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Abstract. We put forward a general classification for a structural
description of the entanglement present in compound entities experi-
mentally violating Bell’s inequalities, making use of a new entanglement
scheme that we developed in [1]. Our scheme, although different from
the traditional one, is completely compatible with standard quantum
theory, and enables quantum modeling in complex Hilbert space for dif-
ferent types of situations. Namely, situations where entangled states and
product measurements appear (‘customary quantum modeling’), and sit-
uations where states and measurements and evolutions between measure-
ments are entangled (‘nonlocal box modeling’, ‘nonlocal non-marginal
box modeling’). The role played by Tsirelson’s bound and marginal dis-
tribution law is emphasized. Specific quantum models are worked out in
detail in complex Hilbert space within this new entanglement scheme.
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1 Introduction

Entanglement is one of the most intriguing aspects of quantum physics. It is
the feature that most neatly marked the departure from ordinary intuition and
common sense, on which classical physics rest. The structural and conceptual
novelties brought in by quantum entanglement were originally put forward by
John Bell in 1964. He proved that, if one introduces ‘reasonable assumptions
for physical theories’, one derives an inequality for the expectation values of
coincidence measurements performed on compound entities (‘Bell’s inequality’)
which does not hold in quantum theory [2]. In quantum physics, entanglement
is responsible for the violation of this inequality, which entails that quantum
particles share statistical correlations that cannot be described in a single clas-
sical Kolmogorovian probability framework [3–5]. Another amazing observation
was that entanglement, together with a number of other quantum features, such
as ‘contextuality’, ‘emergence’, ‘interference’ and ‘superposition’, also appears
outside the microscopic domain of quantum theory. These findings constituted
the beginning of a systematic and promising search for quantum structures and
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the employment of quantum-based models in domains where classical structures
prove to be problematical [6–18].

As for our own research, many years ago we already identified situations
in macroscopic physics which violate Bell’s inequalities [19–23]. One of these
macroscopic examples, the ‘connected vessels of water’, exhibits even a maximal
possible violation of Bell’s inequalities, i.e. more than the typical entangled spin
example in quantum physics. More recently, we performed a cognitive experiment
showing that a specific combination of concepts, The Animal Acts, violates Bell’s
inequalities [24–26]. These two situations present deep structural and conceptual
analogies which we analyze systematically in Ref. [1,27].

In the present paper, we put forward a classification that enables us to repre-
sent experimental situations of compound entities which violate Bell’s inequal-
ities identifying the quantum-theoretic modeling involved in these violations.
We show that a complete quantum-mechanical representation can be worked
out, and we prove that quantum entanglement not only appears on the level of
the states, but also on the level of the measurements. Indeed, we show that the
empirical data we collected on The Animal Acts (Sect. 2), as well as the situation
of the ‘connected vessels of water’ [27], can be modeled only when both states
and measurements are entangled. The existence of a quantum model for the
‘connected vessels of water’ was not a priori expected and constitutes an origi-
nal result. Our modeling scheme, although completely compatible with standard
quantum theory, is more general than the traditional one, because within this
traditional scheme certain ways in which subentities can be part of compound
entities have been overlooked. It is when the marginal probability law is vio-
lated that this shortcoming of the traditional entanglement scheme comes on
the surface, and hence some of the entanglement situations that we consider in
the present paper would not be possible to be modeled within the traditional
entanglement scheme.

Our classification gives rise to the following different types of situations
and entities: Type 1: Situations where Bell’s inequalities are violated within
‘Tsirelson’s bound’ [28] and the marginal distribution law holds (‘customary
quantum modeling’), (Sect. 3); Type 2: Situations where Bell’s inequalities are
violated within Tsirelson’s bound and the marginal distribution law is violated
(‘nonlocal non-marginal box modeling 1’), (Sect. 3). We recall that situations of
type 2 seem to be present in ‘real quantum spin experiments’. A reference to
the ‘experimental anomaly’ that, in our opinion, indicates the presence of entan-
gled measurements, occurs already in Alain Aspects PhD thesis [29,30]. Our
framework accommodates these situations too; Type 3: Situations where Bell’s
inequalities are violated beyond Tsirelson’s bound and the marginal distribution
law is violated (‘nonlocal non-marginal box modeling 2’), (Sect. 3); Type 4: Sit-
uations where Bell’s inequalities are violated beyond Tsirelson’s bound and the
marginal distribution law holds (‘nonlocal box modeling’), (Sect. 4).

Additionally to introducing the framework, we analyze in this paper the
hypothesis that ‘satisfying the marginal distribution law’ is merely a conse-
quence of extra symmetry being present in situations that contain full-type
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entanglement, e.g., situations of types 2 and 3. Whenever enough symmetry
is present, such that all the entanglement of the situation can be pushed into
the state, allowing a model with product measurements, and product unitary
transformations, the marginal law is satisfied. We give two examples, a cognitive
‘gedanken experiment’ violating Bell’s inequalities, which is a ‘variation adding
more symmetry’ to an example that was introduced in Ref. [23], and in this varia-
tion the marginal law is satisfied. We introduce in a similar way extra symmetry
in our ‘vessels of water’ example, to come to a variation where the marginal
law is satisfied. Both examples are isomorphic and realizations of the so-called
‘nonlocal box’, which is studied as a purely theoretical construct – no physical
realizations were found prior to the ones we present here – in the foundations of
quantum theory [31].

Let us state clearly, to avoid misunderstandings, that we use the naming
‘entanglement’ referring explicitly to the structure within the theory of quantum
physics that a modeling of experimental data take, if (i) these data are repre-
sented, following carefully the rules of standard quantum theory, in a complex
Hilbert space, and hence states, measurements, and evolutions, are presented
respectively by vectors (or density operators), self-adjoint operators, and unitary
operators in this Hilbert space; (ii) a situation of coincidence joint measurement
on a compound entity is considered, and the subentities are identified follow-
ing the tensor product rule of ‘compound entity description in quantum theory’
(iii) within this tensor product description of the compound entity entangle-
ment is identified, as ‘not being product’, whether it is for states (non- product
vectors), measurements (non-product self-adjoint operators), or transformations
(non-product unitary transformations).

2 Technical Aspects of Modeling Quantum Entanglement

To develop our new scheme for the study of entanglement, we will first introduce
some basic notions and results, which we developed in [1] in detail. The more
general nature of our scheme, as compared to the standard one, is that we
carefully analyse the different ways in which two entities can be subentities of
a compound entity. Indeed, entanglement depends crucially on these different
possible way of ‘being a subentity’, and this has not been recognised sufficiently
in the standard scheme. Let us also remark explicitly that, although our scheme
is more general than the standard one, it is completely compatible with standard
quantum theory. Hence, the limitations and simplifications as compared to our
scheme of the standard one are only linked to an overlooking of the more subtle
ways in which subentities can place themselves within a compound entity in
situations described by quantum theory.

First we introduce the notions of ‘product state’, ‘product measurement’ and
‘product dynamical evolution’ as we will use it in our new entanglement scheme.
For this we consider the general form of an isomorphism I : C4 → C

2 ⊗ C
2, by

linking the elements of an ON basis {|x1〉, |x2〉, |x3〉, |x4〉} of C4 to the elements
{|c1〉⊗ |d1〉, |c1〉⊗ |d2〉, |c2〉⊗ |d1〉, |c2〉⊗ |d2〉} of the type of ON basis of C2 ⊗C

2
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where {|c1〉, |c2〉} and {|d1〉, |d2〉} are ON bases of C2 each

I|x1〉 = |c1〉⊗|d1〉, I|x2〉 = |c1〉⊗|d2〉, I|x3〉 = |c2〉⊗|d1〉, I|x4〉 = |c2〉⊗|d2〉 (1)

Definition 1. A state p represented by the unit vector |p〉 ∈ C
4 is a ‘product

state’, with respect to I, if there exists two states pa and pb, represented by the
unit vectors |pa〉 ∈ C

2 and |pb〉 ∈ C
2, respectively, such that I|p〉 = |pa〉 ⊗ |pb〉.

Otherwise, p is an ‘entangled state’ with respect to I.

Definition 2. A measurement e represented by a self-adjoint operator E in C
4

is a ‘product measurement’, with respect to I, if there exists measurements ea

and eb, represented by the self-adjoint operators Ea and Eb, respectively, in C
2

such that IEI−1 = Ea ⊗ Eb. Otherwise, e is an ‘entangled measurement’ with
respect to I.

Definition 3. A dynamical evolution u represented by a unitary operator U in
C

4 is a ‘product evolution’, with respect to I, if there exists dynamical evolutions
ua and ub, represented by the unitary operators Ua and Ub, respectively, in C

2

such that IUI−1 = Ua ⊗Ub. Otherwise, u is an ‘entangled evolution’ with respect
to I.

Remark that the notion of product states, measurements and evolutions, are
defined with respect to the considered isomorphism between I : C4 → C

2 ⊗ C
2,

which expresses already the new aspect of our entanglement scheme, making
entanglement depending on ‘how sub entities are part of the compound entity’.
The following theorems can then be proved.

Theorem 1. The spectral family of a self-adjoint operator E = I−1Ea ⊗EbI rep-
resenting a product measurement with respect to I, has the form {I−1|a1〉〈a1| ⊗
|b1〉〈b1|I, I−1|a1〉〈a1|⊗ |b2〉〈b2|I, I−1|a2〉〈a2|⊗ |b1〉〈b1|I, I−1|a2〉〈a2|⊗ |b2〉〈b2|I},
where {|a1〉〈a1|, |a2〉〈a2|} is a spectral family of Ea and {|b1〉〈b1|, |b2〉〈b2|} is a
spectral family of Eb.

Theorem 1 shows that the spectral family of a product measurement is made up
of product orthogonal projection operators.

Theorem 2. Let p be a product state represented by the vector |p〉 = I−1|pa〉 ⊗
|pb〉 with respect to the isomorphism I, and e a product measurement represented
by the self-adjoint operator E = IEa ⊗ EbI

−1 with respect to the same I. Let
{|y1〉, |y2〉, |y3〉, |y4〉} be the ON basis of eigenvectors of E, and {|a1〉, |a2〉} and
{|b1〉, |b2〉} the ON bases of eigenvectors of Ea and Eb respectively. Then, we
have p(A1) + p(A2) = p(B1) + p(B2) = 1, and p(Y1) = p(A1)p(B1), p(Y2) =
p(A1)p(B2), p(Y3) = p(A2)p(B1) and p(Y4) = p(A2)p(B2), where {p(Y1), p(Y2),
p(Y3), p(Y4)} are the probabilities to collapse to states {|y1〉, |y2〉, |y3〉, |y4〉}, and
{p(A1), p(A2)} and {p(B1), p(B2)} are the probabilities to collapse to states {|a1〉,
|a2〉} and {|b1〉, |b2〉} respectively.

With this theorem we prove that if there exists an isomorphism I between C
4

and C
2 ⊗C

2 such that state and measurement are both product with respect to
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this isomorphism, then the probabilities factorize. A consequence is that in case
the probabilities do not factorize the theorem is not satisfied. This means that
there does not exist an isomorphism between C

4 and C
2 ⊗ C

2 such that both
state and measurement are product with respect to this isomorphism, and there
is genuine entanglement. The above theorem however does not yet prove where
this entanglement is located, and how it is structured. The next theorems tell
us more about this.

We consider now the coincidence measurements AB, AB′, A′B and A′B′

from a typical Bell-type experimental setting. For each measurement we con-
sider the ON bases of its eigenvectors in C

4. For the measurement AB this
gives rise to the unit vectors {|ab11〉, |ab12〉, |ab21〉, |ab22〉}, for AB′ to the vectors
{|ab′

11〉, |ab′
12〉, |ab′

21〉, |ab′
22〉}, for A′B to the unit vectors {|a′b11〉, |a′b12〉, |a′b21〉,

|a′b22〉} and for A′B′ to the vectors {|a′b′
11〉, |a′b′

12〉, |a′b′
21〉, |a′b′

22〉}. We intro-
duce the dynamical evolutions uAB′AB , . . . , represented by the unitary operators
UAB′AB ,. . . , connecting the different coincidence experiments for any combina-
tion of them, i.e. UAB′AB : C4 → C

4, such that

|ab11〉 �→ |ab′
11〉, |ab12〉 �→ |ab′

12〉, |ab21〉 �→ |ab′
21〉, |ab22〉 �→ |ab′

22〉 (2)

Theorem 3. There exists a isomorphism between C
4 and C

2⊗C
2 with respect to

which both measurements AB and AB′ are product measurements iff there exists
an isomorphism between C

4 and C
2⊗C

2 with respect to which the dynamical evo-
lution uAB′AB is a product evolution and one of the measurements is a product
measurement. In this case the marginal law is satisfied for the probabilities con-
nected to these measurements, i.e. p(A1, B1)+p(A1, B2) = p(A1, B

′
1)+p(A1, B

′
2).

The above theorem introduces an essential deviation of the customary entan-
glement scheme, which we had to consider as a consequence of our experimen-
tal data on the concept combination The Animal Acts. Indeed, considering our
description of the situation in Sect. 3, we have P (A1, B1) + p(A1, B2) = 0.679 �=
0.618 = p(A1, B

′
1)+p(A1, B

′
2), which shows that the marginal law is not satisfied

for our data. Hence, for the our experimental data on The Animal Acts there
does not exist an isomorphism between C

4 and C
2 ⊗C

2, such that with respect
to this isomorphism all measurements that we performed in our experiment can
be considered to be product measurements. It right away shows that we will not
able to model our data within the customary entanglement scheme. We could
have expected this, since indeed, in this customary scheme all considered mea-
surements are product measurements, and entanglement only appears in the
state of the compound entity. We refer to Ref. [1] for proof of Theorems. 1–3.

Let us summarise the structural situation. Entanglement is a property
attributed to states, measurements, or unitary transformations, when looked at
the tensor product identification (isomorphism) with the Hilbert space describ-
ing the compound entity. The ‘physics’ of the compound entity is expressed in
this one Hilbert space describing directly the compound entity, which makes
entanglement itself dependent on ‘the way in which subentities of the compound
entity are attempted to be identified’. For one state and one compound measure-
ments, the identification between tensor product and compound entity Hilbert
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space can always be chosen such that the measurement appears as a product,
and all the entanglement is pushed in the state. Theorem 3 shows that, when-
ever the marginal distribution law is violated, this can no longer be achieved,
and entanglement is also present in measurements and the dynamical transfor-
mations connecting these measurements. In [1] we show that in case different iso-
morphisms of identification are considered, an entanglement scheme with again
product measurements and product dynamical transformations is possible. But
the price to pay is that the entangled state cannot be presented any longer in
a unique way within the tensor product space, i.e. a different representation is
needed for each coincidence experiment context. All this of course related to
the marginal law for the probabilities connected to these different coincidence
measurements not being satisfied. A direct consequence of the above is that, if a
set of experimental data violate both Bell’s inequalities and the marginal distri-
bution law, it is impossible to work out a quantum-mechanical representation in
a fixed Hilbert space C

2 ⊗C
2 which satisfies the data and where only the initial

state is entangled while all measurements are products. We will make this more
explicit in the next sections.

3 Examples of Systems Entailing Entanglement

The first example we shortly present is that of a macroscopic entity violating
Bell’s inequalities in exactly the same way as a pair of spin-1/2 quantum particles
in the singlet spin state when faraway spin measurements are performed [22]. We
only sketch this example here to make our zoo collection as complete as possible,
and refer to [22,23] for a detailed presentation.

This mechanical entity simulates the singlet spin state of a pair of spin-1/2
quantum particles by means of two point particles P1 and P2 initially located
in the centers C1 and C2 of two separate unit spheres B1 and B2, respectively.
The centers C1 and C2 remain connected by a rigid but extendable rod, which
introduces correlations. We denote this state of the overall entity by ps. A mea-
surement A(a) is performed on P1 which consists in installing a piece of elastic
of 2 units of length between the diametrically opposite points −a and +a of B1.
At one point, the elastic breaks somewhere and P1 is drawn toward either +a
(outcome λA1 = +1) or −a (outcome λA2 = −1). Due to the connection, P2 is
drawn toward the opposite side of B2 as compared to P1. Now, an analogous
measurement B(b) is performed on P2 which consists in installing a piece of
elastic of 2 units of length between the two diametrically opposite points −b and
+b of B2. The particle P2 falls onto the elastic following the orthogonal path
and sticks there. Next the elastic breaks somewhere and drags P2 toward either
+b (outcome λB1 = +1) or −b (outcome λB2 = −1). To calculate the transition
probabilities, we assume there is a uniform probability of breaking on the elastics.
The single and coincidence probabilities coincide with the standard probabilities
for spin-1/2 quantum particles in the singlet spin state when spin measurements
are performed along directions a and b. In particular, the probabilities for the
coincidence counts λA1B1 = λA2B2 = +1 and λA1B2 = λA2B1 = −1 of the joint
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measurement AB(a, b) in the state ps are given by

p(ps, AB(a, b), λA1B1) = p(ps, AB(a, b), λA2B2) =
1
2

sin2 γ

2
(3)

p(ps, AB(a, b), λA1B2) = p(ps, AB(a, b), λA2B1) =
1
2

cos2
γ

2
(4)

respectively, where γ is the angle between a and b, in exact accordance with
the quantum-mechanical predictions. Furthermore, this model leads to the same
violation of Bell’s inequalities as standard quantum theory. Hence, the ‘connected
spheres model’ is structurally isomorphic to a standard quantum entity. This
means that it can be represented in the Hilbert space C

2 ⊗ C
2 in such a way

that its initial state is the singlet spin, i.e. a maximally entangled state, and the
measurements are products. Furthermore, the marginal distribution law holds
and Bell’s inequalities are violated within the Tsirelson’s bound 2

√
2, hence

the connected spheres model is an example of a ‘customary identified standard
quantum modeling’ in our theoretical framework.

The presence of entanglement in concept combination has recently also been
identified in a cognitive test [24–26] and subsequently improved by elaborating
a quantum Hilbert space modeling of it [1,27]. We analyze it in the light of our
new entanglement scheme exposed in Sect. 2. For a detailed description of the
conceptual entity, and the measurements considered, we refer to [27], Sec. 2.1, or
[1]. We consider the typical Bell inequality situation of four coincidence measure-
ments AB, AB′, A′B and A′B′, performed on the sentence The Animal Acts
as a conceptual combination of the concepts Animal and Acts. Measurements
consists of asking participants in the experiment to answer the question whether
a given exemplar ‘is a good example’ of the considered concept or conceptual
combination.

We had 81 subjects participating in our experiment. If we denote by p(A1, B1),
p(A1, B2), p(A2, B1), p(A2, B2) the probabilities for the different Bell-type situ-
ation choices, we find p(A1, B1) = 0.049, p(A1, B2) = 0.630, p(A2, B1) = 0.259,
p(A2, B2) = 0.062, p(A1, B

′
1) = 0.593, p(A1, B

′
2) = 0.025, p(A2, B

′
1) = 0.296,

p(A2, B
′
2) = 0.086, p(A′

1, B1) = 0.778, p(A′
1, B2) = 0.086, p(A′

2, B1) = 0.086,
p(A′

2, B2) = 0.049, p(A′
1, B

′
1) = 0.148, p(A′

1, B
′
2) = 0.086, p(A′

2, B
′
1) = 0.099,

p(A′
2, B

′
2) = 0.667, and the expectation values are E(A,B) = p(A1, B1) −

p(A1, B2)−p(A2, B1)+p(A2, B2) = −0.7778, E(A,B′) = p(A1, B
′
1)−p(A1, B

′
2)−

p(A2, B
′
1)+ p(A2, B

′
2) = 0.3580, E(A′, B) = p(A′

1, B1)− p(A′
1, B2)− p(A′

2, B1)+
p(A′

2, B2) = 0.6543, E(A′, B′) = p(A′
1, B

′
1)−p(A′

1, B
′
2)−p(A′

2, B
′
1)+p(A′

2, B
′
2) =

0.6296. Inserting them into the Clauser-Horne-Shimony-Holt (CHSH) version of
Bell’s inequality [32]

−2 ≤ E(A′, B′) + E(A′, B) + E(A,B′) − E(A,B) ≤ 2. (5)

we find E(A′, B′) + E(A′, B) + E(A,B′) − E(A,B) = 2.4197. This violation
proves the presence of entanglement in the conceptual situation considered.

The probabilities corresponding to the coincidence measurements cannot
be factorized, which means that a result stronger than the one in Theorem 2
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holds. For example, for the measurement AB, there do not exist real numbers
a1, a2, b1, b2 ∈ [0, 1], a1 +a2 = 1, b1 + b2 = 1, such that a1b1 = 0.05, a2b1 = 0.63,
a1b2 = 0.26 and a2b2 = 0.06. Indeed, supposing that such numbers do exist, from
a2b1 = 0.63 follows that (1 − a1)b1 = 0.63, and hence a1b1 = 1 − 0.63 = 0.37.
This is in contradiction with a1b1 = 0.05. It is also easy to verify that mar-
ginal law is not satisfied, for example p(A′

1, B1) + p(A′
1, B2) = 0.864 �= 0.234 =

p(A′
1, B

′
1) + p(A′

1, B
′
2). Following Theorem 3 a quantum representation where

only the state is entangled, while all measurements are products, does not exist.
But a representation which entails entangled measurements can be elaborated
[1,27]. In the quantum modeling we worked out, the state of The Animal Acts
is represented by a non-maximally entangled state, while all coincidence mea-
surements are entangled. Since the violation of the CHSH inequality we found
satisfies Tsirelson’s bound, this quantum modeling for the concept combination
The Animal Acts is an example of a ‘nonlocal non-marginal box modeling 1’.

Next we consider the ‘vessels of water’ example [19–21]. Two vessels VA

and VB are interconnected by a tube T , vessels and tube containing 20 l of
transparent water. The measurements A and B consist in siphons SA and SB

pouring out water from vessels VA and VB , respectively, and collecting the water
in reference vessels RA and RB, where the volume of collected water is measured.
If more than 10 l are collected for A or B, we put λA1 = +1 or λB1 = +1,
respectively, and if fewer than 10 l are collected for A or B, we put λA2 = −1
or λB2 = −1, respectively. Measurements A′ and B′ consist in taking a small
spoonful of water out of the left vessel and the right vessel, respectively, and
verifying whether the water is transparent. We have λA′

1
= +1 or λA′

2
= −1,

depending on whether the water in the left vessel turns out to be transparent
or not, and λB′

1
= +1 or λB′

2
= −1, depending on whether the water in the

right vessel turns out to be transparent or not. We put λA1B1 = λA2B2 = +1 if
λA1 = +1 and λB1 = +1 or λA2 = −1 and λB2 = −1, and λA1B2 = λA2B1 = −1
if λA1 = +1 and λB2 = −1 or λA2 = −1 and λB1 = +1, if the coincidence
measurement AB is performed. We proceed analogously for the outcomes of the
measurements AB′, A′B and A′B′. We can then define the expectation values
E(A,B), E(A,B′), E(A′, B) and E(A′, B′) associated with these coincidence
measurements. Since each vessel contains 10 l of transparent water, we find that
E(A,B) = −1, E(A′, B) = +1, E(A,B′) = +1 and E(A′, B′) = +1, which gives
E(A′, B′)+E(A′, B)+E(A,B′)−E(A,B) = +4. This is the maximal violation
of the CHSH inequality and it obviously exceeds Tsirelson’s bound. We further
have 0.5 = p(λA1B1)+p(λA1B2) �= p(λA1B′

1
)+p(λA1B′

2
) = 1, which shows that the

marginal distribution law is violated. In [27] we constructed a quantum model in
complex Hilbert space for the vessels of water situation, where the state p with
transparent water and the state q with non-transparent water are entangled, and
the measurement AB, since it has product states in its spectral decomposition,
is a product measurement (Theorem 1). Compatible with Theorem 3 we can see
that AB′, A′B and A′B′ are entangled measurements. Summarizing, we can say
that the ‘vessels of water’ situation is an example of a ‘nonlocal non-marginal
box modeling 2’.
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4 Nonlocal Boxes

We conclude this paper by giving two examples, the one physical and the other
cognitive, which maximally violate Bell’s inequalities, i.e. with value 4, but sat-
isfy the marginal distribution law. These examples are also inspired by the
macroscopic non-local box example worked out already in 2005 by Sven Aerts,
using a breakable elastic and well defined experiments on this elastic [33]. In
physics, a system that behaves in this way is called a ‘nonlocal box’ [31].

For the first example, we again consider the vessels of water and two mea-
surements for each side A and B. The first consists in using the siphon and
checking the water. If there are more than 10 l and the water is transparent
(λA1B1) or if there are fewer than 10 l and the water is not transparent (λA2B2),
the outcome of the first measurement is +1. In case there are fewer than 10 l and
the water is transparent λA2B1 , or if there are more than 10 l and the water is
not transparent λA1B2 , the outcome is −1. The second measurement consists in
taking out some water with a little spoon to see if it is transparent or not; if it
is transparent, the outcome is λA1B′

1
= λA2B′

2
= +1, and if it is not transparent,

the outcome is λA2B′
1

= λA1B′
2

= −1. The water is prepared in a mixed state
m of the states p (transparent water) and q (not transparent water) with equal
weights. Thus, m is represented by the density operator ρ = 0.5|p〉〈p|+0.5|q〉〈q|,
where |p〉 = |0,

√
0.5eiα, 0.5eiβ , 0〉 and |q〉 = |0,

√
0.5eiα,−0.5eiβ , 0〉 [27].

The coincidence measurement AB is represented by the ON set |rA1B1〉 =
|1, 0, 0, 0〉, |rA1B2〉 = |0, 1, 0, 0〉, |rA2B1〉 = |0, 0, 1, 0〉, |rA2B2〉 = |0, 0, 0, 1〉, which
gives rise to a self-adjoint operator

EAB =

⎛
⎜⎜⎝

λA1B1 0 0 0
0 λA1B2 0 0
0 0 λA2B1 0
0 0 0 λA2B2

⎞
⎟⎟⎠ (6)

Applying Lüders’ rule, we calculate the density operator representing the state
after AB. This gives

ρAB =
2∑

i,j=1

|rAiBj
〉〈rAiBj

|ρ|rAiBj
〉〈rAiBj

| = ρ (7)

as one can easily verify. This means that the nonselective measurement AB leaves
the state m unchanged or, equivalently, the marginal distribution law holds.

Measurement AB′ is represented by the ON set |rA1B′
1
〉=|0,

√
0.5eiα,

√
0.5eiβ ,

0〉, |rA1B′
2
〉 = |1, 0, 0, 0〉, |rA2B′

1
〉 = |0, 0, 0, 1〉, |rA2B′

2
〉 = |0,

√
0.5eiα,−√

0.5eiβ ,
0〉, which gives rise to a self-adjoint operator

EAB′ =

⎛
⎜⎜⎜⎝

λA1B′
2

0 0 0

0 0.5(λA1B′
1

+ λA2B′
2
) 0.5ei(α−β)(λA1B′

1
− λA2B′

2
) 0

0 0.5e−i(α−β)(λA1B′
1

− λA2B′
2
) 0.5(λA1B′

1
+ λA2B′

2
) 0

0 0 0 λA2B′
1

⎞
⎟⎟⎟⎠

(8)
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Applying Lüders’ rule, we calculate the density operator representing the state
oafter AB′, which gives

ρAB′ =
2∑

i,j=1

|rAiB′
j
〉〈rAiB′

j
|ρ|rAiB′

j
〉〈rAiB′

j
| = ρ (9)

Also in this case, the nonselective measurement AB′ leaves the state m
unchanged. The measurements A′B and A′B′ are analogous to AB′, hence the
marginal distribution law is always satisfied.

We now calculate the expectation values corresponding to the four measure-
ments above in the mixed state m and insert them into the CHSH inequality.
This gives

EAB =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ EAB′ = EA′B = EA′B′ =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ (10)

B = EA′B′ + EA′B + EAB′ − EAB =

⎛
⎜⎜⎝

−4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 −4

⎞
⎟⎟⎠ (11)

Hence, the CHSH inequality trρB = 4, which shows that Bell inequalities are
maximally violated in the mixed state m. This construction of a Hilbert space
modeling for the ‘connected vessels of water’ is new and was not expected when
the original example was conceived.

Next we look at the cognitive example. We consider the concept Cat and
two concrete exemplars of it, called Glimmer and Inkling, the names of two
brother cats that lived in our research center [23]. The concept Cat is abstractly
described by the state p. The experiments we consider are realizing physical
contexts that influence the collapse of the concept Cat to one of its exemplars,
or states, Glimmer or Inkling, inside the mind of a person being confronted with
the physical contexts. It is a ‘gedanken experiment’, in the sense that we put
forward plausible outcomes for it, taking into account the nature of the physical
contexts, and Liane, the owner of both cats, playing the role of the person. We
also suppose that Liane sometimes puts a collar with a little bell around the
necks of both cats, the probability of this happening being equal to 1/2. We also
suppose that if she does, she always puts them around the necks of both cats.

The measurement A consists in ‘Glimmer appearing in front of Liane as a
physical context’. We consider outcome λA1 to occur if Liane thinks of Glimmer
and there is a bell, or if she thinks of Inkling and there is no bell, while outcome
λA2 occurs if Liane thinks of Inkling and there is a bell, or if she thinks of
Glimmer and there is no bell. The measurement B consists in ‘Inkling appearing
in front of Liane as a physical context’. We consider outcome λB1 to occur if
Liane thinks of Inkling and there is a bell, or if she thinks of Glimmer and there
is no bell, while outcome λB2 occurs if Liane thinks of Glimmer and there is
a bell, or if she thinks of Inkling and there is no bell. Experiment A′ consists
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in ‘Inkling appearing in front of Liane as a physical context’, and outcome λA′
1

occurs if Inkling wears a bell, and outcome λA′
2
, if Inkling does not. Experiment

B′ consists in ‘Glimmer appearing in front of Liane as a physical context’, and
outcome λB′

1
occurs if Glimmer wears a bell, outcome λB′

1
, if Glimmer does not.

The measurement AB consists in both cats showing up as physical context.
Because of the symmetry of the situation, it is plausible to suppose probability
1/2 that Liane thinks of Glimmer and probability 1/2 that she thinks of Inkling,
however, they are mutually exclusive. Also, since both cats either wear bells or do
not wear bells, AB produces strict anti-correlation, probability 1/2 for outcome
λA1B2 and probability 1/2 for outcome λA2B1 . Hence p(λA1B2) = p(λA2B1) = 1/2
and p(λA1B1) = p(λA2B2) = 0, which gives E(A,B) = −1. The measurement
AB′ consists in Glimmer showing up as a physical context. This gives rise to
a perfect correlation, outcome λA1B′

1
or outcome λA2B′

2
, depending on whether

Glimmer wears a bell or not, hence both with probability 1/2. As a conse-
quence, we have p(λA1B′

1
) = p(λA2B′

2
) = 1/2 and p(λA1B′

2
) = p(λA2B′

1
) = 0, and

E(A,B′) = +1. The measurement A′B consists in Inkling showing up as a physi-
cal context, again giving rise to a perfect correlation, outcome λA′

1B1 or outcome
λA′

2B2 , depending on whether Inkling wears a bell or not, hence both with proba-
bility 1/2. This gives p(λA′

1B1) = p(λA′
2B2) = 1/2 and p(λA′

1B2) = p(λA′
2B1) = 0

and E(A′, B) = +1. The measurement A′B′ consists in both cats showing up as
physical context, giving rise to a perfect correlation, outcome λA′

1B′
1

or outcome
λA′

2B′
2
, depending on whether both wear bells or not, hence both with probabil-

ity 1/2. This gives p(λA′
1B′

1
) = p(λA′

2B′
2
) = 1/2 and p(λA′

1B′
2
) = p(λA′

2B′
1
) = 0

and E(A′, B′) = +1.
We find E(A′, B′)+E(A′, B)+E(A,B′)−E(A,B) = 4 in the CHSH inequal-

itiy. The marginal distribution law is satisfied here, because, e.g., p(λA1B1) +
p(λA1B2) = p(λA1B′

1
) + p(λA1B′

2
) = 1/2. It is easy to check that the marginal

distribution law globally holds in this case.
The two examples above are structurally isomorphic, i.e. one can provide

the same quantum Hilbert space model for both of them. Moreover, they are
realizations of what quantum foundations physicists call a ‘nonlocal box’, that
is, systems obeying the marginal distribution law but violating Bell’s inequalities
maximally [31]. Following our classification, we call this modeling a ‘nonlocal box
modeling’. The above examples show that it is possible to realise nonlocal boxes
in nature and elaborate a Hilbert space modeling for them, contrary to what is
usually believed in quantum foundation circles.
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