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Abstract. This paper explores a new technique for encoding structured
information into a semantic model, for the construction of vector rep-
resentations of words and sentences. As an illustrative application, we
use this technique to compose robust representations of words based on
sequences of letters, that are tolerant to changes such as transposition,
insertion and deletion of characters. Since these vectors are generated
from the written form or orthography of a word, we call them ‘ortho-
graphic vectors’. The representation of discrete letters in a continuous
vector space is an interesting example of a Generalized Quantum model,
and the process of generating semantic vectors for letters in a word is
mathematically similar to the derivation of orbital angular momentum
in quantum mechanics. The importance (and sometimes, the violation)
of orthogonality is discussed in both mathematical settings. This work is
grounded in psychological literature on word representation and recogni-
tion, and is also motivated by potential technological applications such as
genre-appropriate spelling correction. The mathematical method, exam-
ples and experiments, and the implementation and availability of the
technique in the Semantic Vectors package are also discussed.

Keywords: Distributional semantics · Orthographic similarity · Vector
Symbolic Architectures

1 Introduction

The relationships between words, their representation in text, concepts in the
mind, and objects in the real world, has been the source of inquiry over many
centuries. Empirical, distributional paradigms have been shown to successfully
derive human-like estimates of semantic distance from large text corpora, and
recent developments in this area have mediated the enrichment of distribu-
tional models with structural information, such as the relative position of terms
[1,2], and orthographic information describing the configuration of characters
from which words are composed [3,4]. This paper extends these beginnings
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in three principal ways. First, we propose a new and very simple method for
encoding structure into semantic vectors, using a quantization of the space
between two extreme ‘demarcator vectors’. This vector generation method per-
forms well in experiments and has some key computational advantages. Sec-
ond, the method is general enough to be applied within a wide range of Vector
Symbolic Architectures (VSAs), including Circular Holographic Reduced Repre-
sentations (CHRRs) that use complex vectors [5]. Thirdly, we investigate some
higher-level compositions as well, demonstrating some early results with compo-
sitional representations for sentences.

Each of these developments is related to quantum interaction as follows.
Demarcator vector generation is similar in a sense to the derivation of orbital
angular momentum values in quantum mechanics, in that they use the same
mathematics. The application within many VSAs, including those over complex
vector space, makes the new methods available within algebras that are partic-
ularly related to generalized quantum models. Finally, compositional methods
are important in research on generalized quantum structures, and the way many
levels of representation are combined seamlessly in the compositional models
presented here should be of interest to researchers in the field.

2 Orthogonality in Distributional and Orthographic
Models

Geometric methods of distributional semantics derive vector representations of
terms from electronic text, such that terms that occur in similar contexts will
have similar vectors [6,7]. While such models have been shown to approximate
human performance on a number of cognitive tasks [8,9], they generally do not
take into account structural elements of language, and consequently have been
referred to, at times critically, as “bags of words” models. Emerging approaches
to semantic space models have leveraged reversible vector transformations to
encode additional layers of meaning into vector representations of terms and
concepts. Examples include the encoding of the relative position of terms [1,10],
syntactic information [11], and orthographic information [4].

The general approach used depends upon the generation of vector representa-
tions for terms, and associating reversible vector transformations with properties
of interest. In accordance with terminology developed in [12], we will refer to
the vector representations of atomic components such as terms as elemental vec-
tors. Elemental vectors are constructed using a randomization procedure such
that they have a high probability of being mutually orthogonal, or close-to-
orthogonal. This adds robustness to the model, by making it highly improbable
that elemental vectors would be confused with one another, despite the distortion
that occurs during training. However, it also introduces the implicit assumption
that elemental vectors are unrelated to one another, which means that models
generated in this way must be composed of discrete elements.

This limitation notwithstanding, this approach has allowed for the integra-
tion of structured information into distributional models of meaning. From the
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perspective of cognitive psychology, this is desirable as it presents the possibility
of a unified term representation that can account for a broad range of experimen-
tal phenomena. Recent work in this area has leveraged circular convolution to
generate vectors representing the orthographic form of words [3], and integrate
these with a geometric model of distributional semantics [4]. Vector representa-
tions of orthographic word form are generated by using circular convolution to
generate bound products representing the component bigrams of the term con-
cerned, including non-contiguous bigrams. Karchergis et al give the following
example (� indicates binding using circular convolution) [4]:

word =w + o + r + d + w � o + o � r + r � d

+w � o + (w � ) � r + (w � ) � d + (w � o) � r + ((w � ) � r) � d

+(w � ) � d + (o � ) � d + r � d + ((w � o) ) � d + (o � r) � d

The vector representation for the term “word” is generated by combining a
set of vectors representing unigrams, bigrams, and trigrams of characters. It
is a characteristic of the model employed that each of these vectors have a
high probability of being mutually orthogonal, or close-to-orthogonal. So, for
example, the vectors representing the trigrams ((w � ) � r) and ((w � o) � r)
will be dissimilar from one another. Consequently it is necessary to explicitly
encode all of the n-grams of interest, including gapped trigrams (such as “w r”)
to provide flexibility. From the perspective of computational complexity, this is
not ideal, as the number of representational units that must be generated and
encoded is at least quadratic to the length of the sequence.

Rather than explicitly encoding character position precisely (with respect to
some other character, or the term itself), alternative models of orthographic rep-
resentation allow for a degree of uncertainty with respect to letter position. These
approaches measure the relatedness between terms on the basis of the similar-
ity between probability distributions assigned to the positions of each matching
character [13,14], providing a more flexible measure of similarity. However, on
account of the constraints we have discussed, only orthographic representations
based on discrete bigrams or the exact position of characters have been combined
with other sorts of distributional information in an attempt to generate a holistic
representation to date [3,15]. Imposing near-orthogonality adds robustness, but
also necessitates ignoring potentially useful information to do with structure,
namely the proximity between character positions within a word. Consequently,
we have selected the generation of orthographic representations as an example
application through which to illustrate the utility of our approach.

The paper proceeds as follows. First, we present the mathematical language
we will use to describe the operators provided by VSAs, a family of representa-
tional approaches based on reversible vector transformations [16]. Next, we will
describe an approach we have developed through which the distance between
elemental vectors, and hence bound products, can be predetermined. In the con-
text of an illustrative application for orthographic modeling, we show that this
approach permits the encoding of structural information to do with proximity,
rather than absolute position, into a distributional model. We then discuss a
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relationship between this approach and quantum mechanics, and conclude with
some experimental results and example applications.

3 Mathematical Structure and Methods

3.1 Vector Symbolic Architectures (VSAs)

The reversible vector transformations we have discussed are a distinguishing
feature of a family of representational approaches collectively known as VSAs
[16]. In our experiments the VSAs we will use are Kanerva’s Binary Spatter
Code (BSC), which uses binary vectors [17], and Plate’s CHRR [5], which uses
complex vectors where each dimension represents an angle between −π and π,
using the implementation developed in [10]. In addition, we will use an approach
based on permutation of real vectors [2].

Binding is the primary operation facilitated by VSAs (in addition to stan-
dard operators for vector superposition and vector comparison). Binding is a
multiplication-like operator through which two vectors are combined to form a
third vector C that is dissimilar from either of its component vectors A and B.
We will use the symbol “⊗” for binding, and the symbol “�” for the inverse
of binding for the remainder of this paper. It is important that this operator
be invertible: if C = A ⊗ B, then A � C = A � (A ⊗ B) = B. In some models,
this recovery may be approximate, but the robust nature of the representation
guarantees that A � C is similar enough to B that B can easily be recognized as
the best candidate for A � C in the original set of concepts. Thus the invertible
nature of the bind operator facilitates the retrieval of the information it encodes.

In the case of the BSC, elemental vectors are initialized by randomly assigning
0 or 1 to each dimension with equal probability. Pairwise exclusive or (XOR) is
used as a binding operator: X ⊗ Y = X XOR Y. As it is its own inverse, the
binding and decoding processes are identical (⊗ = �). For superposition, the BSC
employs a majority vote: if the component vectors have more ones than zeros in
a dimension, this dimension will have a value of one, with ties broken at random.

In CHRR, binding through circular convolution is accomplished by pairwise
multiplication: X ⊗ Y = {X1Y1,X2Y2, . . . . .Xn−1Yn−1,XnYn}, which is equiva-
lent to addition of the phase angles of the circular vectors concerned. Binding is
inverted by binding to the inverse of the vector concerned: X � Y = X ⊗ Y −1,
where the inverse of a vector is its complex conjugate. Elemental vectors are ini-
tialized by randomly assigning a phase angle to each dimension. Superposition is
accomplished by pairwise addition of the unit circle vectors, and normalization
of the result for each circular component. In the implementation used in our
experiments, normalization occurs after training concludes, so the sequence in
which superposition occurs is not relevant.

Our real vector implementation follows the approach developed by Sahlgren
and his colleagues [2], and differs from the binary and complex implementations,
in that elemental vectors are “bound” to permutations, rather than to other
vectors. Elemental vectors are constructed by creating a high-dimensional zero
vector (on the order of 1000 dimensions), and setting a small number of the
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dimensions of this vector (on the order of 10) to either +1 or −1 at random.
The permutations utilized consist of shifting all of the elements of a given vector
n positions to the right, where each value n is assigned to, or derived from, the
information it is intended to encode. In the case of our orthographic model, this
information consists of the character occurring in a particular position, so we
have used the ASCII value of the character concerned as n. Binding is reversed by
permuting all of the elements of the vector n positions to the left. Superposition
is accomplished by adding the vectors concerned, and normalizing the result.

In all models, the “random” initiation of elemental vectors is rendered deter-
ministic by seeding the random number generator with a hash value derived
from a string or character of interest following the approach developed in [18].
This retains the property of near-orthogonality where desired, while ensuring
that random overlap between elemental vectors is consistent across experiments.

Fig. 1. Interpolation to generate five demarcator vectors. P(1) = probability of 1.

3.2 Measured Similarity

The first step in our approach involves generating a set of vectors that are a
fixed distance apart, which we will refer to as demarcator vectors (D(position)),
as illustrated in Fig. 1. The first pair of demarcator vectors are conventional ele-
mental vectors D(α) and D(ω), constructed randomly such that they have a high
probability of being mutually orthogonal or close-to-orthogonal. To ensure this
with certainty, we render D(ω) orthogonal to D(α) using the quantum negation
procedure, or its binary approximation, described in [19] and [20] respectively.
The remaining demarcator vectors are generated by interpolation. In the contin-
uous vector spaces, this is accomplished by subdividing the 90o angle between
D(α) and D(ω) and generating the corresponding unit vectors. In binary vector
space, this is accomplished by weighting the probability of assigning a 1 when
D(α) and D(ω) disagree in accordance with the desired distance between the
new demarcator vector and each of these extremes1. As the vectors representing
1 The same random number sequence must be used for all vectors in a demarcator set,

so that a consistent random value for each bit position is compared to the relevant
thresholds.
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adjacent numbers are approximately equidistant, the distances between vector
pairs representing numbers the same distance apart should also be approximately
equal (e.g. sim(D(1),D(2)) ≈ sim(D(2),D(3))).

Table 1 illustrates the pairwise similarities between a set of five demarcator
vectors constructed in this manner. In the binary case vectors of dimensionality
32,000 are used, in the complex case vectors of dimensionality 500 are used, and
in the real case, vectors of dimensionality 1,000 are used. These dimensions were
chosen so as to normalize the space requirements of the stored vectors across
models, and were retained in our subsequent experiments. In all cases, the relat-
edness between demarcator vectors a fixed distance apart is approximately equal.
For example, the similarity between all pairs of demarcator vectors two positions
apart (e.g. 1 and 3) is approximately 0.5 in the binary implementation, and 0.71
in the complex and real vector implementations. In the binary implementation,
the difference in relatedness is proportional to the difference in demarcator posi-
tion. This is not the case in the complex or real implementations, where the drop
in similarity between demarcator vectors becomes progressively steeper. This is
an artifact of the metric used to measure similarity in each case. With binary
vectors, 2 × (0.5 − normalized Hamming distance) is used, but with continuous
vectors the cosine distance metric is used. While a proportional decrement could
be obtained by measuring the angle between complex vectors directly (or taking
the arccos of this cosine value), we will retain the use of the cosine metric for
our experiments.

Table 1. Pairwise similarity between demarcator vectors

BINARY COMPLEX REAL

α 1 2 3 ω α 1 2 3 ω α 1 2 3 ω
α 1.00 0.75 0.49 0.25 0.00 α 1.00 0.92 0.71 0.38 0.00 α 1.00 0.92 0.71 0.38 0.00
1 0.75 1.00 0.74 0.50 0.25 1 0.92 1.00 0.92 0.71 0.38 1 0.92 1.00 0.92 0.71 0.38
2 0.49 0.74 1.00 0.75 0.51 2 0.71 0.92 1.00 0.92 0.71 2 0.71 0.92 1.00 0.92 0.71
3 0.25 0.50 0.75 1.00 0.75 3 0.38 0.71 0.92 1.00 0.92 3 0.38 0.71 0.92 1.00 0.92
ω 0.00 0.25 0.51 0.75 1.00 ω 0.00 0.38 0.71 0.92 1.00 ω 0.00 0.38 0.71 0.92 1.00

3.3 Encoding Orthography

Using controlled degrees of non-orthogonality, we can encode information about
the positions of letters in words into their vector representations. Like spatial
encoding [14] and the overlap model [13], our approach is based upon measuring
the difference in position between matching characters. This is accomplished
by creating elemental vectors for characters, and binding them to demarcator
vectors representing positions. For example, the orthographic vector for the term
“word” is constructed as follows:

S(word) = E(w) ⊗ D(1) + E(o) ⊗ D(2) + E(r) ⊗ D(3) + E(d) ⊗ D(4)
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As the elemental vectors for characters are mutually orthogonal or near-
orthogonal, bound products derived from different characters will be orthog-
onal or near-orthogonal also. For example, in the complex vector space used to
generate Table 1, sim(E(w) ⊗ D(1), E(q) ⊗ D(1)) = 0. Furthermore, the dis-
tance between bound products containing the same character will approximate
the distance between their demarcator vectors. For example, in the real vec-
tor space used to generate Table 1, sim(E(w) ⊗ D(1), E(w) ⊗ D(2)) = 0.92 =
sim(D(1),D(2)). Ultimately, the similarity between a pair of terms is derived
from the distance between their matching characters. If this distance is gener-
ally low, the orthographic similarity between these terms will be high2. Thus,
the models so generated are innately tolerant to variations such as transposition,
insertion and deletion of sequence elements.

0
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-1

-2

1

2
3

4

Fig. 2. Orbital angular momentum vectors, as derived from quantized states along a
given axis (left), and a related strategy for encoding positions as vectors

4 Demarcator Vectors and Orbital Angular Momentum

Evenly distributing normalized vectors between two orthogonal vectors is one of
many strategies we could adopt to generate demarcator vectors. To generalize
this process, we can describe it as follows:

1. Construct a line in the vector space with a given starting point and direction.
2. Place demarcators along this line using some dividing strategy.
3. (Optional) Project demarcator vectors onto the unit circle to normalize them.

2 For terms of different lengths, we elected to construct a set of demarcator vectors for
each term. So while D(α) and D(ω) will be identical, the demarcator for a particular
position may differ. It would also be possible to use identical demarcator vectors (by
generating a set large enough to accommodate the longest term), which may be
advantageous for some tasks.
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Two examples of this strategy are illustrated in Fig. 2. In the example on the left,
the generating line is the vertical axis, the dividing strategy is to mark points at
even intervals along this axis, and the projection strategy is to project orthogo-
nally from the vertical axis onto the unit sphere3. In the example on the right,
we have chosen a generating line parallel to the vertical axis, marked points at
even intervals, and projected onto the unit sphere using standard vector normal-
ization. The left-hand strategy will be familiar to some readers: this is precisely
the way orbital angular momentum states are generated in quantum mechan-
ics. We refer the reader to a text on quantum mechanics for this derivation,
e.g., [21, Ch 14]: the process includes solving a wave equation in three dimen-
sions, exploring the angular momentum operator and the commutator relations
between its components, and noting that each point on the axis can be mapped
to many on the outer sphere (this ambiguity corresponding to the fact that
measuring the component of angular momentum along one axis must leave the
component along the other axes undetermined according to the Uncertainty
Principle). The important point for this discussion is that it is quite standard to
derive non-orthogonal vectors for states in this fashion, not only in generalized
quantum structures but in quantum mechanics itself. The underlying spherical
harmonic functions involved in angular momentum are orthogonal to one another
under pairwise integration, but lead to several possible non-orthogonal angular
momentum vectors.

The ambiguity of the projection onto the unit sphere in the angular momen-
tum model in more than two dimensions is problematic, and we expect the
strategy on the right to be simpler in practice. Note also that both strategies
do not distribute vectors evenly around the unit sphere: for example, in the
right-hand strategy, the vectors representing positions 3 and 4 are closer to each
other than the vectors representing positions 1 and 2. Such flexibility to vary
these pairwise similarities between positions along a string is a desirable prop-
erty, because changes at the beginning of a word may be more significant than
changes in the middle [13]. We note also that in our current implementation
in the Semantic Vectors package, this generalized strategy works well for real-
valued and complex-valued vectors, but is as yet underspecified for binary-valued
vectors because (for example) ‘the point half-way between A and B’ is multiply
defined using Hamming distance [22]. We are currently investigating appropriate
strategies to bring binary vectors into this generalized description.

5 Applications: Orthography, Morphology, Sentence
Similarity

Table 2 provides examples of nearest-neighbor search based on orthographic sim-
ilarity in real, complex and binary vector spaces derived from the widely-used
Touchstone Applied Science Associates, Inc. (TASA) corpus. Terms in the cor-
pus that occurred between 5 and 15,000 times were represented as candidates for
3 In this example we have drawn negative and positive positions, though in practice

we have only experimented with nonnegative positions so far.
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retrieval. The dimensionality of the real, complex and binary vector spaces con-
cerned was 1000, 500 and 32,000 respectively. Our approach successfully recov-
ers orthographically related terms, including terms containing substrings of the
original term (“dominic” vs. “condominium”); insertions (“orthography” vs.
“orthophotography”); substitutions (“angular” vs. “annular”) and transpo-
sition of characters (“wahle” vs. “whale”). While not shown in the table on
account of space constraints, the models produced similar sets of results for the
same cue term.

Table 2. Orthographic similarity

REAL COMPLEX BINARY
CUE dominic CUE orthography CUE orthogonality CUE angular CUE wahle

0.92 dominican 0.92 orthophotography 0.86 orthogonally 0.73 agranular 0.94 whale
0.89 dominion 0.93 photography 0.85 orthogonal 0.70 annular 0.61 awhile
0.88 demonic 0.91 chromatography 0.84 orthodontia 0.67 angularly 0.60 while
0.85 dominions 0.90 orthographic 0.82 ornithology 0.66 gabular 0.60 whales
0.85 condominium 0.90 choreography 0.82 ornithologist 0.66 inaugural 0.60 whaley

Table 3. Comparison with benchmark conditions from [15]. 1X= original dimen-
sionality (used for Table 2). 2X= twice original dimensionality. nb = no binding.
ED = 1 − edit distance

combined length
.

BINARY COMPLEX REAL
1X 2X 2Xnb 1X 2X 2Xnb 1X 2X ED

Stability � � � � � � � � �
Edge effects �
Local TL � � � � � � � � �
Global TL �
Distal TL
Compound TL � � � � � �
Distinct RP � � � � � � � � �
Repeated RP � � � � � � � �

While we would be hesitant to propose the simple model of orthographic
representation we have developed as a cognitive model of lexical coding, it is
interesting to note that it does conform to the majority of a set of constraints
abstracted from lexical priming data by Hannagan and his colleagues [15]. We
will describe these constraints in brief here, but refer the interested reader to [15]
for further details. The constraints are as follows: (1) Stability: a string should
be most similar to itself (sim ≥ 0.95); (2) Edge Effects: substitutions at the
edges of strings should be more disruptive; (3) Local Translocations (TL):
transposing adjacent characters should be less disruptive than substituting both
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of them; (4) Global TL: transposing all adjacent characters should be maxi-
mally disruptive (5) Distal TL: transposing non-adjacent characters should be
more disruptive than substituting one, but less than substituting both; (6) Com-
pound TL: TL and substitution should be more disruptive than substitution
alone; (7) Distinct Relative Position (RP): removing some characters should
preserve some similarity; and (8) Repeated RP: removing a repeated or non-
repeated letter should be equally disruptive4. Each constraint is accompanied by
a set of test cases, consisting of paired strings, and the degree to which a model
meets the constraint is determined from the estimated similarities between these
pairs, and the relationships between them.

The extent to which the our models meet these constraints is shown in
Table 3. Estimates based on all models consistently meet all constraints aside
from those related to Edge Effects, and the Global and Distal TL constraints (in
the latter case this is due to the fact that translocation of characters one position
apart is less disruptive than substituting one of these characters). This repre-
sents a better fit to these constraints than comparable models based on letter
distribution only (labeled “nb”, or not bound). It also represents a better fit than
the majority of approaches evaluated against this benchmark previously [15,23],
providing motivation for the further evaluation of a more developed model in the
future. While the real model appeared to meet the edge effect related constraint
at its original dimensionality, this finding did not hold at higher dimensionality,
and was most likely produced by random overlap. This is not surprising given
that our current model does not address edge effects. As suggested in Sect. 4, one
way to address this issue would be to increase the distance between peripheral
demarcator vectors, a customization we plan to evaluate in future work.

Table 4. Combining orthographic and semantic similarity

REAL COMPLEX BINARY
CUE think CUE bring CUE eat CUE catch CUE write

0.57 intend 0.68 bringing 0.44 eats 0.191 catching 0.180 writes
0.56 know 0.62 brings 0.43 ate 0.184 caught 0.173 writer
0.51 thinks 0.53 brought 0.39 meat 0.181 catches 0.172 rewritten
0.51 thinking 0.52 ring 0.36 eaten 0.176 watch 0.172 wrote
0.51 want 0.51 burning 0.36 restate 0.176 teach 0.171 reread

The results in Table 4 were obtained by superposing the orthographic vector
for each term from the TASA corpus with a semantic vector for the same term
generated using the permutation-based approach described in [2], with a 2+2
4 As the randomization procedure makes it very unlikely that the estimates of sim-

ilarity between any two pairs will be identical, we have considered a difference of
≤ 0.05 to be approximately equal. This mirrors the relaxed constraint that ≥ 0.95
is approximately identical used by Hannagan and his colleagues for the stability
constraint [15,23].
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sliding window. As anticipated by previous work combining orthographic and
semantic relatedness [24,25], the examples suggest that this model is able to
find associations between morphologically related terms, including those between
English verb roots and past tense forms are related by non-affixal patterns such
as “bring:brought”. The combination of semantics and shared characters is
evident in other examples, such as “think:intend”. However, this sensitivity to
morphological similarity comes at a cost of introducing false similarity when
common letter patterns do not have a semantic significance.

Table 5. Retrieval of Sentences from the TASA Corpus in complex (first two examples)
and binary (second two examples) spaces

CUE the greater the force of the air the louder the sounds
0.86 that is the smaller the wavelength the greater the energy of the radiation
0.86 the greater the amplitude the greater the amount of energy in the wave
0.85 the deeper the level of processing the stronger the trace and the better the

memory
0.84 the darker the blue the deeper the water
CUE these four quantum numbers are used in describing electron behavior
0.353 these numbers are important in chemistry
0.3433 these are usually used in the home
0.316 what punctuation marks are used in these four sentences
0.315 these are abbreviations that sometimes are used in written directions

6 Conclusion

In this paper we have introduced a novel approach through which the near-
orthogonality of elemental vectors is deliberately violated to introduce measured
similarity into semantic space. While illustrated primarily through orthographic
modeling, the approach is general in nature and can be applied in any situation
in which a representation of sequence that is tolerant to variation is desired. Fur-
thermore, this approach may mediate the generation of holistic representations
combining distributional and spatial information, a direction we plan to explore
in future work. To facilitate further experimentation, our real, binary and com-
plex orthographic vector implementations have been released as components of
the open source Semantic Vectors package [27,28].
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