Dynamic, Tagless Cache Coherence
Architecture in Chip Multiprocessor

Mian Lou and Jianqing Xiao

Abstract Chip multiprocessor (CMP) systems rely on a cache coherence protocol
to maintain data coherence between local caches and main memory. The tradi-
tional protocols adopted are based either on data invalidation or on data update
policies. However, these strategies do not consider the changes in the data access
patterns at runtime. This paper explores a novel dynamic hybrid cache coherence
protocol, with the combined use of the two typical protocols. To automatically
adapt functioning mode of the protocol to application behavior, an efficient pro-
tocol algorithm is also presented. Moreover, by keeping a copy of all L1 tags, an
original tagless structure that costs less area replaces the traditional full bit-vector
directory. The simulation results show appreciable reductions in overall cache area
and power consumption, with significant reduction in entire execution time.

Keywords Cache coherence - Dynamic - Tagless directory - Area - Power

1 Introduction

The huge number of transistors that are currently supplied in a single die has made
major microprocessor vendors to shift toward multicore architectures in which
several processor cores are integrated on a single chip. Chip multiprocessors
(CMPs) have important advantages over very wide-issue out-of-order superscalar
processors. In particular, they provide benefits such as low communication latency,
a well-understood programming model, and a decentralized topology well suited
for heterogeneous processing cores.

M. Lou (PX) - J. Xiao
Xi’an Microelectronics Technology Institute, Xi’an, China
e-mail: loumian2008 @hotmail.com

Z. Wen and T. Li (eds.), Foundations of Intelligent Systems, 201
Advances in Intelligent Systems and Computing 277,
DOI: 10.1007/978-3-642-54924-3_19, © Springer-Verlag Berlin Heidelberg 2014

202 M. Lou and J. Xiao

Most prevalent CMPs (for example, the IBM Power5 [1]) have a relatively
small number of cores (2—-8) connected through an on-chip shared bus or crossbar,
each one with at least one level of local cache to alleviate the performance deg-
radation caused by available bandwidth. This replication of L1 caches introduces
the probability of data pollution if data are being shared among cores, since any
modification of private data in one cache may leave other cores with stale versions
which should no longer be considered valid. Generally speaking, two families of
protocols are used. The main objective of the invalidation protocol is to transmit
invalidation message to sharer caches that contain the modified data. At the
opposite, under the control of the update protocol, the address and value of the
modified block are sent to all other sharers. Chtioui et al. [2] have demonstrated
that the use of a unique protocol (invalidation or update) does not take into account
the patterns of data accesses executed by processors. Hence, it is necessary to
explore the dynamic hybrid cache coherence protocol, which deals with increased
cache accesses and related cache misses due to the running of more complex and
irregular application set. Bournoutian and Orailoglu utilize a fine-grained dynamic
approach with shift counter for each L1 line, to mitigate multicore processor power
consumption. However, with the increment of the number of integrated cores, it is
complex to realize a global state diagram to manage diverse coherence protocols
possessed by each core [3]. In [2], a hybrid policy based on a completely hardware
solution and using a full bit-vector directory can significantly reduce both cache
misses and unnecessary updates. Although conventional directory bandwidth uti-
lization scales more graciously, it introduces large structures that consume pre-
cious on-chip area and leakage power due to complicated state switch
comparatively [4, 5].

In this paper, we investigate a new scheme by taking advantage of the two
protocols, which can trace changes in the data access patterns at runtime and
automatically switch to another more efficient protocol if necessary. Specifically,
we propose a novel directory structure that obviously lightens the area overhead
and further mitigates energy waste.

2 Hybrid Protocol Proposed

In [2], a hybrid protocol named ESIO is able to help in choosing the appropriate
policy (validation or update) for a given shared memory block in a given appli-
cation phase. As depicted in Fig. 1a, the Invalid (I) state shows that no valid data
are stored in each private cache. The Exclusive (E) state denotes that the corre-
sponding data are the only correct version within the localized caches and in the
shared memory. The Shared (S) state implies that the valid data may also be
located in other private caches [6]. The special state “O” (invalidated by other) has
played an important role in the dynamic protocol. It distinguishes blocks that
have not been yet loaded from blocks that have been invalidated by another host.

Dynamic, Tagless Cache Coherence Architecture 203

(@) Exggg& () Lwowsu
v LW/OW&INV
OR OR

LR

LW/
OW&U
LW&INV
LR/OR
OW&l LR
NV OR
e LW/OW&U
NV LW/OW&INV
Fig. 1 a ESIO state diagram. b IVP state diagram
Table 1 Listing of Notation Meaning
abbreviations
OR Read by a remote processor
LR Read by the local processor
ow Write by a remote processor
LW Write by the local processor
BE Block ejection due to replacement
INV Invalidation operation
U Update operation

Note that this four-state (ESIO) protocol uses two bits per shared memory block.
Besides, the definitions of notations on the arcs in Fig. 1 are listed in Table 1.
However, the cache coherence is mainly maintained by directory in the cen-
tralized shared memory. The motive of ESIO protocol is to identify the occurrence
that the certain local cache block is invalidated by another processor. Thus, it is
inessential to recognize that the source of “O” is “E” or “S” as well as the
destination. Moreover, all of the data accesses sent by processors have to visit the
coherence directory and further update the ESIO state according to the associated
update or invalidation operation. Therefore, it is necessary to reduce the state
migration among different states, leading to the significant dynamic power con-
sumption of memory. By analyzing the detail function of each state in the above
protocol, we can intelligently make modifications on the ESIO protocol in order to
significantly reduce switch power overhead while minimally affecting execution
performance. As demonstrated in Fig. 1b, the main contribution of our simplified
IVP protocol is to combine the stale state “E” and “S” in ESIO as a single state

204 M. Lou and J. Xiao

“V”. The aim of the combination just denotes that there will be at least a valid
replication in private cache. It could eliminate the unnecessary state transitions
existing in the former protocol. Moreover, the state P represents the similar con-
dition that the block is invalidated passively by another processor. The only
condition that could cause state switch from P to another happened when the
corresponding memory block receives a read request. The primary theory of this
view is that the subsequent choice of coherence protocol depends on the write
frequency for the associated data block between read operations. The detail
description is demonstrated in the next section.

3 Protocol Implementation

The conventional implementations for the cache coherence mainly include two
frameworks: snoop and directory. Unfortunately, snoop protocols rely on broad-
casts that deteriorate bandwidth utilization and, therefore, power consumption in
the interconnection, which has been constituted a significant fraction of the overall
chip power [7, 8]. Directory protocols depend on a conceptually centralized
structure to record duplication owners for each block. These reduce bandwidth
requirements, but introduce large structures that consume precious on-chip area
and leakage power. In this paper, we compare our proposal against a directory
structure used in [2]. The latter one has a disadvantage in area and power which
have a linear change according to the capacity of the shared memory.

3.1 Directory Structure

The proposed configuration of directory is abstractive as shown in Fig. 2, which
makes original contribution as follows. For one thing, a duplication of all L1 tags
integrated on the L2 cache is responsible for maintaining the coherence across all
L1 caches, instead of a full bit-vector directory in [2]. The full bit-vector directory
has the equivalent number of entries corresponding with the number of shared
memory blocks; thus, it consumes large area on chip. However, because the total
area overhead of all L1 tags is less than that of L2 tag, the proposed has a
remarkable advantage to reduce area cost. On the other hand, the key to our
solution is associated with each memory block a two-bit flag to determine which
coherence protocol to use in the subsequent accesses. The benefit of this mecha-
nism is the dynamic record of data access pattern. This feature could find the ideal
balance between the improvement in execution performance and the reduction in
memory power, along with the reasonable conversion between update and inval-
idation. Besides, the physical prototype of adopted directory is realized with
SRAM instead of CAM used by Niagara 2 [9]. This decision is based on the fact
that the CAM is so costly that is unsuitable to be employed far and wide.

Dynamic, Tagless Cache Coherence Architecture 205

CNT

Fig. 2 The proposed configuration of directory

In practice, the flow of operation is processed as follows. Firstly, it should be
parallel to search all entries existing in different directories depicted as the above
structure. All the possible entries can be located with the index segment of the
access address from L1 cache directly. Secondly, by comparing the content of
selected entries with the tag segment of the former address, it is accurate to find
out which processors have the correct duplications. At the same time, the asso-
ciated IVP state can also be obtained. If there is a read operation, the corre-
sponding protocol of memory block may turn into the opposite one, according to a
following smart algorithm. In addition, the content with regard to IVP state shall
be updated under the control of the algorithm.

3.2 Protocol Algorithm

For clarity, Fig. 3 demonstrates the above-mentioned algorithm. The algorithm
takes into account the dynamic behavior of the program, based on a special counter
noted as “cnt”. When there is a read access to the corresponding block with “P”
state, “cnt” is tested and two branches are possible: (1) cnt exceeds d. In this
situation, it is approximate to show that the shared data have not been used
frequently. Consequently, an impression that invalidation protocol (cp = 0) may
give better performance than the update protocol (cp = 1) is made. Simultaneity,
another temporary register called “T” is added in order to determine dynamically
suitable threshold value for update. Once the counter reaches 0, the protocol will
return to the invalidation. (2) cnt is less than . To a certain extent, it is explained a

206 M. Lou and J. Xiao

| L2 cache access |

cp=0; v
A A 4
cp=1; T--; cnt--;
T++; if T=0 cnt++ if cnt=0
cnt=T then cp=0; then cp=0
v ¥
load v R store

Shared memory access

Fig. 3 Algorithm of the dynamic protocol

phenomenon that multiprocessors start to employ the shared data continually, and
then, the protocol must switch to update. Under this condition, the temporary
counter T is increased after each read operation which is employed to predict the
probability that the same data can be modified in succession. Note that the protocol
to use initially is invalidation.

Power consumption is another key factor when we take into account the entire
framework of cache system initially. According to [10], for an SRAM used for
cache, there are three main activities that consume energy: read, write, and idle.
These three types of power can be modeled by Eqs. 1-3. All the models show that
the energy costs change linearly according to the number of words (M) and number
of bits per word (), with 4 and o represent, respectively, the weighting coefficient
and technology parameter. Equation 4 is deduced for the whole energy con-
sumption calculation in the SRAM, wherein 7,¢,q, Rywrite> and n;q1e are, respectively,
the counter values of read access, write access, and waiting cycles. Based on the
above viewpoints, the tagless directory adopted in this work has a great effect on
the reduction for memory in size. On the other hand, the proposed IVP makes great
efforts on the optimization about the number of accesses to L2 tag and directory.
Additionally, at the hardware level, the multibanks manner for each directory also
causes the most parts of one memory to work as the low power mode.

Ercad = (2/70)**%(Ro 4+ Ry X N) X (Ry + Ry x M) (1)

Ewie = (1/70)** % (Wo + Wy x N) x (W + W3 X M) (2)

Dynamic, Tagless Cache Coherence Architecture 207

Eiqe = (i/)h())zax(l() + 1, x N) X (12 + I3 x M) (3)

EsraM = Mread X Eread + Nwrite X Ewrite + Midle X Eidle (4)

4 Experimental Results

In this section, we evaluate the proposed hybrid protocol during the experiments.
The experiment is based on a full-system simulation using Magnusson et al. [11].
Here, we make use of the typical matrix multiplication which is parallelized onto
several processors to testify our method. We choose a representative multicore
system configuration, having per-core 4 kB L1 Dcache (1,024 entries, directly
mapped with a 4-byte line size) for 4 cores and a shared 1-MB L2 cache.

Figure 4 gives the execution time of various configurations obtained with the
given application. It proves that the proposed hybrid protocol reduced the exe-
cution time 22.2, 34.8, and 51.4 %, respectively, compared to the update, invali-
dation, and single core. This advantage is due to the reduction in the number of
cache misses caused by invalidating read—write shared data frequently. In addition,
since the bus contention caused by update protocol is serious, its performance is
not as good as the proposed. The worst condition is occurred with the single core
in series, which must employ the certain data used in matrix multiplication time
and again.

As described in Fig. 5, the experiment uses CACTI 6.5 [12] to estimate the total
cache subsystem power overhead across all four configurations. The technique
presented reduces the power cost about 8.9, 15.5, and 31.1 % compared to the
single core, invalidation, and update, respectively. As we can see, there is tre-
mendous energy overhead when employing the update protocol, since a great
many rewriting operations need to access cache memory without limit. With
regard to the benefit of our low power scheme, there are two reasonable points to
explain according to the power model. Firstly, it is feasible to avoid the unnec-
essary update in virtue of the dynamic protocol. Secondly, the way to utilize a
tagless directory reduces the size of the entire cache.

Figure 6 shows a rough area comparison between the tagless directory and the
full bit-vector directory. The latter structure is implemented generally as a matrix
of m lines and p columns, where m is the number of memory blocks and p is the
number of processors. From this view, the full bit-vector needs integrate an on-
chip memory with 256 kb in size, matching with a shared 1M L2 cache. However,
the architecture in our work needs only a small amount of extra hardware to keep a
copy of all L1 tags. As the result shows, the tagless directory requires 84.3 % less
area than the full bit-vector directory.

208 M. Lou and J. Xiao
Fig. 4 Execution time of —~ 25 —
. . 2] *
various configurations 5
2 2
g Pam—
[=]
Z 15
Z —
£
=}
g
Z 05
Q
] | I I I
<o) 0
Hybrid Updata Inv Single core
Fig. 5 Total cache
=~ M P —
subsystem power overhead e
g 10
g
E‘ 0.9 P am—
=)
2}
£ 08 [
O
0.7
5
f} 0.6 — — — —
Hybrid Single core Inv Updata
Fig. 6 Area requirements of A ‘ ‘ ‘ ‘ ‘
two directory structures 1 1 1 1 }
Full-bit

Tagless i

>

5 Conclusions

100 150 200 250

Area overhead(Kbit)

In this work, we have designed a new dynamic hybrid protocol to maintain data
coherence. It could enable a capability for solving performance limits due to the
use of unique protocol. The protocol presented is implemented based on a new
tagless directory structure. In contrast to the traditional full bit-vector directory
designs that have large area overhead, this smart directory is realized with a small
replication of all L1 cache tags making use of SRAM instead of CAM. Moreover,
to choose the appropriate protocol dynamically for a given block, a hybrid protocol
algorithm is also presented in detail. The results demonstrate that our technique
could significantly reduce execution time, compared to the unique protocol. The
results also prove that the proposed directory structure has an ability to reduce the

energy consumption and area overhead.

Dynamic, Tagless Cache Coherence Architecture 209

References

10.

11.

12.

. Kalla R, Sinharoy B, Tendler JM (2004) IBM Power5 Chip: a dual-core multithreaded

processor. Micro IEEE 24(2):40-47

. Chtioui H, Ben Atitallah R, Niar S, Dekeyser J, Abid M (2009) A dynamic hybrid cache

coherency protocol for shared-memory MPSoC. Paper presented at the 12th Euromicro
conference on the digital system design, architecture, methods and tools, Patras, 27-29 Aug
2009

. Bournoutian G, Orailoglu A (2011) Dynamic, multi-core cache coherence architecture for

power-sensitive mobile processors. Paper presented at the seventh IEEE/ACM/IFIP
international conference on hardware/software codesign and system synthesis, Taipei, 9-14
Oct 2011

. Zebchuk J, Qureshi MK, Srinivasan V, Moshovos A (2009) A tagless coherence directory.

Paper presented at the 42nd annual IEEE/ACM international symposium on
microarchitecture, New York, 12—16 Dec 2009

. Ros A, Acacio ME, Garcia JM (2008) DiCo-CMP: efficient cache coherency in tiled CMP

architecture. Paper presented at the IEEE international symposium on parallel and distributed
processing, Miami, 14-18 April 2008

. Mark SP, Janak HP (1984) A low-overhead coherence solution for multiprocessors with

private cache memories. Paper presented at the 11th annual international symposium on
computer architecture, Michigan, 5-7 June 1984

. Magen N, Kolodny A, Shamir N (2004) Interconnect-power dissipation in a microprocessor.

Paper presented at the 2004 international workshop on system level interconnect prediction,
Renaissance Paris Hotel Paris, France, 14—15 Feb 2004

. Wang HS, Peh LS, Malik S (2003) Power-driven design of router microarchitectures in on-

chip networks. Paper presented at the 36th annual IEEE/ACM international symposium on
microarchitecture, Washington, 3-5 Dec 2003

. Opensparc T2 system-on-chip (SoC) microarchitecture specification (2008) Redwood shore.

http://www.oracle.com/technetwork.systems/opensparc/opensparc-t2-page-1446157.html.
Accessed May 2008

Atitallah RB, Niar S, Greiner A, Meftali S, Dekeyser JL (2006) Estimating energy
consumption for an MPSoC architecture exploration. Paper presented at the 19th
international conference on architecture of computing systems, Frankfurt, Germany, 13-16
March 2006

Magnusson PS, Virtutech AB, Stockholm S et al (2002) Simics: a full system simulation
platform. Computer 35(2):50-58

Wilton SJE, Jouppi NP (2002) An enhanced access and cycle time model for on-chip caches.
Solid-State Circuits 31(5):677-688

http://www.oracle.com/technetwork.systems/opensparc/opensparc-t2-page-1446157.html

	19 Dynamic, Tagless Cache Coherence Architecture in Chip Multiprocessor
	Abstract
	1…Introduction
	2…Hybrid Protocol Proposed
	3…Protocol Implementation
	3.1 Directory Structure
	3.2 Protocol Algorithm

	4…Experimental Results
	5…Conclusions
	References

