Chapter 2
Glucose Sensing and Signal Transduction
in Saccharomyces cerevisiae

Ken Peeters and Johan M. Thevelein

Abstract Cells of the yeast Saccharomyces cerevisiae have an exquisite preference
for high concentrations of glucose compared to other sugars or carbon sources. The
likely explanation is that glucose is the best fermentable sugar, i.e., the sugar that
allows the yeast to accumulate most rapidly high levels of ethanol, which are
strongly inhibitory to competing microorganisms. To accomplish rapid fermenta-
tion of glucose, S. cerevisiae has evolved multiple glucose sensing and signaling
pathways, which stimulate both fermentation and rapid cell proliferation. The latter
is important for rapid fermentation in order to recycle the ATP generated in gly-
colysis to ADP. Downregulation of respiration to maximize ethanol production is
accomplished by the main glucose repression pathway, in which the Snfl protein
kinase is a central regulator. It is inactivated by dephosphorylation upon glucose
addition, and its reactivation upon glucose exhaustion is essential for induction of
genes sustaining respiration, gluconeogenesis, and the catabolism of alternative
carbon sources. Stimulation of fermentation and growth is mainly exerted by the
protein kinase A pathway, which senses glucose with an extracellular and intra-
cellular sensing mechanism that activates protein kinase A in a concerted manner
through stimulation of cAMP synthesis. Sensing of other nutrients by plasma
membrane transceptors integrates with this glucose-sensing mechanism to maintain
high protein kinase A activity throughout fermentative growth. Induction of
appropriate glucose transporters during fermentative growth is controlled by plasma
membrane transporter-like proteins, which function as glucose sensors. Although
detailed knowledge has been gained on the molecular mechanisms involved in
glucose signaling, multiple important questions still remain.
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2.1 Introduction

Glucose is the preferred source of energy and building blocks for the yeast Sac-
charomyces cerevisiae. It is mainly metabolized by fermentation and also sustains
the fastest growth rate in spite of producing much less ATP per mole glucose than
respiration. Other sources of carbon and energy, like glycerol, ethanol, and acetate,
are respired and sustain much slower growth rates. Some sugars, like galactose, are
slowly fermented and partially respired. The preference of S. cerevisiae for glu-
cose and related rapidly fermented sugars, like fructose and mannose, is mani-
fested by the multiple regulatory pathways triggered by these sugars, which all
have as main goal to stimulate both fermentation and cell proliferation (Rolland
et al. 2001, 2002; Santangelo 2006). Regulation occurs at different levels: allo-
steric, post-translational, and transcriptional. We can distinguish different regu-
latory pathways, which have been elucidated in great detail during many years of
focussed research. These pathways are connected to each other and to signaling
pathways for other nutrients, but at this moment we understand much less about
these interconnections than about the components and regulation within the
pathways.

2.2 The Snf3/Rgt2 Glucose Sensors for Induction of HXT
Glucose Transporter Expression

Glucose is transported into yeast cells by an extensive set of glucose transporters,
which function as facilitated diffusion carriers and are encoded by the HXT genes
(Ozcan and Johnston 1999; Boles and Hollenberg 1997; Bisson et al. 1993). These
carriers have different affinities and catalytic activities, and their expression is
adjusted according to the glucose concentration in the medium (Ozcan and
Johnston 1995). The Snf3-Rgt2 regulatory pathway plays a major role in this
control (Fig. 2.1). It was a breakthrough in the glucose-sensing field when two
plasma membrane proteins were discovered with high sequence similarity to
glucose carriers, which were unable to transport glucose and instead functioned as
glucose sensors (Ozcan et al. 1996; Bisson et al. 1987). Snf3 has a high affinity
while Rgt2 has a low affinity for extracellular glucose. Snf3 is required for
expression of HXT2 and HXT4 in the presence of low levels of glucose, but not for
induction of HXTI by high glucose levels (Bisson et al. 1987; Ozcan and Johnston
1999). In contrast, Rgt2 seemed to exert the opposite effect by playing a vital role
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Fig. 2.1 The Rgt network. When glucose binds to the glucose receptors Snf3 and Rgt2, the
corepressors Std1 and Mth1 are recruited to the plasma membrane to be phosphorylated by the Yck
kinases. SCFS™ targets phosphorylated Std1 and Mth1 to the ubiquitin conjugating complex for
degradation by the proteasome. Rgtl becomes hyperphosphorylated by PKA when glucose is
present and is in this form not able to repress the HXT and HXK2 genes. When glucose becomes
limited or is absent, Rgt1 becomes phosphorylated directly or indirectly by Snfl and is recruited to
the nucleus together with Mth1 and Std1. Together with the transcriptional corepressor complex
Ssn6-Tupl, the Rgt1/Mth1/Std1 complex represses the transcription of the HXT and HXK?2 genes

in the induction of HXT1 expression by high levels of glucose (Ozcan et al. 1996;
Ozcan and Johnston 1999).

Both Snf3 and Rgt2 consist of two functional parts, a transmembrane-spanning
part, which binds glucose, and a large cytosolic extension that is involved in
triggering an intracellular signal to the downstream machinery (Fig. 2.1)
(Marshall-Carlson et al. 1990; Moriya and Johnston 2004). The precise mechanism
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of how the two glucose sensors generate the glucose signal and transduce it to the
intracellular machinery is not fully understood. It appears to include the phos-
phorylation of two signal transduction proteins, Mth1 and Stdl, via Yck kinases
(Robinson et al. 1992; Moriya and Johnston 2004; Babu et al. 2002; Ozcan and
Johnston 1999). Yckl and its paralog Yck2 are anchored in the plasma membrane
via palmitate chains. They are activated through interaction with Snf3 and Rgt2,
when these sense glucose (Babu et al. 2002; Johnston and Kim 2005; Moriya and
Johnston 2004). The large C-terminal domain of the glucose sensor, Snf3 or Rgt2,
facilitates interaction with the Yck kinases as well as their substrates, Mthl and
Std1 (Coons et al. 1997; Dlugai et al. 2001; Moriya and Johnston 2004). Once
activated, Yckl and Yck?2 inactivate Std1 and Mth1 by phosphorylation. The latter
two proteins function as inhibitors of glucose-induced HXT gene expression in the
absence of glucose (Johnston and Kim 2005; Moriya and Johnston 2004). The
phosphorylation of Stdl and Mthl will cause their ubiquitination and subsequent
degradation by the proteasome, which occurs through the SCF-Grrl complex. The
F-box protein Grrl has two protein interaction domains that are essential for its
function. The F-box motif interacts with Skpl, a subunit of the SCF complex. It is
preceded by a leucine rich repeat domain that is necessary for substrate recruit-
ment (Kishi et al. 1998).

Grrl is required for glucose regulation of the transcription factor Rgtl (Ozcan
and Johnston 1999). Rgtl exerts a repressor role on glucose-induced genes and
recruits the transcriptional co-repressor complex Ssn6-Tupl. Together with Rgtl,
it will condense chromatin into a repressive conformation (Edmondson et al.
1996). This process occurs at the promoters of the HXT genes and causes
repression of their transcription in the absence of glucose. Transcriptional
repression by Rgtl also requires Mth1, which causes a conformational change that
allows Rgt1 to bind to its recognition sites in DNA (Polish et al. 2005). In addition,
the presence of Stdl is also required although it does not regulate Rgtl binding
capacity (Lakshmanan et al. 2003). Under conditions of high glucose, Rgtl is
hyperphosphorylated and this process requires Snf3 and Rgt2 as glucose sensors. It
converts Rgtl from a repressor into an activator although the latter function does
not act through direct DNA binding (Kim et al. 2003; Mosley et al. 2003).

The Snf3-Rgt2 signaling pathway is connected to other glucose signaling
pathways. It was discovered that Rgtl can act as a repressor of HXK2 expression.
Hxk2 is the most active hexokinase isoenzyme and is required for glucose
repression through the main glucose repression pathway, also called “catabolite
repression pathway” (Palomino et al. 2005). The Snfl protein kinase, a central
component of the main glucose repression pathway, seems to be involved in this
process possibly through phosphorylation of Rgtl, which is essential for HXK2
repression (Palomino et al. 2006). The latter study also showed that Tpk3 relieves
HXK?2 repression by hyperphosphorylation of Rgtl. Tpk3 is one of the isoenzymes
functioning as catalytic subunits of protein kinase A (PKA), which is the mediator
of the cAMP glucose signaling pathway. Recent work has shown that Mthl reg-
ulates the interaction between the Rgtl repressor and the Ssn6-Tupl co-repressor
complex by modulating PKA-dependent phosphorylation of Rgtl (Roy et al.
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2013). Much more, however, has to be learned about the precise interactions of the
Snf3-Rgt2 signaling pathway with other glucose signaling pathways.

2.3 Glucose Signaling Through the cAMP-PKA Pathway

2.3.1 Physiological Role of the cAMP-PKA Pathway
in Nutrient Signaling

The PKA protein kinase affects a wide variety of processes in yeast, supporting its
crucial role as a main cellular regulator. It is involved in control of metabolic
pathways, like glycolysis and gluconeogenesis, in control of growth, proliferation,
and aging of the cells, in reserve carbohydrate accumulation, stress tolerance, in
developmental pathways, like pseudohyphal differentiation, invasive growth and
sporulation, and multiple other pathways and processes (Santangelo 2006; Smets
et al. 2010; Thevelein et al. 2000; Thevelein and de Winde 1999). The general role
of PKA is stimulation of fermentative growth and inhibition of stationary-phase
characteristics and other processes, like sporulation, which depend on respiration.
Investigation of PKA targets in different growth conditions has revealed a striking
correlation with the nutrient composition of the medium. Conditions supporting
rapid fermentative growth, i.e., the presence of glucose or another rapidly fer-
mented sugar, and a complete growth medium, are always associated with a status
of the PKA targets indicating high activity of PKA in vivo. On the other hand,
conditions supporting slow, respiratory growth, i.e., the presence of a nonfer-
mentable carbon source, like glycerol, ethanol or acetate, or stationary phase
conditions after carbon source depletion, are always associated with a status of the
PKA targets indicating low activity of PKA in vivo. Up to this point, this corre-
lation suggests that glucose and other fermentable sugars are activators of PKA
in vivo. This has led to the concept that PKA is part of a glucose signaling
pathway, which has been confirmed by the discovery of a complex glucose-sensing
network controlling the level of cAMP, the second messenger that controls the
activity of PKA.

Subsequently, however, a novel level of PKA regulation has been discovered
following the awareness that starvation of yeast cells on a glucose-containing
medium for any other single essential nutrient downregulated the PKA targets in a
manner consistent with the presence of low PKA activity in vivo (Thevelein et al.
2005; Thevelein and de Winde 1999). Hence, fermentable sugar was clearly not
the sole determinant for high PKA activity. Observations linking PKA targets, like
trehalose and glycogen content, to conditions of starvation for specific essential
nutrients on a glucose-containing medium, were already made long before the
glucose-sensing role of the PKA pathway had become clear (Lillie and Pringle
1980). Subsequently, the role of other nutrients in regulating PKA activity was
clearly demonstrated by experiments showing rapid activation of PKA targets after
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addition of nitrogen sources, phosphate, and sulfate, to appropriately starved cells
on a glucose-containing medium (Hirimburegama et al. 1992; Thevelein and
Beullens 1985; Thevelein 1984a). Hence, this previous work has revealed that
maintenance of high PKA activity in yeast cells requires the combination of a
rapidly fermented sugar and a complete growth medium, which led to the concept
of a “fermentable—growth-medium” (FGM)-induced pathway for activation of
PKA in vivo.

Further research on the FGM pathway led to the discovery of multiple nutrient
transporters/receptors or “transceptors,” acting as sensors for activation of PKA
by the other nutrients, and apparently without using cAMP as a second messenger
(KTriel et al. 2011; Thevelein and Voordeckers 2009; Thevelein et al. 2005, 2008;
Holsbeeks et al. 2004). Hence, in the case of the PKA pathway, integration of
glucose sensing with sensing of other nutrients is very well established although
the mechanistic details of the integration are not well understood.

2.3.2 Glucose Activation of cAMP Synthesis and PKA

The dramatic effects of glucose addition to yeast cells on PKA targets, like tre-
halose and trehalase, led already in 1974 to the discovery of the “glucose-induced
cAMP signal,” a conspicuous and drastic, but very transient spike in the cAMP
level that happens in the first 1-3 min after addition of glucose to respiring yeast
cells (either growing or stationary-phase cells) (van der Plaat 1974). This cAMP
signal activates PKA, which then phosphorylates target proteins like trehalase.
This enzyme shows a conspicuous and rapid increase in activity, as measured in
cell extracts, following the cAMP signal. Initially, nonspecific mechanisms were
evaluated as possible triggers for the glucose-induced cAMP signal (Mazon et al.
1982; Purwin et al. 1982; Thevelein 1984a; Tortora et al. 1982). The observation
that intracellular acidification caused a strong and persistent accumulation of
cAMP in yeast cells (Purwin et al. 1986; Thevelein 1991; Caspani et al. 1985),
while glucose addition triggered a rapid, transient drop in the intracellular pH, led
to the suggestion that the cAMP signal was caused by the glucose-induced tran-
sient intracellular acidification. This explanation as well as other suggestions of
transient plasma membrane depolarization or increases in ATP, the substrate of
adenylate cyclase, were contradicted by a variety of experimental approaches
(Thevelein et al. 1987a, b).

Like previously established for mammalian PKA, yeast PKA is also a hetero-
tetrameric protein consisting of two catalytic and two regulatory subunits. The
catalytic subunits are encoded by TPKI, TPK2, and TPK3, while the regulatory
subunits are encoded by BCYI (Toda et al. 1987a, b). Binding of the second
messenger CAMP to the regulatory subunit Bcyl causes its dissociation from the
Tpkl-3 catalytic subunits, resulting in activation of PKA (Kuret et al. 1988)
(Fig. 2.2). The three catalytic subunits have redundant functions for some phe-
notypes and specific functions for other phenotypes. For instance, any TPK gene
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can sustain viability of the cells while the absence of all three is lethal (Thevelein
and de Winde 1999). On the other hand, pseudohyphal growth induction is
stimulated by Tpk2 but counteracted by Tpk3 (Robertson and Fink 1998), while
mitochondrial biogenesis is specifically stimulated by Tpk3 (Chevtzoff et al.
2010).

Synthesis of the second messenger molecule cAMP from ATP is catalyzed by
adenylate cyclase, which is encoded by CYRI/CDC35 (Kataoka et al. 1985;
Matsumoto et al. 1982). The activity of adenylate cyclase is controlled in yeast by
two distinct G-protein systems, the Ras1,2 proteins (Toda et al. 1985; Broek et al.
1985) and Gpa2, a homolog of the Go subunit of the heterotrimeric G-proteins
(Nakafuku et al. 1988; Lorenz and Heitman 1997; Kubler et al. 1997) (Fig. 2.2).
This led to the discovery that these G-protein systems are involved in intracellular
and extracellular glucose sensing, respectively (Rolland et al. 2000).

2.3.3 The Ras Proteins and Their Role in Intracellular
Glucose Sensing

Discovery of the yeast Ras proteins The yeast Ras proteins were discovered based
on sequence similarity with the mammalian RAS oncogenes (Kataoka et al. 1984;
Powers et al. 1984; Tatchell et al. 1984). The purpose was to use yeast as a model
system to identify the elusive physiological function of the mammalian RAS gene
products. Deletion of both RAS genes in yeast was lethal because it caused cell
cycle arrest in G; and entrance into stationary phase, similar to cells starved for
nutrients. A specific category of temperature-sensitive cell cycle mutants (cdc
mutants), including the cdc35 mutant, also arrested at the restrictive temperature at
the same point in the cell cycle (Hayles and Nurse 1986). This suggested that the
function of these gene products was related to that of Ras. Cloning of CYRI/
CDC35 revealed that it encodes adenylate cyclase (Kataoka et al. 1985;
Matsumoto et al. 1982), and subsequent work showed that the yeast Ras proteins
act as essential G-proteins for yeast adenylate cyclase (Toda et al. 1985). This
work formed the basis for the further elucidation of the cAMP-PKA pathway in
yeast, but it failed to deliver originally expected insight on two points. First, in
mammalian cells, the Ras proteins do not act on adenylate cyclase (Beckner et al.
1985) and the yeast work therefore failed to help identify the mammalian Ras
target. Second, in spite of many efforts no upstream activators of Cdc25 could be
found, which would have pointed to the physiological signal being transmitted by
the Ras proteins in yeast. Hence, the original goal of using yeast as a model system
to understand the physiological function of the mammalian Ras proteins as signal
transmission proteins and thus to shed light on their oncogenic mechanism was not
fulfilled.
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Fig. 2.2 The cAMP-PKA pathway in S. cerevisiae. Glucose activates PKA via two different
pathways. When glucose is transported and phosphorylated, it activates the Ras proteins by
increasing their GTP/GDP loading state. The mechanism involved is not known. Active Ras will
consequently activate Cyrl, the adenylate cyclase of yeast. Cyrl catalyzes the synthesis of cAMP
from ATP. This second messenger is able to bind to the regulatory subunit of PKA, Beyl1, thereby
dissociating it from the catalytic subunits, Tpkl, Tpk2, and Tpk3. These are then able to
phosphorylate downstream targets and regulate in this way protein activity and gene expression.
Extracellular glucose can also activate PKA through the glucose-sensing G-protein-coupled
receptor Gprl. This receptor triggers activation of the G-protein Gpa2, of which the intrinsic
GTPase activity is stimulated by Rgs2. Active Gpa2 in turn activates Cyrl with the generation of
cAMP as a consequence. Gpa2 can also inhibit the Krh proteins, thereby, activating PKA through
the adenylate cyclase bypass pathway

Ras and its regulatory proteins In spite of this, detailed analysis of the Ras
proteins and their direct, physical regulators in yeast revealed strong conservation
with the system in mammalian cells. The yeast Ras1 and Ras2 proteins share more
than 70 % amino acid similarity and approximately 90 % similarity in their
180 N-terminal residues (Powers et al. 1984; Kataoka et al. 1984), and these 180
amino acids are also highly conserved in the human Ras proteins. The Ras proteins
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are monomeric GTPases whose activity depends on GDP/GTP exchange and GTP
hydrolysis (Broach and Deschenes 1990). The activity of monomeric GTPases is
displayed as a binary switch. When GTP is bound, the Ras proteins are activated
and stimulate cAMP synthesis by activating Cyrl/adenylate cyclase (Matsumoto
et al. 1982). Conversely, when Ras-bound GTP is hydrolysed to GDP by the
intrinsic Ras GTPase activity, it switches to the inactivated state. Mammalian Ras
oncogene products usually contain mutations that render the protein constitutively
active, for instance by reducing the intrinsic GTPase activity. A major example is
Ras**'?, in which glycine'? is converted into a valine residue. The corresponding
mutation was engineered into the yeast Ras2 protein, which resulted in the
Ras2 ' protein, which is also constitutively active in yeast (Broek et al. 1985).
It causes higher cAMP levels and PKA activity, which is detrimental to the cells
when they grow on non- or poorly fermentable carbon sources or enter into sta-
tionary phase. Originally, the failure of this mutant to arrest properly at the start
site in the G phase of the cell cycle upon nitrogen starvation was ascribed to its
oncogenic character, causing defective cell cycle control, but was later attributed
to its inability to complete the cell cycle because of deficient internal amino acid
stores (Markwardt et al. 1995).

Ras activity is modulated by stimulation of guanine nucleotide exchange and
stimulation of the intrinsic GTPase activity (Fig. 2.2). Cloning of the CDC25 gene
by complementation of another temperature-sensitive mutant that arrested at the
restrictive temperature like nutrient-starved cells, showed that it encodes an
essential guanine nucleotide exchange factor (GEF) of Ras (Broek et al. 1987;
Camonis et al. 1986; Jones et al. 1991). Later work also identified a homolog of
CDC25, SDC25, but this gene contains an inactivating nonsense mutation in the
S288c background causing CDC25 to be essential (Boy-Marcotte et al. 1996;
Damak et al. 1991). In the W303 lab strain, deletion of CDC25 is not lethal under
growth conditions in which SDC25 is expressed (Folch-Mallol et al. 2004; Boy-
Marcotte et al. 1996). These GEF proteins only bind and thereby stabilize the open
nucleotide-free state of Ras (Lai et al. 1993; Haney and Broach 1994). Because the
cytosolic concentration of GTP is higher than that of GDP in well-energized cells,
nucleotide-free Ras will be loaded preferentially with GTP when it binds a new
nucleotide, leading to activation of Ras. GTP enters Ras together with one mol-
ecule of Mg”", which creates a GTP-Mg>" complex that will close the Ras protein
and stabilize its active conformation (Pai et al. 1990; Farnsworth and Feig 1991).
The C-terminus of Cdc25 includes the catalytic domain and a membrane locali-
zation signal, while the N-terminus contains an SH3 domain that regulates Ras
interaction with adenylate cyclase (Daniel 1986; Garreau et al. 1996; Mintzer and
Field 1999). The C-terminus of Cdc25 shows very high sequence similarity with
the human Ras GEF factor hSosl. The catalytic part of hSosl is referred to as the
Cdc25 domain (Boguski and McCormick 1993).

Inactivation of the Ras proteins occurs through their intrinsic GTPase activity.
However, without aid this reaction is very slow, and therefore it is stimulated by
two GTPase activating proteins (GAPs), Iral and Ira2 (Tanaka et al. 1990). These
proteins stick an arginine finger into the catalytic site of Ras, which decreases the



30 K. Peeters and J. M. Thevelein

activation energy for hydrolysis of the y-phosphate from GTP (Kotting et al.
2008). Iral and Ira2 are among the largest proteins present in yeast (3,093 and
3,080 amino acids, respectively) and, in addition to their GTPase activating
function, they show further regulatory functions (Tanaka et al. 1990). Iral, for
instance, was found to interact with Cyrl and seems to be necessary for its
membrane localization (Mitts et al. 1991). Tfs1 was found to inhibit Ira2, but not
Iral (Chautard et al. 2004). Deletion of Iral or Ira2 can suppress lethality caused
by deletion of CDC25, just like the presence of a constitutively active allele of
Ras. This is consistent with higher activity of Ras in iral and ira2 deletion strains
(Tanaka et al. 1990).

The essential character of Cyrl/Cdc35/adenylate cyclase as well as its regu-
lators Rasl and Ras2, or Cdc25 and Sdc25, for cell viability in all tested genetic
backgrounds, indicates that a critical concentration of cAMP is essential for cell
growth in yeast and more specifically for progression over the START site in the
G, phase of the cell cycle and prevention of precocious entrance into the stationary
phase G, (Boy-Marcotte et al. 1998; Broach and Deschenes 1990; Ptacek et al.
2005; Smith et al. 1998; Thevelein 1994). Since nutrient starvation also prevents
progression through G; and forces cells into Gy, this suggested that the Cdc25-
Ras-adenylate cyclase system responds to nutrient availability (Thevelein 1994;
Thevelein et al. 2000). The precise connection between glucose and cAMP,
however, was not revealed in cell cycle studies but rather by research on glucose
regulation of storage carbohydrate metabolism (Thevelein 1991; Thevelein and de
Winde 1999). Whether there is a mechanistic connection between the availability
of all the other nutrients, besides glucose and related rapidly fermented sugars, and
cAMP synthesis remains unclear up to today. In this respect, it is important to
realize that a critical level of PKA activity may be required for growth rather than
a critical concentration of cAMP per se. In the presence of a basal level of cAMP,
other regulators, such as the kelch repeat proteins Krhl and Krh2, may modulate
PKA activity (Peeters et al. 2007).

Another protein involved in activation of Cyrl/adenylate cyclase by Ras is Srv2
(Fedor-Chaiken et al. 1990; Field et al. 1990). It is bound to Cyrl (and therefore
also called CAP or cyclase-associated protein) and also binds to actin, which
facilitates the interaction between Cyrl and Ras. Its main task, however, appears to
be in the regulation of the actin skeleton in yeast, although there is also evidence
that modulation of the actin cytoskeleton can cause hyperactivation of Ras
(Gourlay and Ayscough 2006).

Glucose activation of Ras and its role in glucose activation of CAMP synthesis
Investigation of the glucose-induced cAMP signal in different mutants in yeast
glycolysis revealed that glucose phosphorylation was essential for the glucose-
induced cAMP signal (Beullens et al. 1988). This suggested that the trigger for this
process was an intracellular event originating in intracellular glucose catabolism.
Subsequently, evidence was provided that the Ras proteins were involved in
mediating the glucose-induced cAMP signal, which indicated for the first time a
connection between glucose sensing and Ras (Mbonyi et al. 1988). Combined with
the previous finding, it suggested that Ras is activated by one or more factors
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generated in glucose catabolism. Other evidence for involvement of Ras in
glucose-induced cAMP signaling has later been provided. Ras is anchored in the
plasma membrane via palmitoylation and farnesylation of the two cysteine resi-
dues at positions 318 and 319, respectively. Membrane targeting of Ras is not
required for maintenance of a basal level of cAMP and thus for sustaining via-
bility, but is required for rapid glucose-induced cAMP signaling (Bhattacharya
et al. 1995). Evidence for involvement of Cdc25 and especially its C-terminus in
glucose-induced cAMP signaling was also reported, strengthening the evidence for
a role of the Ras proteins as signal transducers in glucose-induced cAMP signaling
(van Aelst et al. 1990, 1991). In the absence of glucose, Cdc25 is also located at
the plasma membrane, and adenylate cyclase, although not an intrinsic membrane
protein in yeast, also associates with the plasma membrane. This configuration of
Cdc25, Ras, and adenylate cyclase at the plasma membrane appears to be
important for rapid glucose-induced cAMP signaling and its loss may play a role in
the rapid decrease of the cAMP level after the initial surge. The increase in cAMP
activates PKA, which hyperphosphorylates Cdc25 resulting in its translocation to
the cytosol and reduction of its ability to activate Ras (Gross et al. 1992; Dong and
Bai 2011; Jian et al. 2010).

Direct measurement of the GTP/GDP loading state on Ras after addition of
glucose, however, failed to reveal any increase in GTP, as opposed to intracellular
acidification, which triggered a rapid and huge increase in Ras-GTP (Colombo
et al. 1998). For technical reasons, these experiments required overexpression of
Ras, and subsequent work, using a more sensitive assay for Ras-GTP based on the
interaction of mammalian Ras with the Ras-binding domain of Raf, revealed that
the overexpression of Ras, possibly through a feedback inhibition mechanism,
prevented detection of the glucose-induced increase in the Ras-GTP level
(Colombo et al. 2004). In the same work, it was shown that glucose activation of
Ras requires glucose phosphorylation, again linking glucose catabolism with
activation of Ras. How glucose catabolism causes activation of Ras is still not
clear today.

The establishment of Ras activation by glucose catabolism in yeast brings us
back to the original aim of the studies of Ras in yeast. The purpose was to
understand the physiological role of the oncogenic Ras protein in mammalian cells
with a goal of finding an explanation for its role in induction of cancer. The
absence of the Ras—adenylate cyclase connection in mammalian cells (Beckner
et al. 1985) suggested that yeast Ras had a different function compared to mam-
malian Ras and that yeast, therefore, was not a good model system to learn about
Ras functionality, which made the interest in the yeast Ras system by mammalian
researchers fade away. However, cancer cells and yeast cells present a striking
similarity in the related so-called Warburg and Crabtree effects (Diaz-Ruiz et al.
2011). As opposed to other eukaryotic cells, cancer cells and (in the presence of a
high concentration of fermentable sugar) yeast cells favor fermentation over res-
piration in the presence of oxygen and also show the most rapid proliferation when
fermenting in spite of the fact that fermentation delivers much less ATP compared
to respiration. Whether the high glycolytic flux in cancer cells is a consequence or
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a cause of the cancerous state has been a matter of much debate and is still not
clear (Upadhyay et al. 2013). In this respect, the connection between glucose
catabolism and activation of the oncogenic Ras protein in yeast might still serve as
a valuable model system to understand the Warburg effect in cancer cells and to
make a distinction between high fermentation activity as a consequence or a cause
of cancer.

2.3.4 The Gprl-Gpa2 GPCR System and Its Role
in Extracellular Glucose Sensing

The observation that the Ras proteins were not activated after glucose addition in
cells overexpressing Ras stimulated the search for an alternative G-protein involved
in glucose-induced cAMP signaling. This led to the discovery of a G-protein-
coupled receptor (GPCR) system that senses extracellular glucose and is dependent
on the intracellular glucose-sensing system that activates Ras for stimulation of
adenylate cyclase and cAMP signaling (Thevelein and de Winde 1999).

The GPCR system is composed of the receptor, Gprl, and its Go protein Gpa2
(Fig. 2.2). Gprl has the typical structure of a GPCR with seven transmembrane
domains but little sequence similarity to other GPCR families (Kraakman et al.
1999; Xue et al. 1998; Yun et al. 1997). Together with its homologues in other
fungi, it represents a separate subfamily in the large GPCR superfamily (Graul and
Sadee 2001). Glucose and sucrose, but not fructose, mannose, galactose, or other
sugars, act as ligands of the Gprl receptor, with sucrose having much higher
affinity (£1 mM) compared to glucose (£20 mM) (Lemaire et al. 2004). The
sugar specificity of Gprl indicates that fructose- and mannose-induced cAMP
signaling are exclusively mediated by the intracellular sugar catabolism-dependent
activation of Ras. The glucose sensitivity fits with the concentrations of glucose
that cause full stimulation of fermentative growth in yeast, while the high sensi-
tivity for sucrose suggests that detection of low sucrose concentrations may be
important for survival in the natural habitat of yeast (Van de Velde and Thevelein
2008). Deletion of Gprl is not lethal and causes delayed activation of the cAMP-
PKA signaling pathway upon addition of glucose (Kraakman et al. 1999). Whereas
extracellular glucose signaling through the Gprl-Gpa2 system is entirely depen-
dent on intracellular activation of Ras by glucose catabolism, the opposite is not
true, and therefore glucose still causes stimulation of the cAMP-PKA pathway in
the absence of Gprl or Gpa2 (Rolland et al. 2000). A constitutively active allele of
Ras2 also causes a stronger effect on gene expression controlled by the cAMP-
PKA pathway compared to a constitutively active allele of Gpa2 (Wang et al.
2004) consistent with the Ras system having a more dominant effect on adenylate
cyclase than the Gprl-Gpa2 GPCR system. Gprl was discovered in two inde-
pendent ways. The C-terminus of Gprl was isolated in two hybrid screens with
Gpa2, and a mutant with delayed glucose-induced stimulation of PKA targets
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turned out to have a nonsense mutation in Gprl (Kraakman et al. 1999; Xue et al.
1998).

Gpa2 is a member of the Go family of heterotrimeric G-proteins (Nakafuku
et al. 1988; Kubler et al. 1997). It was the first member of this family that does not
function in association with a classical G and Gy subunit (Peeters et al. 2007,
Hoffman 2007). Deletion of Gpa2 is not lethal; it delays glucose-induced stimu-
lation of the cAMP-PKA pathway and affects other PKA-dependent phenotypes
like pseudohyphal growth (Nakafuku et al. 1988; Kubler et al. 1997; Colombo
et al. 1998). In general, deletion of Gpa2 seems to cause stronger phenotypic
effects than deletion of Gprl, which may hint to additional regulation at the level
of Gpa2. The intrinsic GTPase activity of Gpa2 is stimulated by the RGS2 gene
product, which thus acts as an inhibitor of signaling (Versele et al. 1999). Gpa2 is
anchored in the plasma membrane via myristoylation and palmitoylation of its
N-terminus (Harashima and Heitman 2005).

The observation that Gpa2 functions without classical B and y subunits has led
to intensive research and also much debate concerning possible alternative G} and
Gy proteins. Initially, the kelch repeat proteins, Krh1 and Krh2, were proposed as
alternative Gf subunits (and called Gpb2 and Gpb1) and Gpgl was proposed to be
the y subunit of Gpa2. Krhl and Krh2 have a seven-kelch repeat structure, which
results in a conformation very similar to the seven-WD-40 repeat structure of G
proteins, and physically binds to Gpa2 (Harashima and Heitman 2002, 2005). This
initial suggestion was contradicted by later, more extensive work (Hoffman 2007;
Niranjan et al. 2007). Krh1 and Krh2 do not interact with Gpa2 in a way that
would be expected from a genuine GP replacement subunit. Deletion of Krh1 and
Krh2 causes a high PKA phenotype, but this is apparently not due to relief of
inhibition on Gpa2, as would be expected for a genuine GJ protein. Krh1 and Krh2
directly interact with the catalytic subunits of PKA, Tpk1-3, and stimulate their
interaction with the regulatory subunit, Bcyl, causing a higher cAMP level to be
required for their dissociation. Krh1 and Krh2 promote the phosphorylation of the
Bceyl regulatory subunit of PKA and this produces a form of Bcyl that is more
stable and more effective as an inhibitor catalytic subunits (Budhwar et al. 2010).
Hence, inactivation of Krh1l and Krh2 causes higher PKA activity in the presence
of the same cAMP concentration. Gpa2 appears to inhibit Krh1 and Krh2, creating
a bypass pathway for activation of adenylate cyclase, directly from the Go protein
Gpa2 to PKA (Batlle et al. 2003; Lu and Hirsch 2005; Peeters et al. 2006; Niranjan
et al. 2007). Krh1 and Krh2 were also shown to function as regulators of the Ras
GAPs, Iral, and Ira2, either by stabilizing the proteins (Harashima et al. 2006) or
target them for degradation (Phan et al. 2010). Ascl, another protein with seven-
WD-40 repeats that binds most tightly to the GDP-loaded Gpa2 protein, has also
been proposed as an alternative G subunit (Zeller et al. 2007). There remain
many questions concerning the precise role of Krhl and Krh2 and the two
G-protein signaling modules, Ras and Gpa2, in the control of cAMP synthesis and
PKA activity in yeast.
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2.3.5 Downstream Targets of PKA

Negative feedback regulation of PKA on cAMP synthesis Yeast strains with
reduced PKA activity display huge increases in the basal cAMP level (Nikawa
et al. 1987). This suggested that PKA downregulates cAMP synthesis by negative
feedback regulation. This phenomenon also explains why the glucose-induced
cAMP increase is very short-lived and actually occurs as a sharp cAMP signal. The
extent of the glucose-induced cAMP signal is inversely correlated with the activity
of PKA, and strains with attenuated PKA activity display large glucose-induced
cAMP increases (Mbonyi et al. 1990). In a strain with elevated PKA activity, the
cAMP signal is completely suppressed. This explains the seemingly contradictory
finding that in a yeast strain devoid of the two cAMP phosphodiesterases the
glucose-induced cAMP signal is virtually absent, rather than strongly enhanced
(Ma et al. 1999). In spite of many efforts, the main target of the negative feedback
regulation still remains elusive. Several targets have been proposed, including Ras
and Cdc25. Mutagenesis of Ser’'® to alanine (Ras2%*'**) caused phenotypes
consistent with higher activity of the cAMP-PKA pathway and also resulted in a
higher basal level of cAMP and stronger glucose-induced cAMP signaling (Xiaojia
and Jian 2010). However, the increase in the basal cAMP level was very limited
compared to the huge cAMP increases in the Tpk-attenuated strains, indicating
that phosphorylation of Ras cannot be the main target of the negative feedback
regulation. As previously mentioned, glucose-induced hyperphosphorylation of
Cdc25 resulting in its translocation from the plasma membrane to the cytosol and
hence, reduced ability to activate Ras, may also form part of the negative feedback
regulation mechanism (Gross et al. 1992; Dong and Bai 2011; Jian et al. 2010).
Moreover, it has been shown that the Ras2 guanine nucleotide exchange activity of
Cdc25 in vitro is inhibited by phosphorylation, due to downregulation of the
association between Cdc25 and GTP-bound Ras2 (Dong and Bai 2011; Jian et al.
2010). Based on these data, it was suggested that PKA causes negative feedback
regulation on cAMP synthesis through phosphorylation of Cdc25 (Jian et al. 2010).
Putative phosphorylation sites in Cdc25 have been eliminated, and multiple
truncations of the protein were made with various effects on the basal cAMP level
or on glucose-induced cAMP signaling, but in all cases these changes were limited
and never even approached the huge increase in cAMP as observed in Tpk-
attenuated strains (Schomerus et al. 1990; van Aelst et al. 1990, 1991).

The low-affinity cAMP phosphodiesterase, Pdel, was shown to have a specific
function in downregulating glucose-induced cAMP signaling, whereas the high-
affinity cAMP phosphodiesterase, Pde2, controls the basal cAMP level in the cell.
Pdel is a target of PKA, and inactivation of its PKA phosphorylation site, Ser252,
caused a higher glucose-induced cAMP signal (Ma et al. 1999). Pde2 is also
regulated by PKA (Hu et al. 2010). The half-life of Pde2 seems to be increased in
strains growing on glucose or strains with a high PKA phenotype. Pde2 locali-
zation in these strains is mainly in the nucleus. In contrast, in derepressed cells or
strains with an attenuated PKA phenotype, Pde2 protein levels are lower and it is
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distributed over the nucleus and cytoplasm. Neither mutagenesis of the PKA
phosphorylation site in Pdel nor mutagenesis of any other putative target of PKA
negative feedback regulation has resulted in a strain with equally high cAMP
hyperaccumulation as in a tpk-attenuated strain. This seems to indicate that the
main target of PKA negative feedback regulation has not been identified yet or that
there are multiple parallel targets.

Post-translational targets of PKA in storage carbohydrate metabolism and
glycolysis The first cellular target of the cAMP-PKA pathway identified was
storage carbohydrate metabolism. Yeast has two storage carbohydrates, glycogen
and trehalose, of which the second also serves as a stress protectant sugar. Tre-
halose appears most important for long-term survival in stationary phase cells and
likely also in ascospores since these are devoid of glycogen (Thevelein 1984b).
Addition of glucose to derepressed yeast cells, i.e., cells growing on a nonfer-
mentable carbon source, glucose-starved stationary phase cells or ascospores,
causes rapid mobilization of trehalose and glycogen, which is mediated by acti-
vation of the PKA pathway. Neutral trehalase was probably the first PKA target
identified in yeast. It is within a few minutes activated after glucose addition to
glucose-deprived cells (van der Plaat 1974), which is due to phosphorylation by
PKA on several sites of the enzyme and binding of 14-3-3 proteins to the phos-
phorylated sites (Schepers et al. 2012; App and Holzer 1989). Mutants with
reduced or constitutively enhanced activation of PKA show similarly reduced or
constitutively elevated trehalase activity (Hirimburegama et al. 1992; Durnez et al.
1994; Giots et al. 2003; Mbonyi et al. 1990; Thevelein and Beullens 1985; Van
Nuland et al. 2006). Glycogen synthase is downregulated by phosphorylation,
while glycogen phosphorylase is activated by phosphorylation. Although it is well
established that PKA activity in vivo is inversely correlated with the glycogen
level and that both enzymes are phosphorylated by PKA in vitro, the precise
contribution of direct phosphorylation by PKA of these enzymes is not very clear
(Francois and Hers 1988; Hardy and Roach 1993; Francois and Parrou 2001;
Wilson et al. 2010).

A second well-characterized target activated by PKA is 6-phosphofructo-2-
kinase, which synthesizes fructose-2,6-bisphosphate, an allosteric activator of
phosphofructokinase 1 and allosteric inhibitor of fructose-1,6-bisphosphatase
(Dihazi et al. 2003; Noda et al. 1984). Fructose-1,6-bisphosphatase is also directly
inactivated through phosphorylation by PKA (Pohlig and Holzer 1985). Through
these mechanisms, activation of PKA stimulates glycolysis and fermentation,
while it inhibits gluconeogenesis. Additional stimulation of glycolysis occurs
through phosphorylation of pyruvate kinase (Cytrynska et al. 2001; Portela et al.
2006). This fits with the conclusion that fermentatively growing cells have high
PKA activity while respiratively growing cells have low PKA activity.

Transcription factors as direct and indirect targets of PKA PKA has dramatic
effects on the expression of a wide variety of genes involved in energy metabo-
lism, cell cycle progression, stress response, ribosomal biogenesis and accumu-
lation of the storage carbohydrate glycogen, and the storage and stress protectant
sugar trehalose (Boy-Marcotte et al. 1998; Broach and Deschenes 1990; Ptacek
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et al. 2005; Smith et al. 1998; Thevelein 1994). Ninety percentage of the
transcriptional remodeling of the cell in response to glucose is mediated via the
G-proteins Rasl, Ras2, and Gpa2, which act in a redundant manner through
activation of the cAMP-PKA pathway (Wang et al. 2004).

Since PKA activity is high in cells growing on glucose or other rapidly fer-
mented sugars, i.e., glucose-repressed cells, and it is low in cells growing on
nonfermentable carbon sources or glucose-starved, i.e., glucose-derepressed cells,
there has initially been confusion between the function of the main glucose
repression pathway and the PKA pathway in repression of transcription. Initially,
the genes regulated by both pathways appeared to be very similar. The distinction
between the two sets of transcription targets, however, can be made based on the
fact that the main glucose repression pathway is only regulated by glucose or
related rapidly fermented sugars, whereas the PKA pathway is also regulated by all
other essential nutrients. Hence, when yeast cells are starved on a glucose-con-
taining medium for another essential nutrient, e.g., nitrogen or phosphate, the main
glucose repression pathway will remain active and the cells glucose repressed as
long as there is a sufficient level of glucose in the medium. The PKA pathway, on
the other hand, will be downregulated when the cells enter stationary phase and its
target genes therefore will either no longer be repressed or induced. This does not
preclude that the expression of some genes, like GSY2, encoding glycogen syn-
thase, is regulated both by the main glucose repression and the PKA pathway
(Wilson et al. 2010).

PKA controls the transcription factors Msn2, Msn4, and Gisl by direct phos-
phorylation but also through control of protein kinases Rim15 and Yak1. Msn2 and
Msn4 mediate the induction of a set of stress responsive genes, which contain
so-called STRE elements (STress Response Element) in their promoters
(Boy-Marcotte et al. 1998; Estruch and Carlson 1993; Martinez-Pastor et al. 1996;
Schmitt and McEntee 1996; Smith et al. 1998). The STRE element consists of a
pentameric core of CCCCT (Wieser et al. 1991). Glucose-induced activation of
PKA triggers phosphorylation of Msn2 and Msn4, which blocks their translocation
toward the nucleus and in this way inhibits targeted gene expression. As a result,
high PKA activity counteracts the stress response and thus prevents establishment
of high stress tolerance in yeast cells (Gorner et al. 1998, 2002). Deletion of both
Msn2 and Msn4 suppresses the lethality caused by inactivation of the cAMP-PKA
pathway, e.g., it can rescue a tpk-null strain or a raslA ras2A strain (Smith et al.
1998), which reflects the importance of Msn2/Msn4-dependent targets for control
of cell proliferation.

The Gisl transcription factor supports expression of another set of genes
through the PDS (Post-Diauxic Shift) element T(T/A)AGGGAT in their promoter
(Pedruzzi et al. 2000; Zhang et al. 2009). These genes are expressed during the
diauxic shift, and their regulation is not dependent on Msn2 or on Msn4 (Boy-
Marcotte et al. 1998). However, most genes containing the PDS consensus
sequence also contain one or more STRE consensus sequences.

The Rim15 and Yakl protein kinases are positive effectors of gene expression
and regulate the activity of the transcription factors Msn2, Msn4, and Gisl



2 Glucose Sensing and Signaling 37

(Garrett and Broach 1989; Garrett et al. 1991; Reinders et al. 1998). Rim15 is a
glucose-repressible protein kinase (Vidan and Mitchell 1997) that is inhibited by
PKA via direct phosphorylation. The deletion of RIM15 can also suppress the
lethality caused by the loss of PKA activity (Reinders et al. 1998). This protein
acts as an activator of STRE-controlled gene expression during entry into sta-
tionary phase (Gg). The induction of genes during the diauxic shift via Rim15 is
almost entirely mediated via the Msn2, Msn4, and Gisl transcription factors
(Cameroni et al. 2004; Pedruzzi et al. 2000; Reinders et al. 1998). Yakl and PKA
have an antagonistic effect on cell cycle progression through G; (Garrett and
Broach 1989; Garrett et al. 1991). Expression of the protein kinase Yakl is con-
trolled in a Msn2/Msn4-dependent manner (Smith et al. 1998). The deletion of
YAK]I rescues lethal PKA deletion, i.e., it renders a #pk-null strain viable (Garrett
and Broach 1989) and the activation of Yakl is directly counteracted by PKA
phosphorylation (Lee et al. 2008). Yakl in turn can activate Msn2 by direct
phosphorylation and in this way provides a positive feedback loop upon glucose
limitation (Lee et al. 2008). Nuclear localization of Yakl is promoted by glucose
availability, while glucose limitation causes phosphorylation of Pop2, a substrate
of the Yakl protein kinase, and a regulator of transcription of many genes (Moriya
et al. 2001). In addition, upon glucose starvation, Bcy1 is phosphorylated by Yakl1
and restricted to the cytoplasm (Griffioen et al. 2001; Werner-Washburne et al.
1991). PKA thus counteracts stationary phase and stress response-related gene
expression in at least two ways, by phosphorylation of the transcription factors and
by phosphorylation of protein kinases required for proper activity of the same
transcription factors.

PKA also plays a role in the transcriptional induction of genes upon addition of
glucose. This has been investigated most intensively for the glucose-induced
upshift in expression of the ribosomal protein genes (Herruer et al. 1987; Griffioen
et al. 1994; Kraakman et al. 1993). In general, expression of ribosomal protein
genes is strongly correlated with the growth rate of the cells. The glucose-induced
upshift was claimed not to involve cAMP signaling. PKA was shown to promote
expression of the ribosomal protein genes through the transcription factor Sfpl.
Under optimal growth conditions, Sfpl is localized in the nucleus, bound to the
promoters of ribosomal protein genes, and helps promote ribosomal protein gene
expression. When glucose gets depleted, Sfpl is released from ribosomal protein
gene promoters and leaves the nucleus, resulting in downregulation of ribosomal
protein gene expression (Marion et al. 2004).

Although it has been known for a long time that inactivation of the Ras-cAMP-
PKA pathway causes arrest in the G, phase of the cell cycle and permanent entry
into Gy, the underlying mechanism is not well understood. Recent work has shown
that Whi3, a negative regulator of the G; cyclins, is inhibited through phosphor-
ylation by PKA on Ser’®®. Phosphorylation of Whi3 by PKA leads to decreased
interaction with CLN3 G cyclin mRNA and is required for the promotion of G,/S
progression, implicating Whi3 in PKA regulation of cell cycle control (Mizunuma
et al. 2013).
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2.3.6 The PKA-Related Protein Kinase Sch9

The Sch9 protein kinase was originally discovered as a multicopy suppressor of
lethality caused by inactivation of the cAMP-PKA pathways, i.e., as a suppressor of
a cdc25" strain (Toda et al. 1988). Although much new information on Sch9 has
been obtained since then, including evidence for requirement of Sch9 in different
nutrient signaling processes (Zaman et al. 2008), its precise role in nutrient sig-
naling remains enigmatic. Sch9 is a serine/threonine kinase and is part of the AGC
kinase family (including protein kinase A, G and C). The sequence of Sch9 shows
high similarity with other AGC protein kinases like Tpkl, 2, and 3 (Toda et al.
1988). Overexpression of SCH9 also suppresses other lethal PKA mutations like
the tpk triple deletion strain, cyrlA or rasIA ras2A. This is probably due to the fact
that Sch9 regulates a similar set of genes as the Ras-cAMP-PKA pathway
(Jorgensen et al. 2002). For example, overexpression of SCH9 induces expression
of ribosomal protein genes and represses genes involved in carboxylic acid
metabolism (Zaman et al. 2008). Sch9 affects the PKA pathway since its deletion
causes increased PKA activity in derepressed cells (Crauwels et al. 1997), which is
probably mediated by controlling the localization and phosphorylation of Beyl,
the regulatory subunit of PKA. In repressed cells, Bey1 is almost entirely localized
in the nucleus. However, when yeast is grown on nonfermentable carbon sources,
Bceyl is observed both in the nucleus and in the cytoplasm (Griffioen et al. 2000,
2001). Deletion of SCH9 causes constitutive nuclear localization of Bcyl, even in
cells growing on glycerol (Zhang et al. 2011; Zhang and Gao 2012). Also the
feedback regulation of Cdc25 by PKA phosphorylation seems to be controlled by
Sch9 (Zhang et al. 2011). Although these studies provided evidence for direct
involvement of Sch9 in control of PKA, other studies indicated that PKA and Sch9
also work in parallel, with either the same or different effects on specific pheno-
types (Roosen et al. 2005). Sch9 also directly phosphorylates Rim15, which causes
its inhibition by preventing its nuclear accumulation. Proper entrance into Gg
requires release of both PKA-mediated inhibition of its protein kinase activity and
Sch9-mediated inhibition of its nuclear accumulation (Pedruzzi et al. 2003; Wanke
et al. 2008).

Sch9 itself is a phosphoprotein, and its phosphorylation state is dramatically
decreased upon carbon, nitrogen, and phosphate starvation. It has been shown that
the rapamycin-sensitive, nutrient-responsive TORC1 (target of rapamycin
complex 1) protein kinase causes activation of Sch9 by direct phosphorylation of
its C-terminal part when nutrients are available (Urban et al. 2007). This activation
leads to enhanced expression of ribosomal protein genes, stimulates ribosome
biogenesis and translation initiation, and prevents entry into the Gy phase (Urban
et al. 2007; Huber et al. 2009, 2011). Sch9 is also phosphorylated and activated by
the Snfl protein kinase complex (Lu et al. 2011). Also the Pkh1 and Pkh2 protein
kinases, which are involved in nutrient and stress signaling, are able to phos-
phorylate Sch9 (Roelants et al. 2004). Most likely, there are also other yet
unknown kinases involved in the phosphorylation and regulation of Sch9.
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2.4 The Main Glucose Repression Pathway

Another major regulator of cellular homeostasis in yeast carbon metabolism is the
main glucose repression pathway. This pathway is responsible for the downreg-
ulation of respiration and the utilization of alternative sugars in the presence of
glucose or related fermentable sugars, like fructose and mannose. In a typical
aerobic yeast culture on glucose, the yeast will first grow rapidly by fermentation
on the glucose, a phase in which respiration is repressed and ethanol accumulated.
In this phase, the main glucose repression pathway is active and the cells are said
to be glucose repressed. When the glucose concentration drops to a low level, the
cells show a transient growth arrest, called diauxic shift, during which the enzymes
for respiration and utilization of ethanol are being derepressed. Subsequently, the
derepressed cells start to consume the ethanol utilizing respiration. In this phase,
they grow much more slowly than during the first fermentation phase. When the
ethanol is depleted, the cells enter stationary phase and remain derepressed. In this
phase, they utilize storage carbohydrates (trehalose and glycogen) with respiration.

The Snfl protein kinase is a major player in the main glucose repression
pathway. It is an ortholog of the AMPK kinase family in mammalian cells. Snfl
acts in the sensing of glucose limitation (less than +20 mM) and allows the cells to
grow on less-preferred sugars, like sucrose and galactose, and on nonfermentable
carbon sources, like ethanol and glycerol (Hedbacker and Carlson 2008; Zaman
et al. 2008). Snfl stands for “Sucrose Non Fermenting,” a name allocated to the
snfl mutant strain since it was unable to ferment sucrose but still able to ferment
glucose (Carlson et al. 1981). The snfl mutant showed a defect in the expression of
SUC2, which encodes invertase, an enzyme that catalyzes the conversion of
sucrose into glucose and fructose (Neigeborn and Carlson 1984). The snf4 mutant
had the same phenotype and was also discovered in a screen for genes affecting the
regulation of SUC2 gene expression (Neigeborn and Carlson 1984). Subsequent
work showed that Snfl is part of a serine/threonine protein kinase complex with a
heterotrimeric structure: it contains one catalytic o subunit (encoded by SNFI), one
of three B subunits (encoded by SIPI, SIP2, and GAL83), and one regulatory y
subunit (encoded by SNF4) (Celenza and Carlson 1984, 1986).

The Snfl protein kinase complex is regulated in different ways (Fig. 2.3).
Activation of Snfl occurs upon glucose limitation through phosphorylation by
upstream protein kinases, release of autoinhibition by Snf4, and through control of
its subcellular localization, which is regulated by the B subunits (Celenza et al.
1989; Celenza and Carlson 1989; Jiang and Carlson 1996; Leech et al. 2003). Three
protein kinases with related kinase domains, Sakl, Elm1, and Tos3, activate Snfl
by phosphorylation of Thr*'®. These kinases display high similarity and exert
overlapping functions, so that abolishment of Snfl activity in vivo is only observed
in the triple mutant (Hong et al. 2003; Sutherland et al. 2003). The three upstream
protein kinases are not affected by a drop in the external glucose level (Rubenstein
et al. 2008), and glucose sensing for downregulation of Snfl must therefore be
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Fig. 2.3 The main glucose repression pathway in S. cerevisiae. In the inactive state, the
regulatory domain (RD) of Snfl covers the kinase domain of the catalytic domain (KD) thereby
autoinhibiting it. In the absence of glucose, Snf4 can counteract the inhibition thereby opening up
the complex. This open complex is phosphorylated by the redundant kinases Sakl, Elm1, and
Tos3. The open phosphorylated Snfl/Snf4 complex is the active state and phosphorylates
downstream targets. Upon glucose addition, the Snfl complex is dephosphorylated by the Protein
Phosphatase 1 (PP1) catalytic subunit Glc7, as controlled by its regulatory subunit Regl. Glucose
phosphorylation, possibly through activation of PKA, is probably responsible for PP1 activation.
Active Snfl complex is localized by its  subunits (Sipl, Sip2, and Gal83). Sipl localizes the
Snfl complex toward the vacuole, Sip2 keeps the Snfl complex in the cytoplasm, and Gal83 (the
most abundant ) translocates the Snfl complex toward the nucleus. In the nucleus, Snfl
phosphorylates Migl, thereby inhibiting its repression of many target genes. Snfl also
phosphorylates the transcription factors Sip4 and Cat8 causing their activation
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mediated by another mechanism. The activity of Snfl is downregulated by
dephosphorylation, mediated by Protein Phosphatase 1 (PP1). The catalytic subunit
of this enzyme is encoded by GLC?7. It has multiple regulatory subunits that target
the catalytic domain to specific substrates, of which the Regl regulatory subunit
plays a role in the downregulation of Snfl and thus in control of the main glucose
repression pathway (Feng et al. 1991; Tu and Carlson 1995; Tu et al. 1996). In a
regl A mutant, Snfl is constitutively phosphorylated and active (McCartney and
Schmidt 2001).

The control of Snfl activity via phosphorylation/dephosphorylation is tightly
connected with a second way of regulation, which is mediated by Snf4, the y
subunit of the Snfl complex. Interaction between Snfl and Snf4 is regulated by
glucose availability. When glucose levels are low, Snfl is phosphorylated on
Thr*'® and is then able to interact with Snf4. This leads to an open and active
conformation of the complex, and thereby releases the autoinhibition caused by the
regulatory domain of Snfl (Celenza and Carlson 1989; Jiang and Carlson 1996;
Estruch et al. 1992; Ludin et al. 1998). The active Snfl kinase complex phos-
phorylates Regl, thereby stabilizing the interaction between Snfl and Regl-Glc7
(Sanz et al. 2000). Upon glucose addition, Glc7 dephosphorylates Regl and
subsequently dephosphorylates Snfl, causing its inactivation. The dephosphoryl-
ation of Regl by Glc7 seems to require Hxk2 activity (Sanz et al. 2000). Deletion
of HXK?2 leads to an Snfl kinase complex that is trapped in the active confor-
mation. The Axk2 mutant lacks glucose repression, and overexpression of REGI
suppresses this defect (Sanz et al. 2000). The dephosphorylation of the Snfl
complex seems to stimulate its conversion from an open, active conformation to a
closed, inactive autoinhibitory conformation (Ludin et al. 1998). The autoinhibi-
tory state of the complex is thus restored by the dephosphorylation of Snfl by
Glc7. New evidence has shown that Regl can also bind to Snfl independently of
Glc7 (Elbing et al. 2006), and binding of Regl to Snfl seems to use the same site
in Regl as binding of Glc7 to Regl (Tabba et al. 2010), suggesting competition
between the binding of Glc7 and Snfl with Regl.

Recent studies have identified Sit4 as a second phosphatase involved in the
deactivation of Snfl by dephosphorylation (Ruiz et al. 2011). The intracellular
ADP concentration is also involved in the regulation of Snfl. Increased concen-
trations of ADP protect Snfl from dephosphorylation by binding to Snf4
(Chandrashekarappa et al. 2011; Mayer et al. 2011). This contrasts with regulation
of its mammalian homolog, which is protected from dephosphorylation by both
high AMP and ADP levels (Davies et al. 1995; Xiao et al. 2011).

How glucose is sensed for regulation of the main glucose repression pathway has
remained enigmatic in spite of the many detailed studies of this pathway. Also the
discovery of the three upstream kinases of Snfl did not bring an answer to
this question, since they do not appear to be regulated by glucose availability
(Rubenstein et al. 2008). All evidence, on the other hand, points to regulation of
Snfl dephosphorylation by glucose availability. Recent work may finally have
brought an answer to this question. It revealed that addition of glucose to dere-
pressed yeast cells triggers a rapid increase in the intrinsic activity of the PP1
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protein phosphatase and that this activation depends on the regulatory subunits
Regl and Shpl. Deletion of Shpl also caused strong derepression of the invertase
gene SUC?2. Rapid glucose-induced activation of PP1 was dependent on activation
of the PKA pathway (Castermans et al. 2012). There has been other evidence for
interaction between the PKA pathway and the main glucose repression pathway.
The deletion of IRAI, IRA2, or BCYI1, which causes constitutive activation of the
PKA pathway, causes reduced activation of the Snf1 kinase complex and suppresses
the slow-growth phenotype of a reg/ mutant. Conversely, downregulation of the
PKA pathway by deletion of GPRI caused elevated Snf1 kinase activation (Barrett
et al. 2012).

Finally, the activity of the Snfl complex is also regulated by control of its
intracellular localization as a function of glucose availability. When glucose
concentrations are high, Snfl and the three B subunits reside in the cytosol. Upon
glucose limitation, the different B subunits direct the Snfl kinase complex to
different locations within the cell. Gal83 is the most abundant B subunit and is
involved in the translocation of active Snfl toward the nucleus (Vincent et al.
2001; Hedbacker et al. 2004a). Sip1 is involved in localization toward the vacuolar
membrane, but in glucose-grown cells the maintenance of the cytosolic Sipl
localization is dependent on PKA activity (Hedbacker et al. 2004b). Sip2 is
required to keep the Snfl kinase complex in the cytoplasm (Vincent et al. 2001).

The activation of the Snfl kinase complex has multiple functions. The complex
can be translocated in a Gal83-mediated way toward the nucleus to affect the
expression of a set of genes involved in the metabolism of alternative carbon
sources, gluconeogenesis, respiration, transport, and meiosis (Hedbacker and
Carlson 2008; Schuller 2003; Zaman et al. 2009). This set of genes is only small
compared with the much more extensive changes in gene expression triggered by
the Ras-cAMP-PKA pathway. In addition, a large part of the genes repressed after
inactivation of Snfl is also repressed by activation of the Ras-cAMP-PKA path-
way (Zaman et al. 2009). This reflects the possible cooperation of PKA with the
Snfl kinase complex at least under certain conditions in affecting a similar set of
cellular functions (Thompson-Jaeger et al. 1991; Hubbard et al. 1992).

Migl is the main transcription factor downstream in the glucose repression
pathway (Nehlin et al. 1991; Nehlin and Ronne 1990). It is involved in glucose
repression of at least 90 different genes, mostly required for the metabolism of
alternative carbon sources (Klein et al. 1998; Lutfiyya et al. 1998). Snfl phos-
phorylates the Migl transcriptional repressor and thereby promotes its nuclear
export, causing derepression of Migl-controlled genes. Migl also recruits the
transcriptional co-repressor complex Ssn6-Tupl (Treitel and Carlson 1995). Hxk2
is translocated toward the nucleus in a Migl-dependent way and is part of the
Migl repressor complex (Ahuatzi et al. 2007). For interaction between Migl and
Hxk2, the serine at position 311 of Migl seems to be important. This site is the
major Snfl phosphorylation site and promotes nuclear export of Migl after
phosphorylation. Hxk2 binds to this site thereby inhibiting Snfl-dependent
phosphorylation of Migl (Ahuatzi et al. 2007).
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Snfl also positively regulates the transcriptional activators Cat8 and Sip4
(Lesage et al. 1996; Rahner et al. 1999; Hiesinger et al. 2001). These two tran-
scriptional activators bind specifically to carbon source responsive elements
(CSRE) under glucose-limiting conditions (Vincent and Carlson 1998). When
activated, they induce the expression of genes involved in gluconeogenesis, res-
piration, and the glyoxylate cycle (Santangelo 2006). SIP4 has a CSRE element in
its promoter and is expressed upon activation of Cat8 by Snfl phosphorylation
(Vincent and Carlson 1998). The expression of CATS in turn, is repressed by Migl
(Hedges et al. 1995; Randez-Gil et al. 1997). Besides regulating gene transcription,
Snfl also regulates through phosphorylation proteins involved in fatty acid
metabolism, carbohydrate storage, and transport (Hedbacker and Carlson 2008).
For instance, Snfl phosphorylates and inactivates acetyl-CoA carboxylase (Accl).
This results in blocked fatty acid biosynthesis under glucose-limiting conditions
(Woods et al. 1994).

2.5 Conclusions

The exquisite preference of the yeast S. cerevisiae for glucose as carbon source is
reflected in the multiple, sophisticated mechanisms that it has developed to detect
the presence of glucose and to adjust various cellular functions accordingly. Two
types of plasma membrane glucose sensors have been discovered first in S. ce-
revisiae: transporter homologues, which have developed into nontransporting
glucose sensors, and a glucose-sensing GPCR. The concerted action of extracel-
lular and intracellular glucose sensing has also been demonstrated and elucidated
for the first time in S. cerevisiae. The Snfl protein kinase has been discovered in
S. cerevisiae as a central element of a glucose signaling pathway and has served as
a model for investigation of the related AMP-activated kinase in other organisms.
Elucidation of the enigmatic role of Ras in yeast glucose signaling may have
important consequences for understanding aberrant glucose metabolism in tumor
cells. We predict that glucose regulation of major protein phosphatases will reveal
many novel and important aspects about glucose signaling and its interplay with
other signal transduction pathways and mechanisms of cellular regulation.
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