency spectral modulations during the motor task (intention of movement)

http://www.neuroscan.com/
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Fig. 19.7 Left Time frequency representation of each FS activity. The colour code represents
significant changes in average power (across epochs) as a function of time and frequency. Right
solutions of the sLORETA model for the FSs related to right hand control (Top), with the missing
limb phantom PRE (Middle) and POST (Bottom) shown superimposed on the MNI brain template

and compared to the resting state baseline (resting with open eyes). Twenty single
trials from the source were chosen in the time interval of −5 to 5 s, where time
0 is the intention movement go signal. They were convolved by a Morlet wavelet
(setting the constant equal to 7, which defines the compromise between time and
frequency resolution), and the squared absolute values of the convolution over tri-
als were averaged. For each frequency, the time course of power modulation was
represented as the percentage of the mean of the baseline period (−5 to 0 s). More-
over, the cortical recruitments and the time frequency behaviours were compared
before and after neural implant. Significant power changes from Rest to Task periods
were assessed using a resampling bootstrap technique thresholded at P = 0.05, while
non-significant changes were set to 0. The above procedure was applied to the PRE
(pre-implantation period), POST (post-implantation period) and on the right hand
intention movement.
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Motor intention of the healthy right hand: The analysis of time frequency
behaviour exhibited a clear response that was stronger in the first 2 s and covered the
whole mu-band including both β and φ frequencies, becoming concentrated in the
β band for the 2–5 s period.

Motor intention of the left cybernetic hand prosthesis: The analysis of time fre-
quency behaviour evidenced activity in β and φ bands lasting the entire task duration
with no time-specificity. As in the case with anatomical position, the functional be-
haviour drastically changed after the 4-week training period. The time frequency be-
haviour regained evolving properties similar to those for right hand control: stronger
in the first 2 s involving the entire β and φ frequencies, while weaker and more
concentrated in the β band in the 2–5 s period (Fig. 19.7—third row right).

19.4 FSS and Simultaneous EEG-fMRI Recordings

The simultaneous measurement of EEG and functional magnetic resonance imag-
ing (fMRI) is an attractive, non-invasive technique for the investigation of human
brain function, with the potential to offer a higher spatiotemporal resolution than
either method alone. It is increasingly widely used as a tool in cognitive and sensory
neuroscience (e.g. [7, 12, 17, 37, 46]) and can also shed light on the properties of
the underlying neurovascular coupling which, particularly at the macroscopic level
where scalp EEG and whole brain fMRI are measured, are not fully understood [61].
However, if the potential strengths of EEG-fMRI are to be fully realized, and new
methods for data integration developed and exploited, it is vital that good quality
EEG and fMRI data are recovered from recorded signals.

In particular, EEG data acquired in the MRI scanner are strongly contaminated
by artefacts of biological and non-biological origin that may prevent the correct
determination of the characteristics of the brain signals that are of primary interest.

There are several artefacts that contaminate the measurement of neurophysiolog-
ical EEG and that need to be removed from the recordings before further analysis.
Specific to the MRI environment are gradient artefacts (GA) and ballistocardiogram
artefacts (BCG), while ocular artefacts (OA) and electrode artefacts (EA) are present
in the EEG acquired inside and outside of the scanner. The most widely used tech-
niques to reduce the effects of GA and BCG are variations of template averaging
approaches [1, 2], with ICA often used as an alternative or secondary step [13,
29]. However these massive preprocessing steps are often not sufficient, particularly
when the focus is on using ST variability to integrate the two data sets. Recently,
FSS has been demonstrated to reliably improve single-trial EEG data recorded during
simultaneous EEG-fMRI [46].

In this particular case, a reversing checkerboard stimulus was used to generate
VEPs in healthy control subjects and an ad-hoc functional constraint was maximised
around the principal peak (P100) of the VEP (see Eq. 19.11 and Fig. 19.2, top right).
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Fig. 19.8 Time course of the stimulus-averaged VEP in the [−100 1000] ms time period following
low (top row) and high (bottom row) contrast stimulation. Average VEPs are shown for each subject
(coloured lines) along with the grand average across subjects (thick black line). The first vertical
dashed line indicates stimulus onset, while the second indicates the reversal of the checkerboard

19.4.1 FS Evaluation During Simultaneous EEG-fMRI
Recordings

To evaluate the quality of the data following FSS approach, two criteria were used:
the functional behaviour and correlation between electrophysiological and hemody-
namic response functions (HRFs). To further evaluate the performance of FSS, these
metrics were also applied to the raw data (i.e., only GA and BCG were removed
using standard techniques) and to that recorded before the MRI scanning session. In
order to facilitate comparison, the analysed data were taken from a single electrode
(right occipital electrode—channel O2) that showed the highest amplitude P100 in
the average VEP.

19.4.1.1 Functional Source Behaviour

The VEPs for high contrast (HC—100 % black and white contrast) and low contrast
(LC—25 % grey and white contrast) stimuli were calculated for all subjects, and the
grand average across subjects was calculated. Comparisons were made among the
raw data before and after scanning, and the data in the scanner was pre-processed by
ICA and FSS.

For each individual subject Fig. 19.8 shows the average VEPs (coloured lines) and
the grand average over all subjects (thick black). The data for the individual subjects
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Table 19.1 Signal-to-noise ratio comparisons

Low contrast High contrast
Raw Out Raw In FSS In Raw Out Raw In FSS In

S1 31.7 23.3 47.5 51.6 22.0 62.1
S2 16.4 19.5 33.0 39.0 7.9 58.2
S3 21.4 4.2 18.4 28.9 30.1 38.1
S4 39.6 1.0 20.7 31.1 11.2 46.8
S5 12.2 1.7 16.1 38.5 17.0 50.1
S6 40.4 14.2 17.9 50.6 7.4 59.6
S7 17.7 8.0 30.9 38.2 34.6 44.1
S8 27.9 23.8 53.4 43.7 19.9 50.6
Mean 25.9 12.0 29.7 40.2 18.8 51.2
SD 10.7 9.5 14.3 8.2 10.0 8.3

The signal-to-noise ratio of the average VEP was calculated for each subject and for FSS method
and raw data. Mean and standard deviation (SD) over subjects are also given

show a considerable amount of variability, which is most evident in the raw data
recorded inside the scanner. Comparing the raw data acquired inside and outside of
the MRI scanner shows that there is much more variability when recording within
the MRI environment. Given that these are the same subjects undergoing the same
stimulation paradigm, it is evident that the primary cause of this increased variability
is the reduction in EEG data quality caused by the various MRI artefacts. This
inter-subject variability is improved with ICA, but the most obvious improvement is
between ICA and FSS, with FSS showing similar, or less, variability, than the data
recorded outside of the scanner. It is also worth noting that the grand average VEPs
are very similar for the different methods, indicating that the grand average VEP is
not a good measure of the underlying data quality.

The signal-to-noise ratio (SNR) of the average VEPs was calculated, with the noise
level calculated between −100 and 0 ms and the signals between 1 and 1000 ms (Ta-
ble 19.1). The SNR in Table 19.1 is higher for FSS than for raw data and comparable
with the data acquired outside the scanner.

19.4.1.2 Correlation Between Electrophysiological
and Hemodynamic Responses

In order to address the issue of whether improving EEG data quality affects the
correlation of the EEG and fMRI data (Fig. 19.9), haemodynamic response functions
(HRF) were extracted from spherical volumes of interest (VOI, radius 5 mm) centred
on the maximally responsive voxel in the fMRI statistical map.

The averaged HRFs were compared with the data extracted using the different
EEG preprocessing techniques. Correlation analysis was performed between the
normalized area of the VEP over the same time interval (calculated as the sum and
normalized with respect to the window length) and the normalized area of the HRF
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Fig. 19.9 Correlation between VEPs and HRFs across Subjects. Pearson correlation (two tailed)
between EEG and fMRI data was calculated across subjects for the areas of the evoked responses.
The data was centred and scaled to facilitate the comparison across the methods

(also centred on the maximum peak and normalized with respect to the window
length). Clearly, the correlation analysis demonstrates a much improved correlation
between the area of the EEG and fMRI evoked responses when using the EEG data
processed with FSS.

19.5 FSS and Single Trial Behaviour

The advantages of source separation techniques are most evident when dealing with
trial-by-trial variations of electrophysiological signals [27, 28, 46, 47], or with other
low amplitude and noise aspects of signals reaching the extra-cranial sensors such as
oscillations in the π band (30–90 Hz [4, 19, 34]). In this section, we show how FSS
enables the investigation of the single trial (ST) behaviour of the source of interest
in two exemplificative cases, analysing GBA in V1 and simultaneous EEG-fMRI.

19.5.1 Single Trial γ Band Activity (GBA) Investigated by FSS

GBA is hardly detectable from outside the scalp. We applied an FSS method to
dense array EEG data recorded during full checkerboard stimulation, comparatively
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Fig. 19.10 ERPImage of the single trial P100 ordered by the area under the P100 curve (i.e. ∼80 ms
and ∼120 ms) x-axis indicate the number of the trials and y-axis indicate the time in milliseconds

investigating neuronal pools generating the main peak around 100 ms of the VEP
(temporal constraint VEP100, Fig. 19.2, top right) and the GBA (spectral constraint,
Fig. 19.2, bottom middle). Our objective was to determine if this neural activity is
generated by the same neuronal pools.

A single trial (ST see ERPImage [27], Concept and Terms) analysis compared
VEP100 and GBA in response to checkerboard stimulation in time and in dif-
ferent frequency bands. The single trails of VEP100 and GBA were ordered by
the area under the P100 peak (between ∼80 and ∼120 ms). Furthermore, the
event-related spectral perturbation (ERSP) for each trial was calculated and aver-
aged within frequency ranges of 8–13 Hz (β band), 14–30 Hz (φ band) and 31–
90 Hz (π band) with baseline correction using the interval −100 to 0 ms. The
trial ordering based on the P100 area was also then applied to the ERSP data
in order to investigate, for example, whether trials with a large P100 also had
a large ERSP in each of the specific frequency bands: Figure 19.10 shows that
this is indeed the case. The consistency of the behaviours of VEP100 and GBA,
in terms of single trial responsiveness and time-frequency power changes, docu-
mented that the same neuronal pools generate the evoked activity and gamma band
modulations.

19.5.2 FSS Improves the Quality of Single Trial Analysis
in Simultaneous EEG-fMRI Recordings

While it is at least conceptually clear that EEG-fMRI can improve spatiotemporal
resolution compared to each method alone, it is less obvious how the data should be
combined in order to achieve this goal. Often, data integration relies upon the use of
some single trial features of the EEG data, either properties of evoked potentials or
spectral power variations [7, 12, 13, 17, 25], which are then used to form regressors
for a standard general linear model analysis of the fMRI data. The underlying neu-
rophysiology and biophysics relating the macroscopic measures of EEG and fMRI
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Fig. 19.11 The normalized cumulative signal-to-noise ratio (ncSNR) is shown for both low (left)
and high (right) contrast, averaged over all subjects. The ncSNR is shown for raw data recorded
outside of the scanner (dotted black line), raw data recorded inside of the scanner (dashed green
line), data recorded inside the scanner after preprocessing by ICA (dash-dot green line) and after
FSS (solid red line)

are not currently sufficiently developed to allow a principled identification of the
features which best link the two. This type of approach is further complicated by the
reduction in data quality caused by simultaneous recording especially in the single
trial case. The development of additional methods to improve the quality of EEG
data acquired in the MRI scanner is therefore an ongoing area of research. Towards
this research, in this section we propose the FSS method as a possible candidate to
improve the single trial quality of the EEG data recorded in the MRI environment.

To evaluate the ST performance among the methods, normalized cumulative
signal-to-noise ratio (ncSNR), localization and single trial variability were calculated.

19.5.2.1 Normalized Cumulative Signal-to-Noise Ratio

The ncSNR for each trial was calculated, as in the case of the average VEPs
(Sect. 19.4.1.2); Fig. 19.11 shows the ncSNR. This measure summarizes the quality
of the data at the level of the individual trials and is of primary importance for the
application to ST EEG-fMRI. Examination of Fig. 19.11 leads to a similar conclu-
sion to that based on the average VEP (Table 19.1); i.e., the FSS data are of similar
quality to that recorded outside of the scanner and considerably better than the ICA
data, while the ICA data are an improvement on the raw data.

19.5.2.2 Localization and Single Trial Variability

In this section we show the comparison of single trial (ERPImage [27], Concept and
Terms) plots and source localization of average VEPs (low Contrast, Fig. 19.12 and
High Contrast, Fig. 19.13). The source localization of the average VEPs appears to
be relatively robust, with similar localization for different preprocessing methods.
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Fig. 19.12 (Low Contrast). sLORETA localization and ERPImage plots are shown for the different
data sets and preprocessing strategies. sLORETA results are shown superimposed on the MNI brain
template

However, the level of single trial variability as assessed by the ERPImage plots
is clearly very dependent on the data preprocessing (Figs. 19.12 and 19.13, last
columns). In both cases, the raw data (inside the scanner) are clearly very noisy,
with little obvious P100 in the ST data. ICA does not improve this very much but,
consistent with the other measurements that have been shown, the difference between
ICA and FSS is obvious. This is even clearer for the low contrast data (Fig. 19.12).
The FSS ST plot, however, clearly shows a consistent P100 across trials. The low
contrast data also demonstrates that improving the ST data quality can affect the
localization of the average VEP, since the localization of the FSS data is must more
realistic than that of the raw or ICA data.
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Fig. 19.13 (High Contrast). As in Fig. 19.12

19.6 Discussion and Conclusion

19.6.1 FSS Strengths

The main difference between FSS and other source extraction methods, ranging from
inverse problem solving algorithms to spatial filters like beam-forming [6], is that FSS
requires no information about the physical relationship between cerebral source gen-
erators and their field distributions. This means that FSs are not identified exploiting
their positions and intensities with respect to the recording sensors/channels. Once
separated, FSs provide the source activities in time and the spatial distribution of the
electric field they generate, from which appropriate modelling is used to solve the
inverse problem to identify their spatial positions. The solution of the inverse prob-
lem theoretically provides in one go both the source position and its time evolution.
Unfortunately, on one side it is ill-posed and requires adjunctive information to be
selectively added one at a time. On the other side, the solution is based on the rela-
tionship between the current distribution and that of the generated field. The spatial
distribution of magnetic or electric filed generated by a neuronal current depends
on the physical properties of the extra-cerebral tissues, namely shape and thickness
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of the head and of all structures including scalp, skull, meninges, cerebral fluid and
specific brain regions. All of them can be nowadays assessed anatomically by high-
resolution MRIs, but this information can be integrated with MEG/EEG investigation
via integration procedures which are theoretically simple but affected by relevant er-
ror in technological practical settings. Furthermore, all these tissues have specific
conductance and impedances which are not known and change individually both in
physiological and pathological conditions. Finally, the current distribution itself can
be modelled only posing schematization of real neuronal/glia features generating
electric inhomogeneity changing in time. As a consequence, the inverse problem so-
lution is based on less accurate information that is provided by electrophysiological
techniques, while FSS algorithms solve the source identification problem using the
most accurate information, such as the statistical temporal frequency properties of
the signal. In many cases, scientific interest is in the morphological and temporal
characteristics of the signal and its modulation in the different experimental condi-
tions. Whenever the investigation requires to focus on spatial location, FSS allows
the use of localization algorithms having isolated the field distribution generated
solely by the sources of interest.

Even if a source is extracted by exploiting a functional constraint related to a
specific time portion of the experiment, the estimated signal could be studied along
the entire length of the session.

19.6.1.1 FSS Limitations

As the method is developed to exploit a well-known a priori ‘functional’ property
to identify a pre-defined source of interest, it cannot be used the extract unexpected
or unknown brain activities. A second limit is that, the quantity maximised by FSS
(i.e., the functional constraint) needs the corresponding experimental paradigm. In
other words, an ‘ad-hoc’ task is required in the recording session to ‘activate’ the
property exploited in the cost function: in examples, FSS needs to have stimulated
the median nerve to identify primary sensory hand areas, it needs to have executed
an isometric contraction to identify primary motor areas, it needs have presented a
reverse pattern or another visual stimuli to identify primary visual areas. This has
the inherent implication of lengthening the experimental session. Moreover, FSS is
not effective in the absence of a ‘distinct’ activation property of the area of interest,
as it is often the case for associative areas involved in complex cognitive functions.

19.6.2 Conclusive Considerations

FSS methods have access to interesting properties of brain organization and allow
the separation of distant regions (about 5–15 mm, which is the typical resolution
of non-invasive EEG/MEG techniques) through ecological experimental paradigms.
Once identified, the FSS can be localised and studied in all experimental situations
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of interest as for all sources extracted by BSS. In fact, FSS introduces a new measure
of within-area intra-cortical connectivity in S1, displaying the properties of a new
dexterity code to complement the typical ‘magnification principle’ of cortical orga-
nization [55, 57]. In this study, we provided a measurable index of the efficiency of
sensorimotor feedback while controlling a simple hand movement [58], which can be
potentiated through attention even during a passive movement [40] and is developed
through emphatic sharing [8]. It is also sensitive to the dynamic alterations of brain
functional organization in dystonic people [30]. We believe that the proposed tool is
particularly efficient in investigating the inter-hemispheric balances between func-
tionally homologous areas [11, 39], even in pathological conditions where cortical
plasticity phenomena can occur [53, 56].

Altogether, these applications emphasise that FSS derives its power from the
identification standing on the source behaviour. In fact, FSS provides a reliable tool
to: 1. Discriminate between very closely located cerebral regions, since neuronal
structures within the same cortical patch can display definitely different behaviours;
2. Assess hemispheric homologous areas, in which balances are crucial features of
brain network functionality [14], in terms of ‘functional homology’ instead of ‘spatial
homology’, two concepts which typically coincide in physiological conditions but
can be un-coupled when disease/damage related plasticity occurs. Furthermore, FSS
can assess plastic changes linked with motor improvements through an experimental
procedure fully independent of patient compliance [16, 39].
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