
Chapter 4
Systems Biology: Developments
and Applications

Rahul Kumar, Petri-Jaan Lahtvee and Jens Nielsen

General systems theory provides the conceptual framework for systems-level
analysis in science and underlines the fact that general systems principles are
common in all fields of science (Bertalanffy 1950). Systems theory vision for
biological analysis began in the 1960s but took off only after the technological
breakthroughs in high-throughput analysis of living cells in the 1990s (Mesarovic
1968; Kitano 2002). The developments in molecular biology, high-throughput
technologies, and computation precede the acceptance of systems biology as a new
scientific discipline (Box 4.1), where the use of mathematical models is closely
integrated with experimental research. Thus, systems biology relies on systems
theory concepts and is applicable to both fundamental studies of cellular biology and
applied research such as metabolic engineering (Fig. 4.1) (Nielsen and Olsson
2002).

Availability of the whole genome sequence of the yeast Saccharomyces cerevi-
siae followed by the development of DNA microarrays provided the opportunity to
observe and investigate the environmental perturbations and subsequent phenotypic
changes at the systems level (Goffeau et al. 1996; Lashkari et al. 1997). However, the
ease of high throughput data generation clearly illustrated the biological complexity
(Weng 1999; Csete and Doyle 2002; DeRisi 1997). The genome scale reconstruction
of the S. cerevisiae metabolic network was a first attempt to provide a framework for
data integration, in silico assessment of the metabolic capabilities, and analysis of
phenotypic functions (Förster et al. 2003; Famili et al. 2003; Herrgård et al. 2008).
High-throughput technology developments for metabolome, fluxome, and proteome
quantification further aided in the comprehensive understanding at the systems level
through global integration of such information into genome scale models (Kell et al.
2005; Karr et al. 2012; Picotti et al. 2013; Sauer 2006; Osterlund et al. 2013).
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Understanding of such basic mechanisms as sensing of the environment; transport of
the nutrients; metabolism of carbon sources to provide precursor metabolites and
their conversion into cellular building blocks and macromolecular components;
product formation to generate Gibbs free energy and biomass is of the critical
importance for the efficient utilization of S. cerevisiae in the biotechnological
applications as well as for the elucidation of the mechanistic details of the homol-
ogous eukaryotic processes, which may provide the targets for therapeutic inter-
ventions. This chapter focuses on the current understanding of the carbon
metabolism in S. cerevisiae from the systems-level perspective in particular glucose
and galactose, and highlights the need for an integrative analysis approach for elu-
cidating the underlying molecular mechanisms.

Box 4.1 Key Technological Developments

Timeline Milestones

1953 Structure of DNA (Watson and Crick, Cold Spring Harb Symp Quant Biol, 1953)
1970s Recombinant technologies 2D-PAGE for protein measurements (Wein, Anal

Biochem, 1969) Enzyme-linked immunosorbent assay (Engvall and Perlmann,
Immunochem, 1971)

1980s DNA sequencing (Sanger et al., Proc Natl Acad Sci, 1977)
1985–1989 Development of soft ionizaion techniques for MS analysis (MALDI and ESI; Karas,

Anal Chem, 1985; Fenn, Science, 1989)
1986 First FBA model (Fell and Small, Biochem J, 1986)
1987 PCR (Mullis and Faloona, Meth. Enzymol. 1987)
1990 BLAST- Basic Local Alignment Search Tool (Altschul et al., J. Mol. Biol. 1990)
1995 First sequenced genome (Fleischmann, Science, 1995) Metabolic flux analysis (van

Gulik and Heijnen, Biotechnol Bioeng, 1995) KEGG—Kyoto Encyclopedia of
Genes and Genomes (Kanehisa, Trends Genet, 1997)

1996 Pyrosequencing (Ronaghi et al., Anal Biochem, 1996)
1997 First complete genome DNA microarray (Lashkari et al., Proc Natl Acad Sci, 1997)
1998 RNA interference technology (Fire et al., Letters to Nature, 1998)
2001 SBML—Systems Biology Markup Language (SBML) (Hucka et al., 2001) First

Genome Scale Model (GSM) (Edwards et al., Nat Biotechnol, 2001) Synthetic
Genetic Array (SGA) analysis (Tong et al., Science, 2001)

2002 Launch of UCSC Genome Browser
2004 METLIN database (Smith et al., Ther Drug Monit, 2005)
2005 Second generation sequencing (Shendure et al., Science, 2005; Margulies et al.,

Nature, 2005)
2006 Orbitrap mass spectrometer (Makarov et al., Anal Chem, 2006)
2007 Quantitative shotgun proteomics
2008 RNA-seq (Ryan et al., Bio Techniques, 2008)
2009 Third generation sequencing (SMRT; Eid et al., Science, 2009) Ribosome profiling

(Ingolia et al., Science, 2009)
2010 Global scale analysis of posttranslational modifications (Bodenmiller et al., Science

Signaling, 2010)
2013 Complete map of yeast proteome (Picotti et al., Nature, 2013)
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4.1 Yeast Carbon Metabolism: Progress

Evolution has increased the complexity in biological systems as simple life forms
have evolved into more advanced organisms. However, the common guiding
principles of substrate consumption, the energy production, and biomass formation
in the central carbon metabolism are highly conserved. The central carbon

Fig. 4.1 Toward holistic understanding of biological systems: a An overview of the scientific
progress from the ‘‘black box’’ model to the mechanistic details at molecular level that may help to
explain phenotypes. Beginning from the determination of the DNA structure, key innovations (see
Box 4.1) facilitate the development of new scientific disciplines such as molecular biology,
metabolic engineering, systems biology, and synthetic biology. These disciplines allow to
understand the dynamic interactions of the genetic material with the physical and chemical
environment which potentially determines the unique phenotype of each organism and this
understanding can be used for biotechnological or pharmaceutical applications. b Timeline of the
developments of new scientific fields highlights the inherent interdisciplinary nature of the scientific
progress. Chart is based on time-dependent PubMed search of key words as of July 25, 2013
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metabolism provides all precursor metabolites required for biosynthesis of mac-
romolecules such as proteins, DNA, RNA, lipids, and carbohydrates as well as it
provides the Gibbs free energy and redox power required for cell growth. Despite
the high degree of conservation in these pathways, their regulation varies widely
among different organisms. Central carbon metabolism consists of sequential
enzymatic reactions arranged to derive energy from the carbon sources such as
sugars, and has possibly evolved based on the optimality principle where metab-
olism represents thermodynamically the most favorable walk between the carbon
sources and precursor metabolites (Noor et al. 2010; Fell 2010; Hatzimanikatis
et al. 2005). The energetic efficiency of the central carbon metabolism is likely to
be one of the reasons for its conservation, which allows the breakdown of car-
bohydrate monomers to be sensed, transported, and metabolized through various
pathways. Although, individual pathways or systems are often investigated with
exhausting details, obtaining a holistic view of metabolism and understanding
global regulatory principles are still in infancy. Mechanistic approaches to
understand the metabolism as a series of reactions precede the current approach of
systems-level analysis where metabolism consists of complex and functional
biological networks (Mesarovic 1968; Wolkenhauer 2001). Sugars are the favored
carbon sources for S. cerevisiae where the metabolism has preferentially evolved
for glucose consumption leading to the repressed utilization of other carbon
sources in its presence (Carlson 1999). In glucose rich environment, energy for the
production of precursor metabolites becomes available via substrate level phos-
phorylation in glycolysis where ethanol is one of the main products. In the pres-
ence of oxygen, S. cerevisiae consumes ethanol after the depletion of glucose in
the environment; and this phenomenon is known as the diauxic shift which is
essentially a shift from fermentative to respiratory metabolism. However, in glu-
cose-limited aerobic continuous cultures (generally referred to as chemostat cul-
tures), it is possible to keep the glucose concentration sufficiently low to prevent
glucose repression and hereby enable respiro-fermentative metabolism of glucose.
The first microarray experiment in S. cerevisiae studied the diauxic shift to obtain
temporal changes in the gene expression as metabolism switched from fermen-
tation to respiration (DeRisi 1997). This was followed by the investigation of the
transcriptional switch in response to the reduction or loss of the respiratory
function (Liu and Butow 1999).

S. cerevisiae has evolved to have glucose and fructose as its preferred carbon
sources, but it can consume various other sugars such as sucrose, mannose, and
galactose. Availability of the genome sequence and microarray provides the
opportunity to explore the question of adaptation in a new environment by culti-
vating it under selective pressure and analyzing the transcriptional and genome-
wide changes that may occur as subsequent generations get accustomed to the new
environment through the process of adaptive evolution. Such studies have led to
the identification that S. cerevisiae responds to environmental shifts including
exposure to less-preferred carbon sources with a remarkable variety of responses,
including transcriptional regulation of specific mRNAs (Ferea et al. 1999; Gasch
et al. 2000; Kuhn et al. 2001; Hong et al. 2011). Integrative analysis of the genome
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sequence, the metabolic network, and the transcriptional response has revealed the
underlying transcriptional regulatory networks which map the regulator-gene
interactions among the potential pathways that S. cerevisiae can use to regulate the
global gene expression much in the same fashion as maps of metabolic networks
describe the potential pathways that may be used by a cell to accomplish metabolic
processes (Lee et al. 2002; Ihmels et al. 2004). The yeast S. cerevisiae senses
glucose through multiple signal transduction pathways. Two of these pathways are
connected in a regulatory network that serves to integrate the different glucose
signals operating in these pathways. First, the Snf1 kinase dependent Mig1 path-
way enforced glucose repression and, second, the Rgt1 pathway that involves
induction of the hexose transporter genes, HXT, by cell surface sensors affecting
the Rgt1 transcription factor (Kaniak et al. 2004). Flux analysis indicates that the
respiratory metabolism is dependent on the tricarboxylic acid cycle (TCA) activity
which in S. cerevisiae is a function of the environmentally determined specific
growth rate and glucose uptake rates (Blank and Sauer 2004). Flux analysis
combined with transcriptome analysis of aerobically grown glucose-limited steady
state chemostat cultures indicates that the transcripts involved in the glyoxylate
cycle and gluconeogenesis showed a good correlation with in vivo fluxes, while no
such correlation exists for other important pathways such as pentose-phosphate
pathway, TCA cycle, and, specially, glycolysis. In this cultivation condition, fluxes
are controlled to a large extent via posttranscriptional mechanisms which highlight
the limitations of solely using transcriptome analysis in order to identify global
regulation of the central carbon metabolism (Daran-Lapujade et al. 2004; Feder
and Walser 2005).

Despite this limitation much has, however, been learned from transcriptome
analysis. In particular, the homeostatic adjustment and metabolic remodeling that
occurs in glucose-limited chemostat cultures despite the theoretical possibility of a
switch to fully aerobic metabolism of glucose; homeostatic mechanisms enforce
metabolic adjustment as if fermentation of the glucose is the preferred option until
the glucose is entirely consumed (Brauer et al. 2005). Application of genome scale
models and metabolism driven treatment of the transcriptome data have assisted
systems-level analysis and revealed a close interaction and crosstalk between the
two pathways responsible for glucose repression (Westergaard et al. 2007; Förster
et al. 2003; Patil and Nielsen 2005). These studies also highlight the importance of
not only transcriptome analysis, but the need for quantitative information about the
proteome and metabolome to understand the carbon metabolism in S. cerevisiae
(Kolkman et al. 2006; Kresnowati et al. 2006). Large-scale multi-layered data
necessitate reconstruction of genome scale models and the integrated analysis of
regulatory and metabolic networks to reveal novel regulatory mechanism and
further improvements to the model through experimental validation (Herrgård et al.
2006; Hu et al. 2007). Adopting this integrated approach reconstruction of the yeast
Snf1 kinase regulatory network revealed its role as a global energy regulator in
yeast (Usaite et al. 2009). In another approach conditional mutation in combination
with transcriptome analysis revealed that glucose regulates transcription in yeast
through a network of signaling pathways and growth is decided by both sensing and
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import of glucose (Zaman et al. 2009; Youk and van Oudenaarden 2009).
Systematic quantification of the metabolic fluxes in 119 transcription factor dele-
tion mutants in S. cerevisiae revealed that while most knockout deletions did not
affect fluxes, a total of 23 transcription factors mediate 42 condition-dependent
interactions that control almost exclusively the cellular decision between respira-
tion and fermentation. This approach clearly demonstrates the importance of
identifying and quantifying the role of regulatory effectors in altering cellular
functions, while also emphasizing that the flux distribution in the central carbon
metabolism is tightly controlled and therefore difficult to perturb. This is explained
by the fact that perturbations in individual enzyme capacity leading to alteration of
one network constituent can be efficiently buffered by converse alteration by other
network constituents, a system that has evolved to ensure metabolic homeostasis at
varying environmental conditions and in response to mutations appearing in central
carbon metabolism enzymes (Fendt et al. 2010a, b). Recent advances in proteomics
have revealed that the yeast central carbon metabolism is to a large extent regulated
by enzyme phosphorylation (Oliveira et al. 2012), but the full quantitative effect of
this type of regulation has still not been studied.

In conclusion, systems-level analysis facilitates the progress on understanding
such fundamental aspects as diauxic shift by revealing that multiple events are
temporally organized to affect transition from fermentation to respiration and
changes in metabolism in response to changes in glucose concentration (Zampar
et al. 2013; Geistlinger et al. 2013). In the following two sections, we will focus on
specific aspects of glucose and galactose metabolism where combined top-down
and bottom-up experimental systems biology approaches provide insights for
better understanding of the regulatory mechanisms (Fig. 4.2).

4.2 Molecular Mechanisms in Glucose Metabolism

Ethanol and carbon dioxide are the two main products of the yeast metabolism
when glucose is in excess. Production of these compounds is also the main reason
why yeast is extensively used in the alcohol and food industry. However, there is
an increasing interest to use yeast as a cell factory for the production of various
biochemicals, recombinant proteins, biofuels, etc. In those cases ethanol and
carbon dioxide represent an important carbon loss which drives carbon away from
the desired product. Hence, understanding the molecular mechanism of the for-
mation of these products is essential for the successful redistribution of the fluxes
toward the desired pathways and products.

Pyruvate is the branch point intermediate between respiratory dissimilation of
sugars and alcoholic fermentation (Pronk et al. 1996). Isolation and characterization
of the pyruvate decarboxylase (PDC) show the critical role this enzyme plays in the
decarboxylation of pyruvate to acetaldehyde and in supplying the cytosolic acetyl-
CoA pool (Schmitt and Zimmermann 1982; Hohmann and Cederberg 1990;
Pronk et al. 1996). A complete knockout strain without PDC genes reveals the
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indispensable role of this enzyme for growth of S. cerevisiae on glucose and indi-
cates that the mitochondrial pyruvate dehydrogenase (PDH) complex cannot
function as the sole source of acetyl-CoA during the growth on glucose (Flikweert
et al. 1996). Two different approaches result in the partial growth recovery of PDC
negative S. cerevisiae strains on glucose as the only carbon source. First, the
overexpression of GLY1 gene which encodes threonine aldolase and catalyzes the
cleavage of threonine to glycine and acetaldehyde that can be converted to acetyl-
CoA. Second, the PDC negative strain subjected to directed evolution in the batch
and, independently, in glucose-limited continuous cultures where acetate concen-
tration in in-flow feed was gradually reduced (van Maris et al. 2003, 2004).
Molecular mechanisms of underlying the glucose-tolerant phenotype remain elusive
in these studies; transcriptome analysis shows an increase in glucose-repressible
genes relative to the isogenic wild type in nitrogen-limited chemostat cultures with
excess glucose (van Maris et al. 2004). Understanding glucose signaling mecha-
nisms appears to be critical for elucidating molecular mechanisms that result in
glucose sensitivity of PDC negative strain of S. cerevisiae. Genetic analysis iden-
tifies that glucose signaling is mediated, partially, through the interactions of Std1,
Mth1, Snf3, and Rgt2 (Schmidt et al. 1999). Glucose reacts via the F-box protein
Grr1 to promote the degradation of Mth1 which leads to phosphorylation and dis-
association of Rgt1 from the HXT promoters, thereby activating HXT gene
expression (Flick et al. 2003; Moriya and Johnston 2004). Genome scale analysis of
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Fig. 4.2 a Typical time profile of the diauxic shift. In the 1st phase, there is consumption of
glucose with co-current formation of ethanol and biomass. In the 2nd phase, there is transition, and
in the 3rd phase, there is consumption of ethanol and further growth of the biomass. Activity of key
protein kinases is indicated in the different phases. b Overview of carbon flows in the 1st and 3rd
phases of the diauxic shift. In the 1st phase, there is ethanol production with very little TCA cycle
activity. In the 3rd phase, there is ethanol uptake and respiration with an active TCA cycle
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adaptively evolved PDC negative strain identifies a 225 bp in-frame internal
deletion in MTH1. This internal deletion results in the loss of a phosphorylation site
and, hypothetically, increases protein stability (Oud et al. 2012a). Reverse engi-
neering of this phenotype into the nonevolved PDC negative strain allows, albeit
slow, growth on glucose as sole carbon source. Stable Mth1 in PDC negative strain
reduces glucose uptake that likely prevents intracellular accumulation of pyruvate
and/or redox problems, while releasing the glucose repression (Oud et al. 2012).
Although we are still far from recovering the wild-type growth profile for the PDC
negative phenotype in S. cerevisiae, the combination of systems biology tools such
as directed evolution, genome scale analysis, and reverse engineering suggest a
plausible mechanism and solution to the glucose sensitivity of this strain that may
allow it to grow on glucose (Fig. 4.3).

4.3 Molecular Mechanisms in Galactose Metabolism

One of the rationales to understand the underlying molecular mechanisms is the
potential opportunity to perturb the metabolism for various applications. These
perturbations should be able to redirect the metabolic flux toward the desired
pathway, however, due to rigid control of the fluxes through inherently complex
molecular mechanisms, it is a difficult goal (Ostergaard et al. 2000). Overex-
pression of seven glycolytic enzymes in S. cerevisiae show that transcriptional
perturbations do not necessarily result in the flux change in the central carbon
metabolism, partially due to such factors as saturating levels of enzyme concen-
trations and post-translational modifications (Hauf et al. 2000). A similar con-
clusion was attained for the Leloir pathway that is responsible for metabolism of
galactose. Overexpression of either the individual enzymes or combination of
these did not result in improved galactose uptake (de Jongh et al. 2008). On the
contrary the galactose utilization was reduced, and this was shown to be due to
accumulation of pathway intermediates (de Jongh et al. 2008). However, by per-
turbing the GAL gene regulatory network through the elimination of three known
regulators of the GAL system, GAL6, GAL80, and MIG1, it was possible to obtain
a 41 % increase in flux through the galactose utilization pathway compared with
the wild type strain. Improved galactose consumption of the Gal mutants increased
the respiro-fermentative metabolism where ethanol production rate linearly cor-
relates with glycolytic flux (Ostergaard et al. 2000). Transcriptome analysis further
shows the role of phosphoglucomutase (PGM2), and it is shown that overex-
pression of PGM2 results in an increased galactose uptake rate by 70 % compared
to the one of the reference strain. This strongly suggests that PGM2 plays a key
role in controlling the flux through the Leloir pathways, probably due to increased
conversion of glucuose-1-phosphate to glucose-6-phosphate (Bro et al. 2005).
However, the molecular mechanism of this very significant enhancement in the
glycolytic flux through the galactose metabolism indicates that increased
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phosphoglucomutase (PGM1) activity alleviates the galactose growth defect
associated with elevated levels of Ras signaling in S. cerevisiae (Howard et al.
2006). Investigation of the Ras-pathway indicates its dual role on galactose
metabolism through indirect interaction with a nucleotide exchange factor Cdc25p
and intracellular energy status. This interaction is an important factor for the
metabolic adaptation upon change in its environment such as a switch between
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corresponding increase in galactose uptake. The overexpression of PGM2 or expression of
truncated Tup1 (tTup1*) also increases galactose uptake as truncated Tup1 cannot inhibit the
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phosphorylation; pathways are pictured in bold boxes; Mit—mitochondrion
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glucose-galactose or galactose-glucose (Mirisola et al. 2007; van den Brink et al.
2009). Integrated systems-level analysis further clarifies role of the Ras signaling
pathway in galactose metabolism with the identification of point mutations in
RAS2 in adaptively evolved strains with increased galactose uptake rate and val-
idation of these mutations in the wild type strain (Hong et al. 2011). A genome-
wide perturbation approach led to the identification of TUP1, a small nuclear
RNA, as a regulatory target for the improved galactose fermentation and inverse
metabolic engineering of truncated TUP1 results in 250 % higher galactose con-
sumption rate and ethanol productivity compared to the control strain (Lee et al.
2011). In conclusion, molecular mechanisms underlying galactose metabolism
show the significance and importance of the systems biology approach where basic
understanding of regulation of the central carbon metabolism can lead to bio-
technological breakthroughs.

4.4 Perspective

Systems biology progress is the result of conceptual leaps based on several
technological developments in the past decades. In the last decade, we have moved
from genome-centered viewpoint to a systems-level thinking where metabolic
control of subjected perturbations spreads across multiple regulatory layers. Next
generation of technological breakthrough in genomics, transcriptomics, proteo-
mics, metabolomics, single cell analysis, and computing should facilitate the
development of new paradigms that can help to advance our understanding of the
molecular mechanisms for designing microbial cell factories as well as thera-
peutics interventions for personalized medicine.

These kinds of developments necessitate the multidisciplinary studies where
dynamic data can be analyzed and modeled using static or dynamic modeling
tools. Dynamic data allow identification and monitoring of metabolic switch points
in detail and give a comprehensive overview of metabolic response to perturba-
tions. To get the systems-level understanding, used metabolic models should be
able to integrate various data including extracellular fluxes, transcriptional regu-
lation, energetic constraints, and posttranslational modifications. Here, absolute
quantitative data represent an invaluable source that can be used as an input for
metabolic models. Static, constraint-based models can be used to describe dynamic
data and analyze the interactions. However, these models lack the predictive
possibilities present in dynamic models. However, dynamic models are used for
describing smaller subsystems as dynamic information about, e.g., enzyme
activities for the whole genome scale network is currently missing. Recently, steps
toward this direction have been made for the minimal microorganisms and it could
be expected that similar models will be constructed for higher organisms where
compartmentalization and lack of information about transportation and regulation
pose additional obstacles.
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High-throughput data generation provides holistic understanding of the bio-
logical complexity which can be used for such nontrivial tasks as strain
improvement but challenges remain in mapping networks and perturbing those in
space and time (Stephanopoulos et al. 2004; Lehner et al. 2005). Some of the
approaches are already resulting in the interaction mapping of such regulators as
Snf1 and TORC1, which control glucose and nitrogen assimilation in S. cerevisiae
and developments in the proteomics may provide posttranslational and epigenetic
regulatory information than is currently available (Zhang et al. 2011; Oliveira et al.
2012). And for one of the simplest microbes, Mycoplasma genitalium, computa-
tional model is able to predict phenotype from genotype which is a significant
progress from 1960s when first systems biology model showed cardiac action and
pacemaker potentials based on the Hodgkin-Huxley equations. Such methods
combined with information on membrane transport and cellular compartmentali-
zation are useful for revealing novel molecular mechanism based on network
properties in eukaryotes (Nobel 1960; Karr et al. 2012; Esvelt and Wang 2013;
Agren et al. 2013). Molecular mechanisms can also be tested in vitro and synthetic
organelles and cells may provide the future insights into the question of how
biology works (Jewett et al. 2013).
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