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Abstract This paper focuses on designing an appropriate sampled-data controller
to deal with the problem of master–slave synchronization for chaotic neural net-
works with discrete and distributed time varying delays in the presence of a
constant input delay. The striking feature of this article is that we utilize the
decomposition approach of delay interval when constructing a new Lyapunov
functional. Besides, combining with the input delay approach and the linear matrix
inequalities (LMIs) method, the desired sampled-data controller gain can be
obtained by using the Matlab software to solve a series of LMIs. Finally, a
numerical example is provided to verify the effectiveness of the given results.

Keywords Master–slave synchronization � Chaotic neural networks � Sampled
data controller � Lyapunov functional

1 Introduction

Since the master–slave (drive response) concept which was proposed by Pecora
and Carroll in their pioneering work [1], researchers have spent considerable time
and efforts to achieve the master–slave synchronization of chaotic neural networks
with time delays. We must notice that it cannot be avoided generating time delays
when the neuron transmitting signals during real application. Moreover, the advent
of time delays will cause the neural networks’ presented complicated and instable
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performance. In order to make the results more universal, many articles [2, 3] take
the time delays into account while analyzing the chaotic neural networks. Compare
with [2], the authors of [3] considered the time varying delays instead of constant
time delays, and obtained less conservative results.

So far, various control schemes are applied to achieve the synchronization of
chaotic neural networks, which include impulsive control [4], adaptive control [5],
state feedback control [6], sampled data control [7], pinning control [8].

Among these control schemes, the sampled data control technology has enjoyed
widespread adoption due to its own outstanding advantages. The sampled data
controller takes up low communication channel capacity and has high resistance to
anti-interference, which can accomplish the control task more efficiently. Thanks
to the input delay approach [9], we can deal with the discrete term more easily. In
[10], For the sake of getting sufficient exponential synchronization conditions, the
authors made use of Lyapunov stability theory, input delay approach as well as
linear matrix inequalities (LMI) technology. But this article did not take the signal
transmission delay into account. To the best of the authors’ knowledge, Little
literature has been investigated the master–slave synchronization schemes for
neural networks with discrete and distributed time varying delays using sampled-
data control in the presence of a constant input delay, and still remains
challenging.

From the foregoing discussions, the major thrust of the paper is to discuss the
problem of master–slave synchronization for neural networks with mixed time
varying delays (discrete and distributed delays) by utilizing sampled data control
in the presence of a constant input delay. The desired sampled data controller can
be obtained through computing some LMIs which depend on the Lyapunov
functionals. The usefulness of input delay approach is also considered. Besides, the
introduction of decomposition approach of delay interval will make our results less
conservative. The proposed synchronization control scheme is verified through
simulation results.

Notation: The notations which are used in this article are defined as: Rn and ¼
denote the n—dimensional Euclidean space and the set of all m� n real matrices,
respectively. The notation X [ YðX� YÞ, where X and Y are symmetric matrices,
means that X � Y is positive definite (positive semidefinite). I and 0 represent the
identity matrix and a zero matrix, respectively. The superscript ‘‘T ’’ denotes
matrix transposition, and diagf. . .g stands for a block diagonal matrix. �k k denotes
the Euclidean norm of a vector or the spectral norm of matrices. For an arbitrary

matrix B and two symmetric matrices A and C,
A B
� C

� �
denotes a symmetric

matrix, the ‘‘*’’ are symmetric elements that stand for the symmetric matrix. If the

Table 1 Maximum sampling interval h for different g

g 0.01 0.02 0.03 0.04 0.05
h 0.21 0.18 0.15 0.13 0.10
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dimensions of matrices are not particularly pointed out, we will deem the matrices
have appropriate dimension for mathematical operations.

2 Model and Preliminaries

Consider a neural network with mixed delay as follow:

_xðtÞ ¼ �CxðtÞ þ Af ðxðtÞÞ þ Bf ðxðt � sðtÞÞÞ þ D

Z t

t�rðtÞ

f ðxðhÞÞdhþ J ð1Þ

where xðtÞ ¼ ½x1ðtÞx2ðtÞx3ðtÞ � � � xnðtÞ�T 2 Rn and f ðxðkÞÞ ¼ ½f1ðx1ðtÞÞf2ðx2ðtÞÞ
f3ðx3ðtÞÞ� � � fnðxnðtÞÞ�T are, respectively, the state variable and the neuron activation
function; C ¼ diagfc1; c2; c3; . . .; cng is a diagonal matrix with positive entries;
A ¼ ðaijÞn�n; B ¼ ðbijÞn�n; and D ¼ ðdijÞn�n; are, respectively, the connection
weight matrix, the discretely delayed connection weight matrix and the distribu-
tively delayed connection weight matrix; sðtÞ denotes the time varying delay, and
satisfies 0� sðtÞ� s; _sðtÞ� u; rðtÞ is expression of the distributed delay which is
supposed to satisfied 0� rðtÞ� r. The mentioned definitions of s; u and r are
constants.

With regard to the neuron activation function, the following hypotheses will
come into play.

Assumption 1 There exists some constants L�i , Lþi , i ¼ 1; 2; 3. . .n, such that the

activation function f ð�Þ is satisfied with L�i �
fið#1Þ�fið#2Þ

#1�#2
� Lþi for #1; #2, and

#1 6¼ #2.

In this paper, neural networks system (1) is deemed as the master system and a
slave system for (1) will be designed as
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Fig. 1 Chaotic behavior of the master system (1)
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_yðtÞ ¼ �CyðtÞ þ Af ðyðtÞÞ þ Bf ðyðt � sðtÞÞÞ þ D

Z t

t�rðtÞ

f ðyðhÞÞdhþ J þ uðtÞ ð2Þ

where D, A, B and C are matrices as in (1), and uðtÞ 2 Rn is the control input to be
designed.

The synchronization error signal is described as eðtÞ ¼ yðtÞ � xðtÞ, then the
error signal system can be exhibited as

_eðtÞ ¼ �CeðtÞ þ AgðeðtÞÞ þ Bgðxðt � sðtÞÞÞ þ D

Z t

t�rðtÞ

gðeðhÞÞdhþ uðtÞ ð3Þ

where gðeðtÞÞ ¼ f ðyðtÞÞ � f ðxðtÞÞ.
In this paper, we define the updating signal time of Zero-Order-Hold (ZOH) by

tk, and assume that the updating signal (successfully transmitted signal from the
sampler to the controller and to the ZOH) at the instant tk has experienced a
constant signal transmission delay g. Here, the sampling intervals are supposed to
be less than a given bound and satisfy tkþ1 � tk ¼ hk� h.

The h represents the largest sampling interval. Thus, we can obtain that
tkþ1 � tk þ g� hþ g� d.

The main aim of this paper is to achieve the synchronization of the master
system (1) and slave system (2) together with the following sampled-data
controller

uðtÞ ¼ Keðtk � gÞ; tk � t\tkþ1; k ¼ 0; 1; 2; . . . ð4Þ

where K is the sampled data feedback controller gain matrix to be determined.
Applying control law (4) into the error signal system (3)

_eðtÞ ¼ �CeðtÞ þ AgðeðtÞÞ þ Bgðxðt � sðtÞÞÞ þ D

Z t

t�rðtÞ

gðeðhÞÞdhþ Keðtk � gÞ ð5Þ

Defining dðtÞ ¼ t � tk þ g, tk� t\tkþ1, besides, 0� dðtÞ� d. Then error signal
system can be described as the following condition

_eðtÞ ¼ �CeðtÞ þ AgðeðtÞÞ þ Bgðxðt � sðtÞÞÞ þ D

Z t

t�rðtÞ

gðeðhÞÞdhþ Keðt � dðtÞÞ ð6Þ
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Next, we shall briefly introduce the lemmas which will be used in this paper.

Lemma 1 (Jensen inequality) [11] For any matrix x [ 0, there existing scalars a
and bðb [ aÞ, a vector function / : ½a; b� ! Rn such that the integrations con-
cerned are well defined, then

ðb� aÞ
Zb

a

/ðcÞTx/ðcÞdc�
Zb

a

/ðcÞdc

2
4

3
5

T

x
Zb

a

/ðcÞdc

2
4

3
5 ð7Þ

Lemma 2 (Extended Wirtinger inequality) [12] For any matrix Z [ 0, if uðtÞ 2
x½a; bÞ and uðaÞ ¼ 0, then following inequality holds:

Zb

a

uðfÞT ZuðfÞdf� 4ðb� aÞ2

p2

Zb

a

_uðfÞT Z _uðfÞdf ð8Þ

Lemma 3 The constant matrix Y 2 Rn�n is a positive definite symmetric matrix,
if the positive scalar d is satisfied with 0� dðtÞ� d, and the vector-valued function

_y : ½�d; 0� ! Rn is existent, then the integral term �d
Rt

t�d
_yTðfÞY _yðfÞdf can be

defined as

�d

Z t

t�d

_yTðfÞY _yðfÞdf�
yðtÞ

yðt � dðtÞÞ
yðt � dÞ

2
4

3
5

T �Y Y 0
� �2Y Y
� � �Y

2
4

3
5 yðtÞ

yðt � dðtÞÞ
yðt � dÞ

2
4

3
5 ð9Þ

3 Main Results

In this section, a synchronization criterion will be presented which can make sure
that the slave system (2) is synchronized with master system (1). Above all, we are
going to divide the sampling interval into three parts, respectively,
�g; 0½ �; �g;� gþ h

2

� �� �
; � gþ hð Þ;� gþ h

2

� �� �
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Next, we will list a collection of notations which are used in this paper.

L1 ¼ diag L�1 Lþ1 ; L
�
2 Lþ2 ; . . .; L�n Lþn

� 	
;

L2 ¼ diag
L�1 þ Lþ1

2
;
L�2 þ Lþ2

2
; . . .

L�n þ Lþn
2


 �

Theorem 1 Given scalar c[ 0, if there exist P [ 0; R1 [ 0; R2 [ 0; R3 [ 0;
Z1 [ 0; Z2 [ 0; Z3 [ 0; Z4 [ 0; Z5 [ 0; Z6 [ 0; Q [ 0; W [ 0; G1; G2; G;
Fdiagonal matrices M� 0; V1 [ 0; V2 [ 0 such that

N1 ¼

R11 R12 R3 0 R15 Z2 0 0 R19 GB GD
� R22 0 0 R25 0 0 0 cGAþ L3M cGB cGD
� � R33 R3 0 0 0 0 0 V2F2 0
� � � R44 0 0 0 0 0 0 0
� � � � R55

p2

4 W Z4 Z4 GA GB GD
� � � � � R66 Z6 0 0 0 0
� � � � � � R77 0 0 0 0
� � � � � � � R88 0 0 0
� � � � � � � � R99 0 0
� � � � � � � � � �V2 0
� � � � � � � � � � �Q

2
66666666666666664

3
77777777777777775

\0

ð10Þ

N2 ¼

R11 R12 R3 0 R15 Z2 0 0 R19 GB GD
� R22 0 0 R25 0 0 0 cGAþ L3M cGB cGD
� � R33 R3 0 0 0 0 0 V2F2 0
� � � R44 0 0 0 0 0 0 0
� � � � R̂55 R56 Z6 Z4 GA GB GD
� � � � � R66 0 0 0 0 0
� � � � � � R77 Z4 0 0 0
� � � � � � � R88 0 0 0
� � � � � � � � R99 0 0
� � � � � � � � � �V2 0
� � � � � � � � � � �Q

2
66666666666666664

3
77777777777777775

\0

ð11Þ
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R11 ¼ R1 þ R2 � R3 þ Z1 þ Z2 � F1V1 � 2GC; R12 ¼ P� cGC � G� L3M

R15 ¼ F � GC;R19 ¼ V1F2 þ GA;R22 ¼ s2R3 þ g2Z2 þ
h2

4
Z4 þ

h2

4
Z6 þ h2W1 � 2cG

R25 ¼ G� cF;R33 ¼ ðu� 1ÞR1 � 2R3 � F1V2;R44 ¼ �R2 � R3

R55 ¼ �2Z4 �
p2

4
W þ 2F; R̂55 ¼ �2Z6 �

p2

4
W þ 2F

R56 ¼ Z6 þ
p2

4
W ;R66 ¼ �Z1 � Z2 þ Z5 � Z6 �

p2

4
W

R77 ¼ Z3 � Z4 � Z5 � Z6;R88 ¼ �Z3 � Z4;R99 ¼ r2Q� V1

then the slave system (1) is synchronized with master system (2). Furthermore, the
sampled data controller gain can be obtained by K ¼ G�1F.

Proof Construct a discontinuous Lyapunov functional for the error system (7)

VðtÞ ¼
X7

j¼1

VjðtÞ; t 2 ½tk; tkþ1Þ ð12Þ

V1ðtÞ ¼ eðtÞT PeðtÞ þ 2
Xn

i¼1

mi

Zei

0

ðgiðhÞ � LihÞdh

V2ðtÞ ¼
Z t

t�sðtÞ

eðhÞT R1eðhÞdhþ
Z t

t�s

eðhÞT R2eðhÞdhþ s
Z0

�s

Z t

tþh

_eðhÞT R3 _eðhÞdhdn

V3ðtÞ ¼
Z t

t�g

eðhÞT Z1eðhÞdhþ h

Z0

�g

Z t

tþh

_eðhÞT Z2 _eðhÞdhdn

V4ðtÞ ¼
Zt� gþh

2ð Þ

t�ðhþgÞ

eðhÞT Z3eðhÞdhþ h

2

Z� gþh
2ð Þ

�ðhþgÞ

Z t

tþh

_eðhÞT Z4 _eðhÞdhdn

V5ðtÞ ¼
Zt�g

t� gþh
2ð Þ

eðhÞT Z5eðhÞdhþ h

2

Z�g

� gþh
2ð Þ

Z t

tþh

_eðhÞT Z6 _eðhÞdhdn

V6ðtÞ ¼ r
Z0

�r

Z t

tþh

gðeðhÞÞT QgðeðhÞÞdhdn

V7ðtÞ ¼ ðd � gÞ2
Z t

tk�g

_eðhÞT W _eðhÞdh� p2

4

Zt�g

tk�g

ðeðhÞ � eðtk � gÞÞT WðeðhÞ � eðtk � gÞÞdh

Sampled-Data Synchronization for Chaotic Neural Networks... 727



V7ðtÞ can be rewritten as

V7ðtÞ ¼ ðd � gÞ2
Z t

t�g

_eðhÞT W _eðhÞdhþ ðd � gÞ2
Zt�g

tk�g

_eðhÞT W _eðhÞdh

� p2

4

Zt�g

tk�g

ðeðhÞ � eðtk � gÞÞT WðeðhÞ � eðtk � gÞÞdh

M ¼ diagfm1;m2; . . .mng� 0

From the Lemma 2, we can infer V7ðtÞ� 0. Furthermore, V7ðtÞ will vanish at
t ¼ tk. Therefore, we can conclude that limt!t�k

VðtÞ�VðtkÞ.
Next, we will compute the derivative of VðtÞ with the corresponding trajectory

of system (6)

_V1ðtÞ ¼ 2eðtÞT P _eðtÞ þ 2ðgðeðtÞÞT � L3eðtÞTÞM _eðtÞ
_V2ðtÞ� eðtÞT R1eðtÞ þ ðu� 1Þeðt � sðtÞÞT R1eðt � sðtÞÞ þ eðtÞT R2eðtÞ � eðt � sÞT R2eðt � sÞ

þ s2 _eðtÞT R3 _eðtÞ � s
Z t

t�sðtÞ

_eðhÞT R3 _eðhÞdh� s
Zt�sðtÞ

t�s

_eðhÞT R3 _eðhÞdh

According to Lemma 1

�s
Z t

t�s

_eðhÞTR3 _eðhÞdh� eðtÞ
eðt � sÞ

� �T �R3 R3

� �R3

� �
eðtÞ

eðt � sÞ

� �
ð13Þ

Consequently, the following inequality holds
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Fig. 2 Chaotic behavior of the slave system with uðtÞ ¼ 0
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_V2ðtÞ� eðtÞTR1eðtÞ þ ðu� 1Þeðt � sðtÞÞT R1eðt � sðtÞÞ þ eðtÞT R2eðtÞ � eðt � sÞTR2eðt � sÞ þ s2 _eðtÞT R3 _eðtÞ

þ
eðtÞ

eðt � sðtÞÞ

� �T �R3 R3

� �R3

� �
eðtÞ

eðt � sðtÞÞ

� �
þ

eðt � sðtÞÞ
eðt � sÞ

� �T �R3 R3

� �R3

� �
eðt � sðtÞÞ

eðt � sÞ

� �

_V3ðtÞ� eðtÞTZ1eðtÞ � eðt � gÞTZ1eðt � gÞ þ g2 _eðtÞTZ2 _eðtÞ þ
eðtÞ

eðt � gÞ

� �T �R3 R3

� �R3

� �
eðtÞ

eðt � gÞ

� �

_V4ðtÞ ¼ e t � gþ h

2

� 
� 
T

Z3e t � gþ h

2

� 
� 

� eðt � ðhþ gÞÞTZ3eðt � ðhþ gÞÞ þ h

2

� 
2

_eðtÞT Z4 _eðtÞ

�
Zt� gþh

2ð Þ

t�ðhþgÞ

_eðhÞTZ4 _eðhÞdhþ h

2

� 
2

_eðtÞTZ4 _eðtÞ �
Zt� gþh

2ð Þ

t�ðhþgÞ

_eðhÞT Z4 _eðhÞdh

_V5ðtÞ ¼ eðt � gÞTZ5eðt � gÞ � e t � gþ h

2

� 
� 
T

Z5e t � gþ h

2

� 
� 

þ h

2

� 
2

_eðtÞTZ6 _eðtÞ

According to Lemma1 and Lemma 3, if dðtÞ 2 �ðhþ gÞ;� gþ h
2

� �� �
, then the

following inequalities hold

�
Zt� gþh

2ð Þ

t�ðhþgÞ

_eðhÞT Z4 _eðhÞdh�
e t � gþ h

2

� �� �
eðt � dðtÞÞ

eðt � ðhþ gÞÞ

2
4

3
5

T �Z4 Z4 0
0 �2Z4 Z4

0 0 �Z4

2
4

3
5 e t � gþ h

2

� �� �
eðt � dðtÞÞ

eðt � ðhþ gÞÞ

2
4

3
5

ð14Þ

�
Zt�g

t� gþh
2ð Þ

_eðhÞT Z6 _eðhÞdh� eðt � gÞ
e t � gþ h

2

� �� �� �T �Z6 Z6

� �Z6

� �
eðt � gÞ

e t � gþ h
2

� �� �� �

ð15Þ

If dðtÞ 2 � gþ h
2

� �
;�g

� �
, we have similar inequalities.
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Fig. 3 State responses of
error system
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_V6ðtÞ ¼ r2gðeðtÞÞT QgðeðtÞÞ � r
Z t

t�r

gðeðhÞÞT QgðeðhÞÞdh

� r2gðeðtÞÞT QgðeðtÞÞ �
Z t

t�r

gðeðhÞÞT dhQ

Z t

t�r

gðeðhÞÞdh

_V7ðtÞ� ðd � gÞ2 _eðtÞT W _eðtÞ � p2

4

eðt � gÞ
eðtk � gÞ

� �T �W W

� �W

� �
eðt � gÞ
eðtk � gÞ

� �

Based on the error system (6), for any appropriately dimensioned matrices G1

and G2, the following equations are true

0 ¼ 2 eðtÞT G1 þ eðtk � gÞT G1 þ _eðtÞT G2
� �h

� _eðtÞ � CeðtÞ þ AgðeðtÞÞ

þ Bgðeðt � sðtÞÞÞ þ D

Z t

t�rðtÞ

gðeðhÞÞdhþ Keðt � dðtÞÞ
i ð16Þ

where G1 and G2 are defined as G1 ¼ G; G2 ¼ cG:
Besides, we can obtain from Assumption 1 that for j ¼ 1; 2; 3; . . .; n :

0� eðtÞ
gðeðtÞÞ

� �T �L�j Lþj ejeT
j � L�j þLþj

2 eieT
i

� ejeT
j

" #
eðtÞ

gðeðtÞÞ

� �
ð17Þ

where ej stands for the unit column vector with 1 element on its jth row and zeros
elsewhere. Therefore, the following inequality can be derived, for any appropri-
ately dimensioned matrices V1 [ 0 and V2 [ 0.

0� eðtÞ
gðeðtÞÞ

� �T �L1V1 L2V1

� �V1

� �
eðtÞ

gðeðtÞÞ

� �
þ eðt � sðtÞÞ

gðeðt � sðtÞÞÞ

� �T �L1V2 L2V2

� �V2

� �
eðt � sðtÞÞ

gðeðt � sðtÞÞÞ

� �( )

ð18Þ

Now substituting (16) and (18) to _VðtÞ, and letting K ¼ G�1F, then the fol-
lowing inequality will be achieved

_VðtÞ� vðtÞTðNkÞvðtÞ; k ¼ 1; 2 ð19Þ

where

730 R.-X. Nie et al.



vðtÞ ¼ eðtÞT _eðtÞT eðt � sðtÞÞT eðt � sÞT eðt � dðtÞÞT eðt � gÞT e t � gþ h
2

� �� �T
h

eðt � ðgþ hÞÞT gðeðtÞÞT gðeðt � sðtÞÞÞT
Rt

t�rðtÞ
gðeðhÞÞTdh

#T

Thus, based on (10) and (11), we can conclude that _VðtÞ� � f eðtÞk k2 for a small
scalar f [ 0.

According to the Lyapunov stability theory, it can be inferred that the slave
system (2) is synchronized with the master system (1). This completes the proof.

Remark 1 A new synchronization criterion for the master system (1) and slave
system (2) are introduced in Theorem 1 through constructing a novel Lyapunov
functional. Numerous LMIs which are applied to derive sufficient conditions
which can be calculated effectively by the Matlab LMI control toolbox.

Remark 2 Thanks to the term V7ðtÞ as well as the decomposition method of delay
interval, the sawtooth structure characteristic of sampling input delay is used
properly, and the existing results will be improved significantly.

4 Numerical Example

In this simulation, we choose the activation functions as f1ðs) ¼ f2ðs) ¼ tanhðs):
The parameters of master system (1) and slave system (2) are assumed as

C ¼
1 0

0 1

� �
;A ¼

1:8 �0:15

�5:2 3:5

� �
; B ¼

�1:7 �0:12

�0:26 �2:5

� �
;

D ¼
0:6 0:15

�2 �0:12

� �

It is clear that L1 ¼ 0, L2 ¼ 0:5I.
We suppose that J ¼ 0; discrete delay sðtÞ ¼ et

etþ1 ; distributed delay

rðtÞ ¼ 0:5 sin2ðtÞ. The other parameters are defined as s ¼ 1, u ¼ 0:25 and
r ¼ 0:5. The initial values of master system and slave system are presented as

xð0Þ ¼ 0:3 0:4½ �T ; yð0Þ ¼ �0:2 0:7½ �T , respectively. The chaotic behavior of
the master system and the slave system without controller are given in Figs. 1 and
2, respectively.

While employing Theorem 1, we create Table 1 to show the relationship
between the transmission delay g and the maximum values of sampling interval h.
From Table 1, we can get the largest sampling interval h ¼ 0:21 when the cor-
responding constant delay g ¼ 0:01. Calculating the LMIs (10) and (11), the
controller gain is presented as

K ¼ �5:7352 0:0702
1:1632 �6:6532

� �
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Based on the mentioned controller gain, the response curves of control input (4)
and system error (6) are exhibited in Figs. 3 and 4, respectively. Clearly, numerical
simulations demonstrate that the designed controller can achieve master–slave
synchronization.

5 Conclusions

In this paper, the problem of master–slave synchronization has been studied for
chaotic neural networks with discrete and distributed time varying delays in the
presence of a constant input delay. Based on the Lyapunov stability theory, input
delay method as well as the decomposition approach of delay interval, we con-
struct a new Lyapunov functional and derive the less conservative results. Ulti-
mately, numerical simulations demonstrate the advantage and effectiveness of the
obtained results.
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