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Preface

At the time of writing this preface, it is now more than six years ago that the first
Quantum Interaction conference took place at Stanford University. It is probably no
exaggeration to claim that the group of people who originally set up this conference
were barely thinking of the eventuality that this conference would develop into a
series. But it did and we are proud to announce that this volume published by Springer
in the LNCS series, gathers the output of accepted papers at the seventh Quantum
Interaction conference which took place at the University of Leicester.

The themes of the Quantum Interaction conference series continue to revolve
around four main subject pillars: (i) information processing/retrieval/semantic repre-
sentation and logic; (ii) cognition and decision making; (iii) finance/economics and
social structures and (iv) biological systems.

The accepted and refereed papers published in this volume are ordered according to
the above four themes.

The outcome of the refereeing process this year allocated nearly 60 % of all
accepted papers to oral presentations. The remaining accepted papers were put in a
poster session which continued throughout the full duration of the conference.

As with other Quantum Interaction conferences, this year we were again very
fortunate to be able to count on the contributions of outstanding keynote speakers:
Professor Nelson (Department of Mathematics - Princeton University); Professor
Abramsky (Department of Computer Science - University of Oxford) and Professor
Hiley (Theoretical Physics Research Unit - Birkbeck – University of London).

It is impossible to realize an event like this without the input of many people.
Surely, the speakers and keynote addresses are essential. We thank all the speakers for
their contributions. The input of both the Steering Committee and the Programme
Committee, whose members were so active in refereeing the papers (on time!!) was
essential. We also want to thank in particular Lisa Brandt for support covering vir-
tually all the administrative details involved in the organization of this conference. We
also want to thank Cheryl Hurkett for her infinite patience in setting up the website
and adapting it to our ad-hoc wishes. The Centre for Interdisciplinary Science and the
School of Management and the University of Leicester conference services need also
to be thanked for their precious support.

December 2013 Harald Atmanspacher
Emmanuel Haven

Kirsty Kitto
Derek Raine
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Stochastic Mechanics of Particles and Fields

Edward Nelson(B)

Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
nelson@math.princeton.edu

The configuration space of a physical system is a differentiable manifold M .
The state of a system is given by a point x in M and a tangent vector v at x,
the velocity of the configuration. Call the tangent bundle TM of M the state
space of the system (though the phrase “velocity phase space” is often used). A
dynamical variable is a possibly time-dependent function on state space.

Newtonian Mechanics. The kinetic energy T of a system is given, using tensor
notation and the summation convention, by

T =
1
2
mijv

ivj (1)

where mij is a Riemannian metric, called the mass tensor. Using the Riemannian
connection we can define acceleration. If x(t) is the configuration of the system at
time t, then in local coordinates the acceleration a is given by ai = v̇i +Γ i

jkvjvk

(where the dot is the time derivative). A force F is a possibly time-dependent
covector field. Now we can express Newton’s law:

Fi = mija
j (2)

If F is given, we have the equations of motion for the system in state space TM ,
expressed in local coordinates by

.
x

i = vi

.
v

i = mijFj − Γ i
jkvivk (3)

defining a flow, at least a local flow, on TM .

Lagrangian Mechanics. A Lagrangian L is a dynamical variable with the
dimensions of energy. Given a path X in configuration space M with velocity
vector Ẋ, define the action I by

I =
∫ t1

t0

L(X, Ẋ, t) dt (4)

For an isolated system, L is time-independent. Hamilton’s principle of least
action is that I should be stationary under variations of the path with t0 and t1
fixed. This leads to the Euler-Lagrange equation

∂L

∂xi
− d

dt

∂L

∂vi
= 0 (5)

H. Atmanspacher et al. (Eds.): QI 2013, LNCS 8369, pp. 1–5, 2014.
DOI: 10.1007/978-3-642-54943-4 1, c© Springer-Verlag Berlin Heidelberg 2014



2 E. Nelson

Now let us put Newtonian and Lagrangian mechanics together. Let M be a
Riemannian manifold with mass tensor mij and kinetic energy (1), and define
the potential energy V by L = T − V .

Given a point x on a Riemannian manifold M , it is possible to choose normal
coordinates (NC) at x so that the first derivatives of mij and the Christoffel
symbols are 0 at x. Thus

∂L

∂xi
= − ∂V

∂xi
(NC) (6)

By (5) and (6),

− ∂V

∂xi
=

d

dt

(
mijv

j − ∂V

∂vi

)
(NC) (7)

By (2),
d

dt
(mijv

j) = Fi (NC) (8)

so that
Fi = − ∂V

∂xi
+

d

dt

∂V

∂vi
(NC) (9)

But Fi is a dynamical variable, a function of position and velocity, so ∂V
∂vi must

be independent of the velocity. That is, the Lagrangian must be of the form

L =
1
2
mijv

ivj − φ + Aiv
i (10)

This is a tensor equation, so it holds globally in general coordinates. Call φ
the scalar potential and Ai the covector potential, and call a Lagrangian of the
form (10) a basic Lagrangian.

Let X(s, x, t) be the configuration at time s of the system starting at x at
time t. Hamilton’s principal function is

S(x, t) = −
∫ t1

t

L
(
X(s, x, t), Ẋ(s, x, t), s

)
ds (11)

A second form of the principle of least action is that S be stationary when the
flow is perturbed by a time-dependent vector field. This leads to the Hamilton-
Jacobi equation

∂S

∂t
+

1
2
(∇iS − Ai)(∇iS − Ai) + φ = 0 (12)

with the same equations of motion (3). When the covector potential Ai is 0, so
that φ = V , this becomes

∂S

∂t
=

1
2
∇iS∇iS + V (12’)

All of this is well known in classical deterministic mechanics, and an extended
exposition is in Chap. II of [1].

Basic Stochasticization. The word “stochasticization” is cacophonous, but
it is a more accurate description of the procedure in stochastic mechanics than
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“stochastic quantization”, because the physics remains classical despite the
appearance of �. (Also, the latter phrase has two distinct meanings.) The basic
equations of stochastic mechanics will be derived here under two simplifying
assumptions (see [1] for the general case). First, take M to be R

n and the mass
tensor to be a constant diagonal matrix giving the masses of the various par-
ticles making up the configuration. Then M is flat and the Christoffel symbols
Γ i

jk are 0. But tensor notation is still useful; for example, vi is the velocity and
vi is the momentum, and the Laplacian Δ = ∇i∇i has the appropriate mass
coefficients in it. Second, take the covector potential Ai to be 0.

Let w be the Wiener process on M , the stochastic process of mean 0 char-
acterized by

dwidwi = �dt + o(dt) (13)

We postulate that the motion of the configuration is a Markov process governed
by the stochastic differential equation

dXi = bi
(
X(t), t

)
dt + dwi (14)

where bi is the forward velocity. Thus the fluctuations are of order dt
1
2 , and with

a value larger than � in (13) this postulate could be falsified by experiment,
without violating the Heisenberg uncertainty principle.

Now let us compute the expected kinetic action of this process. Let dt > 0
and let df = f(t + dt) − f(t) (the increment rather than the differential, which
does not exist if f is not differentiable). From (14),

dXi =
∫ t+dt

t

bi
(
X(r), r

)
dr + dwi (15)

Apply this equation to itself, i.e. to X(r), giving

dXi =
∫ t+dt

t

bi
(
X(t) +

∫ r

t

b(X(s), s)ds + w(r) − w(t), r
)
dr + dwi (16)

= bidt + ∇kbiW k + dwi + O(dt2)

where

W k =
∫ t+dt

t

[wk(r) − wk(t)] ds (17)

From this it follows that

1
2
dXidXi =

1
2
bibidt2 + bidwidt + ∇ib

idt2 +
�dt

2
+ o(dt2) (18)

Let Et be the conditional expectation given the configuration at time t. First
miracle: the term bidwidt in (18) is singular, of order dt

3
2 , but by the Markov

property Etb
idwidt = bi

Etdwidt = 0. Hence the expected energy is

Et
1
2

dXi

dt

dXi

dt
=

1
2
bibi +

1
2
∇ib

i +
�

2dt
− V

(
X(t)

)
+ o(1) (19)
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Second miracle: the singular term �

2dt in (19) is a constant not depending
on the path, so it drops out when taking the variation—form the Riemann sum
for the action, take the variation with the singular term dropping out, and then
pass from the Riemann sum to the integral. The stochastic principal function is

S(x, t) = −Ex,t

∫ t1

t

(
1
2
bibi +

�

2
∇ib

i − V

)(
X(s), s

)
ds (20)

where Ex,t is the expectation conditioned by X(t) = x.
The definition of a Markov process is that given the present, the past and

the future are conditionally independent. This is a time-symmetric notion. In
addition to the forward velocity bi there is the backward velocity bi

∗. The current
velocity vi and the osmotic velocity ui are defined by

vi =
bi + bi

∗
2

(21)

ui =
bi − bi

∗
2

(22)

The osmotic velocity depends only on the time-dependent probability
density ρ. Let

R =
�

2
log ρ (23)

Then
ui =

1
�
∇iR (24)

Computation shows that

∂S

∂t
+

1
2
∇iS∇iS + V − 1

2
∇iR∇iR − �

2
ΔR = 0 (25)

∂R

∂t
+ ∇iR∇iS +

�

2
ΔS = 0 (26)

Here (25) is the stochastic Hamilton-Jacobi equation. There is no determin-
istic analogue of (26) since R = 0 when � = 0. These two coupled nonlinear
partial differential equations determine the process X. Third miracle: with

ψ = e(R+iS) (27)

these equations are equivalent to the Schrödinger equation

∂ψ

∂t
= − i

�

(
−1

2
Δ + V

)
ψ (28)

This derivation is that of Guerra and Morato [2], but using the classical
Lagrangian. The result extends to the general case, when there is a covector
potential Ai and M is not necessarily flat; see [1].
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Stochastic Mechanics of Particles. The wave function ψ describes the
Markov process completely; |ψ|2 is the time-dependent probability density ρ,
ui = ∇i◦ log ψ, and vi = ∇i∀ log ψ. Stochastic mechanics has been developed
by many people, especially in Italy and the US. There are discussions of energy,
nodes, interference, bound states, statistics (Bose or Fermi), and spin in [1],
together with references to the original work.

The original hope that stochastic mechanics would provide a realistic alter-
native to quantum mechanics has not been realized by the theory in its present
form. This is because the Markov process lives on configuration space M , and a
point in M may consist of widely separated particles in physical space. This leads
to an unphysical nonlocality—instantaneous signaling between widely separated
particles—if the trajectories of the process are regarded as physically real; see
the discussion in [3].

Stochastic Mechanics of Fields. There are two motivations for applying
stochastic mechanics to fields. One is that fields live on physical spacetime and
nonlocality problems may be avoided. The other is that it may provide useful
technical tools in constructive quantum field theory.

The strategy is to apply basic stochasticization to a basic field Lagrangian.
So far as I know, this approach has not been tried before.

Consider a real scalar field φ on d-dimensional spacetime. Choose a spacelike
hyperplane R

s, where s, the number of space dimensions, is d − 1. The configu-
ration space is a set of scalar functions φ on R

s. Denote a velocity vector by π
and define the kinetic energy by∫

Rs

[(∇φ)2 + π2] dx1 . . . dxs (29)

Then the classical motion with zero potential energy satisfies the wave
equation. Now we have the setup to apply stochastic mechanics, with a basic
Lagrangian. There are problems both in the classical and quantum theories due
to the infinite number of degrees of freedom in field theory. All I have to report at
present is this plan for research. The hope is that making the Markov processes,
rather than the quantum field, the focus of investigation will prove easier and
more fruitful than the usual Hamiltonian approach of constructive quantum field
theory (whether in Minkowski spacetime or via the Euclidean method).
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Abstract. In this paper we discuss the relevance of the algebraic app-
roach to quantum phenomena first introduced by von Neumann before
he confessed to Birkoff that he no longer believed in Hilbert space. This
approach is more general and allows us to see the structure of quantum
processes in terms of non-commutative probability theory, a non-Boolean
structure of the implicate order which contains Boolean sub-structures
which accommodates the explicate classical world. We move away from
mechanical ‘waves’ and ‘particles’ and take as basic what Bohm called
a structure process. This enables us to learn new lessons that can have
a wider application in the way we think of structures in language and
thought itself.

1 Introduction

As Murry Gell-Mann [1] once wrote:-

Quantum mechanics, that mysterious, confusing discipline, which none of
us really understands but which we know how to use. It works perfectly,
as far as we can tell, in describing physical reality, but it is a ‘counter-
intuitive’ discipline, as social scientists would say. Quantum mechanics
is not a theory, but rather a framework within which we believe a correct
theory must fit.

The professional physicist still finds explaining exactly what the quantum for-
malism is telling us about Nature very difficult. We know that it is something to
do with non-commutativity because the commutative algebra of functions used
in classical physics is replaced by a non-commuting algebra of operators where
the operators become ‘observables’ while their eigenvalues correspond to the val-
ues found in experiments. The formalism works, but what does it all mean? Do
the problems arise simply because of the small scale nature of the phenomena,
or because the spectacular behaviour of matter only occurs at low temperature,
with no general consequences for the way think about the macroscopic world in
general? Or is it pointing to something much more general which reaches down
into the very being of our lives, providing a different paradigm that affects the
way we think in general?

H. Atmanspacher et al. (Eds.): QI 2013, LNCS 8369, pp. 6–21, 2014.
DOI: 10.1007/978-3-642-54943-4 2, c© Springer-Verlag Berlin Heidelberg 2014
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Let me begin with a personal difficulty. I have always been puzzled by the
contrast between the way quantum theory was originally introduced and the
way we worry over it today. Quantum theory was introduced to explain two
main phenomena, the stability of matter at room temperatures and the fre-
quency spectrum of radiation coming from very hot objects like the sun. Clas-
sical mechanics provides us with no explanation of the stability of an atom, the
stability of a molecule, the stability of a biological cell, the stability of a solid
crystal, the stability of my desk and so on. We need quantum mechanics to pro-
vide the explanation. We also need quantum mechanics to explain the radiation
black body radiation. Let me repeat, we needed quantum theory to explain the
stability of large scale matter at room temperature and to explain effects ema-
nating from very hot bodies. Contrast this with what we worry about now. We
worry about the fragility of the coherence of the quantum state, we worry about
schizophrenic cats, about the collapse of the wave function and we worry about
the implications of quantum non-locality [2].

These are the details we physicists are concerned with. What we do not
dispute is the novelty of the conceptual and mathematical form of the ideas
that are involved. Perhaps the most radical notion is that we must give up
reductionism with its view that ultimately the world must be analysed into
elementary parts and the relations between these parts define what we perceive
to be the world around us. To emphasise this failure of reductionism consider
our latest attempts to find the ultimate constituents of the nucleon. Instead of
finding simplicity, we find is a sea of activity which we analyse in terms of a
multitude of partons comprising valence quarks, quark-antiquark pairs, gluons
and perhaps even more [3]. There is no ‘ultimon’ in which we pin the solidity of
the macroscopic world.

However we should not be surprised. Bohr talks about the “impossibility of
any sharp separation between the behaviour of atomic objects and the interaction
with the measuring instruments which serve to define the conditions under which
the phenomena appear.” [4]. In other words there exists a kind of wholeness in
which “we are not dealing with an arbitrary renunciation of a more detailed
analysis of atomic phenomena, but with a recognition that such an analysis is
in principle excluded.” [5].

Primas [7] goes further

According to quantum mechanics the world is a whole, a whole which
cannot be made out of parts. If ones agrees that quantum mechanics is
a serious theory of matter then one cannot adopt the classical picture
of physical reality with its traditional metaphysical presuppositions. In
particular, the nonseparability and nonlocality of the material world and
holistic features are not compatible with the ontology usually adopted
in classical physics.

So where do we start? Fortunately at the level of atoms and molecules we do
have what appear to be autonomous objects, but these objects have both classical
and quantum properties. Macroscopic molecules behave like classical objects but
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they combine through quantum processes, where, then, is the description that
has both classical and quantum features?

If we examine the mathematical structures we have, it appears as if classical
mechanics is totally different from the mathematical description commonly used
in quantum mechanics. The variables used in classical mechanics, state functions
of the position and momentum, f(x, p), have a product rule that is commutative

f(x, p) · g(x, p) − g(x, p) · f(x, p) = 0 (1)

Whereas in quantum mechanics, x and p are replaced by operators that do not
commute. Similarly state functions, the density matrices, Γ, used in the algebraic
form of quantum mechanics, do not commute either. Here I am using density
matrices to describe the state of a system in contrast to the usual wave function
because it is a more general approach which reduces to the usual approach only
in a special case, namely, when Γ is of rank one and idempotent, Γ2 = Γ. Then
we can write

Γ = ∂∗∂

where ∂ is the wave function that causes us so many interpretational difficulties.
What is important to notice here is the states themselves need not commute,
namely,

Γ1Γ2 − Γ2Γ1 ∇= 0

This should be contrasted with the behaviour of classical state functions, Eq. (1).
We immediately see that a fundamental mathematical difference between clas-
sical and quantum mechanics lies in difference between the commutative and
non-commutative structures. We can already get a hint of how to combine these
two aspects into a single structure if we ask, “Where do we see commutativity
and non-commutativity occurring regularly in our everyday experiences?” Not
in the relations of things, but in the order of action. For example, I cannot walk
through a door without opening it first. The order of action is vital. For those
of a philosophical turn of mind, it is Heraclitus not Democritus, it is Schelling
and Fichte, not Kant that provide the clues. As Fichte [10] writes

The question is whether philosophy should begin with the fact or an act
(i.e., with a pure activity that presupposes no object, but instead, pro-
duces its own object, therefore with an acting that immediately becomes
a deed).

In this paper I want to use the algebraic formalism, because it is through this
formalism that the real novelty of the quantum ideas and the connection with
process come through showing us that there is a radically new way of looking at
all aspects of life that leads us to abandon the classical paradigm and to replace
it by a richer paradigm in which structure process is basic [9].
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2 Structure Process and Algebraic Order

When I started to work with David Bohm in the ‘60s he was thinking of how rela-
tivity and quantum theory could be brought together in a new way. To avoid the
difficulties of a rigid object presents to relativity, Bohm introduced the notion of
a structure process in which a set of discrete “space-like” elements undergo dis-
crete or continuous changes as they move and unfold in a process of development.
He argued that such a notion implies that the structural process as a whole, with
its set of manifold relationships of partial order of discrete elements, is logically
and existentially prior to the notion of a continuous space-time, in the sense that
the latter is an abstraction from the former, representing a kind of approximate
‘map’ of the overall structure process. Thus the particles and fields, and indeed
space-time itself were to be abstracted from this deeper process. His discussions
were conceptual and philosophical. The question he left unanswered was how
these notions could be developed into a coherent mathematical structure.

While I was thinking about these problems, I happened to come across two
significant discussions. The first was an essay by Hankins [11] who was reviewing
Hamilton’s work in which he introduced a notion, “the algebra of pure time”.
Hamilton thought that “in algebra the relations which we first consider and
compare, are relations between successive changing thing or thought”. He then
goes on “Relations between successive thoughts thus viewed as successes states
of one more general and changing thought, are the primary relations of algebra”.
Note he uses ‘thought’ not material process. This raises the interesting notion
that algebra is not only about material process as the physicist will believe; it
has a much more general function, describing the order, not only of material
relations, but also the order of thought. Thought is not subject to the order of
space-time. There is no notion of locality. Could this algebraic notion of order
take us beyond the order of space-time revealing new relations of the type we
see in entangled states?

Then there was Grasmann’s Ausdehnungslehre [12] that had a profound influ-
ence on Clifford’s development of his algebra. It is this algebra that I have found
extremely fascinating and which forms a basis of my recent work on what I call
Bohm’s non-commutative dynamics [13]1. Grassmann introduced the notion of
an extensive to carry the notion of a continuous becoming. We all experience one
thought transforming into another, new thought. Is the new thought separate
from the old thought? No. The old thought contains the potentiality of the new
thought, while the new thought contains a trace of the old thought. Symbolically
this is written as [T1, T2] then succession can be captured through a groupoid
multiplication rule

[T1, Ti] ◦ [Tj , T3] = [T1, T3]; only when i = j. (2)

As I have shown elsewhere [15], encapsulated in this idea is the notion of unfold-
ing that is central to the notion of enfolding and enfolding that leads directly
1 Unfortunately I have to make it clear that the spirit of the view Bohm and I were

developing together had little in common with the proponents of the subject now
called “Bohmian mechanics”.



10 B.J. Hiley

to the Heisenberg equation of motion. This is one of the equations that form
the basis of the time development of quantum processes that we use implicitly
throughout this paper.

Let us first start by explain how these ideas lead us to Clifford algebras
[15]. Clifford [14], exploiting the ideas of Grassmann and Hamilton, introduced
a multiplication rule, which he called polar multiplication, and which we now
call Clifford multiplication. This follows from Eq. (2) together with

[T1, T2] = −[T2, T1]

Now one can easily show that the following rule is satisfied

[T1, T2] ◦ [T2, T3] + [T2, T3] ◦ [T1, T2] = 0

showing that the product in anti-commutative. Now let us consider the special
case in which the thought turns into itself, that is [T1, T1], the idempotent which
formally satisfies

[T1, T1] ◦ [T1, T1] = [T1, T1]

This shows that the thought is not static, but keeps on turning into itself. To
show exactly how this structure produces the formal orthogonal Clifford algebra
requires a little extra work which we will not need in this paper so we will simply
refer to the original work of Clifford [14] or to Hiley [15] for a more extensive
discussion of the ideas introduced here.

However one thing that I will mention here to complete the background is
to explain where Hamilton fits in. Hamilton was interested in generalising the
complex numbers, which would involve seeing how three mutually perpendicular
two dimensional Argand planes can be fitted together into a three dimensional
space. Recall that the complex number i can be regarded as a rotation through
90◦ in, say, the x − y plane. How then do we combine this rotation with a 90◦,
rotation, say j, in the x − z plain, and a 90◦, say k, in the y − z plain? Clearly
i2 = j2 = k2 = −1. Notice we have introduced three separate, but related
‘square roots of −1’. What Clifford showed was that if you take [T0, T1] to be
a movement along the x-axis and [T0, T2] to be a movement along the y-axis,
then [T1, T2] is a movement (i.e., rotation) taking T1 into T2. Clearly if you apply
[T1, T2] again you get [T1, T2]2 which Clifford took to be −1, so that Hamilton’s
quaternions became a special case of a Clifford algebra.

3 Where Does Quantum Theory Fit in?

All of this mathematical structure was developed when classical mechanics was
the only mechanics known. Imagine the surprise when nature threw up spin
and the Pauli φ algebra and then Dirac showed that a relativistic generalisa-
tion required the relativistic electron depended on a set of anti-commuting Δ-
matrices. Both of these structures are examples arising in the tower of orthogonal
Clifford algebras.
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In an orthogonal Clifford algebra, C, the rotations emerge as inner automor-
phisms defined by

A→ = RAR−1, ∀A ∈ C.

where R is a set of invertible elements in C. The multiplicative group, G of
invertible elements R is called the Clifford group, which in the physics community
is known as the spin group. The Clifford group gives us direct access to the
double cover of the usual rotation group and the spinor comes “for free” as an
element of a suitably chosen minimal left ideal. It was through a detailed study
of orthogonal Clifford algebras that Hiley and Callaghan [16] extended the Bohm
approach to relativistic particles with spin.

Now I want to draw your attention to another algebra which appeared in a
classic paper by von Neumann [17]. Again here we are not specifically concerned
with quantum processes, but we arrive at an algebra that plays a central role
in quantum mechanics. Let us begin by considering the translations in an (x, p)
symplectic (phase) space. We can write these translations as

Û(ρ) = exp(iρP̂ ); V̂ (ψ) = exp(iψX̂)

If the generator P̂ and X̂ are defined by the relations

Û(ρ)f(X̂)Û(ρ)−1 = f(X̂ + ρ); V̂ (ψ)g(P̂ )V (ψ)−1 = g(P̂ + ψ)

then (X̂, P̂ ) must satisfy the relation [X̂, P̂ ] = i where [·, ·] is the usual commu-
tator2. We follow von Neumann and write

Ŝ(ρ, ψ) = exp i(ρP̂ + ψX̂)

Here Ŝ(ρ, ψ) is the generator of the Heisenberg group acting in the symplectic
space.

It is often believed that the Heisenberg algebra is a sign that we have entered
the quantum domain, but this is not true. Most of the exploration of the proper-
ties of this group are by people working in radar, which was, of course, designed
to locate the position and speed of aircraft, hardly a quantum phenomena!

If we interpret (X̂, P̂ ) as the Hermitian operators used in the Hilbert space
approach to quantum mechanics, then we see that the parameters (ρ, ψ) define
a dual structure. This dual structure contains all the information contained in
the Hilbert space formalism, but in a novel way. von Neumann shows there is
a 1 − 1 correspondence between the Hilbert space formalism and the functions
a(ρ, ψ) through the relation

Â =
∫ ∫

a(ρ, ψ)Ŝ(ρ, ψ)dρdψ. (3)

2 Of course position and momentum have different dimensions so we choose x ↔ ̂X
and p ↔ Φ ̂P . Note that we are not appealing to anything quantum mechanical at
this stage. It is only in quantum mechanics that we write Φ = 1/�.
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To obtain expectation values that agree with those formed in standard quantum
mechanics, we introduce an element Γs, the density matrix and form

fρ(ρ, ψ) = Tr[ΓsŜ(ρ, ψ)]

so that

∅Â↑ =
∫ ∫

a(ρ, ψ)fρ(ρ, ψ)dρdψ.

The form of this equation suggests that in the space defined by (ρ, ψ), expecta-
tion values can be found in the same way as they are found in standard commu-
tative statistics, however in this case the variables (ρ, ψ) are non-commutative,
as we will soon see, so we have a generalisation of ordinary statistics. This gener-
alisation was suggested first by Moyal [19] who further brought out the physical
meaning of the approach by identifying ρ with x and ψ with p, so that we have a
non-commutative phase space. In more general terms, a non-commutative sym-
plectic space. It is important to note that there exists a commutative sub-space
which contains classical mechanics.

I have called the space spanned by (ρ, ψ) non-commutative, but in what
sense? We have seen in Eq. (3) there is a relation between Â ↔ a(ρ, ψ) so if the
operators do not commute, this must be reflected in the product a(ρ, ψ) π b(ρ, ψ).
Indeed von Neumann showed that it was necessary to introduce a new product

a(ρ, ψ) π b(ρ, ψ) =
∫ ∫

e2i(γβ−δα)a(Δ − ρ, δ − ψ)b(ρ, ψ)dρdψ

Although this definition was introduced by von Neumann, it is now called a
Moyal product because Moyal derived it in a more suitable form, namely,

a(x, p) π b(x, p) = a(x, p) exp[i�(
←−
Π x

−→
Π p − ←−

Π x
−→
Π p)/2]b(x, p)

It is easy to show that this product gives

x π p − p π x = i�

Since we have a non-commuting product, we can form two brackets; the Moyal
bracket

{a, b}MB =
a π b − b π a

i�

This corresponds to the commutator bracket in standard quantum mechanics,
and the Baker bracket

{a, b}BB =
a π b + b π a

2

which corresponds to an anti-commutator.
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The interesting result is that in the limit O(�2), we find the Moyal bracket
becomes the Poisson bracket of classical mechanics

{a, b}MB = {a, b}PB = O(�2) = [ΠxaΠpb − ΠpaΠxb]

While the Backer bracket becomes a commutative product

{a, b}BB = ab + O(�2)

Thus we find classical mechanics appearing as a sub-algebra in the non-
commutative symplectic algebra.

Just to confuse matters, the algebra that we have outlined above goes under
several different names. Sometimes it is called the Weyl algebra [18], sometimes
it is called the Moyal algebra [20], but, as we have shown, has it roots in the
algebra introduced by von Neumann [17] in 1931. I prefer to follow Crumeyrolle
[21] and call it the symplectic Clifford algebra because of its close relation with
the orthogonal Clifford algebra. It is not appropriate to go into the details of the
symplectic Clifford algebra in this paper. We will simply point out a couple of
features that I hope will stimulate some interest in the structure.

Firstly the orthogonal Clifford algebra can be generated by the fermionic
(Grassmann) creation and annihilation operators while the symplectic Clifford
can be generated by the bosonic creation and annihilations operators. Secondly
the orthogonal Clifford group is the spin group so that spin occurs naturally in
the algebra. The symplectic Clifford group generates the double covering group
of the symplectic group, the metaplectic group. It ‘lives’ in the covering space
and accounts for phase properties like the Gouy effect [22,23] and the Aharonov-
Bohm effect [24].

The final point I would like to make is that both these algebras are geometric
algebras in the sense that they describe deeper properties of the geometry of
space-time that do not, a priori, depend on quantum theory. Rather quantum
phenomena exploit these deeper properties of space-time. As these properties are
global aspects of the underlying classical space-time, it should not be surprising
to find non-local effects because there is no way of describing these global effects
using only local Lie algebraic structures.

4 Non-commutative Probability

I am arguing here that these global structures are not merely properties of
the material world. They have ramifications for all forms of activity, including
the organising orders in thought. Recall that it was Hamilton and Grassmann
thinking about the order of thought that led them to take algebraic structures
seriously in the first place. The application of algebras has been very successful
in the material word and it is only recently that people have been trying to
apply the ideas in other areas releasing the formalism from the shackles of the
quantum theory.

What has held people back from exploiting quantum algebras has been the
thinking that the only way to deal with quantum-like phenomena is through the
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Hilbert space formalism with its total dependence on the wave function. The
algebraic approach to quantum phenomena, while capturing all aspects of the
theory that have already been explored, is a more general formalism and requires
a different mind-set from that used in the Hilbert space formalism. No one has
worked harder to promote the algebraic approach than theoretical chemist, Hans
Primas [7,8]. The general concept that he emphasises is that no matter how we
mathematically analyse quantum phenomena, its essential feature is based on a
non-commutative structures which he regards as needing a non-Boolean logic.
The classical world is Boolean and we have yet to understand the radically
different attitudes needed to comprehend a non-Boolean way of thinking.

The two algebras that we have introduced in this paper are both non-Boolean
and are specific examples of what are called von Neumann algebras. Their appar-
ent very different structure is because the orthogonal Clifford is a type I von
Neumann algebra, while the symplectic Clifford is of type II. A discussion of a
type I algebra, based on the symplectic structure has been carried out in Hiley
and Monk [25] and in Bohm, Davies and Hiley [26]. I mention these technicalities
because the difference in appearance of the two Clifford algebras might cause
some uncertainty in the general discussion. In practice the precise differences are
not important for the purpose of this paper. Both have idempotents and it is
through the idempotents that we can see how the non-Boolean structure arises.

In our approach, the idempotent is the analogue of the projection operator in
the standard approach and it is the projection operators that lead to a proposi-
tional logic, exploited by Birkhoff and von Neumann [28]. They were the first to
suggest that quantum theory should be regarded as a new ‘logic’, quantum logic,
which has now been developed into a formal structure [29]. However this has not
been very popular amongst physicists and chemists because it has not led to any
new ways of thinking about quantum phenomena. Nevertheless it is necessary
to understand how this structure arises before we can establish a different point
of view. First it is necessary to know that the structure of any von Neumann
algebra is determined by its idempotents, or, if you like, its projection opera-
tors. Both idempotents and projection operators have two eigenvalues, (0, 1),
so we can regard them as propositions giving us a truth value. Because of the
non-commutativity of idempotents, quantum theory gives rise to a non-Boolean
propositional calculus [27].

The problem with this interpretation is that it appears to become epistemo-
logical, that is it has to do with questions that we ask of the physical system. As
a physicist, I am interested in the ontology underlying quantum phenomena. I
will follow Eddington [30] and introduce a structural concept of existence rather
than relying on some metaphysical concept of a particle. Existence manifests
itself in two ways–it either exists or it doesn’t. Thus let us associate existence
with an idempotent. This seems an eminently good notion that has very general
applicability. For example if I consider who I am, where is the real me? My
mind is constantly in turmoil, my body, my cells and even my bones are actively
changing their constituents. I inhale and exhale, etc. I am in constant change,
yet it is still me. I am an idempotent, constantly changing into myself. Yes, there
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are small changes over time, so that the idempotent can change over time, but
time scales become crucial particularly at the sub-atomic scales, where ‘parti-
cles’ exist for very short times. The notion of relative stability becomes primary
at this level and it is here that processes exhibit fleeting existences.

If we follow this route, then non-commuting structures throw up very inter-
esting consequences. Idempotents do not necessarily commute which implies that
when some processes are manifest, others can be completely undefined, so that
we cannot even ask if they exist or not. But there is more. Since there exist
inner automorphisms in the algebras, we can relate non-commuting idempotents
so that, for example we can write ε→ = AεA−1. In order to see what this means,
let us consider a matrix representation of the structure3. Then

ε→
jj =

∑
k

AjkεkkA−1
kj

Thus we see that each transformed ε→
jj contains contributions from all the idem-

potents in the set {ε}. We have called this the exploding transformation4. What
this transformation implies is that the idempotent ε→

jj contains contributions
from all the idempotents {ε}. In terms of existence, this means that when we
make a transformation, it is not that the existing entity signified by one idem-
potent ‘vanishes into thin air’, as it were, but that it contributes and is active
in the new idempotent.

If we only think in terms of classical materialism, then this idea makes little
sense, but if we think of process, then it implies that everything is an undivided
whole but within that totality there exist invariants, the invariants that give rise
to quasi-local, semi-stable structures to which we give the name ‘particle’. These
semi-stable structures can come together and form even more stable structures
through their mutual interaction. It is out of these stable structures that the
classical world emerges. After all, as has already been pointed out, quantum
mechanics was introduced to explain the stability of the macroscopic world.

Thus the individual ‘particle’ exists only in the background of the total
process. As Primas puts it “The environment must never be left out of consid-
eration” [6]. However it is actually stronger than that. Without the background
there would be no invariant, there would be no particle. This is totally differ-
ent from the classical view where we assume the particle exists a priori as an
autonomous preexistent object.

5 Example of Non-commutative Probability in Quantum
Mechanics

I want to continue by exploring the appearance of non-commutative probabil-
ity in the von Neumann/Moyal algebraic approach. Let us follow Moyal and

3 All type I von Neumann algebras have matrix representations.
4 This is the structure used in the Huygens construction and hence the Feynman path

integral method [31].
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Feynman [32] and regarding fρ(ρ, ψ) as a probability measure even though it
can take negative values5. Here we will identify ρ = x, ψ = p and take Γ to be
the density matrix for a system in a pure state ∂(x, t) so that

fψ(x, p) =
1
2π

∫
∂∗(x − τ/2)e−ipτ∂(x + τ/2)dτ.

This will be recognised as the Wigner function which is easily obtained from the
two-point density matrix [35]. In this case the parameters (x, p) are the mean
coordinates of what de Gosson calls a quantum blob [33].

Since the probability measure depends upon two variables, we can ask for the
conditional expectation of, say, the momentum at a point x. Moyal [19] shows
this is

Γ(x)p̄ =
∫

pfψ(x, p) =
(

1
2i

)
[(Πx1 − Πx2)∂(x1)∂(x2)]x1=x2=x

If we write ∂ = ReiS we find

p̄(x, t) = √S(x, t)

which is just the so called “guidance condition” used in the Bohm approach to
quantum mechanics [38] only in this context it is not guiding anything. Here it
is simply a conditional expectation value of the momentum.

Moyal also obtains an equation for the transport of this momentum. Starting
from Heisenberg’s equation of motion, Moyal finds

Πt(Γp̄k) +
∑

i

Πxi
(ΓpkΠxi

H) + ΓΠxk
H = 0

Once again if we write ∂ = ReiS , we find

Π

Πxk

[
ΠS

Πt
+ H − √2Γ

8mΓ

]
= 0

Or

ΠS

Πt
+ H − √2Γ

8mΓ
=

ΠS

Πt
+

1
2m

(√S)2 − 1
2m

√2R

R
= 0

where we have chosen the constant of integration to be zero. This equation is
just the quantum Hamilton-Jacobi equation exploited in the Bohm approach.
This equation is simply a conservation of energy equation where √2R/2mR, is
the quantum potential which is regarded as a new quality of energy. One can
show that the quantum potential is related to the Tjj component of the energy-
momentum tensor of the Schrödinger field [34].

By integrating
∫ √Sdt, a set of stream lines can be calculated as first shown in

Philippidis, Dewdney and Hiley [37] for the classic two-slit interference pattern.
5 See Bartlet [36] for a discussion of this point.
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Other typical quantum situations are discussed in Bohm and Hiley [38], Holland
[39] and Wyatt [40]. If we assume, with Bohm that the particle actually possesses
this momentum, then we have the possibility of understanding the behaviour of
individual particles. What we have done here is to represent the particle in a
phase space spanned by the co-ordinates (x, p̄) and have calculated an ensemble
of ‘trajectories’ along which the particle could travel.

Alternately we could examine the conditional expectation value of x which
is given by

Γx̄ =
∫

xfφ(x, p)dx =
1
2i

[(Πp1 − Πp2)φ
∗(p1)φ(p2)]p1=p2=p

where φ(p) is the Fourier transformation of the wave function ∂(x). Again if we
write φ(p) = R(p)eiS(p), we find

x̄(p) = −ΠSp

Πp
.

This relation replaces the so called guidance condition, but note here there is no
way that this expression can be regarded as “guiding” anything. Nevertheless
we construct a new phase space, this time with co-ordinates (x̄, p). One can
also calculate stream lines in this space [41] and one finds that the streamlines
are different in the two cases. The question is then how do we reconcile these
differences?

5.1 Shadow Manifolds

In order to explain the appearance of these two phase spaces, we must recall
the Gelfand-Naimark construction [43]. This construction requires us to think
of the evolution of material processes an entirely new way. Rather than starting
from an a priori given space-time with its preassigned topological and metrical
properties upon which the algebraic structure that describes the evolution of
the material process, we start from the algebraic structure and then abstract
the properties of the underlying manifold. If the dynamical algebraic structure
is commutative then the Gelfand-Naimark theorem tells us that there is a unique
underlying manifold whose topological and metrical structure are determined by
the dynamical algebra, In this case the points of the space are maximal two-sided
ideals of the algebra so that the points of the space are part of the algebra itself.
Thus the space of points are not separate entities but are part of the whole
structure.

While this works for a commutative structure, one finds no unique underlying
manifold if the algebra is non-commutative. The best one can do is to abstract
out a set of shadow manifolds. The two phase spaces that we constructed above
are examples of these shadow manifolds. This can be taken to be a rigorous
mathematical statement of Bohr’s principle of complementarity. It does not need
to be considered as “wave-particle” duality, a notion, although popular, makes
very little sense when carefully examined. In our view the non-commutative
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structure is the ontological structure which captures more clearly the notion of
wholeness that Bohr felt was an essential feature of quantum phenomena. But
if the structure is non-Boolean and you are trying to explain it in terms of a
Boolean logic, then the two alternative structures arise merely because we are
trying to project the process into an inappropriate descriptive form.

At this stage the idea is being discussed in terms of just two shadow spaces.
However it can be shown that there could be many shadow spaces. For example
the two spaces arise from the Fourier transform but mathematically we could
use the fractional Fourier transformation, then we can obtain a family of shadow
manifolds as shown in Brown [42].

If one wants to consider this in philosophical terms then the non-commutative
algebra is essentially a description of the implicate order, while the shadow man-
ifolds are merely the explicate orders [44]. The way I have tried to get this view
across is to recall the gestalt effect revealed in pattern or drawing in which we can
see two alternative figures. A typical well known example is the old lady-young
lady image shown in Fig. 1.

Fig. 1. Old lady-young lady.

Here it is the observer that is trying to find some meaning in the drawing.
Of course that does not mean that we descend into some form of subjectivism.
The drawing is real, we are simply trying to make sense of it.

It is interesting to note that Primas [6], by recognising the holistic nature of
quantum phenomena, also argues that phenomena or patterns have no a priori
meaning. We provide the meaning in the same sense that we provide the meaning
to Fig. 1. Naturally the meaning is subjective but the pattern or the phenomena
is not. That is real; that is ontological. Primas goes on to argue that pattern
recognition is a map from the non-Boolean world into a Boolean description. This
is exactly what Bohm [44] was getting at with his implicate-explicate order. The
explicate orders are Boolean accounts that emerge from the non-Boolean world
of quantum phenomena.

6 Conclusion

We have taken the algebraic description of quantum phenomena to illustrate
how non-commutative probability theory applies to the material world. But the



Quantum Mechanics: Harbinger of a Non-commutative Probability Theory? 19

general structure of the idea has a much wider application and holds even in
the world of thought. We all experience the struggle to explicate our thoughts
and feelings! We are forced into explanations that are precise, are Boolean, but
our thought is not Boolean. We cannot give one view of reality, not because
we, as humans, are limited in our in our abilities or that we are “clumsy” in
the laboratory disturbing everything we try to explore. We are limited because
nature is holistic and does not allow a reductionist view of nature except in a
somewhat limited domain, limited but vital for our immediate survival. However
the deeper lessons that we learn about material reality, hold even more so when
it comes the mental world.

It is not that the mental world is separate from the physical world. They
are both aspects of the same underlying structure process. I don’t have the time
here to discuss this further but this aspect has been eloquently argued by Bohm
[45], an argument that I will not repeat here. I hope that this paper will begin
to reddress those who argue that the lessons of quantum theory have nothing
to teach us about these much deeper questions, particularly those addressing
the relation between mind and matter. By brining out the deeper structure of
the ideas, we do not waste the opportunity by being trapped in arguments that
claim the brain is too hot and too wet for these ideas to be relevant.
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Abstract. This article examines manual textual categorisation by
human coders with the hypothesis that the law of total probability
may be violated for difficult categories. An empirical evaluation was
conducted to compare a one step categorisation task with a two step
categorisation task using crowdsourcing. It was found that the law of
total probability was violated. Both a quantum and classical probabilis-
tic interpretations for this violation are presented. Further studies are
required to resolve whether quantum models are more appropriate for
this task.

1 Introduction

Automatic categorisation of documents is gathering interest from researchers in
text processing and machine learning and the development of novel approaches
to solve this problem has led to a number of annotated collections. Such a para-
digm generally assumes that although there can be disagreement on a category
label for a given document, each document labelled in a series is processed inde-
pendently of others, and each potential category for a document is considered in
isolation. Therefore the development and the evaluation of automatic categori-
sation algorithms is deeply dependent on this assumption. However it has been
found that some categories may be problematic to such algorithms: that is they
are difficult to label properly. In this paper, we conjecture that such a situation
may arise from a default of the assumption of independence between documents
and categories, and propose to study this from a decision making perspective.

The study of the relationship between perception, categorisation and decision
making is an active research area since the beginning of 2000. Townsend et al. [1]
introduced a new paradigm to study these type of interactions in order to test
Markov models. The framework used is the following: (i) a stimulus is presented
to a subject, (ii) the subject is then asked to categorise it, (iii) finally the subject
is asked to make a decision. The research question investigated is whether the
probability of a decision depends on the characteristics of the initial stimulus,
or is the probability of the decision affected by the categorisation step? In other
words, can a conscious cognitive process that does not impact the reality of the
stimulus interfere with a decision about the stimulus? The hypothesis was that
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subjects would follow a Markov property, that is, the final decision is based on
the categorisation step and not on the original stimulus.

The hypothesis was tested in an experiment, in which subjects were shown
pictures of faces and asked to categorise them into one of two possible groups
and thereafter asked to decide on a course of action. The two groups were defined
by the following visual features: face shape (wide, narrow); lip thickness (thick,
thin). The main procedure of the experiment was divided into two parts. In
Part I, subjects were asked to:

1. categorise a picture of a face (usually indicated as the input signal S) in either
group G (good guys) or group B (bad guys);

2. decide on an action A (act aggressively) or F (act friendly), knowing that one
group (B in this case) is more hostile than the other.

In Part II, subjects only had to make the decision response, not both.1 subjects
were given information about the correct proportions of face shapes for each
category (about 60 %) and they were given incentives for each correct answer.

The corresponding Markov model underpinning this experiment is given by:

P (A|S) = P (A|G)P (G|S) + P (A|B)P (B|S) (1)
P (F |S) = P (F |G)P (G|S) + P (F |B)P (B|S) (2)

It was found that the law of total probability was not satisfied: the probability
of taking a decision without categorising the face (left hand side of Eqs. 1 and 2)
was significantly different from the decision taken after the categorisation step
(right hand side of Eqs. 1 and 2). This is the consequence of the fact that most
individuals are moderately influenced by their categorisation when they have to
make a decision.

The quantum interaction research community has presented evidence that
such empirical violations of the law of total probability can be modelled with
quantum-like models using an interference term. The interference term modifies
the law of total probability and is derived from incompatibility between sub-
spaces representing events. A quantum-like inference model for this experiment
was proposed [2,3] and such models have been widely proposed in quantum
cognition [4–8].

The aim of this article is to investigate whether the law of total probability
is being violated in text categorisation, and if it is, to investigate whether it can
be modelled using a quantum-like interference model.

2 Interference in Text Categorisation

Text categorisation is the task of deciding whether a piece of text belongs to
one or more categories, given a set of specified categories [9]. This task has

1 In the experiment, the reverse order, decide-then-categorise, and categorise only was
investigated as well. We do not analyse the reverse order in this paper.
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important applications in the real world, for example: news stories are typically
organised by subject categories or geographical areas; academic papers are often
classified by domains and research areas; email messages are classified into the
two categories of spam and non-spam. Since manual text categorisation is a time
consuming process, machine learning approaches are used to automate this task.
For supervised learning algorithms and for the evaluation of the automatic clas-
sifiers, some ground truth is required. In general, the ground truth is a collection
of textual documents sampled from the same population of documents that will
be automatically classified. This collection is carefully annotated by experts of
the topics (or the categories) covered by the documents.

The goal of a supervised machine learning algorithm is to learn a classifier
based on the manually annotated documents. More formally, given a finite set of
pre-defined categories C = {c1, ..., ci, ..., cn} and a finite set D of documents, the
learning of a categorizer consists of the definition of a function for each category
ci of this kind: Φi : D ∇ [0, 1]. Therefore, a categorizer returns a degree of
membership of a document d for a category ci.2 However, when the decision to
assign or not d to ci has to be taken, a threshold t may be needed such that
if Φi > t, d is assigned to category ci, otherwise it is not assigned to ci. The
function Φi takes on different meanings according to the learning method used:
in the Näıve Bayes approach, it is defined in terms of the conditional probability
that a document d belongs to the category ci, P (ci|d). This approach of learning a
classifier for each class is called binary categorisation. Given a set of categories C,
there are |C| independent binary categorisation problems where each document
of D must be assigned either to category ci or its complement c̄i = C − ci.

In machine learning literature, it has been consistently found that it is harder
to learn a classifier for some categories. Our hypothesis for this phenomenon is
that when human annotators decide that a document belongs to category c1,
they are necessarily undecided about whether it belongs to category c2. This
indecision is the hallmark of incompatible subspaces, which have been shown
not to adhere to the law of total probability [6,8].

The process of categorising documents is very close to the categorisation
and decision making problem described in the Sect. 1. More specifically, the act
of categorising a document is both a categorisation step, i.e., a document is
categorised into category c, and a decision step, i.e., placing the document in
the ‘box’ which contains the documents of category c. Therefore, the process of
categorisation can be modelled with a Markov chain, as shown in Fig. 1, in the
following way:

– given a set of categories C and a document d to categorise;
– step 1, categorise d in either category c1 or c̄1;
– step i, categorise d in either ci or c̄i, knowing that the document was previously

categorised under either ci−1 or c̄i−1.

The hypothesis here is similar to the original experiment of [1]: a human
expert would follow a Markov property, that is the decision at the i-th step is
2 The image of Φi can be different, for example Φi : D → R.
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Fig. 1. The process of categorisation described by a Markov chain.

based on the categorisation information used at step i−1 and not on the features
of the original document.

2.1 Categorisation Under Two Categories

In order to test the hypothesis using the face detection experimental framework,
we contain the categorisation task to a task of deciding upon only two categories,
C = {c1, c2}. In this new experiment, subjects will be asked to classify documents
into either c1 or not, and into either c2 or not. The experiment is divided into
two parts. In Part I, subjects will be asked to: (i) first, categorise a document
in either category c1 or c̄1; (ii) then, categorise the document under either c2
or c̄2. In Part II, subjects will be asked to only decide whether the document is
relevant for either c2 or c̄2.

Given a document d, by the law of total probability, the probability of cate-
gorising d under c2 or c̄2 is:

P (c2|d) = P (c2|c1)P (c1|d) + P (c2|c̄1)P (c̄1|d) (3)
P (c̄2|d) = P (c̄2|c1)P (c1|d) + P (c̄2|c̄1)P (c̄1|d) (4)

In Part I of the experiment, the probabilities of the right hand side of the last
two equations are estimated; while in Part II, the probabilities of the left hand
side, P (c2|d) and P (c̄2|d), are computed.

In order to be able to use the same formalism for analysing the outcomes as
the face recognition experiment, the design of the text categorisation experiment
must be as similar to it as practical. Therefore we need to carefully address the
following issues: (1) the choice of features that describe the category and (2) the
proportion of documents for each category.

In [1], and subsequently in [2], the features of the type of the faces of the two
groups (good guy or bad guy) were clearly identified as a two dimensional space:
roundness of the face (round or narrow), thickness of the lips (thick or thin).
The face had to have neither any expression nor any hair style (all the faces were
actually bald). Half of the faces were round with thin lips, half were narrow with
thick lips. The size of these two features was slightly altered to have a range of
different faces. The values of the size of the face and lips thickness was such that
each group could be clearly identified. In this experiment, these two features
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were the only hint that could drive the judgement of the subject. Additionally,
subjects are informed that although these are the general describing features of
each category of face, they are neither necessary nor sufficient conditions. This
is described further in the description of proportions of documents in categories.

For a text categorisation experiment, the situation is more complex. Text
documents are high-dimensional objects since they are represented by words.
Categories, in turn, can be described by many words or concepts that are related
to the documents of the category. For this reason, the categorisation experiment
cannot be limited to two dimensions.

The second issue concerns the proportion of documents between categories.
The original experiment was designed to be completely symmetric, that is the
altered faces were assigned to the two groups in the following way: round faces
with thin lips had a 60 % chance of being assigned to the bad guy group; bad
guys had a 70 % chance of being hostile. The other category had symmetric
chances.

In the case of text categorisation, categories are very often unbalanced; there-
fore, building an experiment with the same number of positive and negative
examples for each category would be quite unrealistic. In general, a document
that presents the features of a category (we address the problem of the features
in Sects. 2.2 and 2.4) belongs to that category; nevertheless, there are some doc-
uments that seem to cover a topic of a category but belong to the opposite
category. We decided to manually select a reasonable sample of documents, by
reasonable we mean comparable to the original experiment (34 pictures), from a
standard benchmark such that: (i) a document may belong to both categories, to
either c1 or c2, or to none; (ii) a document that belongs to a category (according
to the classification given by the standard benchmark) may or may not contain
the keywords used to summarise the category; (iii) a document that belongs
neither to c1 nor to c2 (according to the classification given by the standard
benchmark) may contain some of the keywords used to summarise the categories
of interest.

2.2 Materials

The Reuters-21578 has been the most important benchmark for text categori-
sation since the 1990s. It consists of 21,578 news articles that appeared on the
Reuters newswire in 1987. The articles were manually categorised by experts.
By examining the description of the creation of the original dataset [10], it is
possible to build some analogies with the Markov text categorisation process.
For example, news stories had been hand-categorised for any of 72 categories
available, but it was required to assign at most 6 of the 72 categories for each
document. A story could be assigned one or more of these codes, or no code at
all if none of the chosen six was appropriate.3 The important step that clarifies
the link between the Markov process and is that experts had to select from a
3 The restriction to six codes was imposed to keep the effort required to build the

dataset within certain budgetary limits.
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set of categories for each document. Since, as humans, we need to process each
decision in sequence, it is very likely that the experts had in mind a specific order
of the 72 categories. Therefore, they were actually performing a sort of 72-step
experiment, with the extra constraint of a maximum of 6 categories per news.

not shipping

not crude oil

crude oil

shipping

Fig. 2. Incompatibility between the two subspaces “shipping” and “crude oil”. ψ
denotes the cognitive state of the subject with respect to document d, the projec-
tions on the axis are the probabilities that the subject decides for one category or the
other. θ measures the interference between the two subspaces.

Table 1. A breakdown of the 82 documents selected for the experiment.

Only ship Only crude Crude and ship Not crude and not ship

20 14 29 19

There is also another important issue that reflects the problem of choosing
the right features to describe categories. Quoting [10]: “Closer examination of
the results, however, shows that the kind of errors made are quite different.
Human errors stem mainly from inconsistent application of categories, especially
the categories with the vaguest definitions, and from failing to specify all the
categories when several should have been assigned to a story.”

The process of manually categorising the Reuters collection presents many of
the issues that we are addressing in this paper. For the two categories experiment,
we select two Reuters categories: (1) a category about “shipping”, and (2) a
category about “crude oil”. These two categories are good candidates for this
pilot experiment because they have distinctive keywords that characterise each
topic. However, there are documents that are about shipping crude oil and there
are documents that mention ship and crude without being categorised in either
category. For this reason, we hypothesise there may be incompatibility between
the subspaces corresponding to “shipping” and the other corresponding to “crude
oil” as depicted in Fig. 2. See Sect. 3 for further analyses about incompatibility.
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After a careful manual selection, a total of 82 documents were selected.
Table 1 shows the number of documents for each combination.

Table 2. Number of observation and number of subjects per group.

Number of HITS approved 500 1000 5000 Masters

Observations One step task 796 790 734 681
Two step task 802 813 808 829

# of Workers One step task 30 42 48 45
Two step task 32 62 38 42

2.3 Subjects

For this experiment, we used the Mechanical Turk4 crowdsourcing platform for
recruiting subjects. Collecting relevance judgements via crowdsourcing using
MTurk has a demonstrated track record and has been shown to be of equal qual-
ity as that of lab-based experts [11,12]. For the purposes of this experiments, we
decided that unit of work to be performed by a worker (a HIT (Human Intelli-
gence Task)) would be based on the study of a single document (and either one
or 2 categorisation questions). We followed a similar crowdsourcing methodology
advocated by [13].

A variable that was manipulated was the “Number of HITS approved”, that
is the experience of the workers. In Mechanical Turk, there are seven levels:
from 0 (anyone can participate) to “masters” (best workers). We ran the exper-
iments with four levels of expertise to see whether there is any difference in the
results between these groups. The levels are (the figure indicates the number of
approved HITS): 500, 1000, 5000, and masters. For each experiment, we have a
total number of observations equal to 82 documents times 10 observations per
document. We report in Table 2 the exact number of observations after data
cleansing (HIT not approved, inconsistent answers, workers who categorised the
same documents more than once in the same experiment).

HITS were published in batches on Mechanical Turk from December 2012
until January 2013. For each level of expertise, the one step and the two step
categorisation tasks were published at the same time. We started from the group
of workers with at least 500 HITS approved. When all the HITS were completed
for both tasks, we published the HITS for the workers of the next level. For
workers at level masters it was a bit different, since we found masters to be more
difficult to involve. For this reason, we had to publish the HITs more than once
and add one cent to the base pay rate as an incentive (this is also why we have
less observations for the one step categorisation).

4 https://www.mturk.com/

https://www.mturk.com/
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2.4 Procedure

One Step Categorisation. During a one step categorisation HIT, a document
was presented with the following layout:

– Description: The goal of this HIT is to decide which categories short news
articles belong to.

– Instructions: (i) Read the news article carefully. (ii) The article consists of a
title of one line (capital letters) and a body.

– Content: the actual content of one of the 82 REUTERS document is shown in
a box. We showed only the tags TITLE and BODY of the original document.

– Decision: Decide whether the news is about ”shipping” given to the following
clues:

• Such news often mention the size of the cargo being shipped, e.g.,“tonnes”
or related words such as “port”;

• Sometimes these news mention what is being shipped, e.g., “oil” or
“crude”;

• Bear in mind, not all documents that contain such words necessarily
belong to the category “shipping”.

At this point, the worker is asked whether the document is about “shipping”
(Y/N).

Two Step Categorisation. During a two step categorisation HIT, a document
is presented with the same initial layout as the one step categorisation. The
difference is in the decision part:

– First Decision: Decide whether a news article belongs to the category “crude
oil” or not, e.g., such news often mentions related words like “barrel” and/or
“oil”, but not all the documents that contain these words belong to the cate-
gory “crude oil”.

– Question: Is this document about crude oil? (Y/N)
– Second decision: Decide whether the news is about “shipping” or not, e.g., such

news often mentions related words such as “tonnes” and/or “port” frequently
but not all the documents that contain these words are about shipping. Bear
in mind that documents about “crude oil” have the tendency to be about
“shipping” too, but this is not always the case.

– Question: Is this document about shipping? (Y/N)?

2.5 Results

A breakdown of the results, in the same manner as [2], is given in Table 3. The
first part of the table, indicated with ‘Two step’, presents the results of the
estimate of the probabilities for each transition of the Markov model in the case
of the two step classification task. The second part, ‘One step’, is the estimate of
the probabilities of the one step classification task. The last column, ‘Reuters’,
is the actual probability of category c2 if we consider the Reuters tags. For each
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Table 3. Experimental results Part I. Category c1 corresponds to “crude oil”, category
c2 to “shipping”. We indicated in bold the values that are closer to the original Reuters
classification.

Level Two step One step Reuters
Type P (c1|d) P (c2|c1) P (c̄1|d) P (c2|c̄1) P (c2) P (c2) P (c2)

500 c1 0.7442 0.3250 0.2558 0.3364 0.3279 0.4466 0.3256
c̄1 0.2231 0.4217 0.7769 0.4671 0.4570 0.5173 0.5323

1000 c1 0.7459 0.3219 0.2541 0.3303 0.3240 0.4552 0.3240
c̄1 0.2214 0.2588 0.7786 0.4950 0.4427 0.5055 0.5208

5000 c1 0.7687 0.3647 0.2313 0.3434 0.3598 0.5431 0.3271
c̄1 0.2263 0.4651 0.7737 0.5170 0.5053 0.6147 0.5263

Masters c1 0.7964 0.3551 0.2036 0.3667 0.3575 0.2514 0.3258
c̄1 0.2558 0.4747 0.7442 0.5382 0.5220 0.3823 0.5323

level of expertise, we split the results according to what category the document
given to the user belongs to, that is documents that belong to either category
c1 or not (this corresponds to showing pictures of good guys or bad guys).

Let us begin the analysis by observing the results of the first part of the
two step categorisation task. In theory, the probability P (c1|d) of the first step
should be very close to 1 (or close to 0 for documents that are not in c1) because
we know that we are giving the workers only the documents that belong to c1
(or c̄1). Nevertheless, this probability never reaches 0.80 in either case and it is
almost symmetric. This behaviour may indicate that there are some documents
that are difficult to classify and the worker randomly assigns the documents to
either c1 or not.

The second part of the two step categorisation task allows us: (i) to estimate
the marginal probability of c2, and (ii) to compare it with the one computed in
the one step categorisation task, and (iii) to compare it with the original Reuters
manual categorisation. There is an interesting pattern that emerges from this
part of the analysis which we highlighted in bold in Table 3. Unexperienced
workers (with less than 5,000 HITS) tend to categorise the correct proportion
of c1 documents when they perform the two step categorisation task, while they
over-estimate it in the case of the one step task. Conversely, they underestimate
the proportions of c̄i documents in the two step task, while they almost correlate
perfectly with the Reuters’ manual coders in the one step task. Experienced
workers (more than 5,000 HITS) are very close to the correct proportions for
both ci and c̄i when they perform a two-step categorisation task, while there is
an over/under-estimation for the one step case.

These results suggest that a two step categorisation task may model the orig-
inal Reuters labelling process faithfully. In fact, 6 out of 8 times the proportion
of documents of category c2 of the two-step experiment was very close to the
Reuters classification, and it was almost perfectly matched in the case of more
experienced users.
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3 Discussion

The experiment shows that during manual text categorisation humans are
affected by the order of the categories. Therefore, the assumption that each
potential category for a document is considered in isolation is violated. Since we
are interested in finding a mathematical framework for text categorisation that
captures this effect, we begin this discussion by assuming that incompatibility
exists in the document classification and the law of total probability is therefore
being violated. By incompatibility, we mean that the joint probability between
the categories in the two-step decision task cannot be formed.

The Näıve Bayes classifier is used as the focal point of discussion, which has
the following form:

Pr(c1|d) ◦ Pr(c1)Pr(d|c1) (5)

The law of total probability with respect to category c2 can be brought in as
follows:

Pr(c1|d) ◦ [Pr(c1, c2) + Pr(c1, c̄2)]Pr(d|c1) (6)

which we argue is violated, i.e.,

Pr(c1|d) ◦ [Pr(c1, c2) + Pr(c1, c̄2) + Intf ]Pr(d|c1) (7)

where Intf is an interference term. We can express this as follows in terms of
the geometry of incompatible subspaces:

Pr(c1) = ∀P1ψ∀2 (8)

= ∀(P1 · I)ψ∀2 (9)

= ∀(P1 · (P2 + P∗
2 )ψ∀2 (10)

= ∀P1P2ψ∀2 + ∀P1P∗
2 ψ∀2 + Intf (11)

where ψ denotes the cognitive state of the subject with respect to document d,
∀P1ψ∀2 is the probability that the subject decides for category c1. Similarly, P2

and its dual P2
∗ model that the subject decides for category c2 (or not). In

this way, the interference term can be integrated with the standard Näıve Bayes
classification model.

The advantage of the quantum-like model is that it offers a clean mathe-
matical framework which both motivates and defines the additional parameter
Intf . From a machine learning point of view, the variable Intf is a parameter of
the model that can be estimated from past observations. If the misjudgements
are consistent, this parameter may be used as a correction factor of the bias
introduced by humans, hence we may have a new automatic classifier that pre-
dicts/corrects future decisions. In our case, we can fit the data almost perfectly
in two of the experiments which are: (i) workers with at least 5,000 HITS and
documents that do not belong to c1, (ii) master workers and documents that
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Table 4. Experimental results Part II. Fitting the data to the quantum model.

Level Two step
Type P (c1|d) P (c2|c1) P (c̄1|d) P (c2|c̄1) θ

5000 c̄1 0.23 0.48 0.77 0.52 1.3
Masters c̄1 0.25 0.47 0.75 0.53 1.9

do not belong to c1. Compare the fitted values of Table 4 to the estimates in
Table 3.

A drawback of this model is that we introduce one constraint: the matrix
of transition probabilities from one state to another (that is from one decision
to another) must be double stochastic. However, in many experimental data,
this condition is not met [14]. Even in the original experiment of faces [2], not
all the results could be explained by a quantum model. In addition, some may
question whether the law of total probability is actually being violated. In fact,
a classical probabilistic model describes in the best possible way the evidence we
have of an experiment. Consider the experiment with two questions. We have a
sample space that is Ω2 = {(c1, c2, ), (c̄1, c2), (c1, c̄2, ), (c̄1, c̄2)}. In this space, the
only way to compute the marginal probability of c2 is, by following the classical
axioms, PrΩ2(c2) = PrΩ2(c1, c2) + PrΩ2(c̄1, c2).

5 Therefore, when we observe
this experiment, we cannot claim a violation of the law of total probability.

The misunderstanding about this violation arises when we observe a sec-
ond experiment, that is the one question experiment with a sample space is
Ω1 = {c2, c̄2}. At this point, the fact that the two probabilities are different,
PrΩ1(c2) ∈= PrΩ2(c2), is nothing more than an ‘unexpected’ fact. It is like toss-
ing one coin and computing the probability of heads and tails, then we toss the
same coin together with another coin. We ‘expect’ to obtain the same probability
of heads and tails because there is no reason to think otherwise. If we do not, it
is not because the LTP is violated but because there is something we could not
predict.6

4 Summary and Conclusions

The results of the pilot experiment presented in this paper accords with other
similar studies in quantum cognition namely (1) Markov models are not sufficient
to model multiple categorisation decisions, and (2) in some instances quantum-
like interference models may be a superior model. The immediate consequences
of such findings are that there is reason to believe that evaluation collection
in text categorisation are biased and therefore provide a substandard account
of human manual categorisation. What is more worrying there is that many
5 The underscript Ω2 reminds us in which space the probabilities are computed.
6 For example, think about two loaded dice that contain a small magnet inside. Tossed

separately, they work as fair dice; tossed together, the magnetic field influences the
outcome.
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categorisation algorithms base their processing (training for machine learning
algorithms) on these biased versions of the truth. We propose that larger scale
experiments should shed more light on the specifics of this bias and provide some
insights into how interference terms should be uncovered.
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Abstract. This paper explores a new technique for encoding structured
information into a semantic model, for the construction of vector rep-
resentations of words and sentences. As an illustrative application, we
use this technique to compose robust representations of words based on
sequences of letters, that are tolerant to changes such as transposition,
insertion and deletion of characters. Since these vectors are generated
from the written form or orthography of a word, we call them ‘ortho-
graphic vectors’. The representation of discrete letters in a continuous
vector space is an interesting example of a Generalized Quantum model,
and the process of generating semantic vectors for letters in a word is
mathematically similar to the derivation of orbital angular momentum
in quantum mechanics. The importance (and sometimes, the violation)
of orthogonality is discussed in both mathematical settings. This work is
grounded in psychological literature on word representation and recogni-
tion, and is also motivated by potential technological applications such as
genre-appropriate spelling correction. The mathematical method, exam-
ples and experiments, and the implementation and availability of the
technique in the Semantic Vectors package are also discussed.

Keywords: Distributional semantics · Orthographic similarity · Vector
Symbolic Architectures

1 Introduction

The relationships between words, their representation in text, concepts in the
mind, and objects in the real world, has been the source of inquiry over many
centuries. Empirical, distributional paradigms have been shown to successfully
derive human-like estimates of semantic distance from large text corpora, and
recent developments in this area have mediated the enrichment of distribu-
tional models with structural information, such as the relative position of terms
[1,2], and orthographic information describing the configuration of characters
from which words are composed [3,4]. This paper extends these beginnings
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in three principal ways. First, we propose a new and very simple method for
encoding structure into semantic vectors, using a quantization of the space
between two extreme ‘demarcator vectors’. This vector generation method per-
forms well in experiments and has some key computational advantages. Sec-
ond, the method is general enough to be applied within a wide range of Vector
Symbolic Architectures (VSAs), including Circular Holographic Reduced Repre-
sentations (CHRRs) that use complex vectors [5]. Thirdly, we investigate some
higher-level compositions as well, demonstrating some early results with compo-
sitional representations for sentences.

Each of these developments is related to quantum interaction as follows.
Demarcator vector generation is similar in a sense to the derivation of orbital
angular momentum values in quantum mechanics, in that they use the same
mathematics. The application within many VSAs, including those over complex
vector space, makes the new methods available within algebras that are partic-
ularly related to generalized quantum models. Finally, compositional methods
are important in research on generalized quantum structures, and the way many
levels of representation are combined seamlessly in the compositional models
presented here should be of interest to researchers in the field.

2 Orthogonality in Distributional and Orthographic
Models

Geometric methods of distributional semantics derive vector representations of
terms from electronic text, such that terms that occur in similar contexts will
have similar vectors [6,7]. While such models have been shown to approximate
human performance on a number of cognitive tasks [8,9], they generally do not
take into account structural elements of language, and consequently have been
referred to, at times critically, as “bags of words” models. Emerging approaches
to semantic space models have leveraged reversible vector transformations to
encode additional layers of meaning into vector representations of terms and
concepts. Examples include the encoding of the relative position of terms [1,10],
syntactic information [11], and orthographic information [4].

The general approach used depends upon the generation of vector representa-
tions for terms, and associating reversible vector transformations with properties
of interest. In accordance with terminology developed in [12], we will refer to
the vector representations of atomic components such as terms as elemental vec-
tors. Elemental vectors are constructed using a randomization procedure such
that they have a high probability of being mutually orthogonal, or close-to-
orthogonal. This adds robustness to the model, by making it highly improbable
that elemental vectors would be confused with one another, despite the distortion
that occurs during training. However, it also introduces the implicit assumption
that elemental vectors are unrelated to one another, which means that models
generated in this way must be composed of discrete elements.

This limitation notwithstanding, this approach has allowed for the integra-
tion of structured information into distributional models of meaning. From the
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perspective of cognitive psychology, this is desirable as it presents the possibility
of a unified term representation that can account for a broad range of experimen-
tal phenomena. Recent work in this area has leveraged circular convolution to
generate vectors representing the orthographic form of words [3], and integrate
these with a geometric model of distributional semantics [4]. Vector representa-
tions of orthographic word form are generated by using circular convolution to
generate bound products representing the component bigrams of the term con-
cerned, including non-contiguous bigrams. Karchergis et al give the following
example (� indicates binding using circular convolution) [4]:

word =w + o + r + d + w � o + o � r + r � d

+w � o + (w � ) � r + (w � ) � d + (w � o) � r + ((w � ) � r) � d

+(w � ) � d + (o � ) � d + r � d + ((w � o) ) � d + (o � r) � d

The vector representation for the term “word” is generated by combining a
set of vectors representing unigrams, bigrams, and trigrams of characters. It
is a characteristic of the model employed that each of these vectors have a
high probability of being mutually orthogonal, or close-to-orthogonal. So, for
example, the vectors representing the trigrams ((w � ) � r) and ((w � o) � r)
will be dissimilar from one another. Consequently it is necessary to explicitly
encode all of the n-grams of interest, including gapped trigrams (such as “w r”)
to provide flexibility. From the perspective of computational complexity, this is
not ideal, as the number of representational units that must be generated and
encoded is at least quadratic to the length of the sequence.

Rather than explicitly encoding character position precisely (with respect to
some other character, or the term itself), alternative models of orthographic rep-
resentation allow for a degree of uncertainty with respect to letter position. These
approaches measure the relatedness between terms on the basis of the similar-
ity between probability distributions assigned to the positions of each matching
character [13,14], providing a more flexible measure of similarity. However, on
account of the constraints we have discussed, only orthographic representations
based on discrete bigrams or the exact position of characters have been combined
with other sorts of distributional information in an attempt to generate a holistic
representation to date [3,15]. Imposing near-orthogonality adds robustness, but
also necessitates ignoring potentially useful information to do with structure,
namely the proximity between character positions within a word. Consequently,
we have selected the generation of orthographic representations as an example
application through which to illustrate the utility of our approach.

The paper proceeds as follows. First, we present the mathematical language
we will use to describe the operators provided by VSAs, a family of representa-
tional approaches based on reversible vector transformations [16]. Next, we will
describe an approach we have developed through which the distance between
elemental vectors, and hence bound products, can be predetermined. In the con-
text of an illustrative application for orthographic modeling, we show that this
approach permits the encoding of structural information to do with proximity,
rather than absolute position, into a distributional model. We then discuss a
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relationship between this approach and quantum mechanics, and conclude with
some experimental results and example applications.

3 Mathematical Structure and Methods

3.1 Vector Symbolic Architectures (VSAs)

The reversible vector transformations we have discussed are a distinguishing
feature of a family of representational approaches collectively known as VSAs
[16]. In our experiments the VSAs we will use are Kanerva’s Binary Spatter
Code (BSC), which uses binary vectors [17], and Plate’s CHRR [5], which uses
complex vectors where each dimension represents an angle between −π and π,
using the implementation developed in [10]. In addition, we will use an approach
based on permutation of real vectors [2].

Binding is the primary operation facilitated by VSAs (in addition to stan-
dard operators for vector superposition and vector comparison). Binding is a
multiplication-like operator through which two vectors are combined to form a
third vector C that is dissimilar from either of its component vectors A and B.
We will use the symbol “∇” for binding, and the symbol “◦” for the inverse
of binding for the remainder of this paper. It is important that this operator
be invertible: if C = A ∇ B, then A ◦ C = A ◦ (A ∇ B) = B. In some models,
this recovery may be approximate, but the robust nature of the representation
guarantees that A ◦ C is similar enough to B that B can easily be recognized as
the best candidate for A ◦ C in the original set of concepts. Thus the invertible
nature of the bind operator facilitates the retrieval of the information it encodes.

In the case of the BSC, elemental vectors are initialized by randomly assigning
0 or 1 to each dimension with equal probability. Pairwise exclusive or (XOR) is
used as a binding operator: X ∇ Y = X XOR Y. As it is its own inverse, the
binding and decoding processes are identical (∇ = ◦). For superposition, the BSC
employs a majority vote: if the component vectors have more ones than zeros in
a dimension, this dimension will have a value of one, with ties broken at random.

In CHRR, binding through circular convolution is accomplished by pairwise
multiplication: X ∇ Y = {X1Y1,X2Y2, . . . . .Xn−1Yn−1,XnYn}, which is equiva-
lent to addition of the phase angles of the circular vectors concerned. Binding is
inverted by binding to the inverse of the vector concerned: X ◦ Y = X ∇ Y −1,
where the inverse of a vector is its complex conjugate. Elemental vectors are ini-
tialized by randomly assigning a phase angle to each dimension. Superposition is
accomplished by pairwise addition of the unit circle vectors, and normalization
of the result for each circular component. In the implementation used in our
experiments, normalization occurs after training concludes, so the sequence in
which superposition occurs is not relevant.

Our real vector implementation follows the approach developed by Sahlgren
and his colleagues [2], and differs from the binary and complex implementations,
in that elemental vectors are “bound” to permutations, rather than to other
vectors. Elemental vectors are constructed by creating a high-dimensional zero
vector (on the order of 1000 dimensions), and setting a small number of the
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dimensions of this vector (on the order of 10) to either +1 or −1 at random.
The permutations utilized consist of shifting all of the elements of a given vector
n positions to the right, where each value n is assigned to, or derived from, the
information it is intended to encode. In the case of our orthographic model, this
information consists of the character occurring in a particular position, so we
have used the ASCII value of the character concerned as n. Binding is reversed by
permuting all of the elements of the vector n positions to the left. Superposition
is accomplished by adding the vectors concerned, and normalizing the result.

In all models, the “random” initiation of elemental vectors is rendered deter-
ministic by seeding the random number generator with a hash value derived
from a string or character of interest following the approach developed in [18].
This retains the property of near-orthogonality where desired, while ensuring
that random overlap between elemental vectors is consistent across experiments.

Fig. 1. Interpolation to generate five demarcator vectors. P(1) = probability of 1.

3.2 Measured Similarity

The first step in our approach involves generating a set of vectors that are a
fixed distance apart, which we will refer to as demarcator vectors (D(position)),
as illustrated in Fig. 1. The first pair of demarcator vectors are conventional ele-
mental vectors D(α) and D(ω), constructed randomly such that they have a high
probability of being mutually orthogonal or close-to-orthogonal. To ensure this
with certainty, we render D(ω) orthogonal to D(α) using the quantum negation
procedure, or its binary approximation, described in [19] and [20] respectively.
The remaining demarcator vectors are generated by interpolation. In the contin-
uous vector spaces, this is accomplished by subdividing the 90o angle between
D(α) and D(ω) and generating the corresponding unit vectors. In binary vector
space, this is accomplished by weighting the probability of assigning a 1 when
D(α) and D(ω) disagree in accordance with the desired distance between the
new demarcator vector and each of these extremes1. As the vectors representing
1 The same random number sequence must be used for all vectors in a demarcator set,

so that a consistent random value for each bit position is compared to the relevant
thresholds.
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adjacent numbers are approximately equidistant, the distances between vector
pairs representing numbers the same distance apart should also be approximately
equal (e.g. sim(D(1),D(2)) ∀ sim(D(2),D(3))).

Table 1 illustrates the pairwise similarities between a set of five demarcator
vectors constructed in this manner. In the binary case vectors of dimensionality
32,000 are used, in the complex case vectors of dimensionality 500 are used, and
in the real case, vectors of dimensionality 1,000 are used. These dimensions were
chosen so as to normalize the space requirements of the stored vectors across
models, and were retained in our subsequent experiments. In all cases, the relat-
edness between demarcator vectors a fixed distance apart is approximately equal.
For example, the similarity between all pairs of demarcator vectors two positions
apart (e.g. 1 and 3) is approximately 0.5 in the binary implementation, and 0.71
in the complex and real vector implementations. In the binary implementation,
the difference in relatedness is proportional to the difference in demarcator posi-
tion. This is not the case in the complex or real implementations, where the drop
in similarity between demarcator vectors becomes progressively steeper. This is
an artifact of the metric used to measure similarity in each case. With binary
vectors, 2 × (0.5 − normalized Hamming distance) is used, but with continuous
vectors the cosine distance metric is used. While a proportional decrement could
be obtained by measuring the angle between complex vectors directly (or taking
the arccos of this cosine value), we will retain the use of the cosine metric for
our experiments.

Table 1. Pairwise similarity between demarcator vectors

BINARY COMPLEX REAL

α 1 2 3 ω α 1 2 3 ω α 1 2 3 ω
α 1.00 0.75 0.49 0.25 0.00 α 1.00 0.92 0.71 0.38 0.00 α 1.00 0.92 0.71 0.38 0.00
1 0.75 1.00 0.74 0.50 0.25 1 0.92 1.00 0.92 0.71 0.38 1 0.92 1.00 0.92 0.71 0.38
2 0.49 0.74 1.00 0.75 0.51 2 0.71 0.92 1.00 0.92 0.71 2 0.71 0.92 1.00 0.92 0.71
3 0.25 0.50 0.75 1.00 0.75 3 0.38 0.71 0.92 1.00 0.92 3 0.38 0.71 0.92 1.00 0.92
ω 0.00 0.25 0.51 0.75 1.00 ω 0.00 0.38 0.71 0.92 1.00 ω 0.00 0.38 0.71 0.92 1.00

3.3 Encoding Orthography

Using controlled degrees of non-orthogonality, we can encode information about
the positions of letters in words into their vector representations. Like spatial
encoding [14] and the overlap model [13], our approach is based upon measuring
the difference in position between matching characters. This is accomplished
by creating elemental vectors for characters, and binding them to demarcator
vectors representing positions. For example, the orthographic vector for the term
“word” is constructed as follows:

S(word) = E(w) ∇ D(1) + E(o) ∇ D(2) + E(r) ∇ D(3) + E(d) ∇ D(4)
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As the elemental vectors for characters are mutually orthogonal or near-
orthogonal, bound products derived from different characters will be orthog-
onal or near-orthogonal also. For example, in the complex vector space used to
generate Table 1, sim(E(w) ∇ D(1), E(q) ∇ D(1)) = 0. Furthermore, the dis-
tance between bound products containing the same character will approximate
the distance between their demarcator vectors. For example, in the real vec-
tor space used to generate Table 1, sim(E(w) ∇ D(1), E(w) ∇ D(2)) = 0.92 =
sim(D(1),D(2)). Ultimately, the similarity between a pair of terms is derived
from the distance between their matching characters. If this distance is gener-
ally low, the orthographic similarity between these terms will be high2. Thus,
the models so generated are innately tolerant to variations such as transposition,
insertion and deletion of sequence elements.

0

1

2

-1

-2

1

2
3

4

Fig. 2. Orbital angular momentum vectors, as derived from quantized states along a
given axis (left), and a related strategy for encoding positions as vectors

4 Demarcator Vectors and Orbital Angular Momentum

Evenly distributing normalized vectors between two orthogonal vectors is one of
many strategies we could adopt to generate demarcator vectors. To generalize
this process, we can describe it as follows:

1. Construct a line in the vector space with a given starting point and direction.
2. Place demarcators along this line using some dividing strategy.
3. (Optional) Project demarcator vectors onto the unit circle to normalize them.

2 For terms of different lengths, we elected to construct a set of demarcator vectors for
each term. So while D(α) and D(ω) will be identical, the demarcator for a particular
position may differ. It would also be possible to use identical demarcator vectors (by
generating a set large enough to accommodate the longest term), which may be
advantageous for some tasks.
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Two examples of this strategy are illustrated in Fig. 2. In the example on the left,
the generating line is the vertical axis, the dividing strategy is to mark points at
even intervals along this axis, and the projection strategy is to project orthogo-
nally from the vertical axis onto the unit sphere3. In the example on the right,
we have chosen a generating line parallel to the vertical axis, marked points at
even intervals, and projected onto the unit sphere using standard vector normal-
ization. The left-hand strategy will be familiar to some readers: this is precisely
the way orbital angular momentum states are generated in quantum mechan-
ics. We refer the reader to a text on quantum mechanics for this derivation,
e.g., [21, Ch 14]: the process includes solving a wave equation in three dimen-
sions, exploring the angular momentum operator and the commutator relations
between its components, and noting that each point on the axis can be mapped
to many on the outer sphere (this ambiguity corresponding to the fact that
measuring the component of angular momentum along one axis must leave the
component along the other axes undetermined according to the Uncertainty
Principle). The important point for this discussion is that it is quite standard to
derive non-orthogonal vectors for states in this fashion, not only in generalized
quantum structures but in quantum mechanics itself. The underlying spherical
harmonic functions involved in angular momentum are orthogonal to one another
under pairwise integration, but lead to several possible non-orthogonal angular
momentum vectors.

The ambiguity of the projection onto the unit sphere in the angular momen-
tum model in more than two dimensions is problematic, and we expect the
strategy on the right to be simpler in practice. Note also that both strategies
do not distribute vectors evenly around the unit sphere: for example, in the
right-hand strategy, the vectors representing positions 3 and 4 are closer to each
other than the vectors representing positions 1 and 2. Such flexibility to vary
these pairwise similarities between positions along a string is a desirable prop-
erty, because changes at the beginning of a word may be more significant than
changes in the middle [13]. We note also that in our current implementation
in the Semantic Vectors package, this generalized strategy works well for real-
valued and complex-valued vectors, but is as yet underspecified for binary-valued
vectors because (for example) ‘the point half-way between A and B’ is multiply
defined using Hamming distance [22]. We are currently investigating appropriate
strategies to bring binary vectors into this generalized description.

5 Applications: Orthography, Morphology, Sentence
Similarity

Table 2 provides examples of nearest-neighbor search based on orthographic sim-
ilarity in real, complex and binary vector spaces derived from the widely-used
Touchstone Applied Science Associates, Inc. (TASA) corpus. Terms in the cor-
pus that occurred between 5 and 15,000 times were represented as candidates for
3 In this example we have drawn negative and positive positions, though in practice

we have only experimented with nonnegative positions so far.
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retrieval. The dimensionality of the real, complex and binary vector spaces con-
cerned was 1000, 500 and 32,000 respectively. Our approach successfully recov-
ers orthographically related terms, including terms containing substrings of the
original term (“dominic” vs. “condominium”); insertions (“orthography” vs.
“orthophotography”); substitutions (“angular” vs. “annular”) and transpo-
sition of characters (“wahle” vs. “whale”). While not shown in the table on
account of space constraints, the models produced similar sets of results for the
same cue term.

Table 2. Orthographic similarity

REAL COMPLEX BINARY
CUE dominic CUE orthography CUE orthogonality CUE angular CUE wahle

0.92 dominican 0.92 orthophotography 0.86 orthogonally 0.73 agranular 0.94 whale
0.89 dominion 0.93 photography 0.85 orthogonal 0.70 annular 0.61 awhile
0.88 demonic 0.91 chromatography 0.84 orthodontia 0.67 angularly 0.60 while
0.85 dominions 0.90 orthographic 0.82 ornithology 0.66 gabular 0.60 whales
0.85 condominium 0.90 choreography 0.82 ornithologist 0.66 inaugural 0.60 whaley

Table 3. Comparison with benchmark conditions from [15]. 1X= original dimen-
sionality (used for Table 2). 2X= twice original dimensionality. nb = no binding.
ED = 1 − edit distance

combined length
.

BINARY COMPLEX REAL
1X 2X 2Xnb 1X 2X 2Xnb 1X 2X ED

Stability � � � � � � � � �
Edge effects �
Local TL � � � � � � � � �
Global TL �
Distal TL
Compound TL � � � � � �
Distinct RP � � � � � � � � �
Repeated RP � � � � � � � �

While we would be hesitant to propose the simple model of orthographic
representation we have developed as a cognitive model of lexical coding, it is
interesting to note that it does conform to the majority of a set of constraints
abstracted from lexical priming data by Hannagan and his colleagues [15]. We
will describe these constraints in brief here, but refer the interested reader to [15]
for further details. The constraints are as follows: (1) Stability: a string should
be most similar to itself (sim ∈ 0.95); (2) Edge Effects: substitutions at the
edges of strings should be more disruptive; (3) Local Translocations (TL):
transposing adjacent characters should be less disruptive than substituting both
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of them; (4) Global TL: transposing all adjacent characters should be maxi-
mally disruptive (5) Distal TL: transposing non-adjacent characters should be
more disruptive than substituting one, but less than substituting both; (6) Com-
pound TL: TL and substitution should be more disruptive than substitution
alone; (7) Distinct Relative Position (RP): removing some characters should
preserve some similarity; and (8) Repeated RP: removing a repeated or non-
repeated letter should be equally disruptive4. Each constraint is accompanied by
a set of test cases, consisting of paired strings, and the degree to which a model
meets the constraint is determined from the estimated similarities between these
pairs, and the relationships between them.

The extent to which the our models meet these constraints is shown in
Table 3. Estimates based on all models consistently meet all constraints aside
from those related to Edge Effects, and the Global and Distal TL constraints (in
the latter case this is due to the fact that translocation of characters one position
apart is less disruptive than substituting one of these characters). This repre-
sents a better fit to these constraints than comparable models based on letter
distribution only (labeled “nb”, or not bound). It also represents a better fit than
the majority of approaches evaluated against this benchmark previously [15,23],
providing motivation for the further evaluation of a more developed model in the
future. While the real model appeared to meet the edge effect related constraint
at its original dimensionality, this finding did not hold at higher dimensionality,
and was most likely produced by random overlap. This is not surprising given
that our current model does not address edge effects. As suggested in Sect. 4, one
way to address this issue would be to increase the distance between peripheral
demarcator vectors, a customization we plan to evaluate in future work.

Table 4. Combining orthographic and semantic similarity

REAL COMPLEX BINARY
CUE think CUE bring CUE eat CUE catch CUE write

0.57 intend 0.68 bringing 0.44 eats 0.191 catching 0.180 writes
0.56 know 0.62 brings 0.43 ate 0.184 caught 0.173 writer
0.51 thinks 0.53 brought 0.39 meat 0.181 catches 0.172 rewritten
0.51 thinking 0.52 ring 0.36 eaten 0.176 watch 0.172 wrote
0.51 want 0.51 burning 0.36 restate 0.176 teach 0.171 reread

The results in Table 4 were obtained by superposing the orthographic vector
for each term from the TASA corpus with a semantic vector for the same term
generated using the permutation-based approach described in [2], with a 2+2
4 As the randomization procedure makes it very unlikely that the estimates of sim-

ilarity between any two pairs will be identical, we have considered a difference of
≤ 0.05 to be approximately equal. This mirrors the relaxed constraint that ≥ 0.95
is approximately identical used by Hannagan and his colleagues for the stability
constraint [15,23].
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sliding window. As anticipated by previous work combining orthographic and
semantic relatedness [24,25], the examples suggest that this model is able to
find associations between morphologically related terms, including those between
English verb roots and past tense forms are related by non-affixal patterns such
as “bring:brought”. The combination of semantics and shared characters is
evident in other examples, such as “think:intend”. However, this sensitivity to
morphological similarity comes at a cost of introducing false similarity when
common letter patterns do not have a semantic significance.

Table 5. Retrieval of Sentences from the TASA Corpus in complex (first two examples)
and binary (second two examples) spaces

CUE the greater the force of the air the louder the sounds
0.86 that is the smaller the wavelength the greater the energy of the radiation
0.86 the greater the amplitude the greater the amount of energy in the wave
0.85 the deeper the level of processing the stronger the trace and the better the

memory
0.84 the darker the blue the deeper the water
CUE these four quantum numbers are used in describing electron behavior
0.353 these numbers are important in chemistry
0.3433 these are usually used in the home
0.316 what punctuation marks are used in these four sentences
0.315 these are abbreviations that sometimes are used in written directions

6 Conclusion

In this paper we have introduced a novel approach through which the near-
orthogonality of elemental vectors is deliberately violated to introduce measured
similarity into semantic space. While illustrated primarily through orthographic
modeling, the approach is general in nature and can be applied in any situation
in which a representation of sequence that is tolerant to variation is desired. Fur-
thermore, this approach may mediate the generation of holistic representations
combining distributional and spatial information, a direction we plan to explore
in future work. To facilitate further experimentation, our real, binary and com-
plex orthographic vector implementations have been released as components of
the open source Semantic Vectors package [27,28].
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Abstract. We introduce Claude Lévi Strauss’ canonical formula (CF),
an attempt to rigorously formalise the general narrative structure of
myth. This formula utilises the Klein group as its basis, but a recent work
draws attention to its natural quaternion form, which opens up the possi-
bility that it may require a quantum inspired interpretation. We present
the CF in a form that can be understood by a non-anthropological audi-
ence, using the formalisation of a key myth (that of Adonis) to draw
attention to its mathematical structure. The future potential formalisa-
tion of mythological structure within a quantum inspired framework is
proposed and discussed, with a probabilistic interpretation further gen-
eralising the formula.

1 Introduction

Every society has its myths, and these show many similarities across societies
which are themselves markedly different. Thus, a wide range of peoples have a
“trickster” character; American Indians have Coyote, the Norse Loki, Africans
Anansi, Christians Satan etc. and these characters share universal features
despite their very different shapes and backgrounds. They even take similar
roles in the mythological cycles that they participate in. Thus, many tricksters
are central to creation myths, and equally they participate in the end of the world
cycles. Such apparent universalities have led many [1] to wonder if there might
be a general pattern to the myths of the world, or even a universal structure or
essence [2].

One of the more mathematically oriented attempts to describe such a univer-
sal structure was first proposed by Claude Lévi-Strauss [3] in 1955. His canonical
formula (CF) takes a structural approach to the analysis of myth, utilising mutu-
ally opposite value sets encoded in bundles of relations to consider the form that
a myth takes as its storyline progresses. Intriguingly, this formula has its roots
in group theory [4], which suggests that it might fit within a quantum inspired
framework. However, the CF has been dividing anthropologists over the past
sixty years and holds a somewhat enigmatic status within that community [5].
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DOI: 10.1007/978-3-642-54943-4 5, c© Springer-Verlag Berlin Heidelberg 2014



48 S. Darányi et al.

We believe that this controversy arises from the lack of a consistent interpreta-
tive framework from which to understand the CF, which in itself results in no
universal understanding of the proper methodology for using the apparatus that
Lévi-Strauss created. However, hope lies in the group theoretic formulation of
the CF, and this paper is an attempt to propose that the framework of Quantum
Interaction (QI) could provide an viable new way forward.

Here, we shall introduce the CF to the QI community, showing that it has
strong parallels with many features that can be found in quantum inspired mod-
els, and so could provide a new exciting avenue of research. Section 2 gives a
brief overview of the CF, and Sect. 2.1 introduces the reader to its usage through
the formalisation of a myth (that of Adonis) within the framework. Section 2.1
also explains how to relate the CF to running text by a syntagmatic read-
ing. Section 2.2 discusses the difference between narrative formulae and the CF.
Section 2.3 outlines a particular scenario which can generate literally hundreds of
narrative formulae, among them 31 equivalents of the CF. Finally, Sect. 3 cites a
quaternion interpretation of such formulae with further implications in quantum
theory. Section 5 sums up our conclusions.

2 The Canonical Formula

André Weil first wrote the CF as a formula of unfolding, formalizing it by means
of group theory [6]. As far as this formula is understood, it describes plot (sto-
ryline) development in myths [3] or topic evolution in mythologies [7], encoded
as a double transformation of four compound arguments in specific relation to
one another:

Fx(a) : Fy(b) :: Fx(b) : Fa−1(y). (1)

Each of these four arguments consist of a term variable (a and b), and a function
variable (x and y). The form of this equation requires some explanation, but
we caution the reader that (1) has been the subject of ongoing and unresolved
debate ever since Lévi-Strauss first proposed it. In what follows we shall closely
follow the interpretation proposed by Morava [8], as this mathematically rigorous
form will provide the basis for our claim that Eq. (1) can be understood within
a quantum-like perspective.

In Morava’s rendering, a number of different authors have suggested that (1)
describes a transformation, which, for a sufficiently large and coherent body of
myths, identifies

characters a, b and functions x, y, such that the mythical system defines
a transformation which sends a to b, y to a−1 and b to y, while leaving
x invariant. [8, p.3]

This explanation leaves us with an interesting possibility for generating a math-
ematical description of myths, that is, the CF describes a structural relationship
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between a set of narrative terms and their transmutative relationships, however,
the choice of what concepts these terms and relationships should apply to is left
rather open and ill-defined. Intriguingly, at the root of the CF is a Klein group of
four elements, e.g. x, 1/x, −x, −1/x [4], applied to one of the two narrative terms
a and b or one of the two relations x and y, however Morava makes a convincing
argument that the quaternion group of order eight is the correct mathematical
structure to adequately represent Lévi-Strauss’ conceptualisation, a point that
we shall return to in Sect. 3. For now, we shall leave this important point aside,
attempting instead to illustrate the key features of the CF with reference to an
example.

2.1 Applying the Canonical Formula

The CF (Eq. (1)) describes the relationship between syntagms, i.e. short sen-
tences with condensed content which sum up parts of a myth, leaving one with
a considerable amount of freedom when attempting to apply it to a narrative
plot. This is a problem that becomes even more extreme when it is acknowl-
edged that many different structural forms of the CF are consistent with the
group that it specifies (see Sect. 2.3). This complexity aside, application of the
CF to a narrative consists of finding a consistent mapping of the objects and
relations according to the structural relationship exemplified by (1), or one of
its 32 alternatives (see the discussion in Sect. 2.3, and the further generalization
in Sect. 3).

This is no easy task. It requires both the identification of suitable mytho-
logical narratives, and then the mapping of their components into a form man-
dated by (1), practically filling in placeholders in prespecified relationships to
one another with fitting syntagmatic content. We shall illustrate this process
with reference to an example myth, that of the Ancient Greek story of Adonis,
which runs as follows [9, Sects. 14–16]1:

Panyasis says that he was a son of Thias, king of Assyria, who had a
daughter Smyrna. In consequence of the wrath of Aphrodite, for she did
not honor the goddess, this Smyrna conceived a passion for her father,
and with the complicity of her nurse she shared her father’s bed without
his knowledge for twelve nights. But when he was aware of it, he drew his
sword and pursued her, and being overtaken she prayed to the gods that
she might be invisible; so the gods in compassion turned her into the tree
which they call smyrna (myrrh). Ten months afterwards the tree burst
and Adonis, as he is called, was born, whom for the sake of his beauty,
while he was still an infant, Aphrodite hid in a chest unknown to the
gods and entrusted to Persephone. But when Persephone beheld him, she
would not give him back. The case being tried before Zeus, the year was
divided into three parts, and the god ordained that Adonis should stay by

1 The classical texts we used as examples come from the Perseus Digital Library at
Tufts University (http://www.perseus.tufts.edu/).

http://www.perseus.tufts.edu/
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himself for one part of the year, with Persephone for one part, and with
Aphrodite for the remainder. However Adonis made over to Aphrodite
his own share in addition; but afterwards in hunting he was gored and
killed by a boar.

It must be possible to relate each of the terms in the CF consequently to stories
such as these. In order to do this it is necessary to identify a set of dichotomies
that can be consistently assigned according to the relationships in the CF. The
two basic narrative characters, a and b must be identified in a consistent man-
ner, with the added provision that the function y somehow transforms into an
inversion of a (i.e. a−1), and b to y, while x remains invariant under the chosen
transformation.

Thus, for the above myth, an identification of the character Thias with the
label b implies that the action of killing should be represented by x.2 In order to
proceed, we could hypothesise a scenario where the representation of the Adonis
myth can be started with the following identification:

Fy(b) as Thias “destroys” (in this case he kills Smyrna).

This move starts to limit the available identifications for the other variables in
(1). Because the root of the CF in structuralism means that the assignments
must be in binary opposition, we require a set of binary opposites for both the
terms and the functions in this myth. The following are chosen for our current
scenario:

Terms: Functions:
– Male/female – Affirm/deny
– Divine/human – Active voice/passive voice
– Adult/adolescent – Complete/incomplete

Thus, designating the male human adult Thias as b implies that −b could
represent a female human adult, while b−1 could be a male human who was
adolescent (Adonis in this myth) etc. Essentially this value assignment is open
to a certain amount of freedom, yet once one binary value has been designated,
its opposite must be interpreted for contrast in some manner. This inversion can
be performed in one of the four following ways:

– a is a binary opposite of b
– a is a binary opposite of −a

2 The particular set of values we assigned to variables in the CF for this exam-
ple was as follows: complete male/female: fertile/adult, incomplete male/female:
infertile/adolescent; complete denial active voice: destroy/kill, complete affirma-
tive active voice: procreate/bear, incomplete denial active voice: wound/hurt,
incomplete affirmative active voice: heal; passive voice for the above: be
destroyed/killed/begotten/born/wound/healed, plus the above being done either to
the other or the self.
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– a is a binary opposite of a−1.
– x(a) is binary opposite of a(x), here distinguishing between the other and the

self.

The CF requires that each of these value assignments be performed consistently
across the narrative. Continuing this process for the myth of Adonis, we can
represent the full structure of the myth quoted above using the character map
depicted in Table 1 and the function map in Table 2.

Table 1. A set of consistent value assignments for the characters in the myth of Adonis.

a
−a

a−1

−a−1

b
−b

b−1

−b−1

Table 2. A set of consistent function assignments for the myth of Adonis.

x
−x

x−1

−x−1

y
−y

y−1

−y−1

This set of mappings allows us to keep assigning variables to the narrative in
the myth. Thus, we see a slightly symmetrical relationship between Thias and
Adonis start to emerge within this narrative structure, which we can formalise
using the item and function variables:

Fy(b) as Thias (a male human adult) destroys someone else (in this case he
kills Smyrna),

Fx(b) as Thias creates someone else (i.e. begets Adonis, by sleeping with
Smyrna),
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Fa−1(y) as Adonis (a male adolescent divine) destroys himself (in this case he is
killed by a boar but his wounds were obtained during a hunt in which
he chose to participate).3

Finally, recalling the manner in which Aphrodite was born provides the final
missing piece of the formula [11, lines 189–191]:

“And so soon as he had cut off the members with flint and cast them
from the land into the surging sea, they were swept away over the main
a long time: and a white foam spread around them from the immortal
flesh, and in it there grew a maiden.”

Which leaves us with an understanding of Fx(a) as the maiden that grew from
the white foam that arose in that part of the sea where the genitals of Kronos’
father (Uranos) landed:

Fx(a): male divine adult creates someone else (in this case Uranos “creates”
Aphrodite when his members were cast into the sea).

As contrasted with syntagms about divine or human adult males procreating and
killing others, the crucial difference is the role the adolescent divine male who
destroys himself. Thus, we see the final typical step emerge which distinguishes
the CF from other possible narrative formulae. Note in particular the manner
in which a double inversion of content takes place in the fourth argument: what
used to be a term takes a reciprocal value, i.e. a maps to a−1, and a former pair
of functions and term values swap roles.

2.2 The Narrative Formula

A formula built from the same term vs. function value distribution but with-
out the characteristic double inversion in the fourth argument is not a CF but
something we will call a narrative formula (NF), to distinguish between them.
An example would be

Fx(a) : Fy(b) :: Fx(b) : Fy(a). (2)

This is sometimes called the “weak” variant of the CF, i.e. its existence is
acknowledged and explicated [12]. We note that this variant may be used to
describe myths with a much more simple narrative structure, in particular, those
that do not feature the characteristic double inversion of (1).

3 “It may be significant, however, that an accident in boar hunting [. . . ] is liable
to produce wounds somehow equalling castration; then the boar would be just an
exchangeable sign for a deeper meaning” [10, p. 108]. Castration as punishment or
a voluntary act is frequent in the cult of a group of minor deities from Asia Minor,
to which Adonis also belongs. Strictly speaking it is the boar who mutilates Adonis,
not he himself, but as far as we know, on a higher level of abstraction these narrative
elements belong together.
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While the value sets of the four arguments are not defined but left to guess-
work, based on suggested examples, the range of the CF spans from tribal myths
[3] to Ancient Greek ones [10,13] which would explain the canonical adjective
attached to it. In spite of the claimed universal validity, its full potential is unex-
plored, partly going back to the fact that explanation attempts keep on working
top down, i.e. trying to find phenomena which can be characterized by such
dynamics.

The NF starts to provide a reason for the ongoing failure of the CF to be
generally accepted as the mathematicalisation of mythology. Contrary to its
name, the CF exists in several variants, partly suggested by Lévi-Strauss himself
in different phases of his scholarly career, or by [10,14,15]. This plethora of
alternatives already hints at insecurities as to what exactly the CF might be,
suggesting that perhaps it is just one valid variant among many [8,16,17].

2.3 How Many Narrative vs. Canonical Formulae are There?

It has been long suspected that not one but many forms of the CF exist, all
pertinent to myth (and indeed, to several narrative genres). Here we introduce a
consistent way to generate, and interpret, families of its variants. A more com-
prehensive approach to formula generation will have to be dealt with elsewhere.
Three observations are pertinent here:

– There are three modifiers of term/function values in the NF and CF: the sign
of the argument, the sign of the exponent, and the role swap between term
and function values;

– Out of terms a, b and functions x and y plus one of the three modifiers per
formula, one can create 4 × 8 = 32 “weak” forms of the CF (Table 3, left
column). Typical for these is that although they may use one of the modified
values, there is no double inversion with respect to the relational structure of
the group in them;

– Not one but altogether 32 “strong” forms, including the original CF, can be
formed by systematic interaction between two “weak” forms by exchanging
the respective fourth arguments of NF1 vs. NF7, NF2 vs. NF8, NF3 vs. NF5,
NF4 vs. NF6, NF5 vs. NF2, NF6 vs. NF1, NF7 vs. NF4, and NF8 vs. NF3 in
the first octet of the collection of “weak” forms, respectively (Table 3). The
rules of CF formation are similar for the other “weak” octets as well.

All 31 new forms of the CF, i.e. CF2 −CF32 are functionally equivalent with
CF1 but stand for different semantic (conceptual) parameter combinations. In
other words the CF as a narrative generation tool performs the same trans-
formations on the plot but under rotation of its group, leading to new actors
and actions in new situations. There are also ways to derive more NF variants
which can describe increasingly complex mythological situations. A more generic
probabilistic approach will be discussed in Sect. 3.
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3 The Canonical Formula and Quantum Interaction

The relation between the left hand side and the right hand side of the canonical
formula can be treated as a transformation, that is, Fx(a) : Fy(b) ∇◦ Fx(b) :
Fa−1(y).

According to Morava, “Lévi-Strauss is describing a logical system in which
truth-values lie in an algebraic system called a noncommutative group”
[18, p. 55]. The noncommutative group is identified as the quaternion group of
order eight with the elements Q = {±1,±i,±j,±k}, with the noncommutative
product operation defined as ij = k = −ji, jk = i = −kj, ki = j = −ik,
ii = jj = kk = −1, and (−1)2 = 1.

Let us define an antiautomorphism λ : Q ∇◦ Q as λ(i) = k, λ(j) = −i, and
λ(k) = j. Assigning x ∇◦ 1, a ∇◦ i, y ∇◦ j, and b ∇◦ k, this automorphism
reproduces the canonical formula [8].

The Pauli matrices are a set of three 2 × 2 complex matrices which are
Hermitian and unitary. They are:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

.
Together with the identity matrix I, they form a basis for the real Hilbert

space of 2 × 2 complex Hermitian matrices. Each Pauli matrix is related to an
operator that corresponds to an observable describing the spin of a spin-1/2
particle, in each of the corresponding three spatial directions.

The real linear span of {I, iσx, iσy, iσz} is isomorphic to the real algebra of
quaternions H. The isomorphism from H to this set is given by the following
map:

1 ∇◦ I, i ∇◦ −iσx, j ∇◦ −iσy, k ∇◦ −iσz. (3)

Since any 2×2 complex Hermitian matrices can be expressed in terms of the
identity matrix and the Pauli matrices, 2×2 mixed states, that is, 2×2 positive
semidefinite matrices with trace one, can be represented by the Bloch sphere.
This can be seen by simply first writing a Hermitian matrix as a real linear
combination of {I, σx, σy, σz}, then imposing the positive semidefinite and trace
one assumptions. Thus a density matrix can be written as ρ = 1

2 (I + sσ), where
σ is a vector of the Pauli matrices, and s is called the Bloch vector. For pure
states, this provides a one-to-one mapping to the surface of the Bloch sphere,
and for mixed states, the Bloch vector lies in the interior of the Bloch ball.

Given the mapping between the canonical formula and the quaternion group
of order eight, and in turn, the isomorphism between the real algebra of quater-
nions and the Pauli basis, we arrive at a probabilistic interpretation of the canon-
ical formula, with a geometry provided by the Bloch sphere. Antiautomorphisms
become rotations of pure or mixed states. This far with no apparent upper limit
to construct NF, the syntagm occurrences and co-occurrences these match will
not be equiprobable, neither will be the 4th arguments following identical tripar-
tite initial strings, which in turn yields the probabilistic raw material the Pauli
basis refers to.
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Associating elements of the canonical formula with the Pauli matrices has
a further advantage. As pointed out in Sects 2.1 and 2.3, it is not necessarily
obvious to give a well-cut interpretation of the CF, irrespective of whether we
consider the weak or strong variants. Even versions of the same myth might
elude interpretation. This is where a Pauli basis helps, where the weight of
the basis correspond to probability values of the various components of the
CF. Here we take probability values as a degree of belief, and we do not take
a frequentist approach, although the latter might prove viable given a proper
statistical analysis of myths and CF patterns. In pure states, the probability
amplitudes must add to one, leading to a stricter, more formulaic reading of the
CF. Mixed states, on the other hand, give full freedom in assigning probability
values. In either case, weights might be chosen such that components of the CF
are nullified. We believe that this mathematical description of the CF is more
general than existing ones, and allows a lenient interpretation with a wider scope
that may extend beyond myths.

4 Applying the Probabilistic Description

The fundamental difficulty with myths is “belief contamination,” also called
eclecticism or syncretism, i.e. different concepts belonging to the same category
(e.g. the dying deity) can appear in the same plot so that nobody can tell them
apart. The other one is the fundamental insecurity of not knowing what factor
may be important and how much of its manifestations can be out there. E.g.,
what is the probability that a text fragment is in state Fx(a), or a whole text
as a mix of Fx(a) : Fy(b) ∇◦ Fx(b) : Fa−1(y) has a given outcome for Fa−1(y)?
A probabilistic tool which, based on scalable text variant scanning, can indicate
mixed vs. pure conceptual states and thereby answer such questions is something
sorely missed. This is where QI can help.

Given that CF1-CF32 correspond to pure state vectors on the surface of
a Bloch sphere (Fig. 1(a)), whereas mixed states of a text appear as vectors
pointing inside of the sphere, we tested our working hypothesis on a small corpus

Fig. 1. A pure state corresponds to a point on the surface of the Bloch sphere, whereas
a mixed state is inside the Bloch sphere.
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of thirteen texts from ancient Asia Minor, all concerned with Attis, a Phrygian
dying god whose cult was imported to Rome as a consort of the Magna Mater,
a variant of the Mediterranean Great Goddess. The plot is close to the Adonis
myth: a youth either sacrifices his virility to the goddess or is punished by her to
the same end. Out of the thirteen variants, in eight, Attis emasculates himself
(direct self-mutilation); in one they mutually castrate each other with his partner
(indirect self-mutilation); in two, he is either born as an eunuch or is killed by
spear through an unspecified wound (indirect not-self mutiliation, i.e. killing by
accident or similar); and in another two, it is the goddess who mutilates him
(direct not-self mutilation). With Fx(a) as the shift of the origin of the Bloch
sphere standing for the beginning of the story, and the axes Fy(b) = x̂, Fx(b) = ẑ,
and Fa−1(y) = ŷ, where the latter can have four outcomes as above, Fig. 1(b),
shows the mixed state vector weighted by the outcome probabilities and the rest
of the story alike.

5 Conclusions

We took a step toward bridging the gap between analytical studies in need of
processing methodology vs. processing methodology development in need of raw
material, by showing on a concrete example how a topical set of myth variants
correspond via their syntagmatic transcripts to narrative formulae, i.e. formu-
laic expressions of condensed semantic content. The example came from fertility
myths concerned with ritual punishment for wrongdoing as compensation under-
lying codified justice and community welfare regulation. We also demonstrated
that there exist families of narrative formulae, some with double inverted values
in their arguments, some without, which all share the same group structure with
a certain quaternion group of order eight. Such formulae seem to be usable for
information filtering. Beyond a group theoretic description, establishing a link
to Pauli matrices, a quantum probabilistic framework further generalises the
formulae.
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58 S. Darányi et al.

6. Pekonen, O.: The double twist: from ethnography to morphodynamics, edited by
Pierre Maranda. the artist and the mathematician: the story of Nicolas Bourbaki,
the genius mathematician who never existed by Amir D. Aczel. Math. Intell. 31,
57–61 (2009)
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Abstract. In our recent work, we investigated how to use quantum
detectors (detectors) for improving the effectiveness of Information
Retrieval (IR) systems. The implementation of these detectors in IR
is still an open problem. In this paper, we give the initial specifications
for the design of the systems based on detectors using kinds. In par-
ticular, a probabilistic model of the kinds is introduced, and the use of
them in ranking by probability of relevance and in relevance feedback
are illustrated.

1 Introduction

Information processing often requires the organization and description of data
by means of structures; for example, a database is described by a schema and
an unstructured document collection is described by an index. In particular, an
IR system indexes the document collection and generates a set of index terms
associated to lists of document identifiers called postings as illustrated in [1].
Indexing is necessary for making retrieval both efficient and effective. It is a
matter of fact that indexing is actually the core methodology of an IR system,
since what can be retrieved has necessarily been indexed, and the ranking of
the documents retrieved by the system depends on the description of the data
stored in the index.

IR systems optimize document ranking given that the data is accurately
described and the probabilities of relevance are precisely estimated as possible
as dictated by the Probability Ranking Principle (PRP) introduced in [8]. In [6]
we wondered whether the ranking can be more effective than that dictated by
the PRP – we found that the detectors can in principle provide a more effective
ranking given the same data descriptions and probability estimations. However,
the detectors are at the current stage only mathematical representations of these
descriptors. This immateriality of the detectors is the main motivation for the
research reported in this paper.

In this paper we give the initial specifications for the design of systems based
on detectors using kinds, which were illustrated in [2] and later inserted into a
general framework for IR based on Quantum Mechanics (QM) in [9, Chap. 2].
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Intuitively, a kind is the twofold representation of a concept – the set of instances
of the concept on the one hand and its attributes on the other; for example two
kinds might be K1 = ({a, b, c}, {x, y}) and K2 = ({c, d}, {y, z}) where a, b, c are
all described by both x and y and both y and z describe both c and d. We
equip the kinds with a probability space, thus connecting them to the detectors.
We also suggest how to implement the kinds as they naturally fit an index
generated by an IR system. To this end, Sect. 3 introduces some notions which
are relevant to the kinds and to the following sections in addition to the basic
definitions summarized in Sect. 2.1. Section 4 briefly illustrates how an IR system
might use the kinds. Section 5 illustrates the probability space of the kinds, thus
connecting to the detectors introduced in Sect. 2.2. Section 6 describes how the
kinds might be used for ordering the documents by probability of relevance
and for computing the kinds within a relevance feedback mechanism. Section 7
mentions the directions of the future work. As it will be clear in the remainder of
the paper, the topics addressed imply some issues of computational complexity
and human computer interaction, which are however out of the scope of this
paper.

2 Background

2.1 Kinds

In this section we introduce kinds – further documentation has been given in [2]
and [9]. Suppose T∗ is a set of traits used for describing the individuals collected
in A∗. Consider traits that represent individuals. A kind K is a pair (A, T ) where
A is a subset of individuals and T is a subset of traits.

Two functions are defined on a kind:

– for every A the function tr(A) returns the subset of traits that describes every
individual of A;

– for every T the function in(T ) returns the subset of individuals described by
all the traits of T .

A kind is characterized by the fact that every individual in A instantiates every
trait in T and no individual not in A instantiates every trait in T . We write

A = in(T ) T = tr(A)

The kinds are provided with meet (disjunction) and join (conjunction) oper-
ations;

– meet is defined as K1 ∇ K2 = (in(T1 ◦ T2), T1 ◦ T2)
– join is defined as K1 ∀ K2 = (A1 ◦ A2, tr(A1 ◦ A2))

The meet and join of any pair of kinds are kinds. Indeed, tr(in(T1◦T2)) = T1◦T2

and in(tr(A1 ◦ A2)) = A1 ◦ A2.
A partial order relation is defined as K1 ∈ K2 if and only if K1 = K1 ∀ K2.
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There exists a minimum kind 0 and an maximum kind 1 such that 1 =
(A∗, ∅) ↑ K and 0 = (∅, T∗) ∈ K for every kind K. Indeed,

K ∀ 0 = (A ◦ ∅, tr(A ◦ ∅)) = (∅, tr(∅)) = (∅, T∗) = 0

K ∀ 1 = (A ◦ A∗, tr(A ◦ A∗)) = (A, tr(A)) = K

K ∇ 0 = (in(T ◦ T∗), T ◦ T∗) = (in(T ), T ) = (A, T ) = K

K ∇ 1 = (in(T ◦ ∅), T ◦ ∅) = (in(∅), ∅) = (A∗, ∅) = 1

The distributive law does not hold. Indeed three kinds can be chosen so that
K1 ∀ (K2 ∇ K3) ↔= 0 and (K1 ∀ K2) ∇ (K1 ∀ K3) = 0. Suppose A1 ◦ A2 = ∅ and
A1 ◦ A3 = ∅. It follows that tr(A1 ◦ A2) = T and tr(A1 ◦ A3) = T and therefore
K1 ∀ K2 = 0 and K1 ∀ K3 = 0. It follows that (K1 ∀ K2) ∇ (K1 ∀ K3) = 0
since 0 ∇ 0 = 0. On the other hand, suppose T2 ◦ T3 = T1. It follows that
in(T2 ◦ T3) = in(T1) and thus K1 = K2 ∇ K3 = K1 ∀ (K2 ∇ K3). Therefore,
K1 ∀ (K2 ∇ K3) ↔= (K1 ∀ K2) ∇ (K1 ∀ K3)

One can also check that (K1 ∀ K2) ∇ (K1 ∀ K3) ∈ K1 ∈ K1 ∀ (K2 ∇ K3) for
every K1,K2,K3.

2.2 Detection and Information Retrieval

This section summarizes what was in detail illustrated in [6]. Consider an index
term occurring in the relevant documents with probability p1 and in the non-
relevant documents with probability p0. Suppose | 1← means that the index term
occurs in a document and | 0← does not. If “acceptance” means that the IR system
detects a relevant document, the region of acceptance is one of the following
subspaces: 0, | 0←, | 1←,1. Given a real threshold λ > 0 and the mixed density
matrices

μ0 =
(

p0 0
0 1 − p0

)
μ1 =

(
p1 0
0 1 − p1

)

the optimal region of acceptance A is such that trace(μ1A) > λtrace(μ0A) and
is given by the positive eigenvectors of μ1 − λμ0. The positive eigenvectors of
μ1−λμ0 actually form the region of acceptance defined by the criterion illustrated
in [7]. The calculation of the eigenvectors of μ1 − λμ0 shows that the region of
acceptance corresponds to: |1←→1| if and only if p1 > λp0; |0←→0| if and only if
1 − p1 > λ(1 − p0); |0←→0| + |1←→1| = 1 if and only if 0 < λ < 1 ∀ λp0 < p1 <
1 − λ + λp0; 0 if and only if λ > 1 ∀ 1 − λ + λp0 < p1 < λp0.

Given a threshold λ and the pure density matrices

ρ0 =
( √

p0
√

p0
√

1 − p0√
p0

√
1 − p0

√
1 − p0

)
ρ1 =

( √
p1

√
p1

√
1 − p1√

p1
√

1 − p1
√

1 − p1

)

the optimal region of acceptance B is such that trace(ρ1B) > λtrace(ρ0B) and
is given by the positive eigenvectors of ρ1 − λρ0.

Following [3], the probability of correct detection (i.e. recall) trace(ρ1B) is
not less than trace(μ1A) for all α such that the probability of false alarms (i.e.
fallout) is trace(μ0A) = trace(ρ0B) ∈ α.
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The region of acceptance B is called “quantum detector” and it is a one-
dimensional subspace. This subspace is a superposition of A and A◦, the latter
being the region of non-acceptance when the classical index term occurrence
is at the basis of the formation of a region of acceptance. A and B represents
incompatible observables and for this reason the distributive law does not hold,
that is, A ∀ (B ∇ B◦) ↔= A ∀ B ∇ A ∀ B◦. Indeed, A,B cannot be compatible
because if they were compatible, B could be defined in terms of subspaces of A,
thus contradicting the fact that A is optimal when the mixed density matrices
are used in detection.

3 Kinds Again

The basic properties of the kinds are illustrated in Sect. 2.1; in this section, we
introduce the disjoint kind, the complement kind, and an algebra of kinds useful
for the purposes of this paper. Consider the following notions:

– The kind K1 is disjoint from K2 when K1 ∀ K2 = 0.
– The kind K1 is orthogonal to K2 when A1 ∀ A2 = ∅ and T1 ∀ T2 = ∅; note

that if a kind is orthogonal, it is also disjoint.
– The complement of the kind K is the orthogonal kind K◦ = (A◦, T◦) such

that K ∇ K◦ = 1, thus implying that

A◦ = A∗ \ A T◦ = T∗ \ T

In IR there are two notable examples of kind:

– the posting list associated to an index term corresponds to a simple kind
(in({t}), {t}) where the in({t}) is the set of the individuals indexed by t;

– the terms associated to a document and the document correspond to a simple
kind ({a}, tr({a})) where a is the document and tr({a}) is the set of the index
terms occurring in the document.

In IR, a collection of documents and an index of terms associated to the
documents result in a set of kinds depicted by the co-occurrence matrix (Fig. 1);
the submatrices filled with non-null values are the kinds. Figure 2 illustrates the
kinds implemented by an index of an IR system.

The set of kinds forms an algebra which is provided with meet, join, com-
plement, minimum kind and maximum kind. This algebra meets the axioms
described in [4], that is:

1. If K1 is disjoint from K2, then K2 is disjoint from K1 and K1∇K2 = K2∇K1.
2. K ∀ 0 = (A ◦ ∅, tr(A ◦ ∅)) = 0
3. K ∀ K◦ = (A ◦ (A∗ \ A), tr(A ◦ (A∗ \ A))) = (∅, tr(∅)) = (∅, T∗) = 0
4. K ∇ K◦ = (in(T ◦ (T∗ \ T )), T ◦ (T∗ \ T )) = (in(∅), ∅) = (A∗, ∅) = 1
5. If K1 is disjoint from K◦

1 ∇K2, then K2 must be the minimum kind. Figure 3(a)
illustrates what happens when K2 is not the minimum kind.
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Fig. 1. The index of an IR system is represented as a co-occurrence matrix whose rows
correspond to documents (individuals), columns correspond to index terms (traits) and
non-null entries ((a, t) where a ∈ A, t ∈ T ) correspond to index term occurrence.

K1

K2

K3

K4

A1
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A3

A4

T1 T2 T3 T4

Fig. 2. A kind is a submatrix or block matrix whose entries are all non-null. The kinds
may overlap. The simple kinds correspond either to the non-null entries of the column
of the index term or the non-null entries of the row of the document.

6. If K1 is disjoint from K1∇K2, then K1 must be the minimum kind. Figure 3(b)
illustrates what happens when K1 is not the minimum kind.

7. When K1,K2 are mutually disjoint, both K1 and K◦
2 are disjoint from (K1 ∇

K2)◦. Figure 3(c) illustrates this property.

From these properties the following additional properties may be derived:

1. 0◦ = 1
2. 1◦ = 0
3. K1 ∇ K2 = K1 ∇ K3 only if K2 = K3

4. K1 ∇ K2 = 1 only if K2 = K◦
1

4 Kinds and Information Retrieval

When using index terms extracted from texts, retrieval can seamlessly utilize
intersection or union of the posting lists, thus implementing classical detection.
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Fig. 3. In Fig. 3(a), if K1 is disjoint from K∼
1 ∨ K2, then K2 must be the minimum

kind. When K2 is not the minimum kind, the intersection T∼
1 ∩ T2 determines the set

of individuals in(T∼
1 ∩ T2) that may include some individuals of A1, thus making the

intersection with A1 not empty and then the join between K1 and K∼
1 ∨ K2 not null.

In Fig. 3(b), if K1 is disjoint from K1 ∨K2, then K1 must be the minimum kind. When
K1 is not the minimum kind, the intersection T1 ∩T2 determines the set of individuals
in(T1 ∩T2) including some individuals of A1, thus making the intersection with A1 not
empty and then the join between K1 and K1 ∨ K2 not null. In Fig. 3(c), when K1,K2

are mutually disjoint, both K1 and K∼
2 are orthogonal to (K1 ∨ K2)

∼.

This set-based approach to retrieval and detection fits quite well with textual
documents – the index terms are easily recognized and extracted from documents
and an index term corresponds to a set of document identifiers stored in a posting
list after indexing a document collection.

The main assumption underlying a set-based approach to indexing, retrieval
and relevance detection is that an index term has a semantics and its occur-
rence in a document is meaningful to the end users. When authors are writing
their own documents, say, a1, a2, a3, a4 using, say, four index terms, namely,
t1, t2, t3, t4, they assume that aboutness of documents to index terms can be
expressed through the classical logical operators. Suppose, for example, that
a1, a2, a3, a4 are about {t1, t2}, {t2, t3}, {t2, t3, t4}, {t3, t4}, respectively. Accord-
ing to the set-based approach to IR, the posting lists t1 = {a1}, t2 = {a1, a2, a3},
t3 = {a2, a3, a4} and t4 = {a3, a4} are obtained. However, the end user can uti-
lize the operators for expressing new concepts not explicitly thought of by the
document authors; for example, t2 ◦ t3.

In [9] it was pointed out that the use of a set-based approach to retrieval
with non-textual documents is far more complex. When image, video or sound
documents are to be indexed, the traits are not conveniently available as index
terms and the assumption that the intersection or union of posting lists can
express aboutness does not seem as intuitive as it is for text. The reason is that
the language of non-textual traits is likely to describe individuals with a logic
which will be different from a classical logic.
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Fig. 4. Kinds and rays

In this paper we also point out that the use of a set-based approach to
detection may be inadequate with image, video or sound documents, since the
same reasons that make the retrieval of non-textual documents more complex
than the retrieval of texts still hold when the regions of acceptance (of the
hypothesis of relevance) have to be defined.

The complexity of dealing with non-textual documents and the different lan-
guage provided by the kinds suggest that a set-based approach to retrieval and
detection should be abandoned and a kind-based approach should be preferred.

The kinds exhibit some features similar to those of the detectors, thus sug-
gesting that the kinds may eventually be represented by projectors, in particular:

– The operations intersection and union for sets do not necessarily correspond
to the equivalent logical notions for kinds and for projectors. Suppose that
a1, a2, a3, a4 are about {t1, t2}, {t2, t3}, {t2, t3, t4}, {t3, t4}, respectively. We
have the kinds K1 = ({a1}, {t1, t2}), K2 = ({a2, a3}, {t2, t3}), K3 = ({a3, a4},
{t3, t4}). The conjunction of index terms by intersection yields other results
than the results yielded by the conjunction of kinds by join; for example,
T1 ◦ T2 = {a1} whereas K1 ∀ K2 = 0.

– The kinds violate the distributive law as the projectors A,A◦ and B,B◦

do when the meet and join operations are applied to the kinds. In a two-
dimensional space a kind (e.g. K1) is a ray and two disjoint kinds (e.g. K2,K3)
are orthogonal rays as depicted by Fig. 4. The plane spanned by K1 and K3

is K1 ∇ K3, and the intersection of the ray corresponding to K1 and the
ray corresponding to K3 is K1 ∀ K3. The plane corresponding to K1 ∇ K3

will be the entire two-dimensional plane, and thus K2 ∀ (K1 ∇ K3) = K2,
whereas geometrically (K2 ∀ K1) ∇ (K2 ∀ K3) = 0 ∇ ({a3}, {t2, t3, t4}) =
({a3}, {t2, t3, t4}) ↔= K2, and the distribution law fails.

5 Probability of Kinds

The features common to kinds and detectors (e.g. the violation of the distributive
law) are a necessary yet not sufficient condition that the kinds can be used
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for implementing the detectors illustrated in Sect. 2.2. As detection is based on
probability, a probability measure is also necessary.

A probability function P maps a kind to the real interval [0, 1] and meets the
following properties:

– P is function of both A and T in order to exploit all the information provided
by K;

– P (K1) ∈ P (K2) when K1 ∈ K2;
– P (0) ∈ P (K) ∈ P (1), since 0 ∈ K ∈ 1; therefore, P (0) = 0 and P (1) = 1;
– limn→√ P (K1 ∇ · · · ∇ Kn) = 1.
– limn→√ P (K1 ∀ · · · ∀ Kn) = 0.

In IR the probabilities are usually based on the information provided by the
posting lists, which store information about both documents (individuals) and
index terms (traits). A probability of an index term can be function of the
number of documents indexed, while a probability of a document can be function
of the index terms stored; indeed, these statistics are exploited by the most
effective weighting schemes implemented by the search engines.

If one was induced to consider the area of the rectangles drawn in Fig. 2 as a
measure of probability,

∑
a∈A

∑
t∈T w(a, t) would be used where w is the weight

function given to each occurrence of a trait t in an individual a; when w = 1 the
function is the “volume” or “area” of the kind, that is |A × T | = |A||T | where
| · | is the “volume” such as the cardinality of the set. However, this function
does not meet the requirement that P (1) > P (0). Another probability function
is then needed.

Consider a kind K = (A, T ) and let s(T ) be a natural number function of
T . Consider A∗ to be an urn of individuals and P (A) to be the probability
that an individual is in A. The number x of individuals in A in a sample of size
s(T ) drawn with replacement from the urn is governed by a binomial probability
distribution (

s(T )
x

)
P (A)n(1 − P (A))s(T )−x

The probability that x = s(T ) is exactly

P (K) = P (A)s(T ) 0 ∈ P (A) ∈ 1 0 ∈ s(T ) ∈ N (1)

K is then the outcome of an experiment governed by a binomial distribution such
that each draw is an individual of the kind. The join and the meet of two kinds
are then the conjunction and the disjunction of the outcomes of two experiments
on the urn of individuals.

This probability function is relevant to our purposes because:

– P is clearly function of both A and T ;
– when K1 ∈ K2, P (A1 ◦ A2)s(tr(A1∩A2)) ∈ P (A1)s(T1);
– 0 ∈ P (K) ∈ 1;
– P (1) = P (A∗)s(∅) = P (A∗)0 = 1 and P (0) = P (∅)s(T∗) = 0s(T∗) = 0;
– limn→√ P (K1 ∇ · · · ∇ Kn) = P (in(T1 ◦ · · · ◦ Tn))s(T1∩···∩Tn) = 1, since T1 ◦

· · · ◦ Tn tends to the empty set and in(T1 ◦ · · · ◦ Tn) tends to A∗;
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Fig. 5. Probability and interference

– limn→√ P (K1 ∀ · · · ∀ Kn) = P (A1 ◦ · · · ◦ An)s(tr(A1∩···∩An)) = 0, since A1 ◦
· · · ◦ An tends to the empty set and tr(A1 ◦ · · · ◦ An) tends to T∗.

As regards probabilistic IR, the difference between this probability func-
tion and the probability function adopted by the Binary Independence Retrieval
(BIR) model is that K denotes the individuals described by all traits in T
whereas the BIR describes the individuals as both the traits occurring and those
not occurring; for example, when there are three individuals and four traits
and the following table of 0/1 elements denoting non-occurrence/occurrence of
traits,

t1 t2 t3 t4
a1 1 1 1 0
a2 1 1 0 1
a3 1 1 0 1

({a1, a2, a3}, {t1, t2}) is a kind whereas {a1} and {a2, a3} denote two distinct
events. The probability of the kind is P ({a1, a2, a3})s({t1,t2}) whereas the prob-
ability of the two events are p1p2p3(1 − p4) and p1p2(1 − p3)p4, respectively.

Following the postulates presented in [5], P should be such that the proba-
bility of the conjunction of two orthogonal kinds is the sum of the probabilities
of the kinds. Consider K and K◦, we have that P (K ∇ K◦) = P (1) + P (0) =
1 + 0 = 1. However, this property does not hold for any pair of disjoint kinds;
indeed, for K1 ∀ K2 = 0, we have that P (K1 ∇ K2) ↔= P (K1) + P (K2).

The difference between P (K1 ∇ K2) and P (K1) + P (K2) is due to the super-
position of T1 and T2 which produces the interference term

I = P (K1 ∇ K2) − P (K1) − P (K2)

which also exists when the kinds are disjoint and not orthogonal. Figure 5 sum-
marizes the probabilities and the cases of null interference.

6 Ranking and Feedback Using Kinds

In this section, we introduce two notable applications of kinds in IR: ranking
by probability of relevance (Sect. 6.1) and query expansion through feedback
(Sect. 6.2).
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6.1 Ranking Kinds According to the PRP

In this section, we briefly describe how to apply the PRP to kinds instead of
to documents. Suppose a collection of kinds has been generated from a A∗ and
T∗; there are plenty of algorithms for computing the complete bipartite graphs
obtained when connecting the individuals in A∗ to the traits in T∗.

The fundamental lemma illustrated in [7] can be exploited to state that
retrieving the kind K is a better decision than K◦ when

K = argK,K⊥ max P1(K) − λP0(K) where P0(K) < α

provided that α is the maximum probability of false alarm. Following the PRP,
which is derived from the lemma, the expected recall is maximum when the kinds
are listed in order of P1(K) and a cut-off α is applied when the given probability
of false alarm is reached.

Consider the difference between BIR and kinds mentioned in Sect. 5. Accord-
ing to the PRP and the lemma of [7], the optimal ranking criterion operates upon
events in the case of the BIR model, upon kinds in the case of this section, and
upon detectors in the case illustrated in [6] and briefly described in Sect. 2.1.
Therefore, the ranking criterion is always the same though the objects ranked
might change from events, then to kinds, and finally to detectors. The crucial
difference is that events commute whereas kinds and detector do not, and this
is the difference that in principle make detector and kinds more effective than
events in ranking documents by relevance.

When α varies from 0 to 1 at given intervals, and a collection of kinds has
to be ranked, the criterion of [7] arranges the kinds in order of expected recall;
the kinds K1, . . . ,Kr selected up to rank r = r(α) give the maximum expected
recall P1(K1 ∇· · ·∇Kr) provided that P0(K1 ∇· · ·∇Kr) < α. Note that the Ki’s
do not necessarily commute as the events of classical IR do.

From a practical point of view, the collection of kinds ordered by proba-
bility of correct detection (i.e. expected recall) should be presented to the end
user. However, the user is used to receiving ordered lists of documents, and is
not used to receiving kinds; indeed, the current search engines deliver ordered
lists of WWW pages. It is convenient presenting the kinds to the end user by
presenting the individuals (i.e. the documents) in order of the P1(K)’s. This
stratagem would allow the researcher to employ the widely adopted method-
ologies of laboratory-based experimental studies such as those based on test
collections, which require lists of documents in order of measures (e.g. probabil-
ity) of relevance. However, such a stratagem ignores the presentational issues of
the ordered collections of kinds which are likely to require innovative approaches
to the general problems encountered within the research in information access
and seeking; although important, these issues are out of the scope of this paper.

6.2 Stretching Kinds and Query Expansion Through Feedback

Consider Sect. 2.2 and let Pi(K) be the probability of K in state i where
i = 0, 1 means non-relevance and relevance, respectively. In particular,



Initial Specifications for the Design of Information Retrieval Systems 69

A

A′
A′′

T ′

T ′′

T

(a)

Require: K
1: converged ← false
2: while not converged do
3: A′ ← distill(A)
4: T ′ ← tr(A′)
5: q′

0 ← P0(A
′)s0(T

′)

6: q′
1 ← P1(A

′)s1(T
′)

7: T ′′ ← distill(T ′)
8: A′′ ← in(T ′′)
9: q′′

0 ← P0(A
′′)s0(T

′′)

10: q′′
1 ← P1(A

′′)s1(T
′′)

11: if the criterion of convergence holds
then

12: converged ← true
13: else
14: A ← A′′

15: T ← T ′′

16: end if
17: end while
18: H ← (A′′, T ′′)

(b)

Fig. 6. (a) Stretching kinds: A is rst withdrawn to obtain A′, which is actually a subset
of A; the resulting T ′ is a stretch of T; T ′ is then withdrawn to T ′′, thus stretching A′

to obtain A′′; at each step, the kinds evolve. (b) Algorithm for stretching kinds.

Pi(K) = Pi(A)si(T ). The optimal region of acceptance in the case of mixed
density matrices can be rewritten as the kind K = (A, T ) whereas the optimal
region of acceptance in the case of pure density matrices can be rewritten as a
new kind H – the problem is to compute H.

An approach to the problem of computing H is to take inspiration from the
query expansion techniques used in IR. Suppose K has been computed by an IR
system according to the PRP. From K, a series of “stretches” is performed as
exemplified by Fig. 6(a) and formalized by the algorithm of Fig. 6(b). A subset A′

of individuals is distilled from A (step 3). Document distillation can be imple-
mented by any feedback technique used in IR; for instance, pseudo-relevance
feedback techniques have been designed for distilling the candidate documents
which store index terms useful for expanding the user’s original query. In the
case of the kinds, the index terms are given by T ′ = tr(A′) (step 4). The proba-
bilities of correct detection and of false alarms of the new kind (A′, T ′) are then
computed at step 5-6. Similarly to document distillation, term distillation can
be implemented by any term selection used when indexing documents (step 7);
for example, document parsing, structure and markup processing, link analysis
and information extraction techniques have been designed for distilling the can-
didate index terms useful for retrieving documents. In the case of the kinds, the
documents are given by A′′ = tr(T ′′) (step 8). The probabilities of correct detec-
tion and of false alarms of the new kind (A′′, T ′′) are then computed at step 9-10
and compared with the probabilities of (A′, T ′) for testing convergence; in the
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case of no convergence, steps 3–10 are iterated after replacing K with (A′′, T ′′)
at step 14–15. The criterion of convergence is left to future work.

7 Future Work

The directions of future work are the following. The formal definition of the con-
nection between the kinds and the detectors: it is our aim to find the projectors
which represent both the kinds and the detectors. The calculation of the kinds
requires the use of algorithms finding connected bipartite graphs: although this
problem is well studied, a great deal of attention should be paid to the compu-
tational issues due to the presence of “big data”. A series of experiments aiming
at both comparing the retrieval effectiveness of an IR system using kinds with
the effectiveness of the systems based on the classical retrieval models, and test-
ing whether stretching the submatrices around the original submatrices would
represent a meaningful way of doing query expansion. The presentational issues
mentioned in Sect. 6.1: these issues are related both to displaying the kinds to
the user and to using of the kinds as a language of interaction between the end
user and the IR system.
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Abstract. In recent years, quantum-based methods have promisingly
integrated the traditional procedures in information retrieval (IR) and
natural language processing (NLP). Inspired by our research on the
identification and application of quantum structures in cognition, more
specifically our work on the representation of concepts and their combi-
nations, we put forward a ‘quantum meaning based’ framework for struc-
tured query retrieval in text corpora and standardized testing corpora.
This scheme for IR rests on considering as basic notions, (i) ‘entities of
meaning’, e.g., concepts and their combinations, and (ii) traces of such
entities of meaning, which is how documents are considered in this app-
roach. The meaning content of these ‘entities of meaning’ is reconstructed
by solving an ‘inverse problem’ in the quantum formalism, consisting of
reconstructing the full states of the entities of meaning from their col-
lapsed states identified as traces in relevant documents. The advantages
with respect to traditional approaches, such as Latent Semantic Analysis
(LSA), are discussed by means of concrete examples.

Keywords: Information Retrieval · Latent Semantic Analysis · Quan-
tum modeling · Concept theory

1 Introduction

Since the appearance of The Geometry of Information Retrieval [33], introduc-
ing a quantum structure approach to Information Retrieval (IR), Widdows and
Peters [34], using a quantum logical negation for a concrete search system,
and Aerts and Czachor [7], identifying quantum structure in semantic space
theories, such as Latent Semantic Analysis (LSA) [18], the employment of tech-
niques and procedures induced from the mathematical formalisms of quantum
physics – Hilbert space, quantum logic and probability, non-commutative alge-
bras, etc. – in fields such as IR and natural language processing (NLP), has
produced a number of new and interesting results [21,28,30,35,36]. The lat-
ter can be placed within a growing quantum structure research in cognitive
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domains [8–10,12–17,23,31,32]. These quantum-based approaches mainly inte-
grate and generalize the standard procedures in IR and NLP. Roughly speak-
ing, one considers ‘documents’ and ‘terms’ as basic ingredients, concentrating
on the so-called ‘document-term matrix’ which contains as entries the number
of times that a specific term appears in a specific document. Both terms and
documents are represented by vectors in a suitable (Euclidean) semantic space,
and the scalar product between these vectors is a measure of the similarity of
the corresponding documents and terms. This approach has extended to Latent
Semantic Analysis (LSA) [18], Hyperspace Analogue to Language (HAL) [22],
Probabilistic Latent Semantic Analysis (pLSA) [27], Latent Dirichlet Alloca-
tion (LDA) [11]. Several methods in word disambiguation, Information retrieval,
question answering, etc., rely on the geometric properties of these linear semantic
spaces [19]. Notwithstanding its success, the procedure meets some difficulties,
including high computational costs and lack of incremental updates, which limits
its applicability. Furthermore, one can claim the ‘ad hoc’ character of the pro-
cedure and, as a consequence, none of the examples mentioned above is immune
to criticisms.

Inspired by a two-decade research on the identification and application of
quantum structures in disciplines different from the micro-world [1–6,8–10], we
put forward in this paper the first steps leading to a possible conceptually new
perspective for IR and NLP. In this approach, we want to replace terms by
‘entities of meaning’ as primary notions, which can be concepts or combinations
of concepts. Such ‘entities of meaning’ can be in different states and change
under the influence of the ‘meaning landscape’, or ‘conceptual landscape’, or
‘conceptual context’. If we say ‘pour out the water’, and the meaning landscape
is that of a flooded village after a heavy storm, the state of the entity of meaning
which is ‘pour out the water’ is very different, from when the meaning landscape
is that of a cafe where we are having some refreshments together. The explicit act
of considering entities of meaning in states makes our approach fundamentally
‘contextual’. Moreover, documents are not regarded as collection of words, but
as traces, i.e. more concrete states, of these entities of meaning, or concepts,
or combinations of concepts. This means that a document is considered to be
a collapse of full states of different entities of meaning, each entity leaving a
trace in the document. The words are only spots of these traces and they are
not the main meaning carriers. The technical focus of our approach consists in
trying to reconstruct there full states of the different entities of meaning from
experiments that can only spot their traces, i.e. that can only look at words in
documents. We believe that aspects of our quantum approach to cognition, still
in full development, can help in formulating and making technically operational
this ‘inverse problem’, consisting in ‘reconstructing the the full states of the
different entities of meaning’, starting from their collapsed states as traces of
word spots in documents.

We introduce in Sect. 2 the basic notions that are needed in our scheme for
IR, that is, entities of meaning, which can be concept combinations, documents
as traces of such entities of meaning and their technical reconstruction. We point
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out how our perspective is different from traditional approaches, e.g., LSA. We
specify the sense in which the new paradigm is meaning focused. Moreover, the
quantum-theoretic formalism we have recently developed to model concept com-
binations is a possible natural candidate to represent our meaning-based scheme.
Indeed, the pair (entities of meaning, documents) is replaced by the pair (con-
cepts/combinations, exemplars) in Sect. 3. Thus, the quantum modeling we have
employed in the simple case where entities of meaning are concepts and docu-
ments are exemplars can be naturally used also in these more general IR cases.
We stress that we have as yet no theory – but specific cases – to solve the func-
tional inverse problem in an IR system, hence we only sketch the first steps for an
approach on the theoretical level. Nevertheless, our quantum-inspired scheme is
potentially more performant than LSA-based techniques. This is explicitly shown
in Sect. 4, where a LSA analysis of Hampton’s data on disjunctions of concepts is
supplied and compared with our quantum cognition model in Sect. 3. We draw
the conclusion that (i) LSA is only partially capable of capturing the effects
of overextension and underextension in concept combinations, (ii) LSA supplies
only approximate solutions, unlike our quantum modeling approach. This sug-
gests that an application of our quantum and meaning-based approach would be
more efficient than classical approaches both in text analysis and in information
recovering.

2 Fundamentals of the Meaning-Based Approach

We present here the basics of our meaning-based approach for IR, explaining, in
particular, its novelties with respect to the traditional IR and NLP procedures
and justifying the use of the quantum-mathematical formalism in Sect. 3 in it.

LSA and its extensions typically use word-counting techniques in which the
semantic structure of large bodies of text is incorporated into semantic linear
spaces and the ‘document-text matrix’. The latter contains as entries the number
of times that a given term appears in a given document. If one labels the rows of
this matrix by the documents and the columns by the terms, then each row can
be viewed as a vector representing the corresponding document and each column
as a vector representing the corresponding term. If vectors are normalized, their
scalar product is a measure of the ‘similarity’ of the corresponding documents
and terms, hence this data analysis can be used in IR and NLP. In the app-
roach we put forward in this paper, instead, the semantic structure of texts is
incorporated directly into concepts and their traces describing documents. This
method is closer to the processes concretely working in the human mind, which
explains why the quantum modeling in Sect. 3, which faithfully describes human
collected data on concept combinations, can be applied to IR in a straightforward
way. We stress, however, that the approach we propose is not yet worked out
sufficiently to be applied to concrete IR problems, since many of the technical
aspects of the inverse problem need to be specified and elaborated in different
ways. Notwithstanding this, we will see that some interesting conclusions can
already be drawn.
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The first fundamental element of our approach is the conceptually new fact
that ‘terms’ are replaced by ‘entities of meaning’ as basic elements, and specif-
ically such entities of meaning can be ‘concepts’ or their combinations. This is
why we work with ‘entities of meaning’, usually expressed as concept combina-
tions, rather than with terms. Our procedure takes into account the meaning
of the words from the very beginning, and there are valuable reasons to believe
that this is how the human mind works. Indeed, whenever we read a text, we
understand the ‘meaning’ of the text, and even have no efficient memory for
the ‘structure of the terms’. The substitution of terms with entities of meaning
also allows us to use the quantum modeling formalism in Sect. 3 for representing
concepts and their combinations.

The second basic element is the interpretation of ‘pieces of texts’ or, better,
‘documents’, as ‘traces of these entities of meaning’. In this perspective, a docu-
ment is not regarded as a combination of words but, rather, as collapsed states
of the considered entities of meaning, or combinations of concepts. And, again,
there are valuable reasons to believe that this view is an adequae representation
of how the human mind operates. Indeed, if we consider the entity of meaning
The Cat Runs Through The Garden, which is a combination of concepts, and
consider a document telling about the adventures of a cat, a trace of The Cat
Runs Through The Garden can be identified in this document, depending on the
meaning content of the story about the cat. A weight can be identified repre-
senting the ‘aboutness’ of the meaning content of the document with respect
to the entity of meaning The Cat Runs Through The Garden. And the docu-
ment itself can be considered as a collapsed state of the full state of the entity
of meaning The Cat Runs Through The Garden. This is exactly the structure
that we can study by means of the quantum modeling formalism, for example
what we explained in Sect. 3, namely, a document being a collapsed state of an
entity of meaning after a measurement process (a cognitive test on subjects, a
query on the web, etc.). The preceding insight has been inspired by what typi-
cally occurs in quantum experiments on microscopic particles, where one looks
for traces of quantum particles. Whenever an experimental test is performed, a
trace, or snapshot, of a quantum particle is left in a suitable apparatus, e.g., a
Cloud chamber. A trace of this kind reveals a collapsed process of the quantum
particle in the real physical space.

The third element of our approach is developing a technique to reconstruct
the full states of the considered entities of meaning starting from weights that
these full states contain with respect to their collapsed states, i.e. the documents.
This is what in physics is called the ‘inverse problem’. We observe that the human
mind performs this inverse problem brilliantly, it indeed reconstructs the ‘entities
of meaning’ of a document starting from what is written on the piece of paper,
hence starting from – not the words – but the trace of these entities of meaning, or
the collapsed states. And this is exactly also what quantum experimentalists and
phenomenologists do, they recover the initial state of quantum particles starting
from their collapsed states and outcome statistics of repeated experiments.
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We stress that the inverse problem above can be technically very compli-
cated, so that we have only given a conceptual description of it here. One could,
for example, investigate the methods employed in quantum physics for state
reconstruction and tomography, extending them to IR systems. In any case, our
quantum cognition approach has already performed a complete reconstruction
of the inverse problem in a Hampton’s test of typicality [5,6]. Test subjects
were asked to choose from a list of 24 exemplars the one that they estimated
best represented the concepts Fruits, Vegetables and their disjunction Fruits or
Vegetables. We elaborated a 25-dimensional complex Hilbert space which per-
fectly agreed with empirical data and allowed us to reconstruct and represent
the initial states of the concepts. In this quantum model, the given concepts
are the ‘entities of meaning’, while the exemplars, being more concrete states,
or traces, of concepts in our approach, play the role of collapsed states of these
conceptual entities of meaning. This suggests that a similar Hilbert space scheme
can be envisaged where we replace ‘exemplars’ by ‘paragraphs of texts’ playing
the role of documents, while ‘concepts’ are replaced by ‘entities of meaning’.
Of course, a quantum-mechanical model of this kind needs to be specified once
a real experiment is performed on human subjects, but it already contains the
genuine quantum structures that play a role in an IR process, such as collapse,
contextuality, emergence, entanglement, interference and superposition.

3 Effectiveness of a Quantum Cognition Modeling in IR

It is well known that classical logical and probabilistic approaches fail when deal-
ing with conceptual vagueness, the gradation of membership weights and concept
combination (see, e.g., [24–26,29]). For this reason, we have recently worked out
a quantum-theoretic approach for concept combination [3–6,10]. On the other
hand, we have anticipated in Sect. 2 that this quantum cognition formalism is
a natural candidate to represent our meaning based approach for IR. The first
reason is that both approaches deal with concepts and their states, the second
is that the meaning based approach for IR in Sect. 2 faithfully accords with a
large collection of experimental data on human subjects on the combination of
two concepts [24,25]. But there is a third and even stronger motivation for con-
cretely using our quantum cognition approach in dealing with IR problems: it
mathematically follows the same scheme of Sect. 2. Here, the role of ‘entities of
meaning’ is played by the concepts and their disjunctions/conjunctions, while
the role of ‘documents’ is played by the set of ‘exemplars’. Indeed, the latter
are more concrete states of concepts, hence they can be regarded as traces, or
collapsed states, of these conceptual entities of meaning. This means that our
quantum modeling scheme would work ‘equally well’ if we did the experiment
with ‘concepts, combinations of concepts’ and ‘real documents’, with human
subjects performing semantic estimations such as ‘aboutness’ or’topicality’ of
certain concepts with respect to a document. It is thus worth focusing on this
quantum cognition approach and compare it with traditional approaches.

To model combinations of two concepts we need a Fock space F which
consists of two sectors: ‘sector 1’ is a Hilbert space H, while ‘sector 2’ is a
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tensor product Hilbert space H ∇ H, so that F = H ◦ (H ∇ H). As a gen-
eral consideration, sector 1 mainly enables modeling of interference connected
phenomena, while sector 2 mainly enables modeling of entanglement connected
phenomena. Let us consider the membership weights of exemplars of concepts
and their conjunctions/disjunctions measured by Hampton [24,25]. He identi-
fied systematic deviations from classical (fuzzy set) conjunctions/disjunctions,
an effect known as ‘overextension’ or ‘underextension’. We concentrate on dis-
junctions here, which we will actually compare with LSA in Sect. 4. A completely
similar analysis can be done for conjunctions [10]. It can be shown that a large
part of Hampton’s data cannot be modeled in a classical probability space sat-
isfying Kolmogorov’s axioms, due to the following theorem.
Theorem 1. The membership weights μx(A), μx(B) and μx(A or B) of an
exemplar x for the concepts A, B and A or B can be represented in a classical
probability model if and only if the following two conditions are satisfied.

Δd = max(μx(A), μx(B)) − μx(A or B) ∀ 0 (1)
0 ∀ kd = μx(A) + μx(B) − μx(A or B) (2)

where Δd is the disjunction maximum rule deviation, and kd is the Kolmogorov-
ian disjunction factor.

Proof. See (Aerts, 2009), theorem 6.

Equation (1) expresses compatibility with the maximum rule for the conjunc-
tion of fuzzy set theory and, more generally, with monotonicity of classical Kol-
mogorovian probability. A situation with Δd > 0 is called ‘underextension’
[25]. Equation (2) expresses instead compatibility with additivity of classical
Kolmogorovian probability. Equations (1) and (2) together provide necessary and
sufficient conditions to describe the experimental membership weights μx(A),
μx(B) and μx(A or B) in a Kolmogorovian probability space (Ω, σ(Ω), P ) (σ(Ω).
In this case, indeed, events PA, PB ∈ σ(Ω) exist such that P (EA) = μx(A),
P (EB) = μx(B), and P (EA ∅ EB) = μx(A or B).

Let us consider a specific example. Hampton estimated the membership
weight of Donkey with respect to the concepts Pet, Farmyard Animal and their
disjunction Pet or Farmyard Animal finding the values μDonkey(Pet) = 0.5,
μDonkey(Farmyard Animal) = 0.9, μDonkey(Pet or Farmyard Animal) = 0.7.
Thus, the exemplar Donkey presents underextension with respect to the disjunc-
tion Pet or Farmyard Animal of the concepts Pet and Farmyard Animal. We
have in this case Δd = 0.2 ↑∀ 0, hence no classical probability representation
exists for these data, because of Theorem 1. It can instead be proved that a
quantum probability model in Fock space exists for these Hampton’s data [25].
Theorem 2. The membership weights μx(A), μx(B) and μx(A or B) of an
exemplar x for the concepts A, B and A or B can be represented in a quan-
tum probability model where

µx(A or B) = m2
x(µx(A) + µx(B) − µx(A)µx(B)) + n2

x(
µx(A) + µx(B)

2
+ Intx(A,B))

(3)
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where the numbers m2
x and n2

x are convex coefficients, i.e. 0 ∀ m2
x, n

2
x ∀ 1,

m2
x + n2

x = 1, and θx is the interference angle with

Intx(A,B) =
√

1 − μx(A)
√

1 − μx(B) cos θx (4)

Proof. See Aerts, 2009 [10].

The term μx(A) + μx(B) − μx(A)μx(B) is what one would expect for the dis-
junction in the case of classical probability. The term Intx(A,B)) is instead
the quantum interference term and it is responsible, together with the average
µx(A)+µx(B)

2 , of the deviations from classical expectations. The coefficients m2
x

and n2
x measure the weights of sectors 2 and 1, respectively, of F . For exam-

ple, in the case of Donkey with respect to Pet, Farmyard Animal and Pet or
Farmyard Animal, we have that Theorem 2 is satisfied with m2

Donkey = 0.26,
n2
Donkey = 0.74 and θDonkey = 77.34∗.

Theorem 2 and its corresponding theorem for conjunctions – which we do not
report, for the sake of brevity – contain the quantum probabilistic expressions
allowing the modeling of a large amount of Hampton’s data [24,25]. In particular,
the quantum modeling above perfectly agrees with the data reported in Sect. 4
and compared with LSA data. We have also proposed an explanation for the
fact that a quantum approach of this kind is so successful in modeling the large
collection of data by Hampton. We have hypothesized a mechanism in which a
genuine quantum effect comes into play, namely ‘emergence’. Two processes, a
logical one and a conceptual one, occur simultaneously in the human mind, and
our quantum approach in Fock space enables both processes to be modeled.

We have seen above the deep reasons why our quantum cognition model-
ing can be successfully applied to IR. In Sect. 4, we will compare LSA and the
quantum model modeling Hampton’s data on concept combinations [24,25]. To
conclude, we remark that, though our approach is conceptually different form
standard IR approaches, such as LSA, it rests on similar basic ideas, that is,
‘meaning is expressed in texts by the environment of a term’. We are convinced
however that coherence, emergence and contextuality, and their quantum mod-
eling can express meaning in a way that is similar to how meaning is captured
by the human mind.

4 A Comparison with LSA

Before analyzing Hampton’s data by means of LSA, it is worth dwelling on two
aspects that allow one to better grasp the connections between LSA and our
quantum cognition modeling in Sect. 3.

(i) LSA typically calculates ‘similarity’ through a complex technical proce-
dure, which involves a real linear space representation of terms, a document-term
matrix, a rank lowering through the reduction to a diagional matrix by singular
value decomposition that drops eigenvalues below a threshold, and thus can be
considered as a semantic space construction/reduction technique. In this way,



78 D. Aerts et al.

one captures the ‘latent nature of similarity’ within the studied corpus. The cal-
culation results, though most probably correlated to ‘similarity when tested on
human subjects’, do not express the latter directly. This entails that a LSA
analysis of membership weights data, as well as a model for membership weights
based on similarity [26], do make sense in this case.

(ii) A LSA process introduces cuts and approximations, so that it models
experimental data only approximately. This is usually considered an advantage,
at least with respect to an approach, like our quantum-theoretic modeling in
Sects. 3 and 2, which can deliver models that ‘fit data completely’. Indeed, since
one usually maintains that experiments are not perfect, one is led to believe
that approaches that model these data approximately have a bigger chance to
be close to reality, than approaches that model these data perfectly. There is en
error in the above reasoning linked to the difference between ‘models that derive
from a theory’ and ‘ad hoc models’. An ad hoc model is specifically made for
a situation, and for such a model it would indeed be suspicious if it could fit
data correctly. A model that derives from a theory, when fitting data correctly,
does not constitute a problem. Indeed when for such a model slightly different
data are to be fit, this is also possible by varying some of the parameters. The
latter remark expresses a fundamental difference between our quantum modeling
and LSA. In our modeling, ‘also data that would be slightly different can again
be perfectly fitted’, which indicates that our models derive from a theory, i.e.
quantum theory. This is ‘not’ true for LSA: there is ‘no’ corpus of texts that
would fit, e.g., Hampton’s data, as we see in what follows, which indicates that
LSA is closer to an ad hoc way of model building.

We considered Hampton’s membership weight data for the disjunction of
eight pairs of concepts and 24 exemplars for each pair [10,25]. We computed the
one-to-many similarity between the exemplars of the concepts and the concept,
for each concept and their disjunction, considering the corpus General reading
up to 1st college (300 factors) of the LSA Colorado website.1 The LSA similarity
website could not compute the similarity of one exemplar in three pairs of con-
cepts, and of two exemplars on one pair of concepts, because these exemplars
were not present in the corpus. Therefore, we computed the similarity of 187
exemplars within the eight pairs of concepts in total.

The aim of this analysis is twofold. Firstly, we test whether the LSA similar-
ity between the exemplar of a concept and the term denoting the concept can be
used to estimate Hampton’s membership data. To this end, we compare the LSA
similarity with Hampton’s membership data, and we also verify whether or not a
membership model based on similarity, the ‘threshold model’ [26], improves the
LSA estimations. The threshold model is a simple model which assigns member-
ship weight zero to the exemplars that are below a similarity threshold sl, assigns
membership weight one to the exemplars that are above a similarity threshold
sh, and using a parameter st builds a quadratic function to assign membership in
the range [sl, sh]. Secondly, we identify the type of data that the LSA similarity
(and the threshold model) delivers. To this aim, we compare the average number

1 See the link http://lsa.colorado.edu/.

http://lsa.colorado.edu/
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of exemplars that verify (or do not verify) Eqs. (1) and (2) in Hampton’s data,
in the LSA data, and in the threshold model. Whenever Eqs. (1) and (2) are sat-
isfied, we call the exemplar of a ‘classical’ type. If Eq. (1) is not satisfied, we call
the exemplar of a Δd type, and if Eq. (2) is not satisfied, we call the exemplar
of a kd type. Note that both inequalities cannot be violated simultaneously, and
when any of the two inequalities is violated, the data cannot be modeled by a
Kolmogorovian probability model (see Theorem 1).

Note that the LSA-similarity function can be negative. However, the mem-
bership function is assumed to be non-negative. We therefore set the negative
similarities to be equal to zero. Indeed, this is not a significant modification to
our data set because only 10 of the 187 tested instances deliver negative simi-
larities, and none of these values are lower than −0.1.

For reasons of space, we cannot illustrate the performance of LSA and the
threshold model in fitting Hampton’s data for each concept. However, we illus-
trate that neither approach performs well. In Fig. 1, we compare the LSA and
threshold models, using sl = 0.1, st = 0.5, and sh = 0.9, to the Hampton’s data.
The top row shows from left to right Hampton’s data, the LSA similarity, and
the threshold model data for the concepts Home Furnishing in black, Furniture
in grey, and Home Furnishing or Furniture in dashed black. The exemplars of
the concepts are on the x-axis, and the membership weights on the y-axis. It is
clear that the range of values that both LSA and threshold model deliver are not
close to the actual membership weights measured by Hampton. The second row
shows the Pearson correlation between Hampton’s data and the LSA model in
the center, and the threshold model on the right. The x-axis identifies the con-
cept pair, and the y-axis identifies the correlation found for each concept, and
their combination, with respect to Hampton’s data. The coloring of the curves
is the same as in the first row: the first concept of the pair is plotted in black,
the second concept in grey and their combination in dashed black. We see that
there is not significant correlation for any concept in both models. We there-
fore conclude that LSA and the threshold model using LSA data deliver weak
estimations of Hampton’s data, in their values and co-variations (correlations).

Fig. 1. Contrasting Hampton’s data to LSA and Threshold models.
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To compare the different types of Hampton’s data with the LSA and threshold
models, we compute a graph as follows: we define three nodes {C,D,K}, refer-
ring to the types ‘classical’, Δd, and kd, respectively, and we build an edge x ↔ y
for each exemplar of each pair of concepts. The edge x ↔ y indicates that the
exemplar is of the type x for Hampton’s data, while it is of the type y for the
model we consider. For example, in the LSA data graph, the link D ↔ C counts
the number of exemplars that are of type Δd for Hampton’s data and of ‘clas-
sical’ type for the LSA data. Self-loops indicate no type difference between the
two data sets, and so on. We draw these graphs in Fig. 2. The LSA data graph is
shown on the left, the threshold model data, with parameters sl = 0.1, st = 0.5
and sh = 0.9, is shown in the center, and the threshold model with parameters
sl = 0.3, st = 0.5 and sh = 0.7, is shown on the right. Note that we consider all
the exemplars of all concept pairs in this graph. In this sense we plot the aver-
age behavior of the models within the concepts. We do not show the detailed
analysis for each pair of concepts, for reasons of space, but we mention that the
tendencies we observe in the average case are also strong in the majority of the
concept pairs. For the three models, the tendency of having the same type for
a given exemplar follows the order C,D,K. Where C and D are much larger
than K. Particularly for the threshold model, increasing the threshold region,
i.e. increasing sl and decreasing sh, we observe that C becomes even larger than
D, and K decreases to zero. In addition, there is a strong tendency for D exem-
plars in Hampton’s data to become C elements in three models we consider.
Moreover there is not a slight preference for the transition D ↔ K and K ↔ D,
or for the transition C ↔ K and K ↔ C, except for the center plot, where
we observe a significantly larger amount of transitions going from D to K than
from K to D, and a significantly larger amount of transitions from C to K than
from K to C. We infer that LSA and the threshold model using LSA similarity
have a weak capacity to identify instances of the Δd type, and that they cannot
discern properly among instances of the classical and kd. However, they have a
non-neglectible capacity to identify classical data.

Fig. 2. Contrasting Hampton’s data-type to LSA and Threshold models.

We can draw some general conclusions from the above analysis, as follows:
(i) LSA and the threshold model feeded with LSA data does not agree to what
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the human mind does in evaluating concept combinations. It might be that the
specific of categories we considered were problematic, or that the corpus was
not particularly suited for this task [20]. However we conclude that the ‘bag of
words’ way of functioning of LSA, where terms and documents are not ‘entities
of meaning’ and ‘collapses of these entities of meaning’ is not a well suited model
to evaluate concept combinations.
(ii) LSA captures quite some of the non-classical aspects of underextension and
overextension. This can be technically understood from the point of view of our
Fock space modeling in Sect. 3, as follows.

(ii.a) Word vectors are summed, which implies that LSA works in sector 1 of
our Fock space model. Actually, semantic spaces are real rather than complex
linear spaces, but this is enough to introduce the possibility of interference. On
the other hand, since ‘only’ sector 1 of Fock space is taken into account in LSA,
the bag of words problem is present: no difference can be made between ‘John
hits Mary’ and ‘Mary hits John’. This ordering problem is avoided in our Fock
space approach by also taking into account sector 2, which is a tensor product.

(ii.b) The exclusion in LSA of the smallest eigenvalues after diagonalization
introduces ‘latent values’, i.e. weights become different from zero between terms
and documents. By means of this simplification technique, LSA manages to grasp
something that is closer to the ‘states of the entities of meaning’. But it does so in
a completely not understood way, as a by-product of a technique. This suggests
that it should be possible to find more sophisticated techniques that directly
and openly work toward the construction of ‘states of the entities of meaning’.
This is exactly what the meaning-based and quantum-inspired approach we put
forward in the present paper aims at.
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Abstract. We put forward a general classification for a structural
description of the entanglement present in compound entities experi-
mentally violating Bell’s inequalities, making use of a new entanglement
scheme that we developed in [1]. Our scheme, although different from
the traditional one, is completely compatible with standard quantum
theory, and enables quantum modeling in complex Hilbert space for dif-
ferent types of situations. Namely, situations where entangled states and
product measurements appear (‘customary quantum modeling’), and sit-
uations where states and measurements and evolutions between measure-
ments are entangled (‘nonlocal box modeling’, ‘nonlocal non-marginal
box modeling’). The role played by Tsirelson’s bound and marginal dis-
tribution law is emphasized. Specific quantum models are worked out in
detail in complex Hilbert space within this new entanglement scheme.

Keywords: Quantum modeling · Bell’s inequalities · Entanglement ·
Nonlocal boxes

1 Introduction

Entanglement is one of the most intriguing aspects of quantum physics. It is
the feature that most neatly marked the departure from ordinary intuition and
common sense, on which classical physics rest. The structural and conceptual
novelties brought in by quantum entanglement were originally put forward by
John Bell in 1964. He proved that, if one introduces ‘reasonable assumptions
for physical theories’, one derives an inequality for the expectation values of
coincidence measurements performed on compound entities (‘Bell’s inequality’)
which does not hold in quantum theory [2]. In quantum physics, entanglement
is responsible for the violation of this inequality, which entails that quantum
particles share statistical correlations that cannot be described in a single clas-
sical Kolmogorovian probability framework [3–5]. Another amazing observation
was that entanglement, together with a number of other quantum features, such
as ‘contextuality’, ‘emergence’, ‘interference’ and ‘superposition’, also appears
outside the microscopic domain of quantum theory. These findings constituted
the beginning of a systematic and promising search for quantum structures and
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the employment of quantum-based models in domains where classical structures
prove to be problematical [6–18].

As for our own research, many years ago we already identified situations
in macroscopic physics which violate Bell’s inequalities [19–23]. One of these
macroscopic examples, the ‘connected vessels of water’, exhibits even a maximal
possible violation of Bell’s inequalities, i.e. more than the typical entangled spin
example in quantum physics. More recently, we performed a cognitive experiment
showing that a specific combination of concepts, The Animal Acts, violates Bell’s
inequalities [24–26]. These two situations present deep structural and conceptual
analogies which we analyze systematically in Ref. [1,27].

In the present paper, we put forward a classification that enables us to repre-
sent experimental situations of compound entities which violate Bell’s inequal-
ities identifying the quantum-theoretic modeling involved in these violations.
We show that a complete quantum-mechanical representation can be worked
out, and we prove that quantum entanglement not only appears on the level of
the states, but also on the level of the measurements. Indeed, we show that the
empirical data we collected on The Animal Acts (Sect. 2), as well as the situation
of the ‘connected vessels of water’ [27], can be modeled only when both states
and measurements are entangled. The existence of a quantum model for the
‘connected vessels of water’ was not a priori expected and constitutes an origi-
nal result. Our modeling scheme, although completely compatible with standard
quantum theory, is more general than the traditional one, because within this
traditional scheme certain ways in which subentities can be part of compound
entities have been overlooked. It is when the marginal probability law is vio-
lated that this shortcoming of the traditional entanglement scheme comes on
the surface, and hence some of the entanglement situations that we consider in
the present paper would not be possible to be modeled within the traditional
entanglement scheme.

Our classification gives rise to the following different types of situations
and entities: Type 1: Situations where Bell’s inequalities are violated within
‘Tsirelson’s bound’ [28] and the marginal distribution law holds (‘customary
quantum modeling’), (Sect. 3); Type 2: Situations where Bell’s inequalities are
violated within Tsirelson’s bound and the marginal distribution law is violated
(‘nonlocal non-marginal box modeling 1’), (Sect. 3). We recall that situations of
type 2 seem to be present in ‘real quantum spin experiments’. A reference to
the ‘experimental anomaly’ that, in our opinion, indicates the presence of entan-
gled measurements, occurs already in Alain Aspects PhD thesis [29,30]. Our
framework accommodates these situations too; Type 3: Situations where Bell’s
inequalities are violated beyond Tsirelson’s bound and the marginal distribution
law is violated (‘nonlocal non-marginal box modeling 2’), (Sect. 3); Type 4: Sit-
uations where Bell’s inequalities are violated beyond Tsirelson’s bound and the
marginal distribution law holds (‘nonlocal box modeling’), (Sect. 4).

Additionally to introducing the framework, we analyze in this paper the
hypothesis that ‘satisfying the marginal distribution law’ is merely a conse-
quence of extra symmetry being present in situations that contain full-type
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entanglement, e.g., situations of types 2 and 3. Whenever enough symmetry
is present, such that all the entanglement of the situation can be pushed into
the state, allowing a model with product measurements, and product unitary
transformations, the marginal law is satisfied. We give two examples, a cognitive
‘gedanken experiment’ violating Bell’s inequalities, which is a ‘variation adding
more symmetry’ to an example that was introduced in Ref. [23], and in this varia-
tion the marginal law is satisfied. We introduce in a similar way extra symmetry
in our ‘vessels of water’ example, to come to a variation where the marginal
law is satisfied. Both examples are isomorphic and realizations of the so-called
‘nonlocal box’, which is studied as a purely theoretical construct – no physical
realizations were found prior to the ones we present here – in the foundations of
quantum theory [31].

Let us state clearly, to avoid misunderstandings, that we use the naming
‘entanglement’ referring explicitly to the structure within the theory of quantum
physics that a modeling of experimental data take, if (i) these data are repre-
sented, following carefully the rules of standard quantum theory, in a complex
Hilbert space, and hence states, measurements, and evolutions, are presented
respectively by vectors (or density operators), self-adjoint operators, and unitary
operators in this Hilbert space; (ii) a situation of coincidence joint measurement
on a compound entity is considered, and the subentities are identified follow-
ing the tensor product rule of ‘compound entity description in quantum theory’
(iii) within this tensor product description of the compound entity entangle-
ment is identified, as ‘not being product’, whether it is for states (non- product
vectors), measurements (non-product self-adjoint operators), or transformations
(non-product unitary transformations).

2 Technical Aspects of Modeling Quantum Entanglement

To develop our new scheme for the study of entanglement, we will first introduce
some basic notions and results, which we developed in [1] in detail. The more
general nature of our scheme, as compared to the standard one, is that we
carefully analyse the different ways in which two entities can be subentities of
a compound entity. Indeed, entanglement depends crucially on these different
possible way of ‘being a subentity’, and this has not been recognised sufficiently
in the standard scheme. Let us also remark explicitly that, although our scheme
is more general than the standard one, it is completely compatible with standard
quantum theory. Hence, the limitations and simplifications as compared to our
scheme of the standard one are only linked to an overlooking of the more subtle
ways in which subentities can place themselves within a compound entity in
situations described by quantum theory.

First we introduce the notions of ‘product state’, ‘product measurement’ and
‘product dynamical evolution’ as we will use it in our new entanglement scheme.
For this we consider the general form of an isomorphism I : C4 ∇ C

2 ◦ C
2, by

linking the elements of an ON basis {|x1∀, |x2∀, |x3∀, |x4∀} of C4 to the elements
{|c1∀◦ |d1∀, |c1∀◦ |d2∀, |c2∀◦ |d1∀, |c2∀◦ |d2∀} of the type of ON basis of C2 ◦C

2
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where {|c1∀, |c2∀} and {|d1∀, |d2∀} are ON bases of C2 each

I|x1∀ = |c1∀◦|d1∀, I|x2∀ = |c1∀◦|d2∀, I|x3∀ = |c2∀◦|d1∀, I|x4∀ = |c2∀◦|d2∀ (1)

Definition 1. A state p represented by the unit vector |p∀ ∈ C
4 is a ‘product

state’, with respect to I, if there exists two states pa and pb, represented by the
unit vectors |pa∀ ∈ C

2 and |pb∀ ∈ C
2, respectively, such that I|p∀ = |pa∀ ◦ |pb∀.

Otherwise, p is an ‘entangled state’ with respect to I.

Definition 2. A measurement e represented by a self-adjoint operator E in C
4

is a ‘product measurement’, with respect to I, if there exists measurements ea

and eb, represented by the self-adjoint operators Ea and Eb, respectively, in C
2

such that IEI−1 = Ea ◦ Eb. Otherwise, e is an ‘entangled measurement’ with
respect to I.

Definition 3. A dynamical evolution u represented by a unitary operator U in
C

4 is a ‘product evolution’, with respect to I, if there exists dynamical evolutions
ua and ub, represented by the unitary operators Ua and Ub, respectively, in C

2

such that IUI−1 = Ua ◦Ub. Otherwise, u is an ‘entangled evolution’ with respect
to I.

Remark that the notion of product states, measurements and evolutions, are
defined with respect to the considered isomorphism between I : C4 ∇ C

2 ◦ C
2,

which expresses already the new aspect of our entanglement scheme, making
entanglement depending on ‘how sub entities are part of the compound entity’.
The following theorems can then be proved.

Theorem 1. The spectral family of a self-adjoint operator E = I−1Ea ◦EbI rep-
resenting a product measurement with respect to I, has the form {I−1|a1∀∅a1| ◦
|b1∀∅b1|I, I−1|a1∀∅a1|◦ |b2∀∅b2|I, I−1|a2∀∅a2|◦ |b1∀∅b1|I, I−1|a2∀∅a2|◦ |b2∀∅b2|I},
where {|a1∀∅a1|, |a2∀∅a2|} is a spectral family of Ea and {|b1∀∅b1|, |b2∀∅b2|} is a
spectral family of Eb.

Theorem 1 shows that the spectral family of a product measurement is made up
of product orthogonal projection operators.

Theorem 2. Let p be a product state represented by the vector |p∀ = I−1|pa∀ ◦
|pb∀ with respect to the isomorphism I, and e a product measurement represented
by the self-adjoint operator E = IEa ◦ EbI

−1 with respect to the same I. Let
{|y1∀, |y2∀, |y3∀, |y4∀} be the ON basis of eigenvectors of E, and {|a1∀, |a2∀} and
{|b1∀, |b2∀} the ON bases of eigenvectors of Ea and Eb respectively. Then, we
have p(A1) + p(A2) = p(B1) + p(B2) = 1, and p(Y1) = p(A1)p(B1), p(Y2) =
p(A1)p(B2), p(Y3) = p(A2)p(B1) and p(Y4) = p(A2)p(B2), where {p(Y1), p(Y2),
p(Y3), p(Y4)} are the probabilities to collapse to states {|y1∀, |y2∀, |y3∀, |y4∀}, and
{p(A1), p(A2)} and {p(B1), p(B2)} are the probabilities to collapse to states {|a1∀,
|a2∀} and {|b1∀, |b2∀} respectively.

With this theorem we prove that if there exists an isomorphism I between C
4

and C
2 ◦C

2 such that state and measurement are both product with respect to



88 D. Aerts and S. Sozzo

this isomorphism, then the probabilities factorize. A consequence is that in case
the probabilities do not factorize the theorem is not satisfied. This means that
there does not exist an isomorphism between C

4 and C
2 ◦ C

2 such that both
state and measurement are product with respect to this isomorphism, and there
is genuine entanglement. The above theorem however does not yet prove where
this entanglement is located, and how it is structured. The next theorems tell
us more about this.

We consider now the coincidence measurements AB, AB∗, A∗B and A∗B∗

from a typical Bell-type experimental setting. For each measurement we con-
sider the ON bases of its eigenvectors in C

4. For the measurement AB this
gives rise to the unit vectors {|ab11∀, |ab12∀, |ab21∀, |ab22∀}, for AB∗ to the vectors
{|ab∗

11∀, |ab∗
12∀, |ab∗

21∀, |ab∗
22∀}, for A∗B to the unit vectors {|a∗b11∀, |a∗b12∀, |a∗b21∀,

|a∗b22∀} and for A∗B∗ to the vectors {|a∗b∗
11∀, |a∗b∗

12∀, |a∗b∗
21∀, |a∗b∗

22∀}. We intro-
duce the dynamical evolutions uAB′AB , . . . , represented by the unitary operators
UAB′AB ,. . . , connecting the different coincidence experiments for any combina-
tion of them, i.e. UAB′AB : C4 ∇ C

4, such that

|ab11∀ ↑∇ |ab∗
11∀, |ab12∀ ↑∇ |ab∗

12∀, |ab21∀ ↑∇ |ab∗
21∀, |ab22∀ ↑∇ |ab∗

22∀ (2)

Theorem 3. There exists a isomorphism between C
4 and C

2◦C
2 with respect to

which both measurements AB and AB∗ are product measurements iff there exists
an isomorphism between C

4 and C
2◦C

2 with respect to which the dynamical evo-
lution uAB′AB is a product evolution and one of the measurements is a product
measurement. In this case the marginal law is satisfied for the probabilities con-
nected to these measurements, i.e. p(A1, B1)+p(A1, B2) = p(A1, B

∗
1)+p(A1, B

∗
2).

The above theorem introduces an essential deviation of the customary entan-
glement scheme, which we had to consider as a consequence of our experimen-
tal data on the concept combination The Animal Acts. Indeed, considering our
description of the situation in Sect. 3, we have P (A1, B1) + p(A1, B2) = 0.679 ↔=
0.618 = p(A1, B

∗
1)+p(A1, B

∗
2), which shows that the marginal law is not satisfied

for our data. Hence, for the our experimental data on The Animal Acts there
does not exist an isomorphism between C

4 and C
2 ◦C

2, such that with respect
to this isomorphism all measurements that we performed in our experiment can
be considered to be product measurements. It right away shows that we will not
able to model our data within the customary entanglement scheme. We could
have expected this, since indeed, in this customary scheme all considered mea-
surements are product measurements, and entanglement only appears in the
state of the compound entity. We refer to Ref. [1] for proof of Theorems. 1–3.

Let us summarise the structural situation. Entanglement is a property
attributed to states, measurements, or unitary transformations, when looked at
the tensor product identification (isomorphism) with the Hilbert space describ-
ing the compound entity. The ‘physics’ of the compound entity is expressed in
this one Hilbert space describing directly the compound entity, which makes
entanglement itself dependent on ‘the way in which subentities of the compound
entity are attempted to be identified’. For one state and one compound measure-
ments, the identification between tensor product and compound entity Hilbert
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space can always be chosen such that the measurement appears as a product,
and all the entanglement is pushed in the state. Theorem 3 shows that, when-
ever the marginal distribution law is violated, this can no longer be achieved,
and entanglement is also present in measurements and the dynamical transfor-
mations connecting these measurements. In [1] we show that in case different iso-
morphisms of identification are considered, an entanglement scheme with again
product measurements and product dynamical transformations is possible. But
the price to pay is that the entangled state cannot be presented any longer in
a unique way within the tensor product space, i.e. a different representation is
needed for each coincidence experiment context. All this of course related to
the marginal law for the probabilities connected to these different coincidence
measurements not being satisfied. A direct consequence of the above is that, if a
set of experimental data violate both Bell’s inequalities and the marginal distri-
bution law, it is impossible to work out a quantum-mechanical representation in
a fixed Hilbert space C

2 ◦C
2 which satisfies the data and where only the initial

state is entangled while all measurements are products. We will make this more
explicit in the next sections.

3 Examples of Systems Entailing Entanglement

The first example we shortly present is that of a macroscopic entity violating
Bell’s inequalities in exactly the same way as a pair of spin-1/2 quantum particles
in the singlet spin state when faraway spin measurements are performed [22]. We
only sketch this example here to make our zoo collection as complete as possible,
and refer to [22,23] for a detailed presentation.

This mechanical entity simulates the singlet spin state of a pair of spin-1/2
quantum particles by means of two point particles P1 and P2 initially located
in the centers C1 and C2 of two separate unit spheres B1 and B2, respectively.
The centers C1 and C2 remain connected by a rigid but extendable rod, which
introduces correlations. We denote this state of the overall entity by ps. A mea-
surement A(a) is performed on P1 which consists in installing a piece of elastic
of 2 units of length between the diametrically opposite points −a and +a of B1.
At one point, the elastic breaks somewhere and P1 is drawn toward either +a
(outcome λA1 = +1) or −a (outcome λA2 = −1). Due to the connection, P2 is
drawn toward the opposite side of B2 as compared to P1. Now, an analogous
measurement B(b) is performed on P2 which consists in installing a piece of
elastic of 2 units of length between the two diametrically opposite points −b and
+b of B2. The particle P2 falls onto the elastic following the orthogonal path
and sticks there. Next the elastic breaks somewhere and drags P2 toward either
+b (outcome λB1 = +1) or −b (outcome λB2 = −1). To calculate the transition
probabilities, we assume there is a uniform probability of breaking on the elastics.
The single and coincidence probabilities coincide with the standard probabilities
for spin-1/2 quantum particles in the singlet spin state when spin measurements
are performed along directions a and b. In particular, the probabilities for the
coincidence counts λA1B1 = λA2B2 = +1 and λA1B2 = λA2B1 = −1 of the joint
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measurement AB(a, b) in the state ps are given by

p(ps, AB(a, b), λA1B1) = p(ps, AB(a, b), λA2B2) =
1
2

sin2 γ

2
(3)

p(ps, AB(a, b), λA1B2) = p(ps, AB(a, b), λA2B1) =
1
2

cos2
γ

2
(4)

respectively, where γ is the angle between a and b, in exact accordance with
the quantum-mechanical predictions. Furthermore, this model leads to the same
violation of Bell’s inequalities as standard quantum theory. Hence, the ‘connected
spheres model’ is structurally isomorphic to a standard quantum entity. This
means that it can be represented in the Hilbert space C

2 ◦ C
2 in such a way

that its initial state is the singlet spin, i.e. a maximally entangled state, and the
measurements are products. Furthermore, the marginal distribution law holds
and Bell’s inequalities are violated within the Tsirelson’s bound 2

←
2, hence

the connected spheres model is an example of a ‘customary identified standard
quantum modeling’ in our theoretical framework.

The presence of entanglement in concept combination has recently also been
identified in a cognitive test [24–26] and subsequently improved by elaborating
a quantum Hilbert space modeling of it [1,27]. We analyze it in the light of our
new entanglement scheme exposed in Sect. 2. For a detailed description of the
conceptual entity, and the measurements considered, we refer to [27], Sec. 2.1, or
[1]. We consider the typical Bell inequality situation of four coincidence measure-
ments AB, AB∗, A∗B and A∗B∗, performed on the sentence The Animal Acts
as a conceptual combination of the concepts Animal and Acts. Measurements
consists of asking participants in the experiment to answer the question whether
a given exemplar ‘is a good example’ of the considered concept or conceptual
combination.

We had 81 subjects participating in our experiment. If we denote by p(A1, B1),
p(A1, B2), p(A2, B1), p(A2, B2) the probabilities for the different Bell-type situ-
ation choices, we find p(A1, B1) = 0.049, p(A1, B2) = 0.630, p(A2, B1) = 0.259,
p(A2, B2) = 0.062, p(A1, B

∗
1) = 0.593, p(A1, B

∗
2) = 0.025, p(A2, B

∗
1) = 0.296,

p(A2, B
∗
2) = 0.086, p(A∗

1, B1) = 0.778, p(A∗
1, B2) = 0.086, p(A∗

2, B1) = 0.086,
p(A∗

2, B2) = 0.049, p(A∗
1, B

∗
1) = 0.148, p(A∗

1, B
∗
2) = 0.086, p(A∗

2, B
∗
1) = 0.099,

p(A∗
2, B

∗
2) = 0.667, and the expectation values are E(A,B) = p(A1, B1) −

p(A1, B2)−p(A2, B1)+p(A2, B2) = −0.7778, E(A,B∗) = p(A1, B
∗
1)−p(A1, B

∗
2)−

p(A2, B
∗
1)+ p(A2, B

∗
2) = 0.3580, E(A∗, B) = p(A∗

1, B1)− p(A∗
1, B2)− p(A∗

2, B1)+
p(A∗

2, B2) = 0.6543, E(A∗, B∗) = p(A∗
1, B

∗
1)−p(A∗

1, B
∗
2)−p(A∗

2, B
∗
1)+p(A∗

2, B
∗
2) =

0.6296. Inserting them into the Clauser-Horne-Shimony-Holt (CHSH) version of
Bell’s inequality [32]

−2 → E(A∗, B∗) + E(A∗, B) + E(A,B∗) − E(A,B) → 2. (5)

we find E(A∗, B∗) + E(A∗, B) + E(A,B∗) − E(A,B) = 2.4197. This violation
proves the presence of entanglement in the conceptual situation considered.

The probabilities corresponding to the coincidence measurements cannot
be factorized, which means that a result stronger than the one in Theorem 2
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holds. For example, for the measurement AB, there do not exist real numbers
a1, a2, b1, b2 ∈ [0, 1], a1 +a2 = 1, b1 + b2 = 1, such that a1b1 = 0.05, a2b1 = 0.63,
a1b2 = 0.26 and a2b2 = 0.06. Indeed, supposing that such numbers do exist, from
a2b1 = 0.63 follows that (1 − a1)b1 = 0.63, and hence a1b1 = 1 − 0.63 = 0.37.
This is in contradiction with a1b1 = 0.05. It is also easy to verify that mar-
ginal law is not satisfied, for example p(A∗

1, B1) + p(A∗
1, B2) = 0.864 ↔= 0.234 =

p(A∗
1, B

∗
1) + p(A∗

1, B
∗
2). Following Theorem 3 a quantum representation where

only the state is entangled, while all measurements are products, does not exist.
But a representation which entails entangled measurements can be elaborated
[1,27]. In the quantum modeling we worked out, the state of The Animal Acts
is represented by a non-maximally entangled state, while all coincidence mea-
surements are entangled. Since the violation of the CHSH inequality we found
satisfies Tsirelson’s bound, this quantum modeling for the concept combination
The Animal Acts is an example of a ‘nonlocal non-marginal box modeling 1’.

Next we consider the ‘vessels of water’ example [19–21]. Two vessels VA

and VB are interconnected by a tube T , vessels and tube containing 20 l of
transparent water. The measurements A and B consist in siphons SA and SB

pouring out water from vessels VA and VB , respectively, and collecting the water
in reference vessels RA and RB, where the volume of collected water is measured.
If more than 10 l are collected for A or B, we put λA1 = +1 or λB1 = +1,
respectively, and if fewer than 10 l are collected for A or B, we put λA2 = −1
or λB2 = −1, respectively. Measurements A∗ and B∗ consist in taking a small
spoonful of water out of the left vessel and the right vessel, respectively, and
verifying whether the water is transparent. We have λA′

1
= +1 or λA′

2
= −1,

depending on whether the water in the left vessel turns out to be transparent
or not, and λB′

1
= +1 or λB′

2
= −1, depending on whether the water in the

right vessel turns out to be transparent or not. We put λA1B1 = λA2B2 = +1 if
λA1 = +1 and λB1 = +1 or λA2 = −1 and λB2 = −1, and λA1B2 = λA2B1 = −1
if λA1 = +1 and λB2 = −1 or λA2 = −1 and λB1 = +1, if the coincidence
measurement AB is performed. We proceed analogously for the outcomes of the
measurements AB∗, A∗B and A∗B∗. We can then define the expectation values
E(A,B), E(A,B∗), E(A∗, B) and E(A∗, B∗) associated with these coincidence
measurements. Since each vessel contains 10 l of transparent water, we find that
E(A,B) = −1, E(A∗, B) = +1, E(A,B∗) = +1 and E(A∗, B∗) = +1, which gives
E(A∗, B∗)+E(A∗, B)+E(A,B∗)−E(A,B) = +4. This is the maximal violation
of the CHSH inequality and it obviously exceeds Tsirelson’s bound. We further
have 0.5 = p(λA1B1)+p(λA1B2) ↔= p(λA1B′

1
)+p(λA1B′

2
) = 1, which shows that the

marginal distribution law is violated. In [27] we constructed a quantum model in
complex Hilbert space for the vessels of water situation, where the state p with
transparent water and the state q with non-transparent water are entangled, and
the measurement AB, since it has product states in its spectral decomposition,
is a product measurement (Theorem 1). Compatible with Theorem 3 we can see
that AB∗, A∗B and A∗B∗ are entangled measurements. Summarizing, we can say
that the ‘vessels of water’ situation is an example of a ‘nonlocal non-marginal
box modeling 2’.
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4 Nonlocal Boxes

We conclude this paper by giving two examples, the one physical and the other
cognitive, which maximally violate Bell’s inequalities, i.e. with value 4, but sat-
isfy the marginal distribution law. These examples are also inspired by the
macroscopic non-local box example worked out already in 2005 by Sven Aerts,
using a breakable elastic and well defined experiments on this elastic [33]. In
physics, a system that behaves in this way is called a ‘nonlocal box’ [31].

For the first example, we again consider the vessels of water and two mea-
surements for each side A and B. The first consists in using the siphon and
checking the water. If there are more than 10 l and the water is transparent
(λA1B1) or if there are fewer than 10 l and the water is not transparent (λA2B2),
the outcome of the first measurement is +1. In case there are fewer than 10 l and
the water is transparent λA2B1 , or if there are more than 10 l and the water is
not transparent λA1B2 , the outcome is −1. The second measurement consists in
taking out some water with a little spoon to see if it is transparent or not; if it
is transparent, the outcome is λA1B′

1
= λA2B′

2
= +1, and if it is not transparent,

the outcome is λA2B′
1

= λA1B′
2

= −1. The water is prepared in a mixed state
m of the states p (transparent water) and q (not transparent water) with equal
weights. Thus, m is represented by the density operator ρ = 0.5|p∀∅p|+0.5|q∀∅q|,
where |p∀ = |0,

←
0.5eiα, 0.5eiβ , 0∀ and |q∀ = |0,

←
0.5eiα,−0.5eiβ , 0∀ [27].

The coincidence measurement AB is represented by the ON set |rA1B1∀ =
|1, 0, 0, 0∀, |rA1B2∀ = |0, 1, 0, 0∀, |rA2B1∀ = |0, 0, 1, 0∀, |rA2B2∀ = |0, 0, 0, 1∀, which
gives rise to a self-adjoint operator

EAB =

⎛

⎜

⎜

⎝

λA1B1 0 0 0
0 λA1B2 0 0
0 0 λA2B1 0
0 0 0 λA2B2

⎞

⎟

⎟

⎠

(6)

Applying Lüders’ rule, we calculate the density operator representing the state
after AB. This gives

ρAB =
2∑

i,j=1

|rAiBj
∀∅rAiBj

|ρ|rAiBj
∀∅rAiBj

| = ρ (7)

as one can easily verify. This means that the nonselective measurement AB leaves
the state m unchanged or, equivalently, the marginal distribution law holds.

Measurement AB∗ is represented by the ON set |rA1B′
1
∀=|0,

←
0.5eiα,

←
0.5eiβ ,

0∀, |rA1B′
2
∀ = |1, 0, 0, 0∀, |rA2B′

1
∀ = |0, 0, 0, 1∀, |rA2B′

2
∀ = |0,

←
0.5eiα,−←

0.5eiβ ,
0∀, which gives rise to a self-adjoint operator

EAB′ =

⎛

⎜

⎜

⎜

⎝

λA1B′
2

0 0 0

0 0.5(λA1B′
1

+ λA2B′
2
) 0.5ei(α−β)(λA1B′

1
− λA2B′

2
) 0

0 0.5e−i(α−β)(λA1B′
1

− λA2B′
2
) 0.5(λA1B′

1
+ λA2B′

2
) 0

0 0 0 λA2B′
1

⎞

⎟

⎟

⎟

⎠

(8)
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Applying Lüders’ rule, we calculate the density operator representing the state
oafter AB∗, which gives

ρAB′ =
2∑

i,j=1

|rAiB′
j
∀∅rAiB′

j
|ρ|rAiB′

j
∀∅rAiB′

j
| = ρ (9)

Also in this case, the nonselective measurement AB∗ leaves the state m
unchanged. The measurements A∗B and A∗B∗ are analogous to AB∗, hence the
marginal distribution law is always satisfied.

We now calculate the expectation values corresponding to the four measure-
ments above in the mixed state m and insert them into the CHSH inequality.
This gives

EAB =

⎛

⎜

⎜

⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞

⎟

⎟

⎠

EAB′ = EA′B = EA′B′ =

⎛

⎜

⎜

⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟

⎟

⎠

(10)

B = EA′B′ + EA′B + EAB′ − EAB =

⎛

⎜

⎜

⎝

−4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 −4

⎞

⎟

⎟

⎠

(11)

Hence, the CHSH inequality trρB = 4, which shows that Bell inequalities are
maximally violated in the mixed state m. This construction of a Hilbert space
modeling for the ‘connected vessels of water’ is new and was not expected when
the original example was conceived.

Next we look at the cognitive example. We consider the concept Cat and
two concrete exemplars of it, called Glimmer and Inkling, the names of two
brother cats that lived in our research center [23]. The concept Cat is abstractly
described by the state p. The experiments we consider are realizing physical
contexts that influence the collapse of the concept Cat to one of its exemplars,
or states, Glimmer or Inkling, inside the mind of a person being confronted with
the physical contexts. It is a ‘gedanken experiment’, in the sense that we put
forward plausible outcomes for it, taking into account the nature of the physical
contexts, and Liane, the owner of both cats, playing the role of the person. We
also suppose that Liane sometimes puts a collar with a little bell around the
necks of both cats, the probability of this happening being equal to 1/2. We also
suppose that if she does, she always puts them around the necks of both cats.

The measurement A consists in ‘Glimmer appearing in front of Liane as a
physical context’. We consider outcome λA1 to occur if Liane thinks of Glimmer
and there is a bell, or if she thinks of Inkling and there is no bell, while outcome
λA2 occurs if Liane thinks of Inkling and there is a bell, or if she thinks of
Glimmer and there is no bell. The measurement B consists in ‘Inkling appearing
in front of Liane as a physical context’. We consider outcome λB1 to occur if
Liane thinks of Inkling and there is a bell, or if she thinks of Glimmer and there
is no bell, while outcome λB2 occurs if Liane thinks of Glimmer and there is
a bell, or if she thinks of Inkling and there is no bell. Experiment A∗ consists
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in ‘Inkling appearing in front of Liane as a physical context’, and outcome λA′
1

occurs if Inkling wears a bell, and outcome λA′
2
, if Inkling does not. Experiment

B∗ consists in ‘Glimmer appearing in front of Liane as a physical context’, and
outcome λB′

1
occurs if Glimmer wears a bell, outcome λB′

1
, if Glimmer does not.

The measurement AB consists in both cats showing up as physical context.
Because of the symmetry of the situation, it is plausible to suppose probability
1/2 that Liane thinks of Glimmer and probability 1/2 that she thinks of Inkling,
however, they are mutually exclusive. Also, since both cats either wear bells or do
not wear bells, AB produces strict anti-correlation, probability 1/2 for outcome
λA1B2 and probability 1/2 for outcome λA2B1 . Hence p(λA1B2) = p(λA2B1) = 1/2
and p(λA1B1) = p(λA2B2) = 0, which gives E(A,B) = −1. The measurement
AB∗ consists in Glimmer showing up as a physical context. This gives rise to
a perfect correlation, outcome λA1B′

1
or outcome λA2B′

2
, depending on whether

Glimmer wears a bell or not, hence both with probability 1/2. As a conse-
quence, we have p(λA1B′

1
) = p(λA2B′

2
) = 1/2 and p(λA1B′

2
) = p(λA2B′

1
) = 0, and

E(A,B∗) = +1. The measurement A∗B consists in Inkling showing up as a physi-
cal context, again giving rise to a perfect correlation, outcome λA′

1B1 or outcome
λA′

2B2 , depending on whether Inkling wears a bell or not, hence both with proba-
bility 1/2. This gives p(λA′

1B1) = p(λA′
2B2) = 1/2 and p(λA′

1B2) = p(λA′
2B1) = 0

and E(A∗, B) = +1. The measurement A∗B∗ consists in both cats showing up as
physical context, giving rise to a perfect correlation, outcome λA′

1B′
1

or outcome
λA′

2B′
2
, depending on whether both wear bells or not, hence both with probabil-

ity 1/2. This gives p(λA′
1B′

1
) = p(λA′

2B′
2
) = 1/2 and p(λA′

1B′
2
) = p(λA′

2B′
1
) = 0

and E(A∗, B∗) = +1.
We find E(A∗, B∗)+E(A∗, B)+E(A,B∗)−E(A,B) = 4 in the CHSH inequal-

itiy. The marginal distribution law is satisfied here, because, e.g., p(λA1B1) +
p(λA1B2) = p(λA1B′

1
) + p(λA1B′

2
) = 1/2. It is easy to check that the marginal

distribution law globally holds in this case.
The two examples above are structurally isomorphic, i.e. one can provide

the same quantum Hilbert space model for both of them. Moreover, they are
realizations of what quantum foundations physicists call a ‘nonlocal box’, that
is, systems obeying the marginal distribution law but violating Bell’s inequalities
maximally [31]. Following our classification, we call this modeling a ‘nonlocal box
modeling’. The above examples show that it is possible to realise nonlocal boxes
in nature and elaborate a Hilbert space modeling for them, contrary to what is
usually believed in quantum foundation circles.
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Abstract. We have recently presented a general scheme enabling quan-
tum modeling of different types of situations that violate Bell’s inequal-
ities [1]. In this paper, we specify this scheme for a combination of two
concepts. We work out a quantum Hilbert space model where ‘entan-
gled measurements’ occur in addition to the expected ‘entanglement
between the component concepts’, or ‘state entanglement’. We extend
this result to a macroscopic physical entity, the ‘connected vessels of
water’, which maximally violates Bell’s inequalities. We enlighten the
structural and conceptual analogies between the cognitive and physi-
cal situations which are both examples of a nonlocal non-marginal box
modeling in our classification.

Keywords: Quantum cognition · Vessels of water · Bell’s inequalities ·
Entanglement

1 Introduction

The presence of entanglement in microscopic quantum particles is typically
revealed by a violation of Bell-type inequalities [2,3]. Such a violation also implies
that the corresponding coincidence measurements contain correlations that can-
not be modeled in a classical Kolmogorovian probability structure [4–6], which
led to the widespread belief that such correlations only appear in the micro-
world. Many years ago, we already showed that Bell’s inequalities can be violated
by macroscopic physical entities, e.g., two connected vessels of water [7–11]. Little
attention was paid to this result at that time, however, because most quantum
foundations physicists were convinced that it was impossible to violate Bell’s
inequalities in situations pertaining to domains different from the micro-world.
Now that quantum interaction research is flourishing [12–26], it is valuable to
reconsider some of these examples, also because we have recently found that it is
possible to build Hilbert space models for them, something we did not look into
at the time. The fact that it is possible to explicitly construct complex Hilbert
space models for these situations became clear to us when we were struggling
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to quantum-model the experimental correlation experiments we performed on
a conceptual combination The Animal Acts. The Hilbert space modeling of our
cognitive correlation data produced a range of new insights. After we had veri-
fied that the given concept combination violated Bell’s inequalities [25–27], the
elaboration of a Hilbert space representation showed the presence of ‘conceptual
entanglement’ and proved that this entanglement is only partly due to the com-
ponent concepts, or ‘state entanglement’, because it is also caused by ‘entangled
measurements’ and ‘entangled dynamical evolutions between measurements’ [1].
This discovery of the presence of entanglement on the level of measurements and
evolutions shed unexpectedly new light on traditional in-depth studies of aspects
of entanglement, such as the possible violation of the marginal distribution law.

We have since developed a general quantum modeling scheme for the struc-
tural description of the entanglement present in different types of situations
violating Bell’s inequalities [28]. In this perspective, situations are possible in
which only states are entangled and measurements are products (‘customary
entanglement’), but also situations in which entanglement appears on the level
of the measurements, in the form of the presence of entangled measurements
and the presence of entangled evolutions (‘nonlocal box situation’, ‘nonlocal
non-marginal box situation’). In the present paper, after briefly resuming our
empirical results on The Animal Acts (Sect. 2.1), we provide a synthetized ver-
sion of our quantum-theoretic modeling for this conceptual entity (Sect. 2.2). We
then build a quantum model in complex Hilbert space for the entity ‘vessels of
water’ (Sects. 3 and 4). This modeling in Hilbert space was not expected when
this example was originally conceived, and hence constitutes a new result. We
also study the conceptual and structural connections between these two situa-
tions in the light of our classification in Ref. [28]. The two cases we consider here
are paradigmatic of ‘nonlocal non-marginal box situations’, that is, experimental
situations in which (i) joint probabilities do not factorize, (ii) Bell’s inequalities
are violated, and (iii) the marginal distribution law does not hold. Whenever
these conditions are simultaneously satisfied, a form of entanglement appears
which is stronger than the ‘customarily identified quantum entanglement in the
states of microscopic entities’. In these cases, it is not possible to work out
a quantum-mechanical representation in a fixed C

2 ∇ C
2 space which satisfies

empirical data and where only the initial state is entangled while the measure-
ments are products. It follows that entanglement is a more complex property
than usually thought, a situation we investigate in depth in [1]. Shortly, if a sin-
gle measurement is at play, one can distribute the entanglement between state
and measurement, but if more measurements are considered, the marginal dis-
tribution law imposes drastic limits on the ways to model the presence of the
entanglement [28]. This is explicitly shown by constructing an alternative C

4

modeling for the original vessels of water example (Sect. 5).
Let us remark that we use the naming ‘entanglement’ referring explicitly to

the structure within the theory of quantum physics that a modeling of experi-
mental data takes, if (i) these data are represented, following carefully the rules
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of standard quantum theory, in a complex Hilbert space, and hence states, mea-
surements, and evolutions, are presented respectively by vectors (or density oper-
ators), self-adjoint operators, and unitary operators in this Hilbert space; (ii) a
situation of coincidence joint measurement on a compound entity is considered,
and the subentities are identified following the tensor product rule of ‘compound
entity description in quantum theory’ (iii) within this tensor product descrip-
tion of the compound entity entanglement is identified, as ‘not being product’,
whether it is for states (non-product vectors), measurements (non-product self-
adjoint operators), or evolutions (non-product unitary transformations).

Let us also remark that the research we present in this paper frames within
the general emergence of ‘quantum interaction research’. Indeed, there is increas-
ing evidence that quantum structures are systematically present in domains
other than the micro-world described by quantum physics. Cognitive science,
economics, biology, computer science - they all entail situations that can be mod-
eled more faithfully by elements of quantum theory than by approaches rooted in
classical theories such as classical probability [12–26]. Our inspiration to identify
quantum structures in domains different from the micro-world originally arose
when we were investigating the structures of classical and quantum probabil-
ity, more specifically, when we were analyzing the question of whether classical
probability can reproduce the predictions of quantum theory [4,29]. Understand-
ing the structural difference between classical and quantum probability led us
firstly to identify situations in the macroscopic world entailing aspects that are
usually attributed only to microscopic quantum entities, such as ‘contextuality’,
‘emergence’, ‘entanglement, ‘interference’ and ‘superposition’ [7–11]. Later, we
extended our search to the realm of human cognition, the structure of human
decision processes and the way in which the human mind handles concepts, their
dynamics and combinations [12–14,17,27,30].

2 The Animal Acts and Its Quantum Representation

We have recently performed a cognitive test on the combination of concepts The
Animal Acts [25–27] which violated Bell’s inequalities. We have also worked out
a quantum representation which fits the collected data and reveals entangle-
ment between the component concepts Animal and Acts. And, more, it shows
a ‘stronger form of entanglement’ involving not only entangled states but also
entangled measurements and entangled evolutions [1]. In the following, we present
these results in the light of the classification elaborated in Ref. [28].

2.1 Description of the Cognitive Test

We consider the sentence The Animal Acts as a conceptual combination of the
concepts Animal and Acts. Measurements consists of asking participants in the
experiment to answer the question whether a given exemplar ‘is a good exam-
ple’ of the considered concept or conceptual combination. The measurement A,
respectively A∗, considers the exemplars Horse and Bear, respectively Tiger and
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Cat, of the concept Animal, the measurement B, respectively B∗, considers the
exemplars Growls and Whinnies, respectively Snorts and Meows, of the concept
Acts. For the coincidence experiments, for AB, participants choose among the
four possibilities (1) The Horse Growls, (2) The Bear Whinnies – and if one of
these is chosen we put λA1B1 = λA2B2 = +1 – and (3) The Horse Whinnies,
(4) The Bear Growls – and if one of these is chosen we put λA1B2 = λA2B1 = −1.
For the measurement AB∗, they choose among (1) The Horse Snorts, (2) The
Bear Meows – and in case one of these is chosen we put λA1B∗

1
= λA2B∗

2
= +1

– and (3) The Horse Meows, (4) The Bear Snorts – and in case one of these is
chosen we put λA1B∗

2
= λA2B∗

1
= −1. For the measurement A∗B, they choose

among (1) The Tiger Growls, (2) The Cat Whinnies – and in case one of these
is chosen we put λA∗

1B1 = λA∗
2B2 = +1 – and (3) The Tiger Whinnies, (4) The

Cat Growls – and in case one of these is chosen we put λA∗
1B2 = λA∗

2B1 = −1.
For the measurement A∗B∗ participants choose among (1) The Tiger Snorts,
(2) The Cat Meows – and in case one of these is chosen we put λA∗

1B∗
1

= λA∗
2B∗

2
=

+1 – and (3) The Tiger Meows, (4) The Cat Snorts – and in case one of these
is chosen we put λA∗

1B∗
2

= λA∗
2B∗

1
= −1.

We now evaluate the expectation values E(A∗, B∗), E(A∗, B), E(A,B∗) and
E(A,B) associated with the coincidence experiments A∗B∗, A∗B, AB∗ and AB,
respectively, and substitute these values into the Clauser-Horne-Shimony-Holt
(CHSH) version of Bell’s inequality [3]

−2 ◦ E(A∗, B∗) + E(A∗, B) + E(A,B∗) − E(A,B) ◦ 2 (1)

One typically says that, if Eq. (1) is violated, a classical Kolmogorovian proba-
bilistic description of the data is not possible [4–6]. In analogy with the quantum
violation of the CHSH inequality, we call the phenomenon ‘cognitive entangle-
ment’ between the given concepts, and remark that it is the necessary appearance
of non-product structures in the explicit quantum-theoretic model in Sect. 2.2
that in our approach justifies this naming.

We actually performed a test involving 81 subjects who were presented with
a form to be filled out in which they were asked to choose among the above
alternatives in experiments AB, A∗B, AB∗ and A∗B∗. If we denote by p(A1, B1),
p(A1, B2), p(A2, B1), p(A2, B2), the probability that The Horse Growls, The
Bear Whinnies, The Horse Whinnies, The Bear Growls, respectively, is cho-
sen in the coincidence experiment AB, and so on in the other experiments,
these probabilities are p(A1, B1) = 0.049, p(A1, B2) = 0.630, p(A2, B1) = 0.259,
p(A2, B2) = 0.062, in experiment AB, p(A1, B

∗
1) = 0.593, p(A1, B

∗
2) = 0.025,

p(A2, B
∗
1) = 0.296, p(A2, B

∗
2) = 0.086, in experiment AB∗, p(A∗

1, B1) = 0.778,
p(A∗

1, B2) = 0.086, p(A∗
2, B1) = 0.086, p(A∗

2, B2) = 0.049, in experiment A∗B,
p(A∗

1, B
∗
1) = 0.148, p(A∗

1, B
∗
2) = 0.086, p(A∗

2, B
∗
1) = 0.099, p(A∗

2, B
∗
2) = 0.667, in

experiment A∗B∗. Therefore, the expectation values are E(A,B) = p(A1, B1) −
p(A1, B2)−p(A2, B1)+p(A2, B2) = −0.7778, E(A,B∗) = p(A1, B

∗
1)−p(A1, B

∗
2)−

p(A2, B
∗
1)+ p(A2, B

∗
2) = 0.3580, E(A∗, B) = p(A∗

1, B1)− p(A∗
1, B2)− p(A∗

2, B1)+
p(A∗

2, B2) = 0.6543, E(A∗, B∗) = p(A∗
1, B

∗
1)−p(A∗

1, B
∗
2)−p(A∗

2, B
∗
1)+p(A∗

2, B
∗
2) =

0.6296.
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Hence, Eq. (1) gives E(A∗, B∗) + E(A∗, B) + E(A,B∗) − E(A,B) = 2.4197,
which is significantly greater than 2. This violation is close to Tsirelson’s bound
[31], the maximal quantum violation of 2

∀
2, in case only product measurements

are considered, so that it does reveal the presence of genuine entanglement in the
situation considered with The Animal Acts, as we will see in the next section.

2.2 A Quantum Representation in Complex Hilbert Space

Let us now construct a quantum representation in complex Hilbert space for
the collected data by starting from an operational description of the conceptual
entity The Animal Acts. The entity The Animal Acts is abstractly described
by an initial state p. Measurement AB has four outcomes λA1B1 , λA1B2 , λA2B1

and λA2B2 , and four final states pA1B1 , pA1B2 , pA2B1 and pA2B2 . Measurement
AB∗ has four outcomes λA1B∗

1
, λA1B∗

2
, λA2B∗

1
and λA2B∗

2
, and four final states

pA1B∗
1
, pA1B∗

2
, pA2B∗

1
and pA2B∗

2
. Measurement A∗B has four outcomes λA∗

1B1 ,
λA∗

2B1 , λA∗
1B2 and λA∗

2B2 , and four final states pA∗
1B1 , pA∗

1B2 , pA∗
2B1 and pA∗

2B2 .
Measurement A∗B∗ has four outcomes λA∗

1B∗
1
, λA∗

2B∗
1
, λA∗

1B∗
2

and λA∗
2B∗

2
, and

four final states pA∗
1B∗

1
, pA∗

1B∗
2
, pA∗

2B∗
1

and pA∗
2B∗

2
. Then, we consider the Hilbert

space C
4 as the state space of The Animal Acts and represent the state p by

the unit vector |p∈ ∅ C
4. We assume that {|pA1B1∈, |pA1B2∈, |pA2B1∈, |pA2B2∈},

{|pA1B∗
1
∈, |pA1B∗

2
∈, |pA2B∗

1
∈, |pA2B∗

2
∈}, {|pA∗

1B1∈, |pA∗
1B2∈, |pA∗

2B1∈, |pA∗
2B2∈},

{|pA∗
1B∗

1
∈, |pA∗

1B∗
2
∈, |pA∗

2B∗
1
∈, |pA∗

2B∗
2
∈} are orthonormal (ON) bases of C

4. There-
fore, |↑pA1B1 |ψ∈|2 = p(A1B1), |↑pA1B2 |ψ∈|2 = p(A1B2), |↑pA2B1 |ψ∈|2 = p(A2B1),
|↑pA2B2 |ψ∈|2 = p(A2B2), in the measurement AB. We proceed analogously for
the other probabilities. Hence, the self-adjoint operators

EAB = λA1B1 |pA1B1∈↑pA1B2 | + λA1B2 |pA1B2∈↑pA1B1 |
+λA2B1 |pA2B1∈↑pA2B1 | + λA2B2 |pA2B2∈↑pA2B2 |

EAB∗ = λA1B∗
1
|pA1B∗

1
∈↑pA1B∗

2
| + λA1B∗

2
|pA1B∗

2
∈↑pA1B∗

1
|

+λA2B∗
1
|pA2B∗

1
∈↑pA2B∗

1
| + λA2B∗

2
|pA2B∗

2
∈↑pA2B∗

2
|

EA∗B = λA∗
1B1 |pA∗

1B1∈↑pA∗
1B2 | + λA∗

1B2 |pA∗
1B2∈↑pA∗

1B1 |
+λA∗

2B1 |pA∗
2B1∈↑pA∗

2B1 | + λA∗
2B2 |pA∗

2B2∈↑pA∗
2B2 |

EA∗B∗ = λA∗
1B∗

1
|pA∗

1B∗
1
∈↑pA∗

1B∗
2
| + λA∗

1B∗
2
|pA∗

1B∗
2
∈↑pA∗

1B∗
1
|

+λA∗
2B∗

1
|pA∗

2B∗
1
∈↑pA∗

2B∗
1
| + λA∗

2B∗
2
|pA∗

2B∗
2
∈↑pA∗

2B∗
2
| (2)

represent the measurements AB, AB∗, A∗B and A∗B∗ in C
4, respectively.

Let now the state p of The Animal Acts be the entangled state represented
by the unit vector |p∈ = |0.23ei13.93⊥

, 0.62ei16.72⊥
, 0.75ei9.69⊥

, 0ei194.15⊥∈ in the
canonical basis of C

4. This choice is not arbitrary, but deliberately ‘as close
as possible to a situation of only product measurements’, as we explain in
[1,28]. Moreover, we choose the outcomes λA1B1 , . . . , λA∗

2B∗
2

to be ±1, as in
Sect. 2.1. In this case, we have proved in Ref. [1] that



102 D. Aerts and S. Sozzo

EAB =

⎛

⎜

⎜

⎝

0.952 −0.207 − 0.030i 0.224 + 0.007i 0.003 − 0.006i
−0.207 + 0.030i −0.930 0.028 − 0.001i −0.163 + 0.251i
0.224 − 0.007i 0.028 + 0.001i −0.916 −0.193 + 0.266i
0.003 + 0.006i −0.163 − 0.251i −0.193 − 0.266i 0.895

⎞

⎟

⎟

⎠

(3)

EAB∗ =

⎛

⎜

⎜

⎝

−0.001 0.587 + 0.397i 0.555 + 0.434i 0.035 + 0.0259i
0.587 − 0.397i −0.489 0.497 + 0.0341i −0.106 − 0.005i
0.555 − 0.434i 0.497 − 0.0341i −0.503 0.045 − 0.001i
0.035 − 0.0259i −0.106 + 0.005i 0.045 + 0.001i 0.992

⎞

⎟

⎟

⎠

(4)

EA∗B =

⎛

⎜

⎜

⎝

−0.587 0.568 + 0.353i 0.274 + 0.365i 0.002 + 0.004i
0.568 − 0.353i 0.090 0.681 + 0.263i −0, 110 − 0.007i
0.274 − 0.365i 0.681 − 0.263i −0.484 0.150 − 0.050i
0, 002 − 0.004i −0, 110 + 0.007i 0.150 + 0.050i 0.981

⎞

⎟

⎟

⎠

(5)

EA∗B∗ =

⎛

⎜

⎜

⎝

0.854 0.385 + 0.243i −0.035 − 0.164i −0.115 − 0.146i
0.385 − 0.243i −0.700 0.483 + 0.132i −0.086 + 0.212i

−0.035 + 0.164i 0.483 − 0.132i 0.542 0.093 + 0.647i
−0.115 + 0.146i −0.086 − 0.212i 0.093 − 0.647i −0.697

⎞

⎟

⎟

⎠

(6)

Our quantum-theoretic modeling in the Hilbert space C
4 of our cognitive test is

completed. By recalling the following canonical isomorphisms, C4 ↔= C
2∇C

2 and
L(C4) ↔= L(C2) ∇ L(C2), and the definitions of entangled states and measure-
ments in Refs. [1,28], it can be proved that all measurements AB, AB∗, A∗B and
A∗B∗ are entangled with this choice of the entangled state. Moreover, the mar-
ginal distribution law is violated by all measurements, e.g., p(A1B1)+p(A1B2) ←=
p(A1B

∗
1) + p(A1B

∗
2). Since we are under Tsirelson’s bound, this modeling is an

example of a ‘nonlocal non-marginal box modeling 1’, following the classification
we have proposed in Ref. [28].

3 The Vessels of Water Entity

We have seen in Sect. 2 that there are unexpected connections between how a
sentient human being connects conceptual entities through meaning in cognitive
tests and how microscopic quantum entities are connected in entangled states
in space-like separated spin experiments. Both kinds of entities violate Bell’s
inequalities and present entanglement. In this section, we consider a macroscopic
entity, namely, ‘two vessels of water connected by a tube’, which behaves in an
analogous way. We believe that the ‘connected vessels of water example’ still is a
very good example because it provides an intuitive insight into ‘what entangle-
ment is about’, i.e. what conditions are necessary and sufficient for entanglement
to manifest itself in reality, irrespective of whether it is physical or cognitive real-
ity. We came upon this example many years ago, when we were demonstrating
how Bell’s inequalities can be violated by ordinary macroscopic material entities
by different examples [7–11], and we will discuss it in some detail here.

We consider two vessels VA and VB connected by a tube T , containing a total
of 20 l of transparent water. Coincidence experiments A and B consist in siphons
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SA and SB pouring out water from vessels VA and VB , respectively, and collecting
the water in reference vessels RA and RB , where the volume of collected water
is measured. If more than 10 l are collected for experiments A or B we put
E(A) = +1 or E(B) = +1, respectively, and if fewer than 10 l are collected for
experiments A or B, we put E(A) = −1 or E(B) = −1, respectively. We define
experiments A∗ and B∗, which consist in taking a small spoonful of water out of
the left vessel and the right vessel, respectively, and verifying whether the water
is transparent. We have E(A∗) = +1 or E(A∗) = −1, depending on whether the
water in the left vessel turns out to be transparent or not, and E(B∗) = +1 or
E(B∗) = −1, depending on whether the water in the right vessel turns out to
be transparent or not. We put E(AB) = +1 if E(A) = +1 and E(B) = +1 or
E(A) = −1 and E(B) = −1, and E(AB) = −1 if E(A) = +1 and E(B) = −1 or
E(A) = −1 and E(B) = +1, if the coincidence experiment AB is performed. We
can thus define the expectation value E(A,B) for the coincidence experiment
AB in a traditional way. Similarly, we put E(A∗B) = +1 if E(A∗) = +1 and
E(B) = +1 or E(A∗) = −1 and E(B) = −1 and the coincidence experiment
A∗B is performed. And we have E(AB∗) = +1 if E(A) = +1 and E(B∗) = +1 or
E(A) = −1 and E(B∗) = −1 and the coincidence experiment AB∗ is performed,
and further E(A∗B∗) = +1 if E(A∗) = +1 and E(B∗) = +1 or E(A∗) = −1 and
E(B∗) = −1 and the coincidence experiment A∗B∗ is performed. Hence, we can
define the expectation values E(A∗, B), E(A,B∗) and E(A∗, B∗) corresponding to
the coincidence experiments A∗B, AB∗ and A∗B∗, respectively. Now, since each
vessel contains 10 l of transparent water, we find that these expectation values
are E(A,B) = −1, E(A∗, B) = +1, E(A,B∗) = +1 and E(A∗, B∗) = +1, which
gives E(A∗, B∗) + E(A∗, B) + E(A,B∗) − E(A,B) = +4. This is the maximum
possible violation of the CHSH form of Bell’s inequalities.

There are deep structural and conceptual connections between the cognitive
and physical situations violating Bell’s inequalities. The main reason why these
interconnected water vessels can violate Bell’s inequalities is because the water
in the vessels has not yet been subdivided into two volumes before the mea-
surement starts. The water in the vessels is only ‘potentially’ subdivided into
volumes whose sum is 20 l. It is not until the measurement is actually carried
out that one of these potential subdivisions actualizes, i.e. one part of the 20 l
is collected in reference vessel RA and the other part is collected in reference
vessel RB. This is very similar to the combination of concepts The Animal Acts
in Sect. 2 not collapsing into one of the four possibilities The Horse Growls, The
Bear Whinnies, The Bear Growls or The Bear Whinnies before the coincidence
measurement AB starts. It is the coincidence measurement itself which makes
the combination The Animal Acts collapse into one of these four possibilities.
The same holds for the interconnected water vessels. The coincidence experi-
ment AB with the siphons is what causes the total volume of 20 l of water to
be split into two volumes, and it is this which creates the correlation for AB
giving rise to E(A,B) = −1. It can easily be calculated that if we take away the
tube and suppose that, before the measurement, the water is already subdivided
over the two vessels, which are now no longer interconnected, although still an
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anti-correlation would be measured for the coincidence experiments between A
and B, the perfect correlations between A and B∗, and between A∗ and B no
longer hold, one of them changing into an anti-correlation. This makes that Bell’s
inequality is no longer violated, i.e. E(A∗, B∗)+E(A∗, B)+E(A,B∗)−E(A,B) =
+2 – by the way, this is also true in general when the initial state of the vessels
of water is a mixture of product states. This proves that the tube, provoking the
‘potentiality of the anti-correlation for A and B’, is essential for Bell’s inequality
to be violated. In The Animal Acts, it is the presence of ‘meaning’ in the mind of
the choosing person that is necessary to provoke a violation of Bell’s inequalities.
In the vessels of water, it is the presence of ‘water’ in the two connected vessels
which is necessary to provoke a violation of Bell’s inequalities.

4 A Quantum Representation of the Vessels of Water

In this section, we elaborate a Hilbert space representation for the vessels of
water situation: this result is new and was not investigated neither expected
when this example was originally conceived.

Let us provide a preliminary description of the experiments with the vessels
of water, as in Sect. 2.2. The entity ‘vessels of water’ is abstractly described each
time by a state p. Measurement AB has four outcomes, λA1B1 , λA1B2 , λA2B1

and λA2B2 , and four final states, pA1B1 , pA1B2 , pA2B1 and pA2B2 . Measurement
AB∗ has four outcomes, λA1B∗

1
, λA1B∗

2
, λA2B∗

1
and λA2B∗

2
, and four final states,

pA1B∗
1
, pA1B∗

2
, pA2B∗

1
and pA2B∗

2
. Measurement A∗B has four outcomes λA∗

1B1 ,
λA∗

1B2 , λA∗
2B1 and λA∗

2B2 , and four final states pA∗
1B1 , pA∗

1B2 , pA∗
2B1 and pA∗

2B2 .
Measurement A∗B∗ has four outcomes λA∗

1B∗
1
, λA∗

1B∗
2
, λA∗

2B∗
1

and λA∗
2B∗

2
, and four

final states pA∗
1B∗

1
, pA∗

1B∗
2
, pA∗

2B∗
1

and pA∗
2B∗

2
.

To work out a quantum-mechanical model in the Hilbert space C
4 for the

vessels of water situation, we consider the entangled state p represented by the
unit vector |p∈ = |0,

∀
0.5eiα,

∀
0.5eiβ , 0∈ as describing the vessels of water sit-

uation with transparent water, and represent the measurement AB by the ON
(canonical) basis |pA1B1∈ = |1, 0, 0, 0∈, |pA1B2∈ = |0, 1, 0, 0∈, |pA2B1∈ = |0, 0, 1, 0∈,
|pA2B2∈ = |0, 0, 0, 1∈. This gives indeed the correct probabilities in the state p,
that is, p(λA1B1) = |↑pA1B1 |p∈|2 = 0, p(λA1B2) = |↑pA1B2 |p∈|2 = 0.5, p(λA2B1) =
|↑pA2B1 |p∈|2 = 0.5, p(λA2B2) = |↑pA2B2 |p∈|2 = 0. In the coincidence measure-
ment AB∗, we take the ON basis |pA1B∗

1
∈ = |0,

∀
0.5eiα,

∀
0.5eiβ , 0∈, |pA1B∗

2
∈ =

|0,
∀

0.5eiα,−∀
0.5eiβ , 0∈, |pA2B∗

1
∈ = |1, 0, 0, 0∈, |pA2B∗

2
∈ = |0, 0, 0, 1∈. We have

the correct probabilities in the state p, that is, p(λA1B∗
1
) = |↑pA1B∗

1
|p∈|2 = 1,

p(λA1B∗
2
) = |↑pA1B∗

2
|p∈|2 = 0, p(λA2B∗

1
) = |↑pA2B∗

1
|p∈|2 = 0, p(λA2B∗

2
) =

|↑pA2B∗
2
|p∈|2 = 0. In the coincidence measurement A∗B, we choose the ON basis

|pA∗
1B1∈ = |0,

∀
0.5eiα,

∀
0.5eiβ , 0∈, |pA∗

1B2∈ = |1, 0, 0, 0∈, |pA∗
2B1∈ = |0,

∀
0.5eiα,

−∀
0.5eiβ , 0∈, |pA∗

2B2∈ = |0, 0, 0, 1∈. As expected, we get probability 1 for the
outcome λA∗

1B1 in the state p. In the coincidence measurement A∗B∗, we take
the ON basis |pA∗

1B∗
1
∈ = |0,

∀
0.5eiα,

∀
0.5eiβ , 0∈, |pA∗

1B∗
2
∈ = |1, 0, 0, 0∈, |pA∗

2B∗
1
∈ =

|0, 0, 0, 1∈, |pA∗
2B∗

2
∈ = |0,

∀
0.5eiα,−∀

0.5eiβ , 0∈. As expected, we get probability
1 for the outcome λA∗

1B∗
1

in the state p.
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Let us now explicitly construct the self-adjoint operators representing the
measurements AB, AB∗, A∗B and A∗B∗. They are respectively given by

EAB =
∑2

i,j=1
λAiBj |pAiBj ↔≥pAiBj | =

⎛

⎜

⎜

⎝

λA1B1 0 0 0
0 λA1B2 0 0
0 0 λA2B1 0
0 0 0 λA2B2

⎞

⎟

⎟

⎠

(7)

EAB∗ =
∑2

i,j=1 λAiB∗
j
|pAiB∗

j
↔≥pAiB∗

j
|

=

⎛

⎜

⎜

⎜

⎝

λA2B∗
1

0 0 0

0 0.5(λA1B∗
1

+ λA1B∗
2
) 0.5ei(α−β)(λA1B∗

1
− λA1B∗

2
) 0

0 0.5e−i(α−β)(λA1B∗
1

− λA1B∗
2
) 0.5(λA1B∗

1
+ λA1B∗

2
) 0

0 0 0 λA2B∗
2

⎞

⎟

⎟

⎟

⎠

(8)

EA∗B =
∑2

i,j=1 λA∗
iBj

|pA∗
iBj

↔≥pA∗
iBj

|

=

⎛

⎜

⎜

⎜

⎝

λA∗
1B2 0 0 0

0 0.5(λA∗
1B1 + λA∗

2B1) 0.5ei(α−β)(λA∗
1B1 − λA∗

2B1) 0

0 0.5e−i(α−β)(λA∗
1B1 − λA∗

2B1) 0.5(λA∗
1B1 + λA∗

2B1) 0

0 0 0 λA∗
2B2

⎞

⎟

⎟

⎟

⎠

(9)

EA∗B∗ =
∑2

i,j=1 λA∗
iB∗

j
|pA∗

iB∗
j
↔≥pA∗

iB∗
j
|

=

⎛

⎜

⎜

⎜

⎝

λA∗
1B∗

2
0 0 0

0 0.5(λA∗
1B∗

1
+ λA∗

2B∗
2
) 0.5ei(α−β)(λA∗

1B∗
1

− λA∗
2B∗

2
) 0

0 0.5e−i(α−β)(λA∗
1B∗

1
− λA∗

2B∗
2
) 0.5(λA∗

1B∗
1

+ λA∗
2B∗

2
) 0

0 0 0 λA∗
2B∗

1

⎞

⎟

⎟

⎟

⎠

(10)

The self-adjoint operators corresponding to measuring the expectation values are
instead obtained by putting λAiBi

= λAiB∗
i
= λA∗

iBi
= λA∗

iB
∗
i
= +1, i = 1, 2 and

λAiBj
= λAiB∗

j
= λA∗

iBj
= λA∗

iB
∗
j

= −1, i, j = 1, 2; i ←= j, as in our experiment
in Sect. 3. If we now insert these values into Eqs. (7)–(10) and define the ‘Bell
operator’ as

B = EA∗B∗ + EA∗B + EAB∗ − EAB =

⎛

⎜

⎜

⎝

0 0 0 0

0 2 2ei(α−β) 0

0 2e−i(α−β) 2 0
0 0 0 0

⎞

⎟

⎟

⎠

(11)

its expectation value in the entangled state p is

≥p|B|p↔ =
(

0
∩

0.5e−iα
∩

0.5e−iβ 0
)

⎛

⎜

⎜

⎝

0 0 0 0

0 2 2ei(α−β) 0

0 2e−i(α−β) 2 0
0 0 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0∩
0.5eiα

∩
0.5eiβ

0

⎞

⎟

⎟

⎠

= 4

(12)
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which gives the same value in the CHSH inequality as in Sect. 3. A completely
analogous construction can be performed if the entangled state q represented by
the unit vector |q∈ = |0,

∀
0.5eiα,−∀

0.5eiβ , 0∈ is chosen to describe the vessels
with non-transparent water.

We add some conclusive remarks that are discussed in detail in Ref. [28].
The measurement AB is a product measurement, since it has the product states
represented by the vectors in the canonical basis of C4 as final states. Indeed,
AB ‘divides’ the water into two separated volumes of water, thus ‘destroying’
entanglement, to arrive at a situation of a product state. The measurements
AB∗ and A∗B are instead entangled measurements, since they have the entan-
gled states represented by |0,

∀
0.5eiα,

∀
0.5eiβ , 0∈ and |0,

∀
0.5eiα,−∀

0.5eiβ , 0∈
as final states. Indeed, since all the water is poured out of the two vessels, the
water has not been divided, and inside the reference vessel it keeps being a whole,
i.e. entangled. If another two siphons are put in the reference vessel where all
the water has been collected, the same experiment can be performed, violating
Bell’s inequalities. The measurement A∗B∗ has also entangled states as possible
final states, hence it is entangled. This measurement leaves the vessels of water
unchanged, hence it is naturally an entangled measurement. We finally observe
that the marginal ditribution law is violated in the case of the vessels of water.
Indeed, we have, e.g., 0.5 = p(λA1B1) + p(λA1B2) ←= p(λA1B∗

1
) + p(λA1B∗

2
) = 1.

Since this vessels of water model violates Bell’s inequalities beyond Tsirelson’s
bound, we can say that our C

4 representation is an example of a ‘nonlocal non-
marginal box modeling 2’, if we follow the classification in Ref. [28].

5 An Alternative Model for the Vessels of Water

In this section, we provide an alternative model in C
4 for the vessels of water

situation. This model is interesting, in our opinion, because it serves to show that
where entanglement is located, in the state, or on the level of the measurement,
depends on the way in which the tensor product isomorphism with the compound
entity Hilbert space is chosen.

In the representation in Sect. 4, we have given preference to the first coinci-
dence measurement AB which we have chosen as a product, i.e. we have rep-
resented it by the canonical basis of C4. This means that the entanglement of
this ‘state-measurement’ situation has been completely put into the state. Let
us identify this entanglement on the level of the probabilities by using Th. 2 in
Ref. [28]. We have p(λA1B1) = p(λA2B2) = 0, p(λA1B1) = p(λA2B2) = 0.5 in
both states p and q. Suppose that we search numbers a, b, a∗, b∗ ∅ [0, 1] such that
p(λA1B1) = a · b, p(λA1B2) = a · b∗, p(λA2B1) = a∗ · b and p(λA2B2) = a∗ · b∗.
Then, we get that a = 0 or b = 0. Since a · b∗ = 0.5, we cannot have that
a = 0, and hence b = 0. But then a∗ · b cannot be equal to 0.5. This entails that
the probabilities do not compose into a product, hence there is entanglement in
the considered ‘state-measurement’ situation, this entanglement being ‘a joint
property of state and measurement’, and not of one apart.

Let us now consider the probabilities of the measurement AB∗. We have
p(λA1B∗

1
) = 1, p(λA1B∗

2
) = p(λA2B∗

1
) = p(λA2B∗

2
) = 0 in the state p. We can again
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look for numbers a, b, a∗, b∗ ∅ [0, 1] such that p(λA1B∗
1
) = a · b, p(λA1B∗

2
) = a · b∗,

p(λA2B∗
1
) = a∗ · b and p(λA2B∗

1
) = a∗ · b∗. We find the solution a∗ = b∗ = 0, and

a = b = 1, which is unique. Indeed, from a · b = 1 follows that a ←= 0 and b ←= 0,
and hence from a · b∗ = 0 and a∗ · b = 0 follows then a∗ = b∗ = 0. This implies
that we could model this ‘state-measurement’ situation by a product state and
a product measurement. Let us do this explicitly in C

4. If this time we represent
the state p∗ with transparent water by the unit vector |p∗∈ = |1, 0, 0, 0∈, and the
measurement AB∗ in the canonical basis, we get the wanted result. This also
implies that we have single probabilities p(λA1), p(λA2), p(λB∗

1
) and p(λB∗

2
) such

that p(λA1) = p(λA2) = 1, p(λB∗
1
) = p(λB∗

2
) = 0. We can construct also the

second and third ‘state measurement’ in the same space, and with the same
state. It gives p(λA∗

1
) = p(λB1) = 1, pλA∗

2
) = p(λB2) = 0.

Proceeding in this way, we can propose an alternative quantum model where
we use the product state p∗, represented by |1, 0, 0, 0∈, and the product mea-
surements AB∗, A∗B and A∗B∗, all represented by the canonical ON basis in
C

4. Only AB is entangled in this construction and corresponds to the ON set
|p∗

1∈ = |0, 1, 0, 0∈, |p∗
2∈ = |∀0.5eiα, 0, 0,

∀
0.5eiβ∈, |p∗

3∈ = |∀0.5eiα, 0, 0,−∀
0.5eiβ∈,

|p∗
4∈ = |0, 0, 1, 0∈, as one can verify at once. This gives rise to the self-adjoint

operators

E∗
AB = λA1B1 |p1◦→p1| + λA1B2 |p2◦→p2| + λA2B1 |p3◦→p3| + λA2B2 |p4◦→p4|

=

⎛
⎜⎜⎝

0.5(λA1B1 + λA2B1 ) 0 0 0.5ei(α−β)(λA1B2 − λA2B1 )

0 λA1B1 0 0

0 0 λA2B2 0

0.5e−i(α−β)(λA1B2 − λA2B1 ) 0 0 0.5(λA1B2 + λA2B1 )

⎞
⎟⎟⎠ (13)

E∗
AB∗ =

⎛
⎜⎜⎜⎜⎝

λA1B∗
1

0 0 0

0 λA1B∗
2

0 0

0 0 λA2B∗
1

0

0 0 0 λA2B∗
2

⎞
⎟⎟⎟⎟⎠

E∗
A∗B =

⎛
⎜⎜⎜⎜⎝

λA∗
1B1

0 0 0

0 λA∗
1B2

0 0

0 0 λA∗
2B1

0

0 0 0 λA∗
2B2

⎞
⎟⎟⎟⎟⎠

(14)

E∗
A∗B∗ =

⎛
⎜⎜⎜⎜⎝

λA∗
1B∗

1
0 0 0

0 λA∗
1B∗

2
0 0

0 0 λA∗
2B∗

1
0

0 0 0 λA∗
2B∗

2

⎞
⎟⎟⎟⎟⎠

(15)

As usual, if we measure expectation values, i.e. the outcomes are all either +1 or
−1, and insert them into Eqs. (13)–(15), we can directly calculate the expectation
values in the state p∗. We find ↑p∗|E ∗

A∗B∗ + E ∗
A∗B + E ∗

AB∗ − E ∗
AB |p∗∈ = 4, as

expected. An analogous construction can be worked out for the state of the
vessels with non-transparent water.
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Abstract. Tests are essential in Information Retrieval and Data Min-
ing in order to evaluate the effectiveness of a query. An automatic mea-
sure tool intended to exhibit the meaning of words in context has been
developed and linked with Quantum Theory, particularly entanglement.
“Quantum like” experiments were undertaken on semantic space based
on the Hyperspace Analogue Language (HAL) method. A quantum HAL
model was implemented using state vectors issued from the HAL matrix
and query observables, testing a wide range of window sizes. The Bell
parameter S, associating measures on two words in a document, was
derived showing peaks for specific window sizes. The peaks show maxi-
mum quantum violation of the Bell inequalities and are document depen-
dent. This new correlation measure inspired by Quantum Theory could
be promising for measuring query relevance.

Keywords: Bell inequality · Entanglement · Information retrieval · Co-
occurrence · HAL · Tests · Context · IR algorithms · Quantum Theory

1 Introduction

In this work we present original “quantum-like” tests that could be useful in the
domain of Information Retrieval (IR) and Data Mining.

Context is used to disambiguate terms. Melucci [1] showed that a query or a
document can be generalized, in different contexts, as vectors, where the likeli-
hood of context of a set of documents can be considered. Quantum Mechanics
has been invoked to enrich the search capabilities in IR by Rijsbergen [2] by
using the mathematical formalism of the Hilbert vector space.

Analogies between concepts derived from Quantum Theory with Informa-
tion Retrieval tools have been made by several authors. Widdows [3] uses the
quantum formalism for experiments with negation and disjunction and Arafat
[4] shows that user needs can be represented by a state vector. Other analogies
have been stated by Li and Cunningham [5] such as: “state vector”/“objects”
in a collection; “observable”/“query”, “eigenvalues”/“relevance or not for one
object”; “probability of getting one eigenvalue”/“relevance degree of object to a
query”.

H. Atmanspacher et al. (Eds.): QI 2013, LNCS 8369, pp. 110–121, 2014.
DOI: 10.1007/978-3-642-54943-4 10, c© Springer-Verlag Berlin Heidelberg 2014
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Bruza and Cole explicitly calculated eigenvectors associated to a word [6]
and in the field of concept representation an explicit Bell inequality violation
was found [7].

2 Bell Inequality and Bell Parameters for Binary
Outcomes

Entanglement, which can be made manifest through Bell inequality violations
[8] (commonly presented in the form of the CHSH inequality [9]) has become
a very important research trend in Physics. Several experiments have proved
the existence of entangled particles [10,11] and this fact is now widely accepted.
The field has fascinated many scientists throughout the last decades also leading
to much parallel scientific and pseudoscientific research as is well described by
Keiser in a recent book [12]. Part of the attraction arises because of the concept
of “nonlocality” of the quantum world suggesting “spooky action at distance”
(a discussion can be found in [13]). Even though in general the violation of Bell
inequalities demands entanglement, higher violations of the inequalities do not
necessarily mean more entanglement.

Quantum Information has emerged bridging physics and information science.
Though initially discovered in the context of foundations of Quantum Mechanics,
the violations of Bell inequalities referred to above are nowadays a key point in
a wide range of branches of Quantum Information. Entanglement is at the heart
of this field because it is seen as a potential “resource” for new applications such
as coding or computing [14]. New theorems of the kind of Bell’s, named no-go
theorems (for example the Kochen-Specker theorem [15]), have been proposed.

In practice most experiments have used polarized photons as in the famous
experiment in 1982 by Aspect et al. [11]. More sophisticated set-ups are con-
stantly being proposed and discussed [16,17] very often to rule out local hidden
variable models.

Some macroscopic tests have been proposed in the form of thought experi-
ments or combined with yes-no questions showing also Bell inequality violations,
for example by Aerts [18].

The CHSH-Bell parameter SBell for tests with two binary outcomes, +1 or
−1, can be defined as follows:

SBell = |E (A,B) − E (A,C)| + |E (B,D) + E (C,D)| (1)

where A, B, C and D are tests and E (X,Y ) stands for the expectation value
of the outcome of mutual tests X and Y .

We briefly recall some important facts about the Bell parameter. It is easily
verified that SBell can never exceed 4. More specifically in the so called classical,
local and separable situation SBell lies between 0 and 2. In this case, for example,
we could write E (X,Y ) = E (X) E (Y ).

The case 2 ∇ SBell ∇ 2
◦

2 can be achieved with quantum entangled states
obtained experimentally with photons. Less underlined is the case where
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SBell > 2
◦

2, also known as the Tsirelson’s bound [16,19]. This zone between
2
◦

2 and 4 is called the “no-signaling” region. The maximum value SBell = 4
can be attained with logical probabilistic constructions often named PR boxes
[20].

3 Bell Tests in Semantic Space Using HAL

Our approach presented here can be perceived as an experiment done on objects
outside the domain of physics. The objects are words within texts. We study
the relationships between words within a document; these relationships can be
formed by creating a “semantic space” using the Hyperspace Analogue Language
(HAL) method [21].

The HAL algorithm does not require any explicit human a-priori judgment.
In this procedure a HAL lexical co-occurence matrix is built with a “window”
representing a span of words passed over the corpus being analyzed. The width
of this window can be varied. Words within the window are recorded as co-
occurring with strength inversely proportional to the number of other words
separating them within the window.

The point of the co-occurrence matrix is that the rows effectively constitute
vectors in a high-dimensional space, so that that the elements of the normalized
vectors are frequency counts (probabilities), and the dimensionality of the space
is determined by the number of columns in the matrix (context vectors).

The HAL method has already been used as a tool for a physical analogy
between semantic space and Quantum Theory, where at each word was associ-
ated a given spectrum (in analogy with spectral emission lines of atoms) [22].

Our method uses the HAL matrices for calculating quantum mechanical mean
values of query observables and combining them in order to calculate a Bell
parameter Squery. We carried out our tests in a symmetric matrix obtained
by the sum of the HAL matrix and its transpose (equivalent to running HAL
backwards). This is due to the fact that we did not consider the order in which
words appear in a text.

The tests were carried out on documents in English. The programming
scheme of the algorithm implementation is represented in Fig. 3 (Appendix).

4 Quantum Model for Bell Tests Using HAL

In this section we intend to define operators, in analogy with Quantum The-
ory, that will give a new possible approach to document queries. We make the
following definitions.

4.1 Document Vector States

In the N dimensional HAL space each document will have an associated vector.
The vector state of the document is the sum of all the word vectors |wi∀ it
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contains. Each word vector state is extracted from the lines of the symmetric
HAL matrix. The document vector state is defined as:

|Ψ∀ =
N∑
i

|wi∀ (2)

We are now interested in analyzing how two words are connected within a
document, namely word A and word B. The two word vectors |wA∀ and |wB∀
define a plane on the semantic space. We will not consider the part of the doc-
ument corresponding to the orthogonal projection with the two chosen words.
The resulting normalized state vector |ψ∀ from now on will be the document
vector state.

To obtain |ψ∀ we take the vectors |wA∀ and |wB∀ and normalize them obtain-
ing two new vectors: |uA∀ and |uB∀. Now we apply the Gram-Schmidt orthog-
onalization process to the non-orthogonal basis {|uA∀ , |uB∀}, and doing so, we
can obtain two new bases that describe the plane formed by the original vectors
|wA∀ and |wB∀: the bases {|uA∀ , |uA∗∀} and {|uB∀ , |uB∗∀}. In this way we can
parameterize the plane in two ways: in the first we make explicit the parallel
component of a vector with respect to |wA∀ and in the second we make explicit
the parallel component of a vector with respect to |wB∀. By projecting the vector
|Ψ∀ on one of these basis, we obtain its projection onto this plane. Taking this
vector and normalizing it gives us the desired vector |ψ∀. Explicitly what we get
is:

|ψ∀ = α |uA∀ + α∗ |uA∗∀ = β |uB∀ + β∗ |uB∗∀ (3)

The coefficients α, α∗, β and β∗ are obtained by projecting the state |Ψ∀ on
both basis vectors and then normalizing to unity. For example for α we have:

α =
∈uA |Ψ∀√

∈uA |Ψ∀2 + ∈uA∗ |Ψ∀2
(4)

4.2 Query Operators

We want now to define query operators. The purpose of these operators is to
quantify a query within our formalism. The query operators Â and B̂ are defined
in a way that they attribute the value +1 to the component of the state that
corresponds to the word meaning we are interested in, and −1 in the orthogonal
direction. More precisely we will use operators acting as the spin Pauli matrix

σ̂z =
(

1 0
0 −1

)
on their respective decomposition basis. These operators are

associated with observables because they are Hermitian. Explicitly:

Â |ψ∀ = α |uA∀ − α∗ |uA∗∀ , B̂ |ψ∀ = β |uB∀ − β∗ |uB∗∀ (5)
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The expectation values of these operators are calculated in the same way as
in quantum mechanics using the Born rule; for example, the mean value in the
context of document associated to |ψ∀ for the query about A is written as usual
in quantum mechanics:

∈A∀ψ = ∈ψ| Â |ψ∀ = α2 − α2
∗ = 2α2 − 1 (6)

From this example we see that we can obtain a score for a search related
to word A. This corresponds to something reasonable for the query score since
it increases with α which is equal to the scalar product between the document
vector and the word vector as shown in Eq. 4. Score values range from +1 to −1.
+1 is obtained when the document vector is parallel to the query vector, and
−1 when it is orthogonal. Following this line of thought other operators can be

defined using, for example, the Pauli matrix σ̂x =
(

0 1
1 0

)
.

For the choice of the query operator Âx = σ̂x in the {|uA∀ , |uA∗∀} basis we
have:

Âx (α |uA∀ + α∗ |uA∗∀) = α∗ |uA∀ + α |uA∗∀ (7)

We see that this operator switches the components of the vector state. This
can be interpreted as a measure of different meaning in the document with
respect to the original direction corresponding to word A.

We do not consider the expectation values for the spin Pauli matrix σ̂y =(
0 −i
i 0

)
due to the fact that here the components of the vector state issued from

the HAL matrix are always real. Possible future generalizations may include a
way of obtaining vector components on the complex plane.

4.3 Combining Operators and Expectation Values of Two Queries

For technical reasons we choose the basis associated to the word A given above
in Eq. 5 and write the operators with respect to this basis. We can write the
transformation matrix M̂ from the A basis to the B basis. It is easy to see that:

M̂ =
( ∈uB| uA∀ ∈uB | uA∗∀

∈uB∗| uA∀ ∈uB∗| uA∗∀
)

=
(

p
√

1 − p2

−
√

1 − p2 p

)
(8)

By construction, this matrix can be simply expressed by the scalar product
p = ∈uB | uA∀ which in our case is always positive and smaller than 1, unless
there is a perfect alignment between the two words; then it is 1.

Any operator expressed in its matrix form on the basis associated to the word
B can be written in the basis associated to the word A using the transforma-
tion matrix M̂ . From our previous definition of B̂, its matrix form in the basis
associated to word A becomes:

B̂ =
(

2p2 − 1 2p
√

1 − p2

2p
√

1 − p2 1 − 2p2

)
(9)
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With the two operators expressed in the common basis we can now combine two
query operators and calculate quantum mechanical mean values using the Born
rule. For example for the query of the combination of words A and B in the
context of the document represented by Ψ we will write:

〈
ÂB̂

〉
ψ

= ∈ψ| ÂB̂ |ψ∀ (10)

4.4 Bell Parameter Calculation

Bell tests are usually a proof of non-separability of the combination of two differ-
ent systems. Here we make a connection to this scenario in physics using words
and their meanings within the document.

For purposes of document analysis we have chosen to take an approach lead-
ing to the calculation of a Bell parameter as defined in Eq. 1. Concretely we calcu-
late quantum means defined in Eq. 10, using different query operators which can
be considered as measuring devices, and then define the Bell query parameter:

Squery =
∣∣∣
〈
ÂB̂+

〉
+

〈
ÂxB̂+

〉∣∣∣ +
∣∣∣
〈
ÂB̂−

〉
−

〈
ÂxB̂−

〉∣∣∣ (11)

using the following operators

Â; Âx; B̂+ = − B̂ + B̂x◦
2

; B̂+ =
B̂ − B̂x◦

2
(12)

Our particular operator choice was inspired from the usual example that
maximizes the violation of the Bell inequalities. All operators have the property
of being their own inverse, that is, their square is the identity (property of the
Pauli matrices) which means that their eigenvalues are +1 and −1. With this we
can calculate the corresponding parameters considering different queries among
different documents. Two examples are presented in the next section.

5 Results and Discussion

With the formalism presented before we are in a position to apply it to differ-
ent documents. We calculated the Bell parameter defined in Eq. 11 using the
algorithm presented in the Appendix. We will discuss the obtained results in a
relevance perspective. In the following examples all the documents were taken
from Wikipedia (see following section).

5.1 Test on Documents: “Reagan” and “Iran”

As a first application we considered an example originally introduced by Bruza
and Cole [6], which is the query for the word “Reagan” in the context of “Iran”.
If we talk about Reagan alone one usually associates this with the fact that he
was President, but if we include Iran it will be more likely that we are interested
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in the Iran-contra scandal. Four documents were considered which are close to
the query: “Reagan administration scandals”1, “Reagan”2, “Iran-Contra affair”3

and “Iran”4

We plot the parameters Squery defined above in Eq. 11 as a function of the
HAL window length for the query of the words “Reagan” and “Iran”. The results
are shown in Fig. 1.

The considered HAL window starts at the beginning of the document, in the
first word, and will run through all the words until the end of the text. When
finished we start the same process again. with a new window length (increasing
the length by one unit). This is done for all window lengths we desire to analyze.

There is clearly a common behavior for the three queries in the documents
(with just one exception): the parameter starts from zero and increases until it
reaches a maximum, never crossing the Tsirelson’s bound 2

◦
2 , but getting very

close to it, and then drops again. This suggests that each document, given a
two word query, has an optimal HAL window size that maximizes the parameter
Squery.

For the query of “Iran - Reagan”, among the four documents, it is predictable
that the document that is more closely related to this query is the “Iran-Contra
affair”, followed by the documents: “Reagan administration scandals” and “Rea-
gan”, with an expected greater relevance for the first. The least related document
should be “Iran”.

At first sight it may appear that since we are looking for “Reagan - Iran”,
the documents “Reagan” and “Iran” should appear on the same level in the
search. However in general, the meaning “Reagan” has less importance in the
context “Iran” (because the common concept “Iran” includes its history, culture,
geographical situation, etc.) than “Iran” in the context of “Reagan”. In Fig. 1
we also observe that this is basically the order in which the peaks appear.

The document regarding “Iran” always gives a constant value of Squery equal
to 2. This fact is easily explained in the framework of our model. In fact it is not
hard to see that when we do a two word query in which one of these words is
not present in the document, the result for Squery is always 2. Besides if neither
of the two words is present the result is always zero. Let us now consider the
other three documents.

The first peak appears using a window length around l = 30. The Squery

curve peaks before this value in the document of “Iran-Contra affair”. The other
two documents cannot be clearly distinguished. This corresponds to our previ-
ous prediction. In fact, it makes sense that the “sooner” a peak appears the less
interaction, in the sense of window length, we have to consider to get higher
correlation between the two words. Bearing this in mind, the document “Iran-
Contra affair” is clearly the one selected by the model. The other two documents
1 http://en.wikipedia.org/wiki/Reagan administration scandals

(accessed 12/04/2013).
2 http://en.wikipedia.org/wiki/Reagan (accessed 12/04/2013).
3 http://en.wikipedia.org/wiki/Iran-Contra affair (accessed 12/04/2013).
4 http://en.wikipedia.org/wiki/Iran (accessed 12/04/2013).

http://en.wikipedia.org/wiki/Reagan_administration_scandals
http://en.wikipedia.org/wiki/Reagan
http://en.wikipedia.org/wiki/Iran-Contra_affair
http://en.wikipedia.org/wiki/Iran
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Fig. 1. Bell parameter for the query of words “Reagan - Iran” in four documents:
“Reagan administration scandals”, “Reagan”, “Iran-Contra affair” and “Iran”.

(“Reagan” and “Reagan administration scandals”) are not clearly distinguish-
able. On one side the peak of the “Reagan” document appears first, but the
curve for “Reagan administration scandals” has a bigger extension close to the
Tsirelson’s bound 2

◦
2, meaning high correlation for several window sizes, which

can also be a clue for some strong correlation between words.

5.2 Test on Documents About “Orange”

The second case considered concerns the polysemy of the word “orange” and
associated concepts. In this example we are interested in the ambiguity between
the meanings color and fruit. We also associate the concept of juice. The docu-
ments considered were: Orange (Colour)5, Orange (Fruit)6, Orange Juice7 and
Juice8 Two queries are considered: “Orange Fruit” and “Orange Juice”. The
results are presented in Fig. 2.

The query “Orange - Fruit” presents the first peak around l = 22 for the
document “Orange color”, the second in l = 29 for the document “Orange fruit”,
then for l = 40 the document “Orange juice” and very far away the document
5 http://en.wikipedia.org/wiki/Orange (colour) (accessed 12/04/2013).
6 http://en.wikipedia.org/wiki/Orange (fruit) (accessed 12/04/2013).
7 http://en.wikipedia.org/wiki/Orange juice (accessed 12/04/2013).
8 http://en.wikipedia.org/wiki/Juice (accessed 12/04/2013).

http://en.wikipedia.org/wiki/Orange_(colour)
http://en.wikipedia.org/wiki/Orange_(fruit)
http://en.wikipedia.org/wiki/Orange_juice
http://en.wikipedia.org/wiki/Juice
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Fig. 2. Bell parameter for the query on the words “Orange - Fruit” and “Orange -
Juice” in four different documents: “Juice”, “Orange (Color)”, “Orange (Fruit)” and
“Orange Juice”.

“Juice”. It is interesting to note that, even though the peaks are close, the peak
of the curve “Orange - Color” appears before the one for “Orange - Fruit”.
This may be the suggestion of a strong correlation between the origin of the
name of the color and the name of the fruit. The poor correlation of the general
term “Juice” with the specific query “Orange - Fruit” is very clear on the graph
according to this criterion.

Finally, the last query was “Orange - Juice”. Again, here, we recover precisely
the order that we would expect for the documents: “Orange juice”, “Orange
Fruit”, “Juice” and “Orange Color”. It is worth noticing that in the latter case
the peak corresponds to a window length range considered to be optimal for
implementation of HAL (l = 10) which may indicate an even a stronger correla-
tion between the words.

6 Conclusion and Perspectives

In this work, we presented a novel search experiment based on the Bell parameter
extraction in semantic space using the HAL method.

The semantic vectors in HAL are representations that are essentially mea-
sures of context. The HAL method has already been used for the analogies with
Quantum Theory by Bruza and Woods [23] for activating associations of con-
cepts and by Wittek and Darány [22] for extracting spectral content from the
semantic space. HAL shows high potentiality because it is a simple way to build
a semantic space with a measure that is independent of user judgment.

The main feature of Quantum Theory explored in this work is the violation
of the Bell inequalities which can be related to entanglement and non-locality,
impossible at a classical level. The results show Bell inequality violation up to
the maximal value of SBell = 2

◦
2, (the Tsirelson’s bound).

In our model each document is associated to a two dimensional Hilbert space
(dependent on the search we are interested in), and queries are observables acting
on it. A Bell parameter is then defined.
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We found that the Bell parameter is strongly dependent on the HAL window
size. From our results it is suggested that for this kind of model there is an
optimal window size that maximizes the Bell parameter. This is reminiscent of
what was also noticed by Bruza and Woods [23]: if the window size is set too
large spurious co-occurrence associations are represented in the matrix and, if the
window size is too small, relevant associations may be missed. In this model we
see that too large windows may also dilute connections between associated words.
Only one document, the one that did not present one of the words of the query,
did not violate the Bell inequality. In general, a pattern of “early” appearance
of the peak (smallest window sizes) seems to be related to the relevance of the
document for the search.

In a near future other measures of quantum properties (as proper measures
of entanglement) will also serve to make a better comparison between the results
derived from the standard information retrieval methods.

It is not clear how to interpret the Bell inequality violation here and what is
the meaning of the optimal length that maximizes the Bell parameter. Can cor-
relation and entanglement give a measure of query relevance? Experiments and
systematic comparisons with other methods used in IR, such as Latent Seman-
tic Analysis (LSA) and the ranking method Okapi BM25, could give further
indications.

An important technical point is that we introduced a new tool which has con-
nections with the Quantum Theory: query observables. Here we made a practical
choice similar to the spin Pauli matrices, but we think that it should be possible,
after much experimentation on different documents, to introduce new families
of query observables adapted to different purposes and contexts. In the domain
of IR many concepts are introduced to define, for example, opinion-like queries
in social networks [24]. Efforts are also being made in order to diversify query
results of ambiguous queries; for example concepts such as sentiment diversifica-
tion to identify positive, negative and neutral sentiments about the search topic
can be used [25].

Acknowledgements. We would like to thank the students of SUPELEC Fabien
d’ANGELO and Sixte BOISSÉ for helping on the implementation and test the HAL
algorithm.

Appendix

The algorithm was implemented using the Python programming language along
with the string module and pylab. All words are considered and simple plurals
(constructed by adding an “s”) are treated as if singular words. Lower and upper
case letters are not distinguished, which means that if two words differ from each
other by changes on the case, they are considered equivalent. Even if words have
the same origin, they are treated differently (for example “battle” and “battling”
are distinct).
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Fig. 3. Flow diagram of the Quantum HAL algorithm described.
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Abstract. Human use of categories exhibits a prototype effect; concepts
become more defined through a conversation. Modelling these gradual
clarifications of what a word signifies is equally important in human
- computer interactions, for example in interactions about geographic
concepts and the information that is needed in a given situation. We
address here the simplified, but essentially realistic, question of what is
meant by “map” and how the concept is refined. We apply the methods
Aerts, Gabora and Rosch have described and explore how they can be
integrated into practical systems.

In this paper we explore the optimal selection of a map through a
conversation with the client to elucidate their intentions. The example
case contains effects which are similar to the “guppy effect” that is known
from the literature and is a key reason to apply quantum mechanical
formalism. The results are promising, and we sketch the extension to the
construction of “custom made” maps from layers. This will provide users
with maps that optimally reflect what map elements should be visible
for use in a given context.

Keywords: Map prediction · Geographic concepts · Hilbert space model ·
SCOP

1 Introduction

Rosch has demonstrated prototype effects in the use of concepts by humans;
the same word may have different meanings depending on the context. Montello
[18] lists the influence of context as one of the most important problems for
GIScience research and asks for the incorporation of models of human categories
in Geographic Information Systems.

Aerts, Gabora, and Rosch have described a computational theory of proto-
types based on quantum mechanical formalizations [12]. Their survey of previous
efforts to compute categories showing prototype effects led them to conclude that
a formalization has to deal with contextuality, concept combination, similarity,
compatibility, and correlation [12]. It can be achieved with a formalism based
on quantum mechanics.

H. Atmanspacher et al. (Eds.): QI 2013, LNCS 8369, pp. 122–133, 2014.
DOI: 10.1007/978-3-642-54943-4 11, c© Springer-Verlag Berlin Heidelberg 2014
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The interactions between humans or between humans and computerized
information systems is based on the exchange of words (or graphical tokens on
maps) which are interpreted in the context of the conversation. The words used
may originally have a broad meaning (comparable to the “pet” in Aerst, Gabora,
and Rosch [12]); through conversation the context becomes more precise, and
the categories obtain more specific values (e.g. “goldfish” or “snake”).

Understanding the meaning of natural language words is important in infor-
mation retrieval and database access; the use of quantum mechanics as a for-
malization has been discussed [23], and compared there with other fuzzy and
probabilistic methods for data retrieval. The focus of the current paper is more
comparable to the work by Aerts and Gabora [3]; it intends to apply their insight
into the field of geographic information science [20] where, as mentioned before,
context is assumed to be one of the major research challenges today. The proof
of concept we present here is meant to understand the context of the user, and to
determine the best response, without relying on the user to select among tech-
nical terms that assume technical knowledge on the user side. This is somewhat
similar to a recommender system [17] for which others have suggested meth-
ods based on quantum mechanics. Relations can be drawn to Formal Concept
Analysis [13].

It should be possible for a user to describe their situation from their point of
view - as presented by other statements made - and for the system to then guess
the most likely optimal response to the user request. Through the additional
information, the produced contexts transform the concept initially invoked in
the base state into a more specific one.

The paper is intended as a “proof of concept” of the applicability of the
method in regards to a practical problem in Geographic Information Systems
[16]. For a proof of concept we restrict the selection to the selection of a number
of predetermined map types (e.g. street map, political map, map for hiking,
ski routes). The goal is a computational model which can be incorporated into
GIS software. The input for user preferences is produced by the authors by
introspection; a real-use system would need data from a user group. Aerts and
Gabora [11] have shown how such contextual frequencies can be obtained by
questionnaires. It is likely that methods of Volunteered Geographic Information
[14] could be used to obtain valid data for different user groups.

The paper is structured as follows: the next section outlines a brief survey
of prototype effects, methods to deal with them, and the computational model
Aerts, Gabora and Rosch propose; it concludes with an overview of the SCOP
model used here. That section is mostly intended to establish the terminology
used, and to make the paper self-contained. The following section discusses cat-
egories of maps, the map production process, and how maps are used to set
the stage for the production of “customized maps” in a given context. Section 4
introduces the example proof of concept case and the context-dependent selec-
tion probabilities. Section 5 connects two contexts in an entangled state. The
concluding section lists further application opportunities of quantum mechanics
in geographic information processing, and discusses research issues necessary to
overcome possible impediments to their widespread use.
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2 Review of Theories and Models for Categories

Rosch and Mervis [21] studied the internal structure of categories. They hypoth-
esised that family resemblance correlates with the prototypicality of items, and
used polls to confirm their hypothesis. They concluded that categorized elements
have some attributes in common with a prototype. This prototype can be seen
as a reference point for a concept [22]: The instances of a concept are more or
less prototypical and are ranked in a graded structure around the prototype.

They used fuzzy set theory [27] that is able to handle objects with graded
boundaries. Smith and Osherson [24] demonstrated that fuzzy sets cannot com-
pletely model how humans use concepts. They asked people to rate the typicality
of instances for the concepts: pet, fish, and pet-fish. It was found that a guppy
is more typical for the combination pet-fish than for the constituent concepts
(pet, fish).

Gabora et al. found that none of the then known theories formalize the effects
of: (1) contextuality, (2) concept combination, and (3) similarity, compatibility,
and correlation [12]. These three effects were analysed by Gabora [10]. She illus-
trates the contextual effect for a concept as shown in Fig. 1. Starting with no
contextual influence at time t0, concept p can collapse into all possible states
p1(t1), p2(t1), p3(t1), and p4(t1). Influencing the concept by a particular con-
text e3 the concept realizes state p3(t1). In state p3(t1) the concept can also
collapse into all states p1(t2), .., p4(t2). Where context e7 influences the concept
which collapses in state p7(t2).

Fig. 1. Influence from contexts to concept states, see Fig. 11.1 [10]

As a result of this analysis, Gabora et al. [3] presented a different formal-
ization for concepts. They called their approach state-context-property (SCOP)
formalism based on quantum mechanics. They mapped elements taken from
operational foundations of quantum mechanics like states, measurements, and
observables to concepts, contexts, and properties of human cognition, and they
chose Hilbert spaces as the foundation for the model. In Hilbert spaces all possi-
ble states for a concept can be included. An example with one concept in three
states and eight contexts is shown above in Fig. 1.



Select the Appropriate Map Depending on Context 125

The model is defined as a formal model [1] (Σ,M,L, μ, ν). The sets are:

– Σ = {p1, p2, ...} representing the states a concept can assume
– M = {e1, e2, ..., f1, f2, ...} including contexts for a concept
– L = {a1, a2, ...} containing properties or features for a concept

The functions are:

– μ (q, e, p) calculates the transition probability from one state q to another
state p under the influence of context e

– ν (p, a) weights the importance of one property a in a particular state p

If no context is applied to a concept, the state is called ground state xp̂ [4].
(1) The entanglement that is typically found in microscopic quantum system

can model combined concepts [11]. Combining two concepts with two distinct
probability values into one concept creates a new probability value that cannot
be split again into two probability values.

(2) The guppy effect described before can be formalized by the interference
effect [7]. The Liar [2], Ellsberg and Machina [6] paradoxes can also be formalized
with SCOP.

3 Characteristics of Geographic Maps

The American Heritage Dictionary provides four definitions of maps. The most
suitable in the scope of this paper is as follows:“A map is a representation, usually
on a plane surface, of a region of the earth ...”. As a representation, certain
features or aspects of geographic entities are not taken into account, whereas
others are emphasized [8]: A roadmap includes no isolines, but highlights the
highway.

Smith and Mark [25] listed properties of geographical concepts (geographers
use the term “feature”) and found: (1) Geographic objects are tied
intrinsically to geographic space and inherit many properties from it, such as
topology and geometry. (2) The scale used to categorize geographic objects
influences the concept used, for example: pond, lake, sea, and ocean. (3) The
boundaries of several geographic objects are indeterminate, e.g. beach, moun-
tain, and dune.

Maps cannot possibly show all geographic features found on the surface of the
earth. The cartographer produces a map for a set of potential users. In response
to their expected needs, the cartographer selects and highlights features which
are deemed important for the intended class of potential map users and, corre-
spondingly, omits other features. In mapmaking, these processes are subsumed
under the term “cartographic generalization” [19]. In practice, maps are catego-
rized often with respect to their potential use as street map, road map, ski route
map etc.
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4 Prediction of an Appropriate Map with a Hilbert
Space Model Within SCOP

This section applies SCOP to predict an answer for the question: “Which map
is appropriate for a given context?”, where the intended activities are used as
contexts. The usage of the model is illustrated in Fig. 2. A concept and a context
serve as input parameters. The model calculates the collapsed state and returns
it. In this collapsed state probability values for exemplars of the concept can be
calculated.

Fig. 2. Model for the prediction

The following example conversation may justify the example. A person states
to another “Yesterday, I bought a map.” What kind of map is meant remains
undefined for the second person; the concept “map” is in ground state, where all
maps have some non-zero probability to be meant. The first person continues:“I
plan to go on a bicycling trip.” Now the second person is influenced by the
context, and the state of the concept “map” collapses into a bicycling map. The
conversation may continue to indicate the region where the trip is planned, thus
further restricting the map (beyond what is modelled here).

Using SCOP, a computational model for his conversation is possible. We
implemented the relevant formulae [3] in the functional programming language
Haskell [15], using the available matrix calculation packages (eventually using
the standard implementations of GSL, BLAS or LAPACK).

To predict probability values, we define possible exemplars in Table 1 for the
set Σ. The set Σ also includes the ground state p̂. For the term exemplar, SCOP
also uses the term state of the concept.

Table 1. States of the concept map.

States of the concept, set Σ Kind of the map

p̂ Map
p1 Roadmap
p2 Hiking map
p3 City map
p4 Nautical chart
p5 Ski runway map
p6 Bicycling map
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Table 2 inherits properties for all elements giving set L. In Table 3 the weights
of the properties for each context are listed. These values are based on our own
experience and appear realistic; the values are sufficient for a proof of concept,
but are not the result of a representative experiment. Function ν uses this table.

The meaning of the concept “map” depends on the intended activity; the
mapmaker creates the map for the intended purpose and typically labels it
accordingly. We posit that users have, from experience, similar sub-categories
for “map”. Table 4 lists the intended activities the map should serve. These
activities are the contexts included into set M.

The input parameters for SCOP are the frequency values included in Tables 5
and 3.

At the start of the conversation the concept map is in ground state xp̂. In
this state none of the possible states is preferred. This results in a probability
for each state as found in the ground state, i.e. (1). The value 1800 consists of
the sum of the states without any context (342+252+ ..+252). The variable |u∇
indicates vectors of the Hilbert space. The sum identifies the selected vectors. In
the ground state all vectors available in the set M are chosen.

|xp̂∇ =
∑
u∗M

1◦
1800

|u∇ (1)

Table 2. Properties of the concept map.

Properties for the concepts, set L Layers of the map

a1 Road
a2 Lake
a3 Buildings
a4 Mountains
a5 Ski runs
a6 Bicycling lanes
a7 Hiking path
a8 Contour lines

Table 3. Weights of the properties by context

Weights for properties e1 e2 e3 e4 e5 e6

a1 road 0.9 0.5 0.9 0.3 0.4 0.8
a2 lake 0.6 0.8 0.2 0.8 0.7 0.3
a3 buildings 0.7 0.5 0.99 0.5 0.5 0.01
a4 mountains 0.1 0.9 0.4 0.8 0.7 0.7
a5 ski runway 0.01 0.6 0.01 0.01 0.99 0.01
a6 bicycling lanes 0.4 0.6 0.5 0.1 0.01 0.99
a7 hiking path 0.01 0.99 0.4 0.01 0.4 0.6
a8 contour lines 0.1 0.99 0.1 0.6 0.7 0.5
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Table 4. Activities used as contexts for maps

Contexts, set M Activities for maps

1 I choose a map
e1 I choose a map for navigation
e2 I choose a map for hiking
e3 I choose a map for sight seeing
e4 I choose a map for sailing
e5 I choose a map for skiing
e6 I choose a map for bicycling

Table 5. Frequency values in percentages and Hilbert States

Exemplars e1 e2 e3 e4 e5 e6 1
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roadmap 54 216 9 27 21 105 13 39 5 15 7 7 19 342
hiking map 0 0 77 231 2 10 0 0 2 6 0 0 14 252
city map 4 16 3 9 67 380 18 54 0 0 5 5 22 396
nautical chart 7 28 0 0 0 0 69 207 0 0 0 0 15 270
ski runway map 0 0 0 0 0 0 0 0 93 279 0 0 16 288
bicycle map 36 144 10 30 2 10 0 0 0 0 88 88 14 252

sum 404 297 505 300 300 100 100 1800

By influencing the ground state with the context e6 “I plan to go on a bicycling
trip” the state collapses into state xp6 , where 100 states are present.

|xp6∇ =
Pe6 |xp̂∇√∀xp̂|Pe6 |xp̂∇

=
∑
u∗e6

1◦
100

|u∇ (2)

With the function μ the weight of each map type (p1.. p7) can be checked. This
equation yields a value between zero and one. A value closer to one identifies a
highly appropriate exemplar, a value close to zero an inappropriate one.

For example, to check if the nautical chart is an appropriate map in state
xp6 , the projector Pe4 for nautical charts is used.

μ (p4, e4, xp6) = ∀xp6 |Pe4|xp6∇ = 0 (3)

For state xp6 , the probability for nautical charts equals zero, whereas the prob-
ability for the bicycle map equals 0.88. This is calculated as:

μ (p6, e6, xp6) = ∀xp6 |Pe6|xp6∇ = 0.88 (4)

In this state the weight of the properties can also be calculated with Eq. (5). To
calculate the weight of a road in the state xp6 the equation is:

ν (xp6 , a1) = 0.8 (5)
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The property of a map to show roads has a weight of 0.8 in state xp6 and is
therefore an important property, in contrast to the property ski-run (0.01). This
values indicates whether the map should include this layer or not. This example
will therefore include roads and will exclude ski-slopes. The calculated relevance
of a property could be used to produce maps on demand for particular activities
(currently, maps on demand are produced when user select the layers explicitly,
which is usually too demanding for non-technical users and introduces confusing
jargon; who knows what “bathymetry” is and when it is used? - but it should
be used on maps used for sailing and boating!)

If we take the above conversation to be between a potential map user and
a map producing service, then SCOP could be included in the program and
calculate the probability for given maps, given the known contexts. If a map
type receives a clear preference, it can be produced for the user. If not, additional
questions can be asked to obtain more context from the user. These contexts can
be processed partially, as suggested by Weiser and Frank [26].

5 Prediction of an Appropriate Map Combining Cycling
and Buying of a Map

In this section we combine the concept of “map” from the previous section with
a concept of “buying things”; in this situation effects like the known “guppy-
effect” can occur, and can be handled through the formalism of “entanglement”
from quantum mechanics [7].

In both concepts “buying a bicycle map” occurs and connects the two. The
frequencies from Tables 6 and 5 declare the input values. Table 6 includes two
contexts influencing the concept “I buy things”, modelled as Hilbert space Hbuy.
Context f1 includes the context cycling. As a further step, context f2 appends
the context map to f1. Context f2 will result in an entangled state with the
second Hilbert space.

Table 6. Frequency values in percentages and Hilbert States for Hbuy

Context f1 f2 1
Exemplar I buy things for cycling I buy a map for cycling I buy things

Freq States Freq States Freq States

Bread 1 4 0 0 30 900
Milk 3 12 0 0 28 840
Rain jacket 13 52 0 0 14 420
First aid kit 32 128 0 0 13 390
Bicycle chain 21 84 0 0 8 240
Cycle helmet 19 76 0 0 3 90
Road map 4 16 13 13 1 30
Bicycle map 7 28 87 87 3 90
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The second Hilbert space Hmap models the values from Table 5. The context
e6 is selected for entanglement. Context e6 and f2 declare the same context shown
by essentially equivalent statements. This is the foundation for entanglement,
which brings different received informations into a single context. The following
Eq. (6) describes this mathematically.

e6, f2 ∈ Mmap,buy (6)

SCOP uses the tensor product to describe combined systems; the tensor prod-
uct combines all possible combinations of the basic states [4]. The entanglement
set Mmap,buy is defined including the states from f2, e6. To create this state
the two concepts f2 and e6 are combined by the Cartesian product, where each
element from f2 is combined with each element from e6. The entangled state is
formulated by Eq. (7).

|s∇ =
∑

u∗Emap,buy

1◦
100

|u∇ ∅ |u∇ (7)

Projectors can be applied to this state, to predict an answer for: “If one buys
a map for cycling, is this a bicycle map?”. The answer predicted by the model
is a probability value for the projected exemplar. For the exemplar bicycle map
the following projector is used:

Pmap
F2

∅ 1buy =
∑

u∗Fmap
2

|u∇∀u| ∅ 1 (8)

Applying this projector to the state s and reducing this state will result in the
following equation:

|s◦∇∀s◦|buy =
∑

u∗Ef
map
2

→Ef
map
2

1
100

|u∇∀u| (9)

By applying function μ to the reduced state, the probability for the bicycle
map can be determined, which equals 0.88; much higher than the probability
for roadmap, with a value of 0.07. The value is also higher than the probability
in both independent contexts; entanglement connects the information gained in
one and reinforces it in the other.

6 Conclusions and Future Research

Geographic concepts often exhibit prototype effects: the prototypical moun-
tain to a Swiss person is not what a mountain in the Netherlands looks like.
There are a great many similar effects - indeed it is hard to find a geographic
concept which does not exhibit a prototype effect. The understanding of context
effects is considered a major impediment for GIScience [18].
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A computational model to deal with prototype effects is urgently needed.
The selection of layers for maps is just one example of context effects: a proto-
typical map (say, a road map) serves many purposes, but by far not all. Berendt
et al. described how to build maps depending on aspects of uses [8]. The exper-
iments reported here show that with SCOP a computational solution to maps
constructed from individual layers for particular purposes becomes possible.

SCOP is an appropriate model for formalizing concepts influenced by con-
texts, including the combination of concepts. Aerts [5] presented a further model
using Fock spaces [9] to treat the disjunction of concepts.

The experiment reported here shows that the SCOP formalism of computing
with contexts and combinations of contexts can be applied to geographic con-
cepts. It promises (1) to help with the selection of maps for particular uses and
(2) to contribute to the construction of maps on demand for a particular use
without asking the user to construct the maps from individual layers.

Interesting and challenging research questions remain:

– Collect for several meaningful communities the data describing how they use
the concept of map, following the example of Aerts and Gabora [3].

– Extend the example from before to include the selection of maps depending
on the intended location of an activity. This increases the number of ground
states for the concept “map”, namely by regions (e.g. road map for Italy,
France...)

– Users do not desire specific map types, they request maps with certain infor-
mations which are relevant for their planned activities. Instead of using SCOP
to identify the map type suitable for an intended activity, one could identify
the map layers which contain relevant information for the planned activity
directly, and produce customized maps for different activities. Selecting the
layers to be shown seems possible with SCOP, leaving the issues of graphi-
cal interactions between the map layers; the customized map must not only
include the desired layers, but present them in a form which allows reading
the presented information!

– Apply the SCOP computational model to other geographic concepts, e.g.
town, village, mountain, forest, and observe how this affects statistical data
collected across communities with different conceptualizations of e.g. forest.
What is the correct answer to the question of the total forest area of Europe,
if one exist considering the differences in the concept “forest”?

For inclusion in a practical system, the SCOP formalism could be further devel-
oped into an incremental algorithm; in particular, give computational solutions
to adding one additional ground state or an additional context (the first seems
difficult, the second trivial).
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Abstract. Conceptual entanglement is a crucial phenomenon in quan-
tum cognition because it implies that classical probabilities cannot model
non-compositional conceptual phenomena. While several psychological
experiments have been developed to test conceptual entanglement, this
has not been explored in the context of Natural Language Processing.
In this paper, we apply the hypothesis that words of a document are
traces of the concepts that a person has in mind when writing the doc-
ument. Therefore, if these concepts are entangled, we should be able to
observe traces of their entanglement in the documents. In particular, we
test conceptual entanglement by contrasting language simulations with
results obtained from a text corpus. Our analysis indicates that concep-
tual entanglement is strongly linked to the way in which language is
structured. We discuss the implications of this finding in the context of
conceptual modeling and of Natural Language Processing.

Keywords: Quantum cognition · Conceptual entanglement · Quan-
tum interaction · Information retrieval · Semantic modeling · Theory of
concepts

1 Introduction

The extraction of relevant information from the web has been a fundamental area
of research and development during the last decades [13]. In particular, several
quantum-inspired approaches have been elaborated to perform standard tasks in
Information Retrieval (see [28,29,31,38,40,41], and references therein). In order
to extract information from the web it is necessary to establish a representation
model. The most efficient techniques represent documents and terms as vectors
in high dimensional spaces. These vectors are built based on statistical analy-
ses of large corpora of web pages and documents. Examples of such methods
include Latent Semantic Analysis [19], Hyperspace Analogue to Language [26],
and Latent Dirichlet Allocation [15]. While these approaches have been shown
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to be extremely useful for information retrieval (IR) tasks, they rely on that
counting term occurrences is sufficient to represent the meaning of a document
in a corpus [37].

Increasing evidence shows that a term-based analysis of a corpus of text is
not sufficient to perform information extraction in an optimal way [11,12]. As
an alternative to this term-based methodology, semantic-based models which
emphasize the conceptual information that is represented by the terms in the
document have been proposed [22,23]. This means that the statistical informa-
tion that we can obtain from the distribution of terms in a document can be
complemented with conceptual information that we have in advance [25].

The concept-based methods applied in Natural Language Processing (NLP)
and IR are based mainly on the use of Ontologies [30], and Word-net like struc-
tures [21]. These approaches have been useful to improve syntactic approaches
to NLP and IR. However, they cannot account for elements that have been iden-
tified as of primary interest in concept theory. Namely, the context-dependence of
concepts’ meaning [34], and the non-compositional meaning of concept
combinations [35]. While Word-net and some ontology-based approaches con-
sider context, it has been shown that it is computationally unfeasible to handle
context-sensitivity in general [27,36]. Moreover, none of both approaches con-
siders the non-compositionality of concept combination.

To overcome these limitations, quantum-inspired models have been proposed
[6,7]. In the quantum approach to concepts, the conceptual entity is assumed to
be contextual. This means that its meaning emerges from its interaction with a
certain context, analogous to how quantum states become actual after interacting
with a measurement apparatus. Moreover, the mathematical formalism of Fock
space allows to model the emergence of non-compositional meaning in conceptual
combinations [2,3].

Conceptual entanglement has been investigated to detect quantum behav-
iour in the phenomenology of concepts [8,9,17,18]. The discovery of conceptual
entanglement has been crucial because it implies that a classical probability
framework is not sufficient to describe the non-compositionality of conceptual
phenomena [16]. Particularly when a concept combination is entangled, a strong
dependence between the terms that form instances of this concept combination
is found. Such dependence is revealed by statistical tests, the so-called Bell-like
inequalities [5].

The aim of the present paper is to investigate whether conceptual entangle-
ment is of significant importance on written texts. In particular, we view a piece
of text as a trace of the concepts the subject who write had in mind at the while
writing (for a complete elaboration of this perspective see [10]). From here, we
assume that it is possible to measure conceptual entanglement by observing sta-
tistical properties of these conceptual traces. A previous attempt to investigate
this aspect is [4]. However, they analyze one concept combination only. We want
to go one step further and investigate the extent to which entanglement can be
found by automatic methods. If conceptual entanglement is significant on the
web, then non-classical probabilities should become the standard framework for
modeling in IR and NLP.
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In Sect. 2 we explain how to measure entanglement using a co-occurrence
corpus of text; in Sect. 3 we explain the methodology we used to analyze the
corpus; and Sects. 4 and 5 illustrate the results and discuss their relevance.

2 Conceptual Entanglement

2.1 Detecting Conceptual Entanglement

Following [5], if we want to test whether two abstract entities A and B are
entangled, we need to set two observables for each entity, each observable hav-
ing two possible outcomes. Hence, we will denote these observables and their
outcomes by A = {A1, A2}, A∗ = {A∗

1, A
∗
2} for entity A, and B = {B1, B2},

and B∗ = {B∗
1, B

∗
2} for entity B. Next, we assume that each measurement X ∈

{A,A∗, B,B∗} corresponds the value 1 if X1 is observed and −1 if X2 is observed.
From here, we can define a composed experiment XY ∈ {AB,A∗B,AB∗, A∗B∗},
corresponding to 1 in case X1Y1 or X2Y2 is observed, and to −1 in case X1Y2

or X2Y1 is observed.
If we perform each experiment XY a large number of times, we can estimate

the expected value E(XY ) of each composed experiment. The Clauser-Horn-
Shimony-Holt (CHSH) inequality states that if

−2 ≤ E(AB) + E(A∗B) + E(AB∗) − E(A∗B∗) ≤ 2, (1)

is not hold, then the entities are entangled. The violation of (1) implies the
non-existence of one Kolmogorovian probability model for the considered joint
experiments [1].

It is important to mention that the entities A and B need not be physical
entities. The CHSH inequality is a statistical test that verifies whether or not it
is possible to model a set of data in a classical probability setting.

For example in [8], the entities A and B refer to the concepts Animal and Acts,
respectively. The possible collapse states, i.e. the observables, of these entities
were defined as A = {‘Horse’,‘Bear’}, A∗ ={‘Tiger’,‘Cat’}, and B ={‘Growls’,
‘Whinnies’}, and B∗ ={‘Snorts’,‘Meows’}. A psychological experiment where
participants chose the combination that best represented the combination The
Animal Acts, considering elements from AB, AB∗, A∗B, and A∗B∗ was per-
formed, and the expected values of these joint observables were found to vio-
late (1) with value 2.4197. Hence, it is concluded that the concepts A and B are
entangled.

2.2 Concepts and Meaning of a Document

Someone who is writing a piece of text usually does not have the exact wording
in mind, but only a particular idea of the intended meaning. If an idea is not
concrete enough, it is hard to express it properly. Usually in this case, the idea
is broken into a set of interconnected concrete ideas. These concrete ideas are
easier to put into sentences, which in turn form the paragraphs of the document.
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Moreover, it is only at the time of writing of a document that the words that
express these concrete ideas are elicited. Hence, in this process we can identify
two steps: an abstract idea is converted into several concrete ideas, and these
concrete ideas are converted into sentences. Following this reflection, we propose
a cognitive interpretation of the notion of meaning for pieces of text. More
in particular, we assume that the process of converting an abstract idea into
concrete ideas corresponds to the formation of entities of meaning, and that
these entities of meaning collapse to states which are represented by text, in
the form of words or sentences. The meaning of a piece of text can thus be
understood as the solution of an inverse problem, i.e. the piece of text plays the
role of the collapsed state of an entity of meaning, a so-called conceptual trace,
and the meaning of the piece of text is obtained by identifying the entity of
meaning that collapsed to this piece of text.

In this work we do not focus on the inverse problem formulation as a general
framework for meaning in documents. For an in-depth elaboration of this idea
we refer to [10]. Instead, we assume the existence of concepts underlying the
meaning of a document, and test whether or not these conceptual traces exhibit
entanglement in text corpora.

2.3 Measuring Conceptual Entanglement in Text Corpora

Let T be a corpus of text containing a set of terms E. Note that each term t ∈ E
can be considered an instance of one or many concepts. For example, the term
Dog can be considered an instance of concepts Pet, Animal, Mammal, etc. Let
C1, C2 ⊆ E be sets of exemplars of concepts C1 and C2, respectively. Let W be
a positive integer. We say that concepts C1 and C2 W -co-occur if there exists a
sequence s of W consecutive terms in the corpus T such that one term in C1 and
one term in C2 co-occur in s. We call s a window of size W . In general, we can
compute the W -co-occurrence frequency FW (C1, C2) : C1 ×C2 → N of exemplars
of concepts C1 and C2 within windows of size W in the corpus.

Suppose we choose C1 and C2 to have 4 terms each, and we partition C1 =
{A,A∗} and C2 = {B,B∗} such that each set in each partition has two terms.
We then have that A and A∗ (B and B∗) are pairs of exemplars referring to
concept C1 (C2). Hence, the co-occurrence measurements AB,A∗B,AB∗ and
A∗B∗ can be used to measure the entanglement of concepts C1 and C2 in the
corpus T . This is analogous to what has been done in previous psychological
studies in conceptual entanglement [4,8,17,18]. However, in this work, instead
of performing a psychological experiment where participants are requested to
choose co-occurrent terms from a list, we extract these co-occurrences from a
corpus of text.

For each pair XY ∈ {AB,A∗B,AB∗, A∗B∗}, we compute their term co-
occurrence

FW (XiYj) =
∑
s◦T

N(XiYj , s), (2)

where i, j ∈ {1, 2} and N(Xi, Yj , s) is equal to one if the pair XiYj co-occurs in
the window s of the corpus T , and zero if not.
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From here we can estimate the expected values of each co-occurrence experiment

E(XY ) =
F (X1Y1) + F (X2Y2) − F (X1Y2) − F (X2Y1)
F (X1Y1) + F (X2Y2) + F (X1Y2) + F (X2Y1)

. (3)

Note that to measure conceptual entanglement in a corpus of text, we must first
identify a set of exemplars for each concept. However, a multitude of concepts can
be built upon a list of words, so that it is not possible to know in advance how to
group words representing instances concepts. Indeed, psychological experiments
where participants have to build categories choosing groups of words from a list
show that, although some words fall regularly into similar kinds of categories,
every word set can be potentially considered as a category [32].

Instead of proposing a methodology to identify concepts, we assume that
relevant words in a document correspond to relevant traces of the concepts that
entail the document’s meaning. Hence, without knowing exactly which concepts
we are measuring entanglement for, we are able to represent them by sets of terms
C1 and C2 from the relevant words of a document, following a given relevance
criterion. Therefore, we propose the following brute force algorithm to measure
entanglement:

1. Select two sets C1 and C2 of relevant terms from the corpus, having k words
each.

2. Verify the CHSH inequality for all the elements (c1, c2) ∈ P(C1, 4)×P(C2, 4),
where P(C, n) is the set of all the possible subsets of length n of the set C.

In order to perform the second step of the algorithm, we verify if there is a way
of partitioning c1 and c2 such that (1) is violated. To do so, we consider all the
possible row/column permutations of the 4 × 4 matrix FW (c1, c2), and apply
the expected co-occurrence formula (3) to estimate (1). Note that we have 12
different partitions for each c1 and c2, leading to 144 partitions for (c1, c2). Hence,
we say that C1 and C2 are entangled if there exists (c1, c2) ∈ P(C1, 4)×P(C2, 4)
such that (at least) one of the 144 co-occurrence matrices generated from (c1, c2)
violates the CHSH inequalities. Our aim is to estimate the likelihood of finding
instances (c1, c2) of concepts C1 and C2, such that they can be partitioned in a
way that violates the CHSH inequalities.

2.4 Statistical Considerations

Consider the following question: Assume we know in advance the term co-
occurrence frequency distribution of the corpus T , i.e. we know the probability
ρT (n) that two terms co-occur n times in T for each value of n; what is the like-
lihood of building concepts (c1, c2) ∈ P(T, 4) × P(T, 4) that violate the CHSH
inequality in the corpus T?

In order to answer this question, we need to compare the kinds of co-occurrence
matrix that ρT (n) delivers, to the kinds of frequency matrix that violate the
CHSH inequality.

Note that inequality (1) is likely to be violated if the three first elements
have the same signs and relatively large values, and the fourth term has the
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Table 1. Co-occurrence table that violates the CHSH inequality. The leftmost column
and top row indicate terms of concepts C1 and C2, respectively. The interior 4×4 table
indicates the types of co-occurrence. L stands for ‘Large’ and S stands for ‘Small’. If
we switch columns B2/B1 and B′

2/B
′
1, the inequality is violated with a negative value.

FW () B1 B2 B′
1 B′

2

A1 L S L S
A2 S L S L
A′

1 L S S L
A′

2 S L L S

opposite sign and a relatively large value. Indeed, in such case each row leads
to an expected value near to 1 (or −1), except for the fourth row, which leads
to an expected value near to −1 (or 1). Table 1 shows an example of frequency
data that violates the CHSH inequality with a positive value near 4.

From Table 1 we infer that if ρT (n) does not have co-occurrences that are
relatively larger than others, then the likelihood of violating the CHSH inequality
is low. Therefore, a corpus T will be able to violate the CHSH inequality if ρT (n)
is significant for small values of n, and also for large values of n. This argument
is qualitative and intuitive, but it can be better explained with an example.
Suppose the corpus T has a maximal co-occurrence equal to 100, and the co-
occurrences are divided into three groups of values: small values GS = {1, ..., 5},
intermediate values GI = {10, ..., 20}, and large values GL = {50, ..., 100}. Note
that, in case that all the co-occurrence frequencies belong to a single group, the
expected value E(XY ) given by Eq. (3) is likely to be small. However, if one of
the values belong to GL and all the other values belong to GS , then E(XY )
will be dominated by the value in GL. A list of other possible cases is shown in
Table 2.

From Table 2 we can see that intermediate co-occurrence values tend to
diminish the likelihood if violating the CHSH inequality. Note that the ques-
tion we analyze in this section assumes we can choose the partition of c1 and
c2 that maximizes the evaluation of (1). Indeed, Table 2 considers the partition
that maximizes the evaluation of (1) for each case.

Table 2. Co-occurrence frequencies and their expected values determined from Eq. (3).
Intermediate frequencies tend to decrease the likelihood of obtaining large expected
values.

Frequencies Expected Frequencies Expected Frequencies Expected
values values values

1 SSSS S 5 IIII S 9 LIII L
2 ISSS S 6 LSSS L 10 LSSL L
3 ISSI I 7 LSSI L 11 LSIL L
4 ISII S 8 LSII L 12 LIIL L
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3 Method

3.1 Statistical Language Analysis

We first computed the probability pB(λ) that, given a distribution ρ(n) of co-
occurrences, there exists a partition for two random sets, having 4 terms each,
that violates the CHSH inequality. The distribution of co-occurrences ρ(n) is
modeled with a B-bounded Zipfian distribution ZB(λ, n) of parameter λ. We
have chosen a Zipfian distribution because it has been shown to model the
statistics of term co-occurrence in English language [24], and we bounded the
distribution by a parameter B to model the fact that the term co-occurrence fre-
quency is limited by the corpus size. We also computed the likelihood of finding
conceptual entanglement using homogeneous and Poisson distributions. These
distributions do not exhibit significant entanglement so we do not present their
results. However, we want to remark that this is consistent with the reasoning
of Sect. 2.4 because neither homogenous nor Poisson distributions assign large
probabilities to both small and large values of n.

3.2 The Collection of Documents

We evaluate the aforementioned entanglement test on TREC collection: WSJ8792.
Lemur 4.121 is used for indexing. The collection is pre-processed by removing stop
terms and applying the Porter stemmer. Among TREC topics 151–200, 32 topics
with more than 70 truly relevant documents (judged by users) are selected. For
certain topics, all truly relevant documents are segmented into windows of W con-
secutive terms (W = 20, 10, 5, in our experiments). We considered two alternative
ways to automatically generate concepts C1 and C2:

� Top 20 frequent terms {ti1, t
i
2, . . . , t

i
20} of each topic i = 1, ..., 32, are extracted

from the set of truly relevant documents. Concept Ci
1 consists of top 10

frequent terms, i.e., {ti1, t
i
2, . . . , t

i
10}, and the rest of terms forms concept Ci

2.
� Top 20 terms with largest tf-idf are extracted from the set of truly relevant

documents, denoted as {t∗1
i
, t∗2

i
, . . . , t∗20

i} (ranked by tf-idf values). Concept
Ci

1 consists of top 10 terms, i.e., {t∗1
i
, t∗2

i
, . . . , t∗10

i}, and the rest of terms
form concept Ci

2.

Then the windows are used to count the co-occurrence frequencies between exem-
plars from concepts Ci

1 and Ci
2 for each i = 1, ..., 32.

4 Results

4.1 Statistical Language Analysis

Figure 1 shows the probability pB(λ) described in Sect. 3.1, for 0 < λ ≤ 2,
and B = 10, 50, 100, 500, on the left. Note that for λ ∼ 0.3, the proportion
1 Lemur is an open source project that develops search engines and text analysis tools

for research and development of information retrieval and text mining softwares.
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Fig. 1. Entanglement probability for random co-occurrence matrix on the left, and two
examples of Zipfian distributions at the center and right, respectively.

of entangled concepts is maximized for all values of B. Note that English co-
occurrence distribution is estimated to be a Zipfian distribution of parameter
0.66 ≤ λ ≤ 0.8 [24]. This range exhibits around 50% of entanglement when B ≥
50. This indicates that when the size of the corpus is statistically significant, and
hence co-occurrences are allowed to have large values, the likelihood of finding
entangled concepts is non-neglectable. Therefore, we predict that entanglement
is not a rare effect, and hence it should be observable from the brute force
procedure proposed in Sect. 2.3.

The middle and right plots in Fig. 1 show the Zipfian co-occurrence distri-
butions ZB(λ, n) for B = 100, using λ = 0.3 and λ = 0.7, respectively. These
distributions confirm that when co-occurrence probability mass is concentrated
on small and large values, conceptual entanglement is more likely to be detected.

4.2 Corpus Analysis

Figure 2 shows the proportion pW (T ) of entangled subsets of terms for the differ-
ent topics in the corpus. The black curve corresponds to W = 20, the gray curve
corresponds to W = 10 and the black dashed curve corresponds to W = 5. The
left plot is based on the data obtained using the frequency relevance method,
and the right plot is based on the tf-idf method. In both cases, pW (T ) is strictly
decreasing with respect to W . Moreover, we observe that pW (T ) does not have
uniform variation with respect to W . For example in the tf-idf case (right plot
in Fig. 2), pW (7) has a very close value for W = 5, 10, and 20. Analogously,
pW (T ) does not exhibit major variations for topics 1, 10, 16, 19, and topics 24
to 32 for W = 20 and 10. However, pW (T ) exhibits a major change when W
changes from 10 to 5 for most topics. Therefore, given two topics T1, T2, and two
window sizes W1,W2, we cannot ensure that pW1(T1) < pW1(T2) implies that
pW2(T1) < pW2(T2). Hence, there is not a topic-sorting such that pW (T ) is a
strictly decreasing function for W = 5, 10, and 20 simultaneously. Analogously,
for the term-relevance method, while topics have a different set of relevant terms,
there is not a unique sorting of the topics set that leads to pW (T ) decreasing for
W = 20, 10 and 5 simultaneously.
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Fig. 2. Entanglement probability for the 20 most frequent terms. The left plot corre-
sponds to the co-occurrence data for most frequent terms, and the right plot corre-
sponds to the co-occurrence data for the td-idf highest ranked terms.

In both methods, topics were sorted such that p5(T ) is decreasing. By doing
so, we avoid that curves cross each other because pW (T ) is strictly decreasing
with respect to W . Note that pW (T ) reaches significantly larger values for the
tf-idf method. This is consistent with the fact that tf-idf is a better indicator of
term relevance than the term frequency.

4.3 Distribution of Co-occurrences

We computed the histogram ρT (n) for each topic T in the corpus, and for each
window size. In Fig. 3, we plot examples considering window sizes W = 20, 10

Fig. 3. Co-occurrence distribution examples extracted from the tf-idf method. The first
row corresponds to the third topic, and the second row corresponds to topic number 7.
The left plot of each row corresponds to W = 22, the center plot to W = 10 and the
right plot to W = 5.
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and 5, for topics 3 and 7 of the co-occurrences data obtained from the tf-idf
method.

We observe that when the window size decreases, ρT (n) tends to decrease the
number of co-occurrences on intermediate values. However, large co-occurrence
values remain probable. From here we infer that when the window size decreases,
the co-occurrence distribution becomes similar to a bounded Zipfian distribution.
Observe for example the first row of Fig. 3; we can see qualitative changes on
the probability distribution for the different window sizes. This is consistent
with the strong changes observed in pW (T = 3) of Fig. 2 for the tf-idf method.
Analogously, the second row does not exhibit major changes in its co-occurrence
distribution. This is again reflected in pW (T = 3) of Fig. 2, where no major
changes are also observed. This is consistent with the fact that the pW (T ) is
strictly decreasing with respect to W .

5 Conclusion

We performed a qualitative analysis to corroborate that conceptual entanglement
is a significant effect in written texts. The analysis is based on the hypothesis that
pieces of text are traces of concepts, and that such concepts entail the meaning
of documents [10]. This corroboration is supported by an analysis of statistical
properties of the English language, and of 32 topic-structured text corpora. Our
language analysis indicates that the statistical co-occurrence distribution of the
English language has a significant tendency to build conceptual entities that are
entangled. Particularly, term co-occurrence matrices built from a distribution
that models co-occurrence of words in English, violate the CHSH inequality in
around 50% of the cases. It should be noted that this analysis is based only on
the statistical distribution of co-occurrences of English, and does not consider
any semantic or linguistic aspect of the English language.

We further analyzed a corpus separated by 32 topics, and found results con-
sistent with the language analysis. For each topic, we built a matrix computing
the term co-occurrence of the 10 most relevant terms with respect to the next
10 most relevant terms, considering window sizes W = 5, 10, and 20 to measure
co-occurrence. From here, we computed the proportion of 4 × 4 sub-matrices
of the co-occurrence matrix that violate the CHSH inequality. We observe that
the tf-idf relevance delivers more entanglement than the term frequency rele-
vance measure. This is consistent with the fact that td-idf is a better relevance
measure than term frequency. Although some topics exhibit more entanglement
than others, we identify a strong tendency to find conceptual entanglement for
most topics. Moreover, conceptual entanglement decreases with respect to the
window size. This is consistent with the fact that word correlations are noisy for
large window sizes [24]. For short window sizes, we have more chance to keep
only meaningful correlations, and hence entanglement is observed with more
clarity. In addition, we found that for shorter window sizes, the distribution of
co-occurrences becomes more similar to a bounded Zipfian distribution. Indeed,
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in Fig. 2, we can see that when the distributions look more like a Zipfian distrib-
ution, i.e. when W = 5, the average conceptual entanglement for words selected
by the tf-idf relevance measure is 50% of entanglement.

A fundamental and novel element of this work is that we do not build in
advance the concepts for which we will measure entanglements. Instead, we
assume that relevant words of a topic-corpus are relevant traces of the con-
cepts that entail the meaning of the topic [10]. Hence, if the co-occurrence of
these traces violates the CHSH inequality, we conclude that the concepts that
entail the meaning of the document are entangled. Therefore, we do not focus on
the generation of categories or taxonomies. However, we also suggest that one
interesting extension of this work would consist in testing conceptual entangle-
ment from categories that are automatically built as in [33,39]. We also propose
to study why some topics exhibit more entanglement than others, count term co-
occurrence in structured sentences, e.g. Frame-Net [14], rather than in windows
of text, and evaluate other statistical conditions that provide a more precise
classification of entanglement [20].
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Abstract. In this work, we conduct a joint analysis of both Vector
Space and Language Models for IR using the mathematical framework
of Quantum Theory. We shed light on how both models allocate the
space of density matrices. A density matrix is shown to be a general
representational tool capable of leveraging capabilities of both VSM and
LM representations thus paving the way for a new generation of retrieval
models. We analyze the possible implications suggested by our findings.

1 Introduction

Information Retrieval (IR) has nowadays become the focus of a multidisciplinary
research, combining mathematics, statistics, philosophy of language and of the
mind and cognitive sciences. In addition to these, it has been recently argued
that IR researchers should be looking into particular concepts borrowed from
physics. Particularly, it was first evoked in 2004 in Van Rijsbergen’s pioneering
manuscript “The Geometry of Information Retrieval” [15] that Quantum Theory
principles could be beneficial to IR.

Despite Quantum Theory (QT) being an extremely successful theory in a
number of fields, the idea of giving a quantum look to Information Retrieval could
be at first classified as unjustified euphoria. However, the main motivation for
this big leap should be found in the powerful mathematical framework embraced
by the theory which offers a generalized view of probability measures defined
on vector spaces. Events correspond to subspaces and generalized probability
measures are parametrized by a special matrix, usually called density matrix or
density operator. From an IR point of view, it is extremely attractive to deal with
a formalism which embraces probability and geometry, those being two amongst
the pillars of modern retrieval models. Even if we believe that an unification
of retrieval approaches would be out-of-reach due to the intrinsic complexity
of modern models, the framework of QT could give interesting overviews and
change of perspective thus fostering the design of new models. The opening lines
of Van Rijsbergen manuscript perfectly reflect this interpretation: “It is about a
way of looking, and it is about a formal language that can be used to describe
the objects and processes in Information Retrieval” [15]. To this end, the last
chapter of Van Rijsbergen’s book is mainly dedicated to a preliminary analysis
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of IR models and tasks by means of the language of QT. Amongst others, the
author deals with coordinate level matching and pseudo-relevance feedback.

Since then, the methods that stemmed from Van Rijsbergen’s initial intu-
ition provided only limited evidence about the real usefulness and effectiveness
of the framework for IR tasks [13,20,26,29]. Several proposed approaches took
inspiration from the key notions of the theory such as superposition, interfer-
ence or entanglement. In [28], the authors use interference effects in order to
model document dependence thus relaxing the strong assumption imposed by
the probability ranking principle (PRP). An alternative solution to this problem
has been proposed in [26], in which a novel reranking approach is proposed using
a probabilistic model inspired by the notion of quantum measurement. In [13],
the authors represent documents as subspaces and queries as density matrices.
However, both documents and queries are estimated through passage-retrieval
like heuristics, i.e. a document is divided into passages and is associated to a
subspace spanned by the vectors corresponding to document passages. Differ-
ent representations for the query density matrix are tested but none of them
led to good retrieval performance. In [20], the authors work out an explicit
interference formula in a topic model setting. Although marginal improvements
are obtained over the baseline model, the ad-hoc application of the interference
formula does not provide solid evidence towards the usefulness of the theory
itself.

In order to give a stronger theoretical status to QT as a necessary or more
general theory for IR, some authors step back into more theoretical consider-
ations exposing potential improvements achievable over state-of-the-art mod-
els [9,10,14,23]. In [10], the author shows how detection theory in QT offers
a generalization of the Neyman-Pearson Lemma (NPL), which is shown to be
strictly linked to the PRP. Dramatic potential improvements could be obtained
by switching to such more general framework. Widdows [23] observed that the
Vector Space Model (VSM) lacked a logic like the Boolean model. Through the
formalism for quantum logic illustrated by Birkoff and Von Neumann [1], Wid-
dows defines a geometry of word meaning by expressing word negation based
on the notion of orthogonality. Recently, the work by Melucci and Van Risjber-
gen [11] and Song et al. [18] offered a comprehensive review of QT methods
for IR along with some insightful thoughts about possible reinterpretations of
general IR methods (such as LSI [3]) from a quantum point of view. This paper
shares the main purpose of the latter works.

In the ending section of his book, Van Rijsbergen calls for a reinterpretation
of the Language Modeling (LM) approach for IR by means of the quantum
framework. To our knowledge, such an interpretation has not been presented
yet in the literature and this work can be considered as a first attempt to fill
this gap. We provide a theoretical analysis of both LM and the VSM approach
from a quantum point of view. In both models, documents and queries can
be represented by means of density matrices. A density matrix is shown to be
a general representational tool capable of leveraging capabilities of both VSM
and LM representations thus paving the way for a new generation of retrieval
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models. As a conclusion, we analyze the possible implications suggested by our
findings.

2 Quantum Probability and Density Matrices

In QT, the probabilistic space is naturally encapsulated in a complex vector
space, specifically a Hilbert space, noted H

n. We adopt the notation |e1∇, . . . , |en∇1
to denote the standard basis vectors in H

n. In QT, events are no more defined as
subsets but as subspaces, more specifically as projectors onto subspaces. Given a
ket |u∇, the projector |u∇◦u| onto |u∇ is an elementary event of the quantum prob-
ability space, also called dyad. A dyad is always a projector onto a 1-dimensional
space. Generally, a unit vector |v∇ =

∑
i Γi|ui∇, Γi ∀ H,

∑
i |Γi|2 = 1, is called a

superposition of the |ui∇ where |u1∇, . . . , |un∇ form an orthonormal basis for H
n.

A density matrix ∂ is a symmetric positive semi-definite matrix of trace
one. In QT, a density matrix defines the state of a system (a particle or an
ensemble of particles) under consideration. Gleason’s famous theorem [5] ensures
that a density matrix is the unique way of defining quantum probability mea-
sures through the mapping μρ(|u∇◦u|) = tr(∂|u∇◦u|). The measure μ ensures that
∈|u∇, μ(|u∇◦u|) ∅ 0. This is because, μρ(|u∇◦u|) = ◦u|∂|u∇ ∅ 0 because ∂ is posi-
tive semi-definite. Moreover, if |u1∇, . . . , |un∇ form an orthonormal system for Hn,
the probabilities for the dyads |ui∇◦ui| sum to one, i.e. they can be understood
as disjoints events of a classical sample space. Given that

∑
i |ui∇◦ui| = In, the

identity matrix, we have
∑

i tr(∂|ui∇◦ui|) = tr(∂
∑

i |ui∇◦ui|) = tr(∂) = 1. There-
fore, for orthogonal decompositions of the vector space2, a quantum probability
measure μ reduces to a classical probability measure.

Any classical discrete probability distribution can be seen as a mixture over
n elementary points, i.e. a parameter φΔ = (Δ1, . . . , Δn), Δi ∅ 0,

∑
i Δi = 1. The

density matrix is the straightforward generalization of this idea by considering a
mixture over orthogonal dyads3, i.e. ∂ =

∑
i Γi|ui∇◦ui|, Γi ∅ 0,

∑
i Γi = 1. Given

a density matrix ∂, one can find the components dyads by taking its eigendecom-
position and building a dyad for each eigenvector. We note such decomposition
by ∂ = RρR† =

∑n
i=1 ψi|ri∇◦ri|, where |r∇i are the eigenvectors and ψi their

corresponding eigenvalues. This decomposition always exists for density matri-
ces [12]. Note that the vector of eigenvalues φψ = (ψ1, . . . , ψn) belongs to the
simplex of classical discrete distributions over n points. If the distribution φψ lies
1 The Dirac notation establishes that |u↔ denotes a unit norm vector in H

n and ≥u| its
conjugate transpose.

2 In a more general formulation of the theory, a quantum probability measure reduces
to a classical probability measure for any set M = {Mi} of positive operators Mi

such that
∑

i Mi = In. The set M is called Positive-Operator Valued Measure
(POVM) [12]. Therefore, the properties reported in this paper which apply to a
complete set of mutually orthogonal projectors equally hold for a general POVM.

3 In general, the dyads in the mixture don’t need to be orthogonal. However, in this
case, the coefficients υi cannot be easily interpreted as the probabilities assigned by
the density matrix to each dyad.
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at a corner of the multinomial simplex, i.e. ψi = 1 for some i, then the resulting
density matrix consists of a single dyad and is called pure state. In the other
cases, the density is called mixed state.

Conventional probability distributions can be represented by diagonal density
matrices. In this case, a classical sample space of n points corresponds to the set
of projectors onto the standard basis {|e1∇◦e1|, . . . , |en∇◦en|}. Hence, the density
matrix corresponding to the multinomial parameter φΔ above can be represented
as a mixture, ∂θ = diag(φΔ) =

∑
i Δi|ei∇◦ei|. As an example, the density matrix

∂θ below corresponds to a classical probability distribution with n = 2, π is a
pure state and ∂ is a general quantum density, a mixed state:

∂θ =
1
2
|ea∇◦ea| +

1
2
|eb∇◦eb| =

(
0.5 0
0 0.5

)
, π =

(
0.5 0.5
0.5 0.5

)
, ∂ =

(
0.5 0.25
0.25 0.5

)
.

3 Looking at Language Models

In the Language Modeling approach to IR, each document is usually assigned a
unigram language model φΔd = (Δd1, . . . , Δdn), i.e. a categorical distribution over
the vocabulary sample space V (of size n), w ∀ V, pθd

(w) = Δdw [25]. A query
is represented as a sequence of terms {q1, . . . , qm}, sampled i.i.d. (independent
and identically distributed) from the document model. The score for a document
is obtained by computing the likelihood for the query to be generated by the
corresponding document model:

L({q1, . . . , qm}|φΔd) =
m∏

i=1

pθd
(qi).

This scoring function is generally called Query Likelihood (QL). On the other
hand, Kullback-Leibler (KL) divergence models can be seen as a generalization
of QL models introduced in order to facilitate the use of feedback information in
Language Modeling framework [25]. In KL-divergence models, both documents
and queries are assigned to unigram language models. The score for a document
is calculated as the negative query to document KL-divergence:

−KL(φΔq↑φΔd) = −
∑
w

Δqw log
Δqw

Δdw
.

3.1 Query Likelihood View

As presented in Sect. 2, conventional probability distributions can be seen as
diagonal density matrices. A straightforward quantum interpretation of the QL
scoring function can be obtained by associating a diagonal density matrix to each
document and consider a query as a sequence of dyads. Formally, we associate
the vocabulary sample space to the orthogonal set of projectors on the standard
basis, E = {|e1∇◦e1|, . . . , |en∇◦en|}. The density matrix ∂ for a document is a mix-
ture over E whose vector of weights corresponds to the parameter φΔd. Therefore,
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∂ = diag(φΔd) =
∑

i Δdi|ei∇◦ei|. It is straightforward to show that restricted to E ,
μρ generates the same statistics as pθd

(·), i.e. ∈w ∀ V:

μρ(|ew∇◦ew|) = tr(∂|ew∇◦ew|) =
∑

i

Δdi tr(|ei∇◦ei||ew∇◦ew|) = Δdw = pθd
(w).

In the query likelihood view, the query is represented as an i.i.d. sample of
word events. As word events correspond to projectors onto the standard basis,
we represent a query as a sequence of i.i.d.4 quantum events belonging to E ,
{|eq1∇◦eq1 |, . . . , |eqm∇◦eqm |}. Therefore, the score for a document is computed by
the following product:

L({|eq1∇◦eq1 |, . . . , |eqm∇◦eqm |}|∂) =
m∏

i=1

μρ(|eqi∇◦eqi |) =
m∏

i=1

pθd
(qi), (1)

which indeed corresponds to the classical QL scoring function. However, we
shall stress out an important point about the equation above. If the projectors
included in the query sequence are mutually orthogonal (as above), the calcula-
tion above behaves as a proper classical likelihood, i.e. the sum of the likelihoods
of all possible samples of length m is one. On the contrary, the product cannot be
considered as a classical likelihood because quantum probabilities for arbitrary
events does not need to sum to one. Further considerations on these issues will
be made in Sect. 6.

3.2 Divergence View

The KL scoring function computes a divergence between a query language model
φΔq and document language model φΔd. In QT, the KL-divergence is a special case
of a more general divergence function acting on density matrices called Von-
Neumann (VN) Divergence. Note ∂ =

∑
i ψi|ri∇◦ri|, and π =

∑
i δi|si∇◦si| the

eigendecompositions of two arbitrary density matrices. In the following, the log
function applied to a matrix refers to the matrix logarithm, i.e. the natural
logarithm applied to the matrix eigenvalues, log ∂ =

∑
i log ψi|ri∇◦ri|. The VN

divergence writes as:

VN (∂↑π) = tr(∂(log ∂ − log π)) =
∑

i

ψi log ψi −
∑
i,j

ψi log δj |◦ri|sj∇|2.

This divergence quantifies the difference in the eigenvalues as well as in the
eigenvectors of the two density matrices [21].

In order to see how the classical KL retrieval framework is recovered, we
assign a density matrix to the query very similarly to what has been done for
4 In quantum physics, the meaning of i.i.d. can be associated to the physical notion of

measurement. If a density matrix ρ represents the state of a system, an i.i.d. set of
m quantum events is obtained by performing a measurement on m different copies
of ρ and by recording the outcomes.
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a document. Precisely, ∂q and ∂d are diagonal density matrices such that ∂d =∑
i Δqi|ei∇◦ei| and ∂d =

∑
i Δdi|ei∇◦ei|. As ∂q (∂d) is diagonal in the standard

basis, its eigenvalues correspond to φΔq (φΔd), thus:

VN (∂q↑∂d) =
∑

i

Δqi log Δqi −
∑
i,j

Δqi log Δdj |◦ei|ej∇|2 =
∑

i

Δqi log
Δqi

Δdi
, (2)

which corresponds to the KL divergence. As conventional probability distribu-
tions correspond to diagonal density matrices, their eigensystem is fixed to be
the identity matrix. Intuitively, KL divergence captures the dissimilarities in
the way they distribute the probability mass on that eigensystem, i.e. by their
eigenvalues.

4 Looking at the Vector Space Model

In this section, we are attempting to look at the VSM [17] in a new way. In its
original formulation, no probabilistic interpretation could be given because of
the lack of an explicit link between vector spaces and probability theory [24]. In
the model, documents and queries are represented in the non-negative part of
the vector space Rn

+, where n is the number of terms in the collection vocabulary.
In VSM, each term corresponds to a standard basis vector. The location of each
object in the term space is defined by term weights (i.e. tf, idf, tf-idf ) on each
dimension. Similarity between documents and queries are computed through
a vector similarity score φq∗ φd, where φq, φd are the vector representations of the
query and the document. In [17], the authors show that normalizing document
vectors is important to reduce bias introduced by variance on document lengths.
By normalizing both document vector and query vector, the similarity score
reduces to the cosine similarity between the two vectors, which is an effective
similarity measure in the model [27]. From now on, we consider |q∇, |d∇ ∀ R

n
+,

the normalized (↑ · ↑2) query vectors. Documents can thus be safely ranked by
decreasing cosine ◦q|d∇ ∀ [0, 1], which cannot be negative because the ambient
space is R

n
+.5

4.1 Query Likelihood View

In this interpretation of the VSM, each document is associated to a probabilistic
“model” in the same spirit of the Language Modeling approach. We define a
5 In this paper, we do not explicitly take into account situations in which the vec-

tors could contain negative entries. For example, this could easily happen after the
application of Rocchio’s algorithm [16] in feedback situations or by reducing the
dimensionality of the vector space by LSI [3]. Besides the historically encountered
difficulties in the interpretation of such negative entries [6], in these particular cases,
the rank equivalence situations discussed here could not hold. However, we argue
that ignoring these situations causes no harm to the generality of our conclusions on
the need of an enlarged representation space.
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density matrix ∂ for the document as ∂d = |d∇◦d|, which is a pure state, i.e.
its mixture weights are concentrated onto the projector |d∇◦d|. Note that this
density matrix does not have a statistical meaning. It has been determined by
merely normalizing heuristic weighing schemes and it cannot be related to a
statistical estimators such as Maximum Likelihood (MLE).

A query can be represented as the quantum event corresponding to the sub-
space spanned by |q∇. This subspace naturally corresponds to the dyad |q∇◦q|.
Hence, a query can be seen as the sequence of quantum events of length one
{|q∇◦q|}. In this setting, the likelihood given the document model is calculated by:

L({|q∇◦q|}|∂d) = μρd
(|q∇◦q|) = tr(∂d|q∇◦q|) = tr(◦q|d∇◦d|q∇) = |◦q|d∇|2, (3)

The above calculation shows that the quantum “likelihood” assigned to the
event |q∇◦q| by the density ∂d is the square of the cosine similarity between
the query and the document. When restricted to the non-negative domain,
the square function is a monotonic, increasing transformation. This means that
μρd

(|q∇◦q|) rank= ◦q|d∇, i.e. the two formulations lead to the same document rank-
ing.

4.2 Divergence View

According to the original VSM, queries and documents should share the same
representation and the scoring function should be a distance measure between
these representations. In the previous formalization, this initial paradigm seems
apparently lost. The following alternative quantum interpretation of the VSM is
perhaps closer to the original vision of the model. We associate a density matrix
both to the document and to the query. Specifically, those density matrices
would be pure states, projectors onto the corresponding vectors, i.e. ∂d = |d∇◦d|,
∂q = |q∇◦q|. It turns out that computing the Fidelity measure [12] between
density matrices produces a ranking function equivalent to cosine similarity:

F(∂q, ∂d) = tr(
√↔

∂q∂d
↔

∂q) = tr(
√

|q∇◦q|d∇◦d|q∇◦q|) = |◦q|d∇|tr(∂q) = |◦q|d∇|,
(4)

obtained by noting that ∂q is a projector thus ↔
∂q = ∂q, and tr(∂q) = 1. As

|q∇, |d∇ ∀ R
n
+, ranking by Fidelity measure is equivalent to ranking by cosine

similarity, thus F(∂q, ∂d)
rank= ◦q|d∇.

5 A Joint Analysis

In this section, we will try to summarize the commonalities and the differences
arising from the quantum formalizations of the two models given in the preceding
sections. The following analysis is succinctly reported in Table 1. As a starting
point, we shall note that the ambient space for both models is the Hilbert space
H

n, where n is the size of the collection vocabulary. Each standard basis vector
E = {|e1∇, . . . , |en∇} is associated to a word event. Therefore, the vocabulary
sample space corresponds to the set of projectors onto the standard basis vectors
{|ei∇◦ei|}n

i=1.
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Table 1. Summary of the representations for documents and queries and the scoring
functions of the two studied methods.

Query likelihood view

Query Document Scoring
VSM {|q↔≥q|} ρd = |d↔≥d| μρ(|q↔≥q|)
LM {|eq1↔≥eq1 |, . . . , |eqm↔≥eqm |} ρd =

∑

w θdw|ew↔≥ew| ∏

i μρq (|eqi↔≥eqi |)
Divergence view

VSM ρq = |q↔≥q| ρd = |d↔≥d| F(ρq, ρd)
LM ρq =

∑

w θqw|ew↔≥ew| ρd =
∑

w θdw|ew↔≥ew| −VN (ρq∩ρd)

5.1 Query Likelihood View

In query likelihood interpretations, the query is represented as a sequence of
i.i.d. dyads. In the VSM, the sequence contains one dyad corresponding to the
projector onto the query vector {|q∇◦q|}. On the contrary, in the LM approach
the sequence contains a dyad for each classical word event, i.e. {|eq1∇◦eqi |}m

i=1.
Besides the number of dyads included in the sequence, a major difference

distinguishes the two formalizations. Contrary to probabilistic retrieval models
such as LM, a query is not considered as a sequence of independent classical
word events but as a single event and a particular kind thereof. The query event
is a superposition of word events. This can be seen because the vector |q∇ can be
expressed, up to normalization, as |q∇ =

∑
w f(w) |ew∇ where f(w) is the weight

for term w in the query vector. This kind of event cannot be expressed using set
theoretic operations neither it has a clear classical probabilistic interpretation:
it does not belong to E thus it can only be justified in the quantum probabilistic
space. Arguing further, we would say that, in the case of VSM, term weighting
methods aim at estimating the “best” query event, i.e. the event which is the
most representative for the information need of the user. Intuitively, if a single
choice would be given to us on what to observe, we would rather be observing
in the “direction” of important words in the query.

It follows from the considerations above that VSM creates query represen-
tations by accessing the whole projective space through appropriate choices of
f(w). On the contrary, LM “sees”, and consequently can handle, only events
from the classical sample space E . However, the principled probabilistic foun-
dations of the model give the flexibility of adding an arbitrary number of such
events in the sequence, thus refining query representation6. In the next section,
this kind of duality between VSM and LM approaches will be strengthened by
analyzing the properties of the density matrices used in the two models.

Before continuing, we shall make one last consideration about the “likeli-
hood” written in Eq. 1. This equation and its corresponding maximization algo-
rithm have already been proposed by Lvovsky et al. [7] in Quantum Tomography
applications in order to achieve a Maximum Likelihood Estimation (MLE) of a

6 This is indeed the practice of Query Expansion (QE), see for example [2].
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Fig. 1. The set D2 visualized using the Bloch sphere parametrization [12]. Highlighted
in black are the region of D2 used by LM (to the left) and VSM (to the right).

density matrix. As we have already pointed out, L reduces to a classical like-
lihood if and only if the projectors in the sequence are picked from the same
eigensystem. Therefore, the product in its general form cannot be understood
as a proper likelihood. We believe that it would be interesting to focus future
research in finding a proper likelihood formulation in the quantum case that
would enable principled statistical estimation and Bayesian inference (see [22]
for a recent attempt in formulating a Bayesian calculus for density matrices).

5.2 Divergence View

In the divergence view, a density matrix is associated both to the document and
to the query and the scoring function is a divergence defined on the set Dn of
n × n density matrices. Valuable insights can be provided by noting that the
models gain access to different regions within Dn. As an example, in Fig. 1, we
plot the set D2 using the well known Bloch parametrization [12]. Highlighted in
black are the regions of the space used by LM (to the left) and VSM (to the
right). Distinct regions are likely to denote different representational capabilities.

In the case of LM, density matrices are restricted to be diagonal, i.e. mix-
tures over the identity eigensystem. For two density matrices to be different, one
has to modify the distribution of the eigenvalues. Therefore, LM ranks based
upon differences in the eigenvalues between density matrices. The picture of the
VSM approach appears as the perfect dual of the preceding situation. Query
and documents are represented by pure states, i.e. dyads. Whatever the dimen-
sionality of the Hilbert space, the mixture weights of these density matrices are
concentrated onto a single projector. In order to be different, density matrices
must be defined over different eigensystems. Therefore, VSM ranks based on the
difference in the eigensystem between query and document density matrices.

The set of diagonal density matrices is represented in Fig. 1 (left). Any two
antipodal points on the surface of the sphere correspond to a particular eigen-
system. Diagonal density matrices are restricted to the identity eigensystem.
However, they can delve inside the sphere by spreading the probability mass
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across their eigenvalues. The black circle in Fig. 1 (right) highlights pure states
with real positive entries. These naturally lie on the surface of the Bloch sphere.

In summary, the VSM restriction to pure states leaves free choice on the eigen-
system while fixing the eigenvalues. Conversely, by restricting density matrices
to be diagonal, i.e. classical probability distributions, LM leaves free choice on
the eigenvalues while fixing the eigensystem. Leveraging both degrees of freedom
by employing the machinery of density matrices seems to be a natural step in
order to achieve more precise representation for documents and queries. VSM
and LM also differ in the choice of scoring functions. The former uses the Fidelity
measure which is a metric on Dn. The latter uses an asymmetric divergence on
Dn. More insights into these differences are given in the next section, where we
try to contextualize our considerations by referring to common IR issues and
concepts.

6 A Joint Interpretation and Perspectives

In [25], the author presents KL divergence models as “essentially similar to
the vector-space model except that text representation is based on probability
distributions rather than heuristically weighted term vectors”. The analysis done
in the previous section extends this remark and highlights how VSM and LM
leverage very different degrees of freedom by allocating different regions in Dn.
However, no clue is given about what should be the meaning of the eigensystems
and the eigenvalues from an IR point of view, nor why controlling both could be
useful for IR. We will try to give some perspective for the potential usefulness
of the enlarged representation space.

In basic bag-of-words retrieval models such as LM or VSM, terms are assumed
to be unrelated, in the sense that each term is considered to be an atomic unit
of information. To enforce this view, LM associates to each term a sample point
and the VSM a dimension in a vector space. Our analysis showed that sample
points correspond to dimensions in a vector space. The heritage left by LSI [3]
suggests that a natural interpretation for such dimensions is to consider them
as concepts. In this work, we interpret projectors onto directions as concepts.
Because terms are considered as unrelated, the projectors onto the standard
basis |e1∇◦e1|, . . . , |en∇◦en| in H

n form a conceptual basis in which each term
labels its own underlying concept.7

From this point of view, LM builds representations of queries and docu-
ments by expressing uncertainty on which concept chosen from the standard
basis represents the information need. On the contrary, VSM does not have the
flexibility of spreading probability weights. However, it can represent documents
and queries by a unique but arbitrary concept. In VSM, the similarity score is
7 In [8], each basis of a vector space is considered as describing a contextual property

and the vectors in the basis as contextual factors. We prefer not to adopt such inter-
pretation for two reasons: (1) in this paper, classical sample spaces are exclusively
associated to orthonormal basis and (2) we believe that referring to concepts leads
to a more general formulation, better tailored to our needs.
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computed by comparing how similar the query concept is to the document con-
cept. In this picture, the cosine similarity reveals to be a measure of relatedness
between concepts. In LM, the score is not at all computed on concept similarity,
but by considering how the query and the document spread uncertainty on the
same conceptual basis.

In order to see how this all could be instantiated, let us suppose that com-
pound phrases such as “computer architecture” express a different concept than
“computer” and “architecture” taken separately. Modeling interactions between
terms has been a longstanding problem in IR (for example, see [4]). We con-
jecture that a very natural way to handle such cases stems from our analysis.
Assume that both “computer” and “architecture” are associated to their cor-
responding single term concepts, i.e. |ec∇◦ec|, |ea∇◦ea|. The concept expressed
by the compound could be associated to a superposition event |kca∇◦kca| where
|kca∇ = f(c)|ec∇ + f(a)|ea∇ and f is a weight function (assuming normalization)
expressing how compound and single term concepts are related. In this setting,
the enlarged representation space turns out to be the perfect fit in order to
express uncertainty on this set of concepts. One could build a density matrix
associated both to a query and to a document assigning uncertainty to both
single term concepts |ec∇◦ec|, |ea∇◦ea| and compound concepts |kca∇◦kca|. This
could be done, for example, by leveraging quantum estimation methods such
as described in [7]. As we have pointed out before, the VN divergence could
be the right scoring function in order to take into account both divergences in
uncertainty distribution and concept similarities. The practical instantiation of
such general framework can be found in [19]. Experiments on several TREC
collections show that the model leads to higher retrieval effectiveness than the
existing models (in particular, LM).

As a last remark, we shall point out that the considerations made until now
do not necessitate of the whole machinery of complex vector spaces. We do not
have a practical justification for the usefulness of vector spaces defined over the
complex fields (see [29] for a discussion on these issues). However, we speculate
that these could bring improved representational power and thus remains an
interesting direction to explore.

7 Conclusion

In this work, we showed how VSM and LM can be considered dual in how they
allocate the representation space of density matrices and in the nature of their
scoring functions. In our interpretation, VSM adopt a symmetric scoring func-
tion which measures the concept similarity. LM fixes the standard conceptual
basis and scores documents against queries based on how they spread the prob-
ability mass on such basis. We argued that leveraging both degrees of freedom
could lend a more precise representations of documents and queries and could be
especially effective in modelling compound concepts arising from phrasal struc-
tures. The soundness and usefulness of this general setting has been confirmed
experimentally in [19].
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Abstract. Complex numbers are a fundamental aspect of the math-
ematical formalism of quantum physics. Quantum-like models devel-
oped outside physics often overlooked the role of complex numbers.
Specifically, previous models in Information Retrieval (IR) ignored com-
plex numbers. We argue that to advance the use of quantum models of
IR, one has to lift the constraint of real-valued representations of the
information space, and package more information within the represen-
tation by means of complex numbers. As a first attempt, we propose
a complex-valued representation for IR, which explicitly uses complex
valued Hilbert spaces, and thus where terms, documents and queries
are represented as complex-valued vectors. The proposal consists of inte-
grating distributional semantics evidence within the real component of
a term vector; whereas, ontological information is encoded in the imagi-
nary component. Our proposal has the merit of lifting the role of complex
numbers from a computational byproduct of the model to the very math-
ematical texture that unifies different levels of semantic information. An
empirical instantiation of our proposal is tested in the TREC Medical
Record task of retrieving cohorts for clinical studies.

1 Introduction

In quantum theory, states are represented by vectors defined on a complex-valued
Hilbert space. Complex numbers are a fundamental aspect in the mathematical
formalism of quantum physics. For example, mathematically, the quantum inter-
ference term in the law of total probability for disjoint events arises because the
probability amplitudes of events are modelled by complex numbers. Quantum-
like formalisms were proposed to model systems outside of physics, for exam-
ple in cognitive science, decision making, economy, etc. In information retrieval
(IR), the pioneering work by van Rijsbergen [1] showed that the quantum for-
malism encompasses many state-of-the-art retrieval models; subsequent works
proposed many quantum-like models for IR [2]. Common to all these proposals
is the assumption that information objects (queries, documents, etc.) are repre-
sented in real-valued Hilbert spaces, even when the key modelling aspect is the
quantum interference phenomenon [3]. Zuccon and Piwowarski argued that this
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assumption is not imposed by the models themselves, which, being grounded on
the mathematics of quantum theory, allow for complex valued representations.
Instead it is rooted in the difficulties of understanding how complex numbers
could be obtained from term counts in documents [4].

We derive a complex-valued representation of information by encoding
semantics by complex numbers. The proposal helps to increase the “seman-
tic power” of traditional semantic space models for IR, by combining different
sources of semantic evidence. The intuition underlying our proposal stems from
the observation that different models of semantic spaces for IR and text cate-
gorisation [5–8] apparently share a joint limitation: they are minimally semantic
only, inasmuch as all they utilise is the distributional meaning of words based on
their co-occurrence in context. Although not measured explicitly, this limitation
probably constrains their performance as well. This long-standing convention has
been relying on the use of real numbers only. Our proposal of creating a complex-
valued information object grounded in semantic information allows to go beyond
the use of mere distributional semantics and includes, e.g., paradigmatic vs. syn-
tagmatic elements of word meaning [9,10] to merge term co-occurrence statistics
with ontological information, e.g., from WordNet [11].

Using an example from medical IR and departing from an earlier study on
the use of semantics in such a task [12], we empirically demonstrate how a more
sophisticated model of word semantics is implemented in Hilbert space by means
of complex numbers. While the retrieval performance is better, we must point
out that storage requirements double.

The paper is structured as follows. In Sect. 2, we briefly discuss the major
types of bi- and tripartite theories of word meaning which were consulted to
engineer mathematical objects with a higher than usual capacity for informa-
tion representation. Section 3 inspects random indexing used for model build-
ing. Section 4 discusses experiment design. Section 4.2 interprets the results and
Sect. 5 concludes the paper.

2 From Signs to Meaning: Engineering Sign Spaces

Next, we provide a brief account of the theories of meaning that were consulted
for engineering the complex-valued representation of word meaning proposed.

In semiotics, a sign (e.g., a word, as well as non-linguistic symbols or clues) is
defined as a unity of form and content. Signs are characterised by many impor-
tant characteristics, which are captured by the following typology:

– Signs are located in some concrete or abstract space vs. having a temporal,
e.g., causal nature;

– They are bi- or tripartite. Bipartite theories go back to Aristotle (form vs. sub-
stance) and St. Augustine (content vs. expression); they found their way into
20th century general linguistics thanks to Ferdinand de Saussure whose sign
as word form vs. word meaning was contrasted by American semiotics, itself
relying on a tripartite sign concept, adding pragmatics as a third component
by the question for whom is a sign meaningful;
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– Wherever we happen onto a meaningful word or sentence, it is always an
instance of a sign, which lends importance to designing such spaces for com-
puter processing.

When focusing on linguistic signs, an alternative way to distinguish between
kinds of word meaning is to juxtapose “meaning is use” (i.e., the distribu-
tional hypothesis proposed by Wittgenstein [13], Harris [14] and Firth [15]), with
“meaning is change” (stimulus-response theories of Bloomfield [16], Morris [17]
and Uexkull [18]), and “meaning is equivalence” (referential theories, e.g., by
Peirce [19] and Frege [20]). It is of great importance that because none of these
theories are able to account for word semantics alone, one has to regard word
meaning as being composite. This in turn leads to the insight that unless this
compound nature of word meaning is encapsulated in mathematical objects, less
progress beyond today’s IR models can be realistically expected. The proposal
put forward aims to address this observation.

Metric spaces are often used to represent signs by assigning word meaning as
substance to a certain location expressed by its coordinates as form. What lends
importance to such “charged” locations goes back to another aspect of word
semantics specified by Harris’ distributional hypothesis [14], stating that words
able to replace one another in the same context have highly similar meaning.
This is the cornerstone upon which the meaningfulness of semantic spaces rests.
Our approach here will be to expand on this practice by unifying language use
with its conceptual underpinnings, and merge them as the form and content
side of signs, the building blocks of using complex vector space for information
representation.

3 Bringing Different Semantics Together:
A Complex-Valued Representation of Information

Inspired by the observation made in Sect. 2, we hypothesise that a combination of
different sources or types of semantic information is achieved using complex num-
bers for the representation of information objects in IR models. Such a proposal
would provide a means for generating a representation of information based on
complex numbers, which could form the basis for more advanced quantum-like
models for IR.

In this section, we describe how our proposal is instantiated, i.e., how a
complex-valued representation of terms, documents and queries are generated
that brings together different types of word semantics. To do so, we combined
previous techniques for random indexing and concept-based document indexing,
which are briefly outlined in the next paragraphs.

3.1 Random Indexing

Random indexing does not rely on the use of computationally intensive matrix
decomposition algorithms like singular value decomposition (SVD) to achieve a
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fairly low-dimensional representation of a document or term space. This makes
random indexing a much more scalable technique in practice as it builds an
incremental word space model in a two-step process as follows [7,21]:

– First, every context (e.g., each document or each word) in the data is assigned
a unique and randomly generated representation called an index vector. These
index vectors are sparse, high-dimensional, and ternary, that is, their dimen-
sionality (k) is in the order of thousands, and they consist of a small number of
randomly distributed +1s and -1s, with the rest of the elements of the vectors
set to 0;

– Then, context vectors are produced by scanning through the text, and every
time a word occurs in a context (e.g., in a document, or within a sliding
window), that context’s k-dimensional index vector is added to the context
vector for the word in question. Words are thus represented by k-dimensional
context vectors that are effectively the sum of the words’ contexts.

Document vectors are simply the sums of their constituent word vectors,
hence the document space is also k-dimensional. The number of dimensions is
defined by k, and random indexing does not provide an explicit way of computing
it, being a parameter of the model. These dimensions are not topics, in contrast to
other low-dimensional embeddings such as latent semantic indexing [5]. Efficient
and extendable open source implementations of random indexing exist [22].

3.2 Concept-Based Document Indexing

In concept-based indexing, documents are represented by concepts rather than
terms, as is instead the case for traditional term-based representations. Concepts
are usually defined by an ontology or are knowledge-based, and different strings
of text are represented by the same concept, indicating that these have identical
meaning. For example, in the medical domain, the expressions “heart attack”
and “myocardial infarction” have the same meaning and are usually mapped
to the same underlying concept. The simpler form of concept-based indexing
consists of extracting concepts from the textual content of documents and then
representing documents as a bag-of-concepts (BOC) vector, as opposed to the
traditional bag-of-words (BOW) approach. More advanced forms of concept-
based indexing have been proposed; for example, in concept-based indexing for
medical IR, Koopman et al., 2012, and Zuccon et al., 2012 capture the relations
(implicit or formal, respectively) between concepts encoded in the ontology of
reference [23,24]. These approaches are, however, beyond our scope.

We consider a simple BOC representation, where documents correspond to
vectors of concept identifiers, and we thus assume that a mapping between strings
of texts and concepts exist. In the experiments of Sect. 4, we use the procedure
outlined in Koopman et al. [12], which involves converting both queries and
documents to concepts1 using the medical natural language processing system
called MetaMap [26]. Both documents and queries are thus represented not as
1 Specifically, concepts from the SNOMED-CT medical ontology [25].
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Table 1. Term and concept statistics for the TREC Medical Records Track collection.

Unique terms 218,574 Unique concepts 36,467
Total terms 40,212,729 Total concepts 67,183,177

their original terms but as concept identifiers from the SNOMED-CT ontology.
A standard IR indexing and retrieval process can then be applied to the concept
documents and queries.

A concept may correspond to an n-gram of text, e.g., concept 165664003
refers to “Entire articular process of cervical vertebra”; likewise, an n-gram (or
just a single word) may stand for several concepts. As such, the term statistical
behaviour observed in language does not always apply to concept representa-
tions. In particular, concept representations does not obey Zipf’s law, i.e., do
not exhibit the typical long tail distribution of very infrequent concepts that
instead a term representation commonly exhibits [27]. Similarly, the number of
concepts used to represent a corpus of documents differ greatly from the size
of the term vocabulary for that same corpus. To exemplify this, we anticipate
the statistics obtained from the representations of the document corpus used
in the experiments of Sect. 4. Table 1 summarises the term and concept statis-
tics obtained when indexing the TREC Medical Records Track collection; more
details about the indexing procedure are given later. The table shows that while
the corpus contains many more concepts than terms, the vocabulary size for
concepts is one order of magnitude smaller than that for terms.

3.3 Combining Word Semantics: Documents in Complex Space

Our proposal revolves around using complex numbers to combine different forms
of semantic information. In the following, we consider two instances of semantic
information, namely distributional and referential. Specifically, we draw distrib-
utional semantic information using the random indexing technique described in
Sect. 3.1; whereas, referential semantic information is drawn from the concept-
based indexing procedure outlined in Sect. 3.2. The concept index vectors were
assigned to SNOMED-CT concepts, and corresponding document vectors were
derived from these by superposition. The position of an index term with a bipar-
tite sign nature in the complex vector space is composed from term frequency
and other statistics in a term-document matrix, and represented as the real com-
ponent of the resulting complex vector, with the representation of concepts from
the concept-based indexing constituting its imaginary component. Thereby in
any complex term weight, the real component encoded distributional semantics
whereas the imaginary component hosted referential semantics. Such weights are
then used to build complex term, document and query vectors for retrieval.

Because of the difference in vocabulary sizes between the term and concept
representations, the dimensionality of the term space and that of the concept
space does not match. The use of random indexing provides a solution to address
this issue, where the dimension of the random vectors is used to force a common
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dimensionality among the two sources of information, as detailed in the follow-
ing. Assume a document-term matrix of dimension m×n is built from the corpus
of documents, where m is the number of documents and n is the size of the term
vocabulary. Similarly, assume that the corresponding document-concept matrix
for that corpus is of dimension m×p, with p being the number of concepts in the
concept-vocabulary. By applying random indexing to both matrices maintaining
the number of dimensions of the random vectors to the same k, not only distrib-
utional semantic information is extracted from the respective original matrices,
but compatible representations of the two spaces are also obtained. That is, the
random indexing representation for of the original document-term matrix will
have a dimensionality of m × k; similarly, the random indexing representation
for concepts will have a dimensionality of m × k, eliminating issues of dimen-
sionality mismatches between vectors from term or concept representations. In
the representation proposed here, document similarity calculated as the inner
product between complex-valued vectors reflects both the distributional and the
ontological facets of document content. Similarly, the comparison of the vectors
associated to the real part of the representation with those associated with the
imaginary part would provide the similarity between the statistical term space
representation of a document and its ontological concept space representation.

Merging the two in a complex space is a trivial exercise, and it allows for
measurements of phase between a statistical term space vs. an ontological con-
cept space (see Fig. 1), with the inner product of document similarity reflecting
both the distributional and the ontological facets of content.

The method proposed here is similar to that suggested by van Rijsbergen,
where different functions of term statistics (specifically, term frequency and
inverse document frequency) are assigned to the real and imaginary components
of complex numbers [1]. That approach provided poor retrieval effectiveness, and
the power of representation was questioned [4]. However, differently from van
Rijsbergen’s proposal, we suggest to encode in the components of the complex
numbers semantic information (purely distributional information and higher-
level conceptual information) rather than functions of term statistics. Another
Hilbert space-based representation embedded the two kinds of semantics by a

Fig. 1. Schematic representation of a complex document space.
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seriation of the feature space and using the L2 space of square-integrable func-
tions [28]. Compared to that approach, the only preprocessing we need is map-
ping the terms to concepts, which is faster than seriation.

To aid the understanding of our method, we present a simple example.
Consider the following documents: D1 = “kidney stones”, D2 = “kidney”
and D3 = “renal calculi”, and the query Q = “kidney stones”. A term-
based retrieval system processing Q would return only the documents D1, D2

(in this order). However, renal calculi in D3 is actually a synonym of the
query kidney stones, while D2 is actually not relevant. Therefore, D3 should
be ranked higher than D2. Using our method, when a concept representation is
included, the phrases kidney stones and renal calculi both map to the same
SNOMED CT concept 155868000. Thus, our ranking approach would retrieve
D1 in the first rank position because of the contribution of both term and concept
weighting; and D3 above D2 because of the inclusion of the concept weighting.

4 Empirical Investigation

Next, we outline the experiment we devised to test our proposal. It describes an
initial effort to evaluate the merit of the complex-value representation; further
validation will be subject of future work.

4.1 Experiment Settings

To benchmark the efficiency of the proposed representation, we evaluated the
method in the IR task provided in the TREC Medical Records Track, which
consists in retrieving medical records of patients that satisfy clinical and demo-
graphic criteria specified as queries. We followed previous work in this area for
combining medical records belonging to a single patient into a unique document,
called a patient visit document [23,24]. We followed the procedure outlined by
Koopman et al. [12] to obtain a concept representation. Consistently with pre-
vious work, SNOMED-CT was chosen as ontology of reference for the concept
representation. In total, the collection consisted of 17,198 patient visit docu-
ments and 81 queries; statistics for both term and concept representations are
outlined in Table 1. Retrieval effectiveness was measured by mean average pre-
cision (MAP) and precision of the top 10 ranked documents (P@10), as well as
a precision-recall analysis.

We used Lucene 3.6.2 to index and retrieve documents, while the Seman-
ticVectors package, version 3.8 [22,29], was used to construct a random indexing
representation for terms and concepts bag of words. The context window of a
word or a concept was the full document. The use of the respective random
indexes for retrieval formed the two baselines, we contrasted our method against
in this evaluation, namely term-based (BOW) random indexing and concept-
based (BOC) random indexing. To implement our method, we constructed a
complex space by using the random indices of the BOW and BOC models as
described in Sect. 3.3. Queries were represented in the complex space in the same
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way as the documents. The number k of random dimensions was set to 200 for
all methods; experimentation with other dimensions is left for future work, but
initial results showed effectiveness not to vary considerably when changing k.

For the standard BOW and BOC models, the distance function used to judge
the similarity between documents and queries was the inner product of the cor-
responding real space (as formed by the random index). The counterpart of the
inner product in the complex space is the Hermitian product, but this yields a
complex number. Since complex numbers do not have a natural ordering, this
product cannot be used for ranking. We adapted the inner product to measure
the overlap between the real and complex part in the same way as in a real
space, yielding a real number. This approach is different from the similarity
measure defined for complex spaces in SemanticVectors. None of the spaces were
normalised, as the inner product is insensitive to the norm of vectors.

4.2 Results

The retrieval effectiveness of the methods is reported in Table 2. The mean aver-
age precision of the method that exploits the complex-valued representation is
found to be 15 % higher than that of the concept-based approach, and 40 %
higher compared to the term-based random indexing approach. Similar findings
are obtained when considering P@10. The analysis of the 11-point precision-
recall interpolation across all queries is showed in Fig. 2. The results suggest that
precision is markedly higher at lower recall levels; that is, the proposed complex-
valued representation retrieves more relevant documents in the top results than
baselines methods considered here.

The results obtained by all methods considered here are generally lower than
those reported by state-of-the-art IR method on the same task [30]. This suggests
that random indexing alone is not an effective method for document retrieval in
the medical domain. Similar findings were obtained when using random indexing
for query expansion in this task [31], although that method delivered higher
effectiveness than the results presented here. Nevertheless, in our evaluation,
we are interested in understanding the value the complex-valued representation
adds to the baseline methods, rather than the actual absolute effectiveness of the
instantiation investigated here. More effective instantiations of our proposal may
in fact consider distributional semantic techniques other than semantic indexing,
boosting effectiveness.

We further analysed the empirical results obtained in our experiments by
examining the values of the angles formed by the real and imaginary components

Table 2. MAP and P@10 for term retrieval, concept retrieval, and our method (labeled
“complex” retrieval).

Measure Term-based Concept-based Complex

MAP 0.0886 0.1084 0.1245
P@10 0.1593 0.1963 0.2235
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Fig. 3. Distribution of angles between real and imaginary components of complex vec-
tors representing documents from the TREC Medical Records Track collection. Angles
were expressed in radians and were normalised in the range [0, 2π].

Table 3. Mean value and extrema of phase

Mean absolute phase Lowest phase Highest phase

6.9520 -39.9163 28.6791

of the complex vectors representing documents. Figure 3 shows the distribution
of these angles in radians normalised in the range [0, 2π[, while Table 3 reports
the mean, maximum and minimum values of the (unnormalised) angles.

We observed that documents for which the angles assumed the lowest phase
value in radians across the collection (< −30) generally contained a large amount
of numerical laboratory test results, as well as long lists of medication brand
names and dosages. This sort of content is often not mapped to concepts by
MetaMap, which led to large amounts of information found in the term repre-
sentation missing in the concept representation.
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Vice versa, we observed that documents characterised by large angles (>
20 radians) are often short in length (due to the small number of terms), but
when mapped to concepts, their concept representation was considerably longer
than the term-based one (i.e., a document is represented by more concepts than
terms). This is the case when MetaMap assigns multiple concepts to the same
(or overlapping) strings of text. This finding suggests that in such cases, the
concept representation provides a more accurate description of the content of
short documents than the original term representation.

5 Conclusions

Complex numbers have a key role in the mathematical framework of quantum
theory; however they have been overlooked when using quantum-like formalisms
for modelling systems outside of physics: this is the case especially in IR. We
departed from previous approaches that considered complex numbers as a simple
computational byproduct of the models, and we proposed a novel representation
of information based on complex numbers which brings together different sources
of semantics. Specifically, in the empirical instantiation of our proposal, we mixed
distributional (contextual) and referential (ontological) semantics, although the
proposed approach is not limited to the particular techniques used to derive
semantics. The empirical evaluation of the proposed complex-valued represen-
tation has lead to encouraging results, although further evaluation is required.
We must point out that the storage requirement complex-valued representation
the sum of the a term-based and concept-based model, which means it is nearly
double than the space required by either. Given the sparse data structures, this
trade-off is hardly an issue.

The proposed model allows for the measurement of quantitative distances
between the distributional form of a word or a phrase and its referential repre-
sentation in a concept space. Technically this distance corresponds to the angle
between the real and imaginary components of information objects (terms, doc-
uments, etc.). The representation invites the study of the compositionality of
meaning in noun compounds from a new perspective, a field of intensive study
within Quantum Interaction [32,33]. In addition, user relevance is an indirect
but inherent component in our framework as the sources of referential seman-
tics within the representation (e.g., SNOMED-CT in the medical domain) are
constructed with domain-specific relevance in mind. A query effectively interacts
with both the distributional pattern of terms and the underlying concept space
where relevance judgements are implicitly encoded.
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Abstract. The well known quantum algorithm for search problem is
Grover’s one. However, its computational complexity is not a polyno-
mial in the input. In this study, we propose a polynomial time quantum
algorithm for it based on quantum binary search and an amplification
process. This process can be written as a quantum Turing machine form,
a so called generalized quantum Turing machine (GQTM). We introduce
the definition of GQTM and its language classes.

1 Introduction

Let X and Y be two finite sets and a function f : X ∇ Y . A search problem is
to find x ◦ X such that f (x) = y for a given y ◦ Y [1,2]. There are two different
cases for the search problem: (S1) one is the case that we know there exists at
least one solution x of f (x) = y in X [3]. (S2) The other is the case that we do
not know the existence of such a solution [5]. The second one is more difficult
than the first one. S1 belongs to a class NP, however S2 does to a class NP-hard.

Since S2 contains S1 as a special case, we will discuss S2 only here. A search
problem is defined by the following.

Problem 1. (S2) For a given f and y ◦ Y , we ask whether there exists x ◦ X
such that f (x) = y.

Without loss of generality for discrete cases, we take X = {0, 1, · · · , 2n − 1}
and Y = {0, 1}. Let Mf,X,Y be a Turing machine calculating f (x) and checking
whether f (x) = y with x ◦ X and y ◦ Y . It outputs 1 when f (x) = y,
0 otherwise. To solve this problem, one can construct a Turing machine Mf

running as follows:
Step1: Set a counter i = 0.
Step2: If i > 2n − 1, then Mf outputs “reject”, else calls Mf,X,Y with the

inputs x = i and y, so that Mf obtains the result.
Step3: If the result of Step 2 is 1, then it outputs x.
Step4: If the result is 0, then it goes back to Step2 with the counter i + 1.
In the worst case, Mf must call Mf,X,Y for all x to check whether f (x) = y

or not, so that the computational complexity of the searching algorithm is the
cardinal number of X.

H. Atmanspacher et al. (Eds.): QI 2013, LNCS 8369, pp. 172–183, 2014.
DOI: 10.1007/978-3-642-54943-4 15, c© Springer-Verlag Berlin Heidelberg 2014
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In the sequel sections, we construct a quantum algorithm to solve the problem
S2, and discuss on the computational complexity of it.

In the paper [11], we developed a new quantum algorithm for the search
problem, and showed that the computational complexity of it is polynomial of
n. Moreover, we applied this quantum algorithm into prime factorization [12].

2 Quantum Algorithm

A quantum algorithm is constructed by the following steps:

1. Prepare a Hilbert space H = C
∗n.

2. Construct an initial state |ψin∀ ◦ H.
3. Construct unitary operators U to solve the problem.
4. Apply them for the initial state and obtain a result state |ψout∀ = U |ψin∀.
5. If necessary, amplify the probability of the correct result.
6. Measure an observable with the result state.

In the first step, we define the Hilbert space depending on the problem. Let
C

2 be a Hilbert space spanned by |0∀ = (1, 0)t and |1∀ = (0, 1)t. A normalized
vector |ψ∀ = α |0∀ + β |1∀ on this space is called a qubit. Since we can use a
superposition of |0∀ and |1∀ as an initial state vector, the quantum algorithm is
more effective than the classical one.

One can apply the Hadamard transformation

UH =
1∈
2

(
1 1
1 −1

)

to create a superposition. The Hadamard transformation has a very important
role in a quantum algorithm. Applying (UH)∗n to the vector |ψ∀ = |0∀∅· · ·∅|0∀ ◦⎧
C

2
⎪∗n, we have

(UH)∗n |ψ∀ =
1∈
2n

2n−1⎨
i=0

|ei∀ ,

where {|ei∀} is a complete orthnormal system of
⎧
C

2
⎪∗n defined as

|e0∀ = |0∀ ∅ · · · ∅ |0∀ , · · · , |e2n−1∀ = |1∀ ∅ · · · ∅ |1∀ .

One can represent any positive integer less than 2n by |ei∀.
Here we introduce unitary gates, which are NOT gate, C-NOT gate and CC-

NOT gate. We call these gates fundamental gates. We can construct AND and
OR gates by the product of fundamental gates [8,9]. The NOT gate UNOT is
defined on a Hilbert space C

2 as

UNOT = |1∀ ↑0| + |0∀ ↑1| .
C-NOT UCN gate and CC-NOT UCCN are given on two and three qubit Hilbert
space as

UCN = |0∀ ↑0| ∅ I + |1∀ ↑1| ∅ UNOT

UCCN = |0∀ ↑0| ∅ I ∅ I + |1∀ ↑1| ∅ |0∀ ↑0| ∅ I + |1∀ ↑1| ∅ |1∀ ↑1| ∅ UNOT ,

respectively.
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2.1 Computational Complexity of a Quantum Algorithm

In order to discuss the computational complexity of a quantum algorithm, we
introduced fundamental gates above. Here we define the computational com-
plexity of a quantum algorithm as the number of fundamental gates in it. For
example, we say the computational complexity is n if the unitary operator U is
constructed by a product of n fundamental gates.

Moreover, we define a generalized quantum Turing machine (GQTM) using
a quantum channel and density operator. Based on GQTM we defined some
language classes. BGQPP is the language class which is recognized by a GQTM
in polynomial time with a halting probability 1/2. We proved that the class NP
in included by BGQPP [9,10].

3 Generalized Quantum Turing Machine

In this section, we discuss the generalized quantum Turing machine (GQTM)
[9,10] which contains the unitary quantum Turing machine as a special case.

3.1 Generalized Quantum Turing Machine

Let Q be a set of states including an initial state q0 and a set of final states {qF }
and Σ a set of alphabets including a blank symbol #. We denote a set of all
infinite sequences of alphabets in Σ as

Σ◦ = Σ × Σ × · · · = Σ→.

Let A ◦ Σ◦ be a sequence of alphabets representing the tape state. Each
tape alphabet has a unique index. We write the k-th tape alphabet ak as A (k).

The GQTM Mgq is defined by the quadruplet (Q,Σ,H, Λδ), where Λδ is a
quantum transition function from C = Q×Σ ×Z to C. Q and Σ are represented
by a density operator on Hilbert spaces HQ and HΣ , which are spanned by a
canonical basis {|q∀ ; q ◦ Q} and {|a∀ ; a ◦ Σ} , respectively. A tape configuration
A is a sequence of elements of Σ represented by a density operator on the Hilbert
space HΣ spanned by a canonical basis {|A∀ ;A ◦ Σ◦}. A position of the tape
head is represented by a density operator on the Hilbert space HZ spanned by a
canonical basis {|i∀ ; i ◦ Z}. Then a configuration of GQTM Mgq is described by
a density operator ρ in H ↔ HQ ∅ HΣ ∅ HZ . Let S (H) be the set of all density
operators in the Hilbert space H.

Here, we define the transition function

δ1 : R × Q × Σ × Q × Σ × Q × Σ × {0,±1} × Q × Σ × {0,±1} ∇ C.

A quantum transition function is given by a quantum channel

Λδ1 : S (H) ∇ S (H) ,

satisfying the following condition.
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Definition 1. Λδ1 is called a quantum transition channel if there exists a tran-
sition function δ1 such that for any quantum configuration ρ =

⎩
k

λk |ψk∀ ↑ψk|,
|ψk∀ =

⎩
l

αk,l |qk,l, Ak,l, ik,l∀,
⎩
k

λk = 1,←λk → 0,
⎩
l

|αk,l|2 = 1,←αk,l ◦ C it

holds

Λδ1 (ρ) ≡
∑

k,l,m,n,p,b,d,p∗,b∗,d∗
δ1
(

λk, qk,l, Ak,l

(

ik,l

)

, qm,n, Am,n (im,n) , p, b, d, p√, b√, d√)

× ∣∣p, B, ik,l + d
〉 〈

p√, B√, im,n + d√∣
∣

B (j) =
{

b j = ik,l

Ak,l (j) otherwise

B√ (j) =
{

b√ j = im,n

Am,n (j) otherwise

so that the RHS is a state.

Definition 2. Mgq = (Q,Σ,H, Λδ) is called a LQTM (Linear Quantum Turing
Machine) if there exists a transition function

δ2 : Q × Σ × Q × Σ × Q × Σ × {0,±1} × Q × Σ × {0,±1} ∇ C

such that for any quantum configuration ρk, Λδ2 is written as

Λδ2 (ρk) ↔
⎨

k,l,m,n,p,b,d,p∗,b∗,d∗
δ2 (qk,l, Ak,l (ik,l) , qm,n, Am,n (im,n) , p, b, d, p√, b√, d√)

× |p,B, ik,l + d∀ ↑p√, B√, im,n + d√|
so that the RHS is a state. For any quantum configuration ρ =

⎩
k

λkρk, Λδ2 is

affine;

Λδ2

(⎨
k

λkρk

)
=

⎨
k

λkΛδ2 (ρk)

Definition 3. A GQTM Mgq is called a unitary QTM (UQTM), if the quantum
transition channel Λδ3 is a unitary channel, implemented as Λδ3 · = Uδ3 · U◦

δ3
,

where Uδ3 is given by, for any |ψ∀ = |q,A, i∀ ,

Uδ3 |ψ∀ = Uδ3 |q,A, i∀
=

⎨
p,b,d

δ3 (q,A (i) , p, b, d) |p,B, i + d∀

where
δ3 : Q × Σ × Q × Σ × {0, 1} ∇ C

is a transition function and it satisfies for any q ◦ Q, a ◦ Σ, q√ ( √= q) ◦ Q, a√

(√= a) ◦ Σ,
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⎨
p,b,d

|δ3 (q, a, p, b, d)|2 = 1.

⎨
p,b,d,d∗

δ3 (q√, a√, p, b, d√)◦
δ3 (q, a, p, b, d) = 0.

Remark 1. A classical Turing Machine (CTM) is represented as a LQTM where
the transition channel has only a diagonal part. Moreover, for any q, p ◦ Q, a, b ◦
Σ, d ◦ {0,±1}, put δ3 (q, a, p, b, d) = 0 or 1 then UQTM is a reversal CTM.

3.2 Computation Process of GQTM

Let M = (Q,Σ,H, Λδ) and ρ0 = |ψ0∀ ↑ψ0| where |ψ0∀ = |q0, A, 0∀; we call this
state an initial state and A an input of M . The computation of a GQTM pro-
ceeds, applying Λδ to ρ0, till the processor state becomes qf ◦ {qF }, then it
halts. This process is described by the products of Λδ asΛδ ◦ · · · ◦ Λδ (ρ0) = ρf

Let Sf (H) = {ρ|ρ � S (HQ) ◦ {qf}} be the set of final configurations, where
� means the restriction of a state on S (HQ). ρ is called a final state if ρ is in
the form

ρ =
⎨

k

λkρk +
⎨

l

μlσl

⎨
k

λk +
⎨

l

μl = 1, ←λk, μl → 0

where σl ◦ Sf (H). We call p =
⎩
l

μl the halting probability.

3.3 Language Classes Defined by GQTM

Let M be a GQTM and L a set of alphabet sequences; we say M recognizes L
if M halts with any input x ◦ L and does not halt for x /◦ L.

We call L a language if there exists GQTM M which recognizes L.

Definition 4. If languages are accepted by non-deterministic classical Turing
machine in polynomial time of input size with a certain probability p, then this
class of languages is called a bounded probability polynomial time (BPP).

If there is a polynomial time algorithm to solve a NP-complete problem in the
above sense, then P = NP. The existence of such an algorithm is demonstrated
in [6,7] in an extended quantum domain, as is reviewed in the next section. We
will show that the OV SAT algorithm can be written by the GQTM.

Let us define the recognition of a GQTM and some classes of languages.

Definition 5. Given a GQTM Mgq and a language L, if there exists N steps
when Mgq recognizes L with the probability p, we say that the GQTM Mgq recog-
nizes L with probability p and its computational complexity is N .
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Definition 6. A language L is bounded quantum probability polynomial time
GQTM (BGQPP) if there is a polynomial time GQTM Mgq which accepts L
with probability p → 1

2 .

Similarly, we can define the class of languages BUQPP (=BQPP) and BLQPP
corresponding to UQTM and LQTM, respectively.

In the paper [9,10], it is pointed out that LQTM includes classical TM, which
implies

BPP ⊆ BLQPPL ⊆ BGQPP.

Moreover, if NLQTM accepts the SAT OV algorithm in polynomial time with
probability p → 1

2 , then we have the inclusion [9]

NP ⊆ BGQPP

4 Quantum Searching Algorithm

From this section, we use a discrete function f . Let n be a positive number, and
f a function from X = {0, 1, · · · , 2n − 1} to Y = {0, 1}.

We show a quantum algorithm to solve the problem S2. To solve this problem,
we denote x by the following binary expression

x =
n⎨

k=1

2k−1εk,

where ε1, · · · , εn ◦ {0, 1}.
We divide the problem S2 into several problems as below. Here we start the

following problem:

Problem 2. Does there exist an x such that f (x) = 1 with ε1 = 0?

If the answer is “yes”, namely ε1 = 0, then there exists at least one x =
0ε2 · · · εn such that f (x) = 1. If the ε1 √= 0, then one considers two cases: that
ε1 = 1, or there does not exist any x such that f (x) = 1.

We go to the next problem with the result of the above problem:

Problem 3. Does there exist an x such that f (x) = 1 with ε2 = 0 for the
obtained ε1?

After solving this problem, we know the value of ε2; for example, when ε2 = 0,
x is written by 00ε3 · · · εn or 10ε3 · · · εn.

Furthermore, we check the εi, i = 3, · · · , n by the same way as above using
the information of the bits from ε1 to εi−1. We run the algorithm from ε1 to
εn, and we look for one x satisfying f (x) = 1. Finally in the case that the
result of the algorithm is x = 1 · · · 1, we calculate f (1 · · · 1) and check whether
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f (1 · · · 1) = 1 or not. We conclude that (1) if it becomes 1, x = 1 · · · 1 is a
solution of the search problem, and (2) otherwise, there does not exist an x such
that f (x) = 1.

Let m be a positive integer which can be written by a polynomial in n. Let
H =

⎧
C

2
⎪∗n+m+1 be a Hilbert space. The m qubits are used for the computation

of f , and the dust qubits are produced by this computation. When f is given,
we can fix m. We will show in the next section that this algorithm can be done
in a polynomial time.

We construct the following quantum algorithm M
(1)
Q to solve problem 2. Let∣∣∣ψ(1)

in

〉
= |0n∀ ∅ |0m∀ ∅ |0∀ ◦ H be an initial vector for M

(1)
Q , where the upper

index (1) comes from the quantum algorithm checking the bit ε1. The last qubit
of

∣∣∣ψ(1)
in

〉
is for the answer to it, namely “yes” or “no”. If the answer is “yes”,

then the last qubit becomes |1∀, otherwise |0∀.
The quantum algorithm M

(1)
Q is given by the following steps. We start M

(1)
Q

with ε1 = 0.
Step1: Apply Hadamard gates from the 2nd qubit to the n-th qubit.

I ∅ U∗n−1
H ∅ Im+1

∣∣∣ψ(1)
in

〉
=

1∈
2n−1

|ε1 (= 0)∀ ∅
⎛
⎝2n−1−1⎨

i=0

|ei∀
⎞
⎠ ∅ |0m∀ ∅ |0∀

=
∣∣∣ψ(1)

1

〉

where |ei∀ are

|e0∀ = |0 · · · 0∀
|e1∀ = |1 · · · 0∀

...
|e2n−1−1∀ = |1 · · · 1∀

Let Uf be the unitary operator on H =
⎧
C

2
⎪∗n+m+1 to compute f , defined

by
Uf |x∀ ∅ |0m∀ ∅ |0∀ = |x∀ ∅ |zx∀ ∅ |f (x)∀

where zx is the dust qubit produced by the computation.
Step2: Apply the unitary operator Uf to the state made in Step1, and store

the result in the last qubit.

Uf

∣∣∣ψ(1)
1

〉
=

1∈
2n−1

|0∀ ∅
⎛
⎝2n−1−1⎨

i=0

|ei∀ ∅ |zi∀ ∅ |f (0ei)∀
⎞
⎠

=
∣∣∣ψ(1)

2

〉

where zi is the dust qubits depending on ei.
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Step3: We take the last qubit by the projection from the final state
∣∣∣ψ(1)

2

〉
such that

(1 − p) |0∀ ↑0| + p |1∀ ↑1| = proj.
∣∣∣ψ(1)

2

〉 〈
ψ
(1)
2

∣∣∣
where p = card {x|f (x) = 1, x = 0ε2 · · · εn} /2n−1.

Step4: After the above formula, the state is a pure state or a mixed state. If
the state is mixed and p √= 0 however very small, then apply the Chaos Amplifier
given in the Appendix to check whether the last qubit is in the state |1∀ ↑1|. If
we find that the last qubit is in the state |1∀ ↑1|, then p √= 0, which implies that
there exists at least one solution of f (x) = 1 for ε1 = 0. If we do not find that
the last qubit is in the state |1∀ ↑1|, namely p = 0, then there are two possibilities
that are ε1 = 1 or no solutions x ◦ X of f (x) = 1.

After this algorithm, we know that if ε1 = 0 or 1, then the last qubit is 1
or 0, respectively. We write this process as M

(1)
Q (0n) = ε1 where 0n means the

initial vector.
Next we modify Step1 of the algorithm M

(1)
Q as:

Step1: Apply Hadamard gates from 3rd qubit to n-th qubit.
And we call this algorithm M

(2)
Q . The index (2) means that the algorithm

check ε2. We start M
(2)
Q with the initial vector

∣∣∣ψ(2)
in

〉
=

∣∣ε1, 0n−1
〉 ∅ |0m∀ ∅ |0∀

instead of
∣∣∣ψ(1)

in

〉
.

So forth we obtain the bit ε2, and write as

M
(2)
Q

⎧
ε1, 0n−1

⎪
= M

(2)
Q

(
M

(1)
Q (0n) , 0n−1

)
= ε2

.
In generally, we write the algorithm M

(i)
Q

⎧
ε1, ε2, · · · , εi−1, 0n−i+1

⎪
for an

initial vector
∣∣∣ψ(i)

in

〉
=

∣∣ε1, ε2, · · · , εi−1, 0n−i+1
〉 ∅ |0m∀ ∅ |0∀ as the following:

Step1: Apply Hadamard gates from i + 1-th to n-th qubits.

I∗i ∅ U∗n−i
H ∅ Im+1

∣∣∣ψ(i)
in

〉
=

1∈
2n−i

|ε1, ε2, · · · , εi−1∀ ∅
⎛
⎝2n−i−1⎨

k=0

|ek∀
⎞
⎠

∅ |0m∀ ∅ |0∀
=

∣∣∣ψ(i)
1

〉

Step2: Apply the unitary gate to compute f for the superposition made in
Step1, and store the result in n + m + 1-th qubit.

Uf

∣∣∣ψ(i)
1

〉
=

1∈
2n−i

|ε1, ε2, · · · , εi−1∀

∅
⎛
⎝2n−1−1⎨

k=0

|ek∀ ∅ |zk∀ ∅ |f (ε1, ε2, · · · , εi−1, ek)∀
⎞
⎠

=
∣∣∣ψ(i)

2

〉
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Step3: Take the last qubit by the projection from the final state
∣∣∣ψ(i)

2

〉
such that

(1 − p) |0∀ ↑0| + p |1∀ ↑1| = proj.
∣∣∣ψ(i)

2

〉 〈
ψ
(i)
2

∣∣∣
Step4: Apply the Chaos Amplifier, which is explained below, to find that the

last qubit is |1∀ ↑1|.
After this algorithm M

(i)
Q

⎧
ε1, ε2, · · · , εi−1, 0n−i+1

⎪
, we know the bit εi such

that f (x) = 1. Each M
(i)
Q , i → 2 use the result of all M

(j)
Q (j < i) as an initial

vector.

5 Computational Complexity of the Quantum Searching
Algorithm

Here, we calculate the computational complexity of the quantum searching algo-
rithm. The computational complexity is the number of the total unitary gates
and amplification channels in our search algorithm.

In the above section, the quantum algorithm for binary search is given by the
products of unitary gates denoted by Ui below. Let

∣∣∣ψ(i)
in

〉
be an initial vector

for the algorithm M
(i)
Q as
∣∣∣ψ(i)

in

〉
=

∣∣ε1 · · · εi−1, 0n−i
〉 ∅ |0m∀ ∅ |0∀ ,

and it goes to the final vector

Ui

∣∣∣ψ(i)
in

〉
=

1∈
2n−i

|ε1, · · · , εi−1∀ ∅
⎛
⎝2n−1−1⎨

k=0

|ek∀ ∅ |zk∀ ∅ |f (ε1, · · · , εi−1, ek)∀
⎞
⎠

=
∣∣∣ψ(i)

2

〉

where f (ε1, · · · , εi−1, ek) is the result of the objective function for searching.
The above unitary gate Ui for the algorithm Mi is defined by

Ui = Uf (UH)∗n−i
∏

{xk|xk=1}
UNOT (k)

where UNOT (k) is to apply a NOT gate for the k-th qubit only when the result
of stage k is 1, (k = 1, 2, · · · i − 1) .

The computational complexity T of the quantum binary search algorithm
T (Un) is given by the total number of unitary gates and quantum channels for
the amplification. We obtain the following theorem [11].

Theorem 1. We have

T =
13
8

n2 − 9
4
n + nT (Uf )

where T (Uf ) is a given complexity associated to the function f .
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6 Chaos Amplifier

In this section, let us review the Chaos Amplifier along the papers [6,7] and the
book [8].

Consider the so called logistic map which is given by the equation

xn+1 = axn(1 − xn) ↔ ga(x), xn ◦ [0, 1] .

The properties of the map depend on the parameter a. If we take, for example,
a = 3.71, then the Lyapunov exponent is positive, the trajectory is very sensitive
to the initial value and one has chaotic behavior. It is important to notice that
if the initial value x0 = 0, then xn = 0 for all n.

In the previous section we took the last qubit by the projection from the final
state

∣∣∣ψ(i)
2

〉
such that

proj.
∣∣∣ψ(i)

2

〉 〈
ψ
(i)
2

∣∣∣ = (1 − p) |0∀ ↑0| + p |1∀ ↑1|

One has to notice that |0∀ ↑0| and |1∀ ↑1| generate an Abelian algebra which can
be considered as a classical system. Here we put

ρ̄ = (1 − p) |0∀ ↑0| + p |1∀ ↑1|
Let ΛCA be a quantum channel on one qubit space such that

ΛCA (ρ̄) =
(I + ga (ρ̄) σ3)

2

where I is the identity matrix and σ3 is the z-component of the Pauli matrices.
Let k be a positive integer; applying (ΛCA)k to ρ̄, we have

(ΛCA)k (ρ̄) =
(I + gk

a(p)σ3)
2

= ρk

To find a proper value k we finally measure the value of σ3 in the state ρk

such that

xk ↔ trρkσ3.

The following theorems are proved in [6–8].

Theorem 2. For the logistic map xn+1 = axn (1 − xn) with a ◦ [0, 4] and x0 ◦
[0, 1], let x0 be 1

2n and a set J be {0, 1, 2, . . . , n, . . . , 2n}. If a is 3.71, then there
exists an integer k in J satisfying xk > 1

2 .

Theorem 3. Let a and n be the same as in the theorem above. If there exists k
in J such that xk > 1

2 , then k > n−1
log2 3.71−1 .

Using these theorems, we can easily check whether the state ρ = |0∀ ↑0| or
not. Note that this amplification process can be written in the generalized Turing
machine form [9], and it is related to the semigroup dynamics [14].
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7 Application of the Quantum Search Algorithm

In this section, we show an application of the quantum searching algorithm
described above. There are several problems in the class NP, for example, prime
factorization, the SAT problem and the Hamilton path problem. Here we give
an alternative quantum algorithm for prime factorization. The most famous
quantum algorithm for prime factorization is Shor’s one [4]. In this algorithm,
he provided the quantum algorithm using a black box which calculates a modular
exponentiation. In this section, we give the quantum algorithm without using it.

Let p and q be two prime numbers, and N = p × q. We constructed the
following algorithm [12].

Step1: Using Hadamard gates, we prepare an initial superposition vector of
all combinations of p and q.

Step2: Create a unitary gate U to calculate p × q, and apply it to the initial
vector.

Step3: Create a unitary gate Uf checking p × q = N , and run the quantum
binary search with Uf .

After the quantum searching algorithm, we can find the solution of prime
factorization. The computational complexity is polynomial of log N given in [12].
This quantum algorithm finds a solution directly, while Shor’s one obtains the
order with some probability. Moreover, Shor’s algorithm does not run correctly
with dust qubits. If there remain dust qubits, it cannot reduce the computational
complexity. The precise discussion is given in [13].
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Abstract. We show a correspondence between a predicative character-
ization of quantum states, we have recently introduced, and bi-logic,
proposed by the Chilean psychoanalyst I. Matte Blanco. In bi-logic, the
logic of the unconscious is characterized by “infinite” objects and by
the “symmetric mode”, without negation and logical consequence. In
the quantum model it is possible to define a class of first order domains,
called virtual singletons, that are uncountable, and that allow a gen-
eralization of the notion of duality, called symmetry. Symmetry makes
negation and logical consequence collapse, in favour of different links
between judgements, that are due to quantum correlations.

Introduction

The relation between quantum physics and consciousness is a very controversial
and challenging topic in quantum interaction. Even though its experimental basis
is not stabilized yet, it is considered reasonable by several authors to investigate
formal approaches connecting quantum physics and mind. Such approaches aim,
as a first instance, to establish applications of quantum structures to psycholog-
ical and cognitive fields, and, more specifically, to search isomorphisms which
are compatible with the existence of a relation and could support it. There is an
increasing number of proposals in such directions, witnessed in the proceedings
[QI07,QI08,QI09,QI11,QI12] and the references therein; moreover we refer to
the authors [Ae,ABGS,AGS,AS,AS2,BPFT,BB].

A unique opportunity for the development of a formal approach to the prob-
lem of consciousness is offered by bi-logic, namely, the logical system proposed
in the 70’s by the Chilean psychoanalyst Ignacio Matte Blanco [MB], to describe
two logical sides of the human thinking, the rational thinking and the logic of
the unconscious. His logical approach, inspired by set theory, is very effectively
synthetized in the ideas of infinite sets, and of symmetry. This makes it possible
to discuss a comparison with a model developed in a formal theory.

A topological approach has been proposed by A. Khrennikov (see e.g.
[Kh1,Kh2], and see [Lg,Mu]). The present note would like to describe an iso-
morphism with a logical model, recently proposed by the author in the field of
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quantum computational logics in [Ba], then developed in [Ba2,Ba3]. The basis
for the model is proof-theoretical, in the approach of basic logic [SBF]. It consid-
ers equations, which define logical connectives and derive their rules in sequent
calculus from metalinguistic links between logical judgements. The predicative
interpretation of quantum states here considered results from the application of
such a method to the case of some judgements in quantum physics, consider-
ing the equations defining the quantifiers introduced in [MS] and the equation
defining the equality predicate given by Maietti (reported in [Ba2]).

We think that the approach we have chosen is particularly suited to the case
of a logic arising from psychoanalysis, for it is based on a direct analysis of
judgements, which can distinguish between the metalevel and the object level.
Moreover, basic logic can discuss the notion of symmetry itself, in terms of logical
consequence, represented, in sequent calculus, by the sequent sign ∇. This allows
a direct comparison with Matte Blanco’s notion of symmetry, in terms of logical
derivations and connectives.

In the following, we refer to results and definitions contained in [Ba2,Ba3]
for the first section, and in [Ba3] for the second section.

1 Matte Blanco’s Infinite Sets in Quantum Terms

Matte Blanco characterizes the objects of the unconscious as “infinite” sets. For,
the unconscious treats the part as the whole thing. This means, in particular,
that a bijection between a subset and the whole set is possible, namely the set
one is considering is infinite.

We approach the infinite sets adopting a particular reading of the well known
logical distinction between propositional formulae on closed terms and
quantifiers. Let us consider any set D. We recall the following result, that links
membership relation, quantifiers and equality relation:

Proposition 1. The equivalence between the proposition z ◦ D and the propo-
sition (∀x ◦ D)x = z is provable from the equations defining the existen-
tial quantifier and of the equality relation. If D = {t1, . . . , tn}, the sequent
z = t1 ∈ . . . ∈ z = tn ∇ z ◦ D is provable from the definition of the additive
disjunction ∈.
The converse sequent z ◦ D ∇ z = t1 ∈ . . .∈z = tn is not provable. We adopt the
intuitionistic interpretation of disjunction. With respect to it, we characterize a
particular class of sets:

Definition 1. A finite set D = {t1, . . . , tn} is focused by a certain logical system
if and only if the sequent z ◦ D ∇ z = t1 ∈ . . . ∈ z = tn is true in that system, it
is unfocused otherwise.

A set D = {t1, . . . , tn}, which is recognized as finite in the metalanguage, is
not recognized as such inside a logical system, if it is unfocused in it, since its
elements can be counted by the system only if, picking up a generic element
z ◦ D, it can be recognized that z = ti for some index i.
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One has the following characterization of focused sets, that is very significant
for our model:

Proposition 2. Given a finite set D = {t1, . . . tn}, the schema (∅x ◦ D)A(x)
and the schema A(t1)& . . . &A(tn) are equivalent if and only if the domain D is
focused.

Such a setting is suited to introduce a predicative representation of quantum
states, as follows. Let us consider a particle A and fix an observable. Let us
consider the random variable Z associated to the measurement of the particle
with respect to that observable, and then the set

DZ = {(s(z), p{Z = s(z)})}
of the outcomes of measurement with their probabilities. Moreover, let us con-
sider the proposition

A(z) : “The particle A is in state s(z) with probability p{Z = s(z)}”

describing the eventual state of the particle after measurement, in the first
order variable z. If the measurement hypothesis, concerning the preparation,
are denoted by Γ , the resulting metalinguistic assertion is:

Γ yield A(z) forall z ◦ DZ ,

translated into “forall z ◦ DZ , Γ ∇ A(z)”, furtherly converted into the unique
sequent Γ, z ◦ DZ ∇ A(z), where the sequent sign ∇ translates the metalinguistic
consequence yield, and where z ◦ D is put as a premise of the sequent (see [MS]1).
Then one considers the definition of ∅:

Γ ∇ (∅x ◦ D)A(x) if and only if Γ, z ◦ D ∇ A(z)

for all formulae A(z) where z is a free variable in a domain D. It allows our
mind to attribute a state to the particle by the proposition (∅x ◦ DZ)A(x), that
hence represents A in its state.

On the contrary, one can see that the propositional formula A(t1)& . . . &A(tn),
on the closed terms ti describes the mixed state obtained after measurement,
rather than the pure state. This follows from the definition of the propositional
conjunction &. For, it is true for every i that the preparation Γ yields A(ti), that
is written Γ ∇ A(ti). In logic, every sequent Γ ∇ A(ti) is derived from the sequent
Γ, z ◦ DZ ∇ A(z) by the substitution ti/z in the sequent, then cutting the true
assumption ti ◦ DZ . Then, we say that substituting represents a measurement
in logic.

Proposition 2 shows that the nature, pure or mixed, of states, can be told in
terms of sets, since the set DZ = {t1, . . . tn} of the eventual outcomes of mea-
surement has a finite description, by means of the propositional intuitionistic
disjunction ∈, after quantum superposition has collapsed. So, quantum super-
position corresponds to the infinite character of the set DZ .
1 Notice that the premises in Γ do not depend on the variable z, since the measurement

hypothesis cannot depend on its eventual outcome.
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2 Virtual Singletons: Converting Duality into Symmetry

Following Matte Blanco, the logical mode of the unconscious is symmetric. This
means, primarily, that the unconscious treats every relation as if it were sym-
metric. The “symmetric mode” and the “infinite mode” are strongly related in
Matte Blanco: one has an infinite cardinality since the unconscious considers
the part as the whole thing, since the inclusion relation is treated as if it were
symmetric. Notice that a set has only symmetric relations if and only if it is a
singleton, and that the sets for which no nonempty subset is different from the
whole are singletons as well. So, in order to treat the symmetric mode, we need
to introduce infinite sets acting as singletons: then “normal” singletons will be
the finite shadow of them.

By definition, singletons are sets V for which there is an u ◦ V such that, if
z ◦ V , then z = u. Then we write V = {u}. It is quite natural to assume the
sequent z ◦ V ∇ z = u (where u is a closed term denoting the same element), by
extensionality. Then, in a normal logical setting, singletons are focused. How-
ever, singletons are quite close to unfocused sets, since they are not splitted by
a disjunction. We assume that the particular odd logical behaviour of singletons
is due to their borderline situation and we claim the existence of virtual single-
tons, namely unfocused sets characterized as singletons. Since unfocused sets are
characterized as first order domains of quantifiers, we adopt a characterization of
virtual singletons as domains of predicative formulae: we say that V is a virtual
singleton when (∅x ◦ V )A(x) = (∀x ◦ V )A(x) is true for every A.

Namely quantification is performed by a unique connective rather than by
the couple (∅, ∀) of dual connectives. We see that this produces other logical
features discussed by Matte Blanco, such as paraconsistency, absence of negation
and of logical consequence.

In our model, we have shown that non trivial virtual singletons are conceiv-
able only if the logic we are considering does not admit the substitution rule for
them. Since in the model substituting means measuring, virtual singletons can
exist only prior to measurement. We consider, as an observable, the spin, that
has no classical equivalent. Let us fix an axis, say the z axis. The measurement
of the spin observable, on particles in the sharp states ↑ and ↔, determines, as
domains, two singletons. The formulae quantified on such domains are equiv-
alent to propositional formulae, since their domains are singletons. They are
interpretable as pairs of opposites: one puts a duality ← that can switch ↑ and
↔. It is the logical translation of the application of the Pauli matrix σX , namely
the NOT gate of computation. As is well known, a duality between couple of
opposite literals can be inductively extended to all formulae, in order to obtain
a negation (Girard’s negation), which satisfies the equivalence A ∇ B if and only
if B∗ ∇ A∗, for every formulae A,B.

On the other hand, in the same measurement context, the dual states (written
|+→ = 1/

√
2|↔→ + 1/

√
2|↑→ and |−→ = 1/

√
2|↔→ − 1/

√
2|↑→, respectively, as vectors

in the ket notation) are switched by the Pauli matrix σZ , and they are eigenvec-
tors for σX . In turn, we can translate all this into logic. Then, in logic, particles
in the dual states correspond to predicative formulae which are fixed points for
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the duality ←. Then such formulae satisfy the equivalence A ∇ B if and only if
B ∇ A. This eliminates the direction of logical consequence, represented by ∇.
The set associated to the measurement of |+→ and |−→ contains the two pieces of
information “up” and “down”, one of which can be considered the negation of
the other, as just seen. Changing the measurement context and measuring the
spin w.r.t the x axis, |+→ and |−→ would produce an objective property, since the
domains would be, provably, singletons. The corresponding formulae would be
equivalent to propositional formulae that would be switched by the duality cor-
responding to σZ . However, different spin observables are incompatible, hence,
once the measurement context has been fixed, the domain of particles in the
dual states is a virtual singleton: for it is unfocused and one can see, by means
of the duality originated by σZ , that the equality (∅x ◦ V )A(x) = (∀x ◦ V )A(x)
is true for the first order domains originated by |+→ and |−→.

So we find the logical framework expected by bi-logic: an asymmetric mode
where negation is meaningful, a symmetric mode where negation is meaningless.
The second is given by virtual singletons, that are infinite sets. In the virtual
singletons of the spin model just seen, opposite pieces of information coexist. In
the symmetric mode, negation is meaningless since the opposite coexist. This is
one of the features of the unconscious thinking, termed condensation, that, as
pointed out by Matte Blanco, is related to the absence of negation.

A further feature of the unconscious thinking is displacement. Following
Matte Blanco, it also goes back to the symmetric mode, since two different
subclasses of the same class are treated as identical by the unconscious, due to
symmetry: both subclasses are identified with the larger class and then treated
as identical. In such a case, symmetry is applied at the second order. In the pred-
icative model, one can widen the action of virtual singletons to the second order,
considering “virtual singletons of indexes of formulae” that allow to identify for-
mulae whose index is in the same virtual singleton. This allows, in particular, to
represent the quantum correlations of the Bell states, since the correlation takes
place when the same variable is displaced elsewhere, considering another index.
We think that the same kind of identification at the second order, namely at
the level of formulae, could be exploited in order to justify displacement. Matte
Blanco himself discusses the possibility of different logical links to be discovered
for the logic of the unconscious. A further analysis of the consequences of virtual
singletons of indexes of formulae in logic is in progress. However, we consider it
very intriguing to find that what hides logical consequence supplies, at the same
time, a different way to link judgements, by means of correlations of which we
cannot be aware.

Acknowledgements. The present note has been written some years after the valuable
suggestion by Stuart Hameroff, who proposed to compare quantum logics and Matte
Blanco’s bi-logic. His suggestion became more and more significant to me with the
development of the predicative model here considered.
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Abstract. Recently, various examples of non-Kolmogorovness in con-
textual dependent phenomena have been reported. In this study, we
introduce non-Kolmogorovness in the measurement of depth inversion
for the figure of Schröder’s stair. Also we propose a model of the depth
inversion, based on a non-Kolmogorovian probability theory which is
called adaptive dynamics.

Keywords: Optical illusion · Non-Kolmogorovian probability · Adap-
tive dynamics

1 Introduction

The Schröder’s stair is an ambiguous figure which induces optical illusion [1,10]
(see the Fig. 1). Our brain can switch between the two alternative interpretations
of this figure; (i) The surface of ‘L’ is front, and the surface of ‘R’ is back; (ii) The
surface of ‘R’ is front, and the surface of ‘L’ is back. This switch-like process of
human perception is called depth inversion, and many experimental proofs of
this phenomenon have been reported. However, the details of its mechanism is
not completely figured out even in recent studies.

It is a well-known fact that depth inversion depends on various contexts of
figure; e.g. relative size of the surface ‘L’ for ‘R’, color or shadow in figure, angle
to the horizon, etc. [10]. Therefore we must define the contextual dependent prob-
ability that a person answers either (i) or (ii) in the experiment if we discuss
the adaptive system where such contextual dependences emerge. We have devel-
oped a contexual probabilistic model which is inspired by quantum mechanics.
This is called quantum-like models (QLM) [13], and many authors have studied
QLM for various contextual dependent phenomena [2–4,6–9,11,12,14]. The sta-
tistical probabilities in the experiments for such contextual dependent systems
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Fig. 1. Schröder’s stair leaning at angle θ

violate the formulae of conventional probability theory, e.g. the violation of total
probability law (TPL):

P (A = a) ∇=
∑

b

P (A = a|B = b)P (B = b).

The violation of TPL is one of important consequences of non-Kolmogorovness.
Non-Kolmogorovian probabilistic approach for perception of ambiguous figures
is discussed by Conte et al. [16], and Atmanspacher et al. [17].

Recently, we define the contextual joint probabilities which are based on
a non-Kolmogorovian probability theory, called Adaptive Dynamics(AD) [2,4].
In this study, we proposed a model of the depth inversion in Schröder’s stair
with the non-Kolmogorovian joint probabilities. In Sect. 2, we explain the short
introduction of AD and the new definition of the joint probability based on
AD. In Sect. 3, we show the experimental results of depth inversion in different
contexts. In Sect. 4, we discuss the violation of the total probability law in the
experimental data. In Sect. 5, we propose the model of depth inversion where
the concept of majority among N -agents plays an important role.

2 Adaptive Dynamics and Joint Probability

In this section, we briefly explain the definition of the non-Kolmogorovian joint
probability which is based on the theory of Adaptive Dynamics (AD) [2,4].

Let S (H) be a set of all density operators on a Hilbert space H, and let
O (H) be a set of all observables on a Hilbert space of H.

Here let us take another Hilbert space K . A map from S (H) to the composite
system S (H ◦ K) is called “lifting map” (or simply “lifting”) [5]. In the paper
of [2], we introduced a lifting from S (H) to S (H ◦ K), say E∗

σQ. Here, Γ is a
state on S (H ◦ K), and Q is an observable on O (H ◦ K). The lifting E∗

σQ is
constructed by Γ and Q. We consider the following dynamics.

∂ ∀ E∗
σQ(∂) ∀ trHE∗

σQ(∂) ∈ ∂σQ ∅ S(K).

The initial state ∂ is defined in S(H) or S(K). We call this state change the
dynamics adaptive to the state Γ and the observable Q or the dynamics adaptive
to the context C = {Γ,Q}.
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The compound state E∗
σQ(∂) = E∗

C(∂) will describe that an event system of
interest is correlated with another event system. Now suppose two event systems
A = {ak ∅ R, Ek ∅ O(K)} and B = {bj ∅ R, Fj ∅ O(H)}, where Ek, Fj are not
needed to be projections, but they should satisfy the conditions

∑
k Ek = I,∑

j Fj = I as POVM (positive operator valued measure).
Here, let us consider the joint probability as

PC(ak, bj) = tr {(Ek ◦ Fj) E∗
C(∂)} .

Further, the probability PC(ak) is defined as
∑

j

PC(ak, bj) = trI ◦ EkE∗
C(∂)

= trKEk∂C

∈ PC(ak).

The violation of total probability law comes from a difference of two contexts,
say C = {Γ,Q} and C̃ = {Γ̃, Q̃}. It is represented in the form as

PC(ak) = PC̃(ak) + φ =
∑

j

PC̃(ak, bj) + φ. (1)

Generally, if C ∇= C̃, then φ ∇= 0. In order to discuss φ mathematically, what
we need is to define the probability PC(ak), more precisely, to construct the
liftings E∗

C .

3 Depth Inversion on Optical Illusion of Schröder’s Stairs

In this section, we explain the method of our experiment, and we show its results.
We show the picture of Schröder’s stair which is leaning at a certain angle Δ (see
Fig. 1) to the 151 subjects. We prepare the 11 pictures which are leaning at
different angles: Δ = 0, 10, 20, 30, 40, 45, 50, 60, 70, 80, 90. A subject must answer
either (i)“L is front” or (ii)“R is front” for every picture. We arrange the com-
puter experiment to change the pictures and to record their answers.

Before the experiment, we divided the 151 subjects into three groups: (A) 55
persons, (B) 48 persons, (C) 48 persons. For the first group (A), the order of
showing is randomly selected for each person. To assume statistically uniform
randomness of this selection, we use the computer-implemented function (e.g.
java.rand). For the second group (B), the angle Δ is changed in order from small
value: 0, 10, · · · , 90. Inversely, for the third group (C), the angle Δ is changed in
order from large value: 90, 80, · · · , 0.

The Fig. 2 shows the probability that a subject says (i)“L is front” with
respect to angle Δ. We denote it by P (Xθ = L). In all cases, the probability
P (Xθ = L) is decreasing as the value of Δ is increasing. However, the speed of
decreasing is different among three cases. Moreover, we can see that the proba-
bility at Δ = 0 is nearly equal to one in all cases. That is, almost every subject
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says “L is front” at the angle Δ = 0. Conversely, the probability Δ = 90 is nearly
equal to zero, that is, the almost every subject says “R is front” at the angle
Δ = 90. Therefore it can be considered that subjects feel little ambiguity of the
picture for Δ = 0 and 90. In fact, we observed that it takes only short time (less
than one second) to answer his/her decision when angle Δ is around 0 or 90◦.

Fig. 2. Probability P (Xθ = L)with respect to θ.

4 Violation of Formula of Total Probability

As explained in the previous section, we consider the three situations (A),(B)
and (C) in the experiments. Similarly with the Eq. (1), we can write the violation
of total probability law as follows:

PA (Xθ = L) = PB (Xθ = L,Xθ′ = L) + PB (Xθ = L,Xθ′ = R) + φAB ,

PA (Xθ = L) = PC (Xθ = L,Xθ′ = L) + PC (Xθ = L,Xθ′ = R) + φAC ,

PC (Xθ = L) = PB (Xθ = L,Xθ′ = L) + PB (Xθ = L,Xθ′ = R) + φCB ,

where Δ and Δ→ are different angles. Note that, with experimental results, we can
estimate the degree of violation φAB , φAC and φCB ; for instance, φAB at angle
Δ is given by

φAB = PA (Xθ = L) − PB (Xθ = L,Xθ′ = L) + PB (Xθ = L,Xθ′ = L)
= PA (Xθ = L) − PB (Xθ = L) .

You can see φAB does not depends on Δ→ since only Δ appears in the RHS of the
above equation. This comes from Kolmogorovness within the context B s.t.

PB (Xθ = L) = PB (Xθ = L,Xθ′ = L) + PB (Xθ = L,Xθ′ = L) .
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Fig. 3. Degree of violation of total probability law

From similar discussions, one can find that φAC and φCB depend on not Δ→

but only Δ. As seen in Fig. 3, the strong violation occurs in the middle range of
angle Δ.

Here, let us compare the above φAB , φAC or φBC with the conventional
trigonometric interference in quantum mechanics. If φAB , φAC and φBC have
the form of trigonometric interference:

φAB = 2 cos (ρAB)
√

PB(Xθ = L,Xθ′ = L)PB(Xθ = L,Xθ′ = R),

φAC = 2 cos (ρAC)
√

PC(Xθ = L,Xθ′ = L)PC(Xθ = L,Xθ′ = R),

φBC = 2 cos (ρBC)
√

PC(Xθ = L,Xθ′ = L)PC(Xθ = L,Xθ′ = R), (2)

then the following quantities should take values between −1 and +1.

ψAB =
φAB

2
√

PB(Xθ = L,Xθ′ = L)PB(Xθ = L,Xθ′ = R)
,

ψAC =
φAC

2
√

PC(Xθ = L,Xθ′ = L)PC(Xθ = L,Xθ′ = R)
,

ψBC =
φBC

2
√

PC(Xθ = L,Xθ′ = L)PC(Xθ = L,Xθ′ = R)

However, as shown in Fig. 4, the values of ψBC exceeds over one at several point
(Δ, Δ→). Therefore, the probability PB (Xθ = L) can not be written as the con-
ventional form of quantum mechanical interference:

PB (Xθ=L) ∇=
∣∣∣√PC(Xθ=L,Xθ′=L)+ exp (iρBC)

√
PC(Xθ = L,Xθ′ = R)

∣∣∣2 .

In order to explain ψBC exceeding 1, we can use the generalized description
of quantum mechanical interference, which has been discussed in the paper [13]
or [15]. Instead of the trigonometric interference in Eq. (2), one can use hyper-
trigonometric interference[13] for φBC as follows:

φBC = 2 cosh (ρBC)
√

PC(Xθ = L,Xθ′ = L)PC(Xθ = L,Xθ′ = R). (3)
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Fig. 4. Violation of total probability law

Then, the probability PB (Xθ) is written as

PB (Xθ=L) =
∣∣∣√PC(Xθ=L,Xθ′ = L)+ exp (πρBC)

√
PC(Xθ=L,Xθ′ = R)

∣∣∣2 ,

PB (Xθ = R) =
∣∣∣√PC(Xθ = L,Xθ′ = L)− exp (πρBC)

√
PC(Xθ = L,Xθ′ = R)

∣∣∣2

with a clifford number π (i.e. π2 = 1 but not π ∇= ±1). The above equations can
be considered as a generalization of Born’s rule in quantum mechanics. These
probabilities are written as

PB (Xθ = L) = trMLδ,

PB (Xθ = R) = trMRδ,

where δ is a pure state given by a density operator on two-dimensional clifford
algebra:

δ =
( √

PC(Xθ′ = L)
eεφBC

√
PC(Xθ′ = R)

)(√
PC(Xθ′ = L) e−εφBC

√
PC(Xθ′ = R)

)

=
(

PC(Xθ′ = L) e−εφBC
√

PC(Xθ′ = L)PC(Xθ′ = R)
eεφBC

√
PC(Xθ′ = L)PC(Xθ′ = R) PC(Xθ′ = R)

)
,

and ML, MR are Hermitian operators given by

ML =

⎛
⎜ PC(Xθ = L|Xθ′ = L)

⎝
PC(Xθ = R|Xθ′ = L)PC(Xθ = L|Xθ′ = L)⎝

PC(Xθ = R|Xθ′ = L)PC(Xθ = L|Xθ′ = L) PC(Xθ = R|Xθ′ = L)

⎞
⎟ ,

MR =

⎛
⎜ PC(Xθ = L|Xθ′ = R) −

⎝
PC(Xθ = L|Xθ′ = R)PC(Xθ = R|Xθ′ = R)

−
⎝

PC(Xθ = L|Xθ′ = R)PC(Xθ = R|Xθ′ = R) PC(Xθ = R|Xθ′ = R)

⎞
⎟ .

Note that {ML,MR} is not positive operator valued measure since nondiagonal
elements of ML + MR are not equal to zero in general.

Another approach for the generalization of Born’s rule is discussed in the
paper [15]. The probability PB (Xθ) is written in the following forms:
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PB (Xθ = L) =
trΠL∂

trΠL∂ + trΠR∂
,

PB (Xθ = R) =
trΠR∂

trΠL∂ + trΠR∂
,

where ΠL,ΠR are positive operators but not satisfying ΠL + ΠR = I (I is an
identity operator on two-dimentional Hilbert space), and ∂ is a pure state given
by a density operator

∂ =
( √

PC(Xθ′=L)
exp (iρBC)

√
PC(Xθ′=R)

)(√
PC(Xθ′=L) exp (−iρBC)

√
PC(Xθ′=R)

)

=
(

PC(Xθ′ = L) exp (−iρ)
√

PC(Xθ′=L)PC(Xθ′ = R)
exp (iρ)

√
PC(Xθ′=L)PC(Xθ′=R) PC(Xθ′=R)

)
.

These generalized Born’s rules can apply to our experimental result. However,
the interpretation of such a generalization is not figured out well. In the next
section, we give more concrete model which is based on psychological process of
self-dialog.

5 A Model of Depth Inversion: Majority Among N -Agent

The subjects have to answer either (i)“L is front” or (ii)“R is front”, so that we

take the Hilbert space H = C
2 for this model. Let |L↑ =

(
1
0

)
and |R↑ =

(
0
1

)

be the orthogonal vectors describing the answers (i) and (ii), respectively. An
initial state of a subject’s mind is given by

∂ ∈ |x↑ ↔x| ,

where |x↑ is a state vector 1√
2

(|L↑ + |R↑), which represents the neutral mind for
|L↑ and |R↑ before the decision making starts.

When a subject is shown a picture leaning at angle Δ, the subject recognizes
the lean of the picture. Such a recognition process is given by the operator

M (Δ) =
(

cos Δ 0
0 sin Δ

)
.

After the recognition, the state of mind is changed from initial state ∂ to an
adaptive state

∂θ = ε∗
M (∂) ∈ M∗∂M

tr
(
|M |2 ∂

) =
(

cos2 Δ cos Δ sin Δ
cos Δ sin Δ sin2 Δ

)
.

The fluctuation between (i) and (ii) is expressed as the above ∂θ.
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Here, we introduced the following assumption of a self-dialogue process by
a subject. At the begining of the process, a subject imagines and creates an
imaginary agent in the brain, and this agent has its own mind which is expressed
as the adaptive state ∂θ. A subject repeatedly create the imaginary agents during
an experiment for Xθ. We can consider the adaptive state describing the whole
agent set as the N -composite state of ∂θ:

Γ = ∂θ ◦ · · · ◦ ∂θ︸ ︷︷ ︸
N

,

where N is the number of agents which are created by a subject while making
the answer (i) or (ii). If a subject takes a short time to answer, then N might be
small. After the creation of agents (or on the way to creating them), the subject
can talk with the imaginary agents in the brain, and he/she knows the answer
of each agent. Through this dialogue, the subject can know the opinions of all
the agents. For the N agents, there are 2N possible opinions, and one of them
is expressed. The subject’s answer is determined by reference to the opinions of
all the agents.

At the final step of this dialogue, we additionaly assumed that the Γ is
changed into

∣∣L∈N
〉

or
∣∣R∈N

〉
since every subject in this experiment can not

answer anything except (i) or (ii). Along with this assumption, we introduce the
observable-adaptive operator Q which describes the process of making a common
decision. For example, in the case of N = 2, 3 and 4, the operator Q is

Q(2) = |LL↑ ↔LL| + |RR↑ ↔RR| ,
Q(3) = |LLL↑ (↔LLL| + ↔LLR| + ↔LRL| + ↔RLL|)

+ |RRR↑ (↔RRR| + ↔RRL| + ↔RLR| + ↔LRR|) ,

Q(4) = |LLLL↑ (↔LLLL| + ↔LLLR| + ↔LLRL| + ↔LRLL| + ↔RLLL|)
+ |RRRR↑ (↔RRRR| + ↔RRRL| + ↔RRLR| + ↔RLRR| + ↔LRRR|) .

By applying the operator Q to the state of agents Γ, the minority opinions of the
agents are ignored, and changed to the majority ones. In this sense, our model
is considered as the majority system among the N agents.

Here, the lifting E∗
σQ : S (

C
2
) ← S (

C
2N

)
is defined as

E∗
σQ(∂) =

QΓQ∗

tr
(
|Q|2 Γ

) =
Q {ε∗

M (∂)}∈N
Q∗

tr
(
|Q|2 {ε∗

M (∂)}∈N
) ∅ S (

C
2N

)
,

and the probabilities for Xθ are given with this lifting as

P (Xθ = L) ∈ tr
(
|L↑ ↔L|∈N E∗

σQ(∂)
)

,

P (Xθ = R) ∈ tr
(
|R↑ ↔R|∈N E∗

σQ(∂)
)

.
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Fig. 5. Values of P (Xθ = L) in our model, its comparison with experimental data (A)

Fig. 6. Noise of biased phase; (Left) N = 2, (Center) N = 3, (right) N = 4

For N = 2, 3 and 4, the probability P (Xθ = L) has the following forms:

P (2) (Xθ = L) =
cos4 Δ

cos4 Δ + sin4 Δ
,

P (3) (Xθ = L) =

(
cos3 Δ + 3 cos2 sin Δ

)2
(cos3 Δ + 3 cos2 sin Δ)2 +

(
sin3 Δ + 3 sin2 cos Δ

)2 ,

P (4) (Xθ = L) =

(
cos4 Δ + 4 cos3 Δ sin Δ

)2
(cos4 Δ + 4 cos3 Δ sin Δ)2 +

(
sin4 Δ + 4 sin3 cos Δ

)2 .

We compared these probabilities with experimental data of case (A), see Fig. 5.
One can find that the probabilities P (Xθ = L) in N = 2, 3 and 4 coincide with
experimental data of A.

In the situation (B) or (C), we take another adaptive operator M(Δ + ρ) in
which the angle is shifted by an unknown psychological bias ρ, instead of M(Δ).
This value of ρ can be also calculated from experimental data. We show it in
the Fig. 6. The values of ρ in (B) are higher than those in (C), and especially
the difference between ρ(B)and ρ(C) is clearly seen in the middle range of angle
Δ . For increasing N , this difference become smaller.
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Abstract. We describe a mathematical language for determining all
possible patterns of contextuality in the dependence of stochastic outputs
of a system on its deterministic inputs. The central principle
(contextuality-by-default) is that the outputs indexed by mutually incom-
patible values of inputs are stochastically unrelated; but they can be cou-
pled (imposed a joint distribution on) in a variety of ways. A system is
characterized by a pattern of which outputs can be “directly influenced”
by which inputs (a primitive relation, hypothetical or normative), and by
certain constraints imposed on the outputs (such as Bell-type inequali-
ties or their quantum analogues). The set of couplings compatible with
these constraints determines the form of contextuality in the dependence
of outputs on inputs.

Keywords: Bell-type inequalities · Cirelson inequalities · Context ·
Contextuality-by-default · Coupling · Direct influences · Determinism ·
EPR paradigm · Marginal selectivity · Sample spaces · Stochastically
unrelated variables

1 Introduction

In this paper we describe a language for analyzing dependence of stochastic out-
puts of a system on deterministic inputs. This language applies to systems of all
imaginable kinds: quantum physical, macroscopic physical, biological, psycho-
logical, and even purely mathematical, created on paper. The notion of “depen-
dence,” as well as related to it notions of “influence,” “causality,” and “context”
may have different meanings in different areas. Even if not, we do not know
how to define them. We circumvent the necessity of designing these definitions
by simply accepting that some inputs are connected to some outputs by arrows
called direct influences. We ignore the question of how these direct influences are
determined, except for a certain necessary condition they must satisfy (marginal
selectivity). A system is also characterized by certain constraints imposed on
the joint distribution of its outputs across different inputs. A prominent exam-
ple when both direct influences and constraints are justified by a well-developed
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theory is the EPR paradigm in quantum physics, where it is assumed that mea-
surement settings for a given particle directly affect measurement outcomes in
that particle only, and the joint distributions of the measurement outcomes on
different particles satisfy certain inequalities or parametric equalities. If these
constraints can be accounted for entirely in terms of the posited direct influ-
ences, the system can be viewed as “contextless.” If this is not the case, we
characterize probabilistic contexts by studying the deviations from the context-
less behavior exhibited by the system.

Whether one deals with quantum contextuality or thinks of contextuality
beyond even quantum bounds, our approach does squarely remains within the
domain of the classical probability theory, which we refer to as Kolmogorovian.
A caveat for using this attribution is that we do not mean the “naive” Kol-
mogorovian theory in which all random variables are thought of as defined on a
single sample space (equivalently, as functions of a single random variable). Such
a notion is no more tenable than the “set of all sets” of the naive set theory.
The qualified Kolmogorovian approach we adopt is based on the principle of
contextuality-by-default:

any two random variables recorded under mutually exclusive conditions
are stochastically unrelated, defined on different sample spaces.

This is a radical version of views previously expressed in the literature, e.g., in
Khrennikov (2008a, b), where it is traced back to Andrei Kolmogorov himself
and even to George Boole. Our emphasis, however, is on the fact that any set
of stochastically unrelated variables (but never “all of them”) can be coupled,
or imposed a joint distribution upon, in many different ways (Thorisson 2000).
In particular, the identity coupling is sometimes (but not always) possible, in
which the two random variables defined under mutually exclusive conditions and
“automatically” (by default) labeled as different and stochastically unrelated,
merge into one and the same random variable.

The basics of this approach are presented in Sect. 2. In Sects. 3 and 4 we use
it to investigate contextual influences with respect to a given pattern of direct
influences. The theory and notation there closely follows Dzhafarov and Kujala
(2013a). The departure point is that since different treatments (combinations
of input values) are mutually exclusive, the joint distributions of the outputs
corresponding to them, according to the principle of contextuality-by-default,
are stochastically unrelated. We then consider all possible ways of coupling them
across different treatments. From each such a coupling we extract stochastic
relations that are “hidden,” principally unobservable, because they correspond
to outputs obtained under different treatments. We focus on the special kind
of these hidden relations, those between random variables that share the same
pattern of direct influences. We call these hidden relations connections. Given a
certain constraint imposed on the system by a theory or empirical observations,
we pose the question of what connections imply (or force) this constraint and
what connections are implied by (or compatible with) it. Taken over all possible
couplings, these relations between connections and constraints characterize the
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type of contextuality exhibited by the system. This view of contextuality is
different from the existing approaches (Khrennikov 2009; Laudisa 1997).

2 Probability Theory: Multiple Sample Spaces

Given two probability spaces, (S,Γ, p) and (SA, ΓA, pA), with standard meaning
of the terms, a random variable is defined as a (Γ,ΓA)-measurable function
A : S ∇ SA subject to

pA (X) = p
(
A−1 (X)

)
, (1)

for any X ◦ ΓA. The probability space (S,Γ, p) is usually called a sample space,
and we will refer to (SA, ΓA, pA) as the distribution of A. The sample space itself
is a distribution of the random variable R (let us call it a basic variable) which
is the (Γ,Γ)-measurable identity function, x ∀∇ x, x ◦ Γ. Any random variable
A defined on this sample space can also be presented as a function A = f (R),
and (1) can be written as

pA (X) = Pr [A ◦ X] = Pr
[
R ◦ f−1 (X)

]
, (2)

for any X ◦ ΓA.
Let

(
Ak = fk (R) : k ◦ K

)
be a sequence1 of random variables, all functions

of one and the same basic variable R, with Ak distributed as
(
Sk, Γk, pk

)
. Then

A =
(
Ak : k ◦ K

)
= f (R) too is a random variable that is a function of R, with

the distribution (
SA =

∏
k∗K

Sk, ΓA =
⊗
k∗K

Γk, pA

)
. (3)

Here,
⊗

k∗K Γk is the minimal sigma-algebra containing sets of the form Xk ×∏
i∗K−{k} Si for all Xk ◦ Γk, and pA is defined by (2), with

f−1 (X) = {x ◦ S : (fk (x) : k ◦ K) ◦ X} . (4)

The distribution of A can also be given by (3) with no reference to its sample
space, or basic variable. It can be viewed as a joint distribution of the components
of a sequence A =

(
Ak : k ◦ K

)
, such that, for any nonempty K ◦ ∈ K, the

subsequence A◦ =
(
Ak : k ◦ K ◦) is a random variable distributed as
(

SA′ =
∏

k∗K′
Sk, ΓA′ =

⊗
k∗K′

Γk, pA′

)
, (5)

with

pA′ (X) = pA

(
X ×

∏
k∗K−K′

Sk

)
, (6)

1 The term sequence in this paper is used in the generalized meaning, as any indexed
family, a function from an index set into a set. Index sets need not be countable.
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for any X ◦ ΓA′ . The distribution
(
Sk, Γk, pk

)
of a single Ak is determined by

that of the one-element subsequence
(
Ak

)
in the obvious way. All the random

variables Ak obtained in this way from A can be viewed as functions on one and
the same basic variable, e.g., R = A itself.

We see that the relation “are jointly distributed” is synonymous to the rela-
tion “are functions of one and the same basic variable.” But clearly there cannot
be a single basic variable of which all imaginable random variables are functions.
This is obvious from the cardinality considerations alone, as random variables
may have arbitrarily large sets of possible values. But this is true even if one
confines consideration to all imaginable random variables with any given distrib-
ution, provided it is not concentrated at a point. Let, e.g., B be a class (not neces-
sarily a set) of all functions of R that are Bernoulli (0/1) variables with equiprob-
able values. That is, each B ◦ B is a function f (R) with f : S ∇ {0, 1}, such that
Pr

(
R ◦ f−1 ({0})

)
= 1/2. Consider a Bernoulli variable B→ with equiprobable

values such that for any B ◦ B,

Pr (B = 0, B→ = 0) = 1/4. (7)

Then B→ cannot be a function of R because it is independent of (hence is not
the same as) any of the elements of B. If needed, however, one can redefine the
basic variable, e.g., as R→ = (R,B→), with independent R and B→, so that all
elements of B ∅ {B→} become functions of R→.

This simple demonstration shows that the Kolmogorovian approach to prob-
ability is not represented by a single sample space with measurable functions on
it. Rather the true picture is an “open-ended” class (definitely not a set) of basic
variables that are stochastically unrelated to each other, each with its own class
of random variables defined as its functions: schematically,

. . . R1

������
��

��
��

��

. . .

A1 A2 . . .

R2

������
��

��
��

��

. . .

B1 B2 . . .

(8)

If necessary, using some coupling scheme as discussed below, any sequence of
stochastically unrelated basic variables

(
Rk : k ◦ K

)
can be redefined into a

random variable H =
(
Hk : k ◦ K

)
such that Hk and Rk are identically dis-

tributed for all k. This amounts to considering all individual Rk, as well as their
functions, as functions of H. But this procedure is not unique, and it cannot be
performed for “all random variables.”

The contextuality-by-default principle requires that any two random vari-
ables conditioned upon mutually exclusive values of some third variable are
stochastically unrelated. Indeed, there is never a unique way for coupling their
realizations. A simple example: I flip a coin and depending on the outcome weigh
one of two lumps of clay, lump 1 (if “heads”) or lump 2 (if “tails”). The random
variables A = “weight reading for lump 1” and B = “weight reading for lump
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2” do not a priori possess a joint distribution because there is no privileged
way of deciding whether a given value of A co-occurs with a given value of B.
If necessary, however, such a co-occurrence (or coupling) scheme can always be
constructed. For instance, one can list the values of A and B chronologically and
then couple the nth realization of A with the nth realization of B (n = 1, 2, . . .).
Or one could rank-order the values of A and B and couple the realizations of the
same quantile rank (this would create positive correlation between the variables)
or of the complementary ranks (negative correlation). One cannot say that one
way of paring is better justified than another, each one represents “a point of
view” and creates its own joint distribution of A and B.

3 All Possible Couplings Approach

Consider a sequence of random variables A = (A∂ : ∂ ◦ φ). The elements of
φ are called (allowable) treatments. Two distinct treatments ∂, ∂◦ are mutually
exclusive, so A∂ and A∂′ are stochastically unrelated. This means that A is not
a random variable.

Let there be a sequence of nonempty sets Δ =
(
Δk : k ◦ K

)
such that φ ∈∏

k∗K Δk. This means that every treatment is a sequence ∂ = (xk : k ◦ K),
with xk ◦ Δk. The sets Δk are called inputs, and their elements xk input values.
Note that generally φ ↑= ∏

k∗K Δk, that is, not all possible combinations of input
values form treatments (hence the adjective “allowable”).

For every treatment ∂, let the random variable A∂ be a sequence of jointly

distributed random variables A∂ =
(
Aγ

∂ : ρ ◦ L
)
. For each ρ, the sequence Aγ =(

Aγ
∂ : ∂ ◦ φ

)
is called an output. Its element Aγ

∂ can then be referred to as output

Aγ at treatment ∂ (or simply output Aγ
∂, when this does not create confusion).

Note that Aγ is not a random variable, because its components are stochastically
unrelated.

We postulate that, for every input Δk and every output Aγ, either Δk directly
influences Aγ, and we write Aγ ↔ Δk, or this is not true, Aγ ↑↔ Δk. This
relation is treated as primitive. Its intuitive meaning can be different in different
applications. The only constraint imposed on this relation, (complete) marginal
selectivity, is as follows (Dzhafarov 2003). Let index subsets I ∈ K and J ∈ L
be such that if Aγ ↔ Δk for some ρ ◦ J then k ◦ I. That is, no input belonging
to

(
Δk : k ◦ K − I

)
directly influences any output belonging to

(
Aγ : ρ ◦ J

)
. Let

∂ = (xk : k ◦ K) and ∂◦ = (yk : k ◦ K) be any allowable treatments such that

∂|I = (xk : k ◦ I) = (yk : k ◦ I) = ∂◦|I. (9)

The slash here indicates restriction of a function (sequence) on a subset of argu-
ments (indices). Marginal selectivity means that under these assumptions(

Ak
∂ : k ◦ J

) ← (
Ak

∂′ : k ◦ J
)
, (10)

where ← means “has the same distribution as.” In other words, the joint distri-
bution of a subset of outputs does not depend on inputs that do not directly
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influence any of these outputs. This does not mean, however, that these inputs,(
Δk : k ◦ K − I

)
, can be ignored altogether when dealing with

(
Aγ : ρ ◦ J

)
: gen-

erally, this will not allow one to account for its stochastic relation to other out-
puts,

(
Aγ : ρ ◦ L − J

)
.

By appropriately redefining the inputs the relation of “being directly influ-
enced by” can always be made bijective: each output is directly influenced by
one and only one input. The procedure is easier to illustrate on an example. Let
the diagram of direct influences be

Δ1

�� ���
��

��
��

� Δ2

������
��

��
��

���
��

��
��

� Δ3

�����������������

����
��

��
��

A1 A2 A3 A4 A5

(11)

Assume, for simplicity, that all combinations of input values are allowable,
φ = Δ1 × Δ2 × Δ3. Then the redefined inputs are as shown:

β1 = α1 × α2

��

β2 = α1 × α2 × α3

��

β3 = α2

��

β4 = {.}

��

β5 = α3

��
A1 A2 A3 A4 A5

(12)

The set {.} represents a dummy (single-valued) input, it should be paired with
any output that is not directly influenced by any inputs. The rest of the redefin-
ition should be clear. The set of allowable treatments is redefined into a new set
ψ , which is not the Cartesian product of the new inputs but rather a proper sub-
sequence thereof: e.g., if π2 attains the value

(
x1, x2, x3

)
, then the only treatment

allowable is ((
x1, x2

)
,
(
x1, x2, x3

)
, x2, ., x3

)
. (13)

We assume from now on that the direct influences are defined in a bijective
form: Δ =

(
Δk : k ◦ K

)
, φ ∈ ∏

k∗K Δk, A∂ =
(
Ak

∂ : k ◦ K
)
, Ak ↔ Δk for every

k ◦ K, and there are no other direct influences.
Let us return to the sequence of random variables2

A = (A∂ : ∂ ◦ φ) =
(
Ak

∂ : k ◦ K,∂ ◦ φ
)
, (14)

with stochastically unrelated components. Consider a complete coupling for A,

H =
(
Hk

∂ : k ◦ K,∂ ◦ φ
)
, (15)

a random variable (that is, its components are jointly distributed) such that

H∂ =
(
Hk

∂ : k ◦ K
) ← (

Ak
∂ : k ◦ K

)
= A∂. (16)

2 In (14) and subsequently we are conveniently confusing differently grouped subse-
quences, such as (A, B, C), ((A, B) , C), (A, (B, C)).
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Such a random variable H always exists. It suffices, e.g., to consider every element
of H∂ to be stochastically independent of every element in H∂′ , for all ∂ ↑= ∂◦.
But generally, the complete couplings H for a given A can be chosen arbitrarily,
except for the defining requirement (16).

Our approach consists in thinking of H, in addition to (16), in terms of
“connections” it contains, by which we understand couplings for sequences of
random variables that are indexed by different treatments sharing the same
pattern of direct influences. Consider, e.g., the components Ak

∂ for all ∂ whose
kth element equals a given value ∂ (k) = x. This subsequence can be written as

Ak
x =

(
Ak

∂ : ∂ ◦ φ, ∂ (k) = x
)
. (17)

Since Ak ↔ Δk only, all random variables Ak
∂ are directly influenced by the same

input value. Let
Ck

x =
(
Ck

∂ : ∂ ◦ φ, ∂ (k) = x
)

(18)

be a coupling for Ak
xk . This means that if ∂ (k) = x,

Ck
∂ ← Ak

∂, (19)

and it follows from the marginal selectivity property that the distribution of Ck
∂

across all ∂ with ∂ (k) = x remains unchanged (and equal to the distribution
of Ak

∂). There can be many joint distributions of (18) with this property. One
possibility is that Ck

x is an identity coupling, meaning that for any two Ck
∂, Ck

∂′

in (18),
Pr

(
Ck

∂ = Ck
∂′

)
= 1. (20)

If this is assumed for all k ◦ K and x ◦ Δk, then the complete coupling H in
(15) can be written as the reduced coupling

R =
(
Rk

x : k ◦ K,x ◦ Δk
)
, (21)

such that
R∂ =

(
Rk

x : k ◦ K,∂ (k) = x
) ← A∂. (22)

The existence of such a reduced coupling for a given A is the central theme of
the theory of selective influences (Dzhafarov 2003; Dzhafarov and Kujala 2010,
2012a, b, 2013b, in press; Kujala and Dzhafarov 2008; Schweickert et al. 2012,
Chap. 10), which includes the Bell-type theorems as special cases. Using the
language of the present paper, if R exists, one can say that each Ak is influenced
only by the input Δk that directly influences it. In other words, there are no
influences that are not direct (“no context”). Other examples from behavioral
sciences involve recent work on combination of concepts (Aerts et al., in press;
Bruza et al. 2013; for a critical overview see Wang et al., in press; and Dzhafarov
and Kujala, in press). In quantum physics the existence of the reduced coupling
represents classical, pre-quantum determinism; it is the foundation of all Bell-
type theorems (Basoalto and Percival 2003; Dzhafarov and Kujala 2012a).
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We know, however, that Bell-type inequalities are violated in quantum
physics. This leads us to explore alternatives to the assumption (20) and to
the ensuing existence of a reduced coupling. This can be done by allowing Ck

x in
(18) to be different from an identity coupling. The random variable Ck

x is called
a connection. If its distribution is posited, we constrain the complete coupling
(15) not just by (16), but also by its consistency with this connection:

Hk
x =

(
Hk

∂ : ∂ ◦ φ, ∂ (k) = x
) ← Ck

x . (23)

With this additional constraint, the coupling H need not exist.
Generalizing, let I be a subset of K other than empty set and K itself. Then

the (I, δ) -connection is defined as a random variable

CI
β =

(
CI

∂ : ∂ ◦ φ, ∂|I = δ
)

(24)

such that for ∂|I = δ ,
CI

∂ ← AI
∂ =

(
Ak

∂ : k ◦ I
)
. (25)

Recall that ∂|I = δ is the restriction of the treatment on a subset of its indices.3

Note that the components of a given CI
β are jointly distributed, but if (I, δ) ↑=

(I ◦, δ ◦), CI
β and CI′

β ′ are stochastically unrelated.
Given a sequence of outputs A in (14), denote the sequence of the con-

nections CI
β for all I and δ by CA (not a random variable). Assume that the

distributions of all these connections are known. Then one can ask whether a
complete coupling H for A is consistent with all connections in CA, that is,
whether in addition to (16) H also satisfies, for any I ◦ 2K − {→,K} and any
δ ◦ ∏

k∗I Δk,

HI
β =

(
HI

∂ : ∂ ◦ φ, ∂|I = δ
) ← CI

β , (26)

where
HI

∂ =
(
Hk

∂ : k ◦ I
)
. (27)

If this is true, then H is called an Extended Joint Distribution Sequence (EJDS)
for (A,CA). This notion is a generalization of the Joint Distribution Sequence
(or “Joint Distribution Criterion set”) that coincides with the reduced coupling
(21) in the theory of selective influences (Dzhafarov and Kujala 2010, 2012a,
2013b). It is obtained from EJDS by requiring that all connections be identity
ones, that is, for any ∂, ∂◦ in (24),

Pr
(
CI

∂ = CI
∂′

)
= 1. (28)

3 Strictly speaking, this notation makes the upper index I in CI
τ redundant. But it is

convenient as it allows one to abridge the presentation of τ . Thus, if K = {1, 2, 3},
I = {1, 3}, φ (1) = x, φ (3) = y, then a strict reading of CI

τ is C
{1,3}
{(1,x),(3,y)}, but it is

naturally abridged into C1,3
x,y, which seems more convenient than C{(1,x),(3,y)}. Note

that our opening example of a connection, Ck
x , is an abridged form of C

{k}
{(k,x)}.
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4 Characterizing Contextuality

The notion of an EJDS can be used to characterize contextuality in relation to
constraints imposed on the outputs of a system. Suppose that it is known that the
outputs A taken across all allowable treatments in (14) satisfy a certain property
P (A). This property may be described by certain equations and inequalities
relating to each other parameters of the outputs, such as Bell-type inequalities,
or Cirelson-Landau’s quantum inequalities (see below). One should investigate
then the set of possible CA in relation to this property P (A).

To understand this better, let us consider a simple example of A. Let K
be {1, 2}, the sequence of inputs

(
Δk : k ◦ K

)
be

(
Δ1 = {1, 2} , Δ2 = {1, 2})

, the
sequence of allowable treatments be φ = Δ1×Δ2, and the sequence of outputs be
A =

((
A1

ij , A
2
ij

)
: i, j ◦ {1, 2})

(where each subscript ij represents the treatment
(i, j)). The diagram of direct influences is assumed to be

Δ1

��

Δ2

��
A1 A2

(29)

The only choices of I ∈ K here other than → and K are the singletons {1} and
{2}, so the only four connections are, for i ◦ {1, 2},

C1
i =

(
C1

i1, C
1
i2

)
, C2

i =
(
C2

1i, C
2
2i

)
, (30)

where Ck
ij ← Ak

ij for all i, j, k ◦ {1, 2}. Recall that the logic of forming C1
i =(

C1
i1, C

1
i2

)
is that A1

i1 and A1
i2, while they are recorded at different treatments,

(i, 1) and (i, 2), share the same pattern of direct influences, namely, both are
directly influenced by the value i of Δ1 (in our general notation, ∂| {1} = (i)). So
if their joint distribution is described by anything other than Pr

(
C1

i1 = C1
i2

)
=

1, we can speak of indirect, contextual influences. The situation with C2
i is

analogous. The complete coupling for A here is the 8-vector

H =
(
H1

ij ,H
2
ij : i, j ◦ {1, 2})

. (31)

Assume that each Ak
ij (hence also Hk

ij in the complete coupling, i, j, k ◦ {1, 2})
is a binary random variable with equiprobable outcomes +1 and -1. Then A is
represented by four probabilities p = (p11, p12, p21, p22), where

pij = Pr
[
A1

ij = +1, A2
ij = +1

]
= Pr

[
H1

ij = +1,H2
ij = +1

]
. (32)

One prominent situation encompassed by this example is the Bohmian version
of the EPR paradigm involving two spin-1/2 particles with two settings (spa-
tial directions) per particle. As examples of a constraint P (A) consider the
Bell/CH/Fine inequalities (Bell 1964; Clauser and Horne 1974; Fine 1982)

0 √ pij + pij′ + pi′j′ − pi′j √ 1 (33)
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and Cirel’son’s (1980) inequalities

1 − √
2

2
√ pij + pij′ + pi′j′ − pi′j √ 1 +

√
2

2
, (34)

where i, j ◦ {1, 2}, i◦ = 3 − i, j◦ = 3 − j (so each expression contains four
double-inequalities). The Bell/CH/Fine inequalities are known to be necessary
and sufficient for the existence of a classical explanation for the EPR paradigm
in question (Fine 1982), whereas the Cirel’son inequalities are necessary for the
existence of a quantum mechanical explanation (Landau 1987).

One question to pose about the connections is: what is the set of all CA

such that whenever P (A) is satisfied, an EJDS for (A,CA) exists? We call any
connection belonging to this CA a fitting connection for P (A). A question can
also be posed about the opposite implication: what is the set of all CA such that
whenever an EJDS for (A,CA) exists, P (A) is satisfied? We call any connection
in this CA a forcing connection for P (A). In our example, CA is the sequence of
four connections Ck

i in (30), and they are uniquely characterized by the 4-vector
Π =

(
Π11, Π

1
2, Π

2
1, Π

2
2

)
, where

Π1i = Pr
[
C1

i1 = +1, C1
i2 = +1

]
, Π2i = Pr

[
C2

1i = +1, C2
2i = +1

]
. (35)

Hence the complete coupling H, in order to be an EJDS for (A,CA), should
satisfy not only (32), but also

Pr
[
H1

i1 = +1,H1
i2 = +1

]
= Π1i ,Pr

[
C2

1i = +1, C2
2i = +1

]
= Π2i , (36)

for i ◦ {1, 2}.
To describe the fitting and forcing connections for our example, it is conve-

nient to introduce the following abbreviations:

s0 = max
{± (ε11 − 1/4

)± (ε21 − 1/4
)± (ε12 − 1/4

)± (ε22 − 1/4
)

: # of + signs is even
}

,
s1 = max

{± (ε11 − 1/4
)± (ε21 − 1/4

)± (ε12 − 1/4
)± (ε22 − 1/4

)

: # of + signs is odd
}

.

(37)
It turns out (Dzhafarov and Kujala 2013a) that the sets of fitting connections
for the Bell/CH/Fine and Cirel’son inequalities are described by, respectively,

s1 √ 1/2, (38)

and

s0 √ 3 − √
2

2
, s1 √ 1/2. (39)

This means that if p satisfies (33), then any Π with s1 √ 1/2 is compatible with
it, that is, this p and this Π can be embedded in the same EJDS H. If p satisfies
(34), the set of Π compatible with it is more narrow: they should additionally
satisfy s0 √ 3−√

2
2 . Both sets include, of course, the vector Π = (0, 0, 0, 0), which

represents no-contextuality and corresponds to the reduced coupling R in (21).
The sets of forcing connections for the Bell/CH/Fine and Cirel’son inequal-

ities are described by, respectively,

s0 = 1, (40)
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and

s0 ≥ 3 − √
2

2
. (41)

The set of Π such that s0 = 1 consists of Π = (0, 0, 0, 0), Π = (1/2, 1/2, 1/2, 1/2),
and vectors with two zeros and two 1/2’s. All of them represent no-contextuality,
with +1 and −1 interpreted differently in different connections. Only if Π is one
of these vectors, p must satisfy the Bell/CH/Fine inequalities in order to be
compatible with it. In other words, such an Π and no other “forces” p to satisfy
these inequalities. The class of Π that force p to satisfy the Cirel’son inequalities
should include these Π because every p satisfying (33) also satisfies (34). But
there are other Π, all those with s0 ≥ 3−√

2
2 , that too are compatible with p only

if they satisfy the Cirel’son inequalities.
The above serves only as a demonstration of how one could characterize

the constraints imposed on outputs (by a theory or empirical generalizations)
through the connections compatible with them, in the sense of being embeddable
in the same coupling. It should be noted, however, that connections generally do
not characterize couplings uniquely. This opens ways for constructing qualified
Kolmogorovian models more general than the one presented in this paper.

5 Conclusion

We have shown that the classical, if qualified, Kolmogorovian probability theory
is not synonymous with the classical explanation of the input-output relations
(especially, in the entanglement paradigm of quantum physics). The latter, since
Bell’s (1964) pioneering work, has been understood as the existence of a single
sample space for all outputs when each output is indexed (identified) only by the
inputs that directly influence it. In the qualified Kolmogorovian approach, how-
ever, this is only one of a potential infinity of possibilities. Different treatments
(combinations of values of all inputs) correspond to stochastically unrelated ran-
dom variables, and these can be coupled in many different ways. Only one of
these ways, with identity connections, corresponds to John Bell’s single sample
space.
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Abstract. In this paper, we test the type indeterminacy hypothesis by ana-
lyzing an experiment that examines the stability of preferences in a Prisoner
Dilemma with respect to decisions made in a context that is both payoff and
informationally unrelated to that Prisoner Dilemma. More precisely we carried
out an experiment in which participants were permitted to make promises to
cooperate to agents they saw, followed by playing a Prisoner’s Dilemma game
with another, independent agent. It was found that, after making a promise to
the first agent, participants exhibited higher rates of cooperation with other
agents. We show that a classical model does not account for this effect, while a
type indeterminacy model which uses elements of the formalism of quantum
mechanics is able to capture the observed effects reasonably well.

Keywords: Quantum probability � Type indeterminate � Prisoner’s Dilemma �
Cheap talk

1 Introduction

Many conventional accounts of behavior relate internal characteristics (e.g. beliefs,
attitudes) to outward expressions in a deterministic way. That is, they assume that
each person has stable traits that drive his actions. This is often accompanied by the
assumption that the reverse is not true – that one’s behaviors do not influence one’s
cognitive processes. We challenge this assumption, suggesting instead that a person
constructs preferences according to the actions he takes. We propose that the moti-
vational underpinning of behavior is intrinsically uncertain (i.e. indeterminate), and
that a particular preference (or type) is actualized upon selecting an action. This view
is formalized in the Type-Indeterminate (TI) model of decision-making [1], which
offers testable predictions for decision-making behavior in sequential scenarios.

Our approach seeks to contribute to a growing body of literature in the social
sciences, psychology, physics, computer science, and mathematics which is based on
principles of non-classical indeterminacy found in quantum mechanics [2–8]. This
line of research has been successfully applied to explain a variety of behavioral
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phenomena ranging from cognitive dissonance to preference reversals, the conjunc-
tion fallacy [6], disjunction [8], and other interference effects [5]. The critical con-
nection between physical and psychological systems is that the object of investigation
cannot (always) be separated from the process of investigation. Instead, our mea-
surements result in a change to a person’s internal state. As a person’s preference is
elicited, his preferences with respect to another, incompatible set of outcomes may be
modified, resulting in inconsistent or order-dependent behavior.

We provide an experimental test of type indeterminacy, derived from the quantum
probability framework, by comparing two sequential decision scenarios. In one,
people are invited to play a Prisoner’s Dilemma (PD) game. In the other, prior to
playing the PD game, they are invited to make a promise to cooperate with another
player. The promise is made to a third party – not the one the person interacts with in
the focal PD game – and has no consequences for the outcome of that game. While
this pre-play exchange has no strategic value, it may still play a role in terms of the
person’s relationship with himself. The nature of this relationship may be predicted by
existing psychological literature.

1.1 Pre-play and Self-perception

Despite the view that there is an exclusively unidirectional influence of inner char-
acteristics (preferences, attitudes, beliefs) on behavior, a long-standing and robust
phenomenon in the psychological literature suggests that the opposite occurs. Self-
perception [9] postulates two characteristics: (1) individuals come to ‘‘know’’ their
own attitude and other internal states partially by inferring them from observations of
their own behavior and/or the circumstances in which behavior occurs; and (2) ‘‘The
individual is functionally in the same position as an outside observer, an observer who
must necessarily rely upon those same external cues to infer the individual inner
state.’’ [10, p. 27].

Suppose, as above, we offer a person the chance to make a promise to cooperate
with another player. If we expect self-perception to be effective after this exchange,
then a person who (e.g.) makes a promise to cooperate should observe his own
behavior as cooperative. Consequently, we should see him act in a cooperative way
immediately following this promise.

As discussed in [11]1, self-perception does not necessitate a non-classical
framework. However, its postulates are consistent with quantum indeterminacy, which
overturns the classical postulates of pre-existing identity, attitudes, and preferences.

1 As we show, with indeterminacy of the inner state, behavior (the action chosen in a decision
situation, see below) shapes the state of preferences/attitude by force of a state transition process.
Indeterminacy means intrinsic uncertainty about individual identity such that the individual may not
know his own attitudes, preferences and beliefs. And as in self-perception theory, it is by observing
his own action that he infers (learns) his state (of beliefs and preferences).
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1.2 Prisoner’s Dilemma

In order to examine the effect of cheap talk on subsequent decision-making, we have
to be able to quantify and predict nontrivial decisions. A well-established framework
for doing so is the non-zero-sum Prisoner’s Dilemma game (see [12] for a review).
The general form of the game can be seen in Fig. 1.

The well-known result is that the Nash equilibrium entails defection from both
players. However, substantial deviation from this outcome has been cited as evidence
that players have subjective valuation of the outcomes that is distinct from the
monetary payoffs [13]. In order to capture the distinction between material payoffs and
subjective payoffs, we introduce ‘‘types’’ as follows. Uncertainty about the subjective
payoffs translates into uncertainty about the type of the player which in the Prisoner’s
Dilemma game may be one of the 3 following types:

• PD type 1 (t1), ‘‘cooperator’’ type who always prefers to cooperate in a PD game;
• PD type 2 (t2), ‘‘moderate’’ type who prefers to cooperate when he expects the

opponent to cooperate with probability p C q*; and
• PD type 3 (t3), ‘‘materialistic’’ type who prefers to always defect.

Similarly, a player’s preferences in a promise exchange game are characterized by
the 3 analogous types:

• Promise type 1 (s1), ‘‘promise-maker’’ type who always promises to cooperate
• Promise type 2 (s2), ‘‘moderate’’ type who makes a promise to cooperate when he

expects the opponent to cooperate with probability p C q*; and
• Promise type 3 (s3), ‘‘honest’’ type who never makes a promise to cooperate.

We frequently treat each of these types as bases of a vector space – type 1 as the
x-axis [1 0 0], type 2 as the y-axis [0 1 0], and type 3 as the z-axis [0 0 1].

1.3 Models of Behavior

Classical Model
In [9], it was shown that the classical model predicts the same outcome of a PD game
whether it was preceded by an independent promise exchange or not. This model
implies that a player is of one specific type when entering into a PD game, and that the
behavior of all types is known once q* is determined. When the promise exchange

Fig. 1. Payoff matrix in the form (Player 1 payoff, Player 2 payoff). Note that for the game to
be a Prisoner’s Dilemma, the values are set such that U = T [ R [ P [ V = S
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takes place, it provides no new information for the player to use in subsequent games,
as it has no payoff implications. Thus, if this model is correct, we should see the same
behavior in PD games that are and are not preceded by an independent promise
exchange.

Type-Indeterminate Model
The basic Type-Indeterminacy model is formulated in [1]. In this model, an individual
is represented by a state vector which captures all information about his preferences.
A decision situation (DS) is viewed as a measurement of this property. The outcome
of the measurement is the choice made, which informs the decision-maker about his
preferences. This decision is modeled as an (projection) operator that acts upon the
individual (i.e. changes his state). It is a well-known result that if all DS (operators)
are commuting, the TI-model is equivalent to a standard incomplete information
model. The novelty comes when allowing for non-commuting DS. This implies that
since the DS are affecting the state, the order in which non-commuting DS are pre-
sented to the individual matters to the preferences that are being revealed. This feature
captures the intrinsic indeterminacy of preferences. The formalism of TI-model pro-
vides a well-defined state transition process borrowed from the mathematical for-
malism of quantum mechanics.2

For the present purpose we only need to know that the TI-model works as follows.
Before making a decision in a given PD, Agent A cannot be represented as a single
preference order over the two choices (Cooperate or Defect). Instead we say that he is
in a state of superposition, a state of simultaneous selves. With a certain probability he
may express anyone of the 3 possible types. This initially uncertain state can be
disturbed by engaging in the promise exchange. The decision whether or not to make
the promise is such a decision that is we assume that it does not commute with the PD.
This simply means that the individual who makes his decision in the PD is not in the
same state at the beginning and end of this pre-play. Hence the TI-model predicts that
his choice behavior will not be the same if he engages in pre-play. Below we provide a
more detailed account for the calculation of predicted behavior. For now we just note
that the prediction of the TI-model contrasts with the classical model which predicts
the same behavior in the PD in the two scenarios. This distinction (in its details) is the
object of the experimental test.

1.4 Synthesis and Summary

Having developed a suitable framework for assessing the effect of cheap talk promise-
making to one player (A) on games played with another player (B), we suspect that the
effect will be a different rate of cooperation with player B after having made a promise
to cooperate with player A. We have both qualitative [10] and formal quantitative
[1, 2] accounts that can explain such an effect.

2 In Danilov and Lambert-Mogiliansky 2008, we investigate the axioms behind the Hilbert space
model of QM and the implied state transition process to find that they have a natural interpretation
in social sciences [13].
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2 Methods

2.1 Participants

A total of 31 participants were recruited (17 female, 14 male), all students aged 18–30.
The study was conducted at Indiana University, Bloomington. The task portion of the
study took place in an interdisciplinary laboratory, with participants seated spaced
apart at computers. Each participant completed one session of the experiment. They
were paid $5 for participating and were awarded up to an additional $10 based on how
many points they accumulated during the experiment. For each set of payoffs in the
experiment, a participant could earn 0–45 points based on their and their opponent’s
decision. The fraction of the $10 they received was based on the number of points they
had accumulated divided by the total number of points possible across all payoff
matrices in the experiment (maximum number for each trial). Average earnings were
approximately $11.

2.2 Agents

In the main task, participants played a series of games with computer agents. They
were aware that these agents were not other people, but each agent had a unique face,
name, and a tendency to cooperate or defect3. Those agents who tended to cooperate
were described as cooperative (75 % C) and those that tended to defect were described
as opportunistic (75 % D). Participants were not informed of these exact rates – only
that an agent was one type or the other, and hence more likely to cooperate or defect,
respectively.

2.3 Payoffs

The main set of payoffs that participants encountered during the task were standard
Prisoner’s Dilemma payoffs (T = U [ R [ P [ S = V, see Fig. 1), where the pay-
offs are presented as [Participant’s payoff, computer agent’s payoff].

In addition, there were several sets of payoffs that were used as ‘‘filler’’ to keep
participants engaged and to prevent them from developing a set strategy. These
payoffs were either Chicken (T = U [ R [ S = V [ P, again see Fig. 1), Battle of
the Sexes (T = U [ S = V [ R = P = 0), Free Rider (U [ R [ V [ P = S =
T = 0), or Coordination (R = P [ S = T = U = V = 0) payoffs.

All payoffs varied between point values of 0 and 45, and different sets of the same
type of payoffs were approximately proportional to one another.

2.4 Task Progression

The task consisted of 9 iterations of the same 4 stage sequence, using agents and
payoff matrices described above. These 4 stages were:

3 An example of a screen participants would see can be found in the online supplementary material at
www.msu.edu/*kvampete/resources.html
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1. Pre-play cheap talk promise exchange: Participant sees a new agent (Agent A)
and set of PD payoffs and is told they will play this game with this agent in the
future. They choose to either promise to cooperate or not make any promise

2. Independent intermediate PD game: Participant sees new agent (Agent B) and set
of PD payoffs. They play the game, either cooperating or defecting.

3. Cheap talk follow-up: Participant plays the game with the agent they saw in the
first stage (Agent A, same payoffs), choosing to cooperate or defect.

4. Filler: Participant plays 8 games, all with new agents (Agents C-J), some of which
are PD games and some of which are the non-PD payoffs described above.

During the filler stage of each iteration, participants received feedback on how
many points they had accumulated up to that point, but never received any feedback
on the outcomes of individual trials.

In our analysis, we focus on predicting the rates of cooperation in the second stage
as a function of the type of agent they encounter there as well as their behavior and the
type of agent they encountered in the first stage.

3 Results

No systematic gender or other demographic differences were found, and so partici-
pants’ data were combined in the analyses presented. We review the results first from
the pre-play cheap talk exchange, then the effect that this stage had on behavior in the
subsequent independent PD game. We compare this to behavior in PD games that took
place during the filler stage (i.e. without a preceding pre-play promise exchange), and
finally derive and compare model predictions for the rates of cooperation during
stage 2. For brevity, we omit the results from stage 3, as neither model makes clear
predictions for behavior during this stage.

Additionally, we introduce some notation to simplify communication of results:

• PA = promise made to Agent A in Stage 1
• NPA = no promise was made to Agent A
• CoopA = Agent A is /was a cooperative agent
• OppB = Agent B is /was opportunistic
• Pr(CB) = probability of cooperating with agent B
• Pr(D) = 1 - Pr(C) probability of defecting
• #Cn = number of times players cooperated in condition n
• #Dn = number of times players defected in condition n.

3.1 Cheap Talk Promise Exchange (Stage 1)

When participants were presented with a cooperative computer agent and given the
chance to make a promise to cooperate, they opted to do so on 85 out of 134 pre-play
trials Pr PA CoopAjð Þ ¼ 0:634ð Þ. When the computer agent was described as oppor-
tunistic, they made promises on 51 out of 145 Pr PA OppAjð Þ ¼ 0:352ð Þ. This differ-
ence occurred across all stages of the task – participants tended to behave
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cooperatively (made promises and cooperated) more often when the agent was
cooperative as opposed to opportunistic.

3.2 Prisoner’s Dilemma Games with and Without Pre-play
(Stages 2 and 4)

The rate of cooperation in the PD filler trials – those without any pre-play cheap talk
preceding them (phase 4) – with cooperative agents was 95 out of 235 (Pr
(C|Coop) = 0.404) and with opportunistic agents was 42 out of 267 (Pr(C|Opp) =
0.157).

The rates of cooperation following pre-play (phase 2) were 58 out of 123 for
cooperative agents (Pr(CB|CoopB = 0.472) and 25 out of 156 for opportunistic agents
(Pr(CB|CoopB = 0.160). For those participants that had made a promise to cooperate
in the first stage and encountered a cooperative agent, the rate of cooperation was 39
out of 58 (Pr(CB|PA, CoopB) = 0.672); when they had made a promise and encoun-
tered an opportunistic agent, the rate of cooperation was 21 out of 76 (Pr(CB|
PA, OppB) = 0.276). The comparisons matched by agent type were significant
(p \ 0.05 for each pairwise t-test), indicating an increased rate of cooperation when
participants had made a promise in the independent pre-play cheap talk exchange.

Rates of cooperation for no-promise conditions can be seen in Table 1 and the
supplementary material. Modeling also accounts for the type of agent encountered in
the cheap talk stage, as this contributes to determining the type that a participant
expresses. Including the type of agent from the first stage, the decision from the first
stage (promise/no promise), and the type of agent from the second stage, there are 8
different rates of cooperation in the second stage. These were the rates of cooperation
that each model attempted to predict.

The argument can be made that those participants who were more likely to
cooperate had a higher propensity to make promises, and that this would inflate the
rate of cooperation given a pre-play promise because more cooperative participants
would be in the ‘promise made’ group. To account for this, we re-weighted the rate of
cooperation from the fourth stage (originally 26.25 %, collapsed across agent type)

Table 1. Summary table of rates of cooperation during phases 1, 2 and 4 of the task

Agent A is: Cooperative (Coop) Opportunistic (Opp)
Phase 1: Prom-
ise exchange 
(Agent A)

Promise No promise Promise No promise

63.4% 36.6% 35.2% 64.8%

Agent B is: Coop Opp Coop Opp Coop Opp Coop Opp
Phase 2: Inde-
pendent PD 
(Agent B)

69.1% 62.5% 10.5% 37.0% 30.2% 24.2% 9.4% 1.8%

Phase 4: Other 
PD games 
(Agent C)

40.4% (p = .011, H0: equal to post-
promise rate of cooperation)

15.7% (p = .037, H0: equal to 
post-promise rate of cooperation)
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according to the number of promises each participant made. This ensured that each
participant had equal weight in calculating both the non-pre-play rates of cooperation
and pre-play rates. The re-weighted rate of cooperation for the fourth stage is 33.6 %,
which is still significantly lower (p \ 0.05) than the rate of cooperation given a
promise had been made in the pre-play cheap talk stage, which was 44.8 % (again
collapsing across agent types). This suggests that while there was some effect of self-
selection from making promises, this was not enough to account for the increased rate
of cooperation when a promise had been made in the cheap talk stage.

3.3 Modeling Results

One key assumption is made in order to fit both models. Recall that a player of PD or
promise type 2 (t2 or s2) will cooperate or make a promise, respectively, if he believes
that the agent he is interacting with will cooperate with probability p [ q*, where q*
is a threshold. The assumption we make is that telling a participant that an agent is
cooperative will insure that p [ q*, and telling a participant that an agent is oppor-
tunistic will insure p \ q*, so a type 2 player will be differentiated from the others
based on the agent type he encounters. Such a manipulation has been successful in
previous experiments [14] and is necessary for fitting either model. Without making
such a claim, we could never distinguish between type 2 and type 1 players if a player
cooperated/made a promise, and we could never differentiate between type 2 and
type 3 players if a player defected/made no promise.

Classical/Standard Model
The standard model, as we described previously, assumes that a person’s type is
determined prior to starting a particular game, and that the payoff matrix and opponent
type for that game resolves any residual uncertainty about their behavior. Given this
information, we can extract what type a player is based on his actions in a particular
game. For the PD games contained in the fourth stage, the relative frequency of these
types occurring is:

Pr t1ð Þ ¼ Pr C Opp; fillerjð Þ ¼ 0:1573

Pr t3ð Þ ¼ Pr D Coop; fillerjð Þ ¼ 0:5957 ð1Þ

Pr t2ð Þ ¼ 1� Pr t1ð Þ þ Pr t2ð Þð Þ ¼ 0:2740

Since the types are mutually exclusive and their frequencies in the classical model
add up to one, we can extract the type distribution for the fourth stage. Since the
second stage (independent PD with pre-play) is treated the same as the fourth stage
(independent PD without pre-play), we should observe the same type frequencies
appearing in the intermediate PD games. For example:

Pr CB CoopBj ;CoopA;PAð Þ ¼ Pr CB CoopBjð Þ ¼ Pr t1 [ t2ð Þ ¼ 0:4043 ð2Þ

Pr CB OppBj ;CoopA;NPAð Þ ¼ Pr CB OppBjð Þ ¼ Pr t1ð Þ ¼ 0:1573

220 P.D. Kvam et al.



This implies that across all 8 conditions in stage 2 (see Table 1), there should only
be 2 different rates of cooperation, based only on the immediate agent type. These
rates should be 40.43 % for cooperative agents, and 15.73 % for opportunistic agents,
shown above.

We can use these two parameter inputs to estimate the log likelihood of the model
using the log of a multinomial function:

X8

n¼1
#Cn � ln Pr C njð Þð Þ þ#Dn � ln Pr D njð Þð Þ ð3Þ

where n corresponds to each specific combination of agent type in the promise
exchange, player decision in the promise exchange, and agent type in the intermediate
Prisoner’s Dilemma game. The log likelihood (LL) for this model is -155.8373.
Using this value, we compute an approximate Bayesian information criterion (BIC):

BIC ¼ �2 � LLþ# parameters � lnð# data pointsÞ ¼ 322:9371 ð4Þ

The BIC for the classical model uses the 279 total data points across all conditions
in the intermediate PD stage, and 2 parameters based on estimates from the filler
stage. Note that the BIC includes a term that depends on the number of parameters of
the model – it penalizes models with a larger number of parameters relative to the
number of data points, which allows us to fairly compare the classical model against
the more complex TI model. Later, this is used to approximate a Bayes factor between
the two models.

Type-Indeterminate Model
The type-indeterminate model uses a state vector to represent a particular player’s types
at any given time. Each type is noted in bra(|)-ket(i) notation, as it corresponds to one of a

set of basis vectors that spansR3. In our case, we set t1 ¼
1
0
0

2

4

3

5 t2 ¼
0
1
0

2

4

3

5 t3 ¼
0
0
1

2

4

3

5

in the PD game space and s1 ¼
1
0
0

2
4
3
5 s2 ¼

0
1
0

2
4
3
5 s3 ¼

0
0
1

2
4
3
5in the promise game

space. Since a player can be any of the 3 types, we can represent his state u as a linear
combination of the three possible types, called a superposition state. For example, in the
promise game, his type would begin as

uj i ¼ a1 s1j i þ a2 s2j i þ a3 s3j i ð5Þ

The coefficients a1, a2, a3 are probability amplitudes whose squared length gives

the probability of expressing the corresponding type e:g: Pr s1ð Þ ¼ a1j j2
� �

. These

squared amplitudes must add up to 1, referred to as the unit length property of the
superposition state. We can infer estimates of what the values of these coefficients are
based on players’ behavior in the promise exchange game, using the assumption about
the threshold value (p [ q* when facing a cooperative agent, p \ q* when facing an
opportunistic agent) and the unit length property of the coefficients:
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a1j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PrðPAjOppAÞ

p
¼ 0:5854

a3j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr NPAjCoopAð Þ

p
¼ 0:6123 ð6Þ

a2j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

1 þ a2
3

� �q
¼ 0:5314

Substituting these values into (5) gives us the initial distribution of types during
the promise exchange game, and so we have a superposition state reflecting all player
types. Once a player makes a decision, however, he must project down onto the
corresponding basis state(s). For example, if he promises to cooperate with an
opportunistic agent, he must be promise type 1. However, if he does not make a
promise, he must be either promise type 2 or promise type 3. We model this by
projecting the state vector onto the bases that correspond to the types a player could
be. However, this results in a vector whose length is less than 1, so we must rescale the
new state vector to preserve unity. For example, the new state vector after making a
promise to cooperate with a cooperative agent is:

uP;Coop
0��
E
¼ a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 þ a2

2

p s1j i þ
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 þ a2

2

p s2j i ¼ 0:7404js1 þ 0:6721 s2j i ð7Þ

The new state vector after making no promise to an opportunistic agent is:

uNP;Opp
0��
E
¼ a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
2 þ a2

3

p js2 þ
a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
2 þ a2

3

p s3j i ¼ 0:6554 s2j i þ 0:7553 s3j i ð8Þ

The calculation is much simpler when making a promise to an opportunistic agent
or making no promise to a cooperative agent.

uNP;Coop
0��
E
¼ s3j i uP;Opp

0��
E
¼ s1j i ð9Þ

Depending on the combination of agents a player faces and the decision the player
made, we can extract which of these four states they are in after the promise exchange.
In order to map the state vector from its position in the promise game to its position in
the PD game a transformation must be applied. We represent this transformation as a
change-of-bases unitary matrix. For a complete account of how this is done, see the
online supplementary material. The resulting unitary matrix is parameterized using
rotations about the x, y, and z axis: h1, h2, and h3, respectively.

U ¼
cos h2 cos h3 cos h1 sin h3 þ sin h1 sin h2 cos h3 sin h1 sin h3 � cos h1 sin h2 cos h3

� cos h2 sin h3 cos h1 cos h3 � sin h1 sin h2 sin h3 sin h1 cos h3 þ cos h1 sin h2 sin h3

sin h2 � sin h1 cos h2 cos h1cos h2

2
4

3
5

ð10Þ

Using maximum likelihood estimation to obtain the log likelihood of the model
using (3), we find best-fit parameters of h1 = 6.2257, h2 = 3.8794, and h3 = 4.2796.
Substituting these values gives
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U ¼
0:3103 �0:9225 �0:2295
�0:6717 �0:3836 0:6337
�0:6727 �0:0425 �0:7387

2
4

3
5 ð11Þ

To obtain the final type superposition for the intermediate PD game, we multiply
through to obtain a 3-dimensional vector, now in the PD game space.

U �
a01
a02
a03

2

4

3

5 ¼
b1

b2

b3

2

4

3

5; where Pr t1ð Þ ¼ b1j j2; Pr t2ð Þ ¼ jb2j2; and Pr t3ð Þ ¼ jb3j2 ð12Þ

Given the values for each b obtained from (7), (8), (9), (11) and (12), we can
determine a player’s behavior in the PD game based on the type of agent he faces. The
log likelihood for this mode, computed using (3), is -149.1063. This gives a BIC
[from (4)] of

BIC TIð Þ ¼ �2 � �149:1063ð Þ þ 3 � ln 179ð Þ ¼ 315:1008 ð13Þ

A comparison of model predictions for each of the 8 conditions can be seen in the
supplementary material. It may not be immediately clear that the TI model has overall
better predictions; in order to truly compare the two models, we approximate a Bayes
Factor using the BICs from the two models:

BF Classical; TIð Þ ¼ exp
BIC classicalð Þ � BIC TIð Þ

2

� 	
¼ 50:3073 ð14Þ

This Bayes Factor can be interpreted as ‘strong’ evidence for the type indeter-
minate model over the classical model in accounting for the data [15].

4 Discussion

The qualitative results – showing a different rate of cooperation after making a
promise, even after readjusting the base rate – suggest that the type-indeterminate
model better predicts behavior in the Prisoner’s Dilemma game following the promise
exchange. The quantitative model fits provide decisive support of this conclusion as
well – the Bayes factor computed between the models, even when penalizing the TI
model for being more complex, clearly favors it over the classical model. It certainly
seems that the promise exchange does have a distinct effect on behavior in the Pris-
oner’s Dilemma, and that the TI model provides the better account of this effect.

The success of the TI model in this task was more than reasonable, and it presents
a mathematical formalization of the self-perception effect [10]. Previously, this effect
had mainly been a qualitative one, but descriptive game theoretic quantum models
(such as in [5, 8]) can offer fully quantitative reinterpretations of two- or multi-player
interactions. More generally, the quantum class of models can offer formalizations of
many existing effects as well as predictions of new ones [4]. We hope to have offered
not simply a prediction of interference from a promise exchange, but also to have
presented a framework that has wide, varied, and effective applications.
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Abstract. In this paper, we examine the effect of making a choice on sub-
sequent confidence. Using a simple binary forced-choice perceptual task, we
show that committing to a decision results in perturbed probability (confidence)
judgments compared to a control condition where no decision is elicited,
suggesting that committing to a decision interferes with subsequent information
processing. Current classical probability models of decision-making and con-
fidence do not predict this interference effect, but it arises naturally out of a
quantum random walk model. We show that this model provides a better fit to
the data and provides novel predictions of interference as well as improved
confidence accuracy following a decision.

Keywords: Quantum probability � Decision-making � Confidence �
Interference

1 Introduction

The degree of belief people express in the likelihood of different outcomes informs
our actions, transmitting information about uncertainty and risk as well as the weight
that information should carry. From confidence in military intelligence to assessments
of eyewitness testimony, judgments about the likelihood of events can carry tre-
mendous impact, and in many cases it is critical for them to be as accurate and
unbiased as possible.

One of the more common assumptions about these judgments is that they are read
out of internal states. This assumption, which we refer to as the read-out assumption,
implies that asking for responses should not affect ongoing cognitive processes.
Instead, it suggests that responses simply externalize information [1, 2]. If this is true,
then taking measurements such as decisions should not affect subsequent data.

There seems to be evidence for violations of the read-out assumption, perhaps
most notably in the form of confirmation bias (see [3] for a review). According to this
bias, decision-makers change their beliefs to be consistent with their previous actions
[4]. Another study [5] found the opposite effect – were less confident about an
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alternative after having previously chosen it, compared to when they rated confidence
without prior choice. In both cases, the act of choosing interacts with the production of
subsequent judgments – a clear violation of the read-out assumption.

Despite evidence for violations of the read-out assumption, cognitive models of
judgment and decision-making continue to make it. This is largely because they are
constructed on assumptions from classical probability theory. However, models based
on the quantum probability framework can capture these effects by invoking a pro-
jection operator to model choice. This operator changes the state of the system,
moving it into a state consistent with the choice that a person has made. With this in
mind, the purpose of this paper is two-fold: first, we empirically test the read-out
assumption in a simple perceptual task where participants express their confidence in
the characteristics of a stimulus, comparing conditions where this is and is not pre-
ceded by a decision about those characteristics; and second, we evaluate how well a
quantum random walk model of choice and confidence [6] captures these effects.
We compare its performance against its classical counterpart, the Markov random
walk model [7–9].

2 Methods

2.1 Participants

A total of 9 participants were recruited from a pool of Michigan State University
students. Each completed 5 1-h sessions of the experiment.

Task
Participants were instructed to watch a field of moving dots, most of which were
moving randomly. A subset of the dots (coherence levels: 2/4/8/16 %) was consis-
tently moving either left or right. On half the trials (choice condition), participants
were first asked to choose whether the dots were moving left or right. On the
remaining trials (click condition), participants were instructed to either press a left or
right mouse button. After the choice or click, participants were asked to rate their
confidence that the dots were moving rightward.

The time course of an individual trial is shown in Fig. 1. At the beginning of each
trial participants would click on a shape to start the trial. The particular shape indi-
cated whether the trial was from the choice (square) or click (circle) condition.

Fig. 1. Time course of random dot motion task: Click/Choice at T1, Confidence at T2
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After clicking the fixation the dot stimulus appeared. After 500 ms (T1), participants
were prompted with a beep to indicate using a button press on the mouse which
direction they believed the dots were moving (choice condition) or to just click the
right or left button (click condition). We included the click in the non-choice condition
in order to mimic the motor action required to make a choice and eliminate it as a
possible confounding factor.

To prompt responses, a low frequency beep was used in the choice condition
(400 Hz) and a high frequency beep in the click condition (800 Hz). Following the
choice or click, participants were prompted with a second, 400 Hz beep at T2, which
sounded 50/750/1500 ms later. They would then enter their confidence that the dots
were moving right by clicking a semi-circular scale that ranged from 0 (certain left) to
100 (certain right) scale. Feedback was given after each trial indicating the number of
points that a participant received for that trial as well as how fast their click/choice and
confidence responses were.

Individual trials of this task were organized into blocks. Each block included 2
trials of each combination of 4 coherence levels and 3 inter-judgment times, for a total
of 24 trials. The choice and click manipulation occurred between blocks in an alter-
nating pattern. In the click condition, whether the participant was supposed to click
left or right was randomly selected. Each participant completed a total of 112 blocks
(56 choice and 56 click blocks) of the task across the 5 experimental sessions.

3 Results

We rescaled all confidence ratings relative to the correct answer, i.e. 0 % confidence
means a person was sure the dots are moving in the incorrect direction.

At the distribution level, participants gave confidence ratings that were closer to 0
and 100 in the click condition than in the choice condition, indicating more extreme
beliefs when they were not asked for a choice (Fig. 2 shows this in a cumulative
distribution of confidence judgments for an example condition). To better characterize
these differences, we submitted the data to a 4-factor (choice/click 9 inter-judgment
time 9 coherence 9 correct/incorrect for choice) hierarchical Bayesian linear model
(see [9]). This analysis revealed a main effect of choice condition (choice/click) on

Fig. 2. Cumulative distribution of confidence judgments for a typical participant/condition
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confidence, implying that making a choice impacted subsequent confidence
judgments. The modal value of the posterior distribution for the standardized predictor
was -0.443, HDI = [-0.975 -0.071], which indiates that making a choice actually
lowered participants average confidence ratings. This effect also scaled (interacted)
with coherence, increasing in magnitude with improved coherence.

We also found that the interference due to choice resulted in better resolution in
confidence judgments, i.e. participants could better tell whether their answer was
correct or incorrect. The standardized difference between mean confidence for correct
versus incorrect confidence judgments (DI‘, a sensitivity measure; see [10]) was larger
in the choice condition. The mean DI‘ for the choice condition was 0.444, while it was
0.342 in the click condition. A Bayesian means comparison suggests this is a reliable
difference with the modal posterior estimated difference between the means being
0.101, HDI = [0.006 0.193].

3.1 Models

Each of the models we use describes an internal cognitive state as a vector that moves
across different bases over time. These bases represent different levels of confidence,
with bases 0-50 corresponding to states that favor an incorrect response, and bases
50-100 corresponding to states that favor a correct response. The internal state begins
at a position around 50, indicating uncertainty about the dot motion direction.
As participants gather samples of the stimulus over time, this state shifts out over the
other possible positions and, on average, toward the correct answer. This new state
gives the stochastic structure to the possible responses, leading to both choice prob-
abilities (based on the proportion above /below 50) and predictions for confidence
distributions. While both models share this same 101-base state representation and
basic dynamics, there are a few differences that lead to diverging predictions, par-
ticularly regarding interference.

State Representation
The classical Markov random walk model represents the internal state as a mixed state
PðtÞ, a probability distribution across the 101 bases. The value along each basis gives
the probability of being in that state at time t.

The quantum random walk also represents the internal state as a vector, but its
state vector wðtÞ is a distribution of probability amplitudes, where the probability of
being in a particular base is the squared value of amplitudes along that base.

Dynamics
The Markov random walk moves the state from its initial distribution Pð0Þ to its later
positions by using a transition matrix T tð Þ ¼ expðQ � tÞ, where t is the amount of time
that passes. Q is defined by a drift rate d, which represents the average rate of evidence
accumulation toward the correct answer, and a variance parameter r2, which corre-
sponds to the error in evidence accumulation. They form the matrix Qsuch that each
entry qrow;column is

qj; j ¼ �r2; qj�1; j ¼ ðr2 � dÞ=2 and qjþ1; j ¼ ðr2 � dÞ=2 ð1Þ
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This gives the distribution at T1 asPðT1Þ ¼ eQ�T1 � PðT0Þ.
The quantum random walk model uses 2 similar parameters to define its state

transition, but is further restricted by the requirement that the transition is done by a
Unitary matrix. The state at T1 is given by wðT1Þ ¼ UðT1Þ � wðT0Þ, where wðT0Þ is
the initial state and U is defined by 2 analogous parameters: potential lð Þ, which is
analogous to drift, pushing the distribution toward the correct answer; and diffusion
r2ð Þ, which moves the probability amplitude out across the basis states, much like

variance. They define the Hamiltonian H such that each entry hrow;column is

hj; j ¼ �ðl �
j

11
Þ and hj�1; j ¼ �r2 ¼ hjþ1; j ð2Þ

The correct choice proportion at T1 is given by the summed proportion of the state
vector above 50 in the Markov model, and the sum of squared amplitudes of the vector
above 50 in the quantum model. The critical difference between the two models arises
in what happens at choice: in the quantum model, the state is projected onto the
corresponding states: 0-50 if the incorrect answer is chosen, or 50-100 if the correct
answer is chosen. In this task, this results in 3 possible states at T1: one conditional on
a correct answer, another on the incorrect answer, and a third conditional on having
not chosen any answer (the state that would result at T1 in the click condition). As the
dynamics are applied to move the states from time T1 to T2, these 3 different states
persist, yielding different distributions of confidence for the choice and click condi-
tions at T2 where the Markov model, owing to its classical probability structure,
produces only one marginal distribution.

Fits
We can see how the quantum and Markov predictions diverge –the quantum model
predicts different marginal distributions of confidence for the click and choice con-
ditions, while the Markov model does not. However, these are just qualitative pre-
dictions. We fit both models to the data using maximum likelihood estimation,
factoring in its predictions for distributions of confidence as well as its predictions for
choice proportions in the choice condition.

This is done for each of the 24 conditions described above. The models use the same
number of (analogous) parameters: 4 drift rates/potentials (1 for each coherence level),
1 diffusion parameter, 1 parameter for non-decision components of response time,
1 parameter for non-judgment components of inter-judgment time, and 1 final
parameter that sets the width of the distribution of the initial state (e.g. 5 would indicate
a uniform distribution over states 48-52). This allows for direct comparison of the
models using the number of parameters as an index of complexity. However, we still
transform the log likelihood into an approximate Bayesian Information Criterion (BIC),
which is a measure of model performance as a function of the fit to the data and number
of parameter.

When we fit both models to the aggregate data, the BIC for the quantum model is
357,902, while the BIC for the Markov model is 367,802, indicating very strong
support for the quantum over the Markov model in predicting our data.
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4 Conclusion

Above we have shown that a qualitative prediction of the quantum random walk
model – interference due to choice on subsequent confidence – holds true across levels
of difficulty and processing time. This finding is inconsistent with the read-out
assumption made by classical probability models of choice and confidence. Instead,
we find that the quantum random walk model predicts this effect as well as providing
better fits to the data than its classical counterpart.

In addition, the quantum random walk posits new predictions: notably, higher
confidence resolution and better confidence calibration in the choice condition.
The model suggests that such an effect occurs because the action of making a choice
usually aligns a person’s cognitive state with the true state of the world. Our findings
suggest that these and other predictions of the model, such as double stochasticity and
oscillating confidence, are worth investigating and extending to other domains.
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Abstract. We compare some basic inequalities due to Bell and others,
originally proposed to test hidden variable models in quantum theory,
and explore their implications for mental systems. We find that violations
of such inequalities outside quantum systems may exceed the quantum
bound. We propose (conscious or unconscious) priming as a most intu-
itive and plausible interpretation for such violations and sketch a few
examples supporting this conjecture.

Keywords: Bell-type inequalities · Entanglement · Invasiveness · Non-
locality · Priming

1 Introduction

Basic notions of quantum theory do not only represent essential features of
physical nature, but they also represent essential features of how our modes
of knowledge are organized. These two sides of one coin have been inherent in
discussions about the interpretation of quantum theory from its early days on. So
it is not surprising that quite a few among its founding fathers, most emphatically
Niels Bohr, were convinced that its central notions will prove meaningful not only
in physics, but also in areas such as psychology and even philosophy.

Intuitively, it is quite easy to understand why quantum concepts should be
relevant, maybe even inevitable, for mental systems. Simply speaking, the non-
commutativity of operations means nothing else than that the sequence, in which
operations are applied, matters for the final result. This is in close connection
with the elementary observation that interactions with a mental state always
change this state, generally in an uncontrollable fashion. Since the 1990s, several
research groups have started exploring whether and how this can be tied down to
concrete psychological scenarios, both empirically and theoretically.1 One among
1 For recent overviews see Atmanspacher (2011, Chap. 4.7), Busemeyer and Bruza

(2012) and Wang et al. (2013). Note that the topics of these overviews must be
delineated from various proposals concerning a literal quantum physics of the brain.
See the review by Atmanspacher (2011) for a critical assessment of such approaches.
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several areas of such applications refers to mental instantiations of entanglement,
a notion originally coined by Schrödinger (1935). For a historical account of
entanglement in quantum physics see Gilder (2008).

In quantum physics, entangled systems can arise due to all kinds of inter-
actions, so entanglement is a generic feature of the quantum world. Measuring
a specific local observable of an entangled system in a pure state leads to its
decomposition into subsystems. For instance, spin measurements on a pair of
subsystems lead to two separate states of subsystems 1 and 2. If the spin observ-
able in subsystem 1 takes on a definite (but unpredictable) value, e.g. spin up,
this implies its anti-correlated value spin down for subsystem 2. This correla-
tion between the results of measurements is nonlocal in the sense that it is not
generated by local interactions between the subsystems.

Ironically, Einstein et al. (1935), who pointed out such correlations for the
first time, concluded that this be so absurd that quantum theory must miss
essential elements of reality. This conclusion is unavoidable indeed if reality is
assumed to be local, as in classical physics. An ingenious theorem by Bell (1966)
proposed how this issue can be resolved by measuring correlations between entan-
gled quantum systems. Bell’s inequalities set a bound for classical correlations
which is violated for entangled quantum systems. Since Bell’s seminal work, a
number of related inequalities, called Bell-type inequalities, have been proposed.

These inequalities have been formulated in various ways, and different quanti-
ties have been used for expressing them. Furthermore, depending on the intended
application, there are different types of proofs for different inequalities. In this
article we concentrate on four inequalities: the Wigner inequality (Wigner 1970,
d’Espagnat 1979), the original Bell inequality (Bell 1966), the CHSH inequality
due to Clauser et al. (1969), and the Fine inequality (Fine 1982). They all differ
by the quantities in which they are expressed. Essentially all proofs of Bell-type
inequalities can be classified in two groups:

1. One assumes that all observables which, in principle, can be measured on
a system and which are relevant for the inequality, are local “elements of
reality”. In other words, for each individual system the possible outcome for
each measurement, if it were performed, is pre-determined and has a specific
value. Of course, this value is not known prior to its measurement, but it
is assumed that, in some ontological sense, it “exists”. For the proof of a
particular inequality one simply lists all possible combinations of values and
checks for each case whether the inequality is satisfied. If this is the case, it
must also be satisfied for ensembles of corresponding systems.

The advantage of this type of proof is that it is extremely elementary and
allows a clear identification of the assumptions made. The disadvantage is
that one talks about joint probabilities of values of observables which cannot
be measured simultaneously. The epistemically accessible probabilities (or
correlations) are derived from joint probabilities.

2. One starts with probabilities of values of observables that can be measured
and are expressed as an integral over a hidden variable with a general dis-
tribution function. One then derives the particular inequality under certain
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assumptions (typically a factorization of the distribution function with respect
to the subsystems).

The advantage of this type of proof is that, more or less right from the
beginning, one is dealing with observable probabilities. The disadvantage is
that the empirical assumptions made are often not so obvious.

In this article, we mainly focus on proofs of the first type for the considered
inequalities, although most of the original proofs were based on a strategy of the
second type.

Quantum entanglement is not a necessary condition for the formulation of
the inequalities, but it seems to be necessary (or at least extremely conducive)
for experimental tests with quantum systems. The reason is that in almost all
cases the inequalities are expressed in terms of correlation functions (or joint
probabilities) of non-commuting observables which, in the framework of quan-
tum theory, cannot be measured simultaneously. Due to quantum correlations
in entangled systems one can measure the two observables simultaneously on
two different subsystems. Violations of Bell-type inequalities were for the first
time conclusively demonstrated by Aspect et al. (1982) and have been found in
numerous experiments since then.

In the following Sect. 2 we introduce inequalities due to Wigner (1970) and
due to Bell (1966) together with applications in quantum and non-quantum
systems. Section 3 discusses the CHSH inequality and the Fine inequality, and
Sect. 4 shows how they can be violated in a simple classical OR gate. Section 5
concludes the article with tentative applications, including the conjecture that
priming is a key mechanism for violations of Bell-type inequalities in mental
systems.

2 Inequalities due to Wigner and due to Bell

2.1 The Wigner Inequality

Before we will discuss the historically original Bell inequality introduced by Bell
himself in the early 1960s, let us start with a most general version employed by
Wigner (1970), and later by d’Espagnat (1979) to illustrate quantum entangle-
ment. This so-called Wigner inequality is essentially a set theoretical result (see
d’Espagnat 1979) about probabilities p− of measuring different values of two
observables a and b which can only assume two possible outcomes, say + or −.

Denoting these probabilities as p−(a, b), p−(a, c), and p−(b, c), the inequality
reads:

p−(a, c) ≤ p−(a, b) + p−(b, c) , (1)

The observables a, b, c correspond to three different measurement prescriptions
which, e.g., in photon polarization experiments refer to planar polarizations
along three different directions. Inequality (1) holds for any pairwise permu-
tation of the observables a, b, c.

We now prove this inequality by checking all possible combinations for the
outcomes of a, b, and c (see Table 1). One sees immediately that inequality (1)
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Table 1. Eight combinatorial possibilities for three observables a, b, c with two possible
outcomes +,− each. The probabilities in the right columns correspond to an ensemble
consisting only of systems with these particular combinations.

a b c p−(a, b) p−(b, c) p−(a, c)

+ + + 0 0 0
+ + − 0 1 1
+ − + 1 1 0
+ − − 1 0 1
− + + 1 0 1
− + − 1 1 0
− − + 0 1 1
− − − 0 0 0

holds for each case separately and, therefore, also for an arbitrary mixture. The
sum of any p−(a, b) and p−(b, c) is always greater or equal to p−(a, c). In other
words, there are never two zero entries in a row without the third entry also
being zero. This is a simple consequence of the transitivity of “being equal”: If
two quantities are equal to a third one they are equal to each other.

The assumptions on which inequality (1) is based depend crucially on how
we try to verify it. In all cases we assume that we are given an ensemble of sys-
tems to be used for statistical analysis. If all three observables can be measured
simultaneously, the outcome has to satisfy the inequality, because the outcome
necessarily falls into one of the eight classes enumerated in Table 1. This situation
does not require any additional assumptions.

However, inequality (1) requires us to know only two of the values of the three
observables (it requires even less, namely only the correlation between two of the
observables, but this shall not concern us here). In this case the inequality can
be violated. The reason for such a violation is that the first measurement has an
influence on the result of the second measurement. For such “invasive” measure-
ments it becomes irrelevant whether or not all three outcomes are predetermined
before the actual measurements are performed.

An example of a violation in this case is given by the following rules:

– Whenever observable a or c is measured first with the result x (+ or −), the
other observable, c or a, is set to the opposite value (such that p−(a, c) = 1)
and b is set to x (such that p−(a, b) = p−(b, c) = 0).

– Whenever observable b is measured first with result x, the other two observ-
ables a and c are set to the same value x (such that, again, p−(a, b) =
p−(b, c) = 0).

Obviously, the first (invasive) measurement has an influence on the result of the
second measurement. Therefore, in psychological experiments, a violation of this
inequality can be interpreted as a form of “priming”.2

2 Briefly, the concept of priming means that exposure to a stimulus influences a
response to another, usually later, stimulus. It is widely used in social and per-
sonality psychology; see Bargh and Chartrand (2000) for a review.
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Another way to violate inequality (1) in classical systems is by “informa-
tion transfer” between the preparation of the system and the measurements.
If, e.g., it is already known during the preparation phase which measurements
will be performed at each single system, one can easily arrange configurations
which violate the inequality. On the other hand, if the experimenter “knows” the
exact values of all three observables in advance, he can select the two measured
observables such that the inequality is also violated.

These two loop-holes are often associated with either (a) a limitation of
the experimenter’s “free will” in choosing experimental conditions, or with (b) a
“premonition” of the experimenter concerning the outcome of measurements not
yet performed. Conway and Kochen (2006) touch scenario (a) in what they call
(somewhat hyperbolically) a “free will theorem”. With respect to scenario (b)
we will refer to recent claims of this kind and suggest an alternative deflationary
interpretation in Sect. 5.

In recent work (Atmanspacher and Filk 2010), we employed inequality (1)
for temporal correlations, in order to provide evidence that mental states may
be nonlocal in time. Here, the probabilities refer to the values of one observ-
able at three different time instances. With proper models for particular mental
operations it is possible to violate inequality (1). However, the problem of inva-
sivity becomes almost insuperable empirically, because every measurement will
be capable of priming other measurements of the same observable.3 (As long as
a final result is not read out, priming may even be efficacious if it follows rather
than precedes the other measurement.)

2.2 The Original Bell Inequality

Quantum theory predicts a violation of inequality (1). However, this violation
cannot be tested “directly”, because in systems that are candidates for a violation
only one of the observables can be measured at a time. It is possible, though,
to exploit an intrinsic feature of quantum theory itself: entangled states. Most
commonly known among these states is the so-called EPR-state (named after the
seminal paper by Einstein et al. 1935), for which the results for measurements
of the same observable in both subsystems are strictly anti-correlated.

So, in principle, six different values of observables are now involved, but only
pairs of them (one for each subsystem) can be measured simultaneously. Because
of the strict anti-correlation with respect to the same observable, exactly the
same eight possible combinations of measured results as in Table 1 can occur.

Table 2 lists the corresponding cases with expectation values for the correla-
tions (xi = ai, bi, ci) rather than probabilities:

C(x1, x2) =
{

+1 if the two measured values are identical,
−1 if the two measured values are different. (2)

3 In psychology, invasivity is related to the lack of “selective influence” (Dzhafarov
2003). “Weak” measurements (Aharonov et al. 1988) might be an option to avoid
invasivity. Is has also been suggested (Wilde and Mizel 2012) that “adroit” measure-
ments may be used to test invasivity.
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Table 2. Eight possible combinations of values for anti-correlated systems. Indices 1
and 2 refer to the two subsystems, and C values are correlations rather than probabil-
ities.

a1 b1 c1 a2 b2 c2 C(a1, b2) C(b1, c2) C(a1, c2)

+ + + − − − −1 −1 −1
+ + − − − + −1 +1 +1
+ − + − + − +1 +1 −1
+ − − − + + +1 −1 +1
− + + + − − +1 −1 +1
− + − + − + +1 +1 −1
− − + + + − −1 +1 +1
− − − − − − −1 −1 −1

Note that now the first measurement refers to subsystem 1 and the second
measurement to subsystem 2, so that – for instance (see line 2 in Table 2) –
C(a1, c2) = +1 if and only if a1 and c1 or a2 and c2 within the same subsystem
are different. From Table 2 one can easily check that:

|C(a1, b2) − C(a1, c2)| ≤ 1 + C(b1, c2) , (3)

which is the standard form of the Bell inequality according to Bell (1966).
As we are now dealing with another system than in Sect. 2.1, there is an

additional assumption: The strict anti-correlation between the same observables
for each subsystem has to hold also in those cases where the measurement is
performed for two different observables. This means that the eight possibilities
listed above in fact cover all possible cases. On the other hand, a violation of
inequality (3) is possible under the following two conditions:

1. The outcome for all three possible measurements was not predetermined
before the measurement is actually performed but is “generated” (with an
intrinsic, ontic dispersion) during the process of measurement.

2. In order to explain the complete anti-correlation with respect to the same
observables, condition 1 requires that the first measurement (and its result)
performed at one of the subsystems has an “influence” on the second mea-
surement (and its result) performed on the other subsystem.

The second condition expresses the requirement of non-locality indispensable for
any hidden variables theory of quantum mechanics. Any exchange of informa-
tion (i.e., interaction) between the two subsystems after the first and before the
second measurement naturally may violate the inequality.

3 Inequalities due to Clauser-Horne-Shimony-Holt,
and due to Fine

3.1 CHSH Inequality

From an experimental point of view, inequality (3) has the disadvantage that
three possible measurements can be performed on a single subsystem, and it
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is very difficult to switch between three possibilities on nano-second time-scales
(which is necessary in order to rule out the possibility of a “relativistic signaling”
between the two subsystems). Moreover, it is conceptually prejudicial that one
has to assume the anti-correlations between the two subsystems also if they are
not explicitly measured. Quantum theory has taught us to be careful in assuming
certain features as “real” if they cannot be explicitly tested.

For these (and other) reasons, Clauser et al. (1969) derived a different type of
inequality which avoids both disadvantages just mentioned. They propose four
different observables (a, a∗, b, b∗), grouped into two classes (a, a∗) and (b, b∗), and
each with two possible outcomes only, say + and −. The class (a, a∗) refers to
two measurements performed on subsystem 1, and the measurements of class
(b, b∗) are performed on subsystem 2. However, the assumption of two separate
subsystems is not necessary for the actual derivation of the inequality.

We first define the CHSH-quantity S as a sum of pairwise correlations C(a, b),
etc., between the measured values of the observables involved:

S = C(a, b) − C(a, b∗) + C(a∗, b) + C(a∗, b∗) , (4)

As can be seen from Table 3, in each single case the quantity S is either +2 or
−2. Therefore, the expectation value of this quantity in an arbitrary ensemble
of systems satisfies the so-called CHSH inequality:

−2 ≤ S ≤ +2 . (5)

A typical experimental design to extract S uses entangled photons (Aspect
et al. 1982) and measure a or a∗ at one of the photons and b or b∗ at the other.

Table 3. The sixteen combinatorial possibilities for the measured results of four binary
observables and their correlations C. The quantity S in the rightmost column is the
CHSH-quantity for which the inequality is formulated.

n a a∼ b b∼ C(a, b) C(a, b∼) C(a∼, b) C(a∼, b∼) S

1 + + + + +1 +1 +1 +1 +2
2 + + + − +1 −1 +1 −1 +2
3 + + − + −1 +1 −1 +1 −2
4 + + − − −1 −1 −1 −1 −2
5 + − + + +1 +1 −1 −1 −2
6 + − + − +1 −1 −1 +1 +2
7 + − − + −1 +1 +1 −1 −2
8 + − − − −1 −1 +1 +1 +2
9 − + + + −1 −1 +1 +1 +2
10 − + + − −1 +1 +1 −1 −2
11 − + − + +1 −1 −1 +1 +2
12 − + − − +1 +1 −1 −1 −2
13 − − + + −1 −1 −1 −1 −2
14 − − + − −1 +1 −1 +1 −2
15 − − − + +1 −1 +1 −1 +2
16 − − − − +1 +1 +1 +1 +2
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If these four observables are particular angles of photon polarizations (a ∼ 0◦, b ∼
25.5◦, a∗ ∼ 45◦, b∗ ∼ 67.5◦) the inequality is violated: the expectation value of S
approaches S = 2

√
2, the so-called quantum bound which cannot be exceeded

in quantum systems. In actual experiments the expectation value of S is smaller
than this bound due to unavoidable noise and detection errors.

It is clear from Table 3 that, without the restrictions imposed by quantum
physics, S can become as large as 4, e.g., if C(a, b∗) = −1 and all other C terms
are +1. In Sect. 4 we will introduce and discuss an example of a non-quantum
system violating inequality (5) maximally in this sense.

3.2 The Fine Inequality

The CHSH inequality was reexamined from a slightly different point of view by
Fine (1982); see also Clauser and Horne (1974). He defined the probability P (a)
as the probability that a measurement of the observable a yields the result + (this
probability is the sum of the probabilities of the upper eight cases in Table 3), and
similarly P (a∗), P (b), and P (b∗). Furthermore, he defined the probability P (ab)
as the joint probability that both a and b assume the value +, and similarly for
all other combinations ab∗, a∗b and a∗b∗. Introducing a quantity

F = P (ab) − P (a, b∗) + P (a∗b∗) + P (a∗b) − P (a∗) − P (b) , (6)

he ends up with the inequality:

−1 ≤ F ≤ 0 . (7)

Table 4 lists all probabilities and the Fine quantity F for each of the sixteen
possible cases. F assumes either the value 0 or the value −1 and, therefore, its
expectation value satisfies inequality (7).

Fine’s own proof of this inequality does not use Table 4 though. His original
proof (which we do not repeat here) does not belong to type 1, but to type 2
in Sect. 1. This way, Fine could prove a very strong result: If inequality (7) is
satisfied then there exists a hidden variable model which describes the observed
probabilities. In order to show this, Fine assumes that the probability distribu-
tion P (AB, λ) can be factorized such that

P (AB, λ) = P (A, λ)P (B, λ) (8)

for any A = a or a∗ and B = b or b∗, where λ refers to some hidden variable (or
variables) and all expectation values are obtained by summing (or integrating)
over all possible λ.

Expressed in our type 1 formulation, Eq. (8) is fulfilled for each of the sixteen
combinations listed in Table 4. This is the case because by definition P (AB) is 1
if and only if A is + (i.e. P (A) = 1) and B is + (i.e. P (B) = 1). This condition
is weaker than assuming factorizability with respect to arbitrary functions of A
and B. Indeed, Fine emphasizes in his article that “... the idea of deterministic
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Table 4. The sixteen combinatorial possibilities for the measured results of four binary
observables and the probabilities used in Fine’s inequality. F is the Fine-quantity for
which the inequality is formulated.

n a a∼ b b∼ P (ab) P (ab∼) P (a∼b∼) P (a∼b) P (a∼) P (b) F

1 + + + + 1 1 1 1 1 1 0
2 + + + − 1 0 0 1 1 1 0
3 + + − + 0 1 1 0 1 0 −1
4 + + − − 0 0 0 0 1 0 −1
5 + − + + 1 1 0 0 0 1 −1
6 + − + − 1 0 0 0 0 1 0
7 + − − + 0 1 0 0 0 0 −1
8 + − − − 0 0 0 0 0 0 0
9 − + + + 0 0 1 1 1 1 0
10 − + + − 0 0 0 1 1 1 −1
11 − + − + 0 0 1 0 1 0 0
12 − + − − 0 0 0 0 1 0 −1
13 − − + + 0 0 0 0 0 1 −1
14 − − + − 0 0 0 0 0 1 −1
15 − − − + 0 0 0 0 0 0 0
16 − − − − 0 0 0 0 0 0 0

hidden variables is just the idea of a suitable joint probability function” (Fine
1982).

4 Violating CHSH and Fine Inequalities Outside
Quantum Physics

One may wonder how it is possible to violate the CHSH or Fine’s inequality even
beyond the violations known for quantum systems. Essentially, the conditions
have been specified in Sect. 2.2 for the original Bell inequality. The following
example illustrates a mechanism which we consider as relevant in particular
for psychological experiments with mental systems. Technically speaking, the
example consists of two subsystems coupled by a logical OR gate.

The device consists of an upper part, where measurements of a and a∗ are
performed (system A), and a lower part where measurements of b and b∗ are
performed (system B). The two parts are separated in Fig. 1 by a dashed line.
Both systems yield outputs which are either + or −. The systems also contain
“interpreters” which transform the measurement of a into a 1, a∗ into a 0, b∗ into
a 0, and b into a 1. Additional “interpreters” near the output transform a 0 into
a “−” and a 1 into a “+”.

Obviously, system B always yields + as an output, independent of the mea-
surements performed. This is just for simplicity and can easily be generalized.
System A yields − only if the combination (a, b∗) is performed (in which case
the input at the OR-gate in system A is (0, 0) and its output 0). In all other
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cases the output from system A is +. The corresponding expectation values for
the correlations in the CHSH inequality are

C(a, b) = C(a∗, b) = C(a∗, b∗) = +1, C(a, b∗) = −1 , (9)

which yields S = 4 and violates inequality (5) maximally.

1→+

0→−

0→−
1→+

1

0

0

1

b

b′

a

a′

OR

1

system B

system A

Fig. 1. A simple device which violates both the CHSH and Fine inequalities. The
experimental result of a measurement of a or a∼ and b or b∼ is translated into a number
(1 or 0). “OR” refers to a gate which performs a logical OR-operation. Finally the
logical outputs 0 and 1 are transformed into − und +, respectively.

With respect to Fine’s inequality we notice that in all cases with a∗ and b
involved, the probabilities are 1:

P (ab) = P (a∗b) = P (a∗b∗) = 1 , P (ab∗) = 0 and P (a∗) = P (b) = 1 , (10)

yielding F = +1, hence a violation of the Fine inequality as well.4

How can we understand this? First of all, the output from B is a “dummy
variable” which in our example is always +. Only the output from A is relevant,
and it is + if a∗ is measured. However, if a is measured, the output depends
on which observable is probed at system B. This illustrates the non-locality
inevitably entailed by the violation of both CHSH and Fine inequalities. In
this particular example, the specific output from A (which may differ) is not
correlated with the specific output from B (which is always 1), but it is correlated
with which measurement, b or b∗, is performed at B. The non-locality of the
device as a whole is also evident from the internal wiring connecting B with A.
4 Note that we do not intend to apply the Fine inequality to identify a joint proba-

bility distribution over the four variables. We simply show that a violation of Fine’s
inequality is possible in a purely classical system.
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5 Summary and Concluding Remarks

We discussed a number of similarities and differences of four Bell-type inequali-
ties: the Wigner inequality, the original Bell inequality, the CHSH inequality (due
to Clauser, Horne, Shimony, Holt) and the Fine inequality. All these inequali-
ties were designed to test versions of hidden variable models in quantum theory,
and their violation for entangled quantum systems is usually interpreted as the
ultimate nail in the coffin of local realism.

Recent developments in psychology, cognitive science, and consciousness
studies have witnessed the fruitful application of quantum ideas in selected
examples for mental systems. Some areas concerned are decision theory, bistable
perception, order effects in surveys, and others, where violations of Bell-type
inequalities have been predicted from models or even been claimed empirically.

In this paper we argue that quantum-like entanglement and nonlocality are
not the only possible implications of such violations. A viable, more conservative
alternative may be priming effects or, more generally, other kinds of contextual-
ity. Such effects are especially influential whenever invasive priming effects nat-
urally violate Bell-type inequalities, possibly even beyond the quantum bound.

This might be exemplified by an example where violations of Bell-type
inequalities are suggested to provide evidence against the compositionality of
concept combinations, an old dogma in cognitive linguistics.5 In typical word
association experiments one can think of B as a priming expression. Let us
consider measurements consisting of the following questions:

a: What do you think of when you hear the word “apple”?
b∗: What do you think of when you hear the word “processor”?
b: What do you think of when you hear the word “banana”?

Then the answer to question a will most likely be “computer” if primed by b∗,
and it will be “fruit” if primed by b. This corresponds to the example of Sect. 5,
which is entirely classical, without any quantum entanglement involved.

Now, any violation of the CHSH or Fine inequality would be surprising if A
and B referred to two different individuals out of communication, for instance if
someone in Brisbane always associates with “apple” a computer when someone
in Bloomington is primed for “processor”, while someone in Brisbane associates a
fruit when someone in Bloomington is primed by “banana”. This would resemble
the astonishing results of what happens in experiments with entangled quantum
systems. But in the cognitive case, when A and B refer to the same individual,
the violation of Bell-type inequalities could rather be a direct consequence of
plain priming, the strength of which is measured by the quantities S or F .

In this sense, violations of Bell-type inequalities in psychological scenarios
could be instrumental to identify (conscious or unconscious) priming effects.
Furthermore, violations of the CHSH inequality in word association experiments
are related to multiple possible meanings of the same concept (like “apple”). Such

5 Intriguing work on the non-compositionality of concept combinations is due to Bruza
et al. (2013), whose examples we use to illustrate our own hypotheses.
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multiple possible meanings could be interpreted as a “non-locality” of concepts
represented in a conceptual space: Several meanings of the same word are not
part of the same convex set in conceptual space (see, e.g., Gärdenfors 2000).
In such cases, priming actualizes one particular meaning among those that are
possible.

Both this example and the classical OR gate in Sect. 4 show that holistic
features may arise in classical systems. Yet one should bear in mind that this
kind of holism differs from cases of entanglement in genuine quantum systems.
Unfortunately, we do not know of any conclusive test which could firmly dis-
tinguish between genuine quantum holism and holistic features in the classical
systems discussed above.

Although the term “priming” suggests that the priming stimulus causally
precedes the target stimulus to be primed, the structure of Bell-type inequalities
tells us that this need not be the case. Correlations due to a priming stimulus
following a target stimulus may imply violations as well. In fact, the experiments
by Bruza et al. (2013) show that “post-priming” does a pretty good job for
violating CHSH and Fine inequalities.

In a recent publication, Bem (2011) reported post-priming correlations in
nine experiments with more than 1000 participants and interpreted them as
“anomalous retroactive influences”. In our view, it would be interesting to explore
whether such apparently spectacular observations can be deflated in terms of
post-selective priming effects, quantified by violations of Bell-type inequalities.
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Abstract. This paper presents a generalized quantum model for describ-
ing purposes or goals of individual agents, and the way choices can be
made that enable these goals to be achieved. The underlying model is
a semantic vector space model, which is turned into a purposeful choice
model by labelling some axes as objectives, and describing choices as
transformations on the vector spaces that enable agents in the model to
set these objective axes in sight.

We introduce this framework using a simplified example model of a
dog trying to get food. Many parts of what has become the standard
generalized quantum toolkit become apparent in this model, including
learning, superposition, the importance of the metric used for normaliza-
tion, classification, and a generalized uncertainty principle. The incorpo-
ration of purpose or goal into semantic vectors models also enables the
analysis of traditional areas that are relatively new to artificial intelli-
gence, including rhetoric, political science, and some of the philosophical
questions touched by quantum theorists.

1 Introduction

This paper presents a vector model for the everyday notions of ‘purpose’ and
‘choice’. While the initial example model requires as background only the basics
of Cartesian coordinate geometry, as it progresses, the work builds on progress in
quantum interaction and generalized quantum structures, which have in recent
years been used with success to address many classic problems. The basic app-
roach in this research program involves representing information systems using
vector space models, and as such has been applied to information discovery and
retrieval [1,2], cognition and decision-making [3], economics [4, Chap. 10] and
organizational dynamics [5]. The ‘quantum’ qualities of these systems evaluated
in the literature to date include non-locality of logical connectives in informa-
tion retrieval [6, Chap. 7], non-commutativity of observables in psychological
tests [3], the violation of the Bell inequalities in concept combinations [7,8], and
entanglement in concept combinations [1,9].

In spite of the success of vector models in large-scale practical tasks such as
the creation of information retrieval systems, the notions of purpose and choice
in such models is comparatively unexplored, sometimes being ignored, and some-
times being entirely denied as a valid ingredient of the model in the first place.
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Scientific works where purpose is largely ignored include studies of the parallels
between information retrieval and quantum theory (see e.g., [10], where the epis-
temological and ontological status of items in the system is considered, but the
motivations for creating or using the system are not), and distributional mod-
els of concepts and their semantics derived from natural language corpora (see
e.g., [11,12]). Of course, the relationship of items in a retrieval system to one
another and to objects in the world, and the distribution of terms and topics
in a corpus, are important and valuable areas of study in understanding lan-
guage and meaning: however, they do not attempt to explain anything about
what authors are trying to accomplish by writing documents, or what users or
a retrieval system are trying to accomplish by issuing search queries. Scientific
examples where purpose is denied as a valid ingredient of the model are much
more general, and are a hallmark of many classical mechanical approached. In
broad strokes, Francis Bacon’s philosophy and the success of Newtonian mechan-
ics in the 17th century led to a broad consensus in the 18th century that the only
notion of cause that can be discussed scientifically is ‘efficient cause’ or cause in
the mechanical sense: one of the few things Hume (a great empiricist) and Kant
(a great rationalist) agreed upon was the notion that causes must precede their
effects in time. This overrode Aristotle’s much older analysis in which included
‘final cause’ or purpose among the natural causes of things (see in particular
Physics Book II Chap. 3; for modern consequences see [13, Chap. 1]).

Whether or not the apparent notion of future purpose can be explained
in terms of temporally prior mechanical causes (for example, by a generaliza-
tion of field theories in which the notion of potential is explained in terms of
force-carrying particles), it is noticeable that classic models motivated by cause-
precedes-effect determinism have been found wanting in many fields in which
the systems under consideration are too complex or subtle to be described as
closed mechanical systems evolving predictably [14], and the reader will observe
that many of the successes of generalized quantum approaches cited above are
precisely in fields that are not (yet) amenable to mechanistic prediction. In sim-
pler terms, as soon as we consider systems involving living things, especially
people, we see that purpose and choice are fundamental factors in any thorough
explanation. These cannot (yet) be explained in terms of more mechanical prim-
itives, but cannot be neglected if effective scientific models of such systems are
to be discovered. This is by no means a purely abstract exercise: appropriate
models for understanding the goals and choices of authors and readers could
(for example) enable engineers to build better search engines.

It should be noted that models for purpose and choice are not absent from the
scientific literature: one of the most famous approaches is the use of ‘belief, desire,
intention networks’, which [15] have been particularly influential in modelling
agency in artificial intelligence [16]. Generalized quantum methods are poten-
tially a complementary innovation to such discrete network models, because
the continuous vector representation automatically enables robust or inexact
inference, in ways that are naturally amenable to learning from experience
[17,18]. Decision-making is also by now deep-rooted in the quantum interaction
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community (see particularly [3] and associated works). Here we note that most
of the decision-making situations discussed in this literature are about deciding
between possible information states or beliefs: so arguably, the innovative part
of the purposeful choice model presented in this paper is that it applies vector
representations to desires and intentions as well as beliefs. However, it is also our
hope that this research area is by now mature enough that the contribution of
this paper is not that it supersedes prior work, but that it simplifies, generalises
and extends ideas that are already available.

With these goals in mind, this paper proceeds as follows. In Sect. 2, we intro-
duce a first, extremely simple example that explains the behaviour of an agent
(in this case, a family pet) in a model with one objective axis and two axes for
expressing behavioural choices. The semantic space introduced in this model is
similar to the distributional vector models used widely in information retrieval,
computational linguistics, and cognitive science, but unlike many semantic mod-
els in these fields, the purposeful choice model presented here distinguishes ‘ends’
and ‘means’ directions.

In spite of its simplicity, this model is enough to motivate definitions for sev-
eral important cognitive processes, including learning and classification: some of
these developments are discussed in Sect. 3. Many further topics and develop-
ments are suggested by this discussion, but due to space constraints, they cannot
be included in this paper. Section 4 outlines some of these topics. They include
the modelling of rhetoric, applications to political theory, and the relationship
between purposeful choice models and some standard areas of discussion in the
philosophy of quantum mechanics.

2 First Example: A Dog’s Life

“Look cute, get fed!” may be the motto of fortunate, well-kept pet dogs through-
out many parts of the world. Many readers who own dogs are probably well
aware of this trait: for those who are not, it is sufficient to note that:

1. Most dogs (especially those rescued from situations of hunger) are tirelessly
devoted to the purpose of getting food.

2. Pet dogs devote themselves to this purpose by seeking out humans who might
give them food, and doing their best to look cute, cuddly, hungry, pitiful, and
attractive to humans as best they can.

In the wild, these behavioural traits are not especially useful compared with
the basic hunting skills of (say) being able to run fast to catch prey. However, pet
dogs have successfully transformed their strategy for getting food from running
fast to looking cute. Experiments with the domestication of the silver fox, a
closely related species to the dog, have demonstrated that profound behavioural
changes can take place within a matter of a few decades, or 30 to 35 generations,
leaving the animals “eager to please and unmistakably domesticated” [19]. By the
same token, many tame dogs can make use of their wilder traits at a moment’s
notice: ill-trained or uncontrolled sheepdogs may chase herds, and most terriers
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Get Food

Run Fast

Look Cute

Fig. 1. A purposeful choice model for a dog in three dimensions

and hounds will kill any small furry creature given the opportunity. We may
sum up by noting that all dogs wish to get food, different strategies are available
(even to an individual dog), and the choice between these strategies is sometimes
made quite quickly and fluidly.

A purposeful choice model for this (obviously simplified) description of a pet
dog’s objective and behaviours is represented in Fig. 1. The model uses a 3-
dimensional vector space, whose axes are labelled Get Food, Run Fast, and Look
Cute. The Get Food axis is represented by a thicker line because it represents a
purpose, otherwise described as a goal, end, or objective. Such an axes will be
called an objective axis. The other two axes, Run Fast and Look Cute, represent
different possible behaviours that a dog may choose between to achieve its goal.

The choice between behaviours is now modelled as a change of point-of-
view. The use of this term in the model is just a formalization of its normal
conversational use: a point-of-view is a place from which the concepts around are
observed. So an agent adopts a point-of-view in the model. The wild dog adopts a
point-of-view which keeps the Get Fed objective axis in sight and approximately
aligns this axis with the Run Fast choice. The tame dog instead adopts a point-
of-view which approximately aligns the Get Fed objective axis with the Look
Cute axis.

The views from the point-of-view of the wild and the tame dog are shown
in Fig. 2. For the wild dog, the objective axis Get Fed is aligned with the Run
Fast axis, whereas for the tame dog, the Get Fed axis is aligned with the Look
Cute axis. The key point to see is that by adopting a different point-of-view,
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Get Food

Run Fast

Look Cute

Get Food

Run Fast

Look Cute

Fig. 2. The dog model again, from the points-of-view of a wild dog (left) and a tame
dog (right)

the relationships between different axes change, and that this alignment can be
made very deliberately to align behaviours with objectives.

The rest of this paper, one way or another, will be devoted to fleshing out
this basic model, and explaining how more sophisticated (and to the research
community, more familiar) structures arise in this framework.

The reader should note before progressing further that we have made no
claims or assumptions of orthogonality, or assumed any particular metric func-
tion in the purposeful choice model. Many well-kept pet dogs will agree that
looking cute and running fast are not necessarily orthogonal, and indeed, the
different strategies for accomplishing a particular objective are rarely entirely
unrelated to one another. To model a purposeful choice as a change in point-of-
view gives considerable freedom here: even if axes are orthogonal to each other
in the underlying model given a particular metric, they will not usually appear
orthogonal to each other once a point-of-view is selected.

The investigation of similarity methods with respect to a point-of-view has
already been introduced in [20], and again, the main single innovation introduced
in this paper is the use of these ideas to model behaviour directed towards
particular purposes or objective. The transformation in similarity measurements
resulting from a change in point-of-view could also be modelled using a change in
the metric function on the vector space, or a rescaling of some of the axes. This is
also suggested in the cognitive science literature: changing the weights assigned
to different axes can change the way items are classified in experiments [21].

From a historical point-of-view, we note that orthogonal coordinate systems
are not assumed in Descartes’ pioneering work on analytic geometry [22] in the
1600’s, though it is explicitly discussed in Grassmann’s extension of the theory
to higher dimensions in the 1800’s [23].

Another point to note is that, whatever the relationship between the Run
Fast and Look Cute axes, most dogs use a superposition of these states anyway.
Wolves may be single-minded to running fast, shih tzus may be single-minded to
looking cute, but most real dogs have a foot in each camp. As will be discussed
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in the next section, vector models are particularly well-suited to representing
hybrid strategies of this sort.

Of course, this description is purely a mathematical model, and as such is a
simplification and abstraction. We are not attempting to model the physiological
or neuronal patterns and changes involved in transitioning from one strategy to
another (as discussed in the case of canids in [19] and mentioned briefly from a
cognitive point-of-view in [17]). Just as vector models for information retrieval do
not describe the physical formats of documents (typefaces, character encodings,
etc.), our vector model for purposeful choice is so far independent of its physical
manifestation.

This concludes our initial presentation of the purposeful choice model, using
the simplest possible nontrivial number of dimensions. The key parts to empha-
size are that:

– Purposeful choice models are semantic vector models where some of the axes
are marked as goals or objective axes.

– Other axes can be brought into line with these objective axes using a suitable
transformation of point-of-view.

3 Common Structures in the Purposeful Choice Model

This section develops the ideas of the purposeful choice model introduced above.
This serves two principal purposes. Firstly, it demonstrates how several well-
established techniques can be incorporated and described in terms of these mod-
els. Secondly, where it presents itself, we take the opportunity to compare classic
and generalized quantum models: in some cases they are similar, but it some
cases they lead to strikingly different paths.

3.1 Learning in Purposeful Choice Models

Vector models are particularly well-suited to learning, and this is one of the key
reasons they have been a key model in information retrieval [2,24] and have
become so successful in statistical machine learning [25]. This is easy to explain,
at least anecdotally, referring back to the dog model of Fig. 1. Suppose that a
piece of food is available through hunting: then a dog who gets fed in this way
learns that hunting characteristics are useful. Such an example is modelled as
a point somewhere close to the plane spanned by the Run Fast and Get Food
axes. If the dog gets food in this way, it ends up satisfying an objective, and
in so doing, the dog’s point-of-view is updated to align these axes more closely.
Alternatively, if food is available through begging, this may be modelled as a
point somewhere near to the Look Cute and Get Food axes, and a dog that
successfully fills its belly through begging will have its point-of-view updated
to align these axes. (Which of several possible update functions is used is not
discussed here, suffice it to say that several are available [25,26].)
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Such flexibility to combine learning with action would in itself not be remark-
able, were it not so lacking in many classic models. Consider, for example, Quine’s
now famous example of the problem of deducing whether the word gavagai cou-
pled with the stimulus of a rabbit-sighting, corresponds to the set of rabbits,
or to (say) edible animals [27]. Given the practical advances of empiricism in
artificial intelligence in the intervening decades, many researchers today would
disagree with the conclusion that language-learning cannot be explained logi-
cally, but would instead argue that to model language-learning, one should use
a more appropriate logic. (See [18,28,29] for more details on this point: it is also
appropriate to note that George Boole, the inventor of so-called classical logic,
intended ‘The Laws of Thought’ to be used for deduction, and apparently never
intended to apply them to learning [30].)

3.2 Objective Axes and Objective Functions

The most typical way to compare directions in a vector model would be to use
cosine similarity (that is, the similarity between two vectors is measured using
the cosine of the angle between these vectors [6, Chap. 5]. Cosine similarity with
an objective axis behaves as a simple objective function in the classic sense of
mathematical optimization, as used in economics, logistics, management science,
etc. At this level of generality, with a single objective axis and an entirely spec-
ified point-of-view, there appears to be no difference between a classic and a
generalized quantum model. What is perhaps more surprising is that in math-
ematical optimization, classic models tend to be continuous, whereas in logical
semantics, classic models are discrete. This mixture is partly informed by the
observation that in classical mechanics, the set of states is continuous but the
logic for inference is discrete (Boolean), whereas in quantum mechanics, the set
of states is discrete but the logic for inference (the set of projectors onto vector
subspaces [31]) is continuous. For more details on this point, see [32]. This serves
as a reminder that definitions of a ‘classic’ or ‘classical’ model vary even more
than definitions of ‘quantum’ or ‘generalized quantum’ models.

3.3 Superposition, or Hybrid Strategies

It has already been noted that most real dogs are not devoted exclusively to
running fast or looking cute as a means to get food, but easily combine both
strategies. Suppose that x is the amount of attention devoted to scenarios where
looking cute is helpful, and y is the amount of attention devoted to scenarios
where running fast is helpful. In a classic probabilistic model, the coordinates
must add to unity, so x+ y = 1. For (say) a wild dog accustomed purely to run-
ning fast (the strategy where y = 1 and x = 0, giving any attention to looking
cute therefore immediately detracts from the attention devoted to running fast.
By contrast, one key different in a generalized quantum model is that the squares
of the coordinates must add to unity, so that x2 + y2 = 1. An immediate conse-
quence of this is that beginning to pay attention to another axis introduces no
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Fig. 3. The set of normalized states between two axes in classic and generalized quan-
tum models

loss1 to the axes that are already preferred. These two frameworks are depicted
in Fig. 3: in mathematical terms, the vectors in the classic model are normalized
using a Manhattan metric, whereas in a generalized quantum model, the vectors
are normalized using a Euclidean metric (see [6, Chap. 4]).

The upshot of this is that in generalized quantum models, there is very little
cost involved in departing from a pure state to a somewhat mixed state. The
result is a dog whose ideal strategy is modelled as a superposition of the two pure
strategies. This is a difficult idea to incorporate into classic models: in classic
models, we may model a dog who sometimes tries one thing, and sometimes
tries another, but not a dog who is simultaneously trying both. However, such
a description has become standard in the quantum modelling literature, and
has been used to accurately predict experimental observations about how people
behave in situations where many potential outcomes are simultaneously possible:
see in particular the work of Busemeyer et al ([33],[3, Chap. 9]) in which shows
that difficult situations in psychology that have been traditionally regarded as
paradoxes can be resolved using these methods.

We must of course choose words carefully in this case: clearly the dog cannot
normally be pursuing prey and begging from a human at the same time, and we
make no suggestion that the benefits of Euclidean normalization of a point-of-
view vector can somehow enable an agent to outwit conservation of energy. The
claim here is that agents can easily consider several strategies at once without
diluting the attention devoted to any one of these strategies as much as may be
expected in a classic model. A more familiar version of this principle arises when
1 The claim that there is no loss at all to existing priorities when a new axis is con-

sidered is strictly true only in the continuous limit. For example, using the standard
polar-coordinates parametrization where x = cos(θ) and y = sin(θ), when θ = 0,
x = 1, y = 0, dy

dθ
= 1 and dx

dθ
= 0. In practice, we assume that all models will be

quantized, and so to make an actual change, there will be some very small cost. The
issues involved in quantizing vector models of information and cognition is not a
focus of this paper: we note briefly that this example implies that it is advantageous
for the smallest ‘representational quantum’ to be small.
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it is translated to the information retrieval literature: here we may remark that
in vector models for information retrieval, if a document is about two topics,
its relevance to each of the individual topics as measured by cosine similarity
will be

∗
2
2 instead of just 0.5. Furthermore, this property becomes even more

pronounced in higher dimensions: in very high dimensions, many many vectors
can be surperposed without losing the identity of any of the original summands
[17].2

The immediate consequence in the simple purposeful choice model of Fig. 1
is that it costs very little in terms of cognitive attention for a wild dog devoted
to hunting to consider begging as a once-in-a-while alternative.3 This potential
for an individual to break free from the rest of the population and find a new
strategy has already been modelled successfully in quantum-inspired models (see
[34]), so we hope that the purposeful choice model presented here contributes to
this strand of research.

3.4 Classification — Fight or Flight?

The purposeful choice model of Fig. 1 is oversimplified in many ways, one of
which is that the dog only has one goal, Get Food. Obviously a real dog has
several other objectives, including Avoid Injury. For example, in the case of a
dog trying out a Look Cute begging strategy for the first time, there is a tradeoff
between the possibilities that a human offering a piece of food may give the piece
of food, or use it as bait to capture or injure the dog, and there are good (if
anecdotal) reasons to believe that the first dogs to become domesticated were
the first to overcome this fear.

Consider also the case of a dog who has successfully obtained a piece of
food, but is challenged by an antagonist before the food is eaten. There are two
choices: to stay and safeguard the food at the risk of injury, or to run away, at
the risk of hunger. This is commonly known as the flight or fight decision.

It is extremely easy to begin to add such tradeoffs to a purposeful choice
model. We would simply add a fourth axis to Fig. 1, marked Suffer Injury, and
with some label to denote that fact that it is a negative objective axis: that is,
an axis that the agent will try to avoid aligning with behaviours in the pur-
poseful choice model. (Due to lack of space and our inability to draw in four
dimensions, we have not included a diagram of such a system.) Then, for each
situation, the agent judges the extent to which Get Food and Suffer Injury are
2 The difference between normalized coordinates of evenly-balanced vectors using

Manhattan and Euclidean metrics is greatest in dimension 4. The proof is elemen-
tary, and consists of finding x ∈ [0, 1] such that f(x) =

√
x − x is maximized, so

f ′(x) = x
− 1

2
2

−1 = 0, implying x
1
2 = 1

2
and so x = 1

4
. We are not sure if this number

has any special significance.
3 Simulations demonstrate that a system with Euclidean normalization is more open to

learning and, depending on the distribution of “food opportunities”, gets to eat more
food in the long run. These results are however quite preliminary: please contact the
author for more details.
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likely outcomes, and, based on some decision boundary, will choose either fight
or flight (alternatively, beg from human or retreat) accordingly. Again, several
algorithmic strategies for learning such decision boundaries are available in the
machine learning literature [25,26].

3.5 A Generalized Uncertainty Principle

An important consequence of choosing flight in a flight or fight decision is that
the agent is unable to observe the outcome of the other decision. This is very
obvious in everyday situations, and leads to natural sayings such as “There’s
only one way to find out!”, “If you don’t try it you’ll never know!”, etc.

More generally, in navigating a purposeful choice model, an agent will be
aware that each time a choice is made, this affects which observations will be
distorted or become completely unavailable at subsequent stages. This idea fol-
lows the work of Busemeyer and Bruza on the effects of ordering on attitude (see
[3, Chap. 3] and related work). In particular, the effect of making a flight choice
may be modelled as a projection orthogonal to the Suffer Injury axis, which,
while it guarantees that the agent will avoid injury, also results in information
being lost.

4 Further Work and Related Areas: A Grab-Bag of Ideas

Many traditional ideas can be defined and described in purposeful choice models.
We use the remaining space in this paper to outline some of these in a preliminary
fashion.

4.1 Persuasion or Rhetoric

It is well-known that information is often presented in a way designed to persuade
or influence the point-of-view of others. Traditionally studied as rhetoric, the
scientific discussion of this hugely important process has been largely neglected
in computational linguistics and information retrieval.

In a purposeful choice model, persuasion or rhetoric can be defined as the
presentation of information in a way designed to influence the agent’s point-
of-view. Given the approach to training and classification outlined above, it is
clearly possible to arrange data so that some points-of-view become reinforced,
and others become less likely or unobtainable.

4.2 Application to Political and Organizational Theory

Generalized models have already been applied to political theory (see [35]) and
organizational theory (see [36] and related work). As with work on quantum
approaches to cognition and decision, the focus of this work is largely on describ-
ing how agents make decisions: a further step would be to model the ways other
agents act in order to influence these decisions. Such influencing actions can be
decribed in purposeful choice models as:
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– A careful choice of issues by some author to design an appropriate classifi-
cation boundary (e.g., in politics, a bill before the legislature is designed to
accomplish as many of the author’s desired goals, while maximizing the bill’s
chances of being voted into law).

– A careful choice of rhetoric designed to bring others to a point-of-view from
which they are likely to agree with the author.

For example, President Lincoln’s 1861 State of the Union Address makes an
admirable case study of the use of rhetoric to align many points-of-view towards
a common goal. Further work would be to model parts of this speech and its
goals explicitly using a purposeful choice model.

4.3 The Purposeful Choice Model and Quantum Mechanics: Some
Philosophical Conclusions

The notion of choice and decision is of course intimately connected to the idea
of will in the sense of freedom of the will, a topic that is often associated with
quantum theory, due largely to the probabilistic nature of quantum mechani-
cal results. The notion of point-of-view is also relevant in quantum mechanics
because in quantum mechanics, the observer is usually considered as part of the
system, though the meaning and implications of this broad statement remain
much-discussed [13].

It may be thought that a purposeful choice model implies an assumption of
free-will at the expense of determinism. This is not necessarily the case. What is
necessarily the case is that purposeful choice models agree with the basic Aris-
totelean principle that final cause is a valid and valuable kind of causation or
explanation when studying natural processes (‘natural’ including human behav-
iour for these purposes). That is, a dedicated determinist may postulate that
human behaviour including the notion of purpose could in principle be reduced
to efficient or mechanical cause (just as the apparent ‘goal’ of an electron and
a proton to be near each other can be explained mechanically by the exchange
of photons). The problem with this approach is that it remains a very incom-
plete postulate. Social and information sciences have needed models that explain
more of the phenomena observed in these disciplines, and this is what originally
motivated many researchers to turn to generalized quantum models.

We cannot currently explain human (or even canine!) behaviour without the
notion of purpose and choice: and even if it could be demonstrated in the end
that such notions can be reduced to mechanical or efficient cause, models that
successfully incorporate purpose into informatics would be a necessary stepping-
stone. Thus, whether we are completing classical science or starting a new gen-
eralized science, the notion of purpose will be a key part of the explanation, and
we suggest that the purposeful choice models introduced in this paper can play
a valuable and practical role in this project.



Purposeful Choice and Point-of-View 255

References

1. Cohen, T., Widdows, D., de Vine, L., Schvaneveldt, R., Rindflesch, T.C.: Many
paths lead to discovery: analogical retrieval of cancer therapies. In: [37]

2. van Rijsbergen, K.: The Geometry of Information Retrieval. Cambridge University
Press, Cambridge (2004)

3. Busemeyer, J., Bruza, P.D.: Quantum models of cognition and decision. Cambridge
University Press, Cambridge (2012)

4. Khrennikov, A.: Ubiquitous Quantum Structure: From Psychology to Finance.
Springer, Heidelberg (2010)

5. Lawless, W.F., Bergman, M., Lou, J., Kriegel, N.N., Feltovich, N.: A quantum
metric of organizational performance: terrorism and counterterrorism. Comput.
Math. Organ. Theory 13, 241–281 (2007)

6. Widdows, D.: Geometry and Meaning. CSLI Publications, Stanford (2004)
7. Aerts, D., Aerts, S., Broekaert, J., Gabora, L.: The violation of bell inequalities in

the macroworld. Found. Phys. 30, 1387–1414 (2000)
8. Aerts, D., Aerts, S., Gabora, L.: Experimental evidence for quantum structure in

cognition. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M.
(eds.) QI 2009. LNCS, vol. 5494, pp. 59–70. Springer, Heidelberg (2009)

9. Galea, D., Bruza, P., Kitto, K., Nelson, D., McEvoy, C.: Modelling the acitivation of
words in human memory: the spreading activation, spooky-activation-at-a-distance
and the entanglement models compared. In: Song, D., Melucci, M., Frommholz,
I., Zhang, P., Wang, L., Arafat, S. (eds.) QI 2011. LNCS, vol. 7052, pp. 149–160.
Springer, Heidelberg (2011)

10. Arafat, S.: Senses in which quantum theory is an analogy for information retrieval.
In: [38]

11. Cohen, T., Widdows, D.: Empirical distributional semantics: methods and biomed-
ical applications. J. Biomed. Inform. 42(2), 390–405 (2009)

12. Blei, D.M.: Probabilistic topic models. Commun. ACM 55, 77–84 (2012)
13. Bohm, D.: Wholeness and the Implicate Order. Routledge Classics, republished

2002, Routledge, 1980
14. Widdows, D., Bruza, P.: Quantum information dynamics and open world science.

In: Proceedings of the First International Symposium on Quantum Interaction,
Stanford, California (2007)

15. Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge (1999)

16. Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-
intention model of agency. In: Papadimitriou, C., Singh, M.P., Müller, J. (eds.)
ATAL 1998. LNCS (LNAI), vol. 1555, pp. 1–10. Springer, Heidelberg (1999)

17. Kanerva, P.: Hyperdimensional computing: an introduction to computing in dis-
tributed representation with high-dimensional random vectors. Cogn. Comput.
1(2), 139–159 (2009)

18. Bruza, P.D., Widdows, D., Woods, J.: A quantum logic of down below. In: Engesser,
K., Gabbay, D., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum
Structures: Quantum Logic, pp. 625–660. Elsevier, Amsterdam (2009)

19. Trut, L.: Early canid domestication: the farm-fox experiment foxes bred for tama-
bility in a 40-year experiment exhibit remarkable transformations that suggest an
interplay between behavioral genetics and development. Am. Sci. 87(2), 160–169
(1999)

20. Aerts, S., Kitto, K., Sitbon, L.: Similarity metrics within a point of view. In: [38]



256 D. Widdows

21. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. Bradford Books,
MIT Press, Cambridge/London (2000)
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Abstract. In this paper we provide a simple random-variable exam-
ple of inconsistent information, and analyze it using three different
approaches: Bayesian, quantum-like, and negative probabilities. We then
show that, at least for this particular example, both the Bayesian and
the quantum-like approaches have less normative power than the nega-
tive probabilities one.

1 Introduction

In recent years the quantum-mechanical formalism (mainly from non-relativistic
quantum mechanics) has been used to model economic and decision-making
processes (see [1,2] and references therein). The success of such models may
originate from several related issues. First, the quantum formalism leads to a
propositional structure that does not conform to classical logic [3]. Second, the
probabilities of quantum observables do not satisfy Kolmogorov’s axioms [4].
Third, quantum mechanics describes experimental outcomes that are highly con-
textual [5–9]. Such issues are connected because the logic of quantum mechanics,
represented by a quantum lattice structure [3], leads to upper probability distri-
butions and thus to non-Kolmogorovian measures [10–12], while contextuality
leads the nonexistence of a joint probability distribution [13,14].

Both from a foundational and from a practical point of view, it is important
to ask which aspects of quantum mechanics are actually needed for social-science
models. For instance, the Hilbert space formalism leads to non-standard logic
and probabilities, but the converse is not true: one cannot derive the Hilbert
space formalism solely from weaker axioms of probabilities or from quantum lat-
tices. Furthermore, the quantum formalism yields non-trivial results such as the
impossibility of superluminal signaling with entangled states [15]. These types
of results are not necessary for a theory of social phenomena [16], and we should
ask what are the minimalistic mathematical structures suggested by quantum
mechanics that reproduce the relevant features of quantum-like behavior.

In a previous article, we used reasonable neurophysiological assumptions to
created a neural-oscillator model of behavioral Stimulus-Response theory [17].
We then showed how to use such model to reproduce quantum-like behavior
[18]. Finally, in a subsequent article, we remarked that the same neural-oscillator
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model could be used to represent a set of observables that could not correspond
to quantum mechanical observables [19], in a sense that we later on formalize
in Sect. 3. These results suggest that one of the main quantum features relevant
to social modeling is contextuality, represented by a non-Kolmogorovian proba-
bility measure, and that imposing a quantum formalism may be too restrictive.
This non-Kolmogorovian characteristic would come when two contexts providing
incompatible information about observable quantities were present.

Here we focus on the incompatibility of contexts as the source of a violation of
standard probability theory. We then ask the following question: what formalisms
are normative with respect to such incompatibility? This question comes from the
fact that, in its origin, probability was devised as a normative theory, and not
descriptive. For instance, Richard Jeffrey [20] explains that “the term ’probable’
(Latin probable) meant approvable, and was applied in that sense, univocally, to
opinion and to action. A probable action or opinion was one such as sensible people
would undertake or hold, in the circumstances.” Thus, it should come as no sur-
prise that humans actually violate the rules of probability, as shown in many psy-
chology experiments. However, if a person is to be considered “rational,” accord-
ing to Boole, he/she should follow the rules of probability theory.

Since inconsistent information, as above mentioned, violates the theory of
probability, how do we provide a normative theory of rational decision-making?
There are many approaches, such as Bayesian models or the Dempster-Shaffer
theory, but here we focus on two non-standard ones: quantum-like and negative
probability models. We start first by presenting a simple case where expert
judgments lead to inconsistencies. Then, we approach this problem first with a
standard Bayesian probabilistic method, followed by a quantum model. Finally,
we use negative probability distributions as a third alternative. We then compare
the different outcomes of each approach, and show that the use of negative
probabilities seems to provide the most normative power among the three. We
end this paper with some comments.

2 Inconsistent Information

As mentioned, the use of the quantum formalism in the social sciences originates
from the observation that Kolmogorov’s axioms are violated in many situations
[1,2]. Such violations in decision-making seem to indicate a departure from a
rational view, and in particular to though-processes that may involve irrational
or contradictory reasoning, as is the case in non-monotonic reasoning. Thus,
when dealing with quantum-like social phenomena, we are frequently dealing
with some type of inconsistent information, usually arrived at as the end result
of some non-classical (or incorrect, to some) reasoning. In this section we examine
the case where inconsistency is present from the beginning.

Though in everyday life inconsistent information abounds, standard classical
logic has difficulties dealing with it. For instance, it is a well know fact that
if we have a contradiction, i.e. A& (¬A), then the logic becomes trivial, in the
sense that any formula in such logic is a theorem. To deal with such difficulty,
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logicians have proposed modified logical systems (e.g. paraconsistent logics [21]).
Here, we will discuss how to deal with inconsistencies not from a logical point
of view, but instead from a probabilistic one.

Inconsistencies of expert judgments are often represented in the probability
literature by measures corresponding to the experts’ subjective beliefs [22]. It is
frequently argued that this subjective nature is necessary, as each expert makes
statements about outcomes that are, in principle, available to all experts, and
disagreements come not from sampling a certain probability space, but from
personal beliefs. For example, let us assume that two experts, Alice and Bob,
are examining whether to recommend the purchase of stocks in company X,
and each gives different recommendations. Such differences do not emerge from
an objective data (i.e. the actual future prices of X), but from each expert’s
interpretations of current market conditions and of company X. In some cases
the inconsistencies are evident, as when, say, Alice recommends buy, and Bob
recommends sell; in this case the decision maker would have to reconcile the
discrepancies.

The above example provides a simple case. A more subtle one is when the
experts have inconsistent beliefs that seem to be consistent. For example, each
expert, with a limited access to information, may form, based on different con-
texts, locally consistent beliefs without directly contradicting other experts. But
when we take the totality of the information provided by all of them and try
to arrive at possible inferences, we reach contradictions. Here we want to create
a simple random-variable model that incorporates expert judgments that are
locally consistent but globally inconsistent. This model, inspired by quantum
entanglement, will be used to show the main features of negative probabilities
as applied to decision making.

Let us start with three ±1-valued random variables, X, Y, and Z, with
zero expectation. If such random variables have correlations that are too strong
then there is no joint probability distribution [13]. To see this, imagine the
extreme case where the correlations between the random variables are E (XY) =
E (YZ) = E (XZ) = −1. Imagine that in a given trial we draw X = 1. From
E (XY) = −1 it follows that Y = −1, and from E (YZ) = −1 that Z = 1. But
this is in contradiction with E (XZ) = −1, which requires Z = −1. Of course,
the problem is not that there is a mathematical inconsistency, but that it is not
possible to find a probabilistic sample space for which the variables X, Y, and
Z have such strong correlations. Another way to think about this is that the X
measured together with Y is not the same one as the X measured with Z: values
of X depend on its context.

The above example posits a deterministic relationship between all random
variables, but the inconsistencies persist even when weaker correlations exist. In
fact, Suppes and Zanotti [13] proved that a joint probability distribution for X,
Y, and Z exists if and only if

− 1 ∇ E (XY) + E (YZ) + E (XZ)
∇ 1 + 2min {E (XY) , E (YZ) , E (XZ)} . (1)

The above case violates inequality (1).
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Let’s us now consider the example we want to analyze in detail. Imagine
X, Y, and Z as corresponding to future outcomes in a company’s stocks. For
instance, X = 1 corresponds to an increase of the stock value of company X in
the following day, while X = −1 a decrease, and so on. Three experts, Alice (A),
Bob (B), and Carlos (C), have the following beliefs about those stocks. Alice
is an expert on companies X and Y , but knows little or nothing about Z, so
she only tells us what we don’t know: her expected correlation EA (XY). Bob
(Carlos), on the other hand, is only an expert in companies X and Z (Y and
Z), and he too only tells us about their correlations. Let us take the case where

EA (XY) = −1, (2)

EB (XZ) = −1
2
, (3)

EC (YZ) = 0, (4)

where the subscripts refer to each experts. For such case, the sum of the correla-
tions is −1 1

2 , and according to (1) no joint probability distribution exists. Since
there is no joint, how can a rational decision-maker decide what to do when
faced with the question of how to bet in the market? In particular, how can she
get information about the joint probability, and in particular the unknown triple
moment E (XYZ)? In the next sections we will show how we can try to answer
these questions using three possible approaches: quantum, Bayesian, and signed
probabilities.

3 Quantum Approach

We start with a comment about the quantum-like nature of correlations (2)–(4).
The random variables X, Y, and Z with correlations (2)–(4) cannot be repre-
sented by a quantum state in a Hilbert space for the observables corresponding
to X, Y, and Z. This claim can be expressed in the form of a simple proposition.

Proposition 1. Let X̂, Ŷ , and Ẑ be three observables in a Hilbert space H
with eigenvalues ±1, let them pairwise commute, and let the ±1-valued random
variable X, Y, and Z represent the outcomes of possible experiments performed
on a quantum system |Γ◦ ∀ H. Then, there exists a joint probability distribution
consistent with all the possible outcomes of X, Y, and Z.

Proof. Because X̂, Ŷ , and Ẑ are observables and they pairwise commute, it
follows that their combinations, X̂Ŷ , Ŷ Ẑ, X̂Ẑ, and X̂Ŷ Ẑ are also observables,
and they commute with each other. For instance,

(
X̂Ŷ Ẑ

)†
= Ẑ†Ŷ †X̂† = X̂Ŷ Ẑ.
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Furthermore,

[X̂Ŷ Ẑ, X̂] = [X̂Ŷ Ẑ, Ŷ ] = · · · = [X̂Ŷ Ẑ, X̂Ẑ] = 0.

Therefore, quantum mechanics implies that all three observables X̂, Ŷ , and Ẑ
can be simultaneously measured. Since this is true, for the same state |Γ◦ we
can create a full data table with all three values of X, Y, and Z (i.e., no missing
values), which implies the existence of a joint.

So, how would a quantum-like model of correlations (2)–(4) be like? The above
result depends on the use of the same quantum state |Γ◦ throughout the many
runs of the experiment, and to circumvent it we would need to use different
states for the system. In other words, if we want to use a quantum formalism
to describe the correlations (2)–(4), a |Γ◦ would have to be selected for each
run such that a different state would be used when we measure X̂Ŷ , e.g. |Γ◦xy,
than when we measure X̂Ẑ, e.g. |Γ◦xz. Then, the quantum description could be
accomplished by the state

|Γ◦ = cA|A◦ ∈ |Γ◦xy + cB |B◦ ∈ |Γ◦xz + cC |C◦ ∈ |Γ◦yz.

This state would model the correlations the following way. When Alice makes
her choice, she uses a projector into her “state of knowledge” P̂A = |A◦∅A|, and
gets the correlation EA (XY), and similarly for Bob and Carlos.

In the above example, all correlations and expectations are given, and the
only unknown is the triple moment E (XYZ). Furthermore, since we do not
have a joint probability distribution, we cannot compute the range of values for
such moment based on the expert’s beliefs. But the question still remains as to
what would be our best bet given what we know, i.e., what is our best guess for
E (XYZ). The quantum mechanical approach does not address this question, as
it is not clear how to get it from the formalism given that any superposition of
the states preferred by Alice, Bob, and Carlos are acceptable (i.e., we can choose
any values of cA, cB , and cC).

4 Bayesian Approach

Here we focus again on the unknown triple moment. As we mentioned before,
there are many different ways to approach this problem, such as paraconsis-
tent logics, consensus reaching, or information revision to restore consistency.
Common to all those approaches is the complexity of how to resolve the incon-
sistencies, often with the aid of ad hoc assumptions [22]. Here we show how a
Bayesian approach would deal with the issue [23,24].

In the Bayesian approach, a decision maker, Deanna (D), needs to access
what is the joint probability distribution from a set of inconsistent expecta-
tions. To set the notation, let us first look at the case when there is only one
expert. Let PA(x) = PA(X = x|∂A) be the probability assigned to event x by
Alice conditioned on Alice’s knowledge ∂A, and let PD(x) = PD(X = x|∂D) be
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Deanna’s prior distribution, also conditioned on her knowledge ∂D. Furthermore,
let PA = PA (x) be a continuous random variable, PA ∀ [0, 1], such that its out-
come is PA (x). The idea behind PA is that consulting an expert is similar to
conducting an experiment where we sample the experts opinion by observing a
distribution function, and therefore we can talk about the probability that an
expert will give an answer for a specific sample point. Then, for this case, Bayes’s
theorem can be written as

P ∗
D (x|PA = PA (x)) =

PD (PA = PA (x)) PD (x)
PD (PA = PA (x))

,

where P ∗
D (x|PA = PA (x)) is Deanna’s posterior distribution revised to take into

account the expert’s opinion. As is the case with Bayes’s theorem, the difficulty
lies on determining the likelihood function PD (PA), as well as the prior. This
likelihood function is, in a certain sense, Deanna’s model of Alice, as it is what
Deanna believes are the likelihoods of each of Alice’s beliefs. In other words, she
should have a model of the experts. Such model of experts is akin to giving each
expert a certain measure of credibility, since an expert whose model doesn’t fit
Deanna’s would be assigned lower probability than an expert whose model fits.

The extension for our case of three experts and three random variables is
cumbersome but straightforward. For Alice, Bob, and Carlos, Deanna needs to
have a model for each one of them, based on her prior knowledge about X, Y,
and Z, as well as Alice, Bob, and Carlos. Following Morris [23], we construct a
set E consisting of our three experts joint priors:

E = {PA (x, y) , PB (y, z) , PC (x, z)} .

Deanna’s is now faced with the problem of determining the posterior P ∗
D (x|E) ,

using Bayes’s theorem, given her new knowledge of the expert’s priors.
In a Bayesian approach, the decision maker should start with a prior belief

on the stocks of X, Y , and Z, based on her knowledge. There is no recipe for
choosing a prior, but let us start with the simple case where Deanna’s lack of
knowledge about X, Y , and Z means she starts with the initial belief that all
combinations of values for X, Y, and Z are equiprobable. Let us use the following
notation for the probabilities of each atom: pxyz = P (X = +1,Y = +1,Z = +1),
pxyz = P (X = +1,Y = +1,Z = −1), pxyz = P (X = −1,Y = +1,Z = −1), and
so on. Then Deanna’s prior probabilities for the atoms are

pD
xyz = pD

xyz = · · · = pD
xyz =

1
16

,

where the superscript D refers to Deanna.
When reasoning about the likelihood function, Deanna asks what would be

the probable distribution of responses of Alice if somehow she (Deanna) could
see the future (say, by consulting an Oracle) and find out that E (XY ) = −1.
For such case, it would be reasonable for Alice to think it more probable to
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have, say, xy than xy, since she was consulted as an expert. So, in terms of the
correlation φA, Deanna could assign the following likelihood function:

PD (φA|xy) = PD (φA|xy) =
1
4

(1 − φA)2 , (5)

PD (φA|xy) = PD (φA|xy) = 1 − 1
4

(1 − φA)2 , (6)

where the minus sign represents the negative, i.e. pA
xy· = pxy· = 1

4 (1 + φA) and
pxy· = pxy· = 1

4 (1 − φA). Notice that the choice of likelihood function is arbi-
trary.

Deanna’s posterior, once she knows that Alice thought the correlation to be
zero (cf. (2)), constitutes, as we mentioned above, an experiment. To illustrate the
computation, we find its value below, from Alice’s expectation EA (XY) = −1.
From Bayes’s theorem

pD|A
xyz = k

[
1 − 1

4
(1 − φA)2

]
1
8

=
1
4

[
1 − 1

4
(1 − φA)2

]
=

3
16

,

where the normalization constant k is given by

k−1 =
[
1 − 1

4
(1 − φA)2

]
1
8

+
[
1
4

(1 − φA)2
]

1
8

+
[
1
4

(1 − φA)2
]

1
8

+
[
1 − 1

4
(1 − φA)2

]
1
8

+
[
1
4

(1 − φA)2
]

1
8

+
[
1
4

(1 − φA)2
]

1
8

+
[
1 − 1

4
(1 − φA)2

]
1
8

+
[
1 − 1

4
(1 − φA)2

]
1
8
,

and we use the notation pD|A to explicitly indicate that this is Deanna’s posterior
probability informed by Alice’s expectation. Similarly, we have

p
D|A
xyz = p

D|A
xyz = p

D|A
xyz = p

D|A
xyz =

1
16

,

and
pD|A

xyz = p
D|A
xyz = p

D|A
xyz = p

D|A
xyz =

3
16

.

If we apply Bayes’s theorem twice more, to take into account Bob’s and Carlos’s
opinions given by correlations (3) and (4), using likelihood functions similar to
the one above, we compute the following posterior joint probability distribution,

pD|ABC
xyz = p

D|ABC
xyz = p

D|ABC
xyz = p

D|ABC
xyz = 0,

p
D|ABC
xyz = p

D|ABC
xyz =

7
68

,
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and
p

D|ABC
xyz = p

D|ABC
xyz =

27
68

.

Finally, from the joint, we can compute all the moments, including the triple
moment, and obtain E (XYZ) = 0.

It is interesting to notice that the triple moment from the posterior is the
same as the one from the prior. This is no coincidence. Because the revisions from
Bayes’s theorem only modify the values of the correlations, nothing is changed
with respect to the triple moment. In fact, if we compute Deanna’s posterior
distribution for any values of the correlations φA, φB , and φC , we obtain the
same triple moment, as it comes solely from Deanna’s prior distribution. Thus,
the Bayesian approach, though providing a proper distribution for the atoms,
does not in any way provide further insights on the triple moment.

5 Negative Probabilities

We now want to see how we can use negative probabilities to approach the
inconsistencies from Alice, Bob, and Carlos. The first person to seriously con-
sider using negative probabilities was Dirac in his Bakerian Lectures on the
physical interpretation of relativistic quantum mechanics [25]. Ever since, many
physicists, most notably Feynman [26], tried to use them, with limited success,
to describe physical processes (see [27] or [28] and references therein). The main
problem with negative probabilities is its lack of a clear interpretation, which
limits its use as a purely computational tool. It is the goal of this section to
show that, at least in the context of a simple example, negative probabilities can
provide useful normative information.

Before we discuss the example, let us introduce negative probabilities in a
more formal way1. Let us propose the following modifications to Kolmogorov’s
axioms.

Definition 1. Let Ω be a finite set, F an algebra over Ω, p and p∗ real-valued
functions, p : F ↑ R, p∗ : F ↑ R, and M− =

∑
ωi◦Ω |p ({Δi})|. Then (Ω,F , p)

is a negative probability space if and only if:

A. ↔p∗
(

M− ∇
∑

ωi◦Ω

|p∗ ({Δi})|
)

B.
∑

ωi◦Ω

p ({Δi}) = 1

C. p ({Δi, Δj}) = p ({Δi}) + p ({Δj}) , i ←= j.

Remark 1. If it is possible to define a proper joint probability distribution, then
M− = 1, and A-C are equivalent to Kolmogorov’s axioms.
1 We limit our discussion to finite spaces.
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Going back to our example, we have the following equations for the atoms.

pxyz + pxyz + pxyz + pxyz + pxyz + pxyz + pxyz + pxyz = 1, (7)

pxyz + pxyz + pxyz + pxyz − pxyz − pxyz − pxyz − pxyz = 0, (8)

pxyz + pxyz − pxyz + pxyz − pxyz + pxyz − pxyz − pxyz = 0, (9)

pxyz + pxyz + pxyz − pxyz − pxyz − pxyz + pxyz − pxyz = 0, (10)

pxyz − pxyz − pxyz + pxyz − pxyz − pxyz + pxyz + pxyz = 0, (11)

pxyz − pxyz + pxyz − pxyz − pxyz + pxyz − pxyz + pxyz = −1
2
, (12)

pxyz + pxyz − pxyz − pxyz + pxyz − pxyz − pxyz + pxyz = −1, (13)

where (7) comes from the fact that all probabilities must sum to one, (8)–(10)
from the zero expectations for X, Y, and Z, and (11)–(13) from the pairwise cor-
relations. Of course, this problem is underdetermined, as we have seven equations
and eight unknowns (we don’t know the unobserved triple moment). A general
solution to (7)–(10) is

pxyz = −pxyz = −1
8

− ∂, (14)

pxyz = pxyz =
3
16

, (15)

pxyz = pxyz =
5
16

, (16)

pxyz = −pxyz = −∂, (17)

where ∂ is a real number. From (14)–(17) it follows that, for any ∂, some
probabilities are negative. First, we notice that we can use the joint proba-
bility distribution to compute the expectation of the triple moment, which is
E(XYZ) = − 1

4 − 4∂. Since −1 ∇ E (XYZ) ∇ −1, it follows that −1 1
4 ∇ ∂ ∇ 3

4 .
Of course, ∂ is not determined by the lower moments, as we should expect, but
axiom A requires M− to be minimized. So, to minimize M−, we focus only on
the terms that contribute to it: the negative ones. To do so, let us split the
problem into several different sections. Let us start with ∂ → 0, which gives
M−

δ→0 = − 1
8 − 2∂, having a minimum of − 1

8 when ∂ = 0. For −1/8 ∇ ∂ < 0,
M−

− 1
8√δ<0

= ∂ − 1
8 + ∂ = − 1

8 , which is a constant value. Finally, for ∂ < −1/8,

the mass for the negative terms is given by M−
δ<− 1

8
= 1

8 −2∂. Therefore, negative
mass is minimized when ∂ is in the following range

−1
8

∇ ∂ ∇ 0.
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Now, going back to the triple correlation, we see that by imposing a minimization
of the negative mass we restrict its values to the following range:

−1
4

∇ E (XYZ) ∇ 1
2
.

But Eqs. (7)–(13) and the fact that the random variables are ±1-valued allow
any correlation between −1 and 1, and we see that the minimization of the
negative mass offers further constraints to a decision maker.

Before we proceed, we need to address the meaning of negative probabil-
ities, as well as the minimization of M−. We saw from Remark 1 that when
M− is zero we obtain a standard probability measure. Thus, the value of M−

is a measure of how far p is from a proper joint probability distribution, and
minimizing it is equivalent to asking p to be as close as possible to a proper
joint, while at the same time keeping the marginals. This point in itself should
be sufficient to suggest some normative use to negative probabilities: a negative
probability (with M− minimized) gives us the most rational bet we can make
given inconsistent information. But the question remains as to the meaning of
negative probabilities.

To give them meaning, let us redefine the probabilities from p to p∈ such
that p∈ ({Δi}) = 0 when p ({Δi}) ∇ 0. It follows from this redefinition that∑

ωi◦Ω p∈ ({Δi}) → 1. This newly defined probability would not violate Kol-
mogorov’s nonnegativity axiom, but instead would violate B above. The p∈’s
corresponds to de Finetti’s upper probability measures, and axiom A above
guarantees that such upper is as close to a proper distribution as possible. Thus,
according to a subjective interpretation, the negative probability atoms corre-
spond to impossible events, and the positive ones to an upper probability mea-
sure consistent with the marginals. Once again, the triple moment corresponds
to our best bet.

6 Conclusions

The quantum mechanical formalism has been successful in the social sciences.
However, one of the questions we raised elsewhere was whether some minimal-
ist versions of the quantum formalism which do not include a full version of
Hilbert spaces and observables could be relevant [19]. In this paper we adapted
the example modeled with neural oscillators in [19] to a different case where each
random variable could be interpreted as outcomes of a market, and where the
inconsistencies between the correlations could be interpreted as inconsistencies
between experts’ beliefs. Such inconsistencies result in the impossibility to define
a standard probability measure that allows a decision-maker to select an expec-
tation for the triple moment. The computation of the triple moment from the
inconsistent information was done in this paper using three different approaches:
Bayesian, quantum-like, and negative probabilities.

With the Bayesian approach, we showed that not only does it rely on a
model of the experts (the likelihood function), but also that no new information
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is gained from it, as the triple moment from the prior is not changed by the
application of Bayes’s rules. Therefore, the Bayesian approach had nothing to
say about the triple moment.

Similar to the Bayesian, the quantum approach also had nothing to say about
the triple moment, as the arbitrariness of choices for quantum superpositions
(without any additional constraints) results in all values of triple moments being
possible. In fact, the quantum approach above could be similarly implemented
using a contextual theory. For instance, Dzhafarov [29] proposes the use of an
extended probability space where different random variables (say, Xz and Xy)
are used, and where we then ask how similar they are to each other (for instance,
what is the value of P (Xz ←= Xy)). However, as with the quantum case, the
meaning given to P (X = 1) in our example does not fit with this model, as it
corresponds to the expectation of an increase in the stock value of company X
in the future, and the X that Alice is talking about is exactly the same one
for Bob and Carlos, as it corresponds to the increase in the objective value (in
the future) of a stock in the same company. Furthermore, as expected due to
its similar features, this approach has the same problem as the quantum one in
terms of dealing with the triple moment, but it has the advantage of making it
clearer what the problem is: the triple moment does not exist because we have
nine random variables instead of three, as we have three different contexts.

The negative probability approach, on the other hand, led to a nontrivial
constraint to the possible values of the triple moment. When used as a computa-
tional tool, a joint probability distribution, and with it the triple moment, could
be obtained. Together with the minimization of the negative mass M−, this joint
leads to a nontrivial range of possible values for the triple moment. Given the
interpretation of negative probabilities with respect to uppers, it follows that
this range is our best guess as to where the values of the triple moment should
lie, given our inconsistent information. Thus, negative probabilities provide the
decision maker with some normative information that is unavailable in either
the Bayesian or the quantum-like approaches.
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Abstract. This paper elaborates on a well-known and widespread bias -‘cog-
nitive dissonance’. The bias occurs when a person has conflicting cognitions
framed by his/her values, beliefs etc. In such complex situations the individual
choices and actions become emotionally tinted and thus inconsistent with the
postulates of rational homo economicus. We evidence that classical probabi-
listic updating of information does not work correctly: hidden factors and
motivations come into play to balance the conflicting cognitions and restore
mental harmony. To support this inference we present a scheme of a ‘gedanken
experiment’ in combination with known statistical data from a real experiment,
the forbidden toy paradigm. Our findings show that the phenomenon of cog-
nitive dissonance is a source of probabilistic non-classicality directly violating
Bayes formula for conditional probability and so the law of total probability.
Furthermore, we aim to show with the help of the quantum framework that the
quantum probability formula and Hilbert space state representation of observ-
ables can well account for the ‘incorrect behavior’ among participants.

Keywords: Cognitive dissonance � Context � Bayes theorem � Law of total
probability � Quantum like modeling � Quantum probability � Born’s rule

1 Introduction

The ‘cognitive dissonance’ phenomenon was firstly discovered and brought to the
public by a famous American psychologist Leon Festinger in his book ‘A theory of
cognitive dissonance’ [9]. This theory had a wide resonance in society and was
believed to be one of the most influential and fruitful discoveries in social and
experimental psychology [3, 24]. Festinger found out through his numerous experi-
ments that in many situations an individual has conflicting or ‘dissonant’ cognitions
that do not fit together, e.g.:

one of these is the knowledge that he believes ‘‘X,’’ the other the knowledge that he has
publicly stated that he believes ‘‘not X.’’ If no factors other than his private opinion are
considered it would follow, at least in our culture, that if he believes ‘‘X’’ he would publicly

Sour grapes: Is a metaphorical illustration of the cognitive dissonance bias, from the fable ‘‘The fox
and the grapes’’ by Aesop [17]. The fox cannot reach the grapes on the tree and convinces himself
that he doesn’t want them after all because they are sour.

H. Atmanspacher et al. (Eds.): QI 2013, LNCS 8369, pp. 270–280, 2014.
DOI: 10.1007/978-3-642-54943-4_24, � Springer-Verlag Berlin Heidelberg 2014



state ‘‘X.’’ Hence, his cognition of his private belief is dissonant with his cognition concerning
his actual public statement. [10], p. 203.

This cognitive discrepancy results in a tendency to changing behavior, through inner
motivation, self-justification, and by selectively searching for new information or
attitudes.

At the same time, modern economic theory of the 20th Century postulates that
humans are by their nature rational. They carefully process all obtained information
and strive to minimize losses and maximize their own gain in any given situation.
Coming back to the subject of cognitive dissonance we can notice that people mainly
act on an emotional basis, trying to minimize the mental discomfort or pain, reinstate
the self-esteem and even search to shape their identity1 through their behavior. In our
article we will focus on cognitive dissonance occurring mainly through incorrect
Bayesian updating of new information and the violation of the classical probabilistic
framework. Individuals in this situation are processing information incompletely,
making excuses and lowering the significance of the dissonant element. Firstly, this
phenomenon will be explored in more depth, by illustrating it in a framework of a so
called ‘gedanken experiment’ to draw a parallel with quantum physics.

As background data analysis, we choose an illustrative forbidden toy experiment [2]2.
For similar experiments see the classical counter–attitudinal experiment on students
asked to perform and then promote various boring tasks [10]; for other cognitive dis-
sonance experiments see [1, 6]. After presenting the experimental data we will propose a
solution of the cognitive dissonance problem with the help of the quantum framework.
The motivation for introducing quantum like models (quantum calculus applied to
domains outside quantum physics e.g. decision making) is that they have a notable
prediction accuracy that was successfully shown in similar types of ‘irrational’ behavior
experiments, that is: type indeterminacy in self-perception theory [18, 19]; inverse fal-
lacy [4], the disjunction effect and conjunction effect [7, 11, 14, 21]. The above men-
tioned works are exploring the mathematical formalism of quantum mechanics in
cognitive psychology and economics. They emphasize the role of the violation of
classical probability theory, in particular its core formalism the Law of Total Probability.

2 Bayes Rule and the Law of Total Probability

The notion of Bayesian probabilistic reasoning was applied as the essential ingredient
of decision theory during the 20th century in economics as well as in the behavioral
sciences [8]. Bayesian probability according to [20] is elucidating a particular concept
of rational choice. Truly, Pierre Laplace assumed that all probabilities of our judgment
depend on our knowledge and ignorance, and

1 Self-perception theory is an alternative explanation for the biased behavior, based on the idea that
we mainly act to observe our actions, hereby forming our identity. The term was first introduced by
Bem, see [5].

2 We do not elaborate on the ethical side of the experiment where the word ‘punishment’ could
possibly cause anxiety and stress of small children. The data is chosen purely for illustrative
purpose.

A Quantum Framework for ‘Sour Grapes’ in Cognitive Dissonance 271



the completion of knowledge in the limit simply eliminates them’ transmitting our estimation
to a state of an absolute confidence. [23], p. 165.

In Kolmogorov’s probabilistic framework [16], the Bayes formula is used as the
definition of conditional probability. Say, two mutually exclusive events A and A-

are in the same sample space N1, where for instance P(A) = 0. In a decision making
situation those probabilities depict prior beliefs of a decision maker [4]. As additional
information is obtained, a decision maker updates his/her beliefs with a new proba-
bility of A respective A-, given that events B or B- occur (corresponding to another
sample space N2). Such an updating of beliefs is defined by Bayes formula (2) and (3).
It can be expressed with the help of the formula of total probability (FTP) (1):

P Bð Þ ¼ P BjAð ÞP Að Þ þ P BjA�ð ÞP A�ð Þ ð1Þ

P AjBð Þ ¼ P BjAð ÞP Að Þ
P Bð Þ ¼ P BjAð ÞP Að Þ

P BjAð ÞP Að Þ þ P BjA�ð ÞP A�ð Þ ð2Þ

Respectively, the conditional probability of A- will be updated as follows:

P A� jBð Þ ¼ P BjA�ð ÞP A�ð Þ
P Bð Þ ¼ P BjA�ð ÞP A�ð Þ

P BjAð ÞP Að Þ þ P BjA�ð ÞP A�ð Þ ð3Þ

3 Gedanken Experiment

For the purpose of this article we first present a simulation model. We depict it as
following: 2 groups of children are left one by one in a room with a variety of toys,
including a so called favorite toy.

Part A: The experimenter tells one group of children that there will be a severe
punishment (S) if they play with this particular toy and the experimenter tells the other
group that there will be a milder punishment if they play with it (M). Thus, the
children are placed in two decision making contexts under the condition S and M.
After the experimenter leaves the room for say 10–15 min and covertly observes the
children in the room. We note that: P(M) = P(S) = �, i.e. these are the probabilities
of ‘‘realizations of contexts’’ in our model experiment.

Within the line of rational reasoning, those children that experienced a danger of
severe punishment (a greater risk to be punished) would be less inclined to play (G+)
with the toy, hence, the following ‘‘inequality of rationality’’ would hold3:

P Gþ jMð Þ[ P Gþ jSð Þ ð4Þ

3 We make an important note that in the real forbidden toy experiment P(G+|S) = 0 and
P(G+|M) = 0. This is a disadvantage for our theoretical study, since ‘‘nobody playing’’ result
implies zero/one probabilities, which are not very convenient for quantum-like analysis. For that
reason the probabilities in this part are ‘theoretical’ to illustrate the principle of Bayesian updating
scheme. In further works we consider to perform analogous studies for statistical data with nonzero
probabilities.
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Part B: the experimenter returns to the room and tells the children that they can
freely play with any toy, including the forbidden one. Next, the children who decided
to play with the favorite toy in the part A are asked whether they were in M or S
contexts. The respective probabilities for (M|G+) and (S|G+) contexts are collected.4

With the help of Bayes formula, we express the children’s conditional preference
probabilities structure:

P MjGþð Þ ¼ P Gþ jMð ÞP Mð Þ
P Gþð Þ ð5Þ

P SjGþð Þ ¼ P Gþ jSð ÞP Sð Þ
P Gþð Þ ð6Þ

We can easily recognize that the denominator P(G+) is the same for both equa-
tions. As it is a favorite toy, every child wants to play with it in the initial context, thus
P(G+) = 1 and we also know that P(M) = P(S). Accordingly, we can ‘switch’ the
conditional probabilities, and in line with the Bayesian analysis the ‘‘inequality of
rationality’’ (4) would predict that following ‘‘contextual behavior inequality’’ would
hold as well:

P MjGþð Þ[ P SjGþð Þ ð7Þ

However, in case of cognitive dissonance, the group in the Severe prohibitory
context is more likely to play with the desired toy than the group with the Mild
context, where (4) and (7) are violated. Cognitive dissonance causes a mismatching of
the theoretical Bayesian updating with the actual probability updating procedure. This
gives an indication of an impossibility to use the apparatus of classical probability
theory to predict unknown probabilities on the basis of experimental results. Our
analysis motivates us to use non-classical theories of probabilities, in particular
quantum probability. We will support our inference with data from the actual for-
bidden toy experiment.

4 Experimental Data

This experiment [2] illustrates the cognitive dissonance exhibition, in a slightly dif-
ferent and multipart context compared to the model experiment. Cognitive dissonance
is measured indirectly via the change of the toy’s attractiveness among the partici-
pants. The authors aim to support a hypothesis that cognitive dissonance exists and
can be enhanced or reduced in this case by the level of prohibition. They advocate:

4 The same data can be collected by taking the record of children’s distribution between experimental
contexts. By employing the direct question scheme we bring a closer analogy with the measurement
in quantum physics. In our ‘‘gedanken experiment’’ in part B the experimenter searches to find out
the contextual structure of the part A. To make our experiment more real, we could proceed with
two different experimenters: one person that is setting up part A of the experiment and the second
experimenter that comes into the room in part B (after the children were allowed to play) and gets to
know about the contextual structure of part A from the children’s behavior.
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‘The greater the threat of punishment the less the dissonance – since a severe threat is
consonant with ceasing to perform an action’ [2], p. 584.

At the same time when the danger of punishment is mild, then a person would seek
for some inner justifications to abstain from performing it. We depict this inconsis-
tency with Bayes’ conditional frequencies obtained from the experimental data, see
(Table 1).

4.1 Method

The experiment was run on 22 preschool children (11 boys and 11 girls ranging in age
from 3.8 to 4.6 years) that took part in both experimental conditions (Mild and Severe)
with a time interval of 45 days that according to the authors enabled them to restore
the initial attitude towards the toys.

• Preparation of the participants:

The experimenter led each subject into the experimental room closed the door and showed the
subject the toys. He demonstrated how each toy worked and allowed the subject to play with it
briefly before moving on the next one. After the subject was familiar with all the toys the
experimenter suggested a ‘‘question game, following which the subject would have chance to
play the toys (again)’’ [2], p. 585.

The ‘‘question game’’ involved a ranking of the toys two by two, until a choice
between 10 pairs of toys was made. Then a ranking list for each child was accom-
plished. After the ranking procedure was completed the experimenter took a N25

(second ranked toy) and placed it on a low board in the center of the room and applied
a condition of either Mild or Severe punishment.6

• Observation of the participants during the experiment: After the experimenter left
the room the children were observed for 10 min, through a special one-way mirror.
No one of the subjects played with the toys neither in Mild nor in Severe threat
context.

Table 1 Experimental data

P(L+| M) 0.636

P(L-| M) 0.364
P(L+|S) 1
P(L-|S) 0

5 We remark that the observers choose for their purposes not the absolute favorite but the second
ranked toy (N2). The authors explain their choice by giving the children space to increase the
desirability of the toy. The obtained frequencies could be very different if the children had to
abstain from playing with the most favorite toy e.g. they would still play with it despite the threat
condition.

6 Detailed depiction of the experimental conditions and experimenter’s phrases can be found in the
original text [2].
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After the observation the experimenter came back into the room and allowed each
child to play briefly with all the toys including the N2 toy. Next the question game was
played again to establish the new ranking of the toys. Finally the experimenter played
with every participant for a short while. As result new rankings of children’s desir-
ability for the N2 toy were elicited.

The results reveal an increase of attractiveness of the toy after the threat in the
Severe condition and a decrease in the Mild condition. The decrease of the toy’s
desirability in Mild condition is consistent with the authors’ conjecture that children in
such context experience cognitive dissonance: the cognition that the toy is desirable is
dissonant with the cognition that the child shouldn’t play with it. For that reason the
children are lowering the toy’s attractiveness to restore their mental harmony. At the
same time the Severe condition gives by itself a good reason for not playing with the
toy without affecting the desirability of the toy per see.

At the same time it was not clear from the results, why the effect of toy’s increased
desirability took place among some children placed in the Severe context. The authors
asked themselves whether this increase was a function of precisely the strong level of
prohibition or other factors. For that reason an additional test was performed namely,
11 participants (selected randomly) ran through an analogous experiment with a sole
control condition ‘No Threat’ to establish a baseline. The experimenter simply took
the toy N2 with him when leaving the room, without announcing anything to the
children. The results showed that about the same number of participants increased
their liking for the toy as in the Severe condition, implying that the increased desir-
ability was not a consequence of a particular condition.7

4.2 Analysis

We will analyze the data from the experiment to see if the occurrence of cognitive
dissonance caused a violation of classical probability. We depict: P(M) = P(S) = �,
since each group consisted of the same number of participants.8 As mentioned, in the
threat condition none of the participants played with the toy (8), but we witness that
the reasons behind not- playing differ.

P Gþ jSð Þ ¼ P Gþ jMð Þ ¼ 0 ð8Þ

7 Other possible factors behind the increased desirability highlighted in the paper: the children paid
more attention to the N2 toy, because the experimenter enhanced its value by the impossibility to
play with it. Also the participants were likely to become bored playing with other toys thus favoring
the key toy more.

8 The � frequency is a common type of group division within experiments e.g., Hawaii experiment,
Gambling experiment by Tversky and Shafir [22]. The participants are either equally divided in two
groups or the same number of participants is firstly placed in one group and after a time period in
the second group. It enables to compare face to face the change of preferences. In the toy
experiment we directly see that liking for the toy decreases with ca. 36 % for those kids who are in
the M group. Another group division would give a similar result.
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To depict updating of the toy’s attractiveness, we apply following symbols: L+ for
not decreasing attractiveness of the toy9 and L- for decreasing attractiveness of the
toy.

We insert our data in (1) and check whether the FTP holds for this experiment.
We know that P(L+) = 1, as all children like the toy in the beginning of the
experiment.

PðLþÞ ¼ PðSÞPðLþ jSÞ þ PðMÞPðLþ jMÞ ¼ 0:818 ð9Þ

We observe that the FTP is violated (9). This indicates that we cannot predict the
unconditional probability P Lþð Þ with the aid of conditional probabilities P Lþ jSð Þ
and P Lþ jMð Þ as one can do in the classical probabilistic framework. The situation is
very similar to experiments on violation of rationality in games of the Prisoner
Dilemma type and violations of the Savage sure thing principle where a so called
disjunction effect takes place; see [21] and [14].

We recap that FTP is derived from two fundamental principles of classical
probability theory, the Bayes formula for conditional probability and the additivity
principle of probabilities. By finding a violation of the FTP we see that the principle of
additivity is definitely violated, since the experimentally obtained probabilities don’t
sum up to 1 in (9). However, we cannot prove whether the Bayes formula is also
violated as we could demonstrate in the gedanken experiment. In the future the
illustrated gedanken experiment could be performed in a real setting to confirm its
findings.

5 Quantum Paradigm

The motivation for applying the formalism of quantum physics to explain the above
discussed biased behavior has a number of justifications. From a probabilistic view-
point quantum physics is about the generalization of the Bayesian formula of con-
ditional probability. With that in mind [13] suggests that ‘Quantum Bayesian analysis’
is based on an analogue of quantum interference effect which cannot be described by
FTP of Kolmogorov’s probability model. As is known, in quantum physics incom-
patible observational contexts lead to complementarity of quantum measurements.
In our case we can regard the cognitive dissonance phenomenon as an interference of
children’s cognitions that are incompatible. As the authors of the toy experiment state:

When an individual experiences dissonance he attempts to reduce it by changing one or both of
his cognitions. [2], p. 584.

That for example cognition and emotion should also be treated as complementary is
discussed in [7]. In mathematical language it means that a child who simultaneously
likes a toy but is not allowed to play with it has different probability amplitudes for
these events and they interfere with each other.

9 Contains those participants, who ranked the toy higher or the same after the threat context. Since the
increased desirability of the toy is not a consequence of a particular condition, we treat it similarly
as the ‘not-decreasing desirability’.
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Some authors propose that we can go one step further and build a special model
for cognitive dissonance behavior, where two groups of subjects can be distinguished:
those who are comfortable with cognitive dissonance or those who want to change it.

The agents that are comfortable with dissonance will likely be able to maintain attitudes that
do not conform to their actions while those who prefer a consistent cognitive state will
experience a significant swing in attitude as a result of actions that they choose to take. [15],
p. 8.

The data in our example shows that many children decided to take an action and
therefore experienced a swing in attitude towards the N2 toy. The reduction of
incompatibilities of children’s cognitions to ‘like the toy’ and ‘not to be allowed to
play with it’ was reduced through resolution from superposition of Lþ jMð Þ and
L� jMð Þ To depict it we apply the quantum probability formula (10) as an extension

of the traditional probability equation with the help of the so called ‘interference
term’.

P Bð Þ ¼ P BjAð ÞP Að Þ þ P BjA�ð ÞP A�ð Þ þ 2cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P Að ÞP BjAð ÞP A�ð ÞP BjA�ð Þ

p

ð10Þ

Instead of classical updating of P(A|B) we use the state transition from A to B
indicating it as a complex number ‹A|B› in Hilbert space. Its squared absolute value
gives us the final choice probabilities. The amplitudes of choice probabilities can
exhibit positive or negative interference. When the interference is zero we can apply
the classical Bayes formula. The right hand-side probability is calculated as a quantum
probability with respect to the state: the probability amplitude, represented through
vector W in the complex Hilbert space. This is the state of the group of children after
the preparatory stage of the experiment (initial state).

For our experimental data, the interference extension of FTP has the form:

P Lþð Þ ¼ P Mð ÞP Lþ jMð Þ þ P Sð ÞP Lþ jSð Þ þ 2cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P Mð ÞP Lþ jMð ÞP Sð ÞP Lþ jSð Þ

p

ð11Þ

We obtain cos h = 0.228 and angle h = 1.34 radian. Thus, our decision proba-
bilities exhibit positive interference. The positive interference of probability ampli-
tudes could possibly explain an increased desirability of the toy through the
interference of probability amplitudes for the severe punishment condition and the
liking of the toy.

We represent P(L+) as the probability amplitude of W to check if the Born’s rule
(determination of quantum probabilities from probability amplitudes) can be applied:

P Lþð Þ ¼ Wj j2 ð12Þ

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P Mð ÞP Lþ jMð Þ

p
þ eih

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P Sð ÞP Lþ jSð Þ;

p
ð13Þ

eih ¼ coshþ isinh ¼ 0:228þ 0:974i ð14Þ
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W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 � 0:636
p

þ 0:228þ 0:974i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 � 1
p� ffi

¼ 0:721þ 0:689i ð15Þ

Wj j2¼ j0:721þ 0:689ij2 ¼ 0:52þ 0:475 ¼ 0:995 � 1 ð16Þ

By Born’s rule one can reconstruct individual initial mental state W using the
matrix of transition probabilities (17) from the experimental data and knowing the
context (represented by basis vectors).

0:636 0:364
1 0

� �
ð17Þ

At the same time we should note that (17) in this example is not double stochastic
thus not showing entirely quantum features. Possible explanation proposed in [12] is
that:

• Statistics of the experiment is neither quantum nor classical. The ‘Quantumness’ is
merely present in the phenomenological application of mathematical calculus.

• Observables (in our case the choices L+/L- and events S/M) are not completely
captured by the two dimensional Hilbert space and a state space of higher
dimension would be needed.

6 Concluding Remarks

We have presented a simulated model, the gedanken experiment thereafter supporting
our conjectures with data obtained from a real forbidden toy paradigm. It has been
shown that cognitive dissonance is inconsistent with the traditional probabilistic
framework. The novelty of our findings from the gedanken experiment is an illus-
tration of a direct violation of the Bayes formula. This gives us an even deeper root of
cognitive dissonance’s non-classicality than just the demonstrated violation of FTP.

We propose an alternative representation, based on the quantum probability for-
mula to account for the observed non-classicality. In addition, we were able to find
complex probability amplitude which can be represented by Born’s rule. The possi-
bility to construct such a quantum representation for the probabilities in the cognitive
dissonance context stimulates us to think about other applications of quantum prob-
abilistic calculus. For instance, as a second step the dynamical equations from
quantum physics could be applied to capture the evolution of a particular decision
maker’s mental state in the context of cognitive dissonance.

Lastly, we recap that quantum-like approach does not claim that the classical
probabilistic description doesn’t work at all. For each case of inconsistent behavior
(such as cognitive dissonance) there might be found classical models. One could
elaborate that there is a similarity with hidden variables descriptions in quantum
physics. At the same time it is generally stated in quantum physics that for some
situations the classical stochastic variables are in principle impossible to introduce. In
general such models can be very complicated and not easy to find. The quantum like
description is attractive by providing a more general mathematical framework that
could be applied for any case and for any data.
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Abstract. The approach of Quantum State analysis for experimental
data is presented and used for a metanalysis of the dynamic inconsistency
effect experiment of ref. [1]. The results of this experiment have already
been demonstrated to be in the field of quantum cognition by ref. [2].
Here the quantitative collective state of the participants is retrieved at
each stage and a value-level diagram is presented. This has led to addi-
tional insights about the dynamic inconsistency effect, as well as sugges-
tions and a way to compare with future research. Through the Quantum
State analysis, we have been able to construct a quantitative wavefunc-
tion from psychological experiment data.

Keywords: Disjunction effect · Quantum state · Dynamic inconsis-
tency · Quantum cognition

1 Introduction

Previously, Barkan and Busemeyer [1] studied a specific version of the disjunc-
tion effect, the dynamic inconsistency effect. Later Busemeyer, Wang and True-
blood [2] argued that the results are better modeled by a Quantum decision
model rather than a Markov one. However, the better fit obtained can be partly
attributed to the additional degree of freedom, γ, which is representing the abil-
ity “for changing beliefs to align with actions” [2]. This was taken as a measure
of “quantum interference”, and as such an indication of validity of a quantum
analysis.

Here a different approach is taken, introducing a Quantum State analysis of
the problem. The argument of representing the experiment’s values as the expec-
tation value of some state is taken from previous literature [4] and is assumed
valid here.

Observable =
< ψ|Ô|ψ >

< ψ|ψ >
(1)

The added benefit of the Quantum State approach taken here is that it pro-
vides an intuitive way that could potentially allow for predictions and is also
expandable.
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2 The Quantum State Analysis

The main assumption is that the observed (experimental) data depend on the
mental state of the people participating on the experiment and that this state
may be expressed as a quantum state in Dirac’s Bra-(c-)ket notation [3]. Rep-
resenting the individual mental states as states that have a preference ordering
(some more preferable than others) as well as representing interactions as oper-
ators acting on these states, is the basis of the Quantum State analysis.

The mental states of the participants could be represented and added in
a theoretical Hilbert-like space, thus creating a wavepacket. This can then be
treated as a single state. It should be clearly stated that this does not assume
any actual interaction of the individual mental states between them, just a close-
enough similarity to be described collectively.

In other words, if the mental states of the people are very close, then the
experiment may be considered as multiple measurements of a collective state. If
the mental states of the individuals are too different to define a collective state,
then the experiment is flawed (as the individual cannot be grouped together),
and this could be used to explain outliners in quantum cognition studies. Again,
both a collective state and an individual state are implicitly assumed in the
original papers [2].

In this specific example, two different type of operations are recognised
as acting on that state. One is the question (Q̂) and the other is the experi-
ence (Ê).

3 Metanalysis of the Disjunction Effect

In [1], 100 participants were asked whether they would take a gamble a second
time, depending on either winning or losing the first time but before knowing
the outcome of the first gamble. Once they played the first gamble, their actual
behaviour (if they played again) was recorded and there was a clear discrepancy
depending on whether they lost or won the first gamble from their planned
response. People that won the first gamble were notably less keen to gamble
again, while people that lost were more keen.

Respecting the statistical nature of measurement in quantum mechanics, only
the average probabilities of the predicted and actual behaviour are considered.
The possible answer space for the participants is spanned only by “yes” and
“no”, and as no “maybe” or other feedback was accepted, this can be thought of
as a projection of the participants’ mental state to a “yes/no” answer-space. As
the “yes/no” states form a orthogonal and complete set, any state in that space
can be represented as a linear combination of a function of these answer-states.
Following the Born interpretation of the wavefunction, the modulus squared of
the coefficients in this linear combination corresponds to the probability density
of the state of that outcome.

|ψ >= cyes|ψyes > +cno|ψno > (2)
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Now, the |ci|2 can be identified with the measured probability, assuming the
experiment is providing complete enough representation. To use the data of
ref. [1] further, they are re-arranged in the following table by simply taking the
average, to the decimal figures provided originally.

Average probability after winning Plan 0.62

Average probability after losing Plan 0.62

Average probability after winning Action 0.53

Average probability after losing Action 0.68

One insight comes instantly by presenting the results in such a way: according
to their plans all participants had a 0.62 probability to play again, irrespective
of if they won or lost the first time. This is surprising as it seems that the first
experience is not expected by the participants to effect their behaviour in any
way.

Now, the collective mental state of the participants might be analysed. Before
any question is asked, the answer-states “yes”and “no” are degenerate. This is an
assumption, but implicitly taken in the original research as well-the participants
are answering the question, not because they have a tendency to say “yes”.
The question, with only two possible answers, collapses the mental state on
the “yes/no” space, and causes a splitting between the answer-states. Now, the
collective mental state can be written as:

|ψq >=
√

0.62|ψyes > +
√

0.38|ψno > (3)

The experience (of losing or winning the first gamble) then acts on that state.
Now, there are two new states depending on whether the participant lost or won
the first gamble:

|ψw >=
√

0.53|ψyes > +
√

0.47|ψno > (4)

|ψl >=
√

0.68|ψyes > +
√

0.32|ψno > (5)

What is important to note is that this quantitative description of a mental
state wavefunction is directly related to all the data and we have not made any
assumptions about the mathematical form of the question, thinking or experience
operators, which frankly one cannot yet know about.

4 The Value-Level Diagram

Here we can go further and find the ordering and separation of “yes/no” states by
writing out and diagonalising the operator matrix for (Q̂) and (ÊQ̂) operations.
Since this is not a physical system, the energy is replaced by value, representing
how much value the participants place on a choice [3], i.e. what is the preference
ordering. Obviously no units are assigned, but the splittings are quantitative.
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This means that the splitting between the levels (their ratio) is precise, even
though that may be multiplied by any constant. For a given operator (Ô):

Oyy − V Oyn

Ony Onn − V
=

|cyes|2 − V 0
0 |cno|2 − V

This leads to the following value-level diagram (analogous to an energy-level
diagram, but the highest eigenstate is taken as the preferred one):

After question After a win After a loss

|ψno > 0.26 0.44 0.14
|ψyes > 0.74 0.56 0.86

This is depicted in Fig. 1. The initial point of larger probability of taking a second
gamble after a loss and the lower probability of taking a second gamble after a
win is again illustrated. However now each effect is separated and also the final
description of the state is available. If more data were available one could test
that as a predictor of future behaviour. This is a highly expandable formulation
where effects can be added.

An additional point can be made: the win seems to partially negate the
initial ordering of states, thus making both choices (play or don’t play a second
time) almost equally probable. Apart from the risk aversion and risk seeking

yes>,  no>

yes
loss

>

no>

yes >

1,00

0,00

no
loss

>

No Question             After Question              Experience

Va
lu

e

yes
win

>

no
win

>

Fig. 1. The value-level diagram at each stage of the experiment.
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tendencies, now one could view the results as amplifying the initial preference
or partly canceling it.

In terms of the dynamic inconsistency, now instead of a generic γ factor
to represent any change of beliefs, this is explicitly modeled as a preference
towards one or another state. Therefore, in this formulation another reasoning
can be argued: after a loss, there is further commitment to the original Value
System [3] ordering, while after a win the choice is more equal. Therefore, the
effect of experience in the dynamic inconsistency can be argued to be to amplify
the initial tendency in the case of a loss, while to make the next choice more
random in case of a win.

In further experiments one can use the Quantum State analysis to break
down the effects once more. To illustrate the point further, let us assume that
the coeffiecients in the collective state after the initial question were reversed:

|ψq >=
√

0.38|ψyes > +
√

0.62|ψno > (6)

Now, by repeating the experiment and constructing a new value-level diagram,
one can compare with the one presented here to see the effect of experience,
i.e. if a win reduces risk-seeking (in which case the coefficient of |ψno > should
be increased) or makes the following choice more random (in which case the
coefficient of |ψno > should be decreased).

A similar analysis is possible for a variety of problems and it is hoped that
the Quantum State analysis will prove a useful tool in the field of quantum
cognition.

5 Conclusions

The approach of Quantum State analysis was presented and a metanalysis of
the data originally presented at [1] was carried out. This led to an new way of
representing the dynamic inconsistency and offered additional insights to the
effect, as well as a way to compare with future research. Moreover, the quanti-
tative wavefunction at each stage was retrieved and the quantitative diagram of
internal states was produced.
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francois.dubois@cnam.fr

Abstract. In this contribution, we construct a connection between
two quantum voting models presented previously. We propose to try
to determine the result of a vote from associated given opinion polls. We
introduce a density operator relative to the family of all candidates to
a particular election. From an hypothesis of proportionality between a
family of coefficients which characterize the density matrix and the prob-
abilities of vote for all the candidates, we propose a numerical method
for the entire determination of the density operator. This approach is a
direct consequence of the Perron-Frobenius theorem for irreductible pos-
itive matrices. We apply our algorithm to synthetic data and to opera-
tional results issued from the French presidential election of April 2012.

Keywords: Density matrix · Perron-Frobenius theorem · French pres-
idential election

1 Introduction

Electoral periods are favorable to opinion polls. We keep in mind that opinion
polls are intrinsically complex (see e.g. Gallup [14]) and give an approximates
picture of a possible social reality. They are traditionally of two types: popu-
larity polls for various outstanding political personalities and voting intention
polls when a list of candidates is known. We have two different informations and
to construct a link between them is not an easy task. In particular, the deter-
mination of the voting intentions is a quasi intractable problem! Predictions
of votes classically use of so-called “voting functions”. Voting functions have
been developed for the prediction of presidential elections in the United States.
They are based on correlations between economical parameters, popularity polls
and other technical parameters. We refer to Abramowitz [1], Lewis-Beck [22],
Campbell [10] and Lafay [20].

We do not detail here the mathematical difficulties associated with the
question of voting when the number of candidates is greater than three
[2,6,9]. They conduct to present-day researches like range voting, independently
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proposed by Balinski and Laraki [3,4] and by Rivest and Smith [24,25]. It is
composed by two steps: grading and ranking. In the grading step, all the can-
didates are evaluated by all the electors. This first step is quite analogous to a
popularity investigations and we will merge the two notions in this contribution.
The second step of range voting is a majority ranking; it consists of a successive
extraction of medians.

In this contribution, we adopt quantum modelling (see e.g. Bitbol et al. [5] for
an introduction), in the spirit of authors like Khrennikov and Haven [16,17], La
Mura and Swiatczak [21] and Zorn and Smith [28] concerning voting processes.
Moreover, Wang et al. [27] present a quantum model for question order effects
found with Gallup polls. The fact of considering quantum modelling induces a
specific vision of probabilities. We refer e.g. to the classical treatise on quantum
mechanics of Cohen-Tannoudji et al. [8], to the so-called contextual objectiv-
ity proposed by Grangier [15], or to the elementary introduction proposed by
Busemeyer and Trueblood [7] in the context of statistical inference.

This contribution is organized as follows: we recall in Sects. 2 and 3 two
quantum models for the vote developed previously [11,12] and a first tentative
[13] to connect these two models (Sect. 4). In Sect. 5, we develop the main idea
of this paper. We construct a link between opinion polls and voting. This idea is
tested numerically in Sects. 6 and 7 for synthetic data and a “real life” election.

2 A Fundamental Elementary Model

In a first tentative [11], we have proposed to introduce an Hilbert space V∂

formally generated by the candidates Γj ∇ ∂. In this space, a candidate Γj is
represented by a unitary vector | Γj > and this family of n vectors is supposed
to be orthogonal. Then an elector φ can be decomposed in the space V∂ of
candidates according to

| φ> =
n∑

j=1

Δj | Γj > . (1)

The vector | φ>∇ V∂ is supposed to be a unitary vector to fix the ideas. Accord-
ing to Born’s rule, the probability for a given elector φ to give his voice to the
particular candidate Γj is equal to | Δj |2. The violence of the quantum measure
is clearly visible with this example: the opinions of an elector φ never coincidate
with the program of any candidate. But with a voting system where an elector
has to choice only one candidate among n, his social opinion is reduced to the
one of a particular candidate.

3 A Quantum Model for Range Voting

Our second model [12] is adapted to the grading step of range voting [3,24].
We consider a grid G of m types of opinions as one of the two following ones.
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We have m = 5 for the first grid (2) and m = 3 for the second one (3):

+ + ◦ + ◦ 0 ◦ − ◦ −− (2)
+ ◦ 0 ◦ − . (3)

These ordered grids are typically used for popularity polls. We assume also that
a ranking grid like (2) or (3) is a basic tool to represent a social state of the
opinion. We introduce a specific grading space WG of political appreciations
associated with a grading family G. The space WG is formally generated by
the m orthogonal vectors | ρi > relative to the opinions. Then we suppose that
the candidates Γj are now decomposed by each elector on the basis | ρi > for
1 ∀ i ∀ m:

| Γj >=
m∑

i=1

ψi
j | ρi > , Γj ∇ ∂ , 1 ∀ j ∀ n . (4)

Moreover the vector | Γj > in (4) is supposed to be by a unitary:

m∑
i=1

|ψi
j |2 = 1 , Γj ∇ ∂ , 1 ∀ j ∀ n . (5)

With this notation, the probability for a given elector to appreciate a candidate
Γj with an opinion ρi is simply a consequence of the Born rule. The mean
statistical expectation of a given opinion ρi for a candidate Γj is equal to
|ψi

j |2 on one hand and is given by the popularity polls Sj i on the other hand.
Consequently,

|ψi
j |2 = Sj i , Γj ∇ ∂ , ρi ∇ G , 1 ∀ j ∀ n , 1 ∀ i ∀ m.

4 A First Link Between the Two Previous Models

In [13], we have proposed a first link between the two previous models. We sim-
plify the approach (1) and suppose that there exists some equivalent candidate
| π >∇ V∂ such that the voting intention for each particular candidate Γj ∇ ∂
is equal to | < π , Γj > |2. We interpret the relation (4) in the following way:
for each candidate Γj ∇ ∂, there exists a political decomposition A | Γj >∇ WG

in terms of the grid G. By linearity, we construct in this way a linear operator
A : V∂ −∈ WG between two different Hilbert spaces. Preliminary results have
been presented, in the context of the 2012 French presidential election.

5 From Opinion Polls to the Prediction of the Vote

In the space WG of political appreciations described in Sect. 3 of this contribu-
tion, the opinion polls allow through the relation (4) to determine some knowl-
edge about each candidate Γj ∇ ∂ in the space WG. We suppose that each
candidate is represented by a unitary vector and the relation (5) still holds. The
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question is now to evaluate the probability for an arbitrary elector to vote for
the various candidates.

We denote by δj ∅ | Γj ><Γj | the orthogonal projector onto the direction of
the state | Γj >. Then we introduce a density matrix Π associated to a statistical
representation of the voting population:

Π =
n∑

j=1

ψj δj ∅
n∑

j=1

ψj | Γj ><Γj | . (6)

It is classical that trΠ =
∑n

j=1 ψj and if ψj ↑ 0 for each index j, the
auto-adjoint operator Π is non-negative:

<Π ρ , ρ > ↑ 0 , ↔ρ ∇ WG .

It is then natural to search the coefficients ψj such that
⎧⎪⎨
⎪⎩

ψj ↑ 0 , 1 ∀ j ∀ n
n∑

j=1

ψj = 1 . (7)

In these conditions, the Esperance of election < Γj > of the candidate Γj is
given through the relation

< Γj >= tr
(
Πδj

)
, 1 ∀ j ∀ n . (8)

We have the following calculus:

tr
(
Πδj

)
=

n∑
k=1

< ρk , Πδj ρk >=
n∑

k=1

n∑
γ=1

< ρk , ψγ Γγ >< Γγ , Γj >< Γj , ρk >

=
n∑

γ=1

ψγ < Γγ , Γj >
n∑

k=1

< ρk , Γγ >< Γj , ρk >

=
n∑

γ=1

ψγ < Γγ , Γj >
n∑

k=1

< Γj , ρk >< ρk , Γγ >

=
n∑

γ=1

ψγ < Γγ , Γj >< Γj , Γγ >=
n∑

γ=1

ψγ |< Γγ , Γj >|2 .

We introduce the matrix A composed by the squares of the scalar products of
the vectors of candidates:

Aj γ = |< Γj , Γγ >|2 , 1 ∀ j, φ ∀ n . (9)

Then the previous calculus establishes that

< Γj >=
n∑

γ=1

Aj γ ψγ . (10)
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It is interesting to imagine a link between the Esperance of election < Γj >
of the candidate Γj and the coefficient ψj of the density matrix introduced
in (6). In general they differ. In the following, we focus our attention to the
particular case where these two quantities are proportional, id est

←ε ∇ C , ↔ j = 1, 2, . . . , n , < Γj >= εψj . (11)

Because both < Γj > and ψj are positive, the coefficient ε must be a positive
number. Moreover, due to (10), the relation (11) express that the non-null vector
ψ ∇ IRn composed by the coefficients ψj is an eigenvector of the matrix A. Then,
due to the hypothesis (7), we have ψj ↑ 0 and this eigenvector has non-negative
components. If we suppose that the matrix A is irreductible (see e.g. in the book
of Meyer [23] or Serre [26]), the Perron-Frobenius theorem states that there
exists a unique eigenvalue (equal to the spectral radius of the matrix A) such
that the corresponding eigenvector has all non-negative components. Moreover,
all the components of this eigenvector are strictly positive. In other words, if the
matrix A defined in (9) is irreductible and if the hypothesis of proportionality
(11) is satisfied, the coefficients ψj of the density matrix are, due to the second
relation of (7), completely defined. In the following, we propose to determine
the coefficients ψj of the density matrix (6) and satisfying the conditions (7) as
proportional to the positive eigenvector of the matrix A defined by (9).

The above model is not completely satisfactory for the following reason. The
underlying order associated to the grading family G has not been taken into
account. To fix the ideas, we suppose that each grade νi is associated to a
number τi such that

τ1 > τ2 > · · · > τm . (12)

We introduce a “popularity operator” Pj associated to the jth candidate Γj :

Pj ∅
m∑

i=1

τi | <Γj , ρi > |2 | ρi ><ρi | . (13)

We can determine without difficulty the mean value of the operator Pj for the
density configuration Π defined in (6):

tr
(
ΠPj

)
=

m∑
k=1

< ρk , Π Pj ρk >

=
m∑

k=1

n∑
γ=1

< ρk , ψγ Γγ >< Γγ ,

m∑
i=1

τi | <Γj , ρi > |2 | ρi ><ρi , ρk >

=
m∑

i=1

n∑
γ=1

τi ψγ <ρi , Γγ >< Γγ , ρi > | <Γj , ρi > |2

=
m∑

i=1

n∑
γ=1

τi ψγ | <Γγ , ρi > |2 | <Γj , ρi > |2 .
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In other words, if we set

Bj γ ∅
m∑

i=1

τi | <Γj , ρi > |2 | <Γγ , ρi > |2 , (14)

we have:

< Pj >∅ tr
(
ΠPj

)
=

n∑
γ=1

Bj γ ψγ . (15)

We use a positive parameter t and search the coefficients ψj in such a way
that the mean value of the candidate Γj with some “upwinding” associated to
its popularity is proportional to the above coefficients. In other words, due to
(10) and (15), the mean value < Γj > + t < Pj > takes the algebraic form

< Γj > + t < Pj >=
n∑

γ=1

(
Aj γ + tBj γ

)
ψγ . (16)

Under the condition that all the coefficients Aj γ + tBj γ are positive, id est that
the parameter t is small enough, we compute the coefficients ψγ with the help
of the Perron-Frobenius theorem as presented previously.

6 A First Numerical Test Case

Our first model uses synthetic data. We suppose that we have three candidates
(n = 3) and two (m = 2) levels of “political” appreciation. We suppose that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|Γ1>= cos
(π

6

)
|ρ1> + sin

(π

6

)
|ρ2>

|Γ2>= cos
(π

4

)
|ρ1> + sin

(π

4

)
|ρ2>

|Γ3>= cos
(π

3

)
|ρ1> + sin

(π

3

)
|ρ2> .

(17)

With the choice τ1 = 1 and τ2 = 0 in a way suggested at the relation (12),
we can simulate numerically the process presented in the Sect. 5. The results are
presented in Fig. 1. When the variable t is increasing, the first candidate has a
better score, due to his best results in the grading evaluation (17).

7 Test of the Method with Real Data

We have also used data coming from the “first tour” of the French presidential
election of April 2012. Popularity data [18] and result of voting intentions [19]
are displayed in Table 1. The names of the principal candidates to the French
presidential election are proposed in alphabetic order with the following abbrevi-
ations: “Ba” for François Bayrou, “Ho” for François Hollande, “Jo” for Eva Joly,
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Fig. 1. Result of the vote obtained by a quantum model from the opinion poll, with
synthetic data proposed in (17).

“LP” for Marine Le Pen, “Mé” for Jean-Luc Mélanchon and “Sa” for Nicolas
Sarkozy. In Table 1, we have also reported the result of the election of 22 April
2012.

This test case corresponds to n = 6 and m = 3. The numerical data relative
to the relation (12) are chosen such that τ1 = 1, τ2 = 0, and τ3 = −1. Then the
above Perron-Frobenius methodology is available up to t = 2.2. The numerical
result are presented in Fig. 2. It reflects some big tendances of the real election.
But the correlation between the popularity and the result is not always satisfied,
as shown clearly by comparison between our simulation in Fig. 2 and the result
of the election shown in the last column of Table 1.

Table 1. Popularity, sounding polls and result, April 2012 [18,19].

+ 0 − Voting Result

Ba 0.56 0.07 0.37 0.095 0.091
Ho 0.57 0.03 0.40 0.285 0.286
Jo 0.35 0.10 0.55 0.015 0.023
LP 0.26 0.05 0.69 0.15 0.179
Mé 0.47 0.10 0.43 0.145 0.111
Sa 0.49 0.05 0.46 0.29 0.272
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Fig. 2. Result of the vote obtained by a quantum model from the opinion poll. Data
issued from the April 2012 French presidential election.

8 Conclusion

In this contribution, we have used a given quantum model for range voting in
the context of opinion polls. From these data, we have proposed a quantum
methodology for predicting the vote. We introduce a density operator associ-
ated to the candidates. The mathematical key point is the determination of a
positive eigenvector for a real matrix with non-negative coefficients. Our results
are encouraging, even if the confrontation to real life data shows explicitly that
other parameters have to be taken into account.

Acknowledgments. The author thanks the referees for helpful comments on the first
edition (April 2013) of this contribution. Some of them have been incorporated into
the present edition of the article.
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Abstract. A forager in a patchy environment faces two types of uncer-
tainty: ambiguity regarding the quality of the current patch and risk
associated with the background opportunities. We argue that the order
in which the forager deals with these uncertainties has an impact on
the decision whether to stay at the current patch. The order effect is
formalised with a context-dependent quantum probabilistic framework.
Using Heisenberg’s uncertainty principle, we demonstrate the two types
of uncertainty cannot be simultaneously minimised, hence putting a for-
mal limit on rationality in decision making. We show the applicability of
the contextual decision function with agent-based modelling. The simula-
tions reveal order-dependence. Given that foraging is a universal pattern
that goes beyond animal behaviour, the findings help understand similar
phenomena in other fields.

1 Introduction

Studying foraging strategies has been a successful approach in understanding ani-
mal decision making [1]. Foraging patterns are not restricted to animal behav-
iour, similar patterns occur in other scenarios, such as searching in semantic
memory [2], evaluating options by humans [3], and consumer behaviour [4].

Optimal foraging theory (OFT) studies foraging behaviour claiming that
organisms aim to maximise their net energy intake per unit time [5,6]. Food
sources are available in patches, which vary in quality. Furthermore, switching
between patches comes with a cost. The forager faces uncertainty while mak-
ing decisions about staying at a patch or moving on to the next one. Following
Knight, 1921 and Ellsberg, 1961, we distinguish between two fundamental types
of uncertainty: ambiguity and risk [7,8]. We associate ambiguity with the esti-
mation of the quality of a patch. Risk, on the other hand, means the potential
of the quality of other patches, the loss or gain by not foraging elsewhere as
opposed to foraging in the current patch.

Decisions in this model are bound to be sequential: the forager must make
decisions patch by patch; this assumption is not uncommon [9–11]. We argue
that the order in which the forager deals with risk and ambiguity has an impact

H. Atmanspacher et al. (Eds.): QI 2013, LNCS 8369, pp. 296–307, 2014.
DOI: 10.1007/978-3-642-54943-4 27, c© Springer-Verlag Berlin Heidelberg 2014
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on the decision, which in turn influences net energy intake. We introduce a
contextual probabilistic framework familiar from quantum mechanics to model
the decision making process.

A growing number of projects in Social Sciences use computer simulation
as their main research tool. A simulation using an agent-based model (ABM)
defines the behaviour of any entity of a system that involves decision-making
processes known as agents. The generation of emergent properties that arise
from the definition of individual agents include both quantitative and qualitative
concepts, combining behaviour aspects and data. Thus, the explanation provided
by an ABM is closer to how knowledge is acquired in Social Sciences. We rely on
an ABM simulation to find evidence of order dependence and context sensitivity
in decision making.

2 Foraging Decisions, Uncertainty, and Context
Dependence

Risk and ambiguity are factors in various extensions of OFT, and they have been
experimentally verified (Sect. 2.1). Context dependence, preferring one factor
over the other is also a common behaviour pattern in various animal species
(Sect. 2.2). These observations provide the foundations for our model.

2.1 Risk and Ambiguity

Stochastic variants of OFT are successful in describing strategies that deal
with ambiguity, with numerous experimental validations [1,12]. Actual forag-
ing strategies include simple heuristics such as the fixed-time strategy, in which
the forager devotes the same amount of time to each patch irrespective of the
patch quality. More intricate models of patch utilization include the Bayesian
decision process. In this model, animals have an a priori assessments of food
distributions, and their foraging decisions are influenced by experience [1,13].

The Bayesian foraging strategy relies on the following assumptions [14]:

1. Perfect knowledge of patch-type distribution (a priori).
2. No instant identification of the quality of a particular patch, resulting in a

sample.

The second assumption corresponds to ambiguity as a form of uncertainty.
Foraging decision is formulated by an a posteriori distribution made using the

sample. An estimator keeps track of the mean value of the current patch, which
is either under- or oversampled compared to the actual patch quality. This deci-
sion making process leads to density-dependent resource harvest. In the Bayesian
model, the forager is allowed to make sequential decisions that vary according its
current state, which is affected by the outcome of previous decisions.

The other aspect of uncertainty, risk, is also present in OFT. If foraging
decisions are influenced by past history, the variations of any foraging para-
meter affect the expected rate of food gain, and hence the optimal foraging
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strategy [1]. Variance in a parameter is associated with risk. Foraging deci-
sions are risk-sensitive, as empirical and theoretical proofs show [15,16]. Risk
sensitivity should have a sequential component, but it is often overlooked [9].
Whether a simultaneous or a sequential decision making model follows reality
closer depends on the degree to which a forager commits itself when making a
choice. For instance, in a sequence of choices, immediate rewards are more valu-
able than delayed ones: the time saved is used to pursue further rewards [10].

2.2 Contextuality

Context-dependent decision rules consider both aspects of uncertainty. We under-
stand the human decision making is context-dependent [17,18], but the phe-
nomenon is less understood in animals. As Freidin and Kacelnik, 2011 put it,
“context-dependent utility results from the fact that perceived utility depends
on background opportunities” [11]. Spatially or temporally distinct patches are
contexts that differ in quality. The sequence of optimal decisions depends on the
attributes of the present opportunity and its background options.

Ample experimental evidence shows context-dependent decisions. Honey bees
have an intransitive behaviour pattern, the perform a comparative evaluation of
flowers depending on the context [19]. Gray jays have a similar behaviour, hint-
ing at a complex decision process involving context-dependent assessment of
each fitness-related value of the options [20]. Rufous hummingbirds change their
risk preferences depending on whether binary or trinary choices are available to
them [21]. The foraging choices of European starlings are better explained by
context-dependent utility [22], the birds being more risk averse at lower temper-
atures [23]. Another study confirmed these findings, pointing out that sequential
food encounters are more likely in an animal’s natural environment [11]. Simul-
taneous decision making is important in many species, for instance, humans are
able to alternate between the two models of choice [24].

3 Quantum Probabilistic Description of Foraging
Decisions

We turn to quantum probability theory to derive a formal decision model of
a context-dependent optimal foraging strategy that considers both risk and
ambiguity in a sequential setting. We use the quantum probabilistic descrip-
tion purely as a mathematical device, we do not conjecture that a forager’s
context-dependent decision making process is the result of a macroscopic escala-
tion of quantum effects starting at a sub-atomic level. This investigation is part
of a recent trend which claims quantum-like behaviour of systems is in fact not
uncommon [25,26].

Our efforts are not the first to bridge contextual probability and animal
behaviour. Competing lizard communities and population dynamics also show
quantum-like behaviour [27,28].
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3.1 Quantum Probability and Decisions

The fundamental difference between classical and quantum probability is that
the event algebra in the latter is non-commutative. That is, given two events, A
and B, p(A ∇ B) ◦= p(B ∇ A). To understand how non-commutativity leads to
context-dependence, let us consider two hypotheses that describe the decision
space of a forager:

– h1: Stay at the current patch.
– h2: Leave the patch.

These are complementary and mutually exclusive (this example resembles
the one described in Trueblood and Busemeyer, 2011 about a medical decision
on whether a patient has urinary tract infection [29]).

Consider the following events:

– A: Current patch quality with two possible outcomes: a1 – the patch quality
is good; a2 – the patch quality is bad.

– B: Quality of other patches. A collective observation across all other patches
with two possible outcomes.

A corresponds to ambiguity, whereas B corresponds to risk, the opportunity
cost. We will argue that A and B are incompatible observations on a system,
leading to non-commutativity and context-dependence. To achieve that, first we
demonstrate how quantum probability theory derives probabilistic outcomes. In
a quantum framework, the forager’s state of belief is described by a state vector
in superposition. Under observation A, this superposition is written as

|ψ∀ =
∑
i,j

αij |Aij∀ (1)

In this case, for instance, Ah1,a1 means the event that the forager will stay at
the patch and the current patch quality is good, and Ah2,a2 corresponds to the
event in which the forager will leave the patch and the patch has low quality.
These elementary events form an orthonormal basis. The αij values are the
corresponding probability amplitudes. Since the norm of the state vector must
be one, we have ∑

i,j

|αij |2 = 1. (2)

To measure the probability of one combination, we use a projection operator.
The projector onto the event h1 ∈ a1 is given by

P11 = P (h1, a1) =


⎧⎧⎪

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎨
⎩⎩ (3)

If we apply the projector on the state vector, the square norm of the projected
vector will be the quantum probability of h1 ∈ a1: ||P11|ψ∀|| = |α11|2. Similarly,
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if we are interested in the probability of whether the forager would stay at the
current spot, we need to project onto the first two basis vectors, and the result
will be |α11|2 + |α12|2.

Switching to observation B, the state of belief is a superposition of four
basis vectors: |ψ∀ =

∑
i,j βij |Bij∀. These basis vectors are not identical to pre-

vious ones: the same hypotheses, the decision whether to stay or leave, are now
expressed in a different basis. This is equivalent to saying that the same problem
is studied from a different perspective: under observation A, the forager bases
its decision on local information, whereas under B, it looks at a global perspec-
tive. If the two perspectives can be expressed in the same basis, they are called
compatible, otherwise they are incompatible; in the present case we take A and
B incompatible. Since the state vector can be expressed in both basis, we have

|ψ∀ =
∑
i,j

αij |Aij∀ =
∑
i,j

βij |Bij∀. (4)

To switch from one perspective to the other, to change the basis, we need to
apply a unitary rotation. To change from perspective A to B, we need to apply
the unitary transformation UAB , whereas to change from B to A, we need to
apply UBA.

Context sensitivity arises from the quantum equivalent of Bayes’ rule, also
known as Lüders’ rule [30]. Suppose that event A is true, the patch is of good
quality. This changes the original state |ψ∀ to |ψA∀ = Pa1|ψ∀/||Pa1|ψ∀||. The
denominator re-normalises the state vector to meet the condition described in
Eq. (2). The probability of event B given that A is true will be ||Pb1|ψa1∀||2 =
||Pb1Pa1|ψ∀||2/||Pa1|ψ∀||2. Generally speaking, two projectors are not commuta-
tive, that is, Pa1Pb1 ◦= Pb1Pa1. Therefore the probability of event A given that
B is true will be different. Measuring the perceived quality of other patches, the
forager may deem those more desirable, and the quality of the current patch
looses its importance.

Since the result of an earlier decision changes the context of a new decision, a
simple Bayesian inference model has difficulty accounting for order effects [29]. A
key concept of quantum probability is incompatibility. Not all elementary events
can be measured simultaneously, incompatible events can only be measured in a
sequence. The first assumption in the Bayesian decision process, which assumes
the forager has an a priori knowledge of the probability distribution of the entire
event space (Sect. 2.1), is too strong. For instance, the forager has an assessment
of the quality of the current patch, which updates its a priori estimate of the
distribution. To sample the frequency of such patches, it must move on to the
next patch, abandoning the current one. The quality of the current patch and
the quality of the other patches are incompatible observations. The latter is
related to the risk the forager faces. Incompatibility is a source of order effects
on judgements, and this is the critical point at which quantum probabilities differ
from classic probabilities [30]. We show that this approach formally introduces
a limit on rational decisions by applying the uncertainty principle to foraging
decisions involving risk and ambiguity.
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3.2 Inherent Uncertainty in Sequential Decisions

If two observables do not commute, a state cannot be a simultaneous eigenvector
of the two observables in general [31, p. 233]. This leads to a form of uncertainty
relation, similar to the one the inequality found by Heisenberg in his analysis
of sequential measurements of position and momentum. This original relation
states that there is a fundamental limit to the precision with which the position
and momentum of a particle can be known.

Since observations A and B do not commute, there must be a similar limit
in foraging decisions corresponding to Heisenberg’s uncertainty principle. The
forager needs to leave the current patch to assess the quality of other patches:
there is an inherent uncertainty in the decision irrespective of the quantity of
information gained about either A or B. Since the observables in foraging do not
have a strict physical meaning, the physical constants of the canonical commu-
tation relation are not present. Yet, as long as the operators do not commute,
an uncertainty principle with a similar lower bound will hold. With regards to
risk and ambiguity, we state that

σAσB ∅ c, (5)

where c > 0 is a constant. The constant itself will depend on actual foraging
scenarios, we do not believe there is a universal way of determining its value.

4 Simulation by Agent-Based Modelling

We use an ABM simulation to model contextuality of a decision function, which
is not an entirely novel idea. Kitto, Boschetti, and Bruza (2012) proposed an
ABM to simulate changing attitudes in social decision making [32]. The context
in that case evolves with time, global attitudes and the individuals’ own local
attitudes change over time, making a case for a contextual decision making
function. We do not require temporal evolution of contexts, we assume an order
dependence emphasising the two different aspects of dealing with uncertainty.

We use Pandora [33,34], an open-source ABM framework designed to accom-
plish a realistic simulation environment for social scientists. The source code of
the simulation is available online1.

4.1 Model

In the simulation model, we generate a small map with heterogeneous resources
available to the forager. An agent is placed at a random position with certain
requirements: the quantity of resources needed at every time step. The starvation
rate is the agent’s accumulated percentage of past time steps when requirements
were not achieved. The inverse of this value is the net food intake. The agent
1 Code is available at https://github.com/xrubio/pandora. This example is in the

pandora/examples/quantumForaging folder.

https://github.com/xrubio/pandora
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has a limited time horizon, the number of time steps into the future the agent is
exploring possible scenarios. The agent has a knowledge of the patch distribution,
it keeps track of the values and knowledge quality of patches already visited.

An agent is parametrized by the following characteristics:

– Ambiguity aversion: a value between 0 to 1 specifying the preference of the
agent to avoid ambiguity. Ambiguity aversion is related to observation A.

– Risk aversion: a value between 0 to 1 specifying the preference of the agent
to avoid risk. Risk aversion is related to observation B.

The sum of risk and ambiguity preferences is equal to one. An agent at every
time step chooses between two actions: either explore and forage in the current
patch, resulting in a decrease in ambiguity; or move and explore an adjacent
patch, resulting in a decrease in risk.

Possible scenarios are explored using a Markov decision process that allows
to explore the decisions of an agent within a fully observable stochastic state
model. In our simulation, the model was solved using the UCT algorithm [35],
capable of defining optimal policies for problems with a large set of possible
states and finite horizon. The parameters of the algorithm were the horizon of
the agent and the width (i.e. the number of states explored during the process),
the latter was defined at 300 for all the experiments.

The risk and ambiguity of the resources are varied, and also the agent’s
preference to minimizing risk (R) or minimizing ambiguity (A). The decision
function is a normalised linear combination of the two options for minimizing
uncertainty, combined with the cost associated with starving. Thus, the final
cost C of an action a given current state s is as follows:

Cs,a =
m

M
+ (1 − aA)A + (1 − aR)R (6)

where m is the resources consumed in this time step, M corresponds to the
resource requirements, aA is the decrease of ambiguity of the action, and aR is
the decrease of risk of the action. The value of decrease is 1 if the knowledge of
the patch is not complete, and 0 all the other cases.

Once an action is chosen, the knowledge of the patch where it occurs is
increased by 1 if the maximum is not already reached. At the same time, the
quality of the patch in the knowledge map of the agent is updated to the real
value if a random value between 0 and 10 is lesser than current knowledge.
Finally, the starvation rate of the agent is updated comparing the requirements
with foraged resources; this will be always 0 when choosing a Movement action.

4.2 Experiments

We analysed the trade-off between ambiguity and risk with different time horizon
thresholds for a resource map of 20 × 20 cells, and a time span of 1,000 steps.
Every scenario contains a single agent, and the exploration of the parameter
space is defined terms of time horizon values (1, 3, 5, and 7 steps), and risk
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aversion ranging from 0 to 1 in 0.1 increments. Each scenario was run 10 times
for a total of 440 experiments. This configuration was used in two different
experiments:

1. Gradual resource map. The value of each patch is its x relative coordinate
multiplied by 10.

2. Random resource map. The value of each patch is defined using a random
uniform distribution.

4.3 Discussion of Results

Figure 1 shows net food intakes for the gradual resource maps, and Fig. 2 shows
net food intakes for the random distribution of resources.

A common pattern to all the experiments is a distinct phase transition at
complete risk aversion. At risk aversion value of one, the net food intake sharply
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Fig. 1. Net food intakes for different scenarios using the gradual resource map
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Fig. 2. Net food intakes for different scenarios using the random resource map

drops compared to all other values of this parameter. The phenomenon is not
surprising: this behaviour means that the forager hardly ever consumes resources,
and keeps visiting patch after patch to learn the overall distribution. While
hardly a realistic scenario, it is worth taking note of.

For a time horizon of one time step, there is a different pattern for risk
aversion below 0.5. The variance of net food intake is lowest at 0.1 in both types
of resource distribution. Whereas the mean value is higher for larger values of
risk aversion, a real-life forager would probably prefer reducing the variance. This
behaviour indicates fairly long visits to a patch before exploring other options.
To some extent, the observation holds for a time horizon of 3 steps. For risk
aversion values higher than 0.5, the pattern is less obvious. While generally it
pays off to reduce risk first, the exact extent of risk aversion is ambiguous.

If the time horizon is at least 5 steps, reducing risk first becomes far more
important and leads to much higher rewards. A patch is easily depleted in five
steps, so thinking ahead means a willingness to reduce risk, and the pay-off is
clearly visible.
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The values of risk aversion of zero and one are the extreme cases of order
dependence, whereas the values in between correspond to a case of a more bal-
anced decision making process. For a given parameter setting in the simulated
environment, the highest point of the food intake is an empirical limit on the
completeness of knowledge, and corresponds to the inequality in the uncertainty
principle, as shown in Eq. (5).

5 Conclusions

Relying on a classical Markovian decision model, we simulated the behaviour
of a forager in an environment where food resources are available in patches of
varying quality. Well-defined patterns emerged that show order-dependence of
decisions, and the decisions have a significant impact on net food intake. Our
observations coincide with a quantum probabilistic model that considers two
aspects of uncertainty, risk and ambiguity, and states that decisions relating to
these two aspects are order-dependent.
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Abstract. Econophysics is an emerging field dealing with complex systems. A
deeper analysis of themes studied by econophysicists shows that research
conducted in this field can be decomposed into two different computational
techniques: statistical econophysics and agent-based econophysics. Both per-
spectives import the classical idea of randomness coming from statistical
physics. This methodological paper calls for the development of a more
quantum-oriented econophysics which could complete the approach provided
by classical econophysics by enlarging our way of thinking randomness and,
therefore, economic uncertainty.

Keywords: Statistical econophysics � Agent-based econophysics � Quantum
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1 Introduction

In the 1990s physicists turned their attention to economics, and particularly financial
economics, giving rise to econophysics1. A general agreement in the specialized lit-
erature seems to exist concerning the fact that econophysics deals with complex eco-
nomic systems [1–4]. However, an analysis of the themes studied by econophysicists
shows that research conducted in this field can be decomposed into two different
computational approaches: a macro-perspective and a more micro-oriented one.

The next section will present these two components of classical econophysics: a
macro-perspective (statistical econophysics) and a micro-perspective (agent-based
econophysics). Although these approaches share the same objective (analysis of
socioeconomic complex systems), they use a very different computational methodol-
ogy. These two econophysical approaches also share the same perception of ran-
domness which is implicitly considered as a lack of knowledge that could be improved.
Quantum econophysics has been developed in a different epistemological framework
since randomness is considered as deeply embedded in the studied processes. There-
fore, randomness does not reflect a specific ignorance about these phenomena, it is
rather a fully-fledged component of them. The last section of this paper will emphasize
the complementary nature between classical econophysics and quantum econophysics.

1 For further information about the emergence and the institutional dimension of econophysics, see
Gingras and Schinckus [1].
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2 Classical Econophysics

Econophysics is a recent field whose works can be divided into two major method-
ological approaches: a macro econophysics (usually associated with ‘‘statistical
econophysics’’) and a micro econophysics (associated with ‘‘agent-based econo-
physics’’). These two subfields have common foundations since they describe socio-
economic systems as complex systems suggesting the unavoidable result of bringing
together numerous components in a non-simple manner. Moreover, these two
approaches avoid arbitrary assumptions2 and they base their methodology on empir-
ical verifications. However, some differences exist since these approaches do not use
the same computational methodology. While agent-based econophysics deals with
microscopic models applied to heterogeneous and learning agents, statistical econo-
physics rather uses ‘‘zero-intelligence agents’’ (with no learning abilities because
particles do not think) whose interactions are random. Whereas agent-based econo-
physics tries to reproduce the statistical regularities observed in economic or financial
systems, statistical econophysics tries to describe these regularities directly from the
evolution of these systems. This distinction between these two subfields of econo-
physics has been suggested by Bouchaud [7], evoked by Chakraborti et al. [8, 9]
and explained in detail by Schinckus [10] who suggested that there is only one
econophysics (whose major objective is to study statistical patterns observed in the
financial\economic data). This section is not a review of literature on statistical and
agent-based econophysics (see [8–10] for this kind of literature review) but rather an
introduction on the methodological differences between these two computational
approaches.

Statistical econophysics is often associated with ‘‘stylized facts’’ in the economics,
which mainly refer to ‘‘empirical facts that arose in statistical studies of financial (or
economic) time series and that seem to be persistent across various time periods,
places, markets, assets etc’’ [8, p. 994]. Statistical econophysics requires a lot of past
data on prices, volumes, or transactions from which models describe the fat-tailed
empirical distributions of returns, the absence of autocorrelation of returns or the
volatility clustering. For statistical econophysics, economic systems are composed of
multiple components (no learning agents) interacting in such a way as to generate the
macro-properties for systems [11, p. 4]. In this perspective, econophysics aims to
associate these macro-properties with statistical regularities3. In opposition to eco-
nomics (or agent-based econophysics), statistical econophysics considers that only the
macro-level of the system can be observed and analyzed.

While economists and agent-based econophysicists are based on a microscopic
methodology, statistical econophysics is rather founded on a macro-approach in which
atoms do not think implying the fact that all ‘‘market components’’ (including traders,
speculators, and hedgers) obey statistical properties. In this perspective, statistical

2 This arbitrary dimension refers to agents’s perfect rationality. In opposition to mainstream economics,
see Farmer and Foley [5] or Samanidou et al. [6].

3 See McCauley [3] for further information about the importance of power law regularities in
econophysics.
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econophysicists avoid the difficult task of theorizing about the individual psychology
(or rationality) of investors [12]. In terms of the agent-based modeling approach,
statistical econophysicists also avoid the difficult process of calibration of agent-based
models (which appears to be the main drawback of this approach [13]) because it
refers to a macroscopic approach describing macro-statistical regularities. In a sense,
the main objective of statistical econophysics is to describe the past financial and
economic data through models.

At the opposite, agent-based econophysics is founded on a micro-approach.
Agent-based modelling can be looked on as an interdisciplinary approach [14] and it
refers to so many fields4 that it is not possible to number them in this paper whose
objective is to focus on agent-based models used in econophysics. Agent-based
econophysics comes from computational physics [21] and, this field has mainly
developed models of order-driven markets (related to microstructure), game theory
models (by redefining the minority problems and related problems) or models using
kinetic theory [9].

All agent-based models (in economics or in econophysics) focus on the mathe-
matical modeling of atomistic agents but this atomistic approach is very different from
what is usually developed in mainstream economics mainly based on a methodo-
logical individualism focusing on personal characteristics (utility function, risk
aversion, and so on) and rationality. Rationality is not a necessary condition in agent-
based econophysics. Indeed, agents are considered as interacting particles whose
adaptative behaviours create different structures (such as molecules, crystals, etc). The
notion of ‘‘agent’’ must be thought as the starting point for the reasoning and therefore,
it is an ‘‘elementary particle’’ whose interacting behaviour is an epistemic basis for the
understanding of the macro-phenomenon. In this view, the concept of agent cannot be
associated with the representative agent method [22]. Since learning agents are seen as
heterogeneous and ‘‘they may differ in myriad ways – genetically, culturally, by social
networks, by preferences etc’’ [14, p. 6]. This agent-based econophysics generates a
very interesting literature for the understanding of complex economic system. Pick-
hardt and Seibold [23], for example, explained that income tax evasion dynamics can
be modelled through an ‘‘agent-based econophysics model’’ based on the Ising model
of ferromagnetism whereas Donangelo and Sneppen [24] or Shinohara and Gunji [25],
approached the emergence of money through studying the dynamics of exchange in a
system composed of many interacting and learning agents.

The main difference between statistical econophysics and agent-based econo-
physics refers to the kind of data these two subfields use. While the first use historical
data with (eventually) zero-intelligent agent, the latter rather produce data through a
complex modeling of self-evolving systems (with learning agents). In this perspective,
the main objective of agent-based econophysics is the ‘‘reproduction of the phe-
nomenon’’ (and not the description like statistical econophysics) [9].

4 The literature about the agent-based models is huge and published in several disciplines. Agent-
based approach appeared in the 1990s as a new tool for empirical research in a lot of fields such as
economics [15], voting behaviors [16], military tactics [17], organizational behaviors [18],
epidemics [19], traffic congestion patterns [20], etc.
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3 What About Quantum Econophysics?

Models used in classical econophysics are supposed to capture the main regularities
observed in complex phenomena through a methodology coming from statistical
physics. Although classical econophysics provides detailed description of the evolu-
tion of these statistical regularities through the two computational approaches
described previously, the big issue is to explain how these statistical regularities
emerge5. Classical econophysics does not answer this question. While statistical
econophysics only focuses on the macro regularities, agent-based econophysics pro-
vides a bottom-up ‘‘trial-error’’ process to fill the ‘‘in-between step’’ between micro
and macro level. In other words, these two computational approaches failed to clarify
the gap between the micro and the macro level. Basically, econophysicists use the
word ‘‘emergence’’ (or concepts evoking the idea of emergence) as, what Craver [27,
p. 360] called a ‘‘filler terms such as activate, cause, produce, represent’’6.

This puzzle about the concept of emergence is implicitly related to the way of
thinking of randomness. Statistical and agent-based models share the same under-
standing of randomness whose identification of statistical characteristics can reduce
our ignorance of a more detailed complex situation7. In this perspective, randomness
reflects our inability to deeply describe a complex situation and the concept of
‘‘emergence’’ veiled our inability to understand the operating mechanism producing
the observed statistical macro properties (whose description is the only epistemo-
logical access to these emerging phenomena).

In opposition, randomness observed in quantum processes (such as spontaneous
emission of light, radioactive decay or state reduction, for example), is considered as a
fundamental feature of nature which is independent of our ignorance. This way of
dealing with randomness paves the way to another characterization of emerging
phenomena [28] which could be very interesting in finance or economics. Despite the
existence of a ‘‘natural indeterminism’’, individual quantum events are constrained by
statistical laws which make them interesting for analogy with financial phenomena.

This necessity to explain the emergence of statistical regularities in financial/
economic systems is a good methodological justification for the development of a
quantum econophysics. There is a specific literature8 dedicated to quantum econo-
physics whose works often provide a technical justification of their development by
emphasizing the lacks of classical econophysics [30]). In this section, I would like to
complete these technical justifications with a more methodological one. More pre-
cisely, I will explain that a quantum econophysics can improve our bottom-up

5 For further information about this specific point, see Schinckus [4].
6 Craver [26] explained that these filler terms can play two roles in knowledge: ‘‘they can stand as

place-holder for future work’’ or, in contrast, ‘‘they can barriers to progress when they veil failures
of understanding’’.

7 By adopting this perspective, Schinckus [27] explained that ecnophysics can be looked on as a
Knightian reduction of economic uncertainty. See Schinckus [27] for further information about
economic uncertainty and econophysics.

8 The literature dedicated to quantum econophysics is not so large. See Saptsin and Soloviev [29] for
a detailed literature review.
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understanding of complex systems related to financial and economic spheres and,
moreover, how this contribution can be seen as a complementary approach to the
existing econophysics.

Although the application of quantum ideas to the economic phenomena appeared
in the 1990s [31], the emergence of a quantum econophysics is very recent9. Basically,
quantum econophysics can be defined through three major characteristics [29]:

– Use of mathematical apparatus of quantum mechanics in order to model economic/
financial processes.

– Application of quantum mechanical models and analogies
– Application of quantum mechanical ideology.

While the two first characteristics are well debated in the existing literature
dedicated to quantum physics [29, 30, 34], the importance of quantum-mechanical
ideology is sometimes undervalued in the literature especially regarding its potential
contribution to classical econophysics. Indeed, the quantum mechanical ideology
contributes to econophysics by paving the way to a new theoretical framework for
unifying key econophysical concepts such as randomness, emergence and interaction.

In a quantum perspective, randomness and emergence are fundamental features of
nature which are independent of our ignorance or knowledge10. That is very inter-
esting for economics since randomness is a fully-fledged component of economic
activity. Economists are aware about this necessity to develop more complex con-
ceptual tools in order to better understand the complexity of phenomena: Shubik [36],
for example, wrote that ‘‘modern finance…has not yet provided us with either the
appropriate concepts or measures for the bounds on the minimal overall uncertainty
that have to be present in an economy’’. Econophysics can contribute to improve our
understanding of economic uncertainty [27]. While classical econophysics studies our
description of randomness by assuming we can reduce it by improving our conceptual
tools, quantum econophysics rather tries to integrate this randomness in the developed
conceptual tools. In a sense, the first is still in line with classical perception of
randomness whereas the latter develops another epistemic way of dealing with ran-
domness. These two movements are not the same but they can be complementary in
our understanding of complex systems.

Many phenomena in quantum systems require no-intuitive concepts to be
described properly. In this perspective, quantum econophysics calls for new rules of
thinking inspired from quantum mechanics and its key concepts (indeterminacy
principle, system wave function, superposition principle etc). In that perspective,
Maslov [34], for example, proposed an interesting analogy between classical econo-
physics and quantum econophysics. More precisely, he associated the notions of
entropy, temperature, free energy, and Hamiltonian used in classical econophysics
with a system of identical objects so that modern methods of quantum statistics can be
applied to describe the dynamics of financial markets.

9 See Haven [32] or Haven and Khrennikov [33] for a good introduction to applications of quantum
physics to social sciences.

10 See Khrennikov [35] for information about classical and quantum randomness.
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The epistemic way of dealing with randomness used in quantum econophysics also
requires another kind of characterization for agents’ interactions. As mentioned above,
agent-based econophysics provides inductive models describing agents’ interactions
through a great number of iterations from which macro-regularities are supposed to
emerge. In this perspective, theoreticians must only define some rules determining the
elementary interactions between the actors. However, agent-based econophysics do
not really offer a modeling of agents’ consciousness. Actors are defined through basic
abilities to interact and interactions are perceived as the result of their mental states.
These actions can therefore be algorithmically traced thanks to the initially defined
interactions rules and the current state of actors [13]. In a sense, this inductive
methodology is more related to the ‘‘action making process’’ than the ‘‘decision
making process’’. In this perspective, quantum econophysics could be combined with
the work of Busemeyer and collaborators [37] on decision theory which could
therefore provide quantum micro-level foundations for a more general quantum
econophysics.

The application of quantum concepts in finance and economics deeply changes not
only the way of thinking economic phenomena but also the epistemological access to
these complex phenomena. In other words, quantum concepts challenge what we
know and how we can get this knowledge. The indeterminacy principle, for example,
implicitly means that there is no conception of the particle paths implying therefore
that it is impossible to trace algorithmically the actors’ interactions. Guevara [30], for
example, provided a quantum bridge between the micro and macro level since the
dynamics of the whole systems can be explained through a microscopically cooper-
ation between quantum objects trying to improve their states with the purpose of
reaching or maintaining the equilibrium of the system. Bagarello [38] also developed
this kind of analysis by describing the evolution of a stock market in terms of Hei-
senberg dynamics while all micro components were defined through quantum
Hamiltonians.

In line with this kind of work, Filk and Mueller [28] suggested, some applications
of quantum to consciousness could be combined with quantum econophysics in order
to develop a real theory explaining the ‘‘decision making process’’. In this perspective,
existing literature on quantum decision theory [38–40] can be seen as perfect com-
plementary approach to classical econophysics for a better understanding of the
economic phenomena in whole. Although this literature still mainly focuses on the
description of the individuals’ decision making process, we can find the first gener-
alization for all society in whole (meaning that this kind of analysis could be applied
for studying financial markets).

There is no generalized theory of quantum systems [29]. All applications of
quantum mechanics in economics and finance challenge the classical perception of
uncertainty but also the classical modelling of the decision making process. Although
quantum econophysics is still in its infancy, we can mention two major methodo-
logical contributions of its field: on one hand, it improves our way of valuing eco-
nomic uncertainty and on the other hand, it enlarges our epistemic access to complex
phenomena by providing new conceptual tools for studying the dynamics of financial
markets. More concretely, quantum econophysicists currently develop diversified
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bottom-up perspectives11 as a perfect complementary approach to classical econo-
physics because this approach could offer conceptual tools (or complete the existing
ones) in order to bridge the gap between micro and macro level from which emerging
properties appear.

In this perspective, by considering that an integrative movement could exist
among econophysicists, the econophysical landscape would be composed of three
different methodologies: a macro-approach improving our statistical descriptions of
financial/economic phenomena (statistical econophysics), a micro-inductive approach
improving our ability to reproduce (and then anticipate) macro-laws observed in these
systems (agent-based econophysics) and a micro-quantum approach improving our
understanding (and explanation) of how these statistical laws emerged in economic/
financial systems (quantum econophysics).
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Abstract. This paper attempts to argue that hydrodynamic equations,
a mainstay of quantum mechanics, can in fact find use in elementary
financial theory.

1 Introduction

The link between physics and social science is at the present time still a highly
unconfirmed relation. If we position ourselves from the social science ‘camp’ point
of view, then it is not so clear how physics concepts have been contributory in the
understanding of some of the conundrum problems social science has been served
with. At the most, it seems that it is particularly within financial option pricing
theory, that physics may have entered. This can be easily seen in the use such
theory makes of Brownian motion. But economists will be quick to point out that
option pricing theory is in fact not even that closely related to economics anyhow,
since in fact it does completely disregard the use of preferences, a mainstay tool
of applied and theoretical economics. If we position ourselves from the physics
‘camp’ point of view then it may well be that the picture is somewhat different.
The econophysics community has worked hard over the last ten years to aug-
ment the understanding of problems posed by economics and finance. However,
it is probably not an exaggeration to claim that the econophysics community
is barely recognized by the economics and finance community. This paper has
surely not as its objective to delve any deeper in attempting to understand this
precarious relationship between two ‘sides’ of intellectual endeavour. We have
two good reasons for not doing so: (i) this paper does not even deal with statis-
tical physics applications to economics or finance; it actually deals with trying to
show that hydrodynamical equations (which have a link to quantum mechanics)
may have a good use in elementary financial theory; (ii) if econophysics can not
be recognized in the economics/finance community, why do we then even bother
being disturbed by such a fact if we are considering to investigate a link, which
prima facie, is even more remote, i.e. the one between quantum mechanics and
social science.

This paper continues a line of work which elaborates on the use of quantum-
like concepts in social science. It is important to stress, that we are not at all
claiming that quantum phenomena are happening at macroscopic scales like they
are encountered in the social sciences. Instead, we argue for the use of technical
tools, borrowed from quantum mechanics, in social science, more specifically in
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economics and finance. Early work on this link is contained in the paper by
Khrennikov [17]. We could supply the novice reader in this area, with a plethora
of other references. The paper by Segal and Segal [23] is a key paper which
launched the connection between quantum mechanics and option pricing. Non-
stochastic approaches can be found in the work by Baaquie [1,2]. Important
inroads in psychology and quantum mechanics have also been made. See for
instance the book by Busemeyer and Bruza [5]. For more work in the area
of quantum mechanical tools in finance and economics, see also Haven and
Khrennikov [11].

In the next section, we highlight with some examples of how we can measure
information in finance. In Sect. 3, we outline the basics of the hydrodynamic app-
roach, following the work by Nelson [21]. Section 4, shows how financial informa-
tion can be linked to hydrodynamic equations. We show the approach of Hawkins
and Frieden [13]. In Sect. 5, we show how the Bellman function, which is a well
known equation used in macroeconomic dynamics, relates to the hydrodynamic
equation. We use the approach by Gondron and Lepaul [9].

We thank participants at the Seminar ‘Quantum Thinking’ held at the Insti-
tute for Mathematical Behavioral Sciences (February 22 and 23 - 2013) at the
University of California - Irvine, for their excellent remarks on some of the ideas
contained in this paper.

2 Information in Finance: Some Examples

2.1 (Non) Dependence on Preferences for Risk in Standard Option
Pricing Theory

A financial option is a contract which allows the buyer of such contract to either
buy or sell the asset (for instance a stock) mentioned in the contract for a certain
price during a specified time period (or at a date in the future). The Black-
Scholes [4] option pricing formula is a celebrated approach which allows for the
calculation of the price of an option under the assumption that the volatility of
the price of the asset is constant. It can be shown that standard Black-Scholes
theory is completely independent of preferences for risk. Those preferences are
captured by the expected return parameter which sits in the drift of the geomet-
ric Brownian motion. The construction of the Black-Scholes portfolio allows for
the elimination of that parameter. This is an important achievement, as prefer-
ences for risk are notoriously difficult to model. It is possible to show that the
basic ‘amplitude function - wave function’ framework can be used to give finan-
cial sense to the key parameter in that setup: the wave number. This framework
can then aid us in understanding how the dependence on preferences for risk can
actually be introduced depending on the narrowness (width) of the amplitude
function. We do not pursue this further in the current paper. Please see Haven
and Khrennikov [12].
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2.2 Fisher Information in Finance

In Hawkins and Frieden [13] the fluctuations x around the price of an asset x0,
observed at time t0, are modelled by a probability amplitude ψ(x) (which the
authors explicitly say is independent of any quantum mechanical interpretation).
Fisher information (see Frieden [7,8]) is then defined by the authors as:

I = E

[
∂ ln(p(xobs|x0,t))

∂x0

]2

=
∫ ∣∣∣∣dψ(x)

dx

∣∣∣∣
2

dx; (1)

where xobs = x0 + x; i.e. the measured or observed price. Hawkins and
Frieden [13] show that with this measure, the level of information is high when
the density function is tight, i.e. when the fluctuations round x0 are small. This
is a very reasonable argument.

3 Basics of the Hydrodynamic Framework

We need to be careful in how we want to present the so called ‘basics’ of the
hydrodynamic framework. We will not refer back to the original Madelung [20]
paper. There are two avenues we can follow in trying to present the equational
expressions of this framework. One way is to consider the Bohm - Hiley- de
Broglie framework (Bohm and Hiley [3]). See also Dubois [6] (especially Sect. 3).
We can of course also consider the approach Nelson [21] proposes. Holland
[14] has made important remarks about the fact that one needs to carefully
distinguish between the hydrodynamic interpretation and the Bohm- Hiley de
Broglie framework. We do not expand on it further in this paper. See Haven and
Khrennikov [11].

In the Bohm - Hiley - de Broglie framework, if we insert a quantum mechani-
cal wave function of the form Ψ(x, t) = eR(x,t)e

i
�

S(x,t), with R and S respectively
the amplitude and phase functions of Ψ into the Schrödinger equation, then it is
easy to show (see for instance Holland [15]) when separating real and imaginary
parts, one equation (for the real part) becomes:

∂S

∂t
+ V +

1
2m

(∇S)2 − �
2

2m

[
(∇R)2 + ΔR

]
= 0; (2)

where V is the real potential; m is mass; � is the Planck constant and ∇
and Δ are respectively the first and second derivatives of the amplitude function
towards position x. We note that the continuity equation is also obtained from
this separation.

In a non-quantum context, Nelson [21] shows that one can obtain:

∂S

∂t
+ V +

1
2m

(∇S)2 − mσ4

2

[
(∇R)2 + ΔR

]
= 0; (3)

where a probability density function f(x, t) = e2R(x,t), with R(x, t) now being
a scalar field and σ2 = �/m. The above equation is obtained with what Nelson
[21] defines are mean forward and mean backward derivatives. In this paper, we
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do not expand any further on this important development. The hydrodynamic
framework consists of the above equation joined with the continuity equation.

4 Financial Information and Hydrodynamic Equations

Considering Sect. 2.2 again, we note that Hawkins and Frieden [13] take the infor-
mation perspective further, by defining a level of so called ‘intrinsic information’,
J , which is akin to ‘perfectly knowable’ information. What is very important in
their set up is the definition of a measure of information asymmetry:

I − J ; (4)

where I follows Eq. (1).
The above Eq. (4) is then interpreted as a Lagrangian, L. A result, which for

the purposes of finance, we believe to be of very promising value, is the physics
result, which Hawkins and Frieden [13] cite as obtained by Reginatto [22]. This
result says that the variation of L, notably with respect to the density function,
leads to the hydrodynamic equations which we discussed in the above section.
Hence, this connection shows how closely one can argue between a financial and
physical interpretation of the hydrodynamic equations.

5 The Bellman Function and Hydrodynamic Equations

The Bellman function in macroeconomics is a very heavily used mathematical
tool. The key reference on dynamic programming, which uses the Bellman equa-
tion is by Stokey and Lucas [24]. Gondran and Lepaul [9] provide for some very
beautiful ideas on how the Bellman function can be actively related to popula-
tion issues in a mean field framework. We provide in this paper for an example
which is based on their approach.

Let us consider the simple situation where we compare the ‘value’ of an asset
A with the price of the asset A. We imagine a scenario where a ‘consensus’ value
of an asset A is set relative to a variety of prices, PA that the asset A can take.
We assume there is a density function on the price of asset A: f(PA). Assume
we allow a geometric Brownian motion on the price of asset A to exist:

dPA = μPAdt + σPAdz; (5)

where μ is the expected return of the asset A; σ is the volatility of the price of
the asset and dz is the Wiener process. In fully similar fashion as in the Gondran
and Lepaul [9] paper, we assume the economic decision maker derives a level of
satisfaction (‘utility’ in economics vocabulary), on the basis of the position of
the set ‘consensus’ valuation of asset A relative to the price of asset PA. The
utility u can then be defined as: u(f(PA, t)), where f is the density function; PA

follows a geometric Brownian motion, dPA = μPAdt + σPAdz.
Let us now assume that costs are incurred (we call those costs ‘dis-utility’, ud)

in having to estimate the ‘consensus’ valuation in terms of the expected return,
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μ, of asset A. For instance: a higher expected return may require a higher cost
in estimating the ‘consensus’ valuation. In similar fashion as in Gondran and
Lepaul [9], we can write the Bellman function U(P, t), as a control problem:

max
μ,PA=P

E

[∫ T

t

(u(f(PAs, s)) − ud) exp(−λ(s − t))ds

]
; (6)

where t, T and s are respectively beginning time, maturity time and the time
integration constant; λ is the discount rate and E is the expectation operator.
The above equation is also proposed, in a population framework by Gondran
and Lepaul [9] and Guéant [10].

What is now important is to note the remark that Gondran and Lepaul [9]
make by saying that Lasry and Lions [18,19] find that the associated PDE’s to
the above control problem, contains terms:

(i) :
∂U

∂t
; (ii) :

1
2
(
∂U

∂P
)2; (iii) : −λU + u(f) (7)

and

(iv) :
∂f

∂t
; (v) :

∂

∂P

(
f

∂U

∂P

)
(8)

Terms (i); (ii); (iii) are part of a Hamilton Jacobi equation. Such an equation,
when rendered in the form of Bohm - Hiley - de Broglie, will contain a real and
quantum potential. Terms (iv) and (v) will figure in the continuity equation
(describing the dynamics of the pdf f), but the associated partial differential
equations are not exactly like in the Hamilton-Jacobi and continuity equations
though. Gondran and Lepaul [9] remark, U(P, t) plays the role of the action in
the Madelung (hydrodynamic) equations [20]. Therefore, ∂U

∂P must indicate in
our simple asset valuation toy model, some sort of velocity of a utility flow.

6 Conclusion

As Hawkins and Frieden [13] have indicated in their paper, stochastic dynamics
provided for an excellent vehicle to connect financial economics and statisti-
cal mechanics. Clearly, the same can surely not be said about the potential
link between quantum mechanical techniques and financial economics. It needs
stressing again, to avoid any mis-understanding, that while we endeavour to
bringing quantum mechanics to use in macroscopic environment, we surely are
NOT claiming there are quantum mechanical phenomena happening in a macro-
economic context.

We want to re-iterate the concluding arguments we mentioned at a talk
within the ‘Quantum Thinking’ seminar held at the Institute for Mathematical
Behavioral Sciences (February 22 and 23 - 2013) at the University of California
- Irvine. Why do we bother to use the quantum mechanical toolkit in finance or
economics? Here are three possible reasons:
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– Reason 1: to get possible ‘mileage’ out of additional variables: what can we
say about the real (financial) but also quantum potential in Eqs. (2) or (3)?

– Reason 2: we believe there are (possibly) interesting avenues to look for quan-
tum mechanical characteristics in finance. Haven and Khrennikov [11] give a
flavour.

– Reason 3: there seems to be more and more evidence (see Busemeyer [5] and
Khrennikov [16]) that decision making processes have quantum mechanical
features and hence (heuristically speaking then) it may not be such a huge
jump to argue that such features may then be found back in economic and
financial modelling.
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Abstract. We develop a quantum-like (QL) model of cellular evolu-
tion based on the theory of open quantum systems and entanglement
between epigenetic markers in a cell. This approach is applied to mod-
eling of epigenetic evolution of cellular populations. We point out that
recently experimental genetics discovered numerous phenomena of cel-
lular evolution adaptive to the pressure of the environment. In such
phenomena epigenetic changes are fixed in one generation and, hence,
the Darwinian natural selection model cannot be applied. A number of
prominent genetists stress the Lamarckian character of epigenetic evolu-
tion. In quantum physics the dynamics of the state of a system (e.g. elec-
tron) contacting with an environment (bath) is described by the theory
of open quantum systems. Therefore it is natural to apply this theory to
model adaptive changes in the epigenome. Since evolution of the Lamar-
ckian type is very rapid – changes in the epigenome have to be inherited
in one generation – we have to find a proper mathematical description
of such a speed up. In our model this is the entanglement of different
epigenetic markers.

Keywords: Entanglement · Open quantum systems · Epigenetics · Cel-
lular evolution · Neo-Lamarckism · Quantum master equation · Markov
approximation

1 Introduction

Recently the theory of open quantum systems, i.e. systems contacting1 with var-
ious environments (baths), was applied to cognitive science, psychology, decision
1 One may in principle speak about interaction with an environment. However, “inter-

action” is not the right term, since it assumes the presence of an interaction force.
This is natural in classical physics, but not in quantum. In some sense a quantum
system just “feels” the presence of the environment. There is no real force acting to

H. Atmanspacher et al. (Eds.): QI 2013, LNCS 8369, pp. 324–334, 2014.
DOI: 10.1007/978-3-642-54943-4 30, c© Springer-Verlag Berlin Heidelberg 2014



Lamarckian Evolution of Epigenome 325

making and cellular biology [3–7]. We start with an illustration from decision
making in game theory (e.g. in games of the Prisoners Dilemma type). Before
starting decision making one party, say Alice, has the mental state which is
characterized by a very high (often maximal) degree of uncertainty about the
intentions of another party, say Bob, and Alice’s own possible actions. In the
process of decision making Alice has to resolve this state of uncertainty and
select a strategy. Since in general a strategy has to be understood as a mixed
strategy, by resolving uncertainty Alice has to generate a classical probability
distribution (mixed strategy). In [3–5] we described such a process by encoding
the state of uncertainty as a superposition of all possible states corresponding
to the strategies of Alice and her conjectures about the strategies of Bob, cf.
[9]. To resolve such quantum-like (QL) uncertainty the state has to evolve to a
mixed quantum state: the off-diagonal elements have to be killed. This process
is described properly by the theory of open quantum systems, by the quantum
master equation – the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equa-
tion, see, e.g. the book of Ohya and Volovich [10]. In the example about decision
making in game theory an environment is, in fact, a mental environment of Alice,
including her own memory.

We now apply the same scheme to the process of resolution of uncertainty of
possible epigenetic2 changes in a cell contacting with an environment. From the
very beginning we emphasize that such an environment always has a nontrivial
information component; in particular, in the form of cells signaling. The epi-
genetic evolution is described by quantum(-like) master equation and the final
steady state (of the attractor type) represents the distribution of epimutations
fixed in the cellular population which was exposed to the pressure of an envi-
ronment. In physics such a process is called decoherence. Hence, we can speak
about the epigenetic inheritance as decoherence of superposition of possibilities
for various epimutations in a cell.

Since evolution of the (neo-)Lamarckian type3 is very rapid – changes in the
epigenome have to be inherited in one generation – we have to find a proper
mathematical description of such a speed up. In our model this is the entangle-
ment of different epigenetic markers; cf. [8].

a system from the side of the environment. In fact, in for cognitive phenomena we
have the similar situation. By using “mental forces” one would make a model too
mechanistic (of Newtonian type), see, however, [1,2] for attempts to apply Bohmian
mechanics to cognitive phenomena and, especially, finance.

2 Everywhere below we shall use the term epimutation: a heritable change in gene
expression that does not affect the actual base pair sequence of DNA, see, e.g.,
Jablonka and Raz [11] for an extended review of heritable epimutations, theory and
experiment.

3 Lamarck was one of the firsts who presented evolution in biology as a scientific theory.
One of the basic ideas of J. B. Lamarck is that an organism can pass on characteristics
that it acquired during its lifetime to its offspring. According to Lamarck evolution is
fundamentally adaptive in its nature. Extension of Lamarckism to cellular evolution
is known as neo-Lamarckism.
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In principle, we can discuss a closer analogy with the above example of QL
modeling of decision making. By making the assumption that any cell has some
form of cognition we can just map the previously developed model of cognitive
dynamics in the process of decision making onto cellular epigenetic evolution:
a cell “decides” which epimutations are useful to match with the environment
and which are not. However, the aforementioned assumption is too strong and
too speculative and, although it may have revolutionary consequence for cellular
biology and genetics, we prefer to proceed without it.

We point to other applications of the mathematical apparatus of quantum
mechanics to cognitive science and decision making: see the monographs [1,2,9]
and extended bibliography in these books.

We call our model quantum-like (QL) to distinguish it from really quan-
tum models in cell biology. Such models are based on “quantum reductionism”,
i.e. reduction of a cell’s behavior to the behavior of quantum particles inside a
cell, e.g., Ogryzko [13,14]; McFadden and Al-Khalili [15], McFadden [16]4. In
particular, superpositions of a cell’s states are induced by real quantum super-
positions of quantum particles inside the cell. These (really quantum) models
were strongly criticized, e.g. Donald [17], since quantum physics does not sup-
port speculations on the possibility to create macroscopic superpositions and
entanglements in cells (as physical systems) and moreover to preserve it for suf-
ficiently long time. Even the idea that a cell interacting with an environment can
process information in the same vein as a quantum computer has no physical
support. Unitary evolution characterizing quantum computations is a feature of
isolated physical systems; see Donald [17] for the complete presentation of critical
arguments.

2 Adaptive Dynamics of the Epigenetic State

Denote the space of the states of a cell’s epigenome by the symbol H. These
states represent statistical information about possible observations on the phe-
notype’s changes. The structure of this space will be discussed in Sect. 3. For
a moment, this is simply a complex Hilbert space. (Thus we use the quantum-
like formalism.) The space of states of the environment is denoted by K. Since,
finally, we shall be interested only in the dynamics of cell’s epigenetic state, the
degrees of freedom of the environment will be excluded from the direct consider-
ation by tracing with respect to the space K. The state space of the compound
system is the tensor product H ∇ K.

Our proposal is to use the machinery of the theory of open quantum sys-
tems and to describe the dynamics of the epigenetic QL-state by using the
quantum master equation (the GKSL-equation). This equation describes transi-
tions from states of uncertainty given by superpositions to classical probability
4 These studies belong to the domain of quantum biology. Our QL model is not a

part of quantum biology. We can play with terminology and call the domain of our
research bio-quantumiology – to distinguish from research in quantum biology.
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distributions. Hence, such an equation cannot be an equation with respect to the
quantum state represented as a vector belonging to complex Hilbert space (nor-
malized to one) – a pure state. (We recall that Schrödinger’s equation describes
the dynamics of pure states.) Such vectors represent superpositions of possibili-
ties which have to disappear at the end of the epigenetic evolution. We have to
use more general quantum states represented by density operators. Both purely
quantum superposition describing uncertainty and the final classical probability
distribution can be represented by density operators.

In the quantum Markovian approximation the dynamics of the state of a
system interacting with an environment is described by the GKSL-equation:

γ
dρepi
dt

= −i[H, ρepi(t)] + Wρepi(t), ρepi(0) = ρ0epi, (1)

where H is a Hermitian operator determining the internal dynamics of epimu-
tational changes in cells which are isolated from environmental pressure (“cell’s
Hamiltonian”) and the linear operator W describes the environmental pressure.
Opposite to H, in general the operator W has a complex mathematical structure.
It has such a form that starting with a density operator ρ0C we shall get density
operators at all instances of time. For a moment, the concrete structure of W is
not important for us; see, e.g., Ohya and Volovich [10] for mathematical details.
Biologically this operator is determined by the properties of the environment,
including the initial state of the environment. Here γ is the time scale constant,
it determines the temporal dimension of the epigenetic evolution. By using such
a scaling factor of the dimension of time, we are able to proceed with dimension-
less Hamiltonian H and environmental operator W. In quantum physics, there
is the Planck constant h in place of γ. The Planck constant has the physical
dimension of action and, hence, the operators H and W have the dimension of
energy. In quantum biology one has to proceed with the Planck constant and
to use operators of real physical energy. However, in our “bio-quantumiology”
all operators have only operational meaning and we do not consider the real
physical processes of the cellular energy transfer.

For a very general class of GKSL-equations, the environmental operator W
drives (in the limit t ◦ ∀) the epigenetic state of an ensemble of cells, ρepi(t),
to the steady solution: ρepi(t) ◦ ρepi;st. Typically the uncertainty (in the form
of superposition) is eliminated from the asymptotic state ρepi;st. In our model
such a steady state is considered as the result of the epigenetic evolution in
the environment (mathematically represented by the operator W). The limiting
probability distribution ρepi;st describes the probability distribution of epimu-
tations which took place in a cell population as a consequence of interaction
with the environment. Internal uncertainty, to (epi)mutate or not mutate, was
resolved and a stable phenotype was created.

This model can be considered as a sort of (neo-)Lamarckism; epigenetic
Lamarckism.
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3 Dynamics of Superposition: Mutate or Not Mutate

Consider the concrete gene g in cell’s genome. Suppose that this cell interacts
with an environment such that some type of epigenetic mutation, say μ, in g can
happen. This epimutation changes the level of expression of g.

By ignoring the presence of other genes and corresponding gene expressions
we can model the μ-mutation by considering simply the two dimensional state
space Hepi (qubit space). States of no mutation and mutation are represented by
two orthogonal vectors |0∈ and |1∈. Hence, a (pure) QL-state can be represented
as superposition

|ψepi∈ = c0|0∈ + c1|1∈, (2)

where c0, c1 ∅ C, |c0|2 + |c1|2 = 1. As was remarked, the quantum master equa-
tion does not respect pure states, so sooner or later superposition (2) will be
transferred into the statistical mixture given by a density matrix. Thus nontrivial
superposition is characterized by the presence of the nonzero off-diagonal terms.
We remark that the absolute value of the off-diagonal terms is maximal and
equals 1/2 for the uniform superposition |ψepi∈ = 1∗

2
(|0∈+ |1∈), representing the

maximal uncertainty. The dynamics (1) suppresses the off-diagonal terms and,
finally, a diagonal density matrix (steady state) arises, ρst. Its elements ρ00;st
and ρ11;st give probabilities of the events: no μ-epimutation and μ-epimutation.
Thus in a large population of cells, say M cells, M ↑ 1, the number of, e.g.
cells with mutation is given (approximately) by Nm ↔ ρ11;stM. The limiting
QL-state (represented by the diagonal matrix) obtained stability with respect to
the influence of this (concrete) environment. We remark that mathematically a
population needs infinite time to stabilize completely to the steady state. There-
fore in reality one can expect fluctuations (of decreasing amplitude) on a finite
interval of time.

We remark that under a special interrelation between operators H and W the
stabilization is achieved with the state ρst such that ρ11;st ↑ ρ00;st. In such a case
the epimutation μ spreads to practically the whole population and, moreover, it
will be inherited. Thus the quantum master equation is sufficiently general to
represent (on the epigenetic level) the regime which is similar to one represented
by Fisher’s equation that was used to describe the spreading of biological pop-
ulations. The main distinguishing feature of the epigenetic situation is that the
epimutation spreads in a single generation of cells and then it is inherited by the
next generation.

4 Entanglement of Genes’ Expressions

We construct quantum-like representation of the information state of the
epigenome expressing epigenetic inheritance of the chromatin-marking type.
Consider a cell with genome consisting of m genes g1, ..., gm. Let us assign to
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each gene g all its possible epimutations (of the chromatin-marking type); we
simply enumerate them by numbers5: jg = 1, ..., kg.

The state of all potential epimutations in the gene g is represented as a
superposition

|ψg∈ =
∑

j

cg;j |jg∈, (3)

where
∑

j |cg;j |2 = 1.
What is the meaning of this superposition from the biological viewpoint?

Can a gene really be in superposition of a few different epimutations?
Although our model is operational and in principle we are not interested in

such questions, we make a comment to clarify the coupling of operational and
biological descriptions of this situation. A cell by itself “knows its epigenome” at
each instant of time; so it is well aware which epimutations took place up to this
instant of time. However, a biologist performing an experiment with cells does
not know the situation inside an individual cell in such detail. Superposition is
related to uncertainty of the observer’s information.

If epimutations in different genes are independent of each other, then the
QL-state of a cell’s epigenome is represented as the tensor product of states
|ψg∈ :

|ψepi∈ = |ψg1∈ ∇ ... ∇ |ψgm
∈. (4)

However, in living cells, most of the genes and proteins are correlated somehow
forming a big network system. So one epimutation affects other genes usually.
Hence, the assumption of independent epimutations is nonbiological. Therefore
we have to consider more general states describing the consistent epimutations
of all genes in the genome of a cell. These are so called entangled states which
are widely used in quantum information theory:

|ψepi∈ =
∑

j1...jm

cj1...jm |jg1 ...jgm
∈, (5)

where |jg1 ...jgm
∈ is just the short notation for the tensor product of states of

superpositions in various genes, |jg1 ...jgm
∈ ← |jg1∈ ∇ ... ∇ |jgm

∈ and the sum of
all squared coefficients is equal to 1.

We remark that the notion of entanglement is at the very heart of quantum
mechanics. However, although it is widely used in quantum information, the
understanding of the physical essence of entanglement is far from complete,
see, e.g. [12] for debates. Nevertheless, in the quantum community there is the
complete consensus that entanglement implies correlations – in our epigenetic
modeling these are correlations between epimutations in different genes.

Typically in quantum foundations experts emphasize that correlations cor-
responding to an entangled state are “superstrong”, i.e., they have amplitudes
exceeding amplitudes which are possible for classical correlations. However, for
5 Depending on the biological context, it is always possible to select a few epimutations

of the main importance. Hence, the number kg need not be very large. We state again
that our model is operational. It need not be very detailed.
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our modeling of epigenetic mutations, the debate on nonclassicality and on super-
strength of entanglement-correlations is not important.

The key point of the application of entanglement in modeling of epimuta-
tions is its nonlocal feature. We remark that the notion of quantum nonlocality
is often used vaguely. Typically, especially in relation to Bell’s tests, nonlocality
is treated (following D. Bohm and J. Bell) as nonlocality of hidden variables,
i.e. those deterministic variables the existence of which is so actively debated
in quantum foundations, since the very beginning of quantum mechanics. In
our cell biological studies we cannot assume such “real physical nonlocality”
of variables describing gene expression. We do not appeal to physical quan-
tum effects in a cell. We state again that the origin of QL-representation is
uncertainty in information about the cell’s behavior in an experiment. We shall
appeal to another sort of nonlocality which may be called intrinsic quantum
nonlocality.

The form of the tensor space representation (5) of potential epimutations in
the cell’s genome implies that epimutation in one gene will immediately imply
consistent epimutations in other genes. If the state (5) is not factorized, then by
acting, i.e., through change in the environment, to one gene, say g1, and inducing
some epimutation in it, we can induce consistent epimutations in other genes.

This quantum nonlocality is the main source of the speedup of quantum
computers. However, we do not advertise a rather common viewpoint that bio-
logical quantum computing plays some role in genetics and the brain’s func-
tioning. Quantum algorithms are based on unitary dynamics described by the
Schrödinger’s equation. In our opinion such dynamics cannot survive on the
biological scales of space, time and temperature. In our QL-model a cell is an
open QL-system; its dynamics is described by the quantum master equation; it
is nonunitary. In particular, quantum entropy is not preserved, cf. Asano et al.
[5] for QL cognitive modeling.

In our QL-model we also explore the intrinsic quantum nonlocality to speed
up the epigenetic evolution in a living cell. Otherwise, i.e. by using a purely
neo-Darwinian approach6, we would be not able to explain the high speed of the
epigenetic evolution. Evolution in the case of epimutations in a large number
genes as the reaction to the environment would be too slow if epimutations
inducing new levels of gene expressions would be randomly and independently
generated and then selected.

Let an environment act on genes g1, ...., gm. Suppose that, for, e.g. g1, as an
individual gene, some epimutation, say Mg1 can be useful in this environment.

6 Nowadays the term neo-Darwinism is used for theory of evolution, driven by natural
selection acting on variation produced by genetic mutation and genetic recombina-
tion. Thus the Darwinian model of evolution liberated from ideas of Lamarckism was
combined with genetics. Purely random genetic variations are subjected to natural
selection under the environmental pressure. Neo-Darwinism is based on the main
postulate of molecular biology: in a cell the information flow is possible only in
one direction from DNA (RNA) to proteins, from genotype to phenotype; so, never
backward: from phenotype to genotype.
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However, this epimutation may disturb the functioning of other genes in a neg-
ative way. Hence, epimutations Mg1 , ...,Mgn

induced by the environment have
to be consistent. How can they become consistent? Either via iterations, first
the state of epimutations (Mg1 , ...,Mgn

) is created, but the cell “feels” disagree-
ment between levels of gene expression corresponding to these epimutations. New
epimutations are induced by this inconsistency and so on. This process is similar
to Darwinian natural selection and approaching consistency in gene expression
would take too long a period (for the time scale of one living cell). Our proposal
is that the dynamics are entangled and at one step all genes epimutate con-
sistently. We state again that the main difference from quantum computing is
using nonunitary evolution described by the quantum master equation, instead
of the unitary (Schrödinger) evolution. Hence, we use entanglement, but without
unitary evolution.

We now proceed by operating with epigenetic markers of any origin as infor-
mation quantities, i.e. without coupling each of them with a special form of cel-
lular material. We enumerate all possible epigenetic markers which are involved
in the process of evolution under the pressure of some fixed environment, j =
1, ..., n. Each marker can be quantified by the classical random variable ξj = 1,
if this marker is created and then inherited, and ξj = 0, in the opposite case.
These are observables which can be measured in experiments. The space of all
classical states of the epigenome consists of vectors corresponding to fixing the
values of all epigenetic markers: α = (α1, ..., αn), where αj = 0, 1. This classical
state space consists of 2n points. This space is the basis of the classical infor-
mation description of the process of epigenetic evolution. However, we move to
the quantum information description by assuming that classical states can form
superpositions. To match with the Dirac ket-vector notation which is used in
quantum physics, we denote the classical state α as |α∈. Then the QL state
space of (possible) epigenetic mutations, H, consists of superpositions of the
form

|ψ∈ =
∑
α

cα|α∈,

where
∑

α |cα|2 = 1. This is the complex Hilbert space of the dimension 2n.
Now we repeat our previous considerations for epimutations of the chromatin-
marking type. The QL adaptive dynamics described by the quantum master
equation can be considered as a mixture of neo-Darwinian, neo-Lamarckian, and
Wrightean evolution. This cocktail of stochasticity and determinism is consis-
tently represented in the QL operational framework. The final steady state gives
experimenters the classical probability distribution of the inherited epigenetic
markers.

Entanglement may play an important role in the speedup of the epigenetic
evolution. Since epimutations of the chromatin-marking type can be coupled
to physical carriers, it was easy to use the standard notion of entanglement
(as entanglement of systems) in the epigenetic framework. In general epigenetic
markers are merely information structures in a cell such as, e.g. self-sustaining
regulatory loops. However, we are lucky, since recently a new general viewpoint
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on entanglement was elaborated in the quantum information community. Entan-
glement can be considered not from the system viewpoint, but from the observer
viewpoint. One considers a family of algebras of observables, say {Ai}, on the
total state space, in our case on H. Under some restrictions on these algebras the
state space can be represented as the tensor product of subspaces corresponding
to these algebras. In our case we consider algebras of observables correspond-
ing to different epigenetic markers; corresponding subspaces are two dimensional
qubit spaces, H = ∇n

j=1Hj;qubit. Now we can use the notion of entanglement cor-
responding to this tensor product decomposition of the state space and repeat
the speedup argument.

5 Concluding Discussion

As was pointed by one reviewer, “in standard quantum mechanics, the coefficients
appearing in the decomposition of a superposed pure state (in a given basis) determine
probabilities that do not admit an epistemic interpretation: they are ontic and cannot
be interpreted in terms of uncertainty. This means that a GKSL transition changes
the interpretation of the probabilities (ontic→epistemic). It seems instead that an
uncertainty interpretation of the coefficients of a superposed pure epigenetic state is
assumed here which plays a basic role. I think that the authors should clarify this
point. My personal opinion is that an ontic interpretation of such coefficients would
be compatible with the fact that epigenetic mutations are indeed potential, and the
interaction with environment only actualizes some of them.”

This is a fundamental interpretational issue of quantum theory; in fact, the issue of
interpretation of the quantum state. This problem can be characterized by a huge diver-
sity of opinions. The interpretation presented by this reviewer [18] is quite natural, but
not the only one possible. In this paper we are not able to discuss this interpretational
problem in more detail, see [1,2,18]. We keep to the subjective probability interpreta-
tion proposed recently by C. Fuchs. In this interpretation the quantum formalism is
about the experimenter’s knowledge and not about reality itself.

As was pointed out by another reviewer, “for Lamarckian evolution to proceed each
cell must “know its epigenome” and the overall changes that have occurred in it through
a process that is “non-local”. This claim seems to me to be too strong for two reasons.
First, Kimura postulated and won the Nobel Prize for his ‘neutral current of evolution’,
holding that cellular evolution only occurs in non-functional areas that have not already
been solved by evolution; e.g. not in heart muscle; not in eye tissues; etc. Thus, evolution
should occur in non-functional areas of the DNA known as “junk” DNA. Second,
authors claim that somehow the cell is not isolated from the environment, that it
collects information from it as “environmental pressure” sufficiently well-enough to
contradict neo-Darwinian evolution which proceeds with information flow in only one
direction, i.e. “from “genotype to phenotype”. Authors claim that cells know what all
other cells perceive and how they change “instantly”, but how does the cell know what
is happening outside its immediate environment that causes cellular change from its
“environmental pressure?”

This is an important comment which enlightens the most important aspects of
our approach. First of all we state again that the present QL model was elaborated
only for epigenetic evolution, i.e. we do not model changes in the genome, but only in
the epigenome. Thus our epigenetic model of evolution does not contradict Kimura’s
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model of neutral evolution on the level of the genome.7 Kimura did not deny completely
the importance of the environment pressure (on the genetic level). Kimura argued that
molecular evolution is dominated by selectively neutral evolution, but at the phenotypic
level, changes in characters were probably dominated by natural selection rather than
sampling drift. Our model is also about phenotypic changes, but on the epigenetic
level, and natural selection on the cellular level cannot contribute so much to the
process of evolution, because the epigenetic changes have to happen inside a single
generation. Nevertheless, our QL open system dynamics can be treated as a kind of
natural selection, but on the molecular level in each single cell.

Our QL-model does not contradict the orthodox neo-Darwinian evolution which
proceeds with information flow in only one direction, i.e. from “genotype to phenotype”
since we do not claim that the genome is changed under the pressure of the environment
(although such experimental data are intensively discussed in biological publications;
see also [13]).

Finally, we point to cells’ signaling as one of the basic mechanisms of epigenetic
evolution and also cells’ differentiation (the latter can be considered as a special
case of epigenetic evolution). Following quantum tradition we use the terminology
“instantly” for changes in cells, but this is (as well as in physics) just a mathemat-
ical metaphor8 encrypting considerations of two time scales, one fine (for dynamical
changes in epigenome) and another rough (for evolutionary-output changes through
stabilization to the steady state).

For example, consider E. coli diauxie. Because E. coli receives the environmental
condition (glucose/lactose), it changes its gene expression, adapts to its environment,
and finally the genotype/phenotype is transfered to the next daughter cells. But we
call this phenomenon adaptation not epimutation. And even in narrower sense, the
epimutation at chromatin modification level occurs in a similar way as the diauxie of E.
coli. By receiving environmental information, the signal changes the cellular metabolism
and also the modification system of DNA and finally such modification changes give
the Lamarckian evolution (=adaptation) of the cell itself and sometimes the changes
can be transmitted to the next generation (=epimutation = Lamarckian evolution).
These adaptation can be possible with the signal transduction network in the cell. And
we demonstrated (by a mathematical QL model) that really living systems having
such network interacting systems of every composite element can behave as a quantum
computer with entangled state of any kinds of responses finally giving decoherence of
the final answer to the environmental pressure (observation). So every cell knows its
environment at any time and this knowledge is “nonlocal” (at the time scale of cellular
generations).

7 In our opinion, Kimura proposed that evolution or DNA changes occur neutral, but
he did not propose that evolution occurs at non-functional areas. Even at functional
areas DNA changes occur at any time, but when the phenotype of functional change
appears (for example at heart muscle), we really have evolution making the birth of
new species.

8 For example, in quantum formalism one speaks about collapse of the wave function
which happens instantly. However, by proceeding more carefully one talks about
change of the quantum state as the result of measurement or more generally inter-
action with an environment. And such a process is not instantaneous.
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Abstract. In the field of systems biology, the molecular interactions
constituting the life of organisms may be represented in interaction maps.
The genetic interaction map is unique because it concerns only the inter-
actions of an organism, occupying its niche, producing biological fitness.
The procedure for obtaining this map can be idealised. Underlying the
map for any occupied niche there must exist a temporally closed (devel-
opmental) information-processing structure, or causal plexus. This must
be located within a temporally open (evolutionary) niche-structure, or
causal nexus. The framework allows simplification naturally, identifying
molecules and sub-molecular particles also as occupied niches. Quantum
interactions are then rendered as the merging and splitting of niches,
the flux determined by the entropy gradient. Across all levels of the self-
similar niche-structure continuum (the causal nexus), occupied niches
determine the construction of empty niches, and empty niches provide
the potential for the evolution of the occupied niche-structure.

Keywords: Quantum interaction · Niche-structure · Natural interac-
tion map · Imaginary chemostat · Causal plexus

1 Introduction

In this paper I wish to draw attention to an increasingly popular visualisation
technique in the field of systems biology, the interaction map. There are many
different types of interaction map, but the genetic interaction map is special.
It visualises the network of interactions constituting organismic function using
information gathered from genetic mutations, using only one kind of measure-
ment: the measurement of fitness. Organisms may be broadly construed as enti-
ties defined by their ability to occupy a niche, allowing generalisation beyond
biology; and the map illuminates exactly those interactions yielding entity sur-
vival. In other words, they are the interactions that matter.

In its experimental production, the genetic interaction map emerges from
pairwise combinations of mutations in genetically tractable micro-organisms.
When they are introduced into the same cell, two mutations are seen to be
functionally independent if the double mutant has a fitness deficit that is the
expected product of the mutations acting alone. A genetic interaction refers to
the case giving an unexpected fitness measurement against the aforementioned
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background. For example, two minor mutations, placed together in the same
gene, could unexpectedly cause the gene product to catastrophically fail. On the
other hand, two serious mutations placed together in a gene could unexpectedly
compensate for each other. The interaction shows that the mutations have some
functional relationship to each other; in this example, physical proximity in a
gene product such as a protein, which could be mis-folded.

Genetic interactions between pairs of mutations are not limited to co-location
in the same gene. This is because the molecular activity of the cell is embodied
in space; it is organised in pathways and physical structures which are encoded
by separate genes. Mutations affecting adjacent products in pathways, or con-
tained in structures in physical contact, will reveal interactions linking separate
genes. This is both the theory, and the observation. Very large numbers of pair-
wise interactions of mutations, combined into a map, may usefully depict every
genetically-determined function of an organism, organised into a functionally
coherent whole (see Fig. 1; [1]). It is not to be confused with other types of
interaction map, or with genetic regulatory networks.

The earliest interaction maps were drawn by [2], when they were called
genetic complementation maps. There was some early discussion concerning the
philosophy underlying the interaction map itself; but then, as now, interest was
directed at the content of the map. We shall not be interested in the content of
the map. We are interested in what sorts of entities can yield such a map, and
what the map actually means, i.e. the type of territory that the map depicts.

In order to address such questions, we will employ a thought-experiment.
We will use existing knowledge to recursively define and idealise the procedure
for obtaining the map. This gives the natural genetic interaction map, which
is unique and perfect for every organism. Because it is perfect, it can never
be completely achieved other than by the idealised method outlined here. The
natural genetic interaction map may be likened to the square root of 2, which
can not be expressed as a precise numerical value, but can be defined by an exact
procedure.

In the laboratory, an artificial environment known as a chemostat can be used
to obtain the fitness data for the map. In this paper, an imaginary chemostat
is the idealised method for determining fitness. Properly constructed, the imag-
inary chemostat must produce a fitness measurement that is a probability per
unit time that the mutant organism will be lost from the chemostat. Significantly,
this measurement of fitness is not constrained by ideas about what constitutes
an organism. Entities other than classical organisms could maintain themselves
in a chemostat. Similarly, the idea of a gene is here superseded by an opera-
tional definition. Any defect, heritably transmitted by any entity, could have its
fitness consequences measured, and would yield a mark on a map. In biological
organisms, this includes epigenetic information. Heritable transmission outside
of canonical genetics is found in realms other than organisms, such as systems of
human organisation and production, containing such things as programs, propo-
sitions, procedures, protocols, plans, concepts, and customs. Heritably transmit-
ted information is also contained in realms lacking conspicuous symbolic content,
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such as those described by chemical or electronic feedback loops and networks.
Examples of the latter are communication networks and brains.

This method of visualisation suggests a single extended framework for under-
standing nature that is not merely a unity of representation. Not only are niche-
filling entities conspicuous by their abundance in nature, but they are linked
in ecosystems continuously across different realms. Here we extend the frame-
work from biological organisms downwards to entities in the quantum realm.
The framework does not suffer from a classical provenance, and has much in
common with the quantum theory.

2 Construction of the Genetic Interaction Map

Recent advances in automated high-throughput technology and software tech-
niques have allowed the construction of interaction maps for free-living organisms
(Fig. 1; [1]). Construction of genetic interaction maps relies on the expectation
that if two mutations are functionally independent, the fitness phenotype of the
double mutant would be expected to be the product of the measured fitness
phenotypes of the two mutants. Suppose we have two functionally independent
mutations, each with a fitness of 0.5 relative to the strain without a mutation
(the wild-type). Then if the two functionally independent mutations are intro-
duced into the same genetic background, the relative fitness of the double mutant
is expected to be 0.25. Deviations from this expectation imply the existence of
functional associations that embody the life of the organism. Here is not the
place to enumerate the various ways in which mutations can interfere with each
other to produce the deviations seen, but the interested reader may find use-
ful [1,4] and the references contained therein. Be aware that the classical study
of epistasis, which holds genetic interactions as its subject of interest, tolerates
many mathematically courageous formulations that are not relevant to our cur-
rent analysis.

The archetypal measurement of fitness with the greatest sensitivity is to grow
each mutant together with the wild-type strain under competition in a chemo-
stat. A chemostat allows the continuous culture of organisms under essentially
constant conditions. It comprises a culture vessel through which there is a con-
tinuous defined flow of nutrient medium. Provided the flow rate of the medium
does not exceed the growth rate of the organism, the organism will survive in
the chemostat, and essentially constant conditions are obtained. Essentially con-
stant means that averaged over the duration of many inhabited chemostats of
the same type, overall conditions will have a constant distribution i.e. there exists
a definite state space in the sense of dynamical systems theory.

With a few well-known and rare exceptions, the wild-type strain will eventu-
ally displace the mutant strain in the chemostat, and the time taken for it to do
this is the measure of the (lack of) relative fitness in the mutant. Precision in the
measurement of fitness can be increased by repeated measurements. There is no
value in combining together more than two mutations. This is because we wish
to obtain a map, for which pairwise interactions are sufficient. The organism
under study needs to be genetically pure except for the mutations in question.
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Fig. 1. The genetic interaction map for yeast Saccharomyces cerevisiae, redrawn from
[1]. Each node (dot) represents a gene, but each gene could in turn be comprised
of thousands of nodes, each representing a single mutation. Clusters of nodes show
interacting genes, participating in identifiable cellular functions; here there are shown
five labelled examples: 1, secretion; 2, ribosomal functions; 3, glycosylation and cell
wall biosynthesis; 4, cellular morphogenesis; 5, DNA replication and repair.

Graphical techniques can incorporate fitness data for all the pairwise com-
binations of mutants represented as nodes in a static graphical plot. This can
be achieved in a variety of ways in practice, (see for example Refs. [1,4]); but
for our purposes we need only imagine one simple method. For each pairwise
mutation-combination, the deviation from expected fitness is a precisely mea-
sured quantity. This quantity can be used to establish an edge length between
each pair of nodes, by taking the mean edge length between all the nodes and
adjusting it for each pair of nodes, bringing two nodes closer together if they show
a deviation from expected fitness (which indicates an interaction). Pairs of muta-
tions showing a large deviation in fitness will assume a position in close proximity
to each other, provided other mutation-combinations allow it; whereas pairs of
mutations showing no deviation in expected fitness will come to occupy positions
on opposite sides of the map, were it not for connections with other mutations.
The genetic interaction map in (Fig. 1), redrawn from Reference [1] illustrates a
similar visualisation method to the one described above. The resulting map of
interactions points to the underlying information processing structure, exempli-
fied in biochemical pathways and signal transduction pathways, and constituting
the computational activity of the organism (see, for example [3]).

Specific environmental perturbations (changes in the nutrient medium or
chemostat parameters) can be contrived, producing nodes on the map represent-
ing environmental conditions that will connect to the nodes representing genetic
elements involved in dealing with those conditions. The network of interactions
therefore reaches out into the environment, to include nutrients, toxins, and
physical conditions.
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3 The Imaginary Chemostat

Recall the measurement of fitness, in which two types of organism are grown
together in the laboratory chemostat until only type one remains. The procedure
can be repeated until a statistically relevant result is obtained. Since we know
the map depends for accuracy on an arbitrarily large number of runs of the
chemostat, let us imagine being able to make a very large number of runs (say
10100) for each mutant. The chemostat conditions for the runs would have to
be standardised, which we can imagine without being specific. We would expect
the interaction map to sharpen up indefinitely; but we could expand the view
of the map and continuously inspect it for greater detail. Since we would now
be making a practically impossible number of measurements, we might just as
well free the chemostat from any other practical limitation, such as size and
shape of containing vessel, and constituents of the medium flowing through the
chemostat.

For the measurement of fitness it is necessary that an organism must not
mutate, in other words, we must be able to stabilise (or freeze) genetic informa-
tion. This is a requirement for holding constant the object of inquiry.

We need not assume that genetic information must be carried by DNA,
because we could collect every different mutant that could ever occur in our
organism by waiting until such a mutation were to occur; and then stabilise it.
A mutation identifies an inherited trait. If an inherited trait could be carried
by self-replicating RNA, or a methylation pattern independent of the DNA base
sequence, or a prion, or indeed anything at all, we could imagine stabilising it,
isolating the strain of organism carrying it, and measuring its fitness in the same
way as for any other kind of mutant. Since we have fully defined the environ-
ment in which the organism survives, any mutation, and hence functional genetic
information, is operationally defined by its effect on fitness. If it has an effect on
the life of the organism, it will appear as a node on the map.

4 What the Genetic Interaction Map Means

As is well known, the map and the territory are not the same thing. In its con-
struction, the genetic interaction map is a static graphical plot of failures in
fitness due to mutant gene combinations; so what, exactly, is the territory? It
appears intuitively obvious that the map refers to a network structure describing
all the molecular activities of the organism; indeed, the integrity of the entire
field of molecular biology rests on the existence of such a structure. An under-
lying functional network may be held in the mind of the biologist (for exam-
ples, see Refs. [3,5,6]) but only within the context of experiments and contrived
observations, or in some other way disconnected from the selecting environment.
An equivalent interpretation of this functional network is that it corresponds
to naturally-selected biological computation in the organism. Here, we identify
it as the whole functional network corresponding to the survival-strategy of the
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real organism, naturally selected in its real environment. It must be a unitary
object because, insofar as we can freeze the genetic information that defines the
organism, the map is singular and precise, and it must therefore be temporally
closed. In other words, we must have accounted for all the possibilities for the
developmental trajectory of the network. Since we understand that the network
depicts, for a genetically-defined organism, the causal flow of information, energy
and materials, we may call it a causal plexus. This distinguishes it from the wider,
temporally open, causal nexus.

5 Conceptual Simplification

Here we aim to conceptually simplify the system, perhaps to reveal its fundamen-
tal nature. This process of conceptual reduction I will call reductio ad extremum.
Starting with an organism such as yeast, we could grow it in increasingly permis-
sive (that is, less demanding) imaginary chemostat environments. Then we could
delete the unnecessary genes, giving us a simpler type of organism, and a simpler
map. We could delete the genes encoding metabolic enzymes, because we could
supply their products in the chemostat medium. Functions such as sporulation,
sexual reproduction, stationary phase, aerobic respiration, and much regulatory
activity would be redundant in a suitable chemostat, and the genes encoding
these functions could be deleted. We would still have an organism, a niche, a
map, and an underlying causal plexus.

Continued survival of an entity in the chemostat need not rely on cellu-
lar replication, since continuous occupation of the chemostat vessel could be
achieved by the growth of hyphae, that is, without cellular separation. A cellu-
lar structure involving membranes is not required, since a structure such as a
polymeric molecule could propagate in the chemostat. We could delete the genes
encoding the system for energy metabolism, but then we would have to supply
(for example) ATP in the chemostat medium, otherwise the individual entities
would not be able to grow. However, if the entity was simple enough, we would
not need an energy currency such as ATP; instead, we could rely on a supply
of energetically activated precursors for building the structure. Expressed more
generally, an entropy gradient would, at this point, to be required.

After many rounds of reductio ad extremum we would be left with a simplified
organism, and a simplified interaction map (Fig. 2). Eventually, we would arrive
at either of two possibilities.

In the first possibility, we could follow the process of reductio ad extremum
to the point where the entity in the imaginary chemostat would assemble spon-
taneously from the precursors supplied in the chemostat medium. Inoculation
of an existing entity would not be necessary. We could separately make defined
changes (“mutations”) to the medium entering the chemostat, and likewise to
the entity in the inoculum. This would yield a genetic interaction map in which
all the mutations would map to the chemostat itself (the medium, or the vessel
walls). Mutations made to the entity in the inoculum would make no difference
to the presence of the entity in the chemostat; they would not be represented on
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Fig. 2. Examples of entities in the conceptual simplification. Left to right, increasingly
permissive medium. IC, imaginary chemostat. IM, imagined genetic interaction map.
CP, imagined causal plexus. a, yeast. b, ribonucleoprotein complex. c, nucleic acid.
d, self-templating polymer or crystal. e, non-templating polymer growing by terminal
addition of subunits. f, flame. g, vortex.

the map. We could call the entity a nonsicle (non-cycle), and we could call the
highly contrived medium an assertive medium.

In the second possibility, occupation of the chemostat would depend upon an
initial inoculation with a niche-filling entity. In this case, it would indeed be pos-
sible to produce an interaction map for the inoculated entity. We could call the
chemostat environment a permissive medium. A familiar example is to be found
in the commonly-used polymerase chain reaction (PCR). Here, the permissive
medium supplies energetically-activated monomers, polymerase enzymes, pulses
of heat to allow separation of the hydrogen-bonded strands, and a suitable aque-
ous environment. We could usefully hold a generalised conception of a PCR-
like reaction for open-ended propagation, while recognising that self-templating
molecules need not be limited to nucleic acids. After this fashion, a large variety
of simple self-reproducing physical entities could be propagated in an imaginary
chemostat, since the medium, physical activity, and vessel walls of the imaginary
chemostat are not limited in any way.

We could obtain interaction maps for crystals, micelles, hydrophobic com-
plexes, or propagating molecular agglomerations generally (agitation or heat
pulses will be assumed). All that is necessary is that the entities will fill a
chemostat by growth from an inoculum, thereafter to propagate and survive.
We can imagine other well-known self-maintaining entities, such as those gen-
erally described as dissipative structures: a non-exhaustive list would include
flames, corrosions, vortexes, avalanches, and dust-bunnies. We expect to be able
to construct imaginary chemostats, and derive interaction maps for all of the
aforementioned entities.

The functional networks underlying the very simplest physical entities in the
examples above could be described as limit-stable positive feedback loops, or
state-cycles (Fig. 2). These state-cycle “organisms” will have few-node interac-
tion maps, perhaps corresponding to the sites for addition of subunits, or sites
of physical fragility.
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6 The Molecule as an Occupied Niche

Consider the case of a population of entities such as crystals or polymeric mole-
cules, as described above, propagating by cycles of breakage and growth within
a permissive medium, with the potential to indefinitely occupy the imaginary
chemostat. We could ask how many individual molecules there would have to be
in the chemostat to qualify as a replicating entity. Measurement of survival in
the imaginary chemostat requires only that an organism or entity can be reliably
observed. We are forced to conclude that to qualify as an entity occupying the
chemostat, we do not need a population larger than one (or two, depending on
the stage of replication).

Thus the entity occupying the niche could be a single polymeric molecule,
replicating by a cycle of growth and fragmentation, in a suitable permissive
medium. Let us now ask if we can simplify it further. Observing a cycle of poly-
merisation and breakage, we can reduce this conceptually to a dimer. In other
words, the entity inhabiting the imaginary chemostat is now a dimeric molecule,
dissociating into monomers under the conditions provided by the permissive
medium, such that each monomer is then available for attachment to an acti-
vated monomer, again provided by the permissive medium, eventually forming a
new dimer. The cycle of reproduction would continue, and the chemostat would
be filled. We continue to see an entity in a niche; we could obtain a “mutant”,
and construct an interaction map.

This can be simplified even further without departing from the conceptual
framework. The entity occupying the chemostat does not have to be a homod-
imeric molecule; it could be a heterodimer. How large does the smaller subunit of
the heterodimer have to be, to qualify for restoring the entity to a mature form?
It could be a single atom, say of oxygen; and thus our entity could be maintained
indefinitely through cycles of oxidization-reduction in a suitable chemostat. But
why restrict our notion of dynamic identity to oxidation-reduction cycles? Why
not maintain identity through addition and removal of a single electron? Or a
photon?

If it was a photon, we would now have reduced the entity inhabiting the
imaginary chemostat, originally undeniably an organism within a niche, to the
size and complexity of a single excitable molecule propagating through time in
a permissive medium that supplies an energy gradient.

Surely, niche-filling does not reduce to excitability? After all, a single stable
molecule in the ground state is hardly any different from its dynamically excited
counterpart, and it, too, propagates through time, by virtue of its internal sub-
molecular interactions. We should therefore consider the dynamically excited
molecule and its ground-state counterpart as separated by a step in appearance,
but not a jump in realm.

In either case, the imaginary chemostat is not now a container; instead, it
is a localized arrangement of energy (a container of sorts) where the positional
information in the trajectories of the sub-molecular particles in the molecule
itself constitute self-maintaining structural information. Note that the imaginary
chemostat continues to function as before: as a niche-filling entity. The molecule
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does have a measurable fitness, since it could (and inevitably would) disintegrate
with some non-zero probability, were we to “mutate” the positional information
carried by atomic structure. We could draw an interaction map, by “mutating”
the molecular structure. Now we would be interfering with the energy states
of electrons, atoms, and perhaps other particles, thereby changing the fitness
(stability) of the molecule. If we could interfere with these vital molecular com-
ponents one at a time, and in pairwise combination as we did for a biological
organism, we could obtain a “genetic interaction map” for the molecule.

It is likely that any or all of the above features of niche-filling entities could
be encompassed in some kind of taxonomic structure. The current framework
is not constrained by taxonomic considerations. Instead, it draws attention to a
type of structure that demands a taxonomy. However, such a taxonomy, even if
it was useful, could make no difference to the underlying reality.

Any suggestion that there is more than one type of natural entity in the
chain from molecule to organism must suggest a stage in the proposed sequence of
reductio ad extremum at which one type of entity becomes another. For example,
proposed niche-filling entities that have not yet been shown to arise in nature
(such as replicating molecules) might be dismissed from constituting examples of
real entities, thereby disallowing the reductio ad extremum to continue beyond
this point, and imposing an early discontinuity in the type of entity. However,
this suggestion would continually have to be updated to take into account the
discovery of self-maintaining molecular systems on other planets, and is therefore
arbitrary, and must be discounted.

Thus we find that the framework provided by the imaginary chemostat does
not suffer from the need to draw a discontinuity in the spectrum of complexity
from the organism down to the molecule. It would recognise a discontinuity
if such a discontinuity was found (as in the example of the nonsicle described
above, in which the entity occupying the niche has an empty interaction map);
but all the entities described above, from complex organisms down to molecules,
have an equivalent type. They are all self-maintaining, niche-filling entities for
which we can, in principle, derive an interaction map, in turn pointing to an
underlying functional network, here called a causal plexus.

It is reasonable to suggest that if we can arrive at a molecule from an organ-
ism by reductio ad extremum, then it is trivial to extend this framework further
downwards to include atoms and subatomic particles; indeed, it would be unnat-
ural not to proceed with such an extension. This is because not only molecules,
but all the components that make up a molecule, ultimately fermions and bosons,
propagate through time in the same way relative to the bottom level permis-
sive medium. This universality of behaviour for all entities at the level of the
molecule and below finds expression in the quantum theory. We may identify
the permissive medium as the level at which Planck-scale interactions occur.

In ecological niche-structures, the process by which one niche is successfully
invaded by organisms from another may be called natural selection. Biologists
routinely visualise this as a series of connected niches in a niche-structure, such
as an evolutionary series of yeast, which might evolve to exploit a novel type of
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sugar molecule. Here, change in the overall genetic makeup of the organism is an
example of downward causation [7], caused by natural selection for survival of
novel mutants in successive niches. I will suggest that the same process explains
the selection of an empty niche-structure in the permissive medium, and that this
in turn constrains the propagation of particles through the permissive medium.

7 Discussion

We have seen that the occupied niche is a fundamental entity, not limited to
populations of biological organisms, deserving of a special status, and here called
the causal plexus. The imaginary chemostat was the tool of thought used to arrive
at this fundamental entity, and to extend a framework encompassing instances of
it, down to the quantum realm. I will argue elsewhere that this framework must
encompass all of reality, including such things as human organisations, minds,
and abstract structures such as mathematics, rendered as niche structures.

The occupied niche revealed in this way is a singular, perfect object. This
is because the growth of organisms demands the definition of a niche which
completely defines all of the possible states of occupation resulting in an exact
conception of fitness. The measurement of survival, expressed as fitness, repeated
indefinitely, can become as precise as we like, thus yielding the singular object
for the precisely defined occupied niche and no other. Note that it is a conceptual
object. The real organisms we see in the world around us are particular instances
of this object. They are all different from each other. However similar they may be
in appearance to each other, in genetic definition and environmental provenance,
they will always be distinguishable by the method described (remember that real
organisms can not be genetically “frozen”). This means that different individuals
within a species, for example, will not occupy exactly the same niche, but a niche-
cloud. Species have found a way to exploit niche-clouds through the generation
and maintenance of appropriate variability.

But let us stay with the singular, conceptual object, the occupied niche.
As well as having a singular nature, it is temporally closed ; it is also dynami-
cally self-renewing, provided it does not interact with another system. If it were
to interact outside of its definition as described, it would have been changed;
we would no longer looking at the same object, and its behaviour would not be
defined in the framework. Its envelope, or interface with the environment, is part
of its (self-renewing) functional network; it has zero-order interaction kinetics;
and it can form new stable structures by engaging with other niches, forming a
niche-structure. Interactions take the form of binary fusion, or they can disinte-
grate into a product-pair, the directionality provided by natural selection. The
foregoing is a description of niches occupied by biological organisms (Sects. 4
and 5), yet it could also be a description of quantum particles. The explanation
for the similarity of description offered here is that they are, indeed, the same
type of object.

All interactions between them must also be of a single type, as visualised
within the current framework. Consider the constitution of the organism as an
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occupied niche. It is visualised (Sects. 4, 5, and 6 above) as a functional net-
work of molecular reactions. But the framework reveals molecules themselves to
be occupied niches, so the molecular reactions within an organism itself must
constitute an internal niche-structure. Here, energy and structural information
(internal niche structure) may be seen as alternative visualisations of the same
thing. Thus the framework as a whole describes a single universal niche-structure.
There are no absolute levels of organisation spanning the niche-structure, since
organisms not only eat each other, they may also eat molecules (or, indeed,
photons) directly. Thus a level of organisation may be a pedagogical conve-
nience, but a mature viewpoint sees just one, big, self-similar niche-structure, or
causal nexus.

According to this niche-filling conception of reality, a particle is a locally
stable occupied niche, or niche-particle, a causal plexus. Niche-particles are stable
because on their scale of existence there is nowhere else for energy or structural
information to go to. We could acknowledge the notion of a Hamiltonian system,
but here we need only care about a defined system of occupied and empty niches
with a precisely allowed quantity of energy for each niche-particle type. Since
niches are tightly defined in themselves, not only must occupied niches have
a singular identity, but energy (equivalently, structural information) must be
conserved when changes in niche occupancy occur. This parallels the ecological
case in which the flow of information or energy must be completely accounted
for, and at least in principle, all the occupied niches identified, and their sources
of energy and information traced.

A particle has to take some definite identity, and some people find it difficult
to accept that this might be of a distributed form. Yet we are familiar with niches
being distributed in space, so we should have no difficulty in thinking of an occu-
pied niche constituting a fundamental particle as a particle’s -worth of energy
(niche-particle), necessarily carrying with it positional information (structural
information) giving it a type-identity. As with any occupied niche convention-
ally understood, all a niche-particle can do is invade neighbouring niches that
allow maintenance of energy (information). Since it has a singular nature, all
energy and information must be accounted for. It could enter a neighbouring
empty niche, losing identity in the previous niche but maintaining identity in
the new niche (propagation); or, if the neighbouring niche is already filled, it
could merge its energy and structural information with it, creating a new type
of niche-particle with a type-identity embracing both of the contributing niche-
particles (interaction). Run the interaction in reverse to allow the niche-particle
to disintegrate. The entropy gradient provides directionality by supplying or
removing niche-particles at either end of the niche-structure.

Returning to the bottom-level permissive medium, let us suppose that the
current state of reality comprises niche-particles propagating through time and
space, where the permissive medium comprises only empty niches, like a tem-
plate or skeleton upon which occupied niches evolve. Where might these empty
niches come from? Recalling that all niches are like islands in time, it could
be suggested that the empty niches in the permissive medium necessarily take
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the form of closed time-symmetrical causal loops; necessarily, because energy, or
structural information, can not be supplied or removed without reason. Closed
time-symmetrical causal loops would be equivalent to the structures visualised
by Feynman diagrams. We could further suppose that these structures could
(indeed, must) be chained together over arbitrary distances in space, provided
that they never violate closed time-symmetrical causality. Such a structure of
empty niches could terminate at occupied niches (niche-particles), providing an
opportunity for the niche-particles to invade the empty niche structure. In this
case, the empty niche-structure (alternatively understood as a template of vir-
tual particles) could be seen as naturally selected by the current state of all
real niche-particles. We could say that the empty niche-structure is downwardly
caused [7] by the current occupied niche-structure.

Since time is entirely constituted by change at the niche-particle level, the
rate of change of the underlying permissive medium in creating the empty
niche structure has no meaning, i.e., it is extra-temporal. Seen from the van-
tage point of occupied niches, any change in the empty niche-structure provided
by the permissive medium would be instantaneous, and no structure deeper than
the permissive medium is called for. This idea seems to resonate with the idea
of the quantum potential of [8], (although here without a constraining math-
ematical formalism) as it could be said to be a self-organizing process of the
underlying field that lays down a guide or template. Since there is no reason
why the empty niche structures of the type suggested could not communicate
through the whole permissive medium, it would effectively involve the whole
field, and carry information about any experimental arrangement in which a
particle would find itself.

Thus the niche-particle is trapped in a niche-structure selected by current
reality. This would be an expression of the current experimental setup. If the
experimental setup were to be changed, (in particular, the orientation or presence
of slits, arms or mirrors) then the empty niche-structure, which defines the route
the particle will take, must adjust to this changed conformation. Since time arises
out of changes in the occupied niche-structure, not the empty niche-structure
beneath it, any change in the empty niche-structure would always be perceived
from above as instantaneous. There would be no constraint on the distance over
which an empty niche-structure could develop; only that it should be maximally
economical in an energetic (informational) sense. Thus it would conform to the
principle of least action.

An approach taken by many investigators in the field of Quantum Interac-
tions is to take an understanding of the quantum formalism, and apply it to
problems resistant to other techniques. The approach taken in this paper was
different, extending from obligatory biological foundations only. Revealed in the
genetic interaction map was an image of “the organism” as a naturally-selected
functional network, and then as an occupied niche. Reduction allowed the devel-
opment of a framework, with quantum particles visualised as occupied niches,
evolving upon an empty niche-structure, in turn selected within the permissive
medium constituting Planck-scale interactions. The framework is simple, has no
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algebraic content, and may help towards a better understanding of quantum
interactions, and to further the interpretation of the quantum theory generally.
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