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Abstract. In this paper we provide a simple random-variable exam-
ple of inconsistent information, and analyze it using three different
approaches: Bayesian, quantum-like, and negative probabilities. We then
show that, at least for this particular example, both the Bayesian and
the quantum-like approaches have less normative power than the nega-
tive probabilities one.

1 Introduction

In recent years the quantum-mechanical formalism (mainly from non-relativistic
quantum mechanics) has been used to model economic and decision-making
processes (see [1,2] and references therein). The success of such models may
originate from several related issues. First, the quantum formalism leads to a
propositional structure that does not conform to classical logic [3]. Second, the
probabilities of quantum observables do not satisfy Kolmogorov’s axioms [4].
Third, quantum mechanics describes experimental outcomes that are highly con-
textual [5–9]. Such issues are connected because the logic of quantum mechanics,
represented by a quantum lattice structure [3], leads to upper probability distri-
butions and thus to non-Kolmogorovian measures [10–12], while contextuality
leads the nonexistence of a joint probability distribution [13,14].

Both from a foundational and from a practical point of view, it is important
to ask which aspects of quantum mechanics are actually needed for social-science
models. For instance, the Hilbert space formalism leads to non-standard logic
and probabilities, but the converse is not true: one cannot derive the Hilbert
space formalism solely from weaker axioms of probabilities or from quantum lat-
tices. Furthermore, the quantum formalism yields non-trivial results such as the
impossibility of superluminal signaling with entangled states [15]. These types
of results are not necessary for a theory of social phenomena [16], and we should
ask what are the minimalistic mathematical structures suggested by quantum
mechanics that reproduce the relevant features of quantum-like behavior.

In a previous article, we used reasonable neurophysiological assumptions to
created a neural-oscillator model of behavioral Stimulus-Response theory [17].
We then showed how to use such model to reproduce quantum-like behavior
[18]. Finally, in a subsequent article, we remarked that the same neural-oscillator
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model could be used to represent a set of observables that could not correspond
to quantum mechanical observables [19], in a sense that we later on formalize
in Sect. 3. These results suggest that one of the main quantum features relevant
to social modeling is contextuality, represented by a non-Kolmogorovian proba-
bility measure, and that imposing a quantum formalism may be too restrictive.
This non-Kolmogorovian characteristic would come when two contexts providing
incompatible information about observable quantities were present.

Here we focus on the incompatibility of contexts as the source of a violation of
standard probability theory. We then ask the following question: what formalisms
are normative with respect to such incompatibility? This question comes from the
fact that, in its origin, probability was devised as a normative theory, and not
descriptive. For instance, Richard Jeffrey [20] explains that “the term ’probable’
(Latin probable) meant approvable, and was applied in that sense, univocally, to
opinion and to action. A probable action or opinion was one such as sensible people
would undertake or hold, in the circumstances.” Thus, it should come as no sur-
prise that humans actually violate the rules of probability, as shown in many psy-
chology experiments. However, if a person is to be considered “rational,” accord-
ing to Boole, he/she should follow the rules of probability theory.

Since inconsistent information, as above mentioned, violates the theory of
probability, how do we provide a normative theory of rational decision-making?
There are many approaches, such as Bayesian models or the Dempster-Shaffer
theory, but here we focus on two non-standard ones: quantum-like and negative
probability models. We start first by presenting a simple case where expert
judgments lead to inconsistencies. Then, we approach this problem first with a
standard Bayesian probabilistic method, followed by a quantum model. Finally,
we use negative probability distributions as a third alternative. We then compare
the different outcomes of each approach, and show that the use of negative
probabilities seems to provide the most normative power among the three. We
end this paper with some comments.

2 Inconsistent Information

As mentioned, the use of the quantum formalism in the social sciences originates
from the observation that Kolmogorov’s axioms are violated in many situations
[1,2]. Such violations in decision-making seem to indicate a departure from a
rational view, and in particular to though-processes that may involve irrational
or contradictory reasoning, as is the case in non-monotonic reasoning. Thus,
when dealing with quantum-like social phenomena, we are frequently dealing
with some type of inconsistent information, usually arrived at as the end result
of some non-classical (or incorrect, to some) reasoning. In this section we examine
the case where inconsistency is present from the beginning.

Though in everyday life inconsistent information abounds, standard classical
logic has difficulties dealing with it. For instance, it is a well know fact that
if we have a contradiction, i.e. A& (¬A), then the logic becomes trivial, in the
sense that any formula in such logic is a theorem. To deal with such difficulty,
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logicians have proposed modified logical systems (e.g. paraconsistent logics [21]).
Here, we will discuss how to deal with inconsistencies not from a logical point
of view, but instead from a probabilistic one.

Inconsistencies of expert judgments are often represented in the probability
literature by measures corresponding to the experts’ subjective beliefs [22]. It is
frequently argued that this subjective nature is necessary, as each expert makes
statements about outcomes that are, in principle, available to all experts, and
disagreements come not from sampling a certain probability space, but from
personal beliefs. For example, let us assume that two experts, Alice and Bob,
are examining whether to recommend the purchase of stocks in company X,
and each gives different recommendations. Such differences do not emerge from
an objective data (i.e. the actual future prices of X), but from each expert’s
interpretations of current market conditions and of company X. In some cases
the inconsistencies are evident, as when, say, Alice recommends buy, and Bob
recommends sell; in this case the decision maker would have to reconcile the
discrepancies.

The above example provides a simple case. A more subtle one is when the
experts have inconsistent beliefs that seem to be consistent. For example, each
expert, with a limited access to information, may form, based on different con-
texts, locally consistent beliefs without directly contradicting other experts. But
when we take the totality of the information provided by all of them and try
to arrive at possible inferences, we reach contradictions. Here we want to create
a simple random-variable model that incorporates expert judgments that are
locally consistent but globally inconsistent. This model, inspired by quantum
entanglement, will be used to show the main features of negative probabilities
as applied to decision making.

Let us start with three ±1-valued random variables, X, Y, and Z, with
zero expectation. If such random variables have correlations that are too strong
then there is no joint probability distribution [13]. To see this, imagine the
extreme case where the correlations between the random variables are E (XY) =
E (YZ) = E (XZ) = −1. Imagine that in a given trial we draw X = 1. From
E (XY) = −1 it follows that Y = −1, and from E (YZ) = −1 that Z = 1. But
this is in contradiction with E (XZ) = −1, which requires Z = −1. Of course,
the problem is not that there is a mathematical inconsistency, but that it is not
possible to find a probabilistic sample space for which the variables X, Y, and
Z have such strong correlations. Another way to think about this is that the X
measured together with Y is not the same one as the X measured with Z: values
of X depend on its context.

The above example posits a deterministic relationship between all random
variables, but the inconsistencies persist even when weaker correlations exist. In
fact, Suppes and Zanotti [13] proved that a joint probability distribution for X,
Y, and Z exists if and only if

− 1 ≤ E (XY) + E (YZ) + E (XZ)
≤ 1 + 2min {E (XY) , E (YZ) , E (XZ)} . (1)

The above case violates inequality (1).
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Let’s us now consider the example we want to analyze in detail. Imagine
X, Y, and Z as corresponding to future outcomes in a company’s stocks. For
instance, X = 1 corresponds to an increase of the stock value of company X in
the following day, while X = −1 a decrease, and so on. Three experts, Alice (A),
Bob (B), and Carlos (C), have the following beliefs about those stocks. Alice
is an expert on companies X and Y , but knows little or nothing about Z, so
she only tells us what we don’t know: her expected correlation EA (XY). Bob
(Carlos), on the other hand, is only an expert in companies X and Z (Y and
Z), and he too only tells us about their correlations. Let us take the case where

EA (XY) = −1, (2)

EB (XZ) = −1
2
, (3)

EC (YZ) = 0, (4)

where the subscripts refer to each experts. For such case, the sum of the correla-
tions is −1 1

2 , and according to (1) no joint probability distribution exists. Since
there is no joint, how can a rational decision-maker decide what to do when
faced with the question of how to bet in the market? In particular, how can she
get information about the joint probability, and in particular the unknown triple
moment E (XYZ)? In the next sections we will show how we can try to answer
these questions using three possible approaches: quantum, Bayesian, and signed
probabilities.

3 Quantum Approach

We start with a comment about the quantum-like nature of correlations (2)–(4).
The random variables X, Y, and Z with correlations (2)–(4) cannot be repre-
sented by a quantum state in a Hilbert space for the observables corresponding
to X, Y, and Z. This claim can be expressed in the form of a simple proposition.

Proposition 1. Let X̂, Ŷ , and Ẑ be three observables in a Hilbert space H
with eigenvalues ±1, let them pairwise commute, and let the ±1-valued random
variable X, Y, and Z represent the outcomes of possible experiments performed
on a quantum system |ψ〉 ∈ H. Then, there exists a joint probability distribution
consistent with all the possible outcomes of X, Y, and Z.

Proof. Because X̂, Ŷ , and Ẑ are observables and they pairwise commute, it
follows that their combinations, X̂Ŷ , Ŷ Ẑ, X̂Ẑ, and X̂Ŷ Ẑ are also observables,
and they commute with each other. For instance,

(
X̂Ŷ Ẑ

)†
= Ẑ†Ŷ †X̂† = X̂Ŷ Ẑ.
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Furthermore,

[X̂Ŷ Ẑ, X̂] = [X̂Ŷ Ẑ, Ŷ ] = · · · = [X̂Ŷ Ẑ, X̂Ẑ] = 0.

Therefore, quantum mechanics implies that all three observables X̂, Ŷ , and Ẑ
can be simultaneously measured. Since this is true, for the same state |ψ〉 we
can create a full data table with all three values of X, Y, and Z (i.e., no missing
values), which implies the existence of a joint.

So, how would a quantum-like model of correlations (2)–(4) be like? The above
result depends on the use of the same quantum state |ψ〉 throughout the many
runs of the experiment, and to circumvent it we would need to use different
states for the system. In other words, if we want to use a quantum formalism
to describe the correlations (2)–(4), a |ψ〉 would have to be selected for each
run such that a different state would be used when we measure X̂Ŷ , e.g. |ψ〉xy,
than when we measure X̂Ẑ, e.g. |ψ〉xz. Then, the quantum description could be
accomplished by the state

|ψ〉 = cA|A〉 ⊗ |ψ〉xy + cB |B〉 ⊗ |ψ〉xz + cC |C〉 ⊗ |ψ〉yz.

This state would model the correlations the following way. When Alice makes
her choice, she uses a projector into her “state of knowledge” P̂A = |A〉〈A|, and
gets the correlation EA (XY), and similarly for Bob and Carlos.

In the above example, all correlations and expectations are given, and the
only unknown is the triple moment E (XYZ). Furthermore, since we do not
have a joint probability distribution, we cannot compute the range of values for
such moment based on the expert’s beliefs. But the question still remains as to
what would be our best bet given what we know, i.e., what is our best guess for
E (XYZ). The quantum mechanical approach does not address this question, as
it is not clear how to get it from the formalism given that any superposition of
the states preferred by Alice, Bob, and Carlos are acceptable (i.e., we can choose
any values of cA, cB , and cC).

4 Bayesian Approach

Here we focus again on the unknown triple moment. As we mentioned before,
there are many different ways to approach this problem, such as paraconsis-
tent logics, consensus reaching, or information revision to restore consistency.
Common to all those approaches is the complexity of how to resolve the incon-
sistencies, often with the aid of ad hoc assumptions [22]. Here we show how a
Bayesian approach would deal with the issue [23,24].

In the Bayesian approach, a decision maker, Deanna (D), needs to access
what is the joint probability distribution from a set of inconsistent expecta-
tions. To set the notation, let us first look at the case when there is only one
expert. Let PA(x) = PA(X = x|δA) be the probability assigned to event x by
Alice conditioned on Alice’s knowledge δA, and let PD(x) = PD(X = x|δD) be
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Deanna’s prior distribution, also conditioned on her knowledge δD. Furthermore,
let PA = PA (x) be a continuous random variable, PA ∈ [0, 1], such that its out-
come is PA (x). The idea behind PA is that consulting an expert is similar to
conducting an experiment where we sample the experts opinion by observing a
distribution function, and therefore we can talk about the probability that an
expert will give an answer for a specific sample point. Then, for this case, Bayes’s
theorem can be written as

P ′
D (x|PA = PA (x)) =

PD (PA = PA (x)) PD (x)
PD (PA = PA (x))

,

where P ′
D (x|PA = PA (x)) is Deanna’s posterior distribution revised to take into

account the expert’s opinion. As is the case with Bayes’s theorem, the difficulty
lies on determining the likelihood function PD (PA), as well as the prior. This
likelihood function is, in a certain sense, Deanna’s model of Alice, as it is what
Deanna believes are the likelihoods of each of Alice’s beliefs. In other words, she
should have a model of the experts. Such model of experts is akin to giving each
expert a certain measure of credibility, since an expert whose model doesn’t fit
Deanna’s would be assigned lower probability than an expert whose model fits.

The extension for our case of three experts and three random variables is
cumbersome but straightforward. For Alice, Bob, and Carlos, Deanna needs to
have a model for each one of them, based on her prior knowledge about X, Y,
and Z, as well as Alice, Bob, and Carlos. Following Morris [23], we construct a
set E consisting of our three experts joint priors:

E = {PA (x, y) , PB (y, z) , PC (x, z)} .

Deanna’s is now faced with the problem of determining the posterior P ′
D (x|E) ,

using Bayes’s theorem, given her new knowledge of the expert’s priors.
In a Bayesian approach, the decision maker should start with a prior belief

on the stocks of X, Y , and Z, based on her knowledge. There is no recipe for
choosing a prior, but let us start with the simple case where Deanna’s lack of
knowledge about X, Y , and Z means she starts with the initial belief that all
combinations of values for X, Y, and Z are equiprobable. Let us use the following
notation for the probabilities of each atom: pxyz = P (X = +1,Y = +1,Z = +1),
pxyz = P (X = +1,Y = +1,Z = −1), pxyz = P (X = −1,Y = +1,Z = −1), and
so on. Then Deanna’s prior probabilities for the atoms are

pD
xyz = pD

xyz = · · · = pD
xyz =

1
16

,

where the superscript D refers to Deanna.
When reasoning about the likelihood function, Deanna asks what would be

the probable distribution of responses of Alice if somehow she (Deanna) could
see the future (say, by consulting an Oracle) and find out that E (XY ) = −1.
For such case, it would be reasonable for Alice to think it more probable to
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have, say, xy than xy, since she was consulted as an expert. So, in terms of the
correlation εA, Deanna could assign the following likelihood function:

PD (εA|xy) = PD (εA|xy) =
1
4

(1 − εA)2 , (5)

PD (εA|xy) = PD (εA|xy) = 1 − 1
4

(1 − εA)2 , (6)

where the minus sign represents the negative, i.e. pA
xy· = pxy· = 1

4 (1 + εA) and
pxy· = pxy· = 1

4 (1 − εA). Notice that the choice of likelihood function is arbi-
trary.

Deanna’s posterior, once she knows that Alice thought the correlation to be
zero (cf. (2)), constitutes, as we mentioned above, an experiment. To illustrate the
computation, we find its value below, from Alice’s expectation EA (XY) = −1.
From Bayes’s theorem

pD|A
xyz = k

[
1 − 1

4
(1 − εA)2

]
1
8

=
1
4

[
1 − 1

4
(1 − εA)2

]
=

3
16

,

where the normalization constant k is given by

k−1 =
[
1 − 1

4
(1 − εA)2

]
1
8

+
[
1
4

(1 − εA)2
]

1
8

+
[
1
4

(1 − εA)2
]

1
8

+
[
1 − 1

4
(1 − εA)2

]
1
8

+
[
1
4

(1 − εA)2
]

1
8

+
[
1
4

(1 − εA)2
]

1
8

+
[
1 − 1

4
(1 − εA)2

]
1
8

+
[
1 − 1

4
(1 − εA)2

]
1
8
,

and we use the notation pD|A to explicitly indicate that this is Deanna’s posterior
probability informed by Alice’s expectation. Similarly, we have

p
D|A
xyz = p

D|A
xyz = p

D|A
xyz = p

D|A
xyz =

1
16

,

and
pD|A

xyz = p
D|A
xyz = p

D|A
xyz = p

D|A
xyz =

3
16

.

If we apply Bayes’s theorem twice more, to take into account Bob’s and Carlos’s
opinions given by correlations (3) and (4), using likelihood functions similar to
the one above, we compute the following posterior joint probability distribution,

pD|ABC
xyz = p

D|ABC
xyz = p

D|ABC
xyz = p

D|ABC
xyz = 0,

p
D|ABC
xyz = p

D|ABC
xyz =

7
68

,
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and
p

D|ABC
xyz = p

D|ABC
xyz =

27
68

.

Finally, from the joint, we can compute all the moments, including the triple
moment, and obtain E (XYZ) = 0.

It is interesting to notice that the triple moment from the posterior is the
same as the one from the prior. This is no coincidence. Because the revisions from
Bayes’s theorem only modify the values of the correlations, nothing is changed
with respect to the triple moment. In fact, if we compute Deanna’s posterior
distribution for any values of the correlations εA, εB , and εC , we obtain the
same triple moment, as it comes solely from Deanna’s prior distribution. Thus,
the Bayesian approach, though providing a proper distribution for the atoms,
does not in any way provide further insights on the triple moment.

5 Negative Probabilities

We now want to see how we can use negative probabilities to approach the
inconsistencies from Alice, Bob, and Carlos. The first person to seriously con-
sider using negative probabilities was Dirac in his Bakerian Lectures on the
physical interpretation of relativistic quantum mechanics [25]. Ever since, many
physicists, most notably Feynman [26], tried to use them, with limited success,
to describe physical processes (see [27] or [28] and references therein). The main
problem with negative probabilities is its lack of a clear interpretation, which
limits its use as a purely computational tool. It is the goal of this section to
show that, at least in the context of a simple example, negative probabilities can
provide useful normative information.

Before we discuss the example, let us introduce negative probabilities in a
more formal way1. Let us propose the following modifications to Kolmogorov’s
axioms.

Definition 1. Let Ω be a finite set, F an algebra over Ω, p and p′ real-valued
functions, p : F → R, p′ : F → R, and M− =

∑
ωi∈Ω |p ({ωi})|. Then (Ω,F , p)

is a negative probability space if and only if:

A. ∀p′
(

M− ≤
∑

ωi∈Ω

|p′ ({ωi})|
)

B.
∑

ωi∈Ω

p ({ωi}) = 1

C. p ({ωi, ωj}) = p ({ωi}) + p ({ωj}) , i 	= j.

Remark 1. If it is possible to define a proper joint probability distribution, then
M− = 1, and A-C are equivalent to Kolmogorov’s axioms.
1 We limit our discussion to finite spaces.
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Going back to our example, we have the following equations for the atoms.

pxyz + pxyz + pxyz + pxyz + pxyz + pxyz + pxyz + pxyz = 1, (7)

pxyz + pxyz + pxyz + pxyz − pxyz − pxyz − pxyz − pxyz = 0, (8)

pxyz + pxyz − pxyz + pxyz − pxyz + pxyz − pxyz − pxyz = 0, (9)

pxyz + pxyz + pxyz − pxyz − pxyz − pxyz + pxyz − pxyz = 0, (10)

pxyz − pxyz − pxyz + pxyz − pxyz − pxyz + pxyz + pxyz = 0, (11)

pxyz − pxyz + pxyz − pxyz − pxyz + pxyz − pxyz + pxyz = −1
2
, (12)

pxyz + pxyz − pxyz − pxyz + pxyz − pxyz − pxyz + pxyz = −1, (13)

where (7) comes from the fact that all probabilities must sum to one, (8)–(10)
from the zero expectations for X, Y, and Z, and (11)–(13) from the pairwise cor-
relations. Of course, this problem is underdetermined, as we have seven equations
and eight unknowns (we don’t know the unobserved triple moment). A general
solution to (7)–(10) is

pxyz = −pxyz = −1
8

− δ, (14)

pxyz = pxyz =
3
16

, (15)

pxyz = pxyz =
5
16

, (16)

pxyz = −pxyz = −δ, (17)

where δ is a real number. From (14)–(17) it follows that, for any δ, some
probabilities are negative. First, we notice that we can use the joint proba-
bility distribution to compute the expectation of the triple moment, which is
E(XYZ) = − 1

4 − 4δ. Since −1 ≤ E (XYZ) ≤ −1, it follows that −1 1
4 ≤ δ ≤ 3

4 .
Of course, δ is not determined by the lower moments, as we should expect, but
axiom A requires M− to be minimized. So, to minimize M−, we focus only on
the terms that contribute to it: the negative ones. To do so, let us split the
problem into several different sections. Let us start with δ ≥ 0, which gives
M−

δ≥0 = − 1
8 − 2δ, having a minimum of − 1

8 when δ = 0. For −1/8 ≤ δ < 0,
M−

− 1
8≤δ<0

= δ − 1
8 + δ = − 1

8 , which is a constant value. Finally, for δ < −1/8,

the mass for the negative terms is given by M−
δ<− 1

8
= 1

8 −2δ. Therefore, negative
mass is minimized when δ is in the following range

−1
8

≤ δ ≤ 0.
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Now, going back to the triple correlation, we see that by imposing a minimization
of the negative mass we restrict its values to the following range:

−1
4

≤ E (XYZ) ≤ 1
2
.

But Eqs. (7)–(13) and the fact that the random variables are ±1-valued allow
any correlation between −1 and 1, and we see that the minimization of the
negative mass offers further constraints to a decision maker.

Before we proceed, we need to address the meaning of negative probabil-
ities, as well as the minimization of M−. We saw from Remark 1 that when
M− is zero we obtain a standard probability measure. Thus, the value of M−

is a measure of how far p is from a proper joint probability distribution, and
minimizing it is equivalent to asking p to be as close as possible to a proper
joint, while at the same time keeping the marginals. This point in itself should
be sufficient to suggest some normative use to negative probabilities: a negative
probability (with M− minimized) gives us the most rational bet we can make
given inconsistent information. But the question remains as to the meaning of
negative probabilities.

To give them meaning, let us redefine the probabilities from p to p∗ such
that p∗ ({ωi}) = 0 when p ({ωi}) ≤ 0. It follows from this redefinition that∑

ωi∈Ω p∗ ({ωi}) ≥ 1. This newly defined probability would not violate Kol-
mogorov’s nonnegativity axiom, but instead would violate B above. The p∗’s
corresponds to de Finetti’s upper probability measures, and axiom A above
guarantees that such upper is as close to a proper distribution as possible. Thus,
according to a subjective interpretation, the negative probability atoms corre-
spond to impossible events, and the positive ones to an upper probability mea-
sure consistent with the marginals. Once again, the triple moment corresponds
to our best bet.

6 Conclusions

The quantum mechanical formalism has been successful in the social sciences.
However, one of the questions we raised elsewhere was whether some minimal-
ist versions of the quantum formalism which do not include a full version of
Hilbert spaces and observables could be relevant [19]. In this paper we adapted
the example modeled with neural oscillators in [19] to a different case where each
random variable could be interpreted as outcomes of a market, and where the
inconsistencies between the correlations could be interpreted as inconsistencies
between experts’ beliefs. Such inconsistencies result in the impossibility to define
a standard probability measure that allows a decision-maker to select an expec-
tation for the triple moment. The computation of the triple moment from the
inconsistent information was done in this paper using three different approaches:
Bayesian, quantum-like, and negative probabilities.

With the Bayesian approach, we showed that not only does it rely on a
model of the experts (the likelihood function), but also that no new information
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is gained from it, as the triple moment from the prior is not changed by the
application of Bayes’s rules. Therefore, the Bayesian approach had nothing to
say about the triple moment.

Similar to the Bayesian, the quantum approach also had nothing to say about
the triple moment, as the arbitrariness of choices for quantum superpositions
(without any additional constraints) results in all values of triple moments being
possible. In fact, the quantum approach above could be similarly implemented
using a contextual theory. For instance, Dzhafarov [29] proposes the use of an
extended probability space where different random variables (say, Xz and Xy)
are used, and where we then ask how similar they are to each other (for instance,
what is the value of P (Xz 	= Xy)). However, as with the quantum case, the
meaning given to P (X = 1) in our example does not fit with this model, as it
corresponds to the expectation of an increase in the stock value of company X
in the future, and the X that Alice is talking about is exactly the same one
for Bob and Carlos, as it corresponds to the increase in the objective value (in
the future) of a stock in the same company. Furthermore, as expected due to
its similar features, this approach has the same problem as the quantum one in
terms of dealing with the triple moment, but it has the advantage of making it
clearer what the problem is: the triple moment does not exist because we have
nine random variables instead of three, as we have three different contexts.

The negative probability approach, on the other hand, led to a nontrivial
constraint to the possible values of the triple moment. When used as a computa-
tional tool, a joint probability distribution, and with it the triple moment, could
be obtained. Together with the minimization of the negative mass M−, this joint
leads to a nontrivial range of possible values for the triple moment. Given the
interpretation of negative probabilities with respect to uppers, it follows that
this range is our best guess as to where the values of the triple moment should
lie, given our inconsistent information. Thus, negative probabilities provide the
decision maker with some normative information that is unavailable in either
the Bayesian or the quantum-like approaches.
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